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b
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b
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b

m3 s−1c
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b
m3 s−1c
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b

m3 s−1c
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b
m3c
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b
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b
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b
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b
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b
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b
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SUMMARY

The concept of mounting a loudspeaker on one end of a sound-absorbing tube has

existed since at least 1936. Surprisingly, a detailed mathematical analysis of the configura-

tion has not been performed, nor has a design method been established. This configuration,

known as a transmission line loudspeaker, has received little consideration in the reviewed

literature. Instead, it has become frequently featured in magazines for audio hobbyists,

where it is experimentally designed with rules seemingly derived from hearsay and de-

scribed with terms of high praise. In this dissertation, an electro-acoustical model of a

fiberglass-filled transmission line is presented. This model represents the transmission line

as two separate lines – a mechanical line that models the mechanical motion of the fiber-

glass and an acoustical line that models the motion of the air. The lines are linked by

the flow resistance of the fiberglass. From the model, solutions for the acoustic pressure,

acoustical volume velocity of the air, mechanical velocity of the fiberglass fibers, and me-

chanical force on the fiberglass in the line are obtained. The fiberglass is characterized, and

empirical formulas that describe its characteristics are found. It is shown that the modeled

input impedance to the transmission line is a good fit to measured data. The performance

of the system is assessed by comparing it with the performances of typical loudspeaker

mountings, i.e., the infinite baffle, the closed box, and the vented box. Finally, an example

is shown of how the equations derived from the model can be used to evaluate the design

of a transmission line loudspeaker system.

xvii



CHAPTER 1

INTRODUCTION

The concept of mounting a loudspeaker on one end of a sound-absorbing tube has existed

since at least 1936 [1]. Surprisingly, a detailed mathematical analysis of the configuration

has not been performed, nor has a design method been established. This configuration, also

known as a transmission line loudspeaker, has received little consideration in the reviewed

literature. Instead, it has become frequently featured in magazines for audio hobbyists,

where it is experimentally designed with rules seemingly derived from hearsay and de-

scribed with terms of high praise [2].

The goal of this research is to perform an electro-acoustical analysis of the transmission

line loudspeaker. An electro-acoustical model is presented, which allows the relationships

among the numerous parameters of the system and their effects on the system output to be

determined. The performance of the system is assessed by comparing it with the perfor-

mances of typical loudspeaker mountings, i.e., the infinite baffle [3], the closed box [4],

and the vented box [5], [6].

1.1 Origin and History of the Problem

The few articles pertaining directly to transmission line loudspeakers that do exist in the

reviewed literature are not complete. Chronologically, the first three articles [1], [7], [8]

describe designs, but present no design equations. The next [9] concentrates on the prop-

erties of sound-absorbing materials, presenting a hypothesis, but not verifying it. The final

paper [10], by presenting a circuit model of a transmission line system, is the only one to

present a design tool, but it lacks descriptive equations and requires repeated use of cir-

cuit simulation software to be of use. These works are summarized and discussed in the

following.



1.1.1 The Acoustic Labyrinth

In an effort to improve the low frequency response of loudspeakers mounted on open-

backed radio receiver cabinets, Olney [1] in 1936 developed what he called an acoustical

labyrinth: a folded acoustical path that had walls lined with sound-absorbing material. The

loudspeaker was placed at one end of the labyrinth and was coupled to it both directly and

by means of chambers on either side of the electromagnet. The far end of the path was

open and faced the floor. A diagram illustrating the cross-section of the structure is shown

in Figure 1.

Figure 1. Cross-section of Olney’s acoustic labyrinth.

Olney noted numerous undesirable characteristics of loudspeakers mounted on typical

open-backed cabinets. He noted that their responses possessed peaks because of cavity

resonances resulting from the open-backed cabinet and its usual placement close to a wall.

Their low-frequency extension was poor, because the small path length between the front

and back of the loudspeaker provided little phase shift and thus allowed for sound cancel-

lation. The lack of resistive damping in the cabinet created sharp mechanical resonances

between the cabinet air mass and the loudspeaker suspension. The electrical impedance

variations around the mechanical resonance frequency could induce distortions when the

loudspeaker was driven by load-sensitive amplifiers. By entirely eliminating the cabinet

and replacing it with the acoustical labyrinth structure, Olney hoped to correct these prob-

lems.

Olney noted that a complete analysis of the lined tube would be involved and difficult,
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so he explained the operation of the labyrinth as if it were a modified unlined tube. For an

unlined tube, the acoustical impedance seen by the back of the loudspeaker is given by

Z A = ρ0c
S

Z AL cos (kLT )+ j ρ0c
S sin (kLT )

ρ0c
S cos (kLT )+ j Z AL sin (kLT )

(1)

where Z AL is the acoustical impedance in N s m−5 at the open end of the tube, LT is the

length of the tube in m, ρ0 is the density of air in kg m−3, c is the velocity of sound in

air in m s−1, and k is the wavenumber which expressed in terms of the radian frequency is

given by k = ω/c.

Because the acoustical waves emitted from the front and back of the loudspeaker di-

aphragm are 180 ◦ out of phase, the tube output and the loudspeaker output are in phase

when LT is an odd number of half-wavelengths. At the frequency when this condition oc-

curs, the tube output adds to the loudspeaker output to extend the low-frequency response.

Olney chose LT to be one half of a wavelength at the lowest frequency of interest so that the

tube output would boost the system response at this frequency. He assumed that the damp-

ing material in the tube increasingly attenuated the sound waves as the frequency increased

and, therefore, damped out any higher-frequency peaks in the tube output.

Olney made measurements to show that the resonance peaks were reduced and that

the response at low frequencies was extended by use of the labyrinth. He showed that

the higher-frequency resonances of the tube were reduced by the damping material, and

he noted that the increased mass reactance of the labyrinth reduced the amplitude of the

mechanical resonance and shifted it to a lower frequency. Though his results were chiefly

experimental and based on qualitative reasoning, Olney achieved his purpose of illustrat-

ing that the acoustical labyrinth was an improvement over the open-backed loudspeaker

cabinet.

1.1.2 The Filled Acoustic Transmission Line

In 1965, Bailey [7] presented a design for what he termed a non-resonant loudspeaker en-

closure. He further refined the design in 1972 [8]. Like Olney, his intention was to eliminate
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resonance effects. But Bailey was concerned with the resonances of bass-reflex cabinets

rather than those of open-backed cabinets. Mounting a loudspeaker such that its back ra-

diation is emitted into a bass-reflex cabinet was at the time, and still is, a widely popular

method of improving the low-frequency response of a loudspeaker. However, Bailey be-

lieved that this mounting method unnecessarily distorted the sound output of a loudspeaker.

By performing impulse response tests on bass reflex cabinets, Bailey showed that sound

was emitted from the cabinet for a significant time after the impulse excitation. This phe-

nomenon was caused by a lack of damping within the cabinet and the inherent resonance

effects of both the cabinet and the port. In addition, he found that ringing on bass transients

near the system corner frequency was introduced because of the steep slope of the system

response below the lower cutoff frequency.

Bailey’s enclosure, effectively a modified version of Olney’s design, did not possess a

rear cabinet and, therefore, did not color the sound as did the bass-reflex enclosure. His

design consisted of a loudspeaker mounted at one end of a folded tube that was entirely

filled with an acoustical damping material, rather than just lined. The end of the tube

opposite the loudspeaker was open and in the same plane as the loudspeaker. The sound

output from the tube combined with that of the loudspeaker to produce the total output of

the configuration.

The tube acted as a low-pass acoustical transmission line. At low frequencies, the

sound wave was only lightly damped and added in phase to the loudspeaker output to

boost the low-frequency response. At higher frequencies, the sound waves emitted by the

loudspeaker into the tube were greatly damped by the absorbent filling. This resulted in

little sound output from the tube. After experimenting with damping materials, Bailey

chose to use long-fibered wool as the filling for his enclosure. He also tested short-fibered

wool and fiberglass, but found that long-fibered wool best attenuated the sound waves and

did so down to low frequencies.
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Bailey stated that the velocity of sound in the tube was affected by the damping mate-

rial and that the tube output could be altered by varying the length of the tube. He gave

some practical construction considerations, but he did not present any experimental design

method or any design equations. Without equations, the length and diameter of the tube and

the packing density of the damping material must be determined by trial and error to create

an effective transmission line for an arbitrary loudspeaker. Bailey did not determine what

characteristics would be appropriate for a loudspeaker mounted on a transmission line.

1.1.3 Fibrous Filling Materials

Apparently intrigued by Bailey’s conclusion that long-fibered wool was the best filling

material, Bradbury [9] in 1976 investigated fibrous damping materials with some thought

toward their use in loudspeaker enclosures. He believed that fibrous materials could be

used not only to attenuate high-frequency resonances in a transmission line, but also they

could be used to reduce the length of labyrinth and horn-loaded loudspeakers because the

materials reduce the velocity of sound waves traveling through them.

Bradbury particularly wanted to understand why long-fibered wool had properties that

made it extremely suitable for use in transmission line loudspeaker systems. He noted that

if the wool is packed into the line at a packing density of 8 kg m−3, it highly attenuates the

sound waves at frequencies greater than about 100 Hz. Simultaneously, it presents an an

acoustical impedance to the rear of the loudspeaker diaphragm that is close to that of air.

For these reasons, he noted that the fiber-filled tube does not affect the acoustical load on

the loudspeaker but it dampens high-frequency resonances in the tube.

The tube output and the loudspeaker front diaphragm output add constructively to

boost the system output at the frequency where the length of the tube is equal to a half-

wavelength. This frequency is given by

fboost = c
2LT

(2)

where c is the velocity of sound and LT is the length of the tube. At lower frequencies,
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he found that the wool filling approximately halves the velocity of sound. Therefore, for a

desired boost frequency, the filled transmission line would be about one-half as long as an

unfilled one.

Bradbury thought that the above characteristics of the wool could be explained by the

fibrous damping materials not being stationary in the tube. He believed that the fibers

were moved by the air flow generated by the loudspeaker. In addition, he knew that the

fibers impeded the flow of air through them by means of an aerodynamic drag that was

proportional to the velocity of the air relative to the fibers. He combined the two above

beliefs into the following equation of motion for the fibers:

PD
du f

dt
= R f

b
ua − u f

c
(3)

where PD is the packing density of the fibrous material in kg m−3, u f is the velocity

of the fibers in m s−1, ua is the velocity of the air in m s−1, and R f is a quantity that

Bradbury referred to as an aerodynamic drag parameter. It is more commonly known as

flow resistance which has the units N s m−4.

The above equation assumes that the fibers are able to move freely. They are not re-

strained by each other or by the tube so the only force on them is aerodynamic drag induced

by the air flow. This can be seen by noting that if the fiber velocity u f is zero in Equation

(3), then then the air particle velocity ua must also equal zero. That is, the fibers cannot

be stationary unless no source of air flow is present. In contrast, if a stabilizing force were

present, the fibers could remain stationary in the presence of an air flow. An example of

this might occur when the fiber motion is constrained by the walls of the tube.

Under these conditions, Bradbury found that the phasor equation for the acoustic pres-

sure in a simple harmonic sound wave traveling down the filled transmission line could be

written

p(x) = p0e−γ x

= p0e−αxe− jβx (4)
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where p0 is the phasor amplitude of the wave and ω = 2π f is the radian frequency. The

quantity γ is called the complex propagation constant. It is given by

γ = α + jβ

= j
ω

c

Vb
1+ PD/ρ0

c+ jωPD/R f

1+ jωPD/R f
. (5)

In order to keep the notation consistent with that used in the following, some of the para-

meters in Equations (4) and (5) have been renamed and the expressions rearranged from

the original forms presented by Bradbury.

If the real part of γ in Equation (5) is zero, then γ = jβ and the wave propagates

unattenuated in the tube with a phase velocity given by v p = ω/β. The high frequency

limit to Bradbury’s equation predicts that γ = jω/c so that the phase velocity at high

frequencies is v p = c, i.e. the phase velocity of an adiabatic acoustical wave. It is given by

c =
V
γ a P0

ρ0
(6)

where γ a is the ratio of the specific heat of air at constant pressure to the specific heat of

air at constant volume, P0 is the static air pressure in N m−2. The low-frequency limit

to Equation (5) also predicts that the real part of γ is zero so that the wave propagates

unattenuated. In this case, the phase velocity becomes

v p =
V

γ a P0

ρ0 + PD
. (7)

This can be interpreted as the phase velocity of an adiabatic wave in a gas having the

effective density ρ0 + PD.

The basic assumption of Bradbury in arriving at Equation (5) was that the time period

at low frequencies is so long that the fibers move with almost the same velocity of the air

particles in the acoustical wave. Bradbury assumed that the low-frequency wave propagates

unattenuated because the fibers move at approximately the same velocity as the air particles

so that the drag forces between the fibers can be neglected.
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As the frequency is increased, the fibers are no longer able to keep up with the rapid

fluctuations in direction of the air flow because of their inertia. In this case, the fibers move

with a retarded velocity. With further increases in frequency, they do not move at all. The

stationary fibers at high frequencies highly attenuate the air flow because the drag forces are

large. However, because the fibers are not coupled with the air at these higher frequencies,

the velocity of sound through the fibrous material remains nearly the same as the velocity

of sound in free air.

By assuming a perfect piston in harmonic motion at the source end of the transmission

line, Bradbury was able to plot the real and imaginary parts of the phasor velocity at the end

of a tube with a length of 2 m for several values of packing density PD. He also plotted the

real and imaginary parts of the impedance seen by the source for both wool and fiberglass

filled tubes. Continuing to concentrate on the characteristics of the fibrous materials, he

determined that wool was indeed the better filling material. He noted that the reactive

impedance of wool approaches zero more rapidly than it does for fiberglass. In addition,

he found that the real part of the acoustical impedance with wool was less than that with

fiberglass.

Bradbury ended his analysis with several conclusions. He stated that his results were

not practically useful until the mechanical impedances of the loudspeaker were included.

He did not experimentally verify his equations, but he did achieve his purpose of showing

that loudspeaker enclosures could perhaps be improved by understanding and utilizing the

characteristics of fibrous filling materials. In addition, he noted that the characteristics of

different filling materials could possibly be analyzed theoretically rather than by perform-

ing extensive experimental measurements.

1.1.4 Augspurger’s Circuit Model

Observing that objective information on transmission line loudspeakers is rare, Augspurger

[10] in 2000 developed an electrical lumped-element model that could be used to simu-

late acoustical transmission line systems. His model was an altered version of Locanthi’s
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[11] analog transmission line model, which was developed to analyze acoustical horns.

Augspurger added shunt resistors to account for sound attenuation by the fibrous filling

and included a shunt stub to allow for the case where the loudspeaker is recessed into the

tube.

Augspurger’s model consisted of 32 sections containing resistors, inductors, and ca-

pacitors that model the acoustical parameters of the line. He varied the values of the com-

ponents in each section to model different transmission line geometries such as flares and

tapers and to account for changes in attenuation with frequency. A schematic of his anal-

ogous circuit model is shown in Figure 2. In this model, the parameters that model the

loudspeaker mechanical system and the acoustical parameters of the transmission line and

its filling are reflected into the electrical circuit of the loudspeaker. Therefore, the variables

of the circuit are currents and voltages rather than the variables of mechanical or acoustical

systems.

Figure 2. Augspurger’s analogous circuit model of transmission line.

The inductors in the above figure model the compliance of the air in the tube and the

capacitors model the mass of the air in the tube. To more accurately model the damping

material, Augspurger made the resistor values vary with frequency. He never revealed the

manner in which he determined the resistor values or their frequency dependence. How-

ever, he claimed to employ four empirical parameters, which he noted could be called

“unscientific twiddle factors,” to model the effects of the damping material. His model did

not include the effects of fiber motion, but he stated that it is not certain that fiber motion
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is important.

Using a circuit simulation program, Augspurger repeatedly ran simulations of his model

while adjusting values of the loudspeaker and pipe parameters. By doing this, he obtained

several designs that he referred to as optimized, meaning that they possessed second order

low-frequency slopes and minimum pass-band ripple while obtaining efficiencies matching

that of an equivalent closed-box system.

Augspurger demonstrated that it was possible to model damped acoustical transmission

lines as electrical transmission lines, and he considered the effects on the system of vary-

ing the geometry of the transmission line from that of a simple straight pipe. Though he

showed numerous simulated plots of transmission line systems having various geometries,

he presented few experimental results. He simply stated that the simulated results exactly

matched the measured results. To realize transmission line designs that were not explicitly

simulated and presented by Augspurger, it would be necessary to go through a trial and

error adjustment process using a circuit simulation tool.

1.2 Air Flow and Sound Propagation in Fibrous Materials

Flow resistance is a quantity that relates the acoustic pressure drop per unit length through

an acoustical material to the mechanical velocity of the air particles flowing through the ma-

terial. It is typically measured by directing a low-magnitude, constant-velocity air current

through a sample of material and measuring the resulting pressure drop [12]. Symbolically,

this measurement can be expressed as

ps = R f (sua (8)

where ps is the pressure drop across the sample, R f is the flow resistance, (s is the length

of the sample, and ua is the particle velocity. The units of flow resistance are N s m−4.

Numerous papers have discussed the calculation of flow resistance based on theoretical

considerations or experimental measurements. In Tarnow [13], the flow resistance of ran-

domly placed cylinders placed both parallel and perpendicular to the air flow is determined
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by the use of Vornoi polygons. Bradbury [9] gives an equation for flow resistance that is

determined from both theoretical considerations and experimental observations. Bies and

Hanson [14] present a equation that gives the flow resistance based on the fiber diameter

and bulk density. Similar equations are presented in Nichols [12] and in Beranek [15].

An empirical formula for the flow resistance in polyester materials is given by Garai and

Pompoli [16].

Calculation of the flow resistance from the methods described in the papers referenced

above requires a detailed knowledge of the physical characteristics of the fibers. In addition,

these papers assume idealized fibers and fiber arrangements. The empirical formula of [16]

requires knowledge of only the fiber packing density. This equation applies specifically

for polyester fibers only. In the present work, an empirical formula for the flow resistance

of fiberglass in an acoustic transmission line that is based on packing density is presented.

This formula has a similar relationship to packing density as do the formulas given in [9],

[16], and [14].

Sound propagation in fibrous materials is often based on the theory of porous materials

[35]. In the papers referenced below, the pores in the material are assumed to be inter-

connected in a random, isotropic way. With two exceptions, the material is assumed to

be rigid. Zwikker and Kosten [17] discuss the propagation of sound in a single, small,

air-filled tube through a solid. Biot [18], [19], Tarnow [20], and Allard et al. [21] include

the possibility that the porous structure is not stationary. Lambert [22] investigates sound

propagation in porous foam. Lambert and Tesar [23] and Tarnow [24] investigate sound

propagation in fibrous materials. These papers all require that the pore radius of the fibrous

material be known or determined a priori. Attenborough [25] includes the additional prop-

erties of tortuosity, porosity, and pore shape factor in determining the sound propagation

characteristics.

In this work, the particular case of fiberglass in a transmission line loudspeaker is con-

sidered. Although the properties of a sound wave in fiberglass can be theoretically modeled
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by the methods presented in the above papers, a more practical approach is used here that

suffices for the study of transmission line loudspeakers. The reason for this is that loud-

speaker designers do not have the instrumentation required to determine the pore diameter

or tortuosity of fiberglass. A loudspeaker designer requires a straightforward and practical

means of determining how a given packing density of fiberglass will affect the performance

of a transmission line loudspeaker.

When a transmission line is filled with lower packing densities of fiberglass, the fiber-

glass is highly nonuniform. There can be large air spaces between fiberglass layers. In

addition, the fiberglass density can vary greatly from layer to layer. Neither of these pos-

sibilities is considered in the theoretical derivations presented here because the wavelength

of sound in transmission line loudspeakers is large compared to the distances between

non-uniform layers. It is believed that empirical equations for the fiberglass characteristics

would give acceptable results. In this work, an electro-acoustical circuit model is developed

for a fiber filled acoustical transmission line. It is demonstrated that the circuit parameters

in the model can be easily determined from measured data.

1.3 Contributions of this Research

A new electro-acoustical analogous circuit model for a transmission line loudspeaker sys-

tem is developed. The analogous circuit model includes the electrical and mechanical

properties of the loudspeaker driver and the acoustical properties of a fiber-filled acousti-

cal transmission line that is used to acoustically load the back side of the loudspeaker

diaphragm. A mechano-acoustical analysis of a wave propagating in the fiber-filled trans-

mission line is developed that includes the acoustical properties of the air in the tube and

the mechanical properties of the fibers. It is shown that the line and fibers can be modeled

by separate lumped parameter electrical transmission lines that are coupled through the

flow resistance of the fibers. The transmission line model is used to derive two coupled

second-order differential equations that govern the motion of the air particles and fibers in
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the tube. The two equations are solved simultaneously to obtain fourth-order differential

equations for the air particle motion and for the fiber motion. A mathematical solution to

these equations is described that admits the possibility of four waves propagating in the air

in the tube and four waves propagating in the fibers. The circuit models that are developed

can be analyzed with very powerful electrical circuit analysis computer programs such as

SPICE.

A simplification to the model is described that has been found to yield acceptable agree-

ment with the measurements made with a loudspeaker driver mounted on a fiber-filled tube.

It is shown that measurements of the electrical input impedance to the loudspeaker driver

can be used to extract the acoustical parameters of the tube and the mechanical parameters

of the fibers. The simplified model is compared to the two published transmission line

loudspeaker models. It is shown that the model developed here predicts results that better

agree with measured data than these two models do. The simplified model can be analyzed

with circuit simulator computer programs such as SPICE.

A refinement of the lossy voice-coil inductance model developed in [26] is described

that better models the effects of the magnetic flux outside of the lossy magnetic core in a

loudspeaker driver. It is shown that the modification predicts the electrical impedance of

the voice coil that agrees better with measured data at frequencies greater than the driver

resonance frequency.
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CHAPTER 2

MODELING OF ELECTROACOUSTIC SYSTEMS

2.1 Electrical, Mechanical, and Acoustical Analogous Circuits

The two variables in electrical circuits that are used to calculate the power delivered by a

source to a load are voltage and current. Force and velocity are the variables in mechanical

systems that are analogous to voltage and current in electrical circuits [27], [28]. Similarly,

pressure and volume velocity are the variables in acoustical systems that are analogous to

voltage and current in electrical circuits [27], [28]. In modeling mechanical and acoustical

systems with electrical circuits, the analogs must be assigned so that they relate the vari-

ables in the mechanical and acoustical systems to those in electrical circuits in such a way

that power relations are not changed.

There are two classes of analogs that are commonly used. These are impedance analogs

and mobility analogs [27], [29]. In impedance analogous circuits, voltage is analogous to

mechanical force and to acoustic pressure. Current is analogous to mechanical velocity

and to acoustical volume velocity. In contrast, in mobility analogous circuits, voltage is

analogous to mechanical velocity and to acoustical volume velocity. Current is analogous

to mechanical force and to acoustic pressure. The two types of circuits are related by the

principle of duality. The dual of a circuit is one which has an impedance equal to the recip-

rocal of the impedance of the original circuit. When the dual of a circuit containing series

elements is made, the new circuit contains parallel elements. Similarly, when the dual of a

circuit containing parallel elements is made, the new circuit contains series elements. In the

following, both impedance and mobility analogous circuits are used to model mechanical

systems. Only impedance analogous circuits are used to model acoustical systems.

The concept of electrical impedance can be used to relate the voltages and currents in

an electrical circuit if the time variations are taken to be of the form exp (st), where s is the

complex frequency. For sinusoidal steady-state time variations, the complex frequency is
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taken to be s = jω, where j = √−1 and ω is the radian frequency with units rad s−1. In

this case, the electrical impedance ZE relates the phasor voltage e to the phasor current i .

The relation is

e = ZEi. (9)

The units of ZE are V A−1.

In mechanical analogous circuits, the analogous relation is

f = ZMu (10)

where f is the phasor force with units N, u is the phasor velocity with units m s−1, and

ZM is the mechanical impedance. The units of ZM are N s m−1.

In acoustical analogous circuits, the analogous relation is

p = Z AU (11)

where p is the phasor pressure with units Pa, U is the phasor volume velocity with units

m3 s−1, and Z A is the acoustical impedance. The units of Z A are N s m−5.

In mechanical analogous circuits, the force f is the force applied to a non-deformable

mass and the velocity u is its velocity. In acoustical analogous circuits, the pressure p is

the acoustic pressure at a surface and the volume velocity U is the time rate of change of

the velocity of air flowing through the surface. If all air particles flow through the surface

at the same velocity, the volume velocity is given by the area of the surface multiplied by

the particle velocity. That is, U = Su, where S is the area and u is the particle velocity.

In electrical circuits, power is calculated as the product of voltage and current. In mechan-

ical analogous circuits, it is calculated as the product of force and velocity. In acoustical

analogous circuits, it is calculated as the product of pressure and volume velocity.

2.2 Elements of Mechanical Circuits

This section presents an overview of the three lumped-parameter circuit elements of me-

chanical systems. These are mechanical mass MM , compliance CM , and resistance RM .
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The mechanical symbols for these are shown in Figure 3. It is noted that the mass can have

only a single velocity. In contrast, the two ends of the compliance and resistance can move

at different velocities. For this reason, the mechanical equations reviewed below involve

the difference velocity u = u1 − u2 for these elements. The elements which are used to

model these mechanical elements in electrical circuits are reviewed in this section.

Figure 3. Mechanical element symbols. (a) Mass. (b) Compliance. (c) Resistance.

2.2.1 Mechanical Mass

If a force f is applied to a mechanical mass MM , the force is related to the velocity u of

the mass by Newton’s second law given by

f = MM
du
dt
. (12)

For time variations of the form exp ( jωt), this relation becomes

f = jωMMu. (13)

It follows that the mass MM is analogous to an inductor of the same value in an impedance

analogous circuit. The inductor has the impedance jωMM . In a mobility analogous circuit,

the mass is analogous to a capacitor of the same value. The capacitor has the impedance

( jωMM)
−1. The units of mechanical mass are kg.
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2.2.2 Mechanical Compliance

If a force f is applied between the two ends of a spring, the force is related to the velocity

difference u between the ends of the spring by the relation

f = 1
CM

=
udt (14)

where CM is the compliance of the spring. This relation assumes that the spring is linear

and is operated in its linear region. The compliance is the reciprocal of the spring constant

and has the units m N−1. For time variations of the form exp ( jωt), the relation becomes

f = 1
jωCM

u. (15)

It follows that the compliance CM is analogous to a capacitor of the same value in an

impedance analogous circuit. The capacitor has the impedance ( jωCM)
−1. In a mobility

analogous circuit, the capacitor is analogous to an inductor of the same value. The inductor

has the impedance jωCM . In the following, it is assumed that mechanical springs are

linear and they are operated in their linear region. The units of mechanical compliance are

m N−1.

2.2.3 Mechanical Resistance

Dissipative losses in mechanical systems that arise from linear mechanisms are modeled by

a mechanical resistance. The relation between force f and velocity u for a linear dissipative

loss is

f = RMu (16)

where RM is the mechanical resistance. It follows that the resistance RM is analogous

to a resistor of the same value in an impedance analogous circuit. The resistor has the

impedance RM . In a mobility analogous circuit, the resistor is analogous to a resistor having

a value equal to the reciprocal of the mechanical resistance. The resistor has the impedance

R−1
M . Although friction losses are dissipative, they are not linear. For this reason, friction

cannot be modeled accurately by linear analogous circuits. In the following, it is assumed

that mechanical losses are linear. The units of mechanical resistance are N s m−1.
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2.3 Elements of Acoustical Circuits

An overview of the three lumped-parameter circuit elements of acoustical systems is pre-

sented in this section. These are acoustical mass MA, acoustical compliance CA, and

acoustical resistance RA. The circuit elements which are used to model these elements

in electrical circuits are reviewed. Because only impedance analogous models are used in

the following, the mobility circuit analogs are omitted.

2.3.1 Acoustical Mass

Voltage is analogous to pressure and current is analogous to volume velocity in impedance

analogous circuits of acoustical systems. Let a pressure difference p be applied between

two ends of a cylindrical tube of air having a cross section S and length (, where ( is small

compared to a wavelength. The applied force can be written f = Sp. If the air density in

the tube is ρ0, Newton’s second law of motion for the mass of air in the tube is

Sp = ρ0S(
du
dt

(17)

where ρ0S( is the air mass and u is its velocity. When the tube of air moves, the volume

velocity that flows through the surface area S is given by U = Su. It follows then that the

pressure is related to the volume velocity by

p = ρ0(

S
dU
dt
. (18)

For time variations of the form exp ( jωt), this relation can be written

p = jωMAU (19)

where MA is the acoustical mass given by

MA = ρ0LT

S
. (20)

It follows that the acoustical mass is analogous to an inductor of the same value in the

electrical analogous circuit. The inductor has the acoustical impedance jωMA. The units

of acoustical mass are kg m−4.
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2.3.2 Acoustical Compliance

Figure 4 illustrates a closed vessel containing a volume of air V that is compressed by the

motion of a piston in one of its walls. When a force f is applied to the piston, it moves with

a velocity u, causing a volume velocity U to be emitted into the vessel, thus compressing

the air and generating an acoustic pressure p. The pressure generates a restoring force on

the piston that opposes its motion. If it is assumed that the displacement of the piston is

small so that the change in the center of gravity of the air in the vessel can be neglected,

the restoring force can be modeled by a linear spring having the mechanical compliance

CM = V/ρ0c2S2, where S is the area of the piston [27].

Figure 4. Closed volume of air with moveable piston.

Following Equation (15) for the mechanical spring having a compliance CM , the rela-

tion between the restoring force f and the piston velocity u can be written

f = ρ0c2S2

jωV
u. (21)

In this equation, the force can be written f = pS and the velocity can be written u = U/S.

When these substitutions are made, the equation can be written

p = 1
jωCA

U (22)

where CA is the acoustical compliance of the air in the vessel given by

CA = V
ρ0c2 . (23)

In an impedance analogous circuit, this compliance is modeled as a capacitor having the

impedance ( jωCA)
−1. The units of acoustical compliance are m4 s2 kg−1.

19



2.3.3 Acoustical Resistance

When a volume velocity U flows through a fibrous material, a pressure drop is generated

that is proportional to the volume velocity. This can be expressed mathematically by the

equation

p = RAU (24)

where RA is the acoustical resistance of the material. Any stationary structure which ex-

hibits an acoustical resistance exerts an aerodynamic drag force on the flow of air that

opposes the air flow.

Examples of acoustical resistances are mesh screens, perforated sheets, and fibrous

materials, such as fiberglass and spun polyester fibers. Figure 5 illustrates these simple

structures. The fibrous material forces the air to flow through narrow openings and past

narrow solid structures, just as the screens do. However, its structure is much less ordered.

Unlike screens, the fibers of the fibrous materials are not rigidly fixed and are able to be

moved by the air flow. Because they are able to move, they can introduce mechanical mass

and compliance effects into the system. The units of acoustical resistance are N s m−5.

Figure 5. Illustrations of (a) a perforated sheet, (b) a mesh screen, and (c) a fibrous material.

The magnitude of the drag force resulting from a resistive structure, and consequently

the magnitude of the acoustical resistance, is proportional to the velocity of the air and

is dependent on the physical properties of the structure. A discussion of this is given in

[13]. In general, smaller spaces between the fibers of a mesh result in a larger resistance.

Similarly, smaller diameter holes in a perforated screen result in a larger resistance. For
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fibrous materials, a larger ratio of fibers to air, that is a higher packing density, results in

a larger resistance. For a given packing density, smaller diameter fibers result in a larger

resistance than do larger diameter fibers.

The arrangement of the fibers also affects the resulting acoustical resistance. The fibers

can be oriented either perpendicular or parallel to the air flow, or arranged randomly in a

tangled manner. Parallel fibers tend to produce less resistance than do perpendicular fibers,

because the cross-sectional area perpendicular to the air flow is smaller. Thus there is much

less interaction between the air and the fibers.

To some extent, the papers discussed in Chapter 1 all concern the absorptive effects

of damping materials on sound waves. Although the materials seem to have a frequency-

dependent behavior, the effects appear to be primarily related to the flow resistance of the

material.

Flow resistance is a quantity that relates the pressure drop per unit length through an

acoustical material to the mechanical velocity of the air particles flowing through the ma-

terial. It is typically measured by directing a low-magnitude constant-velocity air current

through a sample of material and measuring the resulting pressure drop [12]. Symbolically,

this measurement can be expressed as

ps = R f (sua (25)

where ps is the pressure drop across the sample, R f is the flow resistance, (s is the length

of the sample, and ua is the particle velocity. The units of flow resistance are N s m−4.

The flow resistance and its relationship to packing density for a given damping material

are important considerations in the practical construction of transmission line loudspeakers.

To create a transmission line system that agrees with a modeled response, it is necessary

to know the amount of a given material that must be packed into the transmission line to

achieve a required flow resistance.

Several quantitative relationships between packing density and flow resistance have

been presented in the literature. An equation for fibrous materials, that is given in [9]
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which is based on both experimental observations and theoretical considerations [30], is

given by

R f = 27
16

4µ
a2

f
d1.4 (26)

where µ is the coefficient of viscosity of air, a f is the radius of the fibers that make up the

material, and d is the volume concentration. The latter is the ratio of the fiber volume to

the total volume in the tube given by d = PD/ρ f , where PD is the packing density and ρ f

is the bulk density of the fibrous material.

Another expression for the flow resistance that is given in [13] is

R f = 4µ
a2

f

d
0.640 ln (1/d)− 0.737+ d

. (27)

Both Equations (26) and (27) have been altered here from the original forms to allow them

to be compared more easily. Although the equations are very different, it was found in

this research that adjustment of the parameters in them cause the two equations to pre-

dict approximately the same values for R f over a limited range of values for the volume

concentration d.

Acoustical resistance is closely related to flow resistance. Flow resistance relates pres-

sure to particle velocity according to Equation (25). This equation defines the flow resis-

tance in terms of both a mechanical variable (particle velocity u) and an acoustical variable

(pressure p). To obtain the acoustical resistance RA that results from the flow resistance

R f , Equation (25) must be written in terms of volume velocity. The expression u = U/S

can be used in Equation (25) to obtain

p = R f (s

S
U. (28)

When this expression is compared with Equation (24), it can be seen that the acoustical

resistance resulting from an acoustical resistive structure having length (s , area S, and flow

resistance R f is given by

RA = R f (s

S
. (29)
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2.4 Analogous Circuits of a Loudspeaker Driver

The cross-section diagram of a typical loudspeaker driver is shown in Figure 6. The loud-

speaker is an electromechanical device that converts an applied electrical current into a

mechanical motion. That motion creates an acoustic pressure wave that is radiated from

the diaphragm. The current is applied to the voice coil, which is a coil of wire suspended

in a magnetic field. This coil exhibits both a resistance and an inductance. The current in

the voice coil interacts with the magnetic field to generate a force which is coupled to the

diaphragm. The diaphragm has a mass. Its inner and outer suspensions exhibit a spring

constant or compliance. In addition, the suspensions exhibit mechanical damping losses.

When the diaphragm moves, it radiates an acoustical wave into the air load on each side. In

addition, its motion generates a back electromotive force (emf) in the voice coil which op-

poses the flow of current. The analogous circuits for the loudspeaker model the elements in

the electrical, mechanical, and acoustical systems. The coupling between the three systems

is modeled by controlled voltage and current sources.

Figure 6. Diagram of loudspeaker driver.
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2.4.1 The Electrical Circuit

The electrical input terminals to a loudspeaker connect to what is called the voice coil.

This is a coil of wire which is wound on a cylindrical former. It exhibits both an inductance

and a resistance. It is immersed in a magnetic field such that the direction of the field is

perpendicular to the direction of current flow in the coil. The current flow exerts a force on

the coil which causes it to move. Its motion generates a voltage that is called the back emf.

This voltage opposes the flow of current and is given by

ec = B(uD (30)

where B is the magnetic field density ( T), ( is the effective length of wire ( m) that cuts

that field, and uD is the mechanical velocity of the voice coil ( m s−1). Because the voice

coil is mechanically coupled to the diaphragm, this velocity is also the mechanical velocity

of the diaphragm.

The analogous circuit that models the electrical part of the loudspeaker is shown in

Figure 7 [27], [26]. In the figure, eg is the electrical input voltage from the amplifier that is

connected across the voice-coil terminals, and ic is the voice-coil current. The resistor RE

models the electrical resistance of the voice coil. The elements LE1 (ω) and L E2 model the

lossy voice-coil inductance. The controlled source ec models the back emf in the voice coil

resulting from its motion.

Figure 7. Impedance analogous circuit of the electrical part of a loudspeaker driver.

24



The inductor model consists of two inductors in parallel. The inductor L E2 is a loss-

less inductor. The inductor LE1 (ω) is a lossy inductor which has a frequency dependent

impedance. To a good approximation [26], the impedance of L E1 (ω) can be written

ZE1 (ω) = ( jω)ne Le (31)

where ne and Le are parameters that must be determined from measurements. The units of

Le are P sne . It can be shown [26] that the equivalent circuit having the impedance ZE1 (ω)

is a parallel RL circuit where the elements are frequency dependent and are given by

R1 = Leω
ne

cos (neπ/2)
(32)

L1 = Leω
ne−1

sin (neπ/2)
. (33)

For ne = 0, it follows that R1 = Le and L1 = ∞. In this case, LE1 (ω) is a pure resistor.

For ne = 1, it follows that R1 = ∞ and L1 = Le. In this case LE1 (ω) is a lossless

inductor. Typically, the value of ne is in the range from 0.6 to 0.7 for most loudspeaker

drivers. The loudspeaker driver used in the experimental measurements of this research

had an unusually low value of ne = 0.447.

2.4.2 The Mechanical Circuit

The loudspeaker diaphragm and voice coil exhibit a mechanical mass. The suspension ex-

hibits a mechanical compliance and mechanical damping resistance RMS. Figure 3 shows

the mechanical diagrams for these elements. The relationships between the phasor force f

and phasor velocity u for the mass, the compliance, and the resistance, respectively, are

f = jωMMu (34)

f = 1
jωCM

u (35)

f = RMu (36)
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where f and u are phasor functions of frequency. For the compliance and the resistance,

the velocity u is the difference velocity between each end, that is u = u1−u2. Because the

mass is assumed to be non deformable, it has only one velocity.

The mechanical portion of the loudspeaker consists of the piston and its suspension.

There are two suspensions, an inner suspension, which is called the spider, and the outer

suspension, which is called the surround. These two elements center the voice coil in the

magnetic field of the magnet and provide a mechanical restoring force that restores the pis-

ton to its rest position in the absence of an applied current. The two suspensions exhibit

mechanical losses which damp the motion of the system. A schematic diagram that repre-

sents the mechanical system is shown in Figure 8. In this circuit, the mass MM D models

the total moving mass. The compliance CMS represents the suspensions. The resistance

RMS between the mass and the zero-velocity ground reference models the damping losses

in the suspension.

Figure 8. Mechanical system of loudspeaker driver.

The force fD is the force generated by the flow of the current in the voice coil. It is

given by

fD = B(ic. (37)

The force fa represents the opposing force caused by the air load on the diaphragm when

it moves. This force always opposes the motion of the diaphragm. It is proportional to the

pressure difference between the front and back sides of the loudspeaker diaphragm and is
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given by

fa = pDSD (38)

where pD is the pressure difference from the front to the back of the diaphragm and SD is

the area of the diaphragm.

The force fD applied to the diaphragm by the voice coil must equal the sum of the

forces opposing its motion. This can be written in phasor form

fD = jωMM DuD + 1
jωCM

uD + RMuD + fa. (39)

It follows from this equation that the electrical impedance analogous circuit which models

the mechanical part of the loudspeaker driver is that shown in Figure 9.

Figure 9. Impedance analogous circuit of the mechanical part of a loudspeaker driver.

2.4.3 The Acoustical Circuit

When the loudspeaker diaphragm moves, it emits a volume velocity given by UD = uDSD.

This volume velocity flows through the acoustical impedances that model the air loads on

both sides of the diaphragm to create the pressure difference pD. Thus the acoustical part

of the loudspeaker driver can be modeled by the circuit shown in Figure 10. In the figure,

Z AF and Z AB are the acoustical impedances seen by the front and back, respectively, of

the diaphragm. In the following, each of these impedances are approximated by that for a

circular piston in an infinite baffle.
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Figure 10. Impedance analogous circuit of the acoustical part of a loudspeaker driver.

2.4.4 The Combination Circuit

If the loudspeaker electrical, mechanical, and acoustical parameters modeled by the ele-

ments in Figures 7, 9, and 10 are known, the circuits can be used to calculate such quan-

tities as the velocity of the diaphragm, the volume velocity that it emits, and the electrical

input impedance of the voice coil. It follows from the electrical analogous circuit that the

voice-coil current ic is given by

ic = eg − B(uD

ZET
(40)

where ZET is the electrical impedance

ZET = RE +
d
( jω)ne Le

e P ( jωL E2) (41)

where the symbol P denotes a parallel combination of impedances, i.e. the product divided

by the sum. The mechanical velocity uD is given by

uD = B(ic − pDSD

ZM D
(42)

where ZM D is the mechanical impedance

ZM D = jωMM D + 1
jωCMS

+ RMS. (43)

The pressure difference pD across the diaphragm is given by

pD = uDSD(Z AF + Z AB). (44)

For a non-zero Rg, the value of RE in Equation (41) can be increased to account for it. The

output resistance of most contemporary audio amplifiers is negligible.
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If Equations (40) and (44) are used to eliminate ic and pD from Equation (42), the

following expression is obtained:

B(eg

ZET
= uD

�
ZM D + (B()

2

ZET
+ S2

D(Z AF + Z AB)

�
. (45)

The quantity B(eg/ZET on the left side of this equation has units of force ( N). In a

mechanical impedance analogous circuit, the velocity uD on the right side of the equation

is modeled by a current. It follows that the analogous circuit for the equation is the that

given in Figure 11. The series elements in this circuit model mechanical impedances. The

units of mechanical impedance are N s m−1.

Figure 11. Mechanical combination circuit of a loudspeaker driver.

With UD = uDSD, an alternate form of Equation (45) is

B(eg

ZET SD
= UD

�
(B()2

ZET S2
D
+ ZM D

S2
D
+ (Z AF + Z AB)

�
. (46)

In this equation, the quantity on the left side has the units of pressure ( Pa). In an acoustical

analogous circuit, the volume velocity UD on the right side is modeled as a current. It

follows that an analogous circuit for this equation is the circuit shown in Figure 12, where

the impedance Z AD is the acoustical impedance given by

Z AD = ZM D

S2
D

= jω
MM D

S2
D
+ RMS

S2
D
+ 1

jωS2
DCMS

. (47)

In the circuit, the series elements model acoustical impedances. The units of acoustical

impedance are acoustical ohms ( N s m−5).
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Figure 12. Acoustical combination circuit of a loudspeaker driver.

2.5 Impedance Relationships

In the development of Figure 11, the electrical and acoustical circuits are “reflected” into

the mechanical circuit to obtain a single analogous circuit that explicitly shows the ef-

fects of the impedances of the three separate but linked circuits on the mechanical velocity

uD. By examining the terms of Equation (45), the relationships between the reflected im-

pedances can be found. The last term on the right side of the equation gives the general

relationship between reflected mechanical and acoustical impedances.

To obtain the mechanical impedance that results from an acoustical impedance in a

system linked by a mechano-acoustical transducer, the acoustical impedance is multiplied

by the piston area squared, that is

ZM = S2
D Z A (48)

where ZM is a mechanical impedance having the units of mechanical ohms ( N s m−1) and

Z A is the acoustical impedance having the units of acoustical ohms ( N s m−5). When the

expressions for the impedances of the circuit elements are substituted for ZM and Z A, the

following equations that relate mechanical mass MM , compliance CM , and resistance RM

to acoustical mass MA, compliance CA, and resistance RA are

MA = MM

S2
D

(49)

CA = CM S2
D (50)

RA = RM

S2
D
. (51)
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The second term of Equation (45) illustrates the general relationship between reflected

electrical and mechanical impedances in a system linked by a electromagnetic mechanical

transducer. The relation is

ZM = (B()
2

ZE
. (52)

The impedance (ZE)
−1 is known of as the dual of the impedance ZE . In this case, it is

scaled by the factor (B()2 to convert to a mechanical impedance. This can be converted

into an acoustical impedance by dividing by S2
D to obtain

Z A = (B()2

S2
D ZE

. (53)

These transformations appear in Figures 11 and 12.

Some rules for reflecting the circuit elements of Figures 7, 9, and 10 from one circuit

into another can be determined by examining how the equations in Section 2.4.4 are ob-

tained. In the reflected circuits, the controlled sources are replaced by lumped-element

equivalent circuits. Although it is not explicitly shown in Figures 7, 9, and 10, the con-

trolled voltage sources representing ec and fa are controlled by the currents through the

the sources. For example, when Equation (44) is used to replace pD in the equation for

fa = pDSD, it can be seen that fa becomes a function of uD.

When a controlled voltage source is controlled by the current through the source, it can

be replaced by a passive impedance given by the ratio of the voltage to the current. In the

case of the source fa in Figure 9, this impedance is S2
D (Z AF + Z AB). This is the same as

what is obtained from Equation (48) that reflect an acoustical impedance into a mechanical

impedance.

The controlled source fD in Figure 9 is controlled not only by the current uD through

it but also by the independent source eg in Figure 7. This can be seen when Equation (40)

is used in the expression fD = B(ic. Thus the controlled force source fD can be replaced

by a reflected electrical impedance given by Equation (52) in series with the reflected force

source B(eg/ZET that results from the independent voltage source eg.
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2.6 Air-Load Impedances

Figure 10 shows the two acoustical impedances Z AF and Z AB which model the external

air load on the loudspeaker diaphragm. These impedances represent the ratio of the pha-

sor pressure at the center of the diaphragm to the phasor volume velocity emitted by the

diaphragm. There are two well-known analogous circuits for this air load impedance that

are based on the analysis of a plane circular piston vibrating in an infinite baffle and in the

end of a long tube. Although these circuits are derived for a flat piston, they can be used

to accurately model the loudspeaker diaphragm at low frequencies where the wavelength is

large compared to the diameter of the diaphragm [27].

Figure 13 illustrates a loudspeaker mounted in an infinite baffle and on a long tube. In

the figure, Z AL denotes the acoustical impedance seen by the free-air side of the diaphragm.

Because of the symmetry of the infinite-baffle mounting, the same impedance is seen by

both the front and the back sides of the loudspeaker diaphragm. The acoustical impedance

for either of these configurations can be modeled by the circuit shown in Figure 14 [27].

Figure 13. A driver mounted on (a) an infinite baffle and on (b) a tube.

For the piston mounted in an infinite baffle, the circuit element values are given by

MA1 = 8ρ0
3π2aD

(54)
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Figure 14. Circuit model of the impedance seen by an oscillating piston on either an infinite baffle or a
tube.

RA1 = 0.4410ρ0c
πa2

D
(55)

RA2 = ρ0c
πa2

D
(56)

CA1 = 5.94a3
D

ρ0c2 (57)

where aD is the diaphragm radius. For the piston mounted at the end of a long tube, the

element values are given by

MA1 = 0.6133ρ0
πaD

(58)

RA1 = 0.5045ρ0c
πa2

D
(59)

RA2 = ρ0c
πa2

D
(60)

CA1 = 0.55π2a3
D

ρ0c2 . (61)

For calculations at low frequencies, the acoustical mass MA1 in each of these circuits

exhibits an impedance that is small compared to that of the other elements that are in par-

allel with it. Because the smaller impedance in a parallel circuit dominates, the impedance

of the circuit can be approximated by that of the mass alone [27]. This approximation is

used in the following.

2.7 The Voice-Coil Electrical Impedance

The voice-coil impedance of the loudspeaker is its electrical impedance. If the diaphragm

is blocked so that it cannot move, this impedance would be combined impedance of the
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resistance and inductance of the coil of wire. If the diaphragm is not blocked, a back

emf is generated in the voice coil when it moves that is proportional to the velocity of

the coil. This voltage is modeled by the voltage-controlled voltage source ec in Figure 7.

This source can be replaced with a passive lumped-parameter impedance that is called the

motional impedance of the voice coil. This impedance is derived in this section.

At very low frequencies, the voice-coil impedance is approximately equal to its re-

sistance RE shown in Figure 7. As frequency is increased, the series mass MM D and

compliance CMS in the mechanical circuit of Figure 9 exhibit a series resonance which

causes the mechanical velocity uD in that figure to exhibit a maximum. The series reso-

nance of the mechanical circuit causes the voltage-controlled voltage source ec in Figure

7 to exhibit a maximum, thus causing the current ic to exhibit a minimum. It follows that

the voice-coil electrical impedance exhibits a maximum at this resonance frequency. As

frequency is increased further, the mechanical velocity uD decreases, causing the electri-

cal impedance ZE to decrease to a value approaching the voice-coil resistance RE . The

impedance then increases as frequency is increased. This increase is caused by the lossy

voice-coil inductance. In the high frequency range where the inductive impedance domi-

nates, the magnitude of the impedance increases at a rate of ne decades per decade, where

ne is the exponent in the lossy inductance impedance equation given by Equation (31).

When Equation (44) is used to eliminate the acoustic pressure difference pD from Equa-

tion (42), it follows that the diaphragm mechanical velocity uD is given by

uD = B(ic
ZM D + S2

D (Z AF + Z AB)
. (62)

This equation can be used to eliminate uD from Equation (40) to obtain an equation involv-

ing only eg and ic. This equation is

eg = ic

�
ZET + (B()

2

S2
D

1
Z AD + Z AF + Z AB

�
(63)

where Z AD is the acoustical impedance associated with the mechanical impedance ZM D.
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It is given by

Z AD = ZM D

S2
D
. (64)

The electrical input impedance ZV C is the ratio eg to ic. It is given by

ZV C = ZET + (B()
2

S2
D

1
Z AD + Z AF + Z AB

. (65)

The second term in this equation is the motional impedance. The acoustical impedance

term (Z AD + Z AF + Z AB)
−1 in this equation in interpreted as the impedance of the dual

circuit of three series acoustical impedances. This dual impedance is scaled by the factor

(B()2 /S2
D to convert it into an electrical impedance. This is consistent with the observa-

tions in Section 2.5. Because taking the dual of a circuit with series elements converts the

circuit into elements in parallel, the motional impedance consists of parallel elements in

the electrical analogous circuit of the voice coil.

If the loudspeaker is mounted in an infinite baffle, at low frequencies Z AF and Z AB

can be modeled by acoustical masses having a value MA1 given by Equation (54). For this

case, Z AF and Z AB can be combined with MAD to give the total acoustical mass of the

diaphragm. This is denoted by MAS and is given by

MAS = MAD + 2MA1. (66)

With this definition, the electrical impedance of the voice coil given by Equation (65)

for the loudspeaker in an infinite baffle can be written

ZVC = RE +
d
( jω)ne Le

e P ( jωL E2) (67)

+ 1
jωCM ES + (RES)

−1 + ( jωLC ES)
−1

where CM ES, RES, and LC ES are given by

LC ES = (B()
2 CAS

S2
D

(68)

CM ES = S2
D MAS

(B()2
(69)
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RES = (B()2

S2
D RAS

. (70)

Equation (67) makes it possible to draw an equivalent circuit that models the electrical

impedance of the loudspeaker. The first two terms represent the electrical impedance of

the blocked voice coil. The third term models the motional impedance that results from

the mechanical suspension of the loudspeaker driver and its acoustical air load. It is the

reciprocal of the sum of three admittances. It follows that the motional impedance is the

parallel combination of three elements, a capacitor CM ES, an inductor LC ES, and a resistor

RES. the equivalent circuit is shown in Figure 15.

Figure 15. Equivalent circuit model of the driver voice-coil impedance.

A plot of the measured magnitude of the input impedance of one of the test loudspeak-

ers used in this work is shown in Figure 16. Also shown in the figure are plots of the

magnitudes of the impedance of the individual terms in Equation (67) that were calculated

from the loudspeaker parameters that were estimated from the measurements. The figure

illustrates how the individual terms combine to form the total impedance.

2.8 Measuring the Voice-Coil Impedance

Measured voice-coil impedance data can be used to determine the significant parameters

of a loudspeaker. Basic techniques for making these measurements and calculating the

parameters are described in [3]. For this research, an automated data acquisition system

was used to measure the data. The system consisted of a computer controlled Audio Pre-

cision System Two analyzer that is manufactured by Audio Precision, Inc. This device is
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Figure 16. Driver input impedance and impedance components.

capable of automatically making automated audio-related measurements at frequencies in

the audio band. Example measurements are gain, phase, and distortion versus frequency.

The analyzer is capable of generating both analog and digital test signals. It is connected

to a personal computer and controlled through a software package that is called APWIN

[31]. Test procedures are written in a modified version of Visual Basic called AP Basic that

controls the analyzer.

A technical note [32] is provided by Audio Precision, Inc. that gives a procedure for

making impedance measurements. However, it was determined that the procedure given

in the technical note is incorrect, so a new procedure was developed for this work. A

schematic diagram showing the analyzer test setup for impedance measurement is shown

in Figure 17. The AP analyzer was programmed to place a specified value resistor Rg in

series with its output voltage eg. By measuring the amplitude and phase of the voltage on

both sides of the resistor, the impedance can be calculated. Knowing the value of Rg, the
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electrical input impedance can be calculated from the relation

ZV C = e1

i1
= Rg

e1

eg − e1
. (71)

Figure 17. Experimental setup for measuring the voice-coil impedance.

If eg is considered to have a phase reference of zero and e1 is complex and of the form

Em exp ( jθ), it can be shown that the magnitude and phase of the voice-coil impedance

ZV C are given by

|ZV C | = RgUr
eg
Em

s2 − 2 eg
Em

cos θ + 1
(72)

arg (ZVC) = tan−1

� eg
Em

sin θ
eg
Em

cos θ − 1

�
. (73)

To obtain the voice-coil impedance data versus frequency with the AP analyzer, a test

procedure that implements Equations (72) and (73) was written. This procedure is given

in Appendix A. The procedure sweeps the frequency of eg while making measurements of

the magnitude and phase of eg and e1 versus frequency. From the data obtained, the magni-

tude and phase of the voice-coil impedance are calculated. The frequency, magnitude, and

phase data are exported to a file, and graphs of the magnitude and phase of the measured

impedance versus frequency are generated.

2.9 The Loudspeaker Driver Parameters

The parameters RE , Le, ne, L E2, MAS, CAS, RAS, SD, and B( determine the circuit ele-

ments in the loudspeaker model of Figures 7, 9, and 10. These parameters are functions
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of the loudspeaker construction and the materials that it is fabricated from. Because the

parameters determine the impedance of the equivalent circuit in Figure 15, it follows that

numerical values of the parameters for a given loudspeaker can be found from measured

data of the loudspeaker electrical impedance as a function of frequency.

As can be seen from the impedance plots in Figure 16, the magnitude of the impedance

caused by the fundamental velocity resonance dominates over the voice-coil inductance

term at lower frequencies. The opposite is true at higher frequencies. The resistance term

RE is constant with frequency, and it dominates where both the resonance term and the

voice-coil inductance term are small. This occurs at zero frequency and in the transition

region between the velocity resonance peak and the voice-coil inductance dominance.

Although MAS, CAS, RAS, RE , and B( fully specify the low-frequency behavior of

a loudspeaker, drivers are often characterized by an equivalent set of parameters known

as the small-signal parameters. These five parameters are related to the circuit-element

parameters by the following equations:

fs = 1
2π
√

MASCAS
(74)

QMS = 1
RAS

V
MAS

CAS
(75)

QES = 1
RAE

V
MAS

CAS
(76)

QT S = QMS QES

QMS + QES
(77)

VAS = ρ0c2CAS. (78)

In these equations, fs is the velocity resonance frequency, QMS is the mechanical quality

factor, QES is the electrical quality factor, QT S is the total quality factor, and VAS is the

volume compliance. The volume compliance VAS is the equivalent closed volume of air

that, when compressed by a piston having the same area as the loudspeaker diaphragm,

exhibits a compliance equal to the loudspeaker suspension compliance CAS.
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The electrical impedance of the voice coil given in Equation (67) can be expressed by

an equivalent expression involving these small-signal parameters. This equation expresses

the velocity resonance term in the form of a second-order, band-pass transfer function given

by

ZVC = RE +
d
( jω)ne Le

e P ( jωL E2) (79)

+RES
(1/QMS)( jω/ωs)

( jω/ωs)2 + (1/QMS)( jω/ωs)+ 1
.

where ωs = 2π fs . The resistance RES in this equation is defined in Equation (70). It can

be shown that this equation reduces to

RES = QMS

QES
RE . (80)

2.9.1 Determination of the Low-Frequency Circuit Elements

To determine the values of MAS, CAS, RAS, and B( for a given loudspeaker, the measure-

ments are made at frequencies low enough to consider the voice-coil inductance to have

a negligible impedance. This is because it usually has little effect at the lower frequen-

cies where the velocity resonance parameters dominate the impedance. The equation for

the input impedance given by Equation (67) with L E1 (ω) = 0 and LE2 = 0 can be fit

to the low-frequency portion of the measured impedance versus frequency graph to obtain

values for LC ES, CM ES, and RES. Data analysis software that implements the Levenberg-

Marquardt fitting routine [33], [34] was used to simplify this task in this research.

The value of RE can be easily measured with a dc ohmmeter and used in the curve

fitting routines. To determine values for MAS, CAS, RAS, and B( from values of LC ES,

CM ES, and RES, more information is needed because four parameters are to be determined.

A fourth equation must be known.

To obtain a fourth equation, the impedance versus frequency can again be measured

after the loudspeaker system is altered in a known way. One way to do this is to add a

known additional mass to the loudspeaker diaphragm. This can be done by placing small
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magnets or a magnet and an iron material on both sides of the diaphragm so that their

attraction clamps them to the diaphragm. It is probably best to place at least two pairs

of these weights, one on each side of the diaphragm center along a diameter so that the

diaphragm remains mechanically balanced.

A second method of adding additional mass is to press pieces of plumber’s putty on

the diaphragm. The putty adheres to the diaphragm and can later be removed. When

calculating the loudspeaker parameters for a system with added mass, the diaphragm area

must be known. In addition, an accurate scale must be available to measure the weights.

The magnets can be measured once and marked with their weights, but the putty would

most probably have to be measured each time.

Another way of altering the system is to place a known acoustical compliance CT on

one side of the diaphragm. The compliance CT can be created by placing the loudspeaker

on a test box. Let this be a closed box of air having a volume VT . To reduce losses added

to the system, the box must not be lined or filled with any fibrous materials. At frequencies

where the box dimensions are much less than a wavelength, the impedance of the box can

be modeled as an acoustical compliance. This compliance is given by

CT = VT

ρ0c2 . (81)

In the analogous circuit, CT combines in series with CAS. When Equation (67) is fit to

the impedance curve with the added compliance, the new value of LC ES obtained is given

by

Lnew
C ES =

(B()2

S2
D

CASCT

CAS + CT
. (82)

This equation and Equations (68) through (70) can be used to solve for the parameter values

from the measured impedance data by the curve fitting routines.

Equation (67), in which all of the parameters are contained, can be simultaneously fitted

to the voice-coil impedance curves obtained with and without the loudspeaker mounted on

the test box. When fitting the off-box impedance curve to the measured data, LC ES given
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by Equation (68) is used in Equation (67). When fitting the on-box impedance curve, Lnew
C ES

is used. The parameters B( and RE are shared between the two equations, that is they are

unchanged by the addition of the test compliance box.

The acoustical resistance RAS that models the mechanical losses in the system does

not change significantly with the addition of the test box if it is assumed that the box

introduces negligible losses. This loss can be determined experimentally by comparing the

amplitudes of the measured impedance peaks at the resonance frequencies with and without

the box. A lossless box results in no height change, while box losses cause a reduction of

this amplitude. Addition of the box causes the acoustical mass load on one side of the

loudspeaker diaphragm to change compared to its value in free air. This change is small

and is commonly neglected in modeling the box [3], [4].

To apply the curve fitting routines to the measured data, initial estimates of the para-

meters to be estimated must be known. To determine these, a method described in [3] was

used. This method involves calculating the parameters from measurements of the voice-coil

impedance at three test frequencies. The dc voice-coil resistance RE is found by measur-

ing the resistance of the voice coil with an ohmmeter. Figure 18 shows the plot of the

measured voice-coil impedance versus frequency in the band around the fundamental reso-

nance frequency for the loudspeaker used used for Figure 16. The resonance frequency fs

is the frequency at which the impedance exhibits a peak and can be read directly from the

impedance data. It follows from Equation (79) that the magnitude of the input impedance

curve at f = fs rises to RE + RES if the frequency is low enough so that the impedance

rise due to the voice-coil inductance can be neglected.

Figure 18 shows a horizontal dashed line intersecting the vertical axis at the level

|ZV C | = R1. Let the frequencies at which this line crosses the impedance curve on each

side of the resonance peak be denoted by f1 and f2. With these definitions, it follows that

|ZV C (2π f1)| + |ZVC (2π f2)| = 2R1. (83)

It can be shown [3] that Equations (79) and (83) can be solved simultaneously for QMS to
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Figure 18. Driver input impedance curve used to determine the small-signal parameters.

obtain

QMS = fs
f2 − f1

V
(RE + RES)

2 − R2
1

R2
1 − R2

E
. (84)

If R1 is chosen to be the geometric mean of RE and (RE + RES) given by

R1 =
S

RE (RE + RES) (85)

it is straightforward to show that QMS can be calculated from the following simplified

equation

QMS = fs
f2 − f1

V
RE + RES

RE
. (86)

Equations (75) and (76) can be combined to obtain the relationship between QMS and

QES in terms of the measured values for RE and RES. It is given by

QES = QMS
RAE

RAS

= QMS
RE

RES
. (87)

With QMS found from Equation (84), QES and QT S can be solved for with Equations (87)

and (77).
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To measure the volume compliance VAS of the loudspeaker, the driver is mounted on

the closed test box of volume VT and the voice-coil impedance is measured. Let the on-box

parameters be denoted as fCT , QMCT , QECT , and QT CT . The resonance frequency fCT

and mechanical quality factor QMCT for the on-box impedance curve can be determined by

the procedure described above for the off-box data. In this case, the resonance frequency

and electrical quality factor, respectively, on the test box are given by

fCT = 1
2π
√

MACT CAT
(88)

QECT = S2
D RE

(B()2

V
MACT

CAT
(89)

where CAT is the combined acoustical compliance of the suspension and the test box given

by

CAT = CASCT

CAS + CT
. (90)

Equations (78) and (81) can be used to rewrite Equation (90) as

CAT = 1
ρ0c2

VASVT

VAS + VT
. (91)

To eliminate the unknown quantity MACT , the product of Equations (88) and (89) is taken

to obtain

fCT QECT = 1
2πRAECAT

. (92)

Similarly, for the off-box case the following equation is obtained

fs QES = 1
2πRAECAS

. (93)

When the ratio of the two above equations is taken, it is found that

fCT QECT

fs QES
= CAS

CAT

= 1+ VAS

VT
. (94)

This equation can be solved for VAS to obtain

VAS = VT

t
fCT QECT

fs QES
− 1
u
. (95)
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This equation can be used to calculate the volume compliance VAS of the loudspeaker from

the measured off-box and on-box impedance data.

2.9.2 Determination of the Voice-coil Inductance Parameters

In [26], the contribution of the voice-coil inductance to the voice-coil input impedance

is modeled as a lossy inductor having an impedance of the form ( jω)ne Le. When the

magnitude of this impedance is plotted versus frequency, it exhibits a constant slope of ne

decades per decade when plotted on log-log scales. The phase exhibits the value ne× 90 ◦.

The value of ne can range from 0 to 1. For ne = 0, the impedance is that of a pure resistance,

and for ne = 1 it is that of a pure inductance. From Figure 16, it can be seen that the voice-

coil impedance shown for the driver used in this research does approach a constant slope at

high frequencies, making the lossy inductor a good model at high frequencies.

In the course of this work, it was found that the lossy voice-coil inductor model can be

improved by including a lossless inductor in parallel with the lossy inductor. The lossless

inductor models the inductance that results from that part of the magnetic field generated by

current in the voice coil that does not flux through the magnet structure of the loudspeaker.

The addition of this inductor better models the effects of the voice-coil inductance on the

loudspeaker input impedance in the mid-frequency region above the fundamental resonance

frequency. In the measurement of several drivers, it was found that for loudspeakers having

values of ne greater than approximately ne = 0.7, the addition of the lossless inductor has

little effect on the accuracy of the voice-coil impedance model.

It follows from Equation (67) that the measured voice-coil impedance is modeled as

the sum of three terms. Once MAS, CAS, RAS, B(, and RE are determined from measured

impedance data, the motional impedance term, along with the dc voice-coil resistance RE ,

can be subtracted from the measured voice-coil impedance to obtain the contribution to the

impedance of the voice-coil inductance. When this is done, the magnitude and phase plots

of the impedance that results from the voice-coil inductance alone can be obtained. Figure

19 shows this data for the test loudspeaker used for Figure 16.
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Figure 19. Measured magnitude and phase of the voice-coil inductance term.

Figure 19 shows that the slope of the magnitude plot is approximately unity (one decade

per decade) at the lower frequencies, which is the characteristic of the impedance of a loss-

less inductor. As frequency is increased, the slope approaches a constant less than unity,

which is the characteristic of the lossy inductor model. This slope at higher frequencies

approaches a value equal to the exponent ne in Equation (31). Thus the measured data indi-

cate that the lossless inductor LE2 in parallel with the lossy inductor L E1 (ω) is required to

accurately model the voice-coil impedance data in the figure. “Glitches” in the impedance

data that are the result of mechanical resonances in the diaphragm are not accounted for in

the model.

The impedance of the lossless inductor LE2 becomes large at higher frequencies, so the

impedance of the parallel combination of the two inductors given by
d
( jω)ne Le

e P ( jωL E2)

at high frequencies mostly results from the lossy inductor contribution. Thus at high fre-

quencies, L E2 can be neglected and the curve-fitting method described in [26] can be used

to estimate Le and ne.

A simpler method than that described in [26] was used to estimate values for Le and
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ne from the measured data for this work. It uses the measured magnitude and phase of

the impedance at a single high frequency well above the fundamental resonance frequency.

This frequency must be high enough so that the impedance of the lossless inductor L E2 can

be considered to be large compared to the impedance of the lossy inductor L E1 (ω). In this

case, the impedance of the lossy inductor can be written

ZE1 = ( jω)ne Le

= e jneπ/2 (ω)ne Le. (96)

When the impedance is written in this form, it can be seen that the magnitude of the im-

pedance is given by

|ZE1| = (ω)ne Le (97)

and the phase in radians is a constant given by

arg (ZE1) = neπ

2
. (98)

The magnitude and phase of the voice-coil inductance contribution at a single high

frequency can be obtained from the data for Figure 19 and used in Equations (97) and (98)

to solve for values of Le and ne. The frequency at which the magnitude and phase are

obtained might be chosen to be 20 kHz. This frequency corresponds to what is commonly

taken to be the high-frequency limit of the audio band.

If the impedance is measured at frequencies above 20 kHz, better results for Le and ne

might possibly be obtained because the effect of L E2 is further diminished as the frequency

is increased. However, at too high a frequency, electrical resonances that result from the

capacitance of the voice-coil winding can affect the impedance. Figure 20 is a plot of the

magnitude of the voice-coil impedance from 10 Hz to 200 kHz for the test loudspeaker. It

can be seen that the slope of the curve becomes steeper at approximately 50 kHz, indicating

that the impedance model of the voice-coil inductance changes at higher frequencies.

Once Le and ne are obtained, LE2 can be experimentally adjusted to obtain the best

curve fit between the measured and modeled voice-coil impedance data. It was found that
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Table 1. Parameter values for six inch driver.

MAD RAS CAS B( aD RE Le ne LE2
54.4 7799.85 1.2856× 10−7 4.50 0.06 6.7 0.1554 0.4465 0.00085

this can be quickly done by trial and error. Alternately, a curve-fitting routine can be used.

In the process, some adjustments to the values obtained for Le and ne can be made to

obtain the best curve fit. For the test loudspeaker impedance data shown in Figure 16, the

parameters found by curve-fitting are given in Table 1.

Figure 21 shows plots of the high-frequency voice-coil impedance of the test loud-

speaker along with plots of the impedance of the lossless inductor LE2, the lossy inductor

L E1 (ω), and the parallel combination of the two latter impedances. It can be seen that

the parallel combination exhibits excellent agreement with the measured impedance. The

figure illustrates that the corner frequency in the transition from the lossless inductor region

to the lossy inductor region for the test loudspeaker is approximately 2 kHz.

Figure 22 shows a plot of the measured and modeled voice-coil impedance data for the

test loudspeaker. There are two modeled curves, one in which the voice-coil impedance
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Figure 21. Measured and modeled voice-coil inductance impedances.

is modeled as only a lossy inductor and one in which it is modeled as parallel lossless

and lossy inductors. When only the lossy inductor is used in the model, the impedance

magnitude is too large in the mid-frequency region. The addition of the lossless inductor

L E2 decreases the modeled impedance and eliminates this problem.
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CHAPTER 3

THE TRANSMISSION LINE MODEL

This chapter presents the development of the electro-acoustical analogous circuit model of

an acoustical transmission line that is filled with a fibrous filling. First, the homogeneous

acoustical wave equations for the acoustic pressure and particle velocity are reviewed.

These equations model the wave propagation in a source free region. The analogous circuit

model is then developed for an unfilled line. Finally, modifications are made to the model

for the unfilled line to account for the addition of filling into the line.

3.1 The Acoustical Wave Equations

The homogeneous acoustical wave equations for the acoustic pressure p an the particle

velocity −→u in an acoustical wave propagating in free air are [27]

∇2 p − 1
c2
∂2 p
∂t2 = 0 (99)

−→∇ 2−→u − 1
c2
∂2−→u
∂t2 = 0 (100)

where ∇2 p is the scalar Laplacian of p and
−→∇ 2−→u is the vector Laplacian of−→u . In rectan-

gular coordinates, these are given by

∇2 p = ∂
2 p
∂x2 +

∂2 p
∂y2 +

∂2 p
∂z2 (101)

−→∇ 2−→u = ∂ux

∂x
Ex + ∂uy

∂y
Ey + ∂uz

∂z
Ez

whereEx ,Ey,Ez are the unit vectors in the x , y, and z directions, respectively. The parameter

c in the wave equations is the velocity of sound given by

c =
V
γ a P0

ρ0
(102)

where γ a is the ratio of the specific heat of air at constant pressure to the specific heat at

constant volume, P0 is the ambient air pressure, and ρ0 is the density of air.
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The propagating sound wave is fully described by its pressure p and particle velocity
−→u as a function of position and time. If the source is assumed to vibrate sinusoidally,

the time and position dependence of p and −→u can be isolated and expressions for the two

quantities written as

p
b−→r , tc = Re

d
p
b−→r c e jωte (103)

−→u b−→r , tc = Re
d−→u b−→r c e jωte . (104)

In these equation, p
b−→r c is the phasor pressure and −→u b−→r c is the phasor particle velocity,

both as functions of the position vector −→r .

When these expressions are substituted into Equations (99) and (100), the following

equations are obtained

Re
|v
∇2 p

b−→r c+ ω2

c2 p
b−→r cw e jωt

}
= 0 (105)

Re
|v
∇2−→u b−→r c+ ω2

c2
−→u b−→r cw e jωt

}
= 0. (106)

In order for these equations to be equal to zero for all time t , it follows that the terms in the

square brackets must be identically zero. Thus the phasor forms of the homogeneous wave

equations can be written

∇2 p + k2 p = 0 (107)

∇2−→u + k2−→u = 0 (108)

where the parameter k is called the wavenumber. It is given by

k = ω
c
. (109)

Although not explicitly shown, p and −→u are phasor functions of the position vector−→r .

Equations (107) and (108) are known as the reduced wave equations or Helmholtz equa-

tions. These equations can be used to solve for the phasor pressure and particle velocity in

free air. To recover the time dependence of these two quantities, the phasor solutions are
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multiplied by exp ( jωt) and the real part of the resulting expression is found. The phasor

solutions for p and −→u are related by [27]

−→∇ p = − jωρ0
−→u . (110)

3.2 The Unfilled Transmission Line

Before the development of the general electro-acoustical analogous circuit model for a

filled transmission line, the simplest implementation of an unfilled line is first considered.

The geometry is a straight, rigid tube having a circular cross-section area. Such a geometry

is also referred to as a plane wave tube. It is assumed that the tube is sinusoidally driven by

a vibrating piston at one end of the tube having the same diameter as the tube.

Figure 23 illustrates the system. The vibrating piston at the left end of the tube gen-

erates a plane wave in the tube. In this case, the equations that describe acoustical wave

propagation in the tube are one dimensional. Because the piston is assumed to be rigid,

a one-dimensional plane wave mode can be assumed to be generated in the tube. The as-

sumption that the piston vibrates sinusoidally in time allows the time dependence to be

removed from the analysis so that the phasor form of the acoustical equations developed in

Section 3.1 can be used.

Figure 23. Diagram of transmission line.

The acoustical impedance presented by the line to the piston source in Figure 23 is

the ratio of the pressure p (0) at the piston to the volume velocity U (0) that it emits into

the line. In the following section, this impedance is solved for by solving the equations
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reviewed in Section 3.1 for the acoustical wave in the line. In Section 3.2.2, the electro-

acoustical analogous circuit model of the system is developed.

3.2.1 An Acoustical Solution

The pressure and particle velocity inside the tube must satisfy the homogeneous wave equa-

tions given in Equations (99) and (100). Because the wave in the tube is assumed to be a

plane wave, its amplitude and phase vary only with the distance z along the length of the

tube. This allows Equation (107) to be simplified to

d2 p (z)
dz2 + k2 p (z) = 0. (111)

The general solution to this second-order differential equation gives the pressure in the tube

as a function of the distance z from the piston. The solution is given by

p (z) = p0+e− jkz + p0−e+ jkz (112)

where p0+ is the amplitude of a wave travelling in the+z direction and p0− is the amplitude

of a wave travelling in the −z direction. The two waves combine to give the total pressure.

When Equation (110) is applied to Equation (112), an expression for the particle velocity

is obtained. It is

u (z) = 1
ρ0c

b
p0+e− jkz − p0−e+ jkzc . (113)

The acoustical input impedance to the unfilled line is the ratio of the pressure p (0) to

the volume velocity U (0) at the source end of the line. It is given by

Z AT = p(0)
U(0)

= p(0)
ST u(0)

= ρ0c
ST

p0+ + p0−
p0+ − p0−

(114)

where ST is the cross-sectional area of the transmission line.

If the tube is infinitely long, there is no wave travelling in the −z direction that occurs

from reflections. In this case, the reverse propagating wave is absent and p0− = 0. In
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this case, the input impedance to the line is called the characteristic impedance ZC . From

Equation (114) with p0− = 0, it follows that ZC is given by

ZC = ρ0c
ST
.

At the load end of the line, the ratio of p (LT ) to U (LT ) is equal to the acoustical

impedance Z AL of the load impedance. It follows that this is given by

Z AL = p(LT )

U(LT )

= ρ0c
ST

p0+e− jkLT + p0−e+ jkLT

p0+e− jkLT − p0−e+ jkLT
. (115)

This equation can be manipulated to obtain a following relationship between p0+ and p0−.

It is

p0+ =
ρ0c
ST

p0−e+ jkLT + Z AL p0−e+ jkLT

Z ALe− jkLT − ρ0c
ST

e− jkLT
. (116)

When Equation (116) is substituted into Equation (114), p0+ and p0− can be elimi-

nated, to solve for the acoustical input impedance to the unfilled tube. It is given by

Z AT = ρ0c
ST

Z AL + j ρ0c
ST

tan (kLT )
ρ0c
ST
+ j Z AL tan (kLT )

(117)

= ZC
Z AL + j ZC tan (kLT )

ZC + j Z AL tan (kLT )
(118)

where the identities

cos(θ) = 1
2
b
e jθ + e− jθc (119)

sin(θ) = 1
j2
b
e jθ − e− jθc (120)

have been used to simplify the equation.

3.2.2 The Electroacoustic Analogous Circuit of the Line

Let the transmission line be modeled as a series of segments of length �z as shown in

Figure 23, where �z is the length of the line divided by the number of segments. The air

in each segment possesses both an acoustical mass and an acoustical compliance. Because
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the line is assumed to be lossless, no acoustical resistance is present. Each segment can be

modeled by the electrical analogous circuit shown in Figure 24, where ma1 is the acoustical

mass of the air in each volume segment and ca1 is the acoustical compliance of the air in

the segment. U (z) is the volume velocity of the air in the tube at position z and p (z) is the

pressure at position z.

Figure 24. Electroacoustic model for a section of transmission line.

Let maa be the acoustical mass per unit length and caa be the acoustical compliance per

unit length on the line. These are given by

maa = ρ0
ST

(121)

caa = ST

ρ0c2 . (122)

It follows that the values of ma1 and ca1 in Figure 24 can be written

ma1 = maa�z (123)

ca1 = caa�z. (124)

If �z is made small enough so that the transmission line model is composed of a large

number of segments, the line can be modeled as a lumped element model, as is done in

obtaining the model of [10]. However, an exact solution can be obtained in the limit as�z

goes to zero. The exact solution makes it unnecessary to use a circuit simulator or write

circuit equations to find the pressure and volume velocity at a point in the transmission line.
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A pressure wave in any acoustical system results from the mechanical movement of air.

The acoustical variables are mechanical variables that are scaled by the area over which

the mechanical force acts. This scaling is the link between the mechanical system and the

acoustical system. Analogous circuits can be used to model a mechanical system, just as

they can model an acoustical system. Because of the close link between the systems, an

acoustical system can be represented as a mechanical system, and vice-versa. However,

unlike a mechanical mass, air can be compressed and rarefied. This requires the introduc-

tion of additional acoustical impedances that are not required if the air is modeled as a

non-deformable mechanical mass.

From Section 2.3, it is clear that the acoustical variables of pressure p and volume ve-

locity U are closely related to the mechanical variables of force f and velocity u. Because

the acoustical equations are derived from the equations of mechanics, the acoustical system

is fundamentally a mechanical system.

The electro-acoustical model of Figure 24 is equivalent to a mechanical diagram of the

transmission line as a linked mass-spring system as shown in Figure 25. Each mechanical

mass in this figure is related to the corresponding acoustical mass in Figure 24 by mm1 =
ma1S2, where S is the area of the tube. The mechanical compliance of each spring is related

to the corresponding acoustical compliance in Figure 24 by cm1 = ca1/S2.

Figure 25. Mechanical system representation of unfilled transmission line.

3.2.2.1 The Wave Equations and their Solutions

With reference to Figure 24, the following equations can be written

p (z +�z) = p (z)−U (z) jωmaa�z (125)
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U (z +�z) = U (z)− jωcaa p (z +�z)�z. (126)

These can be rearranged to obtain

p (z +�z)− p (z)
�z

= −U (z) jωmaa (127)

U (z +�z)−U (z)
�z

= − jωcaa p (z +�z) . (128)

In the limit as �z → 0, the following first-order differential equations are obtained

dp (z)
dz

= − jωmaaU (z) (129)

dU (z)
dz

= − jωcaa p (z) . (130)

When the derivative of Equation (129) is taken with respect to z and Equation (130) is

used to eliminate dU (z) /dz, the following equation for p (z) results

d2 p (z)
dz2 + ω2caamaa p (z) = 0. (131)

Similarly, an equation for U (z) is found to be

d2U (z)
dz2 + ω2caamaaU (z) = 0. (132)

The solutions to these differential equations represent plane waves traveling in the tube and

are given by

p (z) = p0+e−γ z + p0−e+γ z (133)

U (z) = U0+e−γ z +U0−e+γ z (134)

where γ is the propagation constant given by

γ = jω
√

caamaa. (135)

The phase velocity of the propagating wave is

c = Im(γ )
ω

= 1√caamaa
. (136)
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In Equations (133) and (134), p0+ and U0+ are the amplitudes of the waves traveling

in the +z direction, and p0− and U0− are the amplitudes of the waves traveling in the −z

direction. These amplitudes are related to each other by the characteristic impedance of the

line ZC as follows:

U0+ = p0+
ZC

(137)

U0− = −p0−
ZC

(138)

where

ZC =
U

maa

caa
. (139)

3.2.2.2 The Line Input Impedance

Figure 26 illustrates the block diagram of an acoustical transmission line having a length

LT and a cross-sectional area ST . The impedance Z AL is the acoustical impedance pre-

sented by the terminating air load on the line. This impedance is discussed in Section 2.6,

where the values are those for a piston in the end of a long tube.

Figure 26. Block diagram of transmission line.

At any point in the line, the acoustical impedance is equal to the ratio of the acoustic

pressure to the volume velocity. It follows from Equations (133), (134), (137), and (138)
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that the acoustical impedance at z = LT can be written

Z AL = p (LT )

U (LT )

= p0+e−γ LT + p0−e+γ LT

p0+
ZC

e−γ LT + p0−
ZC

e+γ LT
. (140)

When this equation is solved for p0− as a function of p0+, the following equation is ob-

tained

p0− = p0+
Z AL − ZC

Z AL + ZC
e−2γ LT . (141)

The input impedance to the line is the ratio of the pressure at the source to the volume

velocity emitted by the source, i.e., the acoustical impedance at z = 0. It is given by

Z AT = p (0)
U (0)

= ZC
p0+ + p0−
p0+ − p0−

. (142)

When the expression for p0− given in Equation (141) is substituted into Equation (142),

it follows that the expression for the acoustical input impedance to the transmission line is

given by

Z AT = ZC
Z AL + ZC tanh (γ LT )

ZC + Z AL tanh (γ LT )
. (143)

If the expressions for γ and ZC given by Equations (135) and (139) are substituted into

Equation (143), the expression becomes

Z AT =
U

maa

caa

Z AL +
T

maa
caa

tanh
b

jω√maacaa LT
c

T
maa
caa
+ Z AL tanh

b
jω√maacaa LT

c . (144)

With the aid of Equations (121), (122), and (136), and the identity tanh( j x) = j tan(x),

this equation becomes

Z AT = ρ0c
ST

Z AL + j ρ0c
ST

tan (kLT )
ρ0c
ST
+ j Z AL tan (kLT )

(145)

which is identical to Equation (117). Thus the expression for the input impedance that is

obtained from an electrical analogous circuit model of the line is identical to the impedance

obtained by the acoustical solution of Section 3.2.1.
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3.3 The Filled Transmission Line

When the transmission line is filled with a fibrous filling material, the characteristics of

the line are altered. The flow resistance of the material introduces an acoustical resistance

to the system. In addition, because the fibers can be moved by the air flow in the line,

mechanical compliance and mass effects are introduced.

The electro-acoustical lumped element model developed by Augspurger assumes that

the fibers do not move and only contribute a frequency-dependent acoustical resistance.

The model developed by Bradbury treats the fibers as though they do not have a mechan-

ical compliance, making them unrestrained and completely free to move. In addition, he

assumed that the fibers contributed both mass and resistance to the system. It has been

found in this work that neither the model of Augspurger or the model of Bradbury accu-

rately model all of the features found in measured input impedance data. When a wave

propagates down the tube, the fibers move. However, they are constrained by both the

walls of the tube and by each other. These constraints limit the fiber motion and make the

fiber compliance a significant parameter in the system.

In the following, a new electro-acoustical model is presented that models the filled line

in such a way that it is consistent with the data measured for this work. The model considers

the filled line as two linked transmission lines. One is an acoustical transmission line that

models the acoustical wave that propagates down the tube. The other is a mechanical

transmission line that models the mechanical wave that propagates down the filling fibers

in accompaniment with the acoustical wave. The two transmission lines are linked by the

flow resistance of the fibers. If the flow resistance is zero, the coupling between the lines

disappears.

3.3.1 Fibrous Material Characteristics

The fibrous materials that are commonly used as a filling material in acoustical transmis-

sion lines can be divided into two classes. The first is that of a tangle, where long fibers are

intertwined in no discernible pattern. An example of this type of material is polyester fiber
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in which there is no organized structure among the fibers. The density of the material can

vary locally, but the material as a whole can be considered to have an average packing den-

sity, and thus have an average acoustical resistance. The air in the line can flow around any

of the locally dense areas through a surrounding less dense area. The acoustical resistance

of the material can be thought of as being formed by many acoustical resistors connected

in parallel, with the total resistance of the material equal to the parallel combination of the

resistors. If the wavelength of the acoustical wave is large compared to the average distance

between the local variations in density, the density variations have little effect on the total

acoustical resistance.

The other form of fibrous materials is that found in fiberglass. Fiberglass is composed

of easily seen layers, where each layer shares some of the fibers of the adjacent layers. The

fibers that cross between layers hold the structure together and mechanically couple the

layers to each other. Each layer consists of fibers oriented roughly parallel to the layer. In

some layers, the fibers are loosely packed. In others, the fibers are more densely packed.

When the layers are oriented perpendicular to the direction of airflow, the fibers impede the

airflow across the entire cross section of the layer. Thus in layered materials, dense layers

can contribute a large acoustical resistance to the system. Because the layers are coupled,

not only is it possible for the individual fibers of a layer to move, but the entire layer can

also move roughly as a single object.

The acoustical resistance of materials of this type can be modeled by series acoustical

resistances, where each resistance models the resistance of an individual layer. The total

acoustical resistance of each layer can be thought of as composed of resistors in paral-

lel. Depending on the variation in packing density, the resistance variation from one layer

to another can be large, whereas in the randomly tangled materials, there are no abrupt

changes in resistance with changes in position along the length of the line. A photograph

of a sample of fiberglass showing its layered structure is shown in Figure 27.
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Figure 27. Photograph that illustrates the layered structure of fiberglass.

3.3.2 The Mechanical Model of the Filling Material

To obtain a mechanical model of filling in an acoustical transmission line, the physical

characteristics of the filling and the constraints on the motion of its fibers must be consid-

ered. Each length �z of the material possesses mass. If the packing density is considered

to be uniform, the mass per unit length can be calculated as the product of the packing

density and the area given by

mm f = PDST (146)

where PD is the packing density in kg m−3 and ST is the cross-sectional area of the line.

The fibers in each length also exhibit a mechanical compliance. When a force is applied

to the fibers, they can stretch or compress but will return to their starting position when the

force is removed. This assumes that the force is not so large to compress the layers. The

kinked fibers act as springs that are attached to both adjacent fiber layers and constrained

at the tube walls. Friction between the fibers and the tube walls holds the material in place.

If the fibers are free-floating in the tube, there is no restoring force resulting from the

constraint at the tube wall. In this case, the material exhibits only a compliance between
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adjacent layers.

As the fibers in the material move, frictional losses can occur as the fibers rub against

each other. The fibers are not free to move along with the flow of air in the tube because

they are limited in their range of motion by other fibers. Because the density of the fibrous

material cannot be completely uniform, each fiber does not move in the same way as other

fibers.

Despite the complex physical structure of the fibrous material, it has been found in

this work that its bulk characteristics per unit length of the line can be modeled by the

mechanical system of Figure 28. In this system, any non-linear characteristics of the fibers,

such as a limited range of motion, are assumed to be negligible. The model also assumes

that the material is uniform. This is valid if the wavelength of the acoustical wave is large

compared to the distance between local variations in density.

Figure 28. Mechanical system representation of the fibrous material.

The mechanical mass mm f models the total mass of the fibers in the length�z. The me-

chanical compliance cm f ( models the total mechanical coupling compliance among fibers

in the length�z. The mechanical compliance cm f models the total compliance between the

fibers and the tube walls in the length �z. The mechanical resistance r f r models the total

mechanical losses in the length �z. The total values are obtained by multiplying the per

unit values by the length�z. In principal, the parameters in the model could be determined

if sufficient information about the physical properties of the material is known. In practice,

however, it is more convenient to estimate the values from experimental measurements. Al-

though not indicated on the figure, all mechanical parameters in the model are dependent
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on the packing density PD.

3.3.3 The Coupled Transmission Line System

As indicated by Equation (3), the fiber system of Figure 28 is linked to the air system of

Figure 25 through the flow resistance. When these two systems are combined, the complete

mechanical transmission line system shown in Figure 29 is obtained. The resistance ST R f

between the air and fiber masses models the mechanical flow resistance. A vibrating loud-

speaker piston moving with velocity uD and placed on one end of the line causes the nearby

air to move with the same velocity. The resulting frictional force between the moving air

and the fibers causes the fibers to move in response to the moving air.

Figure 29. Mechanical system representation of the filled transmission line.

The value of the flow resistance determines the degree of interaction between the acousti-

cal and the mechanical systems. If the flow resistance is zero, the air does not "see" the

fibers at all. In this case, the line behaves like the unfilled line modeled by the system of

Figure 25. If the flow resistance is infinite, the air and fibers are completely linked and

move together.

The net volume of air in the transmission line is reduced by the volume occupied by

the fibers. To account for this, the expressions for mma and cma must be altered from

the unfilled line expressions given by mma = ρ0ST and cma = 1/ρ0c2ST . The modified

expressions are

mma = ρ0ST

�
1− PD

ρ f

�
(147)
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cma =
r
1− PD

ρ f

s
ρ0c2ST

(148)

where
b
1− PD/ρ f

c
is the fraction of the line volume occupied by air.

For the typical packing densities that are used in transmission line loudspeaker systems,

the filling material occupies a small portion of the tube volume. In this case, the values for

mma and cma given by the above expressions differ little from the values given by the

expressions for the unfilled line.

3.3.4 The Circuit Model

A mobility analogous circuit that models the mechanical system of Figure 29 is shown in

Figure 30. The node voltages, which represent either fiber or air velocities, are labeled at

positions z and z +�z along the line. In the acoustical part of the line, the node voltages

are analogous to particle velocity and the branch currents are analogous to an acoustical

force given by the acoustic pressure multiplied by the area of the tube. In the mechanical

part of the line, the node voltages are analogous to mechanical velocity and the branch

currents are analogous to mechanical force. The two models are coupled by resistors which

are inversely proportional to the flow resistance R f . If the flow resistance is zero, these

resistors become open circuits. If the flow resistance is infinite, these resistors become

short circuits.

Figure 30. Mobility circuit model of a filled transmission line.

The acoustical and mechanical portions of the transmission line in Figure 30 can be
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separated by modeling the node voltages on each side of the resistors labeled 1/ST R f with

voltage controlled voltage sources. The circuit can then be separated into two circuits, an

acoustical circuit that models the airflow and a mechanical circuit that models the fiber

movement. The two circuits together form a coupled mechano-acoustical model of the

filled transmission line. The separated analogous circuit is shown in Figure 31.

Figure 31. Separate mobility analogous circuits of the filled transmission line. (a) Mechanical analogous
circuit. (b) Acoustical analogous circuit.

In obtaining the acoustical part of the circuit of Figure 31(b) from the circuit in Fig-

ure 30, the relationships given in Section 2.5 have been used to change the variables so

that node voltages are analogous to volume velocity and branch currents are analogous to

acoustic pressure. In the circuit of Figure 31(b), Ua = ua ST is the volume velocity of the

air, UD = uDST is the volume velocity emitted by the piston source, maa = mma/S2
T is

the acoustical mass of air per unit length, and caa = cma S2
T is the acoustical compliance of

air per unit length.

The mobility analogous circuits in Figure 31 can be converted into impedance analo-

gous circuits by taking the electrical duals of the mobility circuits. These dual circuits are

shown in Figure 32. The circuits model a segment of transmission line having a length�z.

The per unit length parameters are shown multiplied by the length �z of the segment. In
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the mechanical part of the circuit, voltage is analogous to force and current is analogous to

velocity. In the acoustical part, voltage is analogous to pressure and current is analogous to

volume velocity.

Figure 32. Impedance analogous circuit model of a filled transmission line. (a) Mechanical model of
the fibers. (b) Acoustical model of the air.

The interaction between the mechanical and acoustical parts of the circuits in Figure 32

is modeled by current controlled current sources. Both Augspurger’s [10] and Bradbury’s

[9] models can be shown to be special cases of this more general model.

In arriving at his model, Augspurger assumed that the fibrous material is stationary

in the tube. The case of stationary fibers can be modeled by letting cm f = 0 in Figure

32. Physically, this would be equivalent to making the fibers rigid and attaching them to

the walls of the tube. Under these conditions, the fiber velocity u f (z) is zero and the

mechano-acoustical model of Figure 32 reduces to an acoustical line alone that has the
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same form as the acoustical equivalent of Augspurger’s model shown in Figure 2.

Bradbury modeled the fibrous material as being moveable and having mass, but he

neglected the constraint of the tube wall. He also did not include the compliant link among

fibers. To impose Bradbury’s assumptions on the model, cm f is replaced with a short circuit,

r f r is replaced with a short circuit, and cm f ( is replaced with a short circuit. For these

conditions, the model of Figure 32(a) reduces to Bradbury’s model shown in Figure 33.

Note that replacement of cm f ( with a short circuit is equivalent to the assumption that

adjacent fibers do not mechanically couple. That is, one fiber does not exert a mechanical

force on an adjacent fiber.

Figure 33. Mechanical model of a length of fibers assuming no wall constraints or compliant links.

In Figure 33, the fiber velocity u f (z) can be calculated by current division of Ua (z) /ST

between the circuit elements mm f�z and ST R f�z. It is given by

u f (z) = Ua (z)
ST

ST R f�z
ST R f�z + jωmm f�z

. (149)

This equation can be rewritten in terms of acoustical impedances as

ST u f (z) = Ua (z)
R f�z/ST

R f�z/ST + jωma f�z
(150)

where ma f = mm f /S2
T is the acoustical mass that results from the mechanical mass mm f

given by

ma f = mm f

S2
T
. (151)
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Consider the circuit shown in Figure 34. It follows by current division that the current

SDu f (z) is the same as that given by Equation (150) which was obtained from the circuit

in Figure 33. It follows that the controlled source ST u f (z) in Figure 32(b) can be replaced

with the acoustical mass ma f�z shown in Figure 34. This analogous circuit is equivalent

to Bradbury’s model. The propagation constant for a wave on this acoustical transmission

line has the same form as the propagation constant given in Equation (5) that was derived

by Bradbury.

Figure 34. Acoustical model of transmission line airflow assuming no wall constraints and no compliant
coupling among fibers.

A more general case of special interest is when the fibers are constrained by the walls

of the tube but are not compliantly linked to each other. That is, it is assumed that adjacent

fibers do not mechanically couple. In this case, cm f ( is replaced with a short circuit in

Figure 32(a). In this case, it follows that the acoustical part of Figure 32(b) simplifies to

the analogous circuit shown in Figure 35, where maf is given by Equation 151 and

ca f = S2
T cm f (152)

ra f r = r f r

S2
T
. (153)

Some observations can be made from this circuit. If maf is infinite, ra f r is infinite, or

ca f is zero, then the current ST u f (z) is zero. In this case, the fibers are stationary and do
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Figure 35. Simplified acoustical model of airflow in the transmission line assuming the fibers are not
coupled.

not move. If Bradbury’s conclusion that the fibers are moved by the airflow is incorrect,

this would probably result from a large value of ra f r . If the fibers are completely free to

move, as Bradbury assumed, then they would have mass (maf /= 0), be infinitely compliant

(ca f = ∞), and not rub against each other (r f r = 0). Unlike Bradbury’s model, the

analogous circuit of Figure 35 predicts that the pressure drop across the circuit that results

from a dc volume velocity is entirely due to the flow resistance R f , as it should be by the

definition of flow resistance. If the fibers can move freely, the circuit reduces to that shown

in Figure 34. If the fibers are stationary, the circuit becomes the acoustical impedance

analog of Augspurger’s model.

3.4 Solutions to the Filled-Line Model

To solve for expressions for the acoustic pressure pa (z), the air volume velocity Ua (z),

the mechanical force on the fibers f f (z), and the mechanical fiber velocity u f (z) in the

model of Figure 32, a method similar to that used in Section 3.2.2 for the unfilled line

can be employed. The compliant link among fibers that is modeled by cm f (�z makes it

possible for a mechanical wave to travel through the fibrous structure. Because of this, the

filled model results in a fourth order differential equation that must be solved, whereas the
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unfilled model resulted in a second order differential equation.

3.4.1 Derivation of the Wave Equations

For the circuits in Figure 32, the following equations can be written:

pa (z +�z) = pa (z)−Ua (z)
t

za + R f

ST

u
�z +U f (z)

R f

ST
�z (154)

Ua (z +�z) = Ua (z)− jωcaa�zpa (z +�z) (155)

f f (z +�z) = f f (z)− u f (z)
b
zm + ST R f

c
�z + ua (z) R f ST�z (156)

u f (z +�z) = u f (z)− jωcm f (�z f f (z +�z)

where zm is the series mechanical impedance per unit length given by

zm = jωmm f + r f r + 1
jωcm f

(157)

and za is the series acoustical impedance per unit length given by

za = jωmaa. (158)

In the limit as �z → 0, the following differential equations are obtained

dpa (z)
dz

= −Ua (z)
t

za + R f

ST

u
+ u f (z) R f (159)

dUa (z)
dz

= − jωcaa pa (z) (160)

d f f (z)
dz

= −u f (z) (zm + ST R f )+Ua (z) R f (161)

du f (z)
dz

= − jωcm f ( f f (z) . (162)

These equations can be combined to obtain second-order equations for the analogous

currents Ua (z) and u f (z). To obtain the equation for Ua (z), the derivative with respect to

z of Equation (160) is taken, and the resulting equation is solved for dpa (z) /dz to obtain

dpa (z)
dz

= − 1
jωcaa

d2Ua (z)
dz2 . (163)
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When this expression is used to eliminate dpa (z) /dz in Equation (159), the following

equation results:

− 1
jωcaa

d2Ua (z)
dz2 = −Ua (z)

t
za + R f

ST

u
+ u f (z) R f . (164)

Similarly, Equations (162) and (161) can be combined to obtain

− 1
jωcm f (

d2u f (z)
dz2 = −u f (z) (zm + ST R f )+Ua (z) R f . (165)

Equation (164) is a wave equation in Ua (z), and Equation (165) is a wave equation in

u f (z). The two equations are coupled through the flow resistance R f . The last term in each

equation results from this coupling between the acoustical and mechanical transmission

lines. If the flow resistance R f is zero, the lines are uncoupled and Equation (164) for

Ua (z) reduces to Equation (132) for the unfilled line.

The above equations can be combined further to obtain an equation involving Ua (z)

alone and an equation involving u f (z) alone. Equation (165) can be solved for Ua (z) to

obtain

Ua (z) = − 1
jωcm f (R f

d2u f (z)
dz2 + u f (z)

R f
(zm + ST R f ). (166)

If the second derivative of Equation (166) is taken, the resulting equation gives the follow-

ing expression relating d2Ua (z) /dz2 and u f (z):

d2Ua (z)
dz2 = − 1

jωcm f (R f

d4u f (z)
dz4 + (zm + ST R f )

1
R f

d2u f (z)
dz2 . (167)

Equations (166) and (167) can be used to eliminate the Ua (z) terms in Equation (164).

The result is a fourth-order differential equation that describes the mechanical fiber velocity

u f (z). It is

−1
ω2caacm f (

d4u f (z)
dz4 − A2

d2u f (z)
dz2 +

K
(zm + rm) (za + ra)− R2

f

L
u f (z) = 0 (168)

where

ra = R f

ST
(169)
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is the acoustical resistance per unit length that results from the flow resistance, and

rm = ST R f (170)

is the mechanical resistance per unit length that results from the flow resistance, and A2 is

given by

A2 = zm + rm

jωcaa
+ za + ra

jωcm f (
. (171)

In a similar manner, a fourth-order equation in Ua (z) can be found. It is given by

−1
ω2caacm f (

d4Ua (z)
dz4 − A2

d2Ua (z)
dz2 +

K
(zm + rm) (za + ra)− R2

f

L
Ua (z) = 0. (172)

The differential equations for u f (z) and Ua (z) given in Equations (168) and (172) have the

same form. The solutions to these equations represent waves traveling in the transmission

line, either in air or in the mechanical structure of the fibrous material. The identical form of

the two equations implies that the Ua and u f waves are governed by the same propagation

constant γ . Because the equations are of fourth order, there are four possible wave solutions

to each, two propagating in the +z direction and two propagating in the −z direction.

3.4.2 Solutions to the Wave Equations

To solve for the propagation constant γ , it is assumed that the solutions to Equations (168)

and (172) are of the form A exp (−γ z), where A is the amplitude of the wave and γ is the

complex propagation constant which has the form

γ = α + jβ. (173)

In this equation, α is the attenuation constant and β is the phase constant.

When A exp (−γ z) is substituted for u f (z) in Equation (168), the following equation

is obtained:

−1
ω2caacm f (

γ 4 + A2γ
2 +

K
(zm + rm) (za + ra)− R2

f

L
= 0. (174)
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This equation is a second-order equation in γ 2 that has solutions given by

γ = ±

⎧⎪⎪⎨⎪⎪⎩
A2 ±

U
A2

2 + 4
ω2caacm f (

K
(zm + rm) (za + ra)− R2

f

L
2 −1
ω2caacm f (

⎫⎪⎪⎬⎪⎪⎭
1/2

. (175)

This equation represents four solutions, depending on the assignment of plus and minus

signs. Two values of γ are the negative of other values. The same solutions can be obtained

from Equation (172).

The four possible solutions for γ given by Equation (175) represent four propagating

waves in the filled transmission line. Two of the waves are the forward and reverse propa-

gating waves that travel primarily in the mechanical structure of the fibrous material. Two

are the forward and reverse propagating waves that travel primarily in the air. Because of

the coupling between the waves, the acoustical parameters affect the propagation constant

of the mechanical wave, and vice-versa.

The four solutions for γ can be written in the forms

γ 1 =
U

Z A + ZB

2
(176)

γ 2 =
U

Z A − ZB

2
(177)

γ 3 = −
U

Z A + ZB

2
(178)

γ 4 = −
U

Z A − ZB

2
(179)

where

Z A = ra + za

zcaa
+ rm + zm

zcm f (
(180)

ZB = 1
zcaazcm f (

�
− 4zcaazcm f (

K
R2

f + (ra + za)(rm + zm)
L

+ d(ra + za)zcm f ( + (rm + zm)zcaa
e2 �1/2

(181)
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and zcaa and zcm f ( are the impedances given by

zcaa = 1
jωcaa

(182)

zcm f ( = 1
jωcm f (

. (183)

Because γ 3 = −γ 1 and γ 4 = −γ 2, it follows that the total solutions for the volume

velocity Ua (z) and u f (z) can be written

Ua (z) = U01e−γ 1z +U02e−γ 2z +U03eγ 1z +U04eγ 2z (184)

u f (z) = u01e−γ 1z + u02e−γ 2z + u03eγ 1z + u04eγ 2z. (185)

where U01, U02, u01, and u02 are the amplitudes of the waves propagating in the +z direc-

tion and where U03, U04, u03, and u04 are the amplitudes of the waves propagating in the

−z direction. When Equations (160) and (162) are applied to Equations (184) and (185),

expressions for the acoustic pressure and mechanical force are obtained. They are

pa (z) = −zcaa
b−U01γ 1e−γ 1z +−U02γ 2e−γ 2z +U03γ 1eγ 1z +U04γ 2eγ 2zc (186)

f f (z) = −zcm f (
b−u01γ 1e−γ 1z +−u02γ 2e−γ 2z + u03γ 1eγ 1z + u04γ 2eγ 2zc . (187)

3.4.3 Determination of the Wave Amplitudes

To determine the wave amplitudes in Equations (184) through (187), the boundary condi-

tions at each end of transmission line system are employed. With reference to Figure 23,

the volume velocity at the source end of the line is equal to the volume velocity UT emitted

by the loudspeaker diaphragm into the tube. To obtain a solution, it is assumed that the

frequency is low enough so that the acoustic pressure at the open end of the tube is zero.

This is equivalent to the assumption that Z AL = 0 in Figure 26.

To simplify the expressions, let the origin in Figure 23 be shifted so that the piston

source is located at position z = −LT and the open end of the tube is located at z = 0. The

boundary conditions can be written

Ua(−LT ) = UT (188)
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pa(0) = 0. (189)

Because the fibers at the source end of the line are unrestrained, the force satisfies the

boundary condition

f f (−LT ) = 0. (190)

This can also be seen from the mechanical part of the analogous circuit in Figure 30. The

current, which is analogous to the mechanical force f f (−LT ), must be zero at the source

end of the line. At the load end of the mechanical part, the current, which is analogous to

the mechanical force f f (0), must also be zero. That is, the fibers are unrestrained. Thus

the force satisfies the boundary condition

f f (0) = 0. (191)

These boundary conditions are consistent with those used in [20].

For the boundary conditions of Equations (189) and (190), Equations (186) and (187)

become

γ 1 (U01 −U03)+ γ 2 (U02 −U04) = 0 (192)

γ 1 (u01 − u03)+ γ 2 (u02 − u04) = 0. (193)

These equations are satisfied if

U03 = U01 (194)

U04 = U02 (195)

u01 = u03 (196)

u02 = u04. (197)

When the above relations are used in Equations (184), (185), (186), and (187), it follows

that the solutions in the line are given by

Ua (z) = 2U01 cosh
b
γ 1z
c+ 2U02 cosh

b
γ 2z
c

(198)

u f (z) = 2u01 cosh
b
γ 1z
c+ 2u02 cosh

b
γ 2z
c

(199)
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pa (z) = −zcaa
d
2γ 1U01 sinh

b
γ 1z
c+ 2γ 2U02 sinh

b
γ 2z
ce

(200)

f f (z) = −zcm f (
d
2γ 1u01 sinh

b
γ 1z
c+ 2γ 2u02 sinh

b
γ 2z
ce
. (201)

Equations (164) and (165) can be used to relate the wave amplitudes of the acoustical

volume velocity and the fiber mechanical velocity. to obtain

U01,02 = R f

za + ra − zcaaγ
2
1,2

u01,02. (202)

Similarly, Equation (165) and (164) can be used to obtain the relation

u01,02 = R f

zm + rm − zcm f (γ
2
1,2

U01,02. (203)

Although it is not obvious, these equations are equivalent. That is, one equation can be

changed into the other by using the relationships between the parameters. However, only

one of the two equations is required to obtain expressions for the wave amplitudes.

For the boundary conditions at the source end of the line given by Equations (188) and

(191), Equations (198) and (201) can be written as

2U01 cosh(−γ 1LT )+ 2U02 cosh(−γ 2LT ) = UT (204)

2γ 1u01 sinh(−γ 1LT )+ 2γ 2u02 sinh(−γ 2LT ) = 0. (205)

When Equations (202), (204), and (205) are solved for the wave amplitudes, the fol-

lowing equations are obtained

U01 = 1
2

UTγ 2M2

γ 2M2 cosh
b
γ 1LT

c− γ 1M1 coth
b
γ 2LT

c
sinh

b
γ 1LT

c (206)

U02 = 1
2

UTγ 1M1

γ 1M1 cosh
b
γ 2LT

c− γ 2M2 coth
b
γ 1LT

c
sinh

b
γ 2LT

c (207)

u01 = 1
2R f

UTγ 2M1

γ 2 cosh
b
γ 1LT

c− γ 1
M1
M2

coth
b
γ 2LT

c
sinh

b
γ 1LT

c (208)

u02 = 1
2R f

UTγ 1M2

γ 1 cosh
b
γ 2LT

c− γ 2
M2
M1

coth
b
γ 1LT

c
sinh

b
γ 2LT

c (209)
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where M1 and M2 are defined by

M1,2 = za + ra − zcaaγ
2
1,2. (210)

These expressions can be substituted into Equations (198) through (201) to obtain equations

for Ua (z), u f (z), pa (z), and f f (z) in terms of the parameters of the transmission line and

the fibers.

The input impedance to the transmission line, Z AT is the ratio of pressure to volume

velocity at z = −LT . It follows that this is given by

Z AT = z2
caaγ 1γ 2(γ 1 − γ 2)(γ 1 + γ 2)

γ 2M2 coth
b
γ 1LT

c− γ 1M1 coth
b
γ 2LT

c . (211)

3.4.4 Simplified Expressions

The above analysis applies to the most general case of fibrous filling materials, where the

fibers are coupled to each other and to the tube walls. An acoustical analysis of fibrous

materials in [20] accounted for the coupling among fibers in calculating the attenuation of

sound in fiberglass slabs of large area. However, measured data for several transmission line

configurations during the course of this work indicate that the acoustical input impedance

to the line can be well described by the circuit of Figure 35 in which the coupling among

adjacent fibers is neglected. This is possibly because the area of the fibers used in this

investigation was smaller than the area used in [20]. The smaller area makes the coupling

between the fibers and the tube wall dominate over the coupling among adjacent fibers. The

large slab area used in [20] permitted the fibers to move a significant distance, especially

near the center of the slab, before the movement was restrained by the wall at the load end

where the boundary condition was the mechanical velocity of the fibers is zero.

For the case of no coupling among fibers as modeled by the circuit of Figure 35, the

input impedance has the same form as Equation (143):

Z AT = ZC
Z AL + ZC tanh (γ LT )

ZC + Z AL tanh (γ LT )
(212)
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where ZC and γ are given by

ZC =
Vv

jωmaa +
t

jωmaf + ra f r + 1
jωca f

u
PR f

w
zcaa (213)

γ =

YXXW jωmaa +
r

jωma f + ra f r + 1
jωca f

s
PR f

zcaa
. (214)

If the pressure at the open end of the line is assumed to be zero as is done in the

derivation of Equation (211), the input impedance for the case of no coupling among fibers

becomes

Z AT = ZC tanh (γ LT ) . (215)

The circuit model of the unfilled line shown in Figure 24 has the same form as the

circuit model of the filled line with uncoupled fibers shown in Figure 35 as well as the

models of Figures 2 and 34. Each of these models is composed of a series impedance and a

shunt compliance. Thus the expressions for the pressure and volume velocity as functions

of position for any of these models have the same form as those for the unfilled line.

The expressions for the simplified model with uncoupled fibers can be obtained by

replacing the impedance jωmaa in the unfilled-line expressions of Section 3.2.2 by the

acoustical impedance given by

jωmaa +
t

jωmaf + ra f r + 1
jωca f

u
PR f .

The expressions for the acoustic pressure and volume velocity on the line are

p (z) = p0+e−γ z + p0−e+γ z (216)

U (z) = U0+e−γ z +U0−e+γ z (217)

where γ is given by Equation (214). As with the unfilled line, the coefficients U0+ and

U0−are related to the pressure coefficients by

U0+ = p0+
ZC

(218)
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U0− = −p0−
ZC

. (219)

To solve for the coefficients in the pressure and volume velocity expressions, the system

boundary conditions must be imposed. Because the fibers are uncoupled, the system can

support only an acoustical wave, so only the two acoustical conditions given by Equations

(188) and (189) are necessary. These two conditions and Equations (216) and (217) can be

solved to obtain expressions for the coefficients. The coefficients are given by

p0+ = UT ZC

2 cosh (γ LT )
(220)

p0− = −UT ZC

2 cosh (γ LT )
(221)

U0+ = UT

2 cosh (γ LT )
(222)

U0− = −UT

2 cosh (γ LT )
. (223)

where UT is the acoustical volume velocity emitted by the piston source into the tube.

When these expressions are used in the expressions for p (z) and U (z) given by Equa-

tions (216) and (217), the following simplified expressions are obtained

p (z) = −ZCUT
sinh(γ z)

cosh (γ LT )
(224)

U (z) = UT
cosh(γ z)

cosh (γ LT )
. (225)

Because of the identical forms of the equivalent circuit models, these expressions apply

to both the unfilled line and the filled line for the case of uncoupled fibers. Expressions

for γ and ZC given by Equations (135) and (139) are used for the case of the unfilled

line and those given by Equations (214) and (213) are used for the case of the filled line

with uncoupled fibers. The ratio of Equation (224) to Equation (225) for z = −LT gives

Equation (215) for the acoustical input impedance Z AT to the line.
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CHAPTER 4

EVALUATION OF THE MODEL

To test the validity of the electro-acoustical models for the filled transmission line derived

in Chapter 3, the modeled acoustical input impedance given by Equation (212) is compared

in this chapter to the measured acoustical input impedance of several filled lines. A brief

description of the experimental setup for taking the data is first given.

4.1 Experimental Setup

Figure 36 shows an illustration of the test setup used to acquire the transmission line data.

The loudspeaker is mounted on one end of an acoustical transmission line of length LT

and cross-sectional area ST . The other end of the line is open. The loudspeaker voice-

coil terminals are connected to the output of the Audio Precision System Two analyzer

described in Section 2.8. The tube is filled with fiberglass with different packing densities.

Figure 36. Illustration of test setup.

For this research, the transmission lines were rigid PVC tubes having diameters of

7.5 cm and 10 cm. Two different lengths were investigated. These were 925 mm and

1540 mm. The loudspeaker was held to the tube by elastic cords that attached to mounting

brackets connected to the tube. Duct tape was wrapped around the joint between the tube

and the loudspeaker flange to additionally secure the loudspeaker and to ensure an airtight

seal. A photograph of the setup is shown in Figure 37.
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Figure 37. Photograph of test setup.

The loudspeaker used had a six-inch frame diameter with the measured parameters

given in Table 1 in Section 2.9.2. A plot of this loudspeaker input impedance and its

modeled impedance is shown in Figure 22.

Cylindrical samples cut from sheets of fiberglass 9 cm thick were used to fill the tube.

Each sample had a diameter slightly larger than the tube. For the samples of radius 7.5 cm,

each sample weighed approximately 23.1 g. For the samples of radius 10 cm, each sam-

ple weighed approximately 41.2 g. The surface density ρs f was calculated to be ρs f =
1.31 kg m−2. A photograph of fiberglass samples is shown in Figure 38. The fiberglass

was R-13 utility fiberglass insulation manufactured by Owens Corning. Its initial packing

density before being compressed or expanded to fill the transmission line was found to be

14.7 kg m−3.

To fill the line with fiberglass of a known packing density, an appropriate number of

samples were aligned on a piece of scrim cloth and then stretched or compressed until the

fiberglass was approximately uniformly distributed over a length equal to the tube length.

The cloth was then wrapped around the samples to form a cylinder as shown in Figure 39.

The wrapped cylinder was then pulled into the tube before the loudspeaker was attached.
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Figure 38. Fiberglass samples used to fill the transmission line.

The wrapped cylinder, because it is slightly compressed when in the tube, was held in the

tube by friction.

The packing density in kg m−3 of the fibers in the tube is given by

PD = nms

ST LT
(226)

where n is the number of samples and ms is the mechanical mass per sample. Because

ρs f = ms/ST , where ρs f is the surface density, an alternative expression in terms of the

surface density is given by

PD =
nρs f

LT
. (227)

4.2 Effect of the Transmission Line on the Voice-Coil Impedance

A plot of the input impedance versus frequency of a loudspeaker in free space has a single

fundamental resonance peak that is the result of the mass and suspension compliance of

the loudspeaker diaphragm. When the loudspeaker is placed on a transmission line, the

transmission line resonances introduce additional variations into the voice-coil impedance

plot. These variations are dependant on both the physical dimensions of the tube and the
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Figure 39. Wrapped cylinder of fiberglass before it is inserted into the transmission line.

characteristics of the filling material.

4.2.1 The Unfilled Line

Figure 40 shows a graph of the magnitude of the measured loudspeaker voice-coil im-

pedance both on and off of the unfilled tube of length LT = 925 mm and radius aT =
7.5 cm. It can be seen that the tube introduces several additional peaks in the impedance

curve. The fundamental resonance peak is moved to a lower frequency and its width is nar-

rowed. Because the tube is unfilled, the variations in the input impedance are entirely the

result of the tube and its interactions with the suspension resonance. The tube is a resonant

load, whereas the air load on the loudspeaker when it is off the tube can be modeled as a

simple acoustical mass.

The maxima in Figure 40 are well-defined, but the maxima frequencies are highly de-

pendent on the mechanical suspension of the loudspeaker driver. However, the frequencies

of the minima depend primarily on the tube dimensions and can be readily estimated.

The minima in the on-tube impedance curve occur approximately at frequencies where

the tube length is an odd number of quarter wavelengths. At these frequencies, the pressure
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Figure 40. Plots of measured driver input impedance off and on an empty transmission line.

wave reflected from the open end of the tube combines with the source wave to create

a high pressure at the source end of the tube. This high pressure causes the mechanical

velocity of the diaphragm to exhibit a minimum, causing the motional impedance term in

the voice-coil impedance to exhibit a minimum. The frequencies at which the voice-coil

impedance exhibits a minimum are given by

fn = nc
4LT

(228)

where n is an odd integer, and c is the velocity of sound.

The frequencies calculated from Equation (228) are based on the assumption that the

pressure at the end of the transmission line is zero. This is the equivalent to a short circuit

load on an electrical transmission line. In practice, the air load external to the tube effec-

tively increases the length of the tube so that the measured minima occur at frequencies

slightly less than those predicted by Equation 228. To correct for this, an end correction

Lu f [27] given by

Lu f = 0.6133aT (229)
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where aT is the tube radius can be added to the physical length LT of the tube. The length

Lu f is the length of a cylinder of air of density ρ0 having the area of ST that has a mass

equal to the acoustical mass MA1 defined in Figure 14 for the air load external to the tube.

For LT = 925 mm, Equations (228) and (229) give the first three minima frequencies as

88.8 Hz, 266.5 Hz, and 444.1 Hz. These frequencies are indicated on Figure 40 and can be

seen to correspond closely to the minima of the on-tube plot. However, these frequencies

are only approximate. This is because only the tube characteristics have been used to

calculate the minima frequencies. Although the tube primarily determines the minima

frequencies, the parameters which determine the fundamental resonance frequency of the

loudspeaker perturb them. If the length of the tube is such that the quarter-wavelength

resonance frequency is greater than the suspension resonance frequency, the measured data

indicate that the effect of the suspension is to slightly increase the minima frequencies from

those calculated from Equations (228) and (229).

In Figure 40, it can be seen that this particular tube length results in a quarter-wavelength

tube resonance near the loudspeaker suspension resonance frequency. This causes the sus-

pension resonance peak to appear as though it is split into two separate peaks. If only the

two lowest frequency peaks in the on-tube plot of Figure 40 are considered, the impedance

curve of the loudspeaker on the tube is very similar to that of a loudspeaker on a vented box,

where the minimum between the two peaks is a result of the Helmholtz resonance of the

port air mass and the box air compliance. The vented box has only this single resonance,

whereas the tube has multiple resonances that result in multiple minima and maxima in the

curve. At higher frequencies, the voice-coil inductance dominates the input impedance and

obscures any peaks that can be present.

In Section 2.7, the input impedance of a loudspeaker mounted on an infinite baffle given

by Equation (67) was derived. If the loudspeaker is instead mounted such that its front side

radiates from a tube but its back side radiates into a transmission line having an acoustical
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input impedance Z AT , it can be shown that the loudspeaker input impedance is given by

ZVC = RE +
d
( jω)ne Le

e P( jωL E2)

+(B()
2

S2
D

1
jωMAD + RAS + ( jωCAS)

−1 + Z AL + Z AT
. (230)

where Z AL is defined in Figure 14. Figure 41 is a plot of the measured on-tube input

impedance and the input impedance modeled by Equation (230). The modeled impedance

agrees well with the measured impedance.
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Figure 41. Measured and modeled input impedance of the driver on an empty transmission line.

The input impedance to the line Z AT that is used in Equation (230) is given by Equation

(212), where the flow resistance R f is set to zero because the tube is unfilled. The values

chosen for the other model parameters, ma f , ca f , and ra f are unimportant, because the fiber

impedance that they determine is in parallel with R f = 0.

The values for maa and caa in Equation (212) are given by

maa = ρ0
ST

(231)

caa = ST

ρ0c2 . (232)
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For ρ0 = 1.18 kg m−3, c = 345 m s−1, and ST = 176.71 cm2, the values of maa and caa

are 66.77 N s2 m−6 and 1.26× 10−7 m4 N−1, respectively.

Figure 42 illustrates how varying the length of the line affects the input impedance plot.

The curves are modeled by Equation (230) with line lengths of 0.5, 1, and 1.5 m. The other

parameters remain the same.
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Figure 42. Plots of modeled input impedance of the driver on transmission lines of various lengths.

The impedance peaks of a longer transmission line are shifted to lower frequencies,

and the height and number of peaks at higher frequencies are increased. Conversely, the

impedance peaks of a shorter line are shifted to higher frequencies, and the height and

number of peaks at higher frequencies are decreased.

As expected, if the line is made short enough so that the transmission line resonances

can be neglected, the line acts as a pure mass load on the loudspeaker. As the line length

approaches zero, Equation (230) gives approximately the free-space impedance of the loud-

speaker. There is some variation, because the air load on the loudspeaker in free space is

not the same as the loads on the ends of the transmission line that are modeled by the circuit

of Figure 14. The modeled input impedance for LT = 0 is that of the loudspeaker having
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both front and back loads modeled as shown in Figure 14.

Figure 43 illustrates the modeled loudspeaker input impedance for short line lengths of

0.2, 0.1, and 0 m. Again, only the length of the line is varied. It can be seen that as the

line length approaches zero, the peaks that result from line resonances disappear and the

modeled impedance approaches that of the loudspeaker in free space.
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Figure 43. Modeled input impedance of driver on short transmission lines.

4.2.2 The Filled Line

When the line is filled with fiberglass, the characteristics of the loudspeaker input im-

pedance result from not only the physical dimensions of the tube and the mechanical and

electrical characteristics of the loudspeaker, but also from the characteristics of the fiber-

glass. Because the fiberglass can move, it can introduce resonances, just as the tube can.

The fiberglass also introduces additional acoustical mass and resistance, because it restricts

the flow of air into small openings. As the packing density of the fiberglass is increased,

the tube resonances become less pronounced, because the reflected waves in the tube are

attenuated by the filling.
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Figures 44 and 45 show plots of measured input impedance for the loudspeaker on

the unfilled 925 mm line and on the line filled with fiberglass to various packing densities.

These densities correspond to the line filled with two, four, six, eight, and ten cylindrical

fiberglass samples.
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Figure 44. Measured input impedance of driver on line filled with fiberglass of various packing densi-
ties.

In Figures 44 and 45, it can be seen that the impedance of the loudspeaker on the

filled line has two dominant peaks just as it does on the unfilled line, however both peaks

are attenuated from the unfilled-line peaks. As the packing density is increased, the lower

frequency peak progressively moves upward in frequency so that it is on the high-frequency

side of the original upper peak for the two highest packing densities. The location of the

original high-frequency peak does not exhibit as much variation with packing density. It

remains between approximately 90 and 100 Hz.

The small variation in frequency of the higher frequency peak is because it results from

a tube resonance, just as it does for the unfilled line. This resonance is determined by

the physical length of the line, which is held constant. The lower frequency peak on the
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Figure 45. Measured input impedance of driver on line filled with fiberglass of various packing densi-
ties.

filled-line plots results from the fiber resonance modeled by ma f , ra f r , and ca f in Figure

35, whereas the lower-frequency peak of the unfilled-line plot results from a resonance

between the tube mass and the suspension compliance. To see this, the acoustical input

impedance of the line must be examined.

4.3 Acoustical Impedance of the Unfilled Line

Although it is possible to measure directly the acoustical input impedance, for this investi-

gation it is instead obtained from the measured loudspeaker input impedance.

Equation (230) can be solved for Z AT to obtain

Z AT = (B()2

S2
D

1
ZVC − RE −

d
( jω)ne Le

e P( jωL E2)
(233)

−( jωMAD + RAS + 1
jωCAS

+ Z AL).

If the loudspeaker parameters are accurately known, then the acoustical input impedance of

the transmission line can be obtained by applying Equation (67) to measured loudspeaker

input impedance data.
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Because the loudspeaker driver is used as both the source and the receiver in the test

setup illustrated in Figure 36, measurements become less accurate at frequencies far from

the driver resonance frequency. This can be seen by examining Equation (230). At frequen-

cies far from the driver resonance, the term jωMAD + RAS + ( jωCAS)
−1 becomes much

larger than the acoustical input impedance of the line Z AT . Because of this, Z AT cannot be

accurately recovered from the measured driver input impedance data at these frequencies.

Figure 46 shows plots of the measured and modeled acoustical input impedance Z AT

for the unfilled line. As expected because of the good agreement of the curves of Figure 41,

these two curves match closely. The modeled curve is calculated from Equation (212) with

the assumptions that R f = 0, c = 345 m s−1 and ρ0 = 1.18 kg m−3. The approximate

values of c and ρ0 can result in the slight deviation of the measured and modeled responses.

Also, the modeled air load on the loudspeaker and on the open end of the line may not be

exact. By slightly increasing the length of the line in the model, the curves can be made to

agree more closely.
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Figure 46. Measured and modeled plots of the acoustical input impedance to the transmission line.
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It can be seen that at higher frequencies, the peaks of the measured and modeled acousti-

cal input impedances are almost the same, but the nulls in the responses do not match as

well. This is a result of the measurement technique. At the higher frequencies, the sus-

pension impedance becomes much larger than the input impedance, so that it is difficult

to recover the input impedance information from the sum of the two impedances. At the

lowest frequencies, the measured response appears more resistive, while the modeled re-

sponse appears more like the expected mass load. This deviation is again the result of the

measurement technique.

To see more clearly how the input impedance of the line combines with the loudspeaker

characteristics to form the loudspeaker input impedance curve, the last term of Equation

(230) is examined. This term models the effects of the loudspeaker suspension and load. It

can be thought of as the inverse of the sum of two electrical admittances YE1 and YE2 given

by

YE1 = S2
D

(B()2

t
jωMAD + RAS + 1

jωCAS
+ Z AL

u
YE2 = S2

D
(B()2

Z AT .

Alternatively, the last term of Equation (230) can be thought of as the parallel combi-

nation of two electrical impedances given by the reciprocals of the above expressions:

ZE1 = (B()
2

S2
D

1
jωMAD + RAS + ( jωCAS)

−1 + Z AL
(234)

ZE2 = (B()
2

S2
D

1
Z AT

. (235)

The electrical impedance ZE1 results from the loudspeaker suspension and front air load

and ZE2 results from the acoustical input impedance of the tube.

For the unfilled line, Equation (235) can be written

ZE2 = (B()
2

S2
D

ρ0c
ST
+ j Z AL tan (kLT )

ρ0c
ST

K
Z AL + j ρ0c

ST
tan (kLT )

L (236)
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where the expression for Z AT given by Equation (117) has been used and k = 2π f/c. If

the acoustical load impedance at the open end of the line can be neglected, this equation

can be written

ZE2 = (B()
2

S2
D

ST

jρ0c tan (2π f LT /c)
. (237)

For short line lengths or low frequencies, the tangent in this equation can be approxi-

mated by its argument, which results in

ZE2 = (B()2 ST

jωS2
Dρ0LT

. (238)

Thus, for these conditions, ZE2 has the form of an electrical impedance that results from a

capacitor having the value

CE = S2
Dρ0LT

(B()2 ST
. (239)

Figure 47 shows a plot of the magnitude of two impedance components, their parallel

combination, and the loudspeaker input impedance. The loudspeaker input impedance

ZV C is obtained by adding the voice-coil resistance and the impedance of the voice-coil

inductance to the parallel combination of ZE1 and ZE2. As expected from Equation (238),

at low frequencies, the plot of ZE2 has the form of the impedance of a capacitor. It is a

straight line of slope −1 decades per decade.

It can be seen that the variations in ZVC cannot be attributed solely to the physical

structure of the transmission line. The variations are the result of resonances between the

electrical tube impedance ZE2 and the electrical suspension impedance ZE1. If the effect

of the voice-coil inductance is neglected, the peaks in ZVC occur at the frequencies where

(ZE1PZE2 + RE) is a maximum, and the minima in ZVC occur at the frequencies where it

is a minimum.

In terms of the phase, the peaks occur where the phase of (ZE1PZE2 + RE) is zero and

its sign is changing from positive to negative. The minima occur where its phase is zero,

but its sign is changing from negative to positive.
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Figure 47. Illustration of how the suspension and transmission-line impedance components affect the
driver input impedance.

The addition of the real quantity RE to ZE1PZE2 causes the phase of the sum move

nearer to zero. Thus at frequencies where the phase of ZE1PZE2 is zero, the addition of

RE has no effect. Therefore, the locations of the maxima and minima in the loudspeaker

input impedance are the same as the frequencies where the phase of ZE1PZE2 is zero. For

the lower frequency peaks of ZV C , this condition occurs near crossings of the ZE1 and

ZE2 curves where the slopes of the two curves are of opposite sign. Reflections in the tube

result in multiple frequency locations where the phase of ZE1PZE2 is zero, and thus cause

multiple peaks in the input impedance curve.

4.4 Acoustical Impedance of the Filled Line

Figures 48 and 49 show plots of the measured acoustical input impedance for the 925 mm

length line filled with two, four, six, eight, and ten cylindrical fiberglass samples. These

quantities of samples result in packing densities of 2.6, 5.2, 7.9, 10.5, and 14.2 kg m−3,

respectively. The attenuation of reflections in the tube with increased packing densities

is evident from the figure. A mechanical resonance of the fiberglass fibers introduces a
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minimum in the filled-tube plots that is not present in the empty-tube plot. This minimum

increases in frequency as the packing density increases. The impedance at zero frequency

is equal to the acoustical flow resistance of the fiberglass. As expected, the flow resistance

can be seen to increase with increasing packing density.
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Figure 48. Acoustical input impedance for tube stuffed to various packing densities.

As the packing density is increased, the low-frequency acoustical input impedance

of the line changes from a mass reactance to a compliant reactance, that is the slope of

the curve changes from positive to negative, approaching a slope of approximately −0.5

decades per decade for large packing density PD. The low-frequency input impedance is

nearly a pure resistance for PD = 5.2 kg m−3. If the variations that result from the fiber

resonance are ignored, this behavior suggests that for large values of PD the line appears to

be a lossy filled closed box system that can be modeled as an acoustical resistor that models

the flow resistance in parallel with a frequency dependent acoustical compliance.

The peak near 400 Hz that is evident in all of the filled-tube plots is not a result of

the transmission line. Rather, it corresponds to a mechanical diaphragm resonance in the

loudspeaker that can be seen in the measured loudspeaker input impedance plot of Figure
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Figure 49. Acoustical input impedance for line stuffed to various packing densities.

22.

4.4.1 Determination of the Line Parameters

To calculate the modeled acoustical input impedance curves, numerical values for the fiber

parameters maf , ca f , ra f r , and R f and the acoustical parameters maa and caa must be

determined. Once reasonable values are obtained, they can be refined by curve fitting to

the measured data.

The value of the flow resistance R f can be determined from the low-frequency asymp-

tote of the measured acoustical impedance plots. The lower frequency limit of 10 Hz that

was imposed by the measurement equipment does not allow the asymptote to be clearly

seen. However, a good estimate can still be made. If the measured impedance plots level

off at low frequencies at a value of R f a, the flow resistance can be calculated from

R f = R f a

ST LT
. (240)

A more accurate determination of R f can be made by using a dedicated flow resistance

measurement apparatus, such as the one described in [12]. However, the determination of
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R f from the measured impedance data is convenient because it can be obtained from the

one automated measurement discussed in Section 2.8.

In the derivation of the transmission line model, the distribution of fibers in each in-

cremental length of the line was considered to be uniform in a cross section of the line.

However, the fibers in the tube are not actually uniformly distributed, and the parameters

can vary over a cross section. For example, the fibers are fixed at the tube walls and the

range of motion of a fiber near the tube walls is less than that of the fiber near the center.

Thus all of the parameters are average or bulk values.

An estimate of the acoustical mass ma f can be obtained from the measured mechanical

mass of the fiberglass. However, the effective acoustical mass may be different from that

calculated from the measured mass. This primarily is because not all of the fibers can move.

The acoustical mass maf is related to the packing density PD by the equation

maf = PD

ST
. (241)

where ST is the cross-sectional area of the tube.

Similarly, the a measured value of the fiber compliance may not be the same as the

effective compliance of the fibers. In [20], the compliance of the fibers was measured by

placing the fiberglass on a horizontal surface and placing a known mass of cross-sectional

area nearly equal to that of the fiberglass on top of a layer of it. The displacement x f of the

fiberglass was measured and the mechanical compliance was calculated from

cm f ( = x f

mmpg
(242)

where mmp is the mass of the plate and g is the gravitational constant.

Because the fiberglass samples used in [20] had a large surface area and were not inside

a tube, this measurement would give a good estimate for the mechanical compliance among

fibers cm f (. Although the fibers of the transmission line system could slip along the tube

walls, this is unlikely for the forces applied to them in a typical application. Because the

fibers are effectively fixed at the tube walls, the compliance at the walls is zero. It increases
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toward the center of the tube in any cross section. For a tube of large radius, the compliance

between the fibers and tube wall cm f is less significant than for a tube of smaller radius.

The compliance among fibers can be significant in determining the tube characteristics. A

measurement of the compliance of the fibers in a tube of small diameter can give some

indication of the value of cm f .

A direct measurement of ra f r would be difficult. For this investigation, ra f r was con-

sidered to be a general parameter that models losses and was estimated by curve fitting to

measured data.

The acoustical compliance caa changes when a filling is placed in the transmission line.

Its value is dependant on the thermodynamic properties of the fiberglass [3]. For an unfilled

line,caa is given by

caa = ST

γ a P0
(243)

where γ a is the ratio of the specific heat of air at constant pressure to that of air at constant

temperature and P0 = 1.013 × 105 Pa is the static atmospheric pressure. For an unfilled

tube, the sound pressure wave is an adiabatic process, where the compressions and rarefac-

tions of the air occur fast enough that there is no exchange of heat to the surrounding air.

For an adiabatic process, γ a = 1.4. For this value of γ a, Equation (6) for the velocity

of sound gives c = 345 m s−1. This is the velocity of sound at standard temperature and

pressure.

In an adiabatic wave, the temperature of the air varies with the acoustic pressure. When

filling is added to the tube, heat transfer can occur between the air and the filling. This

tends to reduce the temperature variations in the air, causing the acoustic pressure wave

to be an isothermal process. This occurs at low frequencies where the period of the wave

is long compared to the thermal time constant of the filling. If the temperature of the air

does not change with pressure, the specific heat ratio is decreased to the value γ a = 1. In

practice, the temperature of the air does vary somewhat so that it would be expected that

the specific heat ratio lies in the range 1 ≤ γ a ≤ 1.4. At higher frequencies the thermal
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time constant of the filling is much greater than the period of the wave and this effect does

not occur. Thus the acoustical compliance for a filled tube is in the range

ST

1.4P0
≤ caa ≤ ST

P0
. (244)

Because γ a is a function of frequency, caa cannot be represented by a frequency in-

dependent circuit element as it does in the model of the filled line. However, at the low

frequencies of operation of a transmission line system, it was found in this work that the

assumption of a constant value for caa in the range given in Equation (244) gives acceptable

results.

As is the case with screens discussed in Section 2.3.3 that are used as acoustical resis-

tances, it would be expected that the fiberglass increases the value of the acoustical mass

maa from its value for an unfilled line. This was found to be true in this research.

If ra f r�z << R f�z/ST in the model of Figure 35, it follows by current division

that that the fiber and air velocities are approximately equal when the fibers are near their

resonance frequency. This is because the series resonant circuit that models the fibers has

an impedance minimum of ra f r�z at the fiber resonance frequency. Because the fibrous

structure and the air tend to move together at that frequency, the acoustical mass is not

increased by the fiber. It follows that any additional acoustical mass that is a result of the

fibers must be added to the model in series with the flow resistance R f in Figure 35. This

conclusion was borne out by a comparison of the modeled and measured acoustical input

impedances presented in the following section. Thus the flow resistance R f in the model

can be thought of as having a complex impedance given by

Z f = R f + ( jωmaa2) Praa2 (245)

where maa2 models the additional acoustical mass introduced by the fiberglass, and raa2

models the acoustical losses in this mass.

In [24], the fiber impedance was also determined to introduce a mass component which

was referred to as “dynamic resistivity.” From the data presented in [24], its impedance
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could be approximated as a lossy inductor having an impedance of the form of Equation

(31). However, it was found in this work that modeling the losses in the mass by a parallel

resistor gave acceptable results.

It was found from the experimental data measured in this work that the values of the

acoustical mass maa2 and the acoustical resistance raa2 varied little for the different packing

densities and tube areas used. For a given fiber orientation and transmission line diameter,

it was found that a higher packing density resulted in a larger value of the flow resistance

R f , a larger value of the acoustical compliance caa , and smaller values of the acoustical

compliances ca f and cm f (.

4.4.2 The Modeled Impedances

The model of the filled transmission line described here contains ten parameters. These

are the length LT and radius aT of the transmission line, the acoustical mass of air in

the unfilled line maa, the additional acoustical mass maa2 and its associated acoustical

resistance raa2 added by the fibers, the acoustical compliance of the air in the line caa,

and the packing density PD, flow resistance R f , acoustical compliance ca f , and acoustical

resistance ra f r for the fiberglass.

The parameters LT , aT , and PD can be measured directly. The acoustical mass maa

can be calculated from maa = ρ0/ST . The range of expected values for the acoustical

compliance caa can be calculated from Equations (244). R f can be determined from the

low frequency values of the measured acoustical impedance. Values for ca f and ra f r can

be determined from the location and magnitude of the fiber resonance minimum in the

acoustical impedance plots.

The resonance frequency of the series resonant circuit consisting of the elements ma f�z,

ca f�z, and ra f r�z that model the fibers in Figure 35 is approximately given by

fr = 1
2π

V
ST

PDca f
. (246)

Because fr , ST , and PD can be measured, an initial value for ca f can be calculated from
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this relation. It can then be refined by curve fitting to obtain the best fit of the experimental

data to the model. The acoustical resistor ra f r can be adjusted for the proper depth and

width of the minimum at fr .

The values of maa2 and raa2 can be adjusted to give good agreement at low and high

frequencies. It was found in this work that the values of these two parameters vary little

with changes in packing density. It was also found that these parameters have little effect

and can be set to zero to eliminate them from the model for packing densities having values

PD ≥ 10.5 kg m−3. This is because the flow resistance becomes large compared to the

impedance of the lossy mass at high packing densities.

Figures 50 through 54 show the modeled and measured acoustical input impedances of

the line for packing densities of 2.6, 5.2, 7.9, 10.5, and 14.2 kg m−3. The parameter values

used in Equation (212) to calculate the modeled responses are given in Table 2.

Table 2. Parameter values for transmission line filled to various packing densities.

PD LT aT R f maa caa ca f ra f r maa2 raa2

2.6 0.925 0.075 407 67 1.37× 10−7 6.65× 10−8 20000 90 60000
5.2 0.925 0.075 1089 67 1.37× 10−7 2.15× 10−8 54000 120 60000
7.9 0.925 0.075 1767 67 1.57× 10−7 0.84× 10−8 60000 120 60000
10.5 0.925 0.075 3681 67 1.67× 10−7 0.39× 10−8 48000 130 60000
14.2 0.925 0.075 3276 67 1.67× 10−7 0.26× 10−8 55000 130 60000

Figures 55 and 56 show plots of the real and imaginary parts of the propagation con-

stant given by Equation 214 for the aT = 7.5 cm line for various packing densities. Figure

55 indicates that, although the attenuation per meter of the sound wave in the line gener-

ally increases with frequency, there is a minimum in the attenuation because of the fiber

resonance frequency.

The phase shift between the driver and the tube outputs at a given frequency can be

determined from Figure 56. At higher frequencies, the phase shift per meter becomes

linear with frequency indicating that the line is dispersionless and that the speed of sound

is a constant. At lower frequencies, this is not the case.
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Figure 50. Measured and modeled input impedance for PD = 2.6 kg m−3.
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Figure 51. Measured and modeled input impedance for PD = 5.2 kg m−3.
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Figure 52. Measured and modeled input impedance for PD = 7.9 kg m−3.
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Figure 53. Measured and modeled input impedance for PD = 10.5 kg m−3.
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Figure 54. Measured and modeled input impedance for PD = 14.2 kg m−3.
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Figure 55. Real part of the propagation constant vs. frequency for the aT = 7.5 cm line for various
packing densities.
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Figure 56. Imaginary part of the propagation constant vs. frequency for the aT = 7.5 cm line for
various packing densities.

4.4.3 Comparison to Other Models

To determine how the performance of the transmission line model given in Figure 35 com-

pares with that of other models, plots of measured acoustical input impedance were com-

pared to those predicted by the models of Augspurger (model A) and Bradbury (model B)

and of the model derived in this work. These models can be obtained from the transmission

line model of Figure 35 by appropriately varying the parameters. Figures 57 through 59

show a comparison of the acoustical input impedance predicted by these models to mea-

sured data for packing densities of 2.6, 7.9, and 14.2 kg m−3. The parameters used in the

model are shown in Table 3.

For both models, ca f =∞, raa2 = 0, and maa2 = 0. For model A, ra f r is set to infinity

to eliminate the fiber motion. For model B, ra f r is set to zero, so that only the fiber mass

determines the characteristics of the fiber motion.

All of the features of the measured impedance curves are not predicted by either of

these two other models. In plotting the impedance predicted by Augspurger’s model, the

107



Table 3. Parameter values that reduce the simplified transmission-line model to those of Augspurger
and Bradbury for various packing densities.

Model PD LT aT R f maa caa ra f r

A 2.6 0.925 0.075 407 67 1.67× 10−7 ∞
B 2.6 0.925 0.075 1089 67 1.67× 10−7 0
A 7.9 0.925 0.075 1767 67 1.67× 10−7 ∞
B 7.9 0.925 0.075 3681 67 1.67× 10−7 0
A 14.2 0.925 0.075 3276 67 1.67× 10−7 ∞
B 14.2 0.925 0.075 3276 67 1.67× 10−7 0
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Figure 57. Comparison of measured acoustical input impedance to Augspurger’s and Bradbury’s mod-
els and to the simplified transmission line model developed in this work for PD = 2.6 kg m−3.
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Figure 58. Comparison of measured acoustical input impedance to Augspurger’s and Bradbury’s mod-
els and to the simplified transmission line model developed in this work for PD = 8.5 kg m−3.
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Figure 59. Comparison of measured acoustical input impedance to Augspurger’s and Bradbury’s mod-
els and to the simplified transmission line model developed in this work for PD = 11.3 kg m−3.
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flow resistance was held constant with frequency. Augspurger stated that he varied the

resistance with frequency, but it is unclear how he did this or what values he used. The

resonances that result from fiber motion are not predicted by his model. In it, the mass of

the air is fixed by the tube dimensions and the flow resistance is chosen to give the correct

value at low frequencies. Therefore, only the air compliance is unknown. It was found

that the maximum value of compliance given by Equation (244) resulted in the best fit of

Augspurger’s model to the measured data.

Bradbury’s model permits the fibers to move, but only at the lowest frequencies. This

does not agree with measured data where the fibers exhibit a resonance that occurs at

increasingly higher frequencies as the packing density is increased. As in Augspurger’s

model, the maximum value of air compliance given by Equation (244) gave the best fit

between Bradbury’s model and the measured data. The value for the acoustical mass per

unit length of the fibers was calculated from ma f = PD/ST . By significantly reducing this

mass, the fiber resonance minimum in the modeled response using Bradbury’s model could

be made to occur at the same frequency as the measured minimum frequency, but there is

a large peak in the modeled impedance that is not present in the measured data.

4.4.4 Characterization of the Fiberglass

From Table 2, it can be seen that the parameters R f , ca f , and ra f r all vary significantly

with packing density. Figures 60 through 62 show plots of each parameter versus packing

density. The measured parameter values were obtained for six values of PD by fitting the

parameters of the simplified transmission line model given by Equation (212) to measured

data for the tube filled with three to eight fiberglass samples. The tube used had length

LT = 925 mm and radius aT = 7.5 cm.

The smooth curve in Fig 60 is a plot of the equation

R f (PD) = 27.3P2.3
D . (247)
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Figure 60. Measured and modeled flow resistance versus packing density.

3 4 5 6 7 8 9 10 11 12
0.1

1

Fi
be

r C
om

pl
ia

nc
e 

c m
f (

N
-1
) *

 1
04  

Packing Density (kg/m3)

Measured
Empirical Fit

Figure 61. Measured and modeled compliance versus packing density.
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Figure 62. Measured fiber resistance versus frequency.

The numerical values in this equation were obtained using a least square curve fitting rou-

tine to the data for PD ≤ 10.5 kg m−3. This equation is of the same form as Bradbury’s

equation for R f (PD) given in Equation (26). It is also of the same form as are the formu-

las for flow resistance given in [14] and [16]. However, the numerical values are different.

Bradbury found the exponent to be 1.4. In [14], the exponent is 1.53, and in [16], the

exponent is 1.404.

The experimentally obtained compliance is plotted as a function of the packing den-

sity in Figure 61. The red curve in the figure shows the compliance calculated from the

empirical equation

cm f (PD) = 1
407P2.2

D
. (248)

The coefficients in this equation were obtained by a least-squares curve fit to the experi-

mental data.

4.4.5 Parameter Scaling

To design a transmission line loudspeaker system using the transmission line model de-

veloped here, the change in model parameters with changes in the physical dimensions of
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the line must be addressed. The impedance data was measured for filled transmission lines

having the radii aT = 7.5 cm and aT = 10 cm. From this data, the required relationships

can be obtained.

The model parameters obtained are per unit length parameters, permitting the parame-

ters to be used in modeling any line length LT . To investigate this, the parameters deter-

mined for the 925 mm line that are given in Table 2 were used in calculating the acoustical

input impedance for a 1.6 m line. In addition, a line having this length and a packing den-

sity PD = 3.9 kg m−3 was measured. A comparison of the the calculated and the measured

data is shown in Figure 63. The two curves match well at low frequencies, in that the

prominent features of the curves are at the same frequencies. The peaks of the modeled

impedance are more prominent than are those of the measured response. The discrepancy

above 200 Hz results from the measurement technique as discussed in Section 4.3.
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Figure 63. Comparison of measured and modeled input impedance for filled tube of length LT = 1.6 m.

Conceptually, it is possible to model a change in diameter of the tube by appropriately

scaling the model parameters. The acoustical parameters that model the airflow, namely

maa = ρ0/ST and caa = ST /ρ0c2, correctly scale with area, as was verified experimentally
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by measuring the input impedance of unfilled tubes of different diameters. However, the

variation of the mechanical properties of the fiberglass with tube diameter is less straight-

forward.

Figure 64 shows plots of measured acoustical input impedance for two filled tubes,

one having radius aT = 7.5 cm and the other having radius aT = 10 cm. For both tubes,

the packing density and length were PD = 3.9 kg m−3. and LT = 925 mm. Because the

acoustical input impedance of the unfilled tube is inversely proportional to the square of the

tube area, the larger diameter tube has an overall lower input impedance. The variations

in the impedance that result from reflections or cone resonances occur at the nearly the

same frequencies for both tubes, but the resonance attributed to the presence of the fibers

occurs at a lower frequency for the larger-diameter tube. The ratio of the fiber resonance

frequency for the larger-diameter tube to that for the smaller-diameter tube is 0.75, which is

also the ratio of the tube radii. Although the locations of the resonance frequencies change

with packing density, the measured ratio of the resonance frequencies for these two tubes

remains nearly constant for packing densities ranging from 3.9 kg m−3 to 10.5 kg m−3. This

implies that the fiber resonance frequency varies inversely with the tube radius.
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Figure 64. Comparison of input impedance for lines of same length but different radii.
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For the fiber-resonance modeled by the series resonance of the mass mm f and compli-

ance cm f in Figure 35, the resonance frequency is given by

f = 1
2π√mm f cm f

. (249)

As the tube radius is increased, the fiber mass per unit length given by mm f = PDST

increases as the radius squared. For two tubes having radii a1 and a2 and having the same

packing densities, the ratio of their fiber-resonance frequencies is given by

f1
f2
=
V

a2
2cm f 2

a2
1cm f 1

. (250)

For this equation to agree with the experimentally observed ratio, which was a2/a1, the

mechanical compliance cm f must be constant with changes in tube diameter. If the fiber

layers resonate as do stretched elastic diaphragms [35], where the fundamental resonance

frequency is inversely proportional to the radius, the observed behavior is explained. If a

single fiber in a tube attached at its ends to the tube wall and stretched along a diameter is

considered, the resonance frequency also varies inversely with the radius, and the observed

behavior is also explained. If the length of this fiber is doubled, both the mass and the

compliance double, which results in a resonance frequency that is halved.

In scaling the parameters determined with a particular diameter tube in order to predict

the behavior of a tube of different diameter, the moving fiber mechanical mass is calculated

from mm f = PDST . The mechanical compliance cm f of the fibers can be assumed to vary

only with packing density (as shown in Figure 61) and not with tube area. This assumption

gives good agreement between predicted and measured depths of the resonance minimum

in the acoustical impedance of the tube.

The mechanical resistance of the fibers rm f r is an experimentally determined parameter.

Plots of experimentally determined values for rm f r versus the packing density PD for both

the aT = 7.5 cm and the aT = 10 cm tubes are shown in Figure 65. There are insufficient

data to predict any empirical relation that predicts rm f r . In the range 5 ≤ PD ≤ 7, it is

approximately constant and has the same value for both tubes.
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Figure 65. Measured mechanical fiber resistance for two tubes of different diameter having various
packing densities.

Let the ratio of two tube radii be written

A = a2

a1
(251)

The parameters for a tube of radius a2 can be obtained from those of the a1 = 7.5 cm tube

by multiplying caa by A2, dividing maa by A2, multiplying ca f by A4, and adjusting ra f r

according to Figure 65.

Figure 66 shows the measured and modeled input impedances for a tube having aT =
0.1 m, PD = 3.9 kg m−3, and LT = 925 mm. The modeled response was obtained by

adjusting the measured parameters for the aT = 7.5 cm tube.

With the relationships of this section and the empirical relationships of Section 4.4.4,

the input impedance of a transmission line filled with fiberglass can be written as a function

of PD, a, and LT . For the simplified model of Figure 35, the model parameters in terms of

packing density PD and tube radius aT are given by

R f = 27.3P2.3
D (252)
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Figure 66. Comparison of measured response to that obtained from using scaled parameters in the
model.

caa = ST

γ a P0
(253)

maa = ρ0
ST

(254)

ca f = S2
T

407P2.2
D

(255)

maa2 = 120 (256)

raa2 = 50000 (257)

where ST = πa2
T m2, P0 = 1.013× 105 N m−2, ρ0 = 1.18 kg m−3, and γ a is chosen to be

1.1, a value that indicates that the sound wave is approaching a purely isothermal process.

An estimate for the value of ra f r can be found by an interpolation of the data in Figure 65.
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The values for maa2 and raa2 do vary slightly with packing density, but the above values

result in good agreement with measured data.

A comparison of measured acoustical input impedances to those predicted by Equation

212 using the parameters given by Equations (252) - (257) indicates that a filled trans-

mission can be modeled accurately in this way. These expressions can be used to predict

the input impedance of lines of various packing densities, radii, and lengths. With the

transmission line characterized in terms of these three parameters, the performance of a

transmission line loudspeaker system can be predicted.

4.4.6 Nonlinear Behavior of the Fiberglass

It was found in this research that the measured electrical input impedance of a filled trans-

mission line changes with the source voltage, thus indicating a nonlinear behavior. Because

this did not occur when the loudspeaker was measured in free air or on an unfilled tube, it

is a nonlinearity in the fibers. Figure 67 shows measured electrical input impedance curves

for a line having a radii aT = 7.5 cm, a length LT = 925 mm, and the packing density

PD = 14.2 kg m−3 for various values of source voltage. The measurement setup is as

shown in Figure 36. The loudspeaker is the unit having the parameters given in Table 1.

The figure shows that the peak in the response moves to lower frequencies and its

amplitude decreases as the generator voltage is increased. Figure 68 shows a magnified

view of the responses near the peaks.

Because the loudspeaker is not a source of constant volume velocity, the volume ve-

locity emitted by the diaphragm is a function of the acoustical input impedance to the

transmission line. The electrical impedance data presented in Figures 67 and 68 were made

by holding the source voltage constant with frequency. Thus the volume velocity emitted

was a function of frequency. Because the fiberglass parameters may vary with the vol-

ume velocity, it is desirable to hold the volume velocity constant with frequency during a

measurement when it is desired to determine parameters from measured data. To do this,

the generator voltage must be varied with frequency. A method of accomplishing this is
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Figure 67. Electrical input impedance of driver on line having PD = 14.2 kg m−3 for input source
voltage varying from 300 mVpp to 5 Vpp.
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Figure 68. Magnified view of electrical input impedance of driver on line having PD = 14.2 kg m−3 for
four values of input source voltage from 300 mVpp to 5 Vpp.
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described below.

Figure 69 is a diagram of a test setup that was used to determine the relationship be-

tween volume velocity and input voltage. The Audio Precision System Two Analyzer

generates a sinusoidal test signal. The signal is applied to a variable attenuator. Its output

is then applied to a power amplifier having a voltage gain of 21. Without the attenuator the

Audio Precision output voltage would have to be set to a small value. Because its output

is noisy at low levels, the attenuator was used. Thus by keeping the output level of the

Audio Precision system large and attenuating it to the desired level, signal-to-noise ratio is

improved. A closed box was placed on the rear of the driver and a calibrated microphone

was used to measure the acoustic pressure inside the box. The frequency analyzer is used

to provide power for the microphone preamp and to monitor the output pressure. The AP

System Two records the driver voltage, the input voltage, and the microphone voltage.

Figure 69. Pressure measurement test setup.

As in Figure 36, the front of the driver radiates into a filled transmission line having a

radius aT = 7.5 cm, a length LT = 925 mm, and a packing density PD = 14.2 kg m−3.

At wavelengths much greater than the box dimensions, the box can be considered to be

an acoustical compliance having the acoustical impedance Z A = ( jωCA)
−1, where CA =

V/ρ0c2 and V is the volume of air in the box. The volume velocity emitted by the front of

the diaphragm can be written as

UD = −pD jωCA. (258)
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It can be seen that if the box pressure pD is varied inversely with frequency, the volume

velocity is constant with frequency.

Box acoustic pressure versus frequency data were measured for source voltages ranging

from 0.1 V to 2.9 V rms to generate the family of curves shown in Figure 70. The first

eleven curves, from bottom to top, correspond to source voltages of 0.1 V to 1.1 V rms

in steps of 0.1 V. The remainder of the curves step in 0.2 V increments to a final voltage

of 2.9 V rms. On the graph, the box pressure would vary inversely with frequency if the

measured pressure variation with frequency lies on a line with a slope of −20 dB/decade.

By drawing a line on the graph having the equation 20 log (p0/ f ), where p0 is a desired

acoustic pressure in the box at f = 1 Hz, an interpolation of the curves can be used to

solve for how the input voltage must be varied with frequency to maintain the pressure on

the chosen line.
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Figure 70. Variation of box pressure with source voltage and frequency.

In making impedance measurements, either the voice-coil voltage or the volume veloc-

ity can be held constant with frequency. It was found that the non-linear effects measured

with a constant volume velocity excitation were less than those measured with constant
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voltage excitation. However, the impedance measured for low levels of constant voice-coil

voltage closely matched those measured for constant volume velocity. It was determined

that the parameters determined from impedance measurements with a voice-coil voltage of

0.1 V rms were reasonably free from the non-linear effects.
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CHAPTER 5

THE TRANSMISSION LINE LOUDSPEAKER SYSTEM

The model for the filled transmission line derived in Chapter 3 allows the output of the

entire transmission line system to be determined. An illustration of the transmission line

system is shown in Figure 71.

Figure 71. Transmission line on an infinite baffle.

It is assumed that the filled line is mounted on an infinite baffle such that the driver and

the open end are in the same plane, preferably close together. The volume velocity UD in

the figure is the volume velocity emitted by the driver on the transmission line and Utube

is the volume velocity emitted from the open end of the line. The total volume velocity

output of the system is the complex sum of the two volume velocities.

5.1 The Acoustic Pressure Radiated by the Loudspeaker Diaphragm

Figure 72 shows the Norton form of the low-frequency combination acoustical analogous

circuit [36] for a loudspeaker mounted so that the front of the driver radiates from an infinite

baffle. At low frequencies, the impedance that results from the air load on the front side
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of the driver is modeled as a mass acoustical mass. This mass adds in series with the

diaphragm acoustical mass to give the mass MAFS in the model. The acoustical compliance

CAS is the acoustical compliance of the driver suspension. The acoustical resistor RAS

models mechanical losses in the suspension. The acoustical resistance RAE models losses

resulting from the electrical resistance of the loudspeaker voice coil.

Figure 72. Combination analogous circuit for driver in an infinite baffle with arbitrary back load.

The circuit shown in Figure 72 differs from the circuit of Figure 12 in that the series

combination of Z AD and Z AF in Figure 12 is replaced by the series circuit elements MAFS,

RAS, and CAS. Also, the impedance (B()2 /
b
ZET S2

D
c

is replaced by its low-frequency

value RAE . The element values are given by

RAE = (B()2

S2
D RE

(259)

RAS = RMS

S2
D

(260)

CAS = S2
DCMS (261)

MAFS = MM D

S2
D
+ MA1 (262)

where B is the magnetic flux density in the air gap of the magnet, ( is the effective length

of the voice-coil wire that cuts this flux, SD is the area of the driver diaphragm, RE is the

electrical resistance of the voice coil, CMS is the mechanical compliance of the loudspeaker

suspension, MM D is the mechanical mass of the loudspeaker diaphragm and voice coil,

and MA1 is the acoustical mass of the air load on the front side of the diaphragm given by
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Equation (54). The acoustical impedance seen by the back of the loudspeaker Z AB is the

acoustical impedance presented by the air load behind the diaphragm.

The circuit of Figure 72 can be used to calculate the volume velocity UD emitted by the

diaphragm for a given electrical voice-coil voltage eg and back acoustical impedance Z AB .

To facilitate this calculation, the Norton acoustical equivalent circuit seen by the impedance

Z AB can be formed. This circuit is shown in Figure 73.

Figure 73. (a) Norton acoustical equivalent circuit with respect to the back air load Z AB . (b) Circuit
showing the addition of an arbitrary back load Z AB and the volume velocity emitted from the front of
the loudspeaker driver UD .

The volume velocity UD0 in the figure is the volume velocity that flows through Z AB

in Figure 72 with Z AB = 0. By current division, it is given by

UD0 = SDeg

B(
RAE

Z AS
(263)

where Z AS is the total acoustical impedance given by

Z AS = jωMAFS + RAE + RAS + 1
jωCAS

. (264)

The transfer function for the volume velocity UD emitted by the loudspeaker diaphragm

for any arbitrary Z AB can be calculated by applying current division to the circuit of Figure

73(b). The transfer function is given by

UD = UD0
Z AS

Z AS + Z AB
. (265)

For example, the volume velocity of a loudspeaker mounted in an infinite baffle is given by

UD = UD0
Z AS

Z AS + jωMA1
(266)

125



where MA1 is the acoustical mass given in Equation (54). When the loudspeaker is mounted

on a filled transmission line terminated in an infinite baffle, the volume velocity emitted by

the diaphragm is given by

UD = UD0
Z AS

Z AS + Z AT
(267)

where Z AT is the acoustical impedance calculated from Equation (211).

The pressure radiated by a flat circular piston in an infinite baffle at a distance z along

its axis is given by

p (z) = jωρ0UD
e− jkz

2πz
(268)

where UD is the volume velocity emitted by the piston. For a loudspeaker on an infinite

baffle with an arbitrary back acoustical load impedance Z AB , the pressure transfer function

can be written

p (z) = jωρ0UD0
Z AS

Z AS + Z AB

e− jkz

2πz
. (269)

where UD0 is the volume velocity given by Equation 265.

The on-axis pressure sensitivity is given by the magnitude of Equation 269 at a distance

z = 1 m for an input voltage eg = 1 V rms. It is given by

prms = ρ0 f
nnnnUD0

Z AS

Z AS + Z AB

nnnn . (270)

The corresponding sound pressure level is then given by

SPL = 20 log
t

prms

pref

u
(271)

where pref = 2 × 10−5 Pa. The sound pressure level corresponding to the rms pressure

given by Equation (270) is given by

SPLdriver = 20 log
t
ρ0 f
pref

nnnn UD0Z AS

Z AS + Z AB

nnnnu
= 20 log

t
ρ0 f
pref

B(
SD RE

1
|Z AS + Z AB|

u
= 20 log

t
ρ0 f
pref

u
+ 20 log

t
B(

SD RE

u
− 20 log |Z AS + Z AB| (272)

where Z AB is chosen appropriately as discussed above.
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5.2 The Acoustic Pressure Radiated by the Transmission Line System

The sound pressure level found using Equation (272) with Z AB = Z AT results from the

loudspeaker output only. It does not include the output from the open end of the transmis-

sion line. The volume velocity emitted from the line combines with that emitted by the

loudspeaker to produce the total sound pressure level of the transmission line loudspeaker

system. An expression for the total sound pressure level is derived in the following.

The volume velocity emitted from the load end of the tube is equal to the volume

velocity given by Equation (198) with z = 0. It is

Utube = 2U01 + 2U02

= UTγ 2M2

γ 2M2 cosh
b
γ 1LT

c− γ 1M1 coth
b
γ 2LT

c
sinh

b
γ 1LT

c
+ UTγ 1M1

γ 1M1 cosh
b
γ 2LT

c− γ 2M2 coth
b
γ 1LT

c
sinh

b
γ 2LT

c (273)

where M1 and M2 are given by Equation (210) and UT is the volume velocity emitted by

the loudspeaker into the tube.

This equation can be simplified to obtain

Utube = UT D (274)

where D is given by

D = γ 2M2 sinh
b
γ 2LT

c− γ 1M1 sinh
b
γ 1LT

c
2γ 2M2 sinh

b
γ 2LT

c
cosh

b
γ 1LT

c− 2γ 1M1 sinh
b
γ 1LT

c
cosh

b
γ 2LT

c (275)

If the total volume velocity of the system is measured at a point equidistant from each end

of the transmission line, the volume velocities will add in phase. Under this condition, the

total volume velocity U T L
total of the transmission line system is given by

U T L
total = UD +Utube. (276)

The volume velocity emitted by the loudspeaker into the tube UT is the negative of the

volume velocity emitted outward by the loudspeaker. That is

UT = −UD. (277)
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When Equations (274), (276), and (277) are combined, a relationship between the total

volume velocity and the loudspeaker volume velocity is obtained. It is given by

U T L
total = UD [1− D] . (278)

This equation can be solved to obtain a transfer function between the loudspeaker volume

velocity and the total volume velocity to obtain

HT L ( jω) = U T L
total

UD

= 1− D. (279)

From Equation (279), the total volume velocity of the system can be determined if the

loudspeaker volume velocity is known. It is given by

U T L
total = UD HT L ( jω) . (280)

For the simplified transmission line model with the boundary condition that the acoustic

pressure at the open end of the line is zero, which is equivalent to setting Z AL = 0, Utube is

given by

Utube = UT

cosh (γ LT )

= −UD

cosh (γ LT )
. (281)

In this case, the transfer function HT L ( jω) is given by

HT L ( jω) = 1− 1
cosh (γ LT )

(282)

where γ is the complex propagation constant given in Equation (214). For the general case

for an arbitrary load impedance Z AL on the line, the expression for HT L ( jω) is given by

HT L ( jω) = 1− ZC

ZC cosh (γ LT )+ Z AL sinh (γ LT )
(283)

where ZC is the acoustical characteristic impedance of the line given in Equation (213) and

Z AL is the acoustical impedance of the external air load.
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Thus the total sound pressure level that results from the combination of the tube output

and the loudspeaker output together can be written

SPL total = 20 log
nnnnρ0 f

pref
U T L

total

nnnn
= 20 log

nnnnρ0 f
pref

HT L ( jω)UD0Z AS

Z AS + Z AT

nnnn (284)

where the voice-coil voltage is assumed to be eg = 1 V rms and Z AS is given by Equation

(264).

It can be observed that if Z AB in Equation (272) is replaced by the impedance ZT L
AQ

defined by

ZT L
AQ =

Z AS + Z AT

HT L ( jω)
− Z AS

then Equation (272) becomes identical to Equation (284).

Conceptually, the impedance ZT L
AQ is a back-load impedance that, when placed on the

loudspeaker, causes the loudspeaker volume velocity output to be equal to the total volume

velocity output of the transmission line system. It is possible to define other impedances

Z AQ that replace Z AB in Equation (284) that cause the sound pressure level predicted by

that equation to predict the total sound pressure level output of the infinite-baffle system,

the closed-box system, and the vented-box system. These impedances are defined in the

following.

5.3 The Acoustic Pressure Radiated by the Alternate Systems

To find expressions for Z AQ for the infinite-baffle, closed-box, and vented-box systems,

the low-frequency acoustical analogous circuits [36] shown in Figure 74 are used to solve

for the total output volume velocity. In these circuits, it is assumed that the front of the

loudspeaker radiates from an infinite baffle so that the front air-load impedance can be

modeled by the acoustical mass MA1 given in Equation (54).
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Figure 74. Acoustical analogous circuits of a driver on (a) an infinite baffle, (b) a closed box, and (c) a
vented box.
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The infinite-baffle circuit in Figure 74(a) shows a back air load modeled by the acousti-

cal mass MA1, which is the same as the front air-load mass. The impedance Z I B
AQ corre-

sponds to the back acoustical air-load impedance for the infinite-baffle system and is given

by

Z I B
AQ = jωMA1. (285)

When this impedance replaces Z AB in Equation (284), sound pressure level predicted by

that equation to predict the total sound pressure level output of the infinite-baffle system.

The closed-box circuit in Figure 74(b) shows a back air load modeled by the series cir-

cuit elements MAB , RAB , and CAB . The acoustical mass MAB is the equivalent acoustical

mass of the air load in the box, the acoustical compliance CAB is the acoustical compli-

ance of the air in the box, and the acoustical resistor RAB models losses in the box. The

impedance ZC B
AQ corresponds to the back acoustical air-load impedance for the closed-box

system and is given by

ZC B
AQ = jωMAB + RAB + 1

jωCAB
. (286)

When this impedance replaces Z AB in Equation (284), sound pressure level predicted by

that equation to predict the total sound pressure level output of the closed-box system.

For the vented-box system in Figure 74(c), MAB and CAB represent the same quantities

as in the figure for the closed box, MAP is the acoustical mass of air in the port or the vent,

and the acoustical resistor RAL models air leaks in the system. It follows from the figure

that the acoustical impedance presented to the back of the loudspeaker diaphragm is given

by

ZV B
AB = jωMAB + ( jωMAP) PRALP 1

jωCAB
. (287)

In Figure 74(c), the volume velocity UP is that emitted by the port and the volume

velocity UL is that emitted by the air leaks. The total volume velocity emitted by the

system is

U V B
total = UD +UP +UL
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which is the volume velocity that flows through the acoustical compliance CAB in the

figure. By current division, it follows from the figure that U V B
total is given by

U V B
total = UD

RALP ( jωMAP)

RALP ( jωMAP)+ ( jωCAB)
−1 . (288)

Thus the transfer function for the total volume velocity output is given by

HV B ( jω) = U V B
total

UD

= RALP ( jωMAP)

RALP ( jωMAP)+ ( jωCAB)
−1 . (289)

This transfer function appears in the impedance ZV B
AQ described above. It follows that ZV B

AQ

is given by

ZV B
AQ =

Z AS + ZV B
AB

HV B ( jω)
− Z AS.

When this impedance replaces Z AB in Equation (272), that equation can be used to predict

the total sound pressure level output of the vented-box system.

5.4 Modeled System Outputs

For reference, Equation (272) is repeated below with Z AB replaced with Z AQ as discussed

above.

SPL total = 20 log ( f )+ 20 log
t
ρ0
2π

B(
SD RE

u
− 20 log

nnZ AS + Z AQ
nn . (290)

The total sound pressure level output of a system can be calculated with the aid of this

equation after Z AQ is replaced with any of the four acoustical impedances ZT L
AQ, Z I B

AQ,

ZC B
AQ, or ZV B

AQ defined above. Note that the first term in this equation is independent of the

loudspeaker system. The second term is dependent on the driver alone. The third term is

dependent on both the driver and the system in which it is used. The acoustical impedance

Z AS is defined in Equation (264).

Figures 75 through 79 show plots of the system sound pressure level calculated from

Equation (290) for the six-inch test loudspeaker having the parameters given in Table 1 on
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transmission lines of length LT = 925 mm and radius aT = 75 mm for packing densities

PD = 2.6, 5.2, 7.9, 10.5, and 14.2 kg m−3. The sound pressure outputs of the loudspeaker

diaphragm only and the tube only are also shown plotted. In addition, plotted on each graph

is the response of the loudspeaker on an infinite baffle so that the transmission line system

responses can be compared to this reference response. It can be seen that the infinite-

baffle system gives the best low-frequency response for all cases. It can be concluded

that each one of these figures seems to contradict much of the “conventional wisdom”

concerning the transmission-line loudspeaker system. The performance of a different driver

in a transmission line system is investigated in the next section where the transmission line

system response is compared to that of the infinite baffle system, the closed-box system,

and the vented-box system.
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Figure 75. Comparison of SPL for driver on an infinite baffle to that of driver on the transmission line
for a packing density of PD = 2.6 kg m−3.

For the smallest packing density, the −3 dB frequency of the transmission line system

is close to that of the infinite baffle, but a large 13 dB variation in the pass-band is present

in the transmission line system. As the packing density is increased, the magnitude of the
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Figure 76. Comparison of SPL for driver on an infinite baffle to that of driver on the transmission line
for a packing density of PD = 5.2 kg m−3.
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Figure 77. Comparison of SPL for driver on an infinite baffle to that of driver on the transmission line
for a packing density of PD = 8.5 kg m−3.
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Figure 78. Comparison of SPL for driver on an infinite baffle to that of driver on the transmission line
for a packing density of PD = 11.3 kg m−3.
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Figure 79. Comparison of SPL for driver on an infinite baffle to that of driver on the transmission line
for a packing density of PD = 14.2 kg m−3.
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pass-band ripple decreases, but the −3 dB frequency increases as the load on the loud-

speaker increases. It can be seen for this loudspeaker on this length of transmission line

that the system response is never better than that of the infinite baffle. The tube output does

provide a boost in bass frequencies, but it also introduces an undesirable null that can be

deep.

For packing densities greater than PD = 5.7 kg m−3, the reflections from the open end

of the line are damped and do not appear as ripples in the loudspeaker diaphragm output as

they do in the plots for lower packing densities. Only near the fiber resonance, where the

damping is reduced, do the reflections have an effect. The ripples in the pass-band result

from phase differences between the tube and loudspeaker outputs.

Figure 80 shows the responses for PD = 7.9 kg m−3 for the special case of stationary

fibers, which is the assumption that Augspurger made in deriving his model. When the

fibers do not move, the tube output is smaller in magnitude and broader. The bass frequency

boost is thus smaller and the large variations in the pass-band are reduced. This figure can

be compared to Figure 77 which is based on the model derived in this work where fiber

motion is accounted for.

The system sound pressure level in the above figures is calculated from Equation (290)

with Z AQ = ZT L
AQ. There are three terms in Equation (290). The frequency dependent first

term is not a function of the loudspeaker driver or the loudspeaker system. The second term

is a function of the loudspeaker driver only. For a given loudspeaker driver, only the third

term is a function of the transmission line and its filling. The parameters in this term can

be manipulated to investigate the change in these parameters on the system response. The

overall shape of the system sound pressure level is, for the most part, determined by the last

term. The first term increases the slope of the sound pressure level plot by adding +20 dB

per decade to the slope of the plot when it is plotted versus frequency on a log frequency

axis. The second term adds a vertical offset to the sound pressure level curve. Thus changes

in the system parameters can be investigated by examining only the last term.
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Figure 80. System sound pressure level for transmission line with stationary fibers and PD =
7.9 kg m−3.

Figure 81 contains a number of plots that illustrate the relationships between the system

impedances and the system outputs. The figure shows a plot of 20 log
nnZ AS + Z AQ

nn for

the loudspeaker mounted both in an infinite baffle and on the transmission line for PD =
8.50 kg m−3. The frequency at which the minimum of this load-dependent term occurs can

be directly related to the extent of the system low-frequency response. When this term is

combined with the other terms of Equation (290), the portions of the curve to the right of

the minima translate into the pass-band regions of the system sound pressure level curves.

The portions to the left of the minima translate into the cutoff regions of the system sound

pressure level curves.

The graphs also show the acoustical output of each system. It can be seen from the

figure that there is a close relationship between the 20 log
nnZ AS + Z AQ

nn term and the sys-

tem sound pressure level. The shape of the output sound pressure level is the inverted and

rotated 20 log
nnZ AS + Z AQ

nn term. The shape of the output of any system is determined by

the magnitude of the complex sum of the acoustical loudspeaker impedance Z AS and the
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Figure 81. Relationship between system impedances and sound pressure levels.

acoustical loudspeaker load impedance Z AQ . The shape of the transmission line system

output can be seen to result from the inverted and rotated 20 log
nnnZ AS + Z I B

AQ

nnn term. The

output of the driver on the transmission line results from the 20 log |Z AS + Z AT | term. This

“rotation” is the result of the 20 log ( f ) term in Equation (290), which adds a slope of one

decade per decade to the inverted impedance term.

The inverted infinite baffle impedance
r
20 log

nnnZ AS + Z I B
AQ

nnns−1
has asymptotic slopes

of +1 decade per decade for frequencies to the left of the maximum and −1 decade per

decade for frequencies to the right of the maximum. When a slope of+1 is added to it, the

infinite baffle sound pressure level response is obtained, where the response has a slope of

+2 decades/decade below the cutoff frequency and a slope of 0 above the cutoff frequency.

When the line input impedance 20 log |Z AT | curve lies above that of the infinite baffle

curve, the loudspeaker output on the transmission line is reduced from that of the loud-

speaker on an infinite baffle. However, it is still possible to improve the system response

by including the tube output. To achieve a transmission line system that is an improve-

ment over the infinite baffle system, the plot of 20 log
nnnZ AS + ZT L

AQ

nnn must cross the plot of
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Table 4. Parameter values for CTS 12W54C twelve inch driver.

MAD RAS CAS B( aD RE Le ne L E2
31.1 1977 8.055× 10−7 16.0 0.1275 5.3 0.0539 0.6079 0.00582

20 log
nnnZ AS + Z I B

AQ

nnn to the left of the minimum of 20 log
nnnZ AS + Z I B

AQ

nnn. For the case shown

in Figure 81, the 20 log
nnnZ AS + ZT L

AQ

nnn curve crosses the 20 log
nnnZ AS + Z I B

AQ

nnn curve to the

right of the minimum, and the transmission line system has a significantly higher −3 dB

frequency than does the infinite-baffle system.

5.5 Comparisons of System with a Given Driver

The design of a transmission line system having a line of constant line area involves choos-

ing the loudspeaker, the packing density of the fiberglass, the length of the line, and the

diameter of the line. For a given loudspeaker, only the line characteristics must be deter-

mined.

In Section 5.4, it is shown that the system response of the six-inch test loudspeaker on a

925 mm long tube of radius 7.5 cm for any packing density is never better than the response

of the loudspeaker on an infinite baffle. In an attempt to design an acceptable system, the

length, diameter, and packing density of the modeled system are varied and their effects

are observed on a plot like that of Figure 81. As an example, a system designed around a

loudspeaker manufactured by CTS having the parameters given in Table 4 is investigated.

The simplified transmission line model is used along with the empirical expressions of

Sections 4.4.4 and 4.4.5 to determine the line input impedance. Equation (290) is used to

generate the sound pressure level curves. Figures 82 through 90 show a plots of the system

sound pressure level for three tube lengths and three fiberglass packing densities. For each

graph, the tube radius is equal to the loudspeaker diaphragm radius of aD = 127.5 mm.

Also on each graph are plots of the same loudspeaker on a closed box, a vented box, and

an infinite baffle. The closed and vented box systems were designed [36] for Butterworth

alignments.
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Figures 91 through 93 directly compare the system sound pressure levels for each line

length for different values of packing density. It can be seen that for all line lengths, an

increase in packing density reduces the amplitude of the variations in the passband, but

it also increases the lower −3 dB frequency for the two larger line lengths. There is no

change in the lower −3 dB frequency for the shortest line, because the frequency of the

tube output maximum occurs well above the −3 dB frequency of the driver output. Thus,

in this case, the system −3 dB frequency is determined by the driver alone.

For the tube of length LT = 1 m, the frequency of the tube output maximum is too

large, so there is no improvement of the system −3 dB frequency over that of the other

systems. This frequency is greater than the −3 dB frequency of the driver, so the driver

output is large. This causes a large peak when the tube and driver outputs combine to form

the system output. For the LT = 3 m tube, the frequency of the tube output maximum is too

low. It occurs where the driver output is rolling off, so the system response, while improved

slightly over that of the other systems, is not optimal. The tube length of LT = 2 m

is nearly optimal. This length causes the tube output maximum to be near the −3 dB

frequency of the driver. For this tube length, the lowest packing density gives the best low-

frequency response of the system. However, there is a large minimum in the response. If

this configuration were used as a subwoofer for frequencies below approximately 100 Hz,

this minimum would be of no consequence.

The size of the transmission line loudspeaker systems compared to that of the other

systems should be noted. The closed-box system and the vented-box system have enclosure

volumes of 0.8 ft3 and 1.7 ft3, respectively. The LT = 2 m transmission line system has a

volume of 3.6 ft3.

In determining the values for PD, LT , and ST from the model, the line diameter is

first set to the diameter of the loudspeaker. Then, PD and LT are adjusted to obtain an

acceptable response. Changes in ST can also be investigated by varying the tube radius,

but the model was derived assuming that the tube and driver had the same diameter. An
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Figure 82. Comparison of system designs for LT = 1 m and PD = 1 kg m−3.
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Figure 83. Comparison of system designs for LT = 1 m and PD = 4 kg m−3.
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Figure 84. Comparison of system designs for LT = 1 m and PD = 8 kg m−3.
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Figure 85. Comparison of system designs for LT = 2 m and PD = 1 kg m−3.
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Figure 86. Comparison of system designs for LT = 2 m and PD = 4 kg m−3.
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Figure 87. Comparison of system designs for LT = 2 m and PD = 8 kg m−3.
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Figure 88. Comparison of system designs for LT = 3 m and PD = 1 kg m−3.
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Figure 89. Comparison of system designs for LT = 3 m and PD = 4 kg m−3.

144



10 100 1000
60

65

70

75

80

85

90

95

So
un

d 
Pr

es
su

re
 L

ev
el

Frequency (Hz)

 Infinite Baffle
 Closed Box
 Vented Box
 Transmission Line

Figure 90. Comparison of system designs for LT = 3 m and PD = 8 kg m−3.
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Figure 91. Variation in system sound pressure level with changes in packing density for the LT = 1 m
tube.
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Figure 92. Variation in system sound pressure level with changes in packing density for the LT = 2 m
tube.
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Figure 93. Variation in system sound pressure level with changes in packing density for the LT = 3 m
tube.
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increase in PD results in a more distinct tube output peak, but its level is decreased because

of the fiber attenuation. An increase in PD also dampens reflections, which decreases the

ripples in the loudspeaker output. A decrease in PD results in a broad tube output with

numerous ripples that result from reflections and more distinct minima in the loudspeaker

output. The choice of PD is a trade off between tube output level and passband ripple.

Decreasing the tube length decreases the peak output frequency of the tube and the fre-

quency of the quarter-wavelength minimum in the loudspeaker output. It also increases the

tube output, because there is less distance over which the fibers can attenuate the sound

wave. As the frequency of the tube output maximum is decreased by increasing the line

length, the system response is improved until the boost from the tube output cannot com-

pensate for the decrease in loudspeaker output as the frequency decreases.
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CHAPTER 6

CONCLUSIONS

It has been shown that a fiber-filled acoustical transmission line in transmission line loud-

speakers can be modeled by two separate lines, a mechanical line and an acoustical line.

The mechanical line models the mechanical motion of the fibers and the acoustical line

models the motion of the air. The two lines are linked by the acoustical flow resistance that

models the aerodynamic drag on the fibers caused by the air flow in the acoustical wave.

The model derived from this representation has an exact solution that includes the ef-

fects of fiberglass motion. Solutions for the system output can be readily calculated. In

addition, the circuit models that are developed can be analyzed with very powerful elec-

trical circuit analysis computer programs such as SPICE. If the coupling among fibers is

neglected, a simplified model results that gives good agreement to measured data. This

model is believed to be an improvement over Augspurger’s model described above. His

model is composed of a finite number of lumped-element resistor, inductor, and capacitor

(RLC) sections that must be analyzed with circuit simulation software. A major problem

with his model is that he does not give empirical or analytical expressions for all of the

line parameters. From the experimental data taken in this research, it has been found that

a fiberglass filling does not behave as Bailey and Bradbury believed that long-fibered wool

behaved in their model of the transmission line loudspeaker. It has been found in this

research that the coupling among fiberglass fibers and the air flow at low frequencies is

determined by a mechanical resonance phenomenon. The model derived here simplifies

to either Augspurger’s model or Bradbury’s model if certain assumptions are made. How-

ever, neither Augspurger’s model or Bradbury’s model agrees well with the measured data

presented here.

The empirical formulas for the line parameters given in Sections 4.4.4 and 4.4.5 allow

the design of a fiberglass-filled line to be evaluated by adjusting three parameters: the
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line length, the line diameter, and the fiber packing density. In further applications, more

detailed experimental data is required to better characterize the fiberglass and its associated

parameters over a wider range of tube diameters and packing densities. The empirical

equation obtained for the flow resistance has the same form as those given in [9], [16], and

[14]. By varying the line length, the line diameter, and the fiber packing density, the effects

of each parameter on sound pressure level radiated by the driver, the tube, and system can

be easily studied using mathematical software. The evaluation can also be performed with

electrical circuit simulator software.

In addition to modeling the simple transmission line system that has the loudspeaker

mounted at one end of the line, the model can be adapted to model two other popular types

of transmission line systems. By placing a transmission line load on both the front and

back sides of the loudspeaker, a transmission line system having a recessed loudspeaker

can be analyzed. An acoustical compliance in parallel with the line can be used to model a

coupling chamber between the loudspeaker and the line. It is believed that the model can

be extended to account for tapered or flared lines by using techniques found in [38] that

apply to acoustical horns.
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APPENDIX A

APWIN IMPEDANCE MEASUREMENT PROCEDURE

The control procedure for the Audio Precision System Two is given below.

’procedure name: Zin.apb

’purpose: To measure the loudspeaker impedance curve

Dim Ro As Double ’Generator resistance

Dim Vgen As Double ’Specified open circuit generator voltage

Dim Size As Integer ’Number of measurement steps

Dim Zm() ’Measured impedance magnitude

Dim Zp() ’Measured impedance phase

Dim f ’Sweep Frequency

Dim L As String

Const Pi = 3.14159265359

Const R = Pi/180

Const D = 180/Pi

Sub Main

AP.Application.NewTest

Ro = 40 ’Generator resistance

Vgen = 1.0 ’Open circuit generator voltage

’InitializeSettings ’Initialize settings when not using test file

AP.File.OpenTest("zinml2.at2") ’Open System Two test

AP.Sweep.CreateTable = True

AP.Sweep.CreateGraph = True

InputFilename

ObtainData

CalculateImpedance
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DisplayResults

SaveData

End Sub

Sub InitializeSettings

AP.Application.Page = 1

AP.Application.PanelOpen apbPanelAnalogGenLarge

AP.Application.PanelOpen apbPanelAnlrLarge

AP.Gen.ChAAmpl("Vrms") = Vgen

AP.Gen.Freq("Hz") = 20

AP.Gen.Config = 0 ’Set to 0 for balanced floating

AP.Gen.Impedance = 0 ’Set to 0 for 40 ohms balanced floating

AP.Gen.ChBTrackA = True

AP.Anlr.ChAInput = 2 ’Set to GenMon

AP.Anlr.ChBInput = 2 ’Set to GenMon

AP.Application.Page = 2

AP.Application.PanelOpen apbPanelSweepSmall

AP.Sweep.Data1.Id = 5903 ’Set data column 1 to be Analyzer Amplitude

AP.Sweep.Data1.LogLin = 0 ’Log y-axis

AP.Sweep.Data1.Top("V") = 60

AP.Sweep.Data1.Bottom("V") = 0.001

AP.Sweep.Data1.Autoscale = True

AP.Sweep.Data2.Id = 5905 ’Set data column 2 to be Vp

AP.Sweep.Data2.Top("deg") = 90

AP.Sweep.Data2.Bottom("deg") = -90

AP.Sweep.Data2.Autoscale = True

AP.Sweep.Data3.Id = 5904 ’Set data column 3 to be measured generator voltage

AP.Sweep.Source1.Id = 5051 ’Source 1 = Generator Frequency
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AP.Sweep.Source1.Start("Hz") = 20.0

AP.Sweep.Source1.Stop("Hz") = 20000.0

AP.Sweep.Source1.Steps = Size

AP.Sweep.Data4.Id = 5901 ’Set data column 4 to be measured frequency

AP.Sweep.CreateTable = True

AP.Sweep.CreateGraph = False

End Sub

Sub ObtainData

AP.Gen.ChAAmpl("Vrms") = Vgen

AP.Gen.Output = True

AP.Anlr.FuncInput = 1

AP.Anlr.ChBInput = 2 ’Set ch B input to Genmon

Vgen = AP.Anlr.FuncRdg("V") ’Read rms generator voltage

AP.Sweep.Start

AP.Gen.Freq("Hz") = 20

End Sub

Sub CalculateImpedance

Vm = AP.Data.XferToArray(0, 1, "V") ’Assign sweep data to array variables

Vp = AP.Data.XferToArray(0, 2, "deg")

Vg = AP.Data.XferToArray(0, 3, "V")

f = AP.Data.XferToArray(0, 4, "Hz")

Size = AP.Sweep.Source1.Steps ’Set array length to number of steps

ReDim Zm(Size) ’defined by test (.at2) file

ReDim Zp(Size)

Dim K As Double

For i = 0 To Size Step 1 ’Calculate magnitude and phase

K = Vg(i)/Vm(i)

152



P = Vp(i)*R

C = Cos(P)

S = Sin(P)

Zp(i) = -D*Atn(K*S/(K*C-1)) ’Minus sign added to make phase referenced

to Vg

Zm(i) = Ro/Sqr((K*C-1)^2+(K*S)^2)

Next i

End Sub

Sub DisplayResults

AP.Data.XferToArray(0, 1, "V") = Zm ’Load Zm into first data column

AP.Data.XferToArray(0, 2, "deg") = Zp ’Load Zp into second data column

AP.Sweep.Data3.Id = 5049

AP.Sweep.Data4.Id = 5049

AP.Graph.OptimizeIndividually ’Optimize the graph

’AP.Data.UpdateDisplay(0) ’Show updated impedance curve

End Sub

Sub SaveData

Open L$ For Output As #1

Print #1, Date;" ";Time

Print #1,"Vgen = ";Format(Vgen,"000.000");" Vrms"

Print #1,"Frequency";Chr$(9);"Magnitude";Chr$(9);" Phase"

For i = 0 To Size Step 1

If Zp(i) < 0 Then

Print #1,Format(f(i),"00000.00000");Chr$(9);

Format(Zm(i),"000.00000");Chr$(9);Format(Zp(i),"00.00000") ’linewrap

Else

Print #1,Format(f(i),"00000.00000");Chr$(9);
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Format(Zm(i),"000.00000"); Chr$(9);" ";Format(Zp(i),"00.00000") ’linewrap

End If

Next i

Close #1

End Sub

Sub InputFilename

Do

L$ = InputBox$("Enter a filename (without an extension)

for saving your impedance data:", _ "Zin Filename","ZinBox") ’linewrap

If L$ = "" Then

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"You must enter a filename."

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg ’show dialog (wait for ok)

End If

Loop Until L <> ""

L$ = "C:\ImpedanceCurves\" & L$ & ".txt" ’Set location of saved data

End Sub
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