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SUMMARY

Configuration capabilities are important for modern advanced network services. Net-

work conditions and user populations have been significantly diversified after decades of

evolution of the Internet. Configuration capabilities allow network services to be adapted

to spatial, temporal, and managerial variations in application requirements and service

operation conditions.

Network service providers need to decide on the best configuration. Ideally, a network

service should have all of its components optimally configured to most effectively deliver the

functionality for which it was designed. The “optimal” configuration, however, is always a

compromise between different metrics. To decide on an optimal configuration, the prominent

performance and cost metrics must be identified, modeled, and quantified. Optimization

objective functions and constraints that combine these metrics should be formulated and

optimization techniques should be developed. More important, in the scenarios where the

application requirements and system conditions change over time, the service configuration

needs to be dynamically adjusted and strategies that guide the reconfiguration decisions

need to be developed. Because the actual process of configuring a network service in-

curs configuration costs, an optimal reconfiguration strategy should be one that achieves

a tradeoff between the (re)configuration costs and static optimization objectives. Further-

more, such tradeoffs must be based on the consideration of long-term benefits instead of

short-term interest.

This thesis focuses on understanding the strategies for dynamic (re)configuration of ad-

vanced network services positioned above the Transport Layer. Specifically, this thesis in-

vestigates the configuration and more important dynamic reconfiguration strategies for two

xi



types of advanced network services: Service Overlay Networks, and Content Resiliency Ser-

vice Networks. Unlike those network services whose configuration involves mainly arrange-

ment of hard-wired components, these network services have the ability to change service

configuration in small time scales. This makes the modeling of application requirements

and system condition dynamics not only possible but also meaningful and potentially useful.

Our ultimate goals in conducting the research presented in this thesis are to first develop

modeling and optimization techniques for network service configuration and dynamic re-

configuration policies. We also seek to understand how effective techniques can improve the

performance or reduce the cost of these advanced network services, thus demonstrating the

advantage of allowing configurability in these advanced network services.
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CHAPTER I

INTRODUCTION

1.1 Overview of Research Objectives

Over the decades, the Internet has evolved from a simple best-effort communication platform

to an infrastructure that delivers a wide range of services to end users. Today, new services

continue to emerge over the Internet and draw new users. Many of these services will flourish

and generate new demands that drive the Internet to evolve into its next generation.

Modern advanced network services are typically designed with some configuration capa-

bilities, for example, the capability of changing network topologies, tuning protocol para-

meters, reforming clusters, and adjusting management hierarchies of entities. Configuration

capabilities are important for modern advanced network services because network condi-

tions and user populations have been significantly diversified over the years. They give

network service providers more flexibility in performance and cost tuning and allow the

network services to be adapted to spatial, temporal, and managerial variation in operating

conditions and user requirements.

While configuration capabilities give a network service provider the freedom of choosing

among many options of configuration, decisions still need to be made on which configuration

is the best option. Ideally, a network service should have all of its components configured

to most effectively deliver the functionality for which it was designed. The “optimal”

configuration, however, is always a compromise between different metrics, e.g., performance

metrics such as latency and throughput, and cost metrics such as bandwidth consumption

and CPU loads. Depending on the specific context in which the network service is provided,

performance and cost metrics that come under consideration could vary among end-to-end

latency of data delivery, network traffic incurred in the system, degree of load balancing and

fairness among different entities, resiliency of the service under failures, security assurance of

application data, and many others. To determine an optimal configuration, the prominent

1



performance and cost metrics must be identified, modeled, and quantified. Optimization

objective functions and constraints that combines these metrics should be formulated and

optimization techniques should be developed.

Tradeoffs also lie in the control dimension. The actual process of configuring a network

service incurs configuration costs, e.g., extra control overhead or negative impact on the

performance of the service. Such a configuration cost is often a concern of the protocol

designers and this implies the configuration cost may need to be taken into account during

configuration optimization. The issue is especially complex in the scenarios where the

application requirements and system conditions change over time. A strategy that guides the

reconfiguration decision needs to developed. Ideally, when the application requirements and

system conditions change over time, the configuration of a network service should continue to

be updated to perfectly match the current application requirements and system conditions.

However, such a strategy may not be the optimal one when the (re)configuration cost is a

concern. Updating service configuration too frequently may incur too much reconfiguration

cost that even over shadow the benefit of the reconfiguration. A better reconfiguration

strategy is one that achieves a good tradeoff between the (re)configuration cost and static

optimization objectives, and such tradeoffs must be based on the consideration of long-term

benefit instead of short-term interest.

This thesis seeks to understand the strategies of dynamic (re)configuration of advanced

network services positioned above the Transport Layer. Unlike those network services whose

configuration involves mainly arrangement of hard-wired components, these network ser-

vices often have the capability of changing service configuration in short-time scale. This

makes the modeling of application requirements and system dynamics not only possible but

also meaningful and potentially useful. Our ultimate goals in conducting the research pre-

sented in this thesis are not only the development of modeling and optimization techniques

for network service configuration and dynamic reconfiguration policies, but also understand-

ing how these techniques can improve the performance or reduce the cost of these advanced

network services and verifying the advantages of high configurability built in these services

in the first place.

2
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Figure 1: Service Overlay Network

Specifically, this thesis investigates the optimization of service configurations and, more

importantly, dynamic reconfiguration strategies for two types of advanced network services:

Service Overlay Networks, and Content Resiliency Service Networks.

1.1.1 Service Overlay Network

While the Internet has been fully commercialized and evolved into a ubiquitous medium

of communication, its native routing infrastructure has become resistant to fundamental

changes. This hinders the development of new network functionality (e.g., multicast, QoS)

that heavily rely on such fundamental changes. The use of overlay networks has been

proposed as an alternative solution that can provide the desirable flexibility and control of

the routing infrastructure [70, 86, 32, 9]. Researchers have successfully used overlay networks

to solve problems in various areas. For example, overlay networks have been employed to

implement application layer multicast [20, 7, 68, 59], provide testbeds for new technologies

[33, 28, 69], circumvent BGP faults and constraints [2], and provide countermeasures to

DoS attacks [48].

While researchers study overlay networks in various contexts, in this thesis, we are

most interested in service overlay networks [26, 2, 89] that are deployed and maintained by

overlay network providers. As shown in Fig. 1, to build a service overlay network, an overlay

3



network provider deploys a number of specially designed overlay nodes across the Internet.

On one hand, as a third-party service provider, an overlay network provider contracts with

underlying ISPs and buys network bandwidth between these overlay nodes. On the other

hand, the overlay network provider provides value-added network services to users at the

end-systems, who access the overlay networks through one of the overlay nodes. Traffic

between end-systems is carried by and routed through the overlay networks instead of the

native networks.

One of most important issues in deploying a service overlay network is the configuration

of its overlay topology. Positioned between the native network and the ultimate end users,

an overlay topology constructed in favor of both could significantly improve the service

performance or reduce the cost of operating the service. Consider the four-node example

overlay network shown in Fig. 2. Fig. 2.a characterizes the service agreement between the

overlay network provider and the underlying ISPs; the labels on the dashed lines show the

operation costs of the potential overlay links between every pair of nodes — the price ISPs

charge the overlay network provider for shipping one unit of data over these overlay links.

Fig. 2.b shows a snapshot of the communication requirements aggregated over all the users

at the end-systems; the labels on the lines (or the thickness of the lines) denote the data

rates between every pair of overlay nodes, on behalf of the end users. Fig. 2.c shows a

candidate overlay topology (Topology A); each edge denotes an overlay link. Provided that

the overlay network ships data over the overlay paths that incur the minimum operation

cost, the flow of data is shown in Fig. 3.a. Fig. 3.b presents the flow of data if another

topology (Topology B) is adopted instead. In terms of operation cost, Topology B is not as

good as A — although some data can now take a lower-cost path, a higher volume of data

have to take a higher-cost path. Generally, the operation cost of an overlay varies when

it runs on different overlay topologies and this raises the problem of finding the overlay

topology that minimizes the operation cost for given communication requirements.

If the communication requirement is constant over time, the optimal configuration of

overlay topology is static. If communication requirements change over time, for example,

from the ones shown in Fig. 2.b to the ones shown in Fig. 3.c, the overlay topology may

4
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need to be reconfigured. For overlay networks with tens of overlay nodes, it is feasible for

the providers to monitor and statistically model the communication requirements in the

system, and the topology reconfigurability allows an overlay network to be tuned dynami-

cally when the communication requirements change [85, 87]. A question needs be answered,

however, namely, when and how the overlay topology should be reconfigured under dy-

namic communication requirements. While overlay topology is reconfigurable in small time

scale, changing overlay topology is not cost-free; it may incur both management overhead

as well as potential disruption of end-to-end flows: overlay links need to be established or

torn down; routing tables need to be updated; data in transit may get lost, delayed, or

erroneously routed. In the presence of these costs, an overlay topology reconfiguration pol-

icy, which guides the topology selection any time the communication requirements change,

needs to be designed and methods of constructing such a policy need to be developed.

1.1.2 Content Resiliency Service Networks

While engineers have invested a significant amount of effort in improving the reliability of

computer hardware and software, failures are still common in today’s computer systems and

networks. Failures can be caused by not only worn-out devices and software bugs but also

external factors such as power outage, environmental conditions and operational accidents.

When the computer and network system that stores a piece of data fail, the data becomes

unavailable to its users until the system is recovered. Replicating the same content to mul-

tiple content servers (e.g., data centers) at different locations is one of the most important

strategies for improving the resilience of content in the presence of failures[35][90][25]. It

can significantly improve the availability of the data even when multiple servers fail at the

same time, and reduce the potential damage caused by the loss of data.

While content servers can be deployed by an organization for its private use, in this

thesis we are most interested in Content Resiliency Service Networks, where a pool of

content servers deployed by a third-party provide resiliency for service users by replicating

data uploaded by the users. As shown in Fig. 4, a content resiliency service provider deploys

a pool of tens or hundreds of content servers at different locations over the Internet. Users
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at the end-systems access (i.e., upload to and download from) their data at a local content

server. The local data servers are then responsible to replicate the data to some of the other

content servers in the pool so that the data is available when the local content servers or

even part of the replicating content servers have failed at the same time. One one hand,

a content resiliency service provider contracts with service users in the form of service

agreement, which allows the users to specify the desired level of content resiliency or the

penalty for loss of data. On the other hand, the content resiliency service provider pays

prevention costs, such as the communication cost of delivering data from its origination

local content server to the remote replicating content servers, the storage cost of storing

the data, and types of management costs, to maintain the normal operation of the pool of

content servers and achieve the agreed content resiliency.

Similar to the case of service overlay networks, there are configuration and dynamic

reconfiguration issues in content resiliency service networks, particularly, the choice of repli-

cation locations for a piece of data from the pool of available content servers. Fig.5 shows

a content resiliency service network with a pool of nine content servers, represented by the

circles. A user, represented by the square box, uploads its data to its local content server

S0, and S0 is responsible to choose a set of remote replication locations from the other eight

content servers and deliver the data to the chosen set of servers. For example, it can choose

servers S3 and S7 and form a replication set of {S0, S3, S7}, or choose servers S2 and S5
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Figure 5: Choosing Replication Locations from Pool of Content Servers

and form a replication set of {S0, S2, S5}. Intuitively, the further the servers replicating the

same data reside from the content origination and from each other, the more unlikely the

servers will fail in the same period but the more communication cost will be incurred. A

good configuration of content server replication relationship should maintain a target level

of content resiliency while minimizing the prevention cost incurred by the configuration and

avoid excessive costs caused by over-reaction to potential risks. Furthermore, when content

servers actually fail and recover, the replication sets need to be dynamically adjusted to

maintain the desired level of content resiliency.

One critical component in the development of such a cost effective configuration is the

assessment of failure risks for a given environment. The probability that all the content

servers in the replication set fail at the same time must be quantified. When failures are

local to each content server and therefore independent across the servers, such quantification

is relatively easy to achieve. However, in contrast to many researchers’ assumption that

failures are independent from each others, many failures (e.g., those caused by power-

outages, weather and environmental disasters, and worms) are correlated to each other.

Though researchers have developed various approaches for modeling correlated failures [90,

5, 65], these models do not allow for deriving the probability of simultaneous failures for

different subsets of entities in a practical, consistent and intuitive way. A new approach

for modeling correlated failure needs to be develop before the configuration and dynamic

reconfiguration issues in content resiliency service networks can be tackled.
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1.2 Research Methodology and Components

1.2.1 Research Methodologies

Our methodology for studying static and dynamic configuration problems is shown in Fig. 6,

which we commonly apply to both the study of service overlay networks and that of con-

tent resiliency service networks. For the static configuration problem, system configurable

components are first identified, and static performance and cost factors that are most signif-

icantly affected by the choice of configuration are identified and formulated. The problem

of choosing the optimal static configuration is then formulated as, typically, a constrained

optimization problem, with a static objective function that combines different performance

and cost factors. Finally, optimization techniques are developed to solve this static con-

figuration optimization problem and the quality of solutions is evaluated. Furthermore,

for the dynamic configuration problem, the cost factors in the process of (re)configuration

are also identified. A model characterizing the dynamics of application requirements and

system conditions is also necessary; without such a model, the development of dynamic

reconfiguration policies is not meaningful. The problem of choosing the optimal dynamic

reconfiguration policy is then formulated as optimizing the long-term average of a dynamic

objective function that combines both the static objective function and the reconfiguration

9



costs. Finally, optimization techniques are developed to solve this dynamic configuration

optimization problem and the quality of solutions is evaluated, during which the previously

developed static configuration optimization techniques may be adopted as subroutines if

appropriate.

Part of the major challenges in our research lie in the development of optimization

techniques once the static and dynamic optimization problems are formulated. In the con-

text of service overlay networks or content resiliency service networks, these problems are

essentially combinatorial optimization problems — there are an exponential number of con-

figuration options and an even larger number of dynamic reconfiguration policies. While

optimization techniques for finding the real optimal solutions can be developed for these

problems, their computational complexity renders them impractical for most of the system

setups. Our methodology for addressing this situation is as follows. First, we do case studies

using special cases (e.g., system setups with small number of entities) that are practically

solvable using real optimization techniques, and observe the properties (e.g., structures) of

the resulting optimal policies. We then use our observations as heuristics to assist the devel-

opment of heuristic-based techniques that can generate solutions approximating the optimal

ones for more general cases. Finally, the effectiveness of the heuristic-based techniques are

verified through evaluating the quality of the approximate solutions.

1.2.2 Research Summary

The specific components of this thesis are summarized as follows:

Configuring overlay network topology for static demands: This thesis formulates

the problem of finding the optimal overlay topology that can minimize the overall static

operation cost incurred in a service overlay network for given static communication require-

ments. It presents a proof for the NP-hardness of the problem. It presents an integer linear

programming model of the problem. It also presents an approximation algorithm based on

simulated annealing and topology perturbation that is applicable to service overlay networks

with a larger number of nodes.

Configuring overlay network topology for dynamic demands: This thesis presents
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the overhead involved in the reconfiguration of overlay topology by analysis as well as

experiments over Planet-Lab. It formulates the problem of finding optimal topology recon-

figuration policies for given dynamic communication requirements. It presents a Markov

decision process model for the problem and conducts a systematic study of the properties

of optimal reconfiguration policies. It also presents heuristic methods for constructing dif-

ferent flavors of reconfiguration policies, i.e., never-change policy, always-change policy and

cluster-based policies, to mimic and approximate the optimal ones. The policy construction

methods help the study of other overlay design problems.

Configuring replication relationship in content resiliency service network This

thesis presents a new approach for modeling correlated failures. It applies the approach

to the case of geographically correlated failures. It formulates the problem of finding the

optimal set of content server locations for given risk models. It presents both a branch-and-

bound algorithm and minimum-enclosing-circle based heuristic algorithms for solving the

problem. It also studies the cost and benefit of dynamic reconfiguration of content server

replication relationship and presents an incremental and threshold-based reconfiguration

policy.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter II discusses existing work related

to the topics in this thesis. Chapters III and IV are dedicated to the study of topology

configuration and reconfiguration issues in service overlay networks. In Chapter III, we

investigate the problem of configuring overlay network topology for applications with static

demands. In Chapter IV, we investigate the problem of configuring overlay network topology

for applications with dynamic demands. Chapters V is dedicated to the study of replication

relationship configuration and reconfiguration for content resiliency service network. In the

chapter, we present a new approach for modeling correlated failures. With the assistant

of such a model, we discusses the problem of configuring replication relationship between

content servers under static and dynamic system conditions. In Chapter VI, we summarize

the contributions of our research and discuss a few directions for the future work.
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CHAPTER II

BACKGROUND AND RELATED WORK

This thesis investigates the optimization of service configurations and, more importantly,

dynamic reconfiguration strategies for two types of advanced network services: Service

Overlay Networks, and Content Resiliency Service Networks. This chapter provides an

overview of the background and related work on the topics of this thesis.

2.1 Overlay Networks

2.1.1 Overview of Overlay Networks

In the most general terms, an overlay network is a computer network which is built on top

of another network. The overlay architecture allows an extra layer of logic to be added

between the entities in the network without changing the infrastructure of the underlying

network. The overlay architecture can be seen in many parts of the Internet — the Internet

itself was developed as an overlay over the telephone systems and cable systems about a

couple decades ago.

In a narrower definition, which we use in this thesis, an overlay network usually refers to

one that is built over the Internet IP networks and is connected by virtual or logical links

established over the Transport Layer. In overlay networks, specially designed overlay nodes

that are distributed over the Internet form another layer on top of the underlying Internet

routing substrate. The nodes cooperate with each other to forward data on behalf of any

pair of communicating nodes in the overlay network; each does not only generate and sink

but also forwards traffic.

From the perspective of the locations where overlay nodes reside in the Internet native

networks, overlay networks can be roughly classified into two categories: ones that involve

only end-systems at the boundary of the Internet(i.e., DSL and Cable access networks), and

ones that involves also entities (e.g., specially designed overlay routers) in the internal part

12



of the Internet (e.g., ISPs and backbone operators).

From the administrative perspective, overlay networks can be roughly classified into two

categories too: ones that are formed voluntarily by ultimate end users who seek functionality

that is not provided by the native network operators, and infrastructural ones deployed by

a single organization or an association of organizations for private use or for value-added

services.

From the perspective of their purpose, overlay networks can also be roughly classified

into two categories: ones that are built mainly for traffic routing purposes, and ones that

also combine other application layer functionality, such as security and information directory

services.

Note that none of the above classifications is in strict sense. Many overlay networks fall

at the boundary between two categories.

2.1.2 Application Layer Multicast

Overlay networks have been extensively used in application layer multicast protocols and

projects, e.g., NICE[8], SplitStream[16], SCRIBE[17], Narada [21], Scattercast[19, 18],Yoid[34],

Overcast[46], ALMI[68], HMTP[93], Bayeux[95] and HyperCast[59]. Most of them, except

for a few (e.g., Overcast and Scattercast) that use overlay networks formed by strategically

placed nodes around the whole Internet, are formed purely by the end-systems (i.e., the

receivers of the multicast data) and are therefore also termed as end-system multicast. As

an alternative for network layer multicast mechanisms, which failed to be widely adopted in

the past decade due to various concerns and difficulties in its deployment, application layer

multicast is proposed as new mechanism of sending the same copy of data from a source to a

group of receivers and the flexibility of overlay networks make the deployment of application

layer multicast over the Internet much easier than that of network layer multicast.

2.1.3 Peer-to-Peer Networks

The development of peer-to-peer technologies are closely related to the research of the over-

lay networks, especially those formed over voluntary end-systems. In a peer-to-peer system,

a peer acts as both a client and a server, unlike the central server based systems where clients
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and servers are clearly distinguished. The popularity of file sharing applications, most no-

tably Kazaa[42], Gnutella[23], Freenet[22], Napster[43], EDonkey[39] and BitTorrent[12],

has drawn intense interest in designing and studying peer-to-peer networks[66]. For exam-

ple, CAN[76], Chord[63], Tapestry[94] and Pastry[81] studied the use of distributed hash

tables to introduce structures in peer-to-peer networks. The computational and storage

resource at the large number of end-systems, however, extend its usage beyond the scope of

file sharing. By today, peer-to-peer networks have been proposed for numerous applications,

e.g., content streaming[16], voice IP[44] and cooperative web cache relaying[67]. Peer-to-

peer networks naturally use overlay networks that are formed over voluntary end-systems

to disseminate queries and content.

2.1.4 Infrastructural Overlay Networks

While the Internet has been fully commercialized and evolved into a ubiquitous medium

of communication, its fundamental routing infrastructure has become resistant to funda-

mental changes. This hinders the development of many new applications and technologies

that rely heavily on such fundamental changes. Recently, there is intense interest in the

community[70, 86, 32, 9] to the use of infrastructural overlay networks as a general solution

that provides the desirable flexibility and control of the routing infrastructure and bridges

the gap between the ossified fundamental infrastructure of the Internet and the applications

running on top.

In practice, infrastructural overlay networks have been used to provide testbeds for new

technologies. Examples are 6Bone[33], MBone[28] and PlanetLab[69]. They have also been

used to find routing paths that circumvent BGP faults and constraints in the Internet native

substrate[2, 78], deliver multicast traffic[46, 19], and support Quality of Service [54, 56].

The use of infrastructural overlay networks has stretched beyond purely providing network

functions. For example, overlay networks are proposed to provide countermeasures to DoS

attacks [48]. In a weaker definition, some content distribution network [52] and even the

network of DNS servers can be considered as applications of infrastructural overlay networks.

Service overlay networks, which we focus on in this thesis, refer to the infrastructural
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overlay networks that are deployed and maintained by third-party service providers and

provide value-added network services to network users[26, 2, 89]. As third-party service

providers, on one hand, these overlay network providers buy network resource from under-

lying network providers, and on the other hand, these overlay network providers provide

value-added network services to end-systems. Traffic between end-systems is carried by and

routed through the overlay networks instead of the native networks.

2.2 Network Topology Design

2.2.1 Network Design

Network design has played an important role in the development communication and com-

puter networks. It deals with demand estimates, infrastructural investment and network

operations and has much to contribute in optimizing the performance of a service and a

service providers’s operational expenditure. Network design issues virtually exist in all

kinds of networks, though in different forms, e.g., intra-domain and inter-domain traffic

engineering for IP networks[3] and virtual path design in ATM networks[36, 38]. When

new technologies and new types of networks are deployed, it would not be surprising that

the network design problems are revisited. The high deployment and maintenance cost of

networks has stimulated the interest in developing efficient design models and optimization

techniques.

Network design touches a wide scope of issues, such as routing, topology, fairness, re-

siliency, and capability reservation. Network design problems can be modeled as optimiza-

tion problems that are constrained or unconstrained, linear or non-linear. Optimization

techniques can be linear programming (e.g., Simplex, Interior Point Methods), mix-integer

programming (e.g., Branch and Bound, Cutting-Plane), stochastic heuristics methods (e.g.,

Simulated Annealing, Evolutionary Algorithm), and other methods that take advantage

of the special properties of the problem formulation and optimal solutions. Most of these

optimization problems are NP-hard, so heuristic solutions play a significant role in network

design. Excellent compilation of problems and solutions in network design can be found
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in [72, 49]. Although the approach for problem modeling and the pool of available optimiza-

tion techniques are similar for different network design problems, they are rarely exactly

the same and non-trivial effort is required for customizing current optimization techniques

or developing new algorithms that take advantage of the special properties of a problem

formulation and its optimal solutions.

2.2.2 Research Work in Network Topology

Topological design problems form one of the most important categories of network design

problems. They are closely related to location design problems, which concern most with the

location of network nodes (e.g., router, hubs, access points). Topological design problems

focus on determining the links in network for a given set of nodes and for certain network

demand. There have been extensive research work (e.g., [4, 62, 27, 55]) over a wide variety

of topological design problems.

Previous research work in network topology is not limited to topological design. Internet

started to be commercialized and exploded in 1990’s, after which getting topology informa-

tion about the Internet becomes more and more difficult. A significant amount of effort of

the network measurement community has been devoted to understanding the topology of

the Internet[13, 29]. There are also important works in modeling the Internet topology and

developing network topology generators[15, 92, 47].

2.2.3 Overlay Topology Configuration

Overlay topologies for application layer multicast have been extensively studied in the liter-

ature. In tree-based application layer multicast, receivers construct a tree topology and this

tree topology is also used as the multicast tree for data delivery . Examples are Yoid[34],

ALMI[68] and HMTP[93]. In mesh-based approach, receivers first construct a mesh overlay

topology and then generate multicast trees over the mesh topology to deliver data. An

example is Narada[21]. There are also protocols use an overlay topology that has multiple

hierarchies. An example is NICE[8].

Most research in application layer multicast focus on the maintenance of the logic mul-

ticast tree and rarely considers the characteristics of underlying network topologies. In[77],
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the authors proposed to build overlay topologies that are congruent with the underlying

IP-level topologies to improve the performance of the overlay networks.

For infrastructural overlay networks with more general communication models, Li and

Mohapatra[57] studied the impact of topology on overlay routing service. The authors

compared several popular topologies (e.g., full-mesh, k-minimum-spanning-tree, mesh-tree,

adjacent-connection, topology-aware-k-minimum-spanning-tree) and found that the overlay

topology has significant impact on the overlay routing in terms of routing performance

and overhead. They also found that the full mesh topology does not always give the best

performance. Our work differs from theirs in the sense that we are interested in constructing

overlay topologies specially customized to specific communication requirements rather than

choose from several popular topologies.

The overlay topology construction method developed in this thesis is based on simulated

annealing and topology perturbation. Simulated annealing is a global optimization meta-

algorithm based on an analogy with the physical process of annealing [61, 71, 51]. It is

a stochastic meta-heuristic algorithm that needs to be customized to specific optimization

problems and its general structure has been applied to many combinatorial problems with

good results [45, 50]. The application of topology perturbation in refining overlay topologies

also has root in the literature of topological design for native networks ( [82, 11]).

2.2.4 Dynamic Reconfiguration Policies

The policy issues in dynamic topology reconfiguration have been previously studied for opti-

cal networks. Rouskas and Ammar [80] studied how to dynamically update the connectivity

of multihop WDM optical networks by tuning optical transmitters and receivers to accom-

modate traffic demands that vary over time. Baldine and Rouskas studied the dynamic

reconfiguration for broadcast WDM optical networks to ensure that the traffic load remains

balanced across the WDM channels under changing traffic conditions [6]. Our methodology

of tackling the dynamic reconfiguration problem is similar to theirs: the problem of finding

optimal reconfiguration policy is first modeled and solved as a Markov decision process [40]

for small and Markovian systems, the properties of the optimal reconfiguration policies are
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observed and then used as heuristics to help construct policies for the large systems.

Researchers have showed that it is feasible to monitor and infer the pattern of end-to-

end communication in the overlay network and adjust the topology accordingly [85]. The

mechanism of maintaining overlay topology varies in different research works but there is

rare systematic study on the control overhead of overlay topology reconfiguration and its

impact on the data routed in the overlay network and the applications running on top.

2.3 Content Resiliency Service

2.3.1 Content Replication and Content Resiliency

Resiliency issues have been extensively studied in almost every area of computer science,

for example, fault tolerance of computer system[88], resilience of storage systems[74][79],

and network resiliency[64].

Replication is one of the important resiliency strategies. By providing multiple identical

instances of the same content at different system locations, the data can still be available

and the system can continue operating properly in the event that some of its parts fail.

Replication introduces redundancy. The overhead of maintaining multiple contend servers

for resiliency purpose has been discussed in [10][60]. The discussion, however, is based on

the assumption that failures are independent to each other.

Though content replication is an important mechanism to provide content resiliency,

this is not its only use. Proactive content replication and reactive content caching have

been among the major techniques for improving the performance of content services [52].

2.3.2 Modeling Correlated Failures

The impact of geographically correlated failures on resiliency has been studied in the liter-

ature, in both industry and academia, and solutions relying on remote placement of system

components have been proposed (e.g., [35][90][25]). While such efforts are helpful in im-

proving overall system resiliency, they suffer from the lack of good models for geographically

correlated failures. Without such models, the improvement in system resiliency cannot be

fully quantified and measures of cost efficiency cannot be developed.
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The fundamental objective of modeling correlated failures is to provide the capability of

calculating the probability of simultaneous failures for different subsets of entities. Due to

the very large number of subsets and the multiple dependencies among entities, any model

that specifies the probability of simultaneous failure for every possible subset of nodes is

likely to be complex and of limited usability. Therefore research works have focused on

building models that express only the two-way correlations between nodes (e.g., conditional

probabilities that one node fails given another node fails) but approximate multiple-way

correlations with the two-way correlations. Weatherspoon et al. [90] cluster entities based

their two-way correlations and use the clusters as an implicit measure of multiple-way

correlations in system design. This heuristic does not produce quantifiable results and,

hence, cannot be used to develop systems with a prescribed availability requirements. Other

models that approximate multiple-way correlations from two-way correlations are proposed

in [5][65]. These models, designed to capture failures of m-out-of-n entities, do not allow

for calculating the probability of failure for specific subsets of entities. More importantly,

their method provides limited intuition about the nature and the cause of correlated failures

and this impairs the accuracy and consistency of entity correlations in the model.
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CHAPTER III

STATIC TOPOLOGY CONFIGURATION FOR SERVICE

OVERLAY NETWORK

3.1 Introduction

While the Internet has been fully commercialized and evolved into a ubiquitous medium

of communication, its native routing infrastructure has become resistant to fundamental

changes. This hinders the development of new network functionality (e.g., multicast, QoS)

that heavily rely on such fundamental changes. The use of overlay networks has been

proposed as an alternative solution that can potentially provide the desirable flexibility

and control of the routing infrastructure [70, 86, 32, 9]. Researchers have successfully used

overlay networks to solve problems in various areas. For example, overlay networks have

been employed to implement application layer multicast [20, 7, 68, 59], provide testbeds

for new technologies [33, 28, 69], circumvent BGP faults and constraints [2], and provide

countermeasures to DoS attacks [48]. In this thesis, we focus our discussion on service

overlay networks [26, 2, 89] that are deployed and maintained by overlay network providers.

Overlay network providers deploy a number of specially designed overlay nodes across the

Internet. As third-party service providers, on one hand, these overlay network providers

contract with underlying ISPs and buy network bandwidth between these overlay nodes, and

on the other hand, these overlay network providers provide value-added network services

to end-systems, who access the overlay networks through one of the overlay nodes. Traffic

between end-systems is carried by and routed through the overlay networks instead of the

native networks.

One of most important issues in the design of a service overlay network is the config-

uration of its overlay topology. Positioned between the native networks and the ultimate

customers, an overlay topology constructed in favor of both could significantly improve the
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performance or reduce the operation cost of the whole system. Consider the four-node

example overlay network shown in Fig. 2. Fig. 2.a characterizes the service agreement be-

tween the overlay network provider and the underlying ISPs; the labels on the dashed lines

show the operation costs of the potential overlay links between every pair of nodes — the

price ISPs charge the overlay network provider for shipping one unit of data over these

overlay links. Fig. 2.b shows a snapshot of the communication requirements aggregated

over all customers; the labels on the lines (or the thickness of the lines) denote the data

rates between every pair of overlay nodes, on behalf of the customers. Fig. 2.c shows a

candidate overlay topology (Topology A); each edge denotes an overlay link. Provided that

the overlay network ships data over the overlay paths that incur the minimum operation

cost, the flow of data is shown in Fig. 3.a. Fig. 3.b presents the flow of data if another

topology (Topology B) is adopted instead. In terms of operation cost, Topology B is not as

good as A — although some data can now take a lower-cost path, a higher volume of data

have to take a higher-cost path. Generally, the operation cost of an overlay varies when

it runs on different overlay topologies and this raises the problem of finding the overlay

topology that minimize the operation cost for given communication requirements.

In this chapter, we study the static topology configuration problem for service overlay

networks. The remainder of this chapter proceeds as follows. In Section 3.2, we identify

relevant factors in different layers of the system, discuss types of cost that could be in-

curred in the system, and formally define static topology configuration problem for service

overlay networks. In the section, we also give an integer linear programming formulation

for static topology configuration problem. Such a formulation allows general tools for solv-

ing integer linear programming to be applied to the static overlay topology configuration

problem, though their applicability is limited to only small networks due to computational

complexity of these tools. In Section 3.3, we discuss the complexity of the static overlay

topology configuration problem and show that the problem is NP-hard. We then present a

simulated annealing based heuristic method of finding the optimal solutions for the static

topology configuration problem. We evaluate our method in Section 3.4 and summarize in

Section 3.5.
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3.2 Problem Formulation

As shown in Fig. 2, once an overlay topology is established the operation cost for carry-

ing traffic over a service overlay network depends on three factors: the operation cost for

shipping data over overlay links, the aggregated communication requirements over all cus-

tomers and the overlay topology. In this thesis, we assume the overlay network provider

is charged by the underlying ISPs an operation cost proportional to the amount of traffic

carried on an overlay link once the overlay link is established. We use a link cost matrix d

to denote the operation cost per unit of data (e.g., bits, bytes) for the overlay link between

every pair of nodes. The aggregated communication requirements over all customers are

characterized with a matrix of end-to-end traffic rates between every pair of overlay nodes,

named communication patterns.

The overlay topology, is a graph G =<V, E>, where V includes all the nodes in the

system and E includes all the established overlay links between the nodes. Theoretically,

there are a total of 2n(n−1)/2 possible overlay topologies over n nodes. However, not all

of these topologies are desirable in practice. An overlay topology is usually required to

be connected so that every node remains its contact with the rest of the overlay network.

Furthermore, while some research works in overlay networks assume fully-meshed overlay

topology, in this thesis we consider more general cases where the overlay topology are

degree-bounded, i.e., the number of direct neighbors of a node is limited by an upper bound.

Service overlay network providers may prefer a degree-bound topology over a fully-meshed

one for several reasons. First, underlying ISPs may charge the overlay network providers for

a certain amount of fixed maintenance cost for an overlay link in addition to operation cost

proportional to the actual bandwidth usage. Second, maintaining an overlay link between

two overlay nodes incurs control overhead to the overlay network provider themselves(e.g.,

link condition probing overhead [2, 58]). Due to these reasons, it can be impractical or

undesirable for a overlay network provider to maintain a fully-meshed topology. In this

thesis, we consider only overlay topologies that are connected and degree-bounded. We
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assume for simplicity that all nodes are subject to the same degree bound K.1 We denote

the set of feasible overlay topologies by 0-1 adjacent matrices {T1, T2, . . . , Tr}.

3.2.1 Static Overlay Topology Design Problem

In an overlay network with topology T , the cost of delivering a unit of data from one node

u to another node v is the sum of the operation costs of all overlay links on their overlay

routing path. Formally, assume the overlay routing path between u and v is Pu,v, then the

cost of delivering one unit of data from u to v through the overlay network is:

Lu,v(T ) =
∑

(u,v)∈Pu,v

d(u, v) (1)

Then an overall operation cost to support a communication pattern C on this topology is

f(C, T ) =
∑

u,v∈V

Lu,v(T ) · C(u, v) (2)

in every unit of time. Obviously, function f(C, T ) is minimized for a given C and a given

T if the data are routed through the overlay using minimum-operation-cost paths, which

are equivalent to shortest paths if we consider d(u, v) as the distance between u and v. In

this thesis, we assume the data are always routed through the overlay network following

the minimum-operation-cost paths.

The static overlay topology design problem is the problem of finding an overlay topology

T , under the constraints of connectivity and degree-bound, that can minimize the cost

function f(C, T ) for an communication pattern C. We term such a topology optimal-static

topology for C and denote it by T ∗(C). Same as most of topological design problem, the

static overlay topology design problem can be modeled as an integer linear programming

problem(Section 3.2.2) and is an NP-hard problem(Section 3.3.1).

3.2.2 An Integer Linear Programming Formulation

In this section, we give an integer linear programming formulation for static topology con-

figuration problem of the static topology configuration problem formulated in Section 3.2.1.

1Specifying a degree bound for each node does not change the complexity of the problems discussed in
this thesis, nor does it affect the applicability of our solutions.
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Such a formulation allows general tools for solving integer linear programming to be applied

to the static overlay topology configuration problem, though their applicability is limited

to only small networks due to the computational complexity of these tools. The static

overlay topology configuration problem can be formulated as the following integer linear

programming problem:

min
∑

s,t

wst

∑

i,j

pst
ij lij (3)

subject to

∀ s, t
∑

i

pst
is +

∑

j

pst
sj = 1 (4)

∀ s, t
∑

i

pst
it +

∑

j

pst
tj = 1 (5)

∀ s, t, k
∑

i

pst
ks +

∑

j

pst
kj = 2f st

k (6)

∀ i, j
∑

s,t

pst
ij ≤

1
2
N(N − 1)eij (7)

∀ k
∑

i

eik +
∑

j

ekj ≤ K (8)

In the formulation, N denotes the number of nodes, wst denotes the data demand

between node s and node t, lij denote operation cost rate for the potential overlay link

between nodes i and node j through the underlying native network. K denotes the degree

bound. There are two major types of binary variables:

• Binary variables eij , 1 ≤ i < j ≤ N describe the topology of the overlay network. If

there is an overlay link between nodes i and j, then eij takes value 1; otherwise, it

takes value 0.

• For any s and t where 1 ≤ s < t ≤ N , binary variables pst
ij , 1 ≤ i < j ≤ N describe a

path between nodes s and t. If the overlay link between nodes i and j is on the path,

pst
ij takes value 1; otherwise pst

ij takes value 0.

There are three types of constraints.

• Constraints (4-6) make sure the path actually connects nodes s and t. Binary variables

fst
k are used to model the integer set {0, 2}.
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• Constraint (7) makes sure that every path is a valid path contained in the overlay

topology.

• Constraint (8) states the degree bound.

The model is accurate only if wst > 0 for all pairs of s and t. In problems where wst

could be zero, we can replace wst with a small enough positive number if it is zero. The

replacement does not change the optimality of the optimal solution.

3.3 Optimization Techniques

3.3.1 Problem Complexity — Proof of NP-Hardness

In this appendix, we prove the NP-hardness of the static topology configuration problem

formulated in Section 3.2.1. To facilitate the proof, we first rephrase the problem to the

following graph problem, which we name as Minimum Communication Cost Spanning Sub-

graph (MCCSS) problem.

MINIMUM COMMUNICATION COST SPANNING SUBGRAPH

INSTANCE : Complete graph G =< V, E >, length l(e) ∈ R for each e ∈ E, weight w(u, v)

for each pair of vertices (u,v) from V , and integer K ≥ 2.

SOLUTION : A connected graph G′ =< V, E′ > where E′ ⊂ E and the degree of every

vertices in the G′ is no greater than K.

MEASURE : The weighted summation over all pairs of vertices of the length of the shortest

path between the pair in G′, i.e.,
∑

u,v∈V L(u, v) · w(u, v), where L(u, v) denotes the sum-

mation of the length of the edges on the shortest path joining u and v in G′.

Obviously, the MCCSS problem is equivalent to the original problem. In the remainder

of this section, we prove that the MCCSS is NP-hard. The proof contains two steps. In

the first step, we induce the MMCCSS problem to one of its subproblems, named Mini-

mum Routing Cost Spanning Subgraph(MRCSS). In the second step, we induce the MRCSS

problem to the Hamiltonian Path problem, which is known to be NP-complete.
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First, by setting the weight w(u, v) in the MCCSS problem to 1 for all pairs of vertices

from V , we get the MRCSS problem.

MINIMUM ROUTING COST SPANNING SUBGRAPH

INSTANCE : Complete graph G =< V, E >, length l(e) ∈ R for each e ∈ E, and integer

K ≥ 2.

SOLUTION : A connected graph G′ =< V, E′ > where E′ ⊂ E and the degree of every

vertices in the G′ is no greater than K.

MEASURE : The summation over all pairs of vertices of the cost of the shortest path be-

tween the pair in G′, i.e.,
∑

u,v∈V L(u, v), where L(u, v) denotes the summation of the length

of the edges on the shortest path joining u and v in G′.

Obviously, MRCSS problem is a subproblem of the MCCSS problem. To prove the NP-

hardness of the MCCSS problem, we need only to show the NP-hardness of the MCRSS

problem. We accomplish this by inducing the MCRSS problem to the Hamiltonian Path

problem, which is known to be NP-complete and defined as follows.

HAMILTONIAN PATH

INSTANCE : Graph G =< V, E >.

QUESTION : Does G contain a Hamiltonian path?

PROOF: For any instance of the Hamiltonian Path problem, G =< V, E >, we can

construct a corresponding instance of the MCRSS problem in polynomial time as follows:

First, we construct a complete graph Ḡ =< V, Ē >. Second, for any e ∈ Ē, we let l(e) = 1

if e ∈ E and l(e) = ∞ if otherwise. Third, we let K = 2.

We claim that G contains a Hamiltonian path if and only if the routing cost of the

minimum routing cost spanning subgraph (that is connected and subject to degree-bound

2) of Ḡ is less than ∞. Now we prove the claim. Assume the minimum routing spanning

subgraph of Ḡ is Ḡ′. First, for any Hamiltonian path of G, denoted with H, GH =< V, H >
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is a feasible (i.e., connected and conforming to degree-bound 2) spanning subgraph of Ḡ.

Note that GH contains only the edges whose l(e) = 1 in Ḡ, so the routing cost of GH must

be less than ∞. Because the routing cost of GH is no less than that of Ḡ′, the routing cost

of Ḡ′ must be less than ∞. Conversely, if the routing cost of Ḡ′ is less then ∞, Ḡ′ must

contains only the edges from G. Since Ḡ′ is connected and conforms to degree-bound 2, the

edges from Ḡ′ must form a Hamiltonian path or a Hamiltonian circuit of G. In either case,

G contains a Hamiltonian path.

The above claim allows us to convert an instance of the Hamiltonian Path problem to an

instance of MCRSS problem and thus the MCRSS problem is induced to the Hamiltonian

Path problem. Since the latter is NP-complete, the former is NP-hard. Since the MCRSS

problem is a subproblem of the MCCSS problem, the latter is NP-hard too.

3.3.2 A Heuristic Approach Based On Simulated Annealing

In this section, we develop solutions to static overlay topology configuration problem, the

problem of finding the static-optimal topology for a given single communication pattern.

The problem is previously formulated in Section 3.2.1 and is proved to be NP-hard in

Section 3.3.1. A heuristic algorithm is called for.

Static topological design problems have been extensively studied for the construction

of native networks. The class of problems have many formulations depending on specific

design objectives and scenarios, and most of them are NP-Hard problems. An excellent

compilation of problems and solutions can be found in [72]. Study of static topological

design problems is still rare in the context of service overlay networks. An overlay topology

design problem presented in [89] share certain similarity with our formulation, but the

two problems are fundamentally different: the complexity of our problem is caused by the

degree bound while that of the other problem is caused by overlay entrance selection. In

the remainder of this section, we present a Simulated Annealing based algorithm for our

problem. The application of some basic optimization techniques we use, such as simulated

annealing and topology perturbation, has root in the literature of topological design for

native networks (e.g., [82, 11]).
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PROCEDURE FIND-OPTIMAL-TOPOLOGY
Initialize :

construct a random initial point and calculate its cost;
— comment: a random ring topology

let Optimal-Topology be the current topology; let Optimal-Cost be the current cost;
estimate the initial temperature T0 and let current temperature T = T0 ;

Repeat phases until T is close enough to zero:
set the stop temperature Te of this phase to 1

φT ;
— comment: φ > 1

Repeat moves until T reaches Te:
randomly mutate the current topology using one of the operations;
redo the above step until the resulting topology is a connected one ;
evaluate cost function f of the new topology, calculate the change, ∆f ;
if ∆f < 0, accept the new topology; else accept with probability e

∆f
T ;

if ∆f < 0, let this topology the new optimal one.
— comment: updateOptimal-Topology and Optimal-Cost ;

let T = ρT ;
— comment: geometric cooling; ρ is typically in the range of [0.95,1)

let T = ςTe ;
— comment: reheating; φ > ς > 1

Output Optimal-Topology and Optimal-Cost ;

Figure 7: Pseudo-code of Finding Optimal-Static Topology Using Simulated Annealing

Simulated Annealing is a global optimization meta-algorithm based on an analogy with

the physical process of annealing [51]. Its general structure has been applied to many com-

binatorial problems with good results [45]. Starting from an initial solution and an initial

temperature, the meta-algorithm walks randomly in the solution space. Cost-decreasing

moves are certainly accepted while cost-increasing are accepted only with a probability

P = e
∆f
T , where ∆f is the increase in the cost function f and T is the temperature. By

decrementing and possibly incrementing the temperature following a deliberate annealing

schedule, this probabilistic process will finally stabilize at a final solution. The overall

structure of our algorithm is shown in Fig. 7.

Initial Point The algorithm starts from a random overlay topology that is connected and

subject to degree bound K.

Searching for a Solution Finding another feasible solution in the neighborhood of the

current feasible solution is the key task in the probabilistic walk-around. We accomplish the

task by first mutating the current feasible overlay topology into a slightly different topology
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that still satisfies the degree bound and then verifying the connectivity of the new topology.

We use the following mutating operations in the algorithm.

• Operation 1: This operation randomly chooses two nodes A and B whose degrees are

less than K and adds an overlay link between the two nodes.

• Operation 2: This operation randomly chooses four nodes that form a local setup like

Fig. 8.a and converts it to either Fig. 8.b or Fig. 8.c.

A

C

B

D

a.

A

C

B

D

b.

A

C

B

D

c.

Figure 8: Mutating Operation 2

• Operation 3: This is a derivative of Operation 2. This operation randomly chooses

four nodes that form a local setup like Fig. 9.a and converts it to either Fig. 9.b or

Fig. 9.c.
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Figure 9: Mutating Operation 3

These operations allow the algorithm to move towards any feasible solution gradually

and continuously without ever leaving the space of feasible solutions.

Initial Temperature Kirkpatrick [50] suggested to set the initial temperature to one that

results in an average acceptance probability of about 0.8 for uphill moves from the initial

point. We estimate the initial temperature T0 in the following way: we attempt a number

of random cost-increasing moves, all from the initial point, observe the average increase in

cost, ∆f , and then calculate the initial temperature T0 by: T0 = ∆f

ln(0.8)
.
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Figure 10: Performance of Subroutine for Finding Static-Optimal Topology. Note that
in this experiment the ”Optimal” line and the ”Simulated Annealing” line in (a) exactly
overlap.

Annealing Schedule In the literature, the choice of annealing schedule is quite problem

specific. In several large combinatorial problems, researchers use geometric cooling for

expediency yet get good result with the help of reheating [1]. We follow the same direction.

We try different types of schedules and find the following one is good for our problem. The

schedule is composed of phases. In the pth phase, starting from the initial value T p
0 , the

temperature is multiplied by ρ each time the algorithm attempts a move (no matter if the

move is accepted or rejected), i.e., T p
k+1 = ρT p

k , where ρ is typical a value between 0.95 and

1. When the temperature reaches down 1
φT p

0 , where φ > 1, the algorithm ends the current

phase. It reheats the system by multiplying the temperature by ς, where ς > 1, and enters

the (p + 1)th phase with a starting temperature T p+1
0 = ς

φT p
0 . By choosing φ > ς, e.g.,

φ = 3 and ς = 2, the temperature goes down after each phase and eventually gets close to

zero, where the annealing schedule ends and the algorithm exits.

3.4 Performance

In this section, we evaluate the heuristic approach presented in Section 3.2. When the

problem is small (e.g., the number of node is less than 10), we compare the result of the

subroutine to the real static-optimal topology and randomly generated topologies. When

the problem is large, we are only able to compare the result to the randomly generated

ones.
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We experiment on randomly generated communication patterns using a randomly gen-

erated matric of overlay link operation costs. Fig. 10.a shows the experimental result for 20

randomly generated cases with 7 nodes and degree bound 2. The setup of the case problems

is as follows: we generated a random underlying network by setting the distance between

pairs of node to a random value in range [10, 100]. We then generate 20 communication

patterns, within each of which we set the data demand rate between every pairs of node to

a random value in range [0, 10]. For each of the 20 cases, the figure shows the operation

cost of the topology produced by our algorithm, the real optimal one and the random one,

respectively. For the simulated annealing, we set ρ = 0.99, φ = 3 and ς = 2 in the annealing

schedule. The cost for the random topology is the average over 30 randomly generated fea-

sible topologies. The figure shows that for all these 20 cases, our algorithm finds the exact

optimal solution. The figure also shows that overlay topologies produced by our algorithm

perform much better than random ones. Fig. 10 shows results for a problem with 100 nodes

with a degree bound of 4. Other experiment parameters are the same as in the previous set

of experiments. The figure reaffirms that our algorithm produces topologies with improved

performance.

3.5 Summary

In this chapter, we have studied the static topology configuration problem for service overlay

networks. We have identified relevant factors in different layers of a service overlay network,

discussed types of cost that could be incurred in the system, and formally defined the static

topology configuration problem for service overlay networks. We have given an integer

linear programming formulation for the problem. Such an ILP formulation allows general

tools for solving integer linear programming to be applied to the static overlay topology

configuration problem, especially for the overlay networks that have only a small number of

nodes. We have then discussed the complexity of the static overlay topology configuration

problem and shown that the problem is NP-hard. We have presented a simulated annealing

based heuristic method of finding the optimal solution for the static topology configuration

problem. Our evaluation has shown that the heuristic method has good performance and
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is applicable to service overlay networks with a large number of nodes.
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CHAPTER IV

DYNAMIC TOPOLOGY CONFIGURATION FOR

SERVICE OVERLAY NETWORK

4.1 Introduction

In a service overlay network described in Section 3.1, if the communication requirement

is constant over time, the optimal choice of overlay topology is static. If communication

requirements change over times, for example, from the ones shown in Fig. 2.b to the ones

shown in Fig. 3.c, the overlay topology may need to be reconfigured. While the static

topological design problems have been extensively studied for native networks, the design

of dynamic topology did not get the same amount of attention because the hard-wired

topologies of native networks are usually not reconfigurable in small time scale. In overlay

networks, however, the topology reconfigurability is one of their major strength and appeal

and the dynamic topology design problems become interesting. For overlay networks with

tens of overlay nodes, it is feasible for the providers to monitor and statistically model the

communication requirements in the system. The topology reconfigurability allows an overlay

network to be tuned dynamically when the communication requirements change [85, 87].

A question needs be answered, however, namely, when and how the overlay topology

should be reconfigured under dynamic communication requirements. One may suggest that

whenever the communication requirements change, the topology of the overlay network

should be immediately reconfigured to the topology that minimizes the operation cost for

the new communication requirements (and the dynamic overlay design problem is reduce

to the static one). However, while overlay topology is reconfigurable in small time scale,

changing overlay topology is not cost-free; it may incur both management overhead as

well as potential disruption of end-to-end flows: overlay links need to be established or

torn down; routing tables need to be updated; data in transit may get lost, delayed, or
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erroneously routed. In the presence of these costs, changing the overlay topology for every

change in communication requirements may not be the best policy. Intuitively, if in the

long run the benefits of making a change in the overlay topology cannot justify the costs of

the change, the overlay topology should not be changed. Even if a change is favorable, the

next overlay topology should take into account the long-term changes in communication

requirements.

In this chapter, we formulate the dynamic overlay topology configuration problem, i.e.,

the problem of determining dynamic topology reconfiguration in the presence of dynamic

communication requirements. Particularly, we concentrate on reconfiguration policies that

guide the topology selection any time the communication requirements change. Similar

problems have been previously studied for the design of optical networks [80, 6] but have

not been systematically studied in the context of service overlay networks. To solve the

dynamic overlay topology configuration problem, we systematically observe how optimal

reconfiguration policies is affected by the reconfiguration overhead, through case studies on

small systems. Based on the observation, we propose heuristic methods for constructing

different flavors of reconfiguration policies for large systems. In the process of solving this

problem, much of the notation and formulation presented in Chapter III is still used in

this chapter, and the solution previously developed for the static overlay topology design

problem in Chapter III is used as a subroutine in the solutions to the dynamic problems in

this chapter. Our work does not only provide solutions to practical overlay topology design

problems, but also provides theoretical evidence for the advantage of overlay network due

to its configurability.

The remainder of this chapter proceeds as follows. In Section 4.2, we discuss types of

cost incurred in the system during an overlay topology reconfiguration process, and formally

define the decision making problem in dynamic topology reconfiguration. In Section 4.3,

we observe the structure of the problem, as well as the properties and structures of the

optimal reconfiguration policies, through experiments on small Markovian systems. In

Section 4.4, we use these observations as heuristics and propose methods for constructing

good reconfiguration policies that approximate the optimal ones for large systems. We
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evaluate our methods in Section 4.5 and conclude in Section 4.6.

4.2 Problem Formulation

For a service overlay network where the communication requirements change over times,

we denote the communication requirements at time t by X(t) and assume X(t) takes on

values from a set of distinct communication patterns, {C1, C2, . . . , Cs}. An overlay topology

reconfiguration policy is the sequence of overlay topologies used by an overlay network

over time, denoted by Y (t). The problem we are addressing in this chapter is finding the

optimal reconfiguration policies Y (t) for a given communication requirements X(t). This

determination is guided by the cost functions, including not only the static operation costs

already discussed in Chapter III, but also reconfiguration costs which we discuss later in

this chapter. If the communication requirements X(t) is constant over time, i.e., X(t) = C
for any t, then the optimal overlay topology reconfiguration policy is one that always uses

the optimal-static topology for C, i.e., Y (t) = T ∗(C) for any t. The problem formulation in

Section 3.2.1 still applies when the communication requirements do not change over time. In

this chapter, however, we are interested in the more general cases where the communication

requirements change over time.

4.2.1 Dynamic Overlay Topology Design Problem

We consider two categories of costs in an overlay network: Occupancy Cost and Reconfig-

uration Cost. The occupancy cost is incurred while the overlay network is configured in a

particular topology while the reconfiguration cost is incurred whenever the overlay topology

is reconfigured.

Occupancy Cost The occupancy cost is the total operation cost for the overlay network

to deliver the traffic specified by the dynamic communication requirements X(t) over the

dynamic overlay topology Y (t) specified by the overlay topology reconfiguration policy.

That is

COSTo(∆t) =
∫ ∆t

0
f(X(t), Y (t))dt (9)

where ∆t is the time horizon of interest and the function f(C, T ) is defined in Eq. 2.
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Figure 11: Flow Disturbance Caused by Topology Reconfiguration

Reconfiguration Cost Every time the system reconfigures its overlay topology to adapt

to changes in communication requirements, a reconfiguration cost is incurred. This cost is

the overhead or the impairment to performance incurred by the transition from one overlay

topology to another.

Various costs could be incurred during a topology reconfiguration, depending on the

implementation details of the overlay. For example, establishing and tearing down overlay

links incur control and management overhead, especially when underlying ISPs are involved

in the processes. Furthermore, data in transit during topology reconfiguration is subject to

routing disturbance that incurs rerouting overhead. Depending on the overlay implemen-

tation, when overlay topologies and routing tables change, data in transit could be simply

dropped by intermediate nodes and requires end-to-end retransmission, or be rerouted,

maybe several times, wandering through a path with a high operation cost. Finally, rerout-

ing overhead can be magnified at the end-systems. Data loss and misordering caused by

overlay topology reconfiguration are much more significant than those caused by factors

in underlying networks. They last longer and their impact is system wide. End-systems’

flow control mechanisms that assume low loss rate and short misordering sequence, e.g.,

TCP’s window control system, the impact of overlay topology reconfiguration can be very

interruptive.

Figure.11 gives evidence to the existence of reconfiguration cost, e.g., data misorder-

ing. The experiments are conducted over the PlanetLab [69] using 20 .edu nodes in North
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America, which form a simple overlay. Each node runs a UDP-based routing daemon and

is remotely controlled from a monitor in Georgia Tech using XML-RPC. To conduct the

experiment, we let each node generate one packets per 10 millisecond to every other nodes

and count the pairs of misordering packets caused by an overlay topology reconfiguration.

To reconfigure the topology, the monitor sends out XML-RPC calls simultaneously to every

nodes, commanding them to update their neighboring status and routing tables, using one

of two protocols. In Protocol A, each nodes updates its routing table immediately after

receiving the XML-RPC calls. Due to variation in their network distance from the monitor,

the routing tables are actually updated at different time at different nodes. In Protocol B,

the monitor provides a future time point in the XML-RPC calls and ask all nodes to clock-

synchronize their updating at that time point. The figures show the resulting amount of

misordering for each end-to-end flow when the overlay makes transition from one degree-4

topology to another one. The figures show that Protocol A incurs less flow disturbance

than B. But in both protocols, the disturbance on flows is significant and system-wide.

The formulation of the reconfiguration cost in an topology transition naturally varies for

different implementation of overlay network (e.g., protocol for the transition), and it is not

goal to deal with each specific implementation in this thesis. Instead, at this stage, we are

most interested in understanding the dynamic overlay topology design problem in a more

general manner. In this thesis, we use the total number of overlay links that need to be

changed during a overlay transition as a general approximate metric for the reconfiguration

cost, with a specific scaling factor for each specific system. Formally, the metric is

g(Cold, Told, Cnew, Tnew) =
∑
u,v

|Told(u, v)− Tnew(u, v)| (10)

where Cold, Cnew, Told, Tnew are the old and new communication patterns and overlay topol-

ogy respectively.1 The total reconfiguration cost over a time horizon ∆t, denoted by

COSTr(∆t), is the sum of the reconfiguration costs incurred for all overlay topology tran-

sitions that happen during ∆t. The reconfiguration policy construction methods developed

in this thesis allows plugging in other formulations of function f(·), and the use of other

1The system specific weighting factor is absorbed in β in Eq.sessioncost.
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formulations does not conflict in intuition with heuristics used by these methods. In Sec-

tion 4.5.2, we test the use of some other formulations in our policy construction methods

and find that the goodness of resulting reconfiguration policies remains.

Overall Cost The overall cost of using the overlay over a time horizon ∆t is the sum of

both the occupancy cost and the reconfiguration cost incurred in the period. Formally,

COST (∆t) = COSTo(∆t) + β · COSTr(∆t) (11)

where factor β ∈ [0, 1] reflects the relative weight of reconfiguration cost and occupancy cost;

its actual value depends on the implementation details in how the topology transitions are

conducted and how different performance/cost factors (e.g., data loss rate, retransmission,

performance of end-systems) influence and are evaluated against each other. The long-run

average of the overall cost is

lim inf
∆t→∞

COST (∆t)

∆t
(12)

4.2.2 Topology Reconfiguration Policies

Topology Reconfiguration Policy Given the communication patterns, X(t), a recon-

figuration policy, Y (t), is essentially a set of rules specifying when and how the overlay

topology should be reconfigured. The following are three examples.

• Policy 1: Whenever the communication pattern changes, the overlay topology should

be reconfigured to a random one.

• Policy 2: Every 10 minutes, the overlay topology should be reconfigured to the static-

optimal one for the current communication pattern.

• Policy 3: Whenever the communication pattern changes, the overlay topology should

be reconfigured to static-optimal one for the new communication pattern.

In this thesis, we concentrate on the class of reconfiguration policies with the following

properties:
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• Memoryless. Assume the overlay topology changes at time t, in a memoryless recon-

figuration policy, the choice of the new overlay topology Y (t + δ) depends only on

the current communication pattern X(t), the current overlay topology Y (t) and the

new communication pattern X(t + δ). All the three example policies have this prop-

erty. Compared with reconfiguration policies that have to keep the history of previous

decisions, memoryless policies are easier to design, analyze and implement. In fact,

for many reconfiguration policies that keep a limited history of previous decisions, it

is possible to convert them into memoryless ones by, i.e., combining a sequence of

history states into a single (though more complex) state.

• Reactive. In a reactive reconfiguration policy, a change in overlay topology can only

be triggered by a change in the communication pattern. Policy 1 and 3 have this

property while the Policy 2 does not. Again, compared with reconfiguration policies

with arbitrary timing in reconfiguration, reactive policies are easier to design, analyze

and implement. In fact, if the dynamics of communication pattern is memoryless,

a non-reactive reconfiguration policy can always be converted to a reactive one that

incurs no more overall cost, by, for example, moving up the timing of a reconfiguration

to the time when the last change in communication pattern happens or postpone it

to the time when the next change in communication pattern happens.

• Deterministic. Given X(t), Y (t) and X(t + δ), in a deterministic reconfiguration

policy, the choice of Y (t + δ) is deterministic rather than probabilistic. Policy 2 and

3 have this property while Policy 1 does not. The space of probabilistic policies is a

superset of that of deterministic policies, but theoretically there are unlimited number

of probabilistic policies. Popular policy optimization approaches, such as Markov

decision process and Howard’s policy iteration method do not apply. Furthermore,

compared with the deterministic ones, probabilistic policies require extra coordination

among distributed overlay nodes so that their probabilistic reconfiguration behaviors

are consistent across the whole system.
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A reconfiguration policy in this class is essential a function that maps each possible triple

of current communication pattern Cold, current overlay topology Told and new communica-

tion pattern Cnew to a new topology Tnew. It is possible that Tnew = Told, in which case

the overlay topology remains the same despite a change in communication pattern. The

ideal goal is to find the optimal reconfiguration policy that can minimize Eq.12 for an given

model of X(t). The problem is NP-hard because even the static version of the problem is

NP-Hard. Please refer to Section 3.2 and Section 3.3.1 for a detailed discussion.

4.2.3 Methodology and An MDP Formulation

Our methodology is, therefore, to start by observing the general properties and structures

of the optimal reconfiguration policy on small, solvable cases, and then use the observa-

tions as heuristics to solve the problem for large cases. Particularly, in Section 4.3, we

study systems that have small number of nodes and in which X(t) is a continuous Markov

process, intending to understand, for example, how the optimal policies are affected by

various characteristics of X(t) and the level of reconfigure cost. Then in Section 4.4, we use

our observations as heuristics and propose heuristic-based solutions that are applicable to

problems with large number of nodes or with non-Markovian X(t).

Note that for systems where X(t) is a continuous Markov decision process, the dynamic

topology design problem can be modeled as a continuous time Markov decision process [40].

Each state in the decision process consists of one communication pattern from X(t) and

an feasible overlay topology. For example, for the 3-state Markovian model of X(t) show

in Fig. 12, if there are only two feasible overlay topologies T1 and T2, the corresponding

Markov decision process will have six states in total, {<Ci, Tj> |i = 1, 2, 3; j = 1, 2}. A

policy of the Markov decision process, corresponding to a topology reconfiguration policy

in the original problem, is composed of a set of decisions, one at each state. For example,

Fig. 13 shows the four alternatives that the decision process needs to decide on when it is

in state <C1, T1>. If each of the 6 states has 4 alternatives, then there will be 46 possible

policies. When the number of nodes in the system is small (e.g., no more than 7) so that

the number of states is still manageable, the decision process can be practically solved using
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Figure 12: X(t) is a continuous Markov process
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Figure 13: Various Policies Make Different Decision at State <C1, T1>

Howard’s policy iteration algorithm [40].

Also note that during the calculation of function f(·) in Eq. 9, we assume the underly-

ing network operation cost matrix is static. This is reasonable in most scenarios because

user requirements are usually much more dynamic than underlying network operation cost

factors and the latter can therefore be assumed static. It is possible, however, to extend

the formulation to incorporate the cases where underlying network operation cost matrix

is dynamic. In such cases, the dynamics of underlying network operation cost can be mod-

eled together with the dynamics of users’ requirements. The methodology used in this

thesis (e.g., MDP model and case studies) still applies in this extended context, and the

estimation models for reconfiguration cost still apply. However, the benefit of making a
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topology reconfiguration needs a new formulation — it depends on not only the changes

in the communication pattern but also the changes in the operation cost matrix. As to

the applicability of the heuristics presented in this thesis under this extended model, more

investigation is required in the future.

4.3 Properties and Structure of Optimal Reconfiguration
Policies

Our goal in this section is to determine the structures and properties of the overlay recon-

figuration policies. To that end, we experiment on a sample network overlay with 5 nodes.

We set d(ui, uj) = 1 for any pair of nodes ui and uj , so there is not difference between the

five nodes in terms of routing in the underlying network. We set the degree bound of the

overlay networks to 2, so there are 12 feasible overlay topologies. 2 Fig. 14 shows a simple

communication requirement transition model with two communication patterns C1 and C2.

1

4

2 3

5

1 1

11

C1

1

2

5 4

3

1 1

11

C2

C1

C2

11

Figure 14: Communication Requirement Transition Model With Two Communication Pat-
terns

4.3.1 Trends of Aggressiveness

Chains in Optimal Policies Fig. 15.(a) shows the optimal policy when we set the weight

of reconfiguration cost(β in Eq. 11) to 0 (which means the reconfiguration cost is not

significant relative to the occupancy cost.) Our first observation is that the system is

very aggressive. No matter what the old overlay topology is, the optimal policy always

chooses overlay topology T1 or T2 whenever the communication pattern changes to C1 or C2,

respectively. Our calculation also shows that T1 and T12 are the minimum-occupancy-cost

topologies for C1 and C2, respectively. Our second observation is that the system, starting

2There are actually 72 overlay topologies that are connected and with degree bound 2. For simplicity of
presentation, we only count the topologies in which each node’s degree is exactly 2.
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(a) β = 0 (b) β = 0.3 (c) β = 0.4 (d) β = 10000000

Figure 15: Optimal Policies. Solid lines and dashed lines show how the overlay topology
is reconfigured when the communication pattern changes from C1 to C2 and from C2 to C1,
respectively.

<C1,T12> <C2,T1> <C2,T6> <C1,T12> 

<C1,T5> <C2,T1> 

<C2,T6> <C1,T6> 

<C1,T2> <C2,T2> 

(a) β = 0 (b) β = 0.3 (c) β = 0.4

Figure 16: Optimal Reconfiguration Chains. Solid lines and dashed lines have the same
meanings as in Fig. 15.

from any state, steers itself into a recurrent chain of states, possibly after a few steps of

initial topology reconfiguration, and stays within the chain. We term a chain an optimal

reconfiguration chain of the optimal policy. Not all feasible overlay topologies show up in the

optimal reconfiguration chain. In this example, the chain is composed of states <C1, T12>

and <C2, T1> and contains only two distinct overlay topologies, T1 and T12.

Effect of Weight of Reconfiguration Cost The system keeps the same optimal policy

when we gradually increase the value of β, until it reaches a certain threshold. Fig. 15.(b)

presents the optimal policy when β equals 0.3. The optimal policy now has two optimal

reconfiguration chains (shown in Fig. 16.(b)) instead of one. Compare to the case when

β = 0, the system is still aggressive; it always reconfigures the overlay topology whenever

the communication pattern changes. The choice of optimal reconfiguration chain, however,

43



now depends on the initial state of the system; the system has become more sensitive to

the reconfiguration cost and therefore prefers the “nearest” optimal reconfiguration chain,

the one that it can reach with minimum initial reconfiguration cost. Our calculation shows

that, however, since the value of β is low, the initial reconfiguration cost varies little when

the system starts from various initial states.

We continue to increase the value of β gradually. The system changes its strategy again

when the value of β reaches another threshold. Fig. 15.(c) shows the optimal policy when

β = 0.4. Again, the optimal policy has two optimal reconfiguration chains, as shown in

Fig. 16.(c). Each optimal reconfiguration chain, however, contains only one overlay topology

now,T2 or T6. The system becomes even more conservative due to the increased value of β

and tries to avoid any reconfiguration except for initial reconfiguration cost for the system to

enter an optimal reconfiguration chain. Once the system enters the optimal reconfiguration

chains, it will stick with the same overlay topology.

Fig. 15.(d) shows the optimal policy when we raise the value of β to some extreme value.

e.g., 10000000. The system becomes most conservative and avoids any topology reconfig-

uration — the system will stick with its initial overlay topology and totally disregards the

occupancy cost. The cost of even a single reconfiguration prohibits any attempt of adjusting

to a better overlay topology. Obviously, the optimal policy has 12 optimal reconfiguration

chains. (We omit the figure since it is the same as Fig. 15.(d).) The overall cost contains

only occupancy cost and varies significantly when the system starts from different overlay

topologies.

Effect of Transition Rates We also study the effect of transition rates on optimal policy.

We scale the transition rates between communication patterns in Fig. 14 up and down by

multiplying all the rates with a common factor γ and observe how the optimal policies are

affected. The plots in Fig. 17 present how the number of distinct overlay topologies in the

optimal reconfiguration chains 3 changes when we increases the weight of the reconfiguration

cost (β); the three plots are for the cases where the scale factor γ is set to 0.01, 1 and 10,

3If there are multiple optimal reconfiguration chains in the optimal policy, we take the expected value,
assuming the system starts from a random state with equal probability for all states.
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Figure 17: Affect of Transition Rates

respectively. The figure shows that in each plot, there is a turning point where the number

of distinctive overlay topologies in the optimal reconfiguration chains turns from 2 to 1,

which indicates the system’s crossing from being conservative to being aggressive. The

figure shows that the higher the transition rates are, the lower the turning point is. The

more actively the system changes its communication patterns, the more conservative it is

in reconfiguring overlay topology. The system avoids incurring the reconfiguration cost for

too many times.

C1

C4C6

C2 C3

C5

1

1

11

1 1

11

1

1

Figure 18: Communication Requirement Transition Model with 6 Communication Patterns

Trends of Aggressiveness and Costs The trends of system’s aggressiveness versus the

weight of reconfiguration cost and the level of transition rates between communication pat-

terns become even clearer when we experiment with communication requirement transition

models with more communication patterns. Fig. 18 presents a communication requirement

transition model with six communication patterns. Fig. 19.a plots the number of distinct
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(a) γ = 0.5 (b) γ = 1 (c) γ = 2

Figure 19: Trends of Aggressiveness and Costs

overlay topologies in the optimal reconfiguration chains, the reconfiguration cost (after be-

ing scaled with β), the occupancy cost and the overall cost, respectively.4 The figure shows

that the system’s sensitivity to the weight of transition cost is discrete and threshold-based:

the whole range of β is divided into ranges by some thresholds; the system’s strategy stays

basically the same when the value of β stays within the same range but changes signifi-

cantly when the value of β crosses into another range. On one hand, within the same range,

the system’s aggressiveness remains in the same level, the occupancy cost remains in the

same level, the reconfiguration cost (before weighting with β) remains the same. On the

other hand, when the value of β crosses up into another range, the system’s aggressiveness

drops into a lower level, the occupancy cost jumps up to a higher level, and the reconfigu-

ration cost drops to a new level. The plot for the overall cost, however, is continuous and

monotonic. The thresholds and the division of β ranges depend on the level of transition

rates in the communication requirement transition model. Fig. 19.(b) and (c) presents the

graphs when the transition rates are at two other levels. They show that the β thresholds

move to the left when the transition rates are scaled up; the higher the transition rates are,

the less aggressive the system is.

4.3.2 Internal Structures of Optimal Reconfiguration Chains

The optimal reconfiguration chains also have internal structures. Fig. 20 presents some

optimal reconfiguration chains for the communication requirement transition model shown

4Again, this is the expected value, assuming the system starts from a random state with equal probability
for all states.
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(a)γ = 0.5, β = 0.4 (b)γ = 0.5, β = 0.7 (c) γ = 0.5, β = 0.73

Figure 20: Optimal Reconfiguration Chains. Solid lines represent transitions between states
with different overlay topology, while dashed lines represent transitions between states with
the same overlay topology.

in Fig. 18. Fig. 20.a presents the optimal reconfiguration chain when γ = 0.5, β = 0.4.

It shows that C4 and C5 share the same overlay topology T7 and therefore there is no

topology reconfiguration when the system make transitions between C4 and C5. Fig. 20.b

presents the optimal reconfiguration chain when γ = 0.5, β = 0.7. In addition to C4 and

C5 share T7, C6 and C1 are also sharing the same overlay topology T8 now. Informally, we

refer to the set of all communication patterns that share the same overlay topology in the

optimal reconfiguration chain as a cluster. When each communication is associated with

only one overlay topology in the optimal reconfiguration chain, the clusters are exclusive

of each other, as those in Fig. 20.a and b. In such cases, the formation of clusters in an

optimal reconfiguration chain can exactly define the chain: the system keeps its overlay

topology when making a transition between communication patterns in the same cluster

and reconfigures when it crosses clusters; when a reconfiguration occurs, the system always

reconfigures to the overlay topology shared by the next cluster. There are cases, however,

that a communication may be associated with multiple overlay topologies in the optimal

reconfiguration chain. Fig. 20.c shows an example in which C3 belongs to two clusters,

one including only itself, another one including also C1, C6. When clusters overlap, the

formation of clusters in an optimal reconfiguration chain cannot exactly define the chain.

Our experiment, though, shows that most communication patterns are associated with only

one overlay topology in optimal reconfiguration chains.

We observe that the formation of clusters within an optimal reconfiguration chain is

affected by two categories of factors. In the first category are global factors such as the
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weight of the reconfiguration cost and the level of transition rates. They affect the number

of distinct overlay topologies, as previously discussed, and therefore the number of clus-

ters. In the second category are local factors that affect whether two given communication

patterns should be put into the same cluster or separated into different ones. We identify

three important local factors in our experiments. The first factor is the balance/imbalance

of the occupancy time of two neighboring communication patterns in the communication

requirement transition model. We find that the more unbalanced the occupancy time is,

the more likely the two communication pattern are put into the same cluster. The intu-

itive explanation is that the system is reluctant to pay transition cost for the less occupied

communication pattern and is prone to “absorb” the less occupied communication pattern

into the dominant communication pattern and treat them as a whole. The second factor

is the coupling between two communication patterns in the communication requirement

transition model.

We define the coupling between communication patterns CA and CB as the sum of two

quantities: the probability that the system reaches CB before returning back toCA once it

leaves CA, and the probability that the system reaches CA before returning back to CB once

it leaves CB. We find that the more coupled the two communication patterns are, the more

likely they are put into the same cluster. By putting more coupled communication patterns

in the same clusters, the system reduces the number of cross-cluster transitions therefore

the reconfiguration cost. The third factor is the similarity between two communication

patterns. The similarity is defined as the difference between the occupancy cost when the

two communication patterns use their own minimum-occupancy-cost overlay topologies and

that when the two communication pattern share the same overlay topology. We find that

the more similar the two communication patterns are, the more likely they are put into

the same cluster. By putting more similar communication patterns in the same cluster, the

system can find an overlay topology that is more suitable for every communication pattern

in the cluster which reduces the occupancy cost.
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4.3.3 Summary

In summary, from the above case studies we understand the structure of the optimal policy:

The optimal policies are composed of one or more optimal reconfiguration chains. The

system steers itself into one of the optimal reconfiguration chains after a few steps of ini-

tial reconfiguration if it follows the optimal reconfiguration policy. The choice of optimal

reconfiguration chain depends on the initial state of the system and makes a difference

only when the initial reconfiguration cost is high. Within an optimal reconfiguration chain,

communication patterns form clusters, defined by a distinct overlay topology in the chain.

Clusters are overlapping when some communication patterns are associated with more than

one overlay topology or exclusive when all communication patterns are associated with

only one overlay topology. Most communication patterns, though, are associated with only

one overlay topology. Topology reconfiguration is triggered only when the system makes a

transition across clusters. The formation of clusters is affected by two categories of factors:

global factors, such as the weight of reconfiguration cost and the level of transition rates, af-

fecting the number of clusters, and local factors, such as level of balance of occupancy time,

the coupling and similarity between two given communication patterns, affecting whether

the two communication patterns are put into the same cluster.

From above case studies, we also learn the structure of the problem of constructing

optimal reconfiguration policy, which roughly divides the whole range of β into three areas:

1. Lower Extreme Area: β is lower than a threshold β0. The reconfiguration cost is

trivial and the optimal policy is the one that always reconfigures the overlay topology

to the one that minimizes the occupancy cost for the next communication pattern.

We refer such a policy as the Always Change Policy (ACP).

2. Upper Extreme Area: β is lower than another threshold β1. The system is extremely

conservative and always keeps its overlay topology unchanged (or at least after an

initialization period). The reconfiguration cost is zero and optimal policy is one that

minimize the overall occupancy cost in the session. We refer to this policy as the

Never Change Policy (NCP).
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3. Middle Area: β is between β0 and β1. The system’s behavior is fine tuned. This area

can be divided into more threshold-based ranges. Simple policies, such as ACP and

NCP policies, are not good and we need a more complicated method for constructing

the optimal policy when the value of β is in this area.

4.4 Constructing Reconfiguration Policies for Large Sys-
tems

When the system has a large number of nodes or the process of transition among commu-

nication patterns is not Markovian, we cannot obtain the optimal reconfiguration policies

by solving a Markov decision process. In this section, we propose methods for constructing

good reconfiguration policies for these more general systems. We develop heuritic methods

that reflect the properties and conform to the structures we observed in the optimal policies

in Section 4.3.

4.4.1 Always-Change Policy and Never-Change Policy

The Always-Change Policy is simple: the system always reconfigures to the static-optimal

topology for the next communication pattern whenever the communication pattern changes.

The subroutine for finding the static-optimal topology is discussed in Section 3.2.

The Never-Change Policy never changes the overlay topology. Since the reconfiguration

cost is zero, the optimal policy is one that minimizes the overall occupancy cost. Assume

there are N distinct communication patterns in X(t) and the percentage of occupancy time

for communication pattern Ci is πi, then the long-run average of the overall cost is:

lim inf
∆t→∞

COST (∆t)

∆t
=

N∑
i=1

πi · f(Ci, T )

=

N∑
i=1

πi

∑
u,v∈V

Lu,v(T ) · Ci(u, v) = f(

N∑
i=1

πiCi, T ) (13)

where T is the common overlay topology in the NCP policy. Eq.13 shows that to

minimize the long-run average of the overall cost, T is actually the static-optimal topology

for a virtual communication pattern
∑N

i=1 πiCi and can be found using the subroutine in

Section 3.2.
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4.4.2 Cluster-Based Policies

Inspired by the properties we observed in Section 4.3, we propose Cluster-Based Poli-

cies(CBP) as heuristic approximation to the optimal reconfiguration policy. The basic

idea of constructing CBP policies is to mimic the structure of the optimal ones:

1. We group the communication patterns into non-overlapping clusters and find a com-

mon overlay topology for each cluster; the common overlay topology for a cluster is

one that can minimize the overall occupancy cost for the whole cluster.

2. Whenever the transition in communication pattern happens, if the next communica-

tion pattern is in the same cluster, the system keeps the current overlay topology,

otherwise it switches to the common overlay topology of the newly entered cluster.

The CBP policies maintain the essential structure of the real optimal policy but simplify

it in the following terms: first, there is only one optimal reconfiguration chain in the CBP

policies; second, every communication pattern is associated with only one overlay topology

(and therefore only one cluster) and all clusters in CBP policies are non-overlapping. The

simplification allows us to construct the CBP policies efficiently. Performance evaluation in

Section 4.5, however, shows that CBPs are almost as good as the real optimal policies.

Fig. 21 sketches the algorithm of constructing CBP policies. The algorithm needs three

types of input about X(t): the set of distinct communication patterns, {Ci|1 ≤ i ≤ N};
the average percentage of occupancy time that the system runs with Ci, denoted by πi; and

the average number of transit from Ci to Cj per unit of time, denoted by bij . The value of

πi’s and bij ’s can be estimated in a real system via statistical modeling methods. Specially,

for applications in which the transitions between communication patterns can be modelled

with Markov or Semi-Markov processes, πi’s and bij ’s can be derived from the transition

model by calculating the stationary probabilities of the processes.

As most k-means style clustering algorithms, the proper number of clusters needs to

be estimated beforehand, based on the weight of reconfiguration cost. The proper number

can also be find by trying out all numbers in a certain range (e.g., in worst case, from 1 to
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the total number of communication patterns) and choosing the one that generates the best

result.

Assume we are clustering N communication patterns into L clusters. The algorithm

starts by randomly assigning the N communication patterns into L clusters. During each

iteration, the algorithm reassigns each communication pattern to the cluster that is most

”suitable” for it. The iterations stop when the clustering converges and the policy corre-

sponding to the final clustering is returned as the result of the algorithm.

PROCEDURE CONSTRUCT-CBP-POLICY
Initialize-Clusters :

randomly assign C1, CN , ... CN to S1, S2, ... SL ;
Adjust-Clusters :

for each communication pattern Ci, 1 ≤ i ≤ N :
find the most suitable cluster S∗ for Ci:

for each cluster Sj , 1 ≤ j ≤ L:
temporarily move Ci to Sj ;
convert the clustering (S1, S2, ... SL) to policy P ; — line (a1)
evaluate the cost of policy P ; — line (b)

Let S∗ is the clustering with the least cost in the above loop;
move Cj to S∗;

Loop-Back :
go back to Adjust-Clusters until the clustering does not change;

Post-Handle:
convert the clustering (S1, S2, ... SL) to policy P ; — line (a2)
return policy P ;

Figure 21: Pseudo-code of Constructing Cluster-Based Polices

In Fig. 21, lines (a1) and (a2) involve a procedure that converts a clustering to its

corresponding cluster-based reconfiguration policy and line (b) involves a procedure that

calculates the cost of the policy. We describe the two procedures in detail in the remainder

of this section.

Converting Clustering To Policy The major task in this procedure is to find one com-

mon overlay topology for each cluster. Once the common overlay topologies are decided,

the policy is fully defined by the following rule: whenever the system makes a transition be-

tween communication patterns within the same cluster, the overlay topology is not changed;

whenever it makes a transition across clusters, it reconfigures the overlay topology to the
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common overlay topology for the newly entered cluster.

The common overlay topology for a cluster is one that can minimize the total occu-

pancy cost of the cluster. Formally, consider a cluster containing communication patterns

C1, C2, . . . , Cs, the common topology of the cluster is a overlay topology T that minimizes

the occupancy cost of the whole cluster: COSTc(∆t) =
∑s

i=1 πi∆t · f(Ci, T ). Similar to

the logic in Section 4.4.1, this optimal common overlay topology is actually the optimal-

static topology for a virtual communication pattern
∑s

i=1 πiCi and can be found using the

subroutine in Section 3.2.

Calculating Policy Cost Assume Ti is the topology assigned to communication pattern

Ci by the policy. Because in a CBP policy, each communication pattern is associated

with only one overlay topology, we have: lim inf∆t→∞
COSTp(∆t)

∆t =
∑N

i=1 πif(Ci, Ti) + β ·
∑N

i=1

∑N
j=1 g(Ci, Ti, Cj , Tj) · bij .

4.5 Performance Of Approximate Policies

4.5.1 Performance of Constructed Policies — Small Networks

Table 1 shows the actual experimental parameters we use to generate a typical case problem.

First, we observe how the resulting clustering and the performance of corresponding CBP

policies are affected by the number of clusters input to the clustering algorithm described

in Fig. 21. The experiment results from the problems constructed using the parameters

in Table 1 are shown in Fig.22, while figures (a) and (b) are for two different weights on

reconfiguration cost (β in Eq. 11). The x-axis represents the number of clusters, K, that we

input to the algorithm. The right y-axis represents the actual number of non-empty clusters

in the resulted clustering; the figure shows that clustering algorithm does not necessarily use

up all the clusters if it finds that less clusters give better result. The right y-axis represents

the cost of resulting cluster-based policy. The figures show that a good estimation of the

proper number of clusters can help the algorithm to find the best cluster-based policy whose

cost is most close to that of the optimal policy.

Fig. 23.a compares the cost of the optimal policy, the ACP policy, the NCP policy

and the best CBP policy, whose cost is most close to that of the optimal policy, for the
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parameters small network large network
underlying native network - Internet graph generated us-

ing GT-ITM, 1400 nodes: 1
transit domain(200 nodes),
20 stub domains(60 nodes in
each stub)

number of overlay nodes 5 40, randomly selected from
the stub domains

overlay link cost matrix random value in range [10,15] number of hops in native
network

number of communication
patterns

10 10

number of transitions from
each communication pattern

random integer in range [1,3] random integer in range [1,3]

transition rates between
communication patterns

random value in range [2,6] 1

data demand between pairs
of overlay nodes in commu-
nication patterns

random value in range [0.1, 100] 1 for 15 percent of total
pairs (randomly chosen), 0
for other pairs

degree bound on feasible
overlay topologies

2 4

number of feasible overlay
topologies

72 -

Table 1: Experiment Parameters

same case constructed using the parameters in Table 1. The y-axis represents the policy

cost. The x-axis represents the spectrum of the weight assigned to the reconfiguration cost.

The figure shows that the cost of the NCP policy does not change when the weight of

reconfiguration cost is increased because the policy operate with a single policy and does

not incur a reconfiguration cost. The cost of the NCP policy coincides with that of the

optimal policy for a large β, which means that NCP policy is actually optimal when the

weight of the reconfiguration cost is beyond a certain threshold. The figure also shows that

the ACP policy is actually optimal when the weight of the reconfiguration cost is below a

certain threshold but its cost increases very quickly when the weight of the reconfiguration

cost is large. Finally, the figure shows that the CBP policies approximate well the optimal

policy when the weight of the reconfiguration cost is in its middle range.

4.5.2 Performance of Constructed Policies — Large Networks

We also experiment on problems with larger number of nodes. We generate a native net-

work using GT-ITM topology generator [15] and select some native nodes from the stub

domains as overlay nodes. We assume the transitions between communication patterns are
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Figure 22: Effect of Given Number of Clusters
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Markovian. Table 1 shows the actual experimental parameters we use to generate a typical

case problem.

Fig. 23.b presents the costs of different policies for this problem. The plots of NCP, ACP

and best-CBP are very similar to those in Fig. 23.a. The figure also presents the cost of a

naive policy that random chooses an feasible overlay topology and sticks with it, a policy

that is actually used by many overlay applications. The cost is the mean over 20 random

feasible overlay topologies. The figure shows that NCP, ACP and CBP policies perform

much better than the naive policy in their applicable ranges.

Fig. 24.a presents the performance of NCP, ACP, best-CBP and the naive policy for a

non-Markovian problem. Most parameters for the experiment are the same as those given

in Table 1. The transitions between communication patterns, however, are semi-Markovian

this time: we first randomly assign the transition probabilities in the embedded Markov

chain, and then, for each transition, we assign the average pre-transition occupancy time

to a random value in the a certain range, e.g., [0.2, 1].

The plots in the figure are very similar to those in Fig. 23.b: the NCP, ACP and

CBP policies perform much better than the naive policy in their applicable ranges and

the CBPs adapt well when the weight of reconfiguration cost varies. Fig. 24.b magnifies

Fig. 24.a for the portion where β is in range [2,16] and CBPs outperform both NCP and

ACP. Both the policy-cost and the number-of-cluster plots for the best-CBPs show general

trends similar to those in Fig. 19. This reaffirms our belief that the way we construct

CBPs reflects the basic structures of the optimal policies and grasps the essential tradeoff

between the occupancy cost and the reconfiguration cost inherent in the dynamic overlay

topology reconfiguration problems. Note that there are ”ripples”, however, in both plots.

This is due to the fact that the constructed CBPs are merely approximate alternatives to

the optimal policies and the fact that our clustering algorithm and simulated annealing

algorithm are also approximate. The ripples, however, are minor; the constructed CBPs

perform consistently in approximating the optimal policies.

In our policy construction methods, the formulation of function f(·) in Eq.10 can be sub-

stituted with other formulations without affecting the applicability of the algorithms. Fig. 25
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shows the cost of resulting policies when another formulation g(Cold, Told, Cnew, Tnew) =
∑

u,v w(u, v) · |Told(u, v) − Tnew(u, v)| is used, where w(u, v) weights the overlay link (u, v)

with the number of end-to-end minimum-operation-cost paths that cross the link in topol-

ogy Told. For NCP and random-NCP policies, the use of a new formulation does not affect

the resulting policies and their cost. For ACP, the policies themselves are not affected; their

costs changed, reflecting the new formulation, but the difference is trivial when β is in its

lower range (where ACP policies are applicable). So only CBPs are affected. Fig. 25 com-

pares the experiment results from the new formulation (Formulation 2) to those in Fig. 24.a

(the two sets of experiments use same parameters except for the formulation). The fig-

ure shows that the CBPs still tune smoothly under the new formulation. They generally

become less aggressive though, because the new formulation numerically generates higher

reconfiguration cost than the old one.

4.5.3 Implications on Overlay Network Design

In this section, we present some additional results we observe when we apply our policy

construction methods to large systems. Our purpose of presenting these results are two-

fold. First, the results might be interesting by themselves to some overlay system designers.

Second, the results show the usefulness of our policy construction methods in studying

overlay systems in general — the results are not easily observed without studies on large

systems.

Fig. 26 shows how the degree of an overlay network affects the cost of the reconfiguration
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Figure 26: Degree of Overlay Networks versus Cost of Reconfiguration Policies
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policies. Most parameters for the experiment are the same as those given in Table 1. The

transitions between communication patterns are Markovian. From each communication

pattern, the system can make up to 4 transitions and the transition rates are random

values in range [1,5].

The four figures show the cost of the NCP, ACP and best-BCP policies when we set

the degree bound of the overlay network to 4,6,8, and 12, respectively. We have three

interesting observations from these experiments. First, the cost of the policies decreases

when the degree bound increases. Intuitively, on one hand, with larger degree bound,

there are more feasible overlay topologies; the system may be able to find better overlay

topologies with lower occupancy cost. On the other hand, with larger degree bound, the

system may be able to establish new overlay links without having to tear down the old ones;

this reduces the reconfiguration cost. This suggests the overlay network designers use larger

degree bound when possible. Second, the gain of using a larger degree bound varies. In

Fig. 26, when the degree bound is increased from 4 to 6, both the cost of the NCP and that

of the ACP decrease significantly. When the degree bound is increased from 6 to 8, only

the cost of the NCP decreases significantly. After that, neither cost decreases significantly

when the degree bound is increased. This suggest that overlay network designers should

not pursue larger degree bounds blindly. The benefit may be limited, especially when the

weight of reconfiguration cost is at its low range (where the ACP is optimal). Finally, pay

attention to the space below the plot of the best-CBP and above the plot of the ACP in the

figures. The space indicates how much the CBPs can outperform the ACP and the NCP in

their applicable range. Notice that the space becomes narrower when the degree increases.

This suggests that the CBPs outperform ACP and NCP most when the overlay networks

have a very restrictive degree bound.

The above results belong to the domain of a wider class of overlay network design

problems, e.g., how do we select overlay nodes from a set of native nodes? how many nodes

does an overlay need? what is the appropriate degree bound for an overlay? Our results

presented here are far from complete and thorough. The topics stretch beyond the scope of

this thesis and deserve much more research in the future.
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4.6 Summary

We have studied the problem of dynamically reconfiguring the topology of an overlay net-

work in response to the changes in the communication requirements. We have identified the

relevant factors in a service overlay network that affect the cost of using the overlay. We

have considered two costs of using an overlay: the occupancy cost and the reconfiguration

cost. The ideal goal is to find the optimal reconfiguration policies that can minimize the

potential overall cost of using an overlay. The problem is NP-hard and good approximate

policies are called for. We have studied the structure of the problem, as well as the prop-

erties and structures of the optimal policies, through experiments on small systems with

Markovian properties, where the problem can be modeled as a Markov decision process and

solved efficiently using Howard’s policy-iteration algorithm. We then used our observations

as heuristics and proposed methods of constructing approximative policies that reflect the

properties and structures of the optimal policies. We have shown that our methods are ap-

plicable to large general systems and the constructed policies achieve good performance. We

have also shown that our methods are helpful for studying other overlay design problems.
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CHAPTER V

COST-EFFECTIVE CONTENT RESILIENCY SERVICE

5.1 Introduction

An ounce of prevention, a pound of cure — resiliency strategies can help to improve infor-

mation and service availability in the face of failures by reducing either the probability of

failures or their impact. Such resiliency strategies include, for example, introducing fault-

tolerant hardware, using backup paths in network routing, and replicating data or service

offering at multiple locations. On one hand, these resiliency strategies increase the expected

information or service availability and, thus, reduce the potential damage caused by data

loss or service interruption. One the other hand their deployment incurs a prevention cost,

e.g., additional hardware, monitoring infrastructure, storage, computation and communi-

cation resources. In the most general terms, a cost-effective resiliency strategy is one that

considers both the benefit and cost of deploying a protection mechanism and choose the

optimal tradeoff between the benefit and cost.

While engineers have invested a significant amount of effort in improving the reliability

of computer hardware and software, failures are still common to today’s computer systems

and networks. Failures can be caused by not only worn-out devices and software bugs

but also external factors such as power outage, environmental conditions and operational

accidents. When the computer and network system that stores a piece of data fail, the

data becomes unavailable to its users until the system is recovered. Replicating the same

content to multiple content servers (e.g., data centers) at different locations is one of the

most important resiliency strategies for data protection in the presence of failures[35][90][25].

It can significantly improve the availability of the data even when multiple servers fail in

the same time, and thus reduce the potential damage caused by the loss of data.

While content servers for resiliency purpose can be deployed by an organization for its

private use, in this thesis we are most interested in Content Resiliency Service Networks,
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a pool of content servers purposely deployed by a third-party Content Resiliency Service

Provider that provides resiliency service for service users by replicating data uploaded by

the users to some other content servers. As shown in Fig. 4, a content resiliency service

provider deploys a pool of tens or hundreds of content servers at different locations over the

Internet. Users at the end-systems access (i.e., upload to and download from) their data

at a local content server. The local data servers are then responsible to replicate the data

to some of other content servers in the pool so that the data is available when the local

content servers or even part of the replicating content servers fail at the same time. On

one hand, a content resiliency service provider contracts with service users in the form of

service agreement, which allows the users to specify the desired level of content resiliency or

the penalty of loss of data. On the other hand, the content resiliency service provider pays

prevention costs, such as the communication cost of delivering data from its origination

local content server to the remote replicating content servers, the storage cost of storing

the data, and various types of management costs, to maintain the normal operation of the

content servers and achieve the level of content resiliency previously agreed between the

service provider and the users.

Similar to the case of service overlay network that is discussed in Chapter III and

IV, there are configuration and dynamic reconfiguration issues in content resiliency service

networks, particularly, the choice of replication locations for a piece of data from the pool

of available content servers. Fig. 5 shows a content resiliency service network with a pool

of nine content servers, represented by the circles. A user, represented by the square box,

uploads its data to its local content server S0, and S0 is responsible to choose a set of remote

replication locations from the other eight content servers and deliver the data to the chosen

set of servers. For example, it can choose servers S3 and S7 and form a replication set

{S0, S3, S7}, or choose servers S2 and S5 and form a replication set {S0, S2, S5}.
Intuitively, the farther the servers replicating the same data reside from the content

origination and from each other, the more unlikely the servers will fail in the same period

but the more communication cost will be incurred. A good configuration of content server
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replication relationship should maintain a target level of content resiliency while minimiz-

ing the prevention cost incurred by the configuration and avoid excessive costs caused by

over-reaction to potential risks. Furthermore, when some content servers actually fail and

recover, the replication sets need to be dynamically adjusted to maintained the desired level

of content resiliency.

One critical component in the development of such a cost effective configuration is the

assessment of failure risks for a given environment. The probability that all the content

servers in the replication set fail at the same time must be quantified. Without such quan-

tification, the risks associated with a particular set of replicating content servers cannot

not be evaluated and any effort trying to reduce the prevention cost is clueless. When

failures are local to each content servers and therefore independent across the servers, such

quantification is relative easy to achieve. However, in contrast to many researchers’ as-

sumption that failures are independent to each other, many failures (e.g., those caused by

power-outages, weather and environmental disasters, and worms) are correlated to each

others. Components in modern distributed systems are becoming more interconnected and

interdependent, and, consequently, may more frequently be simultaneously impacted by the

same underlying fault event. This makes the assessment of failure risks a more complex

task. While modeling independent failures is relatively easy, modeling of correlated failures

is much more challenging. The obvious way of describing correlated failures is to specify

the probability of simultaneous failure for each subset of nodes. Some models enumerate all

possible system states and calculate transition probabilities between them. These models,

however, are difficult to apply in terms of representation and instantiation due to the expo-

nential number of states. More succinct yet meaningful models are called for. Researchers

have developed various approach for modeling correlated failures [90, 5, 65], but these mod-

els do not allow for deriving the probability of simultaneous failures for different subsets of

entities in a practical, consistent and intuitive way. A new approach for modeling correlated

failure needs to be develop before the configuration and dynamic reconfiguration issues in

content resiliency service networks can be tackled.

In addition to risk assessment, developing cost effective resiliency strategies also requires
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understanding the structure of the prevention cost. Various non-trivial components con-

tributing to the prevention cost should be taken into account. Furthermore, for systems

that have risk or resource constraints that evolve in time and need dynamic reconfiguration

of resiliency strategies, the cost-effectiveness of the strategies should be measured based on

their long-term achievement instead of short term benefits.

In this thesis we study the problem of cost-effective data replication in distributed sys-

tems impacted by both independent and geographically correlated failures. Geographically

correlated failures are those caused by events that impact nodes within a geographical vicini-

ties, e.g., power-outages, weather and environmental disasters, catastrophic events(terrorist

attacks, military actions). Some types of network correlated failures and administration

correlated failures can also be approximated as geographically correlated under certain con-

ditions. The impact of geographically correlated failures on system resiliency has been

studied in the literature, in both industry and academia (e.g., [35][90][25]); solutions re-

lying on remote placement of system components have been proposed. While such efforts

are helpful in improving overall system resiliency, they suffer from the lack of good models

for geographically correlated failures. Without such models, the improvement in system

resiliency cannot be fully quantified and measures of cost efficiency cannot be developed.

Our research work presented in this chapter is twofold. First, we present a new ap-

proach for modeling correlated failures. Instead of modeling entity correlations directly,

our methodology projects entities to a Euclidean space based on a distance metric between

entities; entity failure correlations are derived through the modeling of all possible fault

events within this space. This approach is then applied to model geographically correlated

failures. This model allows for the computation of data availability in replication systems

against both independent failures and geographically correlated failures. Second, using the

failure model, we study the problem of selecting the replication locations from the pool

of content servers. Specifically, we consider where replicas should be placed so that the

prevention cost is minimized while at the same time a desired level of data availability, in

the presence of both independent failures and geographically correlated failures, is guar-

anteed. Furthermore, we consider the dynamic conditions of the content servers over time
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and propose dynamic replication policies that reduce the long-term operation cost of the

system by taking into account both the reconfiguration and static prevention cost.

The remainder of this chapter is organized as follows. In Section 5.2, we describe a new

approach for modeling correlated failures. The approach is demonstrated using a model

for geographically correlated failures in Section 5.3, where we also formulate the static

configuration problem in content resiliency service network after identifying cost factors in

the replication process. In Section 5.4, we present optimization algorithms, including ones

that generate the real optimal solution and heuristic ones, for solving the static configuration

problem in content resiliency service networks. We also evaluate the performance of the

heuristic algorithms at the end of the section. In Section 5.5, we discuss the dynamic

configuration problem in content resiliency service networks and present several dynamic

reconfiguration policies that can achieve cost-effectiveness when system conditions change

over time.

5.2 A General Approach for Modeling Correlated Failures

Potential sources of failures can be generally classified in two main categories; independent

and correlated. In distributed systems that are composed of multiple entities, independent

failures are those that cause a single entity failure, without any impact on other system

entities. They include, for example, entity-specific hardware and/or software failures. In

contrast, correlated failures are caused by fault events impacting a set of one or more entities

simultaneously or within a very short time interval. Multiple types of failures fall within

this description. These include failures caused by geographically correlated fault events,

such as those caused by power-outages, weather and environmental disasters, catastrophic

events (terrorist attacks, military actions); caused by network correlated fault events, such as

router failures, DoS attacks causing local congestion, and worms; caused by social network

correlated fault events, such as virus blasts using email as the propagation medium, and

administration correlated, such as the malfunction of devices in an administrative domain

caused by the same (human) operation mistake. In this thesis, it is not our intention to

model every types of correlated failures. Instead, we seek a common approach that can be
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used generally to model the cause and impact of various types of failures.

The fundamental objective of modeling correlated failures is to provide the capability of

calculating the probability of simultaneous failures for different subsets of entities. Due to

the very large number of subsets and the multiple dependencies among entities, any model

that specifies the probability of simultaneous failure for every possible subset of entities is

likely to be complex and of limited usability. Research work has focused on building models

that express only the two-way correlations between entities (e.g., conditional probabilities

that one entity fails given another entity fails) and approximate multiple-way correlations

using two-way correlations. Weatherspoon et al. [90] cluster entities based their two-way

correlations and use the clusters as an implicit measure of multiple-way correlations in

system design. This method, however, does not produce quantifiable models and, hence,

cannot be used to develop systems with a prescribed availability requirement. Approaches to

building models that can approximate multiple-way correlations from two-way correlations

in a quantifiable way are proposed in [5][65]. These models, designed to capture failures of

m-out-of-n entities, do not allow for calculating the probability of failure for specific subsets

of entities. More importantly, these approaches provide limited intuition about the nature

and the cause of correlated failures and this impairs the accuracy and consistency of entity

correlation in the resulting models.

In this thesis, we propose a new general approach to modeling correlated failures: in-

stead of modeling failure correlations between entities directly, we model the occurrence

of fault events that impact the entities and cause correlated failures. Failure correlations

between entities are consequently implicitly inferred. The approach has two steps: first,

entities are projected to a Euclidean fault field and assigned coordinates based on a certain

distance metric. Depending on the type of correlated failures under consideration, this dis-

tance metric could be a physical one, such as geographic distance, a logical one, such as

network distance and distance in social network or administration hierarchy, or simply the

measured two-way failure correlation between two entities. If the distance does not satisfy

the triangular-inequality, the non-Euclidean space can be converted to a Euclidean space,

possibly with additional dimensions. Second, fault events are modeled over the fault field.
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Specifically, the location of faults and their impact are modeled. Thus the fault field acts

as a medium to establish correlation between the fault events and the entities using their

locations in the fault field. Models constructed in this way intuitively reflect the nature

and cause of correlated failures and provide a consistent view of failure correlation between

entities.

In Section 5.3.1 we describe the an example use of our approach by modeling geograph-

ically correlated failures in content resiliency service networks. The model serves for two

purposes. First, we use it to demonstrate the feasibility and applicability of the approach

described above. Second, the model is used throughout the remaining sections of this chap-

ter to study cost-effective configuration issues in content resiliency service network in the

presence of both independent and geographically correlated failures. Note that for geo-

graphically correlated failures, the fault field naturally lies on a 2-dimensional plane and a

server’s geographic location serves as its coordinates in the fault field. For other types of

correlated failures, the construction of the fault field could be more complex (e.g., involving

the conversion of a non-Euclidean space to a Euclidean one) and the model for fault events

could be different. In Section 6.2.2 we will give more discussion how different models can

affect the results presented in the thesis.

5.3 Static Configuration Problem in Content Resiliency Ser-
vice

In this section, we formally discuss the static configuration problem in content resiliency

service network, the problem of choosing cost-effective replication sets in a pool of content

servers in the presence of both independent failures and geographically correlated failures.

We first describe our failure models for independent failures and geographically correlated

failures and discuss the meaning of data availability under such failure models. We then

identify the cost factors in the data replication process and formulate the problem of cost-

effective data replication as a constrained minimization problem. We use discrete time

models in which the time axis is divided into slots. In real systems, the length of the time

slot depends on the system’s response time to failures. We assume that a system has enough
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Figure 27: Geographically Correlated Failure Model

time to detect and complete its responses(e.g., recovering data, adjusting backup sets, etc)

by the end of a time slot for all failures that have happened during that time slot. In this

section and Section 5.4, we assume failed servers will be fully repaired and come back to

service by the beginning of next time slot and therefore focus our discussion on a single

time slot. The assumption will be relaxed in Section 5.5 when we discuss cost minimization

over a sequence of time slots under dynamic system conditions.

5.3.1 Failure Models

We assume the pool of content servers in the content resiliency service network are dis-

tributed over a 2-dimension fault field. We assume the geographic location of each content

server is known to all other content servers (e.g., by an administrator or through some infor-

mation exchanging protocol) in the form of a coordinate in the 2-dimension fault field. We

consider two categories of failures that could happen to the content servers: independent

failures and geographically correlated failures.

Geographically Correlated Failure Model Instead of directly specifying the probability

of content server failures and their correlation, we model the geographical distribution

and the impact of geographical fault events (e.g., power outage) that could cause multiple
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content servers fail simultaneously in the same time slot.

First, we assume that in each time slot, the probability that one geographical fault event

occurs is Pcorr and the probability that more than one such fault events occur is ignorable.

Second, we assume that the center of a fault event is distributed according to a uniform

random distribution over a circular fault field with a radius R on a 2-dimension plane.

For simplicity of presentation, we use the center of the circular fault field as the origin of

the 2-dimension space of the fault field and adjust all coordinates accordingly. Third, to

characterize the phenomena that fault events affecting large geographical areas are much

rarer than those affecting small geographical areas, we assume the impact of a fault event is

exponential decaying and model it as follows: the impact of a fault event reaches as far as

a distance r from the center of the fault, where r is a random variable that is exponentially

distributed with a parameter c; when a fault event happens, all content servers within a

radius of r to the center of the fault event fail simultaneously.1

Fig. 27 shows a visual presentation of our model for geographically correlated failures.

The fault field is contained within the solid-line circle and the impact of an example fault

event is represented with a dashed-line circle. Among the five content servers (N1-N5) in

the figure, two content servers (N1 and N2) fail simultaneously because of the example fault

event.

Independent Failure Model In addition to correlated failures, we also consider indepen-

dent failures. They are caused by factors local to each specific content server, e.g., broken

hardware and crashed software. In this section, we assume that each content server fails

independently with a fixed probability Pind in each time slot.

The objective of developing a cost-effective configuration of replication locations is to

reduce the occurrences of data loss as well as the cost of replicating data. Data loss happens

when both the content server that originally receives a piece of user data and all the content

servers that replicate that piece of data fail in the same time slot.

1Deepak Ganesan et al. also suggested the use of circles to characterize the impact of geographically
correlated failures [35], but they used fixed-size circles without capturing the phenomena that large-impact
fault events are much rarer than small-impact ones.
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5.3.2 Analysis of Data Availability

When a fault event occurs at center v, all content server in a replication set S will fail

correlatively due to this fault even if and only if their maximum distance to v is equal or

less than the radius of the fault event. This at, the probability that they all fail in this fault

is

Fcorr(S, v) =
∫ +∞

r=d(S,v)

e−cr

c
dr = e−c·d(S,v) (14)

where d(S, v) = maxNi∈S d(Ni, v). So if the probability of independent failures is zero, the

probability that all content servers in S fail in the same time slot is the integral of Eq. 14

over all possible centers of this fault event (according to fault location distribution model

given in Section 5.3.1 in the fault field. That is,

Fcorr(S) =
Pcorr

πR2

∫

v
Fcorr(S, v) dv (15)

When both independent failures and geographically correlated failures are possible, the

simultaneous failure of a whole set of content servers during the same time slot can be the

result of various combinations of independent failures and correlated failures (i.e., part of the

set fail independently and part of the set fail correlatively.) First, consider the conditional

probability that all content servers in S fail in a time slot given that a fault event has

happened in the time slot with its center at v. To calculate this conditional probability, we

need to consider separately the cases where the radius of the fault event covers one server,

or two servers, ..., or all servers in the set S. Assume the content servers in S have been

sorted based on their distances to the center of fault, v, and they are Ni1 , Ni2 , . . . , Ni|S| in

increasing order, we have

Fcomb(S) = Prob{r ≥ d(Ni|S| , v)}+
|S|∑

s=1

Prob{r ∈ [d(Nis−1 , v), d(Nis , v))}
|S|∏

k=s

Prob{Nik fails}

where we set d(Ni0 , v) = 0. That is,

Fcomb(S, v) = e
−c·d(Ni|S| ,v) +

|S|∑

s=1

(e−c·d(Nis−1
,v) − e−c·d(Nis ,v))Pind

|S|−s+1 (16)

Therefore the probability that all content servers in S fail in the same time slot is,

Fcomb(S) = (1− Pcorr)Pind
|S| +

Pcorr

πR2

∫

v
Fcomb(S, v) dv (17)
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Note that there is no close form for the integral but it can be approximated using numeric

methods.

When a user of the content resiliency service uploads its data to a local content server

NA, NA choose a subset SA from the pool of content servers as its backup set and replicate

the data to each content server in the backup set. Thus NA and SA together form the

replication set for the uploaded data. The availability of the data is thus defined as the

probability that either NA or at least one of the content servers in its backup set SA survives

the risk of both independent failures and geographically correlated failures through a time

slot. That is, the availability, denoted by A(NA ∪ SA), equals 1−Fcomb(NA ∪ SA).

5.3.3 Cost-Effective Configuration of Replication Locations

Once the backup set for a content server is configured, the replication process involves two

types of cost: the communication cost and the storage cost. The former is the cost incurred

when moving data from its origination local content server NA to all the content servers in

NA’s backup set SA. The latter is the cost of storing data at its local content server and the

backup content servers. Considering the availability of cheap large volume storage devices,

we assume in this thesis the storage cost is trivial and focus on the communication cost.

We model the communication cost of moving one unit of data from a content server NA

to another content NB with the following equation:

C(NA, NB) = b1 · d(NA, NB) + b2 · d2(NA, NB) (18)

where d(NA, NB) is the Euclidean distance between NA and NB. The cost function is com-

posed of a linear term and a quadratic term. The constant factors b1 and b2 are coefficients

for the two terms, respectively, and their values depend on the nature of the communication

network. The using of two terms is an approximation for today’s communication network

that combines various types of communication media and methods. For example, in wired

networks, the linear term is most significant, and in wireless networks, the quadratic term

also plays a significant role.

Note that in the above cost model, we assume communication cost is purely a function of

geographical distance between the content servers. This may not the most accurate model
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for modeling communication cost in the real systems. A more general model is a cost matrix

that characterizes the communication cost between every pair of content servers, as the one

described in Section 3.2.1 where we discuss service overlay networks. We will discuss other

variation of communication cost models and their impact later in Section 6.2.2.

For simplicity, we assume during each time slot, a content server receives one unit of

data from the local users. Then the total communication cost of moving data received by

a content server NA in one time slot from NA to its backup set SA is

C(NA, SA) =
∑

NB∈SA

C(NA, NB) (19)

Again, we use a relative simple communication cost model here by assuming data are

delivered between content servers using unicast. In Section 6.2.2, we will discuss other

communication models that allow content servers to relay traffic during replication process.

Given Scandidate, the pool of all content servers in a content resiliency service network

that can serve as a backup server for NA, the objective of choosing an optimal static

configuration is to determine an optimal subset of Scandidate as the backup set for NA:

the communication cost is minimized under the constraint that the availability of the data

received by NA is maintained over a target lower bound Al that is specified in a user’s

service agreement. That is,

min C(NA, SA)

s. t. SA ⊆ Scandidate

A(NA ∪ SA) ≥ Al

The problem is combinatorial and the explosion of solution space makes naive exhaustive

search impractical. In Section 5.4, we first propose a branch-and-bound algorithm which

can practically find the optimal backup sets for problems with up to around 30 candidate

content servers. With its help, we then do case studies to observe the properties of the

optimal backup sets. Based on the observation collected in the case studies, we develop

heuristic-based algorithms which allow us to handle problems with even larger scale. We

will describe the operation of the algorithms from the point of view of a local content
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Algorithm 1 Branch-and-Bound
1: S0 = {N0}
2: Sfull = S0 ∪ {N1, N2 . . . , Nk}
3: set the root of tree T to S0

4: let cost upper bound Cu = +∞
5: let Soptimal = null
6: while T 6= φ do
7: randomly choose a tree-node Scurr from tree T
8: if Scurr.cost ≥ Cu then
9: delete from tree T the subtree rooted at Scurr

10: else if Scurr.availability ≥ Al then
11: let Cu = Scurr.cost
12: let Soptimal = Scurr

13: delete from tree T all nodes whose costs are equal or greater then Cu

14: else if Scurr is expandable then
15: Branch out a new child Snew below Scurr in tree T , where Snew belongs to {Scurr ∪

{Ni} | Ni ∈ Sfull−Scurr}. Once Scurr has already branched out all its |Sfull−Scurr|
children, it is not expandable anymore.

16: else if all Scurr’s children have been deleted then
17: delete Scurr from tree T
18: end if
19: end while
20: Algorithm exits. If Soptimal is null, then there is no feasible backup set that can achieve

availability Al; otherwise, Soptimal − {N0} is the optimal backup set.

server N0. It should be clear however that the algorithm is fully distributed; every content

server computes its optimal set independently. The input to the algorithm is the full set

of candidate content servers (e.g., alive content servers in the pool of all content servers)

Scandidate = {N1, N2, . . . , Nk}, which practically could be obtained through some central or

distributed directory services in real systems.

5.4 Optimization Algorithms for Static Configuration Prob-
lem

5.4.1 Branch-and-Bound

Algorithm 1 gives the pseudo-code of the branch-and-bound algorithm. The algorithm

finds the minimum-cost combination of candidate nodes as the backup set for a local content

server N0. The target lower bound on the data availability is given by the user and denoted

by Al. The algorithm starts its operation from an initial set S0, which includes the content

server N0 itself, and proceeds by incrementally expanding the backup set, adding one content
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server a time. The expansion follows a tree-structure (denoted by T ), in which each tree-

node represents a possible backup set. An important property of the tree is that the cost

and availability of each tree-node are no less then those of any of its ancestors. This suggests

that, at any stage, if the availability of a backup set satisfies the availability requirement,

no further expansion of this branch is needed, since the addition of another node will result

in an unnecessary increase in the cost. This allows the algorithm to keep tightening the

cost upper bound (denoted by Cu) and skip/delete an entire subtree when it detects that

the root of the subtree has a higher cost than the cost upper bound.

A couple of additional notes about the algorithm. First, in Algorithm 1, the tree is

expanded randomly (see lines 7 and 15). Alternatively, the tree can also be expanded in

a depth-first or breadth-first order, after minor changes in the code. Our experiments,

however, indicate that the algorithm runs generally faster when the tree is expanded in a

random order than in a depth-first or breadth-first order. Second, the initial backup set S0

(see line 1) does not have to contain only N0. It could comprise multiple content servers

in the scenario when, for example, one or more content servers in an existing backup set of

N0 fail and one wants to keep some of the remaining content servers in the current backup

set when computing the new backup set. This feature will be used in Section 5.5 when we

discuss reconfiguration issues in content resiliency service networks.

5.4.2 Properties of Optimal Solutions

The branch-and-bound algorithm is practically applicable to problems with up to about

30 candidate content servers. For content resiliency service with larger number of content

servers, heuristic and more efficient algorithms are called for. To draw heuristics for com-

putationally more efficient algorithms, we do simulation-based experiments to observe the

properties of optimal backup sets. We experiment with a pool of 15 content servers, which

are randomly located in a circulus failure field with radius 100; the impact of fault events

has an average radius of 40; the target availability lower bound is set to 0.99999; the linear

and quadratic cost factors are set to 100 and 1, respectively. Fig. 28 shows the optimal

backup set for a specific node with different combinations of probabilities of independent
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(a) Pind = 0; (b) Pind = 0.05; (c) Pind = 0.1; (d) Pind = 0.2;
Pcorr = 0.00027 Pcorr = 0.00027 Pcorr = 0.00027 Pcorr = 0.00027

(e) Pind = 0.1; (f) Pind = 0.1; (g) Pind = 0.1; (h) Pind = 0.1;
Pcorr = 0.00005 Pcorr = 0.00017 Pcorr = 0.0002 Pcorr = 0.00027

Figure 28: Optimal Backup Sets

failures (Pind) and correlated failures (Pcorr). The solid nodes in the figures represent N0

and the lines between the nodes represent the replication relationship. In Fig. 28.(a)-(d), we

fix Pcorr and observe how the the optimal backup set changes when we tune up and down

Pind. In Fig. 28.(e)-(h), we fix Pind and observe how the the optimal backup set changes

when we tune up and down Pcorr. The figures show that the nodes in the optimal backup

set can be roughly divided into two categories: the peripheral backup servers and the vicin-

ity backup servers. The peripheral backup servers are a few (about two or three in most

cases) servers that extend far away from the local server N0. The rest of the backup set

are vicinity backup servers which stay very close to N0. Intuitively, the peripheral backup

servers are chosen mainly in response to the risk of correlated failures; the farther they are

from each other, the farther the backup set extends and the less likely the whole backup

set fails in the same correlated fault event. However, having too much peripheral backup

servers incurs much more communication cost yet does not help much in extending the

backup set; the optimal set therefore chooses the rest of its members from the vicinity of

N0, mainly in response to the risk of independent failures.

5.4.3 Heuristic Algorithms Using Minimum Enclosing Circles
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Algorithm 2 MEC-Preserving and Greedy
1: S0 = {N0}
2: Scandidate = {N1, N2 . . . , Nk}
3: let Soptimal = null; let Soptimal.cost = +∞
4: for all three-server subset {Na, Nb, Nc} ⊆ Scandiate do
5: find the minimum enclosing circle E that covers all content servers in S0∪{Na, Nb, Nc}
6: let Scovered be the set of nodes that belong to Scandidate and are covered by circle E
7: if (S0 ∪ Scovered).availability < Al then
8: continue to next loop (goto line 4)
9: end if

10: let Spreserve be the set of servers that belong to {Na, Nb, Nc} and are on the circle E
11: let Sincircle = Scovered − Spreserve

12: Sort all servers in Sincircle based on their distances to N0. Assume they are
Ni1 , Ni2 , . . . , Nim , in decreasing order.

13: for j = 1 to m do
14: Sincircle = Sincircle −Nij

15: if (S0 ∪ Spreserve ∪ Sincircle).availability < Al then
16: Spreserve = Spreserve ∪ {Nij}
17: end if
18: end for
19: if (S0 ∪ Spreserve).availability < Al and (S0 ∪ Spreserve).cost < Soptimal.cost then
20: Soptimal = S0 ∪ Spreserve

21: end if
22: end for
23: Algorithm exits. If Soptimal is null, then there is no feasible backup set that can achieve

availability Al; otherwise, Soptimal − {N0} is the optimal backup set.

Based on the above observations, we propose heuristic algorithms, where minimum

enclosing circles are used as a geometric indication of the extension of the backup sets.

Algorithm 1 gives the pseudo-code of a heuristic algorithm that utilizes the minimum en-

closing circle. The basic idea is to try out every three-server combinations of the candidate

content servers — though there are exponential number of possible subsets of the candidate

content servers, they share only polynomial number of minimum enclosing circles because

the minimum enclosing circle of a set of content servers is determined by no more than three

of the servers in the set. For each three-server combination {Na, Nb, Nc} under considera-

tion, the algorithm first finds the minimum enclosing circle E that covers both {Na, Nb, Nc}
and S0 and find all candidate content servers that are covered by E ; next the algorithm

preserves the servers on the circle and greedily deletes servers in the circle one by one (in

decreasing order based on their distances to N0) without violating the availability lower
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Figure 29: Performance of Optimization Algorithms

bound Al. Among all the residue sets, each computed for one three-server combination,

the algorithm chooses the minimum-cost one as the final output. Same as the case in the

branch-and-bound algorithm, the initial backup set S0 does not have to contain only the

local content server N0. It could comprise multiple content servers and this is useful for the

scenario that one or more servers in an existing backup set of N0 fail and one wants to keep

some of the remaining servers in the current backup set when computing the new backup

set. This feature will be used in Section 5.5 when we discuss reconfiguration issues in data

replication.

A variation of Algorithm 1 is to consider every two-server combinations instead of three-

server combinations. In the remainder of the chapter, we refer to this variation as MEC-2

and the original one as MEC-3. Compared with MEC-3, MEC-2 considers fewer enclosing

circles but it is also computationally less costly. Both run in polynomial time. Note that

there are a few algorithms for computing minimum enclosing circles, the best of which

has a complexity of O(n), where n is the number of servers under consideration. A good

summarization of these algorithms can be found in [91].

5.4.4 Performance of Heuristic Algorithms

In this section, we evaluate the performance of the heuristic algorithms. For content re-

siliency service networks with relative small number of servers, we are able to compare the

cost of the backup sets output by the MEC-2 and MEC-3 algorithms with that of the optimal
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ones output by the branch-and-bound algorithm. Fig. 29.a shows the costs of the backup

sets for every servers when we use the same experiment setup described in Section 5.4.2 and

set Pind = 0.1, Pcorr = 0.00017. The figure shows that generally MEC-3 performs better

than MEC-2 but both have good performance. This indicates that the heuristics we drew

by observing the properties of optimal backup sets are valid and their use in MEC-2 and

MEC-3 is beneficial.

For content resiliency service networks with a large number of content servers, it is

impossible for us to compare the performance of our heuristic algorithms with that of the

branch-and-bound algorithm. Instead, we compare them with a nearest-random algorithm:

the algorithm first determines beforehand the size of the backup set, e.g., m; then it ran-

domly chooses m servers from a lookup scope that increases from the nearest m servers, to

the nearest 2m servers, to the nearest 3m servers, ..., until it finds a solution that meets

the target availability bound Al or fails if it cannot find such a solution during the whole

process. Note that the nearest-random algorithm is not one we coin for pure comparison

purpose. Actually, it is a practically useful algorithm in the scenarios where extremely low

computational complexity is desired.

Fig. 29.b compare the results of MEC-2 with those of nearest-random algorithm for a

system with 50 nodes. The radius of the fault field is set to 1500, the average radius of fault

is set to 200, and the values of other parameters are the same as in the previous experiments.

The numbers for the nearest-random algorithm in the figure are the average (mean) from

running the algorithm 10 times assuming the size of the backup set is 5 (we also tried other

sizes, among which 5 generally gives the best backup sets in this experiment.) The figure

shows that our heuristic algorithms perform significantly better than the nearest-random

algorithm, largely helped by the heuristic previously learned in the case study.

5.5 Dynamic Configuration Problem in Content Resiliency
Service

The problem of selecting replication locations becomes more complex when we consider

the overall cost incurred in the system over a longer term (e.g., many time slots) under
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dynamic system conditions. When system conditions change over time, the configuration

of replication locations might need to be dynamically adjusted and this incurs additional

reconfiguration cost. A cost-effective reconfiguration strategy for data replication should

therefore consider both the static prevention cost and the reconfiguration cost, importantly,

from a long-term perspective instead of a short-term point of view. Various factors could

contribute to the dynamic conditions in the system. For example, the risk level of the

system (e.g., the parameters in the failure models described in Section 5.3.1) could change

over time. It is also possible that the recovery of failed content servers takes more than one

time slots and content servers do not only fail dynamically but also come back to service

dynamically. In this thesis, we concentrate on the cost effective reconfiguration problem

in content resiliency networks under dynamic conditions caused by the fail-and-revive of

servers. We believe that much of our results presented in this section are also applicable to

systems under other dynamic conditions.

5.5.1 Problem Formulation

When a content server in the content resiliency service network fails, we assume it will be

repaired and come back to service with a probability of Prev during each time slot after its

failure. Note that although content servers could fail both independently and correlatively,

we assume their revivals are independent; intuitively, the revivals of nodes usually involve

various stages (e.g., repairing hardware, powering up, restarting operating system, restarting

softwares) and therefore tend to be independent from each other.

Reconfiguration Cost The reconfiguration cost is the protocol cost of changing replication

configurations, e.g., setting up and tearing down the backup relationships between content

servers. In this thesis, we estimate the reconfiguration cost with the number of backup

relationships that need to be changed during a reconfiguration. Formally, assume the old

backup set for a content server is Sold and the new backup set after reconfiguration is Snew,

then we estimate the reconfiguration cost with the following equation:

R(Sold, Snew) = |Sold ∪ Snew − Sold ∩ Snew| (20)

We also assume for simplicity that all reconfigurations are conducted at the end of time
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slots.

Overall Cost In a system that runs L time slots, the overall prevention cost associated

with a local content server NA includes two types of cost: the static prevention cost incurred

in each time slot for replicating the data it received from local users, and the reconfiguration

cost incurred during each reconfiguration of its backup set. Formally, the overall cost is

T (NA) =
L∑

t=1

[C(NA, St
A) + β · R(St−1

A , St
A)] (21)

where St
A is the backup set of node NA at the beginning of time slot t for t > 0 and S0

A = φ.

If the backup set is reconfigured at the end of time slot t − 1, St
A is different from St−1

A ;

otherwise, they are the same. The weighting factor β is used to reflect how the actual

protocol cost of setting up or tearing down one backup relationship is weighted against the

static prevention cost numerically. Its value is specific to the actual method of conducting

the reconfiguration.

The goal of prevention cost minimization in dynamic environments is therefore to find

a reconfiguration policy that helps to decide the sequence of backup sets {S1
A, S2

A, . . . , SL
A}

such that the long-term average of the overall prevention cost (i.e., lim infL→∞ T (NA)) is

minimized and meanwhile the availability A(NA ∪ St
A) is maintained over the lower bound

Al for any time t.

5.5.2 Dynamic Reconfiguration Policies

A straightforward reconfiguration policy is to always recompute and reconfigure to the

statically optimal backup set at the end of each time slot based on current system condition,

i.e., the failed/alive state of the content servers. We refer to this policy as the Eager-

Change Policy(ECP). Fig. 30 shows the availability, static prevention cost (communication

cost) and reconfiguration cost associated with a content server during each of 100 time

slots when the ECP policy is adopted. Fig. 30.a (upper left) shows that the ECP policy

maintains the availability right above the target level. Fig. 30.b (upper right) shows that the

communication cost varies over different time slots, indicating that the ECP policy keeps

adjusting the backup set when some content servers fail and revive over time. Figure 30.c

(bottom middle) shows the reconfiguration cost incurred in each time slot. The bars below
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Figure 30: ECP: Availability, Communication Cost and Reconfiguration Cost

the x-axis represent the reconfigurations that happen when the availability of an old backup

set drops below Al; this happens when one more nodes in the old backup set fail during the

time slot. The bars above the x-axis represent the reconfigurations that happen when the

availability of old backup set is still above Al; the reconfigurations are triggered because

one or more previously failed content servers revive from failure and make better options of

backup set available.

The ECP policy aggressively adapts to system conditions and therefore can minimize the

total communication cost. But its aggressiveness also potentially incurs a large amount of

reconfiguration cost. For systems where the reconfiguration cost is lightly weighted (i.e.,the

weighting factor β in Eq. 20 is small), ECP is a good policy due to its effectiveness in

reducing the total communication cost. However, for systems where the value of β is large,

the reduction in communication cost can not be justified by the increase in reconfiguration

cost and a less aggressive policy is more favorable. In the remainder of this section, we

discuss an Incremental Adjustment With Thresholds Policy(IATP), which allows us to tune
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the aggressiveness of system and make tradeoffs between the reconfiguration cost and the

communication cost based on different value of β.

As the name suggests, the IATP policy is incremental and threshold-based. It works as

follows. At the end of each time slot t, the system checks the current backup set St
A for

each content server NA. There are three cases.

Case 1 No content server in St
A has failed in the time slot and no content server outside

St
A has revived from previous failure either. That is, the system conditions did not change

during the time slot. In this case, there is no need to adjust the backup set and therefore

St+1
A = St

A.

Case 2 One or more content servers in St
A have failed in the time slot. In such case,

the system checks the set of survived content servers in St
A, denoted by Ŝt

A, and evaluate

the availability of A(NA ∪ Ŝt
A). If the availability stays above Al, the system keeps Ŝt

A

as the the new backup set for the next time slot, i.e., St+1
A = Ŝt

A. Otherwise, the system

needs to compute a new backup set to bring the availability back above Al. Instead of being

totally memoryless, the computation of the new backup set is incremental; it is done by only

adding nodes to Ŝt
A. Both the branch-and-bound and the heuristic algorithms described

in Section 5.4 can provide this adding-only feature by setting the initial backup set S0 to

Ŝt
A ∪ {NA}. The details have been discussed in that section.

Case 3 No content server in St
A has failed but one or more nodes outside St

A have revived

from previous failures in the time slot. In this case, it is possible that a new choice of

backup set with less communication cost becomes available and the system needs to make

a decision on whether to reconfigure. In IATP policy, such decision is made based on a

threshold as follows. The system first finds the statically optimal backup set that incurs the

minimum communication cost, denoted by S̄t+1
A , based on the current set of alive candidate

content servers, using the algorithms described in Section 5.4. It then calculate the ratio

of the communication cost of St
A to that of S̄t+1

A . If the ratio is greater than a threshold ψ

(ψ ≥ 1), then the system reconfigures the backup set to S̄t+1
A , i.e., St+1

A = S̄t+1
A ; otherwise,

it keeps the current one, i.e., St+1
A = St

A.

The threshold ψ acts as a tunable parameter of the policy. Intuitively, the greater the
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Figure 31: IATP: Communication Cost and Reconfiguration Cost Affected by Threshold
Ψ

value of ψ is, the less aggressive the policy is, and this results in more communication cost

but less reconfiguration cost. The choice of ψ depends on the weighting factor β. Note that

ECP policy is a special case of IATP where the parameter ψ is set to 1.

Fig. 31 shows how the communication cost and reconfiguration cost are affected by the

threshold Ψ when the IATP policy is adopted. The experiment parameters are the same

as for Fig. 30. The figure shows that when the value of Ψ increases, the communication

cost increases and the reconfiguration cost decreases. Percentage wise, the reconfiguration

cost is more sensitive to Ψ than the communication cost is. This is due to the adding-only

behavior of IATP when computing new backup sets in Case 2. Intuitively, according to

the observations we acquired in Section 5.4, much of the backup set are vicinity nodes that

stay close to NA; reusing these nodes in the new backup set reduces the reconfiguration

cost without increasing much in the communication cost. Fig.32 shows how the overall cost

is affected by the threshold Ψ when the system has a different weighting factor β for the

reconfiguration cost. The figures show that for small β (e.g., Fig. 32.a), ECP , which is a

special case of IATP where Ψ = 1, is actually the best policy. This does not hold anymore

for other values of β (e.g., Fig.32.b-d), and IATP provides the tunability for finding a better

dynamic reconfiguration policy. The optimal value of Ψ = 1 depends on β and generally a

greater β needs a greater Ψ.

An extension to the IATP policy is to introduce a second threshold A′l: when the

system reconfigures the backup set in Case 3, it computes the new backup set using an
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Figure 32: IATP: Overall Cost Affected by Threshold Ψ and Weighting Factor β

availability target A′l instead of Al (A′l ≥ Al). This results in a policy with two tunable

parameters and gives additional control on the tradeoff between the communication cost

and the reconfiguration.

5.6 Summary

In this chapter, we have studied the problem of selecting cost-effective replication locations

in content resiliency service networks in the presence of both correlated failures and in-

dependent failures. One critical component in the development of cost effective resiliency

strategies is the assessment of failure risks for a given system. For that end, we proposed

a general approach to modeling correlated failures in an representable, quantifiable and

consistent way. We applied the approach to geographically correlated failures and pro-

posed new failure models that allow for the computation of data availability in content

resiliency service against both independent and geographically correlated failures. Using
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the failure models, we formulated the problem of selecting cost-effective replication loca-

tions and developed two types of algorithms for solving this constrained cost minimization

problem. We first developed a branch-and-bound algorithm, which is practically capable

of finding real optimal solutions for content resiliency service with up to 30 servers. We

then conducted case studies on small-scale problems using the branch-and-bound algorithm,

observed properties of the optimal solutions, and proposed heuristic-based algorithms that

are computationally efficient for large-scale problems yet generate good-quality solutions.

Furthermore, for content resiliency service networks that have dynamic conditions and need

dynamic reconfiguration of replication locations over time, we also investigated reconfigu-

ration policies for reducing the long-term overall prevention cost, i.e., including both the

communication cost and the reconfiguration cost. A straightforward reconfiguration policy,

Eager Change Policy (ECP), was studied first and its limitations was revealed. We then

proposed an Incremental Adjustment With Thresholds Policy (IATP) that provides the

tunability to make tradeoffs between the communication cost and the reconfiguration cost.

Possible ways of extending the failure models, availability models and communication

cost modes presented in this chapter are discussed in Section 6.2.2.
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CHAPTER VI

CONTRIBUTIONS OF THE THESIS AND FUTURE

WORK

In this chapter, we summarize the contributions we have made during the studies presented

in this thesis. There are many directions in which these studies can be extended or supple-

mented. So in this chapter, we also present several such directions that we consider most

interesting.

6.1 Summary of Contributions

Configuration capabilities are important for modern advanced network services. Network

conditions and user populations have been significantly diversified after decades of evolution

of the Internet. Configuration capabilities allow network services to be adapted to special,

temporal, and managerial variations in application requirements and service operation con-

ditions.

Network service providers need to decide on the best configuration. Ideally, a network

service should have all of its components optimally configured to most effectively deliver the

functionality for which it was designed. The “optimal” configuration, however, is always a

compromise between different metrics. To decide on an optimal configuration, the prominent

performance and cost metrics must be identified, modeled, and quantified. Optimization

objective functions and constraints that combine these metrics should be formulated and

optimization techniques should be developed. More important, in the scenarios where the

application requirements and system conditions change over time, the service configuration

needs to be dynamically adjusted and strategies that guide the reconfiguration decisions

need to be developed. Because the actual process of configuring a network service in-

curs configuration costs, an optimal reconfiguration strategy should be one that achieves
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a tradeoff between the (re)configuration costs and static optimization objectives. Further-

more, such tradeoffs must be based on the consideration of long-term benefits instead of

short-term interest.

This thesis focuses on understanding the strategies for dynamic (re)configuration of ad-

vanced network services positioned above the Transport Layer. Specifically, this thesis in-

vestigates the configuration and more important dynamic reconfiguration strategies for two

types of advanced network services: Service Overlay Networks, and Content Resiliency Ser-

vice Networks. Unlike those network services whose configuration involves mainly arrange-

ment of hard-wired components, these network services have the ability to change service

configuration in small time scales. This makes the modeling of application requirements

and system condition dynamics not only possible but also meaningful and potentially useful.

Our ultimate goals in conducting the research presented in this thesis are to first develop

modeling and optimization techniques for network service configuration and dynamic re-

configuration policies. We also seek to understand how effective techniques can improve the

performance or reduce the cost of these advanced network services, thus demonstrating the

advantage of allowing configurability in these advanced network services.

The contribution of this thesis are summarized as follows:

Configuring overlay network topology for static demands In this thesis, we studies

the static topology configuration problem for service overlay networks. The thesis identifies

relevant factors in different layers of a service overlay network, discussed types of cost that

could be incurred in the system, and formally defined the static topology configuration

problem for service overlay networks as the problem of finding the optimal overlay topology

that can minimize the overall static operation cost incurred in an service overlay network

for given static communication requirements. The thesis then discusses the complexity

of the static overlay topology configuration problem and shows that the problem is NP-

hard. The thesis also presents a simulated annealing based heuristic method of finding

the optimal solution for the static topology configuration problem. The thesis conduct

performance evaluation that shows the heuristic method has generate overlay topologies

with good quality and is applicable to service overlay networks with large number of nodes.
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The thesis also gives an integer linear programming formulation for the the static topol-

ogy configuration problem for service overlay networks. Such a formulation allows general

tools for solving integer linear programming problems to be applied to the static overlay

topology configuration problem. This is especially useful for service overlay networks that

has only small number of nodes.

Configuring overlay network topology for dynamic demands

This thesis studies the problem of dynamically reconfiguring the topology of an overlay

network in response to the changes in the communication requirements. The thesis identifies

the relevant factors in a service overlay network that affect the cost of using the overlay.

The thesis considers two costs of using an service overlay network: the occupancy cost and

the reconfiguration cost. This thesis presents the overhead involved in the reconfiguration

of overlay topology by analysis as well as experiment over the Planet-Lab. The ideal goal

is to find the optimal reconfiguration policies that can minimize the potential overall cost

of using an overlay. The problem is NP-hard and good approximate policies are called for.

Through experiments on small systems with Markovian properties, the thesis studies the

structure of the dynamic overlay topology reconfiguration problem, as well as the properties

and structures of the optimal reconfiguration policies. To do so, the thesis presents a

Markov decision process model for the dynamic overlay topology reconfiguration problem

and solves the small Markovian cases using Howard’s policy-iteration algorithm. Based on

the heuristics collected from the case studies, the thesis proposes various heuristic-based

methods of constructing different flavors of reconfiguration policies, i.e., never-change policy,

always-change policy and cluster-based policies, to mimic and approximate the optimal ones.

The thesis evaluates the quality of the dynamic overlay topology reconfiguration policies

constructed using these heuristic methods and shows that the constructed policies achieve

good performance. The thesis provides evidence that the high configurability built in the

overlay networks is beneficial for reducing the total operation cost when appropriate dy-

namic reconfiguration policies are use. The thesis also shows that these policy construction

methods are helpful for studying other overlay design problems.

Configuring replication relationship in content resiliency service network
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This thesis studies the problem of selecting cost-effective replication locations in content

resiliency service network in the presence of both correlated failures and independent fail-

ures. One critical component in the development of cost effective resiliency strategies is the

assessment of failure risks for a given system. For that end, this thesis proposes a general

approach for modeling correlated failures in an representable, quantifiable and consistent

way. The thesis then applies the approach to geographically correlated failures and proposes

new failure models that allow for the computation of data availability in content resiliency

service against both independent and geographically correlated failures.

Using the failure models, the thesis formulates the problem of selecting cost-effective

replication locations and developed two types of algorithms for solving this constrained

cost minimization problem. It first develops a branch-and-bound algorithm, which is prac-

tically capable of finding real optimal solutions for content resiliency service with up to 30

servers. It then conducts case studies on small-scale problems using the branch-and-bound

algorithm, observes properties of the optimal solutions, and proposes heuristic-based algo-

rithms based on minimum enclosing circles. For content resiliency service networks that have

dynamic conditions and need dynamic reconfiguration of replication locations over time, the

thesis also investigates dynamic reconfiguration policies for reducing the long-term overall

prevention cost, i.e., including both the communication cost and the reconfiguration cost.

The thesis discusses a straightforward reconfiguration policy, Eager Change Policy (ECP),

and reveals its limitations. It then proposes an Incremental Adjustment With Thresholds

Policy (IATP) that provides the tunability to make tradeoffs between the communication

cost and the reconfiguration cost.

6.2 Future Work

6.2.1 Dynamic Configuration of Sensing Overlay Networks

A sensing overlay network is an overlay network formed over many sensing devices and

processing devices. A sensing device could be any kind of instrument, including both hard-

ware and software, that can collecting information from the environment where it resides.

Examples of sensing devices include sensors developed for automatic manufacture systems,
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military and meteorological satellites, radars installed at weather stations, monitoring cam-

era installed over highways and intersections, networking monitoring software and trace

collectors, and honey-pots deployed to trace computer viruses and spam. And a processing

device can be any instrument that provides some specific functions of processing the in-

formation. Examples of processing devices can be as complex as a video/audio integration

unit or as simple as a general purpose computer running various processing software. Note

that a sensing device can also have processing capabilities and act as a processing device

simultaneously. The recent rapid improvement in wireless technologies and overlay tech-

nologies has opened a door for researchers to investigate the possibility of connecting all

sensing and processing devices over the Internet and integrate all their sensing/processing

capabilities into a massive sensing network that supports large scale complex queries from

the users.

Fig.33 presents a possible architecture for sensing overlay networks. In the figure, the

sensing overlay network is formed over sensing devices, processing devices, and proxies,

which act as representatives for sensing/processing devices with weak network connectivity.

When an end user submit a complex query (a query that involves many information sources

and multiple stages of processing) to the sensing overlay network, entities who can contribute

in responding the query cooperate to form a runtime overlay topology for the query, along

which the information flow from the sensing entities to the processing entities and finally to
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the end user. Note that, to avoid explosion of incoming traffic at the end user, information

is processed (e.g., filtered, transformed, and aggregated) while flowing in the overlay. This

is a important feature that distinguishes information fusion networks from information

distribution networks.

Query-specific topology configuration is an important issues in sensing overlay networks.

Usually, when end users specify the information sources in a complex queries, they specify

only the properties (e.g., location, type, accuracy) of the sources instead of the exact phys-

ical sensing devices. As a result, there could be multiple sensing devices that can provide

the same piece of information required by the query. Similar the case is for processing ele-

ments in the query. The many-to-one relationship between the logical elements in a complex

queries to the physical sensing/processing devices renders a large number of possible ways

in which a query can be actually performed. Different options result in different overlay

topologies, which incur different operation cost (e.g., bandwidth consumption) or perfor-

mance (e.g.,delay). The problem is more complex when multiple users submit queries in

the same time. Instead of forming one topology for each query, the sensing overlay network

can merge the elements of all ongoing queries and form a common topology.

Dynamic configuration issues are especially interesting in sensing overlay networks be-

cause of the interactive nature of queries — users may change their queries in very short

time intervals and therefore the overlay topology may need to be continually updated. This

dynamic configuration problem is very similar to dynamic configuration problem we have

discussed in Chapter IV in the context of service overlay networks. Essentially, we believe

that the principle of aggressiveness will be the same for the dynamic reconfiguration policies

in this new context. But we also expect that the problem formulation in the new context

will be different enough for calling for new optimization techniques.

6.2.2 Extension to The Study of Content Resiliency Service

In this section, we discuss potential directions of extending the models, e.g., failure models,

availability models and cost models, that has been presented in Chapter V. Note that

such extensions change the formulation of the static configuration problem presented in
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Section 5.3, and as a result, the optimization algorithms developed in Section 5.4 may not

still be applicable and different optimization algorithms may need to be developed.

Failure Models: The geographically correlated failure model presented in Section 5.3.1

can be extended in at two ways.

First, the failure model presented in Section 5.3.1 assumes the distribution of fault

events in the fault field is uniformly random. This uniform distribution function can be

generalized to any probability function over the two-dimension fault field. For example,

historic statistic data about earthquakes [41] can be used to generate such a distribution

model for fault events.

Second, the failure model presented in Section 5.3.1 uses impact circles to model the

impact of fault events. In the model, while the size of the circle is probabilistic, once the

impact circle is given, the impact of the fault event to content servers is deterministic —

a content server either fails or survives totally depending on whether it resides inside or

outside the circle. A more general impact model could be one that describes the impact

of fault events with a probabilistic function of the distance between the fault event and

the content servers. In such case, when a fault event happens, a content server that is

local to the fault event does not deterministically fails before a remote content server fails.

While impact model presented in Section 5.3.1 is intuitively more suitable for modeling

power outages, this more general impact model is intuitively more suitable for modeling

environmental risks such as earthquake and storms.

Communication Cost Models: In Section 5.3.3 we model the communication cost of

moving data from a content server to another content server with a cost function is composed

of a linear term and a quadratic term of the Euclidean distance (geographical distance in this

case) between the two content servers. In practice, such communication cost model is not

necessarily an accurate one — while the cost of network links is intrinsically a function of the

geographic distances spanned those links[83], the communication cost between two content

servers may not take a simple form due to variation in network topologies, server locations

and BGP routing policies. The most general communication cost model is a all-pair cost

matrix that characterizes the communication cost between every pair of content servers, as
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the one described in Section 3.2.1 where we discuss service overlay networks. With such

a communication cost model, the branch-and-bound optimization algorithm presented in

Section 5.4 still applies. The heuristic-based algorithms presented in Section 5.4 also still

applies, except that ”vicinity” is now defined in terms of communication cost instead of

geographical distance while ”peripheral” is still defined in terms of geographical distance.

Furthermore, in Section 5.3.3, we use a relative simple communication cost model by

assuming data are delivered between content servers using unicast. An alternative is to

have content servers relay traffic during the replication process, e.g., using overlay multicast.

The communication cost formulation will become much more complex, addressing not only

the communication cost between pairs of servers but also the actual relaying protocols

and multicast overlay topologies. When relaying is used, expanding a backup set does not

necessarily monotonically increase the communication cost for delivering data to the backup

set. The branch-and-bound algorithm hence does not apply anymore because this breaks

the bounding logic in the algorithm. However, the heuristic-based algorithms should still

apply because they do not rely on the bounding logic. But their performance under this

new context needs further investigation.

Availability Models: The availability model in the formulation of the static configuration

problem will be different if erasure coding [79] is used in content resiliency service networks.

Instead of straightforwardly replicating a whole trunk of data to multiple nodes and hoping

at least one of them will survive the failures, systems using erasure coding transfer a data

of n blocks into an encoding of m (m > n) blocks (in such a way that one can recover

the original data from only n of the m blocks), and then distribute each of the m encoding

blocks to a certain number of backup content servers, hoping at least n of m encoding blocks

will survive the failures.

When erasure coding is used, a piece of data is available if n of its m encoding blocks can

be collected from alive content servers. Because the calculation of availability is different,

the minimization of the prevention cost depends on both the redundancy factor ρ = m
n and

the selection of m replication locations. It is interesting to make a comparison in terms of

cost-effectiveness between the a content resiliency service network using straight replication
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and one using erasure coding. Similar comparison has been previously conducted in the

literature [10][60], but under the assumption that failures are independent only. It would be

interesting to see if their conclusions still hold when correlated failures are also considered,

especially when the probability of correlated failures can be quantified using a good failure

model.

94



REFERENCES

[1] Anagnostopoulos, A., Michel, L., Hentenryck, P. V., and Vergados, Y., “A
simulated annealing approach to the traveling tournament problem,” in Proceedings
CPAIOR’03, (Montreal, Canada), 2003.

[2] Andersen, D. G., Balakrishnan, H., Kaashoek, M. F., and Morris, R., “Re-
silient overlay networks,” in Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP-01), (New York), pp. 131–145, 2001.

[3] Awduche, D. O., Chiu, A., Elwalid, A. I., Widjaja, I., and Xiao, X., “Overview
and principles of Internet traffic engineering,” RFC 3272, Internet Engineering Task
Force, May 2002.

[4] Bahiense, L., Barahona, F., and Porto, O., “Solving steiner tree problems in
graphs with lagrangian relaxation.,” J. Comb. Optim., vol. 7, no. 3, pp. 259–282, 2003.

[5] Bakkaloglu, M., Wylie, J. J., Wang, C., and Ganger, G. R., “Modeling corre-
lated failures in survivable storage systems,” in Fast Abstract at International Confer-
ence on Dependable Systems & Networks, IEEE, June 2002.

[6] Balldine, I. and Rouskas, G., “Dynamic load balancing in broadcast WDM net-
works with tuning latencies,” in Proceedings of the Conference on Computer Commu-
nications (IEEE Infocom), March/April 1998.

[7] Banerjee, S., Bhattacharjee, B., Kommareddy, C., and Varghese, G., “Scal-
able application layer multicast,” in Proceedings of the ACM SIGCOMM 2002, (New
York), pp. 205–220, 2002.

[8] Banerjee, S., Bhattacharjee, B., and Kommareddy, C., “Scalable application
layer multicast,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 205–217,
2002.

[9] Beck, M., Moore, T., and Plank, J. S., “An end-to-end approach to globally scal-
able programmable networking,” in FDNA ’03: Proceedings of the ACM SIGCOMM
workshop on Future directions in network architecture, ACM Press, 2003.

[10] Bhagwan, R., Tati, K., Cheng, Y., Savage, S., and Voelker, G., “Total Re-
call: System support for automated availability management,” in Proceeding of First
ACM/Usenix Symposium on Networked Systems Design and Implementation (NSDI),
2004.

[11] Boorstyn, R. R. and Frank, H., “Large-scale network topological optimization,”
IEEE Transactions on Reliability, 1977.

[12] bram cohen, “Bittorrent protocol, http://www.bittorrent.com/protocol.html,” 2003.

[13] CAIDA, “Macroscopic topology measurements project.”
http://www.caida.org/analysis/topology/.

95



[14] Calvert, K. and Zegura, E. W., “Gt-itm: Georgia tech internetwork topology
models.” http://www.cc.gatech.edu/fac/Ellen. Zegura/gt-itm/gt-itm.tar.gz, 1996.

[15] Calvert, K. L., Doar, M. B., and Zegura, E. W., “Modeling internet topology,”
IEEE Communications Magazine, vol. 35, pp. 160–163, June 1997.

[16] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., and
Singh, A., “Splitstream: high-bandwidth multicast in cooperative environments,”
in SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, (New York, NY, USA), pp. 298–313, ACM Press, 2003.

[17] Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A., “Scribe: A
large-scale and decentralized application-level multicast infrastructure,” IEEE Journal
on Selected Areas in Communication (JSAC), vol. 20, Oct. 2002.

[18] Chawathe, Y., McCanne, S., and Brewer, E. A., “Rmx: Reliable multicast for
heterogeneous networks.,” in INFOCOM, pp. 795–804, 2000.

[19] Chawathe, Y. D., Scattercast: an architecture for internet broadcast distribution as
an infrastructure service. PhD thesis, 2000. Chair-Eric A. Brewer.

[20] Chu, Y.-H., Rao, S. G., and Zhang, H., “A case for end system multicast,” in ACM
SIGMETRICS 2000, (Santa Clara, CA), pp. 1–12, ACM, June 2000.

[21] Chu, Y.-H., Rao, S. G., and Zhang, H., “A case for end system multicast,” in ACM
SIGMETRICS 2000, (Santa Clara, CA), pp. 1–12, ACM, June 2000.

[22] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W., “Freenet: A distributed
anonymous information storage and retrieval system,” Lecture Notes in Computer Sci-
ence, vol. 2009, pp. 46+, 2001.

[23] Clip2, “The gnutella protocol specification v0.4.”
http://www9.limewire.com/developer/gnutella-protocol-0.4.pdf, 2002.

[24] Cugola, G., Frey, D., Murphy, A. L., and Picco, G. P., “Minimizing the re-
configuration overhead in content-based publish-subscribe,” in SAC ’04: Proceedings
of the 2004 ACM symposium on Applied computing, pp. 1134–1140, ACM Press, 2004.

[25] Dhondy, N. and Peteren, D., “GDPS: The e-business availability solution.” IBM
White Paper, March 2004.

[26] Duan, Z., Zhang, Z.-L., and Hou, Y. T., “Service overlay networks: Slas, qos, and
bandwidth provisioning,” IEEE/ACM Trans. Netw., vol. 11, no. 6, pp. 870–883, 2003.

[27] Elbaum, R. and Sidi, M., “Topological design of local-area networks using genetic
algorithms,” IEEE/ACM Trans. Netw., vol. 4, no. 5, pp. 766–778, 1996.

[28] Eriksson, H., “Mbone: the multicast backbone,” Commun. ACM, vol. 37, no. 8,
pp. 54–60, 1994.

[29] Faloutsos, M., Faloutsos, P., and Faloutsos, C., “On power-law relationships
of the internet topology,” in SIGCOMM ’99: Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer communication, (New
York, NY, USA), pp. 251–262, ACM Press, 1999.

96



[30] Fan, J. and Ammar, M. H., “Dynamic topology reconfiguration of overlay networks:
Structure and approximation of optimal policies,” 2004.

[31] Fan, J., Pendarakis, D., and Liu, Z., “Cost-effective data resiliency: A study of
geographically correlated failures and their impact on data replication strategies,” 2004.

[32] Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A., and van der
Merwe, J., “The case for separating routing from routers,” in FDNA ’04: Proceedings
of the ACM SIGCOMM workshop on Future directions in network architecture, ACM
Press, 2004.

[33] Fink, R., “Network integration — boning up on IPv6 — the 6bone global test bed will
become the new Internet,” Byte Magazine, vol. 23, pp. 96NA–3–96NA–8, Mar. 1998.

[34] Francis, P., “Yoid : Extending the multicast internet architecture.” White Paper,
http://www.aciri.org/yoid, April 1999.

[35] Ganesan, D., Govindan, R., Shenker, S., and Estrin, D., “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” in Proceedings of the
2nd ACM international symposium on Mobile ad hoc networking & computing, pp. 251–
254, 2001.

[36] Gerstel, O., Cidon, I., and Zaks, S., “The layout of virtual paths in atm networks,”
IEEE/ACM Transaction of Networking, vol. 4, no. 6, pp. 873–884, 1996.

[37] Gold, R., Gunningberg, P., and Tschudin, C., “A virtualized link layer with
support for indirection,” in FDNA ’04: Proceedings of the ACM SIGCOMM workshop
on Future directions in network architecture, pp. 28–34, ACM Press, 2004.

[38] Hadama, H., Kawamura, R., Izaki, T., and Tokizawa, I., “Direct virtual path
configuration in large-scale atm networks.,” in INFOCOM, pp. 201–207, 1994.

[39] Heckmann, O. and Bock, A., “The eDonkey 2000 Protocol,” Tech. Rep. KOM-TR-
08-2002, Multimedia Communications Lab, Darmstadt University of Technology, Dec.
2002.

[40] Howard, R. A., Dynamic Programming and Markov Processes. Cambridge, Massa-
chusetts: The MIT Press, 1960.

[41] http://www.data.scec.org/Module/s2act04.html, “An in-depth look at earth-
quake distribution.”

[42] http://www.kazaa.com, 2000.

[43] http://www.naptser.com, 2000.

[44] http://www.skype.com, 2004.

[45] Ingber, L., “Simulated annealing: Practice versus theory,” Mathl. Comput. Modelling,
vol. 18, no. 11, pp. 29–57, 1993.

[46] Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., and O’Toole, J.,
“Overcast: Reliable multicasting with an overlay network,” in the 4th Symposium on
Operating Systems Design and Implementation, 2000.

97



[47] Jin, C., Chen, Q., and Jamin, S., “Inet: Internet topology generator,” 2000.

[48] Keromytis, A. D., Misra, V., and Rubenstein, D., “SOS: Secure overlay services,”
in Proceedings of the ACM SIGCOMM 2002, (New York), pp. 61–72, 2002.

[49] Kershenbaum, A., Telecommunications network design algorithms. New York, NY,
USA: McGraw-Hill, Inc., 1993.

[50] Kirkpatrick, S., “Optimization by simulated annealing: quantitative studies,” Jour-
nal of Statistical Physics, vol. 34(5/6), pp. 975–986, 1984.

[51] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by simulated
annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598, pp. 671–680, 1983.

[52] Krishnamurthy, B., Wills, C., and Zhang, Y., “On the use and performance of
content distribution networks,” in IMW ’01: Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pp. 169–182, ACM Press, 2001.

[53] Kwon, M. and Fahmy, S., “Topology-aware overlay networks for group communica-
tion,” in NOSSDAV ’02: Proceedings of the 12th international workshop on Network
and operating systems support for digital audio and video, pp. 127–136, ACM Press,
2002.

[54] Lakshminarayanan, K., Stoica, I., Balakrishnan, H., and Katz, R., “OverQoS:
Offering Internet QoS Using Overlays,” in 1st HotNets Workshop, (Princeton, NJ),
October 2002.

[55] Leblanc, L. J. and Narasimhan, S., “Topological expansion of metropolitan area
networks,” Comput. Netw. ISDN Syst., vol. 26, no. 9, pp. 1235–1248, 1994.

[56] Li, Z. and Mohapatra, P., “QRON: QoS-aware routing in overlay networks,” 2003.
IEEE JSAC, 2003, to appear.

[57] Li, Z. and Mohaparta, P., “The impact of topology on overlay routing service,” in
Proceedings of IEEE INFOCOM’04.

[58] Li, Z. and Mohapatra, P., “Impact of topology on overlay routing service.,” in
INFOCOM, 2004.

[59] Liebeherr, J. and Beam, T. K., “Hypercast: A protocol for maintaining multicast
group members in a logical hypercube topology,” in NGC ’99: Proceedings of the First
International COST264 Workshop on Networked Group Communication, pp. 72–89,
Springer-Verlag, 1999.

[60] Lin, W. K., Chiu, D. M., and Lee, Y. B., “Erasure code replication revisited,”
in Fourth International Conference on Peer-to-Peer Computing (P2P’04), (Zurich,
Switzerland), August 2004.

[61] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller,
E., “Equations of state calculations by fast computing machines,” J. Chem. Phys.,
vol. 21, pp. 1087–1092, 1953.

[62] Minoux, M., “Network synthesis and optimum network design problems: Models,
solution methods and applications,” Networks, no. 19, pp. 313–360, 1989.

98



[63] Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H., “Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications,” in ACM SIGCOMM
2001, (San Diego, CA), September 2001.

[64] Najjar, W. and Gaudiot, J.-L., “Network resilience: A measure of network fault
tolerance,” IEEE Trans. Comput., vol. 39, no. 2, pp. 174–181, 1990.

[65] Nicola, V. F. and Goyal, A., “Modeling of correlated failures and community error
recovery in multiversion software,” IEEE Trans. Softw. Eng., vol. 16, no. 3, pp. 350–
359, 1990.

[66] Oram, A., Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2001.

[67] Padmanabhan, V. N. and Sripanidkulchai, K., “The case for cooperative net-
working,” in Peer-to-Peer Systems: First International Workshop, IPTPS 2002, (Cam-
bridge, MA, USA), pp. 178–190, 2002.

[68] Pendarakis, D., Shi, S., Verma, D., and Waldvogel, M., “ALMI: An application
level multicast infrastructure,” in Proceedings of the 3rd USNIX Symposium on Internet
Technologies and Systems (USITS ’01), (San Francisco, CA, USA), pp. 49–60, Mar.
2001.

[69] Peterson, L., Anderson, T., Culler, D., and Roscoe, T., “A blueprint for
introducing disruptive technology into the internet,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 59–64, 2003.

[70] Peterson, L., Shenker, S., and Turner, J., “Overcoming the Internet Impasse
Through Virtualization,” in Proceedings of the 3rd ACM Workshop on Hot Topics in
Networks (HotNets-III), November 2004.

[71] Pincus, M., “A monte carlo method for the approximate solution of certain types of
constrained optimization problems,” Oper. Res., vol. 18, pp. 1225–1228, 1970.

[72] Pioro, M. and Medhi, D., Routing, Flow, and Capacity Design in Communication
and Computer Networks. Morgan Kaufmann Publishers (an imprint of Elsevier), 2004.

[73] Pioro, M. and Medhi, D., Routing, Flow, and Capacity Design in Communication
and Computer Networks. Morgan Kaufmann Publishers (an imprint of Elsevier), 2004.

[74] Randy H. Katz, Peter Ming-Chien Chen, A. L. C. D. E. K. L. K. L. E. L. M.
S. S. and Patterson, D. A., “Raid-ii: Design and implementation of a large scale
disk array controller,” Tech. Rep. UCB/CSD-92-705, EECS Department, University of
California, Berkeley, 1992.

[75] Ratnasamy, S., Handley, M., Karp, R., and Shenker, S., “Topologically-aware
overlay construction and server selection,” in Proceedings of IEEE INFOCOM’02, 6
2002.

[76] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S., “A scal-
able content-addressable network,” in Proceedings of the 2001 conference on applica-
tions, technologies, architectures, and protocols for computer communications, pp. 161–
172, ACM Press, 2001.

99



[77] Ratnasamy, S., Handley, M., Karp, R. M., and Shenker, S., “Topologically-
aware overlay construction and server selection.,” in INFOCOM, 2002.

[78] Redundancy, E. R., “Appears in proceedings of the 11th ieee international conference
on network protocols (icnp 2003).”

[79] Rizzo, L., “Effective erasure codes for reliable computer communication protocols,”
SIGCOMM Comput. Commun. Rev., vol. 27, no. 2, pp. 24–36, 1997.

[80] Rouskas, G. N. and Ammar, M. H., “Dynamic reconguration in multihop WDM
networks,” Journal of High Speed Networks, 1995.

[81] Rowstron, A. and Druschel, P., “Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems,” Lecture Notes in Computer Science,
vol. 2218, 2001.

[82] S. Pierre, M. A. Hyppolite, J. M. B. and Dioume, O., “Topological design of
computer communication networks using simulated annealing,” Engineering applica-
tion of artificial intelligence, 1995.

[83] Shi, S. and Turner, J., “Issues in overlay multicast networks: Dynamic routing and
communication cost,” 2002.

[84] Shi, S. and Turner, J. S., “Routing in overlay multicast networks.,” in INFOCOM,
2002.

[85] Sundararaj, A., Gupta, A., and Dinda, P., “Dynamic topology adaptation in vir-
tual networks of virtual machines,” in LCR 2004: Proceedings of the Seventh Workshop
on Langauges, Compilers and Run-time Support for Scalable Systems.

[86] Touch, J., Wang, Y., Eggert, L., and Finn, G., “A virtual internet architecture,”
technical report, ISI, ISI-TR-2003-570, March 2003.

[87] Touch, J., “Dynamic internet overlay deployment and management using the x-bone,”
Computer Networks, vol. 36, no. 2-3, pp. 117–135, 2001.

[88] Treaster, M., “A Survey of Fault-Tolerance and Fault-Recovery Techniques in Par-
allel Systems,” ArXiv Computer Science e-prints, Dec. 2005.

[89] Vieira, S. L. and Liebeherr, J., “Topology design for service overlay networks with
bandwidth guarantees.,” in IWQoS, pp. 211–220, 2004.

[90] Weatherspoon, H., Moscovitz, T., and Kubiatowicz, J., “Introspective failure
analysis: Avoiding correlated failures in peer-to-peer systems,” in 21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02), (Suita, Japan), October 2002.

[91] Xu, S., Freund, R. M., and Sun, J., “Solution methodologies for the smallest en-
closing circle problem,” Comput. Optim. Appl., vol. 25, no. 1-3, pp. 283–292.

[92] Zegura, E. W., Calvert, K. L., and Donahoo, M. J., “A quantitative comparison
of graph-based models for Internet topology,” IEEE/ACM Transactions on Networking,
vol. 5, no. 6, pp. 770–783, 1997.

100



[93] Zhang, B., Jamin, S., and Zhang, L., “Host multicast: A framework for delivering
multicast to end users,” in IEEE INFOCOM, June 2002.

[94] Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D., “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” tech. rep., Berkeley, CA, USA, 2001.

[95] Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz,
J. D., “Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemi-
nation,” in NOSSDAV ’01: Proceedings of the 11th international workshop on Network
and operating systems support for digital audio and video, (New York, NY, USA),
pp. 11–20, ACM Press, 2001.

101



VITA

Jinliang Fan was born in Liaoning province, China. His hometown owns one the most

beautiful mountains in Northeastern China, the Phoenix Mountain, which has left him a

lot of precious memory of childhood. Jinliang received his Bachelor of Science degree in

computer science in 1994 and his Master of Science degree in computer science in 1998, both

from Peking University, China. Jinliang joined the Ph.D. program of College of Computing

at the Georgia Institute of Technology in Fall 1998. His research efforts and interests

include network security, privacy issues in network measurement, overlay networks, sensing

networks, failure modeling and resiliency services. When he is not busy with his research

work, he enjoys playing tennis, swimming, travelling, and reading history books.

102


