EFFICIENT ALGORITHMS FOR MARKET EQUILIBRIA

A Thesis
Presented to
The Academic Faculty

by

Nikhil R. Devanur

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
August 2007

EFFICIENT ALGORITHMS FOR MARKET EQUILIBRIA

Approved by:

Professor Vijay V. Vazirani, Advisor Professor Dana Randall
College of Computing College of Computing

Georgia Institute of Technology Georgia Institute of Technology
Professor Robin Thomas Professor Subhash Khot
School of Mathematics College of Computing

Georgia Institute of Technology Georgia Institute of Technology
Professor Santosh Vempala, Date Approved: 14 May 2007

College of Computing
Georgia Institute of Technology

To my parents,

Smt. Yashoda and Sri Rangarajan Devanur

and my dear brother,

Nishchal.

iii

ACKNOWLEDGEMENTS

I am indebted to my advisor Vijay V Vazirani; this thesis would not have been possible
without him. I thank him for all his encouragement, support and guidance through
the years. In fact, meeting him at a conference was what brought me to Georgia Tech
for my PhD. His knowledge and experience have been invaluable to me, and I was
very fortunate to have such a person to call upon whenever needed.

Also, special thanks goes to Subhash Khot, working with whom has been a privi-
lege. He has been a great teacher, guide, colleague and a friend. I have also had the
good fortune of working with Dick Lipton and Milena Mihail. Dick, especially has
always bombarded me with his problems and ideas. They have had a great influence
on me and my thinking.

I would like to thank H Venkateswaran, Dana Randall, Prasad Tetali, Robin
Thomas and Ernie Croot. I enjoyed their classes, and I have recieved a great amount
of education and guidance from them. Thanks to my co-authors Christos Papadim-
itriou, Amin Saberi and Deeparanab Chakrabarty, for letting me include our joint
work in my thesis.

The students in the Theory group over the years have made my stay very enjoyable.
So many of them have made it possible for me to do so many things, it is not possible
to list them all here. Special thanks to Nisheeth Vishnoi and Deeparnab Chakrabarty,
for the several (hundreds of?) hours spent with them thinking about various things
and managing to prove a few. Equally indebted am I to my friends outside the group,
because of whom I have come to love Atlanta and all its hangouts.

No amount of thanks is enough for my parents and my brother. None of this

would be meaningful but for them. This thesis is dedicated to them.

v

Finally, I would like to thank Megha, who made it very difficult for me to concen-

trate in the last few months, at the same time making it extremely exciting.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS o e iv
LIST OF TABLES e e e ix
LIST OF FIGURES e e e X
SUMMARY e xi
I INTRODUCTION e e 1
1.1 History and Motivation 1

1.2 Contributions of this thesis 2

1.2.1 Linear Utilities 0oL 2

1.2.2 Spending Constraint Utilities 3

1.23 EGMarkets 5

I PRELIMINARIES e 9
2.1 The Fisher Modelo, 9

2.2 The Arrow-Debreu Model 10

2.3 Demand functions and Fixed point Theorems 11

2.4 Approximate equilibriao 0000000000 13

2.5 Weak Gross Substitutability and the Tatonnement process 13

IIT LINEAR UTILITIES, FISHER MODEL 15
3.1 The Eisenberg-Gale Convex Program 15

3.2 High level idea of the algorithm 16

3.3 The enhanced setting and how to deal with it 18

3.4 A simple algorithmo o 21

3.5 Finding tight sets oo 0o 25

3.6 Termination with market clearing prices 28

3.7 Establishing polynomial running time 30

vi

3.7.1 Balanced flows and their properties 30

3.7.2 The polynomial time algorithm 35

3.8 Discussiono 38

IV LINEAR UTILITIES, ARROW-DEBREU MODEL 40
4.1 The Algorithm L L 40

4.2 Analysis of the Algorithm 41

4.3 Improved Running time 43

4.4 Comparison with Related Work 44

V SPENDING CONSTRAINT UTILITIES 46
5.1 Definitiono 46

5.2 Existence and Uniqueness of Equilibrium 48

5.2.1 The Fisher Model 48

5.2.2 The Arrow-Debreu Model 53

5.3 Algorithms for Step Functions 55

5.4 Algorithms for Continuous Functions 59

5.5 A Heuristic Lo 62

VI EG MARKETS e 63
6.1 Definition 63

6.2 Rationality of EG[2] Markets 66

6.3 Algorithms for combinatorial EG[2] markets 69

6.3.1 Binary Search Algorithm 69

6.3.2 Combinatorial Markets 72

VII CONCLUSION e 74
7.1 Piecewise-linear utilities 00000 74

7.2 Beyond Weak Gross Substitutiblity 74
APPENDIX A KKT CONDITIONS 76
APPENDIX B PROJECTION OF POLYTOPES 7

vii

REFERENCES

viii

LIST OF TABLES

1 Table of Results about Rationality of Equilibrium in Capacity Alloca-
tion markets. The table also notes the existence of max-min theorems. 7

ix

= W N

LIST OF FIGURES

An Example of the network N(p), satisfying the invariant.
As the prices are increased a set S goes tight.

Occurrence of Event 2.

If %i(p, f) > v;(p, f) and there is a path from j to i in R(p, f) \ {s,t},
then a circulation would give a more balanced flow.

Representing a spending constraint utility function.

SUMMARY

The mathematical modeling of a market, and the proof of existence of equilibria
have been of central importance in mathematical economics. Since the existence proof
is non-constructive in general, a natural question is if computation of equilibria can
be done efficiently. Moreover, the emergence of Internet and e-commerce has given
rise to new markets that have completely changed the traditional notions. Add to
this the pervasiveness of computing resources, and an algorithmic theory of market
equilibrium becomes highly desirable. The goal of this thesis is to provide polynomial
time algorithms for various market models.

Two basic market models are the Fisher model: one in which there is a demar-
cation between buyers and sellers, buyers are interested in the goods that the sellers
possess, and sellers are only interested in the money that the buyers have; and the
Arrow-Debreu model: everyone has an endowment of goods, and wants to exchange
them for other goods. We give the first polynomial time algorithm for exactly com-
puting an equilibrium in the Fisher model with linear utilities. We also show that
the basic ideas in this algorithm can be extended to give a strongly polynomial time
approximation scheme in the Arrow-Debreu model.

We also give several existential, algorithmic and structural results for new market

models:

e the spending constraint utilities (defined by Vazirani [42]) that captures the
“diminishing returns” property while generalizing the algorithm for the linear

case.

e the capacity allocation market (defined by Kelly [36]), motivated by the study

of fairness and stability of the Transmission Control Protocol (TCP) for the

xi

Internet, and more generally the class of Eisenberg-Gale (EG) markets (defined

by Jain and Vazirani [31]).

Finally, this line of research has given insights into the fundamental techniques in
algorithm design. The primal-dual schema has been a great success in combinatorial
optimization and approximation algorithms. Our algorithms use this paradigm in the

enhanced setting of Karush-Kuhn-Tucker (KKT) conditions and convex programs.

xii

CHAPTER 1

INTRODUCTION

It is not from the benevolence of the butcher, the brewer or the baker that
we expect our dinner, but from their regard to their own interest. We
address ourselves not to their humanity but to their self-love, and never

talk to them of our necessities but of their advantages.

Adam Smith, The Wealth of Nations.

1.1 History and Motivation

The concepts of supply and demand, and the notion of an equilibrium as the point
where the two meet are the most basic to economics. General equilibrium theory,
extending these concepts to include more aspects of a real economy such as multiple
commodities and production, has been a cornerstone of modern mathematical eco-
nomics. The formalization of such a model was pioneered by Leon Walras [43] and
has been a subject of interest ever since (including an early, simpler model defined by
Irving Fisher [5]). A major breakthrough was the proof of existence of equilibrium
prizes by Arrow and Debreu [3], for which they later won the Nobel Prize.

However these proofs use Fixed Point Theorems, so they are non constructive, and
a major drawback of this model has been the lack of algorithmic results, except a few
isolated instances. (See for instance, the book by Scarf [39]. Even here the algorithms
are not efficient, that is, they do not run in polynomial time.) The problem of how
a market reaches the equilibrium has been attributed to the “invisible hand”, but a
natural question to ask is, how efficient is the invisible hand? Efficient algorithms to

compute market equilibrium would give more justification to the model.

In any case, the goal of the general equilibrium theory has been that it be used
as a tool to evaluate the effects of economic policies. The book by Shoven and
Whalley [40] gives a good survey of techniques used to make realistic models of actual
economies and apply this theory. They also illustrate how this gives fresh insights
into the impacts of policies, not obtained by other models. Another such example is
the work of Kehoe and Kehoe [35] evaluating the impact of NAFTA on the economic
welfare of participating countries. Once again, efficient algorithms to compute market
equilibrium would greatly increase the applicability of these techniques. In fact,
Kakade et. al. [34] have used one of our algorithms to study the effect of trade
agreements on price variation, etc.

The emergence of Internet has greatly affected the study of markets and has led
to a fresh look at these concepts. It has given rise to new markets, for instance,
involving the trading of bandwidth among different service providers. Also it has
enabled e-commerce and online markets, such as the ones due to Amazon, EBay and
Google. Finally the availability of massive computational power has naturally led to
automatized pricing in many businesses.

All these have resulted in a surge of interest in using the tools from the theory
of algorithms to compute equilibrium prices. In this thesis we present several such

algorithms.

1.2 Contributions of this thesis
1.2.1 Linear Utilities

We present a combinatorial polynomial time algorithm ([15]) when the utility func-
tions are linear, in the Fisher model (See section 2.1 for a definition). For this case, it
is natural to seek an algorithmic answer in the theory of linear programming. How-
ever, there does not seem to be any natural linear programming formulation for this

problem. Instead, a remarkable nonlinear convex program, given by Eisenberg and

Gale [19], captures, as its optimal solutions, equilibrium allocations. Let us outline
the advantages of our approach versus simply solving the convex program.

The usual advantages of combinatorial algorithms apply to our work as well,
namely such algorithms are easier to adapt, certainly heuristically and sometimes
even formally, to related problems and fine tuned for use in special circumstances; in
fact, the algorithms in Chapters 4 and 5 build upon this basic algorithm. No convex
program formulation is known for many of these cases.

One of the tools for analyzing the stability of a market is the tatonnement (or
the groping) process. It is a price updating rule that says, “increase the prices of
those goods for which the demand is greater than the supply and decrease the prices
of those goods for which the supply is greater than the demand”. Many versions of
this process have been suggested based upon the exact nature of the update. Fast
convergence of this process is an indication of greater stability. Our algorithm can
be interpreted as a discrete version of the tatonnement process, and what we show is
that this version converges to the equilibrium in polynomial time.

Finally, this line of research has given insights into the fundamental techniques in
algorithm design. The primal-dual schema has been a great success in combinatorial
optimization and approximation algorithms, and is used in the setting of LP-duality
theory and complementary slackness conditions. Our algorithm uses the primal-dual
paradigm in the enhanced setting of convex programming and the KKT conditions.
In Section 3.3 we pinpoint the added difficulty of working in this enhanced setting

and the manner in which our algorithm circumvents this difficulty.
1.2.2 Spending Constraint Utilities

A natural generalization of linear utility functions is the piecewise linear and concave
(PLC) utility functions. Moreover, concave functions that are additive over goods

can be approximated by PLC functions, thus an algorithm for PLC utilities might be

used to obtain a PTAS for separable concave utilities. However attempts at extending
the algorithm for linear case to PLC utilities have so far failed. One of the reasons
for this is that the algorithm monotonically raises prices, and this works because
linear utilities satisfy weak gross substitutability (definition in Section 2.5). But the
same is not true for PLC utilities, even if each function is restricted to no more
than two pieces. This means that an algorithm would be required to raise and lower
the prices, and proving fast convergence for such a procedure is in general quite
difficult. Motivated by this difficulty, Vazirani [42] generalized linear utilities in a
new direction, obtaining what are called the spending constraint utilities: a buyer’s
total utility function is still linear and additively separable over goods; in addition, a
limit is specified on the amount of money he can spend on each good. This can be
further generalized to capture the property of decreasing marginal utilities: the buyer
has several linear utility functions (each specified by a constant utility rate) for each
good, each with a specified spending limit. Such utility functions do satisfy weak
gross substitutability. Indeed, [42] extends the algorithm of [15] to get a polynomial
time algorithm for spending constraint utilities, in the Fisher model.

[42] considered only finitely many linear utility functions for each buyer and each
good (the discrete case). We ([17]) show that this can be generalized so that the utility
rates are continuously varied. Such a utility function has the property that given any
prices, each buyer has a unique bundle that maximizes his utility. An equilibrium is
now specified by the prices alone, unlike the discrete case where one has to specify
an equilibrium allocation in addition. This entails an efficiency in communication
(see [14] for a detailed discussion). However the functions so obtained do not fall
under the class of functions for which the Arrow-Debreu Theorem [3] holds. We show
existence of equilibrium for such functions by an application of Brouwer’s Fixed Point
Theorem. We also show that the equilibrium is unique. Uniqueness of equilibrium

has been considered desirable, since it indicates stability ([4, 13]). In contrast, PLC

utilities do not have a unique equilibrium. Moreover we show that the algorithm of
[42] can be used as a black-box to obtain a PTAS for the continuous case.

[42] considers only the Fisher model, and a natural problem is to extend it to
the Arrow-Debreu model (definition in Section 2.2). Since the buyers’ incomes are
not fixed in the Arrow-Debreu model, the definition of spending constraint utilities
needs to be changed slightly: the limit on each linear function is now a fraction of
the buyer’s income, instead of a specific amount of money. As in the Fisher model,
we extend it to the continuous case, and give a proof of existence which now needs
the stronger Kakutani’s Fixed Point Theorem. We give an example to show that
equilibrium is no longer unique. We also show how to extend the algorithm of [42] to
get a PTAS, first for the discrete case, which can in turn be used to get a PTAS for
the continuous case.

In summary, we show that the spending constraint utilities not only parallel the
traditional utilities in existential and uniqueness results, but are also amenable to
efficient algorithms. But does this help in our quest for efficient algorithms for the
traditional utility functions? We suggest a possible avenue via a heuristic for PLC

utilities which uses the algorithm for spending constraint utilities (Section 5.5).
1.2.3 EG Markets

As was mentioned earlier, the Eisenberg-Gale convex program captures, as its optimal
solution, equilibrium allocations for the linear case of the Fisher model. Over the
years, convex programs with the same basic structure were found for more general
utility functions: scalable utilities [20], Leontief utilities [11], Linear Substitution
utilities [45] and homothetic utilities with productions [33]. Interestingly enough, a
program with the same structure as the Eisenberg-Gale program is used by Kelly [36]
in his seminal work giving a mathematical model for understanding TCP congestion

control. Resources in these markets are edge capacities and agents want to build

combinatorial objects such as source-sink flow paths or spanning trees or branchings,
e.g., for establishing TCP connections or broadcasting messages to all nodes in the
network. The following market, called the capacity allocation market, is of special
significance within Kelly’s framework: Given a network (directed or undirected) with
edge capacities specified and a set of source-sink pairs, each with initial endowment of

money specified, find equilibrium flow and edge-prices. The equilibrium must satisfy:
e Only saturated edges can have positive prices.
e All flows are sent along a minimum cost path from source to sink.
e The money of each source-sink pair is fully spent.

Jain and Vagzirani [31] defined the notion of Eisenberg-Gale markets generalizing
all of the markets mentioned above, and studied several properties of these markets.
They showed that several of these Eisenberg-Gale markets are rational: they always
have a rational solution if all the input parameters are rational. (The Eisenberg-
Gale program, and in turn, the linear case of Fisher’s model also has this property.)
However, several other such markets are irrational [24, 31]. Among the markets
characterized, an important distinction between the rational and irrational markets
was that combinatorial problems underlying the former satisfied max-min theorems,
which were used critically to establish rationality, and those for the latter didn’t.
Also these max-min theorems helped establish combinatorial strongly polynomial
time algorithms to find the equilibrium in these markets.

The markets for which this question was left open do not support max-min the-
orems, and it was expected that the equilibrium would be irrational. Surprisingly
enough, despite this, they turn out to be rational. More generally, we ([6]) show
that all markets in EG[2], the class of Eisenberg-Gale markets with two agents, are
rational. We also show that whenever the polytope containing the set of feasible util-

ities of the two agents can be described via a combinatorial LP, the market admits

a strongly polynomial algorithm. Our algorithm circumvents the lack of underly-
ing max-min theorems by using the more general LP-Duality Theory itself; on the
flip side, our methods work only for the case of two agents. This difference in the
combinatorial structure manifests itself in the algorithmic ideas needed: whereas [31]
use the primal-dual schema and their algorithms can be viewed as ascending price
auctions, we use a carefully constructed binary search. The algorithms of [31] are
combinatorial whereas ours are not, ours require a subroutine for solving combinato-
rial LP’s. The latter can be accomplished in strongly polynomial time using Tardos’
algorithm [41].

Table 1 summarizes the results about rationality of equilibrium in the two capacity

allocation markets. We also record the existence of max-min theorems in each case.

Table 1: Table of Results about Rationality of Equilibrium in Capacity Allocation
markets. The table also notes the existence of max-min theorems.

One Source Two Source Multiple Source
Multiple Sink Two Sink Multiple Sink
Directed Networks e Rational [31] ¢ Rational e Irrational
(Our result) [24]
e max-flow =
min-cut [23] e max-flow # e max-flow #
min-cut [25] min-cut [12]
Undirected e Rational [31] e Rational [31] e Irrational
Networks e max-flow = e max-flow = [24]
min-cut[22] min-cut [28] o max-flow #

min-cut[12]

1.2.3.1 Organization

Most of the basic definitions and concepts are presented in Chapter 2. The algorithm
for the linear utilities in the Fisher model is in Chapter 3. Chapter 4 extends this
algorithm to the Arrow-Debreu model. Chapter 5 contains all the results on the

spending constraint utilities. EG Markets and the results therein are in Chapter 6.

Chapter 7 lists related work and some open problems.

CHAPTER 11

PRELIMINARIES

In this chapter we define the various mathematical models of a market that we con-
sider in this thesis. We also state the classical theorems from economics showing

existence of equilibrium.

2.1 The Fisher Model

The following describes the Fisher model of a market. It formalizes the notion of an
equilibrium being the state of the market where the demand meets the supply, for all

goods simultaneously.

e It consists of a set A of divisible goods and a set B of buyers. Assume that

A={1,2,...,n} and B={1,2,...,n'}.
e The available supply of good j is b;.
e Each buyer i has a specific endowment of money, e(7).

e The preferences of buyer i are given by a utility function, U; : R, — R,. Buyer
i prefers x to ' if and only if U;(x) > U;(x’). Assume that U;’s are all concave

functions.

Given prices pq,...,p, of the goods, buyer i wants to buy a basket (i) of goods
(there could be many) that make him happiest. So &(7) is a solution to the following
convex program.

maximize U;(x)

subject to ijxj < e(i),

JEA
x; > 0, Vje A

Notation 1 The variables/functions in bold face, for instance x, represent vectors,
and the co-ordinates of ® are denoted by x1,xs,...,x,. Also x denotes a general

allocation, whereas x(i) denotes an optimal allocation for buyer i.

A thing to note is that this program does not depend on the supplies of the goods. If
>-; () > bj, then there is a deficiency of good j and if). 2;(¢) < b;, then there is a
surplus. Also, the above model assumes that the buyers don’t have any utility for the
money they come with, so the optimal solution will exhaust all of the endowment.
However, we will later see that the model (and the algorithms) can be extended even
when the buyers do value money.

We will say that pq,...,p, are market equilibrium prices if after each buyer is
assigned such a basket (), there is no surplus or deficiency of any of the goods, that
is, for each good j, Y . x,(i) = b;.

It turns out that there exist market equilibrium prices if the utilities are all concave
and each good has a potential buyer (one who derives nonzero utility from this good).

Our problem is to compute such prices in polynomial time.

2.2 The Arrow-Debreu Model

The Arrow-Debreu model (which is also known as the Walrasian model or the ex-
change model,) differs from the Fisher model in that the endowment of each buyer
i is a bundle of goods e(i) € R" (instead of money, as before). The supply is
now b; = > . pe;(i). Given the prices, assume that each buyer gets an income of
e(t) = >_;pje;(i) by selling all of his endowment. So in the Fisher model, the in-
comes are fixed where as in the Arrow-Debreu model they are dependent on the prices.
The conditions of equilibrium are as before, that each buyer is allocated an optimal

basket such that the market clears.

10

2.3 Demand functions and Fixed point Theorems

Assume for the rest of this section that the utility function U; is continuous and
strictly concave. Then for every price vector p, there is a unique optimal basket (7).
In fact, we also require that p; > 0 for each good j. Otherwise the demand for that
good would be unbounded. Then we call (i, p) the demand of buyer i at price p,
and z(7) : Int(R") — R the demand function of 7. (Int(R) is the interior of R,
which is the set of all vectors in R’ with strictly positive co-ordinates.)

Define £ : Int(R%}) — R’ to be the total demand function in terms of money

spent on the goods, i.e.,

&(p) =D piz;(i,p).
icB
Also define the excess demand function ¢ : Int(R}) — R to be

G(p) == (Z%’(LP)) —bj.
tEB

The equilibrium condition can be restated as {(p) = 0. Note that in the Arrow-

Debreu model, ¢ is invariant on scaling, that is multiplying the prices of all goods by

the same number does not change ¢. This is because in that case, all the incomes get

multiplied by the same factor, and hence the demands remain the same. So we can

confine the domain of ¢ to the interior of the unit simplex,
S={peRl:pi+p+-+p. =1}

Existence of equilibrium is established by showing that the excess demand function
has certain nice properties and then using a fixed point theorem to show that for any
such function there exists a p such that {(p) = 0. In particular, the properties that
¢ is required to satisfy in order to guarantee such a price vector are as follows. We
will use this theorem in Section 5.2.2 in order to show existence of equilibrium for a

model that does not fit into the description here.

Lemma 2 For a function (-) = (¢1(+), (), -- -, Cu(+)) from Int(S) into R™, if

11

1. ¢ is continuous and bounded from below.
2. ¢ satisfies the Walras’ law, i.e, p.((p) = 0 holds for allp € S.

3. If a sequence {p,,} of strictly positive prices

P = 0,05, ...,00) = p=(p1,D2, - -, Dn)

and pr, > 0 holds for some some k, then the sequence {(x(p,,)} of the k'

components of {¢(p,,)} is bounded.
4. P, = P € OS, with p,, € S imply lim,,_, ||{(p,,)|| = oo.
Then, there ezists at least one vector p € S such that {(p) = 0.

We first state Brouwer’s and then the more general Kakutani’s fixed point theo-

rems that are used in establishing the above lemma.

Lemma 3 (Brouwer) Let g : S — S be a continuous function from a non-empty,

compact, convex set S C R" into itself, then there is an «* € S such that g(x*) = x*.

We now recall a few preliminaries required to state Kakutani’s fixed point theorem.
A correspondence between two sets X and Y is a function ¢ from X to 2Y, the set

of all subsets of Y. The graph of a correspondence ¢ is
Go={(z,y) e X xY:zeX, ye o)}

When X and Y are topological spaces, ¢ is said to have a closed graph whenever

Gy is a closed subset of X x Y.

Lemma 4 Kakutani’s fixed point theorem Let X be a nonempty, compact and
convex subset of R"™. If ¢ is a non-empty and convezr valued correspondence from X

to itself, and has a closed graph, then ¢ has a fized point, i.e., Jx € X with x € ¢(x).

12

The existence of equilibrium prices follows from showing that the excess demand

function ¢ satisfies all the required properties.

Theorem 5 (Arrow and Debreu [3, 1]) Every market in the Arrow-Debreu model

with continuous and strictly concave utility functions has an equilibrium price.

The Fisher model is a special case of the Arrow-Debreu model, by considering
money as one of the goods. Hence the existence of equilibrium in the Fisher model

also follows from the above theorem.
2.4 Approximate equilibria

We now introduce the notion of an approximate equilibrium, by relaxing the con-
straint that the demand be exactly equal to supply. However, the deviation from
equilbirium is bounded. For any € > 0, a price vector p is an e-approximate market
equilibrium if each buyer can be allocated an optimal basket x; and
Z Ipib; — &(p)| < Gijbj-
JEA jEA
There are several ways to define an approximate equilibrium. Another way would
have been to say that for each good, the deficiency or the surplus is small w.r.t
the supply. In fact an approximate equilibrium with this definition would also be an
approximate equilibrium with our definition. However our definition is a more general
one, since it allows goods with smaller prices to have a larger deficiency or surplus.
Another way to define an approximate equilibrium would be to allow the agents

to be allocated approximately optimal basket while keeping the demand equal to the

supply.

2.5 Weak Gross Substitutability and the Tatonnement pro-
cess

The tatonnement process is a price updating rule that says, “increase the prices of

those goods for which the demand is greater than the supply and decrease the prices

13

of those goods for which the supply is greater than the demand ”. Many versions of
this process have been suggested based upon the exact nature of the update. It was
shown in [2] that a continuous time version converges when the utilities satisfy the

weak gross substitutability (WGS) property.

Definition 6 A demand function f : Int(R}) — R satisfies Weak Gross Sub-
stitutability if f;(p) does not decrease on increasing the price of any good j' other

than j:
af;

>0,Vj#5 €A
8pj:

The algorithms in Chapters 3, 4 and 5 are in fact a particular discrete-step im-
plementation of the tatonnement process, and the running time analysis can also be

thought of as showing a fast convergence of this process.

! Typically keeping the prices normalized

14

CHAPTER II1

LINEAR UTILITIES, FISHER MODEL

3.1 The Eisenberg-Gale Convex Program

In this chapter we consider the Fisher model with linear utility functions, of the form
Uij(z) = >_; uijz;. Without loss of generality, we may assume that the supply for
each good b; is 1, by suitably scaling our unit of measurement. Let p = (p1,...,pn)
denote a vector of prices. If at these prices buyer i is given good j, she derives u;;/p;
amount of utility per unit amount of money spent. Clearly, she will be happiest with
goods that maximize this ratio. Define her bang per buck to be a; = max;{u;;/p;};
clearly, for each i € B, j € A, o; > u;j/p;. If there are several goods maximizing this
ratio, she is equally happy with any combination of these goods. The equilibrium
allocation exhausts the endowments of all the buyers, and all the goods are sold out.

The equilibrium allocation in this case is captured by the Eisenberg-Gale convex
program, which is as follows:

maximize Z e; log u;
iEB

subject to U; = Z U.LJ.’L'J(Z) Vie B

jEA

Y (i) <1 VjeA
1€EB

zj(i) >0 Vie BVje A

The price of good j in the equilibrium is equal to the optimum value of the
Lagrangian multipliers corresponding to the second set of constraints in the above
program. The Lagrangian multiplier correspondig to the first set of constraints are

1/c;. By the Karush-Kuhn-Tucker (KKT) conditions (see Appendix A for definition),

15

optimal solutions to z;(#)’s and p;’s must satisfy the following conditions:

1.Vie B,je A: pjz%@aiz%?_

2.Vie BVje A:z;(i) >0 :ai:%.

3. VieB,Z—izi.

62

4.Vj€A: p;>0 = Y. 7;(i) =1

Via these conditions, it is easy to see that an optimal solution to the Eisenberg
and Gale program gives equilibrium allocations and prices for Fisher’s linear case.
The first two conditions make sure that the buyers are allocated only those goods
that maximize his bang-per-buck. The third condition (given the first two) ensures
that the endowment is exhausted, and the last makes sure that the goods are sold
out. The Eisenberg-Gale program also helps prove, in a very simple manner, basic
properties of the set of equilibria: Equilibrium exists under certain conditions (the
mild conditions stated above), the set of equilibria is convex, equilibrium utilities
and prices are unique, and if the program has all rational entries then equilibrium

allocations and prices are also rational.

3.2 High level idea of the algorithm

As is usual in primal-dual algorithms, our algorithm alternates between primal and
dual update steps. The primal variables in the Eisenberg-Gale program are alloca-
tions to buyers and the “dual” variables (Lagrangian multipliers) are prices of goods.
Throughout the algorithm, the prices are such that buyers have surplus money left
over. Each update attempts to decrease this surplus, and when it vanishes, the prices
are right for the market to clear exactly.

The difficulty here is that the number of update steps executed needs to be

bounded by a polynomial. This requires introducing the notion of balanced flows,

16

a non-trivial idea that is likely to find future applications (see Section 3.7). We ex-
plain briefly the role played by this new notion. The idea behind balanced flows is
two-fold — to consider only those buyers who have a lot of surplus money and to use
a more sophisticated potential function for measuring progress. Progress is measured
by considering the sum of squares of the surpluses, instead of simply the sum. The
advantage is that this potential function decreases not only when the overall surplus
drops but also when the surplus moneys readjust into a more favorable configuration
that can lead to a decrease in the total surplus in future iterations.

Define a bipartite graph, G, with bipartition (A, B) and for i € B,j € A, (3,)
is an edge in G iff o; = w;;/p;. We will call this graph the equality subgraph and its
edges the equality edges.

Any goods sold along the edges of the equality subgraph will make buyers happiest,
relative to the current prices. Computing the largest amount of goods that can be
sold in this manner, without exceeding the budgets of buyers or the amount of goods
available (assumed unit for each good), can be accomplished by computing a maz-
flow in the following network: Direct edges of G from A to B and assign a capacity
of infinity to all these edges. Introduce source vertex s and a directed edge from s
to each vertex j € A with a capacity of p;. Introduce sink vertex ¢ and a directed
edge from each vertex ¢ € B to t with a capacity of e;. The network is clearly a
function of the current prices p and will be denoted N(p). The algorithm maintains
the following throughout:

Invariant 1: The prices p are such that (s, AU B Ut) is a min-cut in N(p) (See
Figure 1.

The Invariant ensures that, at current prices, all goods can be sold. The only
eventuality is that buyers may be left with surplus money. The algorithm raises
prices systematically, always maintaining the Invariant, so that surplus money with

buyers keeps decreasing. When the surplus vanishes, market clearing prices have

17

Figure 1: An Example of the network N(p), satisfying the invariant.

Min-cut
Buyers Goods
20
100
t 60 % s
10
20 —
140 /
Moneys T Prices

Infinite capacities

been attained. This is equivalent to the condition that (sUAU B,t) is also a min-cut
in N(p), i.e., max-flow in N(p) equals the total amount of money possessed by the
buyers.

Another ingredient for ensuring polynomial running time is a new combinatorial
fact: understanding how the min-cut changes in N(p) as the prices are increased in

a systematic manner (see Section 3.5).

Remark 7 With this setup, we can define our market equilibrium problem as an

optimization problem: find prices p under which network N(p) supports mazimum

flow.
3.3 The enhanced setting and how to deal with it

We will use the notation set up in the previous section to pinpoint the difficulties

involved in solving the Eisenberg-Gale program combinatorially and the manner in

18

which these difficulties are circumvented.

As is well known, the primal-dual schema has yielded combinatorial algorithms
for obtaining, either optimal or near-optimal, integral solutions to numerous linear
programming relaxations. Other than one exception, namely Edmonds’ algorithm
for maximum weight matching in general graphs [18], all other algorithms raise dual
variables via a greedy process.

The disadvantage of a greedy dual growth process is obvious — the fact that a
raised dual is “bad”, in the sense that it “obstructs” other duals which could have
led to a larger overall dual solution, may become clear only later in the run of the
algorithm. In view of this, the issue of using more sophisticated dual growth processes
has received a lot of attention, especially in the context of approximation algorithms.
Indeed, Edmonds’ algorithm is able to find an optimal dual for matching by a process
that increases and decreases duals.

The problem with such a process is that it will make primal objects go tight and
loose and the number of such reversals will have to be upper bounded in the running
time analysis. The impeccable combinatorial structure of matching supports such an
accounting and in fact this leads to a strongly polynomial algorithm. However, thus
far, all attempts at making such a scheme work out for other problems have failed.

The fundamental difference between complimentary slackness conditions for linear
programs and KKT conditions for nonlinear convex programs is that whereas the
former do not involve both primal and dual variables simultaneously in an equality
constraint (obtained by assuming that one of the variables takes a non-zero value),
the latter do.

Now, our dual growth process is greedy — prices of goods are never decreased.
Yet, because of the more complex nature of KK'T conditions, edges in the equality
subgraph appear and disappear as the algorithm proceeds. Hence, we are forced to

carry out the difficult accounting process alluded to above for bounding the running

19

time.

We next point out which KKT conditions our algorithm enforces and which ones
it relaxes, as well as the exact mechanism by which it satisfies the latter. Throughout
our algorithm, we enforce the first two conditions listed in Section 3.1. As mentioned
in Section 3.2, at any point in the algorithm, via a max-flow in the network N(p),
all goods can be sold; however, buyers may have surplus money left over. W.r.t. a
balanced flow in network N(p) (see Section 3.7 for a definition of such a flow), let m;
be the money spent by buyer :. Thus, buyer ¢’s surplus money is v, = ¢; — m;. We
will relax the third KKT condition to the following:

1

. my;
Vi€ B, — = —.
U; (7

We consider the following potential function:
=+ +...+7,

and we give a process by which this potential function decreases by an inverse poly-
nomial fraction in polynomial time (in each phase, as detailed in Lemma 27). When
® drops all the way to zero, all KK'T conditions are exactly satisfied.

There is a marked difference between the way we satisfy KK'T conditions and the
way primal-dual algorithms for LP’s do. The latter satisfy complimentary conditions
in discrete steps, i.e., in each iteration, the algorithm satisfies at least one new condi-
tion. So, if each iteration can be implemented in strongly polynomial time, the entire
algorithm has a similar running time. On the other hand, we satisfy KK'T conditions
continuously — as the algorithm proceeds, the KK'T conditions corresponding to each
buyer get satisfied to a greater extent.

Next, let us consider the special case of Fisher’'s market in which all u;;’s are
0/1. There is no known LP that captures equilibrium allocations in this case as well

and the only recourse seems to be the special case of the Eisenberg-Gale program in

20

which all u;;’s are restricted to 0/1. Although this is a nonlinear convex program,
it is easy to derive a strongly polynomial combinatorial algorithm for solving it. Of
course, in this case as well, the KKT conditions involve both primal and dual variables
simultaneously. However, the setting is so easy that this difficulty never manifests
itself. The algorithm satisfies KKT conditions in discrete steps, much the same way
that a primal-dual algorithm for solving an LP does.

In retrospect, [38] (and perhaps other papers in the past) have implicitly given
strongly polynomial primal-dual algorithms for solving nonlinear convex programs.
Some very recent papers have also also done so explicitly, e.g., [32]. However, the
problems considered in these papers are so simple (e.g., multi-commodity flow in
which there is only one source), that the enhanced difficulty of satisfying KKT condi-
tions is mitigated and the primal-dual algorithms are not much different than those

for solving LP’s.
3.4 A simple algorithm

In this section, we give a simple algorithm (Algorithm 1), without the use of balanced
flows. Although we do not know how to establish polynomial running time for it, it
still provides valuable insights into the problem and shows clearly exactly where the
idea of balanced flows fits in. We pick up the exposition from the end of Section 3.2.

How do we pick prices so that Invariant 1 holds at the start of the algorithm? The

following two conditions guarantee this:

e The initial prices are low enough prices that each buyer can afford all the goods.
Fixing prices at 1/n suffices, since the goods together cost one unit and all e;’s

are integral.

e Each good j has an interested buyer, i.e., has an edge incident at it in the equal-
ity subgraph. Compute o; for each buyer ¢ at the prices fixed in the previous

step and compute the equality subgraph. If good j has no edge incident, reduce

21

its price to

’U,Z'j
p; = max4q — ¢-
1 C}{i

The iterative improvement steps follow the spirit of the primal-dual schema: The
“primal” variables are the flows in the edges of N(p) and the “dual” variables are the
current prices. The current flow suggests how to improve the prices and vice versa.

For T C B, define its money m(T) = .. e;. W.r.t. prices p, for set S C A,
define its money m(S) = } ;. ,p;; the context will clarify the price vector p. For
S C A, define its neighborhood in N(p)

I'(S)={j € B | 3i € S with(i, j) € G}.

By the assumption that each good has a potential buyer, ['(A) = B. The Invariant

can now be more clearly stated.

Lemma 8 For given prices p network N(p) satisfies the Invariant iff
VS C A:m(S) <m(I'(9)).

Proof: The forward direction is trivial, since under max-flow (of value m(A)) every
set S C A must be sending m(S) amount of flow to its neighborhood.

Let’s prove the reverse direction. Assume (sUA; U By, Ao U By Ut) is a min-cut in
N(p), with A;, Ay C A and By, B, C B. The capacity of this cut is m(Ay) + m(By).
Now, I'(4;) C By, since otherwise the cut will have infinite capacity. Moving A; and
I'(Ay) to the ¢ side also results in a cut. By the condition stated in the Lemma, the
capacity of this cut is no larger than the previous one. Therefore this is also a min-cut

in N(p). Hence the Invariant holds. O

If the Invariant holds, it is easy to see that there is a unique maximal set S C A

such that m(S) = m(I'(S)). Say that this is the tight set. w.r.t. prices p. When

it is not clear, from the context, the prices w.r.t which S is defined, we write S(p).

22

Figure 2: As the prices are increased a set S goes tight.

Min-cut
Buyers Goods

100 \

[8

20

\

120

!

New min-cut \)

Clearly the prices of goods in the tight set cannot be increased without violating
the Invariant. Hence our algorithm only raises prices of goods in the active subgraph
consisting of the bipartition (A — S, B — I'(S)). We will say that the algorithm
freezes the subgraph (S, T'(S)). Observe that in general, the bipartite graph (S, T'(S))
may consist of several connected components (w.r.t. equality edges). Let these be
(S1,T1), .-, (Sk, Tx)-

Clearly, as soon as prices of goods in A — S are raised, edges (i, j) with i € T'(S)
and j € (A — S) will not remain in the equality subgraph anymore. We will assume
that these edges are dropped. Before proceeding further, we must be sure that these

changes do not violate the Invariant. This follows from:

Lemma 9 If the Invariant holds and S C A is the tight set, then each good j €

(A — S) has an edge, in the equality subgraph, to some buyer i € (B —T'(S)).
Proof: Since the Invariant holds, j € (A — S) must have an equality graph edge

23

incident at it. If all such edges are incidents at buyers in T'(S), then T'(S U j) = I'(S)
and therefore

m(SUj) > m(S)=m([(S)) =m([(SUj)).
This contradicts the fact that the Invariant holds. O

We would like to raise prices of goods in the active subgraph in such a way that
the equality edges in it are retained. This is ensured by multiplying prices of all these
goods by x and gradually increasing z, starting with x = 1. To see that this has the

desired effect, observe that (7,) and (i,1) are both equality edges iff

Pi _ %

b Ut

The algorithm raises z, starting with = 1, until one of the following happens:

e Event 1: Some set R # () goes tight in the active subgraph.

e Event 2: An edge (i,5) with i € (B —I'(S)) and j € S becomes an equality
edge. (Observe that as prices of goods in A — S are increasing, goods in S are

becoming more and more desirable to buyers in B — I'(S), which is the reason

for this event.)

If Event 1 happens, we redefine the active subgraph to be (A— (SUR),B—T(SU
R)), and proceed with the next iteration. Suppose Event 2 happens and that j € S,
for some 1 <1 < k. (Recall that S=8USU...U Sk-) Because of the new equality
edge (7,7), ['(S;) = T, Ui. Therefore S; is not tight anymore. Hence we move (.5}, T;)
into the active subgraph.

To complete the algorithm, we simply need to compute the smallest values of x
at which Event 1 and Event 2 happen, and consider only the smaller of these. For

Event 2, this is straightforward. Below we build an algorithm for Event 1.

24

Figure 3: Occurrence of Event 2.

Buyers Goods

3.5 Finding tight sets

Let p denote the current price vector (i.e. at z = 1). We first present a lemma that
describes how the min-cut changes in N(z-p) as x increases. Throughout this section,
we will use the function m to denote money w.r.t. prices p. W.l.o.g. assume that
w.r.t. prices p the tight set in G is empty (since we can always restrict attention to

the active subgraph, for the purposes of finding the next tight set). Define

e ()
o#£scAa m(S)

?

the value of at which a nonempty set goes tight. Let S* denote the tight set at

prices z* - p, i.e., S* = S(z* - p). If (sU Ay UBy, Ay U By Ut) is a cut in the network,

we will assume that A;, Ao C A and B, B, C B.

Lemma 10 W.r.t. prices x - p:

o if x < x* then (s, AU BUt) is a min-cut.

25

e ifx > x* then (s, AUBUt) is not a min-cut. Moreover, if (sUA;UBy, A;UByUt)

is a min-cut in N(z - p) then S* C A;.
Proof: Suppose z < x*. By definition of z*,
VS CA:z-m(S) <m([(9)).

Therefore by Lemma 8, w.r.t. prices x - p, the Invariant holds. Hence (s, AU B U t)
is a min-cut.

Next suppose that x > z*. Since - m(S*) > z* - m(S*) = m(I'(S*)), w.r.t. prices
x-p, the cut (sUS*UT'(S*),t) has strictly smaller capacity than the cut (s, AUBUY).
Therefore the latter cannot be a min-cut.

Now consider the min-cut (s U A; U By, Ay U By Ut). Let S*N Ay = Sy and
S* — Sy = S1. Suppose Sy # (. Clearly T'(S;) C B; (otherwise the cut will have
infinite capacity). If m(I'(Sz) N By) < = -m(Sz), then by moving Sy and I'(S) to the
s side of this cut, we can get a smaller cut, contradicting the minimality of the cut
picked. In particular, m(I'(S*) N By) < m(I'(S*)) = z*-m(S*) < -m(S*). Therefore
Sy # S*, and hence, S; # (). Furthermore,

m(I'(Sz) N By) > - m(Sy) > x*m(Sy).
On the other hand,
m(I'(52) N By) +m(I'(S1)) < 2" (m(S2) +m(51)).
The two imply that

m(h(s) _ .
m(Sy)

contradicting the definition of z*. Hence S, = () and S* C A;. O

Remark 11 A more complete statement for the first part of Lemma 10, which is not
essential for our purposes, is: If x < z*, then (s, AU BU1) is the unique min-cut in
N(z-p). If x = z*, then the min-cuts are obtained by moving a bunch of connected

components of (S*,T'(S*)) to the s-side of the cut (s, AU BUt).

26

Lemma 12 Let x = m(B)/m(A) and suppose that x > z*. If (sUA;UB;, A;UByUt)

is @ min-cul in N(x - p) then A; must be a proper subset of A.

Proof: If A; = A, then B; = B (otherwise this cut has oo capacity), and (s U AU
B, t) is a min-cut. But for the chosen value of z, this cut has the same capacity as
(s,AU B Ut). Since x > z*, the latter is not a min-cut by Lemma 10. Hence, A4; is

a proper subset of A. O

Lemma 13 z* and S* can be found using n maz-flow computations.

Proof: Let x = m(B)/m(A). Clearly, x > z*. If (s,AU B Ut) is a min-cut in
N(z - p), then by Lemma 10, z* = z. If so, S* = A.

Otherwise, let (s U A; U By, A3 U Bo Ut) be a min-cut in N(z - p). By Lemmas
10 and 12, S* C A; C A. Therefore, it is sufficient to recurse on the smaller graph
(A;,T(Ay)). O

27

Initialization:

Vje Apj+1/n; Vi€ B, o; + minju;;/p;;

Compute equality subgraph G|

Vj € A if degreeg(j) = 0 then p; < max; u;;/ay;
Recompute G;

(F,F") < (0,0) (The frozen subgraph); (H, H') < (A, B) (The active sub-
graph);

while H # () do

T+ 1;

Define Vj € H, price of j to be p;z;

Raise z continuously until one of two events happens:
if S C H becomes tight then

\; Move (S,T(S)) from (H, H') to (F, F');

Remove all edges from F’ to H;
if an edge (i,j),i € H' , j € F attains equality, o; = u;j/p;, then

Add (4, 7) to G;
Move connected component of j from (F, F') to (H,H') ;

Algorithm 1: The Basic Algorithm

3.6 Termination with market clearing prices

Let M be the total money possessed by the buyers and let f be the max-flow computed
in network N (p) at current prices p. Thus M — f is the surplus money with the buyers.
Let us partition the running of the algorithm into phases, each phase terminates with
the occurrence of Event 1. Each phase is partitioned into iterations which conclude
with a new edge entering the equality subgraph. We will show that f must be
proportional to the number of phases executed so far, hence showing that the surplus

must vanish in bounded time.

28

Let U = maxieB,jeA{uij} and let A =nU".

Lemma 14 At the termination of a phase, the prices of goods in the newly tight set

must be rational numbers with denominator < A.

Proof: Let S be the newly tight set and consider the equality subgraph induced on
the bipartition (S,T'(S)). Assume w.l.o.g. that this graph is connected (otherwise we
prove the lemma for each connected component of this graph). Let j € S. Pick a
subgraph in which j can reach all other vertices j' € S. Clearly, at most 2|S| < 2n
edges suffice. If j reaches j' with a path of length 2[, then p;; = ap;/b where a and
b are products of [utility parameters (u;;’s) each. Since alternate edges of this path
contribute to ¢ and b, we can partition the wu;’s in this subgraph into two sets such
that a and b use u;;’s from distinct sets. These considerations lead easily to showing

that m(S) = pjc/d where ¢ < A. Now,

p; =m(I'(5))d/c,

hence proving the lemma. O

Lemma 15 Fach phase consists of at most n iterations.

Proof: Each iteration brings goods from the tight set to the active subgraph. Clearly

this cannot happen more than n times without some set going tight. O

Lemma 16 Consider two phases P and P', not necessarily consecutive, such that
good j lies in the newly tight sets at the end of P as well as P'. Then the increase in

the price of j, going from P to P', is > 1/A%.

Proof: Let the prices of j at the end of P and P’ be p/q and r/s, respectively.
Clearly, r/s > p/q. By Lemma 14, ¢ < A and r < A. Therefore the increase in price

of 7,
1
E.

>

®» | =3
ESHAS]

29

O

Lemma 17 After k phases, f > k/A%.

Proof: Consider phase P and let j be a good that lies in the newly tight set at the
end of this phase (clearly, there is at least one such good). Let P’ be the last phase,
earlier than P, such that j lies in the newly tight set at the end of P’ as well. If there
is no such phase (because P is the first phase in which j appears in a tight set), then
let P' be the start of the algorithm. Let us charge to P the entire increase in the
price of j, going from P’ to P (even though this increase takes place gradually over
all the intermediate phases). This increase could not have already been charged to
any of the earlier phases, since P is the first phase since P’ that j appears in a tight
set. By Lemma 16, the increase in the price of j during this period is > 1/A2. In

this manner, each phase can be charged 1/A2% The lemma follows. O

Corollary 18 Algorithm 1 terminates with market clearing prices in at most MA?

phases, and executes O(Mn?A?) maz-flow computations.

3.7 Establishing polynomzial running time

In this section we speed up Algorithm 1 by increasing the prices of goods adjacent
only to “high-surplus” buyers. However, the surplus of a buyer might be different
for two different max-flows in the same network. Therefore, we restrict ourselves to
a special kind of flow called a balanced flow so that the surplus of a buyer is well

defined.
3.7.1 Balanced flows and their properties

For a given flow f in the network N(p), define the surplus of buyer i € B, vi(p, f),
to be the residual capacity of the edge (i,t) with respect to f, which is equal to

m; minus the flow sent through the edge (i,t). Define the surplus vector v(p, f) :=

(o, f),v2(P, f)y-- s (D, f)). Let ||v|| denote the Iy norm of vector v.

30

Definition 19 Balanced flow For any given p, a flow that minimizes ||v(p, f)||
over all choices of f is called a balanced flow.

If |lv(p, HI < llv(p, f)I, then we say f is more balanced than f'.

A balanced flow has to be a max-flow, since otherwise sending a positive flow along

an augmenting path from s to ¢ clearly decreases ||v(p, f)||-
Lemma 20 For any given p, all balanced flows in N(p) have the same surplus vector.

Proof: It is easy to see that if y; and -, are the surplus vectors w.r.t flows f; and
f2, then (1 + 72)/2 is the surplus vector w.r.t the flow (f; + f2)/2. So the set of
all feasible surplus vectors is a convex region. A balanced flow minimizes a strictly

concave function of the surplus vector, and so the surplus vector is unique. O

As a result, one can define the surplus vector for a given price as v(p) := v(p, f)
where f is a balanced flow in N(p). For a given p and a flow f in N(p), let R(p, f)
be the residual network of N(p) with respect to the flow f. The following property

characterizes a balanced flow among all max-flows.

Property 1 If v;(p, f) < 7i(p, f), then there is no path from node j to node 7 in
R(p, f) \{s,t}.

Theorem 21 A mazimum-flow f is balanced iff it has Property 1.

Proof: Suppose f is a balanced flow. Let v;(p, f) > v,(p, f) for some ¢ and j €
B, and suppose for the sake of contradiction, that there is a path from j to ¢ in
R(p, f) \ {s,t}. The capacity of (¢,) is positive in R(p, f) since otherwise the only
edge going out of j in R(p, f) would be (j,t). Also v(p,f) > 0, so (i,t) has a
positive capacity in R(p, f). Hence one can send a circulation of positive value along
t —j —i—tin R(p, f), decreasing ; and increasing v;. The resulting flow is more

balanced than f, contradicting the fact that f is a balanced flow (See Figure 4).

31

Figure 4: If v;(p, f) > 7v;(p, f) and there is a path from j to ¢ in R(p, f) \ {s,t},
then a circulation would give a more balanced flow.

R(p.f):

To prove the other direction, we show that a flow f satisfying Property 1 is locally
optimum w.r.t the /s norm of the surplus vector as the objective function. In fact,
any circulation in R(p, f) can only send flow from a high surplus buyer to a low
surplus buyer resulting in a less balanced flow. Since the [, norm is a strictly concave
function, a locally optimum solution is also globally optimum.

O

Theorem 22 Given a network N(p) a balanced flow can be computed using at most

n maz-flow computations.

Proof: One iteration of the algorithm is as follows: From the given network N reduce
the capacities of all edges that go from B to t continuously at the same rate, except
for those edges whose capacity becomes zero. Stop when the capacity of the cut
({s}UAUB,{t}) is equal to that of the cut ({s}, AUBU{t}). Call this new network
N'.

Let (S,T) be the maximal min-cut in N'; s € S;t € T. If T = {t}, then ({s}, AU
BU{t}) is also a min-cut in N’ and the corresponding max-flow is a balanced flow in

the original network N. Otherwise, let N; and Ny be the subnetworks of N induced

32

by S U{t} and T U {s} respectively. We claim that the union of balanced flows in
N; and N, is a balanced flow in N. The networks N; and N, are vertex disjoint,
except for s and £, and hence in the next iteration, a max-flow in both N; and N, can
be computed simultaneously and will be counted as just one max-flow computation.
Since in each iteration, the size of the biggest partition decreases by at least 1, n
max-flow computations suffice.

In order to prove the claim, we show that such a flow has Property 1. Recall that
Property 1 says that for a pair of nodes 7,5 € B, if 7; > 7, then there is no path
from j to i in R(p, f) \ {s,t}. Note that there is no edge from Ny N A to Ny N B. So
Property 1 can be violated only when ¢ € Ny, 7 € Ny and ; > ;. We show that this
cannot happen; we show that the surplus of all buyers in /NV; (in a balanced flow) is
smaller than that of all buyers in Nj.

First of all, all nodes 7 € B such that the capacity of (%, t) is zero in N’ are in Ny,
since S is the maximal min-cut in N’. So for all nodes 7 in BN N,, the same amount,
say X, was subtracted from the capacity of (i,t) in N. Clearly, the average surplus in
Ny is greater than X. In fact, for all K C AN N, the average surplus in L := I'(K)
is > X. Now let L be the set of all buyers in Ny with the lowest surplus. Let K be
the set of goods reachable from L in the residual graph w.r.t a balanced flow in Ns.
From Property 1, it follows that L = I'(K), and hence the average surplus in L which
is also the lowest surplus in Ny is > X. A similar argument shows that the biggest
surplus in Ny is at most X.

O

Lemma 23 If f and f* are respectively a feasible and a balanced flow in N(p)

such that vi(p, f*) = vi(p, f) — 0, for some i € B and § > 0, then ||v(p, f)*]|* <
Iy (p, PII? — 0.

33

Proof: Suppose we start with f and get a new flow f’ by decreasing the surplus of
1 by ¢, and increasing the surpluses of some other buyers in the process. We show
that this already decreases the Iy norm of the surplus vector by 2 and so the lemma
follows.

Consider the flow f* — f. Decompose this flow into flow paths and circulations.
Among these, augment f with only those that go through the edge (i,t), to get f'.
These are either paths that go from s to 7 to t, or circulations that go from 7 to ¢
to some ¢; and back to i. Then v;(f') = vi(f*) = v(f) — 6 and for a set of vertices
i, dg, -+ ik, we have v, (f)) = v, (f) + 0, s.t. 81,09, ,0, > 0 and Y5, 6 < 6.
Moreover, for all [, there is a path from ¢ to ¢; in R(p, f*). Since f* is balanced, and
satisfies Property 1, %(f') = %(f*) = % (£*) = 7 (F").

By Lemma 24, ||v(p, f)||* < ||7(p, f)||> — 6° and since f* is a balanced flow in

N(p), v, FII” < llv(p, £)I*.

O

Lemma 24 Ifa > b; > 0,7 = 1,2,...,n and 6 > Z;L:ldj where 0,6; > 0,5 =
1,2,...,71, then ||(a,b1,b2,...,bn)||2 S ||(a+5,b1 _51;b2_52,---;bn_5n)”2_52-

Proof:

n n

(@+02+) (bi—6) —a* =) b*>6"+2a(6—» 6)>0

i=1 i=1 i=1

Remark 25 In a set of feasible vectors, a vector v is called min-max fair iff for every
feasible vector u and an index i such that u; < v; there is a j for which u; < v; and
v; < v;. Stmilarly, v is max-min fair iff w; > v; implies that there is a j for which
u; < vj and v; > v;. The surplus vector of a balanced flow is both min-maz and
maz-min fair. Even though we don’t use this property for our results, we note it since

it could be of independent interest.

34

3.7.2 The polynomial time algorithm

The main idea of Algorithm 2 is that it tries to reduce ||v(p, f)|| in every phase.
Intuitively, this goal is achieved by finding a set of high-surplus buyers in the balanced
flow and increasing the prices of goods in which they are interested. If a subset
becomes tight as a result of this increase, we have reduced ||v(p, f)|| because the
surplus of a formerly high-surplus buyer is dropped to zero. The other event that can
happen is that a new edge is added to the equality subgraph. In that case, this edge
will help us to make the surplus vector more balanced: we can reduce the surplus of
high-surplus buyers and increase the surplus of low-surplus ones. This operation will

result in the reduction of ||v(p, f)|l-

Initialization:

Vje A p; < 1/n;

Vi € B, a; + min]- u”/pj,

Define G(A, B, E) with (i,7) € E iff a; = u;;/py;

Vj € A if degreeg(j) = 0 then p; < max; u;;/ay;

Recompute G; 6 = M;

repeat

Compute a balanced flow f in G,

Define ¢ to be the maximum surplus in B;

Define H to be the set of buyers with surplus ¢ ;

repeat

Let H' be the set of neighbors of H in A ;

Remove all edges from B\ H to H';

z < 1; Define Vj € H', price of j to be p;z;

Raise x continuously until one of the two events happens:

Event 1: An edge (i,7),i € H,j € A\ H' attains equality, o; = u;;/pj;
Add (i,7) to G;
Recompute a balanced flow f;
In the residual network corresponding to f in G, define I to be the
set of buyers that can reach H; H < H U I;

Event 2: S C H becomes tight;

until some subset S C H 1is tight;
until A is tight ;

Algorithm 2: A Polynomial Time Algorithm

35

The algorithm starts with finding a price vector that does not violate the invariant.
The rest of the algorithm is partitioned into phases. In each phase, we have an active
graph (H,H') with H C B and H' C A and we increase the prices of goods in H’
like Algorithm 1. Let 6 be the maximum surplus in B. The subset H is initially the
set of buyers whose surplus is equal to §. H' is the set of goods adjacent to buyers in
H. A phase ends when the surplus of some buyer in H becomes zero.

Each phase is divided into iterations. In each iteration, we increase the prices of
goods in H'. An iteration ends when either a new edge joins the equality subgraph
or a subset becomes tight. The active subgraph (H, H') changes between iterations.
Let p, and H; be the price vector and the set of nodes in H at the end of the ¢’th
iteration in that phase. Let p, and Hy denote the prices and the set of nodes in H
before the first iteration.

If a new edge is added to the equality subgraph at the end of an iteration, we
recompute the balanced flow f. Then we define H; by adding to H, ; all vertices
that can reach some vertex of H; 1 in R(p,, f) \ {s,t}. If a subset becomes tight as
a result of increase of the prices, then the phase terminates.

Let k£ denote the number of iterations in the phase. Every time an edge is added
to the equality subgraph, |H’| is increased by at least one. Therefore £ is at most n.

Define 6; = min;eg, (7:(p;)), for 0 <t < k. §y = 6 and the phase ends when some
subset goes tight, which means that the surplus of some buyer in H becomes zero; so

o, = 0.

Lemma 26 If §;_1 — §; > 0 then there exists an i € H such that v;(p,_1) — vi(py) >

d¢—1 — Ot.

Proof: Consider the residual network R(p,, f) corresponding to the balanced flow
computed at the end of iteration ¢. By definition of Hy, every vertex v € H;\ H;_; can

reach a vertex ¢ € H;_; in R(p,, f) and therefore, by Theorem 21, 7,(p;) > 7i(p;)-

36

This means that minimum surplus ¢; is achieved by a vertex ¢ in H;_1. Hence, the

surplus of vertex 7 is decreased by at least §;_; — &; during iteration ¢. O

Lemma 27 If p, and p, are price vectors before and after a phase, ||v(p,)|]*? <

I (Po)lI*(1 = 7).

Proof: In every iteration we increase prices of goods in H or add new edges to
the equality subgraph. Moreover, all the edges of the network that are deleted in
the beginning of a phase have zero flow. Therefore, the balanced flow computed at
iteration t—1 is a feasible flow for N(p,). Soif §;—1—d; < 0, then ||v(p,)|| < ||7¥(Pi—1)]|-
Otherwise, by Lemmas 26 and 3.7.1 ||v(p,)|| < |[v(pi—1)|| — (6:—1 — &;)?. Since 6y = &
and d; =0,

52
Iy I” < v(po)ll* =

Now [|7(po)||* < 6%n so

lv(@)II* < lv(po)lI*(1 — %)-

O

By the bound given in the above, it is easy to see that after O(n?) phases, ||v(p)||?
is reduced to at most half of its previous value. In the beginning, ||v(p)|* < M?2.
Once the value of [|y(p)||> < =z, the algorithm takes at most one more step. This

is because Lemma 14, and consequently, Lemma 16 holds for Algorithm 2 as well.

Hence, the number of phases is at most
O (n*log (A*M?)) = O (n*(logn +nlogU + log M))

As noted before, the number of iterations in each phase is at most n. Each iteration
requires at most O(n) max-flow computations.

Hence we get:

37

Theorem 28 Algorithm 2 executes at most
O (n*(logn + nlogU + log M))
maz-flow computations and finds market clearing prices.

3.8 Discussion

Our algorithm is not strongly polynomial. Indeed, obtaining such an algorithm is an
important open question remaining. It will require a qualitatively different approach,
perhaps one which satisfies KK'T conditions in discrete steps, as is the rule with all
other primal-dual algorithms known today (as pointed out in Section 3.3, we start
by suitably relaxing the KK'T' conditions and our algorithm satisfies these conditions
continuously rather than in discrete steps). In fact it is not even known whether
the machinery developed in Section 3.7 is necessary for obtaining a polynomial time
algorithm, i.e., does the algorithm given in Sections 3.4 and 3.5 have a polynomial
running time? If not, it would be nice to find a family of instances on which it takes
super-polynomial time.

The primal-dual schema first introduced by Kuhn [37] in the context of solving
bipartite matching, and over the years it led to the most efficient known algorithms
for many fundamental problems in P, including matching, flows, shortest paths and
branchings. The mechanism of relaxing complementary slackness conditions, first
identified and formalized in [44], gave an adaptation of this schema to the setting of
approximation algorithms, where again it yielded algorithms with good approxima-
tion factors and running times for several fundamental problems. Is there a suitable
mechanism that yields an adaptation of this paradigm to finding approximation algo-
rithms for solving nonlinear convex programs? This question is particularly significant
for nonlinear programs since other than rare exceptions, such programs will have only
irrational solutions on some inputs and so a combinatorial algorithm (e.g., one that

does not output its solutions in radicals) will necessarily have to find an approximate

38

solution.

39

CHAPTER IV

LINEAR UTILITIES, ARROW-DEBREU MODEL

In this chapter we show that the basic machinery of Algorithm 2 can be extended to
compute an approximate equilibrium in the Arrow-Debreu model. The main differ-
ence between the Fisher and the Arrow-Debreu model is that in the Fisher model,
each buyer i has a specific endowment of money, e(i), where as in the Arrow-Debreu

model, the endowment of each buyer 7 is a bundle of goods e(i) € R".

4.1 The Algorithm

Given prices p, the income e(é) of buyer i in the Arrow-Debreu model is), pje;(i).
Most of the machinery in Chapter 3 is based on the assumption that the income is
fixed as we change the prices, so it cannot be used as is. We get, around this difficulty
by letting the incomes not reflect the changing prices all the time, and instead by
updating them periodically.

It was natural in the Fisher model that we start with low prices so that (s, AUBUY)
is a min-cut in N(p) and maintain this as an invariant while increasing prices, until
(s U AU B,t) is also a min-cut. The progress of the algorithm is measured by the
surplus.

But the Arrow-Debreu model calls for a different approach. This is because, in the
Arrow-Debreu model prices are scale-invariant: multiplying all the prices by the same
value has no net effect on the market, so there are no “low” prices. Instead, we start
with the price vector p = 1™. Also whenever the incomes are updated, the capacity
of the cuts (s, AUBUt) and (s U AU B,t) are equal to each other. So clearly the
invariant as before cannot be maintained. However, this is not critical to the rest of

the algorithm, so we can do without it. The algorithm increases prices continuously

40

until the cuts (s, AUB Ut) and (s U AU B,t) are approximately min-cuts in N(p).
As a result we get an approximate market equilibrium. Progress here is measured as
the relative surplus, that is, the ratio of the surplus to the sum! of all prices.

The Algorithm is organized into epochs; the incomes of the buyers are fixed during
an epoch and they are updated between two epochs. An epoch involves running
several phases, identical to Algorithm 2.

Let P =}, p; denote the total prices of all goods, M =}, e(i) denote the total
income of all the buyers, and f denote the value of a max-flow in N(p).

The algorithm is as follows: start with the price vector p = 1™ and compute the
incomes e(7) = »_.pje;(i). Run an epoch until |y(p)| < ne, where € is the desired
approximation. If, at the end of an epoch, either P — M < ne or P > %, then end

the algorithm. Otherwise update the incomes and run the next epoch.

Initialization:
v_] € A,pj — 1;
Vi € B, e(i) < Y. pje;(i);
P=>%",pj, M =} e(i), f = value of a max-flow in N(p);
repeat

Vi € B, e(i) < 32;pje;(i);

repeat

Run a phase as in Algorithm 2;

until |vy(p)| < ne;
until P — M < ne or P > 2 ;

Algorithm 3: Algorithm for Linear Utilities: Arrow-Debreu Model

4.2 Analysis of the Algorithm

Theorem 29 (/16]) For all € > 0 Algorithm 3 gives a 4e-approximate market equi-

librium and needs O (’:—; log %) maz-flow computations.

The first important observation is that throughout the algorithm, the value of

P — f is non-increasing, even though P is always increasing. Given this observation,

'Recall that we assumed b; = 1, so this is the total worth of all goods.

41

if the algorithm is run long enough (until P > %) then P — f would be < Pe and this
is a sufficient condition for an approximate equilibrium (Lemma 31). The question
is, how many epochs does this require. The answer is that in every epoch, we may

assume that P increases by at least ne, and hence it requires O (6%) epochs.
Lemma 30 Throughout a run of Algorithm 8, P — f never increases.

Proof: During an epoch, the algorithm always increases the price of a good j for
which the edge (s, j) is saturated. Therefore any increase in P always results in an
equal increase in f.

At the end of an epoch, when the e(i)’s are updated, P does not change, but f
can only increase. This is because e(i)’s can only increase as a result of the update.

Hence P — f never increases. O

Lemma 31 For a price vector p, if P — f < €P, then p is a 2¢-approximate market

equilibrium.

Proof: It follows from the observation that there exists an allocation with |£(p)—p| =
2(P — f).

Suppose (s U A; U By, A3 U By U t) is a min-cut in N(p), with A;, 45 C A and
B:,B, C B.

Consider the buyers in B;. Their optimal allocation is given by a max-flow since
the edges (7, t) are saturated for all i € B;. For every good in Ay, the residual capacity
of the edge (s,j) = &;(p) — p;. Hence >_., [§;(p) —pjl =P — f.

Consider the buyers in By. A max-flow may not saturate the edges (i,t) for all
1 € By. In any case, we can allocate optimal baskets to buyers in By by augmenting
a max-flow in order to exhaust all the surplus. In any such allocation, for all j €
Az, &i(p) > pjand 3, 4, |€i(p) — pj| = total surplus of all buyers = M — f = P — f.

O

42

Lemma 32 Ifp, and p* are price vectors before and after an epoch, then the number

of phases in the epoch is O (n2 log (ggg?%h))

Proof: This follows almost immediately from Lemma 27. O

Proof:[of Theorem 29] Correctness: Note that P > n, P > f and P — f < n.
lv(p)| = M — f, so at the end of each epoch M — f < ne.

If at the end of any epoch, P — M < ne, then
P—f=(P—M)+ (M- f) <2ne <2Pe.
On the other hand, if P > 2, then again
P— f<n < Pe.

Running time: Note that the increase in P during an epoch is exactly equal to
P — M at the end of that epoch (since at the beginning, they were both equal). If in
each epoch P — M > ne, then after & epochs P > 2.

Since at the beginning of each epoch |y(p)| < P — f < n and the epoch ends if
[v(p)| < ne, there are O(n”log 2) phases in each epoch.

Moreover, from Lemma 15, each phase needs O(n?) max-flow computations.

Hence the algorithm needs O (2—; log %) max-flow computations.

O

4.3 Improved Running time

The running time can be brought down by a more complicated rule to end epochs
(and update incomes). In the earlier algorithm, we only used the fact that P — f < n.
However as the algorithm progresses P — f keeps getting smaller and smaller. In
general, suppose P — f < na. Then it is enough to stop when P > %% The
improvement in the running time comes from showing that in every epoch we can

guarantee that either P increases by “F, or a decreases geometrically.

43

Initialization:
Vi € B, e(i) < >_; pje;(i);
a <+ 1;
P=3%",pj, M=} e(i), f = value of a max-flow in N(p);
repeat
Vi € B,e(i) < >_; pje;(i);
repeat
Run a phase as in Algorithm 2;

until [y(p)| < %
if P— M <" then

| o+ a/2;

until o <€ or P > 72

Algorithm 4: Algorithm with an improved running time

Theorem 33 For all € > 0 Algorithm 4 gives an e-approrimate market equilibrium

and needs O ("6—4 log? %) maz-flow computations.

Proof: We show that at any point in the algorithm, P — f < na. The proof is by
induction. Initially & = 1 and the inequality holds. It continues to hold while «
remains unchanged. a < a/2 is executed only when P — M < ™% and M — f < ™%
Hence at this point P — f < &,

If at the end of an epoch, a <'¢, then P — f < ne < Pe. Otherwise if P > =%
then too P — f < na < Pe.

At the end of each epoch either o <— /2 or P increases by at least %*. The former
can happen O(log 1) times before o < ¢, and the latter O(1) times before P > 22

The theorem follows. O

4.4 Comparison with Related Work

Deng, Papadimitriou and Safra[14] gave a polynomial time algorithm for the Arrow-
Debreu model when the number of goods is bounded. Jain, Mahdian and Saberi [30]

gave the first PTAS for the case considered in this chapter. In particular they get

44

an e-approximate approximation that requires O (1) iterations of solving the Fisher
case exactly. Their algorithm, in general, depends on the size of the numbers giving
the utility rates and endowments of the buyers. Note that the running time of our
algorithm depends only on n,n’ and e. This is analogous to the standard notion of
strongly polynomial time algorithms where the running time is independent of the
size of the numbers occurring in the instance. The improvement comes about because
[30] use the algorithm in [15] as a black box, whereas we open it up and build upon
the main ideas in [15]. Garg and Kapoor [26] gave some very interesting approximate
equilibrium algorithms for the linear case of both models using an auction based
approach. The running time of this algorithm has a smaller dependency on the n
and 7', but it is not strongly polynomial time either. Finally, Jain [29] gave an
exact algorithm based on solving a convex program using the ellipsoid method and
Diophantine approximation. Ye [45] gave an interior point based method to solve the

same convex program.

45

CHAPTER V

SPENDING CONSTRAINT UTILITIES

5.1 Definition

Most naturally occuring utility functions have decreasing marginal utilities. A natural
candidate to model such utilities are piecewise linear concave utilities. However, no
algorithm to compute equilibrium for such utilities is known. One reason why an
algorithm such as Algorithm 2 does not generalize is that they do not satisfy WGS.
The spending constraint utilities (defined by Vazirani [42]) have the best of both
worlds: they capture the property of decreasing marginal utilities, while at the same
time, a generalization of Algorithm 2 computes the equilibrium in polynomial time.
The spending constraint utilities differ from the classical utility functions in that they
depend! on the prices of the goods. We will first define a very special case of the
spending constraint utilities, and progressively consider more general versions.
Spending constraint utilities are additively separable, that is they are of the form
Ui(z) = >_;c4Uij(z;). Suppose that the utility of buyer ¢ for good j is linear, but
in addition to that, he specifies a constraint on the amount of money spent on good
j. Such constraints are natural, we typically have budgets on how much we spend on
food, rent and entertainment, for instance. In other words the optimization problem
that the buyer solves now has an additional constraint of the form p;z; < budget(j).
Yet another way to state the same thing is that the utility is linear up to the point
when p;z; = budget(j), and beyond that the utility does not increase any more. The

important new aspect is that this transition is in terms of the amount of money spent

!Quasi-linear utility functions, which are of the form U(z) = v(z) —) ;pjz;j also depend on
the prices. However, the dependency there arises simply because buyers value money as well. The
dependency here is more intricate.

46

Figure 5: Representing a spending constraint utility function.

rate(2)

$10 $15 $20 " $25
(and hence depends on the price of the good) and not in terms of the quantity of
good consumed.

More generally, having spent a certain amount of money on good j, the buyer may
decide that his rate? of utility for that good transitions to something lower (instead
of transitioning to zero, as before). In fact there may be several such transitions,
each occuring when he spends different amounts of money at that rate. Such a utility
function can be represented by a decreasing step function that gives the rate of utility
as a function of the amount of money spent. Contrast this with the representation
of a piecewise linear and concave utility function by specifying its derivative, which
gives the rate of utility as a function of the quantity of good consumed.

Let f; be a decreasing step function representing such a utility. Each step of f]’f
is called a segment. Suppose that the transitions happen at by, bo, ... and so on. Let
segment k have range [by 1,0;] and let rate(k) be the value of f; in this segment.
Given the price p; and z;, suppose that p;x; € [bx_1,bk]. Then the buyer derives
utility at rate rate(1) for the first b; dollars, or equivalently, the first Z—; units of

good j. Similarly, he derives utility at rate rate(2) for the next by — b; dollars, or

2This is the utility derived per unit of the good. For linear utility functions the rate is a constant.

47

equivalently, the next "210;,"1 units of good 7, and so on. Therefore
J

Usi(z;) = rate(1)b; n rate(2)(by — by) o rate(k)(pjz; — bk—1)_
Pj Pj Dj

We will use a more succinct way of representing the same:

17 fimydm

Uij(z;) = »
J

This representation naturally leads us to the most general definition of spending
constraint utilities. We simply allow f; to be any decreasing function. The utility is
still defined by the same equation as above.

In the Arrow-Debreu model, the buyers’ income itself is dependent on the prices.
So now the utility is represented by functions gj- :10,1] = R,. The argument to the
function is now the fraction of the income spent, and the value of the function gives
the rate of utility as before. Once the prices are known, g}’s can be appropriately
scaled to get the fi’s. More precisely, let fi(m) = g} (ye(i)) and the utility U;(z;) is

as before equal to [;7 fi(m)dm/p;.

5.2 FExistence and Uniqueness of Equilibrium
5.2.1 The Fisher Model

5.2.1.1 Characterizing the optimal bundle

Suppose that each f} is either continuous and strictly decreasing in [0, e(4)], or zero.
Further, if for each j there is at least one 7 such that f; is non-zero, then say that the
rate functions are nice for this instance. For the rest of this section, we will restrict
ourselves to nice rate functions.

Recall that for a linear utility function,) ; WijTj the optimal bundle of goods con-
tains only those that maximize the “bang per buck”. That is, if o; := max;jca {%},
then either % = q; or (i) = 0. Among the goods that maximize the bang per buck,

it does not matter in what proportion each of them is allocated. A similar charac-

terization can be obtained for these utilities. But now the rate of utility decreases as

48

you spend more and more money. Therefore the money spent on the goods is spread
in such a way that the bang-per-buck is equalized across all goods. Unless, of course,
the initial rate of utility for some good is so low that we never spend any money on
it.

Suppose that ¢ spends M ; amount of money on good j when he buys his optimum

jEA p]

bundle. Let

Then either % gf;) — o; or MJ’f = 0. Further, since the buyers don’t have any utility
for money, -, , M} = e(i).

But how do we find such a bundle? The idea is that given an «;, it is easy to
find the M}’s such that either %];/[;) = o; or M} = 0. So the question really is to
find the right ;. And the one that we need is so that the resulting M;-"s satisfy
> jea M = e(i). We formalize this idea below.

Suppose that f : [a,b] — R, is continuous and strictly decreasing. Then f is
invertible in [f(b), f(a)]. Note that f=' : [f(b), f(a)] — [a,b] is also continuous and
strictly decreasing. If f is identically zero, then define f~! to be identically zero as
well. Let f;* be the inverse of f.

Given a target rate of bang per buck value «; for buyer i, the money that he
should spend on good j is given by M; = fj_i(aipj).?’ Note that o;p; could be greater
than f7(0), in which case the inverse does not exist. This happens when the initial
rate of utility for the good is too small to achieve a bang per buck of a;. We can fix
this by defining fjfi(x) = 0 for all z > f}(0). This preserves the continuity of fj’i
since f;* is zero at f1(0). Similarly, the inverse may not exist for = < fi(e(i)). This
happens when the rate of utility is so high that even after spending all the money, the

bang per buck is still greater than «;. We fix this by extending fj’i to all z < fi(e(i))

3 Another way to think about f]-_"(aipj) is that it is the length of the line segment y = «a; between
the y-axis and the curve y = f;(w)/pj.

49

by defining fj_i(x) to be e(i) at all these points.
This suggests a way to compute «;. Recall that 37, M * = e(i). Therefore q; is

a solution to the equation:

ij_i(a’ipj) = e(1). (1)

jEA
Since the demand for buyer 7 is more or less determined by «;, proving that «; is

a well-behaved function of p translates to similar properties about the demand.

Lemma 34 If the rate functions are nice and p € Int(R?), then «; is uniquely

determined by (1). Moreover, a; is a continuous and non-increasing function of p.

Proof: Let h*(z,p) := 3 ¢4 fj_i(:rpj). For a given p, h' is a continuous and strictly
decreasing function in x as long as the rate functions are nice. Therefore there is a
unique «; such that h'(a;, p) = e(i). (With some abuse of notation, one may write
a; = h™*(e(7),p).) Similarly, h* is a continuous and non-increasing function in p.
Therefore, «; is a continuous and non-increasing function of p.

O

Since «; is unique, there is a unique bundle of goods that maximizes buyer
i's utility. Therefore, we can talk of the demand function, &;(p) = Y ;.5 M} =
Y icB f]-’i (cypj). Since we already established that fj’i is continuous, and that «; is
a continuous function of p (Lemma 34), £(p) is a continuous function of p. Since we
assumed that there is a unit amount of each good, the market equilibrium condition

can be restated as £(p) = p.
5.2.1.2 Euxistence of Equilibria

We will show the existence of equilibria by appealing to Brouwer’s Fixed Point The-
orem. It requires a continuous function g defined on a non-empty, compact, convex
subset S of R" into itself, so that the fixed point corresponds to the equilibrium. A

natural candidate is to let g = £ and S = {p : p; > 0,3 ;4 p; = D_;cpe(i)}, the

20

scaled simplex of price vectors. This almost works, except that & is defined only in
the interior of S.

To fix this, we need to extend the function to the boundary of S. That is, when
one or more of the prices is zero. In fact note that as p; tends to 0, &;(p) tends to
infinity. So we show that if p; is small enough then &;(p) > p;, no matter what the
other prices are, and hence it cannot be an equilibrium. In summary, the equilibrium
point is guaranteed to be bounded away from the boundary. So what we do is let g
be equal to £ in the interesting region, Sin, and simply extend it to the rest of S in

a continuous manner.

Theorem 35 For all markets in the Fisher model with spending constraint utilities

with nice rate functions, there exists an equilibrium price vector.

Proof: Consider any j € A. We first find a lower bound /; on the price p; in any
equilibrium. Let 7 € B be such that f; is non-zero. Let [; be such that e(i) > 1; > 0

and
fill;) _ fi(e(i)/n)
L = e()n
fi)

L

NG #

There exists such an /; since

tends to infinity as /; tends to zero. If p; = [;, then
M ; > 1.

Now we use these lower bounds to divide S into two parts: Sin = {p € S :p; >
lj, Vje€ A} and Sout := S\ Sin. Let g(x) = &(x) for all © € Sin. If x € Sout,
then let g(x) = £(Z) where & is the point in Sin that is closest to .

It is easy to show that an equilibrium price vector cannot lie in Sout. If € Sout,
then for some j,z; < l;. ; = [; and &;(Z) > [;. Hence, g(x) # x. Therefore any
fixed point of g must lie in Sin.

Finally, note that & is continuous in x, and £ is also continuous, which implies

that g is continuous. Therefore 3 * such that g(z*) = * = &(x*). O

o1

5.2.1.83 Uniqueness

The uniqueness of equilibrium follows from the fact that the function & satisfies Weak

Gross Substitutability, and the following curious property.

Definition 36 A demand function f : Int(R’) — R} satisfies Scale Invariance if

f does not change when all the prices are multiplied by the same non-zero scalar:

f(p) = f(6p),V 6 > 0.

Scale invariance is not a property typical of the Fisher model, since buyers have a
fixed endowment of money. However, £ measures the amount of money spent, which
turns out to be scale invariant. Notice for instance, that in the case of linear utilities,
multiplying all the prices the same amount should leave the amount of money spent

on the goods invariant.

Lemma 37 If the demand function & of a market satisfies Weak Gross Substitutabil-

ity, and Scale Invariance then the equilibrium prices are unique.
Proof: Suppose that there are two equilibrium price vectors, p and q. Consider

g := max(&).

Let the maximum be attained for good 1, without loss of generality. That is p; = fq;.
If p and q were different, then p; > ¢;. We will prove the theorem by showing a
contradiction to this. In particular we show that & (p) < &i(q). This is sufficient
since p and g are equilibrium price vectors, and hence & (p) = p; and & (q) = ¢1-
By definition of 6, for all j, fg; > p;, i.e., fg is component-wise bigger than
or equal to p. Now consider the process that starts with p and raises the price of
each good until it is fq. Since we only increase the prices of goods other than 1,
& does not decrease during this process (by Weak Gross Substitutability of &), i.e.,
&1(0q) > & (p). However, by Scale Invariance of €, we know that & (6q) = & (q) and

we are done. O

92

Lemma 38 The demand function & satisfies Weak Gross Substitutability.

Proof: It is enough to prove that fj’i(aipj) is a non-decreasing function of p;;. But
the only dependence on p;; comes via ¢;. Since fj’i is non-increasing, it is enough to
prove that «; is a non-increasing function of p;;. But this has already been established

in Lemma 34. O

Lemma 39 The demand function & satisfies Scale Invariance.

Proof: Suppose «; is the solution to (1) at the price vector p, and M; = f]-*i (cipj).
Note that at the price vector fp, «;/6 is the solution to (1) and the money spent
is still M} = fj”' (%6p;). Therefore M} is Scale Invariant, and in turn, £ is Scale

Invariant. O

From Lemmas 38, 39 and 37, the following theorem follows.

Theorem 40 The equilibrium price vector for any market in the Fisher model, with

spending constraint utilities with nice rate functions is unique.

5.2.2 The Arrow-Debreu Model

As in Section 5.2.1, we assume that the rate functions are nice, that is, each g; is
either continuous and strictly decreasing in [0, 1], or zero; and for each good j there
is at least one buyer ¢ such that gj- is non-zero. The characterization of an optimal
bundle is as before, and translating it in terms of g}’s gives us that M} = e(i)g;" (cup;)
and

Zgj_i(aipj) =1. (2)

As in Lemma 34, we have that «; is uniquely determined by (2) and «; is a
continuous and non-increasing function of p. And so there is a unique bundle that
maximizes buyer i’s utility. Therefore the demand function is given by z;(i) = M} /p;,
and the excess demand function is given by (;(p) = >, z;(i) —1. The following lemma

is immediate.

93

Lemma 41 { is continuous.

We show that the excess demand in our case has essentially all the properties that
the classic model has and that are sufficient to guarantee the existence of equilibria

(Lemma 2). The proofs in this subsection follow the approach in [1] very closely.

Theorem 42 Equilibrium prices exist for all markets in the Arrow-Debreu model

with nice rate functions.

Proof: First of all, ¢() is scale invariant. It follows from the fact that the budget
set, {x :p-x < p-e(i)} does not change when the prices are scaled.
Now we prove that the excess demand function in our case satisfies the hypothesis

of Lemma 2.

1. By Lemma 41, ¢ is continuous. Since the demand functions are all positive, it

is bounded from below.

2. This follows from the fact that each buyer spends all the money he has. Which

implies that the total money spent is equal to the total money earned, i.e.,

x(i,p).p = e(i).p. Since {(-) =Y ;.5 x(4,-) — e(4), it implies p.{(p) = 0.

3. Since p,, — p,3 a q such that p,, < q,V m. Now for any p,,, and suffi-

ciently large m,p* > 6, for some § > 0. Now {(x(p,,)} < (O, e(?)).p,,,/Pf <

(2= e(2))-q/4.

4. Suppose not, i.e, there exists a bounded subsequence of {(p,,). Then for each
i, 3 a bounded subsequence of (i, p,,). This in turn implies that there exists
a convergent subsequence. It follows from Lemma 43 that p > 0, which is a

contradiction.

Hence there exists a price vector with {(p) = 0, which is precisely the market

equilibrium condition. O

54

Lemma 43 Suppose that the sequence {p,,},p,, € Int(R"}) is such that p,, — p and

x(i,p,,) = « Then
1. ¢ =z(i,p).
2. p € Int(R%).

Proof:

Suppose y - p < e(i), i.e, y is in the budget set of buyer i. Then we will show
that © > y, i.e, is preferred to y by buyer i. Let 0 < A < 1. (A\y) - p < e(i). So
dmyg such that ¥V m > my, (\y) - p,, < e(i). Since x(i, p,,) was the demand at p,,,
z(i,p,,) = A\y. So ¢ > Ay. Since this is true for all 0 < A < 1, by the continuity of
the demand function, & > y.

If p; = 0 for some j, then the budget set is unbounded. Since the demand at p is

bounded, it follows that p € Int(R’). O

In the Arrow-Debreu model, equilibrium prices may not be unique. Consider two
agents, with endowments (1,0) and (0, 1) respectively. Suppose that for each agent,
the utility for his good far outweighs the utility for the other good. Then the market

clears for many different prices, in which each agent buys only what he has.

5.3 Algorithms for Step Functions

In this subsection, we summarize the main ideas from [42] that we use here. We
assume that all buyers have (discrete) spending constraint utilities, i.e., each f; is a
decreasing step function.

Given non-zero prices p = (p1,...,pn), define the bang per buck relative to p
for segment s € seg(i,j), to be rate(s)/p;. Sort all segments s € segments(i) by
decreasing bang per buck, and partition by equality into classes: @Qi,Q2,.... At
prices p, goods corresponding to any segment in (); make ¢ equally happy, and those

in Q; make 7 strictly happier than those in (1.

95

At any intermediate point in the algorithm, certain segments are already allocated.
By allocating segment s, s € seg(i,j), we mean allocating value(s) worth of good
j to buyer 7. The exact quantity of good j allocated will only be determined at
termination, when prices are finalized. The algorithm will maintain that for each
buyer 7, there is an integer ¢; such that the set of segments allocated to ¢ correspond
exactly to all segments in partitions ()1, ..., Q1 and a subset of @);,. We will say
that the current partition for buyer i, denoted by Q@ is Q:,\ allocated segments.
Clearly, there is a unique t; such that Q is non-empty, unless all the segments have
been allocated.

Define the current bang per buck of buyer i, «(i), to be the bang per buck of par-
tition Q. This is the rate at which ¢ derives utility, per dollar spent, for allocations
from Q® at current prices. Next, we define the equality subgraph G = (A, B, E) on
bipartition A, B and containing edges E. Corresponding to each buyer i and each
segment s € Q) E contains the edge (4, j), where good(s) = j.

Let allocated(j) denote the total value of good j already allocated and let spent(7)
denote the sum of the amount spent by buyer 7 on allocated segments. Thus, when seg-
ment s is allocated, value(s) is added to allocated(j) and to spent(i). Also, define the
money left over with buyer i, m(i) = e(i) —spent(¢). Denote by a, s and m the vectors
of current allocations, amounts spent and left over money, i.e., (allocated(j), j € A),
(spent(i),7 € B) and (m(i), ¢ € B), respectively. We will carry over all these defini-
tions to sets, e.g. for a set S C A, m(S) will denote } ;s m(j).

We next define network N(p,a,s), which is a function of the current prices,
allocations and amounts spent. Direct all edges of the equality subgraph, G, from A
to B. Add a source vertex s, and directed edges (s, j), for each j € A and having
capacity p; — allocated(j). Add a sink vertex ¢, and directed edges (i,t), for each

i € B and having capacity m(i). The capacity of edge (j,) is ¢;; = value(s).

o6

For S C A, define its neighborhood in the equality subgraph to be
I'(S)={i e B | 3j € S with(i,j) € G}.

For A’ C A and B’ C B, define ¢(A’; B') to be the sum of capacities of all edges from

A’ to B'in N(p,a,s). For S C A, define

best(S) = min) {m(T) +c(S;T(S) = T)},

TCI(S

and define bestT(S) to be a maximal subset of I'(S) that optimizes the above ex-
pression. Observe that best(S) is the capacity of the min-cut separating ¢ from S
in N(p,a,s). Also observe that if 7; and T, optimize the above expression, then
i € Ty — T, must satisfy m(i) = ¢(S; 7). Hence bestT(S) is unique. A set S C A that
satisfies p(S) — a(S) = best(S) will be called a tight set.

Given flow f in the network N(p,a, s) let R(p, a, s,) denote the residual graph
w.r.t. f. Define the surplus of buyer i, v;(p, f), to be the residual capacity of the
edge (7,t) with respect to f, i.e., m(i) minus the flow sent through the edge (7,t). The
surplus vector is defined to be v(p, f) := (m(p, f), 2@, f),---,Wm(p, f)). Let ||v||
denote the Iy norm of vector v. A balanced flow in network N(p, a, 8) is a maximum
flow that minimizes ||v(p, f)||.

We next define subroutine freeze which is used in the main algorithm. Subroutine
freeze computes a balanced flow f in network N(p,a,s). Let 6 be the maximum
surplus of a buyer in this flow and let B, C B be the set of buyers having this
surplus. Let As C A be the set of goods that are adjacent to these buyers in the
equality subgraph. Let A; = A\ A, and B; = B\ B,. For each saturated edge
(4,7), i-e., f(j, %) = ¢ji, with ¢ € By and j € A, allocate the corresponding segment
to 7. As a result of these new allocations, there may be buyers that do not have
equality edges incident at them. If each buyer has equality subgraph edges incident

at it, subroutine freeze halts. Otherwise, for each buyer not having such edges,

o7

it computes the current partition of this buyer and adds edges corresponding to it.
freeze goes back to recomputing a balanced flow in the resulting network.

We next describe one phase of the algorithm. In a single phase, the incomes of
the buyers, e(i)’s are assumed to be fixed. So the description of a phase is identical in
both the Fisher and the Arrow-Debreu model. At the beginning of a phase, assume
that prices p and endowments e(7)’s are given and run freeze. Let the active subgraph
be the subgraph of G induced by (As, Bo). Multiply the current price, p;, of each
good j in the active subgraph by z. Initialize x = 1, and start raising = continuously.

As z is raised, one of three events could take place :

e Event 1: As prices increase, a subset of A; may become tight. If so, the current

phase comes to an end.

e Event 2: For buyers in By, goods in A; are becoming more and more desirable
(since their prices are not changing, whereas prices of goods in Ay are increas-
ing). As a result, a segment s € seg(i,j), i € By, j € A; may enter into the
current partition of buyer i, Q). When this happens, edge (4,4) is added to
the equality subgraph with capacity value(s) and call subroutine freeze. The
new active subgraph consists of all buyers and goods that have a residual path
in R(p, a, s, f)—{s,t} to the current active subgraph (and contains the current

active subgraph).

e Event 3: Suppose i € B; has a segment s € seg(i,j) allocated to it, where
j € A,. Because the price of j is increasing, at some point the bang per buck of
this segment may equal ¢, i.e., segment s enters ¢’s current partition. When this
happens, we will deallocate segment s, i.e., subtract value(s) from allocated(j)

and from spent(7). The action taken is same as Event 2.

Let’s analyze the running time of one phase. Event 2 can happen at most n times,

because each time a new good enters the equality subgraph. Event 3 can happen at

o8

most Z times, since any segment can be deallocated at most once in a phase. The
total number of executions of subroutine freeze in a phase is O(Z + n). [42] show
that each execution of a phase requires O(n) max-flow computations. Moreover, in

each phase, the [y norm of the surplus vector is reduced by a polynomial fraction.

Lemma 44 ([{2]) If p, and p* are price vectors before and after a phase, ||v(p*)||* <

TSl e p—

Note that this lemma is analogous to Lemma 27, which was used to bound the
running times of Algorithms 2 and 4. By similar arguments, we get the following

theorems.

Theorem 45 ([42]) There exists an algorithm that for any Fisher market with spend-
ing constraint utilities with step functions, finds equilibrium using O (n*(n + Z)*(logn + nlogU + lo.

maz-flow computations.

Theorem 46 There exists an algorithm that for any Arrow-Debreu market with

spending constraint utilities with step functions, finds an e-approximate equilibrium

n?(n+2)?
€

using O log %) maz-flow computations.

5.4 Algorithms for Continuous Functions

We now give an algorithm for the Fisher model when the rate functions are nice.
Assume that the algorithm is given oracle access to the f]’f’s. The algorithm is simple:
approximate the given functions with step functions where all the segments are of
length e. More precisely, Fj(z) := fi([£]e) is the required approximation. Now run
the algorithm of [42] with Fj’s as input, and return the price vector thus obtained,
say p. Let M; be the money that buyer ¢ spends on good j when he buys the optimal
bundle at prices p (w.r.t the functions f}’s), and M} be the money that i spends on j
according to the algorithm. (Note that the F;’s are step functions, so there need not

be a unique optimal bundle. Hence we consider the allocation given by the algorithm

99

of [42].) We show that M} is in fact a good approximation to M as in the following

lemma:

Lemma 47 Let M} and M} be as defined above. Let n = |A|. Then,
VieB,je A, M;—TLGSM;SM;-FE. (3)

Proof: Let n} := [M}/e|, i.e., nfe < M} < (n} 4 1)e. If we show that nle < MY,
then we get that

M; < M; +¢e. We may assume that 0 < né-, since otherwise the inequality trivially
follows.

Note that we chose our approximation F} of f} such that Fj(z) < fj(z) for
all z. Therefore maxjey Fj(M?)/p; is < a; = fij(M})/p; since 0 < n}. Therefore
Fi(M5) < fiM}) < fi(nke) = Fj(nke), by the definition of Fj. Since Fj is non-
increasing, we get that nfe < M.

Recall that > ., M} = 37, M} = e(i). Therefore, for any j, M} — M =

Zj’eA,j’#j(M]Z:' - M;:) < ne. O

Note that Y, M7 = &;(p) (by definition) and), ; M’ = p; (since p is market
clearing for the F}’s). Now summing (3) over all i € B, we get that ¥V j € A, p; —

n'ne < &;(p) < p; + n'e, where n’ = |B|. Therefore,
€ (p) — pj| < n'ne. (4)

Summing over all j € A, we get that p is indeed an n'ne-approximate market equi-
librium, since we may assume w.l.o.g that the sum of all prices is at least 1.

We have actually proved a stronger version of approximation, i.e., £ is component-
wise close to p, and that the error is absolute (additive). The definition only needed
that the respective sums be close, and the error be relative (multiplicative). In fact,
more is true: that the allocation returned by the algorithm (i.e., i spends M} on j,)

is almost optimal w.r.t the f7’s.

60

Let VU} be the optimum utility of ¢ at p, the prices returned by the algorithm,

minus the utility ¢ derives from the allocation returned by the algorithm.

M fily L fio
< 0y ay 1,
M Pj J

where [; is as defined in the proof of Theorem 35. We already proved that M ; —M;- <

VUi =

€. Moreover, [; is independent of € and is only polynomial in 1/n. Hence VU} <e€
poly(n).

We can extend this algorithm to the continuous case of the Arrow-Debreu model,
the only difference being that the algorithm for step functions only gives an e—approximate
equilibrium. It can be shown that the composition of the two algorithms is still
e—approximate. As in the Fisher model, we approximate the given functions gj-’s
by step functions. Since fi(y) = gi(ye(i)), and e(i) < n/e, we sample gi’s at
steps of length €2/n, ensuring that the steps of f]’: are always smaller than e. Let
G%(z) == g5([%]€*/n). Run the algorithm with G%’s as input, and return the price
vector thus obtained, say p. Let M]Z be the money that buyer ¢ spends on good j
when he buys the optimal bundle at prices p (w.r.t the functions g;’s), and M; be

the money that ¢ spends on j according to the algorithm. Lemma 47 still holds. But

now
DD Mi-pi| <€) op
jEA |ieB JEA
Therefore Z ZM;—pj < z ZM;'_pj +Z Z(ME_M;)
jeA |ieB jeA lieB jeA |ieB
< € Z pj+ n’n'e
jeA
< (nn' 4 1)e ij

jEA

since p; > 1 for all j.
Here we present a heuristic that uses the algorithm for spending constraint utilities

as a sub-routine.

61

5.5 A Heuristic

One of the major open problems is to find a polynomial time algorithm for piecewise
linear and concave utilities. Here we present a heuristic for this case, which uses an
algorithm for the spending constraint utilities as a subroutine.

Let fi; be the piecewise-linear utility function of buyer 7 for good j and let g;;
be its derivative. Observe that g;; is a decreasing step function. Observe that if the
price of good j is known, say p;, then the function g;;(z;;p;) gives the rate at which
1 derives utility per unit of j received as a function of the amount of money spent
on j, which defines an instance of the spending constraint utilities. Now consider the
following procedure. Start with an initial price vector so that the sum of prices of all
goods adds up to the total money possessed by buyers. Using these prices, convert
the given piecewise-linear utility functions into spending constraint utility functions
and run the algorithm of [42] on this instance to obtain a new price vector. Repeat
until the price vector does not change, i.e., a fixed point is obtained. It is easy to see
that prices at a fixed point are equilibrium prices for the given piecewise-linear utility

functions. An interesting open question is how fast does this procedure converge.

62

CHAPTER VI

EG MARKETS

6.1 Definition

We begin by recalling Kelly’s capacity allocation market [36]. Given a network (di-
rected or undirected) with edge capacities specified and a set of source-sink pairs,

each with initial endowment of money specified, find equilibrium flow and edge-prices

such that
e Only saturated edges can have positive prices.
e All flows are sent along a minimum cost path from source to sink.
e The money of each source-sink pair is fully spent.

As was the case with the Fisher market with linear utilities, the equilibrium flow
and prices are given by a convex program (and the Lagrangian multipliers) that
maximizes a similar objective function, subject to flow feasibility conditions. It is

easy to see that the KKT conditions are equivalent to the equilibrium conditions.

maximize Z m; log f;
i=1
subject to Viel, f;= Z fi(P),
PEP(Si,ti)
Ve € B, Y fi(P) < cle),
P:ecP

Definition 48 EG Markets (/31]/) An EG Market M with the set of buyers (agents)

[n] is such that the equilibrium utility allocation of an EG market is captured by the

63

following convex program similar to the one considered by Eisenberg and Gale [21] for

the Fisher market with linear utilities.

n
maximize E m; log u;
i=1

subject to Vj e J, Z aiu; + Z agjty < by,

i€[n] keK
Vi € [n],k € K, u;,ty > 0.
Also the constraints defining the set of feasible utilities should satisfy the following

two conditions:

e Free disposal: if u is feasible, then so is any other u' dominated by wu.
e Utility Homogeneity: for all j € J, if for some i € [n], a;; > 0 then b; = 0.

The auxiliary variables ¢, might be used for instance, to give a more efficient
representation of the feasible region, or as a means to provide semantics for the
market. For example, in the Fisher model of a market where there are buyers and
divisible goods, the auxiliary variables denote the amount of each good every buyer
gets.

We emphasize that the notion of a good being sold or bought in traditional markets
has been subsumed by the various constraints on the utilities of agents. This is useful
because in many markets the notion of a good is not clear. For instance, in the
capacity allocation market described in Section 1.2.3, the capacity of each edge raises
a constraint on the maximum flow (which is the utility in this case) the agents can
send across it. Since there are no goods in EG markets, each agent instead pays for the
constraints influencing his utility. Thus, each constraint has a price. Interpreting the
prices as Lagrangian variables and applying the KKT conditions, we get the following

equivalent definition of an equilibrium allocation in EG markets.

Definition 49 A feasible utility w is an equilibrium allocation if there exist witness

tc Rf and prices p € R_{ such that

64

o Vi€ [n],m; = rate(i)u;, where rate(i) = >_; ai;p;.
oV jE J,pj >0= Zie[n] QU; + ZkEK akjtk = bj.

o Vie Kty >0= >, ap; =0, and Y, ar;p; > 0 otherwise.

In an equilibrium allocation, all money of each agent must be exhausted. This is
captured by the first requirement above. Moreover, if a constraint is priced, then it
must not be “under utilized” and the second requirement above implies this.

The third condition above arises due to the auxiliary variables. In concrete in-
stances of markets, this condition normally translates to the premise that in equilib-
rium an agent chooses the best basket of goods. For example, in the Fisher market,
the third condition would imply that each buyer buys goods of maximum “bang-per-
buck”; in the capacity allocation market of Section 1.2.3, the condition corresponds
to the fact that each agent chooses the cheapest source-sink path.

Remark: Since the equilibrium of an EG market is captured by a convex program,
the equilibrium always exists (even if the constraints are not finite). Given proper
separation oracles, the equilibrium could also be approximated to arbitrary small
additive error via the ellipsoid method. Moreover, since the objective function above
is strictly concave, the equilibrium is unique.

Another Example of an EG Market: The Network Coding Market.

We are given a directed graph G = (V, E); E is the set of resources, with capacities
c: EF — R,. The set V is partitioned into two sets, terminals and Steiner nodes,
denoted T and R, respectively. A set S C T is the set of sources with money
my, v € S specified. Source v broadcasts messages to all terminals at rate r by
picking a generalized branching rooted at v: a fractional subgraph of G specified via
a function b : E — R, such that b(e) < c(e) for all edges e and a flow of r units is

possible in the subgraph from v to every terminal u. Generalized branchings rooted

65

at vertices of S, by,..., by are said to form a feasible packing for G if
Ve € E,bi(e) + ...+ bi(e) < c(e).

Edge e is said to be saturated if this inequality holds with equality. Given prices p,
for e € E, the price of generalized branching b is defined to be) ., b(e)pe.
The network coding market asks for a feasible packing of generalized branchings

and prices on edges such that
e The generalized branchings rooted at each source are cheapest possible.
e Only saturated edges have positive prices.

e The money of each source is fully used up.
Definition 50 We denote the class of EG markets with k buyers as EG[k].

Definition 51 If a markets has rational equilibrium prices and allocations whenever

the input parameters are all rational, then it is called a rational market.

Definition 52 The polytope of feasible utilities can be described by a linear program.
If this linear program is combinatorial', then we call the EG market corresponding to

it a combinatorial market.

6.2 Rationality of EG[2] Markets

The main results of this section are that EG markets with 2 agents are rational.
Theorem 53 EG[2] markets are rational.

Let the polytope of feasible utilities be

P={x: Az <b,z >0},

YAn LP of the form max{cx : Az < b,x > 0} is combinatorial if the entries in A have binary
encoding length polynomial in the dimension of A.

66

with u; = x; and us = x5 being the utilities of agents 1 and 2 respectively and the

rest being auxiliary variables. Let the projection of P on (uq,us) be
Pu = {(u1,u2) 1 ug < Bo,ur + oqug < By, 1 <1 <myun < By}

We may assume that we only consider facet inducing inequalities: for all 1 <[<
m, u; + oqug = [is a facet of P,. Call it facet [. Without loss of generality, assume
that the o;’s and ;s are strictly decreasing.

We assert that P, defines the same market as P: when we price the constraints
(facets) in P, these prices can be used to get the prices for constraints of P. Moreover
if the prices of the facets are rational, then so are the prices of constraints in P. For
more details, refer Appendix B. Thus in the remaining of the chapter, we discuss
methods of pricing the facets.

In the remaining of the section we show that no matter what the moneys of the
two agents are, at most two facets need to be priced. Indeed these prices appear as
variables in simultaneous linear equations and thus are rational.

Let the facets [and [+ 1 intersect at the point (u!,u}). Thus the endpoints of
facet [are (v, ult) and (u},ub). Associate subintervals of [0,1] to the facets as

follows.

Definition 54

-1 ! l !
Vi<i<m,I = [“1— ﬂ} g = [“1 U } .
1

BB B B
o B
10,1 = [0,1 - ;10:| .
The main idea is that if my, mo are the moneys of the two agents, then 71— falls

in exactly one of the intervals I; or I;;;;. In the first case, we price only the facet ,

while in the second we price only the facets [and [+ 1.

Lemma 55 If —™— € [;,1 <[< m, then p, = M[’Q (and 0 otherwise) is an

mi+mo B

equilibrium price.

67

Proof: Its not too hard to check that the utilities u} := m/p; and u} = mo/(cup;)

are equilibrium utilities and lie on facet [. O

Lemma 56 If m:—lmz € I1i41,1 <1 < m, then there exists an equilibrium price with

only piy1 and p; having non-zero prices.

Proof: The equilibrium utility allocation is (u},ub). We want p; and p;;; that satisfy
the following two equations. m; = u}(p; + pi11), and my = u(oup; + cuy1p141). Note
that this system of two equations in two unknowns has a unique solution since they

are linearly independent:

_ ullmg - ozl+1ul2m1 _ a]-uéml - Ul1m2
b= 11 yDi+1 = 71 .
ujug(on — qa) uyuy (o —)

1 1
U1 Uy
T

However the prices are positive exactly when 7 € [] , which happens when

alulz e TERE 1

mi
mi+ms2

is in the interval I;;;,. O

I < I' means interval I ends where I’ begins. I < I' means interval I ends before
I' begins. I < x means interval I ends before or at . x < I means interval I starts

after or at x. We note the following for future reference.

Observation 57

I < Iy < 1.

Proof:(Proof of Theorem 53) Proof follows from noting that the intervals [;, for
1 <1< m, and I;;41, for 0 < < m, cover the entire unit interval (Observation 57).

Thus for any instance of moneys, the equilibrium prices are rational.

_mi

Note we did not say how to price the facet 0, which we need to do when P

falls in Iy ;. But by symmetry of choice between u; and ug it follows that we can price

it accordingly. O

68

6.3 Algorithms for combinatorial EG[2] markets
6.3.1 Binary Search Algorithm

In this section we give a binary search algorithm for finding equilibrium prices. We
also give a strongly polynomial time algorithm for finding the equilibrium prices in
EGI2] markets that are combinatorial. The algorithm takes as input, the moneys of
the buyers, m; and my, a description of the polytope P, and two parameters, M and
e such that we are guaranteed that M > a4, and oy — a4 > 2¢ for all [.

We now describe the algorithm at a high level. The algorithm does a binary search
on «a. First, it finds the facets adjacent to a, say [and [+ 1 such that « € [a;, qg11],
and their endpoints. Now, it checks if the equilibrium can be attained by pricing
these two facets, using Lemmas 55 and 56. If yes, the algorithm outputs those prices
and halts. Otherwise, the monotonicity of the intervals (Observation 57) allows us to

restrict our attention to a smaller range.

input : mq,mo, P, M, e.
U+ M,
L+ 0;

my .
p = mi+ma’
1 repeat

a<+— (U+1L)/2;

Find [such that « € [ay, ay11];

3 Find the endpoints of the facets [and [+ 1 ;

if pejU Il,l—|—1 Ul;;; then
Assign prices to the facets [and [+ 1 as in Lemmas 55 and 56, and
halt;

else if p < I, then
‘ L+ (07

else
‘ U+ aj41;
end
until U — L < ¢;

Algorithm 5: The Binary Search Algorithm

The rest of the section describes how to implement Lines 2 and 3 in Algorithm 5.

69

Let the entries of the matrix A be A(; j) = a;;. Recallthat P = {x : Ax <b,z > 0}.
Let ¢ be a vector such that ¢; = 1,¢c9 = «, and ¢; = 0 otherwise. This is defined so
that ¢ - € = uy + aug. Let L(o) = max{c -z : x € P} = min{b -y : y € D}, where
D is the dual polytope {y : ATy > ¢,y > 0}. In particular, £(0) = max{u, : x € P}
and L(co) = max{uy : € P}.

Observe that 8, = L(«qy) for all 0 < [< m + 1 if we define ag = oo and a1 = 0.

Given any x € P, define the polytope Q(x) as the set of all vectors (y, o) that satisfy
Vi, Zaijyj <, Vj,y; 2 0.
J

Vi: x; > O,Zaijyj = C;,
J

\V/_] : Zaijxi < bj,yj =0.
i
Note that the first two constraints imply that y € D. The last two constraints imply
that & and y satisfy the complementary slackness conditions. However, in Q(x), « is
treated as a variable. The algorithm to find the facets adjacent to any given o makes

use of the following Lemmas 58 and 59.

Lemma 58 Let x be any feasible extension of (ul,ul), that is x € P, 1 = u} and

1y = ub. Then oy = min{a : (y,a) € Q(x)}, and oy = max{a: (y,a) € Q(z)}.

Lemma 59 L(a) = u} + aul if and only if o € [ay, oy11]-

Proof: Suppose a € [ay, oy, 1]- By definition we have v} +ayul, = 8; and v} +ay,ul, =
Bie1 Say a = poy+ (1 — p)oyyq, for some 0 < p < 1. Let 8 = pfB+ (1 —) Bi1. Thus,
ub + aub = B.

We know that for all (uq,us) € Py, ur + aqus < f; and vy + ayyus < Bi41. By
adding u times the first equation to 1 — i times the second one, we get u; + aus < .

Hence 8 > L(a) > vl + aub = .

70

Suppose « € [ay, ag41], for some k # 1. Let (vF,vE) be the intersection of facets
k and k + 1. Then by the first part, £(a) = vf + avh. If L(a) = ul + aul, then
there are two distinct points maximizing £(a) and by Definition 54, we get that
u1 + auy < L(a) itself is a facet. In that case, either @ = oy = 41 or @ = a = 41

and we are done. O

Lemma 60 Let x be any feasible extension of (ut,ub), that is x € P, x; = u} and

Ty = ub. Then (y,a) € Q(x) if and only if « € [y, aypy].

Proof: Suppose (y,a) € Q(z). Then L(a) > v} + aul =Y,z = Y, z; > iy,
=D Yi > aiTi = D_;Y;b; > L(a). So by Lemma 59, « € [y, c11]-

Suppose « € [ag, a;11]. Then by Lemma 59, £(a) = u} + aub. So z is an optimal
primal solution satisfying Az > b,z > 0, and cx = L(a), Consider an optimal dual
solution y such that ATy > ¢, y > 0 and by = L(a). Apply complementary slackness

conditions to z and y to conclude that (y,a) € Q(z). O

Lemma 58 is an immediate corollary of this lemma.

Now given «, one can find the facets adjacent to it, that is, [such that o €
[y, ay41]. First find z that maximizes cx = u; + aus such that z € P. Then find
oy = min{a : (y,a) € Q(z)}, and oy1; = max{a : (y,a) € Q(x)}. We now give a

lemma that enables us to find the endpoints of a facet.
Lemma 61 L(a;+¢€) = v + (o + e)ub™ and Loy — €) = vl + (oq — €)ub.

Let T be the time required to optimize any linear objective function over the poly-
topes P and Q(z). The following theorems characterize the running time and the

correctness of the algorithm.
Theorem 62 The running time of the algorithm is O (T log (%))

Proof: The number of iterations of the repeat loop in Line 1 is bounded by O (log (%))

Line 2 can be done in O(T) time as follows: first find x that maximizes cx = u1 + aus

71

such that z € P. Then find oy = min{a : (y,a) € Q(x)}, and 11 = max{« :
(y,a) € Q(z)} (Lemma 58). Each of this takes time 7. From Lemma 61, Line 3 can

be done in O(T') time too. Hence we are done. O

Theorem 63 The algorithm always outputs the equilibrium prices.

Proof: Suppose —2— € I} Ul ;. Then L < a4 < U throughout the algorithm.

m1+m2

This is true initially, since M > a; > 0. Suppose this is true at the beginning of an
iteration. If in the iteration, p < I, then from Observation 57, oy < oy. Similarly, if
p > I, then o > oy 1. Hence the assertion is true at the end of the iteration too.

Suppose that at the end of an iteration, U — L < e. Note that after each iteration,
either both U and L have a value equal to one of the «;’s, or one of them is 0 or M
and the other has a value equal to an ;. In either case, U — L < ¢ = U = L, which
should equal aj by the first part. Hence we must have found the equilibrium prices

in this iteration. O

6.3.2 Combinatorial Markets

In this section, we show that for combinatorial EG[2] markets, the equilibrium price

can be found in strongly polynomial time.

Theorem 64 If an EG[2] market is combinatorial, then the equilibrium prices can

be found in strongly polynomial time.
Let v(-) denote the binary encoding length.

Lemma 65 VI, v(oq) = v(A)°N. That is, the size of the oy ’s is polynomially bounded

in the size of the matriz entries..

Proof: Note that Q(z) is described by the a;;’s. Theorem follows from Lemma 58

and standard application of Cramer’s rule. O

72

Lemma 66 One can find M and e such that log (2) = v(A)°0).

Proof: Let ¢ be the constant in the O(1) in Lemma 65. M can be chosen to be
the largest integer with a binary encoding length v(A)¢. Clearly oy < M. € can
then be chosen to be 1/(2M). «;’s have their denominators at most M and hence

o — 041 > 1/M = 2e. O

Theorem 64 follows from this lemma and Theorem 62. As a corollary, we get
that there is a strongly polynomial time algorithm for the capacity allocation market
in directed graphs with two source-sink pairs and the network coding market in a

directed network with two sources.

73

CHAPTER VII

CONCLUSION

In this thesis we have mostly covered combinatorial algorithms for computing mar-
ket equilibrium. For a good survey of algorithmic results based on solving convex
programs, we refer the reader to [9]. We mention here two promising directions for

future research.

7.1 Piecewise-linear utilities

One of the major open problems is to find a polynomial time algorithm for piecewise

linear and concave utilities. We mention several special cases that are still open.
1. The utility is linear upto some point and then does not increase any more.
2. There are a constant number of buyers.
3. There are a constant number of goods.

4. Supply aware buyers: Here, the utilities are quasi-linear, that is buyers value
money, so their net utility is the utility they derive minus the price they pay.
The supplies are fixed and are universal knowledge. This is a special case of

Case 1.
In the other direction, one may try to prove that this case is PPAD-Hard.

7.2 Beyond Weak Gross Substitutiblity

Utilities satisfying Weak Gross Substitutiblity are easily the most interesting class of
utilities for which efficient algorithms are known. Several algorithms [27, 10, 8] are

known that compute algorithms for any utility that satisfies WGS. In fact, very few

74

algorithms are known (for example [7]) for utilities outside this class. An interesting
direction is to define an appropriate notion of approximate WGS and find algorithms

for these utilities.

75

APPENDIX A

KKT CONDITIONS

Consider a maximization problem such as

maximize f(z)
subject to gi(xz) <0 Vi,

where f is a concave function. A feasible solution to this program is an optimal

solution, if and only if there exist (Lagrangian multipliers) A; > 0, Vi such that

1Yo, \28 > A gy

18zj = Ox;’

2. z; > 0 = the above holds with equality.

These are called the KKT conditions. The above can be extended to programs in
which some variable z; is unconstrained (that is z; need not be non-negative), in which
case the corresponding constraint for j in 1 always holds with equality. Similarly,
some constraint ¢ in the program may be an equality, g;(x) = 0, in which case the

corresponding multiplier); is unconstrained.

76

APPENDIX B
PROJECTION OF POLYTOPES

Suppose we eliminate the auxiliary variables ¢ from the equations to get an equivalent

formulation for the feasible region of utilities as

P, = u:VlEL,Zailuigﬁl

i€[n]
This should define the same market as before. However, the prices now correspond
to the new constraints, which correspond to the facets of P,, indexed by L. We show
that given the prices on the facets in L, one can find prices for the original constraints
in J that form an equilibrium. Suppose the equilibrium price of facet [€ L is ¢;. Let
u be the equilibrium utility, with ¢ being its witness. Then rate(i) =), auq. At
equilibrium, m; = rate(i)u; and ¢, > 0 = >, ayu; = fB;. Now consider the following

LP:
maximize E QU
i

subject to VijeJ, Z a;u; + Z ag;tr < bj.

i€[n] keK
Vi € [n],k € K, u;,tp > 0.

77

For any [with ¢, > 0 the optimal value of this LPs has to be §;. In fact, (u,t) is an

optimal solution. For each such [, consider any optimal solution ' to the dual:
minimize Z b; y;-
J

subject to Vi€ [n], Zaijy;' >
J

VkEK,Za;jyé >0,
j
Vjedy >o.

(u,t) and y' satisfy the complementary slackness conditions for the above pair of
primal-dual programs:

y; >0 = Z aiju; + Z agjty < b;.

i€[n] kEK

!
w>0 = Y ayyh=oq.
i

te>0 =) apy;=0.
j

Letp; =Y, y;-ql. Using the feasibility and complementary slackness conditions above,

one can show that p; and (u,t) indeed satisfy the equilibrium conditions.

78

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

REFERENCES

ArLiprANTIS, C. D., BROWN, D. J., and BURKINSHAW, O., Eristence and
Optimality of Competitive Equilibria. Springer-Verlag, 1990.

ArrOw, K., BLOCK, H., and HurRwWICZ, L., “On the stability of the competitive
equilibrium: II,” Econometrica, vol. 27, no. 1, pp. 82-109, 1959.

ArrOW, K. and DEBREU, G., “Existence of an equilibrium for a competitive
economy,” Fconometrica, vol. 22, pp. 265-290, 1954.

ArrOw, K. and Hurwicz, L., “Weak gross substitutability and the existence

of competitive equilibria,” International Economic Review, vol. 33, pp. 3849,
1965.

BRAINARD, W. C. and ScARF, H. E., “How to compute equilibrium prices in
1891,” Cowles Foundation Discussion Paper, no. 1270, 2000.

CHAKRABARTY, D., DEVANUR, N. R., and VAZIRANI, V. V. “New results
on rationality and strongly polynomial time solvability in eisenberg-gale mar-
kets,” in Proceedings of the Second Workshop on Internet and Network Eco-
nomics (WINE), 2006.

CopenoTTI, B., MCCUNE, B., PENUMATCHA, S., and VARADARAJAN,

K., “Existence, multiplicity and computation of equilibria for CES exchange
economies,” in Proceedings of FSTTCS, 2005.

CobpEeENOTTI, B., McCUNE, B., and VARADARAJAN, K., “Market equilibrium
via the excess demand function,” in Proceedings of ACM Symposium on Theory
of Computing, 2005.

CobpeENOTTI, B., PEMMARAJU, S., and VARADARAJAN, K., “Algorithms col-
umn: The computation of market equilibria,” in ACM SIGACT News 385(4),
2004.

CobpENOTTI, B., PEMMARAJU, S., and VARADARAJAN, K., “Equilibrium for
exchange markets satisfying was,” in Proceedings of ACM Symposium on Dis-
crete Algorithms, 2005.

CobpENOTTI, B. and VARADARAJAN, K., “Efficient computation of equilibrium
prices for markets with Leontief utilities,” in Proc. 81st International Colloguium
on Automata, Languages, and Programming, Lecture Notes in Computer Science,

2004.

79

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

DanLHAUS, E., JOHNSON, D., PApADIMITRIOU, C., SEYMOUR, P., and YAN-
NAKAKIS, M., “The complexity of multiterminal cuts,” SIAM Journal on Com-
puting, vol. 23, pp. 864-894, 1994.

DEBREU, G., “Economic theory in a mathematical mode: the Nobel Lecture,”
1984. AER.

DEenNg, X., PAPADIMITRIOU, C., and SAFRA, S., “On the complexity of equi-
libria,” in Proceedings of ACM Symposium on Theory of Computing, 2002.

DEVANUR, N. R., PApADIMITRIOU, C. H., SABERI, A., and VAZIRANI, V. V.,
“Market equilibrium via a primal-dual-type algorithm,” in Proceedings of IEEE
Annual Symposium on Foundations of Computer Science, 2002. Journal version
available at http://www-static.cc.gatech.edu/~nikhil /pubs/AD /market-full.ps.

DEVANUR, N. R. and VAZIRANI, V., “An improved approximation scheme
for computing Arrow-Debreu prices for the linear case,” in Proceedings of the

23rd Foundations of Software Technologies and Theoretical Computer Science,
FSTTCS, 2003.

DEVANUR, N. R. and VAZIRANI, V. V., “The spending constraint model for

market equilibrium: Algorithmic, existence and uniqueness results,” in Proceed-
ings of 36th STOC, 2004.

EbmonDs, J., “Maximum matching and a polyhedron with 0,1-vertices,” Jour-
nal of Research of the National Bureau of Standards. Section B, vol. 69, pp. 125—
130, 1965.

EisENBBERG, E. and GALE, D., “Consensus of subjective probabilities: the
Pari-Mutuel method,” The Annals of Mathematical Statistics, vol. 30, pp. 165—
168, 1959.

EISENBERG, E., “Aggregation of utility functions,” Management Sciences, vol. 7,
pp. 337-350, 1961.

E1SENBERG, E. and GALE, D., “Consensus of subjective probabilities: the Pari-
Mutuel method,” The Annals of Mathematical Statistics, vol. 30, pp. 165—168,
1959.

ELIAS, P., FEINSTEIN, A., and SHANNON, C. E., “Note on maximum flow
through a network,” IRE Transactions on Information Theory IT-2, pp. 117—
199, 1956.

ForbD, L. R. J. and FULKERSON, D. R., “Maximal flow through a network,”
Canadian Journal of Mathematics, pp. 99-404, 1956.

GARG, D., JAIN, K., TALWAR, K., and VAZIRANI, V., “A primal-dual algo-
rithm for computing Fisher equilibrium in absence of gross substitutability prop-

erty,” in Proceedings of the First Workshop on Internet and Network Economics
(WINE), 2005.

80

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

GARG, N., VAZIRANI, V., and YANNAKAKIS, M., “Multiway cuts in directed
and node weighted graphs,” in Proc. 21st International Colloquium on Automata,
Languages, and Programming, vol. 820 of Lecture Notes in Computer Science,
pp. 487498, Springer-Verlag, Berlin, 1994.

GARG, R. and KAPOOR, S., “Auction algorithms for market equilibrium,” in
Proceedings of 36th STOC, 2004.

GARG, R., KAPOOR, S., and VAZIRANI, V. V., “An auction-based market

equilbrium algorithm for the separable gross substitutibility case,” in Proceed-
ings, APPROX, 2004.

Hu, T., “Multicommodity network flows,” Operations Research, vol. 14, pp. 344—
360, 1963.

JAIN, K., “A polynomial time algorithm for computing the Arrow-Debreu mar-
ket equilibrium for linear utilities,” in In Proc. of the IEEE Annual Symposium
on Foundations of Computer Science FOCS, 2004.

JAIN, K., MAHDIAN, M., and SABERI, A., “Approximating market equilib-
rium,” in Proceedings of 6th APPROX, 2003.

Jain, K. and Vazirani, V. V. “Eisenberg-gale markets: Algo-
rithms and structural properties.” Manuscript, 2006 available from
http://www.cc.gatech.edu/~vazirani/.

JAIN, K. and VAzIRANI, V. V., “Eisenberg-gale markets: Combinatorial solv-
ability, efficiency, fairness, and competition monotonicity.” Submitted, 2006.

JAIN, K., VAZIRANI, V. V. and YE, Y., “Market equilibrium for homothetic,

quasi-concave utilities and economies of scale in productio n,” in Proceedings,
SODA, 2005.

KAKADE, S. M., KEARNS, M., OrTiZ, L., PEMANTLE, R., and SURI, S.,
“The economic properties of social networks,” in Proceedings of 19th Annual
Conference on Neural Information Processing Systems (NIPS), 2005.

KeHOE, P. J. and KEHOE, T. J., “Capturing NAFTA’s impact with applied
general equilibrium models,” Federal Reserve Bank of Minneapolis Quarterly
Review, no. 18:2, 1994.

KeLry, F. P., “Charging and rate control for elastic traffic,” Furopean Trans-
actions on Telecommunications, vol. 8, pp. 33-37, 1997.

Kunn, H. W., “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 8397, 1955.

MEecIDDO, N., “Optimal flows in networks with multiple sources and sinks,”
Mathematical Programming, pp. 97-107, 1974.

81

[39] ScARF, H., The Computation of Economic Equilibria (with collaboration of

T. Hansen). New Haven: Yale University Press: Cowles Foundation Monograph
No. 24., 1973.

[40] SHOVEN, J. B. and WHALLEY, J., Applying General Equilibrium. Cambridge
University Press, 1992.

[41] TArDOs, E., “A strongly polynomial algorithm to solve combinatorial linear
programs,” Oper. Res., vol. 34, no. 2, pp. 250-256, 1986.

[42] VAZIRANI, V. V., ““spending constriant utilities, with applications to the ad-
words market”.” Submitted, 2006.

[43] WALRAS, L., Eléments d’économie politique pure ou théorie de la richesse sociale
(Elements of Pure Economics, or the theory of social wealth). 1874. (1899, 4th
ed.; 1926, rev ed., 1954, Engl. transl.).

[44] WILLIAMSON, D., GOEMANS, M., MIHAIL, M., and VAZIRANI, V., “A primal-
dual approximation algorithm for generalized Steiner network problems,” Com-
binatorica, vol. 15, pp. 435-454, 1995.

[45] YE, Y., “Note on exchange market equilibria with leontief’s utility: Freedom of
pricing leads to rationality,” in Proceedings of the First Workshop on Internet
and Network Economics (WINE), 2005.

82

