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SUMMARY

Consider a sequence of n independent and identically random variables taking

values in a collection of m items {α1, α2, ..., αm}. Let pj be the probability that a

random variable is αj, j = 1, ...,m, and let pmax = maxj=1,...,m pj. We are interested

in estimating pmax when n and m approach infinity. In doing so, two estimators are

studied: a simple estimator associated with the maximum of the multinomial distri-

bution (n, p1, p2, ..., pm) and a non-linear estimator associated with the length of the

longest increasing subsequence, LIn, of the sequence of n random variables above. In

both cases, the limiting distribution of the estimators as n and m approach infinity

simultaneously is obtained. For the simple estimator, with appropriate assumptions

and a natural standardization, the limiting law is shown to be a Gumbel distribution,

while the asymptotic distribution of the length of the longest increasing subsequence

LIn(m) is shown to be a Tracy-Widom distribution. Next, the confidence intervals

for pmax are constructed using the two estimators. In investigating the sufficiency of

the estimation methods, we compare the mean square error of the estimators. The

bias corrected estimators associated with the two approaches are also compared. The

problem of estimating the multiplicity of pmax is then studied. Finally, we discuss

applications of estimating the maximum probability in biological diversity. In partic-

ular, the Berger-Parker index, a commonly used index to measure biological diversity,

can be estimated using the results obtained above. These estimation provide a more

accurate diversity comparison among communities with growing number individuals

and species.

x



CHAPTER I

A SIMPLE ESTIMATOR

1.1 Introduction

Let R1, R2, ..., Rn, ... be a sequence of iid random variables taking values in an al-

phabet {α1, α2, ..., αm}. Let pr = P(R1 = αr), 1 ≤ r ≤ m,
�m

r=1 pr = 1, and pmax =

max1≤r≤m pr. Let alsoM = {r = 1, ...,m : pr = pmax} and k∗ be the cardinality ofM .

Given a sequence R1, R2, ..., Rn satisfying the assumption above; define

Xj =
n�

i=1

I{Ri=αj},

and X(m) = maxj=1,...,mXj.

For each n = 1, 2, 3, ..., let X1(n), X2(n), ..., Xm(n) have a joint multinomial dis-

tribution, with parameters n, p1, ..., pm, i.e., let

P ((X1, ..., Xm) = (x1, ..., xm)) =
n!�m

i=1 xi!

m�

i=1

pxi
i ,

where the xi are non-negative integers, i = 1, ...,m,
�m

i=1 xi = n, and where pi > 0

for i = 1, ...,m,
�m

i=1 pi = 1.

As we shall discuss more in detail in Chapter 5, pmax relates to Berger-Parker

index, a commonly used index to measure biological diversity of an ecological com-

munity. Hence, estimating pmax, as n and m approach infinity simuntaniously is of

interest. In this first chapter, we introduce a simple estimator
X(m)

n
associated with

the multinomial max X(m).

1



The maximum cell frequency in a multinomial distribution has been a popular

topic for decades (in [11], [19], [10], [31], [2], [15], [17], [38], [29], [23], [16], [34], [18]

and [9]). In particular, the maximum cell statistics has often been suggested for test-

ing purposes such as for favorable numbers on a roulette wheel ([8]) or spikes detection

([21]). The multinomial maximum is described in various forms in different contexts;

applications have occured in sequential clinical trials and in paranormal experiment

([7], [21]). The multinomial maximum can also be found in data oriented parsing

([5]), where it is used to estimate the probability of the most probable parse by sam-

pling random derivations. In addition, the maximum cell frequency has been used as

a measurement of diversity, a concept explained in [30] and [1] as follows: A traveler

in a tropical forest notices a particular species and wishes to find some more like it.

The maximum probability of appearance of any species, which can be interpreted as

the probability associated with the appearance of the typical species, has an inverse

relation with the diversity of the forest. More recently, the relationship among the

maximum cell frequency in multinomial trials, the gamma distribution order statis-

tics and the distribution used in randomization designs has been discussed in [33]. In

particular, the distribution of the waiting time till one of the treatments reaches its

quota is directly related to that of the multinomial maximum in the uniform case.

In Section 1.3, we find the asymptotic distribution of the multinomial maximum

with an increasing number of classes. The uniform case has been dealt at great length

in [18] as the limiting distribution of maximal occupancy of boxes. The procedure is

described as follows. Suppose we want to allocate n particles in m cells given that

each particle has an equal chance to be in any one of the cells. Let Xj, j = 1, ...,m,

denote the number of particles in the jth cell, and let X(m) = max1≤j≤mXj. Suppose

m = m(n) → ∞, as n → ∞, in such way that m logm/n → 0, as n → ∞, then

the asymptotic distribution of the standardized multinomial maximum is a Gumbel

2



distribution. Below we find the asymptotic distribution of the multinomial maximum

with an increasing number of classes for the general case. The tools we use in the

present paper are simpler than the ones developed in [18]. To obtain the result of

Theorem 1.3.2 below, we also require more assumptions (See conditions (2)-(7) in

Section 1.3 for detail). These assumptions imply in particular that we need to have

m3/n→ 0, as n→ ∞, in the uniform case.

1.2 Finite number of classes, i.e. m <∞
1.2.1 For k∗ = 1

Proposition 1.2.1.

If there is precisely one pj = pmax, i.e., if k∗ = 1, then:

X(m) − npmax�
npmax(1− pmax)

=⇒ N(0, 1).

Proof. We can write

X(m) =
n�

i=1

I{Ri=αpmax},

where I{Ri=αpmax} ∼ Ber(pmax) and αpmax is the letter that satisfies P(Ri = αpmax) =

pmax. Thus by the Central Limit Theorem, we obtain the result claimed.

1.2.2 For 1 < k∗ < m

Proposition 1.2.2.

X(m) − npmax√
npmax

⇒ T(k∗),

where T(k∗) = maxj=1,...,k∗ Tj and (T1, ..., Tk∗) ∼ N(0,Σk∗,pmax), provided that

Σk∗,pmax =




1− pmax −pmax −pmax ... −pmax

−pmax 1− pmax −pmax . . .
...

...
. . . . . . . . .

...

... · · · −pmax 1− pmax −pmax

−pmax · · · · · · −pmax 1− pmax




.

3



Proof. Observing that I{Ri=αj} ∼ Ber(pj), by the Central Limit Theorem we get:

�
Xj − npj√

npj

�m

j=1

=⇒ N(0,Σm), (1)

where (Σm)i,j =
Cov(Xi, Xj)

n
√
pipj

=





1− pj if i = j,

−√
pipj if i �= j.

That is,

Σm =




1− p1 −√
p1p2 −√

p1p3 ... −√
p1pm

−√
p2p1 1− p2 −√

p2p3 . . .
...

...
. . . . . . . . .

...

... · · · −√
pm−1pm−2 1− pm−1 −√

pm−1pm

−√
pmp1 · · · · · · −√

pmpm−1 1− pm




.

Indeed, we can compute Cov(Xi, Xj). First, we see that

E(Xj) = npj, and V ar(Xj) = npj(1− pj), then we get

E(XiXj) =
n�

k=1

n�

l=1

E
�
I{Rk=αi}I{Rl=αj}

�
=

n�

k=1

�

l �=k

E
�
I{Xk=αi}

�
E
�
I{Xl=αj}

�
= n(n−1)pipj.

Hence,

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = −npipj

Now,

P
�
X(m) − npmax√

npmax

≤ x

�

= P
�
X(m) ≤ npmax + x

√
npmax

�

= P
�
Xj ≤ npmax + x

√
npmax, j = 1, ...,m

�

4



= P

�
Xj − npj√

npj
≤

√
n(pmax − pj)√

pj
+ x

�
pmax

pj
, j = 1, ...,m

�
.

Note that for all x ∈ R,
√
n(pmax − pj)√

pj
+x

�
pmax

pj
=





x if j ∈M ,

→ ∞ as n→ ∞ otherwise.

So, as n→ ∞, by (1) we obtain

X(m) − npmax√
npmax

=⇒ T(k∗),

where T(k∗) = maxj=1,...,k∗ Tj and (T1, ..., Tk∗) ∼ N(0,Σk∗,pmax).

1.2.3 For k∗ = m

Proposition 1.2.3. (Uniform case)

If k = m, i.e. if pmax = 1/m, then

X(m) − n/m�
n/m

=⇒ Z(m) − Z̄m,

where Z(m) = maxj=1,...,m Zj and Z̄m =
1

m

�m
j=1 Zj, provided that Z1, Z2, ..., Zm are

iid N(0, 1).

Proof. From Proposition 1.2.2, k∗ = m implies as n→ ∞,

X(m) − n/m�
n/m

=⇒ T(m),

where T(m) = maxj=1,...,m Tj and (T1, ..., Tm) ∼ N(0,Σm,1/m), provided that

Σm,1/m =
1

m




m− 1 −1 −1 ... −1

−1 m− 1 −1 . . .
...

...
. . . . . . . . .

...

... · · · −1 m− 1 −1

−1 · · · · · · −1 m− 1




.

5



Now since Σm,1/mΣm,1/m = Σm,1/m, we can write

(T1, ..., Tm)
� = Σm(Z1, ..., Zm)

�,

where (Z1, ..., Zm) ∼ N(0, Im), i.e., Z1, ..., Zm iid N(0, 1) .

Equivalently,

Tj =

�
Zj −

1

m

m�

i=1

Zi

�
, j = 1, ...,m.

Thus

X(m) − n/m�
n/m

=⇒
�
max
1≤j≤m

Zj −
1

m

m�

i=1

Zi

�
.

1.3 Increasing number of classes, i.e., m = m(n)→ ∞

In this section, we particularly focus on the case where k∗ = k∗(n)→ ∞ as n → ∞.

As for the cases k∗ = 1 and k∗ < ∞, the result is the same as in Propositions 1.2.1

and 1.2.2, respectively.

Recall for each n = 1, 2, 3, ..., let X1(n), X2(n), ..., Xm(n)(n) have a joint multino-

mial distribution, with parameters n, p1(n), ..., pm(n)(n), i.e., let

P ((X1, ..., Xm) = (x1, ..., xm)) =
n!�m

i=1 xi!

m�

i=1

pxi
i ,

where the xi are non-negative integers, i = 1, ...,m(n),
�m(n)

i=1 xi = n, and where

pi(n) > 0 for i = 1, ...,m(n),
�m(n)

i=1 pi(n) = 1. Let pmax(n) = max1≤j≤m pj(n), let

M(n) = {j = 1, 2, ...,m : pj(n) = pmax(n)} and let k∗(n) be the cardinality of M(n).

Also, for any x ∈ R, let cjn(x) =
�
x

ak∗
+ bk∗

� √
pmax√
pj

+
√
n
(pmax − pj)√

pj
, j = 1, ...,m.

6



Thoughout this section, we make the following assumptions:

m(n)→ ∞, k∗(n)→ ∞ and pmax(n)→ 0 as n→ ∞. (2)

For someΔ ∈ (0, 1), min
1≤j≤m(n)

[1− pj(n)] > Δ. (3)

m(n)�

j=1

1�
npj(n)

→ 0 as n→ ∞. (4)

m(n)�
npm(n)

→ 0 as n→ ∞. (5)

IfM c(n) �= ∅, 1�
pm(n)

�

j∈Mc

1

cjn(x)
e−c2jn(x)/2 → 0 as n→ ∞. (6)

For each x ∈ R, cmn(x)→ ∞ as n→ ∞. (7)

Above, the assumption (2) indicates that the number of classes m(n) increases to

infinity and the multiplicity of pmax also grows to infinity. The assumptions (3)- (5)

come from [37]. Finally, conditions (6) and (7) are used in the proof of Lemma 1.3.1

and Theorem 1.3.2, respectively.

From assumptions (2)-(5) and the fact that k∗(n)pmax(n) < 1, pmax(n) must also

satisfy the following conditions:

For some Δ ∈ (0, 1), pmax(n) < min

�
1

k∗(n)
, 1−Δ

�
, (8)

lim
n→∞

k∗(n)�
npmax(n)

= 0. (9)

Often, to simplify notation, we write pmax, pj, k
∗,m andM for pmax(n), pj(n), k

∗(n),m(n)

and M(n).

Lemma 1.3.1. For each n = 1, 2, 3, ..., let X1(n), X2(n), ..., Xm(n) have a joint multi-

nomial distribution with parameters n, p1(n), ..., pm(n). Let X(m−1) be the maximum

of the first m− 1 elements, i.e., X(m−1) = max
1≤j≤m−1

Xj.

7



Let the conditions (2)-(7) hold true. Then as n→ ∞,

ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
=⇒ G,

where ak∗ = (2 log k
∗)1/2 and bk∗ = (2 log k

∗)1/2−1
2
(2 log k∗)−1/2 (log log k∗ + log 4π) ;

where G has a Gumbel distribution, i.e., P(G ≤ x) = exp (− exp(−x)) , x ∈ R and

where =⇒ indicates convergence in distribution.

Proof. Let M �(n) := {j = 1, 2, ...,m − 1 : pj(n) = pmax(n)} and let k�∗(n) := the

cardinality of M �.

Since k∗ − 1 ≤ k�∗ ≤ k∗ and (M �)c ⊂M c, the assumptions (2) and (6) imply that

k�∗(n)→ ∞ as n→ ∞. (10)

IfM �c(n) �= ∅, then 1�
pm(n)

�

j∈M �c

1

cjn(x)
e−c2jn(x)/2 → 0 as n→ ∞. (11)

It is straightforward to verify that E(Xj) = npj, V ar(Xj) = npj(1 − pj) and

Cov(Xi, Xj) = −npipj, i, j = 1, ...,m, i �= j. Then,

P
�
ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
≤ x

�

= P
�
Xj ≤

�
x

ak∗
+ bk∗

�√
npmax + npmax, j = 1, ...,m− 1

�

= P
�
Xj − npj√

npj
≤
�
x

ak∗
+ bk∗

� √
pmax√
pj

+
√
n
(pmax − pj)√

pj
, j = 1, ...,m− 1

�
.

Set Yj =
Xj − npj√

npj
, j = 1, ...,m − 1. Then E(Yj) = 0, V ar(Yj) = 1 − pj and

Cov(Yi, Yj) = −√
pipj, i, j = 1, ...,m− 1, i �= j, and let

8



Σm−1 = Cov(Y ) =




1− p1 −√
p1p2 −√

p1p3 ... −√
p1pm

−√
p2p1 1− p2 −√

p2p3 . . .
...

...
. . . . . . . . .

...

... · · · −√
pm−2pm−3 1− pm−2 −√

pm−2pm−1

−√
pm−1p1 · · · · · · −√

pm−1pm−2 1− pm−1




.

Then

P
�
ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
≤ x

�
= P (Yj ≤ cjn(x), j = 1, ...,m− 1) . (12)

Let now Z = (Z1, Z2, ..., Zm−1) ∼ N(0,Σm−1) be jointly normal with density

fZ1,...,Zm−1(z1, ..., zm−1) =

�
1

2π

�(m−1)/2

p−1/2
m exp

�
−1
2

m−1�

j=1

z2j −
1

2pm
(
m−1�

j=1

√
pjzj)

2

�
.

Define Z̄1, Z̄2, ..., Z̄m as the following functions of Z1, Z2, ..., Zm−1. For j = 1, ...,m−

1, Z̄j is the closest value of Zj which makes npmax +
√
npmaxZ̄j an integer. If there

are two possible values for Z̄j, use the smaller one. Z̄m is given by the identity

m�

j=1

√
pjZ̄j = 0.

From [37], we can write

Z̄j = Zj +
θj

2
√
npj

,where |θj| ≤ 1, j = 1, ...,m− 1.

Also from [37], for any sequence (An)n≥1, where for each n,An is a Borel subset

of Rm(n), we obtain the following result

��P ((Y1, ..., Ym−1) ∈ An)− P
�
(Z̄1, ..., Z̄m−1) ∈ An

���→ 0, as n→ ∞.

For each x ∈ R, let An = Π
m
j=1 (−∞, cjn(x)) , the result above implies as n→ ∞,

��P (Yj ≤ cjn, j = 1, ...,m− 1)− P
�
Z̄j ≤ cjn, j = 1, ...,m− 1

���→ 0. (13)

9



From the relation between Z̄j and Zj we have

ak∗

�
Z̄j −

√
n

pmax−pj√
pj�

pmax/pj
− bk∗

�
(14)

= ak∗

�
Zj −

√
n

pmax−pj√
pj�

pmax/pj
− bk∗

�
+

ak∗θj

2
√
npmax

�
pmax/pj

.

Since |θj| ≤ 1 for j = 1, ...,m− 1 and from (4), it is easily seen that as n→ ∞,

sup
1≤j≤m−1

ak∗

2
√
npmax

�
pmax/pj

θj → 0. (15)

Equation (14) and condition (15) together with Slutsky’s lemma imply that for

each x ∈ R,

lim
n→∞

��P
�
Z̄j ≤ cjn(x), j = 1, ...,m− 1

�
− P (Zj ≤ cjn(x), j = 1, ...,m− 1)

��

= lim
n→∞

��P
�
g(Z̄j) ≤ x, j = 1, ...,m− 1

�
− P (g(Zj) ≤ x, j = 1, ...,m− 1)

��

= 0,

where g(z) = ak∗

�
z −√

n
pmax−pj√

pj�
pmax/pj

− bk∗

�
.

This result and (13) give as n→ ∞,

|P (Yj ≤ cjn(x), j = 1, ...,m− 1)− P (Zj ≤ cjn(x), j = 1, ...,m− 1)| → 0. (16)

Note that for j ∈M �, cjn(x) =
x

ak∗
+ bk∗ , and let

Ωn = {(z1, ..., zm−1) ∈ Rm : zj ≤ cjn(x) for j ∈ (M �)c}.

Then

����P (Zj ≤ cjn(x), j = 1, ...,m− 1)− P
�
Zj ≤

x

ak∗
+ bk∗ , j ∈M �

�����

10



=

�

Ωc
n

fZ1,...,Zm−1(z1, ..., zm−1)dz1dz2...dzm−1

≤ 1√
pm

�

Ωc
n

�
1

2π

�(m−1)/2

exp

�
−1
2

m−1�

j=1

z2j

�
dz1dz2...dzm−1

≤ 1√
pm

�

j∈M �c

�� ∞

cjn(x)

1

2π
exp(−z2j /2)dzj

�

≤ 1√
pm

�

j∈M �c

1

cjn(x)
e−c2jn(x)/2,

where the last two inequalities follow respectively from Boole’s inequality and a

well known estimate on the standard normal survival function. Taking the limit as

n→ ∞ and by (11) one obtains:

����P (Zj ≤ cjn(x), j = 1, ...,m− 1)− P
�
Zj ≤

x

ak∗
+ bk∗ , j ∈M �

�����→ 0. (17)

Set Z∗ = (Z∗
1 , ..., Z

∗
k�∗) = (Zj, j ∈M �), then Z∗ ∼ N(0,Σk�∗) where

Σk�∗ =




1− pmax −pmax −pmax ... −pmax

−pmax 1− pmax −pmax . . .
...

...
. . . . . . . . .

...

... · · · −pmax 1− pmax −pmax

−pmax · · · · · · −pmax 1− pmax




.

Then (16) and (17) imply that, as n→ ∞,

����P (Yj ≤ cjn(x), j = 1, ...,m− 1)− P
�
Z∗

(k�∗) ≤
x

ak∗
+ bk∗

�����→ 0, (18)

where Z∗
(k�∗) = max

1≤j≤k�∗
Z∗

j .

11



Next, let N =
1√

1− pmax

Z∗, then N is a centered normal vector with covariance

matrix




1 − pmax

1−pmax
− pmax

1−pmax
... − pmax

1−pmax

− pmax

1−pmax
1 − pmax

1−pmax
. . .

...

...
. . . . . . . . .

...

... · · · − pmax

1−pmax
1 − pmax

1−pmax

− pmax

1−pmax
· · · · · · − pmax

1−pmax
1




.

Let ρk�∗ =
2pmax

1− pmax

. Clearly, since pmax ≤ 1

k�∗
, then ρk�∗ < 1, for k

�∗ ≥ 4 and by

(10),

ρk�∗ log k
�∗ =

2pmax log k
�∗

1− pmax

<
2 log k�∗/k�∗

1− 1/k�∗ =
2 log k�∗

k�∗ − 1 → 0

as k�∗ → ∞ .

Thus, by Theorem 6.2.1 in [20] with mi = m∗
i = 0 and |rij| =

pmax

1− pmax

< ρ|i−j|,

i, j = 1, ..., k�∗, i �= j, we get as k�∗ → ∞,

ak�∗
�
N(k�∗) − bk�∗

�
=⇒ G, (19)

where N(k�∗) = max
1≤j≤k�∗

Nj and G is a Gumbel distribution. Hence,

ak�∗
�
Z∗

(k�∗) − bk�∗
�
=
�
1− pmaxak�∗

�
N(k�∗) − bk�∗

�
+ ak�∗bk�∗

��
1− pmax − 1

�
. (20)

Note that as k�∗ → ∞,
√
1− pmax → 1 and ak�∗bk�∗

�√
1− pmax − 1

�
→ 0 since

pmax ≤ 1/k�∗ and

���ak�∗bk�∗
��

1− pmax − 1
���� ≤ 2 log k�∗ pmax√

1− pmax + 1
≤ 2 log k�∗

k�∗
1√

1− pmax + 1
→ 0.
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From (2), (19) and (20), the relations ak�∗/ak∗ → 1 and ak∗ (bk∗ − bk�∗) → 0 as

k∗ → ∞, and Slutsky’s lemma we get

ak∗
�
Z∗

(k�∗) − bk∗
�
=⇒ G. (21)

From (18) and (21) we obtain

lim
n→∞

|P (Yj ≤ cjn(x), j = 1...m− 1)− exp (− exp(x))| = 0.

Recalling (12), we conclude that

lim
n→∞

����P
�
ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
≤ x

�
− exp (− exp(x))

���� = 0.

Using Lemma 1.3.1, we now obtain the limiting distribution of the multinomial

maximum with an increasing number of classes.

Theorem 1.3.2. For each n = 1, 2, 3, ..., let X1(n), X2(n), ..., Xm(n) have a joint

multinomial distribution with parameters n, p1(n), ..., pm(n). Let X(m) = max
1≤j≤m

Xj.

Let the conditions (2)-(7) hold true. Then as n→ ∞,

ak∗

�
X(m) − npmax√

npmax

− bk∗

�
=⇒ G,

where ak∗ = (2 log k
∗)1/2 and bk∗ = (2 log k

∗)1/2−1
2
(2 log k∗)−1/2 (log log k∗ + log 4π) .

Proof. Note that P
�
ak∗

�
X(m) − npmax√

npmax

− bk∗

�
≤ x

�

= P
�
ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
≤ x,

Xm − npm√
npm

≤ cmn(x)

�
.
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The result above implies that, as n→ ∞,

����P
�
ak∗

�
X(m) − npmax√

npmax

− bk∗

�
≤ x

�
− P

�
ak∗

�
X(m−1) − npmax√

npmax

− bk∗

�
≤ x

�����

≤ P
�
Xm − npm√

npm
≥ cmn(x)

�
→ 0,

since
Xm − npm√

npm
⇒ N(0, 1) and by condition (7). From Lemma 1.3.1, we then

conclude that as n→ ∞,

ak∗

�
X(m) − npmax√

npmax

− bk∗

�
=⇒ G.

We now specialize our main result to the uniform case where:

k∗ = m, p1(n) = p2(n) = ... = pm(n) = pmax =
1

m
andM c(n) = ∅.

Corollary 1.3.3. For each n = 1, 2, 3, ..., let X1(n), X2(n), ..., Xm(n)(n) have a multi-

nomial distribution with parameters n and

�
1

m
,
1

m
, ...,

1

m

�
, i.e.

P ((X1, ..., Xm) = (x1, ..., xm)) =
n!

(
�m

j=1 xj!)

�
1

m

�n

,

where xi are non-negative integers, i = 1, ...,m(n),
�m(n)

i=1 xi = n. Let X(m) = max
1≤j≤m

Xj

and let m = m(n)→ ∞ as n→ ∞ in such a way that
m3

n
→ 0. Then as n→ ∞,

am

�
X(m) − n

m�
n
m

− bm

�
=⇒ G,

where am = (2 logm)
1/2 and bm = (2 logm)

1/2 − 1
2
(2 logm)−1/2 (log logm+ log 4π) .

Proof. The assumptions (2)-(7) are satisfied. Therefore, the result follows from

Theorem 1.3.2.
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CHAPTER II

A NON LINEAR ESTIMATOR

2.1 Introduction

Recall that R1, R2, ..., Rn, ... is a sequence of iid random variables taking their values

in a finite ordered alphabet {α1 < α2 < ... < αm}. Let pr = P(R1 = αr), 1 ≤ r ≤

m,
�m

r=1 pr = 1, and pmax = max1≤r≤m{pr}.

Now let LIn be the length of the longest increasing subsequence of R1, R2, ..., Rn.

To understand the definition of the LIn better, let us consider the following example

for n = 10,m = 3 with the alphabet {1, 2, 3}:

1 1 3 2 2 3 1 1 2 3.

A longest increasing subsequence is

1 1 3 2 2 3 1 1 2 3.

So the length of the longest increasing subsequence is LIn = 6.

Note that the longest increasing subsequence is not unique. Here is another longest

increasing subsequence of the example above:

1 1 3 2 2 3 1 1 2 3.

We introduce LIn/n as an estimator for pmax. The study of the asymptotic dis-

tribution of LIn is discussed. The result of the finite case can be found in [13] and

the increasing number of classes case is studied in [6].

Motivating our investigation of LIn in various probabilistic contexts is the classical

problem of describing the length of the longest increasing subsequence of a random
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permutation of the first n positive integers. The study of the asymptotic behavior

of this quantity has enjoyed a rich history as ’Ulam’s Problem’. There are good

background information about the literature of the length of the longest increasing

subsequence as well as the Ulam’s Problem discussed in [13]. In this chapter, we also

discuss the simulation study of LIn and the max eigenvalue of the Gaussian Unitary

Ensemble (GUE). This will give us a better idea about the distributions of the two

random variables and their relation.

2.2 The length of the longest increasing subsequence

2.2.1 Combinatorics

Suppose a sequence R1, R2, ...Rn, ... is described as above. Let a
r
k be the number of

occurrences of αr among R1, R2, ...Rk, 1 ≤ k ≤ n. Then the number of occurrences of

αr ∈ {α1, ..., αm} among Rk+1, Rk+2, ...Rl, where 1 ≤ k < l ≤ n, is simply arl − ark.

The length of the longest increasing subsequence of R1, R2, ..., Rn is then given

by:

LIn = max
0≤k1≤...≤km−1≤n

�
(a1k1 − a10) + (a

2
k2
− a2k1) + ...+ (a

m
n − amkm−1

)
�
,

i.e.,

LIn = max
0≤k1≤...≤km−1≤n

[(a1k1 − a2k1) + (a
2
k2
− a3k2) + ...+ (a

m−1
km−1

− amkm−1
) + amn ],

where ar0 = 0. Now define Z
r
i =





1 ,if Ri = αr,

−1 , if Ri = αr+1,

0 , otherwise.

Let Sr
k =

�k
i=1 Z

r
i , k = 1, ..., n with S

r
0 = 0. Then S

r
k = ark − ar+1

k and

LIn =
n

m
− 1

m

m−1�

r=1

rSr
n + max

0≤k1≤...≤km−1≤n
[S1

k1
+ S2

k2
+ ...+ Sm−1

km−1
]. (22)
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2.2.2 Probabilistic development- The uniform case

Consider first the case in which R1, R2, ..., Rn are i.i.d, with each letter drawn uni-

formly from A = {α1, ..., αm}. That is, P (Ri = αr) = 1/m, 1 ≤ i ≤ n, 1 ≤ r ≤ m.

Then for each r = 1, ...,m − 1, {Zr
i } forms i.i.d random variables with E[Zr

i ] =

0,Var(Zr
i ) = 2/m, and so Var(S

r
n) = 2n/m. Define:

B̂r
n(t) =

1�
2n
m

Sr
[nt] + (nt− [nt])

1�
2n
m

Zr
[nt]+1

for t ∈ [0, 1]. Then for (22), we have:

LIn − n
m�

2n
m

= − 1
m

m−1�

i=1

iB̂i
n(1) + max

0≤t1≤...≤tm−1≤1
[B̂1

n(t1) + ...+ B̂
m−1
n (tm−1)]. (23)

By Donsker’s theorem and Continuous Mapping Theorem for (m-1) dimensional

random vector, ( 23) implies:

LIn − n
m�

2n
m

⇒ − 1
m

m−1�

i=1

iB̃i(1) + max
0≤t1≤...≤tm−1≤1

m−1�

i=1

B̃i(ti),

where the covariance structure of (B̃1(t), ...B̃m−1(t)) is

Cov(B̃r(t), B̃s(t)) =





t if r = s,

0 if |r − s| ≥ 2,

− t
2
if |r − s| = 1.

(24)

Proposition 2.2.1. Let R1, R2, ..., Rn be a sequence of i.i.d random variables drawn

uniformly from the ordered finite alphabet A = {α1, ..., αm}. Then

LIn − n
m�

2n
m

=⇒ − 1
m

m−1�

i=1

iB̃i(1) + max
0≤t1≤...≤tm−1≤1

m−1�

i=1

B̃i(ti),

where (B̃1(t), ...B̃m−1(t)) is an (m-1)-dimensional Brownian motion with covariance

structure given in (24).
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By letting B̃i(t) =
1√
2
(Bi(t) − Bi+1(t)), 1 ≤ i ≤ m − 1, where (B1(t), ..., Bm(t))

are standard Brownian motion, we can rewrite the result above as:

LIn − n
m�

n
m

=⇒ − 1
m

m�

i=1

Bi(1) + max
0=t0≤t1≤...≤tm−1≤tm≤1

m�

i=1

[Bi(ti)− Bi(ti−1)].

2.2.3 Probabilistic development- The non-uniform case

Theorem 2.2.2. Let R1, R2, ..., Rn be a sequence of i.i.d random variables drawn

from the ordered finite alphabet A = {α1, ..., αm}, such that P (R1 = αr) = pr, for

r = 1, ...,m, where 0 < pr < 1 and
�m

r=1 pr = 1. Then

LIn − pmaxn√
n

=⇒ − 1
m

m−1�

i=1

iσiB̃
i(1) + max

0=t0≤t1≤...≤tm−1≤tm=1,ti=ti−1,i∈I∗

m−1�

i=1

σiB̃
i(ti),

where pmax = max1≤r≤r pr, σr = pr + pr+1 − (pr − pr+1)
2,M c = {r ∈ {1, 2, ...,m} :

pr < pmax}, and where (B̃1(t), ...B̃m−1(t)) is an (m-1)-dimensional Brownian motion

with covariance structure given in by:

Cov(B̃r(t), B̃s(t)) = t.





1 if r = s,

−pr+µrµs

σrσs
if s = r − 1,

−ps+µrµs

σrσs
if s = r + 1,

−µrµs

σrσs
if |r − s| > 1, 1 ≤ r, s ≤ m− 1,

with µr = pr − pr+1, 1 ≤ r ≤ m− 1.

There are 3 corollaries following Theorem 2.2.2:

Corollary 2.2.3. If pmax = pj for precisely one j ∈ {1, ...,m}, then

LIn − pmaxn√
n

=⇒ − 1
m

m−1�

i=1

iσiB̃
i(1) +

m−1�

i=j

σiB̃
i(1),

where the last term is not present if j = m.
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Corollary 2.2.4. Let pmax = pj1 = pj2 = ... = pjk∗ , for 1 ≤ j1 < j2 < ... < jk∗ ≤ m

for some 1 ≤ k∗ ≤ m− 1, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

=⇒
�
pmax(1− pmax) max

0=t0≤t1≤...≤tk∗−1≤tk∗=1

k∗�

i=1

[B̃i(ti)− B̃i(ti−1)],

where the k-dimensional Brownian motion (B̃1(t), ..., B̃k∗(t)) has the covariance ma-

trix

(Σ)k∗×k∗ = t




1 ρ ρ ... ρ

ρ 1 ρ . . .
...

...
. . . . . . . . .

...

... · · · ρ 1 ρ

ρ · · · · · · ρ 1




, (25)

where ρ = − pmax

1− pmax

.

We now express the limiting distribution in Corollary 2.2.4 as a functional of

standard Brownian motion.

Corollary 2.2.5. Let pmax = pj1 = pj2 = ... = pjk∗ , for 1 ≤ j1 < j2 < ... < jk∗ ≤ m

for some 1 ≤ k∗ ≤ m, and let pi < pmax, otherwise. Then

LIn − pmaxn√
n

=⇒ √
pmax

�√
1− k∗pmax − 1

k∗

k∗�

j=1

Bj(1) + max
0=t0≤t1≤...≤tk∗−1≤tk∗=1

k∗�

i=1

[Bi(ti)− Bi(ti−1)]

where (B1(t), ..., Bk∗(t)) is a standard k∗-dimensional Brownian motion.

Remark 2.2.6. : Here, for the non-uniform case, each Brownian motion B̃i(t) in

Corollary 2.2.4 can be expressed as a linear combination of standard Brownian mo-

tions (B1(t), ..., Bk(t)) as follows:

B̃i(t) = βBi(t) + η
k�

j=1,j �=i

Bj(t), i = 1, ..., k,

where β =
(k∗ − 1)

√
λ1 +

√
λ2

k∗
, η =

−
√
λ1 +

√
λ2

k∗
,

and λ1 and λ2 are eigenvalues of multiplicity k-1 and 1, respectively, of covariance
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matrix ( 25):

λ1 = 1− ρ =
1

1− pmax

, λ2 = 1 + (k
∗ − 1)ρ = 1− k∗pmax

1− pmax

(< λ1).

We have already seen several representations for the limiting law in the uniform

case. Yet one more pleasing functional for the limiting distribution of LIn is described

in the following.

Theorem 2.2.7. Let pmax = p1 = p2 = ... = pm = 1/m. Then

LIn − n/m√
n

=⇒ H̃m√
m
,

where

H̃m =

�
m− 1
m

max
0=t0≤t1≤...≤tm−1≤tm=1

m�

i=1

�
B̃i(ti)− B̃i(ti−1)

�
(26)

and where (B̃1(t), B̃2(t), ..., B̃m(t)) is an m-dimensional Brownian motion having co-

variance matrix ( 25), with ρ = −1/(m− 1), and thus such that
�m

i=1 B̃
i(t) = 0, for

all 0 ≤ t ≤ 1.

2.2.4 More related expressions for the limiting distribution

Let Hm = Dm − Zm, where

Dm = max
0=t0≤t1≤...≤tm−1≤tm=1

m�

i=1

[Bi(ti)− Bi(ti−1)]

and Zm =
1
m

�m
i=1B

i(1).

Corollary 2.2.8. For each m ≥ 1, H̃m =
d Dm − Zm, where =d denotes equality in

distribution.

Proof. Proposition 2.2.1 asserts that

LIn − n/m√
n

=⇒ Hm√
m
,

as n→ ∞, while by Theorem 2.2.7,
LIn − n/m√

n
=⇒ H̃m√

m
,

as n→ ∞ as well. The conclusion follows from the definitions stated above.

20



The relationship between H̃m (resp., Hm) and Dm allows us to further express the

limiting distribution in a rather compact form.

Proposition 2.2.9. Let pmax = pj1 = pj2 = ... = pjk∗ , for 1 ≤ j1 < j2 < ... < jk∗ ≤

m, for some 1 ≤ k∗ ≤ m, and let pi < pmax, otherwise. Then

LIn − pmaxn√
npmax

=⇒ {
�
1− k∗pmaxZk∗ +Hk∗}.

For k∗ = m, i.e., pmax = 1/m then the result is nothing but Proposition 2.1:

LIn − n/m�
n/m

=⇒ Hm.

Proof. For k∗ = m, we have pmax = 1/m and the result follows from Proposition

2.2.1.

For 1 ≤ k∗ ≤ m − 1, using Corollary 2.2.5 and the definition of Dk∗ , Zk∗ , and Hk∗

together with the relation among Dk∗ , Zk∗ and Hk∗ , we get our result.

Remark 2.2.10. We can also rewrite Proposition 2.2.9 as

LIn − pmaxn√
pmaxn

=⇒ (
�
1− k∗pmax − 1)Zk∗ +Dk∗ .

2.2.5 The GUE and traceless GUE

Definition 2.2.11. Let X be an element of the k × k GUE matrix, then

• Xi,i are i.i.d N(0, 1) for 1 ≤ i ≤ k.

• Xi,j = Xj,i;Re(Xi,j), Im(Xi,j) are iid N(0, 1/2) for 1 ≤ i < j ≤ k.

• Xi,i, Re(Xi,j), Im(Xi,j) are mutually independent.

Definition 2.2.12. An element of the k× k traceless GUE is of form X − tr(X)/k ∗

Ik×k, where X is an element of the k × k GUE, whose trace is denoted by tr(X).

There is an important relationship between GUE and GUE traceless
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Theorem 2.2.13. For k ≥ 2, let X be an k×k GUE matrix. Let X0 = X−tr(X)/k∗

Ik×k be the corresponding traceless GUE. Denote λ1,k and λ01,k be the maximum eigen-

value of X and X0, respectively. Then

λ1,k =
d λ01,k + Zk,

where Zk ∼ N(0, 1/k). Moreover, λ01 and Zk are independent.

An important result obtained for the largest eigenvalue of an k × k GUE matrix

is Tracy-Widom (1994) [35]

Theorem 2.2.14.

k1/6(λ1,k − 2
√
k) =⇒ F2

where λ1,k is the largest eigenvalue of an k × k GUE matrix, and F2 is the Tracy-

Widom distribution, i.e., the c.d.f of Tracy-Widom distribution is:

F2(t) = exp(−
� ∞

t

(x− t)2u2(x)dx), t ∈ R

where u(x) is the solution to the Painlevé II equation uxx = 2u
3+xu with u ∼ Ai(x),

as x→ ∞, where Ai(x) is the Airy function given by

Ai(x) =
1

2π

� ∞

−∞
exp

�
i

�
xt+

t3

3

��
dt

Also, it is well known that

λ1,k√
k

→ 2

a.s. and in L1.

Another important result that links everything together due to Baryshnikov (2001)

[3]
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Theorem 2.2.15. The process (Dm)m≥1, as defined above, is identical in law to

(λ1,m)m≥1, the process consisting of the largest eigenvalues of the first m rows and m

columns of an infinite GUE matrix.

Hence,

(Dm − 2√m)m1/6 =⇒ F2, asm→ ∞

From these results, the asymtotics of Hm follows:

Theorem 2.2.16.

Hm√
m

→ 2

a.s. and in L1, as m→ ∞. Moreover,

�
Hm√
m

− 2
�
m2/3 =⇒ F2,

where F2 is the Tracy-Widom distribution. The same statements hold for H̃m in place

of Hm.

For the uniform case, from Proposition 2.2.9, we have

LIn − n/m�
n/m

=⇒ Hm,

which is (in law) the maximum eigenvalue of a m×m element of the traceless GUE.

2.3 Simulation study of LIn and max eigenvalue of GUE

2.3.1 Idea of simulation

Recall Proposition 2.2.9,

LIn − pmaxn√
npmax

⇒
�
1− k∗pmaxZk∗ +Hk∗ .

We shall use simulation to generate the samples of the LIn and Hk∗ and Dk∗ and

then draw the histogram to see their shape:
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• First we must fix values of p1, p2, ..., pm ∈ (0, 1). Let k∗ be number multiplicity

of pmax

• We generate the sequence (Ri)1≤i≤n i.i.d with

P(R1 = αr) = pr, 1 ≤ r ≤ m. (27)

• For simplicity, we can consider αr = r, 1 ≤ r ≤ m.

• For the right hand side, we have Zk∗ =
1
k∗
�k∗

i=1B
i(1), where (B1(t), ..., Bm(t))

is a standard m-dimensional Brownian motion. Hence Zk∗ ∼ N(0, 1/k∗).

• Note that Zk∗ =⇒ 0 as k∗ → ∞

• Hk∗ is (in law) the maximum eigenvalue of a k
∗ × k∗ element of traceless GUE.

• Dk∗ is (in law) the maximum eigenvalue of a k
∗ × k∗ element of GUE.

2.3.2 Procedure of generating LIn

First, we generate R1, ..., Rn satisfying (27) by the following manner: For each i from

1 to n,

• Generate u from U(0, 1).

If u < p1, let Wi = 1.

If p1 ≤ u < p1 + p2, let Ri = 2.

If p1 + p2 ≤ u < p1 + p2 + p3, let Ri = 3.

.....................

If p1 + p2 + ...+ pm−1 ≤ u < 1, let Ri = m.

• For the sequence above, we can compute LIn

Note that for the uniform case, we can just generate Ri, 1 ≤ i ≤ n from Uniform

discrete distribution U(m), and here k∗ = m.

24



2.3.3 Procedure of generating an element of the GUE and of the traceless
GUE

We generate a k × k GUE matrix X by




X1 Y1 + iZ1 Y2 + iZ2 ... Yk∗−1 + iZk∗−1

Y1 − iZ1 X2 Yk + iZk . . .
...

...
. . . . . . . . .

...

... · · · · · · Xk∗−1 Y(k∗−1)k∗/2 + iZ(k∗−1)k∗/2

Yk∗−1 − iZk∗−1 · · · · · · Y(k∗−1)k∗/2 − iZ(k∗−1)k∗/2 Xk∗




,

where Xi, Yi, Zi are respectively N(0, 1), N(0, 1/2), N(0, 1/2), and are mutually inde-

pendent.

Now define X0 = X − tr(X)/k ∗ Ik∗×k∗ , and let Dk∗ = max eigenvalue of X and

Hk∗ = max eigenvalue of X
0.

2.3.4 Histograms of LIn, Hm, and Dm

Using the procedures above, we will simulate the histogram of
LIn − npmax√

npmax

for both

uniform and non-uniform cases, Hm and Dm for n = 103,m = 50. In addition, we

denote numRep as the number of sample replications. Throughout, we let numRep =

104. We also draw the QQ-plots to verify that these random variables are not normally

distributed.
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Figure 1: Histogram and QQ-plot of LIn in the uniform case where numRep =
104, n = 103,m = 50.
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Figure 2: Histogram and QQ-plot of LIn in the non-uniform case where numRep =
104, n = 103,m = 50, k = 10.
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Figure 3: Histogram and QQ-plot of Hm in the uniform case where numRep =
104,m = 50.
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Figure 4: Histogram and QQ-plot of Dm in the non-uniform case where numRep =
104,m = 50.

29



2.3.5 Comparing LIn with Hm

Now we verify that
LIn − n/m�

n/m
where LIn is simulated in the uniform case and Hm

are identical in distribution. To illustrate, we set m = 50 and plot the historgrams

of
LIn − n/m�

n/m
for n = 103, 104, 2 ∗ 104. The fourth figure is the histogram of H50, the

maximum eigenvalue of an element of 50× 50 traceless GUE.

Figure 5: Histogram of LIn for different values of n. From left to right, top to
bottom: n = 1000, n = 10000, n = 20000 and n→ ∞.

To illustrate further the relationship between LIn and Hm, we perform a scatter

plot and QQ-plot for the simulated values of
LIn − n/m�

n/m
and Hm for m = 50, n =

2 ∗ 104.
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Figure 6: Scatter plot and QQ-plot ofHm vs LIn in the uniform case where numRep =
104, n = 2 ∗ 104,m = 50.
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2.4 Increasing number of classes, i.e., m = m(n)→ ∞

We now consider the case where the size m of the alphabet varies with n and further

we assume the multiplicity k∗(n) of pmax goes to infinity as n → ∞. The limiting

distribution of LIn is studied via the first row of the Young tableau in Theorem 6 in

[6]. We can rewrite the Theorem 6 in term of LIn as the following

Theorem 2.4.1. Let pmax = maxj=1,...,m pj. Suppose k∗ = k∗(n)→ ∞ as n→ ∞ in

such way that

(k∗)7/10

p
3/10
max

= o
�
n3/10(log n)−3/5

�
.

Assume, moreover, that

p22nd
n11/10

(log n)1/5
= o(pmax),

where p2nd = max{pj < pmax, j = 1, ...,m}. Then as n→ ∞,

�
LIn − npmax√

npmax

− 2
√
k∗
�
(k∗)1/6 =⇒ F2,

where F2 denotes the Tracy-Widom distribution.

For the uniform case, the result follows Theorem 4 and Corrolary 5 in [6]:

Theorem 2.4.2. Let m tend to infinity as n→ ∞ in such way that m = o
�
n3/10(log n)−3/5

�
.Then

as n→ ∞, �
LIn − n/m�

n/m
− 2√m

�
m1/6 =⇒ F2.
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CHAPTER III

COMPARISON OF THE TWO ESTIMATORS

3.1 Results

As we have seen, Chapters 1 and 2 introduce two estimators for pmax and their limiting

distribution. In this chapter, we see how good the estimators are by comparing at

their mean square error and bias corrected estimator:

Proposition 3.1.1. In comparison of the mean square error,
X(m)

n
performs better

in estimating pmax than
LIn
n

.

Proposition 3.1.2. In comparison the bias corrected estimator,
LIn
n

performs better

in estimating pmax than
X(m)

n
.

The detail of the comparisons is discuss in the following sections.

3.2
X(m)

n
versus

LIn
n

Recall that in Theorem 1.3.2 and Theorem 2.4.1, we obtained the limiting distribution

of X(m) and LIn with natural standardization:

ak∗

�
X(m) − npmax√

npmax

− bk∗

�
=⇒ G, (28)

where ak∗ = (2 log k
∗)1/2 while bk∗ = (2 log k∗)1/2− 1

2
(2 log k∗)−1/2 (log log k∗ + log 4π) ,

and

(k∗)1/6
�
LIn − npmax√

npmax

− 2
√
k∗
�
=⇒ F2. (29)

Next,

MSE(X(m)/n) = bias2(X(m)/n)+V ar(X(m)/n), bias(X(m)/n) = E(X(m)/n)−pmax,
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and similarly,

MSE(LIn/n) = bias2(LIn/n) + V ar(LIn/n), bias(LIn/n) = E(LIn/n)− pmax.

Hence using the limiting distribution in (28) and (29), we obtain the asymptotic

of the estimators’ bias and variance as n→ ∞:

bias

�
X(m)

n

�
∼
�
pmax

n

�
E(G)
ak∗

+ bk∗

�
, V ar

�
X(m)

n

�
∼ pmaxV ar(G)

na2k∗
,

and similarly,

bias

�
LIn
n

�
∼
�
pmax

n

�
E(F2)

(k∗)1/6
+ 2

√
k∗
�
, V ar

�
LIn
n

�
∼ pmaxV ar(F2)

n(k∗)1/3
.

Thus,

MSE

�
X(m)

n

�
∼ pmax

n

�
E(G)
ak∗

+ bk∗

�2

+
pmaxV ar(G)

na2k∗
∼ pmaxb

2
k∗

n
, (30)

and

MSE

�
LIn
n

�
∼ pmax

n

�
E(F2)

(k∗)1/6
+ 2

√
k∗
�2

+
pmaxV ar(F2)

n(k∗)1/3
∼ 4pmaxk

∗

n
. (31)

Therefore, as n→ ∞ and k∗ = k∗(n)→ ∞,

MSE

�
X(m)

n

�
<< MSE

�
LIn
n

�
,

and
X(m)

n
is ”a better estimator” for pmax.

3.3 Bias Corrected Estimators

The results in (28) and (29) can be rewritten as

ak∗
√
n√

pmax

�
X(m)

n
− bk∗

√
pmax√
n

− pmax

�
=⇒ G, (32)

(k∗)1/6
√
n√

pmax

�
LIn
n

− 2
√
k∗pmax√
n

− pmax

�
=⇒ F2. (33)
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Let

p̂1max =
X(m)

n
−
bk∗
�

X(m)

n√
n

−
E(G)

�
X(m)

n

ak∗
√
n

and

p̂2max =
LIn
n

−
2(k∗)1/2

�
LIn
n√

n
−

E(F2)
�

LIn
n

(k∗)1/6
√
n
.

Then, as n→ ∞,

bias(p̂1max) = E
�
X(m)

n

�
− pmax −

bk∗E(
�
X(m)/n)√
n

− E(G)E(
�
X(m)/n)

ak∗
√
n

∼ E(G)√pmax

ak∗
√
n

+
bk∗

√
pmax√
n

− bk∗E(
�
X(m)/n)√
n

− E(G)E(
�
X(m)/n)

ak∗
√
n

=
1√
n

�
E(G)
ak∗

+ bk∗

��
√
pmax − E

��
X(m)

n

��
.

Now, for the variance,

V ar(p̂1max) = V ar

�
X(m)

n
− 1√

n
(bk∗ +

E(G)
ak∗

)

�
X(m)

n

�

∼ V ar(G)pmax

a2k∗n
+
1

n

�
bk∗ +

E(G)
ak∗

�2 �√
pmax − E(

�
X(m)/n)

��√
pmax + E(

�
X(m)/n)

�

+

√
pmax

n3/2

�
bk∗ +

E(G)
ak∗

�3

− 2

n2

�
bk∗ +

E(G)
ak∗

�
Cov

�
X(m),

�
X(m)

�
.

Hence,

MSE(p̂1max) = bias2(p̂1max) + V ar(p̂
1
max)

=
V ar(G)pmax

a2k∗n
+
2
√
pmax

n

�
bk∗ +

E(G)
ak∗

�2 �√
pmax − E(

�
X(m)/n)

�

+

√
pmax

n3/2

�
bk∗ +

E(G)
ak∗

�3

− 2

n2

�
bk∗ +

E(G)
ak∗

�
Cov

�
X(m),

�
X(m)

�
.

From (32) and the fact that pmax,
bk∗

√
pmax√
n

,

√
pmax

ak∗
√
n

→ 0 and bk∗
√
pmax → 0 as

n→ ∞, we get
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E

��
X(m)

n

�
−√

pmax ∼ 1

n1/4
. (34)

This implies

MSE(p̂1max) ∼
pmax

a2k∗n
. (35)

Let us now consider

p̂2max =
LIn
n

−
2(k∗)1/2

�
LIn
n√

n
−

E[F2]
�

LIn
n

(k∗)1/6
√
n
.

Then we have

bias(p̂2max) = E
�
LIn
n

�
− 2

√
k∗√
n

E

��
LIn
n

�
− E(F2)

(k∗)1/6
√
n
E

��
LIn
n

�

∼ 1√
n

�
2
√
k +

E(F2)

(k∗)1/6

��
√
pmax − E

��
LIn
n

��
from (33).

Furthermore,

V ar(p̂2max) = V ar

�
LIn
n

− 1√
n
(
√
k∗ +

E(F2)

(k∗)1/6
)

�
X(m)

n

�

∼ V ar(F2)pmax

(k∗)1/3n
+
1

n

�√
k∗ +

E(F2)

(k∗)1/6

�2 �√
pmax − E(

�
LIn/n)

��√
pmax + E(

�
LIn/n)

�

+

√
pmax

n3/2

�√
k∗ +

E(F2)

(k∗)1/6

�3

− 2

n2

�√
k∗ +

E(F2)

(k∗)1/6

�
Cov

�
LIn,

�
LIn

�
.

Thus,

MSE(p̂2max) ∼
V ar(F2)pmaX

(k∗)1/3n
+
2
√
pmax

n

�√
k∗ +

E(F2)

(k∗)1/6

�2 �√
pmax − E(

�
LIn/n)

�

+

√
pmax

n3/2

�√
k∗ +

E(F2)

(k∗)1/6

�3

− 2

n2

�√
k∗ +

E(F2)

(k∗)1/6

�
Cov

�
LIn,

�
LIn

�
.
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From [14] we obtain

E

��
LIn
n

�
−√

pmax ∼ 1

n1/2
. (36)

Then it can be shown (especially in the uniform case) that

MSE(p̂2max) ∼
pmax

(k∗)1/3n
. (37)

It is clear that
pmax

(k∗)1/3n
<<

pmax

a2k∗n
. Comparing (35) and (37) asymptotically, we

obtain that

MSE(p̂2max) << MSE(p̂1max).

Hence, under the derivations (34) and (36) we conclude that p̂2max performs better

in estimating pmax.
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CHAPTER IV

CONSTRUCTING CONFIDENCE INTERVALS FOR THE

MAXIMUM PROBABILITY

4.1 Motivation

Though out the thesis, we see a strong connection between pmax and its multiplicity k
∗.

If k∗ = 1, the limiting distribution of the multinomial max with standardization is a

standard normal distribution. In case k∗ approaches infinity, the limiting distribution

is Gumbel. Assumptions (8) and (9) provide some relations of the two quantities

pmax and k
∗. Also, in constructing the confidence interval for pmax, the two quantities

have a very tight relation. In deed, from (28), we can obtain the confidence interval

of pmax using Gumbel distribution G. Let g1−α/2 and gα/2 be the (1 − α/2) ∗ 100th

and (α/2) ∗ 100th percentile of G. Then we have g1−α/2 = − log log 2

2− α
and gα/2 =

− log log 2
α
. Via (28), the (1− α/2) ∗ 100% CI for pmax can be constructed as

− log log 2
α

≤ ak∗

�
X(m) − npmax√

npmax

− bk∗

�
≤ − log log 2

2− α
.

Replacing pmax by
X(m)

n
in the denominator and solving for pmax in the numerator,

again, we obtain

X(m)

n
+

�
log log 2

2−α

ak∗
+ bk∗

��
X(m)

n
≤ pmax ≤ X(m)

n
+

�
log log 2

α

ak∗
+ bk∗

� �
X(m)

n
.

We want to construct a 95% CI for pmax. Note that g.975 = 3.676 and g.025 =

−1.305, then the 95% CI of pmax is

X(m)

n
−
�
bk∗ +

3.676

ak∗

� �
X(m)

n
≤ pmax ≤ X(m)

n
−
�
bk∗ −

1.305

ak∗

� �
X(m)

n
. (38)

Note that in order to obtain the confidence interval, we need to know k∗. In

the following sections, we construct the confidence interval in the case k∗ = 1 and
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introduce two methods to construct confidence interval for pmax when k
∗ gets large:

estimating k∗ and refining the confidence interval.

4.2 When k∗ = 1

Let z1−α/2 be the (1− α/2) ∗ 100% percentile of N(0, 1). Then the (1− α/2) ∗ 100%

confidence interval (CI) for pmax can be constructed as

−z1−α/2 ≤
X(m) − npmax�
npmax(1− pmax)

≤ z1−α/2.

Replacing pmax by
X(m)

n
in the denomiator and solving the inequalities above for pmax

in the numerator, we obtain

X(m)

n
− z1−α/2

n

�
X(m)(1−

X(m)

n
) ≤ pmax ≤ X(m)

n
+
z1−α/2

n

�
X(m)(1−

X(m)

n
).

Suppose we want to construct a 95% CI of pmax. Note that z.975 = 1.96.Then the 95%

CI of pmax is

X(m)

n
− 1.96

n

�
X(m)(1−

X(m)

n
) ≤ pmax ≤ X(m)

n
+
1.96

n

�
X(m)(1−

X(m)

n
).

4.3 When k∗ gets large: Estimating the Multiplicity of the
Maximum Probability

In order to construct the confidence integral for pmax in (38), we need to know k∗.

In this section, we develop a method that estimates k∗ from a given sample. Recall

(X1, ..., Xm) is a multinomial distribution with parameters n, p1, ..., pm. Recall also

that pmax = maxj=1,...,m pj with multiplicity k
∗. We prove that pmax is in fact the

largest eigenvalue of the covariance matrix of (X1, ..., Xm) with multiplicity k
∗ − 1.

The covariance matrix can be estimated from a preliminary sample. We then estimate

the multiplicity of the largest eigenvalue of this covariance matrix and hence produce

an estimator for k∗.
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4.3.1 Maximum probability pmax is an eigenvalue of the covariance matrix
with multiplicity k∗ − 1

Consider the covariance matrix Σm for X1, X2, ..., Xm :

Σm =




p1(1− p1) −p1p2 −p1p3 ... −p1pm
−p2p1 p2(1− p2) −p2p3 . . .

...

...
. . . . . . . . .

...

... · · · −pm−1pm−2 pm−1(1− pm−1) −pm−1pm

−pmp1 · · · · · · −pmpm−1 pm(1− pm)




.

We show that pmax is an eigenvalue of Σm with multiplicity k
∗−1. First, consider

the uniform case:

Σuniform
m =

1

m2




m− 1 −1 −1 ... −1

−1 m− 1 −1 . . .
...

...
. . . . . . . . .

...

... · · · −1 m− 1 −1

−1 · · · · · · −1 m− 1




.

We can easily verify that
1

m
is an eigenvalue with multiplicitym−1. The following

are associated eigenvectors for
1

m
:

v1 = (1,−1, 0, 0, ..., 0, 0), v2 = (1, 0,−1, 0, ..., 0, 0), ..., vm−1 = (1, 0, 0, 0, ..., 0,−1)
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Now consider an k∗ × k∗ covariance matrix

Σk∗,pmax =




pmax(1− pmax) −p2max −p2max ... −p2max

−p2max pmax(1− pmax) −p2max . . .
...

...
. . . . . . . . .

...

... · · · −p2max pmax(1− pmax) −p2max

−p2max · · · · · · −p2max pmax(1− pmax)




.

In a similar manner, we can verify that pmax is an eigenvalue with multiplicity

k∗ − 1. The associated eigenvectors are:

v1 = (1,−1, 0, 0, ..., 0, 0), v2 = (1, 0,−1, 0, ..., 0, 0), ..., vk∗−1 = (1, 0, 0, 0, ..., 0,−1)

Next, consider the general case for X1, X2, ..., Xm with covariance structure Σm.

Suppose we rearrange X1, X2, ..., Xm to be X �
1, X

�
2, ..., X

�
k∗ , X

�
k∗+1, ..., X

�
m so that for

i, j = 1, 2, ..., k∗,

V ar(X �
j) = pmax(1− pmax), Cov(X �

i, X
�
j) = −p2max

Then the covariance structure of X �
1, X

�
2, ..., X

�
k∗ , X

�
k∗+1, ..., X

�
m becomes

Σ�
m =



Σk∗,pmax B

C D


 .

where Σk∗,pmax is defined as above and

Bij = −pmaxpj, Cij = −pipmax, Dij = −pipj, Dii = pi(1− pi),

where i, j = k∗ + 1, ...,m; i �= j.

It can be shown that pmax is an eigenvalue of Σ
�
m with multiplicity k∗ − 1. The

associated eigenvectors are

v�1 = (v1, 0, ..., 0), v
�
2 = (v2, 0..., 0), ..., v

�
k∗−1 = (vk∗−1, 0, ..., 0)
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where v1, v2, ..., vk∗−1 are defined as above. All other components from k∗+1 to m of

�
v�j
�k∗−1

j=1
are 0s. In deed, we have Σ�

mv
�
1 =



Σk∗,pmax B

C D






v1

0


 =



Σk∗,pmaxv1

Cv1


 ,

where, 0 = (0, ..., 0) ∈ Rm−k∗ . Since v1 is an eigenvector of Σk∗,pmax corresponding

to eigenvalue pmax (we showed this earlier), we get Σk∗,pmaxv1 = pmaxv1. In addition,

multiplying C,an (m− k∗)× k∗ matrix, with v1 = (1,−1, 0, ..., 0)� results:

Cv1 =




−pk∗+1pmax −pk∗+1pmax −pk∗+1pmax ... −pk∗+1pmax

−pk∗+2pmax −pk∗+2pmax −pk∗+2pmax . . . −pk∗+2pmax

...
. . . . . . . . .

...

−pm−1pmax · · · −pm−1pmax −pm−1pmax −pm−1pmax

−pmpmax · · · · · · −pmpmax −pmpmax




∗




1

−1

0

...

0




=




0

0

0

...

0




.

Hence, Σ�
mv

�
1 =



pmaxv1

0


 = pmax



v1

0


 = pmaxv

�
1. Here, 0 = (0, ..., 0) ∈

Rm−k∗ .

Thus, v�1 is an eigenvector of Σ
�
m corresponding to eigenvalue pmax.

Similarly, we can show that v�2, ..., v
�
k∗−1 are eigenvectors of Σ

�
m corresponding to eigen-

value pmax.

From Σ�
m, we can obtain Σm by rearranging the order of the entries. So if we have the

same arrangement for v�1, ..., v
�
k∗−1, we will get v

��
1 , ..., v

��
k∗−1 and the latter are eigen-

vectors of Σm. Their associated eigenvalue is pmax. Thus pmax is an eigenvalue of Σm
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with multiplicity k∗ − 1.

4.3.2 Eigenvalues of Σm

Now, let us suppose that {p1, p2, ..., pm} can be divided into 2 groups: G1 = {j :

pj with multiplicity kj, kj > 1} and G2 = {pj with multiplicity equal to1}. So Σm has

eigenvalues 0, {pj, j ∈ G1} with multiplicities {kj−1, j ∈ G1} and while the remaining

ones are the roots of a polynomial. We still do not have a good idea what such a

polynomial looks like. However, if all the ps are distinct, we obtain the following

results. Suppose p1 �= p2 �= p3 �= ... �= pm. Then the eigenvalues are the roots of the

following equation

xm +
m�

j=2

(−1)j−1j


 �

i1 �=i2 �=... �=iji1,...ij=1,...,m

pi1pi2 ...pij


xm+1−j = 0.

For example, form = 3: if p1 �= p2 �= p3, then the eigenvalues are the three distinct

roots of the polynomial x3 − 2(p1p2 + p1p3 + p2p3)x2 + 3p1p2p3x.

For m = 4: if p1 �= p2 �= p3 �= p4, then the eigenvalues are the four distinct roots

of

x4 − 2(p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4)x3

+3(p1p2p3 + p1p3p4 + p2p3p4)x
2 − 4p1p2p3p4x.

For m = 5: if p1 �= p2 �= p3 �= p4 �= p5, then the eigenvalues are the five distinct roots

of

x5 − 2
4�

i=1

5�

j=i+1

pipjx
4 + 3

3�

i=1

4�

j=i+1

5�

k=j+1

pipjpkx
3

−4
2�

i=1

3�

j=i+1

4�

k=j+1

5�

l=k+1

pipjpkplx
2 + 5p1p2p3p4p5x.
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4.3.3 Proof that shows multinomial distribution is sub-Gaussian

In the next section, we discuss the procedure to estimate the multiplicity of pmax.

The key idea comes from (43). To obtain this result, we must show that multinomial

distribution is sub-Gaussian. This section is to serve this purpose.

Let Y = X− np = (X1 − np1, ..., Xm − npm) , so

E(Y ) = 0 and Cov(Y) = Cov(X) = Σm.

It suffices to show Y is sub-Gaussian, i.e., for all a = (a1, ..., am) ∈ Rm, there exist

a contant c > 0 such that

E(t
m�

j=1

ajYj) ≤ ec
2t2 , for all t ∈ R.

Let A(t) = E(t
�m

j=1 ajYj) =
��m

j=1 pje
taje−

�m
i=1 taipi

�n

. So,

A1/n(t) =
m�

j=1

pje
taje−

�m
i=1 taipi = exp

�
log(

m�

j=1

pje
taj)−

m�

i=1

taipi

�
.

It is enough to show that A1/n(t) ≤ ec
2t2 for all t ∈ R, or equivalently, logA1/n(t) ≤

c2t2 for all t ∈ R. First,

lim
t→0

log(
�m

j=1 pje
taj)−�m

i=1 taipi

t2
=

�m
j=1 pja

2
j − (

�m
i=1 aipi)

2

2
.

Thus, for every � > 0, there exists a δ(a, �) > 0 such that |t| < δ(a, �) implies

log(
�m

j=1 pje
taj)−�m

i=1 taipi

t2
≤ c(a, p) + �, (39)

where c(a, p) =

�m
j=1 pja

2
j − (

�m
i=1 aipi)

2

2
> 0 since

�
m�

i=1

aipi

�2

≤
m�

i=1

a2i (
√
pi)

2

m�

j=1

(
√
pj)

2 =
m�

i=1

pia
2
i .
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Let us compute this δ(a, �). Using the fact that log(1 + x) ≤ x− x2/2 + x3/3 for

x > −1, we obtain

logA1/n(t) = log
�
1 +

��m
j=1 pje

taj − 1
��

−�m
i=1 taipi

≤ x− x2

2
+
x3

3
−�m

i=1 taipi,

where x = x(t) =
�m

j=1 pje
taj − 1 > −1.

Now applying the Taylor expansion for etaj , j = 1, ...,m, we get

x(t) =
�m

j=1 pje
taj − 1

=
�m

j=1 pj

�
1 + taj +

t2

2
a2j +R

(2)
j (t)

�
− 1

= t
�m

j=1 pjaj +
t2

2

�m
j=1 pja

2
j +
�m

j=1 pjR
(2)
j (t),

where |R(2)
j (t)| ≤

|aj|3
6
e|aj ||t|3 for |t| < 1. Hence, for |t| < 1,

logA1/n(t) ≤ t2

2

�m
j=1 pja

2
j +
�m

j=1 pjR
(2)
j (t)−

x2

2
+
x3

3

≤ t2c(a, p) + |t|3b(a, p),

where

b(a, p) = b1 +
1

2
(|b2|b3 + b3b1 + 2b1|b2|) +

1

3

�
3

2
|b2|+ b1

�3

, (40)

and where

b1 = b1(a, p) =
m�

j=1

pj
|aj|3
6
e|aj |, b2 = b2(a, p) =

m�

j=1

pjaj, and b3 = b3(a, p) =
m�

j=1

pja
2
j .

Thus, for |t| < 1,
logA1/n(t)

t2
≤ c(a, p) + |t|b(a, p).
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So, for each � > 0, there exist δ(a, �) = min{ �

b(a, p)
, 1} such that for all |t| <

δ(a, �),

logA1/n

t2
< c(a, p) + �.

Next, we consider when |t| > δ(a, �) :

log(
�m

j=1 pje
taj)−�m

i=1 taipi

t2

≤
log(

�m
j=1 pje

|t|||a||∞) +
�m

i=1 |t|||a||∞pi
t2

≤ 2|t|||a||∞
t2

≤ 2

δ(a, �)
||a||∞.

In summary we have for any fixed � > 0,

log(
�m

j=1 pje
taj)−�m

i=1 taipi

t2
≤ max

�
c(a, p) + �,

2

δ(a, �)
||a||∞

�
,

for all t ∈ R and where δ(a, �) =
�

b(a, p)
and b(a, p) is defined as in (40).

Thus,

E

�
t

m�

j=1

ajYj

�
≤ exp

�
nmax

�
c(a, p) + �,

2b(a, p)

�
||a||∞

�
t2
�
,

proving the sub-Gaussian requirement.

4.3.4 Estimating k∗

From Section 4.3.1, we have if pmax is the maximum probability with multiplicity k
∗,

then it is an eigenvalue of Σm with multiplicity k
∗ − 1. So we can first estimate the

multiplicity of the maximum eigenvalue of Σm and then add 1 to obtain an estimator

for k∗.

Let us consider a preliminary sample: Y1, ..., Yl where

Yi =
�
X

(i)
1 , X

(i)
2 , ..., X

(i)
m

�
, i = 1, ..., l. (41)
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Let Ȳl =
1

l

�l
i=1 Yi. Then the empirical estimator for the covariance matrix Σm is

Σ̂l =
1

l

�
Yi − Ȳl

� �
Yi − Ȳl

�T
(42)

As shown in Section 4.3.3, multinomial distribution is sub-Gaussian. Hence, by

Corollary 5.50 in [36], we get with probability close to 1 (≥ 1− e−m logm),

||Σ̂l − Σm||∞ ≤ C

�
r(Σm) logm

l
, (43)

where C is some constant defined in the corollary, ||.||∞ is spectral norm of the

corresponding matrices and

r(Σ) =
tr(Σm)

||Σm||∞
=

�m
j=1 pj(1− pj)

pmax

=
1−�m

j=1 p
2
j

pmax
≤ 1

pmax

≤ m.

Thus,

||Σ̂l − Σm||∞ ≤ C

�
m logm

l
.

That is for any j = m, ..., 1,

|λ̂(j) − λ(j)| ≤ C

�
m logm

l
,

where λ̂(m) ≥ λ̂(m−1) ≥ ...λ̂(1) are eigenvalues of Σ̂l and

λ(m) ≥ λ(m−1) ≥ ... ≥ λ(1) are eigenvalues of Σm.

Let η = pmax − p2nd > 0. We can choose l large enough so that

2C

�
m logm

l
<
η

2
.

For ∀j = m, ...,m− (k∗ − 2),

|λ̂(j) − λ̂(j−1)| ≤ |λ̂(j) − pmax|+ |pmax − λ̂(j−1)| ≤ 2C
�
m logm

l
<
η

2
.

Hence, by setting Ij =

�
λ̂(j) − C

�
m logm

l
, λ̂(j) + C

�
m logm

l

�
, we have for j =

m,m− 1, ...m− (k∗ − 2),

Ij ∩ Ij−1 �= ∅.
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However, for j = m− (k∗ − 1),

|λ̂(j) − λ̂(j−1)| ≥ |λ(j) − λ(j−1)| − |λ̂(j) − λ(j)| − |λ̂(j−1) − λ(j−1)|

≥ (pmax − p2nd)− 2C
�
m logm

l

≥ η − η

2

≥ 2C
�
m logm

l
.

Thus, Im−(k∗−1) ∩ Im−(k∗−2) = ∅.

Let k̂∗ be an estimate of k∗, then k̂∗ − 1 is an estimate of the multiplicity of the

largest eigenvalue of Σm. The following procedure is used to estimate the multiplicity

of largest eigenvalue of Σm.

1. Take sample and divide it into l batches Y1, ..., Yl of size n as in (41).

2. Compute Σ̂l by (42) and its eigenvalues λ̂(m) ≥ λ̂(m−1) ≥ ...λ̂(1).

3. Set Ij =

�
λ̂(j) − C

�
m logm

l
, λ̂(j) + C

�
m logm

l

�
, j = m,m− 1, ...1.

4. Set j = m. If Ij ∩ Ij−1 = ∅, then k̂∗−1 = j. Otherwise, set j = j−1 and repeat

step 4.

The estimate of the multiplicity of pmax is then k̂
∗.

4.4 When k∗ gets large: Refining Confidence Intervals

Section 4.3 constructs a confidence interval for pmax by estimating k
∗ and the plug

the estimator in (38). Here we refine the confidence interval (38) by modifying its

upper bound and lower bound. Recall from (38) that

X(m)

n
−
�
bk∗ +

3.676

ak∗

� �
X(m)

n
≤ pmax ≤ X(m)

n
−
�
bk∗ −

1.305

ak∗

� �
X(m)

n
,
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where ak∗ = (2 log k
∗)1/2 while bk∗ = (2 log k∗)1/2−1

2
(2 log k∗)−1/2 (log log k∗ + log 4π) .

Let us consider the upper bound first:

pmax ≤ X(m)

n
−
�
bk∗ −

1.305

ak∗

� �
X(m)

n
.

Since this holds true for k∗ large, we can suppose k∗ ≥ 4. Hence,

pmax ≤ X(m)

n
−
�
bk∗ −

1.305

ak∗

� �
X(m)

n
≤ X(m)

n
−
�
(2 log 4)1/2 − 1.305

(2 log 4)1/2

� �
X(m)

n
.

(44)

As for the lower bound:

X(m)

n
−
�
bk∗ +

3.676

ak∗

� �
X(m)

n
≤ pmax

⇐⇒ X(m) −
�
bk∗ +

3.676

ak∗

��
X(m) ≤ npmax.

Note that for k∗ and m large, we have

X(m) −
�
bm +

3.676

am

��
X(m) ≤ X(m) −

�
bk∗ +

3.676

ak∗

��
X(m) ≤ npmax.

Now for the random sample (X1, X2, ..., Xm) , let

k1ub = #

�
j = 1, ...,m : Xj ≥ X(m) −

�
bm +

3.676

am

��
X(m)

�
.

It is clear that k∗ ≤ k1ub ≤ m. Thus, for k∗ large, we have

X(m) −
�
bk1ub +

3.676

ak1ub

�
�
X(m) ≤ X(m) −

�
bk∗ +

3.676

ak∗

��
X(m) ≤ npmax.

Next, if we define

k2ub = #

�
j = 1, ...,m : Xj ≥ X(m) −

�
bk1ub +

3.676

ak1ub

�
�
X(m)

�
,

then it can be shown that k∗ ≤ k2ub ≤ k1ub ≤ m. Continuing this process for

i = 3, 4, ..., l for some large l, we obtain a decreasing sequence k1ub, k
2
ub, ..., k

l
ub such

that

k∗ ≤ klub ≤ ... ≤ k2ub ≤ k1ub ≤ m.
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Using this technique, we refine the lower bound of the confidence interval for pmax.

Let us again consider a preliminary sample: Y1, ..., Yl where Yi =
�
X

(i)
1 , X

(i)
2 , ..., X

(i)
m

�
, i =

1, ..., l.

Set i = 1. Applying the technique above, we are able to obtain k1ub :

k1ub = #

�
j = 1, ...,m : X

(1)
j ≥ X

(1)
(m) −

�
bm +

3.676

am

��
X

(1)
(m)

�
.

Then k∗ ≤ k1ub ≤ m. Next for i = 2, ..., l, we define kiub as the following:

kiub = #

�
j = 1, ...,m : X

(i)
j ≥ X

(i)
(m) −

�
bki−1

ub
+
3.676

aki−1
ub

��
X

(i)
(m)

�
.

As shown above, we will obtain the following sequence k1ub, k
2
ub, ..., k

l
ub:

k∗ ≤ klub ≤ ... ≤ k2ub ≤ k1ub ≤ m.

So by replacing k∗ by klub we have a refined lower bound of the confidence interval

for pmax without knowing k
∗:

X(m) −
�
bklub +

3.676

aklub

�
�
X(m) ≤ X(m) −

�
bk∗ +

3.676

ak∗

��
X(m) ≤ npmax. (45)

Combining (44) and (45), we achieve a confidence interval for pmax from sampled

data:

X(m)

n
−
�
bklub +

3.676

aklub

��
X(m)

n
≤ pmax ≤ X(m)

n
−
�
(2 log 4)1/2 − 1.305

(2 log 4)1/2

� �
X(m)

n
.

Remark 4.4.1. We can also construct a confidence interval by estimating k∗ using

the technique above. This method is for practical purposes. We will continue to work

on proving the theory of this method in the future. Recall that we have constructed a

decreasing sequence

k1ub ≥ k2ub ≥ ... ≥ kl−1
ub ≥ klub ≥ k∗ (46)
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Via simulation, we observe that (klub)
∞
l=1 converges to k∗. This implies (klub)

∞
l=1 is

a Cauchy sequence. Thus, suppose we let � to be the acceptable error. That is, there

exists an L such that for l ≥ L,

|klub − k∗| < �

2
.

Since (klub)
∞
l=1 is a Cauchy, there exist an L� such that for all l, l� ≥ L�,

|klub − kl
�
ub| <

�

2
.

Using the triangle inequality, we have for l ≥ max{L,L�},

|klub − k∗| < �.

Hence, given an � > 0, we can estimate k∗ and then construct a 95% confidence for

pmax using the following procedure:

1. From the sample, choose l batches of size n

2. Construct a decreasing sequence as in (46)

3. If

kl−1
ub − klub <

�

2
,

then let klub be an estimator for k∗. Go to step 5.

4. Otherwise, obtain a new batch of size n, increase l to l + 1 and repeat step 3.

5. The 95% confidence interval for pmax can be constructed as

X(m)

n
−
�
bklub +

3.676

aklub

��
X(m)

n
≤ pmax ≤ X(m)

n
−
�
bklub −

1.305

aklub

��
X(m)

n
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CHAPTER V

APPLICATION TO BIOLOGICAL DIVERSITY

MEASUREMENTS

5.1 Introduction

Biological diversity or biodiversity is the degree of variation of life forms within a

given species, ecosystem, biome, or an entire planet. Biological diversity is used to

describe the variety and variability of life on Earth. Global biodiversity is usually

divided into three categories:species diversity, genetic diversity and ecosystem diver-

sity. Species diversity refers to the variety of species within a region; genetic diversity

refers to the differences in genetic make-up between distinct species and to generic

variations within species; and finally ecosystem diversity refers to the variety of habi-

tats, biotic communities, and ecological processes, as well as the diversity present

within ecosystems. Here, our research focuses on species diversity.

The study of biological diversity has seen a tremendous growth over the past twenty

years. Ecologists have always been intrigued by patterns of species abundance and

diversity ([32] and [12]). Biological diversity is no longer the sole concern of ecologists

and environmentalists. Instead, it has become a matter of public preoccupation and

political debate. Many people outside the scientific community are now aware that

biodiversity is being eroded at an accelerating rate even if few fully comprehend the

magnitude of the loss. No single catalogue of global biodiversity is yet available and

estimates of the total number of species on earth vary by an order of magnitude ([25],

[26], [27] and [22]). Heightened interest in biodiversity has led to the development of

important measurement techniques. Most ecologists recognize two aspects of biodi-

versity that must be considered when we try to quantify biodiversity: species richness
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is the number of species in a community and species evenness measures how the indi-

viduals are spread out among the species in a community. There is a perceived need

for ”indices” of diversity that capture both the richness and evenness characteristics

of an ecological community. As there are endless ways of emphasizing different as-

pects of the species abundance relationship, the number of candidate diversity indices

is boundless [28]. Among the commonly used indices, the Berger-Parker index is par-

ticularly effective. It provides a simple and easily interpretable measure of dominance

([4] and [24]). The smaller the index, the more diverse (more even) the species is. In

this thesis, we develop a statistical method to estimate the proportion of the most

abundant species, which relates to the Berger-Parker index, of a community when the

number of individuals and the number of species grow without bound. The estimation

provides a more accurate diversity comparison among ecological communities.

5.2 Species richness and evenness

Species richness is the measurement counting the number of species found in the

observed sample of the community. It is represented by m. When sampling, one

takes the individuals one by one, selecting them randomly, and records the species

of each individual. At first, new species appears fairly regularly, but as time goes on

more and more of the individuals are repeats of species already found. We may never

stop finding new species, they just become more and more uncommon.

Let us consider an example:

We notice that the community on the left has 2 species and the community on
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the right has 5 species. Hence, the community on the right is more diverse.

Species richness measurements provide useful information. Moreover, they have

the advantage of being very graphic and easy to understand and can be easily ex-

plained to general audiences. But by themselves species richness can be misleading in

comparing the diversity of two or more communities. Consider two communities that

have the same number of species but one has a very common species with only a few

individuals of other species while the other community has more evenly distributed

species.

Here, both communities have the same number of species but very intuitively we

see that the community on the left is more diverse. We recognize that the community

where the individuals are spread out equally among the species is a more diverse

community than the one where almost all of the individuals belong to one species.

In most communities some species are going to be common, others less common, and

still others rare. However, the extent to which this is true varies from community

to community and from situation to situation. There are mathematical formulas for

measuring how evenly the individuals are distributed among the species and in some

cases they are useful.

One measurement ecologists use to measure the evenness of a population is the Berger-

Parker index. In a biological diversity context, the Berger-Parker index d quantifies

the proportion of the most abundant species:

d =
X(m)

n
,

where X(m) is the number of individuals in the most abundant species and n is

the total number of individuals sampled.
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The smaller the index, the more diverse (more even) the community is. However,

when comparing the diversity (evenness) of a community with growing number of

individuals and species, the usual way of comparing the ds directly is not accurate

any more since d changes its value as n and m grow large. Therefore, a confidence

interval would provide a range for pmax, which relates to the Berger-Parker index of

the given community, and hence helps enhance the diversity comparison.

5.3 Statistical Analysis

We now look at data set, compute the Berger-Parker index and its confidence interval.

Then we conclude the diversity comparison using these results.

Data 1: The ’Silhouettes’ samples

Table 1: ’Silhouettes’ samples

Species A1 A2 B1 B2 C1 C2 D1 D2

Civet 8 3 8 4 2 8 0 0
Sambar 4 2 4 2 3 1 2 3
Porcupine 0 2 0 0 2 1 4 0
Otter 0 3 0 0 3 1 3 0
Colugo 0 2 0 0 2 1 3 0

Mousedeer 0 0 0 0 0 0 0 4
Pig 0 0 0 0 0 0 0 2
Gaur 0 0 0 0 0 0 0 3

Figure 7: Civet;Sambar;Porcupine;Otter;
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Figure 8: Colugo;Mousedeer;Pig;Gaur

Notice from the data that

• A2 has more species than A1

• B1 and B2 each have 2 species, but B1 has more individuals

• C1 and C2 have the same number of species and individuals, but in C2 most

animals are civets

• D1 andD2 have the same number of species and individuals, and the proportions

are similar

Let us first compare these communities pair-wisely.

Figure 9: A2 is more diverse than A1
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Figure 10: B1 and B2 each have 2 species, but B1 has more individuals. B1 is as
diverse as B2

Figure 11: C1 and C2 have the same number of species and individuals, but in C2

most animals are civets. C1 is more diverse than C2

Figure 12: D1 and D2 have the same number of species and individuals, and the
proportions are similar. They have the same diversity
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Now, let us compute the Berger-Parker index of all communities:

Table 2: ’Silhouettes’ analysis

A1 A2 B1 B2 C1 C2 D1 D2

No. of individuals (n) 12 12 12 6 12 12 12 12
No. of species (m) 2 5 2 2 5 5 4 4

Berger-Parker index(BPI) 0.67 0.25 0.67 0.67 0.25 0.67 0.33 0.33

We note that from the data analysis, the Berger-Parker index of A2 and C1 is the

smallest (0.25), so sites A2 and C1 are most diverse. However, the sample sizes of all

communities are relatively small (≤ 12).

Data 2: Bird abundance data for a range of woodland habitats in County Kil-

larney, Ireland.

The figures represent the number of territories held by breeding males in the respec-

tive blocks of habitat. The sites are:

• Oak, Oak2, Oak3 : three oak wood sites

• Yew : a mature yew wood

• Sitka : a Sitka spruce plantation

• Norway : a Norway spruce plantation

• Mixed : a mixed broadleaf wood

• Patchy : a wood with patches of broadleaf and conifer trees

• Swampy : a swampy, seasonally-flooded woodland

Source: Batten, L. A. (1976) Bird communities of some Killarney woodlands, Pro-

ceedings of the Royal Irish Academy 76:285-313.

Reference: Magurran 2004 [22] Measuring Biological Diversity, p.237
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Using the technique to compute the Berger-Parker index and its 95% confidence

interval(CI), we obtain

Table 3: ’Killarney.birds’ samples

Oak Oak2 Oak3 Yew Sitka

n 170 182 112 110 75
m 20 22 15 15 8
BPI 0.21 0.23 0.28 0.19 0.40
CI [.15,.27] [.17,.29] [.20,.36] [.12,.26] [.29,.51]

Norway Mixed Patchy Swampy

n 198 91 119 100
m 14 17 21 18
BPI 0.33 0.20 0.18 0.20
CI [.26,.40] [.12,.28] [.11,.25] [.12,.28]

From the data analysis, we observe that sites Sitka and Norway are least diverse.

However, it is not very clear which site is the most diverse.
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CHAPTER VI

CONCLUSION

In the thesis, we introduce two estimators for the maximum probability of categorical

classes: one associated with the multiomial max and the other derived from the

length of the longest increasing subsequence. In both cases, the limiting distribution

of the estimators is obtained in Chapters 1 and 2. We then compare the two

approaches by looking at their mean square error and bias corrected estimators in

Chapter 3. Applications of our work to biological diversity measurement is mentioned

in Chapter 5. In particular, the Berger-Parker index, which relates to the maximum

proportion of all species, is effective. The results developed in Chapter 1 help estimate

the Berger-Parker index as the number of individuals and species simultaneously

grows without bound. Constructing the 95% confidence interval for the maximum

proportion improves the comparison of Berger-Parker index among communities.

On a short term horizon, we plan to address some of the most interesting open

questions resulting from my study of the asymptotics of the multinomial maximum.

Here is a sample:

1. Can any of the assumptions (2)-(7) be weakened? In particular, assumptions

(3)- (5) come from [37] and conditions (6) and (7) are technical ingredients

used in the proof of the theorem.

2. In finding the confidence interval for pmax, k
∗, the multiplicity of pmax, should

be estimated. Here we provide two methods of estimating k∗. Are there any

better ways estimate k∗?

3. We would like to apply the estimation methodologies developped in this work
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to a bacteria population, where there are millions of bacteria. Finding the

appropriate data is my challenge at the moment.

4. We would also like to prove that the sequence in (46) actually converges to k∗.

For long term future plans, we believe the framework of estimating the Berger-

Parker index for communities with growing number of individuals and species can be

applied to other diversity indices. In particular, we will develop the statistical tool

for the Shannon index and Simpson index

1. Shannon index

H � =
m�

j=1

Xj

n
ln

�
Xj

n

�
,

2. Simpson index

D =
m�

j=1

Xj(Xj − 1)
n(n− 1) .
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APPENDIX A

CODES

The this chapter, we will show all codes that are used through out the thesis. The

codes are both in MatLab and R

A.1 Multinomial Maximum

r=10000

gamma=0.25

n=10000

m=as.integer(n^gamma)

p=rep(1/m,m)

#p

res=0*(1:r)

am=(2*log(m))^(-0.5)

bm=(2*log(m))^0.5-0.5*(log(log(m))+log(4*pi))/(2*log(m))^0.5

for(i in 1:r){

X=rmultinom(1,n,p)

Y=(X-n/m)/(n/m*(1-1/m))^0.5

res[i]=(max(Y)-bm)/am

#print(res[i])

}
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plot(ecdf(res))

##########3

#Gumble

x=seq(4,14,by=.01)

y=exp(-exp(-(x-6)))

plot(x,y)

A.2 Length of the Longest Increasing Subsequence

A.2.1 The length of the longest increasing subsequence LIn

function l=lis(a)

n=length(a);

best=ones(1,n);

prev=ones(1,n);

for i=1:n

prev(i)=i;

end

for i=2:n

for j=1:(i-1)

if ((a(i)>=a(j))&&(best(i)<best(j)+1))

best(i)=best(j)+1;

prev(i)=j; %pre[] is for backtracking the sequence

end

end

end
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l=max(best);

return

A.2.2 Generating LIn

function li=length_lis_general(nRep,n,m,p,numPmax)

m=50;

q=[.01 .02 .03 .03 .05 .05 .05 .05 .01 .02 .03 .03 .01 .02 .03 .03

.01 .02 .03 .03 .01 .02 .03 .03 .01 .02 .03 .03 .01 .02 .03 .03 .01

.02 .03 .03 .01 .02 .03 .03 .01 .02 .03 .03 .05 .05 .05 .05 .05 .05];

p=q-(sum(q)-1)/50;

numPmax=10;

l=zeros(1,nRep);

s=zeros(1,m+1);

s(2)=p(1);

for i=3:(m+1)

s(i)=s(i-1)+p(i-1);

end

for i=1:nRep

x=zeros(1,n);

for k=1:n

u=rand;

for j=1:m

if s(j)<u<s(j+1)
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x(k)=j;

break;

end

end

end

l(i)=lis(x);

end

li=(l-n*max(p))/sqrt(n*max(p));

figure(1);

hist(li,sqrt(nRep));

figure(2);

qqplot(li);

gof=chi2gof(li)

jb=jbtest(li)

return

A.2.3 LIn in the uniform case

function l=lis_uniform(nRep,n,m)

for i=1:nRep

x=unidrnd(m,1,n);

l(i)=lis(x);

end

l=(l-n/m)/(sqrt(n/m));

figure(1);
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hist(l,sqrt(nRep));

figure(2);

qqplot(l);

return

A.2.4 Traceless GUE

function mu=GUE_traceless(n,k)

d=zeros(1,n);

for j=1:n

x= normrnd(0,1,1,k);

A=zeros(k);

for r=1:(k-1)

for s=r:k

if (r<s)

y=normrnd(0,sqrt(1/2));

z=normrnd(0,sqrt(1/2));

A(r,s)=y+i*z;

A(s,r)=y-i*z;

end

if (r==s)

A(r,s)=x(r);

end

end

end

A(k,k)=x(k);
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B=A-trace(A)/k*eye(k);

d(j)= max(eig(B));

end

mu=d;

return

A.2.5 GUE

function GUEt(n,k)

d=zeros(1,n);

a=d;

b=d;

for j=1:n

x= normrnd(0,1,1,k);

A=zeros(k);

for r=1:(k-1)

for s=r:k

if (r<s)

y=normrnd(0,sqrt(1/2));

z=normrnd(0,sqrt(1/2));

A(r,s)=y+i*z;

A(s,r)=y-i*z;

end

if (r==s)

A(r,s)=x(r);

end
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end

end

A(k,k)=x(k);

a(j)= max(eig(A));

B=A-(trace(A)/k)*eye(k);

b(j)= max(eig(B));

d(j)= b(j)+normrnd(0,sqrt(1/k));

end

figure(1);

hist(a,sqrt(n));

figure(2);

qqplot(a);

figure(3);

hist(b,sqrt(n));

figure(4);

qqplot(b);

figure(5);

hist(d,sqrt(n));

figure(6);

qqplot(d);

p1=chi2gof(a)

h1=jbtest(a)
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p2=chi2gof(b)

h2=jbtest(b)

p3=chi2gof(d)

h3=jbtest(d)

return

A.2.6 Compare
X(m)

n
and

LIn
n

function compare_LIS_p_hat(n,nRep)

%We want to use simulation to compare MSE(LI/n) versus MSE(P_hat_max)

p_initial=[.05 .05 .05 .05 .05 .05 .05 .02 .03 .02 .02 .02 .02 .02

.05 .05 .05 .05 .02 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .03

.04 .02 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005

.005 .005];

m=length(p_initial);

p_max=max(p_initial);

p_order=randperm(m);

p=zeros(1,m);

for i=1:m

p(i)=p_initial(p_order(i));

end
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s1=zeros(1,m+1);

s1(2)=p(1);

for i=3:(m+1)

s1(i)=s1(i-1)+p(i-1);

end

% p_order

% p

sum_p=sum(p)

m

lin=zeros(1,nRep);

Pmax_hat=zeros(1,nRep);

for i=1:nRep

x=zeros(1,n);

for k=1:n

u=rand(1,1);

for j=1:m

if ((s1(j)<u)&(u<s1(j+1)))

x(k)=j;

break;

end

end
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end

%This is to get LI/n

lin(i)=lis(x)/n;

%Now, this is to get Pmax_hat

p_hat=zeros(1,m);

for j=1:m

for l=1:n

if (x(l)==j) p_hat(j)=p_hat(j)+1;

end

end

end

p_hat=p_hat/n;

Pmax_hat(i)=max(p_hat);

% x

end

% Pmax_hat

m1=mean(lin)

m2=mean(Pmax_hat)

v1=var(lin)
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v2=var(Pmax_hat)

bias1=mean(lin)-p_max

bias2=mean(Pmax_hat)-p_max

mse1=(mean(lin)-p_max)^2+var(lin)

mse2=(mean(Pmax_hat)-p_max)^2+var(Pmax_hat)

mse11=mean((lin-p_max).^2)

mse21=mean((Pmax_hat-p_max).^2)

k=kstest2(lin,Pmax_hat)

n1=chi2gof(lin)

n2=chi2gof(Pmax_hat)

figure(1);

hist(lin,sqrt(nRep));

figure(2);

qqplot(lin);

figure(3);

hist(Pmax_hat,sqrt(nRep));

figure(4);

qqplot(Pmax_hat);

return
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A.3 Biological diversity

A.3.1 File ’BiodiversityScript.R’

# Downloaded from www.wcsmalaysia.org/stats/ in the file

Diversity_examples.zip

########################################################################

# #

# DIVERSITY INDICES #

# #

########################################################################

# This script demonstrates several diversity indices using example data

# in the R statistical software package.

# If you are not familiar with R, you may want to start by checking out

browseURL("http://www.wcsmalaysia.org/stats/Starting_R.htm")

# You will need the following files, available on the wcsmalaysia.org

# site in biodiversity.zip:

# biodiversity.R (has the ’biodiversity’ function),

# Sedilu.trees.R (an example data set),

# plot.hill.R (the ’plot.hill’ function).

# You will also need the ’vegan’ package installed on your computer.

# If necessary, go to the ’Packages’ menu in R, select

# ’Install package(s)...’ and follow the on-screen instructions.

# Start R, go to the File menu and select ’Open script...’. Navigate to
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# this file ("Biodiversity_Script.R") and open it.

# You can then work through the script, using Ctrl-R to run the line

# where the cursor is positioned.

# (You don’t need to cut-and-paste commands into the R console.)

# #####################################################################

# Load the ’vegan’ package, which we will need later:

library(vegan)

# Load the ’biodiversity’ function and the example data sets.

# If these files are in the current working directory you can

# run the lines of code below:

source("biodiversity.R")

source("Sedilu.trees.R")

source("plot.hill.R")

# Otherwise, the easiest way is to find these files in My Computer and

# drag-and-drop into the R Console window.

# THE ’SILHOUETTES’ SAMPLES

# =========================

# The ’silhouettes’ data frame loaded with ’biodiversity’ contains the

# data for the diagrams in:

browseURL("http://www.wcsmalaysia.org/stats/PDF/Diversity_diagrams.pdf")

# Display the data:
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silhouettes

# Notice that:

# A2 has more species than A1

# B1 and B2 each have 2 species, but B1 has more individuals

# C1 and C2 have the same number of species and individuals,

# but in C2 most animals are civets

# D1 and D2 have the same number of species and individuals,

# but in D1 all the species are from different orders, while

# in D2 they are all ungulates.

# Let’s see what the various diversity indices do with this:

biodiversity(silhouettes)

# For details of the various indices:

browseURL("http://www.wcsmalaysia.org/stats/diversityIndexMenagerie.htm")

# Notice that:

# All the indices show that A2 is more diverse than A1

# B2 is seen as more diverse than B1 by Simpson, Fisher and Margalef,

# while Brillouin says B1 is more diverse!

# C1 is more diverse than C2 for all indices except Fisher and Margalef;

# all the evenness indices are higher for C1 than C2.

# D1 and D2 give the same results for all the indices.
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# By default, the function ’biodiversity’ calculates a whole series of

# indices for all columns of the data frame.

# For see more information on the function do this:

cat(comment(biodiversity))

# BORNEAN FOREST TREE DATA

# ========================

# This uses the ’Sedilu.trees’ data frame. Look at details of the data set

# with:

cat(comment(Sedilu.trees))

# Before we display the whole data set in the R Console,

check how big it is:

dim(Sedilu.trees)

# 227 rows: that will not be a pretty sight in the R Console window!

# Let’s just look at the indices:

biodiversity(Sedilu.trees)

# The two ’Tem.’ sites on the hill are more diverse on all measures than

# the rest. The ’Fruit.M’ site is also quite diverse. ’Fruit.S’ is unusual;

# in fact half the trees in the plot are rubber trees - this must be an

# abandoned rubber garden.
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# Some of the indices give conflicting results, eg. check the values of

# Hill’s N1 and Hill’s N2 for ’Sand’ and ’Sg.Kara’. How do we decide

# which is "really" more diverse?

# The case is pretty clear cut if ALL Hill’s numbers are higher for one

# site than the other. We can plot Hill’s numbers with ’plot.hill’:

attach(Sedilu.trees)

plot.hill(Fruit.S)

# Let’s plot ’Sand’ and ’Sg.Kara’ on the same graph; they are sites

# 8 and 9:

plot.hill(Sedilu.trees[,8:9])

# The curves cross, so it’s not clear which is more diverse. It might

# be more informative to report that "Sandong Paya is richer, but

# Sungai Kara is more even."

# Plotting all the sites together will be messy, but let’s try it:

plot.hill(Sedilu.trees)

# Yes, the graph’s messy! Only the ’Tem.’ sites are clearly more diverse

# than the others.

# Meanwhile, the display in the R Console shows which pairs are clearly

# different (< or ^) and which are not (.).
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# RANK-ABUNDANCE DIAGRAMS

# =======================

# A good alternative to ’magic number’ indices, is to plot

# rank-abundance diagrams.

# This is done using ’as.rad’ and ’plot’ in the ’vegan’ package.

library(vegan)

# Let’s try it with the former rubber garden

plot(as.rad(Fruit.S)) # ’as.rad’ removes zeros and sorts

# Abundance (as a %age) is plotted on the y axis on a logarithmic scale,

# and rank on the x axis, from most abundant on the left to rarest on the

# right. The rubber trees, with 51% abundance, show up clearly!

# Let’s plot some of the high-diversity and low-diversity plots side

# by side:

par(mfrow=c(1,3))

plot(as.rad(Tem.side), main = "Tem.side")

plot(as.rad(Bel.core), main = "Bel.core")

plot(as.rad(Fruit.S), main="Fruit.S")

# When you look at these plots, note that the scales on the y axis are
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# different.

detach(Sedilu.trees)

# WORKING WITH BASAL AREA

# =======================

# Counting the number of trees for each species might not be the best

# way to measure relative abundance. Species with lots of small trees

# will get higher scores than those with a few big trees. Using Basal

# Area may give a more balanced picture.

# Basal area is the cross-sectional area of the tree trunk, measured

# at a height of 1.5m. The basal areas are then added up for each

# species.

# Basal area data for the Sedilu trees are in the ’Sedilu.BA’ data

# frame.

biodiversity(Sedilu.BA)

# Several of the indices can only be used with count data, and they

# are missing from the output from ’biodiversity’.

# The picture looks very different to the results from counts. Now

# ’Bel.core’ has the highest diversity on several of the indices.

plot.hill(Sedilu.BA)
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# Now all of the curves cross, none of the sites is clearly more diverse

# than the others. Some are richer, others more even.

# #######################################################################

# The .zip file contains a data set for birds in County Killarney,

# Ireland. You can use the methods above to investigate the patterns of

# diversity among the different woodland types.

# #######################################################################

A.3.2 File ’biodiversity.R’

# Biodiversity and evenness indices, and species richness

"biodiversity" <- function(DATA,

div.index=c("Chao", "N1", "N2", "BergerParker", "Simpson", "Shannon",

"Fisher", "Brillouin", "Margalef", "Qstatistic"),

even.index=c("Hill", "Brillouin", "Simpson", "Shannon"), quiet=FALSE)

{

div.index <- tolower(div.index)

even.index <- tolower(even.index)

data.name <- deparse(substitute(DATA))

if(inherits(DATA,"xtabs")) {

DATA <- as.data.frame.matrix(DATA) # ’as.data.frame.xtabs’

doesn’t do it!!
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} else

DATA <- as.data.frame(DATA)

# pick out numeric columns without NAs

goodcol <- NULL

for(i in 1:ncol(DATA))

if(is.numeric(DATA[[i]]) && all(!is.na(DATA[[i]])))

goodcol <- c(goodcol, i)

if(is.null(goodcol))

stop("No suitable data found.\n")

DATA <- as.data.frame(DATA[,goodcol])

if(ncol(DATA)==1)

colnames(DATA) <- data.name

# Check for noninteger values:

integers <- rep(1, ncol(DATA))

integers[!apply(DATA, 2, function(x) all(x == round(x)))] <- NA

# NA indicates non-integers

gotinteger <- sum(integers, na.rm=TRUE) > 0

# TRUE if at least one col is integers

# Number of individuals/column totals and species observed (Sobs):

N <- colSums(DATA)

S <- colSums(DATA > 0)

if(!is.na(sum(integers))) {

out <- rbind("No. of individuals" = N, "Species observed" = S)

} else

out <- rbind("Data total" = N, "Species observed" = S)
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# Shannon’s H’ is used for several calculations:

Shan <- function(data) {

propi <- data[data > 0]/sum(data)

return( (-1)*sum(propi * log(propi)) )

}

Shan.H <- apply(DATA, 2, Shan)

if(!is.na(pmatch("c", div.index)) && gotinteger) { # Chao

F1 <- colSums(DATA==1)

F2 <- colSums(DATA==2)

F2[F2==0] <- NA

chao.cor <- F1^2/(2*F2)

chao.cor[F1==0] <- 0

out <- rbind(out, "Chao richness" = S + chao.cor * integers)

}

if(!is.na(pmatch("n1", div.index))) { # Hill’s N1

out <- rbind(out, "Hill\’s N1" = exp(Shan.H) )

}

if(!is.na(pmatch("n2", div.index))) { # Hill’s N2

out <- rbind(out, "Hill\’s N2" = N^2 / colSums( DATA^2))

}

if(!is.na(pmatch("be", div.index))) # BergerParker

out <- rbind(out, "1 / Berger-Parker" = N / apply(DATA, 2, max) )

if(!is.na(pmatch("si", div.index)) && gotinteger) # Simpson

out <- rbind(out,
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"1 / Simpson" = integers*N*(N-1) / colSums( DATA * (DATA-1)))

if(!is.na(pmatch("sh", div.index))) # Shannon

out <- rbind(out, "Shannon\’s H\’" = Shan.H )

if(!is.na(pmatch("f", div.index)) && gotinteger) { # Fisher

nllh <- function(freqs, p, N) {

i <- as.numeric(names(freqs))

x <- N/(N + p)

logExp <- log(p) + log(x) * i - log(i)

return( sum((log(freqs)-logExp)*freqs - 1) - p*log(1-x) )

}

Fish <- function(data) {

data <- data[data>0] # remove zeros

S <- length(data) # number of species

freqs <- table(data)

# convert ni vector into a frequency vector

N <- sum(data)

p <- 1/sum((data/N)^2) # a first guess at alpha

tmp <- nlm(nllh, p=p, freqs=freqs, N = N, hessian = FALSE)

return(tmp$estimate)

}

out <- rbind(out, "Fisher\’s alpha" =

suppressWarnings(apply(DATA, 2, Fish))*integers)

}

if(!is.na(pmatch("br", div.index)) && gotinteger) # Brillouin

out <- rbind(out, "Brillouin" = integers*(lfactorial(N) -
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colSums(lfactorial(DATA))) / N )

if(!is.na(pmatch("m", div.index)) && gotinteger) # Margalef

out <- rbind(out, "Margalef" = integers*(S - 1) / log(N) )

if(!is.na(pmatch("q", div.index))) { # Qstatistic

Qstat <- function(data) {

dat <- sort(data[data>0])

Q1 <- ceiling(length(dat)/4)

Q3 <- ceiling(3*length(dat)/4)

Sbq <- sum(dat>dat[Q1] & dat<dat[Q3]) +

sum(dat==dat[Q1])/2 + sum(dat==dat[Q3])/2

Abq <- log(dat[Q3]) - log(dat[Q1])

return(if (Abq>0) Sbq / Abq else NA)

}

out <- rbind(out, "Q-statistic" = apply(DATA, 2, Qstat))

}

if(!is.na(pmatch("h", even.index))) # Hill’s N2/N1 Evenness

out <- rbind(out, "Hill’s N2/N1 Evenness"

= N^2 / (colSums(DATA^2)* exp(Shan.H)))

if(!is.na(pmatch("b", even.index)) && gotinteger)

{ # Brillouin evenness

HB <- (lfactorial(N) - colSums(lfactorial(DATA))) / N

IntNB <- floor(N / S)

R <- N - S*IntNB
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HBmax <- ( lfactorial(N) - lfactorial(IntNB)*(S-R)

- lfactorial(IntNB+1)*R ) / N

out <- rbind(out, "Brillouin Evenness" = integers*HB/HBmax )

}

if(!is.na(pmatch("si", even.index)) && gotinteger)

{ # Simpson Evenness

Di <- sweep(DATA*(DATA-1),2,N*(N-1),"/")

out <- rbind(out, "Simpson Evenness" = integers/( colSums(Di)*S ))

}

if(!is.na(pmatch("sh", even.index))) { # Shannon Evenness

out <- rbind(out, "Shannon Evenness" = Shan.H/log(S) ) # 18 Dec 06

}

if(!quiet) {

cat("Diversity and Evenness Indices:\n")

print(round(out, 2), na.print=" ")

if(is.na(sum(integers)))

cat("WARNING! Data contains non-integers: some indices could

not be calculated.\n")

}

invisible(out)

}

# ...........................................................

# EXAMPLE DATA

# ============
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# Hypothetical data:

silhouettes <- data.frame(

A1 = as.integer(c(8,4,0,0,0,0,0,0)),

A2 = as.integer(c(3,2,2,3,2,0,0,0)),

# A2 has more species than A1

B1 = as.integer(c(8,4,0,0,0,0,0,0)),

B2 = as.integer(c(4,2,0,0,0,0,0,0)),

# same species count and proportions,

#but B1 has higher abundance than B2

C1 = as.integer(c(2,3,2,3,2,0,0,0)),

C2 = as.integer(c(8,1,1,1,1,0,0,0)),

# C1 is more even than C2

D1 = as.integer(c(0,2,4,3,3,0,0,0)),

D2 = as.integer(c(0,3,0,0,0,4,2,3)),

# D2 has only ungulates, D1 has a wider range of families

row.names = c("civet","sambar","porcupine","otter",

"colugo","mousedeer","pig","gaur")

)

comment(biodiversity) <-

"

ALPHA DIVERSITY

FUNCTIONS F0R ANALYZING SPECIES RICHNESS, DIVERSITY AND EVENNESS

DESCRIPTION:
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Computation of a range of diversity and evenness measures from

species abundance data.

USAGE:

Biodiversity(DATA, div.index=c(\"Chao\", \"N1\", \"N2\",

\"BergerParker\", \"Simpson\", \"Shannon\", \"Fisher\",

\"Brillouin\", \"Margalef\", \"Qstatistic\"),

even.index=c(\"Hill\", \"Brillouin\", \"Simpson\",

\"Shannon\"), quiet=FALSE)

ARGUMENTS:

DATA : a vector with species abundance data, one element per species,

which may contain zeros for missing species (but not NAs); or

a matrix or data frame with species abundances from different

samples (sites, quadrats, transects, etc) in the *columns*.

24 Sept 06: non-numeric columns and columns with NAs in data

frames are ignored.

div.index : the name or non-ambiguous abbreviation of the diversity

indices required; the default is to do all of them.

even.index : the name or non-ambiguous abbreviation of the evenness

indices required; the default is to do all of them.

quiet : if TRUE suppresses output to the Console. Otherwise results
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are displayed.

VALUE:

A data frame with columns corresponding to those of DATA (one

column if DATA is a vector) and the following rows:

No. of individuals* or total data;

Species observed = Hill\’s N0;

Chao\’s estimate of total richness, based on the number of

singletons and doubletons (returns NA if the number of

doubletons is zero)*;

Hill\’s N1;

Hill\’s N2;

1 / Berger-Parker index of dominance = Hill\’s Ninf;

1 / Simpson\’s index of dominance* = N2 for large samples;

Shannon\’s index (H\’) = log(N1);

Fisher\’s alpha parameter for a log series function fitted

to the data*;

Brillouin\’s index (appropriate for non-random samples and

for complete censuses)*;

Margalef\’s richness index*;

Q-statistic, a measure of the slope of the species abundance

curve between the two quartiles;

Hill\’s N2/N1 index of evenness;

Brillouin’s index of evenness*;

Simpson\’s index of evenness*;

Shannon\’s index of evenness.
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(* These indices are only calculated for integer data.)

Author:

Mike Meredith; some code based on that by Sam Strindberg, Fernanda

Marques and Tim O\’Brien of the Wildlife Conservation Society.

The code for Fisher\’s alpha was inspired by that in the

\’vegan\’ package.

References:

Magurran, Anne E. (2004) \"Measuring Biological Diversity\",

Blackwell, Oxford UK

Hill, M O. (1973) Diversity and evenness: a unifying notation and

its consequences. Ecology 54:427-431

Examples:

# Using count data (integers):

dataset(Killarney.birds)

biodiversity(Kil.birds[,1:9])

# Displays the indices with greater precision:

print(biodiversity(Kil.birds[,1:9], quiet=TRUE))

# Only individuals, species and the inverse Simpson\’s index:

biodiversity(Kil.birds[,1:9], div.index=\"si\", even.index=\"\")

# Using biomass:
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dataset(woodpeckers)

biodiversity(Woodpeckers)

# ...or mixing integer and non-integer data:

oak.mass <- Kil.birds$Oak * Kil.birds$Bird.mass

oak.mix <- cbind(oak.count = Kil.birds$Oak, oak.mass)

biodiversity(oak.mix)

Updated: 19 Nov 06"

A.3.3 File ’Killarney.birds.R’

# Bird communities of Killarney woodlands (Batten 1976).

Kil.birds <- data.frame(

Oak = as.integer(c(35, 26, 25, 21, 16, 11, 6, 5, 3, 3, 3, 3, 3, 2, 2, 2,

1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)),

Oak2 = as.integer(c(41, 35, 19, 27, 8, 9, 4, 8, 3, 2, 8, 3, 3, 0, 1, 1,

0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0)),

Oak3 = as.integer(c(31, 23, 17, 17, 1, 8, 0, 4, 1, 2, 2, 1, 2, 0, 0, 1,

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)),

Yew = as.integer(c(9, 20, 10, 21, 5, 14, 0, 3, 6, 2, 0, 2,

9, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)),

sitka = as.integer(c(14, 10, 0, 30, 4, 6, 0, 0, 3, 7, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)),

Norway = as.integer(c(30, 30, 3, 65, 20, 11, 0, 4, 14,

2, 9, 3, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 1)),
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Mixed = as.integer(c(10, 18, 7, 15, 10, 4, 1,

2, 7, 3, 2, 1, 4, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0,

0, 0, 0, 0, 0)),

Patchy = as.integer(c(13, 12, 8, 22, 14,

6, 3, 3, 8, 5, 2, 1, 3, 3, 1, 0, 2, 0, 0, 0, 5, 1, 0, 2,

3, 2, 0, 0, 0, 0, 0)),

Swampy = as.integer(c(15, 20, 5, 11,

10, 5, 0, 2, 8, 4, 3, 3, 2, 6, 0, 0, 1, 1, 0, 0, 2, 1, 1,

0, 0, 0, 0, 0, 0, 0, 0)),

row.names = c("Chaffinch", "Robin", "BlueTit", "Goldcrest", "Wren",

"CoalTit", "SpottedFlycatcher", "TreeCreeper", "Blackbird", "Siskin",

"Woodpigeon", "LongtailedTit", "GreatTit", "SongThrush", "HoodedCrow",

"Woodcock", "Dunnock", "MistleThrush", "Sparrowhawk", "Redstart",

"WillowWarbler", "Bullfinch", "Crow", "Moorhen", "ChiffChaff", "Mallard",

"CommonSandpiper", "GreyWagtail", "Jay", "Long-eared owl", "Redpoll"))

comment(Kil.birds) <-

"Data frame \’Kil.birds\’ from file \’R\\data\\Killarney.birds.R\’

Bird abundance data for a range of woodland habitats in County Killarney,

Ireland.

The figures represent the number of territories held by breeding

males in the respective blocks of habitat.

The sites are:

Oak, Oak2, Oak3 : three oak wood sites,
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Yew : a mature yew wood,

sitka : a Sitka spruce plantation,

Norway : a Norway spruce plantation,

Mixed : a mixed broadleaf wood,

Patchy : a wood with patches of broadleaf and conifer trees,

Swampy : a swampy, seasonally-flooded woodland.

Row names are the English species names.

Source: Batten, L. A. (1976) Bird communities of some Killarney woodlands,

Proceedings of the Royal Irish Academy 76:285-313.

Reference: Magurran (2004) Measuring Biological Diversity, p237"

#======================================================================

Bird.mass <- c(21.81, 18.98, 11.88, 5.33, 9.91, 9.06, 14.47, 8.79, 101.8,

12.92, 507.4, 7.78, 18.61, 74.95, 510, 195.6, 21.17, 125.9, 208.6, 14.19,

8.88, 22.51, 508.7, 356.4, 7.7, 1210, 56.28, 18.09, 166.8, 288.8, 10.99)

names(Bird.mass) <- c("Chaffinch", "Robin", "BlueTit", "Goldcrest",

"Wren", "CoalTit", "SpottedFlycatcher", "TreeCreeper", "Blackbird",

"Siskin", "Woodpigeon", "LongtailedTit", "GreatTit", "SongThrush",

"HoodedCrow", "Woodcock", "Dunnock", "MistleThrush", "Sparrowhawk",

"Redstart", "WillowWarbler", "Bullfinch", "Crow", "Moorhen",

"ChiffChaff", "Mallard", "CommonSandpiper", "GreyWagtail", "Jay",

"Long-eared owl", "Redpoll")
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comment(Bird.mass) <-

"\’Bird.mass\’ contains the approximate weights of individual adult birds,

for the same set of species as in \’Kil.birds\’.

Source: British Trust for Ornithology web site and other sites."

cat("Loaded data frame \’Kil.birds\’ and the vector \’Bird.mass\’.\n")

A.3.4 File ’Seldilu.trees.R’

# Tree data for 11 sites in Sedilu, Sarawak

(Melvin Gumal, unpublished data)

Sedilu.trees <- data.frame(

Bel.core = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 3, 0, 0, 0,

6, 1, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 5, 0, 1, 0, 0,

7, 0, 0, 0, 0, 0, 0, 0, 0, 78, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0,

0, 0, 0, 0, 0, 41, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0,

0, 0, 0, 3, 0, 0, 0, 3, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 5, 0,

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0,

0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 19, 6, 1, 0, 1, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3),
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Bel.edge = c(0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 38, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 12, 0, 0, 0, 0, 0,

1, 2, 0, 0, 0, 3, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

11, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 2, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3),

Bel.roost = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0, 5, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 0, 1, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 8, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0,

1, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1,

0, 0, 0, 1, 16, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 55, 3, 1,

0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 0, 1, 5, 0,

0, 0, 0, 8, 0, 0, 1, 0, 0, 0, 0, 0, 0),

Fruit.M = c(0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0,

2, 0, 0, 1, 1, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,

0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,

0, 0, 0, 21, 2, 1, 0, 0, 4, 3, 5, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 3,

2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 4, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0),

Fruit.S = c(0, 0, 0, 0, 1, 0, 0, 0, 2, 0,

0, 0, 0, 0, 6, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 53, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0,

2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 1, 6, 0, 0, 0),

Meling = c(0, 3, 0, 0, 0, 0,

2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0,

0, 0, 0, 0, 0, 0, 0, 20, 0, 9, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 24, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 24, 44, 0, 0,

0, 0, 0, 0, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

23, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

Opp.Sand = c(0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 5, 17, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,

16, 20, 0, 0, 0, 0, 0, 0, 0, 0, 38, 0, 11, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0,

0, 13, 2, 2, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0),

Sand = c(0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0,

0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2),

Sg.Kara = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 5, 10, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 24, 18, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0,

0, 0, 17, 0, 0, 0, 0, 0, 0, 5, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0),

Tem.side = c(0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2,

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 2, 0, 0, 0,

0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 2, 0, 1, 0, 4, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 0,

0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0,

0, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 2, 1, 4, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0,
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1, 3, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0,

0, 0, 0, 0, 3, 0, 0, 2, 0, 2, 1, 0, 0, 1, 0, 8, 1, 0, 0,

0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0,

4, 0, 2, 0, 11, 8, 0, 0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 1,

1, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,

1, 0, 1, 0),

Tem.up = c(1, 1, 0, 7, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 1,

0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0,

1, 1, 0, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 2, 1,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1,

4, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 0,

1, 1, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0),

row.names = c("Actinodaphne elegans",

"Actinodaphne myriantha", "Adinandra cordifolia", "Adinandra dumosa",

"Aglaia domestica", "Aglaia tomentosa", "Alangium havilandii",

"Alangium sp.", "Alstonia pneumatophora", "Anisoptera grossivenia",

"Anthocephalus cadamba", "Anthrophyllum diversifolium",

"Aphanomyrtus skiophila",

"Aquilaria microcarpa", "Archidendron jiringa", "Arenga brevipes",
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"Arenga pinnata", "Arthrophyllum diversifolium",

"Artocarpus aniosophyllus",

"Artocarpus integer", "Artocarpus nitidus", "Artocarpus sesicicarpus",

"Baccaurea angulata", "Baccaurea bracteata", "Baccaurea lanceolata",

"Baccaurea motleyana", "Beilschmiedia tawaensis", "Bhesa paniculata",

"Blumeodendron kurzii", "Brownlowia sp", "Buchanaia sessifolia",

"Callicarpa pentandra", "Calophyllum carum", "Calophyllum hosei",

"Campnosperma coriacea", "Canarium littorale", "Cephalamappa paludicola",

"Chisocheton ceramicus", "Cleistanthus coriaceus",

"Coelostegia griffithii",

"Copaifera palustris", "Cratoxylum arborescens", "Cratoxylum sumatranum",

"Crudia wrayi", "Cryptocarya crassinevia", "Cryptocarya kurzii",

"Cyathocalyx biovulatus", "Dacryodes rostrata", "Dacryodes tapos",

"Dactylocladus stenostachys", "Dehaasia brachybotrys",

"Dehaasia incrassata",

"Dialium laurinum", "Dillenia linn", "Dillenia reticulata",

"Dimocarpus longan",

"Diospyros borneensis", "Diospyros evena", "Diospyros ferrugines",

"Diospyros ferruginescens", "Diospyros lanceifolia", "Diospyros maingayi",

"Diospyros pseudomalabarica", "Diospyros siamang", "Diospyros sp",

"Diospyros wallichii", "Diplopora beccariana", "Dipterocarpus costulatus",

"Dipterocarpus stellatus", "Dracaena cantleyi", "Dryobalanops beccarii",

"Dryobalanops rappa", "Drypetes longfolia", "Drypetes microphylla",

"Durio carinatus", "Durio zibethinus", "Dysoxylum cauliflorum",

"Elaeocarpus cupreus", "Elaeocarpus mastersii", "Elaeocarpus stipularis",

"Elateriospermum tapos", "Endiandra macrophylla", "Endospermum diadenum",

"Erythroxylum cuneatum", "Eugenia alcinae", "Eugenia brachypoda",
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"Eugenia castanea", "Eugenia cerina", "Eugenia chrimannii",

"Eugenia havilandii",

"Eugenia palembanica", "Eugenia zeylanica", "Euodia nervosa",

"Euphoria comm.", "Eusideroxylon melangangai", "Eusideroxylon zwageri",

"Evodia nervosa", "Ficus condensa", "Ficus fistulosa", "Ficus sp",

"Ficus treubii", "Ficus uncinata", "Ganua motleyana", "Garcinia beccarii",

"Garcinia blumei", "Garcinia parvifolia", "Gironniera nervosa",

"Glochidion lucidum", "Goniothalamus andersonii", "Gonystylus bancanus",

"Grewia antidesmefolia", "Heritiera albiflora", "Hevea braziliensis",

"Horsfieldia crassifolia", "Hydnocarpus beccariana", "Ilex cymosa",

"Ilex hypoglauca", "Ixonanthes multiflora", "Kibessia korthalsiana",

"Knema cinera", "Knema curtisii", "Knema furfuracea", "Koompassia excelsa",

"Koompassia malaccansis", "Kostermanthus heteropetala",

"Laphopetalum multinervium",

"Licania splendens", "Lindera lucida", "Lithocarpus blumeanus",

"Litsea accedens", "Litsea castanea", "Litsea crassifolia",

"Litsea curtisii",

"Litsea elliptibacea", "Litsea oppositifolia", "Litsea petiolata",

"Litsea resinosa", "Litsea sp", "Lophopetalum multinervium",

"Macaranga aetheadenia", "Macaranga brevipetiolata",

"Macaranga caladiifolia",

"Macaranga hosei", "Macaranga pearsonii", "Macaranga trachyphylla",

"Mangifera indica", "Mangifera pajang", "Mangifera torquenda",

"Melanorrhoea sepciosa", "Meliosma sarawakensis",

"Memmecylon paniculatum",

"Mezzettia havilandii", "Mezzettia leptopoda", "Mezzettia macrocarpa",

"Myristica lowiana", "Myrsine borneensis", "Nauclea gigantea",
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"Nauclea peduncularis", "Neonauclea calycina", "Neoscortechinia kingii",

"Neoscortechinia sumatrensis", "Nephelium cuspidatum",

"Nephelium lappaceum",

"Nephelium maingayi", "Nephelium ophiodes", "Nephelium uncinatum",

"Ocalium laurinum", "Ochanostachys amentacea", "Octomeles sumatrana",

"Omphalea bracteata", "Palaquium gutta", "Palaquium walsuraefolium",

"Parastemon urophyllus", "Parishia maingayi", "Parkia singularis",

"Pellacalyx lobbii", "Pentace curtisii", "Pimeleodendron griffithianum",

"Pinanga crassipes", "Platea latifolia", "Polyalthia glauca",

"Polyalthia karai", "Polyalthia sclerophylla", "Pometia acuminata",

"Pometia pannata", "Popowia pisocarpa", "Porterandia anisophylla",

"Prunus arborea", "Prunus turfosa", "Pternandra coerulescens",

"Pterygota horsfieldii", "Quassia indica", "Randia scortechinii",

"Sandoricum borneense", "Sandoricum caudatun", "Sandoricum emarginatum",

"Santiria apiculata", "Santiria tomentosa", "Sarcotheca diversifolia",

"Saurauia glabra", "Scleropyrum wallichianum",

"Scorodocarpus borneensis",

"Semecarpus glaucus", "Shorea collaris", "Shorea dasyphylla",

"Shorea johorensis", "Shorea parvistipulata", "Shorea platycarpa",

"Shorea scaberrima", "Shorea scabrida", "Shorea teysmanniana",

"Simelora jiocarpa", "Stemonurus secundiflorus",

"Sterculia rhodifolia",

"Tabernaemontana macrocarpa", "Teijsmanniodendron hollrungii",

"Terminalia foetidissima", "Tetractomia parviflora",

"Trichadenia philippenensis",

"Untsia sp", "Vatica mangachapoi", "Vatica umbonata", "Vernonia arborea",

"Vitex vestita", "Xanthophyllum amoenum", "Xanthophylum subcorileum",
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"Xylopia coriifolia"))

# ....................................................................

comment(Sedilu.trees) <-

"Counts of trees >10cm dbh in 11 plots 500m x 5m close to a flying

fox roost site in Sarawak, Malaysia.

Data are the number of trees of each species in the plot. A few trees

which could not be identified to genus level have been excluded from

the data set.

The plots (columns) are:

Bel.core = core Belanga area, Peat Swamp Forest (PSF)

Bel.edge = edge of the Belanga area, PSF

Bel.roost = the flying fox roost site at Belanga, PSF

Fruit.M = Fruit-enriched Mixed Dipterocarp Forest (MDF):

Bukit Melingkong

Fruit.S = Fruit-enriched MDF: Sandong

Meling = Melingkong paya, PSF

Opp.Sand = Opposite Sandong Kecil, PSF

Sand = Sandong Paya, logged-over PSF

Sg.Kara = Sungai Kara, PSF

Tem.side = 50-yr old Temuda (abandoned swidden) on side

of the hill, Sandong Besar

Tem.up = 50-yr old Temuda up hill, Sandong Besar
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The row names are the scientific names of the tree species.

Source: Melvin Gumal, WCS Malaysia, unpublished data.

Updated 12 Dec 06

"

=======================================================

Sedilu.BA <- data.frame(

Bel.core = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0342501437533759, 0, 0.0223533117572567,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.333564887479149, 0, 0.0354835945623381, 0,

0, 0, 0.377650806715604, 0.0198943678864869, 0, 0, 0,

0, 0.0794421898443196, 0, 0, 0, 0, 0, 0.0108941558546402,

0, 0, 0, 0, 0.288730940010162, 0, 0.0140374659807052, 0, 0,

0.776501051851048, 0, 0, 0, 0, 0, 0, 0, 0, 1.56844809092916,

0, 0, 0, 0, 0, 0, 0, 0.118650010075008, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.7085259756565, 0, 0.175651352943370, 0, 0, 0, 0, 0,

0, 0, 0.211429384150428,

0, 0, 0.130538884323973, 0, 0, 0, 0, 0, 0, 0.0350936649517629,

0, 0, 0, 0.0751370486336838, 0, 0.068906132611636,

0.06411556882457, 0, 0, 0, 0, 0, 0, 0.350936649517629, 0, 0,

0.588706176749766, 0, 0, 0, 0, 0, 0, 0.03858711595263, 0, 0,

0, 0, 0.0086659866513537, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0.118443108648989, 0, 0, 0, 0, 0, 0, 0.154507618753612, 0,
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0, 0, 0.0108941558546402, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.458366236104659, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.159902971324427, 0, 0,

0, 0.0490992999438497, 0.0357223269769759, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.481204970438346, 0.406370316196536,

0.163253182876512,

0.0223533117572567, 0, 0.0114909868912348, 0.020698100349101,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0472133138682107, 0,

0.038626904688403),

Bel.edge = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0692642312335929, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.105559516005700, 0, 0, 0, 0, 0, 0, 0, 0, 0.662506323861478,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1.07244966853043, 0, 0.0203797904629172, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0.934876135721793, 0, 0, 0, 0, 0,

0.00764739501556557, 0.03858711595263, 0, 0, 0,

0.0405288062583511, 0, 0.119525362262013, 0.00764739501556557,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.182614381703641, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0.397282568945989, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0.134621208614280, 0, 0, 0, 0.122199165305957,

0.0198943678864869, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.704714214769449, 0.453527925834665, 0, 0, 0.0121037334221386,
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0, 0, 0, 0, 0, 0, 0, 0.162783675794391, 0, 0, 0, 0, 0,

0.0813759224028861),

Bel.roost = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0.0103763619585598, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0112982693537437, 0, 0, 0, 0, 0, 0, 1.03518352988377, 0, 0, 0,

0, 0, 0.00932185681887703, 0, 0, 0.783809590395587, 0, 0, 0, 0,

0, 0, 0, 0.158362506237564, 0, 0, 0, 0, 0.248923627322090, 0, 0,

0, 0, 0, 0, 0, 0, 0.151197520422399, 0, 0, 0.0927940984859665, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0321027770054013, 0,

0.169632529917924, 0, 0.0103763619585598, 0, 0, 0, 0, 0, 0, 0,

0.103386226005101, 0, 0, 0.24036440368459, 0, 0, 0, 0, 0, 0,

0.243693470133752, 0, 0, 0, 0.0259146207281112, 0,

0.0109247987834394, 0.120889128278943, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.0998931777299021, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.079804227137315, 0,

0.0571974886033276, 0, 0, 0, 0.0237546113162462,

0.22671389741956, 0, 0, 0, 0, 0, 0, 0.0112982693537437,

0, 0, 0, 0, 1.42527981738293, 0.059824336228073,

0.0103763619585598, 0, 0, 0, 0, 0, 0.134490989217588,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0557648052811098,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.387848402658984, 1.17812939066774,

0, 0, 0.0171859230503057, 0.0757282195475443, 0, 0, 0, 0,

0.148292139074002, 0, 0, 0.00784602038454426, 0, 0, 0, 0, 0, 0),

Fruit.M = c(0, 0, 0, 0, 0.0616247939651819, 0, 0, 0,

1.42926709319530, 0, 0.0349663409972894, 0, 0, 0, 0.035268735389164,
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0, 0, 0.00814873308630504, 0.0673543719164901, 0.514754832442117,

0.389977357058071, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.110111347378128, 0, 0, 0, 0, 0.0447623277445956, 0, 0,

0, 0, 0, 0, 0, 0, 0.0127323954473516, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.0490595112080767, 0, 0, 0, 0, 0, 3.35323549600314, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.103418882021114, 0.0911082471729555,

0, 0, 0, 0, 0, 0.0282181714101930, 0, 0, 0.0114909868912348, 0, 0,

0, 0, 0.0370831017404116, 0, 0, 0, 0, 0, 0, 0, 0, 1.23906897845333,

0.0438153558331988, 0.0114909868912348,

0, 0, 0.360883833460873, 0.0515264128260011, 0.0905909936079068,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00814873308630504,

0, 0.0673543719164901, 0, 0, 0.0648158505741744, 0, 0, 0, 0,

0.130379729380881, 0.766211684780157, 0.171354169479889, 0, 0,

0.0114909868912348, 0, 0, 0, 0, 0.0097482402643786,

0, 0.0903761344347328, 0, 0, 0, 0, 0, 0, 0.356005734455106, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0086659866513537,

0, 0, 0, 0.0367966228428462, 0, 0, 0, 0, 0, 0, 0.192832129050140,

0, 0.0538023285122152, 0, 0, 0.0671315549961615, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.385154962282387, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0),

Fruit.S = c(0, 0, 0, 0, 0.0811769787240212,

0, 0, 0, 0.102877755214601, 0, 0, 0, 0, 0, 0.114106136449734,

0.350936649517629, 0.0114909868912348, 0, 0, 0.00814873308630504,

0, 0, 0, 0, 0, 0.0267698614280568, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.0600014135456446, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.809095984196268, 0, 0, 0, 0, 0, 0, 0.0191065509181820,
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0, 0, 0, 0.0133769729668738, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.176669944579158, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

3.81297046461839, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0.198227481620956, 0, 0, 0, 0, 0, 0, 0,

0.0195601425059939, 0.043536834682788, 0.122358320249049, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.120400714449019, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00919915571071155, 0, 0,

0.0774050065727433, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02435070629306,

0, 0, 0, 0, 0, 0, 0, 0, 0.0147138744888457, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0.00764739501556557, 0, 0, 0, 0, 0, 0, 0,

0.049664299991826, 0.125764236031216, 0, 0, 0),

Meling = c(0, 0.134493884659806, 0, 0, 0, 0, 0.0701873299035258,

0, 0, 0, 0.0729645836604794, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0.272385727354624, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.0240721851426492, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0987795154299849, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0412529612494193,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.241613119107806,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1.28318672867841, 0, 0.281314319662080,

0, 0, 0, 0, 0.0086659866513537, 0, 0, 0, 0, 0, 1.25338496558445,

0, 0.0296107771622471, 0, 0, 0, 0, 0.0915618387607674, 0, 0,

0, 0.101859163578813, 0, 0.632585194560202, 1.89317192131956,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2.37962900487994, 0.0086659866513537,

0, 0, 0, 0, 0, 0.00814873308630504, 0, 0, 0, 0, 1.29494827897290,

0, 0, 0, 0, 0.132011067547573, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0749619781962827, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0175786634644998, 0,
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0, 0, 0, 0, 0, 0, 0, 0.0262446501158535, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0.05017359580972, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0.0389929610575144, 0, 0, 0, 0, 0, 0),

Opp.Sand = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0.10708248620826, 0, 0, 0, 0.0224090188202969, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.505176222285382,

0.227664050488128, 0.350624528148591, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.491062016215625, 0, 0, 0, 0, 0, 0, 0.100833915574009,

0, 0, 0, 0, 0, 0.704208575186231, 0.538826234510615, 0, 0, 0,

0, 0, 0, 0, 0, 1.32815000803246, 0, 0.331644220236340, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.160496623782160, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0120640409432752, 0,

0, 0, 0, 0.270497044971432, 0, 0, 0, 0, 0, 0, 0, 0,

0.58327315538702, 0.0467285436042302, 0.0506413539700025, 0,

0, 0, 0, 0.0811670808781103, 0, 0, 0.0538582223276656, 0, 0, 0,

0, 0, 0, 0, 0, 0.0715588443151974, 0, 0, 0, 0.0425952600656523,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.137758072105713,

0.0575372212859784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0263759667267224, 0, 0, 0, 0, 0, 0),

Sand = c(0,

0, 0, 0, 0, 0, 0, 0, 2.01759925582880, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0.058362117631798, 0, 0, 0, 0, 0, 0,

0.0401150034063122, 0, 0, 0, 0.528824129411441, 0, 0, 0, 0, 0,

0, 0.227687061587265, 0, 0, 0, 0, 0, 0, 0, 0.0121037334221386,
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0.0403378203266409, 0.0168385929791225, 0, 0.112721488444835,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.0168385929791225, 0.0114909868912348, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.134485926912652, 0, 0, 0.0223533117572567, 0, 0,

0, 0, 0.0147138744888457, 0, 0, 0, 0, 0.429264754760306, 0, 0,

0, 0, 0.0294138229201709, 0, 0, 0, 0, 0, 0, 0, 0,

0.127562686888154, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0154061984912955, 0, 0, 0, 0,

0, 0, 0, 0, 0.0183346494441863, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0447623277445956, 0.179049310978382, 0, 0.0309556364313736,

0, 0, 0, 0, 0.0303110589118515, 0, 0, 0, 0.158207971180499, 0,

0, 0, 0, 0, 0.0183346494441863, 0, 0, 0, 0, 0, 0, 0,

0.0114909868912348, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.00814873308630504, 0, 0, 0, 0, 0.0108941558546402, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0877262046322527),

Sg.Kara = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0.0303110589118515, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0114909868912348, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.0631288081774003, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0.546920046440989, 0.370647989219560,

0.335888549648291, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1.25336109234298, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0.0168385929791225,

0, 0.852354297728646, 0.360716720770626, 0, 0, 0, 0, 0, 0, 0,
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0, 1.39091870965731, 0, 0.0223533117572567, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0.0430514121063577, 0, 0, 0, 0, 0, 0,

0.0623012024733224,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.136451490459836,

0, 0, 0, 0, 0, 0, 0, 0, 0.822974295233882, 0, 0, 0, 0, 0, 0,

0.146740857530728, 0, 0, 0.0616247939651819, 0, 0, 0, 0, 0, 0,

0, 0, 0.101612473417021, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0.0877341623794073, 0.0206423961190188, 0, 0, 0, 0,

0, 0, 0.0764262036727281, 0, 0.0242711288215140, 0,

0.0168385929791225, 0, 0, 0, 0, 0, 0, 0),

Tem.side = c(0, 0, 0.0147138744888457,

0, 0, 0.0140374659807052, 0, 0.049664299991826, 0.153751632773925,

0.0121037334221386, 0, 0.0459639475649394, 0, 0.0804846547215715,

0, 0, 0, 0, 0.0484149336885546, 0, 0.120392756701864, 0,

0.0191065509181820, 0, 0.0147138744888457, 0, 0, 0,

0.358504467061649, 0.150759519843798, 0, 0, 0, 0, 0,

0.0522107790812963, 0, 0.0734181752482913, 0, 0, 0, 0, 0,

0.0397887357729738, 0, 0.0191065509181820, 0, 0.104509093381293,

0, 0, 0, 0.00764739501556557, 0, 0, 0, 0, 0, 0, 0, 0,

0.0232047907027983, 0.0108941558546402, 0, 0, 0.0114909868912348,

0.205325792082854, 0.0412529612494193, 0.257831007808870, 0, 0, 0, 0,

0.0213983820987053, 0, 0, 0, 0.0305975378094169, 0, 0, 0, 0,

0.0183346494441863, 0, 0.0326267633338386, 0, 0.0267698614280568,

0.0860789509712516, 0, 0.0729884569019432, 0, 0, 0, 0,

0.120146066540072, 0.0086659866513537, 0, 0, 0, 0.0223533117572567,

0, 0, 0.0133769729668738, 0, 0, 0, 0, 0, 0, 0, 0, 0.0317195801582147,
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0.0588554979553829, 0.360748551759245,

0.00814873308630504, 0, 0, 0, 0.0367966228428462, 0.0367966228428462,

0.0548209201480033, 0.0401866231307036, 0.0240721851426492,

0.0574947231919472, 0, 1.00287508515781, 0, 0, 0, 0.0114909868912348,

0.0757975416475152,

0, 0.0688265551400901, 0.0688265551400901, 0, 0, 0.136984659519194,

0.249308260606299, 0.0928191628111934, 0, 0.0133769729668738,

0.00814873308630504, 0, 0, 0, 0.0378470454672527, 0, 0, 0, 0,

0, 0, 0.027708875592299, 0, 0, 0.173805155603504, 0,

0.0347037353411878, 0.149358956344589, 0, 0, 0.136562898920001, 0,

0.146947758956747, 0.0175786634644998, 0, 0, 0, 0.406044048563198,

0.214031567469981, 0.0175786634644998, 0.0454705672413545, 0, 0, 0,

0, 0, 0.0232047907027983, 0.0277009178451444, 0, 0, 0,

0.0210728306626109, 0, 0.188725931518369,

0, 0.0554814131618347, 0, 0.147218322360003, 0, 0.188630438552514,

0.486083069444112, 0, 0, 0, 0.0535078918674952, 0, 0.101095219851972,

0, 0, 0.0481921167682259, 0.0286478897565412, 0, 0, 0.0147138744888457,

0.825091055977004, 0.0464254968999059, 3.79949004093851, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0.257831007808870, 0, 0.410054753129114,

0, 0, 0.0086659866513537, 0, 0.0877341623794073,

0, 0.0191065509181820, 0),

Tem.up = c(0.0367966228428462, 0.0168385929791225, 0,

0.377276792599338, 0, 0, 0, 0, 0.0389929610575144, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0.0424068345868355, 0, 0, 0, 0,

0.160666915051268, 0, 0.0121037334221386, 0, 0, 0.0472769758454475,

0, 0, 0, 0, 0, 0, 0, 0.0232047907027983, 0, 0.0844237395630959, 0, 0,
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0.0191065509181820,

0, 0, 0, 0.145029941892490, 0, 0, 0, 0, 0, 0.0103132403123548,

0.0157961281018706, 0, 0, 0.08728852853875, 0, 0, 0.00814873308630504,

0, 0, 0, 0, 0, 1.61144379880544, 0.00814873308630504, 0,

0.461151447608767, 0, 0, 0.00764739501556557, 0, 0, 0.0086659866513537,

0.0589828219098564, 0, 0, 0.554623145686637, 0, 0.0249554950768092, 0,

0.382871088849018, 0.0086659866513537, 0, 0, 0.0305895800622623, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00919915571071155, 0, 0, 0, 0,

0.0569933851212077, 0.0215177483060243, 0.0103132403123548, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0.497072718264608, 0.112037122189540, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.0309556364313736, 0.156632337243889, 0, 0, 0, 0,

0.0764262036727281, 0.307049673960039, 0.0346082423753326, 0,

0, 0, 0, 0.0522107790812963, 0, 0.0114909868912348, 0, 0, 0,

0, 0.020698100349101, 0, 0, 0, 0.0175786634644998, 0.264205163279701,

0, 0, 0.0277009178451444, 0, 0, 0, 0.0198943678864869, 0.284386010063753,

0, 0, 0.00814873308630504, 0, 0, 0, 0.0336214817281629, 0, 0,

0, 0, 0.049664299991826, 0, 0, 0.0140374659807052, 0, 0, 0,

0.0127323954473516, 0, 0, 0, 0.00814873308630504, 0, 0,

0.0435766234185609, 0, 0.265979740895176,

0, 0.0097482402643786, 0.0114909868912348, 0, 0, 0.0302076081988417,

0, 0, 0, 0.0086659866513537, 0.0127323954473516, 0, 0, 0, 0,

1.46852265990892, 0, 0, 0, 0, 0, 0, 0, 0.0161144379880544, 0,

0, 0, 0.109570220571615, 0, 0, 0, 0, 0, 0, 0, 0),

row.names = c("Actinodaphne elegans",

"Actinodaphne myriantha", "Adinandra cordifolia", "Adinandra dumosa",

"Aglaia domestica", "Aglaia tomentosa", "Alangium havilandii",
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"Alangium sp.", "Alstonia pneumatophora", "Anisoptera grossivenia",

"Anthocephalus cadamba", "Anthrophyllum diversifolium",

"Aphanomyrtus skiophila",

"Aquilaria microcarpa", "Archidendron jiringa", "Arenga brevipes",

"Arenga pinnata", "Arthrophyllum diversifolium",

"Artocarpus aniosophyllus",

"Artocarpus integer", "Artocarpus nitidus", "Artocarpus sesicicarpus",

"Baccaurea angulata", "Baccaurea bracteata", "Baccaurea lanceolata",

"Baccaurea motleyana", "Beilschmiedia tawaensis", "Bhesa paniculata",

"Blumeodendron kurzii", "Brownlowia sp", "Buchanaia sessifolia",

"Callicarpa pentandra", "Calophyllum carum", "Calophyllum hosei",

"Campnosperma coriacea", "Canarium littorale", "Cephalamappa paludicola",

"Chisocheton ceramicus", "Cleistanthus coriaceus",

"Coelostegia griffithii",

"Copaifera palustris", "Cratoxylum arborescens", "Cratoxylum sumatranum",

"Crudia wrayi", "Cryptocarya crassinevia", "Cryptocarya kurzii",

"Cyathocalyx biovulatus", "Dacryodes rostrata", "Dacryodes tapos",

"Dactylocladus stenostachys", "Dehaasia brachybotrys",

"Dehaasia incrassata",

"Dialium laurinum", "Dillenia linn", "Dillenia reticulata",

"Dimocarpus longan",

"Diospyros borneensis", "Diospyros evena", "Diospyros ferrugines",

"Diospyros ferruginescens", "Diospyros lanceifolia", "Diospyros maingayi",

"Diospyros pseudomalabarica", "Diospyros siamang", "Diospyros sp",

"Diospyros wallichii", "Diplopora beccariana", "Dipterocarpus costulatus",

"Dipterocarpus stellatus", "Dracaena cantleyi", "Dryobalanops beccarii",

"Dryobalanops rappa", "Drypetes longfolia", "Drypetes microphylla",
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"Durio carinatus", "Durio zibethinus", "Dysoxylum cauliflorum",

"Elaeocarpus cupreus", "Elaeocarpus mastersii", "Elaeocarpus stipularis",

"Elateriospermum tapos", "Endiandra macrophylla", "Endospermum diadenum",

"Erythroxylum cuneatum", "Eugenia alcinae", "Eugenia brachypoda",

"Eugenia castanea", "Eugenia cerina", "Eugenia chrimannii",

"Eugenia havilandii",

"Eugenia palembanica", "Eugenia zeylanica", "Euodia nervosa",

"Euphoria comm.", "Eusideroxylon melangangai", "Eusideroxylon zwageri",

"Evodia nervosa", "Ficus condensa", "Ficus fistulosa", "Ficus sp",

"Ficus treubii", "Ficus uncinata", "Ganua motleyana", "Garcinia beccarii",

"Garcinia blumei", "Garcinia parvifolia", "Gironniera nervosa",

"Glochidion lucidum", "Goniothalamus andersonii", "Gonystylus bancanus",

"Grewia antidesmefolia", "Heritiera albiflora", "Hevea braziliensis",

"Horsfieldia crassifolia", "Hydnocarpus beccariana", "Ilex cymosa",

"Ilex hypoglauca", "Ixonanthes multiflora", "Kibessia korthalsiana",

"Knema cinera", "Knema curtisii", "Knema furfuracea", "Koompassia excelsa",

"Koompassia malaccansis", "Kostermanthus heteropetala",

"Laphopetalum multinervium",

"Licania splendens", "Lindera lucida", "Lithocarpus blumeanus",

"Litsea accedens", "Litsea castanea", "Litsea crassifolia",

"Litsea curtisii",

"Litsea elliptibacea", "Litsea oppositifolia", "Litsea petiolata",

"Litsea resinosa", "Litsea sp", "Lophopetalum multinervium",

"Macaranga aetheadenia", "Macaranga brevipetiolata",

"Macaranga caladiifolia",

"Macaranga hosei", "Macaranga pearsonii", "Macaranga trachyphylla",

"Mangifera indica", "Mangifera pajang", "Mangifera torquenda",

114



"Melanorrhoea sepciosa", "Meliosma sarawakensis",

"Memmecylon paniculatum",

"Mezzettia havilandii", "Mezzettia leptopoda", "Mezzettia macrocarpa",

"Myristica lowiana", "Myrsine borneensis", "Nauclea gigantea",

"Nauclea peduncularis", "Neonauclea calycina", "Neoscortechinia kingii",

"Neoscortechinia sumatrensis", "Nephelium cuspidatum",

"Nephelium lappaceum",

"Nephelium maingayi", "Nephelium ophiodes", "Nephelium uncinatum",

"Ocalium laurinum", "Ochanostachys amentacea", "Octomeles sumatrana",

"Omphalea bracteata", "Palaquium gutta", "Palaquium walsuraefolium",

"Parastemon urophyllus", "Parishia maingayi", "Parkia singularis",

"Pellacalyx lobbii", "Pentace curtisii", "Pimeleodendron griffithianum",

"Pinanga crassipes", "Platea latifolia", "Polyalthia glauca",

"Polyalthia karai", "Polyalthia sclerophylla", "Pometia acuminata",

"Pometia pannata", "Popowia pisocarpa", "Porterandia anisophylla",

"Prunus arborea", "Prunus turfosa", "Pternandra coerulescens",

"Pterygota horsfieldii", "Quassia indica", "Randia scortechinii",

"Sandoricum borneense", "Sandoricum caudatun", "Sandoricum emarginatum",

"Santiria apiculata", "Santiria tomentosa", "Sarcotheca diversifolia",

"Saurauia glabra", "Scleropyrum wallichianum",

"Scorodocarpus borneensis",

"Semecarpus glaucus", "Shorea collaris", "Shorea dasyphylla",

"Shorea johorensis", "Shorea parvistipulata", "Shorea platycarpa",

"Shorea scaberrima", "Shorea scabrida", "Shorea teysmanniana",

"Simelora jiocarpa", "Stemonurus secundiflorus",

"Sterculia rhodifolia",

"Tabernaemontana macrocarpa", "Teijsmanniodendron hollrungii",
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"Terminalia foetidissima", "Tetractomia parviflora",

"Trichadenia philippenensis",

"Untsia sp", "Vatica mangachapoi", "Vatica umbonata", "Vernonia arborea",

"Vitex vestita", "Xanthophyllum amoenum", "Xanthophylum subcorileum",

"Xylopia coriifolia"))

comment(Sedilu.BA) <-

"Basal area (sq. m) of trees >10cm dbh in 11 plots 500m x 5m.

A few trees which could not be identified to genus level have

been excluded from the data set.

The plots (columns) are:

Bel.core = core Belanga area, Peat Swamp Forest (PSF)

Bel.edge = edge of the Belanga area, PSF

Bel.roost = the flying fox roost site at Belanga, PSF

Fruit.M = Fruit-enriched Mixed Dipterocarp Forest (MDF):

Bukit Melingkong

Fruit.S = Fruit-enriched MDF: Sandong

Meling = Melingkong paya, PSF

Opp.Sand = Opposite Sandong Kecil, PSF

Sand = Sandong Paya, logged-over PSF

Sg.Kara = Sungai Kara, PSF

Tem.side = 50-yr old Temuda (abandoned swidden) on side of

the hill, Sandong Besar

Tem.up = 50-yr old Temuda up hill, Sandong Besar
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The row names are the scientific names of the tree species.

Source: Melvin Gumal, WCS Malaysia, unpublished data.

Updated 12 Dec 06"
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