
EFFICIENT PROACTIVE SECURITY FOR SENSITIVE
DATA STORAGE

A Thesis
Presented to

The Academic Faculty

by

Arun Subbiah

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2007

EFFICIENT PROACTIVE SECURITY FOR SENSITIVE
DATA STORAGE

Approved by:

Professor Douglas M. Blough,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Faramarz Fekri
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Douglas M. Blough, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Linda Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Date Approved: 23 August 2007

ACKNOWLEDGEMENTS

I thank my advisor Prof. Douglas Blough for guidance and support throughout

graduate school, and for the opportunity to pursue a PhD under his advisement. I

thank Prof. Faramarz Fekri, Prof. Sudhakar Yalamanchili, Prof. Linda Wills, and

Prof. Mustaque Ahamad for serving on my PhD committee and for their valuable

comments. I had the opportunity to work with Prof. Mustaque Ahamad in the Agile

Store project and it was a pleasure.

It was a pleasure to work with Lei Kong, Deepak Manohar and Michael Sun on

the Agile Store project. They were very willing to discuss research ideas.

On a philosophical note, achieving the PhD can be attributed to not only the

individual but also to that individual’s environment, which is a cumulation of factors

that date at least as far back in time as the individual’s memory can recall. I consider

myself blessed to have that conducive environment.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 The BLOC Fault Model . 4

1.2 Proactive Security and the Mobile Adversary Model 5

1.3 Contributions . 6

1.4 Dissertation Organization . 8

II RELATED WORK . 10

III DATA STORE ARCHITECTURE . 13

3.1 System Model . 13

3.1.1 Failure Assumptions . 14

3.1.2 Communication Model . 15

3.2 Data Storage Models . 15

3.2.1 Secret Sharing . 15

3.2.2 Encrypt and Replicate . 16

3.3 Achieving Proactive Security . 16

3.3.1 Periodic Share Renewal . 17

3.3.2 Periodic Integrity Verification and Repair 18

3.3.3 Periodic Reboot and Key Establishment 18

iv

IV THE GRIDSHARING FRAMEWORK 19

4.1 Introduction . 19

4.2 Related Work . 21

4.3 Background . 23

4.3.1 Secret Sharing Schemes . 23

4.3.2 Ito, Saito, and Nishizeki’s Share Assignment Scheme 23

4.4 Computation Overhead of Perfect Secret Sharing Schemes 25

4.5 Combining Secret Sharing and Replication 29

4.5.1 The Direct Approach . 30

4.5.2 The GridSharing Framework 32

4.6 Performance Analysis of GridSharing 35

4.6.1 Performance Metrics . 35

4.6.2 Effect of Grid Dimension 36

4.6.3 Effect of Fault Thresholds Given N Servers 39

4.6.4 Effect of Fault Thresholds Given Restriction on Secret Re-
covery Computation Time 40

4.7 Discussion . 42

4.8 Conclusions . 45

V PERIODIC SHARE RENEWAL FOR THE GRIDSHARING FRAMEWORK 48

5.1 Problem Statement . 48

5.2 The Share Renewal Algorithm . 49

5.3 Share Renewal Protocol . 51

5.4 Experimental Analysis . 53

5.5 Conclusions . 54

VI PERIODIC INTEGRITY VERIFICATION AND RESTORATION . . . 56

6.1 Problem Statement . 56

6.2 Related Work . 57

v

6.3 Solution Approach . 59

6.4 Protocol for Periodic Integrity Verification and Restoration 60

6.4.1 PIVR Step1: Metadata Check and Repair 61

6.4.2 PIVR Step2: Document Integrity Checking and Repair . . . 62

6.4.3 Requirements on Writes . 63

6.4.4 Requirement on Minimum Number of Servers 64

6.5 Experimental Analysis . 65

6.5.1 Scalability of PIVR Step1 66

6.5.2 Scalability of PIVR Step2 67

6.6 Conclusions . 69

VII BYZANTINE FAULT DETECTION IN QUORUM SYSTEMS 70

7.1 Introduction . 70

7.2 Related Work . 71

7.3 System Model and Architecture . 72

7.4 Byzantine Quorum Protocols . 74

7.5 Fault Detection Algorithm . 75

7.5.1 The Fault Detection Algorithm at the Proxy Server 75

7.5.2 The Fault Detection Algorithm at the Diagnosis Server . . . 79

7.5.3 Relaxing Assumptions 1 - 3 80

7.6 Simulation Analysis . 81

7.6.1 Fault detection in a Reconfigurable Byzantine Quorum System 81

7.6.2 Concurrency Analysis . 84

7.7 Evaluation in the AgileFS prototype 85

7.8 Conclusions . 87

VIII PROTOTYPE IMPLEMENTATION AND EVALUATION 89

8.1 Prototype Description . 89

8.1.1 Overview . 89

vi

8.1.2 Write Protocol . 92

8.1.3 Handling Deletes . 95

8.1.4 Read Protocol . 96

8.2 Integrating Protocol PIVR to achieve Proactive Security 97

8.3 Experimental Evaluation . 102

8.3.1 Experimental Setup . 102

8.3.2 Effect of Integrity Verification and Restoration on Throughput103

8.3.3 Effect of PIVR Integrity Verification on Read-Write Latency 105

8.3.4 PIVR Integrity Restoration Rate Vs. #Clients 105

8.3.5 Effect of Integrity Verification Process Priority on Integrity
Verification Rate . 106

8.3.6 Wide Area Network Performance 108

8.4 Conclusions . 111

IX CONCLUSIONS AND FUTURE WORK 113

9.1 Dissertation Summary . 113

9.2 Future Work . 115

REFERENCES . 116

vii

LIST OF TABLES

1 Possible sharings generated during share renewal in every epoch. . . . 17

2 Computation times for Shamir’s scheme (8 KB block) 25

3 Computation times for 8 KB block using Shamir’s with Feldman’s
scheme (Feldman’s prime length = 1025 bits). 26

4 Computation time for AES (CBC mode, 8 KB block). 27

5 Computation times for XOR sharing (8 KB block) 28

6 Computation times for voting out of 2b+1 responses to determine a
share of size 8 KB. Measurements reflect the best case where there are
no incorrect responses. 28

7 Secret sharing and recovery computation times for XOR secret sharing
with voting (8 KB block, b = 3). 29

8 Effect of increasing number of rows r on performance metrics when l
= 2, b = 2, and c = 2 . 37

9 Effect of increasing l on performance when b = 2, c = 2, and min(N)
≤ 35 servers . 38

10 Effect of increasing b on performance when l = 2, c = 2, and min(N)
≤ 35 servers . 38

11 Effect of increasing c on performance when l = 2, b = 2, and min(N)
≤ 35 servers . 38

12 Effect of increasing l on performance when b = 2, c = 2, and secret
recovery computation time ≤ 1.6 ms 40

13 Effect of increasing b on performance when l = 2, c = 2, and secret
recovery computation time ≤ 1.6 ms 40

14 Effect of increasing c on performance when l = 2, b = 2, and secret
recovery computation time ≤ 1.6 ms 41

viii

15 Comparison between encryption, verifiable secret sharing, and Grid-
Sharing during writes for 8 KB of data. l = 1, b = 1, and c = 1. . . . 43

16 Comparison between encryption, verifiable secret sharing, and Grid-
Sharing during reads for 8 KB of data. l = 1, b = 1, and c = 1. . . . 43

17 Effect of increasing number of rows r on the share renewal rate when
up to one server can be leakage-only faulty and up to one server can
be Byzantine faulty in an epoch, and up to one server can crash in the
system lifetime. 53

18 Effect of PIVR integrity verification on upload and download latencies. 105

19 Effect of PIVR integrity verification on WAN upload and download
latencies. 108

ix

LIST OF FIGURES

1 The three layers of defense against faults and intrusions. 2

2 Schematic overview of a data storage service. 3

3 System architecture . 13

4 The Direct Approach: Servers are arranged in a logical grid having
(l+b+1) rows, with at least (3b+c+1) servers in each row. Secret
sharing is done across rows, with a distinct share assigned to each row.
Shares are replicated along rows. 30

5 The GridSharing framework: N servers are arranged in a logical grid
having r rows. Secret sharing is done across rows, and shares are
replicated along rows. Setup shown for N = 20, l = 1, b = 1, and c =
6. Note that each server stores three shares. 33

6 The Epoch Marker generates random strings which are used to generate
the encryption keys for the RC4 stream cipher. The stream cipher
is used to generate large blocks of random shares. One of the share
holders (SVR1) must be made aware of all the random strings so that it
can generate the appropriate share so that the XOR of all the random
shares is zero. The share renewal algorithm is thus run n times, where
n is the number of shares. 51

7 Servers start running the share renewal algorithm upon learning the
start of a new epoch and the random strings for share renewal from
the Epoch Marker. 52

8 Share renewal rate vs. the number of rows in the GridSharing framework 54

9 The mobile adversary in action: Eventually, the data stored at all the
servers may be corrupted. 57

10 Servers start running the PIVR protocol upon learning the start of a
new epoch from the Epoch Marker. 61

11 Pseudocode for PIVR Step1 of the Periodic Integrity Checking and
Verification Protocol. 62

x

12 Time taken to compute and check the hash of the highest version of a
document vs. the number of documents 67

13 Time taken to repair corrupted documents vs. the number of corrupted
documents . 68

14 Byzantine quorum system architecture 73

15 Probability that a faulty server is detected vs pic for several r 78

16 Variation of system size N and the fault threshold b in a reconfigurable
Byzantine quorum system. 82

17 Fraction of Simulation Runs with Incorrect Diagnosis vs. Percentage
of Reads Concurrent with Writes . 84

18 Schematic overview of the AgileFS distributed filesystem. 85

19 The variation of the number of data servers (N) and the fault threshold
(b) when data servers become faulty over time. 87

20 Overview of the document repository prototype. 90

21 Protocol followed by clients to write new versions of documents and to
delete documents. 92

22 Protocol followed by proxy servers to process client write and delete
requests. 93

23 Protocol followed by storage servers to process client write and delete
requests. 94

24 Protocol followed by clients to read a document. 96

25 Experimental setup of the document repository prototype. 102

26 R/W Throughput Vs. number of clients with and without PIVR. . . 103

27 Rate at which corrupted documents are repaired Vs. number of clients. 106

28 Rate at which document integrity is verified Vs. number of clients for
different values of process scheduling priority. 107

29 WAN R/W Throughput Vs. number of clients with and without PIVR. 109

30 Rate at which document integrity is verified Vs. number of clients
(WAN). 110

xi

SUMMARY

Fault tolerant and secure distributed data storage systems typically require

that only up to a threshold of storage nodes can ever be compromised or fail. In

proactively-secure systems, this requirement is modified to hold only in a time interval

(also called epoch), resulting in increased security. An attacker or adversary could

compromise distinct sets of nodes in any two time intervals. This attack model is also

called the mobile adversary model. Proactively-secure systems require all nodes to

“refresh” themselves periodically to a clean state to maintain the availability, integrity,

and confidentiality properties of the data storage service.

This dissertation investigates the design of a proactively-secure distributed data

storage system. Data can be stored at storage servers using encoding schemes called

secret sharing, or encryption-with-replication. The primary challenge is that the

protocols that the servers run periodically to maintain integrity and confidentiality

must scale with large amounts of stored data. Determining how much data can be

proactively-secured in practical settings is an important objective of this dissertation.

The protocol for maintaining the confidentiality of stored data is developed in the

context of data storage using secret sharing. We propose a new technique called the

GridSharing framework that uses a combination of XOR secret sharing and replication

for storing data efficiently. We experimentally show that the algorithm can secure

xii

several hundred gigabytes of data.

We give distributed protocols run periodically by the servers for maintaining the

integrity of replicated data under the mobile adversary model. This protocol is in-

tegrated into a document repository to make it proactively-secure. The proactively-

secure document repository is implemented and evaluated on the Emulab cluster

(http://www.emulab.net). The experimental evaluation shows that several hundred

gigabytes of data can be proactively secured.

This dissertation also includes work on fault and intrusion detection - a necessary

component in any secure system. We give a novel Byzantine-fault detection algorithm

for quorum systems, and experimentally evaluate its performance using simulations

and by deploying it in the AgileFS distributed file system.

xiii

CHAPTER I

INTRODUCTION

The increasing dependence on the Internet and network-based services has brought

with it the critical requirement that such services are fault-tolerant and secure. To-

day’s critical computer systems must implement layers of defense against attacks and

faults. The three layers of defense against faults and attacks (Figure 1) are - fault

and intrusion prevention, fault and intrusion detection, and fault and intrusion toler-

ance. Examples of fault and intrusion prevention are firewalls, authentication, access

control, and voltage spike suppressors. Examples of fault and intrusion detection are

TripWire [4] and CRC (Cyclic Redundancy Check). Examples of fault and intrusion

tolerance are RAID, filesystem backups, and secret sharing.

This dissertation focusses on the fault and intrusion detection and tolerance layers

in the context of a distributed storage system. Storage is a critical and a fundamental

component in any system. Providing storage services over the network is widespread,

an example being the NFS file service. Other examples include web-based email

and employee records, which are all stored at remote servers and can be accessed by

authorized clients. In these examples, the interface exported to the user and the way

in which data is manipulated may differ, but the common property is that the data

is ultimately stored at remote servers, and the data is sensitive in nature.

1

Figure 1: The three layers of defense against faults and intrusions.

The demand for a variety of always-available services over the network and the

commensurate increase in the computing resources available to users and attackers

has broadened the scope of sensitive information from obviously sensitive material,

such as cryptographic keys and passwords, to generic data that needs to be protected

from select people while being irrelevant to others. The sensitivity of data has now

become a relative term, in terms of time as well as human perception.

This dissertation investigates the design of a highly reliable and secure data storage

service that stores sensitive data. The storage service is provided by a set of storage

servers. A schematic overview of a typical data storage service is shown in Figure 2.

The security of a data storage service is defined as providing the following three

properties in the presence of server compromises and failures:

1. Availability: The ability to always provide the data storage service.

2. Integrity: The stored data is not lost or corrupted, and the read-write semantics

2

Figure 2: Schematic overview of a data storage service.

continue to hold.

3. Confidentiality: The stored data is not revealed to the adversary.

The computer security community has investigated securing data storage services

using a variety of assumptions on the adversary compromising the storage servers.

These assumptions revolve around either the adversary’s intent, or the adversary’s

limitations. The adversary’s intent is used to classify an adversary as an active adver-

sary or a passive adversary. A passive adversary compromises processes or communi-

cation channels to learn their stored data, internal states and messages, thus affecting

the confidentiality of the system. An active adversary is not only intent on breaking

the confidentiality of the system, but also the integrity of the system. An active

adversary thus corrupts stored data, internal states and messages. Examples of an

adversary’s limitations are: being computationally bounded, being memory bounded,

and the rate at which an adversary can compromise processes and communication

channels.

The limitation on the rate at which an adversary can compromise processes is

known as the mobile adversary model. In this model, real time is divided into epochs,

3

and it assumed that only some processes are in the compromised state in an epoch.

A system that is resilient to the mobile adversary is said to be proactively secure.

The dependable computing community has meanwhile investigated this area using

a variety of fault models. One of the common fault models used is the hybrid fault

model [61], where the processes in a system can exhibit Byzantine and crash faults.

We combine the hybrid fault model with the passive and active adversary models to

give the BLOC fault model, described in Section 1.1. The mobile adversary model,

in the context of the BLOC fault model, and the concept of proactive security are de-

scribed in Section 1.2. This dissertation investigates data storage services resilient to

the BLOC fault model along with the mobile adversary model1. Section 1.3 gives the

contributions made in this research, and Section 1.4 gives an organizational overview

of this dissertation.

1.1 The BLOC Fault Model

The passive and active adversary models used in computer security and the Byzantine

and crash fault models for processes (also known as the hybrid fault model [61]) used

in dependable computing are combined to give the BLOC fault model, where any

process can undergo one of the following three faults:

• Crash: A process is said to be crashed if it stops performing all computations

and neither sends nor receives messages on the network.

• Byzantine: A Byzantine-faulty process can deviate arbitrarily from its spec-

ified protocol behavior. A Byzantine faulty process can also reveal the data

stored locally and its internal state to an adversary. This fault is due to the

compromise by an active adversary.

1The adversary is also assumed to be computationally bounded.

4

• Leakage-only: A process is said to exhibit a leakage-only fault if it can reveal

its stored data and state to an adversary, but executes its specified protocol

faithfully. This fault is due to the compromise by a passive adversary.

We use the threshold fault assumption for each of the three types of faults. We

assume that, in a system containing n processes, not more than c processes can crash,

not more than b processes can be Byzantine-faulty, and not more than l processes can

exhibit leakage-only faults. In this dissertation, the servers and the clients are the

processes, and the threshold fault model is used only for the servers; an unbounded

number of clients can exhibit any of the three faults.

The proposed fault model allows for direct reasoning about the availability, in-

tegrity, and confidentiality properties of the storage service. In availability attacks,

such as Denial-of-Service attacks, the resources available for legitimate use of the ser-

vice are constrained by, for example, exhausting network bandwidth or by increasing

server loads. Crash faults are representative of a more severe attack, where a server

stops execution completely and permanently. A storage service that can tolerate a

high number of crash faults is also a highly-available storage service, and will be able

to tolerate Denial-of-Service attacks to a greater degree. Integrity attacks, in the

context of a storage service, can consist of either compromising servers and altering

their behavior, or compromising servers and arbitrarily corrupting their stored data.

Such attacks are represented by Byzantine faults. The confidentiality of the stored

data can be compromised if an adversary is able to compromise sufficient servers and

learn their stored data. These are modeled by the Byzantine and leakage-only faults.

1.2 Proactive Security and the Mobile Adversary Model

The mobile adversary model was introduced in [51]. In this model, real time is divided

into epochs, and no more than a threshold servers can be in the compromised state

5

in an epoch. In other words, the adversary “moves” from one server to another, with

the restriction that only up to a threshold servers are “visited” by the adversary in

an epoch.

In the context of the BLOC fault model, since server compromises are modeled

using Byzantine and leakage-only faults, only up to a threshold b of servers can be

Byzantine-faulty and a threshold l of servers can be leakage-only faulty in an epoch.

Thus, after a sufficient many epochs elapse, all the servers may have experienced a

Byzantine fault or a leakage-only fault in some epoch(s).

A system that is secure against the mobile adversary is said to be proactively

secure. Such a system must run some procedures periodically (such as once every

epoch) so that the availability, integrity, and the confidentiality properties of the

storage service are maintained.

1.3 Contributions

The goal of this research is to investigate the design of a proactively-secure data store.

Contributions made as part of this research are as follows:

• For storing data, we consider, in addition to the standard encrypt-and-replicate

storage model, data storage using perfect secret sharing schemes. We show

that standard secret sharing schemes have high computation overheads and

are impractical for storing large amounts of data. A new technique called the

GridSharing framework is proposed [60] that uses a combination of XOR secret

sharing and replication for storing data efficiently. The number of rows in the

GridSharing framework is a configurable parameter that can be varied to achieve

a tradeoff in performance metrics.

• We give a share renewal algorithm in the context of the GridSharing framework

6

for maintaining the confidentiality of the stored data under the mobile adversary

model. We experimentally show that the algorithm can secure several hundred

GBs of data.

• We give distributed protocols run periodically by the servers for maintaining

the integrity of replicated data under the mobile adversary model. We experi-

mentally show that these protocols scale to several 100 GBs of stored data.

• We design a proactively-secure document repository, where users can upload

a new version of a document, download the latest version of a document, and

delete documents. The read-write protocols are specified. The protocol run

periodically for maintaining the integrity under the mobile adversary model

is integrated into the prototype, and concurrency and timing issues at epoch

boundaries are addressed. The result is an integrated system that maintains

correctness in the presence of concurrent executions of the read-write protocols

and the protocol for maintaining integrity in the mobile adversary model.

• The proactively-secure document repository is implemented and evaluated on

the Emulab cluster (http://www.emulab.net). The experimental evaluation

shows that several 100 GBs of data can be proactively-secured.

• A necessary component in any secure system is fault and intrusion detection.

We give a novel Byzantine-fault detection algorithm for quorum systems [39],

and experimentally evaluate it using simulations and by deploying it [38] in the

AgileFS distributed file system. Concurrent reads and writes are a source for

false alarms in Byzantine fault detection algorithms. We show that the pro-

posed fault detection algorithm does not produce incorrect diagnosis even when

the read-write concurrency rate is as high as 32%. In addition, an interesting

7

property of the fault detection algorithm is that a Byzantine-faulty server has

to mimic closely a fault-free server to avoid being detected.

1.4 Dissertation Organization

This dissertation is organized as follows:

Chapter 2 gives an overview of other works on secure distributed storage services

and systems.

Chapter 3 describes the architecture of the reference data storage service, and out-

lines the protocols that must be executed periodically for the service to be proactively

secure.

The confidentiality of the stored data can be achieved using either encryption or

secret sharing schemes. Both these techniques are considered in this research.

Chapter 4 describes a novel secret sharing algorithm, called the GridSharing

Framework, that uses a combination of XOR secret sharing and replication for compu-

tational efficiency. The computational efficiency is important during reads and writes

and during a procedure called “share renewal”, in which the shares of the encoded

data are changed using distributed protocols such that the encoded data still remains

the same.

Chapter 5 describes the share renewal protocol for the GridSharing framework.

This share renewal protocol is run periodically in the GridSharing framework to

maintain the confidentiality of the stored data in the presence of the mobile adversary.

Chapter 6 describes Protocol PIVR (Periodic Integrity Verification and Repair)

executed by the servers to maintain the integrity of replicated data in the presence

of a mobile adversary.

Chapter 7 describes a fault detection algorithm run by the servers to detect Byzan-

tine faults. Fault and intrusion detection mechanisms are required even in the mobile

8

adversary model; without such mechanisms, the adversary will spread to all the servers

as opposed to moving from one server to another.

Chapter 8 describes the implementation and experimental evaluation of a proactively-

secure data store where encrypted data is stored using replication.

Chapter 9 wraps up the dissertation with summary points and some directions for

future research.

9

CHAPTER II

RELATED WORK

One of the earliest distributed data storage systems is RAID [52]. Some RAID con-

figurations can be used to protect the integrity and availability of the stored data in

the event of hardware failures.

The field evolved into distributed data storage systems that use replication or some

type of coding scheme such as erasure codes to store data reliably at a set of storage

servers. Examples of such systems are [6, 7, 8, 11, 22, 32, 37, 38, 40, 45, 46, 25, 62, 27].

Data confidentiality, an important security guarantee that must be provided when the

data is sensitive, is provided by storing the data in encrypted form. The encryption

keys are assumed to be managed securely by the user(s), or by storing them using

perfect secret sharing schemes. In perfect secret sharing schemes, data is encoded into

shares such that the knowledge of some number of shares to an attacker gives no

information on the encoded data. If the shares are distributed amongst the storage

servers, then the confidentiality of the stored data is provided by assuming that only

up to a certain threshold of servers can be compromised.

Instead of encrypting the data and storing the encryption keys using perfect secret

sharing, the data can be stored directly using perfect secret sharing. Examples of

works where data is stored using such schemes are [42] and [65]. This dissertation

10

considers data stored using perfect secret sharing as well as encrypt-and-replicate.

An overwhelming majority of existing works assume a a bound on the number

of servers that can become faulty or compromised over the entire lifetime of the

system. This bound is called the fault threshold. In the context of providing long-

term security, this fault-threshold assumption is unreasonable. The mobile adversary

model, introduced in [51], addresses this problem. In this model, it is recognized

that an adversary can be powerful enough to compromise all the data servers given

enough time. The problem is made tractable by assuming that no more than a

threshold number of servers can be compromised or become faulty in a given time

window. A system that is secure against the mobile adversary is said to be proactively-

secure. Examples of works on proactively-secure services are agreement [56], secret

sharing [51, 35, 58, 16, 68, 69], signatures [34], RSA [30, 55], pseudo-randomness [19,

24], and clock synchronization [13]. A survey of works on proactive security can be

found in [17]

Proactive secret sharing was also introduced in [51]. In proactive secret sharing,

data is encoded using perfect secret sharing schemes. Periodically, the shares are

changed using a distributed protocol, and this process is called share renewal. Thus,

an adversary must compromise enough servers in a single time window to retrieve

the requisite number of shares to recover the encoded data, which is clearly much

harder for the adversary to do compared to the case where the entire system lifetime

is available for the compromise of the servers.

In [35], a robust proactive secret sharing scheme is given. Here, the model to

counter the mobile adversary was refined to specify that all the servers must be

rebooted periodically. The reboot corrects any faulty servers. Periodic reboot is

necessary because the underlying fault and intrusion detection mechanisms may not

be reliable. The servers engage in the share renewal protocol after their reboot. In

11

addition, [35] recognized that an adversary may modify the shares stored at compro-

mised servers thus affecting the integrity of the stored data. So a share integrity and

share recovery procedure must also be done periodically. [35] gives a robust proac-

tive secret sharing scheme that takes long-term data integrity and confidentiality into

consideration.

We investigate a proactively secure data storage service where the data is stored

using the encrypt-and-replicate storage model as well as perfect secret sharing. For

protocol designs, barring [16, 21, 67], all works on proactive security assume the

network to be a broadcast channel with zero or negligible message delays.In [16, 21,

67], however, an asynchronous system model is assumed. The protocols given in [16,

21, 67] incur high computation and communication overheads and are unsuitable for

managing large amounts of data. The protocols for proactive security that we develop

in this disseration assume a synchronous system model with point-to-point network

links which have non-zero message delays.

We differ from prior works on proactive security by addressing the problem of

providing proactive security efficiently for large amounts of data. A synchronous

system model is used for keeping data proactively secure. This research has its roots in

the Agile Store project [1] at Georgia Tech. The Byzantine-fault detection algorithm

for quorum systems that is part of this research was used in reconfigurable Byzantine

quorum systems [39] for the Agile Store. The Agile Store project primarily addresses

the problem of estimating the fault threshold and keeping it low, which would help

improve the efficiency of the system. In the proactive model, the fault threshold is

maintained at a small value using such Byzantine-fault detection techniques and by

performing certain procedures periodically, such as integrity verification and share

renewal.

12

CHAPTER III

DATA STORE ARCHITECTURE

This chapter describes the architecture of the data store considered in this disserta-

tion. The architecture is shown in Figure 3.

3.1 System Model

Figure 3: System architecture

The system architecture, shown in Figure 3, consists of the following entities:

1. Storage Servers: which provide the data storage service.

2. Diagnosis Server: which collects fault detection information from the storage

servers and determines if a storage server is Byzantine-faulty.

13

3. Epoch Marker: which divides real time into time periods and notifies the storage

servers and the diagnosis server the start of a new time period.

4. Clients: which read and write data to the storage servers.

The Epoch Marker divides real time into epochs. It notifies the start of a new

epoch to the storage servers and the diagnosis server. Upon learning the start of a

new epoch, the servers perform certain tasks to achieve proactive security.

This research includes work on server fault detection, where the storage servers

diagnose each other as being Byzantine-faulty or not by observing server responses

during read operations. The storage servers communicate their diagnosis results to

the diagnosis server, which uses voting to ultimately determine whether a storage

server is Byzantine-faulty.

3.1.1 Failure Assumptions

The BLOC fault model, given in Section 1.1, is used to describe the failures that

may occur at the servers. The diagnosis server is assumed to be always fault-free,

while the epoch marker can only be leakage-only faulty. For the storage servers, the

BLOC fault model together with the mobile adversary model is used. It is assumed

that, in an epoch (the start and end times of which are determined by the epoch

marker), not more than b storage servers can be Byzantine-faulty and not more than

l storage servers can be leakage-only faulty. Not more than c storage servers can crash

throughout the lifetime of the system.

A fault-free server could have its stored data in a corrupted state or could have

revealed its stored data to the adversary if it was Byzantine-faulty or Leakage-Only

faulty in an earlier epoch.

There is no restriction on the number of clients that can be Byzantine-faulty.

14

3.1.2 Communication Model

The servers communicate with each other over a point-to-point fully-connected reli-

able and synchronous network. In a reliable network, if Process i sends a message

to Process j, then Process j will receive the message. In a synchronous network, all

messages are guaranteed to be delivered to the intended recipients in bounded time.

It is assumed that any computations done at the servers also finish in bounded time.

The clients read and write data to the storage servers by communicating over a

reliable and asynchronous network. In an asynchronous network, there is no upper

bound on the message delays. Computations done at the clients and the servers can

take an arbitrarily long time.

All messages are assumed to be authenticated, confidential, and tamper-proof.

These are achieved using cryptographic techniques. The clients cannot communicate

with the diagnosis server and the epoch marker.

3.2 Data Storage Models

We consider two data storage models in this dissertation - secret sharing, and encrypt-

and-replicate. These two storage models are described next.

3.2.1 Secret Sharing

In the secret sharing data storage model, data is encoded into shares such that any

threshold of these shares can be later used to recover the encoded data. Each share

is stored at one or more servers.

The stored data remains confidential as long as sufficient many servers do not

become Byzantine or leakage-only faulty and reveal their shares to the adversary.

There are no encryption or decryption keys involved.

The adversary can arbitrarily corrupt the shares stored at a Byzantine-faulty

15

server. To enable clients to detect corrupted shares, verifiable secret sharing schemes

are typically used. In such schemes, some public information on all the shares is com-

puted at the time of share generation and is stored at all the storage servers. When

reading data, clients compare the shares against this public information to determine

if the share is corrupted. Verifiable secret sharing schemes are computationally ex-

pensive to be used on large amounts of data. The GridSharing framework, described

in Chapter 4, addresses this problem and gives a practical method for storing large

volumes of data using secret sharing.

3.2.2 Encrypt and Replicate

In this model, the data is encrypted by the user, and the encrypted data is stored at all

the storage servers. If some server becomes Byzantine or leakage-only faulty, then the

encrypted data can be revealed to the adversary. The confidentiality of the encrypted

data relies on the secure maintenance of the decryption keys. The decryption keys

can be managed privately by the users(s), or stored using secret sharing at the storage

servers, or stored using the CODEX system [47], wherein the distributed data storage

service has a public key and the decryption key is encrypted using this public key

and stored at all the servers.

3.3 Achieving Proactive Security

The data storage service is said to be proactively secure if it is resilient to the mobile

adversary. We consider the mobile adversary model only for the storage servers. In

an epoch, some threshold number of servers can become Byzantine or leakage-only

faulty; it is not required that the same servers are Byzantine or leakage-only faulty in

different epochs. Maintaining the availability, integrity, and confidentiality properties

of the stored data require certain tasks to be executed periodically by the servers. An

16

Table 1: Possible sharings generated during share renewal in every epoch.

Epoch Encoded bit Server S1 Server S2 Server S3

s1 ⊕ s2 ⊕ s3 Share s1 Share s2 Share s3
1 1 0 0 1
2 1 1 0 0
3 1 1 1 1
4 1 1 0 0
.
.
.

overview of these tasks are described in this section.

3.3.1 Periodic Share Renewal

Share renewal is relevant when the data is stored using the secret sharing data storage

model. During share renewal, the servers execute a distribute protocol to generate

new shares of the encoded data without learning the encoded data in the process.

Performing share renewal periodically will maintain the confidentiality of the encoded

data under the mobile adversary model.

Consider the following example: There are three storage servers S1, S2, and S3.

An adversary can compromise a maximum of one server in an epoch and thus create

the leakage-only fault. Consider XOR secret sharing. Consider one bit of the encoded

data. For this bit, three shares, each also one-bit long, are generated such that the

XOR of all three shares gives the encoded bit. Table 1 gives a possible set of sharings

of the encoded bit generated during the share renewal process run in every epoch.

Thus, if not more than one server is leakage-only faulty in every epoch, an ad-

versary will never be able to obtain all three shares of the same sharing. Performing

share renewal periodically will thus maintain the confidentiality of the stored data

under the mobile adversary model. Chapter 5 describes the share renewal protocol

17

for the GridSharing framework of storing data using secret sharing.

3.3.2 Periodic Integrity Verification and Repair

The Periodic Integrity Verification and Repair (PIVR) protocol is run by the servers

periodically to maintain the integrity of the stored data under the mobile adversary

model. In this protocol, a server checks if the checksums of its stored data match

with other servers. The server can thus detect if its stored data is corrupted, and can

then repair it by reading the correct data off other servers.

This procedure is relevant in any model where the data, or at least the checksums

or some verifying information of the data, is stored using replication. In the encrypt-

and-replicate storage model, the encrypted data is replicated at all the servers. In the

GridSharing framework, each share is managed using replication. Most secret sharing

or coding schemes store checksums or some public information on the encodings using

replication. Thus, Protocol PIVR has a broad application. Chapter 6 describes and

analyzes this protocol.

3.3.3 Periodic Reboot and Key Establishment

The assumption that the Byzantine and leakage-only faults move from one server to

another, as opposed to spreading to all servers, can be realized only by having the

servers restore themselves to a clean state periodically. This requires the servers to

securely reboot from a read-only storage medium every epoch.

Compromise of a server also gives away the cryptographic keys used for commu-

nication between the servers and with the clients. The adversary may have “left” the

server, but it can listen to and modify the messages in the network. To prevent this,

after the reboot, the servers must re-establish new cryptographic keys for securing

network communication. Techniques to achieve this are given in [18, 12].

18

CHAPTER IV

THE GRIDSHARING FRAMEWORK

As mentioned in Section 3.2, this dissertation considers two storage models - encrypt-

and-replicate and secret sharing. This chapter gives a practical secret-sharing tech-

nique, called the GridSharing framework, for storing large amounts of data.

4.1 Introduction

Data confidentiality, an important security guarantee that must be provided for sen-

sitive data, is provided either by storing the data in encrypted form, or storing the

data using secret sharing, or by a combination of both. This chapter considers the

problem of storing data using secret sharing.

Secret sharing schemes can be classified into perfect and imperfect schemes. Perfect

secret-sharing schemes encode data into shares such that only certain valid combi-

nations of shares can be used to reconstruct the encoded data, while invalid com-

binations of shares give no information about the encoded data. By storing these

shares at different servers, the encoded data is kept confidential as long as sufficiently

many servers are not compromised. Examples of perfect secret-sharing schemes are

Shamir’s scheme [57] and Blakley’s scheme [15]. In imperfect secret sharing schemes,

invalid combinations of shares can give some partial information about the encoded

data. Examples of imperfect secret-sharing schemes are erasure codes and Rabin’s

19

IDA algorithm [54]. We consider only perfect secret-sharing schemes in this disserta-

tion.

Confidentiality is achieved without any encryption, thus avoiding the need for the

storage and management of cryptographic keys. Perfect secret-sharing schemes have

the additional property that the shares can be changed, or renewed, distributively

such that the encoded data still remains the same. This process of share renewal,

when performed often, can provide strong data confidentiality. The security of such

a scheme relies on the inability of an adversary to compromise a sufficient number of

servers in the time between two consecutive share renewals.

Unlike private-key encryption schemes, however, most perfect secret-sharing schemes

are computationally expensive. Verifiable secret-sharing schemes [23] are typically

used with perfect secret-sharing schemes to detect corrupted shares that may be re-

turned by compromised servers, and also to detect incorrect secret sharing during

writes by malicious clients. Such techniques further increase the computation time

during the encoding and decoding of data. Perfect secret-sharing schemes have thus

found little use in storing data because of their high computation overhead.

We solve these problems by 1) using XOR secret sharing for fast computations, and

2) using replication-based schemes to detect corrupted shares that may be returned

by Byzantine-faulty servers. This combination of secret sharing and replication man-

ifests itself as an architectural framework where servers are arranged in the form of a

rectangle or a grid. The proposed architectural framework, which we call the Grid-

Sharing framework, has the useful property that its dimensions can be varied to trade

off several performance metrics. The properties and performance of the GridSharing

framework are presented in this chapter.

20

4.2 Related Work

In secret sharing, data is encoded into several shares such that only certain com-

binations of shares can be used to reconstruct the encoded data. Most works use

imperfect secret-sharing schemes, such as erasure codes (e.g., Rabin’s IDA [54] algo-

rithm), where the knowledge of fewer than the threshold number of shares can reveal

some information about the encoded data. Such coding algorithms are thus not

information-theoretic secure, but allow savings in storage space. Given enough time,

an adversary may compromise enough servers to learn the encoded data. Thus, to pro-

vide long-term confidentiality, the secret-sharing scheme should allow share renewal,

where the shares are changed in a distributed fashion such that the encoded secret is

not recovered in the process and is unchanged. To our knowledge, no distributed share

renewal scheme for imperfect secret sharing has been developed to date. We instead

use perfect secret-sharing schemes (example, Shamir’s scheme [57]), which allow dis-

tributed share renewal. Perfect secret-sharing schemes are also information-theoretic

secure, meaning the leakage of an insufficient number of shares to an adversary does

not reveal any information about the encoded data.

When data is stored using secret sharing, it must be possible for a client to identify

corrupted shares during reads. Verifiable secret-sharing schemes [23] can be used

with perfect secret-sharing for this purpose and also to check if the secret sharing was

performed correctly during writes. Verifiable secret-sharing schemes also allow share

renewal. However, such schemes are computationally expensive. Section 4.4 describes

in detail how we avoid using verifiable secret-sharing schemes, thereby drastically

reducing the computation overhead. Another approach to detect corrupted shares

during reads is to store the hash of the shares in a hash vector at all the servers.

To our knowledge, no algorithm has been developed for updating the hash vector

21

distributively after share renewal.

Several works have combined replication-based mechanisms and perfect secret

sharing [33, 50, 42]. In [33], data is encrypted using a key, and both are stored at the

storage servers. The data is stored in replicated form in a quorum, while the key is

stored using secret sharing. In [50], quorum systems and secret sharing are used to

build an authorization service. Quorum properties are used to ensure that sufficient

servers agree to authorize a request, but the shares are not replicated at the servers.

The paper addresses malicious users and does not consider compromised servers. The

shares are never directly read and written. Thus, [33, 50] consider using perfect secret

sharing for some special types of data and not for generic data. Performance during

reads and writes is not addressed. In [42], perfect secret sharing is used for generic

data, while [64] uses perfect secret sharing for archival data. Both these works do not

address the problem of high computation overhead.

In [26], a technique called fragmentation-redundancy-scattering is used. The secu-

rity of this scheme relies mainly on the secure maintenance of the encryption key and

the fragmentation key. We instead store data directly using perfect secret-sharing

schemes.

XOR secret sharing has been considered in [41]. The authors show how different

capabilities such as share renewal and share recovery can be implemented with XOR

secret sharing. For this, the existence of a trusted device, called the Accumulator, is

assumed. They also assume that no server returns erroneous responses during secret

sharing and secret recovery. The performance benefits associated with the use of

XOR secret sharing are not discussed.

In [66], secret sharing is used to build survivable information storage systems. The

tradeoffs possible when using p-m-n threshold schemes are outlined. The description

is in terms of how the choice of p, m, and n affect performance. In this chapter,

22

we not only explore the tradeoff space in detail, but also address the performance

overheads involved in such schemes. However, we consider only perfect secret-sharing

schemes (which are a special case of p-m-n schemes), since distributed share renewal

algorithms (e.g., [35]) have been developed only for these schemes.

4.3 Background

4.3.1 Secret Sharing Schemes

Secret-sharing schemes are techniques in which a secret is encoded into several frag-

ments, called shares, such that certain combinations of shares can together reveal the

encoded secret. In perfect secret-sharing schemes, invalid combinations of shares give

no information about the encoded secret. Thus, perfect secret-sharing schemes are

information-theoretic secure. Perfect secret-sharing schemes also allow share renewal,

which is the process of distributively changing the shares such that the encoded secret

is the same. Frequent share renewal can provide strong data confidentiality.

In perfect threshold secret-sharing schemes, a secret is encoded into q shares such

that any k out of the q shares can be used to recover the encoded secret, while

any (k − 1) shares give no information about the encoded secret. Such schemes are

also called (k, q)-threshold schemes. Shamir’s scheme [57] is an example of a (k, q)-

threshold perfect secret-sharing scheme, where k ≤ q.

In the next subsection, we describe Ito, Saito, and Nishizeki’s share assignment

scheme [36], which realizes any access structure using a (q, q)-threshold secret-sharing

scheme.

4.3.2 Ito, Saito, and Nishizeki’s Share Assignment Scheme

We describe Ito, Saito, and Nishizeki’s share assignment scheme [36] for a threshold

access structure. Consider a set of r participants {P1, P2, ..., Pr} such that any (m+1)

23

participants can pool their shares to recover the encoded secret. For a secret sharing

scheme realizing this access structure, first list the set B consisting of all possible

combinations of m participants. Thus, B = {B1, B2, ..., Bq}, where q =
(

r

m

)

.

Next, encode the secret using a (q, q)-threshold secret sharing scheme, where q =
(

r

m

)

. Let the shares thus generated be denoted by s = {s1, s2, ..., sq}, where q =
(

r

m

)

.

The set of shares assigned to participant Pi is given by the function g(i) = {sj, Pi /∈

Bj, 1 ≤ j ≤ q}. Thus, each participant receives
(

r−1
m

)

shares, and each share is stored

at (r − m) participants.

For example, consider a set of four participants such that at least three participants

must pool their shares to find the encoded secret. Then, r = 4, m = 2, and the set

B = {(P1, P2), (P1, P3), (P1, P4), (P2, P3), (P2, P4), (P3, P4)}. Next, generate six shares

of the secret such that all six of them are needed to decode the secret. Denote the

six shares by {s1, s2, s3, s4, s5, s6}.

From the share assignment function g,

Participant P1 gets shares (s4, s5, s6),

Participant P2 gets shares (s2, s3, s6),

Participant P3 gets shares (s1, s3, s5),

Participant P4 gets shares (s1, s2, s4).

Thus, any two participants can pool their shares to find out only five of the six shares.

Without the knowledge of the sixth share, the encoded secret cannot be learnt. Any

three participants can pool their shares to find out all six shares needed to recover

the encoded secret.

24

4.4 Computation Overhead of Perfect Secret Sharing Schemes

In this section, we show the high computation overhead of some well-known secret

sharing schemes, which is the main reason why such schemes are not widely used

for distributed data storage. We contrast the computation overhead with that of the

Rijndael (AES) symmetric-key encryption algorithm to illustrate this point. We then

show that XOR secret-sharing combined with replication-and-voting mechanisms has

a computational overhead similar to that of the Rijndael algorithm. All performance

measurements reported were done on an Intel Pentium4 3GHz processor with 256

MB RAM running Linux 2.6.9. The MIRACL [3] library was used to implement all

the cryptographic algorithms. In Section 4.7, we also compare the communication

overhead of the techniques developed against encryption and secret sharing.

Table 2: Computation times for Shamir’s scheme (8 KB block)

Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 4.956 ms 826 µs 14.87 ms 1.446 ms
512 bits 6.192 ms 1.290 ms 20.00 ms 2.064 ms
1024 bits 10.53 ms 2.145 ms 34.65 ms 3.575 ms

Shamir’s scheme [57] is an example of a (k, q)-threshold perfect secret-sharing

scheme, where k ≤ q. Table 2 lists the time taken to compute shares (sharing), and

the time taken to compute the secret given enough shares (recovery), for an 8 KB

block of data using Shamir’s scheme, for a selection of (k, q) values. Secret sharing

and recovery are done during writes and reads, respectively, and their overheads are

therefore important. For Shamir’s scheme, since the computations are done modulo

a prime p, the size of this modulus is also a factor in the throughput measurements.

There are two attacks possible when data is stored using secret sharing techniques.

One attack is by a faulty client that generates inconsistent shares during writes, i.e.,

25

different subsets of k shares out of the q shares will decode to different values. The

other attack is when a faulty server returns incorrect or arbitrary shares during reads.

Such attacks can be detected using verifiable secret-sharing schemes [23]. In such

schemes, some common data (called witnesses) for all the shares is computed by a

client during writes and sent to all the servers. Before storing the shares and the

witnesses, the servers check the shares received against the witnesses and arrive at a

consensus on the consistency of the shares. During reads, a client will first determine

the witnesses and check the validity of each share with the witnesses before proceeding

to decode the sensitive data. Verifiable secret-sharing schemes significantly increase

the computation overhead during the secret sharing (encoding) and secret recovery

(decoding) processes. A widely used method for verifiable secret sharing is Feldman’s

scheme [28]. Table 3 gives the computation times during secret sharing and secret

recovery of an 8 KB block of data when Feldman’s scheme is used with Shamir’s

scheme.

Table 3: Computation times for 8 KB block using Shamir’s with Feldman’s scheme
(Feldman’s prime length = 1025 bits).

Prime
Length

(k, q) = (3, 5) (k, q) = (6, 10)
Sharing Recovery Sharing Recovery

160 bits 2.461 s 2.616 s 4.956 s 7.228 s
512 bits 1.037 s 1.097 s 2.090 s 2.795 s
1024 bits 728 ms 747.5 ms 1.464 s 1.809 s

For comparison purposes, the throughputs of the AES Rijndael symmetric-key

encryption algorithm are given in Table 4.

From Tables 2–4, it is clear that the computation times of Shamir’s scheme and

Feldman’s scheme are far higher than those of symmetric-key encryption and, in fact,

this performance is well below what is acceptable for modern data storage systems.

The secret recovery computation times for verifiable secret sharing are at least 3000

26

Table 4: Computation time for AES (CBC mode, 8 KB block).
Key length Encryption Decryption

16 bytes 205 µs 205 µs
24 bytes 230 µs 241 µs
32 bytes 282 µs 271 µs

times slower than the Rijndael decryption times. The above analyses also indicate,

in part, why perfect secret-sharing techniques have not been adopted for generic data

to date. We reduce the computation overhead by using the following two mechanisms:

Mechanism 1: Use a (q, q) perfect secret sharing scheme: When k = q, i.e.,

all the shares are needed to recover the secret, then “inconsistent” secret sharing is

not possible. That is, there is no question of different subsets of k shares out of q

shares decoding to different values because there is only one such subset, since k = q.

Hence, verifiable secret-sharing schemes can be avoided. Further, a (q, q) perfect

secret-sharing scheme can be realized using simple bit-wise XOR operations. If each

data bit is thought of as a separate secret, then each share is a single bit and the

XOR of the q shares (or q bits) gives the encoded secret bit. In practice, XOR secret

sharing can be implemented with word-wide operations for efficiency. Table 5 lists the

computation times during secret sharing and secret recovery for a selection of (q, q)

values for XOR secret sharing. Note that XOR secret sharing is also a perfect secret-

sharing scheme. The only constraint compared to the general (k, q)-threshold scheme

with k < q is that all q shares must be recovered to reconstruct the secret. Compared

with the computation times using Shamir’s scheme (Table 2), the computation times

using XOR secret sharing are much lower.

Mechanism 2: Use replication-and-voting to determine incorrect shares

27

Table 5: Computation times for XOR sharing (8 KB block)
(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 35 µs
(10, 10) 732 µs 60 µs
(20, 20) 1.494 ms 140 µs

during reads: To detect incorrect shares that may be returned by malicious servers

during reads, we propose that each share be replicated at enough servers such that if

at least a threshold of servers returns the same share during a read, then that share is

correct and can be used for the secret recovery computation. This is the traditional

technique used for managing replicated data, which we apply for each share. If the

number of malicious servers is denoted by b, then for each share at least (2b + 1)

responses must be received. The value returned by at least (b + 1) servers is the

correct value of the share being read.

Table 6: Computation times for voting out of 2b+1 responses to determine a share of
size 8 KB. Measurements reflect the best case where there are no incorrect responses.

b 1 2 3 4 5
Computation Time (µs) 13.75 25 40 50 65

Table 6 gives the computation times for determining each share from (2b + 1)

responses, where b is the number of possibly malicious servers. Note that the numbers

are given for each share. Hence, the computation time during secret recovery must

now include the product of the time taken to determine each share from (2b + 1)

responses and the number of shares. The secret sharing computation time will remain

unchanged as no additional shares are generated. The secret sharing and recovery

computation times for XOR secret sharing along with voting for b = 3 are shown in

28

Table 7: Secret sharing and recovery computation times for XOR secret sharing
with voting (8 KB block, b = 3).

(q, q) Secret sharing Secret recovery

(5, 5) 333 µs 235 µs
(10, 10) 732 µs 460 µs
(20, 20) 1.494 ms 940 µs

Table 7. Compared with the computation times of verifiable secret-sharing schemes

(Table 3), the computation times of XOR secret sharing with voting are much lower

and are in the same order of magnitude as those of the Rijndael encryption algorithm

(Table 4).

Summarizing, perfect secret-sharing schemes can be used for fault-tolerant and

secure distributed data storage by combining them with verifiable secret-sharing

schemes. Using the computation latency of the Rijndael algorithm as the bench-

mark, we have shown that well-known verifiable secret-sharing techniques such as the

combination of Feldman’s scheme with Shamir’s scheme are too slow to be used for

large volumes of data. The computation overhead can be drastically reduced by us-

ing instead a (q, q) perfect secret-sharing scheme (namely, XOR secret sharing) along

with replication-and-voting mechanisms. The computation times are comparable to

those of the Rijndael algorithm. The next section describes how XOR secret sharing

with replication-and-voting mechanisms can be combined.

4.5 Combining Secret Sharing and Replication

Our approach in this chapter for realizing a fault tolerant and secure data storage

service is to use perfect threshold secret sharing for data confidentiality and to use

replication-based mechanisms to manage each share for crash and Byzantine fault

tolerance. We first describe a straightforward method of using this approach, called

29

Figure 4: The Direct Approach: Servers are arranged in a logical grid having (l+b+1)
rows, with at least (3b+c+1) servers in each row. Secret sharing is done across rows,
with a distinct share assigned to each row. Shares are replicated along rows.

the direct approach, and show that it suffers from requiring a large number of storage

servers. We then introduce the GridSharing framework, where a tradeoff between the

number of servers required and the storage space needed at each server is achieved.

This is a worthwhile tradeoff because storage space is cheap.

4.5.1 The Direct Approach

We consider a system consisting of N storage servers, where not more than l servers

can be leakage-only faulty, not more than b servers can be Byzantine faulty, and not

more than c servers can crash. The direct solution to this is to use a (l+b+1, l+b+1)-

threshold perfect secret-sharing scheme. Each share is given to a distinct set of x

servers. The setup can be envisioned as the N servers arranged in the form of a

logical grid with (l + b + 1) rows and x columns, as shown in Figure 4.

Servers in the same row store the same shares. The replication of shares is used

to achieve crash and Byzantine fault tolerance. Data confidentiality is achieved using

30

secret sharing. The secret sharing is done across rows. Thus, (l + b + 1) rows are

required, with each share assigned to a distinct row. The compromise of any (l + b)

servers will give only up to (l + b) shares to an adversary, but all (l + b + 1) shares

are needed to recover the secret.

When secrets are read and written, the shares are read and written using replication-

based protocols. For the purposes of this and subsequent analyses in this chapter,

we assume the following simple replication protocol. To write a secret S, the user

generates (l + b + 1) shares such that their bitwise-XOR gives the secret S. The user

writes to each server its assigned share. Thus, in the example depicted in Figure 4,

the user will write to each server in row 1 the share s1, to each server in row 2 the

share s2, and so on.

When the secret S is to be read at a later time, the same user or a different user

will need to only contact some set of servers to read all the shares. Consider how

share s1 is read in our example. The share s1 is stored in row 1, which consists of

x servers. The user needs to contact only (2b + 1) of these servers to determine s1,

since only a maximum of b servers can be Byzantine faulty. The share s1 returned

by at least (b + 1) servers must have been returned by at least one server that is

not Byzantine-faulty, and therefore should be correct. The user must obtain at least

(2b + 1) responses to determine s1, but up to (c + b) servers can fail to return any

response. Assuming clients connect to the servers over an asynchronous network so

that they are unable to detect server failures, each share must be written to at least

((2b + 1) + (c + b)) = (3b + c + 1) servers for reads to be successful in the presence of

b Byzantine failures and c crash failures in the system.

Thus, each share must be stored on at least (3b + c + 1) servers. Thus, x ≥

(3b + c + 1), which gives N ≥ (l + b + 1)(3b + c + 1). Note that the given description

for writes and reads is only an approach for a possible replication-based protocol to

31

manage the shares. We have overlooked the need for the use of timestamps, which

are common to all the shares. All the shares must be written as part of a single write

operation. The approach described is just sufficient to derive a lower bound on the

number of servers required to store each share. This lower bound will change based

on the assumptions on the system model and the kind of read-write semantics to be

realized. The minimum number of servers needed to maintain each share is the only

point in the design of the framework that is dependent on the choice of the replication

protocol and its underlying assumptions.

Thus, to tolerate l leakage-only faults, b Byzantine faults, and c crash faults, at

least (l+b+1)(3b+c+1) servers are required for this approach. For l = b = c = 2, at

least 45 servers are required. That is, only up to 6/45 = 13.3% servers can be faulty.

This is inefficient in terms of the number of storage servers required. However, the

storage blowup at each server is one, as the size of each share is the same as the size

of the encoded secret. Also, the bare minimum number of shares is generated, which

is (l + b + 1). Thus, the computation times during secret sharing (writes) and secret

recovery (reads) at the clients are kept as low as possible.

In the next section, we describe the GridSharing framework, where we balance

the strengths and the weakness of the direct approach. We trade off the number of

storage servers required with the storage blowup at each server and the total number

of shares generated for each secret.

4.5.2 The GridSharing Framework

Similar to the direct approach, the GridSharing framework consists of N servers,

where not more than c servers can crash, not more than b servers can be Byzantine

faulty, and not more than l servers can exhibit leakage-only faults. The N servers are

arranged in the form of a logical rectangular grid with r rows and N
r

columns, where

32

Figure 5: The GridSharing framework: N servers are arranged in a logical grid
having r rows. Secret sharing is done across rows, and shares are replicated along
rows. Setup shown for N = 20, l = 1, b = 1, and c = 6. Note that each server stores
three shares.

for simplicity we assume that N is a multiple of r. The arrangement is depicted in

Figure 5.

Servers in the same row store the same shares. Thus, tolerance to crash and

Byzantine failures is achieved. Data confidentiality is achieved using secret sharing.

The secret sharing is done across rows. Ito et al.’s [36] share assignment scheme is

used to assign shares to the rows. Thus, as per the terminology used in Section 4.3.2,

the r rows are the r participants among which shares are distributed. Since up to

l servers can be leakage-only faulty (reveal their shares to an adversary) and up to

b Byzantine-faulty servers can also do the same, shares from up to (l + b) rows can

be disclosed to an adversary. From Section 4.3.2, an
((

r

l+b

)

,
(

r

l+b

))

-threshold perfect

secret sharing scheme can be used to tolerate (l + b) faulty servers in r rows.

33

Figure 5 gives an example where N = 20 servers are arranged in a rectangular

grid with r = 4 rows. If it is necessary to tolerate b = 1 Byzantine fault and l = 1

leakage-only fault, then a
((

4
2

)

,
(

4
2

))

= (6, 6) XOR secret sharing scheme will have to

be used. Assume a secret S is encoded into six shares (s1, s2, s3, s4, s5, s6) such that

S = s1 ⊕ s2 ⊕ s3 ⊕ s4 ⊕ s5 ⊕ s6. That is, each bit in the secret S is the XOR of

the corresponding bits in the shares s1, s2, s3, s4, s5, s6. Then, according to the share

assignment function g given in Section 4.3.2,

Servers in row 1 get shares (s4, s5, s6),

Servers in row 2 get shares (s2, s3, s6),

Servers in row 3 get shares (s1, s3, s5),

Servers in row 4 get shares (s1, s2, s4).

The choice of Ito et al.’s share assignment scheme is motivated by the fact that each

share is assigned to multiple rows. This is in line with our principle of using the

replication of shares to achieve Byzantine and crash fault tolerance. Note also that,

as in the direct approach, shares are replicated along rows. As argued in Section 4.5.1,

each share must be stored on at least (3b+ c+1) servers. In the proposed framework,

each share is assigned to (r − (l + b)) rows, and each row has N
r

servers. Thus, each

share is stored at (r − (l + b))N
r

servers, and this must be at least (3b + c + 1). Thus,

(r − (l + b))
N

r
≥ 3b + c + 1 (1)

which gives

r ≥
N(l + b)

N − (3b + c + 1)
(2)

Inequality 2 gives the smallest number of rows possible for the framework. Thus, r

can vary in the range
[

N(l+b)
N−(3b+t+1)

, N
]

. Also, r must be greater than (l+b); otherwise,

a Byzantine fault or a leakage-only fault in each row will give the adversary all the

34

shares to recover the encoded data. From Inequality 2, it is obvious that the lower

bound on r is greater than (l + b).

For a given l, b, c, and r, Inequality 1 can be rewritten as

N ≥
3b + c + 1

1 − l+b
r

(3)

to give a lower bound on the number of servers N required. The lower bound is

minimized for a given l, b, and c when r is at its maximum value, which is N .

Substituting r = N in Inequality 3 gives the following requirement for N for tolerating

l leakage-only faults, b Byzantine faults, and c crash faults:

N ≥ 4b + l + c + 1 (4)

Thus, as the number of rows r is increased from (l + b + 1) to (4b + l + c + 1), the

minimum number of servers required will decrease. When r = (4b + l + c + 1), the

smallest number of servers needed to tolerate b Byzantine, c crash, and l leakage-only

faults will be reached. For r > (4b + l + c + 1), there will be only one column, the

number of servers N will be the same as the number of rows r, and N will increase

with r.

4.6 Performance Analysis of GridSharing

4.6.1 Performance Metrics

This section defines some performance metrics, whose relation with the fault tolerance

and security properties l, b, and c, and the number of rows r, are described in the

remainder of this section.

• min(N): The minimum number of servers required for a given l, b, c, and r.

This is given by the smallest N satisfying Inequality 3, with N being a multiple

of r.

35

• #Shares: The total number of shares generated per secret. For the proposed

framework, #Shares =
(

r

l+b

)

.

• Storage Blowup Per Server: The ratio of the storage space taken at each

server to the size of the data encoded. For the proposed framework, the storage

blowup factor is
(

r−1
l+b

)

. Since we use the XOR secret sharing scheme, the size

of a share is the same as the size of the secret.

• Secret Sharing and Secret Recovery Computation Times: The time

taken to encode and decode shares of an 8 KB block of data. The secret recovery

computation time is the sum of two components. The first component is the

time taken to determine the correct (#Shares) shares from (2b+1) responses for

each share, where b is the Byzantine fault tolerance threshold. We assume the

best case where there are no incorrect servers when evaluating this component.

The second component is the time taken to compute the data block once the

correct (#Shares) shares have been determined. The size of the data block

and each share are 8 KB. The measurements were taken on a Pentium4 3GHz

computer with 256 MB RAM running Linux 2.6.9. All measurements were

performed in memory and involved no disk and network I/O.

4.6.2 Effect of Grid Dimension

For given security and fault tolerance thresholds l, b, and c, the performance metrics

can be traded off against each other by varying the number of rows r in the framework.

The secret sharing and recovery computation times are dependent on #Shares, which

is dependent on r and (l+b). The smaller the number of rows r, the fewer the number

of shares (#Shares) and the lower the computation times during secret sharing and

secret recovery. But if r is increased from (l+b+1) to (4b+l+c+1), from Inequality 3,

36

Table 8: Effect of increasing number of rows r on performance metrics when l = 2,
b = 2, and c = 2

r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
5 45 5 1 333 µs 160 µs
6 30 15 5 1.103 ms 490 µs
7 21 35 15 2.668 ms 1.150 ms
8 24 70 35 5.480 ms 3.020 ms
9 18 126 70 10.31 ms 6.276 ms

the minimum number of servers required will decrease. Thus, the number of rows

affects min(N) and the secret sharing and recovery computation times in opposing

ways. For l = 2, b = 2, and c = 2, the tradeoff space is given in Table 8.

Table 8 shows that increasing the number of rows from (l + b + 1) reduces the

minimum number of servers required for that configuration while increasing the num-

ber of shares, #Shares, needed to store each secret. The storage capacity required at

each server thus increases with r. Increasing #Shares will also increase the compu-

tation overhead at the users during the secret sharing and secret recovery processes.

The practical range of r is thus limited by the storage blowup and the computation

overhead.

When there are five rows in the framework, each row gets a distinct share (which

is, the direct approach). The number of shares (#Shares) generated is minimum, and

the computation times are small. But 45 servers are required for this configuration.

By having seven rows in the framework, the minimum number of servers required

is lowered by more than half to 21 servers. For given fault tolerance and security

thresholds, having fewer servers implies that a higher percentage of faulty servers is

tolerated. Having fewer servers will also increase the manageability of the system.

On the other hand, the storage blowup at each server increases by a factor of 15.

Since storage cost is cheap, this is a worthwhile tradeoff. The computation times are

37

Table 9: Effect of increasing l on performance when b = 2, c = 2, and min(N) ≤ 35
servers

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 5 25 10 4 732 µs 310 µs
2 6 30 15 5 1.103 ms 490 µs
3 7 35 21 6 1.568 ms 706 µs
4 9 27 84 28 6.750 ms 4.084 ms
5 10 30 120 36 9.675 ms 6.120 ms

Table 10: Effect of increasing b on performance when l = 2, c = 2, and min(N) ≤
35 servers

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 4 24 4 1 267 µs 80 µs
2 6 30 15 5 1.103 ms 490 µs
3 8 32 56 21 4.315 ms 2.740 ms
4 11 33 462 210 38.88 ms 37.41 ms
5 16 32 11440 6435 3.104 sec 2.319 sec

also at acceptable values when r = 7. Thus, the choice of the number of rows in the

framework can be used to arrive at a suitable tradeoff point between the number of

servers required, the storage blowup, and the secret sharing and recovery computa-

tion overheads.

Table 11: Effect of increasing c on performance when l = 2, b = 2, and min(N) ≤
35 servers

c r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 24 15 5 1.103 ms 490 µs
2 6 30 15 5 1.103 ms 490 µs
3 6 30 15 5 1.103 ms 490 µs
4 7 28 35 15 2.668 ms 1.150 ms
5 7 28 35 15 2.668 ms 1.150 ms

38

4.6.3 Effect of Fault Thresholds Given N Servers

In this section, we assume that 35 data storage servers are available and investigate

the relation between the fault tolerance and security thresholds l, b, and c and the per-

formance metrics. We consider three cases. In each case, we fix two of the thresholds

at two servers and increase the other threshold from one to five servers. Tables 9, 10,

and 11 show the three different cases. For each combination of (l, b, c), we fix the

number of rows such that the secret recovery computation time is the smallest possi-

ble for the given configuration. Since the secret recovery computation time decreases

with increasing r, for the given (l, b, c), r is set to the smallest value (r ≥ N(l+b)
N−(3b+c+1)

)

such that min(N) is not more than 35 servers.

From Table 9, increasing the leakage-only fault threshold l leads to a tolerable

increase in the storage blowup per server, while the secret sharing and recovery com-

putation times become high for l ≥ 4 servers. The effect of increasing the Byzantine

fault threshold b, as shown in Table 10, has a more adverse effect on performance.

The storage blowup per server and the secret sharing and recovery computation times

increase rapidly with increasing b. Thus, to achieve a very high performance with 35

servers, only a relatively small number of Byzantine failures can be tolerated.

On the other hand, the framework can accomodate more crash failures without

any substantial performance impact, as shown in Table 11. Increasing the crash fault

threshold from one to five servers leaves the performance metrics mostly unchanged.

The storage blowup at each server is tolerable and the computation throughputs are

maintained at acceptable levels.

The examples considered above demonstrate that the framework can tolerate crash

failures with little performance impact, leakage-only faults with medium peformance

impact, and a limited number of Byzantine faults. The maximum number of faults

39

Table 12: Effect of increasing l on performance when b = 2, c = 2, and secret
recovery computation time ≤ 1.6 ms

l r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 18 20 10 1.494 ms 640 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 35 21 6 1.568 ms 706 µs
4 8 40 28 7 2.109 ms 928 µs
5 9 45 36 8 2.742 ms 1.196 ms

Table 13: Effect of increasing b on performance when l = 2, c = 2, and secret
recovery computation time ≤ 1.6 ms

b r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 6 12 20 10 1.494 ms 415 µs
2 7 21 35 15 2.668 ms 1.150 ms
3 7 42 21 6 1.568 ms 1.02 ms
4 8 64 28 7 2.109 ms 1.60 ms
5 8 144 8 1 592 µs 576 µs

that can be tolerated is given by Equation 4. Thus, given 35 servers, when b = 2

and c = 2, up to 24 leakage-only faults can be tolerated; when l = 2 and c = 2, up

to 7 Byzantine faults can be tolerated; and when l = 2 and b = 2, up to 24 crash

faults can be tolerated. However, practical limits on the secret sharing and recovery

computation times and the storage blowup at each server are a more severe restriction

on the actual range of faults that can be tolerated. Notice that, except for high values

for the Byzantine fault threshold b, the secret sharing and recovery computation times

are much smaller than the figures given for verifiable secret sharing in Table 3.

4.6.4 Effect of Fault Thresholds Given Restriction on Secret Recovery
Computation Time

Since increasing l, and b in particular, can lead to a substantial increase in secret

sharing and secret recovery computation times, as observed in Table 9 and Table 10,

40

Table 14: Effect of increasing c on performance when l = 2, b = 2, and secret
recovery computation time ≤ 1.6 ms

c r min(N) # Shares
Storage Blowup

Per Server
Computation Time

Secret Sharing Secret Recovery
1 7 21 35 15 2.668 ms 1.150 ms
2 7 21 35 15 2.668 ms 1.150 ms
3 7 28 35 15 2.668 ms 1.150 ms
4 7 28 35 15 2.668 ms 1.150 ms
5 7 28 35 15 2.668 ms 1.150 ms

we remove the requirement of having only 35 storage servers available, and instead

impose the requirement that the secret recovery computation time for 8 KB of data

must be less than 1.6 ms. The secret recovery computation time is important when

reads are more frequent than writes, which is often the case. A secret recovery

computation time of 1.6 ms for 8 KB of data is approximately six and eight times

slower than the decryption time using the Rijndael encryption algorithm for key sizes

of 32 bytes and 16 bytes respectively, as was shown in Table 4.

Similar to Section 4.6.3, we consider three cases. In each case, we fix two of the

fault thresholds at two servers, and increase the other fault threshold from one to five

servers. Tables 12, 13, and 14 show the three different cases. For each combination of

(l, b, c), we fix the number of rows r that gives the smallest min(N) while maintaining

the secret recovery computation time to be less than 1.6 ms. Restricting the secret

recovery computation time limits the number of shares (#Shares) generated, which in

turn keeps the storage blowup at each server reasonable. In Table 12, the minimum

number of servers required (min(N)) shows a moderate increase with increasing l.

When l = 5 servers, a total of 9 (l + b + c) servers out of 45 servers are faulty. That

is, up to 20% of the servers can be faulty (leakage-only, Byzantine, or crash), which

should be acceptable. In Table 13, the minimum number of servers required (min(N))

increases rapidly with the Byzantine fault threshold b. Thus, the proposed framework

41

is suitable for tolerating a small number of Byzantine faults.

In Table 14, the computation throughputs and the storage blowup remain the

same with increasing crash fault threshold c for the example considered. With 21

servers, up to two crash faults are tolerated, and with 28 servers, up to 5 crash faults

can be tolerated. Note that with 5 crash faults, a total of 9 servers out of 28 servers

can be faulty. That is, up to 32% of the servers can be faulty, which is a standard

property of replica management protocols that tolerate only Byzantine faults. While

in this example most of the faults are crash faults, the number of servers required is

reasonable.

Thus, from Tables 12, 13, and 14, low secret recovery computation times can

be achieved with acceptable requirements on the number of servers and the storage

blowup at each server. As observed in Section 4.6.3, the number of servers required for

tolerating crash and leakage-only faults is acceptable, while practical considerations

will restrict the number of Byzantine faults that can be tolerated. Note that, in

all the analyses, the number of rows was manipulated to arrive at the optimum

configuration.

4.7 Discussion

While the GridSharing framework aims to decrease the computation overheads in-

curred during secret sharing and recovery, the storage blowup at each server is in-

creased, which increases the communication overhead during reads and writes. Ta-

bles 15 and 16 show the computation and communication overheads during the secret

sharing (writes) and secret recovery (reads) processes for encryption, verifiable secret

sharing (VSS), and the GridSharing framework when the fault thresholds l, b, and c

are all equal to one.

The total time taken during a write operation is composed of three parts - the

42

Table 15: Comparison between encryption, verifiable secret sharing, and GridShar-
ing during writes for 8 KB of data. l = 1, b = 1, and c = 1.

Coding
Scheme min(N)

#
Shares

Storage
Blowup

Per
Server

Overhead during Writes

Secret
Sharing

Encryption
(Secure

Channels)

Comm.
Time Total

Encryption 5 1 1 205 µs 3.277 ms 3.482 ms
VSS 5 5 4 728ms 1.23 ms 13.11 ms 742.34 ms

GridSharing
#rows = 3 15 3 1 180 µs 3.28 ms 9.83 ms 13.29 ms
GridSharing
#rows = 4 12 6 3 430 µs 7.995 ms 23.59 ms 32.02 ms
GridSharing
#rows = 5 10 10 6 732 µs 13.53 ms 39.32 ms 53.58 ms
GridSharing
#rows = 6 12 15 10 1.103 ms 26.65 ms 78.64 ms 106.39 ms
GridSharing
#rows = 7 7 21 15 1.568 ms 24.6 ms 68.81 ms 94.98 ms

Table 16: Comparison between encryption, verifiable secret sharing, and GridShar-
ing during reads for 8 KB of data. l = 1, b = 1, and c = 1.

Coding
Scheme min(N)

#
Shares

Storage
Blowup

Per
Server

Overhead during Reads

Secret
Sharing

Encryption
(Secure

Channels)

Comm.
Time Total

Encryption 5 1 1 218.75 µs 1.966 ms 2.185 ms
VSS 5 5 4 747.5 ms 820 µs 7.864 ms 756.18 ms

GridSharing
#rows = 3 15 3 1 61.25 µs 2.05 ms 5.898 ms 8.01 ms
GridSharing
#rows = 4 12 6 3 122.5 µs 4.1 ms 11.796 ms 16.02 ms
GridSharing
#rows = 5 10 10 6 207.5 µs 6.765 ms 19.66 ms 26.63 ms
GridSharing
#rows = 6 12 15 10 321.25 µs 10.045 ms 29.49 ms 39.86 ms
GridSharing
#rows = 7 7 21 15 469.75 µs 14.76 ms 41.288 ms 56.25 ms

43

secret sharing operation, encryption of the shares to establish secure channels between

the client and the servers, and the communication time. Similarly, the total time

taken during a read operation consists of the communication time in getting the

required number of shares, decrypting the shares from the secure channels, and then

recovering the secret. For the communication time, it is assumed that the network

bandwidth between the client and the servers is 100 Mbps. Note that our read /

write protocol is a very simple one where a client writes to all servers and reads from

the required number of servers. Timestamps and the use of Message Authentication

Codes for providing message integrity during communication have been overlooked.

It is also assumed that the client reliably gives each server its share(s) during writes,

thus eliminating the need to implement a reliable broadcast protocol. The figures

given serve only to compare between GridSharing, verifiable secret sharing schemes

(namely, the combination of Shamir’s and Feldman’s scheme), and encryption.

The figures given for encryption do not take into account the overheads due to

the storage and retrieval of cryptographic keys. The encrypted data need not be

re-encrypted to achieve secure channels. The read and write latencies are thus very

small. Only the minimum number of servers (= (3b + c + 1)) are required, and the

storage blowup at each server is one. Data storage using the encrypt-and-replicate

storage model is hence an attractive option when performance is critical. However,

the security of the model relies on the secure maintenance of the cryptographic keys.

For VSS, the number of servers required is only 5 (= (3b + c + 1)). A (3, 5)-

threshold Shamir’s scheme is used, because up to two servers (= (l + b)) can leak

shares to an adversary. The write and read latencies of VSS are over 213x and

346x slower than those of encryption. The secret sharing and recovery computation

overheads account for over 98% of the total write and read latencies. In GridSharing,

the secret sharing and recovery computation overheads are decreased substantially,

44

while the communication overheads are increased. However, the overall write and

read latencies for GridSharing are still much less than that of VSS. When the number

of rows r is set to 7 in GridSharing, the write and read operations are over 7x and

13x faster than that of VSS, respectively. The number of servers required is only

two more than that of VSS, but the storage blowup at each server is 15. Decreasing

r in GridSharing decreases the read and write latencies and the storage blowup at

the expense of requiring more storage servers. When r = 3, the write and read

latencies are comparable to those of encryption, but three times more storage servers

are required.

The increased storage blowup in GridSharing should not be a limitation, as storage

space is cheap. The fact that large amounts of inexpensive, surplus storage are

available has been exploited in other applications, such as in [59], where the surplus

storage space is used to store different versions of objects for subsequent intrusion

diagnosis and recovery.

Finally, we would like to note that the communication overheads when using

replication-based protocols can be reduced using other techniques. In [38], the use of

cryptographic hashes when reading replicated data has been shown to significantly

reduce the read latency. In [63], the tradeoff between computation and communication

overheads for several lossless compression algorithms is investigated. Cryptographic

hashes and compression algorithms reduce communication overheads while increasing

the computation overheads, which reinforces the need for reducing the computation

overheads during the secret sharing and recovery processes.

4.8 Conclusions

This chapter presents a novel approach for realizing a secure and fault tolerant data

storage service using the secret sharing data storage model. Key highlights of this

45

work are:

• Verifiable secret sharing schemes are typically used with perfect secret sharing

schemes to achieve Byzantine fault tolerance. We show that verifiable secret

sharing schemes incur substantial computation overheads, and are much slower

than the Rijndael encryption algorithm.

• We use an (n, n)-threshold perfect secret sharing scheme, namely the XOR se-

cret sharing scheme, for confidentiality, and manage each share using replication-

based protocols for Byzantine and crash fault tolerance. The computation

overheads are reduced drastically when compared to verifiable secret sharing

schemes, but additional servers and storage capacities at each server are re-

quired. An example where the secret recovery computation time was only up

to 6 to 8 times slower than the Rijndael decryption algorithm was given.

• We present an architectural framework, called GridSharing, whose dimension

can be varied to tradeoff between the number of servers required, and the storage

blowup and secret sharing and recovery computation times. This property was

shown to be valuable in arriving at optimum configurations for different fault

thresholds.

• For secret recovery computation times that are 6 to 8 times slower than Ri-

jndael decryption, we show that our proposed framework provides good fault

tolerance to leakage-only and crash faults with acceptable overheads. However,

in practice, resource limitations place a restriction on the number of Byzantine

server failures that can be tolerated.

46

• A rough comparison of the overheads, including read and write latencies, be-

tween encryption-with-replication, verifiable secret sharing (VSS), and Grid-

Sharing was given. Since GridSharing incurs a higher storage blowup at each

server, the read and write communication overheads are higher than with VSS.

Despite this, GridSharing has lower overall write and read latencies than VSS.

Write and read latencies comparable to storing data using private-key encryp-

tion schemes can be achieved at the expense of requiring a greater number of

storage servers.

47

CHAPTER V

PERIODIC SHARE RENEWAL FOR THE

GRIDSHARING FRAMEWORK

5.1 Problem Statement

In the mobile adversary model, there can be up to b Byzantine-faulty servers and

up to l leakage-only faulty servers in every epoch. Byzantine and leakage-only faulty

servers can reveal their stored shares to the mobile adversary. Thus, after sufficiently

many epochs elapse, the mobile adversary may be able to obtain all the necessary

shares to decode the stored data, thus violating the confidentiality property of the

data storage service.

To maintain the confidentiality of the encoded data under the mobile adversary

model, the shares of all data objects must be “renewed” periodically. The renewal

process produces a new encoding of the shares. The attacker will thus not be able to

obtain sufficient shares of the same encoding, thereby preserving the confidentiality

of the encoded data.

For example, suppose Bit D is stored as the three share bits d1, d2, and d3 such

that D = d1 ⊕ d2 ⊕ d3. If l = b = 1, then the adversary can learn two of these shares,

say d1 and d2. In the next epoch, the encoding is changed to d′
1, d′

2, and d′
3 such that

D = d′
1⊕d′

2⊕d′
3. The attacker may now learn d′

2 and d′
3. The attacker cannot decode

48

Bit D, as he needs to also know either d3 or d′
1. The confidentiality of Bit D is thus

maintained in the mobile adversary model by changing its encoding (or renewing its

shares) in every epoch.

The share renewal process must be scalable with the large amounts of stored

data. The GridSharing framework already helps in this regard via the use of XOR

operations for secret sharing.

In the following sections, we describe the algorithm and protocol followed by

experimental results.

5.2 The Share Renewal Algorithm

The share renewal algorithm is developed in the context of the GridSharing frame-

work, described in Chapter 4. In the GridSharing framework, the servers are arranged

in the form of a grid which has r rows. The secret sharing and share assignment is

done across the r rows. XOR secret sharing is used, in which each data bit is encoded

into several random share bits such the XOR of all these share bits gives the encoded

data bit.

Since up to l servers can be leakage-only faulty and up to b servers can be Byzantine

faulty in every epoch, the shares from up to (l+b) rows can be revealed to the mobile

adversary in an epoch. The share renewal algorithm to renew the share bits is run

every epoch. Since the shares of large amounts of data need to be renewed, the share

renewal process may run for a significant duration of an epoch. While the share

renewal process is in progress in a new epoch, the attacker may compromise servers

in a different set of (l + b) rows and learn the share bits of the encoding used in the

previous epoch. The GridSharing framework must therefore be designed to tolerate

2l leakage-only faults and 2b Byzantine faults.

The GridSharing framework uses an (n, n) XOR secret sharing scheme, where n is

49

given by
(

r

2l+2b

)

. All n shares are needed to decode the data, but the knowledge of any

(n−1) shares gives no information on the encoded data. Each data object is encoded

into n shares and stored at the servers. Denote by S1, S2, ..., Sn the n shares of data

object A. That is, Si contains the ith share of the encoding of each bit of data object A.

To generate a new encoding of A, n random shares R1, R2, ..., Rn must be generated

so that their bitwise-XOR gives object 0 in which each bit is 0. Thus, when a user

reads A after the share renewal, he will read (S1 ⊕R1)⊕ (S2 ⊕R2)⊕ ...⊕ (Sn ⊕Rn) =

(S1 ⊕ S2 ⊕ ... ⊕ Sn) ⊕ (R1 ⊕ R2 ⊕ ... ⊕ Rn) = A ⊕ 0 = A.

To generate a large amount of a random share, the RC4 stream cipher is used

with a random string as the encryption key. The encryption key to generate the ith

share is given by SHA1(RStrngi||Object Name), where RStrngi is a random string

and || denotes concatenation. To ensure that the random shares are the shares of 0,

(n − 1) such random shares are generated using (n − 1) random strings to seed the

RC4 cipher, and the nth share is given by the bitwise-XOR of these (n − 1) shares.

This procedure is shown in Figure 6.

The servers that store the nth share must thus be made aware of the (n − 1)

random strings used to generate the (n − 1) random shares. If one of these servers

is leakage-only faulty or Byzantine faulty, then the adversary can learn the random

sharings of bit 0 used for the share renewal, and the confidentiality of the stored data

will be broken. To overcome this possibility, the share renewal algorithm is run n

times. The jth run involves computing the jth share of a random encoding of bit 0

by XORing the other (n − 1) shares, that is, Rj = R1 ⊕ ... ⊕ Rj−1 ⊕ Rj+1 ⊕ ... ⊕ Rn.

The adversary can compromise up to (l + b) rows while the share renewal is in

progress. If, in the GridSharing setup, Share i is assigned to one of these (l + b) rows,

then the adversary can learn the random sharings of bit 0 generated in run i of the

share renewal algorithm because computing Share i will require knowledge of all the

50

Figure 6: The Epoch Marker generates random strings which are used to generate
the encryption keys for the RC4 stream cipher. The stream cipher is used to generate
large blocks of random shares. One of the share holders (SVR1) must be made aware
of all the random strings so that it can generate the appropriate share so that the
XOR of all the random shares is zero. The share renewal algorithm is thus run n
times, where n is the number of shares.

other shares. However, not all n shares are assigned to a group of (l + b) rows. If

Share i′ is not assigned to these (l+b) rows, then the adversary will be unable to learn

all the random sharings of bit 0 generated in run i′ of the share renewal algorithm.

The confidentiality of the encoded data is thus maintained under the mobile ad-

versary model. The next section describes the protocol used during share renewal.

5.3 Share Renewal Protocol

Our proposed data store architecture has an Epoch Marker that divides time into

epochs, and notifies the servers the start of a new epoch. The Epoch Marker is

assigned the responsibility of generating the random strings used to seed the RC4

stream ciphers during the share renewal process. The protocol flow at the start of a

51

new epoch is shown in Figure 7.

Figure 7: Servers start running the share renewal algorithm upon learning the start
of a new epoch and the random strings for share renewal from the Epoch Marker.

Denote the set of random strings generated for the jth run of the share renewal

algorithm by Rj = {RStrngj
1, ..., RStrngj

j−1, RStrngj
j+1, ..., RStrngj

n, }. The Epoch

Marker generates these random strings, and then notifies all the servers the start of

a new epoch. The notify message for a server contains the random strings the server

needs to perform the n share renewal runs. Thus, all servers that store Share i will

receive from the Epoch Marker the random strings

RStrng1
i , ..., RStrngi−1

i , (Ri), RStrngi+1
i , ..., RStrngn

i .

We assume that the Epoch Marker is always fault-free.

The servers use the random strings to seed the RC4 stream ciphers and renew

the shares they store for each data object. If the shares of a data object are not yet

renewed and a read request from a user is received, then the shares are renewed and

then sent to the user.

52

5.4 Experimental Analysis

This section presents an experimental analysis of the share renewal algorithm for the

GridSharing framework. For experimentation purposes, we assume that the length

of an epoch is one day. The shares of all the stored data objects must be renewed

within this time. The various configurations of the GridSharing framework differ in

the number of shares that are generated. The more the number of shares, the more

time it takes to renew the shares and consequently less data can be stored, as the

shares have to be renewed within the duration of an epoch.

We assume that up to one server can be leakage-only faulty and up to one server

can be Byzantine faulty in an epoch, and up to one server can crash throughout the

lifetime of the system. The GridSharing framework must thus be designed to tolerate

2 leakage-only faulty servers, 2 Byzantine faulty servers, and 1 crash fault.

The experimental analysis was performed in the context of a document storage

system. The share renewal is done for preserving the confidentiality of the latest

versions of all the stored documents. All of our experiments were run on Emulab [2].

The servers were Dell Poweredge 2850 machines consisting of 3.0 GHz 64-bit Xeon

processors, 2 GB RAM, and 146GB 10000 RPM SCSI disks. The servers were not

processing any reads and writes during these experiments.

Table 17: Effect of increasing number of rows r on the share renewal rate when up
to one server can be leakage-only faulty and up to one server can be Byzantine faulty
in an epoch, and up to one server can crash in the system lifetime.

r N # Shares
Storage Blowup Renewal Rate # Docs Renewed

Per Server 1 MB Docs / s In 1 Day
5 40 5 1 8.92 770K
6 24 15 5 7.45x10−1 64K
8 16 70 35 2.33x10−2 2K
12 12 495 330 3.48x10−4 30

Table 17 gives some possible configurations of the GridSharing framework, along

53

-2

 0

 2

 4

 6

 8

 10

 4 6 8 10 12 14

S
ha

re
 r

en
ew

al
 r

at
e

(d
oc

um
en

ts
 /

se
c)

Number of rows

8.92 docs/sec

0.745 docs/sec

2.33 x 10-2 docs/sec 3.48 x 10-4 docs/sec

Figure 8: Share renewal rate vs. the number of rows in the GridSharing framework

with some performance metrics. The sizes of all the stored documents are set to 1

MB. As the number of rows is increased, fewer storage servers are required, but the

number of shares generated and the storage blowup at each server increase. A server

will take more time to renew its shares of a document, resulting in lower rates of

share renewal. Figure 8 shows the share renewal rate vs. the number of rows r.

If the epoch length is assumed to be 1 day (86,400 seconds), then the number

of documents whose shares can be renewed in a day is given in Table 17. Since the

size of each document is set to 1 MB, for r = 5, over 770 GB of documents can be

stored in a proactively-secure data store. When r = 8, only 2 GB of documents can

be stored. The right choice of r is a tradeoff between the amount of data that can be

proactively-secured and the number of servers required.

5.5 Conclusions

This chapter presents an algorithm for share renewal in the GridSharing framework.

The share renewal process generates a new encoding for the stored data objects.

54

The share renewal process is run in every epoch. If up to l servers can be leakage-

only faulty and up to b servers can be Byzantine faulty in every epoch, then the

GridSharing framework must be designed to tolerate 2l leakage-only faults and 2b

Byzantine faults. The servers use RC4 stream ciphers to generate random shares.

The cryptographic keys used in the RC4 cipher are derived from random strings

generated by the Epoch Marker.

The algorithm was experimentally evaluated on the Emulab cluster, in the context

of a document storage service. If up to one server can be leakage-only faulty and up to

one server can be Byzantine faulty in an epoch, and up to one server can crash, then

the number of 1 MB-sized documents that can be proactively-secured varies from as

high as 770K (770 GB) to as low as 30 (30 MB) documents, depending on how the

GridSharing framework is configured. The independent parameter used to configure

the GridSharing framework is the number of rows. The number of shares needed to

store documents increases with more rows, thus reducing the number of documents

whose shares can be renewed in an epoch. However, increasing the number of rows

reduces the number of servers that are required. Thus, the right choice of the number

of rows is a tradeoff between the amount of data that can be proactively-secured and

the number of servers required.

55

CHAPTER VI

PERIODIC INTEGRITY VERIFICATION AND

RESTORATION

6.1 Problem Statement

The data stored at a Byzantine-faulty server can be corrupted arbitrarily by an ad-

versary. In the mobile adversary model, the Byzantine faults may move from one

server to another every epoch. For a server that is not faulty in the current epoch but

was Byzantine-faulty in an earlier epoch, its stored data will remain in the corrupted

state. Thus, after sufficient epochs elapse, every server could be storing corrupted

data.

To a client reading a stored data object, a fault-free server returning corrupted

data may be indistinguishable from a Byzantine-faulty server behaving arbitrarily.

However, the read-write protocols can tolerate only b Byzantine faults in N storage

servers.

This problem is illustrated in Figure 9. Consider a system where the read-write

protocols can tolerate only one Byzantine fault. In Epoch 0, all the servers are fault-

free. In Epoch 1, Server 1 becomes Byzantine-faulty and its stored data is arbitrarily

corrupted. Clients will still be able to read the correct data assuming the read-write

protocols can tolerate a maximum of one Byzantine fault. In Epoch 2, the Byzantine

56

Figure 9: The mobile adversary in action: Eventually, the data stored at all the
servers may be corrupted.

fault has moved from Server 1 to Server 2, and the data stored at Server 2 is corrupted.

Two servers can now return corrupted data during reads, and the correctness property

of the read-write protocols may not hold.

In the following sections, we describe some of the related works followed by the

solution and experimental results.

6.2 Related Work

A well known filesystem integrity checker is Tripwire [4]. It is used to secure the

integrity of the files stored in a computer. It is first used to create a database of

filenames, their hashes and other attributes. The database, along with the tripwire

57

executable, is stored on a read-only medium so that an attacker compromising the

computer cannot modify them. Tripwire can then later check if any files have been

corrupted by comparing their attributes and hashes with the database. Tripwire is

thus an intrusion detection tool that detects compromises after they have occurred.

It does not include a mechanism to restore corrupted files from backups.

Our approach is similar to Tripwire, except that backups of the files and the

database are available as replicated copies on other servers. Thus, we do not require

a read-only medium, the files and the database can be modified by authorized users,

and our approach is also able to restore corrupted files. Similar to Tripwire, our

approach can also detect corrupted data and thus detect if a server was compromised

in the last epoch.

Proactive recovery in a Byzantine fault-tolerant system was considered in [21]. The

paper describes how replicas can periodically verify and recover their state. In [35], a

technique to detect and repair corrupted shares for data stored at servers using secret

sharing is given. Both [21] and [35] deal with only small amounts of data. We address

the problem of scaling the integrity maintenance process to large amounts of data in

a read-write storage system.

The lazy verification approach in PASIS [5] allows servers to detect and repair

partial writes by faulty clients in a Byzantine-faults tolerant distributed data storage

system. It is not clear if the lazy verification approach can be used to detect and

repair corrupted objects, because an adversary can erase or create spurious objects

at compromised servers. Also, because of their asynchronous system model, it is not

clear how their approach can be proved to be secure in the mobile adversary model.

58

6.3 Solution Approach

The integrity of the stored data can be maintained in the mobile adversary model if

the servers run some procedure periodically to detect and repair data corruptions.

There are two types of data stored at the servers: 1. userdata, and 2. metadata.

The userdata is the actual data stored by the users of the storage service, while the

metadata is information on the stored userdata. Types of metadata of particular

interest for data integrity are object identifiers (such as filenames) and the checksum

of the contents of the data objects.

The proposed solution consists of two steps.

Step 1: In every epoch, all the servers that are not Byzantine or crash faulty arrive

at a consistent set of metadata for the userdata stored till the last epoch.

Step 2: Next, the non-faulty servers verify if their stored userdata match the meta-

data (determined in Step 1) and repair any corrupted userdata by reading it

from other servers.

After the servers finish the above steps in the current epoch, the integrity of the data

stored till the last epoch is verified and restored at all non-faulty servers. Servers

that were Byzantine faulty in the previous epoch will be free of data corruptions;

only servers that are Byzantine faulty in the current epoch may have their stored

data corrupted. Steps 1 and 2 impose some requirements on the write protocol, as

writes can straddle epoch boundaries. These requirements are given in Section 6.4.3.

Having the non-faulty servers arrive at consistent metadata ensures that stored

objects are not deleted and spurious objects are not created. In addition, we require

that a stored object’s metadata contain the hash (checksum) of the contents of the

object. This is required to detect arbitrary data corruptions at a server.

59

The proposed two-step solution approach is applicable in a variety of distributed

data storage systems. The only requirement is that all the non-faulty servers are able

to arrive at a set of consistent metadata. The userdata itself can be stored using secret

sharing techniques, such as the GridSharing framework, or erasure codes. Further,

the userdata is not required to be replicated at all the servers. For example, storage

systems that use quorums for managing userdata can be adapted to have the metadata

replicated at all the storage servers.

6.4 Protocol for Periodic Integrity Verification and Restora-

tion

To counter the mobile adversary, we must have the servers run some distributed

protocol periodically to repair data corruptions from earlier epochs. We call this

protocol the Periodic Integrity Verification and Restoration (PIVR) protocol.

We develop this protocol in a system where the userdata and their metadata are

replicated at all the storage servers. The storage servers store data objects. A write

to a data object stores a new version of the data object. Versions of a data object

are distinguished using version numbers. Versions numbers are considered a part of

the metadata of the data object.

Our proposed data store architecture has an Epoch Marker that divides time into

epochs, and notifies the servers the start of a new epoch. The exact flow of events at

the start of a new epoch is shown in Figure 10.

A server, upon being notified the start of a new epoch by the Epoch Marker,

updates its view of the epoch number and then starts running the PIVR protocol.

Protocol PIVR consists of the following steps:

PIVR Step1: Metadata check and repair: Servers execute this step to arrive

at a consistent set of metadata for the userdata stored till the last epoch.

60

Figure 10: Servers start running the PIVR protocol upon learning the start of a
new epoch from the Epoch Marker.

PIVR Step2: Userdata check and repair: The stored userdata are checked

against the metadata determined in PIVR Step1 to detect corruptions. Cor-

rupted userdata are repaired by reading the correct contents from other servers.

In a fully-replicated distributed data store, Protocol PIVR requires that the write

protocols satisfy certain properties, given in Section 6.4.3. The synchronous system

model is used for executing Protocol PIVR. This is required for Protocol PIVR to

complete in an epoch. Thus, servers use the reliable synchronous network for sending

and receiving protocol messages. The above two steps, PIVR Step1 and PIVR Step2,

are explained below:

6.4.1 PIVR Step1: Metadata Check and Repair

The pseudocode for the protocol for PIVR Step1 is given in Figure 11. Each server

first arrives at a list of locally-stored objects (userdata) and their metadata. The

metadata includes the hash of the contents of the data objects. The servers then

check against each other to determine the “correct” list. Since up to b servers can be

Byzantine faulty in the previous epoch and b servers can be Byzantine faulty in the

current epoch, the list reported by at least (2b + 1) servers is from at least one server

61

1. Arrive at a sorted list Li of locally-stored data objects (userdata) and their metadata.
Each entry in the list is of the form Object ID||Metadata.
Metadata includes the hash of the contents of the data object.
The list is sorted on the object IDs.

2. Compute hash Hi of List Li.
3. Request hash of lists from all the other servers.
4. Wait for response from all the other servers, or until timeout.
5. Determine hash H returned by at least (2b + 1) servers, including itself.
6a. If Hi = H, List Li is the correct list.
6b. If Hi 6= H, read the correct list from a server that returned H.
7. Delete from local storage all objects that are not present in the correct list.
8. End.

Figure 11: Pseudocode for PIVR Step1 of the Periodic Integrity Checking and
Verification Protocol.

that is not faulty in the current and previous epochs and is hence the correct list.

To make the reading and comparing of lists efficient (Step 3 in Figure 11), each

server requests other servers for the hash of their lists instead of their entire lists.

6.4.2 PIVR Step2: Document Integrity Checking and Repair

Having arrived at the correct list of object IDs and their hashes, a server proceeds to

check if it has the data objects corresponding to each entry in the list. The integrity

of the contents of an object are checked against the hash contained in the metadata

for that object.

If the data object corresponding to an entry in the list does not exist, then

the server reads the object off another server that reported the correct hash in

PIVR Step1. To safeguard against a malicious server that reported the correct list

but may now return an incorrect data object, the server must compute the hash of

the object read and check if it matches the hash contained in the metadata for that

object. If the hashes don’t match, the server reads the object off another server that

reported the correct hash, until the hashes match.

62

6.4.3 Requirements on Writes

In a read-write fully-replicated distributed data store, Protocol PIVR requires that

the write protocols satisfy certain properties, listed below:

PIVR WProp1: Writes update the metadata at all the servers that are not Byzan-

tine or crash faulty. The metadata that is updated includes the checksum of

the new userdata included in the write request.

PIVR WProp2: Writes store the contents of the new version at at least (b + c −

fc + 1) servers that are not Byzantine or crash faulty, where fc is the number

of servers that have crashed.

PIVR WProp3: Servers that are not Byzantine or crash faulty in the previous and

current epochs can consistently identify the userdata stored till the last epoch.

PIVR WProp4: Each server that is not Byzantine or crash faulty can safely con-

clude, at some point in the current epoch, that it has received all metadata

updates due to writes from the previous epoch.

In a fully-replicated data store, the metadata and the userdata are stored at all

the servers. PIVR WProp1 is required, otherwise each server executing PIVR Step1

will have to merge the metadata from all servers. A server must finish executing

PIVR Step1 as quickly as possible, so that the remainder of the epoch can be de-

voted to PIVR Step2. A Byzantine-faulty server can report an impractical amount

of metadata and cause resource exhaustion during this merge process.

PIVR WProp2 requires writes to store the userdata at at least (b + c − fc +

1) servers. The remaining servers can update themselves with the corresponding

userdata as part of PIVR Step2 in the next epoch. A necessary requirement for this

is that there is at least one fault-free server in the next epoch that has the correct

63

userdata. Among the servers that stored the userdata included in a write, b servers

can become Byzantine faulty and c servers can crash in the next epoch.

PIVR WProp3 is required because the PIVR protocol verifies and restores the

integrity for the userdata stored till the last epoch. Satisfying this property is not

trivial because the servers may not receive at the same time the notification of a new

epoch from the Epoch Marker.

PIVR WProp4 is required so that a server knows when it should start running

the PIVR protocol in a new epoch.

In Chapter 8, a document repository realized using read-write protocols that sat-

isfy the above properties is described.

6.4.4 Requirement on Minimum Number of Servers

Theorem 1 In every epoch, the servers that are not Byzantine or crash faulty will,

after running Protocol PIVR, store the correct metadata and the correct userdata

contents for the userdata stored till the last epoch provided the number of servers is

at least (4b + c + 1).

Proof: Consider the run of PIVR Step1 in the second epoch of its lifetime. A

server, as part of PIVR Step1, will first read its local storage to arrive at the meta-

data for the userdata stored till the last epoch, which in this case is the first epoch.

Because the writes are assumed to have properties PIVR WProp1, PIVR WProp3,

and PIVR WProp4, all servers that are not Byzantine or crash faulty in the first and

second epochs will arrive at the same metadata for the userdata stored in the first

epoch. We call this list the “correct” list. Servers that are Byzantine or crash faulty

in either the first or the second epoch may not arrive at the correct list, as their local

data storage may have been corrupted arbitrarily by the adversary. Thus, at least

64

(N−2b−c) servers will have the correct list, as up to b servers can be Byzantine-faulty

in every epoch and up to c servers can crash during the system lifetime.

A server determines if its list is correct by first reading the lists from all the servers,

including itself. Since up to 2b servers may return a corrupted list, the list returned

by at least (2b + 1) servers is guaranteed to be from at least one server that was not

Byzantine faulty in Epochs 1 and 2. Thus, (N − 2b− c) must be at least (2b + 1), or

N must be at least (4b + c + 1). The use of the synchronous system model ensures

that a server will timeout waiting for responses from servers that do not respond (due

to crash or Byzantine failures) and complete PIVR Step1.

Once a server has determined the correct list, it starts executing PIVR Step2.

PIVR Step2, together with Property PIVR WProp2 of writes, ensures that all servers

that are not Byzantine or crash faulty in the current epoch will be free of local data

corruptions. Only servers that are Byzantine faulty in the current epoch may store

corrupted data.

Thus, at least (4b+c+1) servers are required in the system. To extend the analysis

to subsequent epochs, we note that Protocol PIVR is executed by all servers that are

not Byzantine or crash faulty in every epoch. Thus, when performing PIVR Step1 at

the start of the third epoch, all servers that were neither Byzantine nor crash faulty

in Epochs 2 and 3 will arrive at the same list of objects and their metadata. The

proof follows by induction.

6.5 Experimental Analysis

This section presents an experimental analysis of Protocol PIVR to study its scala-

bility with respect to the amount of stored data and the amount of corrupted data

at compromised servers. For experimentation purposes, we assume that the length of

an epoch is one day. Protocol PIVR must thus complete in a shorter time.

65

The experimental analysis was performed in the context of a document storage

system. Users can upload and download documents. When a document is uploaded, a

new version of the document is stored. Protocol PIVR is used to protect the integrity

of the latest versions of all the stored documents.

All of our experiments were run on Emulab [2]. The servers were Dell Poweredge

2850 machines consisting of 3.0 GHz 64-bit Xeon processors, 2 GB RAM, and 146GB

10000 RPM SCSI disks. The machines were connected to each other over a 1 Gbps

switched Ethernet LAN. Each document is 1 MB in size. The larger the document

size, the longer it will take to complete PIVR Step2, as this involves computing the

hash over the document contents and reading it off another server if the contents are

found to be corrupted. PIVR Step1 will however be unaffected by the document size

if the hash of the document is updated in the metadata list at the time of the write

itself.

6.5.1 Scalability of PIVR Step1

We studied the scalability of the protocol for PIVR Step1 (given in Figure 11) w.r.t.

the number of documents stored in the system. This step first requires servers to

arrive at a sorted list of locally-stored document names and their highest versions. In

our implementation, all versions of a document docname are stored in the directory

$DATADIR/docname, where $DATADIR is the local pathname of the directory where

the server stores all the documents. The version VerNum of a document docname

is stored as the file $DATADIR/docname/VerNum.hash on the local hard disk, where

hash is the hash of the contents of the version VerNum. Thus, to arrive at this sorted

list, a server first reads the list of subdirectories in $DATADIR to determine the list of

documents, and then reads the highest filename in each subdirectory to arrive at the

highest version for a document. The function call scandir() available in Linux and

66

100

101

102

103

104

105

102 103 104 105 106 107

T
im

e
(s

)

Number of documents

8.9 seconds

1.49 minutes

14.93 minutes

2.49 hours

Figure 12: Time taken to compute and check the hash of the highest version of a
document vs. the number of documents

BSD is used to read the entries in a directory in sorted order.

We ran experiments for 100, 1000, and 10,000 documents stored in the system,

with three versions stored for each document. For all these, it took approximately 3

seconds to complete PIVR Step1.

PIVR Step1 must complete as quickly as possible so that the remainder of the

epoch is used for running PIVR Step2, which is a resource intensive process. The

three seconds taken by PIVR Step1 is negligible compared to the epoch length, which

we have assumed to be one day. PIVR Step1 is thus scalable with large numbers of

stored documents.

6.5.2 Scalability of PIVR Step2

PIVR Step2 performs two resource-intensive functions - (F1) compute the hash of

the highest version of each document stored on disk, and (F2) repair corrupted files

by reading them off other servers. We present results for these below.

67

100

101

102

103

104

105

102 103 104 105 106 107

T
im

e
(s

)

Number of corrupted documents

31.3 seconds

5.22 minutes

52.2 minutes

8.7 hours

Figure 13: Time taken to repair corrupted documents vs. the number of corrupted
documents

We found that the rate at which a server computes the hash (using SHA-160) of a

1 MB file to be 112.36 files per second. We measured this by taking the average over

the hash computations over 1000 different 1 MB files with random content. Figure 12

shows the time taken to compute and check the hashes of the highest version of the

documents vs. the number of documents.

If the hash check for a document version fails, then it must be read off a server that

has the correct contents of the document version. In our experiment, we corrupted

the contents for 1000 documents at a server, and measured the time the server took to

repair its corrupted data by reading these documents off another server. The servers

were not processing any reads and writes during these experiments. Figure 13 shows

the time taken for a server to repair its corrupted data vs. the number of corrupted

documents.

From Figures 12 and 13, we see that for a storage system consisting of 100,000

or less documents (100 GB or less), the time taken to execute PIVR may be over an

68

hour in the worst case, where all 100,000 documents are corrupted at a server. This

is not significant compared to the assumed epoch length of one day. However, for

a storage system consisting of a million documents (over 1 TB), the time taken for

executing PIVR may be long (over eleven hours) in the worst case. PIVR Step2 can

thus scale to over a terabyte of data storage in a system where reads and writes are

infrequent.

6.6 Conclusions

This chapter addresses the problem of maintaining the integrity of the stored data

under the mobile adversary model. In every epoch, an adversary can compromise

some server and arbitrarily corrupt the data stored at the server. Protocol PIVR

described in the chapter is run by the servers at the beginning of every epoch to

repair any data corruptions from earlier epochs.

The data stored at the servers can be classified into two types - metadata and

userdata. Protocol PIVR is a two step process. In the first step, servers synchronize

with each other on the metadata. In the second step, the servers check the locally-

stored userdata against the metadata and repair corrupted userdata. We require that

the metadata for an object contain the hash (checksum) of the contents of the object.

Experimental analysis shows that the first step in Protocol PIVR completes in

only three seconds. The experimental analysis also shows that the second step in

Protocol PIVR is a time consuming operation. When the system is not processing

reads and writes, the second step takes over an hour when 100,000 or less 1 MB-sized

documents are stored in the system, but over eleven hours to complete when a million

1 MB-sized documents are stored in the system.

69

CHAPTER VII

BYZANTINE FAULT DETECTION IN QUORUM

SYSTEMS

7.1 Introduction

A necessary component in any secure system design is intrusion detection. The mobile

adversary model assumes that an adversary moves from one storage server to another,

and that only up to a threshold of servers can be compromised in an epoch. To

maintain these assumptions, vulnerabilities must be identified and fixed. The fact

that vulnerabilities exist in the system become evident when intrusions are detected.

In this chapter, we restrict to server intrusions resulting in Byzantine faults. A

fault-free server can detect if it was Byzantine-faulty in an earlier epoch if it finds any

corruptions in its stored data during the Periodic Integrity Verification and Repair

process. Corruptions of the stored data is one manifestation of a Byzantine fault.

Another type of manifestation of a Byzantine fault is arbitrary and harmful behav-

ior during protocol executions. Such behavior can be detected during the protocol

execution by other servers or clients.

We study the problem of detecting Byzantine server faults during read operations

in the context of Byzantine quorum protocols, or Byzantine quorum systems. In

Byzantine quorum systems, writes and reads take place to only subsets or quorums

70

of servers, with the requirement that the read and write quorums overlap. Since

writes take place to only a quorum of servers instead of all the servers, a fault-free

server could return an outdated response during reads. Thus, it is not trivial to detect

Byzantine server faults during reads in a Byzantine quorum system.

The next section describes the related works in this area. The rest of the chapter

gives an overview of quorum systems, the fault detection algorithm, and experimental

results.

7.2 Related Work

The primary work in fault detection for Byzantine quorum systems is [10]. One of the

two algorithms proposed in this paper, called Diagnosis using Justifying Sets, cannot

identify individual faulty servers and is useful only in detecting if the actual number

of faulty servers is close to the preset fault threshold b. It is assumed that faulty

servers almost always return incorrect responses. The other algorithm, called the

Write Marker Protocol, can identify faulty servers in a single read operation provided

it is guaranteed that no read will be concurrent with a write. The Write Marker

protocol incurs an overhead of n bits per data object, where n is the total number

of servers in the system. This overhead can be quite significant if a large number of

data objects are stored.

The overhead incurred in the proposed fault detection algorithm described in this

chapter is the tracking of read responses of every server in the store by the proxy

servers. This storage overhead does not depend on the number of data objects in

the system. For each server in the store, proxy servers maintain a chronological list

of read operations in which the server participated. Each entry in the list contains

the quorum timestamp associated with the data object that was the result of the

corresponding read operation, and a Boolean value indicating if the server returned

71

the correct response. Since quorum parameters are assumed not to change often, two

bytes should be sufficient to hold each entry in the list. Assuming a maximum of

1000 read operations are monitored for each server, a storage space of 2000 bytes will

be required. For a store of size 70 servers, each proxy will need approximately 140

KB of main memory space, which is independent of the number of data objects in the

system and can be easily accomodated with typical memory configurations in today’s

server class machines.

As mentioned earlier, our approach can tolerate a limited amount of concurrency

between read and write operations, while the Write Marker approach cannot. In

Section 7.6, simulation results demonstrating this capability are presented.

7.3 System Model and Architecture

Figure 14 shows the system architecture of the Byzantine quorum system. It consists

of the storage servers, clients, and a diagnosis server. Each data object is replicated

at a subset, or quorum, of servers. The storage servers monitor each other during

protocol execution and report their findings to the diagnosis server, which makes

the final decision on whether a server is Byzantine-faulty. It is assumed that only

up to a threshold b of the storage servers can be Byzantine-faulty. The network

communication links are assumed to be asynchronous but reliable.

We assume that clients are not Byzantine faulty. We focus only on the detection

of Byzantine behavior of the storage servers. In practice, the servers can employ

intrusion detection mechanisms and detect and prevent some faulty client behavior

such as writing to a partial quorum. Access control mechanisms also limit the number

of data objects that can be corrupted by Byzantine-faulty clients. The PIVR protocol

can be used to detect and repair corrupted writes by a Byzantine-faulty client. Faulty

clients can have some impact on the accuracy of our fault detection technique. This

72

Figure 14: Byzantine quorum system architecture

issue is discussed when describing the fault detection algorithm.

The diagnosis server, which is responsible for collecting fault information from

the proxy servers and making the final decision on whether a server is Byzantine-

faulty, is assumed to be fault-free. The diagnosis server does not, in general, accept

connections from the outside world, and communicates with only the storage servers

to receive some fault information. Furthermore, the diagnosis server runs a single,

very simple application. These elements should make it feasible to guarantee the

security and protection of the diagnosis server. Alternatively, the diagnosis server

could be implemented as a Byzantine fault-tolerant state machine.

We assume authentication, authorization, and key management services for the

system, and digital certificates from a certificate authority bind all parties to their

public keys. All parties use cryptographic methods to protect the confidentiality and

integrity of their communication.

73

7.4 Byzantine Quorum Protocols

Quorum systems are replication-based techniques. Clients read and write data objects.

Reads and writes take place to a quorum or subset of the entire set of servers in the

system, and sufficient overlap between any two quorums guarantees that the latest

value will be read. Timestamps are used to distinguish values written in different write

operations to the same data object. In Byzantine quorum systems [44], the minimum

overlap between any two quorums is increased sufficiently in order to accomodate

Byzantine failures.

The fault detection algorithm is developed in the context of b-masking quorum

systems [44], but other types of quorum systems such as dissemination [44] quorum

systems can also be used.

A general description of b-masking quorum systems is as follows: To read a data

object, the client queries a read quorum Qr of servers for the timestamp and the

associated value for the data object. Among the responses from a read quorum, the

client chooses the data object that has the highest timestamp and seconded by at

least b + 1 servers, where b denotes the Byzantine-fault threshold. To write a new

value for a data object, the client first executes a read on the data object’s timestamp,

increments it to a higher value, and then writes the new value and the new timestamp

to a write quorum Qw of servers. The read and write quorums must overlap in at

least 2b + 1 servers. Since at least b + 1 non-faulty servers are in Qr ∩ Qw, a read

on a data object that is not concurrent with any writes to the same data object will

return the value written in the last write.

We modify the above protocol to use proxy, or gateway, servers. To read and

write data objects, a client picks a storage server at random as a proxy, or gateway,

server. The client sends its read or write request to the chosen proxy server, and

74

the proxy server forwards the request to the quorum of servers specified by the client

in its request. Server responses are also channeled through the same proxy server

back to the client. Proxy servers can thus monitor the responses of other servers,

enabling them to detect Byzantine-faulty behavior. Cryptographic methods are used

to protect messages from being tampered by faulty proxy servers.

7.5 Fault Detection Algorithm

A novel fault detection algorithm that identifies Byzantine-faulty servers thus enabling

their removal is described in this section. The Byzantine quorum system we consider

uses proxy servers, which accept requests from clients, contacts a quorum of servers,

and channels the responses back to the clients. The proxy servers can thus monitor

server responses, especially during read operations.

In the proposed algorithm, the proxy servers monitor server responses during

reads and, over time, are able to determine if other servers are Byzantine-faulty

with a specified false-alarm probability. Proxy servers communicate their findings to

the diagnosis server, which makes the final decision on whether a server is indeed

Byzantine-faulty. Since faulty proxy servers may report non-faulty servers as faulty,

the diagnosis server employs a voting mechanism to decide if a server is indeed faulty.

Hence, the fault detection algorithm uses a two-tiered approach: the proxy-server

algorithm and the diagnosis-server algorithm.

7.5.1 The Fault Detection Algorithm at the Proxy Server

To better illustrate the algorithm, we make some simplifying assumptions. The fault

detection algorithm is run periodically on batches of reads and, in between two exe-

cutions of the algorithm, the following assumptions hold:

75

1. No server becomes faulty.

2. There are no concurrent reads and writes.

3. A quorum of size q is chosen randomly from all possible quorums of size q.

These assumptions will be relaxed in Section 7.5.3.

During a data read operation, the proxy server is aware of the responses returned

by the servers in the read quorum. Hence, it can determine the result of the read as

would be chosen by the client, which will be termed here as the “correct response.”

In a read operation, some servers will be unable to give the correct response because

they were not part of the write quorum of the last completed write to the data

object. Hence, to be able to distinguish faulty servers from non-faulty servers using

this approach, statistical analysis is used over a sequence of read operations.

When a non-faulty server is part of a read operation on a data object, the proba-

bility that it will return a correct response is the probability that it belonged to the

write quorum of the last completed write on the same data object, which is |Qw|/n.

If read operations to r objects are monitored, then the probability that a fault-free

server returns u correct responses is given by







r

u







(

|Qw|

n

)u (

1 −
|Qw|

n

)r−u

(5)

A well known statistical technique called Hypothesis Testing is used to determine

if a server is faulty. More specifically, the null hypothesis, H0, is defined as a server

being non-faulty, and for a fixed false-alarm probability the null hypothesis H0 is

either rejected or accepted. The false-alarm probability is fixed at 0.05, meaning the

probability that a non-faulty server is found faulty by a fault-free proxy server is

0.05. From the false alarm probability, a threshold value for u, denoted by uth, is

76

determined, and if a server returns uth or fewer correct responses in r read operations,

then the null hypothesis H0 is rejected and the server is said to be faulty. uth is the

maximum value of u such that the following inequality is satisfied:

u
∑

i=0







r

i







(

|Qw|

n

)i (

1 −
|Qw|

n

)r−i

≤ 0.05 (6)

Since Byzantine faults are considered, faulty servers could try to avoid detection by

sporadically giving incorrect responses. Since the number of faulty servers is never

greater than b, incorrect responses by faulty servers will not affect the result of a read

operation when the read is not concurrent with a write to the same data object. Note

that faulty servers do, however, have the incentive to respond incorrectly as soon as

they are compromised because, under Byzantine quorum system operation, they can

force arbitrarily old values to be read when a read operation is concurrent with a

write to the same data object.

Let pic denote the probability with which a faulty server returns an incorrect re-

sponse when it has the correct value for the data object being read. pic is a probability

representative of the faulty server’s behavior over the sequence of r read operations

being monitored and cannot be estimated or observed. An ideal fault detection algo-

rithm would detect a faulty server for all pic, 0 < pic ≤ 1.

The probability that a faulty server returns a correct response during a read

operation is |Qw|
n

(1− pic) and the probability that an incorrect response is returned is

1− |Qw|
n

+
(

|Qw|
n

)

pic. Since a server is said to be faulty if it returns uth or fewer correct

responses in r read operations, the probability that a faulty server will be detected

as faulty in r read operations is

uth
∑

i=0







r

i







(

|Qw|

n
(1 − pic)

)i (

1 −
|Qw|

n
+

|Qw|

n
pic

)r−i

(7)

77

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=40

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=60

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=100

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=200

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=500

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=1000

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=10000

Figure 15: Probability that a faulty server is detected vs pic for several r

For a store consisting of n = 70 servers and with a write quorum size |Qw| = 42

servers, Figure 15 shows the probability that a faulty server is detected for various

values of pic and r with the false alarm probability kept equal to 0.05. Even for r as

low as 100 read operations, the probability that a faulty server is detected is one for

a wide range of pic. The probability that a faulty server is detected improves as the

number of monitored read operations increases.

It is interesting to note that a faulty server has to behave at a very small pic to

avoid detection. Thus, the algorithm forces faulty servers to behave almost as though

they were correct in order to avoid detection.

Proxy servers run the above described algorithm periodically for each server in

the store. At the end of one such period for a monitored server, the proxy server

determines if the monitored server is faulty with the specified false alarm probability

and informs the diagnosis server of the result.

78

7.5.2 The Fault Detection Algorithm at the Diagnosis Server

The diagnosis server maintains for each server in the store a list of servers that found

this server to be faulty. This list may increase or decrease with time. If at any point,

a certain minimum number of servers, denoted by m, claim that some server is faulty,

then that server is diagnosed as faulty. The value of m can be chosen to achieve a

false alarm probability lower than the false alarm probability used by the proxy fault

detection algorithm. The choice of m is also influenced by the number of concurrent

reads and writes in the system, which are a potential source for false alarms.

For example, if the final desired false alarm probability is 10−4, then let m′′ be

the smallest m′ such that the following inequality is satisfied:






n − bmax

m′






(0.05)m′

(1 − 0.05)n−bmax−m′

≤ 10−4 (8)

where 0.05 is the false alarm probability used in the proxy-server fault detection

algorithm. n − bmax and not n is used in the above inequality because, in the worst

case, bmax faulty servers could try to vote a non-faulty server out of the system. Hence,

m given by m′′ + bmax guarantees a final false alarm probability of at most ≤ 10−4.

A faulty server could defeat the above algorithm by returning incorrect responses

only when a particular set of fewer than m servers are proxy servers, and behaving

correctly when other servers are proxy servers. Since the diagnosis server will then

not be able to gather sufficient (m) votes to identify the faulty server, the faulty server

will go undetected. Hence, we make the following assumption.

Assumption 4: The behavior of faulty servers is independent of the identity of the

proxy servers.

The above assumption can be relaxed by having proxy servers drop servers they have

found to be faulty from quorums specified by a client. The client will then not be

79

able to get a quorum of responses and will generate requests to other servers, ensuring

that the read or write completes. Another technique is to have a proxy server tunnel

the client’s requests through other proxy servers before the request reaches a quorum

of servers. Thus, faulty servers will not be able to single out specific proxy servers.

Evaluating these ideas more thoroughly is an area for future work.

7.5.3 Relaxing Assumptions 1 - 3

Assumption 1 states that no servers become faulty during the execution of the fault

detection algorithm. If a server becomes faulty during the r read operations that were

monitored, the average pic over the r read operations will be lower than the actual

pic that is representative of the faulty server’s behavior. Hence, if a server became

faulty recently, the effective pic over the r read operations monitored could be small

enough so that it goes undetected. Then, the faulty server will be detected in the

next round of r read operations provided it continues to perform with a pic in the

detectable range. Small values of r are particularly useful in detecting servers that

became faulty recently. Simulation results in Section 7.6 and experimental results in

Section 7.7 show that even with r as low as 100 read operations, faulty servers with

small pic are detected.

If Assumption 2 is relaxed, then concurrent reads and writes can occur. It could

then be possible that a wrong “correct” response is determined during a read oper-

ation, thereby counting fault-free servers as faulty. This would increase the actual

false alarm probability to be higher than the target value used in Equation 8. This

can be dealt with simply by lowering the target false alarm probability to counter the

impact of concurrency.

Assumption 3 is used when choosing write quorums in the analysis in Section 7.5.1.

If the quorum selection strategy is defined such that all the possible quorums of size

80

q are not equally likely to be chosen during write operations, then the fault detection

algorithm can be suitably modified. Assumption 3 could be violated when Byzantine-

faulty clients do not adhere to the chosen strategy. For example, Byzantine-faulty

clients can deliberately exclude a particular non-faulty server in their write operations.

Although we do not consider faulty clients in this chapter, we note that it is possible to

have proxy servers monitor clients’ quorum selections to detect this type of behavior.

7.6 Simulation Analysis

7.6.1 Fault detection in a Reconfigurable Byzantine Quorum System

Reconfigurable Byzantine quorum systems were introduced in [39]. These quorum

systems are b-masking quorum systems where the fault threshold b can be varied dy-

namically and faulty servers can be removed while the system is in operation without

affecting the correctness of the read-write protocols. A reconfigurable Byzantine quo-

rum system which used the proposed fault detection algorithm to identify Byzantine

faulty servers was simulated. A system size of 70 storage servers was assumed, with

the fault threshold b ranging within [Bmin = 1, Bmax = 8]. The fault threshold b is

updated as soon as a server becomes faulty or when a faulty server is identified and

removed from the system. The simulation was done using discrete-event simulation

techniques. In the simulations, the Byzantine-fault threshold b is maintained as the

actual number of faulty servers in the system plus one to model a safety margin that

should be built into the b estimation.

The time at which a server becomes faulty is computed for each server using an

exponential distribution with mean MTBF
√

Bmin+Bmax

2(#faulty servers)
, where MTBF is the

Mean Time Between Failures for a server and #faulty servers is the total number

of servers that became faulty since simulation start. Thus, the effective MTBF

decreases as the number of faulty servers increase. This is intended to model scenarios

81

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Reconfig. Quorum N

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Reconfig. Quorum B

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum and Dynamic Quorum N

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Dynamic Quorum B

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum B

Figure 16: Variation of system size N and the fault threshold b in a reconfigurable
Byzantine quorum system.

such as virus propagation and progressive attacks. The value of MTBF used in the

simulations is 2 days. At system start, there are no faults in the system. Hence, at

start, b is equal to 1. When a server becomes faulty, the pic value that will govern its

subsequent behavior is chosen uniformly over (0, 1].

The time taken for a message to traverse a communication link is a minimum

message travel time (t1) + a random amount of time exponentially distributed with

mean t2. In the simulations, t1 is 1 second and t2 is 4 seconds. Read and write

requests for each data object are modeled as Poisson processes. For each object, the

mean interarrival time for reads is 80 seconds and the mean for writes is 150 seconds,

thus producing an average read/write ratio of 15 : 8.

Figure 16 shows the variation in the system size N and the fault threshold b during

the length of one simulation run. Since the fault detection algorithm is incorporated

into the simulation of reconfigurable quorum systems, faulty servers are removed

some time after the fault event thus maintaining the fault threshold b fairly constant.

82

The points where the fault threshold decreases are the times when a faulty server

is identified and removed from the system by the diagnosis server. The false alarm

probability is set to 0.05 in the proxy-node fault detection algorithm and 10−20 in

the diagnosis-node fault detection algorithm. For a system size of 70 servers and

with Bmax = 8, at least 38 servers must notify the presence of the faulty server to the

diagnosis node before the faulty server is removed from the system. Proxy servers run

the fault detection algorithm on other servers every r = 100 read operations. There

were no incorrect diagnosis even though the measured concurrency between read and

write operations was 32.63%.

In the depicted simulation, our fault detection algorithm identified all but one

failure and the average latency in detecting faults was found to be 164 seconds.

The fault event at time 8062.04 seconds remained undetected because the pic value

governing the faulty server’s behavior was a very small 0.0125. On the other hand, a

faulty server with a pic as low as 0.0775 was detected, albeit with a high latency of

714 seconds. In general, it was observed that faulty servers that behave with a small

pic require a long time to be detected. From Figure 15, we see that, with r = 100, it is

remarkable that a faulty server with a pic equal to 0.0775 was detected, and a faulty

server with pic = 0.0125 going undetected is not unexpected. The smallest latency in

diagnosing a faulty server was found to be 68.99 seconds, corresponding to a pic value

of 0.807.

Reconfigurable Byzantine quorum systems impose certain lower bounds on the

number of storage servers that must be present in the system. The simulation is run

until no more servers can be removed and the fault threshold has reached its maximum

value. Thus, the system lifetime for reconfigurable quorum systems was found to be

9885.12 seconds. Note that the MTBF value of 2 days used in the simulation is quite

low so as to generate a large number of failures in a short period. Therefore, the

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 8 9 10 11 12 13 14 15 16

Figure 17: Fraction of Simulation Runs with Incorrect Diagnosis vs. Percentage of
Reads Concurrent with Writes

system lifetime found in the simulation is much lower than they would be in practice.

7.6.2 Concurrency Analysis

Figure 17 shows the performance of the fault detection algorithm in the presence of

concurrent reads and writes for the same system parameters used in Section 7.6.1.

In Section 7.6.1, the read and write requests were generated by separate Poisson

processes. To do concurrency analysis, finer control over concurrency is needed. We

achieved this by having, for each data object, a write request generated periodically

at the same time as read requests. For example, if 50% concurrency is desired, then

a write request is issued with every other read request. In each concurrency interval

shown in the figure, 20 simulations were run and the number of simulations that had

any incorrect diagnoses were noted. This is shown as a fraction of the total number

of simulations run for that particular concurrency interval.

Generation of write requests at exactly the same time as read requests produces

maximum overlap between them. It can, therefore, be considered as the worst-case

concurrency scenario for a particular concurrency rate. From Figure 17, we find that

no incorrect diagnoses were produced in 20 simulation runs at a concurrency rate in

the range 9% − 10%, while the number of runs with incorrect diagnoses rose rapidly

84

as the concurrency rate increased beyond this point. In Section 7.6.1, there were

no incorrect diagnoses reported despite a concurrency rate of more than 32%. In

those simulations, however, read and write operations began at random times and

concurrency happened naturally as a result. When read and write operations overlap

only partially, incorrect diagnosis becomes less likely than in the maximum overlap

case. If the approximate concurrency rate in the system can be predicted, it can

be factored into the diagnosis threshold calculation and incorrect diagnosis can be

eliminated even for higher concurrency rates. Verification and quantification of this

idea is an area for future work.

7.7 Evaluation in the AgileFS prototype

Figure 18: Schematic overview of the AgileFS distributed filesystem.

The proposed Byzantine-fault detection algorithm was implemented in the Ag-

ileFS [38] distributed filesystem prototype. Figure 18 depicts a schematic overview

of the prototype. The prototype was implemented on the Emulab cluster [2]. The

machine testbed consisted of Intel PIII 600 MHz processors with 256 MB RAM and

85

13 GB 7200 RPM IDE hard disks, and Intel PIII 850 MHz processors with 512 MB

RAM and 40 GB 7200 RPM IDE hard disks. All machines ran RedHat Linux 7.3. A

block size of 8 KB was used. The network is a 100 Mbps switched Ethernet.

A set of data servers store file blocks and attribute information using reconfig-

urable Byzantine quorum systems, while the metadata is implemented using a state

machine approach at a separate set of metadata servers. The fault detection algo-

rithm at the proxy server was run at the data servers. The fault / intrusion detection

service was implemented as a single instance of a diagnosis server. Communication

between the diagnosis server and the data servers was over UDP.

Figure 19 shows the variation of the number of data servers in the system and

the fault threshold in one sample run where data servers became faulty over time.

The variations in N and b for reconfigurable quorum systems are compared against

the case where the fault threshold is preset to a conservatively high value (static

Byzantine quorums [44]), and the case where the fault threshold is increased to mask

new faults but no faulty servers are removed (dynamic Byzantine quorums [9]).

The experiment was run with 35 data servers, fed with a continuous stream of read

operations. The fault threshold b was allowed to vary between Bmin = 1 and Bmax = 5

servers. At start, there were no faulty data servers in the system. Servers became

faulty at random times, but the likelihood of additional servers being faulty was

increased each time a new server became faulty. The points where the fault threshold b

decreases are the times when a faulty server is identified and removed by the diagnosis

server. The experiment demonstrates that reconfigurable Byzantine quorum systems

can tolerate more faults and have a longer system lifetime that dynamic and static

Byzantine quorum systems. Since the fault threshold b can increase only up to Bmax =

5 servers, only five faults can be injected into dynamic and static quorum systems. By

contrast, a total of 11 faults were introduced in the case of reconfigurable quorums due

86

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Reconfig. Quorum System Size N

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Static and Dynamic Quorum System Size N

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Static Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Dynamic Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Reconfig. Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Fault Events

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Figure 19: The variation of the number of data servers (N) and the fault threshold
(b) when data servers become faulty over time.

to the timely detection and removal of faulty servers, which keeps the fault threshold

b small. The proposed fault detection algorithm thus plays a key role in lengthening

the ssytem lifetime of reconfigurable Byzantine quorum systems.

7.8 Conclusions

A Byzantine-fault / intrusion detection service is an essential component in any secure

system design. An intrusion indicates vulnerabilities exist in the system, which must

be removed. The system is thus made more secure, and assumptions on the number

of compromised servers in an epoch as in the mobile adversary model are more likely

to hold.

This chapter presents a Byzantine-fault detection mechanism that detects Byzan-

tine behavior of servers during reads in a Byzantine quorum system. In a fully repli-

cated system, when reading a certain data object, if a server does not give a value

87

identical to other servers then that server has to be Byzantine-faulty. In quorum

systems, however, data objects are replicated only at a quorum of servers instead

of full replication. Thus, even fault-free servers may return incorrect values during

reads. The algorithm proposed in this chapter can detect Byzantine faults in quorum

systems.

The proposed algorithm monitors server responses over sequences of read opera-

tions. The algorithm has the property that a Byzantine-faulty server should behave

as a fault-free server for most of the reads to avoid being detected. By arbitrarily

increasing the length of the sequence of read operations being monitored, a Byzantine-

faulty server could be made to behave almost identically to a fault-free server to avoid

being detected.

Reads concurrent with writes in quorum systems may return arbitrarily old values.

Thus, even fault-free servers could be diagnosed as Byzantine faulty if there is a

sufficient level of read-write concurrency. Simulation results show that the proposed

algorithm can tolerate high levels of concurrency - over 32%. The algorithm was also

implemented and evaluated in the AgileFS distributed filesystem prototype.

88

CHAPTER VIII

PROTOTYPE IMPLEMENTATION AND EVALUATION

This chapter describes a prototype implementation of a proactively-secure data stor-

age service. The prototype is designed to store documents. Users can upload a new

version of a document, or download the latest version of a document, or delete docu-

ments. A typical deployment scenario of this prototype is for the storage of sensitive

documents in a corporate LAN. Users can access these documents over the company

intranet, or externally over a wide area network. The software for this prototype can

be downloaded from http://www.arunsubbiah.com/publications/proactive store.tgz.

Byzantine and leakage-only faults are considered in the prototype. Data is stored

using the encrypt-and-replicate storage model. We use the prototype implementation

to determine the amount of data that can be stored in a practical proactively-secure

distributed storage system, and the impact of running Protocol PIVR on the upload

and download throughput and latency.

8.1 Prototype Description

8.1.1 Overview

Figure 20 gives an overview of the document storage system. The functions of each

component are described below:

89

Figure 20: Overview of the document repository prototype.

Clients: The clients are software agents acting on behalf of the users. The client

program takes as input a list of documents and whether the documents are

to be uploaded (writes), or downloaded (reads), or deleted. When a document

docname is uploaded, the file is uploaded as a new version of document docname.

When a document is deleted, all versions of the document stored thus far are

no longer available for download.

Epoch Marker: The Epoch Marker is always fault-free, and divides time into

epochs. At the start of a new epoch, it sends a <New Epoch, epoch number>

message to all the servers over the reliable synchronous network.

Storage Servers: The storage servers store documents, and execute Protocol PIVR

(Chapter 6) periodically to maintain the integrity of the stored documents under

90

the mobile adversary.

We assume a flat namespace, and that the document names are globally unique.

All versions of a document docname are stored in the directory $DATADIR/docname,

where $DATADIR is the local pathname of the directory where the server stores all the

documents. The version number VerNum is of the format Serial Num||User ID||hash,

where the User ID is the ID of the user who wrote that version, the hash is in hex

format and is computed over the contents of that version, and || denotes concatena-

tion. The version VerNum of a document docname is stored as the file

$DATADIR/docname/VerNum on the local hard disk.

The Epoch Marker is a process running on a separate server machine that wakes up

periodically and notifies all the servers the start of a new epoch. A server, upon learn-

ing the start of a new epoch, starts running Protocol PIVR. As part of PIVR Step2,

the servers keep the latest versions of the documents and remove all prior versions.

All client-server and server-server communication is using TCP. The Epoch Marker

notifies the start of a new epoch to all the servers using UDP. Reliability over UDP

is implemented using retransmissions-upon-timeout until acknowledgement messages

are received from the servers.

Clients perform uploads, downloads, and deletes by issuing requests over the client-

server network to a server, chosen at random, called the proxy server. The proxy

server performs fault-tolerant replication of a document during uploads. All messages

are signed using Message Authentication Codes (MACs) for verifying authenticity and

integrity; for example, an ACK sent by a server to a client via a proxy server contains

a MAC signed by the server that the client can verify. Clients establish symmetric

session keys with all the servers prior to performing uploads, downloads, and deletes.

91

To write a new version of document docname, or to delete document docname,
a client does:

1. Connect to a server chosen at random, called the proxy server.
2. Query for the highest version number of the document docname.

Version numbers are of the format Serial Number||User ID||hash.
3. Wait for responses from (2b + 1) servers.

Responses from servers are received via the proxy server.
4. Determine the response with the highest version number

returned by at least (b + 1) servers.
Denote this response as Resp.
If no such response exists, go to Step 1.

5. Choose a serial number greater than the serial number in Resp.
Denote this serial number by SerialNumnew.
If Resp is DOC NOT EXIST, then set SerialNumnew to 0.

6. To write a new version, send request
<WRITE, docname, SerialNumnew, document contents>

to the proxy server.
To delete a document, send request

<DELETE, docname, SerialNumnew, NULL>
to the proxy server.

7. Wait for responses from at least (N − b) servers.
8. If less than (b + 1) servers report ACK, goto (1), choosing a different proxy.
9. End.

Figure 21: Protocol followed by clients to write new versions of documents and to
delete documents.

8.1.2 Write Protocol

Figures 21-23 give the protocols followed by the clients and the servers to write new

versions of a document and to delete documents. The clients communicate with a

server chosen at random, called a proxy server. The proxy server forwards the request

to other storage servers and acts on behalf of the client. Deletes are treated as a spe-

cial form of writes. Clients connect to proxy servers over the reliable asynchronous

network, while all inter-server communication is over the reliable synchronous net-

work.

Each server (including the proxy server), upon receiving a WRITE or DELETE request

92

Upon receiving a write or delete request from a client, the proxy server executes:
1. Forward request to all the servers over the reliable and synchronous network.
2. Execute a distributed consensus protocol involving all servers on whether

the client’s request for document docname with version number VerNum
was received.

3. If Step 2 returns success,
return ACK to the client.
Store document docname with version number VerNum.

else
return NACK to the client.
Discard document docname with version number VerNum.

4. Receive responses (ACK or NACK) from all other servers,
and forward them to the client.

5. End.

Figure 22: Protocol followed by proxy servers to process client write and delete
requests.

from a client, participates in a Byzantine fault-tolerant distributed consensus protocol

on the validity of the request. If all servers that are not Byzantine faulty agree that

the client’s request is valid, then the write or delete request is accepted, otherwise

the request is rejected. Depending on whether the request is accepted or rejected,

the servers return an ACK or a NACK response to the client via the proxy server.

The distributed consensus protocol ensures that at least (N − 2b) servers agree on

the validity of the request. This safeguards against Byzantine-faulty proxy servers

that may not forward the write or delete request to all the servers. In addition, a

Byzantine-faulty proxy server may tamper the client’s write or delete request before

forwarding the request to other servers. To prevent this, clients compute a Message

Authentication Code (MAC) for each server and include it in their write and delete

requests. A storage server, upon receiving a write or delete request from a proxy

server, will verify the correctness of the MAC to determine if the request is valid.

In the prototype implementation, we use the Byzantine fault tolerant distributed

93

Upon receiving a write or delete request from a client via the proxy server,
a storage server executes:

1. Execute a distributed consensus protocol involving all servers on whether
the client’s request for document docname with version number VerNum
was received.

2. If Step 1 returns success,
return ACK to the client via the proxy server.
Store document docname with version number VerNum.

else
return NACK to the client via the proxy server.
Discard document docname with version number VerNum.

3. End.

Figure 23: Protocol followed by storage servers to process client write and delete
requests.

consensus algorithm given in [31]. The distributed consensus algorithm requires at

least (4b+ 1) servers and completes after (b+ 1) rounds of communication, with each

round consisting of two phases.

A proxy server that is Byzantine-faulty may not forward the client’s request to all

the servers, leading to the client incurring a “soft” timeout waiting for ACKs in Step

7 of Figure 21. The client can then retry by sending the WRITE or DELETE request to a

different proxy server. A Byzantine-faulty proxy server must also be unable to spoof

client requests. To address this, we have the clients establish symmetric keys with

each server which are valid for the duration of a session. These symmetric keys are

used to protect the integrity of the messages. The message sender computes a Message

Authentication Code (MAC) over the message and appends it to the message. The

message receiver will accept the message only if the MAC is found to be valid. For

example, a client will compute, for each server, a MAC over the write request, and

then send the MACs as part of the write request to the proxy server. The responses

from the servers (ACK or NACK) received by the client via the proxy server are also

94

protected from tampering using MACs.

Clients embed their view of the current epoch number in all their requests. A

server accepts a request for processing only if its view of the epoch number matches

the number contained in the client’s request.

8.1.3 Handling Deletes

Deletes are treated as writes involving a special “Delete” file. The protocols followed

are the same as in writes, and are described in Section 8.1.2. This section describes

the local processing at a storage server when storing the “delete” file in Step 2 of

Figure 23 and Step 3 of Figure 22.

The version number VerNum of a document docname is of the format

Serial Num||User ID||hash, where hash is the hash of the contents of the document.

The document version is stored as the file $DATADIR/docname/VerNum on the local

hard disk. For a “delete” file, a zero byte file is created with the hash part of VerNum

string replaced with the string “DEL”.

As a result, the document docname and all its versions are still stored on the

hard disk. The read protocol in the following section takes deleted documents into

account; clients can detect if a document is deleted and will be unable to read prior

versions.

The cleanup is performed during PIVR Step2. After the servers have agreed on

a common list of document names and the highest version numbers, if the highest

version number of a document is of the form Serial Num||User ID||DEL, then the

document and all its prior versions are erased from the hard disk.

95

To read document docname, a client does:
1. Connect to a server chosen at random, called the proxy server.
2. Query for the highest version number of the document docname.

Version numbers are of the format Serial Number||User ID||hash.
3. Wait for responses from (2b + 1) servers.

Responses from servers are received via the proxy server.
4. Determine the response with the highest version number

that is returned by at least (b + 1) servers.
If no such response exists, go to Step 1.
Denote this response by Resp.

5. If the version number in Resp is of the format Serial Number||User ID||DEL,
or if Resp is DOC NOT EXIST,

then return DOC NOT EXIST, End.
6. Choose a server for downloading the document.

Send request <READ, docname, VerNum> to the server, and receive document.
VerNum is the version number specified in Resp.
If the server does not have the specified document version, repeat,

choosing a different server.
If no server has the specified document version, go to Step 1.

7. Check if hash of received document matches the hash contained in VerNum.
If mismatch, go to Step 6, choosing a different server.

8. End.

Figure 24: Protocol followed by clients to read a document.

8.1.4 Read Protocol

Figure 24 gives the protocol followed by the clients to read a document. During

writes and deletes, the use of a distributed consensus protocol ensures that all non-

Byzantine-faulty servers agree upon the validity of the write and store the received

version (or delete the document). Thus, to read the latest version of a document,

the client needs to query only (2b + 1) servers. Since a maximum of b servers can be

Byzantine-faulty, the version returned by at least (b + 1) servers is definitely from at

least one fault-free server.

In Step 6 of Figure 24, the client reads the document off a server that reported the

latest version. If the proxy server to which the client is already connected to reported

96

the latest version, then the document is downloaded from the proxy server. This is

almost always the case, since document versions are replicated at all servers.

8.2 Integrating Protocol PIVR to achieve Proactive Secu-

rity

The servers execute Protocol PIVR (Chapter 6) in the beginning of every epoch

to maintain the integrity of the stored documents in the mobile adversary model.

Protocol PIVR imposes the following requirements on the write protocol:

PIVR WProp1: Writes update the metadata at all the servers that are not Byzan-

tine faulty. The metadata that is updated includes the document name and the

checksum of the contents of the document version included in the write request.

PIVR WProp2: Writes store the contents of the new version at at least (b + 1)

servers that are not Byzantine faulty.

PIVR WProp3: Servers that are not Byzantine faulty in the previous and current

epochs can consistently identify the userdata stored till the last epoch.

PIVR WProp4: Each server that is not Byzantine faulty can safely conclude, at

some point in the current epoch, that it has received all metadata updates due

to writes from the previous epoch.

Satisfying Requirement PIVR WProp1: The distributed consensus protocol,

which is used during writes and deletes, has the following property:

Agreement: Two non-Byzantine-faulty servers cannot decide on different values.

Each server participates in the distributed consensus protocol with an initial value

v0. When a server finishes participating in the distributed consensus protocol, it has

decided upon an outcome with can take one of different values, including v0. The

97

Agreement property says that all non-Byzantine-faulty servers agree on the same

outcome.

In our prototype, the values are either 0 or 1. The value v0 is set to 0. A server

that participates in the consensus protocol with an initial value of 0 indicates that

the server either did not receive the client’s write or delete request, or it received the

write or delete request and found it to be invalid; an initial value of 1 indicates that

the server received the client’s write or delete request and found it to be valid. If the

servers decide on a value of 1, then they accept the write or delete request and store it

permanently. The version is then available for reads. If the servers decide on a value

of 0, then they discard the write or delete request.

The distributed consensus protocol run is identified by the metadata in the write

or delete request, which is the document name and the version number. The version

number contains the hash of the contents of the document version. The Agreement

property of the distributed consensus protocol ensures that all non-faulty servers are

thus updated with the metadata during writes, satisfying Requirement PIVR WProp1.

Satisfying Requirement PIVR WProp2: During writes, a distributed consensus

protocol on the validity of the write request is run amongst the servers. If a server

receives an invalid write request, it discards it along with the document contents

included in the request. Each server participates in the distributed consensus protocol

run associated with the write request with an initial value, which could be 0 or 1 -

depending on whether the server received the client’s request and found it valid. The

Agreement Property of the distributed consensus protocol guarantees that all non-

Byzantine-faulty servers decide on the same outcome: either the write is valid or not.

Thus, a non-Byzantine-faulty server could start with an initial value of 0 and decide

on a value of 1.

98

The distributed consensus protocol of [31] has the property that if at least
(⌊

N
2

⌋

+ b + 1
)

non-Byzantine-faulty servers start with an initial value v, then the

decided value will be v. Thus, the decided outcome can be 1 even when up to
(⌊

N
2

⌋

+ b
)

non-Byzantine-faulty servers start with an initial value of 0. That is, a

successful write will store the contents of the document version at at least
(⌈

N
2

⌉

− 2b
)

non-Byzantine-faulty servers. Thus, to meet Requirement PIVR WProp2,

(⌈

N

2

⌉

− 2b

)

≥ b + 1

giving the following lower bound on the number of storage servers N:

N ≥ 6b + 1 (9)

A server can start with an initial value of 0 in the distributed consensus protocol

due to the following reasons: 1) A Byzantine client can force a server to start with

an initial value of 0 by generating an incorrect MAC for the server, which is included

in the write request. And 2) a Byzantine proxy server can arbitrarily tamper with a

client’s request before forwarding it to a server to cause a mismatch with the client-

generated MAC for the server.

The distributed consensus is on the document name and version number, which

contains the hash of the document contents. Thus, all non-Byzantine-faulty servers

will have the document metadata (the document name and its version number) that

was included in the client’s write request, but up to
(⌊

N
2

⌋

+ b
)

of them may not have

the document contents.

Satisfying Requirement PIVR WProp3: We have already shown that the pro-

tocols satisfy Requirement PIVR WProp1, which ensures that all non-faulty servers

have their metadata updated by writes. Requirement PIVR WProp3 requires the

99

servers to have a consistent technique to classify these updates by epoch numbers.

We achieve this as follows: All client write requests contain the client’s view of the

epoch number. At the start of a new epoch, the Epoch Marker sends a <New Epoch,

epoch number> message to all the servers over the reliable synchronous network. A

server, upon receiving this message, stops accepting new writes and aborts concur-

rent uploads from the clients and proxy servers, and participates only in any on-going

consensus protocol runs. Clients can immediately reconnect and retry the write, but

the write request will now have the new epoch number embedded in it.

Satisfying Requirement PIVR WProp4: Metadata updates at all non-faulty

servers is achieved using the distributed consensus protocol run during writes. The

servers must have a way of determining when the distributed consensus protocol runs

due to writes initiated in the previous epoch have gone to completion. The servers can

then start running Protocol PIVR, as new writes and distributed consensus protocol

runs will only affect the metadata and the userdata stored in the current epoch.

The solution implemented in the prototype is as follows: When a server A receives

a <New Epoch, epoch number> message from the Epoch Marker, it is already running

a set S of distributed consensus protocol runs due to writes in the previous epoch. It

continues to actively participate in these distributed consensus protocol runs, that is,

it sends and receives consensus protocol messages. The server passively participates

in new distributed consensus protocol runs due to writes in the previous epoch, that

is, it only receives consensus protocol messages, but does not send any. The server

classifies these new distributed consensus protocol runs into a set S ′. Needless to say,

the sets S and S ′ do not overlap. When Server A completes executing a distributed

consensus protocol in either of these sets, it removes it from the set.

100

Because Server A passively participates in the distributed consensus protocol runs

in Set S ′, other servers will timeout waiting for Server A’s message and continue with

the distributed consensus protocol runs. To avoid incurring timeouts due to passive

participations, when Server A finds its Set S empty, it sends a special message to all

the other servers indicating that it will be participating passively in all current and

future distributed consensus protocol runs due to writes from the previous epoch.

A peer server will interpret this special message as Server A always sending a value

of 0 to it in all its distributed consensus protocol runs. The distributed consensus

protocol we use has the property that if at least
(⌊

N
2

⌋

+ b + 1
)

non-faulty servers

start with an initial value of 0, then the decided value will be 0. A decided value of 0

implies that the write must be discarded, thus leaving the metadata and the userdata

of the stored documents unaffected.

Thus, when Server A determines that at at least
(⌊

N
2

⌋

+ 2b
)

servers (an additional

b servers because the server does not have a reliable technique to detect Byzantine-

faulty peer servers) will be passively participating in its distributed consensus protocol

runs it can safely conclude that all distributed consensus protocol runs in its Set S ′ will

end with a decided value of 0 and the corresponding write requests can be discarded.

Requirement PIVR WProp4 is thus met, as each non-faulty server can safely con-

clude, at some point in the current epoch, that it has received all metadata updates

due to writes from the previous epoch.

Notice that distinct sets of b servers can be Byzantine faulty in the previous and

current epochs, which should impose the requirement that the distributed consensus

protocol runs that straddle epoch boundaries tolerate 2b Byzantine faulty servers.

We circumvent this requirement by making the following assumption:

101

Assumption: Servers that are Byzantine-faulty at some point between the time in-

stant the Epoch Marker determines the start of a new epoch and the time instant

the last non-faulty server has finished executing all distributed consensus protocol

runs due to writes from the previous epoch are considered to be Byzantine-faulty

throughout the previous and current epochs, and thus count towards the Byzantine

fault threshold in both epochs.

8.3 Experimental Evaluation

8.3.1 Experimental Setup

Figure 25: Experimental setup of the document repository prototype.

The prototype implementation was run on the Emulab cluster

(http://www.emulab.net). The setup is shown in Figure 25. Both clients and servers

102

are powered by a 3 GHz 64-bit Xeon processor with 2 GB RAM and 10K RPM 146

GB hard disk. Clients connect to the servers over a 100 Mbps switched Ethernet

LAN, in which large latencies for emulating a wide area network can be achieved by

using nodes that delay-and-forward network packets. All inter-server communication

is over a 1 Gbps switched Ethernet LAN. We consider only Byzantine faults among

the servers, and set the Byzantine fault threshold b in every epoch to be one. The

number of servers is set to the minimum required, which is (6b+1) = 7 servers. Each

client process performs downloads (reads) and uploads (writes) in the ratio 4:1. The

size of the documents is set to 1 MB. Each server stores 500 documents.

8.3.2 Effect of Integrity Verification and Restoration on Throughput

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

re
qu

es
ts

 /
m

in
ut

e)

Number of clients

No PIVR
PIVR. No corrupted servers
PIVR. One corrupted server

Figure 26: R/W Throughput Vs. number of clients with and without PIVR.

In this experiment, we measure the effect of the PIVR process on the upload

/ download throughput of the storage service. Figure 26 shows the read/write (or

download/upload) throughput as a function of the number of client processes. Each

103

client process performs downloads (reads) and uploads (writes) in the ratio 4:1. We

found that running four client processes per client machine saturates the 100 Mbps

network interface at the client machine.

When none of the servers are storing any corrupted data, then as part of the PIVR

process, all the servers will be checking the integrity of the stored data and will find

no corrupted data; so there will not be any repair process running in the system.

The maximum throughput of the system is achieved with 44 client processes, and the

throughput is 5386 requests / minute. This throughput is less than 1% lower than

the throughput for 44 client processes when none of the servers are running Protocol

PIVR. However, more than 44 clients are needed to achieve the maximum throughput

when none of the servers are running Protocol PIVR.

When one of the servers is storing corrupted data, then that server detects the cor-

ruption during the integrity verification process and repairs itself by reading the cor-

rect contents from another server. The maximum throughput in this case is achieved

with 44 client processes, and the throughput is 4719 requests / minute. This through-

put is 13.22% lower than the throughput for 44 client processes when none of the

servers are running Protocol PIVR. The large drop in throughput during the repair

is because the corrupted server repairs itself by reading the contents from another

server over the 1 Gbps Ethernet LAN, while the clients connect to the servers over

the 100 Mbps LAN. Thus, two out of the seven servers have part of their resources

devoted to the repair process and do not serve client requests at maximum capacity.

Thus, when none of the servers are storing corrupted data, Protocol PIVR has

little impact on the throughput of the system. However, when one of the servers

is storing corrupted data and is repairing itself, the throughput drops noticeably by

over 13%.

104

8.3.3 Effect of PIVR Integrity Verification on Read-Write Latency

This experiment examines the effect of Protocol PIVR on the upload and download

latencies when none of the servers are storing corrupted data. Table 18 gives the

measurements.

Table 18: Effect of PIVR integrity verification on upload and download latencies.
Without PIVR With PIVR % increase

Download 97.81 ms 109.19 ms 11.63%
Upload 169.16 ms 239.67 ms 41.68%

Running Protocol PIVR causes the download latency to increase by over 11% and

the upload latency to increase by over 41%. Thus, Protocol PIVR has a noticeable

impact on the upload and download latencies. The difference in impact on the two

latencies is because, in case of downloads, the file is downloaded from only one server,

while for uploads the file is copied to all servers and then the servers run a distributed

consensus protocol on the write request. The upload process is a longer operation

consisting of multiple steps involving all the servers.

The impact of PIVR on the latencies can be reduced by designing the server

hardware appropriately. For example, each server could consist of a high-performance

disk connected to two machines over fiber channel; one of the machines services client

requests, while the other runs Protocol PIVR.

8.3.4 PIVR Integrity Restoration Rate Vs. #Clients

This experiment examines the effect of increasing the number of clients on the in-

tegrity restoration rate at a server storing corrupted data. Figure 27 shows the rate

at which the server which is storing corrupted data detects the corruption and repairs

it as the number of clients accessing the servers increases. The integrity restoration

rate at the server drops off almost linearly as the number of clients increases. When

105

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70

In
te

gr
ity

 r
es

to
ra

tio
n

ra
te

 (
#d

oc
s

/ m
in

)

Number of clients

Figure 27: Rate at which corrupted documents are repaired Vs. number of clients.

the number of clients is 60, the restoration rate is 74.4 documents per minute. If the

epoch length is set to one day, then the server will be able to restore 107 GB of stored

data in an epoch. The integrity restoration component of Protocol PIVR thus scales

to a few hundred gigabytes of stored data.

8.3.5 Effect of Integrity Verification Process Priority on Integrity Verifi-
cation Rate

This experiment examines the impact of the scheduling priority of the PIVR process

on the rate at which the integrity of the documents are checked. Figure 28 shows the

rate at which servers verify the integrity of their stored documents as a function of

the number of client processes for two process scheduling priorities of the integrity

verification process. Each client process performs downloads (reads) and uploads

(writes) in the ratio 4:1. We run four client processes per client machine.

The priority with which an operating system runs a process is called the “niceness”

106

 10

 100

 10 20 30 40 50 60 70

V
er

ifi
ca

tio
n

ra
te

 (
#D

oc
um

en
ts

 /
se

co
nd

)

Number of clients

PIVR Niceness = 0
PIVR Niceness = 19

Figure 28: Rate at which document integrity is verified Vs. number of clients for
different values of process scheduling priority.

value of the process. The default niceness value of a process is zero. Increasing the

niceness value of the process implies the process is run with a lower priority by the

operating system. The maximum niceness value on Linux is 19.

The figure shows that lowering the priority of the integrity verification process

(increasing the niceness value) decreases the integrity verification rate by 11.63%

when there are 44 client processes in the system. This may be acceptable depending

on how much data is stored in the system. If the epoch length is set to one day, then

with an integrity verification rate of 10 1-MB sized documents / second, the integrity

of 864 GB of data can be verified in an epoch. This also shows that the integrity

verification component of Protocol PIVR scales to hundreds of GB’s of data.

107

8.3.6 Wide Area Network Performance

This section describes read-write performance and document integrity verification

rates when clients connect to the servers over a wide area network. Emulation of a

wide area network on the Emulab testbed is achieved by using “delay” nodes in the

network path between the clients and the servers. The delay nodes work at the IP

layer of the network protocol stack. The clients and the servers are set to communicate

over 100 Mbps network links with 12 ms round trip times.

8.3.6.1 Effect of PIVR Integrity Verification on Read-Write Latency

This experiment examines the effect of Protocol PIVR on the upload and download

latencies of a 1 MB document when none of the servers are storing corrupted data.

Table 19 gives the measurements.

Table 19: Effect of PIVR integrity verification on WAN upload and download la-
tencies.

Without PIVR With PIVR % increase
Download 0.463 s 0.51 s 10.15%
Upload 0.53 s 0.585 s 10.38%

Compared to the LAN setup (Table 18), the latencies have increased by 2.4 to

5 times. Running Protocol PIVR causes the download and upload latencies to in-

crease by a little over 10%. Compared to Table 18, the % increase in the upload

and download latencies due to Protocol PIVR are almost equal, because the client-

server network latency is the largest contributing factor to the upload and download

latencies.

8.3.6.2 Effect of PIVR Integrity Verification on Throughput

In this experiment, we measure the effect of the PIVR integrity verification process

on the upload / download throughput of the storage service. None of the servers are

108

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

re
qu

es
ts

 /
m

in
ut

e)

Number of clients

No PIVR
PIVR. No corrupted servers

Figure 29: WAN R/W Throughput Vs. number of clients with and without PIVR.

storing any corrupted data. Figure 29 shows the read/write (or download/upload)

throughput as a function of the number of client processes. Each client process

performs downloads (reads) and uploads (writes) of 1 MB-sized documents in the

ratio 4:1. We found that the maximum throughput that can be extracted using only

one client machine is by running four client processes per client machine.

Figure 29 shows that running Protocol PIVR has almost no effect on the through-

puts. Compared to the LAN setup (Figure 26), the maximum throughput saturation

is not reached even with 56 client processes. This is expected, because the packets

from each client reach the servers at a slower rate, thus requiring a greater number

of clients to saturate the servers with requests.

8.3.6.3 Effect of Number of Clients on PIVR Integrity Verification Rate

This experiment examines the impact of the number of clients on the rate at which

the integrity of the documents are checked. Figure 30 shows the rate at which servers

109

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 10 20 30 40 50 60 70

V
er

ifi
ca

tio
n

ra
te

 (
#D

oc
um

en
ts

 /
se

co
nd

)

Number of clients

Figure 30: Rate at which document integrity is verified Vs. number of clients
(WAN).

verify the integrity of their stored documents as a function of the number of client

processes when the clients connect to the servers over the wide area network. None

of the servers are storing any corrupted data.

Comparing Figure 30 with the setup where the clients connect to the servers

over a LAN (Figure 28), two observations can be made: 1) The integrity verification

rate drops off linearly with number of clients in the WAN setup, while it drops off

exponentially in the LAN setup; and 2) The integrity verification rate in the WAN

setup is greater (even for 16 client processes) than in the LAN setup.

Both these observations are due to the increased round trip time in the network

links connecting the clients with the servers. During uploads and downloads, the

transfers are done in blocks of 16 KB using TCP. With higher network latencies,

the server processes spend more time waiting for blocks to arrive (or to send, during

110

downloads). More system resources are thus available for the PIVR integrity ver-

ification process, which explains Observation 2. Conversely, the lower the network

latencies are, the lower the PIVR integrity verification rate will be. Observation 1

shows that the client-server network latency influences greatly the PIVR integrity

verification rate, with the influence becoming more pronounced as the number of

clients is increased.

8.4 Conclusions

This chapter describes a prototype implementation of a proactively-secure distributed

data storage service, and an experimental evaluation demonstrating its feasibility in

practical settings. The prototype implements a document storage service, where users

can upload new versions of a document, download the latest version of a document,

and delete documents. Protocols realizing this service were developed and imple-

mented as part of the prototype implementation.

Experimental results for the LAN setup (client-server network is a 100 Mbps LAN)

show that the integrity verification component of Protocol PIVR has little impact on

the system throughput; has a noticeable impact on the upload and download latencies;

and can secure 100s of GB of data even when run under a low scheduling priority.

The experimental results also show that the integrity restoration rate has a noticeable

impact on the system throughput, and can scale to securing a few hundred GB’s of

stored data. Thus, the proactively-secure document repository as a whole can scale

to a few hundred GB’s of stored data.

Experiments for the WAN setup (client-server network consists of 100 Mbps net-

work links with 12 ms RTT) were done and compared to the results for the LAN

setup. The integrity verification component of Protocol PIVR has almost negligible

impact on the system throughput. The differences in the experimental results of the

111

WAN and LAN setups are: 1) The integrity verification component of Protocol PIVR

causes almost the same % degradation in the upload latency as in the download la-

tency for the WAN setup, while in the LAN setup the % degradation in the upload

latency is almost four times that of the download latency; 2) The integrity verifica-

tion rate in the WAN setup is greater (even for 16 client processes) than in the LAN

setup; and 3) The integrity verificate rate drops off linearly with number of clients

in the WAN setup, while it drops off exponentially in the LAN setup. Difference #3

(linear drop off for WAN vs. exponential drop off for LAN) shows that the client-

server network latency influences greatly the PIVR integrity verification rate, with

the influence becoming more pronounced as the number of clients is increased.

112

CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Dissertation Summary

Fault tolerant and secure distributed data storage systems typically require that only

up to a threshold of storage nodes can ever be compromised or fail. In proactively-

secure systems, this requirement is modified to hold only in a time interval (also called

epoch), resulting in increased security. An attacker or adversary could compromise

distinct sets of nodes in any two time intervals. Proactively-secure systems thus

require all nodes to “refresh” themselves periodically to a clean state to maintain the

availability, integrity, and confidentiality properties of the data storage service.

This dissertation investigates the design of a proactively-secure distributed data

storage system. The protocols that are run by the servers to refresh themselves

periodically must scale with the large amounts of stored data. We consider two

storage models - secret sharing and encrypt-and-replicate. For data stored using

secret sharing, the confidentiality of the encoding must be maintained using a share

renewal process, while for data stored using encryption, we assume that the users

manage the encryption keys securely. The contributions made in this research are:

• For storing data, we consider, in addition to the standard encrypt-and-replicate

storage model, data storage using perfect secret sharing schemes. We show

113

that standard secret sharing schemes have high computation overheads and

are impractical for storing large amounts of data. A new technique called the

GridSharing framework is proposed that uses a combination of XOR secret

sharing and replication for storing data efficiently. The number of rows in the

GridSharing framework is a configurable parameter that can be varied to achieve

a tradeoff in performance metrics.

• We give a share renewal algorithm in the context of the GridSharing framework

for maintaining the confidentiality of the stored data under the mobile adversary

model. We experimentally show that the algorithm can secure several hundred

GBs of data.

• We give distributed protocols run periodically by the servers for maintaining

the integrity of replicated data under the mobile adversary model. We experi-

mentally show that these protocols scale to several 100 GBs of stored data.

• We design a proactively-secure document repository, where users can upload

a new version of a document, download the latest version of a document, and

delete documents. The read-write protocols are specified. The protocol run

periodically for maintaining the integrity under the mobile adversary model

is integrated into the prototype, and concurrency and timing issues at epoch

boundaries are addressed. The result is an integrated system that maintains

correctness in the presence of concurrent executions of the read-write protocols

and the protocol for maintaining integrity in the mobile adversary model.

• The proactively-secure document repository is implemented and evaluated on

the Emulab cluster (http://www.emulab.net). The experimental evaluation

shows that several 100 GBs of data can be proactively-secured.

114

• A necessary component in any secure system is fault and intrusion detection.

We give a novel Byzantine-fault detection algorithm for quorum systems, and

experimentally evaluate it using simulations and by deploying it in the AgileFS

distributed file system. Concurrent reads and writes are a source for false alarms

in Byzantine fault detection algorithms. We show that the proposed fault detec-

tion algorithm does not produce incorrect diagnosis even when the read-write

concurrency rate is as high as 32%. In addition, an interesting property of the

fault detection algorithm is that a Byzantine-faulty server has to mimic closely

a fault-free server to avoid being detected.

9.2 Future Work

The research and results in this dissertation open up some new research directions,

listed below:

• We have shown that proactively-secure systems can scale to 100s GB of data,

as measured on the Emulab testbed. The periodic refresh mechanisms provided

in this dissertation can be applied in other systems to make them proactively-

secure. Such mechanisms should be run anyway as a good system administration

practice.

• The GridSharing framework provides an efficient technique for storing data us-

ing perfect secret sharing schemes. If generic (n, n) linear secret sharing schemes

are used instead of XOR secret sharing, then computations over stored data

can be performed by performing distributed computations over their shares.

The distributed computations need not be made “verifiable” (in the sense of

verifiable secret sharing) because of the use of replication-with-voting. The

distributed computations can thus be efficient and practical.

115

REFERENCES

[1] “The Agile Store Project.” http://www.ece.gatech.edu/research/labs/agile store.
Last accessed: May 2007.

[2] “Emulab.” http://www.emulab.net. Last accessed: June 2007.

[3] “The MIRACL software library.” http://indigo.ie/ mscott/. Last accessed: De-
cember 2005.

[4] “Tripwire.” http://sourceforge.net/projects/tripwire/. Last accessed: June 2007.

[5] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M. K.,
and Wylie, J. J., “Lazy verification in fault-tolerant distributed storage sys-
tems,” in Proceedings of the International Symposium on Reliable Distributed
Systems, 2005.

[6] Adya, A., Wattenhofer, R. P., Bolosky, W. J., Castro, M., Cer-

mak, G., Chaiken, R., Douceur, J. R., Howell, J., Lorch, J. R., and
Theimer, M., “FARSITE: Federated, available, and reliable storage for an in-
completely trusted environment,” in Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation, 2002.

[7] Agrawal, G. and Jalote, P., “Coding based replication schemes for dis-
tributed systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 6, no. 3, pp. 240–251, 1995.

[8] Agrawal, G., “Availability of coding based replication schemes,” in Proceedings
of the International Symposium on Reliable Distributed Systems, 1992.

[9] Alvisi, L., Malkhi, D., Pierce, E., Reiter, M., and Wright, R. N.,
“Dynamic Byzantine quorum systems,” in Proceedings of the International Con-
ference on Dependable Systems and Networks, 2000.

[10] Alvisi, L., Malkhi, D., Pierce, E., and Reiter, M. K., “Fault detection
for Byzantine quorum systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, no. 9, pp. 996–1007, 2001.

116

[11] Anderson, R. J., “The Eternity service,” in Proceedings of the 1st International
Conference on Theory and Application of Cryptography (Pragocrypt), 1996.

[12] Backes, M., Cachin, C., and Strobl, R., “Proactive secure message trans-
mission in asynchronous networks,” in Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing, 2003.

[13] Barak, B., Halevi, S., Herzberg, A., and Naor, D., “Clock synchroniza-
tion with faults and recoveries,” in Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing, 2000.

[14] Benaloh, J. and Leichter, J., “Generalized secret sharing and monotone
functions,” in Crypto, 1988.

[15] Blakley, G. R., “Safeguarding cryptographic keys,” in Proceedings of the Na-
tional Computer Conference, 1979.

[16] Cachin, C., Kursawe, K., Lysyanskaya, A., and Strobl, R., “Asyn-
chronous verifiable secret sharing and proactive cryptosystems,” in Proceedings
of the 9th ACM Conference on Computer and Communications Security, 2002.

[17] Canetti, R., Gennaro, R., Herzberg, A., and Naor, D., “Proactive se-
curity: Long term protection against breakins,” RSA Laboratories’ Cryptobytes,
vol. 3, no. 1, 1997.

[18] Canetti, R., Halevi, S., and Herzberg, A., “Maintaining authenticated
communication in the presence of break-ins,” in Proceedings of the 16th ACM
Symposium on Principles of Distributed Computing, 1997.

[19] Canetti, R. and Herzberg, A., “Maintaining security in the presence of
transient faults,” in Crypto, 1998.

[20] Castro, M. and Liskov, B., “Practical Byzantine fault tolerance,” in Pro-
ceedings of the 3rd USENIX Symposium on Operating Systems Design and Im-
plementation, 1999.

[21] Castro, M. and Liskov, B., “Proactive recovery in a Byzantine fault tolerant
system,” in Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, 2000.

[22] Chen, Y., Edler, J., Goldberg, A., Gottlieb, A., Sobti, S., and Yiani-

los, P., “A prototype implementation of archival intermemory,” in Proceedings
of the 4th ACM International Conference on Digital Libraries, 1999.

[23] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B., “Verifiable se-
cret sharing and achieving simultaneity in the presence of faults,” in Proceedings
of the 26th IEEE Symposium on Foundations of Computer Science, 1985.

117

[24] Chow, C. S. and Herzberg, A., “Network randomization protocol: A proac-
tive pseudorandom generator,” in Proceedings of the 5th USENIX Unix Security
Symposium, 1995.

[25] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W., “Freenet: A
distributed anonymous information storage and retrieval system,” in Proceedings
of the ICSI Workshop on Design Issues in Anonymity and Unobservability, 2000.

[26] Deswarte, Y., Blain, L., and Fabre, J. C., “Intrusion tolerance in dis-
tributed computing systems,” in Proceedings of the 14th IEEE Symposium on
Security and Privacy, 1991.

[27] Dingledine, R., Freedman, M. J., and Molnar, D., “The Free Haven
Project: Distributed anonymous storage service,” in Proceedings of the Interna-
tional Workshop on Design Issues in Anonymity and Unobservability, 2000.

[28] Feldman, P., “A practical scheme for non-interactive verifiable secret sharing,”
in Proceedings of the 28th IEEE Symposium on Foundations of Computer Science,
1987.

[29] Fischer, M. J., Lynch, N. A., and Paterson, M. S., “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM, vol. 32,
no. 2, pp. 374–382, 1985.

[30] Frankel, Y., Gemmel, P., Mackenzie, P. D., and Yung, M., “Proactive
RSA,” in Crypto, 1997.

[31] Garg, V. K. in Elements of Distributed Computing, ch. 26.3, John Wiley and
Sons, 2002.

[32] Goodson, G. R., Wylie, J. J., Ganger, G. R., and Reiter, M. K.,
“Efficient Byzantine-tolerant erasure-coded storage,” in Proceedings of the In-
ternational Conference on Dependable Systems and Networks, 2004.

[33] Herlihy, M. and Tygar, J. D., “How to make replicated data secure,” in
Crypto, 1987.

[34] Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., and Yung,

M., “Proactive public key and signature systems,” in Proceedings of the 4th ACM
Symposium on Computer and Communications Security, 1997.

[35] Herzberg, A., Jarecki, S., Krawczyk, H., and Yung, M., “Proactive
secret sharing or: How to cope with perpetual leakage,” in Crypto, 1995.

[36] Ito, M., Saito, A., and Nishizeki, T., “Secret sharing scheme realizing gen-
eral access structure,” in Proceedings of the IEEE Global Communication Con-
ference, 1987.

118

[37] Iyengar, A., Cahn, R., Jutla, C., and Garay, J., “Design and implemen-
tation of a secure distributed data repository,” in Proceedings of the 14th IFIP
International Information Security Conference, 1998.

[38] Kong, L., Manohar, D. J., Subbiah, A., Sun, M., Ahamad, M., and
Blough, D. M., “Agile Store: Experience with quorum-based data replica-
tion techniques for adaptive Byzantine fault tolerance,” in Proceedings of the
International Symposium on Reliable Distributed Systems, 2005.

[39] Kong, L., Subbiah, A., Ahamad, M., and Blough, D., “A reconfigurable
Byzantine quorum approach for the Agile Store,” in Proceedings of the Interna-
tional Symposium on Reliable Distributed Systems, 2003.

[40] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P.,
Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W.,
Wells, C., and Zhao, B., “Oceanstore: An architecture for global-scale per-
sistent storage,” in Proceedings of the 9th ASPLOS, 2000.

[41] Kulesza, K. and Kotulski, Z., “On secret sharing schemes with extended
capabilities,” in Proceedings of the Regional Conference on Military Communi-
cation and Information Systems, 2002.

[42] Lakshmanan, S., Ahamad, M., and Venkateswaran, H., “Responsive se-
curity for stored data,” IEEE Transactions on Parallel and Distributed Systems,
vol. 14, no. 9, pp. 818–828, 2003.

[43] Lamport, L., “On interprocess communication, part 1: Basic formalism,” Dis-
tributed Computing, vol. 1, no. 2, pp. 77–85, 1986.

[44] Malkhi, D. and Reiter, M., “Byzantine quorum systems,” Distributed Com-
puting, vol. 11, no. 4, pp. 203–213, 1998.

[45] Malkhi, D. and Reiter, M., “Secure and scalable replication in Phalanx,” in
Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems, 1998.

[46] Malkhi, D., Reiter, M., Tulone, D., and Ziskind, E., “Persistent objects
in the Fleet system,” in Proceedings of the 2nd DARPA Information survivability
conference and exposition (DISCEX), 2001.

[47] Marsh, M. A. and Schneider, F. B., “CODEX: A robust and secure secret
distribution system,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 34–47, 2004.

[48] Martin, J. P., Alvisi, L., and Dahlin, M., “Small Byzantine quorum sys-
tems,” in Proceedings of the International Conference on Dependable Systems &
Networks, 2002.

119

[49] Matthews, T., “Suggestions for random number generation in software,” RSA
Laboratories’ Bulletin, January 1996.

[50] Naor, M. and Wool, A., “Access control and signatures via quorum secret
sharing,” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 9,
pp. 909–922, 1998.

[51] Ostrovsky, R. and Yung, M., “How to withstand mobile virus attacks,” in
Proceedings of the 10th Symposium on the Principles of Distributed Computing,
1991.

[52] Patterson, D. A., Gibson, G. A., and Katz, R. H., “A case for redun-
dant arrays of inexpensive disks (RAID),” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1988.

[53] Pedersen, T. P., “Non-interactive and information-theoretic secure verifiable
secret sharing,” in Crypto, 1991.

[54] Rabin, M., “Efficient dispersal of information for security, load balancing, and
fault tolerance,” Journal of the ACM, vol. 38, no. 2, pp. 335–348, 1989.

[55] Rabin, T., “A simplified approach to threshold and proactive RSA,” in Crypto,
1998.

[56] Reischuk, R., “A new solution to the Byzantine generals problem,” Informa-
tion and Control, vol. 64, no. 1-3, pp. 23–42, 1985.

[57] Shamir, A., “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[58] Stinson, D. R. and Wei, R., “Unconditionally secure proactive secret sharing
scheme with combinatorial structures,” in Proceedings of the 6th International
Workshop on Selected areas in cryptography, 1999.

[59] Strunk, J. D., Goodson, G. R., Scheinholtz, M. L., Soules, C. A. N.,
and Ganger, G. R., “Self-securing storage: Protecting data in compromised
systems,” in Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, 2000.

[60] Subbiah, A. and Blough, D. M., “An approach for fault tolerant and secure
data storage in collaborative work environments,” in Proceedings of the Workshop
on Storage Security and Survivability (StorageSS), 2005.

[61] Thambidurai, P. and Park, Y.-K., “Interactive consistency with multiple
failure modes,” in Proceedings of the International Symposium on Reliable Dis-
tributed Systems, 1988.

120

[62] Waldman, M., Rubin, A. D., and Cranor, L. F., “Publius: A robust,
tamper-evident, censorship-resistant web publishing system,” in Proceedings of
the 9th Usenix Security Symposium, 2000.

[63] Wiseman, Y., Schwan, K., and Widener, P., “Efficient end to end data ex-
change using configurable compression,” in Proceedings of the 24th International
Conference on Distributed Computing Systems, 2004.

[64] Wong, T. M., Decentralized recovery for survivable storage systems. PhD thesis,
Carnegie Mellon University, 2004.

[65] Wong, T. M., Wang, C., and Wing, J. M., “Verifiable secret redistribution
for archive systems,” in Proceedings of the 1st International IEEE Security in
Storage Workshop, 2002.

[66] Wylie, J. J., Bigrigg, M. W., Strunk, J. D., Ganger, G. R., Kiliççöte,

H., and Khosla, P. K., “Survivable information storage systems,” IEEE Com-
puter, vol. 33, no. 8, pp. 61–68, 2000.

[67] Zhou, L., Towards Fault-Tolerant and Secure On-Line Services. PhD thesis,
Cornell University, 2001.

[68] Zhou, L., Schneider, F. B., and Ranesse, R., “COCA: A secure distributed
online certification authority,” ACM Transactions on computer systems, vol. 20,
no. 4, 2002.

[69] Zhou, L., Schneider, F. B., and Ranesse, R., “APSS: Proactive secret shar-
ing in asynchronous systems,” ACM Transactions on Information and System
Security, vol. 8, no. 3, 2005.

121

