EFFICIENT VERIFICATION OF BIT-LEVEL PIPELINED MACHINES USING
REFINEMENT

A Thesis
Presented to
The Academic Faculty

by

Sudarshan Kumar Srinivasan

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2007

EFFICIENT VERIFICATION OF BIT-LEVEL PIPELINED MACHINES USING

REFINEMENT
Approved by:
Professor Panagiotis Manolios, Adviser Professor Ganesh Gopalakrishnan
College of Computing School of Computing
Georgia Institute of Technology University of Utah
Professor Abhijit Chatterjee Professor Sudhakar Yalamanchili
School of Electrical and Computer School of Electrical and Computer
Engineering Engineering
Georgia Institute of Technology Georgia Institute of Technology
Professor Sung-Kyu Lim Date Approved: August 2007
School of Electrical and Computer
Engineering

Georgia Institute of Technology

Dedicated to my late mother, Manjula Srinivasan

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my adviser, Panagiotis Manolios, for his exemplary guid-
ance, support, and encouragement, which have been crucial for my research, career, and the suc-
cessful completion of this thesis. He provided the impetus for my dissertation work. His vision,
depth and breadth of knowledge, and critical feedback have been instrumental for my growth as a
researcher. He also provided financial assistance for most of my Doctoral studies. I am extremely
fortunate to have had the opportunity to work with him.

The members of my dissertation committee Abhijit Chatterjee, Sung-Kyu Lim, Ganesh Gopalakr-
ishnan, and Sudhakar Yalamanchili spent valuable time and effort reading my dissertation and pro-
viding insightful comments and feedback. I am very grateful to them.

I would like to thank Vincent J. Mooney for giving me the opportunity to study at GeorgiaTech
and providing financial assistance for my first year at GeorgiaTech. I would like to thank Jason
Baumgartner and John O’Leary for being supportive of my research work and career goals. I would
like to thank Olin Shivers for his useful comments and feedback on some of my research work. I
also benefited from taking his class on Semantics of Programming Languages.

I would like to thank the members of the formal group at GeorgiaTech: Peter Dillinger, Roma
Kane, Daron Vroon, and Yimin Zhang for their collaboration and encouragement. Peter and Daron
also provided valuable feedback on some of the research presented in this dissertation and helped
me in better understanding the internals of the ACL2 theorem proving system. I would also like to
thank Krishnakumar Sundaresan for reading parts of this dissertation and providing useful feedback
and comments.

Finally, I would like to thank my family for their strong support and love through trying times.
My parents, brother, grandmother, and Ramya have all been wonderful and the greatest source of

joy in my life.

v

TABLE OF CONTENTS

DEDICATION il
ACKNOWLEDGEMENTS iv
LISTOFTABLES viii
LISTOFFIGURES ix
SUMMARY Xii
I INTRODUCTION e e e e e e e e e 1

1.1 Pipelined Machine Verification. 4

1.2 Structure of this Dissertation, 7

II MODELING AND VERIFYING A THREE STAGE PIPELINED MACHINE 10

2.1 Pipelined Machine Example, 10
2.1.1 Instruction Set Architecture 11

2.1.2 Three Stage Pipelined Machine 11

2.2 Refinement 12
2.3 Term-Level Modeling and Verification 16
2.4 Bit-Level Modeling and Verification 20
25 Conclusions. oL 24
I AUTOMATING SAFETY AND LIVENESS 26
3.1 CoreTheorem 27
3.2 Verification of Pipelined Machines 28
3.2.1 Flushing RefinementMap 28

322 LAVENESS v e e e e e e e 31

3.2.3 Commitment RefinementMap 33

324 Remarks 37

33 Benchmarks 37
34 Results L 40
34.1 Commitmentvs. Flushing 43

35 RelatedWorko 44
3.6 Conclusions. 45

v

VI

VII

VIII

OPTIMIZING COMMITMENT REFINEMENT MAPS 47
4.1 Pipelined Machine Models and Benchmarks 48
4.2 Greatest Fixpoint Invariant 49
43 Resultsand Analysis 51
44 Related Work L 56
45 Conclusion e 57
COLLAPSED FLUSHING e e 58
5.1 Collapsed Flushing 59
5.2 Experimental Results, 63
53 RelatedWork L 65
54 Conclusion L 66
INTERMEDIATE REFINEMENTMAPS 67
6.1 RefinementMaps 68
6.2 Intermediate RefinementMaps Lo, 70
6.3 Using GFP with Intermediate RefinementMaps 75
6.4 Using Collapsed Flushing and GFP with Intermediate Refinement Maps 76
6.5 Conclusion L 77
COMPOSITIONAL REASONING o e 79
7.1 Refinement 81
7.2 Processor Modeling and Monolithic Verification 82
7.3 Compositional Verification 82

7.3.1 DeepPipelines 87

7.3.2 Instruction Caches, Data Caches, and Write Buffers 89

7.3.3 Counterexamples 90
74 Related Work 90
7.5 Conclusions. 91

INTEGRATING DEDUCTIVE REASONING WITH DECISION PROCEDURES . . 92

8.1 Integration Strategy e e 94
8.2 Syntax and Semantics of QF_ AUfLia 96
8.3 ACL2 Syntax and Semantics 97

Vi

8.4 SMT Clause Processor it 102

8.4.1 Mapping from ACL2to QF_ AUfLia. 102

8.5 Translation Mechanism L o 103

851 COrrectness v v vt e e e 107

8.5.2 Instruction Set Architecture Example 107

8.6 RelatedWork 111

8.7 Conclusion L 113

IX BIT-LEVEL VERIFICATION e 114
9.1 ProcessorModel 115

9.2 Proof Methodology 116

9.2.1 Reasoning about Bit-Level Interface Designs 117

9.2.2 Augmenting Executable Models with History Information 119

9.2.3 Relating Executable Models and Term-Level Models 120

9.24 AbstractModels 123

9.3 Verification Statistics 123

94 RelatedWork L 124

9.5 Conclusions. e 126

X CONCLUSIONS . . . e e e 127
10.1 Future Work 128
REFERENCES e 131
PUBLICATIONS o s e e e e e 139
VITA . e 142

vii

LIST OF TABLES

Verification Times e
CNF StatistiCs o v v e e e e e e e e e e e

Verification statistics for the flushing approach, the commitment approach using the
Least Fixpoint invariant, and the commitment approach using the Greatest Fixpoint
invariant for various pipelined machines.o

Verification statistics for various pipelined machine models.

Verification statistics for a 10-stage pipeline machine with branch prediction, an
instruction cache, a data cache, and a write buffer using various refinement maps.

Verification times and CNF statistics for the various pipeline machine models. . . .
Verification times and CNF statistics for the compositional verification problems.

Verification times and expert user effort required for the refinement proofs.

viii

72
84
88

0 I N W

10

11

12

13
14
15
16

17

18

19

LIST OF FIGURES

Instruction set architecture machinemodel.
Three stage pipelined machine example GPM).

Part of a UCLID specification that describes a simple instruction set architecture
example, we call ISAS).

Part of a UCLID specification that describes part of the three stage pipelined ma-
chine model example. The full UCLID description of the pipelined machine model
is not shown due to space limitations.

Part of an ACL2 model of the instruction set architecture example (ISAS).
Part of an ACL2 model of a the three stage pipelined machine example (3PM).
Diagram shows the core theorem that can be expressed in CLU logic.

The figure depicts the flushing refinement map for state w of the three stage pipelined
machine, 3PM. In state W shown in this figure, we assume that instruction i2 does
not depend on instruction il.

Figure shows the computation of the rank function for a concrete pipelined machine
state w. In this state, the instruction in the first pipelined latch (i2) depends on the
instruction in the second pipelined latch (i1).

Figure shows the computation of the rank function for a concrete pipelined machine
state V. Note that state V is obtained by stepping state W shown in Figure 9

The figure depicts how the commitment refinement map is computed for state W of
the three stage pipelined machine, 3PM.

The figure shows the computation of the rank function corresponding to the com-
mitment refinement map for a pipelined machine statev.

The Least Fixpoint (LFP) Invariant
High-level organization of 10 stage pipeline machine.
Comparison of commitment and flushing based on verification times.

Variation in verification times with increase in the length of the pipeline for com-
mitment and flushing. L Lo

The Greatest Fixpoint (GFP) invariant characterizes the set of states that can be
reached in n steps from some pipelined machine state.

The invariant and refinement proof times for the LFP commitment approach and the
refinement proof times for the GFP commitment approach for pipelined machine
models with increasing complexity. L oL L.

A comparison of the verification times required for our benchmark problems be-
tween commitment using the LFP invariant and flushing.

ix

17

34

20

21

22

23

24

25

26
27

28
29

30

31

32

33

34
35
36
37
38
39
40
41
42

A comparison of verification times required for our benchmark problems between
commitment using the GFP invariant and flushing. 55

A comparison of verification times required for our benchmark problems between
commitment using the GFP invariant and commitment using the LFP invariant. . . 55

A comparison of the size of the UCLID specifications required for our benchmark
problems between commitment using the GFP invariant and commitment using the
LFPinvariant. e 56

Implementation of standard and collapsed flushing refinement maps. 59

Figure shows the computation of the new flushing rank function for a state of 3PM,
w. In this state, the instruction in the first pipelined latch (i2) depends on the in-

struction in the second pipelined latch (il). 62
Figure shows the computation of the new flushing rank function for a state of 3PM,

v. Note that state V is obtained by stepping state W shown in Figure 24 63
A comparison of standard and collapsed flushing based on verification times. . . . 64

A comparison of standard and collapsed flushing based on the number of CNF vari-
ables generated. 64

A comparison of verification times for collapsed flushing and GFP-based commitment. 65

Verification times obtained by first increasing the length of the pipeline and then
adding an instruction cache, a data cache, and a write buffer. 70

The figure depicts the computation of an IR for state W of the three stage pipelined
machine, 3PM. e 71

The figure depicts the computation of rank corresponding IR for state w of the three
stage pipelined machine, 3PM. L oo 73

Verification times for a 10-stage processor model with an instruction cache, a data
cache, and a write buffer using various refinement maps. 73

A comparison of verification times for CIRS and SIRS, defined using collapsed and

standard flushing, respectively. 77
Invariant mismatch. 0oL o 83
Local compositionrule. Lo 83
Incompleteness of local compositionrule. 0L 83
Global compositionrule. 84
Refinement maps for the compositional verification of M10IDW. 85
Comparison of direct and compositional approaches. 89
QF_AUfLiasyntax ittt e 96
QF AUfLiasemantics v v i v i i e e e e e 98
ALU syntax e e 99

43
44
45
46
47

48
49
50
51

52
53

ALU semantics e 100

An uninterpreted function represented in ACL2 101
Mapping from ACL2 to QF_AUfLia 102
Term-level ACL2 model of aISAS. 108

Command to the ACL2 theorem prover to check a simple property about the ISA
machine model. The property states that the program counter is incremented after
every step of the ISA machine. We call this property isa-pc. 109

Expression corresponding to isa-pc obtained after step 6 the translation mechanism. 109
An initial snapshot of the environment. 110
Expression corresponding to isa-pc obtained after step 7 of the translation mechanism.111

Expression corresponding to isa-pc obtained after step 8 of the translation mecha-

nism. This expression is given as input to the SMT solver. 112
High-level organization of bit-level interface processormodel 115
Proof outline that uses ACL2 and UCLID to show that MB refinesIE. 116

X1

SUMMARY

In this work, we want to defend the following thesis:

Using refinement and a combination of deductive reasoning and decision procedures
enables the verification of bit-level pipelined machines in a highly automated, efficient,

and scalable manner.

Functional verification is a critical problem facing the semiconductor industry as hardware de-
signs are extremely complex and highly optimized, and as the cost of bugs in deployed systems
can be colossal. Pipelining is a key optimization that appears extensively in hardware systems
such as microprocessors, multicore systems, and cache coherence protocols. Verifying pipelined
machines—models that describe the pipelined behavior of hardware designs—entails showing that
these machines behave like their instruction set architectures (ISAs). Existing approaches for ver-
ifying bit-level pipelined machines are based on deductive reasoning and require extraordinary ex-
pert user effort, as the problem involves reasoning about the difference in time-scale between the
pipeline and its ISA and the intricate control circuitry involved in optimized pipeline designs. More
automatic approaches are based on the use of decision procedures, but are applicable only to very
abstract, high-level models, known as term-level models.

We present a novel, highly automated, efficient, and scalable refinement-based approach for
the verification of bit-level pipelined machines. The notion of refinement that we use is compo-
sitional and guarantees that pipelined machines satisfy the same safety and liveness properties as
their instruction set architectures (ISAs). The high-level idea of the verification approach is to
use a deductive reasoning engine, such as the ACL2 theorem proving system, to reduce the bit-
level pipelined machine verification problem to a term-level problem. This drastically reduces the
amount of expert user effort required when compared to approaches based on the use of deductive

reasoning. The verification of term-level models is automated by providing techniques to express

Xii

correctness statements in a decidable fragment of first-order logic, which can be handled with ex-
isting decision procedures. The verification time required for term-level problems is reduced by
optimizing parameters of the refinement framework such as refinement maps, which are functions
that map pipelined machine states to instruction set architecture states. We have also developed
a complete compositional reasoning framework that can be used to decompose correctness proofs
into smaller manageable pieces leading to drastic reductions in verification times and a high-degree
of scalability. The verification is discharged using the ACL2-SMT system, which we developed by
combining the ACL2 theorem prover with a decision procedure.

The methods developed for term-level verification are evaluated using a large number of com-
plex, highly pipelined machine models. The term-level models incorporate various features such as
branch prediction, an instruction queue, an instruction cache, a data cache, and a write buffer. The
effectiveness of our verification approach for bit-level pipelined machines is demonstrated using an
Intel XScale inspired processor model that implements 593 instructions and has features such as

branch prediction, precise exceptions, and predicated instruction execution.

Xiii

CHAPTER|

INTRODUCTION

Hardware systems are ubiquitous and find applications ranging from personal computers and busi-
ness solutions to safety-critical systems such as aircraft and automotive control systems, medical
monitoring systems, systems for controlling nuclear reactors, etc. Ensuring the correct functioning
of these systems is therefore of paramount importance as failure of deployed systems can lead to
loss of life and exceedingly high economic costs. A well known example is the bug that was found
in the floating point division (FDIV) unit of the Intel Pentium processor that cost Intel 475 million
dollars. Estimates show that a similar bug in the current generation of Intel processors will cost Intel
about 12 billion dollars [12].

Validation and verification techniques targeted at ensuring the functional correctness of hard-
ware designs are key to finding bugs and developing reliable systems. But, functional validation
and verification are critical problems facing the semiconductor industry as hardware designs are ex-
tremely complex and highly optimized. For example, the IBM Power5 chip is described using more
than 1.5 million lines of VHDL code and has about 276 million transistors [84]. The challenge of
verifying hardware systems has in fact been addressed by the International Technology Roadmap

for Semiconductors (ITRS) 2004 report [36].

Verification has become the dominant cost in the design process. ... Without major
breakthroughs, verification will be a non-scalable, show-stopping barrier to further

progress in the semiconductor industry.

One of the key optimizations used in hardware systems is pipelining, the idea being that the
functionality of a system is partitioned into several stages, which can work in parallel resulting in
an increase in the throughput of the pipelined implementation of the system. Although pipelining
has been around for decades and is used extensively in hardware systems such as microprocessors,
cache coherence protocols, and multicore systems, there are currently no efficient and scalable

techniques that can check that these pipelines work correctly. Existing techniques for verifying

pipelined machines—machine models that describe the pipelined behavior of hardware systems—
either consume excessive amount of time, effort, and resources or are not applicable at the Register
Transfer Level (RTL), the level of abstraction at which commercial systems are functionally verified.

This thesis presents a novel, highly automated, efficient, and scalable approach based on formal
methods for checking that RTL pipelined machine models work correctly. Our focus in this thesis
is on verifying microprocessor pipelines, but the methods and techniques developed can be directly
applied or easily extended to be applicable to other pipelined hardware systems.

Pipelined machine verification entails providing a mathematical proof that guarantees that a
pipelined machine behaves like its instruction set architecture (ISA), which is a non-pipelined spec-
ification that describes the functionality of the design. While the idea of relating pipelined machines
to their ISAs to prove correctness is not new, the novelty in our verification approach lies in the
methods and techniques used to achieve this.

The approach uses a theory of refinement based on Well Founded Equivalence Bisimulations
(WEBs) to show that bit-level pipelined machines correctly implement their ISAs. WEB refinement
is a compositional notion and guarantees that the pipelined machine and its ISA have the same safety
and liveness properties. Informally, proving safety properties provides assurance that nothing bad
ever happens, while proving liveness properties provides assurance that something good happens
eventually.

The proof obligations generated by our verification approach are checked using a combination
of deductive reasoning and decision procedures. Deductive reasoning or theorem provers can be
thought of as an integrated system of ad hoc proof techniques. Theorem provers typically have un-
derlying logics that are very powerful and expressive, but are also undecidable. Therefore, theorem
provers can be used to reason about pipelined machines at various levels of abstraction including at
the RTL but require an extraordinary amount of expert user effort. In contrast, decision procedures
are highly automated verification engines, but are limited in that they can be used to reason only
about high-level abstractions of RTL/bit-level models, called term-level models.

The high-level idea of the verification approach is that since theorem provers are powerful
enough to reason about pipelined machines at various levels of abstraction including at the term-

level and the bit-level, a theorem prover is used to reduce the bit-level pipelined machine verification

problem to a term-level problem. The reduction is achieved by verifying the abstractions used to
construct the term-level model from the bit-level model. A decision procedure is then used to rea-
son about the pipeline at the term-level. We have also developed several refinement-based methods
and techniques that allow us to verify term-level pipelined machine models in a highly automated,
efficient, and scalable manner. Since the verification approach reduces the bit-level problem to a
term-level problem, all of these techniques can be leveraged to solve the term-level problem effi-
ciently. We believe that these methods will have a strong impact as they can be easily tailored to be
effective in the design cycle of a commercial system.

The predominant method used in the industry for validating pipelined hardware systems such
as microprocessor designs is based on simulation, which is very effective in finding a large number
of shallow bugs. The primary drawback with simulation is that even though it consumes a large
amount of time and resources, it is still far from being exhaustive. For example, at Intel, large teams
of engineers using workstation clusters containing thousands of machines run simulations over the
course of several years. Even so, they are only able to simulate about one minute of actual running
time of the microprocessor [11, 12].

To overcome the limitations of simulation, the industry is starting to use semi-formal and formal
methods [50, 7, 12] in conjunction with simulation-based techniques. Verification approaches based
on formal methods essentially provide a mathematical proof of correctness for the system and are
therefore very exhaustive. Intel’s first use of formal verification on a large-scale was during the
Pentium 4 design cycle and consisted of about 60 person years [12]. Formal methods were used
to verify that the design satisfied various properties describing the expected behavior of the micro-
processor and, to date, no bugs have been discovered in the parts of the design that were formally
verified [12].

The two primary formal verification techniques that have been successfully used in the industry
are combinational equivalence checking [37] and property-based verification [97, 79, 88, 15]. Com-
binational equivalence checking is typically used to compare and check equivalence of two designs
described at the RTL/bit-level or at the gate-level, but, cannot be used to verify the functionality
of a design. Combinational equivalence checking methods also require a one-to-one mapping of

the latches in the two designs that are compared and therefore cannot be used to verify sequential

optimizations to the design such as pipelining.

Property-based verification is the predominant formal technique used in the industry to verify the
functional correctness of hardware designs. The behavior of the design is specified using a number
of properties and the design is checked to see if it satisfies these properties. There are primarily two
limitations of property-based verification for verifying pipelined machines. First, a large number of
design-dependent properties are required to describe the behavior of pipelined machines. Second,
the properties themselves are complex and it is difficult to avoid erroneous properties and to ensure
completeness of the verification of the design.

Due to the limitations of industry standard techniques for checking the correctness of pipelined
machines, the area of pipelined machine verification has recently received a lot of interest from the

research community.
1.1 Pipelined Machine Verification

In this section, we review previous work on pipelined machine verification to provide context for
the contributions of this thesis. Surveys of previous work on specific topics can be found in the
chapters that describe each of these contributions.

To avoid the limitations of industry standard methods for checking that pipelined machines
work correctly, Burch and Dill introduced a notion of correctness based on commuting diagrams
that much of the previous work in the area is based on [22]. The idea is to show that the pipelined
machine behaves like its instruction set architecture (ISA), which is a non-pipelined specification
that describes the functionality of the design. The Burch and Dill notion of correctness is based on
the use of flushing-based abstraction functions used to relate pipelined machine states to ISA states.
An abstraction function otherwise known as a refinement map can be thought of as a function that
gives the ISA state corresponding to a given pipelined machine state. The idea with flushing is that
a pipelined machine state is related to an ISA state by completing partially completed instructions
without fetching any new instructions. Unfortunately, this notion is not as complete as we would
like, e.g., does not fully address liveness, and even when augmented with various liveness properties,
it can still be satisfied by machines that deadlock [51]. Proving liveness guarantees that the pipelined

machine will not deadlock, i.e., it will always make forward progress. In comparison, our methods

for checking the correctness of pipelined machines are based on WEB-refinement and account for
both safety and liveness.

There are various approaches that are based on variations of the Burch and Dill notion of cor-
rectness to verify pipelined machines. These approaches can be primarily classified into approaches
based on the use of theorem provers [43] and approaches that use decision procedures.

Approaches based on decision procedures are highly automatic, but can be used to verify only
pipelined machine models described at the term-level, models that abstract away the data path and
combinational circuit blocks such as the ALU. They are not applicable to bit-level designs and there-
fore have not had much impact in the industry. In contrast, our approach can be used to verify both
term-level and bit-level designs. Below, we briefly describe various approaches that use decision
procedures.

Burch and Dill [22] gave a decision procedure for the logic of Equality with Uninterpreted
Functions. There is also recent work on decision procedures for the CLU logic [20], which is based
on previous work on exploiting positive equality [19]. The decision procedure is implemented in
UCLID, which has been used to verify out-of-order microprocessors [49].

Jones et al. [39] verify an out-of-order execution unit using incremental flushing using the SVC
decision procedure. Their approach relates the implementation to an intermediate machine, where
the scheduling logic is abstracted, which is then related to the ISA. In comparison, we can deal with
any refinement map, we have a general theory for relating any number of intermediate machines, and
we guarantee that all safety and liveness properties are preserved. Mishra and Dutt [72] use SVC
to check the correct flow of instructions in a pipelined DLX model. An XScale processor model is
also verified using a variation of the Burch and Dill approach [95]. There are approaches based on
model-checking, eg., McMillan [69] uses compositional model-checking and symmetry reductions.
Symbolic Trajectory Evaluation (STE) is used by Patankar et al. to verify a processor that is a
hybrid between ARM7 and StrongARM [77]. Recent advances in decision procedures [26, 100]
also drastically reduce the verification times of term-level pipelined machines.

Another popular approach for pipelined machine verification is based on the use of theorem
provers. While such approaches are applicable to bit-level designs, they usually require a pro-

hibitive amount of effort on the part of the expert user. An early, pioneering body of work on

the use of theorem proving for the verification of microprocessors is the CLI stack verification ef-
fort [33, 34, 13]. Another notable use of theorem proving in the context of hardware verification
used ACL2 to reason about Motorola’s CAP digital signal processor [16]. Examples of the use
of theorem provers for pipelined machine verification include the work by Sawada and Hunt, who
use an intermediate abstraction called Microarchitecture Execution Trace Table (MAETT) to verify
some safety and liveness properties of complex pipelined machines [89, 90] using the ACL2 theo-
rem prover. The MAETT stores information about each of the partially executed instructions in the
pipeline. Instead of directly analyzing the entire microarchitecture, MAETT is used to show that
each of the partially executed instructions execute correctly, which is then used to prove the Burch
and Dill based commuting diagram.

Another example of a theorem proving approach is the work by Hosabettu et al., who use the
notion of completion functions [31] to compute the abstraction function or the refinement map. A
completion function specifies the effect of completing a partially executed instruction in the pipeline
on the programmer visible components, which are the program counter, the register file, and the data
memory. One completion function for each of the partially executed instructions in the pipeline is
used to compute the abstraction function. The correctness proofs are carried out using the PVS
theorem prover. Arons and Pnueli [9] have also used the PVS theorem prover to verify a machine
with speculative instruction execution. They use an inductive proof to show that machines which
differ only in the size of the retirement buffer are related; however, due to the complexity of the
refinement maps involved, they conclude that a direct approach is far simpler than the inductive
one. Kroning [48] verified data consistency of pipelined machine models using the PVS theorem
prover. The models are synthesizable and are described very close to the gate-level. There is also
work by Cohn [25], who used the HOL theorem prover to check the equivalence of two high-level
specifications of the VIPER microprocessor.

The notion of correctness for pipelined machines that we use was first proposed by Mano-
lios [51], and is based on WEB-refinement [52]. The first proofs of correctness for pipelined ma-
chines based on WEB-refinement were carried out using the ACL2 theorem proving system [43].
The advantage of using a theory of refinement over using the Burch and Dill notion of correctness

—even when augmented with a “liveness” criterion— is that the Burch and Dill approach cannot

detect deadlock [51], whereas it follows directly from the WEB-refinement approach that deadlock

(or any other liveness problem) will be detected.

1.2 Structure of this Dissertation

In this section, we describe the organization of the rest of this dissertation. In Chapter 2, we describe
a simple three stage pipelined machine, and show how to model and verify it using approaches based
on deductive reasoning and decision procedures. In the process, we also give an overview of the
notion of correctness that we use for pipelined machines, which is based on refinement. The next

seven chapters describe the contributions of this thesis.

e Chapter 3 introduces two methods for automating refinement proofs for term-level pipelined
machines [57, 63]. A consequence of proving refinement is that it guarantees that pipelined
machines satisfy the same safety and liveness properties as their instruction set architecture
(ISA) machines. Checking liveness automatically was thought to be expensive, but using
our approach, liveness can be proved for various complex pipelined machine models with an

overhead cost of only about 25%.

e An important parameter of the refinement framework is the refinement map, which is a func-
tion that maps pipelined machine states to ISA states. A well known approach for defining this
refinement map is based on commitment, the idea being that partially executed instructions
in the pipeline latches of a pipelined machine state are invalidated and any effect that these
instructions had on the programmer visible components is undone. In Chapter 4, we describe
a method for verifying term-level pipelined machines using an optimization of the commit-
ment refinement map [59]. This method provides a 30-fold improvement in verification times

over previous approaches.

e Another approach for defining refinement maps is based on flushing, which can be thought of
as the dual of commitment as partially executed instructions are forced to complete without
fetching any new instructions, as opposed to being invalidated. In Chapter 5, we introduce an

optimization of the flushing refinement map, called collapsed flushing [41]. We also introduce

a new, simpler, and easier-to-verify rank function, which is used for handling liveness. Empir-
ical evaluations show that we obtain over an order-of-magnitude improvement in verification

times when using collapsed flushing instead of standard flushing.

The flushing and the commitment refinement maps can be fruitfully combined by applying
the commitment refinement map to the latches in the front of the pipeline and the flushing re-
finement map to the latches in the end of the pipeline giving rise to a new class of refinement
maps that we call intermediate refinement maps [60]. These refinement maps are described in
Chapter 6. The result is that we are left with two verification problems, but on machines that
are half as complex as the initial pipelined machine; since verification times are exponential
in the size of the machines, this leads to drastic improvements in verification times. By com-
bining an optimized commitment refinement map with collapsed flushing using intermediate
refinement maps, we can monolithically verify very deep pipelines with 16 stages, which was

not possible using previous approaches.

Monolithic verification efforts based on optimized refinement maps provide drastic improve-
ments in verification times, but, the verification times of monolithic methods increase expo-
nentially with increase in the complexity of the design. We demonstrate the use of composi-
tional reasoning based on WEB-refinement to verify complex term-level pipelined machines
that provide a scalable approach for verifying pipelined machines and also gives exponential
savings in verification times [58]; this work is described in Chapter 7. We found that a more
important benefit of the compositional approach over current methods is that the counterex-
amples generated are much simpler and easier to analyze, as bugs are isolated to a particular

step in the composition proof.

Our verification approach for checking the correctness of bit-level pipelined machines lever-
ages on all of the previous methods for reasoning about term-level models and also uses
a combination of deductive reasoning and decision procedures. In Chapter 8, we describe
a novel framework for integrating term-level decision procedures with the ACL2 theorem
proving system. This combined system can then be used to discharge the proof obligations

generated by our verification approach.

e The proof strategy, which is at the crux of our verification approach is described in Chap-
ter 9. The strategy itself is based on refinement and heavily exploits the compositionality
of refinement. We developed an initial approach for reasoning about bit-level pipelined ma-
chines [61, 62]. The strategy presented here is a simplified version of this initial approach and
is more efficient. In this chapter, we also describe an application of our verification approach
to check the correctness of an Intel XScale inspired complex processor model, most of which

is defined at the bit-level.

Conclusions and a summary of the main contributions of this thesis appears in Chapter 10. We

also describe future work in this chapter.

CHAPTERII

MODELING AND VERIFYING A THREE STAGE PIPELINED MACHINE

In this chapter, we describe a simple three stage pipelined machine and show how to model and
verify it at the RTL and at a high-level of abstraction. This excercise allows us to give an overview
of previous approaches for verifying pipelined machines and also allows us compare these methods.
In the process, we also describe the notion of correctness that we use for pipelined machines, which
is based on a theory of refinement.

The chapter is organized as follows. Section 2.1 describes in detail the three stage pipelined
machine example, which we call 3PM, and the instruction set architecture that 3PM implements.
Section 2.2 describes the notion of correctness that we use for pipelined machines, which is based
on refinement. Section 2.3 describes how to model and verify 3PM at a high-level of abstraction
and Section 2.4 describes the modeling and verification of 3PM at the bit-level. Conclusions are

given in Section 2.5.
2.1 Pipelined Machine Example

A pipelined machine model can be thought of as a model that describes the pipelined behavior of a
hardware design such as a microprocessor, as opposed to the instruction set architecture (ISA) that
describes the functionality of the design. An ISA machine is as a single cycle implementation of an
ISA. Most microprocessors that are currently being used in commercial applications implement their
ISA in a pipelined manner. In a pipelined implementation, the functionality of the microprocessor
(as described by its ISA) is split into several stages. The output of one stage is the input of the next
stage. Each of these stages, known as pipelined stages can process a different instruction. Therefore
the pipelined implementation can process multiple instructions simultaneously giving rise to large
speedups over the ISA machine. In this section, we describe a simple three stage pipelined machine,
which we use as a running example in subsequent chapters to illustrate various concepts that we have

developed. The ISA that the pipelined machine implements is described first.

10

2.1.1 Instruction Set Architecture

Figure 1: Instruction set architecture machine model.

The high-level organization of the ISA machine model is shown in Figure 1. We call this ma-
chine ISAS. The state components of ISAS include a program counter (PC), an instruction memory
(IM), and a register file (RF). ISAS implements only one instruction, which is an add instruction.

The instruction format is as follows. An instruction has 2 source addresses and a destination
address. An instruction is fetched from the instruction memory using the program counter as the
reference. The fetched instruction is then decoded using three functions srcl, srcl, and dest, which
take the instruction as input and are used to compute the first source address, the second source
address, and the destination address, respectively. The two source addresses are then used as ref-
erences to obtain the two source operands corresponding to the instruction from the register file.
The sum of the two operands is computed using the alu function. The output of the alu, which is
the result of the instruction is then written to the location in the register file corresponding to the
destination address. During every cycle, the program counter is incremented using the inc function.
Therefore, after ISAS has processed an instruction, its program counter points to the next instruction

in the memory to be processed.

2.1.2 Three Stage Pipelined Machine

Figure 2: Three stage pipelined machine example (3PM).

We now describe an example of a simple three stage pipelined machine, which implements

ISAS, the instruction set architecture example described in Section 2.1.1. We call this machine

11

3PM. The high-level organization of 3PM is shown in Figure 2. Unlike an ISA machine that ex-
ecutes only one instruction per cycle, the pipelined machine has three stages each of which are
capable of processing an instruction every cycle. Therefore, 3PM can process upto a maximum of
three instructions simultaneously, in each of its pipelined stages. The model has 3 stages which are
separated by the pipeline latches shown as dark boxes in Figure 2. The stages are the fetch and de-
code stage (before the first pipeline latch), the execute stage (between the two pipeline latches), and
the write back stage (after the second pipeline latch). The model implements only one instruction,
which is an add instruction.

In the fetch and decode stage, the instruction is fetched from the instruction memory using the
address as the program counter. Note that the instruction format of the instructions in the three stage
pipelined machine (3PM) is the same as the instruction format for instructions in ISAS. Therefore,
we can use the same functions as we did for the ISA to decode the instruction. The two sources
addresses are then used to read the two source operands from the register file. These source operands
are then stored in the first pipelined latch, along with the destination address corresponding to the
instruction.

In the execute stage, the two source operands are read from the first pipelined latch, and their
sum is computed using the same alu function that was used in ISAS. The result along with the
destination address from the first pipeline latch is stored in the second pipeline latch. In the write
back stage, the result and the destination address of the instruction are read form the second pipeline
latch and this result is written into the register file using the destination address.

It is possible for an instruction in the first pipeline latch (say il) to depend on an instruction
in the second latch (say i2), i.e., the result produced by i2 is required by il. In this situation, the
program counter and the instruction in the first pipeline latch (il) are stalled for one cycle to allow

the instruction in the second pipeline latch (i2) to complete and update the register file.
2.2 Refinement

In this section, we describe the notion of correctness that we use for pipelined machines, which is
based on a general theory of refinement developed by Manolios [52, 53]. Using a general notion of

correctness is advantageous as we can clearly identify the parameters of our correctness framework

12

and then analyze as to how these parameters can be optimized using domain knowledge about
pipelined machines. In fact, in the subsequent chapters where we report the contributions of this
thesis, we describe several methods to optimize parameters of the refinement framework that lead
to a high degree of efficiency.

Pipelined machine verification is an instance of the refinement problem: given an abstract spec-
ification, S, and a concrete specification, I, show that | refines (implements) S. In the context of
pipelined machine verification, the idea is to show that MA, a machine modeled at the microarchitec-
ture level, a low level description that includes the pipeline, refines ISA, a machine modeled at the
instruction set architecture level. A refinement proof is relative to a refinement map, r, a function
from MA states to ISA states. The refinement map, r, shows us how to view an MA state as an ISA
state, e.g., the refinement map has to hide the MA components (such as the pipeline) that do not
appear in the ISA.

There are several ways in which refinement maps can be defined for pipelined machines. One
well known approach is based on commitment, the idea being that partially executed instructions
in the pipeline latches are invalidated, and their effect on the programmer state components—state
elements of an ISA state such as the program counter, register file, and memories that are also part
of a pipelined machine state—is undone. Another approach for defining refinement maps is based
on flushing, which can be thought of as the dual of commitment, as partially executed instructions
are forced to complete, without fetching any new instructions. The refinement maps used play a
critical role in the efficiency of the verification methods used, and we study these maps closely and
develop several optimization techniques for these maps. We now give the formal definitions for
refinement.

The ISA and MA machines are arbitrary transition systems (TS). A TS, M, is a triple (S, --»,L),
consisting of a set of states, S, a left-total transition relation, --»C S?, and a labeling function L
whose domain is S and where L.S (we sometimes use an infix dot to denote function application)
corresponds to what is “visible” at state S.

Our notion of refinement is based on stuttering bisimulation [18]. When we say that MA refines
ISA, we mean that in the disjoint union (W) of the two systems, there is a stuttering bisimulation

refinement (STB) that relates every pair of states W, S such that w is an MA state and r(w) = s.

13

Definition 1. (STB Refinement) [52] Let M = (S,--»,L), M’ = (S',--+/,L"),and r: S — S'. We
say that M is a STB refinement of A" with respect to refinement map r, written 2 ~, M, if there
exists a relation, B, such that (Vs € S :: sBr.s) and B is an STB on the TS (SWS',--» W --»/, L),

where £.s=L'.sfor san S’ state and £L.s = L'(r.s) otherwise.

Our notion of refinement is based on the following definition of stuttering bisimulation [18],
where by fp(0,s) we mean that O is a fullpath (infinite path) starting at S, and by match(B, 0, d) we

mean that the fullpaths 0 and are equivalent sequences up to finite stuttering (repetition of states).

Definition 2. B C S x S is a stuttering bisimulation (STB) on TS M = (S,--»,L) iff B is an equiva-

lence relation and for all s,w such that sBw:

(Stbl) Ls=Lw

(Stb2) (Vo :fp(o,s) : (38: fp(d,w) : match(B, 0,9)))

We note that stuttering bisimulation differs from weak bisimulation [71] in that weak bisimu-
lation allows infinite stuttering. Stuttering is a common phenomenon when comparing systems at
different levels of abstraction, e.g., if the pipeline is empty, MA will require several steps to complete
an instruction, whereas ISA completes an instruction during every step. Distinguishing between
infinite and finite stuttering is important, because (among other things) we want to distinguish dead-
lock from stutter.

A major shortcoming of the above formulation of refinement is that it requires reasoning about
infinite paths, something that is difficult to automate [75]. Manolios [52] developed Well Founded
Equivalence Bisimulation (WEB) refinement, which is an equivalent formulation that requires only
local reasoning, involving only MA states, the ISA states they map to under the refinement map,
and their successor states. We now give the relevant definitions that are given in terms of general

transition systems (TS).

Definition 3. (WEB Refinement) Let M = (S,--»,L), M' = (S',--+'L"),and r : S — §'. We say
that M is a WEB refinement of M with respect to refinement map r, written M =~, M’, if there
exists a relation, B, such that (Vs € S :: sBr(s)) and B is a WEB on the TS (SWS’, --» W --»/, L),

where L(s) =L'(s) for s an S’ state and L(s) = L'(r(s)) otherwise.

14

In the above definition, it helps to think of M as corresponding to ISA and M as corresponding
to MA. Note that in the disjoint union (&) of M and M, the label of every M state, S, matches the
label of the corresponding M state, r(s). WEBs are defined next; the main property enjoyed by a

WERB, say B, is that all states related by B have the same (up to stuttering) visible behaviors.

Definition 4. BC SxSisaWEBon TS M = (S,--»,L) iff:
(1) B is an equivalence relation on S; and
(2) (Vs,weS::sBw = L(s)=L(w)); and
(3) There exist functions erankl : S x S — N erankt: S — W,
such that (W, <) is well-founded, and
(Vs,uweS:sBw A s--»u =
(@ (viw-->v A UuBv) Vv
(b) (uBW A erankt(u) <erankt(s)) Vv
(c) (Gvw--»v A sBv A erankl(v,u) < erankl(w,u)))

The third WEB condition says that given states S and W in the same class, such that S can step
to U, U is either matched by a step from w, or U and w are in the same class and a rank function
decreases (to guarantee that W is eventually forced to take a step), or some successor V of W is in
the same class as S and a rank function decreases (to guarantee that U is eventually matched). In the
following chapters, we provide several methods to define these rank functions that does not require
deep understanding of the machine models. To prove that a relation is a WEB, reasoning about
single steps of --» suffices. It turns out that if MA is a refinement of ISA, then the two machines
satisfy the same formulas expressible in the temporal logic CTL* \ X, over the state components
visible at the instruction set architecture level.

There are several ways in which we can model and verify these pipelined machines using the
refinement-based notion of correctness that we use. We can model and verify these machines at
a high-level of abstraction or at the bit-level, and there are advantages and disadvantages to both
approaches. These approaches can be classified into two categories, which are approaches based
on the use of deductive reasoning, and approaches that use decision procedures. We describe these

approaches in the subsequent sections.

15

2.3 Term-Level Modeling and Verification

One approach for checking the correctness of pipelined machines is to model these machines at a
high-level of abstraction, resulting in what we call term-level models, and verify them using decision
procedures. Term-level models are obtained by manually abstracting RTL/bit-level models, and
they use numerous abstractions. The bit-vector data path is abstracted using integers (also known
as terms in this context), and therefore the name term-level models. Combinational circuit blocks
such as the ALU are abstracted using black box functions, which are functions that have no body.
These models use numerous other abstractions for instruction and data memory, register file, branch
prediction, decoding logic, etc. In this section, we describe how to model and verify the three stage
pipelined machine (3PM) using the UCLID system.

UCLID is a tool for verifying properties of term-level models and has been used to check prop-
erties about our-of-order microprocessor models [49]. The UCLID specification language can be
used to model pipelined machines at the term-level and specify properties about these models.

We now describe how we model ISAS at the term-level using UCLID. The UCLID specification
corresponding to the ISA machine is shown in Figure 3.

The program counter is modeled as an integer variable (sPC in Figure 3). The instruction mem-
ory is modeled as a function that maps addresses to data values. For this example, we assume that
the instruction memory (IM in Figure 3) is only read from and never updated or written to. There-
fore, we can model IM as an uninterpreted function. The register file is modeled as a state variable
that can hold function values (sRF in Figure 3). Therefore, we can both read from the register file
and update the register file. Note that the init and next operators are used to specify an initial value
and the transition relation, respectively, for a state element.

Typically using UCLID, combinational circuit blocks such as the ALU are modeled using Unin-
terpreted Functions (UFs). For the ISA machine, we model the function that increments the program
counter, the three decoder functions (i.e., decoding of srcl, src2, and dest), and the ALU using the
uninterpreted functions inc, srcl, src2, dest, and alu, respectively.

We now describe how the three stage pipelined machine is modeled using the UCLID specifica-

tion language. The UCLID specification of the three stage pipelined machine is shown in Figure 4.

16

DEFINE

(* Instruction read from the instruction memory *)

inst := IM(sPC);

(* Two source arguments read from the register file *)

argl :
arg2 :

sRF(srci(inst));
sRF(src2(inst));

(* Result computed using the alu *)
result := alu(argl, arg2);
ASSIGN

(* Program Counter *)

init[sPC] := pcO;
next[sPC] := inc(sPC);
(* Register File %)
init[sRF] := rf0;
next[sRF] := Lambda (a)
case
(a = dest(inst)) : result;
default : sRF(a);
esac;

Figure 3: Part of a UCLID specification that describes a simple instruction set architecture example,
we call (ISAS).

Just as with the ISA, the program counter is modeled as the integer variable pPC, the instruction
memory is modeled as an Uninterpreted Function IM, and the register file is modeled as the func-
tion variable pRF. The first source operand stored in the first pipeline latch is modeled using the
integer variable deargl. The second source operand and the destination address stored in the first
pipeline latch are modeled as integer variables. The result in the second pipelined latch is modeled
as the integer variable ewresult. The destination address stored in the second pipeline latch is also
modeled using an integer variable. A valid bit is associated with each of the pipeline latches, which
are modeled as a boolean variables. Just as with the ISA, the ALU, the three decoder functions, and

the function that increments the program counter are modeled using Uninterpreted Functions alu,

17

DEFINE

(* Instruction read from the instruction memory *)
inst := IM(pPC);

(*x Two source arguments read from the register file *)

argl := pRF(srcl(inst));
arg2 := pRF(src2(inst));

(* stalling logic *)
stall := (devalid & ewvalid &
((desrcl = ewdest) | (desrc2 = ewdest)));

(* Result computed using the alu *)
result := alu(deargl, dearg2);
ASSIGN

(*x Program Counter *)

init [pPC]
next [pPC]

pcO;
inc(pPC) ;

(* Pipeline latch 1 *)

init[deargl] := dearglO;
next [deargi]
case
stall : deargl;
default : argl;
esac;

(* Pipeline latch 2 *)

init [ewresult] := ewresultO;
next [ewresult] := result;
(* Register File x)
init [pRF] := rf0;
next [pRF] := Lambda (a)
case
(a = ewdest) & ewvalid : ewresult;
default : pRF(a);
esac;

Figure 4: Part of a UCLID specification that describes part of the three stage pipelined machine
model example. The full UCLID description of the pipelined machine model is not shown due to
space limitations.

18

srcl, src2, dest, and inc, respectively.

Even though term-level models use numerous abstractions, they are useful as properties about
models defined at the term-level can be reduced to decision problems in a restricted fragment of
first-order logic, such as the logic of Counter arithmetic with restricted Lambda expressions and
Uninterpreted functions (CLU) [20]. Efficient decision procedures such as UCLID [20] can be used
to decide CLU formulas. By specifying the refinement based correctness criterion as a statement ex-
pressible in CLU, we can use UCLID to automatically check the correctness of pipelined machines
(see Chapter 3 for more details). In fact, the UCLID decision procedure has been used extensively
in the work described in this dissertation in developing efficient methods to automate the verifica-
tion of term-level pipelined machines. Below we give a brief description of the CLU logic and the
UCLID decision procedure.

The CLU logic contains the boolean connectives, uninterpreted functions (UFs), uninterpreted
predicates (UPs), equality, counter arithmetic, ordering, and restricted lambda expressions. The
basic CLU types are booleans and integers (also known as terms). UFs and UPs are essentially
black box functions that have a name but do not have a function body. The only property satisfied
by a UF or a UP is functional consistency, i.e., if the inputs to two different applications of a
function are equal, then their outputs are equal. A UF takes integer inputs and produces an integer
output, whereas a UP takes integer inputs and produces a boolean output. Lambda expressions are
restricted in that they can only take integer inputs. Therefore, it is not possible to express any form
of recursion or iteration in the CLU logic. The only arithmetic operations on integers allowed are
counter arithmetic, i.e., integers can be incremented and decremented.

At the heart of UCLID is a decision procedure for formulas expressible in the CLU logic. The
UCLID symbolic simulation engine unrolls the specification to generate a formula in CLU, which is
then reduced to a SAT problem in CNF format. UCLID uses a number of sophisticated techniques
such as efficient encoding schemes and positive equality in this reduction from CLU to CNF. A
state-of-the-art SAT solver can then be used to check the SAT problem. If UCLID was able to prove
that the property does not hold on the system, then it will generate a counter example, which is a
satisfying assignment to all variables in the CLU formula that was generated by UCLID from the

original verification problem. The counter example is very useful as it can be interpreted in context

19

to determine the reason the property failed to hold on the system.

Recently, there have been significant advances in decision procedures and initial experiments
show that they will be able to automatically handle significantly harder pipelined machine verifi-
cation problems than can be currently handled by UCLID. Examples of such decision procedures
include DPLL(T) [26] and Yices [100].

While approaches based on decision procedures are automatic and efficient, there are several
drawbacks. The term-level models lack a firm connection to the RTL, the level of abstraction at
which commercial designs are functionally verified. As can be seen from the term-level model
of 3PM, large pieces of the design such as the ALU are missing. Therefore, many errors are not
caught [61]. Also, the models are not executable, which makes it very hard to debug. In the next

section, we describe how to model and verify 3PM at the bit-level.
2.4 Bit-Level Modeling and Verification

Hardware designs of commercial systems are functionally verified at the RTL/bit-level. Approaches
based on the use of deductive reasoning can be used to verify pipelined machines defined at the bit-
level. In this section, we show how to model and verify the three stage pipelined machine example
(3PM) using the ACL?2 theorem proving system. Manolios also describes in detail the modeling and
verification of a more complex pipelined machine example using refinement and ACL2 [55].

ACL2 stands for “A Computational Logic for Applicative Common Lisp.” It is the name of a
programming language, a first-order mathematical logic based on recursive functions with induc-
tion, and a mechanical theorem prover for that logic [43, 47, 42]. We choose to work with ACL2
because it is an industrial strength theorem prover that has successfully applied to model and verify
commercial systems. Some examples of commercial applications of ACL2 include the verification
of floating point units of the AMD-KS processor [86], the AMD-K7 processor [85], and the IBM
Powerd ™ processor [91]. ACL2 has been used as part of the verification effort of an IBM secure
co-processor [94] and an intrinsic partitioning mechanism in the AAMP7 avionics microproces-
sor [29]. ACL2 has also been used to analyze bit and cycle accurate models of the Motorola CAP, a
digital signal processor [17],

The ACL?2 programming language is an applicative (side-effect free or purely functional) subset

20

of Lisp. ACL2 is also a total programming language, meaning that ACL2 functions are defined for
any input irrespective of its type. For example, consider the expression (and 5 t), where t is the
boolean value true. Executing (and 5 t) will not result in an error and will return t, as the and
function treats 5 as t.

We now show how to model both ISAS and 3PM using ACL2 at the bit-level. Part of the ACL2
bit-level model of ISAS is shown in Figure 5. The entire model is not shown due to space limitations.
The step-isa function corresponds to the operational semantics of ISAS and is defined using several
other functions, some of which are shown. Bit-vectors are represented as lists of 1s and 0s. The nth
function is used to get the nth bit of a list, and is used for manipulating bit-vectors. The srcl and src2
functions both take an instruction as input and are used to compute the source addresses. The srcl
function pulls out the first four bits of the instruction and constructs the first source address using
these bits. The register file and the instruction memory are modeled an association lists (alists).
The s function is used to update an alist and the g function is used to read the data from an alist
corresponding to a given key. The nextsrf function corresponds to the transition relation of the
register file. Other functions such as the alu, which describes the ALU are defined at the bit-level,
but are not shown here. The let construct is used to bind lexically scoped local variables. seq is a
macro for constructing and updating records. A field of a record can be read using the g function.
A state of ISAS is modeled as a record with three fields, which are the program counter (’pc), the
register file (’rf), and the instruction memory (’imem).

Part of the ACL2 bit-level model pf 3PM is shown in Figure 6. The entire model is not shown
due to space limitations. The step-ma corresponds to the operational semantics of 3PM and is
defined in a style similar to ISAS. Many of the functions used to define ISAS such as the decoder
functions (srcl, src2, etc) and the function that describes the ALU are also used in the 3PM model.
A state of the 3PM includes the state components of ISAS and other components that correspond to
the two pipeline latches.

The WEB-refinement theorem that relates 3PM and ISAS is expressible in the ACL2 logic,
which may be thought of as first-order predicate calculus with equality, recursive function defini-

tions, and mathematical induction. In the logic, the primitives of applicative Common Lisp are

21

(defun src1l (x)
(list (nth O x)
(nth 1 x)
(nth 2 x)
(nth 3 x)))

(defun src2 (x)
(list (nth 4 x)
(nth 5 x)
(nth 6 x)
(nth 7 x)))

(defun nextsrf (inst rf result)
(s (dest inst) result rf))

(defun step-isa (isa)
(let*
((pc (g ’pc isa))
(rf (g ’rf isa))
(imem (g ’imem isa))
(inst (select pc imem))
(argl (g (srcl inst) rf))
(arg2 (g (src2 inst) rf))
(result (alu argl arg2)))
(seq nil
’pc (pcadd pc)
’rf (nextsrf inst rf result)
’imem imem)))

Figure 5: Part of an ACL2 model of the instruction set architecture example (ISAS).

axiomatized, as are the basic data types, including natural numbers, integers, rationals, complex ra-
tionals, ordered pairs, symbols, characters, and strings. A principle of definition is also provided, by
which the user can extend the axioms by the addition of equations defining new function symbols.
Only terminating recursive definitions can be so admitted under the definitional principle.

We can now use the ACL2 theorem prover to prove that 3PM refines ISAS. Below we give a
brief overview of the ACL2 theorem prover, which is essentially an integrated system of ad hoc
proof techniques that include simplification, generalization, induction, and many others. The user

interacts with the theorem prover my modeling an artifact such as a hardware system using the

22

(defun nextprf (ewvalid ewdest ewresult rf)
(cond
(ewvalid (s ewdest ewresult rf))

(t rf)))

(defun step-ma (ma)
(let*
((pc (g ’pc ma))
(rf (g ’rf ma))
(imem (g ’imem ma))
(deargl (g ’deargl ma))
(dearg2 (g ’dearg2 ma))

(ewdest (g ’ewdest ma))
(ewvalid (g ’ewvalid ma))
(ewresult (g ’ewresult ma))
(inst (g pc imem))

(argl (g (srcl inst) rf))

(arg2 (g (src2 inst) rf))

(result (alu deargl dearg2)))

(seq nil

’pc (pcadd pc)
’rf (nextprf ewvalid ewdest ewresult rf)
’imem imem
’deargl (cond (stall deargl) (t argl))

’ewresult result

’ewdest dedest

Figure 6: Part of an ACL2 model of a the three stage pipelined machine example (3PM).

ACL2 language. The user then invokes the theorem prover by posing a conjecture about the model.
The user can provide hints to the prover to guide its proof search. The theorem prover then uses
a sequence of proof mechanisms, which are used to try and prove the conjecture. One of the pri-
mary techniques used is simplification. The prover has a database of rules, which it uses to sim-
plify/transform the conjecture. If the conjecture is proved, it is added to the rule database and used
in subsequent proof attempts. Otherwise, the prover produces a failed proof, which can be studied
by the user to determine why the proof failed.

To check properties about complex models, the user has to first prove a number of rules that can

23

be stored in the rule database and used by the prover to reason about various parts of the model.
Using a theorem prover such as ACL2 to prove properties about reasonably complex models is a
laborious process and can typically require an enormous amount of effort on the part of the expert
user.

In fact, Manolios has proved WEB-refinement theorems for various three stage pipelined ma-
chines using ACL2. Some of these models were described at the RTL and included interrupts.
Some models were deterministic, while others were nondeterministic. Using the records book that
had many useful rules about s and g functions, Manolios was able to prove refinement theorems
using both flushing and commitment refinement maps automatically.

We tried to use a similar approach to verify a 5 stage term-level DLX pipelines machine, but
found that the deductive reasoning approach did not scale well. The proof took fifteen and a half
days for ACL2 [56] to complete, but required only 3 seconds using UCLID. To reduce the time
required for ACL2 to complete the proof, one would have to start looking very closely at the inter-
nals of the pipeline and prove low-level invariants. In fact, there have been several efforts to verify
complex pipelined machines using theorem provers. But, experts have found this to be a laborious
process requiring an extraordinary amount of effort. For example, Sawada and Hunt [89, 90] have
used ACL2 to verify complex pipelined machines models using ACL2 and required to prove a large
number of low-level invariants about the internals of the design.

There is also recent progress in the development of decision procedures that can reason at the
bit-level, an example of which is the Bit-level Analysis Tool (BAT) [67, 66]. BAT uses a state-of-
the-art memory abstraction technique [65] and an efficient method for generating SAT problems
from high-level circuit representations [68]. BAT has been used to verify a 32-bit 5 stage pipelined
machines in approximately 2 minutes. The only drawback with such approaches is that the they do

not scale well as they are limited by the complexity thresh hold of the decision procedure used.
2.5 Conclusions

We described a simple three stage pipelined machine model and showed how to model and verify

it using two different approaches. The first approach was based on the use of decision procedures.

24

While the verification using this approach was efficient and automatic, the approach was only ap-
plicable to very high-level abstract models, which did not have a firm connection with the RTL. In
contrast, using theorem provers such as ACL2, we could model and verify the three stage pipelined
machine at the bit-level. But, we showed that approaches based on theorem provers did not scale
well to more complex models.

In this dissertation, we develop a verification approach for bit-level pipelined machines that is
based on using a combination of theorem proving and decision procedures. We show that in fact,
using our approach, we can very complex processor models with only about 0.9 the amount of effort
required to abstract and verify RTL models using UCLID. Note that using UCLID, the RTL models
are manually abstracted, and there is no real connection between the abstract UCLID models and

the original RTL model.

25

CHAPTER 11

AUTOMATING SAFETY AND LIVENESS

In this chapter, we introduce a method for automatically verifying that a pipelined machine refines
its instruction set architecture (ISA). The notion of refinement we use is based on Well founded
Equivalence Bisimulations (WEBs) and guarantees that the pipelined machine and its ISA have the
same safety and liveness properties. A consequence is that the pipelined machine satisfies exactly
the same CTL" \ X properties satisfied by its ISA (see Section 2.2 for a more detailed description of
WEB-refinement).

The pipelined machine models we consider are abstract term-level models. Such models abstract
away the datapath using integers, abstract away combinational circuit blocks (such as the ALU) us-
ing uninterpreted functions, and employ numerous other abstractions. The use of term-level models
allows us to focus on the pipeline while ignoring other aspects of microprocessor designs. This helps
make the verification problem tractable because there are powerful tools capable of automatically
analyzing term-level models [20].

Automation of refinement proofs for term-level pipelined machine models is achieved in the
following ways. First, we use domain knowledge about pipelined machines to strengthen the WEB
refinement theorem to a statement expressible in the logic of counter arithmetic with lambda ex-
pressions and uninterpreted functions (CLU), a decidable logic. Second, we show how to define the
refinement maps and rank functions required to state the refinement theorem. Refinement maps are
functions that map pipelined machine states to ISA states and rank functions map pipelined machine
states to natural numbers. As our machines are modeled at the term-level and our refinement-based
correctness statements are expressible in CLU, we can use UCLID to automatically check the cor-
rectness statements [20].

We provide experimental results for 17 pipelined machine models of varying complexity with
features such as precise exceptions, branch prediction, and interrupts. Our results show that our

approach is computationally efficient, as verification times for WEB-refinement proofs are only

26

25% longer than the verification times for the standard Burch and Dill type proofs [22], which do
not address liveness.

The rest of this chapter is organized as follows. In Section 3.1, we show how to reduce the WEB-
refinement theorem to a statement expressible in CLU. In Section 3.2, we describe methods for
automatic verification of term-level pipelined machines. In Section 3.3, we describe several complex
pipelined machine models used to evaluate our methods. In Section 3.4, we report verification times
and statistics for 34 pipelined machine models, some based on the flushing approach and some on
the commitment approach. We compare the time taken to prove safety alone with the time taken
to prove both safety and liveness. We also compare the flushing and the commitment approaches.

Related work and Conclusions appear in Sections 3.5 and 3.6, respectively.
3.1 Core Theorem

The general statement of WEB refinement is not expressible in a decidable fragment of first-order
logic, such as CLU. Therefore, to achieve automation of refinement proofs, we use domain knowl-
edge about pipelined machines to strengthen the WEB refinement theorem to a statement express-
ible in CLU, called the core theorem. We start by defining the equivalence classes of a WEB, B,
to consist of one ISA state and all the pipelined machine states that map to the ISA state under the
refinement map, r. Now, condition 2 of the WEB definition (see Section 2.2) clearly holds. Our ISA
and pipelined machines are deterministic (actually they are nondeterministic, but we use oracle vari-
ables to make them deterministic [53]), thus, after some symbolic manipulation, we can strengthen
condition 3 of the WEB definition to the following core theorem, where rank is a function that maps

states of the pipelined machine into the natural numbers.

(WWeMA = s=r(w) A u=1ISA-step(s) A
V=DMA-step(W) A UFT(V)
= s=r(v) A rank(v) < rank(w))
In the formula above that is also depicted as a diagram shown in Figure 7, s and U are ISA states,

and W and v are MA states; ISA-step is a function corresponding to stepping the ISA machine once

and MA-step is a function corresponding to stepping the MA machine once. The core theorem says

27

;
O
r

rank(v) < rank(w)

- - -» MA-Step —— Compare states for equality
..... » ISA-Step % Compare states for inequality
— Refinement map

Figure 7: Diagram shows the core theorem that can be expressed in CLU logic.

that if w refines S, U is obtained by stepping S, V is obtained by stepping W, and Vv does not refine U,
then Vv refines s and the rank of v is less than the rank of w. The proof obligation relating s and V is
the safety component, and the proof obligation that rank(v) < rank(w) is the liveness component.
We use two types of refinement maps and provide a general method for defining rank functions in

both cases. The details appear in Section 3.2, after we describe the pipelined machine models.
3.2 \Verification of Pipelined Machines

Stating the core theorem described in Section 3.1 involves defining refinement maps and rank func-
tions. We use two refinement maps, flushing and commitment. In this section, we describe these
refinement maps and their associated rank functions.

As stated earlier, refinement maps are functions that map pipelined machine states to ISA states.
ISA states contain the programmer visible components, including the program counter, the in-
struction memory, the data memory, and the register file. For the machines with exceptions, the
programmer visible components also include the exception program counter and the exception
flag. Pipelined machine states contain all the programmer visible components, and also include

the pipeline registers.
3.2.1 Flushing Refinement Map

The flushing refinement map is defined using a flush operation that “pushes” instructions in the

pipeline forward without fetching any new instructions [22]. A pipelined machine state is flushed

28

by applying a sufficient number of flush operations successively so that all the partially executed in-
structions in the pipeline are forced to complete without fetching any new instructions. The flushing
refinement map is defined by flushing a pipelined machine state and projecting out the programmer
visible components, resulting in an ISA state.

A pipelined machine model can be easily instrumented to enable such flushing by introducing
an external input signal flush. A regular step is one in which the pipelined machine model is stepped
with flush set to FALSE, in which case the pipelined machine behaves the same way as the uninstru-
mented machine. During a flushing step, flush is set to TRUE, and the machine is stepped without
fetching a new instruction. In this case, the program counter is not incremented but can be updated
by existing instructions in the pipeline (such as a branch instruction that mispredicts), and a bubble
is introduced in the first stage of the pipeline. The maximum number of flushing steps, n, required
to flush a pipelined machine state depends on the machine under consideration. For example, we
require a maximum of 8 flushing steps to flush the pipelined machine model with 7 stages, as the
most recently fetched instruction in the pipeline (the instruction in the pipeline register after the first
fetch stage) can stall at most two times before it completes. When n flushing steps are applied to
a pipelined machine, it reaches a flushed state, a state in which all its pipeline registers are invalid,
meaning that the pipeline registers do not hold any valid instructions.

To check the safety component of the refinement theorem for the pipelined machine, we start
from an arbitrary pipelined machine state W, and apply n flushing steps to reach w¢, the flushed
state corresponding to W. Projecting out the programmer visible components from W; results in the
ISA state s. Next, we apply a regular step to the pipelined machine in state W to get v. Applying n
flushing steps to v results in the flushed state vs. Projecting out the programmer visible components
in V¢ results in the ISA state r(v). ISA state u is obtained by stepping the ISA machine in state S.
Now, the safety property based on the “core theorem” can be defined using states S, u, and r(v).
It turns out that for a single-issue pipelined machine, the safety proof of the core WEB theorem is
similar to the Burch and Dill approach [22].

We now describe how flushing works for a simple three stage pipelined machine model (3PM).
The model itself is described in Section 2.1.2. The three stage pipelined machine has two pipeline

latches. If we consider any state, it can have a maximum of two partially executed instructions in

29

wl

Figure 8: The figure depicts the flushing refinement map for state w of the three stage pipelined
machine, 3PM. In state W shown in this figure, we assume that instruction i2 does not depend on
instruction il.
the pipeline latches. Therefore, it might seem that one can flush any pipelined machine state using
two flush operations. But, notice that if the instruction in the first pipeline latch (say i2) depends
on the instruction in the second pipeline latch (say i1), then il is stalled for one step. Therefore, a
maximum of 3 flush operations are required to flush any state of the three stage pipelined machine.
In Figure 8 we depict how the pipelined machine state w is flushed. In further discussions, when
we say that a pipeline latch or register is valid, we mean that the pipeline latch or register holds a
valid instruction. Similarly, an invalid pipeline latch does not hold a valid instruction. The flush
operation is shown as flush in the figure. The project operation in the figure indicates the projection

of the programmer visible components of a pipelined machine state onto an ISA state. W has two

30

partially executed instructions in the pipeline latches, il and i2, where il is the older instruction
and i2 does not depend on il. The program counter is pointing to instruction i3 in the instruction
memory. If we flush w for one step, then instruction il completes and updates the register file, and
instruction i2 moves to second pipeline latch. Since no new instruction is fetched, the first pipeline
latch becomes invalid (indicated using a X in the figure). The resulting pipelined machine state is
wl. If we flush wl, we reach state W2, where i2 also completes and updates the register file. State
W2 is a flushed state as all the pipelined latches are invalid. Projecting out the programmer visible

components from state W2 gives the ISA state S, corresponding to the pipelined machine state w.
3.2.2 Liveness

The liveness component of the refinement theorem is checked by comparing the ranks of w and v.
For the flushing refinement map, we define the rank of a pipelined machine state to be the number
of pipelined machine steps required to fetch an instruction that eventually completes. An initial
attempt at automatically computing the rank of a state is as follows. Starting with a state, say pg, we
take n steps, leading to states pi,..., Pn. We also apply the refinement map to each of the p states,
leading to the sequence of states (o, . . . ,qn. The rank of p is the smallest value of i such that g; # qp.
Unfortunately, defining rank in this way requires a larger number of symbolic simulation steps than
UCLID can handle.

We now introduce another method for defining rank. This new method is the one we actually
use and it is much more amenable to analysis. Starting with a state, say po, we take K steps, where k
is the number of steps required for the data in the first pipeline register of pg to reach the last pipeline
register (of px). We then keep stepping pk until we reach a state p; such that the last pipeline register
of py is valid. The rank of pg is then | —k; that is, the rank of a state is the number of steps required
for a new instruction to reach the end of the pipeline, after all previous instructions have finished.

As a final remark, note that even if the rank function is erroneously defined, no unsoundness
can result. This is because the core theorem guarantees that a WEB-refinement exists if any rank
function makes it true. The practical implication is that erroneous rank definitions are caught during
verification.

In Figures 9 and 10, we show how the rank of two pipelined machine states W and v of a simple

31

i1

wl
X

w2
i2

rank(w) = 2

Figure 9: Figure shows the computation of the rank function for a concrete pipelined machine state
w. In this state, the instruction in the first pipelined latch (i2) depends on the instruction in the
second pipelined latch (i1).

three stage pipelined machine model, 3PM (described in Section 2.1.2), are computed. In both the
figures, step indicates a step of 3PM. For the state w, since the instruction in the first pipeline latch
i2 depends on i1, i2 is stalled for one cycle before it can make progress. Therefore, a new instruction
is fetched only after two steps of 3PM starting at state W. Since 3PM does not have any mechanisms
for invalidating, all instructions that are fetched will complete. Therefore, the rank of state W is two.
Stepping 3PM in state V on the other hand results in an instruction fetch, as the second pipeline latch
in state v is invalid and i2 will not be stalled and will make progress. Therefore, the rank of V is one.
Note that v is actually the state obtained by stepping W. When W is stepped, it stalls and does not
make any forward progress with respect to the ISA, therefore the value of rank decreases from two

to one.

32

vl

rank(v) = 1

Figure 10: Figure shows the computation of the rank function for a concrete pipelined machine
state V. Note that state Vv is obtained by stepping state w shown in Figure 9

3.2.3 Commitment Refinement Map

Given a pipelined machined state, the commitment refinement map returns the ISA state obtained
by invalidating all partially executed instructions in the pipeline, undoing any effect they had on the
programmer-visible components, and projecting out the programmer-visible components [51].

The commitment refinement map can be easily implemented using history variables, variables
that record the history of the programmer visible components. We keep track of the values of
the programmer visible components before they were updated by each of the partially executed
instructions in the pipeline. For example, in the 7 stage machine models, we keep track of the
last 6 values of the program counter. The commitment refinement map can now be defined by
invalidating the partially executed instructions and setting the programmer visible components to
their values before they were updated by the oldest instruction in the pipeline. Note that no symbolic
simulations are required.

Figure 11 shows how the commitment refinement map is computed for a state of the three stage
pipelined machine, called 3PM. A description of 3PM can be found in Section 2.1.2. The project
operation in the figure indicates the projection of the programmer visible components of a pipelined

machine state onto an ISA state. The pull-back operation in the figure indicates rolling back the

33

w2

Figure 11: The figure depicts how the commitment refinement map is computed for state w of the
three stage pipelined machine, 3PM.

pipelined machine for one step. Note that we use the pull-back operation to describe the intuition
behind the commitment refinement map. As stated earlier, when computing the commitment re-
finement map, we do not roll the pipelined machine backward. Instead we use history variables to
implement the commitment refinement map.

The pipelined machine state w, shown in Figure 11 has two partially executed instructions il
and i2, and the program counter is pointing to instruction i3 in the instruction memory. The ISA
state corresponding to W can be computed by rolling back state W for two steps. This results in
a 3PM state W2 where the effect of instructions i2 and il on the programmer visible components
is undone, the two pipeline latches are invalid, and the program counter is pointing to instruction

il. Projecting out the programmer visible components in the resulting state, gives the ISA state S

34

corresponding to W.

For the commitment refinement map, we define the rank of a pipelined machine state to be the
number of steps required to commit an instruction. The first instruction that gets committed is the
oldest. In addition, for the machines we consider, the flow of an instruction through the pipeline
is only affected by older instructions in the pipeline. Therefore, the number of steps required to
commit the oldest instruction is essentially the number of pipeline registers between that instruction

and the end of the pipeline, which is how we define rank.

rank(v) = 2

Figure 12: The figure shows the computation of the rank function corresponding to the commitment
refinement map for a pipelined machine state V.

Figure 12 depicts the computation of the rank corresponding to the commitment refinement
map for a state of 3PM, namely v. Note that in the figure step corresponds to a step of the pipelined
machine. The instruction next to the register file (RF) indicates the last committed instruction. As
can be seen from the figure, the second pipeline latch is invalid, and the first pipeline latch contains

instruction i2. Tt takes two steps for i2 to complete, and therefore, the rank of state v is two.

35

Good States

- - = MA-Step

(a) The LFP invariant states that a state is good if it can be reached
from a committed state, C, within U steps, where Uis a machine specific
upper bound. States reached after more than U steps must be reachable
within U steps from some other committed state.

- - MA-Step —— Compare states for equality

— Commit
(b) To check that an MA state V is good, commit V to get X and

check if vis equal to one of the states obtained by stepping X from
0 to U steps, where U is a machine specific upper bound.

Figure 13: The Least Fixpoint (LFP) Invariant

To use the commitment refinement map, we require an invariant that characterizes the set of
reachable pipelined machine states. To see why, consider a state, w, of the three stage pipelined
machine (3PM) that has only one instruction in the pipeline, but that instruction does not match
any instruction in the instruction memory. Committing and projecting the programmer visible com-
ponents in W results in state S, however w and S will not have the same infinite executions up to
stuttering because W will eventually execute its instruction, which will differ from the instruction S
executes.

We now show how to define the required invariant. First we define the notion of a committed
state, which is a pipelined state in which all the pipeline registers are invalid. A pipelined state is

“good” if it is reachable from a committed state. The set of good states is an invariant that we call

36

the Least Fixpoint (LFP) invariant, as computing this set involves a least fixpoint computation (see
Figure 13(a)). To check that a pipelined machine state, w, is good, we start by computing C, the
committed state corresponding to W. State W is good if it is equal to any of the states obtained by
stepping C for some number of steps up to U, an upper bound depending on the pipelined machine
design. For example, for a machine model with 7 stages, the upper bound is 6, which is the largest
number of steps required for a new instruction to travel through and reach the end of the pipeline.

To prove that the LFP invariant really is an invariant requires that we show that the good states
are closed under the pipelined machine transition relation. The invariant proof is trivially true for
the good MA states that are less than U steps from a committed state, as their successors are within
u steps from a committed state. Therefore, all we need to show is that the successor of any state that
is U steps from a committed state is good, as depicted in Figure 13(b).

Having established the LFP invariant, we prove the refinement theorem using case analysis.
A good state is either an arbitrary committed state or a state reachable in 1,...,U steps from an

arbitrary committed state. We then prove the “core theorem” for each of these possibilities.
3.24 Remarks

The core theorem is easily expressible in the CLU logic, as the successor function can be used to
directly define the rank functions. However, we can do without the successor function since the rank
of a state is always less than the number of registers in the pipeline. This means that our approach
is applicable even with tools that only support propositional logic, equality, uninterpreted functions,

and memories, but we find that defining the rank explicitly is clearer.
3.3 Benchmarks

We automatically verify a number of pipelined machine models that are obtained by extending a
base model with various features. The base model has 6 pipeline stages including an instruction
fetch (IF1), an instruction decode (ID), an execute (EX), a 2-cycle memory access (M1 and M2)
and a write back (WB). The models implement five instruction types including register-register,
register-immediate, load, store, and branch. The branch and store instructions complete out of
order with respect to the ALU instructions. This base model is extended with a pipelined fetch

stage, branch prediction, ALU exceptions, interrupts, and an instruction queue. Figure 14 shows

37

IF1 IF2 IF3 IF4IF5 ID EX M1 M2 WB

Instruction
Queue

T
|
|
|
|
|
|
|

P
—> .| Decoding Misprediction
1 | Logic Logic
|
\
Instruction Data
Memory Memory

Figure 14: High-level organization of 10 stage pipeline machine.

the high-level organization of a complex 10 stage pipelined machine model with branch prediction,
pipelined fetch stage and a 3-stage instruction queue. The 7 stage models are inspired by the Intel
XScale architecture and the other pipelined machine models are obtained by extending these 7 stage
models. Some of our modeling techniques such as those used for branch prediction and exceptions
are based on [99].

We now describe how we model the pipelined machines at the term-level. Combinational circuit
blocks such as the ALU are abstracted using Uninterpreted Functions (UFs). The register file is
modeled using using restricted lambda expressions. The read and write accesses to the data memory
in the pipelined machines models we consider are in-order. Therefore, we use a term variable to
model the data memory and UFs to model the read and write functions of the data memory. Since
the instruction memory is never updated, we model it using a UF. Counter arithmetic, implemented
using ordering, and interpreted functions successor and predecessor, is used to define rank functions.

Interrupts are modeled with a term variable INPState that stores the state associated with the
generation of the interrupt, a UF NextINPState that takes INPState as input and produces the next
interrupt state, and UP IsInterrupt that also takes INPState as input and produces a boolean value
that indicates if an interrupt is raised. Interrupts are detected in the M1 stage and invalidate all in-
structions in pipeline latches before the M1 stage including the instruction that caused the interrupt.
We use temporal abstraction to model the behavior of interrupts, as in our model the result of an

interrupt can be seen in one step of the machine. An interrupt modifies the data memory arbitrarily

38

to model the result of running an interrupt handler and sets the PC to the program counter corre-
sponding to the first instruction that was invalidated by the interrupt. An arbitrary modification to
the data memory is implemented using an uninterpreted function that takes the current data memory
as input and returns the modified data memory.

We use two approaches to abstract branch predictors. In the first approach, a branch predictor is
abstracted with a term variable BPState that corresponds to the current state of the branch predictor.
Also, two UFs NextBPState and PredictTarget, and a UP PredictDirection are used, all of which
have one input, BPState. The output of NextBPState, PredictDirection, and PredictTarget is the
next state of the branch predictor, a prediction on the direction, and a prediction on the target of the
branch, respectively. We call this the general branch prediction abstraction scheme. In the second
approach, the branch predictor is abstracted using a non-deterministic input that corresponds to
the state of the branch predictor. The predictions on the direction and target of the branch are
determined using the UF PredictTarget, and the UP PredictDirection, respectively. We call this
the non-deterministic branch prediction abstraction scheme. The actual direction and target of the
branch are determined in EX. Mispredictions are corrected in M 1. What is verified is the circuit that
implements the misprediction logic.

ALU exceptions are modeled with a UP that takes the same input as the ALU, and outputs a
predicate indicating if an exception is raised. M1 handles ALU exceptions in the following way. In
case of an ALU exception, all instructions in pipeline latches before the M1 stage are invalidated, the
program counter is updated with the address corresponding to the ALU exception handler routine,
and the PC of the excepting instruction is stored in the Exception Program Counter (EPC). A return-
from-exception instruction is also implemented that restores the PC with the EPC.

To show how ISA and pipelined machines can be modeled at the term-level, we describe in
detail, two simple examples of term-level models. The examples are based on ISAS (a simple ISA
that is described in Section 2.1.1) and 3PM (a simple three stage pipelined machine that implements

ISAS and is described in Section 2.1.2).

39

3.4 Results

In this section, we describe the results obtained from automatically verifying safety and liveness for
17 pipelined machine models using both flushing and commitment refinement maps. In summary,
we find that verification times increase 17% when proving safety and liveness over the time required
to prove just safety. Interestingly, when using the commitment refinement map, there is no increase
in verification times, but when using flushing verification times increase by about 23%. Finally,
commitment takes less time overall and scales better than flushing.

The verification times and the statistics for the boolean correctness formulas are shown in Ta-
ble 1 and Table 2, respectively. We report the number of CNF variables and clauses and the verifica-
tion time for both the safety proofs and the safety and liveness proofs, i.e., for the proofs of the core
theorem. The total verification time reported includes the time taken by Siege and UCLID, thus
the time taken by UCLID can be obtained by subtracting the Siege column from the Total column.
Siege uses a random number generator, which leads to (sometimes large) variations in the execution
times obtained from multiple runs of the same input; thus, in order to make reasonable comparisons,
every Siege entry is the average over 10 runs. We also report the standard deviation of the 10 runs
for every Siege entry in the safety and liveness proofs. The experiments were performed using the
UCLID system (version 1.0) and the Siege SAT solver (variant 4) and run on a 3.06GHz Intel Xeon
machine with an L2 cache size of 512 KB.

We use the following naming convention for the pipelined machine models and the verification
problems. A model name begins with either “c” or “f,” indicating that the commitment or flushing
refinement map is used, respectively. Following is a number that indicates the number of pipeline
stages. This is followed by the optional letters “b”, “n”, “e”, and “p”, indicating the presence of the
general branch prediction abstraction scheme, the nondeterministic branch prediction abstraction
scheme, exceptions, and interrupts, respectively.

The overhead cost of liveness, computed by subtracting the sum of the “Safety Verification
Times Total” column from the sum of the “Safety and Liveness Verification Times Total” column
and dividing by the latter is 17%; notice that for the commitment approach it is -1.6%, whereas it is

23% for the flushing approach. Since the liveness and safety theorems share considerable structure

40

Table 1: Verification Times

Safety Safety and Liveness
Verification Times Verification Times

Verification (secs) (secs)

Problem Siege | Total Siege | Stdev | Total
c6 28 30 28 54 30
cbn 160 165 170 | 35.5 175
c6b 121 124 119 | 16.0 122
c7 25 27 26 3.8 28
c7n 226 230 234 | 434 237
c7b 201 204 222 | 52.6 225
c7be 199 203 213 | 25.3 217
c7bep 239 243 260 | 73.7 264
c8 27 29 31 5.8 33
c8n 770 776 758 | 66.9 764
c8b 560 564 493 | 83.8 497
c9 30 32 29 6.1 31
c9n 1,455 1,462 | 1,517 | 238.0 | 1,524
c9b 982 987 934 | 169.2 939
cl0 33 36 31 7.1 34
cl0n 2,901 2,910 | 2,641 | 358.2 | 2,650
c10b 1,675 1,681 | 1,774 | 423.2 | 1,780
fo 10 12 10 2.1 14
fon 10 13 12 2.7 17
fob 11 14 15 3.6 20
7 134 138 135 6.8 142
f7n 109 114 136 | 14.9 145
f7b 124 129 139 | 245 148
f7be 134 139 157 | 232 167
f7bep 120 126 171 20.9 182
8 821 828 697 | 31.8 709
f8n 597 605 716 | 49.5 731
f8b 594 602 699 | 55.1 715
9 2,574 2,584 | 2,309 | 100.1 | 2,328
f9n 1,998 2,010 | 2,546 | 117.7 | 2,570
f9b 2,089 2,101 | 2,333 | 124.7 | 2,357
f10 5,407 5,422 | 6,385 | 5069 | 6,411
f10n 4,229 4,247 | 6,726 | 365.8 | 6,761
f10b 4,039 4,057 | 6,540 | 584.9 | 6,575

41

Table 2: CNF Statistics

Safety Safety and Liveness
Verification CNF CNF CNF CNF
Problem Vars | Clauses Vars Clauses
c6 12,817 | 37,876 | 12,334 36,442
cbn 37,718 | 111,790 | 37,147 | 110,077
cbb 22,410 | 66,223 | 21,850 64,558
c7 13,728 | 40,609 13,296 39,328
c¢/n 28,007 | 82,978 | 27,500 81,472
c7b 26,785 | 79,294 | 26,058 77,128
c7be 26,766 | 79,186 | 26,264 77,695
c7bep 26,806 | 79,291 | 26,615 78,733
c8 14,528 | 43,009 14,100 41,740
c8n 54,252 | 161,260 | 53,697 | 159,595
c8b 32,569 | 96,526 | 31,914 94,576
c9 15,648 | 46,369 15,214 45,082
cOn 63,101 | 187,771 | 62,536 | 186,076
c9b 37,539 | 111,376 | 36,757 | 109,045
cl10 17,526 | 52,003 17,121 50,803
c10n 73,727 | 219,613 | 73,163 | 217,921
c10b 44,287 | 131,560 | 43,517 | 129,265
f6 13,429 | 39,694 | 28,256 83,725
fén 16,462 | 48,529 | 37,452 | 110,920
fé6b 17,135 | 50,548 | 37,002 | 109,570
7 28,477 | 84,535 | 53,165 | 158,182
f7n 33,160 | 98,212 | 70,667 | 210,172
f7b 33,674 | 99,754 | 70,985 | 211,126
f7be 35,961 | 106,516 | 74,702 | 222,145
f7bep 37,599 | 111,406 | 81,759 | 243,259
f8 47,551 | 141,538 | 95,092 | 283,465
f8n 56,790 | 168,742 | 121,499 | 361,954
f8b 58,180 | 172,912 | 121,645 | 362,392
9 70,295 | 209,551 | 144,045 | 429,973
f9n 87,650 | 261,001 | 185,149 | 552,412
fob 87,278 | 259,885 | 183,371 | 547,078
f10 111,631 | 333,124 | 198,375 | 592,660
f10n 129,085 | 384,793 | 255,780 | 763,861
f10b 129,957 | 387,409 | 256,272 | 765,337

42

w 4
g 10 T N ™
§ X X X
= 3
ﬁ 10° X X '
=
g X
2 107t -
]
E X XX
§ 10'r 7
g
:E: Pipellined machir?e models . X
>
10° 10 102 10° 10*

Verification times using commitment (secs)

Figure 15: Comparison of commitment and flushing based on verification times.

10* T T T
— _-H
2 10%t om0 A
L e
Y
e 10?W .
o
T
Qo [
£ .l i
L 10
Flushing —&—
. . Commitmelnt -
1

6b 7b 8b 9b 10b
Pipelined machine models

Figure 16: Variation in verification times with increase in the length of the pipeline for commitment
and flushing.

(e.g., the machine models), the SAT solvers are able to prove the conjunction of the two theorems
in time comparable to the time required to prove just one of the theorems. In fact, in some cases the
verification times for safety and liveness are slightly less than the verification times for safety alone
(as is the case with some of the commitment problems), indicating that the heuristics of the SAT

solver are able to effectively exploit the shared structure.
3.4.1 Commitment vs. Flushing

Figure 15 is a scatter plot that compares commitment and flushing using 17 pipelined machine
models. Notice that both the x and Yy axis have a logarithmic scale. As can be seen from the figure,
commitment does better than flushing on most of the models, especially on models with longer
pipelines. This is depicted more clearly in Figure 16, which shows the variation in verification

times with increase in the length of the pipeline for both flushing and commitment. Note that the

43

y-axis in Figure 16 has a logarithmic scale.

A crucial factor in understanding the results is the notion of symbolic distance of a problem,
which is the maximum number of nested symbolic simulations required to state the refinement
theorem for the problem. The complexity of the verification problem and the size of the CNF
formulas generated increase as the symbolic distance increases. The intuition is just that larger
symbolic distances mean that we have to reason about longer traces.

The symbolic distance required for flushing is greater than that required for commitment be-
cause the rank function for commitment is trivial, whereas the rank function for flushing is quite
complicated. In fact, it is responsible for the larger symbolic distance required for the flushing
refinement map.

The differences in verification times for the commitment approach when including a branch pre-
diction abstraction scheme (for example c¢7 and c7b) can be understood by noting that we compute
the strongest invariant and introducing branch mispredicts leads to an irregular set of good states.
Since exceptions and interrupts are very similar to branch mispredicts, introducing these features
does not affect verification times much. We would also like to note that a very large portion of the
verification time for the commitment approach is spent in proving the LFP invariant [59].

When deciding between the commitment and flushing approaches, consider the following. First,
flushing verification times are more sensitive to the depth of the pipeline than commitment verifica-
tion times. Second, there are ways of optimizing both methods that should be considered [59, 60,
41]. Where possible, we prefer the commitment approach because its refinement map seems clearer

and it has various advantages in the context of nondeterministic machines [51].
3.5 Related Work

We now review previous work on pipelined machine verification. The correctness of pipelined
machines is a subject that has received much attention. Early, seminal work in this area is due to
Burch and Dill, who introduced a notion of correctness based on commuting diagrams, we call the
BD correctness criterion [22]. Aagaard et al., [3] [4] have provided a survey of the various notions
of correctness for pipelined machines, most of which are variations of the BD correctness criterion.

Unfortunately, the BD notion is not as complete as we would like, e.g., does not address liveness

44

and thus does not guarantees that the pipelined machine is free of deadlock and livelock. To over-
come this limitation, a variation of the BD correctness criterion augmented with a liveness property
was proposed by Sawada and was used to verify some very complex processor models using the
ACL2 theorem proving system [89]. This strengthened notion of correctness is still not complete,
as it is possible to mechanically prove that certain pipelined machines that can deadlock satisfy
this notion of correctness [S1]. Another approach that handles both safety and liveness is described
in [98] and is also a variation of the BD correctness criterion. Liveness is proved by showing that
the pipelined machine makes forward progress after a finite number of steps. The reported over-
head of proving liveness for single-issue pipelines is about 80%, compared with 17% using our
approach. Another difference is that our approach is based on proving refinement, which has cer-
tain advantages. For example, a consequence of our proofs is that the pipelined machine satisfies
the same CTL* \ X properties as its ISA. Another advantage is that refinement is a compositional
notion, which can be exploited to verify complex pipelined machines that cannot be handled using
automatic monolithic approaches [58].

Automatic verification of term-level pipelined machines has directly benefited from advances
in decision procedures. An early decision procedure for the logic of Equality with Uninterpreted
Functions was due to Burch and Dill [22]. Another, more efficient, decision procedure for the same
logic was given in [19], and that work was further extended in [20], where a decision procedure for
the CLU logic was given. The decision procedure is implemented in UCLID, which has been used
to verify out-of-order microprocessors [49]. Also worth mentioning is the SVC decision procedure,
which was used to check the correct flow of instructions in a pipelined DLX model [72]. Jones et

al. [39] used SVC to verify an out-of-order execution unit using incremental flushing.
3.6 Conclusions

We have presented a method to automatically verify safety and liveness properties of complex
pipelined machine models based on WEB-refinement. Automation is achieved in two steps. First,
we strengthen the WEB-refinement theorem so that it is expressible in a the CLU logic. Second, we
provide a simple recipe to define the rank function that does not require any deep understanding of

the machine models. We analyze two approaches based on commitment and flushing to define the

45

refinement map using extensive experimentation with 17 pipelined machine models. We find that
commitment approach scales better than the flushing approach with increase in the length of the
pipeline. Also, the cost of liveness when compared with the cost of proving both safety and liveness

is about 23% for the flushing approach and is negligible for the commitment approach.

46

CHAPTER IV

OPTIMIZING COMMITMENT REFINEMENT MAPS

Refinement proofs for pipelined machines depend on a critical parameter: the refinement map, a
function that relates pipelined machine states to instruction set architecture states. Chapter 3 de-
scribes methods to automatically check refinement proofs for term-level pipelined machines by pro-
viding recipes to define refinement maps using high-level information about the pipelined design.
These methods for defining refinement maps are based on commitment [51, 52] and flushing [22].
The idea with commitment is that partially completed instructions are invalidated and the program-
mer visible components are rolled back to correspond with the last committed instruction. Flushing
is a kind of dual of commitment, where partially completed instructions are made to complete with-
out fetching any new instructions.

Refinement maps used for pipelined machine verification such as those based on flushing and
commitment have a drastic impact on the verification times as these maps tend to be complex func-
tions. The reason for the complexity of refinement maps is that they are in essence constructed by
stepping the pipelined machine multiple times. As a result, the computational complexity of re-
finement proofs for even reasonably complex processor models grow easily beyond the complexity
threshold of decision procedures such as UCLID.

In this chapter, an automatic technique for defining commitment refinement maps is introduced
that provides over a 30-fold improvement in verification times over both the previous method for
defining commitment-based refinement maps and the standard method for defining flushing-based
refinement maps. Refinement maps based on commitment requires the use of invariants. Extensive
profiling using 42 pipelined machine models shows that proving the invariant accounts for almost
all of the verification time required when using the standard commitment-based refinement maps.
Based on this observation, a new invariant is introduced called the Greatest Fixpoint invariant that
can be used for commitment-based refinement proofs. Not only does the new invariant lead to an

average speedup factor of about 30, but it is also much simpler to define, leading to a decrease both

47

in the human effort required to verify pipelined machines and in the code size.

The rest of the chapter is organized as follows. In Section 4.1, the pipelined machine models
and verification benchmarks that are used for the experiments are described. In Section 4.2, the
Greatest Fixpoint (GFP) invariant is introduced. Section 4.3 shows results obtained by applying the
commitment refinement map using the GFP invariant on our 42 pipelined machine models. Finally,

related work is presented in Section 4.4, and conclusions in Section 4.5.
4.1 Pipelined Machine Models and Benchmarks

For our experiments, we have created 42 pipelined machine models of varying complexity that in-
clude and extend the models described in Section 3.3. We start with a base processor model and
extend it with features such as a pipelined fetch stage, a 3-stage instruction queue, two different
ways of abstracting branch predictors, an instruction cache, a data cache, and a write buffer. The
base processor model is a 6 stage pipelined machine with the following stages: instruction fetch (IF),
instruction decode (ID), execute (EX), data memory access (M1 and M2), and write back (WB). We
implemented ALU instructions, register-register and register-immediate addressing modes, loads,
stores, and branch instructions. We assign names to the pipelined machine models that are consis-
tent with the names in the “Processor” column of Table 3. The model names start with a number
indicating the number of stages followed optionally by the letters “I”, “D”, “W”, “B” and “N” indi-
cating the presence of an instruction cache, data cache, write buffer, branch prediction abstraction
scheme 1, and branch prediction abstraction scheme 2, respectively. By applying different refine-
ment maps to the pipelined machine models, we get in all 210 benchmarks (5 verification problems
for each pipelined machine model).

The basic features of the pipelined machines are modeled in a style similar to [57], which in turn
are similar to [95]. The models are described at the term-level. Word-level values are abstracted
using terms or integers and much of the combinational circuit blocks that are common between the
pipelined machine and its ISA are abstracted using Uninterpreted Functions (functions that only
satisfy the property of functional consistency). We use restricted lambda expressions to model
memories. The caches and write buffer are modeled as described below.

We model a direct mapped instruction and data cache. The instruction cache is modeled using

48

three memory elements ICache-Valid, ICache-Tag, and ICache-Block that take the index as
input and return a predicate indicating if the entry in the instruction cache is valid, the tag, and
the data block, respectively. Three uninterpreted functions Getlndex, GetTag, and GetBlockOffset
take the program counter as input, and are used to obtain the index, tag, and the block offset,
respectively. Another uninterpreted function SelectWord is used to extract the instruction from the
data block. The instruction memory is modeled as a lambda expression that takes 2 arguments, an
index and a tag, and returns a block of data. This way of modeling the instruction memory allows us
to relate the contents of the instruction memory with the instruction cache contents. We require an
invariant about the instruction cache that valid entries in the cache are consistent with the instruction
memory. We also prove that the instruction cache invariant is inductive, i.e., we prove that if the
invariant holds for an arbitrary pipelined machine state, w, then it holds for v, where Vv is obtained
by stepping W once.

The data cache is direct mapped and the way we model it is similar to the way we model the
instruction cache. Writes are write-through and update both the data cache and memory. Also, an
invariant stating that all the valid entries in the data cache are consistent with the data memory is
required.

The write buffer is implemented as a queue and has 4 entries. Each entry has a data part, an
address part, and a valid bit. Store instructions do not update the data memory directly, but write to
the tail of the write buffer queue. The head of the write buffer queue is read and used to update the
data memory. Reads from the data memory have to take into account the valid entries in the write
buffer, as the write buffer has the most recent data values. Among the write buffer entries, priority is
given to the entries closer to the tail. We require an inductive invariant for the write buffer that states
that the combined state of the write buffer and the data memory is consistent with a data memory

that is updated directly, without using a write buffer.
4.2 Greatest Fixpoint Invariant

We introduce a new inductive invariant that can be used with commitment-based refinement maps;
we call it the Greatest Fixpoint (GFP) invariant. In this section, we define the GFP invariant and

compare, based on proof times and the ease of implementation, the commitment approach that uses

49

Pipelined Machine
States

a nsteps Good
@ ® gyes

Figure 17: The Greatest Fixpoint (GFP) invariant characterizes the set of states that can be reached
in n steps from some pipelined machine state.

the GFP invariant, with the flushing approach and the commitment approach that uses the Least
Fixpoint (LFP) invariant.

The definition of the the Greatest Fixpoint (GFP) invariant is straightforward.
Definition 5. gfp.w iff (JaeS:a--spw)

In the above definition, S is the set of all pipelined machine states, --+ is the transition relation,
and --+p is the n-fold composition of --» (i.e., it relates U to v if V can be reached in n steps from
u). The definition states that a pipelined machine state W is in the invariant if it can be reached
from some state in n steps. Reasonable values of n depend on the pipelined machine in question
and should be selected to correspond to the minimum number of steps required to replace all the
partially executed instructions in the pipeline with instructions fetched from the instruction memory.
For the pipelined machine models that we consider, n is the number of steps required to flush the
machine.

The reason we call this invariant the greatest fixpoint invariant is that we have the following

lemma.

Lemma 1.

(VkeN: (JaeSma-—» W) = (JacS:a-—»w)

Therefore, for the sequence of sets Sp,...,Sp, where S; ={w e S::(JacS:a--»w)}, we
have Sy 2 S1 2 --- D Sy
The GFP invariant is depicted in Figure 17. If an arbitrary pipelined machine state is stepped

for the number of steps required to flush the pipeline, then all the partially executed instructions in

50

the pipeline are made to complete and update the programmer visible components, and the pipeline
latches are filled with new instructions. For the machines we consider, the flow of an instruction
in the pipeline depends only on older instructions in the pipeline. Therefore, all the instructions in
pipeline latches of the original arbitrary state are guaranteed to complete and be replaced by new
instructions from the instruction memory. The new partially executed instructions in the pipeline
latches of the resulting state will be consistent, thereby avoiding the problems inherent in the com-
mitment approach. Note that if the initial arbitrary state is an illegal state and causes the machine
to deadlock, a counterexample will be generated as we are checking for liveness. The user would
then have to add more invariants to exclude such states. That GFP is an invariant follows from the

following lemma.
Lemma2. (Vw,veS:: (gfpw A w-->v) = gfp.v)

The lemma is true by definition. Recall that checking the standard invariant used for the com-
mitment approach is where most of the verification time is spent, but by the above lemma, no such
check is required for the GFP invariant approach. As we show in the next section, this leads to
drastically faster verification times.

The commitment refinement map using the GFP invariant is defined as follows. A pipelined
machine state satisfying the GFP invariant is committed by invalidating the partially executed in-
structions in the pipeline and rolling back the programmer visible components (program counter,
instruction and data memory, and register file) so that they correspond with the last committed in-
struction. The programmer visible components are then projected out, resulting in an ISA state. The
rank function is the same as the one used for the LFP commitment approach (i.e., it is the length, in

latches, from the end of the pipeline to a valid latch).
4.3 Results and Analysis

We used flushing, the commitment approach with the LFP invariant, and the commitment approach
with the GFP invariant to verify the 42 pipelined machine models described in Section 4.1. For
all experimental results presented in this chapter, we used the UCLID decision procedure (version
1.0) coupled with the Siege SAT solver [87] (variant 4), using a 3.06 GHz Intel Xeon, with an L2

cache size of 512 KB. The results should be interpreted taking into consideration the following

51

two factors. First, the Siege SAT solver uses a random number generator and large variations in
the running times are possible, €.¢., in previous work we noticed that the standard deviation of the
Siege running times can be significant [57]. Second, the machines we used for the experiments are
part of a public cluster. While we tried to use idle machines, the running times we obtained could
have been slightly influenced by other jobs running on the machines.

Table 3 shows the verification times and related statistics for the various pipelined machine
models. The names in the “Processor” column start with a number indicating the number of stages
followed optionally by the letters “I”, “D”, “W”, “B”, and “N” indicating the presence of an instruc-
tion cache, data cache, write buffer, branch prediction abstraction scheme 1, and branch prediction
abstraction scheme 2, respectively. Branch prediction abstraction schemes 1 and 2 refer to two dif-
ferent ways of abstracting branch predictors. For all the three approaches we report the time taken
by both UCLID and Siege to complete the refinement proof. For the commitment approach based
on the LFP invariant, we also report the time taken by both UCLID and Siege for the invariant proof
and the total time for both the refinement proof and the invariant proof. A “Fail” entry indicates that
Siege failed on the problem (by immediately reporting that the problem is too complex and quiting).

Figure 18 shows the running times for the refinement proof and the invariant proof for the LFP
approach and the refinement proof for the GFP approach, as the complexity of the pipelined machine
models increases. An interesting observation is that more than 98% of the total proof time for the
LFP approach is spent in proving the invariant. This motivates the use of the Greatest Fixpoint
(GFP) invariant, which is computationally less expensive.

Figures 19, 20, and 21 are scatter plots with log scales for both axes and compare the use of
commitment (LFP) vs. flushing, commitment (GFP) vs. flushing, and commitment (GFP) vs. com-
mitment (LFP), respectively. The comparison is based on running times for verifying 42 pipelined
machine benchmarks. From Figure 19, it can be seen that flushing and commitment based on LFP
have similar performance characteristics on the models that flushing completes. But, flushing fails
to produce a result on 9 of the more complex benchmarks. Commitment (LFP) scales better than
flushing, but the verification times for the more complex benchmarks reach over 250,000 seconds.
Figure 20 shows that the commitment based on GFP does better than flushing on all the 42 bench-

marks.

52

Flushing Commitment (LFP) Commitment (GFP)

Benchmark | — T Rer Tnv. Ref. Total CNF | Ref.
Vars Time (s) | Time (s) | Time (s) | CNF Vars | Time (s) Vars Time (s)
6 28,256 20 23 1 12,334 24 9,498 3
61 48917 22 172 4 36,498 176 16,955 5
61D 114,124 202 414 20 75,405 434 | 29,089 10
6IDW 159,620 458 438 35 80,434 473 | 34,107 16
7 53,165 168 24 1 13,296 25 17,528 13
7IDW 263,022 1,012 723 95 105,313 818 | 55,182 40
8 95,092 630 47 1 14,100 48 | 27,107 43
8IDW 393,719 2,995 1,054 156 131,364 1,210 | 96,710 147
9 144,045 1,394 24 1 15,214 25 | 39,346 100
9IDW 526,651 Fail 1,754 98 161,759 1,852 | 125,585 265
10 198,375 3,841 30 1 17,121 31 55,763 164
101 293,862 4,752 1,325 8 82,795 1,333 | 91,416 384
10ID 580,355 Fail 2,685 126 195,562 2,811 | 159,638 540
10IDW 690,598 Fail 2,885 88 197,258 2,973 | 174,122 536
6B 37,002 14 89 1 21,850 90 13,495 4
6BI 63,824 23 1,423 11 51,114 1,434 | 23,891 8
6BID 137,935 283 2,968 167 100,406 3,135 | 40,371 17
6BIDW 191,101 439 2,851 229 105,639 3,080 | 45,567 25
7B 70,985 216 232 1 26,058 233 | 25,676 22
7BIDW 311,425 1,627 5,537 579 144,441 6,116 | 76,820 70
8B 121,645 733 701 1 31,914 702 | 40,559 150
8BIDW 424,604 5,376 30,438 1,043 177,741 31,481 | 122,550 304
9B 183,371 1,737 686 2 36,757 688 | 59,110 674
9BIDW 628,179 Fail 58,029 876 230,500 58,905 | 173,479 1,145
10B 256,272 4,563 1,555 2 43,517 1,557 | 81,569 1,756
10BI 371,249 4,706 73,710 299 126,785 74,009 | 136,545 1,780
10BID 695,833 Fail | 160,523 926 276,289 | 161,449 | 221,420 4,431
10BIDW 824,633 Fail | 233,928 1,193 278,137 | 235,121 | 237,485 6,039
6N 37,452 19 101 1 37,147 102 12,631 4
6NI 63,563 23 878 8 95,821 886 | 23,229 8
6NID 137,885 282 3,599 51 161,995 3,650 | 40,132 18
6NIDW 190,399 428 3,472 267 163,763 3,739 | 45,259 23
N 70,667 188 240 1 27,500 241 23,936 14
TNIDW 310,434 1,679 11,103 307 162,225 11,410 | 75,496 73
8N 121,499 499 794 1 53,697 795 | 39,165 140
8NIDW 424,124 5,968 34,423 433 259,031 34,856 | 12,1170 270
ON 185,149 2,027 970 2 62,536 972 | 54,631 447
ONIDW 626,884 Fail 75,453 417 350,587 75,870 | 170,918 899
10N 255,780 4,910 2,136 2 73,163 2,138 | 75,676 1,938
10NI 368,888 4,544 51,514 493 224,692 52,007 | 131,642 2,101
10NID 698,555 Fail | 225,636 4,455 414,530 | 230,091 | 217,725 4,229
10NIDW 824,210 Fail | 286,285 3,479 416,378 | 289,764 | 233,852 6,155

Table 3: Verification statistics for the flushing approach, the commitment approach using the Least
Fixpoint invariant, and the commitment approach using the Greatest Fixpoint invariant for various
pipelined machines.

53

1le+06 T
100000 |
Iy
3
= 10000
©
£
e
‘5 1000 |
= -
g .
5 100 ¢
> .
10 .-~
&
1

6B 7B 8B 9B 10B 10BI 10BID 10BIDW
Pipelined machine

Figure 18: The invariant and refinement proof times for the LFP commitment approach and the
refinement proof times for the GFP commitment approach for pipelined machine models with in-
creasing complexity.

1e+06 ——————— 96T
100000 | =
’8\ 10000 E
ﬁ X %(X >X><>< 1
= % XX X X]
£ 1000 X 4
—% X X X % 4
p=}
i X X 1
100 | =
X X XX
10 ¢ Pipelined Machine Models X
) Failed Wlith FIushinq <&

10 100 1000 10000 100000 le+06
Commitment with LFP (secs)

Figure 19: A comparison of the verification times required for our benchmark problems between
commitment using the LFP invariant and flushing.

From Figure 21, it can be seen that commitment based on the GFP invariant does better than
commitment based on the LFP invariant for most of the benchmarks. We note that the time required
for the refinement proofs of the two commitment approaches differs. From Figure 18 and Table 3,
we see that the time for the refinement proofs for the GFP approach is much higher. The difference
can be explained by noting that once the invariants are proved, the sets of states satisfying the
invariants are defined as the set of states reachable from an initial state after some number of steps.
The maximum number of such steps required for the two approaches depends on the number of steps
required for a newly fetched instruction to reach the end of the pipeline. For the LFP approach, the
initial state is a committed state (this is an advantage of using the LFP invariant), meaning that all

the pipeline latches are initially invalid. Therefore, the flow of the first newly fetched instruction

54

16406 ——————— ST —
100000 F E
% 10000 F E
@ P %]
< X
X
£ 1000 | §<X><% -
2 X
T XK 1
100 E
xS
10 ¢ Pipelined Machine Models X 7
) Failled with II:Iushing) &
1 10 100 1000 10000 100000 1e+06

Commitment with GFP (secs)
Figure 20: A comparison of verification times required for our benchmark problems between com-
mitment using the GFP invariant and flushing.

1e+06 T T T T T

- 100000 % E
8 %% %]
L‘}’,/ X
% 10000 §<< E
< %< w X
3 1000 F & % ¥ 4
] XX
g % XX]
IS 100 + 4
: g -
o X XX]

10 4

. IPipelinedlMachinelModeIs) X
1 10 100 1000 10000 100000 1e+06

Commitment with GFP (secs)
Figure 21: A comparison of verification times required for our benchmark problems between com-
mitment using the GFP invariant and commitment using the LFP invariant.

is uninhibited (e.g., it cannot stall) and depends only on the length of the pipeline. For example,
for the 10 stage pipeline models, starting from a committed state, 9 steps of the pipelined machine
are required for a newly fetched instruction to reach the end of the pipeline. In contrast, when
using the GFP approach, the initial state is an arbitrary state and the flow of the first newly fetched
instruction in the pipeline depends on the older instructions in the pipeline. For example, if the
first newly fetched instruction is data dependent on older instructions in the pipeline, it will stall.
For the 10 stage pipeline, starting from an arbitrary state, a maximum of 14 steps of the pipelined
machine is required for a newly fetched instruction to reach the end of the pipeline. As a rule

of thumb, verification times increase exponentially with the number of symbolic simulation steps

required, therefore, the refinement proof times for the GFP approach is much higher than for the

55

3000

2500 %
XK .
2000 §<>< ><>§g :
XXX
1500 ¥ -
1000 -

500 | —

Commitment with LFP (No. of Lines)

0)) UCLID code Isize X
1000 1500 2000 2500 3000
Commitment with GFP (No. of Lines)
Figure 22: A comparison of the size of the UCLID specifications required for our benchmark

problems between commitment using the GFP invariant and commitment using the LFP invariant.

LFP approach. Of course, if we look at the total time required for verification, the GFP approach is
the clear winner because it does not require us to prove an invariant.

One further important observation is worth making and that is that the GFP approach is much
easier to implement than the LFP approach, because (in contrast to the LFP approach) we do not
require an extra invariant proof. Such proofs require that we symbolically simulate a pipelined
machine state in two different ways and check that that results are equal. Figure 22 is a scatter plot
that compares the size of the UCLID specifications for the two commitment based refinement maps
for each of the 42 pipelined machine models. The UCLID specifications consist of the machine
model and the refinement map. As can be seen from the figure, the UCLID specifications that use
the LFP approach are much larger than those that use the GFP approach. Further, once the machine
models are defined, implementing the commitment refinement map based on the GFP approach
required about a couple of hours while the implementation of the LFP approach took more than

twice as long.
4.4 Related Work

We now describe previous work related to the use of commitment refinement maps for verifying
pipelined machines. The use of the commitment approach for relating pipelined machine states
to ISA states was introduced by Manolios [51, 52]. In this work, the ACL2 theorem proving sys-

tem [43, 47] was used to prove the correctness of pipelined machines based on WEB-refinement,

56

where the commitment approach based on the Least Fixpoint (LFP) invariant was used. Our ap-
proach extends these methods to check the correctness of pipelined machines in a more automatic
and efficient manner.

Ray and Hunt [82] also use WEB-refinement to verify pipelined machines. Their approach is
based on relating pipelined machine states to ISA states by computing witness states. If MA is a
pipelined machine state in which il is poised to complete, then there must have been a state (called
the witness state), where il was poised to enter. The refinement map for a given pipelined machine
state MA is computed by flushing its witness state. The resulting refinement map is equivalent to
commitment. They use the ACL2 theorem proving system to discharge the refinement proofs. Our
commitment-based methods for verifying pipelined machines are more automatic and efficient.

Another approach is based on the concept of synchronization-at-retirement [5]. If instruction il
in a given pipelined machine state MA is poised to complete, it is used to compare single steps of the
implementation and the specification. The abstraction function, otherwise known as the refinement
map, used to achieve this is equivalent to the commitment refinement map. Their approach uses a
variation of the Burch and Dill notion of correctness, which does not account for liveness. We use

commitment refinement maps to prove WEB-refinement that accounts for liveness.
4.5 Conclusion

A new method for automatically verifying pipelined machines using commitment-based refinement
maps is introduced and is based a greatest fixed-point characterization of the commitment invari-
ant. We defined 210 benchmark verification problems and 42 processor models, which we used to
compare our method with previous approaches. Our results clearly show that our new method is
easier to define and automate, and gives rise to more than a 35-fold reduction in verification times
over the standard approach to verifying commitment-based refinement maps. We noticed a similar
improvement over flushing, although the standard flushing approach was not able to complete the
verification of 9 of the 42 flushing benchmarks. We also showed that further improvements in veri-
fication times are possible by using the recently introduced notion of intermediate refinement maps.

The verification engines we used are the UCLID decision procedure and the Siege SAT solver.

57

CHAPTER YV

COLLAPSED FLUSHING

Refinement maps are an important parameter of the refinement framework. As we have shown in
Chapter 4, the computational complexity of the refinement map used can have a drastic impact on
verification times for checking the correctness of pipelined machines. In this chapter, we intro-
duce another efficient method for automating refinement proofs for term-level pipelined machine
models. The method is based on a variation of the flushing refinement map and is called collapsed
flushing. Our extensive empirical evaluation shows that collapsed flushing leads to drastically faster
verification times than is possible with standard flushing. We also introduce new rank function for
refinement proofs based on flushing that is easier to define and allows us to implement collapsed
flushing efficiently.

Automation of refinement proofs based on collapsed flushing is achieved by providing a recipe
for defining refinement maps and rank functions. It is enough to prove the core theorem described
in Section 3.1 to show that a pipelined machine refines its ISA. The core theorem formulated us-
ing a refinement map based on collapsed flushing is expressible in the logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions (CLU), which is a decidable logic [20]. CLU
formulas can be checked using the UCLID decision procedure [49]. Therefore, we use the UCLID
decision procedure to automatically check the core theorem for term-level pipelined machines for-
mulated using collapsed flushing.

The rest of the chapter is organized as follows. For a description of the theory of refinement
based on WEBS, the reader is referred to Section 2.2 of this dissertation. The standard and collapsed
flushing refinement maps are described in Section 5.1. In Section 5.2, empirical evaluations are used
to compare collapsed flushing with standard flushing and commitment. Related work is discussed

in Section 5.3, and we conclude in Section 5.4.

58

»r—
@
=
[¢]
o

P

¥
[]
o flush i |
n steps ! '
° P } v
I Y []
|
X ° flush °
| ° flush n—1 steps
Y n steps °
AR [} !
v\ Wf) : v‘—
3 v/ \’)\\/ " flush
Y
v,

\

proj /
b ‘s
proj Proj\U

(a) Standard Flushing (b) Collapsed flushing
— MA-Step States required to define
,,,,,, > Flush refinement theorem
"""""" > ISA-Step ,~~~ Intermediate States not
——— Projection ') required to define

. ~-" refinement theorem
function

@: Compares states A

and B for equality

Figure 23: Implementation of standard and collapsed flushing refinement maps.

5.1 Collapsed Flushing

In this section, we describe collapsed flushing, an implementation of the flushing refinement map
that leads to faster verification times over previous methods. The use of flushing as a refinement
map was proposed by Burch and Dill [22]. As mentioned previously, flushing can be thought of as
the dual of commitment, as partially executed instructions in the pipeline are completed (without
fetching any new instructions) instead of being invalidated.

In Figure 23(a) we represent the refinement theorem based on standard flushing as a graph we
call the refinement graph. The nodes of the graph are variables whose names match the ones given

in Section 3.1; the edges correspond to symbolic simulation steps, flushing steps, or projections.

59

Pipelined machine state w is flushed for n steps, resulting in flushed state W, where n is the number
of steps required to invalidate all of W’s pipeline latches. The ISA state returned by the flushing
refinement map is S, the state obtained by projecting out the ISA components of Ws. State U is
obtained by stepping state S, and state V is obtained by stepping W. Flushing state v gives us state Vs,
and projecting out the ISA components gives us state r(v). The safety component of the refinement
theorem compares r(v) with s and u. The liveness component depends on the ranks of w and V.
Thus, the refinement theorem depends only on states W, V, S, U, and r(Vv), nodes depicted with a solid
circle in Figure 23.

The verification times for the flushing method depend on two factors. The first factor is number
of symbolic simulation steps required to reach u from w. We call this factor the flushing length.
If n is the number of symbolic simulation steps required to flush the pipelined machine, then the
flushing length is N+ 1, as can be seen from the refinement graph in Figure 23(a). The number of
steps required to flush the pipelined machine depends on the pipelined machine under consideration,
and it is an inherent parameter of the flushing refinement map. Therefore, there is no way to reduce
the flushing length without abandoning the use of the flushing refinement map.

The second factor is the state distance, the number of symbolic simulation steps separating U
from r(v). This is approximately the length of the shortest path between u and r(V) in the refinement
graph, when viewed as an undirected graph. As can be seen from Figure 23(a), the state distance
for standard flushing is 2n+ 2. The intuition as to why this metric is related to verification times
is that the statements U = r(v) and s = r(v) are quite complex, each requiring about 2n symbolic
simulation steps to express.

We now describe collapsed flushing, depicted in Figure 23(b). The insight is that we can reduce
the state distance from 2n+ 2 to 2. Consider the state Ws, obtained by stepping W once, to obtain
v, and then flushing v for n — 1 steps. If no new instruction is fetched during the initial step (as
is the case during a stall or a branch mispredict) then Ws is exactly ws. Otherwise, we can obtain
w; from W; by using history variables to factor out any effect that the instruction fetched from the
transition to v has on the programmer visible components. That is, Ws can be obtained by slightly
modifying the process of computing vs. This allows us to collapse the two flushing computations

arising in the implementation of the standard flushing refinement map into one, which is why we

60

name this method collapsed flushing. Figure 23(b) shows that the state distance is 2, improving
upon the 2n + 2 value for standard flushing. We validate these intuitions in Section 5.2, where we
show empirically that collapsed flushing leads to much faster verification times and scales better
than standard flushing.

History variables are used with collapsed flushing as follows. If a new instruction is fetched
during the transition from W to Vv, a tag is attached to it that follows it through the pipeline. In
addition, every programmer visible component in the pipelined machine has a history variable asso-
ciated with it. While non-history variables are updated normally, history variables are updated only
by instructions that are not tagged. Thus, the history variables in W; contain the values we would
have obtained had the step from W to v been a flush step, which allows us to determine Ws, which in
turn is used to obtain state S.

In the standard flushing method, the rank of a pipelined machine state is defined as the number of
steps required to fetch an instruction that eventually completes. For the collapsed flushing method,
we use an alternate rank function that can be easily implemented and that leads to faster verification
times. The new rank function is defined as follows. Let n be the maximum number of steps required
to flush any pipelined machine state. The rank of a pipelined machine state is the number of steps
required to flush the state if that number is less than or equal to n. Otherwise, the rank is n. To
compute this for v, we simply determine how many flushing steps are needed before all pipelined
latches are invalid. Since we step W before flushing it (see Figure 23(b)), the rank of w is the number
of steps required before all pipelined latches are either invalid or contain a tagged instruction (only
the step from W to Vv can lead to a tagged instruction).

In Figures 24 and 25, we show how the new flushing rank of two states of 3PM (a simple
three stage pipelined machine), w and v are computed. A description of 3PM can be found in
Section 2.1.2. For the state w, since the instruction in the first pipeline latch i2 depends on il, i2
is stalled for one cycle before it can make progress. Therefore the rank of state w is three. State v
is flushed in two steps and therefore the rank of v is two. Note that v is actually the state obtained
by stepping W. When W is stepped, it does not make any forward progress with respect to the ISA,

therefore then rank decreases from three to two.

61

rank(w) = no. of stepsrequired to flushw = 3

Figure 24: Figure shows the computation of the new flushing rank function for a state of 3PM, w.
In this state, the instruction in the first pipelined latch (i2) depends on the instruction in the second
pipelined latch (il).

62

X
vl

i2
V2

X

rank(v) = no. of stepsrequired to flushv = 2

Figure 25: Figure shows the computation of the new flushing rank function for a state of 3PM, v.
Note that state V is obtained by stepping state W shown in Figure 24

5.2 Experimental Results

In this section, we present our empirical evaluation of collapsed flushing, which is based on an
extensive set of experiments. To summarize, we found that using collapsed flushing gives an order-
of-magnitude improvement in verification time when compared with standard flushing. We also
show that the CNF files generated when using collapsed flushing are much smaller than when using
standard flushing. Both observations validate our analysis of collapsed flushing in Section 5.1.

For the experiments, we used the pipelined machine models described in Section 4.1. These
models contain branch prediction mechanisms, instruction caches, data caches, write buffers, and
instruction queues. They were formally verified using the UCLID decision procedure (Version 1.0)
along with the Siege SAT Solver [87] (variant 4), using a 3.06 GHz Intel Xeon with an L2 cache
size of 512 KB.

63

106 T T T T
Both approaches complete X
Standard flushing fails <
10° | -
on
58
sZ 107 X B
22 HK
£5 X
=3 10°F Ex 1
S5 %X
83
=% 10% | .
o8
>0
o |
1 1 1 1 1

10° 10t 10> 10° 10* 10° 10°
Verification times using collapsed flushing (secs)

Figure 26: A comparison of standard and collapsed flushing based on verification times.

900K T T T
Collapsed flushing —=—
800K - Standard flushing -->--- e
2 600K |- X -
o
S
=
> L X]
i 400K
- ;/B/B/E/E
OK[1 1 1
6 7 8 9 10

Pipelined machine models

Figure 27: A comparison of standard and collapsed flushing based on the number of CNF variables
generated.

Figure 26 compares collapsed flushing with standard flushing using a benchmark suite consist-
ing of 42 pipelined machine models, where the number of stages ranges from 6 to 10. Notice that
both the X and y axes use a logarithmic scale. When using standard flushing, Siege fails on 9 of the
benchmarks by reporting that the problem is too complex to handle and immediately quiting; this is
denoted in the figure as “Standard flushing fails.” However, when collapsed flushing is used, Siege
can handle all of the benchmark problems.

Our analysis in Section 5.1 shows that the complexity of pipelined machine verification prob-
lems is greatly reduced when standard flushing is replaced by collapsed flushing, because of the

differences in state distance. As a metric of the complexity of these problems, we use the number of

64

T
X

7 2K
28 10°F X
@ X X
i X %
0O X
Ec 2 x X
£ 10°r % X —
b
%0 x X
SE X
BE .l < i
>¢g 10

o

o

X
Both a|pproachesI completeI X

10° 10 10? 10° 10
Verification times using collapsed flushing (secs)

Figure 28: A comparison of verification times for collapsed flushing and GFP-based commitment.

CNF variables generated. In Figure 27, we plot the number of CNF variables generated when ver-
ifying pipelined machines of varying length for both standard and collapsed flushing. Recall, that
for the machine models we consider, the number of flushing steps required to define either standard
or collapsed flushing is the same and is directly proportional to the length of the pipeline. From the
figure, it can be seen that as the length of the pipeline increases, the CNF variables generated for
standard flushing rapidly increase, whereas the increase for collapsed flushing is more modest. The
reason for this, as explained in Section 5.1, is that the state distance for standard flushing depends
linearly on the number of steps required to flush the machine, but remains a constant for collapsed
flushing. Therefore, collapsed flushing scales much better than standard flushing as the length of
the pipeline increases, and it can even handle problems that standard flushing cannot.

In Figure 28, we compare collapsed flushing with Greatest Fixpoint (GFP) invariant based com-
mitment on the same 42 pipelined machine models used in Figure 26. As can be seen from the

scatter plot, the two approaches are comparable.
5.3 Related Work

We briefly review previous work on pipelined machine verification that is related to flushing refine-
ment maps. Burch and Dill [22] showed how to compute flushing refinement maps automatically.
Several variants of flushing have been previously considered. One example is controlled flushing, an
implementation of the flushing refinement map that uses a fixed stalling and flushing pattern, leading

to simpler formulas and faster verification times [21]. A second example is incremental flushing,

65

which uses an inductive argument, making it difficult to apply, e.g., the authors conclude that the
effort required to deductively justify the proof decompositions offsets the benefits obtained [40].

Also note that neither of these approaches deals with liveness.
5.4 Conclusion

We have introduced collapsed flushing, a new refinement map based on flushing that results in about
an order-of-magnitude improvement in verification times over standard flushing. We also presented
a new, simpler, and easier-to-verify rank function, which is used for handling liveness. The utility of
collapsed flushing was empirically validated with an extensive set of experiments on a benchmark

suite containing a large number of pipelined machines.

66

CHAPTER VI

INTERMEDIATE REFINEMENT MAPS

In this chapter, we describe a new class of refinement maps that can provide several orders of mag-
nitude improvements in verification times over the standard flushing-based refinement maps. Our
refinement maps are based on flushing and commitment, two well-known refinement maps. The
idea with flushing is that partially completed instructions are made to complete without fetching
any new instructions. The idea with commitment is that partially completed instructions are invali-
dated and the programmer visible components are rolled back to correspond with the last committed
instruction. Our refinement maps use the commitment approach on the latches at the front of the
pipeline and the flushing approach on the latches at the end of the pipeline. This essentially de-
composes the verification problem into two smaller problems, each half as complex as the original
problem. However, since verification times grow exponentially in the size of the problem, this leads
to drastic verification time improvements.

We also show how to combine collapsed flushing (an optimization of the flushing refinement
map described in Chapter 5) with GFP based commitment (an optimization of the commitment
refinement map described in Chapter 4). We show that the resulting refinement map can be used
to efficiently reason about complex machine models with deep pipelines. This is an important
problem, as recent state-of-the-art microprocessor designs have very deep pipelines, €.¢., Intel’s
hyper-pipelined technology appearing in the Pentium 4 processor has a pipeline with 31 stages [35].

The chapter is organized as follows. A description of the notion of correctness that we use
for pipelined machines that is based on Well Founded Equivalence Bisimulation (WEB) refinement
can be found in Chapter 2, in Section 2.2. In Section 6.1, we present experimental data measur-
ing verification time and related statistics for the standard refinement maps. In Section 6.2, we
propose our new intermediate refinement maps and analyze their performance experimentally. In
Section 6.4, we show how to combine collapsed flushing with GFP based commitment using in-

termediate refinement maps. In Section 6.3, we show how to combine standard flushing with GFP

67

Verification Times (sec)

Processor | CNF Vars GCLID ‘ Total
Co6 12,328 2 36
Col 31,347 5 61
Co6ID 52,077 9 105
Co6IDW 75,494 13 164
C7 13,290 2 31
C71DW 101,065 22 264
C8 14,094 2 32
C8IDW 127,637 24 407
C9 15,208 3 24
C9IDW 159,441 31 582
C10 17,115 3 33
C10I 76,418 21 1,826
C10ID 128,102 26 2,038
C10IDW 195,159 45 2,388
F6 40,083 6 19
Fol 66,843 11 25
F6ID 110,181 20 72
F6IDW 120,343 23 97
F7 53,441 9 137
F7IDW 218,572 79 400
F8 95,456 15 597
F8IDW 316,217 115 1,812
F9 143,954 24 2,163
FOIDW 452,124 181 7,711
F10 198,222 34 5,481
F10I 291,492 58 6,689
F10ID 572,063 151 Fail
F10IDW 605,734 170 Fail

Table 4: Verification statistics for various pipelined machine models.

based commitment using intermediate refinement maps. In Section 6.4, we show how to combine
collapsed flushing with GFP based commitment using intermediate refinement maps. Conclusions
appear in Section 6.5. Note that each of the sections also provide results and conclusions about the

methods described in that section.
6.1 Refinement Maps

Burch and Dill proposed the use of flushing to automatically define the refinement map used to
establish the correctness of pipelined machines [22]. The idea with flushing is that partially exe-

cuted instructions in the pipeline latches are made to complete and update the programmer visible

68

components, without fetching any new instructions. The programmer visible components for the
pipelined machine models we consider include the program counter, the register file and the data
memory. Once the pipeline is flushed, all the pipeline latches are invalid and the resulting state is
an instruction set architecture (ISA) state. The Burch and Dill approach did not consider liveness,
but in our context a rank function is needed and we define it as the number of steps required to fetch
and complete a new instruction. Note that the presence of branch prediction makes this a non-trivial
function.

The commitment approach can be thought of as the dual of flushing, as partially executed in-
structions are invalidated instead of being flushed, and the programmer visible components are
rolled back to correspond to the last committed instruction. We use history variables [6] to simplify
the definition of this refinement map. Also, we need an inductive invariant that we call the Least
Fixpoint (LFP) invariant, which states that the contents of the latches have to be consistent with
memory. The rank function for the commitment approach is defined as the number of steps required
to commit an instruction. This is a trivial function, as it is essentially the number of consecutive
invalid latches starting at the end of the pipeline.

For the experiments, we used the pipelined machine models described in Section 4.1. We used
both the flushing and the commitment approach to verify these pipelined machines models. For all
experimental results presented in this paper, we used the UCLID decision procedure (version 1.0)
coupled with the siege SAT solver [87] (variant 4), using a 3.06 GHz Intel Xeon, with an L2 cache
size of 512 KB.

Table 4 shows the verification times and related statistics for the various processor models.
The names in the “Processor” column start with a “C” or “F”, indicating whether commitment or
flushing is used. Next, a number indicating the number of stages is given. Finally and optionally,
the letters “I”, “D”, and “W” indicate the presence of an instruction cache, data cache, and write
buffer, respectively. The Siege running times can be obtained by subtracting the total time from the
UCLID time. A “Fail” entry indicates that Siege failed on the problem (by immediately reporting
that the problem is too complex and quiting).

Figure 29 shows how verification times vary as we first increase the length of the pipeline and

then add an instruction cache, a data cache, and a write buffer. First, note that there are important

69

10000 ¢ ; T ; . .
1000

100 ¢

Verification Time [sec]

10 E

Flushing —=—]
Commitment TE

6 7 8 9 10 10l 10ID 10IDW
Pipelined machine

Figure 29: Verification times obtained by first increasing the length of the pipeline and then adding
an instruction cache, a data cache, and a write buffer.

differences between the flushing and commitment approaches. As a function of the length of the
pipeline, verification times based on flushing grow exponentially, whereas verification times based
on commitment are much more stable, €.9., for machine 10, the commitment refinement map leads
to verification times that are about 166 times faster than verification times using flushing.

A key observation from the results in Table 4 and Figure 29 is the general rule of thumb that
verification times grow exponentially as the number of stages in the pipeline (its length) increases
or as the number of state variables per stage increases (the pipeline width), as happens when we
add the instruction and data caches and write buffer. These results are not so surprising when we
consider that the number of symbolic simulation steps required by the flushing approach depends on
the length of the pipeline, and the invariant required for the commitment approach also depends on
the complexity (width) of the pipeline. These observations give rise to the idea of an intermediate
refinement map that uses flushing to deal with the width and commitment to deal with the depth.

We explore this idea in more detail in the next section.
6.2 Intermediate Refinement Maps

In this section, we propose the idea of intermediate refinement maps that partially flush and partially
commit. Flushing a stage of the pipeline implies that we also flush later stages; similarly, committing
a stage of a pipeline implies that we commit previous stages. Therefore, the intermediate refinement
maps are obtained by selecting a stage of the pipeline, we call the reference point, and committing

all stages up to and including it and flushing all later stages. Since the intermediate refinement maps

70

are just based on commitment and flushing, they are quite easy to define.

wl

S

Figure 30: The figure depicts the computation of an IR for state W of the three stage pipelined
machine, 3PM.

Figure 30 shows the computation of an intermediate refinement map (IR) for a simple three
stage pipelined machine (3PM). A detailed description of this machine is provided in Section 2.1.2.
The IR for this machine is defined by choosing the reference point between the two pipeline latches.
Therefore, the first pipeline latch is committed and the second pipeline latch is flushed. Note that
if we choose the reference point to be before the first pipeline latch, then the resulting IR is in
fact flushing. Similarly, if we choose the reference point to be after the second pipeline latch, the
resulting IR is commitment.

The commit operation in Figure 30 refers to committing all the pipeline latches before the refer-

ence point, which is the first pipeline latch only for 3PM. The flush operation in the figure refers to

71

Verification Times (sec)
Refinement Map | CNF Vars GCLID | Total
IRO 729,285 153 Fail
IR1 507,790 94 34,913
IR2 382,970 62 11,631
IR3 276,001 44 5,553
IR4 183,236 28 3,626
IRS 100,746 14 7,451
IR9 253,461 34 234,440

Table 5: Verification statistics for a 10-stage pipeline machine with branch prediction, an instruction
cache, a data cache, and a write buffer using various refinement maps.

flushing all the pipeline latches after the reference point, which is only the second pipeline latch for
3PM. As can be seen from the figure, instruction i2 in the first pipeline latch is pulled back. Then,
instruction i1 is flushed and the programmer visible components are projected out from the resulting
state giving the ISA state S, corresponding to the 3PM state W.

We now define a set of intermediate refinement maps for I0NIDW, a 10-stage machine that has
an instruction queue, an instruction cache, a data cache, a write buffer, and a branch predictor that
makes arbitrary choices. Note that IONIDW is more complex than 10IDW (see Table 4), which only
has a simple branch predictor that always predicts taken. The refinement maps are IRO, ..., IR9,
where IRi commits the first i latches of the pipeline and flushes the remaining latches. For example,
IR0, IRS5, and IR9 correspond to pure flushing, committing all latches before the decode stage, and
pure commitment, respectively.

Since we are proving that the pipelined machines satisfy the same safety and liveness properties
as their corresponding instruction set architecture models, we also have to define rank functions.
For refinement map IRi we define the rank function ranki to return a pair of natural numbers: the
first is the commitment component, computed by ranki., and the second is the flushing component,
computed by rankis. These two functions are essentially the standard rank functions used for
flushing and commitment [57] (described in Chapter 3): ranki. returns the number of steps required
for a new instruction to reach latch i+ 1, the first flushed latch, while rankis returns the number
of steps required to fetch an instruction that eventually completes for a machine that consists of
the latches after latch i, i.e., the flushed latches. The less-than ordering on ranki is defined as the

lexicographic ordering with priority given to rankis.

72

i2

rank(w)= <1,1>

Figure 31: The figure depicts the computation of rank corresponding IR for state w of the three
stage pipelined machine, 3PM.

Figure 31 shows the computation of rank corresponding to the intermediate refinement map for
a state of the three stage pipelined machine (3PM). We assume that instruction i2 does not depend
on instruction il, and therefore, stepping the pipelined machine in state W results in instruction i2
moving to the flush latch, which is the second pipeline latch in this example. Thus, the value of

rankis is one as it required one step to fetch an instruction that eventually completes. Also, the

value of ranki. is one as it required only one step for a new instruction to reach latch i+ 1.

1le+06 T T T T T T T T
[
) \ "
£, 100000 | o o
) \ s E
- .
S P
g -
5 .
= 10000 E
(]
>
Actual —=—
1000))))) Extrf\polat?d ha

IRO IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR9
Pipelined machine

Figure 32: Verification times for a 10-stage processor model with an instruction cache, a data cache,
and a write buffer using various refinement maps.

73

Table 5 and Figure 32 show the verification times we obtain as we apply the various interme-
diate refinement maps to 10NIDW. Note that the Y-axis in Figure 32 uses a logarithmic scale. The
refinement map for IR9 is the standard commitment map and leads to a verification time of 234,440
seconds. The refinement map for IRO is the standard flushing map and Siege is not able to handle
the SAT instance generated by UCLID for IRO. Thus, in Figure 32, the verification time for IRO is
extrapolated, using Table 4 as a guide, and is shown as a dotted line. As i increases from 0 to 4, the
verification times for IRi decrease at an exponential rate, with IR4 being about 64 times faster than
IRO. After this point, verification times increase, as the time for IR5 shows.

There are several factors that account for the verification time improvements. First, by using the
commitment approach for the latches up to the instruction queue, we effectively reduce the depth
of the pipeline, thereby avoiding the exponential penalty incurred by flushing on deep pipelines,
as witnessed in Figures 29 and 32. In addition, by using flushing for the wide, later part of the
pipeline, the LFP invariant required by the commitment approach is greatly simplified in terms
of the complexity of the resulting formulas; the conceptual complexity is about the same. Since
about 90% of the verification effort required by the commitment approach is for proving the LFP
invariant, the savings are substantial. Second, the use of intermediate refinement maps essentially
gives rise to two verification problems: one for the part of the machine up to the selected stage and
the other for the rest of the machine. By selecting a stage in the middle, the machines are about
half as complex as the initial pipelined machine, but since verification times are exponential in the
size of the machines, this leads to exponential improvements in verification times. This explains the
U-shaped graph in Figure 32, which takes its minimal value at IR4 and then increases at IRS.

From the results we obtained in this and the previous section, we now give some simple guide-
lines for choosing refinement maps optimized for reduced verification times. From the above con-
siderations, this amounts to deciding up to which stage to use commitment. We suggest choosing
the stage closest to the middle of the pipeline for which the complexity of the formula correspond-
ing to the LFP invariant is simple. The reason we suggest a latch somewhere in the middle is that
this effectively leads to two verification problems, one of which is based on flushing and one on
commitment, but as Table 4 and Figure 29 show, verification times are exponential in the length of

the pipeline; thus, such a decomposition leads to drastic improvements in verification times. The

74

reason why we suggest that thought be given to the complexity of the formula for the LFP invariant
is that the verification time for the commitment approach is dominated by cost of establishing this
invariant.

Finally, we make two further observations. First, most pipelines have a structure similar to the
ones we use in this paper; thus, we expect our techniques to be widely applicable. Second, we have
found that our approach simplifies the verification effort because if the resulting SAT instance is
satisfiable, it is easy to determine if the problem lies with the commitment part of the proof or with
the flushing part of the proof. This allows one to more readily identify errors than if a pure flushing
or pure commitment approach is used, as the counterexamples will involve the whole pipeline, and

will therefore contain many irrelevant details.
6.3 Using GFP with Intermediate Refinement Maps

The verification approach based on the use of commitment refinement maps requires the use of an
invariant that characterizes the set of reachable states. We developed an alternate invariant, called
the Greatest Fixpoint (GFP) invariant, the use of which leads to drastic improvements in verification
times [59] (see Chapter 4 for details). In this section, we describe the combination of the GFP based
commitment approach with standard flushing using intermediate refinement maps (IRs).

The approach is very similar to the previous approach for defining intermediate refinement
maps, the main difference being that the GFP invariant is used to characterize the set of reach-
able states. This is achieved by stepping the pipelined machine for i steps, where i is the number of
steps required to replace the instructions in the pipeline latches being committed with new instruc-
tions from memory. The rank function for the intermediate refinement map defined using the GFP
invariant is the same as the rank function for the intermediate refinement map defined using the LFP
invariant.

For any given pipelined machine, many intermediate refinement maps can be defined by select-
ing different stages in the pipeline as the reference point. The fastest verification times are obtained
when selecting a reference point that is close to the middle of the pipeline. We implemented the in-
termediate refinement map IR4 that commits the first 4 pipeline latches and flushes all other latches,

for the most complex processor model with branch prediction scheme 1 (10BIDW) using the GFP

75

based commitment approach.

The experiments were conducted using the same experimental set up (tools and machines) de-
scribed in Section 6.2. We found that the verification time for 10BIDW using IR4 defined with the
commitment approach based on LFP invariant and the GFP invariant to be 3,500 seconds and 550
seconds, respectively. Note that with using only the commitment approach (LFP), the verification
time for 10BIDW is 235,121 seconds. Thus, the GFP invariant approach can be fruitfully combined
with intermediate refinement maps to get verification times that are about 6 times faster than the

previous approach, for the most complex processor model (10BIDW).
6.4 Using Collapsed Flushing and GFP with Intermediate Refinement Maps

We describe how to define the intermediate refinement map (IR) obtained by combining GFP-based
commitment with collapsed flushing [41], a variant of the flushing refinement map that leads to
drastic improvements in verification times over standard flushing. See Chapter 5 for a detailed
description of collapsed flushing. In the following discussion, we refer to the pipeline latches that
are committed and flushed as the commit latches and the flush latches, respectively. We require an
invariant for the commit latches and it is based on the GFP invariant: starting from an arbitrary state,
we step the machine for the number of steps required to flush the commit latches. The flush latches
are also stepped, as the commit latches depend on the flush latches, but once this process is finished,
we assign arbitrary values to the flush latches. This defines the IR invariant.

Now, let w be an arbitrary state satisfying the IR invariant. We proceed by essentially applying
the collapsed flushing refinement map. The states W and vs are computed by applying N — 1 and
n flushing steps to the flush latches, where, n is the number of steps required to flush the flush
latches. During the flushing sequence, the commit latches are modified only when there is a branch
mispredict. Committing the commit latches and applying the corresponding projection functions to
Ws and Vs results in ISA states s and r(V), respectively. Just as before, U is obtained by stepping the
ISA machine from state S.

A major benefit of collapsed flushing can be seen when it is combined with commitment (GFP)
to define intermediate refinement maps (IRs) as shown in Figure 33, where we compare IRs defined

using commitment (GFP) and collapsed flushing (CIRs) with IRs defined using commitment (GFP)

76

Verification time (sec)

CIRS —F—
SIR5 -
E><trz|:1polatedI SIR5 ~|—><~—
10 11 12 13 14 15 16

Pipelined machine models

Figure 33: A comparison of verification times for CIRS and SIRS5, defined using collapsed and
standard flushing, respectively.

and standard flushing (SIRs). IRs are effective for handling problems that are beyond the scope of
pure flushing or commitment refinement maps, such as deep pipelines. For the experiments, we
use IRS, which is the IR obtained by committing the first 5 pipeline latches and flushing all other
pipeline latches. The X-axis shows pipelined machine models obtained by increasing the number
of stages from 10 to 16 for a machine containing features such as a branch prediction mechanism,
instruction and data caches, and write buffers. Notice that the y-axis is a logarithmic scale. From the
figure, it can be seen that SIRS is not able to handle machine models with pipelines that have more
than 13 stages. For these models, we have extrapolated the verification times using the average slope
of the SIR5 models that could be verified. CIRS scales better as we increase the number of pipeline
stages and is able to handle pipelines with 16 stages (and beyond). We note that some modern
microprocessors have very deep pipelines, €.9., Intel’s Pentium 4 processor, with hyper-pipelined

technology, has 31 stages [35].
6.5 Conclusion

We have introduced a new class of refinement maps for pipelined machine verification, and using
verification tools UCLID and Siege have shown that one can attain several orders of magnitude im-
provements in verification times over the standard flushing-based refinement maps, even enabling
the verification of machines that are too complex to otherwise automatically verify. The refinement

maps allow us to use the commitment approach on the latches at the front of the pipeline and the

77

flushing approach on the latches at the end of the pipeline. The result is that we are left with two ver-
ification problems, but on machines that are half as complex as the initial pipelined machine; since
verification times are exponential in the size of the machines, this leads to drastic improvements in
verification times. We give a simple recipe for defining such refinement maps and for defining the

rank functions needed to establish liveness.

78

CHAPTER VII

COMPOSITIONAL REASONING

We present a complete compositional framework [58] based on Well-founded Equivalence Bisim-
ulation (WEB) refinement that can be used to reason about complex pipelined machines that are
not easily handled using efficient refinement maps. Optimized and intermediate refinement maps
provide drastic improvements in verification times over previous approaches, but do not scale well
with increase in the complexity of the designs, and therefore, cannot be used to directly verify in-
dustrial designs. The compositional framework we introduce takes us a step closer, as it allows us
to substantially extend the complexity of the pipelined machine designs that can be verified.

Using our framework we can verify in under 20 seconds a complex pipelined machine defined at
the term-level that UCLID cannot directly handle with the flushing refinement map. This machine is
quite complicated and to make its definition a manageable process, we defined a series of machines
starting with the base processor model M6, a 6 stage pipelined machine, which we extended first
with a pipelined fetch stage, then with an instruction queue holding up to 3 instructions, then with
a direct mapped instruction cache, then a direct mapped data cache, and, finally, a write buffer, to
obtain M10IDW. Unfortunately, proving that M10IDW refines ISA, the instruction set architecture, is
beyond the capabilities of UCLID. Our compositional framework allows us to verify the machine
the same way we defined it, one feature at a time, which leads to a manageable process. Each stage
of the proof essentially entails establishing a WEB-refinement proof, which means that, relative to
a refinement map and up to stuttering, the two machines have exactly the same infinite behaviors.

We introduce compositional proof rules that guarantee that this sequence of refinement proofs
implies that the final pipelined machine has the same behaviors as the instruction set architecture.
In terms of temporal logic, we have that the machines satisfy exactly the same CTL" \ X properties
expressible at the instruction set architecture level. Our overall proof strategy is highly-automated
as the proof obligations required by our compositional framework can be automatically handled

using SAT-based decision procedures. For the term-level verification, we use the UCLID decision

79

procedure [20, 49], and the Siege [87] SAT solver to check the CNF problems generated by UCLID.

A major advantage, perhaps even more important than the increased performance, of our com-
positional framework over monolithic approaches is that counterexamples are shorter and clearer,
which greatly simplifies debugging. Suppose that modifications are made to the design and in the
process a bug is introduced. Compositional verification allows us to focus in on where the bug first
appears and the counterexample generated is with respect to a specific refinement stage, i.e., the
counterexample is at exactly the right level of abstraction required to easily understand and correct
the problem. For example, if the bug does not involve the cache, then neither does the counterex-
ample, whereas in a monolithic approach, there is no way to know if the cache was involved; thus,
as the verification engineer is trying to understand the counterexample, she is forced to manually
rule out the possibility that the cache contributed to the error. By using our compositional approach,
the engineer can bridge the abstraction gap on her own terms and at a rate that makes sense given
available tools and the development process.

Why hasn’t something like this been done before? Well, consider carrying out this proof using
the standard Burch and Dill notion of correctness. The problem is that, while it is clear how to
prove that a pipelined machine refines an instruction set architecture, how does one prove that one
pipelined machine refines another? If we use flushing, we have to flush both machines, but then it
would be easier to just verify against the instruction set architecture directly. Our main contribution
is to show how to do this using state-of-the-art tools for both safety and liveness (the Burch and Dill
approach only provides safety [51]), and with the use of any refinement map, not just flushing.

Can we really obtain the benefits of composition without paying a price? Actually, we often have
to provide invariants. But, invariants are needed to verify complex designs anyway. For example,
to verify a write-through cache, we need the invariant that the valid cache entries are consistent
with memory. The invariants we used were straight-forward, requiring a few hours of thought; in
contrast, defining the refinement maps can easily take days. If one uses a hierarchical, refinement-
based approach to design, then the invariants should be known, as they allow for the separation of
concerns that enables different engineers to implement different parts of the system independently.
Therefore, composition can fit nicely into the design cycle, which is also compositional. Finally,

there seems to be industrial interest in taking a fresh look at refinement-based methodologies.

80

The rest of this chapter is organized as follows. In Section 7.1, we give an overview of the com-
positional theory of refinement. Section 7.2, we describe the modeling and monolithic verification
of the processor models. In Section 7.3, we describe the compositional techniques we developed
for pipelined machine verification. Related work and Conclusions appear in Sections 7.4 and 7.5,

respectively
7.1 Refinement

An overview of the theory of refinement used to show that pipelined machines behave like their
instruction set architecture is given in Section 2.2. The emphasis here is on exploiting the composi-
tionality of Well-Founded Equivalence Bisimulation (WEB) refinement. Refinement is a composi-

tional notion as shown in the theorem below.
Theorem 3. (Composition) If M ~, M’ and M’ ~q M" then M ~.q M".

Above, M =~ M’ denotes that M is a WEB refinement of M’; and r;q denotes composition,

i.e., (r;q)(s) =q(r.s).

From the above theorem we can derive several other composition results; for example:

Theorem 4. (Composition)
MA R - ~q ISA

ISA|IPF ¢

MAIPF &

The above theorem states that to prove MA || P+ ¢ (that MA, the pipelined machine, executing
program P satisfies property ¢, a property over the ISA visible state), it suffices to prove MA =~ ISA
and ISA | P ¢: that MA refines ISA (which can be done using a sequence of refinement proofs)
and that ISA, executing P, satisfies ¢. In this form, the above rule exactly matches the compositional
proof rules in [24]. What makes such a rule useful is that it can lead to drastically faster verification
times, as we show in this chapter. It will turn out that the verification times depend much more
on the semantic difference between models than on their complexity, e.g., verifying that a complex

pipelined machine, MA, refines a similar complex pipelined machine can take a fraction of a second,

81

even though current tools may not be able to verify that MA refines (the much simpler) instruction

set architecture.
7.2 Processor Modeling and Monolithic Verification

In this section, we define a complex pipelined machine and describe how to model and verify it
using UCLID. The machine is quite complicated and to make its definition a manageable process,
we defined a series of machines starting with the base processor model M6, a 6 stage pipelined
machine with the following stages: instruction fetch (IF), instruction decode (ID), execute (EX),
data memory access (M1 and M2), and write back (WB). M6 has the following instruction types:
branches, loads, stores, and ALU instructions. The addressing modes include register-register and
register-immediate. M6 also has a simple branch prediction scheme that always predicts that the
branch is taken. Once M6 was designed and verified, we extended it with a pipelined fetch stage to
obtain M7; then we added an instruction queue holding up to 3 instructions, giving rise to machines
M8, M9, and M10. Finally we added a direct mapped instruction cache, a direct mapped data cache,
and a write buffer, giving rise to machines M10I, M10ID, and M10IDW.

Unfortunately, as we have seen before, M10IDW is too complex to directly verify with UCLID
using the flushing refinement map. Use of more optimized refinement maps can lead to faster
verification times, but with more complexity, the verification times increase exponentially.

Wouldn’t it be great if we could use the same approach to verifying M10IDW that we used to
design it? Recall that since M10IDW was too complicated to design directly we defined a sequence
of intermediate machines instead. This allowed us to add features one at a time, making the design
a manageable process. Why not verify M10IDW in the same way? For example, when proving M7
refines ISA, why can’t we use the already established result that M6 refines ISA to simplify the

proof? In the next section, we show how to do this.
7.3 Compositional Verification

In this section we develop techniques that allow us to prove that M10IDW refines ISA in a compo-
sitional manner, by proving that M10IDW refines M10ID, which refines M101, ..., which refines M6,
which refines ISA. We present a sound and complete method for proving such theorems, where

most of the reasoning is local, i.e., restricted to pairs of machines. By applying our techniques, we

82

B (13)

Figure 35: Local composition rule.

transform the problem of verifying that M10IDW refines ISA from one that UCLID cannot handle to
one that takes less than 20 seconds.

A UCLID specification gives rise to a transition system M = (S,--»,L), where s is a state
(s € S) iff it maps the variables appearing in the UCLID specification to values of the right type.
The transition relation --+ is similarly defined over S. An inductive invariant, I, is a subset of S
that is closed under the transition relation (s € | implies --» ({S}) C I). Put another way, | is an
inductive invariant if 4’ = (I,--» |;,L];), which we sometimes denote M|, is a transition system
(i.e., the restriction of --» to | is a subset of 12). It is sometimes useful to identify a subset of S,
Init(9), as “initial.” If B is a relation, we define BX(Y) to be B(Y)N X. We start with two basic

observations.

Lemmab. If M = (S,--»,L), M’ = (S',--»',L") are TS’s, and M ~,; M’ with witness B, then: (a)
if 1 is an inductive invariant of 2, then I’ = BS(1) is an inductive invariant of M’ and M|, ~rl,
M'|,, and (b) if I is an inductive invariant of M’, then | = BS(1’) is an inductive invariant of M

and Mh), M’h/.
Proof: For the proof of (a), let s € I’ and let s --»" w; we show that w € I. By the definition

M7 M6 ISA

Figure 36: Incompleteness of local composition rule.

&3

Figure 37: Global composition rule.

Refinement CNF Verification Times (sec)

Proof Vars ‘ Clauses | UCLID | Siege | Total
M6 28,256 83,725 8 10 18
M7 53,165 158,182 15 150 165
M8 95,092 283,465 25 766 791
M9 144,045 429,973 41 2,436 | 2,477
M10 198,375 592,660 55 6,762 | 6,817
M10I 293,862 876,820 92 8,641 | 8,733
M10ID 580,355 | 1,730,704 244 | FAILED NA
M10IDW 690,598 | 2,060,557 297 | FAILED NA

Table 6: Verification times and CNF statistics for the various pipeline machine models.

of I, there is some U € | such that uBs. Since s and U are stuttering bisimilar, W can be matched
by a state reachable from u, say by v, but since | is an invariant, v € I, therefore |” is an inductive
invariant of M’, and M || ~, M'|;; with witness BN (1U1")2. The proof of (b) is similar. [

We will make use of the following corollary of Lemma 5, since it applies to all of our examples

in this chapter.

Corollary 6. If in Lemma 5 the equivalence class, under B, of every s € | has exactly one element

from S’, we can replace BS (1) by r(1) and BS(I) by r='(1).

Let’s consider applying what we have so far to show that M10IDW refines ISA. Since we consider
all states in ISA to be initial, this means that our refinement map has to be surjective. Recall that
we are after a compositional proof, so we will prove a sequence of theorems. Let us say that one of

these theorems shows that My refines Mx, which implies that: (a) we have an inductive invariant, I,

of My, giving rise to My|;, and (b) My|, refines Mx, say with refinement map r.

To prove that Mz refines Mx, we only need to prove that Mz refines My, say with refinement map
g, as we can then appeal to the composition theorem and the theorem that My refines Mx. When one
tries to do this in practice, the following problem arises: we need an invariant on Mz whose image

under q is I, but defining such an invariant can be quite difficult, requiring much trial and error. (For

example, this arises when proving that M9 refines M7, as we will shortly see.) As we show with the

84

i
H

<'T
2]

7]
7]
7]

1

I
3]

e HHH
H

FHHE

oo owy

[HH

-
- HHH

HE:
vy

7oy

M10IDW—= M10ID— M10l— M10—>=M9—+>M8*>=M7—=M6 —= ISA

Figure 38: Refinement maps for the compositional verification of M10IDW.

following proof rule, it is in fact enough if the image of the invariant under (is a superset of I.
In the sequel, if Z is a set, then Z~ and Z= denote the identity relation on Z and the reflexive,

symmetric, transitive closure on Z, respectively.

Theorem 7. Suppose that for all k € [1..n], Iy is an inductive invariant of TS My = (Sk, - -k, Lk)-
Suppose also that for all k € [2..n], (M) |y, ~r, My with witness B and I_; C I;_,, where I}, =
Bf‘*'(lk). Then, there exists an inductive invariant | C I such that (Mn)]; ~r (M)}, with witness

Band (Vsely:: (Juel ::sBu)), where R= (rp;rp_1;---;r2)|y and B = (17;Bn;Bn_1;- -~ ;Bos 7))~

Proof: The proof is by induction on n, where the base case (n = 2) follows from Lemma 5. For

the induction step, we have by the induction hypothesis, I’, an inductive invariant of M, _1, such that

I"Cly_q, (Mn—l)ll’ ~R (W[l)

I,and (Vs €|y :: (Juel’::sB'u)), where R = (rn_1;rn—2;---;12) |1,
and B" = (17;Bn_1;Bn_2;--- ;B2;177)=. Now, letting | = B (1), we see that | C I and | is an
inductive invariant, such that (Mn)|; =, (Mn-1)|r (by Lemma 5). By Theorem 3, (Mn)|i ~r
(M)]),. Finally, let s € Iy; by the induction hypothesis, there is a w € |’ such that SB'w. Now, let
u € Bln({w}), which is non-empty, but since w € I’ and | is an inductive invariant, u € I. [|

The proof rule embodied in Theorem 7 is completely local —every proof obligation involves at
most two TS’s— and should be used where applicable. Unfortunately, it is incomplete: it is possible

that there is an inductive invariant | C I such that (M)] ~r (M)

I,» but we cannot prove it with

85

the above proof rule. (This situation arises when proving that M7 refines ISA, as explained later.) In

such cases, the following complete proof rule should be used.

Theorem 8. Suppose that for all k € [1..n], Iy is an inductive invariant of TS My = (S, --+k, Lk)-
Suppose also that for all k € [2..n], (M) i, ~r, Mi—1 With witness By. Then, there exists an inductive
invariant | C I such that (Mn)]1 ~r (M;)|;, with witness B and (Vs € I, :: (3u € | :: sBu)) iff

B (--BI2(BR ' (In))-++) C Iy, where R = (n:fn_15-+- :2) |y and B = (17:Bp:By_ 13-+ :Bo: 17)=.

Proof: Letl = B;‘ (- Bln“:zl(P (10) -+), 1 =Bla(- -‘BI;(BIZZ(I)) -++). For the proof from left
to right, we show that I, 1" are inductive invariants, that | D Iy,1" C I, and (Mp)])r ~r M;|;. For the
induction step, we can use the conclusion of the induction hypothesis because B? (-e- an‘jf (lh=1)---)2
l; (since Bﬁ“_*lz(BnS“*1 () C an":lz(ln,l)). We now have that By (In) and l,_; are inductive invari-
ants, thus so is By’ (In), which is not empty as BS“_]Z(-t () = Bﬁ*‘_’f (Bﬁ‘*' (In)). Using the induc-
tion hypothesis, we get that |,1” are inductive invariants, that | 2 Iy,1’ C Iy, and (M) |1y ~r M, |.
The rest of the proof is similar to the proof of Theorem 7. []

Notice that Theorem 8 gives us much more flexibility than Theorem 7, because the relationship
between I, and i can be arbitrary. Also, if (as is the case in our applications) the equivalence class
of every s € lj, under Bj, has exactly one element from S;_j, then the global condition amounts
to showing that any state S € || can be reached by starting in some state in I and applying the
following sequence of refinement maps: rp,rn—1,...,r . For pipelined machines, this turns out to
be easy to show because applying this sequence of refinement maps to pipelined machines whose
non-ISA components are invalid amounts to projecting out the ISA-visible components; thus, every
state in ISA is reachable.

We have now developed all of the theory required to verify M10IDW. An overview of the process
is shown in Figure 38. Our proof scripts are available upon request and the few invariants required
took us less than a day to define. In addition, the rank functions required are much easier to define
than in the monolithic case, and there is a simple recipe for doing this described elsewhere [57]. The
verification times and related statistics are given in Table 7. The names in the “Refinement Proof”

column indicate which refinement proof the row corresponds to. The models are expressed in the

UCLID language, and are translated to CNF formulas using the UCLID tool.

86

Figure 39 depicts the verification times required for both the direct and the composition methods
for each of the processor models. As can be seen from Figure 39, if we compare the verification
times required by the direct method versus our compositional method, then we see that the verifi-
cation cost increases exponentially (the y-axis uses a logarithmic scale) for the direct approach for
each new feature/pipeline stage, whereas, for the compositional approach, the verification cost is
almost a constant. The data reported for the compositional proofs includes the total time required,
including the time required for the proof of invariants, and everything else required by our proof
rule. Notice that the SAT solver Siege failed to produce a result when applying the direct approach
to M10ID, whereas with the compositional approach, the proof of M10IDW required less than 20
seconds.

We now explain the refinement proofs shown in Figure 38 in more detail. First, we discuss how
to deal with deep pipelines. Second, we show how to handle caches and write buffers. Finally, we

discuss counterexamples.
7.3.1 Deep Pipelines

The first five refinement proofs in Table 7, which together show that MA10 refines ISA, are described
next. We use ly to denote the invariant on machine M and ry to denote the refinement map from
machine M. (The range is uniquely determined by Table 7.) Recall that I1gy is the set of all ISA
states. The proof of M6-ISA is a straightforward direct proof using flushing as the refinement map,
thus lyg is the set of all M6 states.

Our first refinement proof involving two pipelined machines relates M7 to M6 using refinement
map ryy (see Figure 38). We now describe Iy; and merely note that the refinement maps for the
other proofs are similar. We name pipeline latches based on the pipeline stage names surrounding
them, e.g., the pipeline latch between IF1 and ID in the 6 stage machine is IF1_ID.

The only essential difference between M7 and M6 is that when a branch mispredict occurs, the
number of cycles required for M7 to recover is four, while M6 only needs three cycles. To deal
with this stuttering, we define three invariants on M7; essentially, they state that a branch mispredict
results in four consecutive bubbles in the pipeline. The invariants are 1) if IF1_IF2 is invalid, then

IF2_ID, ID_EX, and EX_M1 are invalid; 2) if IF1_IF2 is valid and IF2_ID is invalid, then ID_EX,

87

Refinement CNF Verification Times (sec)
Proof Vars | Clauses | UCLID ‘ Siege ‘ Total
M6-ISA 28,256 | 83,725 8.00 | 10.00 | 18.00
M7-M6 1,116 3,124 0.39 | 0.06 | 0.45
M8-M7 479 1,291 024 | 0.01| 0.25
M9-M8 380 1,045 0.21 0.01 0.22
M10-M9 433 1,201 0.29 | 0.01 | 0.30
M10I-M10 213 562 0.08 | 0.01 0.09
M10ID-M101 469 1,210 0.15| 0.01 | 0.16
M10IDW-M10ID 837 2,149 0.23 | 0.03 | 0.26

Table 7: Verification times and CNF statistics for the compositional verification problems.

EX_M1, and M1_M2 are invalid; and 3) if both IF1_IF2 and IF2_ID are valid, and ID_EX and EX_M1
are invalid, then M1_M2 and M2_WB are invalid.

The definition of the refinement map ry; consists of three cases. In all the cases, the pipeline
latches EX_M1, M1 M2, M2_WB, the register file, the instruction memory, and the data memory in M7
get mapped to their counterparts in M6. Case 1 occurs if in M7, IF1_TF2 is invalid, IF1_IF2 is valid
and IF2_ID is invalid, or IF1_IF2 and IF2_ID are valid and ID_EX and EX_M1 are invalid. In this
case, the program counter, IF1_IF2, and IF2_ID in M7 get mapped to the program counter, IF1_ID,
and ID_EX in M6, and the rank is 1. Case 2 occurs when IF1_IF2, IF2_ID, and ID_EX in M7 are valid
and EX_ M1, M1 M2, and M2_WB are invalid. This is the result of a stuttering step by M7. The rank is
0 and we map the program counter associated with the instruction in IF1_TF2 of M7 to the program
counter in M6, while IF2_ID and ID_EX in M7 are mapped to IF1_ID and ID_EX in M6. Otherwise,
the mapping of states is the same as in case 2, except that the rank is 0.

To prove compositionally that M7 refines ISA requires the use of Theorem 8. To see why, note
that the use of Theorem 7 requires that Iy (ly7) 2 lys, which is not true, as l¢ is the set of all M6 states.
However, ly; satisfies the property that ryg(ruz(ly7)) 2 lrsa, and therefore we can use Theorem 8.
To prove this using UCLID, we define a witness function, f, that given an ISA state returns the M7
state with the same programmer visible components, but all of whose pipeline latches are invalid.
It is now enough to show that for every state S in l1sy, we have that ryg(rv7(f(S))) = s and that
f(s) € lur.

For the rest of the deep pipeline proofs, it turns out that we can use the simpler Theorem 7. For

example, in case of the M8-M7 proof, we have to show that ryg(lyg) 2 ly7, which we do by defining

88

100000 T T T T T T

10000

1000

100

Verification Time [sec]

10F Direct —=— -
Extrapolated Direct ---m---
) Complosition [e

1 1 1
M6 M7 M8 M9 M10 M10I M10ID M10IDW
Pipelined machine

Figure 39: Comparison of direct and compositional approaches.

a suitable witness function that maps states in ly7 to lyg and then proceed as above.
7.3.2 Instruction Caches, Data Caches, and Write Buffers

We now show how to verify the instruction cache, the data cache, and the write buffer. This corre-
sponds to the last three refinement proofs in Table 7. For all of these proofs, we use the proof rule
given in Theorem 7. Since we have seen how to apply the theorem in the previous section, here we
only describe the refinement map, invariants, and witness function for each of the proofs.

The state components of M10I and M10 are identical except for the instruction cache. Thus,
the refinement map just ignores the instruction cache and is the identity mapping for all other state
components. Since two machines do not stutter with respect to one another, we can in fact prove a
bisimulation. This means that the WEB-refinement proof can be reduced further, as no rank function
is needed. The only invariant required is that the valid instruction cache entries are consistent with
the instruction memory.

The data cache is direct mapped and is similar to the instruction cache. The proof of M10ID-M10I
is similar to the proof of M10I-M10. The refinement map ignores the data cache and retains all the
other state components, including the instruction cache. Also, an invariant similar to the one used
for the instruction cache is required stating that all valid entries in the data cache are consistent with
the data memory.

M10IDW differs from M10ID only in that it contains a write buffer. These two machines do

not stutter with respect to each other; thus, we can prove a bisimulation result, as before. The

&9

refinement map is obtained by first updating the data memory with the valid entries in the write
buffer, and projecting out the remaining state elements (including the instruction and data cache
states). We prove the invariant that the combined state of the write buffer and the data memory is
consistent with the state of the data memory of a machine that does not have a write buffer.

Finally, the witness function from lyio to lyior just adds an instruction cache, all of whose

elements are invalid to an ly;o state. The witness functions for the other proofs are similarly defined.
7.3.3 Counterexamples

The most tedious and time-intensive part of the verification effort is often debugging and under-
standing counterexamples. Since the compositional approach reduces the verification problem into
simpler subproblems, the debugging process is much simplified. This is because one can isolate the
cause of failure simply by noting which stage of the composition proof fails. This is impossible to
do when verifying the complex processor in a monolithic fashion and it is difficult to overstate the
importance of this aspect of our work, as the differences in the complexity of the error traces can be
quite drastic.

As a concrete example of how compositional verification simplifies the debugging task, we note
that when we tried to verify a buggy variant of the instruction cache —there was a bug because
when determining whether a cache hit has occurred, the design did not check the validity of the
cache block— we found that the counter example generated by UCLID for the direct approach was
4,429 lines long while the counter example generated from the composition step was 390 lines long.
Obviously, the shorter counterexample was much simpler to understand and, consequently, fixing
the bug was much easier. All the bugs we encountered were similarly much easier to check in the
compositional framework and this aspect of compositional verification may well be more important

than the improvement we obtained in verification times.
7.4 Related Work

We now describe previous approaches for verifying pipelined machines based on proof strategies
that use decomposition techniques to achieve scalability. Approaches based on the use of theorem
provers are inherently compositional and scalable in nature, but require an extraordinary amount of

effort. In contrast, our approach generates only a very small number of high-level proof obligations,

90

which are then automatically discharged using a decision procedure.

Jones et al. [39, 40] verify an out-of-order execution unit using incremental flushing. Their
approach relates the implementation to an intermediate machine, where the scheduling logic is
abstracted, which is then related to the ISA. In comparison, we can deal with any refinement map,
we have a general theory with a complete rule for relating any number of intermediate machines, and
we guarantee that all safety and liveness properties are preserved. They also state that the amount
of effort required to deductively justify the proof decompositions offsets the advantages obtained
using the decomposition. In our approach, the individual refinement proofs can be chained together
as WEB-refinement is a compositional notion.

Jhala and McMillan [38] describe an approach for showing that processor models behave like
their instruction set architecture models using compositional model checking. The proof method-
ology is to decompose the correctness criterion into a number of temporal properties that can then
be automatically verified by model checking. The decomposition is performed using the SMV
proof assistant [70]. They apply this approach to verify an abstract microprocessor model that has
many features such as branch prediction, speculative execution, and out-of-order execution. In their
models, combinational circuit blocks such as the ALU are abstracted using Uninterpreted Functions.
They do not quantitatively describe the amount of expert user effort required for the proofs, but state
that their approach is “considerably more laborious” than model checking finite state machines. In
contrast, we required only about one week of expert user effort for the compositional refinement

proof. Also, our approach accounts for liveness, which is not taken into account in their approach.
7.5 Conclusions

We presented a complete compositional framework based on refinement for proving that pipelined
machine models satisfy the same safety and liveness properties as their corresponding instruction
set architecture models. This allowed us to obtain exponential savings in verification times over
previous monolithic approaches, and, in fact, we were able to easily verify models that decision
procedures such as UCLID cannot directly handle. We also showed how compositional reasoning
based on refinement can be integrated into the design cycle and how this leads to faster verification

times, shorter and clearer counterexamples, and enhanced design understanding.

91

CHAPTER VIII

INTEGRATING DEDUCTIVE REASONING WITH DECISION PROCEDURES

Verification engines for checking that pipelined machines work correctly can be roughly classified
into two categories: term-level decision procedures and deductive reasoning engines or theorem
provers. Term-level decision procedures are automatic, but can only be used for problems express-
ible in restricted logics. In Chapters 3, 4, 5, 6, and 7, we have described several refinement-based
methods for the verification of term-level pipelined machines in a highly automated, efficient, and
scalable manner. Unfortunately, due to their limitation to restricted logics, term-level decision pro-
cedures as the name suggests can only be used to reason about pipelined machines defined at the
term-level. The restriction to term-level models has severely limited the applicability of approaches
based on decision procedures because to be industrially applicable, we need a firm connection to
the RTL level, something that abstract term-level models do not provide.

In contrast, theorem provers such as ACL2 [43, 47, 42] have very expressive languages and
associated logics and can be used to reason about pipelined machines at various levels of abstraction
including at the term-level and at the bit-level. We choose to work with ACL2 as it is one of the most
automated program verification systems available and has been used in a number of commercial
applications (see Section 2.4 for more details). Even so, ACL2 requires extensive user guidance.

What we have is two verification systems for checking properties about hardware systems such
as pipelined machines with radically different pragmatics. One engine is general purpose; the other
is restricted, and by virtue of its restrictions, can exploit a specialized implementation to provide
extreme speedups (by which we mean several orders of magnitude). If we could only design trans-
formations that reduce ACL2 conjectures to problems that can be checked using decision proce-
dures where there is semantic overlap—transformations we had some formal reason to trust—then
we could have the best of both worlds: we could work in the general-purpose setting, yet use these
transformations to hand off sub-problems to an efficient, but restricted decision procedure.

To this end, we developed ACL2-SMT, a framework for coarse-grained integration of SMT

92

solvers—decision procedures for decidable fragments of first-order logic—with ACL2. SMT solvers
are decision procedures that can be used to decide formulas in a restricted fragment of first-order
logic described in the Satisfiability Modulo Theories Library (SMT-LIB) language, which has be-
come the standard input format for decision procedures. This is very similar to the CNF format,
which is the standard input format used for SAT solvers. We choose to integrate ACL2 with
SMT solvers that can decide formulas in the closed quantifier free logic of linear integer arith-
metic, integer arrays, and uninterpreted functions and predicates (QF_AUfLia). The reason being
that refinement-based properties of term-level pipelined machines are expressible in the QF _AUfLia
logic and also because there are many decision procedures that can check QF_AUfLia formulas in
the SMT-LIB language. This makes our framework general in that now any decision procedure that
can check QF_AUfLia formulas in SMT format can be made to process ACL2 formulas using our
framework.

Using this framework, an SMT solver is integrated with ACL2 as a simplification engine that can
be used to process ACL2 clauses. Therefore, we call it the SMT clause processor. The integration
involves a translation mechanism that converts ACL2 formulas to SMT problems in QF_AUfLia,
which can then be checked using an SMT solver.

One of our primary motivations for integrating ACL2 with SMT solvers is for the verification
of bit-level pipelined machines. The ACL2-SMT system is a crucial component of our approach for
checking that bit-level pipelined machines work correctly. In the next chapter where this verification
approach is described in detail, we also describe a large case study where we proved the correctness
of executable pipelined machines defined at the bit-level using the ACL2-SMT system. The proof
established that the pipelined machine is stuttering bisimilar, under a suitable refinement map, with
the instruction set architecture. Such a proof is beyond the scope a term-level decision procedure
since its logic is too weak to even state it, and would require considerably more human effort to
check using just ACL2.

Another advantage of using the combined system obtained by integrating an SMT solver with

ACL2 is easier debugging. Term-level models are not executable. One cannot run the models on

93

some inputs and get results, and therefore one cannot run tests, which is very useful for debug-
ging. ACL2 models are efficiently executable and has been used as simulation platforms for pre-
fabrication requirements testing. By developing a concrete model in ACL2 corresponding to the
term-level model being verified, one can execute counterexamples on the concrete model generated
from the verification of the abstract term-level model making it easier to debug.

The rest of the chapter is organized as follows. In Section 8.1, we give a high-level overview
of our framework for integrating SMT solvers with ACL2 and discuss our design choices. In Sec-
tion 8.3, we give a brief description of the semantics of ACL2, focusing on the subset of ACL2
formulas that can be translated to QF_AUfLia formulas. In Section 8.2, we describe the syntax and
the semantics of QF_AUfLia. In Section 8.2 we describe in detail the SMT clause processor, an
integration of an SMT solver with ACL2. Related work is described in Section 8.6 and we conclude

in Section 8.7.
8.1 Integration Strategy

In this section, we describe a framework for the integration of term-level SMT solvers with ACL2.
While much of the previous work on integrating decision procedures into heuristic theorem provers
has focused on fine-grained integration, such integration is difficult to implement and maintain [14].
It requires the cooperation of the various proof heuristics employed and can take a long time to
optimize. In addition, from the user’s point of view, it is difficult to understand exactly what can
be automatically handled. In combining SMT solvers with ACL2, we decided on a coarse-grained
integration, meaning that the user has to explicitly call the SMT solver. The main reason for our
choice is that there is a complexity mismatch between the formulas we want to automatically verify
and the formulas that the proof heuristics used in ACL2 can easily handle: the formulas involved
are so complicated, that it becomes very hard for the ACL2 proof heuristics to analyze them.

The coarse-grained integration of an SMT solver with ACL?2 is achieved using the clause pro-
cessor mechanism, which is an interface provided by ACL2 that allows the use of external reasoning
tools to simplify formulas during an ACL2 proof attempt [44]. Note that integrating an SMT solver
as a clause processor leads to a coarse-grained integration as the SMT solver has to be invoked ex-

plicitly by the user by providing a hint to ACL2 indicating that a particular goal be simplified using

94

the solver. Using this interface, an external tool can be integrated with ACL2 as a tool verified by
the ACL2 theorem prover or as an unverified but trusted tool. Since SMT solvers are external tools
not implemented in the ACL2 programming language, we cannot verify that they work correctly
using the ACL2 theorem prover. Even otherwise, correctness proofs for SMT solvers would be very
difficult given the complexity of the implementations of these solvers. Therefore, we choose to
integrate SMT solvers as unverified but trusted clause processors. Note that ACL2 allows the use
of an unverified tool only with a trust tag, which is used to indicate that the validity of the formulas
proved using the external tool depends on the correctness of that tool.

Our approach for integrating an SMT solver with ACL2 is as follows. Remember that our goal
is to use a solver to reason about term-level models in ACL2. Therefore, the first step is to identify a
decidable fragment of first-order logic in which properties about term-level models are expressible.
We chose QF_AUfLia as this logic allows us to conveniently express system-level refinement-based
properties for term-level pipelined machine models. Also, there exist many efficient decision pro-
cedures that can handle formulas in QF_AUfLia, such as the Yices [100] system and the Barcelogic
for SMT solver [10]. We then identified a subset of the ACL2 logic such that formulas in this subset
can be directly translated to formulas in QF_AUfL.ia.

To use an SMT solver to reason about ACL2 formulas, we developed a translation mechanism
from ACL2 to SMT that works as follows. Given an ACL2 formula say f, the translation mechanism
reduces f by unrolling functions, expanding macros, and performing other simplifications resulting
in formula fS™. If the resulting reduced formula fS™ is not in the subset of ACL2 that can be
translated to a QF_AUfLia formula, we give an error and abort. Otherwise, fS™ ig translated to a
formula say ¢ in the SMT-LIB language. We then call an SMT solver to check the validity of g.
If the solver can prove that g is valid, then it implies the validity of f, provided of course that we
trust the solver and our translation mechanism. Otherwise, the solver generates a counter example,
which is mapped back to ACL2 and can be used to analyze the reason why f is not valid.

Using this framework, we have integrated the Yices solver to work as an ACL2 clause processor.
We call this the SMT clause processor. Note that this approach can be easily extended to work with

other SMT solvers if a parser for the output of that solver is available.

95

bool-exp := true|false

| bool-var

| (if_then_else bool-exp bool-exp bool-exp)
| (equal int-exp int-exp) | (< int-exp int-exp)
| (pred-symb int-exp ...int-exp)

int-exp ::= int-const | int-var
| (ite bool-exp int-exp int-exp)
| (+ int-exp int-exp) | (- int-exp int-exp)
| (func-symb int-exp .. .int-exp)
| (select iarray-exp int-exp)
iarray-exp ::= iarray-var

| (store iarray-exp int-exp int-exp)
The top-level expression is a boolean expression

Figure 40: QF_AUfLia syntax

8.2 Syntax and Semantics of QF _AUfLia

We now describe the syntax and semantics of QF_AUfLia, a decidable fragment of first order logic
that includes linear integer arithmetic, integer arrays, and uninterpreted functions and predicates.

QF_AUfLia manipulates of world of integers, booleans, integer arrays, and functions over these
basic values. Boolean expressions, also known as formulas, yield true or false. A QF_AUfLia
“function” is a function from multiple integers to an integer, while a “predicate” is a function from
multiple integers to a boolean. The QF_AUfLia syntax is summarized in Figure 40.

A boolean expression can be the constants true or false, a boolean variable, or the application
of the if then_else operator on sub-formulas. They can also be formed by comparing two integer
expressions with = or <, or by the application of a predicate symbol representing integer-expression
arguments, where a predicate symbol represents an uninterpreted predicate (UP).

An integer expression can be a variable; an application of the if/then/else operator ITE, which
selects one of its two integer sub-terms based on the value of its controlling boolean formula; an
application of addition (+) or subtraction (-); or application of the select function which is used
to get the value from an array corresponding to a given index; or application of an uninterpreted
function (UF) symbol.

An integer array expression can be a variable or an application of the store operation, which is

96

used to update an array.

Note that QF_AUfLia allows other operations. For example, boolean formulas can also be
constructed using conjunction, disjunction, and negation of sub-formulas. But, we only show those
operations that are used in the translation from ACL2 to SMT.

Figure 41 provides a simple semantics for QF_AUfLia. Just as with the ACL2 semantics, the
semantics for QF_AUfLia is given by a meaning function [[exp]]g, which gives the meaning of
some QF_AUfLia term exp given some environment provided by 3, a function mapping integer and
boolean variables to values, and U, a function providing the meaning for the uninterpreted functions
and predicates.

The SMT-LIB language for describing QF_AUfLia formulas also has the 1et construct, which

can be used to bind lexically scoped local variables.
8.3 ACL2 Syntax and Semantics

Before we delve into the details of the SMT clause processor, we give a brief description of the
syntax and semantics of a subset of the ACL2 that can be translated to QF_AUfLia. We call this
subset Arrays, Linear integer arithmetic, and Uninterpreted functions and predicate symbols (ALU).
The syntax and semantics of ALU are shown in Figures 43 and 43, respectively. A full discussion
of the ACL2 logic can be found in [45].

The semantics is given by a meaning function [[exp]]g, which gives the meaning of some ACL2
term exp given some environment provided by 3, a function mapping integer and boolean variables
to values, and U, a function providing the meaning for the uninterpreted functions and predicates.

The reason we chose ALU is that it can be used to model pipelined machines at the term-level
and that can also be used to express system-level refinement-based properties for these models.
This subset consists ACL2 formulas constructed using Uninterpreted Functions (UFs), Uninter-
preted Predicates (UPs), constrained functions store and select for array operations, and ACL2
primitives if, <, equal, binary-+ and unary-- over the boolean, integer, and integer array do-
mains. The integer and boolean domains are defined in ACL?2 using the integerp and booleanp
functions. We define integer arrays as associative lists, which are lists of key and value pairs, where

both the key and the value are integers. We define the function integer-arrayp to identify integer

97

u :function symbols of arity n — functions of arity n,
predicate symbols of arity N — predicates of arity n
[:assignment for variables

Ip :looks up an integer array for the value corresponding to a given index

[bool-var] g = Bbool-var
[[true]]g =true
[false]s = false
[(if then else bool-exp, bool-exp, bool-exp;)[s = {gzzz:zgﬁé E?E::;’;Z?HE’
[(= int-exp; int-exp,)]g = [int-exp, [z = [int-exp,]
[(< int-exp,int-exp2) g = [int-exp,] < [int-exp,]g
[(pred-symb int-exp, . . .int-exp,) [= [pred-symb[g([int-exp,] .. [int-exp,[g)
[int-var]g = Bint-var
[(ite bool-exp int-exp; int-exp,)]g = {[[!nt-expl]}ﬁ [[bool-e.xp]]g,
[[mt'eszﬂg otherwise.
[(+ int-exp; int-exp,)]g = [int-exp, [5 + [int-exp, [
[(- int-exp; int-exp,)]g = [int-exp, [z — [int-exp,[p
[(func-symb int-exp; . . . int-expy) | = [func-symb[g([int-exp, [.. [int-exp,[g)
[pred-symb] 3 = u pred-symb
[func-symb[g = u func-symb
[[iarray-var]]g = Biarray-var
[(select (store iarray-exp int-exp,
int-exp,) int-exp;) |5 =
{ [int-exp,]4 [int-exp,] = [int-exps[§,
[(select int-exp; iarray-exp)]; otherwise.
e is valid iff VB,u . [e]s = true

Figure 41: QF_AUfLia semantics

98

bool-exp = T|NIL

| bool-var

| (if bool-exp bool-exp bool-exp)

| (equal int-exp int-exp) | (< int-exp int-exp)
|

(pred-symb int-exp .. .int-exp)

int-exp := int-const | int-var
| (if bool-exp int-exp int-exp)
| (binary-+ int-exp int-exp) | (unary-- int-exp)
| (func-symb int-exp ...int-exp)
| (select int-exp iarray-exp)
iarray-exp ::= iarray-var

| (store int-exp int-exp iarray-exp)
The top-level expression is a boolean expression

Figure 42: ALU syntax

arrays.

Boolean connectives such as conjunction, disjunction, and negation in are defined in ACL2
using if expressions. Therefore, all the boolean connectives can be reduced to if expressions by
expanding functions and macros.

Uninterpreted functions and Uninterpreted predicates (UPs) are used extensively in term-level
models to abstract combinational circuit blocks such as the ALU. UFs can be thought of as functions
from integers to integers with a name but no intensional definition. UFs satisfy only the property of
functional consistency, i.e., if the inputs to two different instances of a UF are equal, then it implies
that the outputs are also equal. UPs are similar, but are taken to have boolean range rather than
integer range.

UFs and UPs are modeled using encapsulated functions. Encapsulation allows the introduction
of constrained functions. The definition of the function is hidden by the encapsulation, and only
some properties are exported to the ACL2 world. An example of an UF in ACL2 is shown in
Figure 44. The ternary UF alu that abstracts away the actual computation of a processor ALU is
defined as a function that ignores its inputs and returns the integer value 1. The function definition is
hidden using an encapsulate form. This form prevents the ACL2 reasoning system from making

deductions about alu based on its functional definition. For ACL2’s purposes, the only properties

99

u :function symbols of arity N — functions of arity n,
predicate symbols of arity N — predicates of arity n

[3 :assignment for variables

[bool-var] g = Bbool-var
[[T}]E =true
[NIL]g = false
bool-exp,]s [bool-exp,]%,
2lp 1ig
[bool-exps]; otherwise.
[(equal int-exp, int-exp,)] = [int-exp,] = [int-exp,[g
[(< int-exp,int-exp2) g = [int-exp,]s < [int-exp,]g
[(pred-symb int-exp, . . .int-exp,) [z = [pred-symb[g([int-exp;] .. [int-exp,[g)
[int-var]g = Bint-var

[(if bool-exp; bool-exp, bool-exp3)]]§:{

int-exp; [z [bool-exp]y
[(if bool-exp int-exp, int-expz)]]E = [[_ pl]]B H . pﬂﬁ’
[int-exp,]z otherwise.
[(binary-+ int-exp, int-exp,)]s = [int-exp; 5 + [int-exp,[p
[Cunary-- int-exp)]g = —[int-exp[g
[(func-symb int-exp; . . . int-exp,) g = [func-symb[g([int-exp, [.. [int-exp,[)
[[pred—symb]]g = u pred-symb
[func-symb[g = u func-symb
[iarray-var]s = Biarray-var
[(select int-exp, (store int-exp,
int-exp; iarray-exp))|g =
[int-exps]5 [int-exp, [= [int-exp,],
[(select int-exp, iarray-exp)]]g otherwise.
e is valid iff VB, u . [e]5 = true

Figure 43: ALU semantics

100

(encapsulate
((alu (x y z) t))
(local (defun alu (x y z)
(declare (ignore x)
(ignore y)
(ignore z))
1))
(defthm alu-type
(implies (and (integerp a)
(integerp b)
(integerp c))
(integerp (alu a b ¢)))))

Figure 44: An uninterpreted function represented in ACL2

satisfied by alu are the ones defined by theorem alu-type: if all three arguments to alu are of
integer type, then the output is also of type integer. Function alu also satisfies the property of
functional consistency that is satisfied by all functions in ACL2. UP’s can be defined in a similar
way.

We define two constrained functions select and select that can be used to update and access
integer arrays. The store takes an index, a value, and an integer array as input. The select takes
an index and an integer array as input. Both the store and select functions satisfy a property
relating their input and output types. The only other property satisfied by these functions is shown
in Figure 43. Note that we require that in the ACL2 formulas that we can handle, store operations
always appear inside of a select. If a select is applied directly to an integer array variable, it is
treated as an uninterpreted function.

ACL2 functions are total, meaning that they are defined for all types. For example, the and
function returns the conjunction of its inputs if the inputs are boolean, and returns the second argu-
ment, if the inputs are integers. For the ACL2 expressions that we consider, the input types of the
functions are restricted to be either integers, booleans, or integer arrays. Since ACL2 functions are
total, we require that the type restriction be enforced using a top-level hypothesis that assigns an

integer, a boolean, or an integer array type for all the free variables in the ACL2 expression.

101

bool-var — bool-var
T — true
NIL — false

(pred-symbol int-expr, . . .int-expr,) — (pred-symbol int-expr, . . .int-expr,)
(if bool-expr, bool-expr, bool-expr;) — (if_then else bool-expr, bool-expr,
bool-expr;)

int-var int-var

int-const int-const

(if bool-expr int-expr, int-expr,)
(equal int-expr, int-expr,)

(< int-expr, int-expr,)

(binary-+ int-expr, int-expr,)
(unary-- int-expr)

(func-symbol int-expr; . . .int-expr,)
(select int-expr int-array-expr)

(store int-expr; int-expr, int-array-expr)

(ITE bool-expr int-expr, int-expr,)

(= int-expr, int-expr,)

(< int-expr, int-expr,)

(+ int-expr, int-expr,)

(- int-expr)

(func-symbol int-expr, . . .int-expr,)

(select int-array-expr int-expr)

(store int-array-expr int-expr,
int-expr,)

N

Figure 45: Mapping from ACL2 to QF_AUfLia

8.4 SMT Clause Processor

We now describe the SMT clause processor that can be used to automatically check the validity of
a subset of ACL2 formulas. As described earlier, the SMT clause processor employs a translation
mechanism that converts an ACL2 expression to a QF_AUfLia formula in the SMT-LIB language,
which can then be checked using an SMT solver. The high-level approach of the translation mech-
anism is to reduce ACL2 clauses to formulas constructed using a limited set of ACL2 operators for
which a mapping to QF_AUfLia exists. This mapping is defined first, which is then used to describe

the translation mechanism.
8.4.1 Mapping from ACL2 to QF_AUfLia

QF_AUfLia is a simple, restricted logic relative to ACL2; We map ACL2 formulas to QF_AUfLia
by carefully defining the domains in ACL2. One of the main issues we have to handle is that
QF_AUfLia operations obey a statically monomorphic type discipline, while ACL2 functions are
total over the entire domain of values. For example, the if function in ACL2 can be applied to
values from any domain, whereas this is not possible in QF_AUfLia. Therefore, we translate only
ACL2 formulas that have a top-level hypothesis that assigns a type to all the free variables in the

formula. The mapping is shown in Figure 45.

102

We map booleans in ACL2 to the the QF_AUfLia boolean domain. The constants T and NIL are
mapped to true and false. The ACL2 function booleanp is a recognizer for booleans, returning
true when its argument is either T or NIL. ACL2 integers are mapped to QF_AUfLia terms or
integers. The function integerp is, likewise, the ACL2 recognizer for integer values. Integer
arrays recognized by the integer—-arrayp function are mapped to arrays in QF _AUfLia.

The ACL2 if construct applied to a boolean and two integer expressions (where the boolean
expression is the controlling formula of the if) is mapped to the ite operator, and the ACL2 if
construct applied to three boolean expressions is mapped to the 1f then_else construct. The ACL2
binary addition operator is mapped to the + operator and the ACL2 unary subtraction operator is
mapped to - operator applied to one argument. The ACL2 equal (equal) and less-than (<) operators
are mapped to their counterparts = and <, respectively, in QF_AUfLia. The ACL2 functions select
and store are mapped to the select and store operators.

In QF_AUfLia, all variables have a type, but ACL2 is untyped. When an ACL2 formula gets
translated to QF_AUfLia, the ACL2 formula is of the form (implies h f), where f is the ACL2
expression that is translated to a formula in QF_AUfLia, and h is a top-level hypothesis that assigns

a type to all the free variables in f.
Theorem 9. If an ACL2 formula f is valid, then its mapping into QF _AUfLia, m(f) is valid.

Proof: The theorem follows from the semantics of a subset of ACL2 and the semantics of
QF_AUfLia defined in Sections 8.3 and 8.2, respectively, using structural induction. The ACL2
constants T and NIL have the same semantics as the QF_AUfLia constants true and false. The
ACL?2 if operator when restricted to boolean arguments has the same semantics of the QF _AUfLia
if _then else operator. The equality of linear integer arithmetic and array semantics can be clearly
seen from Figures 43 and 41, which describe the semantics of an ACL2 subset and the QF _AUfLia
semantics. Finally, constrained functions in ACL2 implemented using encapsulation, which are

essentially uninterpreted functions are mapped to uninterpreted functions. []
8.5 Translation Mechanism

We now describe the translation mechanism that converts ACL2 clauses to QF _AUfLia formulas in

the SMT-LIB language. One approach would be to ask the ACL2 user to guarantee that the input

103

clause to the SMT clause processor is in a form that can be directly mapped to a formula in the
SMT-LIB language. Such an approach would entail generating input clauses at a very low-level
that could result in an explosion in the size of these clauses. Also, a lot of effort would be required
on the part of the user to control ACL2 to generate these low-level clauses. Instead, our approach
is to allow the user to provide ACL2 clauses, which can then be reduced to an expression in the
subset of ACL2 that we can handle. We perform this reduction by unfolding functions, expanding
macros, and expanding records defined using the ACL?2 records library. It is possible that we are
unable to translate the given input clause to an expression in the subset of the ACL2 logic that can
be translated to QF_AUfLia. In such a situation, the user might have to reduce the input clause using
ACL2 to an expression which can then be dealt with by the SMT clause processor. This approach
drastically improves the amount of effort required on the part of the ACL2 user.

The high-level description of the algorithm that processes ACL2 clauses using an SMT solver is
given below. We assume that the input ACL2 clause ¢ is of the form (— hf), where h is a top-level

hypothesis that assigns types to all the free variables in f.
1. Compute free variables of the input formula f to create free-vars-f.

2. Determine the type of each of the free variables in f from the top-level hypothesis h. Include
the type information for each of the variables in free-vars-f. If a variable is not assigned a

type in h or if its type is not integerp, booleanp, or integer-arrayp, output an error and abort.

3. Negate the original formula f and expand all unconstrained functions in the negation of f

according to their definitions. Call the resulting formula f .
4. Expand all the macros in f to create ™.

5. Determine all the uninterpreted functions (UFs) and uninterpreted predicates (UPs) used in

fMto get a list of UFs and a list of UPs, ufs-of -f ufs-of -f and ufs-of -f, respectively.
6. Construct an initial environment using free-vars-f, ufs-of -f, and ups-of -f.

7. Translate f™ to a formula in the SMT-LIB language using the mapping from ACL2 to SMT.
Note that record variables are not expanded out in this translation. Call the resulting formula

fr.

104

8. Expand all record variables in f' to get fS™,

9. Check fS™ using an SMT solver and return the result back to ACL2.

We now describe each of the steps in the above algorithm in more detail. In implementing the
SMT clause processor, we made use of previously defined functions that were used to build ACL2.

In the first step, the free variables of the original formula f are computed. The second step is
used to determine the type of all the free variables from the hypothesis. As stated earlier, ACL2
functions are total in that the inputs to these functions can be of any type. Whereas, SMT operations
obey a statically monomorphic type discipline. Therefore, we check that the top-level hypothesis h
assigns a type to all the free variables of f. Also, QF_AUfLia supports only three domains, which
are the integers, booleans, and integer arrays. Therefore, we also check if the type assigned to the
free variables of f is any one of these three domains.

Proving that a negated version of the original formula f is unsatisfiable is equivalent to proving
that f is valid. Therefore, the original formula f is negated in step 3 of the algorithm, the reason
being that to prove the validity of f, the SMT solver can be used to check if after some reductions
and translations, the negated version of f is unsatisfiable. In step 3, all the unconstrained functions
in the negated version of f are also unrolled, resulting in formula f f. Note that constrained functions
cannot be unrolled as they are essentially black box functions that satisfy some properties but do
not have a body.

All the macros in formula ' are expanded out in step 4 to create ™. The formula f™ is built
using only functions s and g from the records library, constrained functions select and store for
array operations, UFs, UPs, closed lambdas, and ACL2 primitives if, <, equal, binary-+ and
unary--. We do not expand lambda expressions as this could result in an explosion in the size of
the resulting formula. Instead, we translate lambda expressions to SMT let expressions, which are
used to bind lexically scoped local variables.

In step 5, we determine the uninterpreted functions (UFs) and uninterpreted predicates (UPs)
used in the original formula. UFs and UPs are implemented in ACL2 using constrained functions.
UFs have a type constraint that states that if the inputs of a UF are integers then the output is an

integer. Similarly, UPs have a type constraint that states that if the inputs of a UP are integers then

105

the output is a boolean.

We therefore determine that a function is uninterpreted, if it is defined as a constrained function.
This information can be ascertained from the ACL2 world, a property list used to maintain a data
base of rules, that stores properties about various events such as a function definitions. The formula
f™, which is obtained after expanding out all unconstrained functions and macros in the original
formula is traversed to construct the list of constrained functions. We then distinguish UFs and
UPs by checking the type constraint associated with a UF or a UP (which can also be obtained by
querying the ACL2 world) to determine if the output of the function is an integer or a boolean.

Before we translate f™ to an SMT problem, we run the expander, which is an ACL2 library
that can be used to simplify ACL2 terms or clauses, on f™. The expander can be thought of as
a simplification engine and used as a preprocessor, but its application is not always effective. For
example, if deciding the original formula requires considerable amount of propositional reasoning,
it might be preferable not to use the expander as an SMT solver would be far more efficient at
propositional reasoning than the expander. Therefore, we provide a flag, which when set uses the
expander as a preprocessor, but does not do so otherwise.

To translate f™ to a formula in the SMT-LIB language, we use an environment that keeps track
of the types of all the free variables in f, the types of newly introduced variables, and the UFs and
UPs in f. The environment is a list of 5 elements. The first, second, and fifth elements are lists of
boolean, integer, and integer array variables, respectively. The third element is a list of the UPs of
f and the fourth element is a list of UFs of f. The fourth element is a list of record variables and
also includes type information for each of the record variables, such as the fields of the record and
the type of each field. In step 6, the initial value of the environment is created using the list of free
variables of f (free-vars-f), the list of UFs (ufs-of -f), and the list of UPs (ups-of -f).

Step 6 take as input f™ and the initial value of the environment and translates f™ to a formula in
the SMT-LIB language f', using the mapping from ACL2 to SMT. Note that lambdas can be used to
introduce new record variables, but the types of these variables are not yet known. To expand these
newly introduced record variables, type information is required. Therefore, in step 6, we do not
expand out record variables. Instead, while translating f™ to f', the types of these newly introduced

record variables is determined, and f' is annotated with this type information. In step 7, the record

106

variables in f" are expanded out resulting in the SMT-LIB language fS™.
In step 8, the SMT solver is used to check if fS™ is unsatisfiable. If a counterexample is found,
it can be directly mapped back to ACL2, which can then be analyzed by the user to determine why

f the original formula f is not valid.
8.5.1 Correctness

The correctness of the translation mechanism that converts ACL2 clauses to QF_AUfLia formulas

in the SMT-LIB language is given below.

Theorem 10. If an ACL2 clause ¢ can be translated to a QF _AUfLia formula fS™ using the trans-

lation mechanism from ALU to QF _AUfLia, then c is valid if and only if fS™ is unsatisfiable.

Proof: In the above theorem, C is the input ACL2 clause and is of the form (— h f), where
h is a top-level hypothesis that assigns types to all the free variables in f. fS™ is the QF_AUfLia
formula in the SMT-LIB language obtained by translating c. The translation mechanism can be
thought of as performing two high-level transformations. The first transformation is expanding out
unconstrained function applications according to their definitions. This transformation is justified
by the definitional principle of ACL2 (see [43] for details). The second transformation converts the
formula obtained after expanding out all functions and macros, f™ to a QF_AUfLia formula using
the mapping from ACL2 to QF_AUfLia. ACL2 operations are total, whereas, QF _AUfLia operations
obey a statically monomorphic type discipline. The mapping from ACL2 to QF _AUfLia is justified
as shown in Theorem 9, only if the ACL2 operations that are mapped have the arguments of the right
type. We ensure this by checking that the top-level hypothesis h assigns either integer, boolean, or
an integer array type to all the free variables in f. We also use the SMT solver Yices to type check
the resulting SMT formula. Note that f is initially negated and then translated. Therefore, we check

if fS™ is unsatisfiable to prove the validity of c. []
8.5.2 Instruction Set Architecture Example

An example is described that demonstrates how the translation mechanism from ACL2 to SMT
works. The example uses the term-level model in ACL2 of a simple instruction set architecture

(ISA) machine. The ISA machine itself is described in Section 2.1.1.

107

(defun nextsrf (inst rf result)
(store (dest inst) result rf))

(defun step-isa (isa)
(1let
((pc (g ’pc isa))
(rf (g ’rf isa))
(imem (select ’imem isa)))
(let
((inst (g pc imem)))
(let
((argl (select (srcl inst) rf))
(arg2 (select (src2 inst) rf)))
(let
((result (alu argl arg2)))
(1let
((isa-new (seq nil
’pc (pcadd pc)
’rf (nextsrf inst rf result)
’imem imem)))
isa-new))))))

Figure 46: Term-level ACL2 model of a ISAS.

The ACL2 code for the term-level model of the ISA machine is shown in Figure 46. The model
is defined using the top-level function step-isa, which describes the operational semantics of the
ISA machine.

Figure 47 shows a simple property isa-pc of the ISA machine that we check using the SMT
clause processor. The construct defthm is a directive that asks ACL2 to try and prove that the
formula given inside of the directive is valid. Note that a hint provided along with the formula asks
ACL2 to prove that the formula is valid using the SMT clause processor. Without this hint, ACL2
will try the proof directly. The property checked is that after a step of the ISA machine, the program
counter in the resulting ISA state is incremented using the pcadd function. Note that the top-level
hypothesis of isa-pc assigns a type to the only free variable in isa-pc, isa. As seen from the
top-level hypothesis, the isa is a record variable with three fields, ’pc, which is an integer and
corresponds to the program counter; ’rf, which is an integer array and corresponds to the register
file; > imem, which is an integer array and corresponds to the instruction memory.

The formula corresponding to isa-pc after step 6 of the translation mechanism is shown in

108

(defthm isa-pc
(implies
(and
(integerp (g ’pc isa))
(integer-arrayp (g ’rf isa))
(integer-arrayp (g ’imem isa)))
(equal
(g ’pc (step-isa isa))
(pcadd (g ’pc isa))))
thints (("Goal"
:clause-processor
(smt-clause-processor clause nil state))))

Figure 47: Command to the ACL2 theorem prover to check a simple property about the ISA ma-
chine model. The property states that the program counter is incremented after every step of the
ISA machine. We call this property isa-pc.

(if (equal
(g ’pc
((lambda (pc rf imem)
((lambda (inst imem pc rf)
((lambda (argl arg2 pc inst rf imem)
((lambda (result imem rf inst pc)
((lambda (isa-new) isa-new)
(s ’pc (pcadd pc)
(s ’rf
(store (dest inst) result rf))
(s ’imem imem ’nil)))))
(alu argl arg2)
imem rf inst pc))
(select (srcl inst) rf)
(select (src2 inst) rf)
pc inst rf imem))
(select pc imem)
imem pc rf))
(g ’pc isa)
(g ’rf isa)
(g ’imem isa)))
(pcadd (g ’pc isa)))
nil t)

Figure 48: Expression corresponding to isa-pc obtained after step 6 the translation mechanism.

109

(nil
(smt1_isa pc)

nil

((pcadd . 1)
(src2 . 1)
(dest . 1)
(src1l . 1)
(alu . 2))

(smt1_isa_imem smtl_isa_rf)
((isa (’pc int)
(’rf int-array)
(’imem int-array))))

Figure 49: An initial snapshot of the environment.

Figure 48. Note that this formula is a negated version of isa-pc, and all the unconstrained functions
and macros have been expanded out. The lambdas are a result of expanding the ACL2 1et macros
used to bind lexically scoped local variables.

The initial value of the environment is shown in Figure 49. The first element of the environment
is empty denoted by nil as there are no free variables in the original formula that have a boolean
type. The sixth element shows the free record variable isa, the fields of isa, and the types of each
of these fields. Since the SMT-LIB language does not support records, the translation mechanism
expands out these record variables by creating new variables for each of the fields of a record vari-
able. For example, the isa variable has three fields and the variables smt1_isa pc, smtl_isa._rf,
and smt1_isa_imem have been introduced corresponding to the three fields of isa. While introduc-
ing a new variable, we use smt1 as a precursor to name of that variable so as to avoid name clashes
with already existing variable names. In order for this to work, we require the original input formula
to not have any variable names starting with smt1. Note that these newly introduced variables are
also contained in the environment.

The formula corresponding to isa-pc obtained after step 7 of the translation mechanism is shown
in Figure 50. As can be seen from the figure, the formula is in the SMT-LIB language except for
record variables, which have not been expanded out yet. An example is the isa-new record variable,
which is assigned the value of the ISA state obtained after stepping the ISA machine. Also, the 1et

expressions are annotated with type information. This information can be used in step 8 of the

110

(if _then_else
(= (let int (pc smtl_isa_pc)
(let int-array (rf smtl_isa rf)
(let int-array (imem smtl_isa_imem)
(let int (inst (select imem pc))
(let int (argl (select rf (srcl inst)))
(let int (arg2 (select rf (src2 inst)))
(let int (result (alu argl arg2))
(let ((’pc int)
(’rf int-array)
(’imem int-array))
(isa-new (s ’pc
(pcadd pc)
(s ’rf (store rf (dest inst) result)
(s ’imem imem nil))))
smt1_isa-new pc))))))))
(pcadd smtl_isa pc))
false true)

Figure 50: Expression corresponding to isa-pc obtained after step 7 of the translation mechanism.

translation to expand record variables.

The formula obtained after step 8 of the translation mechanism is shown in Figure 51. The
formula is now in the SMT-LIB language and can be checked using an SMT solver. Note that type
declarations have also been included that declares a type for all the free variables, UFs, and UPs
in the original formula. We checked the isa-pc property using ACL2 and using the SMT clause
processor integrated with ACL2. Since the model is simple and the property checked is trivial, in

both cases, the property was proved in zero seconds.
8.6 Related Work

In this section, we review related work on integrating automated verification engines such as deci-
sion procedures with deductive reasoning. We had previously developed a method for integrating
the UCLID decision procedure with the ACL?2 theorem proving system [61, 62], which was the first
such effort. We called the combined system ACLU (ACL2+UCLID). The design choices used to
develop the ACL2-SMT framework are to a large extent influenced by our experiences gained in
the development and application of the ACLU system. The ACL2-SMT framework can be used

to easily integrate ACL2 with SMT solvers that can check formulas in QF_AUfLia. Note that the

111

(benchmark acl2_smt
rextrafuns ((smtl_isa_pc Int))
rextrafuns ((smtl_isa_imem Array))
rextrafuns ((smtl_isa rf Array))
rextrafuns ((pcadd Int Int))
rextrafuns ((src2 Int Int))
:extrafuns ((dest Int Int))
:extrafuns ((srcl Int Int))
:extrafuns ((alu Int Int Int))
:formula
(if then_else
(= (let (pc smtl_isa pc)
(let (rf smtl isa rf)
(let (imem smtl_isa_imem)
(let (inst (select imem pc))
(let (argl (select rf (srcl inst)))
(let (arg2 (select rf (src2 inst)))
(let (result (alu argl arg2))
(let (smtl_isa-new pc (pcadd pc))
(let (smtl_isa-new_rf
(store rf (dest inst) result)
(let (smtl_isa-new_imem imem)
smt1_isa-new. pc)))))))))))
(pcadd smtl_isa pc))
false true))

Figure 51: Expression corresponding to isa-pc obtained after step 8 of the translation mechanism.
This expression is given as input to the SMT solver.

number and efficiency of such solvers is increasing. In contrast, the ACLU system is limited to the
use of only the UCLID decision procedure. Also, using the ACL2-SMT framework, we have been
able to verify bit-level pipelined machines with much less expert user effort than was required when
using the ACLU system (see Chapter 9 for details).

Another recent approach developed by Reeber and Hunt uses ACL2’s clause processor mecha-
nism to integrate a SAT-based decision procedure with ACL2 [83]. They identify a decidable subset
of ACL2 formulas called Subclass of Unrollable List Formulas (SULFA). They have developed a
decision procedure that translates ACL2 formulas in SULFA to a propositional problem in CNF
format. The user has to make an explicit call to use the decision procedure to check a given ACL2

conjecture. If the conjecture is in SULFA and if they cannot prove its validity, a counter example is

112

returned. Note that the SULFA approach is targeted at specifying and checking properties about bit-
level models in ACL2. In comparison, the ACL2-SMT framework is used to enable the automatic
checking of properties about term-level models.

Several other automated verification engines have also been integrated with ACL2. Sawada and
Reeber [92] have connected ACL2 with SixthSense [73], an automated commercial formal verifi-
cation tool. Ray, Matthews, and Tuttle have connected ACL2 with the SMV model checker [81].
Model checkers and SAT solvers have been connected with the PVS theorem prover [80, 93]. There
are several other efforts in integrating external tools with theorem provers such as Isabelle [74],

HOLA4 [28], etc.
8.7 Conclusion

We have developed a framework for integrating term-level SMT solvers with ACL2 theorem-proving
system in order to establish the correctness of programming systems that are beyond the scope of
SMT solvers and that would require heroic human effort to verify using just ACL2. The integra-
tion required the design of transformations between terms in two different systems. The ACL2
language is general purpose, while QF_AUfLia formulas described in the SMT-LIB language are
restricted and decidable. However, by virtue of its restrictions, specialized decision procedures can
be exploited to provide extreme speedups, which can be several orders of magnitude. By integrating
ACL2 with SMT solvers, we have the best of both worlds: our ACL2-SMT system allows us to work
in a general-purpose setting, yet using the SMT clause processor, we can obtain the efficiency of
SMT solvers. We have also developed a concrete system that integrates the Yices SMT solver with
ACL?2 using the SMT clause processor framework. Also, we note that very little effort is required

to use this framework to integrate other SMT solvers with ACL2.

113

CHAPTER IX

BIT-LEVEL VERIFICATION

We now describe our verification approach for checking that pipelined machines defined at the bit-
level work correctly. Our approach is based on using a combination of deductive reasoning and
decision procedures. As we stated earlier, approaches that use theorem provers such as ACL2 [43,
42] can be used to verify bit-level pipelined machine models but require significant expert user
effort.

Approaches based on decision procedures are highly automated and efficient. When verifying
term-level models, we found that the UCLID decision procedure is orders of magnitude faster than
ACL2. For example, the verification of a simple five-stage DLX pipelined machine defined at the
term-level took three seconds with UCLID, but took fifteen and a half days with ACL2 [56]. But, the
application of term-level decision procedures is restricted to the verification of term-level models,
models that abstract away the datapath, implement a small subset of the instruction set, require the
use of numerous abstractions, and are far from executable.

Our main contribution is to show how to attain a high degree of automation when verifying
pipelined machines defined at the bit-level. The high-level idea of the approach is that deductive
reasoning, using the ACL2 theorem proving system, is used to reduce the correctness theorem for
an executable, bit-level pipelined machine to a theorem about a term-level model, which can then be
automatically discharged using decision procedures. Note that all of the refinement-based methods
and techniques described in Chapters 3, 4, 5, 6, and 7 for the verification of term-level pipelined
machines in a highly automated, efficient, and scalable manner can be exploited in this verification
approach when reasoning about the pipeline at the term-level. We demonstrate our approach using
ACL2-SMT (described in Chapter 8), an extension of the ACL2 theorem proving system obtained
by integrating an SMT solver such as the Yices decision procedures with the ACL2 and using the
combined system to verify a complex seven-stage processor model defined mostly at the bit-level.

The significant gap between term-level models and executable, bit- and cycle- accurate models

114

IF1 IF2 ID EX M1 M2 WB

M
Register A
Branch
Prediction [™ |] >]

Decoding

_ Misprediction
Logic

Logic

Instruction
Memory

Data
Memory

Figure 52: High-level organization of bit-level interface processor model

is one of the main problems in the area of pipelined machine verification. One way to view our
approach is that it bridges this gap by verifying all the abstractions used in term-level models.

The rest of the chapter is organized as follows. In Section 9.1, we describe the seven-stage
pipelined machine model, most of which is defined at the bit-level. Section 9.2 describes in detail
the proof methodology, which is at the crux of our verification approach. Section 9.3 gives the
verification statistics of the proof in terms of the running time and expert user effort required. We

describe related work in Section 9.4 and conclude in Section 9.5.
9.1 Processor Model

We demonstrate our verification approach using a complex executable seven-stage pipelined ma-
chine model, most of which is defined at the bit-level. The high-level organization of the pipeline
is inspired by the Intel XScale architecture [23] and is shown in Figure 52. The model has seven
pipeline stages including a 2-cycle fetch, a decode, an execute, a 2-cycle memory access, and a write
back. The model has various features such as branch prediction, precise exceptions, and predicated
instruction execution.

The model is described at the bit-level except for the instruction and data memories, the register
file, and combinational circuit blocks such as the ALU; these blocks have bit-level interfaces i.e.,
their inputs and outputs are bit-vectors, but they are not necessarily defined at the bit-level inter-
nally. For example, the ALU in our machine takes bit-vector inputs, converts the inputs to integers,

performs the appropriate ALU operation on these integers, and converts the result to a bit-vector,

115

Bit-level History Pipeline

MB — ME — MEH — IE
— N

Term level ﬁ

| MA —= 1A |

A—>B : A refines B (proof by ACL2)

:> : Functional Instantiation

A— B | : A refines B (proof by SMT
clause processor)

Figure 53: Proof outline that uses ACL2 and UCLID to show that MB refines IE.

which is the output of the ALU unit. Therefore, we use the term “bit-level interface” to describe the
model. In the bit-level interface model the instruction decoder, control logic, and data path logic
operate on bit-vectors. The model is described using the ACL2 programming language, and unlike
term-level models it is executable. Instructions are 32 bits in length and the model has 16 registers.
The size of the data path is a parameter that can be set to any integer value greater than one, and the
verification times of our correctness proofs do not vary with the size of the data path.

The model implements 16 types of ALU instructions, a return from exception instruction, and
various branch, jump, load, and store instructions. Our model has both register-register and register-
immediate addressing modes and our model supports predicated instruction execution, i.e., some
instructions have an associated condition that depends on the processor status flags. The instruc-
tions are allowed to complete and update the programmer visible components such as the program
counter, the data memory, and the register file only if the condition associated with the instruction
is true. Each of the ALU, branch, load, and store instructions can be executed using 16 different
conditions. ALU, load, and store instructions can also use immediate values. In all, the model

implements 593 instructions.
9.2 Proof Methodology

The proof methodology which is at the crux of our verification approach for checking that bit-level
pipelined machines work correctly is shown in Figure 53. The goal is to prove that the bit-level
interface pipelined machine model MB refines its instruction set architecture IE. If we were to at-

tempt this proof directly using a theorem prover, it would require an extraordinary amount of expert

116

user effort. Instead, we define a series of transformations, that converts MB to IE. We prove each
of these transformations are correct using WEB-refinement. Since refinement is a compositional
notion, we chain each of these individual refinement proofs together to get that MB refines IE.

Why are these transformations any better than carrying out the proof directly using a theorem
prover? As stated earlier, the idea is to use a theorem prover to reduce the bit-level verification
problem to a term-level problem, which can then be automatically solved using a term-level decision
procedure. The transformations are aimed at transforming the bit-level model to a term-level model,
and then a decision procedure is used to reason about the pipeline at the term-level.

The first transformation is used to move from bit-vectors to integers. We do this by proving
(with ACL?2) that MB refines ME, an executable pipelined machine that is similar to MB, but which
operates on integers, not bit-vectors. The second transformation augments ME with history vari-
ables, which are required to define many refinement maps that relate pipelined machine states to
ISA states, such as those based on commitment. The resulting executable model is MEH, which is
very similar to ME, except that it has additional state elements that record history information.

The pipeline is dealt with next, when MEH is shown to refine IE. Both ACL2 and the Yices SMT
solver that is integrated with ACL2 are used for this refinement proof. The proof that MEH refines
IE cannot be directly handled with a term-level decision procedure, e.g., the models use arithmetic
operations on integers that are not expressible in QF_AUfLia. Therefore, several abstractions are
employed, resulting in machines MA and IA which abstract MEP and IEP, respectively. MA and 1A
are term-level models and we prove that MA refines IA by using the Yices SMT solver which we
have integrated with ACL2.

We now describe in detail aspects of the refinement proof. Note that the various models are very

large and given the limited space, it is not possible to fully describe these models.
9.2.1 Reasoning about Bit-Level Interface Designs

In this section we describe the first transformation that converts the bit-level pipelined machine
model MB to ME, a pipelined machine operating on integers. The transformation is proved correct
using refinement. The refinement proof that relates MB and ME is carried out exclusively using

ACL2 and is parameterized with respect to the word size, i.e., our proof remains the same regardless

117

of the word size of the machines involved. Since MB and ME do not stutter with respect to each
other, we prove that the two systems are bisimilar.

The refinement map from MB to ME converts unsigned and signed bit-vectors in MB to naturals
and integers, respectively. For the proof, we developed a bit-vector library in ACL2. For example,
we defined and developed a theory of rules for functions to convert bit-vectors to numbers and vice-
versa. The functions include n-ubv (which converts naturals to unsigned bit-vectors), ubv-n (which
converts unsigned bit-vectors to naturals), i-sbv (which converts integers to signed bit-vectors), and
sbv-i (which converts signed bit-vectors to integers). The library required about four days for an

expert ACL2 user to develop. For the refinement proof, we required theorems such as the following.

1. natp(a) A natp(n) Alen(n-ubv(a)) <n
= ubv-n(extend-n(n-ubv(a),n)) =a
2. integerp(a) A natp(n) Alen(i-sbv(a)) <n
= sbv-i(sign-extend-n(i-shv(a),n)) = a
3. bvp(x) Anatp(a) A (a < len(x)) = bitp(nth(a,x))
4. bvp(a) Abvp(b) A (len(a) = len(b))
= (ubv-n(a) = ubv-n(b)) < (a=bh)
5. bvp(a) Abvp(b) A (len(a) = len(b))
= (shbv-i(a) =sbv-i(b)) & (a=Db)

In the above theorems, len(X) is the length of the bit-vector X, natp(a) denotes that a is a natural
number, integerp(a) denotes that a is an integer, bvp(a) denotes that a is a bit-vector, bitp(a) denotes
that a is a bit, nth(n,x) corresponds to the n'" element of list x, extend-n(b, n) extends the unsigned
bit-vector b to a length of n, and sign-extend-n(b, n) sign extends the signed bit-vector b to a length
of n. Theorems 1, 2, 4, and 5 are used to reason about the refinement map and Theorem 3 is useful
for reasoning about the instruction decoder, which generates control signals from the bit-vector
corresponding to instructions. The theorems described above were essential for our proof, but our

proofs required many other theorems all of which are included in our bit-vector library. Also, the

bit-vector library was developed based on what was required for the refinement proof, and can be

118

easily extended with more bit-vector operations and rules.
9.2.2 Augmenting Executable Models with History Information

The second transformation augments the executable pipelined machine model ME with additional
state that records history information, resulting in the machine model MEH. Remember that the
goal is to move towards a term-level pipelined machine model that can then be used to reason about
the pipeline. Proving that the pipeline works correctly requires defining refinement maps that relate
pipelined machine states to ISA states. Many such efficient refinement maps require the use of
history information. A class of such refinement maps are those that are based on commitment,
which we use to prove the correctness of the 7 stage pipeline.

Using the commitment refinement map, a pipelined machine state is related to an instruction set
architecture state by invalidating all the partially executed instructions in the pipeline and rolling
back the programmer-visible components so that they correspond with the last committed instruc-
tion. While it is hard to roll back the pipelined machine, one can determine the values of the
programmer visible components corresponding to the last committed instruction using history in-
formation.

The history information is recorded using history variables, which are state elements that record
previous values of the state components of a pipelined machine. These history variables are used to
only to define the refinement map and are not to interfere with the normal operation of the pipelined
machine. However, there is no guarantee that this is the case with MEH. For example, it is quite
possible that when instrumenting ME with history variables, the user allowed the value of a history
variable to be used in updating a state component of MEH. Therefore, proving that MEH is correct
does not imply the correctness of ME, and so we have to show that ME refines MEH.

Since MEH has additional state components, it is easier to define a refinement map from MEH
to ME, and prove that MEH refines ME. As ME and MEH do not stutter with respect to each other,
proving that MEH refines ME guarantees that the two systems are bisimilar and also that ME refines
MEH. We prove that MEH refines ME by defining a refinement that relates MEH states to ME states.
The refinement map directly maps the state components of MEH to ME excluding history variables,

which are ignored. The proof can be easily carried out using ACL2.

119

9.2.3 Relating Executable Models and Term-Level Models

In this section, we give an overview of the proof that MEH refines IE. This refinement step deals
with the pipeline and uses the Yices SMT solver. However, in order to use Yices, we have to
show a relationship between executable machines and term-level machines. The difficulty is in
mechanically verifying the various abstractions employed, which are used to deal with memories,
branch prediction, instruction classes, etc. Below we describe two abstraction techniques that are
very hard to mechanically verify. Both these abstraction techniques— one for memories and the other
for branch predictors— are widely used in term-level modeling.

Memories at the term-level can be modeled using array semantics, which can be expressed in
QF_AUfLia. However, in cases where reads and writes are in order—e.g., this is the case for the
data memory of our machine—memory can be modeled as an integer variable using two UFs, one
to read and one to write. This modeling style leads to faster verification times than the approach
using array semantics [49]. However, it is much more difficult to use if the abstraction has to be
mechanically verified. To mechanically verify this abstraction, we have to encode the memory state
as an integer and define the read and write operations for this encoding of the memory, in order to

obtain our executable model. This is possible using Gédel encoding scheme, as shown below.

((a; . di) (@ . dy) ... (@n . dn)) —

aj+1 a+1 _an+1 A+l b+l dp+l

p?? Py Pnia p§3 Py - Pry2
In the above equation, the data memory is an alist whose address elements are a1, a, .. .,ay and
whose data elements are d;, ds, ..., d,. The it" prime is denoted p;. Any finite memory can now be

represented as a single integer, but there are several problems with the above approach. For example,
the theorem proving effort required to show that this scheme works is non-trivial, e.g., it requires
that we prove the prime decomposition theorem. In addition, the above encoding scheme cannot
be used for infinite memories, as there is no bijection between the set of infinite memories and the
natural numbers. Therefore, we find that the time savings attained by abstracting the data memory
with an integer are not worth the added theorem proving effort required to justify this abstraction.

Branch predictors at the term-level can also be modeled using an integer variable that represents

120

the state of the branch predictor and three UFs that take the branch predictor state as input and return
the next state of the branch predictor, a prediction for the branch direction, and a prediction for the
branch target [49]. To show that the above correctly abstracts an executable implementation, for
example a Branch Target Buffer (BTB), we are required to model the environment of the BTB using
an integer. However, since the next state of the BTB depends on the entire processor state, we have
to encode the state of the processor with one integer. We can do this using Gédel encoding schemes,
as described above, provided the memories are finite, but the effort required would be considerable.
Therefore, we use an alternate abstraction, where we simply model the branch predictor choices
using non-determinism. Justifying this abstraction is straightforward, thus the ACL2 verification
effort is drastically simplified. In addition, the UCLID verification times are comparable to the
verification times required by the standard approach.

A final abstraction that we briefly mention concerns the instruction set. Term-level models only
have one instruction per instruction class, whereas the executable models have the full instruction
set. This turned out to be surprisingly easy to deal with because the term-level models abstract the
instructions by using uninterpreted functions (UFs) that take the opcode as argument and collapse
the instructions corresponding to various values of the opcode to one instruction. When we instan-
tiate the term-level model, we replace the uninterpreted functions that take the opcode as input with
functions that check the value of the opcode and perform the appropriate operation. For example,
the term-level model only has one ALU operation, but the executable model first checks the opcode
to determine whether it is an add or a subtract etc., and then performs the appropriate operation.

Executable models have other advantages. We can use them to debug designs more easily. For
example, using Yices counterexamples one can determine the pipelined machine state that leads
to a bug, but it might be more difficult to determine what the actual bug is. Using our executable
models, we can execute the pipelined machine from the concrete state obtained from the counter
example to track the bug in the design. Note that counterexamples generated by Yices correspond
to counterexamples for the refinement relation between ACL2 models MA and IA.

Executable models also allow proofs of properties that might not be theorems in the abstract
models. In addition, while the refinement proof established that the pipelined machine model (MB)

behaves like the instruction set architecture model (IE), how do we know that the instruction set

121

architecture model (IE) is correct? Executable models allows us to run test programs. In our case,
while executing a simple program, we found three bugs in the instruction set architecture model

(IE), which are described below.

e Instructions are 32 bits with the least significant bit and the most significant bit corresponding
to the 0! bit and the 31 bit of the instruction, respectively. The bug was in the functions that
implement the instruction decoder, which were reading the 32-bit instruction in the reverse
order. For example, if a decoder function was supposed to read the 5 bit, it was instead

reading the 26 bit (31 - 5) of the instruction.

o The register file is updated by both ALU and load instructions. A decoder function that takes
the instruction as input is used to determine if that instruction updates the register file. The
function was buggy in that it did not signal that the register file should be updated if the input

was a load instruction.

e The processor has 4 flags that are used to store various properties of the result obtained from
the previous instruction. For example, if the previous instruction was an ALU instruction
whose result was zero, then the Z flag is set. The update_nzcv function that takes the result
and the previous value of the flags is used to update the processor flags. The update nzcv was

buggy in that the two input arguments to the function were swapped.

Since the decoder functions and the update_nzcv function are abstracted using uninterpreted
functions (UFs) in the term-level models, none of the above bugs could have been caught during the
verification of the term-level models using Yices.

The bugs described above bring up an important aspect of automatic term-level verification
using decision procedures such as Yices. Recall that in order to use such methods, one must abstract
away the ALU, the decoding logic, etc. using UFs shared by both the MA and ISA. While these
abstractions drastically reduce the complexity of the verification problem, they also lead to ISA
models that are structurally similar to MA models. MA models tend to have next state relations for
each of the components of the MA machine and this way of specifying the MA model makes sense

because they are inherently parallel machines whose every component is continuously updated. ISA

122

models defined at the term-level tend to have the same structure as their corresponding MA models.
This is what allows them to share the same UFs as their MA models, but it also is what makes it
easy to mask the kinds of errors reported above. Notice, however, that ISA models are inherently
sequential and, conceptually, the simplest way to define them is to just have a big case statement
that checks the type of the next instruction and executes code corresponding to the semantics of this
instruction. If we define ISA models in this way, we have a much better chance of catching errors,
as the semantic gap between the MA and ISA models is now larger. Using our approach, we can in

fact define such an ISA machine and can prove that it is refined by IE.
9.2.4 Abstract Models

MA and IA are term-level models, and we are finally at the point where we can invoke the Yices
SMT solver, which is optimized to automatically and efficiently reason about such models. MA, 1A,
and the refinement theorem that relates these models are processed using the SMT clause processor
described in Chapter 8. The clause processor translates the formula expressing the refinement rela-
tion between MA and IA to a formula in QF_AUfLia, which is then checked using the Yices SMT
solver. If the formula is found to be valid, then the formula that relates MA and IA is admitted as a
theorem in ACL2. Otherwise, the counterexample generated by Yices is mapped back to ACL2 and

can be utilized by the user to debug the models.
9.3 \Verification Statistics

The verification times for the proofs and the expert user effort required in terms of man-weeks for
each intermediate step in the proof methodology is shown in Table 8. In the “Proof Step” column in
the table, A — B means that system A refines system B. For all the proof steps, except MA — IA,
we used the ACL2 theorem proving system (version 3.2). For MA — IA, we used the integration
of the Yices decision procedure (version 1.0.9) with ACL2. All the experiments were run on a 1.2
GHz Intel Pentium 3 machine, with a cache size of 512 KB. The user effort required for the proof
steps is an estimate of the effort that would be required for an expert user of an SMT solver such as
Yices and the ACL2 theorem proving system to apply this verification approach to verify another
pipelined machine design of similar complexity. The times reported above do not include the time

required to learn ACL2 and do not include the time required for the integration, which took several

123

Proof Step Proof Time | User Effort
(secs) (man-days)

MB — ME 30.40 7

ME — MEH 25.18 1

MA — IA 5.74 7

MEH — IE 3.30 10

Table 8: Verification times and expert user effort required for the refinement proofs.

months.

As can be seen from the table, the correctness proof for the XScale inspired processor model
required about 25 days of expert user effort. Based on our experiences in using UCLID, we would
have required about 30 days of user effort to abstract and verify the processor model at the term-
level using UCLID. This amount of user effort is required for two reasons. First, the limitations
of the UCLID specification language makes it difficult to model the pipelined machines and state
correctness theorems. Second, since term-level model are not executable, debugging becomes much
harder. Automation is really a measure of the amount of user effort required [54]. Therefore, we
believe that our verification approach is highly automated as it requires only about 0.9 the amount

of effort required to verify the processor model using UCLID.
9.4 Related Work

We now describe previous work on the verification of bit-level designs of microprocessor models.
We had previously developed a refinement-based proof methodology for checking the correctness
of bit-level pipelined machines that was based on using a combination of the UCLID decision pro-
cedure with the ACL2 theorem proving system [61, 62]. The refinement-based proof methodology
described in this chapter is a more efficient and simplified version of this previous approach. The
current approach required less than a month of expert user effort, whereas the previous approach
required close to four months of user effort.

An early, pioneering body of work on the use of theorem proving for the verification of mi-
croprocessors is the CLI stack work [33, 34, 13]. Another early approach by Srivas and Bickford
was based on the use of skewed abstraction functions [96]. A notable use of theorem proving in
the context of hardware verification used ACL2 to reason about Motorola’s CAP digital signal pro-

cessor [16]. Sawada and Hunt have used the ACL2 theorem proving system to verify the FM9801

124

Microarchitecture. Their work is based on computing an intermediate abstraction of the pipelined
machine state called MAETT that keeps track of completed and in-flight instructions. Using the
MAETT abstraction, they check that each of the instructions in the pipeline executes correctly.
Hosabettu et al., [30, 31] use the PVS theorem prover to verify pipelined processors. Their work
is based on the use of completion functions that specifies the effect of completing an instruction in
the pipeline on the programmer visible components. The abstraction function is computed by using
a composition of completion functions, one for every partially executed instruction in the pipeline.
Arons and Pnueli [9] have also used the PVS theorem prover to verify a machine with speculative
instruction execution. They use an inductive proof to show that machines which differ only in the
size of the retirement buffer are related; however, due to the complexity of the refinement maps
involved, they conclude that a direct approach is far simpler than the inductive one. In [48], data
consistency and liveness of pipelined machine models is verified using the PVS theorem prover.
The models are synthesizable and are described very close to the gate-level.

There is also recent progress in the development of bit-level decision procedures that have been
used to directly verify pipelined machines defined at the bit-level. One such approach is based on
the Bit-level Analysis Tool (BAT) [67, 66], a decision procedure for solving quantifier-free formulas
over the extensional theory of fixed-size bit-vectors and fixed-size bit-vector arrays (memories).
BAT has been used to verify a 32-bit 5 stage pipelined machine in approximately 2 minutes [65].
Key features of BAT that enable the verification of complex systems such as pipelined machines are
a fully automatic and efficient algorithm for abstracting bit-level memories [65] and a novel method
for generating CNF (Conjunctive Normal Form) from a high-level circuit representation [68].

Another approach for verifying bit-level designs is based on Counter Example Guided Abstrac-
tion and Refinement (CEGAR) is introduced in [8] and implemented in the Reveal system. This
approach automatically abstracts Verilog models and properties to the logic of Counter arithmetic,
with restricted Lambda expressions and Uninterpreted functions (CLU) logic, which can then be
checked efficiently using a decision procedure. If a spurious counter example is generated, the ab-
stract model is refined using minimal unsatisfiable subset (MUS) extraction. The Reveal system has
been used to check parts of the safety property based on the Burch and Dill commuting diagram

for a 4-bit pipelined machine [22]. In contrast, while our approach is not fully automatic, it can be

125

used to handle much more complex pipelined machines. Also our verification times are indepen-
dent of the data path width, whereas the verification times when using bit-level decision procedures

increases as the size of the data path width increases.
9.5 Conclusions

We have shown how to verify executable pipelined machine models with bit-level interfaces using
our integration of SMT solvers with the ACL2 theorem proving system. This has allowed us to over-
come the major limitation of approaches based on decision procedures, namely that they only work
for abstract term-level models and do not provide a firm connection with RTL models. Theorem
proving approaches can reason about RTL-level designs, but tend to require heroic human effort.
With our approach, the proof required only minutes of CPU time and the human theorem proving
effort required was modest. Our proofs are based on WEB-refinement, a theory of refinement that

is compositional and preserves both safety and liveness properties.

126

CHAPTER X

CONCLUSIONS

In this dissertation, we have developed a verification approach based on refinement and a com-
bination of deductive reasoning and decision procedures for checking the correctness of bit-level
pipelined machines. We showed that using our approach, pipelined machines can be verified in a
highly automated, efficient, and scalable manner. The high-level idea of the approach is as follows.
A deductive reasoning engine such as the ACL2 theorem proving system is used to reduce the bit-
level pipelined machine verification problem to a term-level problem. We have developed several
methods to automatically reason about pipelines at the term-level.

Automation was achieved by reducing the correctness criterion to a statement expressible in a
decidable fragment of first-order logic that can be handled using existing decision procedures. We
also provided recipes to define refinement maps and rank functions using only high-level informa-
tion about the design. Checking liveness automatically was thought to be expensive, but using our
approach liveness could be proved for complex pipelined machines with an overhead cost of only
about 25%.

Using empirical evaluation, we showed that refinement maps used for correctness proofs can
have a drastic impact on verification times. We developed several automatic and efficient methods to
verify term-level pipelined machines using variations of flushing and commitment, two well-known
methods for defining refinement maps. We also developed a method for combining flushing and
commitment to obtain several orders of magnitude improvement in verification times over previous
approaches. All of these methods can be used in our verification approach to reason about the
pipeline at the term-level. We have also used extensive experiments to evaluate and compare these
methods with previous approaches. For our experiments, we used a large number of pipelined
machine models that have anywhere between 6 and 16 stages and also incorporate features such as
branch prediction, precise exceptions, interrupts, instruction queues, instruction cache, data cache,

and write buffers.

127

Even with the use of these efficient methods, term-level verification problems are often beyond
the complexity threshold of decision procedures. To overcome this limitation, we developed a com-
plete compositional reasoning framework based on refinement that allows us to break up correctness
proofs into smaller pieces. We demonstrated that using this framework, term-level pipelined ma-
chines can be verified in a highly efficient and scalable manner. Another important advantage of our
framework is that counterexamples generated are simpler, making it easier to debug the design.

The proof obligations generated by our verification approach are discharged using the ACL2-
SMT system, which we developed by integrating a decision procedure with the ACL2 theorem
proving system. We demonstrated the effectiveness of our verification approach by using it to check
the correctness of an Intel XScale inspired processor model, most of which is defined at the bit-level.
The model implements 593 instructions and has features such as predicated instruction execution,
precise exceptions, and branch prediction. We were able to verify the model with less than a month
of expert user effort and only a few minutes of CPU time. Using previous approaches based on
deductive reasoning would have required an extraordinary amount of expert user effort to construct
a correctness proof for the processor model. Using our approach, we could verify the processor
model with only about 0.9 the amount of effort required to abstract and verify RTL models using

UCLID.

10.1 Future Work

We see a number of directions for future work, and we now outline some of these possibilities.
The techniques developed in this thesis have been evaluated using academic models inspired by
commercial designs. The next goal we plan to pursue is to apply these methods to verify a micro-
processor core that has commercial applications. In fact, we plan to verify the Plasma CPU [78],
an Intellectual Property (IP) core that has been used in academic and commercial projects. The
RTL design of the Plasma CPU is described in VHDL—an industry standard hardware description
language—and can be downloaded from the Opencores webpage [76]. Most of the MIPS I user
mode instructions are supported, which include multiply and divide instructions. Precise exceptions
and interrupts are implemented. A memory controller is also incorporated that is used to interface

with a unified memory that stores both instructions and data.

128

The Plasma CPU design brings up several verification challenges. One such example is the
memory model. In the academic models we verified, the memory load and store operations are
assumed to complete in one cycle. Whereas, memory load and store operations in the Plasma CPU
can take an arbitrary number of cycles to complete. Another challenge is that the decoder unit is
much more complex in comparison to the models we have verified. Dealing with this complexity
might require the use of clever abstractions. Also, multiply and divide instructions multicycle and
can take upto 32 cycles to complete.

Another direction of future work is the verification of Cache Coherence Protocols (CCPs). Pre-
vious works on verifying CCPs are targeted towards checking that high-level models of these pro-
tocols are correct [27]. These high-level models are very abstract and hide many of the implemen-
tation details. For example, the implementations of these protocols are heavily pipelined and it is
beyond the scope of automated tools to apply state-of-the-art verification techniques for CCPs to
these low-level implementations. High-level CCP models can be thought of as ISAs and low-level
CCP models can be thought of as pipelined machines. Therefore, an interesting approach for veri-
fying CCP designs would be to prove that the low-level implementation refines its high-level model
by extending the verification approach for bit-level pipelined machines described in this thesis. The
high-level CCP model can then be verified using existing methods.

Another aspect of CCPs designs is that many of the pipelines have simple behaviors, but, can
have a large number of stages. Such pipelines also appear in a number of other hardware designs.
This brings up the following question. Can we fully automate the verification of bit-level pipelines
with a limited set of behaviors? One possible approach would be to use compositional reasoning
based on refinement, which we have described in Chapter 7 to be both efficient and scalable, but,
requires some user effort to define the intermediate models, and the refinement maps and rank
functions that relate these models. But, if the pipeline has only a limited number of behaviors, it
might be possible to automatically construct a compositional proof by developing methods that can
analyze the design and determine the various components required for the compositional proof.

The approach described above can be made applicable to RTL designs by leveraging recent

129

progress in decision procedures for bit-level reasoning, an example of which is the Bit-level Anal-
ysis Tool (BAT) [67]. BAT implements a state-of-the-art decision procedure for solving quantifier-
free formulas over the extensional theory of fixed-size bit-vectors and fixed-size bit-vector arrays
(memories). Preliminary results [64] show that using refinement-based compositional reasoning
with bit-level decision procedures such as BAT can be used to reason about complex pipelined
machines in a highly-automated and efficient manner.

Our focus in this dissertation has been the verification of in-order pipelines. But, state-of-the-art
microprocessor pipelines have many more complex behaviors such as out-of-order, superscalar, and
VLIW execution, pipelines that implement variable latency instructions, etc. We plan to explore
and develop refinement-based methods for designs with more complex pipeline behaviors. Note
that some of these behaviors such as our-of-order execution of instructions can be verified using
WEB refinement as the instructions complete in order. Whereas, other behaviors such as super-
scalar execution, where the implementation can complete multiple instructions in a single cycle will

require extensions to the theory of refinement that we currently use.

130

(1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

(9]

REFERENCES

2005 International Conference on Computer-Aided Design (ICCAD’05), November 6-10,
2005, San Jose, CA, USA, IEEE Computer Society, 2005.

Formal Methods in Computer-Aided Design, 6th International Confrence, FMCAD 2006,
San Jose, California, USA, November 12-16, 2006, Proceedings, IEEE Computer Society,
2006.

AAGAARD, M., COOK, B., DAY, N. A., and JONES, R. B., “A framework for micropro-
cessor correctness statements.,” in Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods (CHARME’01) (MARGARIA, T. and MELHAM, T. F.,
eds.), vol. 2144 of Lecture Notes in Computer Science, (Livingston, Scotland), pp. 433-448,
Springer, 2001.

AAGAARD, M., COOK, B., DAY, N. A., and JONES, R. B., “A framework for superscalar
microprocessor correctness statements.,” International Journal on Software Tools for Tech-
nology Transfer, vol. 4, no. 3, pp. 298-312, 2003.

AAGAARD, M., DAY, N. A., and JONES, R. B., “Synchronization-at-retirement for pipeline
verification.,” in Hu and Martin [32], pp. 113-127.

ABADI, M. and LAMPORT, L., “The existence of refinement mappings,” Theoretical Com-
puter Science, vol. 82, no. 2, pp. 253-284, 1991.

ABADIR, M. S., ALBIN, K., HAVLICEK, J., KRISHNAMURTHY, N., and MARTIN, A. K.,
“Formal verification successes at Motorola.,” Formal Methods in System Design, vol. 22,
no. 2, pp. 117-123, 2003.

ANDRAUS, Z. S., LIFFITON, M. H., and SAKALLAH, K. A., “Refinement strategies for ver-
ification methods based on datapath abstraction.,” in Asia South Pacific Design Automation
(ASP-DAC’06) (HIROSE, F., ed.), pp. 19-24, IEEE, 2006.

ARONS, T. and PNUELI, A., “A comparison of two verification methods for speculative
instruction execution,” in Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), vol. 1785 of Lecture Notes in Computer Science, pp. 487-502, Springer-Verlag,
March 2000.

“Barcelogic for SMT,” 2007. See URL http://www.lsi.upc.edu/ oliveras/-
bclt-main.html.

BENTLEY, B., “Validating the Intel Pentium 4 microprocessor,” in 38th Design Automation
Conference, pp. 253-255, 2001.

BENTLEY, B., “Validating a modern microprocessor,” 2005. See URL http://-
www.cav2005.inf.ed.ac.uk/bentley_CAV_07_08_2005.ppt.

BEVIER, W. R., HUNT, JR., W. A., MOORE, J. S., and YOUNG, W. D., “An approach to
systems verification,” Journal of Automated Reasoning, vol. 5, pp. 411-428, December 1989.

131

[14]

[16]

[27]

BOYER, R. S. and MOORE, J. S., “Integrating decision procedures into heuristic theorem
provers: a case study of linear arithmetic,” in Machine intelligence 11, pp. 83-124, Oxford
University Press, Inc., 1988.

BRINKSMA, E. and LARSEN, K. G., eds., Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, vol. 2404 of
Lecture Notes in Computer Science, Springer, 2002.

BROCK, B. and HUNT, JR., W. A., “Formally specifying and mechanically verifying pro-
grams for the Motorola complex arithmetic processor DSP,” in 1997 IEEE International
Conference on Computer Design, pp. 31-36, IEEE Computer Society, Oct. 1997.

BROCK, B., KAUFMANN, M., and MOORE, J. S., “ACL2 theorems about commercial mi-
croprocessors,” in Formal Methods in Computer-Aided Design (FMCAD’96) (SRIVAS, M.
and CAMILLERI, A., eds.), pp. 275-293, Springer-Verlag, 1996.

BROWNE, M., CLARKE, E. M., and GRUMBERG, O., “Characterizing finite Kripke struc-
tures in propositional temporal logic,” Theoretical Computer Science, vol. 59, 1988.

BRYANT, R. E., GERMAN, S., and VELEV, M. N., “Exploiting positive equality in a logic
of equality with uninterpreted functions,” in Computer-Aided Verification—-CAV "99 (HALB-
WACHS, N. and PELED, D., eds.), vol. 1633 of LNCS, pp. 470-482, Springer-Verlag, 1999.

BRYANT, R. E., LAHIRI, S. K., and SESHIA, S., “Modeling and verifying systems us-
ing a logic of counter arithmetic with lambda expressions and uninterpreted functions,” in
Computer-Aided Verification—CAV 2002 (BRINKSMA, E. and LARSEN, K., eds.), vol. 2404
of LNCS, pp. 78-92, Springer-Verlag, 2002.

BURCH, J. R., “Techniques for verifying superscalar microprocessors,” in Design Automa-
tion Conference (DAC ’96), (Las Vegas, Nevada), pp. 552-557, ACM Press, June 1996.

BURCH, J. R. and DILL, D. L., “Automatic verification of pipelined microprocessor con-
trol,” in Computer-Aided Verification (CAV '94), vol. 818 of LNCS, pp. 68-80, Springer-
Verlag, 1994.

CLARK, L., HOFFMAN, E., MILLER, J., BIYANI, M., LiAo, Y., STRAZDUS, S.,
M.MORROW, VELARDE, K., and YARCH, M., “An embedded 32-bit microprocessor core
for low-power and high-performance applications,” IEEE Journal of Solid-State Circuits,
vol. 36, no. 11, pp. 1599-1608, 2001.

CLARKE, E. M., GRUMBERG, O., and PELED, D., Model Checking. MIT Press, 1999.

COHN, A., “A proof of correctness of the VIPER microprocessor:the first level,” technical
report, University of Cambridge, Cambridge Laboratory, 1987.

GANZINGER, H., HAGEN, G., NIEUWENHUIS, R., OLIVERAS, A., and TINELLI, C.,
“DPLL(T): Fast decision procedures,” in Computer Aided Verification—-CAV’04 (ALUR, R.
and PELED, D., eds.), vol. 3114 of LNCS, pp. 175-188, Springer, 2004.

GERMAN, S. M., “Formal design of cache memory protocols in ibm.,” Formal Methods in
System Design, vol. 22, no. 2, pp. 133-141, 2003.

132

(28]

[29]

GORDON, M. J. C., “Programming combinations of deduction and bdd-based symbolic cal-
culation,” LMS Journal of Computation and Mathematics 5, pp. 56-76, 2002.

GREVE, D., RICHARDS, R., and WILDING, M., “A summary of intrinsic partitioning verifi-
cation,” in Fifth International Workshop on the ACL2 Theorem Prover and Its Applications,
2004.

HOSABETTU, R., SRIVAS, M., and GOPALAKRISHNAN, G., “Decomposing the proof of
correctness of a pileplined microprocessors,” in Computer-Aided Verification — CAV "98 (Hu,
A.J. and VARDI, M. Y., eds.), vol. 1427 of LNCS, Springer-Verlag, 1998.

HOSABETTU, R., SRIVAS, M., and GOPALAKRISHNAN, G., “Proof of correctness of a
processor with reorder buffer using the completion functions approach,” in Computer-Aided
Verification—-CAV "99 (HALBWACHS, N. and PELED, D., eds.), vol. 1633 of LNCS, Springer-
Verlag, 1999.

Hu, A.J. and MARTIN, A. K., eds., Formal Methods in Computer-Aided Design, 5th Inter-
national Confrence, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings,
vol. 3312 of Lecture Notes in Computer Science, Springer, 2004.

HUNT, JR., W. A., “Microprocessor design verification,” Journal of Automated Reasoning,
vol. 5, no. 4, pp. 429-460, 1989.

HuNT, JR., W. A., FM8501: A Verified Microprocessor, vol. 795. Springer-Verlag, 1994.

“Intel Pentium 4 Processor - Product Overview,” 2005. See URL http://www.intel.-
com/design/pentiumé/prodbref/.

“International technology roadmap for semiconductors,” 2004. See URL http://-
www.itrs.net/Links/2004Update/2004Update.htm.

JHA, S., LU, Y., MINEA, M., and CLARKE, E. M., “Equivalence checking using abstractb-
dds.,” in ICCD, pp. 332-337, 1997.

JHALA, R. and MCMILLAN, K. L., “Microarchitecture verification by compositional model
checking.,” in International Conference on Computer Aided Verification (CAV’01) (BERRY,
G., COMON, H., and FINKEL, A., eds.), vol. 2102 of Lecture Notes in Computer Science,
pp- 396-410, Springer, 2001.

JONES, R., SKAKKEBZK, J., and DILL, D., “Reducing manual abstraction in formal verifi-
cation of out-of-order execution,” in Formal Methods in Computer-Aided Design (FMCAD)
(GOPALAKRISHNAN, G. and WINDLEY, P., eds.), vol. 1522 of Lecture Notes in Computer
Science, pp. 2-17, Springer-Verlag, November 1998.

JONES, R. B., SKAKKEBZK, J. U., and DILL, D. L., “Formal verification of out-of-order
execution with incremental flushing,” Formal Methods in System Design, Special Issue on
Microprocessor Verification, vol. 20, pp. 139-158, Mar. 2002.

KANE, R., MANOLIOS, P., and SRINIVASAN, S. K., “Monolithic verification of deep
pipelines with collapsed flushing.,” in Design, Automation and Test in Europe, (DATE’06)
(GIELEN, G. G. E., ed.), pp. 1234-1239, European Design and Automation Association,
Leuven, Belgium, 2006.

133

[42]

[43]

[44]

[47]

[48]

[49]

KAUFMANN, M., MANOLIOS, P., and MOORE, J. S., eds., Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

KAUFMANN, M., MANOLIOS, P., and MOORE, J. S., Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, July 2000.

KAUFMANN, M., MOORE, J. S., RAY, S., and REEBER, E., “Integrating external deduction
tools with acl2,” in Proceedings of the 6th International Workshop on the Implementation of
Logics (IWIL’06), pp. 7-26, 2006.

KAUFMANN, M. and MOORE, J. S., “A precise description of the ACL2 logic,”
tech. rep., Department of Computer Sciences, University of Texas at Austin, 1997.
See URL http://www.cs.utexas.edu/users/moore/publications/acl2-papers.-
html#Foundations.

KAUFMANN, M. and MOORE, J. S., eds., Fifth International Workshop on the ACL2 The-
orem Prover and Its Applications (ACL2-2004), November 2004. See URL http://-
Www.cs.utexas.edu/users/moore/acl2/workshop-2004/.

KAUFMANN, M. and MOORE, J. S., “ACL2 homepage.,” July, 2007. See URL http://-
WWW.cs.utexas.edu/users/moore/acl2.

KRONING, D., Formal Verification of Pipelined Microprocessors. PhD thesis, Universitit
des Saarlandes, 2001.

LAHIRI, S., SESHIA, S., and BRYANT, R., “Modeling and verification of out-of-order mi-
croprocessors using UCLID,” in Formal Methods in Computer-Aided Design (FMCAD’02),
vol. 2517 of LNCS, pp. 142-159, Springer-Verlag, 2002.

LUDDEN, J. M., ROESNER, W., HEILING, G. M., REYSA, J. R., JACKSON, J. R., CHU, B.-
L., BEHM, M. L., BAUMGARTNER, J., PETERSON, R. D., ABDULHAFIZ, J., BuCcy, W. E.,
KLAUS, J. H., KLEMA, D. J., LE, T. N., LEWIS, F. D., MILLING, P. E., MCCONVILLE,
L. A., NELSON, B. S., PARUTHI, V., POUARZ, T. W., ROMONOSKY, A. D., STUECHELI,
J., THOMPSON, K. D., VICTOR, D. W., and WILE, B., “Functional verification of the
POWER4 microprocessor and POWER4 multiprocessor system.,” IBM Journal of Research
and Development, vol. 46, no. 1, pp. 53-76, 2002.

MANOLIOS, P., “Correctness of pipelined machines,” in Formal Methods in Computer-Aided
Design—-FMCAD 2000 (HUNT, JR., W. A. and JOHNSON, S. D, eds.), vol. 1954 of LNCS,
pp. 161-178, Springer-Verlag, 2000.

MANoOLIOS, P., Mechanical Verification of Reactive Systems. PhD thesis, University of
Texas at Austin, August 2001. See URL http://www.cc.gatech.edu/~manolios/-
publications.html.

MANOLIOS, P., “A compositional theory of refinement for branching time,” in 12th IFIP WG
10.5 Advanced Research Working Conference, CHARME 2003 (GEIST, D. and TRONCI, E.,
eds.), vol. 2860 of LNCS, pp. 304318, Springer-Verlag, 2003.

MANOLIOS, P., “The challenge of hardware-software co-verification,” in IFIP Working Con-
ference on Verified Software: Theories, Tools, Experiments, 2005.

134

[61]

MANOLIOS, P., “Refinement and theorem proving,” in School on Formal Methods for the
Design of Computer, Communication, and Software Systems: Hardware Verification, Lecture
Notes in Computer Science, Springer Verlag, 2006.

MANOLIOS, P. and SRINIVASAN, S., “A suite of hard ACL2 theorems arising in refinement-
based processor verification,” in Kaufmann and Moore [46]. See URL http://www.cs.-
utexas.edu/users/moore/acl2/workshop-2004/.

MANOLIOS, P. and SRINIVASAN, S. K., “Automatic verification of safety and liveness for
xscale-like processor models using web refinements.,” in Design, Automation and Test in
Europe (DATE’04), pp. 168—-175, IEEE Computer Society, 2004.

MANOLIOS, P. and SRINIVASAN, S. K., “A complete compositional reasoning frame-
work for the efficient verification of pipelined machines.,” in International Conference on
Computer-Aided Design (ICCAD’05) [1], pp. 863-870.

MANOLIOS, P. and SRINIVASAN, S. K., “A computationally ef~cient method based on
commitment re~nement maps for verifying pipelined machines.,” in Formal Methods and
Models for Co-Design (MEMOCODE’05), pp. 188-197, IEEE, 2005.

MANOLIOS, P. and SRINIVASAN, S. K., “Refinement maps for efficient verification of pro-
cessor models.,” in Design, Automation and Test in Europe (DATE’05), pp. 1304-1309, IEEE
Computer Society, 2005.

MANOLIOS, P. and SRINIVASAN, S. K., “Verification of executable pipelined machines with
bit-level interfaces.,” in International Conference on Computer-Aided Design (ICCAD’05)
[1], pp. 855-862.

MANOLIOS, P. and SRINIVASAN, S. K., “A framework for verifying bit-level pipelined
machines based on automated deduction and decision procedures.,” J. Autom. Reasoning,
vol. 37, no. 1-2, pp. 93-116, 2006.

MANOLIOS, P. and SRINIVASAN, S. K., “Automatic verification of safety and liveness for
pipelined machines using web refinement.,” ACM Transactions on Design Automation of
Electronic Systems, 2007. Accepted to appear.

MANOLIOS, P. and SRINIVASAN, S. K., “A refinement-based compositional reasoning
framework for pipelined machine verification.,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 2007. Accepted to appear.

MANOLIOS, P., SRINIVASAN, S. K., and VROON, D., “Automatic memory reductions for
rtl model verification.,” in International Conference on Computer-Aided Design (ICCAD’06)
(HASSOUN, S., ed.), pp. 786-793, ACM, 2006.

MANOLIOS, P., SRINIVASAN, S. K., and VROON, D., “BAT: The Bit-level Analysis Tool,”
2006. Available from http://www.cc.gatech.edu/~manolios/bat/.

MANOLIOS, P., SRINIVASAN, S. K., and VROON, D., “BAT: The bit-level analysis tool,” in
International Conference Computer Aided Verification (CAV’07), 2007.

MANOLIOS, P. and VROON, D., “Efficient circuit to CNF conversion,” in International Con-
ference on Theory and Applications of Satisfiability Testing, 2007.

135

[69]

[80]

[82]

McMILLAN, K. L., “Verification of an implementation of Tomasulo’s algorithm by compo-
sitional model checking,” in Computer Aided Verification (CAV *98) (Hu, A. J. and VARDI,
M. Y, eds.), vol. 1427 of LNCS, pp. 110-121, Springer-Verlag, 1998.

MCMILLAN, K. L., “A methodology for hardware verification using compositional model
checking.,” Sci. Comput. Program., vol. 37, no. 1-3, pp. 279-309, 2000.

MILNER, R., Communication and Concurrency. Prentice-Hall, 1990.

MISHRA, P. and DUTT, N., “Modeling and verification of pipelined embedded processors
in the presence of hazards and exceptions,” in IFIP WCC 2002 Stream 7 on Distributed and
Parallel Embedded Systems (DIPES’02), 2002.

MONY, H., BAUMGARTNER, J., PARUTHI, V., KANZELMAN, R., and KUEHLMANN, A.,
“Scalable automated verification via expert-system guided transformations.,” in Hu and Mar-

tin [32], pp. 159-173.

MULLER, O. and Nipkow, T., “Combining model checking and deduction for i/o-
automata.,” in Tools and Algorithms for Construction and Analysis of Systems (TACAS’95)
(BRINKSMA, E., CLEAVELAND, R., LARSEN, K. G., MARGARIA, T., and STEFFEN, B.,
eds.), vol. 1019 of Lecture Notes in Computer Science, pp. 1-16, Springer, 1995.

NAamJoOsHI, K. S., “A simple characterization of stuttering bisimulation,” in 17th Conference
on Foundations of Software Technology and Theoretical Computer Science, vol. 1346 of
LNCS, pp. 284-296, 1997.

Opencores. July, 2007. See URL http://www.opencores.org.

PATANKAR, V. A., JAIN, A., and BRYANT, R. E., “Formal verification of an ARM proces-
sor,” in Twelfth International Conference On VLSI Design, pp. 282-287, 1999.

Plasma - most MIPS I(TM) opcodes: Overview. July, 2007. See URL http://-
WWw.opencores.org/projects.cgi/web/mips/overview.

QIANG, Q., SAAB, D. G., and ABRAHAM, J. A., “Checking nested properties using
bounded model checking and sequential atpg.,” in VLSI Design, pp. 225-230, IEEE Com-
puter Society, 2006.

RAJAN, S., SHANKAR, N., and SRIVAS, M. K., “An integration of model checking with
automated proof checking.,” in International Conference on Computer Aided Verification
(CAV’95) (WOLPER, P., ed.), vol. 939 of Lecture Notes in Computer Science, pp. 84-97,
Springer, 1995.

RAY, S., MATTHEWS, J., and TUTTLE, M., “Certifying compositional model checking al-
gorithms in acl2.,” in 4th International Workshop on the ACL2 Theorem Prover and Its Ap-
plications (ACL2’03), 2003.

RAY, S. and JR., W. A. H., “Deductive verification of pipelined machines using first-
order quantification.,” in International Conference on Computer Aided Verification (CAV’04)
(ALUR, R. and PELED, D., eds.), vol. 3114 of Lecture Notes in Computer Science, pp. 31—
43, Springer, 2004.

136

[83]

[93]

REEBER, E. and JR., W. A. H., “A sat-based decision procedure for the subclass of un-
rollable list formulas in acl2 (sulfa).,” in International Joint Conference on Automated Rea-
soning (IJCAR’06) (FURBACH, U. and SHANKAR, N., eds.), vol. 4130 of Lecture Notes in
Computer Science, pp. 453-467, Springer, 2006.

ROESNER, W., “Ecological niche or survival gear? - improving an industrial simulation
methodology with formal methods.,” in Formal Methods in Computer-Aided Design (FM-
CAD’06) [2].

RUSSINOFF, D. M., “A mechanically checked proof of IEEE compliance of a register-
transfer-level specification of the AMD-K7 floating-point multiplication, division, and square
root instructions,” London Mathematical Society Journal of Computation and Mathematics,
vol. 1, pp. 148-200, December 1998.

RUSSINOFF, D. M., “A mechanically checked proof of correctness of the AMD-KS5 floating-
point square root microcode,” Formal Methods in System Design, vol. 14, pp. 75-125, 1999.

RyaN, L., “Siege homepage.” July, 2007. See URL http://www.cs.sfu.ca/
~loryan/personal.

SAAB, D. G., ABRAHAM, J. A., and VEDULA, V. M., “Formal verification using bounded
model checking: Sat versus sequential atpg engines.,” in VLSI Design, pp. 243-248, IEEE
Computer Society, 2003.

SAWADA, J., Formal Verification of an Advanced Pipelined Machine. PhD thesis, University
of Texas at Austin, Dec. 1999. See URL http://www.cs.utexas.edu/users/sawada/-
dissertation/.

SAWADA, J., “Verification of a simple pipelined machine model,” in Kaufmann et al. [42],
pp. 137-150.

SAWADA, J., “Formal verification of divide and square root algorithms using series calcu-
lation,” in Proceedings of the ACL2 Workshop 2002 (KAUFMANN, M. and MOORE, J. S.,
eds.), 2002.

SAWADA, J. and REEBER, E., “Acl2six: A hint used to integrate a theorem prover and an
automated verification tool.,” in Formal Methods in Computer-Aided Design (FMCAD’06)
[2], pp. 161-170.

SHANKAR, N., “Using decision procedures with a higher-order logic.,” in International Con-
ference Theorem Proving in Higher Order Logics (TPHOLs’01) (BOULTON, R. J. and JACK-
SON, P. B, eds.), vol. 2152 of Lecture Notes in Computer Science, pp. 5-26, Springer, 2001.

SMITH, S., PEREZ, R., WEINGART, S., and AUSTEL, V., “Validating a high-performance,
programmable secure coprocessor,” in 22nd National Information Systems Security Confer-
ence, Oct. 1999.

SRINIVASAN, S. K. and VELEV, M. N., “Formal verification of an intel xscale processor
model with scoreboarding, specialized execution pipelines, and impress data-memory excep-
tions.,” in Formal Methods and Models for Co-Design (MEMOCODE’03), pp. 65-74, IEEE
Computer Society, 2003.

137

[96] SRIVAS, M. and BICKFORD, M., “Formal verification of a pipelined microprocessor,” IEEE
Software, pp. 52-64, Sept. 1990.

[97] VASUDEVAN, S., EMERSON, E. A., and ABRAHAM, J. A., “Efficient model checking of
hardware using conditioned slicing.,” Electr. Notes Theor. Comput. Sci., vol. 128, no. 6,
pp. 279-294, 2005.

[98] VELEV, M. N., “Using positive equality to prove liveness for pipelined microprocessors.,”
in Asia and South Pacific Design Automation Conference (ASPDAC’04) (IMAI, M., ed.),
(Yokohama, Japan), pp. 316-321, IEEE, 2004.

[99] VELEV, M. N. and BRYANT, R. E., “Formal verification of superscalar microprocessors
with multicycle functional units, exceptions, and branch prediction,” in Proceedings of the
37th conference on Design Automation, pp. 112-117, ACM Press, 2000.

[100] “Yices homepage,” 2007. See URL http://fm.csl.sri.com/yices.

138

PUBLICATIONS

Journal Articles

1. Panagiotis Manolios and Sudarshan K. Srinivasan. Automatic Verification of Safety and Live-
ness for Pipelined Machines Using WEB Refinement, 18 pages. Accepted pending minor
revisions, which we have made and submitted. ACM Transactions on Design Automation of

Electronic Systems.

2. Panagiotis Manolios and Sudarshan K. Srinivasan. A Framework for Verifying Bit-Level
Pipelined Machines Based on Automated Deduction and Decision Procedures, 26 pages.

Journal of Automated Reasoning (accepted to appear).

3. Jun Cheol Park, Vincent Mooney and Sudarshan K. Srinivasan. Combining data remapping
and voltage/frequency scaling of second level memory for energy reduction in embedded

systems, 6 pages. Microelectronics Journal, 2003.
Submitted Journal Articles
4. Panagiotis Manolios and Sudarshan K. Srinivasan. A Refinement-Based Compositional Rea-

soning Framework for Pipelined Machine Verification, 13 pages. Submitted to IEEE Trans-

actions on VLSI Systems.
Conference Papers
5. Panagiotis Manolios, Sudarshan K. Srinivasan, and Daron Vroon. Automatic Memory Reduc-
tions for RTL-Level Verification. ACM-IEEE International Conference on Computer Aided

Design (ICCAD), IEEE Computer Society, 2006. (24% acceptance rate, 130 out of 537; the

acceptance rate for long papers, like ours, is lower)

6. Roma Kane, Panagiotis Manolios, and Sudarshan K. Srinivasan. Monolithic Verification of

Deep Pipelines with Collapsed Flushing. ACM-IEEE Design Automation and Test in Europe

139

10.

11.

(DATE), IEEE Computer Society, pages 1234-1239, 2006. (27% acceptance rate, 233 out of

834; the acceptance rate for long papers, like ours, is lower)

Panagiotis Manolios and Sudarshan K. Srinivasan. Verification of Executable Pipelined Ma-
chines with Bit-Level Interfaces. ACM-IEEE International Conference on Computer Aided
Design (ICCAD), IEEE Computer Society, pages 855-862, 2005. (23% acceptance rate, 128

out of 540; the acceptance rate for long papers, like ours, is lower)

. Panagiotis Manolios and Sudarshan K. Srinivasan. A Complete Compositional Reasoning

Framework for the Efficient Verification of Pipelined Machines. ACM-IEEE International
Conference on Computer Aided Design (ICCAD), IEEE Computer Society, pages 863-870,
2005. (23% acceptance rate, 128 out of 540; the acceptance rate for long papers, like ours, is

lower)

Panagiotis Manolios and Sudarshan K. Srinivasan. A Parameterized Benchmark Suite of
Hard Pipelined-Machine-Verification Problems. Advanced Research Working Conference on

Correct Hardware Design and Verification Methods (CHARME), pages 363-366, 2005.

Panagiotis Manolios and Sudarshan K. Srinivasan. A Computationally Efficient Method
Based on Commitment Refinement Maps for Verifying Pipelined Machines. ACM-IEEE For-
mal Methods and Models for Codesign (MEMOCODE), IEEE,pages 188-197, 2005. (36%

acceptance rate; 17 out of 47 papers)

Panagiotis Manolios and Sudarshan K. Srinivasan. Refinement Maps for Efficient Verifica-
tion of Processor Models. ACM-IEEE Design Automation and Test in Europe (DATE), IEEE
Computer Society, pages 1304-1309, 2005. (21% acceptance rate, 176 out of 825; the accep-

tance rate for long papers, like ours, is lower)

140

12. Panagiotis Manolios and Sudarshan K. Srinivasan. Automatic Verification of Safety and
Liveness for XScale-Like Processor Models Using WEB-Refinements. ACM-IEEE Design
Automation and Test in Europe (DATE), pages 168-175, 2004. (17% acceptance rate for long

papers)

13. Sudarshan K. Srinivasan, and Miroslav N. Velev. Formal Verification of an Intel XScale
Processor Model with Scoreboarding, Specialized Execution Pipelines, and Imprecise Data-
Memory Exceptions. ACM-IEEE Formal Methods and Models for Codesign (MEMOCODE),

IEEE, pages 65-74, 2003.

Refereed Workshop Papers

14. Panagiotis Manolios and Sudarshan K. Srinivasan. A Suite of Hard ACL2 Theorems Aris-
ing in Refinement-Based Processor Verification. Fifth International Workshop on the ACL2

Theorem Prover and Its Applications (ACL2), 2004.

15. Sudarshan K. Srinivasan, Jun Cheol Park, and Vincent Mooney.Combining Data Remapping
and Voltage/Frequency Scaling of Second Level Memory for Energy Reduction in Embed-
ded Systems. Proceedings of the International Workshop on Embedded System Codesign

(ESCODES), 2002.

Technical Reports

16. Panagiotis Manolios and Sudarshan K. Srinivasan. Automatic Verification of Safety and Live-
ness for XScale-Like Processor Models Using WEB-Refinements. CERCS TR GIT-CERCS-

03-17, 2003.

141

VITA

Sudarshan Srinivasan is a Ph.D. candidate in the School of Electrical and Computer Engineering at
the Georgia Institute of Technology. He received an M.S. in Electrical and Computer Engineering
from the Georgia Institute of Technology in 2003 and a B.E. in Electrical and Electronics Engi-
neering from the University of Madras in 2001. His research interests are in Formal Verification,
Hardware Validation, Computer Architecture, and Computer-Aided Design of Digital Systems. His
current research focus is in the development and application of Formal Verification methods to

hardware systems.

142

