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SUMMARY

Covariance matrix estimation is the essence of measuring risks in multivari-

ate statistics. Existing research efforts are mostly devoted to asymptotic behaviors

as sample size increases or to modeling covariance matrices with structural assump-

tions. In this thesis we investigate alternative methods that do not depend on such

restrictions.

High dimensional covariance matrix estimation is considered in the context of

empirical asset pricing. In asset pricing models covariance matrices are used more

intensively and potentially make significant difference in estimating or testing errors

because the nature of asset pricing models is far more complicated. In order to see

the effects of covariance matrix estimation on asset pricing, parameter estimation,

model specification test, and misspecification problems are explored. Along with

existing techniques, which is not yet tested in applications, diagonal variance matrix

is simulated to evaluate the performances in these problems. We found that modified

Stein type estimator outperforms all the other methods in all three cases. In addition,

it turned out that heuristic method of diagonal variance matrix works far better than

existing methods in Hansen-Jagannathan distance test.

High dimensional covariance matrix as a transformation matrix in generalized least

squares is also studied. Since the feasible generalized least squares estimator requires

ex ante knowledge of the covariance structure, it is not applicable in general cases.

We propose fully banding strategy for the new estimation technique. Apart from

analytical efforts to examine the behaviors of our estimation, guided simulations are

provided to support our claim that more spread-out diagonals of covariance matrix

lead to better relative outperformance of GLS estimation over OLS estimation. First

x



we look into the sparsity of covariance matrix and the performances of GLS. Then we

move onto the discussion of diagonals of covariance matrix and column summation

of inverse of covariance matrix to see the effects on GLS estimation. In addition,

factor analysis is employed to model the covariance matrix and it turned out that

communality truly matters in efficiency of GLS estimation.

xi



CHAPTER I

MOTIVATION AND OUTLINE

1.1 Motivation

Measuring risks is one of the important statistical tasks both in theoretical and prac-

tical perspective. Recent outburst of financial crisis rooted in sub-prime mortgage

was also considered as an example of mis-judged investment risks. Among others,

variance is not only the traditional statistical methods but also the most widely used

measure. For univariate random variables variance makes a solid standpoint in prac-

tice since it is fairly well-defined and straightforward to compute.

However, in modern statistical research, we often encounter multivariate problems

and covariance has to be entertained in addition to variance. Covariance matrices,

multivariate counterpart of variance in univariate case, are natural choice for risk

measure in the multivariate case. Apart from the simple risk measure of random

variables, it is extended to many other usages in various applications. For example,

covariance matrices are commonly used in generalized least squares as the transfor-

mation matrices, or in generalized method of moments as the weighting matrices.

Despite the importance of covariance matrices, it is not an easy job to estimate

them precisely especially when high dimensional covariance matrices are considered.

Even a small universe of ten assets, for instance, requires 55 parameters to be esti-

mated. Additionally, in many applications from asset pricing, the inverse covariance

matrices are needed rather than covariance matrices. The small sample properties

get even worse if we take inverse of the covariance matrix estimates.

1
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Figure 1: Average MSE of precision matrix estimate

An example with simple simulation will make it clearer. Let p be the dimension-

ality, and Σ be a p× p covariance matrix. Draw 200 random samples from N(0p,Σ).

Here we only take very simple case of Σ=diag(1,...,1). With inverse sample covariance

matrix, Σ̂−1, let error matrix be ER = Σ−1 − Σ̂−1. We compute the element wise

average squared error as

1

p2
||ER||2F =

1

p2

p∑
i=1

p∑
j=1

er2
ij

2



where erij is the element of ER in row i and column j. The simulation results with

1,000 iterations with three cases of p=5, 50, 100 are given as the box plots in figure

1. As the dimensionality p becomes larger, the figure shows that the error gets bigger

exponentially. Even a very simple case of covariance matrix with zero off-diagonal

elements makes significant differences between low and high dimensional cases. Since

we often cope with far more complex covariance structure, the problem is be expected

to be much worse.

As noted earlier, multivariate applications arise in many applications, and its

dimensionality becomes higher nowadays. The problems of high dimensional covari-

ance matrix estimation are noted by many researchers but the optimal solutions for

such problems have not been identified. Previous considerations are mainly focused

on model based structural covariance matrices.(See [36], [20] and [42]). Although it

improves our understanding of high dimensional covariance matrices, it imposes too

strong assumptions structurally, which limits their practical value. We will review

some existing results in next chapters.

Mathematically rigorous theories usually require parametric approach with prior

assumptions in models. But this may limit our understanding about behaviors of

high dimensional covariance matrix estimation in general. Therefore, we would like

to take a different view in this thesis. Although it is almost impossible to set up a

fully theoretical approach, it would be very beneficial to have a simulation kicked-in to

understand the problem. There are already a lot of model-free covariance estimation

methods developed but they are not yet tested in high dimensional asset pricing ap-

plications. Concentrating on asset pricing model in the context of empirical financial

problems, we would like to show the performance of existing methods and propose a

new estimation method for covariance matrix. In addition, generalized least squares

3



will also be considered. Generalized least squares rely heavily on a good estimate of

covariance matrices. We try to understand the effects of covariance matrix estimation

from a theoretical point of view and supplement our proposal with guided simula-

tions.

1.2 Thesis Outline

The rest of thesis is organized as follows. Chapter 2 focuses on the effects of high

dimensional covariance matrix estimation on empirical asset pricing models. The

chapter starts with an introduction to covariance matrix distribution and previous de-

velopment of covariance matrix estimation techniques with the comparison to sample

covariance matrix. Section 3 of the chapter applies various estimation techniques in

parameter estimation problems, especially the popular two-pass procedure. Through

simulation studies, we will illustrate the performances of each estimation method. Sec-

tion 4 discusses model specification testing with an example of Hansen-Jagannathan

distance. In hypothetical testing, covariance matrices are frequently used as weight-

ing matrices. We also take a close look at the model misspecification to evaluate the

covariance matrix estimation performance in terms of type-2 error.

Chapter 3 covers covariance estimation in relation with generalized least squares in

three settings corresponding to sparse, diagonal and factor covariance matrices. We

argue that the banding strategy is useful for high dimensional covariance matrices

estimation. In order to support the idea, simulations with different degree of sparsity

are provided in section 3. Inspired by the simulation results, both analytical and sim-

ulation studies focusing on diagonal covariance matrices are explored in the following

section. We derived that spread-out diagonals make more difference between OLS

4



and GLS estimation in terms of efficiency. In section 5, we consider factor covariance

matrices. Fully banded strategy is investigated by means of analytical calculations for

single factor models. Three types of matrix norms are used to measure the distance

between inverse of specific covariance matrices and inverse of covariance matrices.

Communality and specific variance ratios turn out to be one of the crucial elements

of high dimensional cases.

We summarize and conclude the thesis in chapter 4. Potential development on

both the academic side and practical applications are discussed as well. Supplemen-

tary plots pertaining to the simulation in chapter 2 and 3 are also given in appendix.
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CHAPTER II

HIGH DIMENSIONAL COVARIANCE MATRIX

ESTIMATION AND ASSET PRICING MODEL

2.1 Introduction

Covariance matrices play a key role in finance. Markowitz portfolio theory followed

by Capital Asset Pricing Model (CAPM) of Sharpe are considered fundamental basis

of modern finance theory, and both rely heavily upon covariance structure among the

returns of risky assets. Covariance matrices are a crucial part of any asset pricing

model because prices of any asset depend not on idiosyncratic risk but only on system-

atic risk which is measured through covariance structure of the market. Apart from

the theory, there are many empirical techniques that take advantage of covariance

matrices: factor analysis, principle component analysis(PCA), generalized method of

moments(GMM), and generalized least squares(GLS), etc.

In finance, it is well known that the volatility of financial assets is not constant

over time. Historical evidences suggest that large volatility tends to cluster together.

ARCH and GARCH models are in part motivated by such observations(see [5] and

[16]). An example of Microsoft stock return movement is shown in figure 2. The

volatility becomes large in Oct. 2008 and continues to be large until Jan. 2009, while

the other periods have smaller and stable volatility. As the example illustrates, it

is not always plausible to utilize large sample in estimating parameters because sta-

tistical characteristic may change over time in certain cases. Although small sample

properties of covariance matrix estimation are very important practically, it seems

that not enough research attention has been given.

6



Figure 2: MSFT stock return movement

Among the few work, [36] focuses on the role of covariance matrix in portfolio

selection and shows that shrinkage method improves the performance. [1] reports

that sample covariance matrix fails to test model specification based on Hansen-

Jagannathan distance [32]. It also observes that the test overrejects the true model

extremely often especially when the number of time-series data is relatively small

comparing to the number of assets. [42] suggests shrinkage method in estimating

covariance matrix and shows that small sample properties are much improved when

applying to Hansen-Jagannathan distance.

In this chapter, we examine the impacts of various covariance matrix estimators

when applying to the asset pricing with simulation studies. Section 2.3 explores the

7



impact of covariance estimation on parameter estimation, while Section 2.4 studies

model specification testing. In many cases, inverse of covariance matrices, or precision

matrices are used as weighting matrices. [47] introduces several estimation methods of

precision matrices: modified adjusted(MAU), modified Perron-type(MPR), modified

Stein(MST), the usual estimator(US), Efron-Morris-type(EM), and Dey(DY) estima-

tors. We will employ seven of them and compare their performances with sample

covariance matrices or structural true covariance matrix. A brief summary of these

estimators is given in section 2.2.

2.2 Various precision matrix estimators

This section briefly reviews several estimators given in [47]. Overall discussion on the

estimators from different perspectives are given as well. The precision matrix estima-

tion has been studied from three aspects: adjusting eigenvalue estimation, Bayesian

approach and shrinkage method. Each approach will be introduced as follows.

2.2.1 Adjusting eigenvalues

Given true covariance matrix Σ and sample covariance estimation S we have orthog-

onal decomposition as,

Σ̂−1
UB = (n− p− 1)S−1 = (n− p− 1)Rφ(L)R′,

where L = diag(l1, l2, · · · , lp) with eigenvalue li of S. The usual form of φ is, of course,

inverse. Implausible small sample property stems from the fact that the eigenvalue

estimations of S−1 are more spread out than the eigenvalues of Σ−1. Therefore cor-

rection of eigenvalue estimation is one of possible alternative estimating methods.

Moreover, it is shown that this class of estimators is better than the usual unbiased

estimator with trace loss function L(Σ̂−1,Σ−1) = tr(Σ̂−1 −Σ−1)2, under the following

8



conditions:

(i) ∂δi(L)
∂li

≥ 0,∀i

(ii) n− p− 5 ≤ δp(L) ≤ · · · ≤ δ1(L) ≤ n− p− 1.

In this chapter, we employ three types of estimators from this class: Adjusted,

Perron-type, and Stein-type. The formula of these estimators are as follow.

2.2.1.1 Adjusted estimation

Σ̂−1
AU = RφAU(L)R′ (1)

where φAU(L) = diag(δAU
1 (L)/l1, ..., δ

AU
p (L)/lp) with δAU

i (L) = n−p−1−4(i−1)/(p−
1).

Modified AU estimator is given by

Σ̂−1
MAU = Σ̂−1

AU + cS/tr(S2) (2)

where c = p2 + p− 4.

2.2.1.2 Perron-type estimator

Let hi = h(1/lp+1−i), di = n− p− 5 + 4(i− 1)/(p− 1), and H = diag(h1, ..., hp) with

positive valued nondecreasing function h(·). Here we used h(x) =
√
x.

Let W (H) be p× p matrix with its component wik,

wik(H) =
trk−1(Hi)

trk−1(H)
− trk(Hi)

trk(H)

9



where, Hi = diag(h1, ..., hi−1, 0, hi+1, ..., hp).

trk(H) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = 0

∑
1≤i1≤i2,...,ik≤p

∏k
j=1 hij k = 1, 2, .., p

0 otherwise

Then the Perron type estimator is given by,

Σ̂−1
PR = RφPR(L)R′ (3)

where φPR
i (L) = δPR

i (L)/li with δPR
p+1−i(L) =

∑p
k=1wik(H)dk.

Modified PR estimator is given by

Σ̂−1
MPR = Σ̂−1

PR + cS/tr(S2) (4)

where c = p2 + p− 4.

2.2.1.3 Stein-type estimator

Σ̂−1
ST = RφST (L)R′ (5)

where φST
i (L) = 1

li
(n−p−3+

∑
j �=i

li
li−lj

). Since it is not monotone, we apply isotonic

regression to use the fitted values of φ̄ST
i .

Modified PR estimator is given by

Σ̂−1
MST = Σ̂−1

ST + cS/tr(S2) (6)

where c = p2 + p− 4.
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2.2.2 Bayesian Approach

Now consider the following class of estimators.

Σ̂−1
G = aS−1 +G

where G is a p × p symmetric matrix with the elements of G being functions of S.

It has been proven that this class of estimators is better than the usual unbiased

estimator under trace loss function, if satisfying the following numerical conditions.

(i) n− p− 5 ≤ a ≤ n− p− 1

(ii) tr(G2 − 2(n− p− 1 − a)S−1G− 4DSG) ≤ 0

where DS = (1/2)(1 + δij)∂/∂Sij) with δij being the Kronecker delta.

Upon the prior given to Σ−1 or G, the conditional expectations of posterior can

be obtained as Bayesian estimators. The following are the examples of these and will

be used in our simulation study.

2.2.2.1 The usual estimator

Suppose the uniform distribution is given as prior of Σ−1, p(Σ−1) ∝ 1/|Σ−1|(n+p+1−a)/2

where a is a constant. Then the posterior distribution is derived as Gaussian distri-

bution, and the Bayseian estimator is given as

E(Σ−1|S) = Σ̂−1
US = aS−1 (7)

where a = n− p− 3.
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2.2.2.2 Efron-Morris-type estimator

Efron-Morris-type estimator assumes the precision matrix decomposition as Σ−1 =

ωIp + ξξ′ where ξ is p × a random matrix. Giving the prior distribution to ξ as

p(ξ|ω) ∝ ω−pa/2|Ip + ξξ′/ω|−n/2, we obtain the Bayseian estimator

E(Σ−1|S, ω) = ωIp + aS−1

From the assumption that the marginal distribution of S is Wishart , estimate of ω

is computed as ω̂ = (n−a)p−2
tr(S)

. Finally the EM estimator is given as

Σ̂−1
EM = aS−1 +

b(t)

t
Q(Q′Q)−1Q′ (8)

where a = n− p− 4, t = tr(S), b(t) = 1, and Q is a p× q matrix with rank q.

2.2.2.3 Haff-type estimator

Similarly, Haff-type estimator assumes Wishart distribution Wp(λIp,m − p − 1) for

the prior of Σ−1 with some constant m. Then the Bayesian estimator is given as,

Σ̂−1
HF = a0(S + ub(u)Ip)

−1 (9)

= Σ̂−1
UB − a0ub(u)(S

2 + ub(u)S)−1 (10)

where a0 = n− p− 1, u = 1
tr(S−1)

, and b(u) = 2/(n− p− 5)

2.2.2.4 Dey estimator

Shrinkage method is often employed to improve the performance of the original es-

timator. Let Σ̂−1
M = Σ̂−1

SH + M where Σ̂−1
SH satisfies Σ̂−1

UB − Σ̂−1
SH ’s being positive

semi-definite. Then Σ̂−1
M dominates Σ̂−1

SH under certain numerical conditions. See [47]
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for the numerical conditions and related theorems. One example is Dey’s estimator

which takes adjusted estimator for Σ̂−1
SH and Ip for Q.

Σ̂−1
DY = aS−1 +

b(S)

tr(S2)
S (11)

where a = n− p− 3 and b(S) = p2 + p− 4.

2.2.3 Discussion on the simulation result

The simulation study of [47] shows that none of the estimators is dominantly better

than the others, under the percentage reduction in average loss(PRIAL) relative to

the unbiased estimator, which is defined as below.

Let the loss function L(·) be L(Σ̂−1,Σ−1) = tr(Σ̂−1 − Σ−1)2. The risk function,

therefore, can be written as R(Σ̂−1,Σ−1) = E[L(Σ̂−1,Σ−1)]. The criteria of PRIAL

is computing the relative improvement of risk of each estimators in comparison with

the unbiased estimator in percentage sense, i.e.

PRIAL = 100 × (R̂(Σ̂−1
UB) − R̂(Σ̂−1

· ))/R̂(Σ̂−1
UB)

The risk, R(·) is approximated by 10,000 iterations of random draws from multivari-

ate normal distribution.

This experiment presents a couple of useful points to our interest. Although no es-

timators can be found as universally better over the other candidates, MST looks the

best in our application to asset pricing. Especially with the true covariance matrix,

Σ = diag(1, 1, 1, 1, 1), PRIAL of MST estimator outperforms the others except for

case of sample size 12. This can be considered as an extreme case in that the sample

size is too small for the dimension. While relative performance of other estimators
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over unbiased estimator disappears quickly as the sample size gets larger, the speed

of reduction in PRIAL of MST is much slower so that its performance outstands in

the cases of sample size 30 and 50 comparing to other estimators. When the magni-

tude of diagonal elements of Σ are far different to each other, PRIAL of MST is not

plausible. It turns out that MST is the worst with Σ = diag(4, 42, 43, 44, 45) case.

MST is not universally the best estimator yet is the most proper to asset pricing

application. The reason is that the variances of asset returns are not very different

to one another after conditioning the common pricing factors. Let us take CAPM

model as an example. One may observe a stock price very volatile than the others.

This is usually because beta of the stock is very large in magnitude, not because the

variance of the firm specific risk is greater than the others. In this sense, it is a widely

accepted notion in finance theory that the idiosyncratic risk does not matter in pric-

ing the asset. Once common pricing factors are specified correctly or conditioning

the information correctly, the remaining disturbances or idiosyncratic risks have very

similar variances each other. Since this case is similar to the previous simulation with

Σ = diag(1, 1, 1, 1, 1), we can guess that MST may serve the best precision matrix

estimator in asset pricing.

Table 1: PRIAL of precision matrix estimators

Dimension 5 10 15 20 25

MAU 58.42 74.70 84.12 90.36 94.60
MPR -419.04 -132.14 5.50 62.17 85.28
MST 67.95 80.75 86.67 91.26 94.76
US 45.05 70.74 84.43 91.35 95.11
EM 44.89 70.52 84.25 91.22 90.02
DY 49.80 69.18 80.32 87.67 92.73

MHF 41.60 59.96 73.31 82.86 89.53
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Again, a simple numerical example will give clearer intuition on our discussion.

Since our main interest lies in behavior of the inverse of the covariance matrix estima-

tors, we fix the number of the sample size and examine the behavior in connection to

dimensionality. We may also think of this example as follows. We only have limited

number of time-series data on asset returns, and would like to compare the precise-

ness of several estimators as the number of assets increases. The simulation of this

example fixes the number of time-series data to 50. The true covariance matrix is set

to be the simplest diagonal case, Σ = diag(1, 1, · · · , 1), with dim(Σ) increasing from

5 to 25. The result is provided in table 1.

As expected, the PRIAL’s are getting bigger as the dimensionality increases. This

means that the estimators provide more precise estimates in higher dimensionality

than the inverse of the sample covariance matrix estimator. In case of MPR, its per-

formance is much worse than the performance of sample covariance matrix when the

dimension is 5 or 10. As the dimensionality becomes higher, the relative performance

of all the seven estimators over the inverse of sample covariance matrix gets greater.

First of all, MAU, MST, US and EM estimators show very high PRIAL as 94% to

95% when the ratio of sample size to dimension is extremely small. We could see that

sample covariance matrix performs very poor and the other estimators improve the

small sample properties significantly. It is also obvious from this simulation example

that none of the estimator is universally better over the other estimators.

In extreme case as in dimension of 25, US and EM appear the best, while MST

outperforms them up to dimension of 20. Again, here we only have very simple

covariance structure. Based on this observation, tt is natural to step forward consid-

ering more complex structure. We take this step with asset pricing application, which

is highly complicated in covariance structure. In the next two sections, parameter
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estimation and model specification testing problem will be explored in terms of the

effects of the precision matrix estimators.

2.3 Covariance Matrix in Parameter Estimation: two-pass
procedure

In this section, the effects of high dimensional covariance matrix estimation on two-

pass procedure are discussed. This method is developed as an empirical technique

testing CAPM framework. [46] and [39] show that beta of any risky asset in equilib-

rium can be derived from mean-variance space, and that expected return of an asset

is linearly related to its beta.

E[ri] = γ0 + γ1βi, for all assets i (12)

where βi = cov(ri,γ1)
var(ri)

and γ1 is the market risk premium. CAPM nicely models the co-

movement of financial asset returns with returns on market premium. Naturally, one

can think of equation (12) as a regression with slope coefficient β. Under beta-pricing

type regression models, Two-pass procedure is a popular empirical statistical method.

2.3.1 two-pass procedure

[39] suggests two-pass procedure in empirical asset pricing with panel data. It consists

of two stages: time-series regression as first-pass and cross-section regression(CRS)

as second-pass. The first-pass is the stage where the beta of each asset is estimated.

rit = γ0 + γ1tβi + εit, (13)

where rit is the return of i-th asset at time t, and disturbance εit is normally distributed

with mean zero. The number of assets and observable discrete time are assumed to

be N and T, respectively, i.e. i = 1, 2, · · · , N and t = 1, 2, · · · , T . Suppose that εit
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is independent across time t. The first pass, therefore, estimates βi by time-series

Ordinary Least Square(OLS) with each asset returns. With the estimated β̂i from

regression model (13) and average return of each asset, CRS regression is formed as

follows,

r̄i = γ0 + γ1β̂i + ηi. (14)

In order to estimate γ0 and γ1, Litner used OLS in second-pass CRS. Estimated γ̂0

and γ̂1 can be interpreted as average risk free rate and average return on market port-

folio over the time t = 1, 2, · · · , T . [15] compares γ̂0 and γ̂1 with the yield to maturity

of government bond RF over the same time period of the empirical model and aver-

age excess market return R̄M − RF , respectively. It is found that estimated γ̂0 is far

greater than RF and γ̂1, which implies the inconsistency of CAPM model with reality.

Fama and Macbeth adopts ”rolling” betas to improve the second-pass regression

in [19]. They first estimate β each month using previous historical time-series data.

Then CRS is conducted with the beta estimates for that month. They repeat this

procedure month by month to obtain a time-series estimates of γ̂0 and γ̂1, then take

the average to compare with Rf and R̄M −RF .

Although Fama-Macbeth approach improves the errors-in-variable, and is proved

to be consistent as the number of time-series data(T) becomes large enough, it still

misleads the result because cross-sectional correlation and heteroscedasticity are not

taken into account. Portfolio Grouping is employed in [4] and [19], yet significant

cross-sectional correlation is remained. [45] suggests GLS to be employed in the sec-

ond pass of CSR, which is the natural remedy to this problem.

Since GLS procedure requires inverse of covariance matrix as a weighting matrix,

it is a good example to see how the high dimensional covariance matrix estimation
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matters in more complicated situation such as two-pass procedure. We extend the

market model to the multiple factor model and apply several precision matrix esti-

mators as GLS weighting matrices.

2.3.2 Data Generating Process

In order to compare several precision matrix estimators thoroughly, four cases of

data generating processes are taken into account. First of all, three-factor model is

assumed as follows.

Rti = α+Xt1β1i +Xt2β2i +Xt3β3i + εti, (15)

where Xtj are randomly drawn from N(0.0022, 6.944 × 10−5), factor loading β’s are

drawn from U(0, 2). The parameters distributions are selected to be consistent with

historical evidences. See [1] for more detail. We will consider four cases depending on

the ways of constructing random error eti. Let Ω be the covariance matrix of random

error εi. As commonly accepted, the disturbance term in return process is assumed

to be independent in time-series direction so that corr(εti, εt′i) = 0 for all i and t �= t′.

We want to examine the behavior of the estimates from two-pass procedure accord-

ing to the inter-asset correlation structure Ω. Here, different inter-asset correlation

corr(εti, εti′) structures are simulated as follows.

• Homoscedastic with zero correlation case

Disturbance in equation (15) εti’s are independently random-drawn from N(0, 6.944×
10−5) for all i and t. In other words, the disturbances are assumed to be independent

across the assets.

• Homoscedastic with AR(1) correlation case

Here, the term, AR, is abused for convenience. AR(1) refers to the case that the
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only adjacent disturbances have correlations, i.e. corr(εi, εj) �= 0 if |i − j| = 1, and

corr(εi, εj) = 0 otherwise. In our simulation studies, we set corr(εi, εj) = 0.5 for all

i, j such that |i− j| = 1.

• Homoscedastic with AR(2) correlation case

Similarly, AR(2) here means that disturbances are correlated only if |i− j| ≤ 2. We

set corr(εi, εj) = 0.5 if |i− j| = 1, and corr(εi, εj) = 0.25 if |i− j| = 2. All the others

are set to be non-correlated.

• Heteroscedastic with completely random correlation case

Let Ω = E[ε1, ε2, · · · , εN ]′[ε1, ε2, · · · , εN ]. The diagonal elements of Ω are randomly

chosen from U(0.00004944, 0.00008944), whose mean is the same as homoscedastic

case. The off-diagonal elements are drawn from U(−0.2, 0.2)×0.00006944. From this

setting, we can generate heteroscedastic(diagonal elements) random correlation(off-

diagonal) case.

2.3.3 Estimation and Simulation results

The expression of GLS estimate is given as

Γ̂ = R̄(B̂′Ω̂−1B̂)−1B̂′Ω̂−1, (16)

where Γ = [X1, X2, X3]
′ and B = [1N , β1, β2, β3]. Note that covariance matrix of

disturbance Ω is estimated from the residuals of OLS in first-pass.

In our simulation, we’d like to replace the inverse covariance matrix Ω−1 with var-

ious estimators. In order to compare the performances of the estimators, PRIAL

is used here also as measure for the improvement. Let m = ΓTrue − Γ̂, or the

estimating error of Γ̂. Taking L = m′m as the loss function, we have the risk
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Table 2: PRIAL: Homoscedastic with zero correlation

N \ T MAU MPR MST US EM DY MHF

25\160 5.67 5.54 10.38 ≈0 0.007 5.31 5.27
25\330 1.85 1.44 4.66 ≈0 0.002 1.71 1.70
25\700 0.17 -0.02 0.54 ≈0 0.001 0.15 0.15
100\160 35.78 35.77 50.68 ≈0 0.007 34.69 34.17
100\330 14.79 14.74 24.00 ≈0 0.001 14.53 14.46
100\700 4.11 4.04 8.49 ≈0 0.001 4.04 4.03

R = E(L) = E(m′m). As before, PRIAL is defined as PRIAL = 100 × (R̂(Σ̂−1
UB) −

R̂(Σ̂−1
· ))/R̂(Σ̂−1

UB), percentage improvement in risk over inverse of sample covariance.

We consider the homoscedastic with zero correlation case first. This is the most

simple case because inter-asset correlations are set to be zeros and the idiosyncratic

risk of each asset has the same variances. The simulation result is shown in table 2.

The first observation is that all the PRIAL’s are positive except for MPR with

N=25 and T=700, meaning that the performances of the estimators are all better

than that of sample covariance matrix. The relative performance gets greater as the

ratio between the number of asset N and sample size T increases. The second obser-

vation is that MST dominates in PRIAL. In all the cases, PRIAL of MST is the best,

and it improves the risk reductoin as high as 50.7% relative to the inverse of sample

covariance matrix in N=100,T=160 case. MAU, MPR, DY and MHF also give a

strong evidence of improvement over sample covariance matrix, however, PRIAL of

MST is nearly twice of them.

The following are the cases of AR(1), AR(2). We can find interesting result from

table 3 for AR(1) case. Most of the PRIAL’s are negative indicating that sample

covariance matrix outperforms all the other estimators. More interesting part is that
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the PRIAL’s of seven estimators improve as the sample size gets bigger. Among the

estimators with relative weak performance, EM is the best yet worse than the inverse

of sample covariance matrix. AR(2) case gives completely different evidence. See

table 4.

Most of PRIAL’s are positive and in some cases it is as high as 27.45% in AR(2)

simulation. Recall that AR(2) is constructed with more complex covariance structure

than AR(1) in that asset i − 2, i − 1, i + 1 and i + 2 are directly correlated with

asset i. As before, MST performs the best. Especially the cases with N=100, MST

is significantly more precise estimator than sample covariance matrix. PRIAL’s of

US estimator are almost zero, so it performs almost the same as sample covariance

matrix. This phenomenon is also shown in all the other cases.

In our simple example in table 1, US estimator shows relative advantage over

sample covariance matrix, nonetheless, it behaves very similar to sample covariance

matrix in more complicated situations. This observation comes clearer through the

pair plots provided next. We can check in the plot that EM also shows similar be-

havior as sample covariance matrix. All the other estimators performs similar to each

other, worse than MST but better than EM and US. PRIAL’s are almost the same.

Table 3: PRIAL: AR(1)

N \ T MAU MPR MST US EM DY MHF

25\160 -3.52 -2.48 -0.83 ≈0 -0.42 -3.70 -3.60
25\330 -0.98 -0.91 -0.45 ≈0 -0.72 -1.01 -0.99
25\700 -0.26 -0.24 -0.22 ≈0 -0.81 -0.27 -0.27
100\160 -36.26 -35.53 -8.29 ≈0 -0.68 -36.97 -33.90
100\330 -14.40 -13.10 -6.60 ≈0 -1.83 -14.40 -14.24
100\700 -1.84 -0.97 -1.37 ≈0 -1.28 -1.89 -1.87
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Now look at table 5 for completely random correlation case. This simulation

constructs the covariance matrix to have different variances and completely random

correlations. Hence, this can be seen as the most complex case in two-pass procedure

simulations.

Table 4: PRIAL: AR(2)

N \ T MAU MPR MST US EM DY MHF

25\160 1.85 1.76 2.04 ≈0 -3.90 1.8 1.8
25\330 -0.26 -0.22 -0.70 ≈0 -0.04 -0.23 -2.22
25\700 0.1 -0.5 -0.03 ≈0 0.11 0.11 0.11
100\160 14.75 14.76 27.45 ≈0 -0.89 13.95 13.84
100\330 3.78 3.86 5.69 ≈0 0.52 3.69 3.70
100\700 1.24 1.22 1.65 ≈0 0.34 1.22 1.22

Table 5: PRIAL: Heteroscedastic with random correlation

N \ T MAU MPR MST US EM DY MHF

25\160 3.41 3.40 3.96 ≈0 -0.006 3.29 3.28
25\330 0.89 0.79 1.08 ≈0 0.30 0.87 0.87
25\700 0.24 -0.18 0.24 ≈0 0.15 0.24 0.23
100\160 11.89 11.91 18.95 ≈0 0.59 11.13 11.20
100\330 3.49 3.55 3.78 ≈0 0.37 3.44 3.43
100\700 1.63 1.55 2.01 ≈0 0.33 1.61 1.61

Almost all PRIAL’s are positive and MST performs the best in any combinations

of N and T . All the findings from AR(2) are also valid in this case as well. One

more thing to be mentioned here is that the improvement of small sample proper-

ties become smaller than AR(2). Basically when N=100, the ratio of dimensionality

to sample size is bigger than the case with N=25. Therefore, more improvement in

PRIAL is expected in the case with N=100, and it actually is shown in both AR(2)

and completely random case. But AR(2) case makes bigger difference between N=100
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and N=25.

For example, PRIAL of MST in N=25 and T=160 is 10.38 and that of N=100,

T=160 is 18.95 when completely random case is considered. On the other hand, the

corresponding PRIAL’s of AR(2) are 2.04 and 27.45. This can be applied to other

combinations of N and T or other estimators. If we take the example of zero cor-

relation case, table 2, this trend becomes clearer. It seems that the more complex

covariance structure is, the weaker the improvement of the small sample properties

we obtain via new estimators.

In this section, we have seen the application of new precision matrix estimators

to two-pass procedure estimating problem. Several simulation experiments give us

evidence that the new estimators mostly outperform the sample covariance matrix

with the PRIAL criteria. In various simulation settings, we found that the estimators

make very significant improvement over sample covariance matrix, especially in ex-

treme cases with high ratio of dimensionality to sample size, such as N=100, T=160.

As we expected in section 2.2, MST’s relative outperformance to sample covariance

matrix is the most significant, and it is recommended to use in GLS of two-pass pro-

cedure.

2.4 Covariance Matrix in Model specification test

In this section, effects of covariance matrix estimation are explored in the context of

model specification testing problem. In asset pricing model, Hansen statistic based on

GMM in [25] is first developed to detect the errors in estimating stochastic discount

factor. See [12] for more detail. Although the statistic has very convenient property

of asymptotic χ2 distribution, it has a couple of weaknesses. First of all, Hansen
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statistic favors highly variable pricing error. This is so because Hansen statistic is

minimizing the quadratic error with inverse of consistent estimators of covariance

matrix of pricing error as weighting matrices. Second, the statistic is too large in

magnitude with finite samples, as pointed out in [6] and [21].

To overcome these issues, Jagannathan and Wang[32] develop a distance measure

that enables testing a linear asset pricing model specification. Hansen-Jagannathan

distance(HJ-distance) assesses the errors by taking least square of maximum distance

between stochastic discount factor(SDF) from the specified model and the family of

true SDF’s which prices the asset correctly [24]. It is worth emphasizing that HJ-

distance uses the covariance matrix of asset returns, not pricing error as the weighting

matrix. Therefore it overcomes the problem of favoring the highly variable pricing

error in Hansen’s statistic.

Additionally, Hansen-Jagannathan distance uses the same weighting matrix re-

gardless of the pricing models specified. This is also because Hansen-Jagannathan

distance uses second moment of return, which remains the same whichever model

we choose. Although HJ-distance does not have the nice property of asymptotic χ2

distribution as Hansen statistic, a simulation method for computing empirical p-value

is developed in [32].

Despite the improvement in testing asset pricing model with HJ-distance, [1] finds

that the HJ-distance test overrejects the true model too frequently if one uses sam-

ple covariance matrix for the weighting matrix. Although a few researchers attempt

to solve the overrejection problem by adjusting degrees-of-freedom([21]), the Monte

Carlo experiment reveals that it is not enough to accept the model specification test

with small sample size. Ahn and Gadarowski identify that the problem rises from
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poor small sample properties of sample covariance matrix in [1]. They show that the

rejection rate is nearly 100% for theoretical p-value of 1%, 5% and 10% when the rel-

ative number of asset to time-series sample size is large. This result suggests that the

statistic is practically useless in testing many assets with small time-series sample size.

[42] constructs shrinkage method to improve the overrejection problem in HJ-

distance. Shrinkage method is also introduced in [36] in asset allocation problem.

The shrinkage approach used in [42] is a bit different from the usual one. They use

the linear combination of sample covariance matrix of asset returns and the esti-

mated structural covariance matrix implied by the specified model. Optimal weights

between return covariance matrix and the structural covariance matrix are computed

by minimizing the trace loss function.

In spite of the improvement in small sample properties, it has a limitation in that

shrinkage method imposes structural covariance matrix in the stage of constructing

the test statistics. This method uses the model specification via covariance matrix

estimation, and uses the statistic to test the same model specification. It only makes

sense only when the model is correctly specified. Therefore, it is difficult to apply this

approach to the real world practice because we never able to specify the model very

precisely. Moreover, this method is not plausible in that shrinkage method cannot

make the advantage of merit of HJ-distance over Hansen statistic. Recall that HJ-

distance is better than Hansen statistic because its weighting matrix is from second

moment of returns, which is not dependent on model specifications. But shrinkage

method uses different weighting matrices whenever different specifications are tested,

which does not fit for the spirit of HJ-distance. In the section, we’d like to employ the

seven precision matrix estimators which are completely independent from the model

specifications, and see the improvement in the small sample properties.
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2.4.1 Hansen-Jagannathan distance

Hansen-Jagannathan distance measures how far stochastic discount factor(SDF) im-

plied in the specified model is from SDF of the true model that generates the asset

returns. As briefly discussed above, HJ-distance computes the maximum distance

between the SDF in the model of our interest and the family of SDF which possibly

generates the data. Although HJ-distance can be applied to any asset pricing model,

we limit our focus on the linear models.

Historically, most of the asset pricing models suggested are linear. Arbitrage

Pricing Theory(APT) ([43]), Fama-French three factor model ([17],[18]), five macro

factor model by Chen, Roll and Ross([11]) are the famous examples. Factor analy-

sis and principal component analysis are the important methodologies employed for

analyzing the linear asset pricing models([37],[13]). See [8] more discussion on this.

Jagannathan and Wang provide convenient form of HJ-distance which enables us to

use it in practice. Previous literature mostly utilizes the HJ-distance with linear pric-

ing models. For example, Jagannathan and Wang study conditional CAPM model,

cross-sectional regression models, and stochastic discount factor based models([32],

[30], [31]); Campbell and Cochrane apply HJ-distance comparing several versions of

CAPM models with consumption based models([7]). Hodrick and Zhang consider the

specification errors of various empirical asset pricing models([26]), and there are more

that make use of linear asset pricing models with HJ-distance(see [29], [34], [38], [48]).

In this subsection, the derivation of HJ-distance in linear case is briefly reviewed.

Suppose we have N assets and let Rt be gross return vector at time t. A stochastic

discount factor, mt, is the factor that prices the asset. Therefore if SDF prices
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the return correctly, we have the condition E(mtR
′
t) = 1N , where Rt and 1N are

1 × N vectors. Remember that Rt is the gross return, so the price of the asset

should be 1, if perfectly priced. Considering K-factor model including intercept,

stochastic discount factor can be expressed as mt = Y ′
t δ, with K × 1 vector Yt. Yt

is the vector of linear pricing factors. This relation is so because we only consider

the linear asset pricing model. Linear asset pricing model implies that SDF is the

linear combination of factors with weight δ. δ is the SDF parameter. See [24] for

more detail. From E(RtY
′
t δ) = 1N , the pricing error can be defined as wt(δ) =

RtY
′
t δ−1N . We can estimate parameter δ by the least square of pricing error. Hansen

and Jagannathan([24]) propose the distance measure as

HJ(δ) =
√

(E[wt(δ)]′G−1E[wt(δ)], (17)

where G = E[RtR
′
t].

HJ-distance is a measure for the quadratic pricing error weighted by covariance ma-

trix of returns. As seen in equation (17), G−1
T = E[RtR

′
t] is used as the weighting

matrix, which does not favor the variability of pricing error. Moreover, it remains the

same regardless of the model specified. Because of these plausible properties, we can

use HJ-distance for comparing different asset pricing models with the same data set.

For practical application, Jagannathan and Wang ([32]) suggests the equation

below as the estimate of HJ-distance

HJT (δ) =
√

(E[wT (δ)]′G−1
T E[wT (δ)], (18)

where DT = T−1
∑T

t=1RtY
′
t , wT (δ) = T−1

∑t
t=1wt(δ) = DT δ − 1N and GT =

T−1
∑T

t=1R
′
tRt. Moreover, δT can be estimated by deriving the first order condition
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in quadratic minimization problem.

δT = argmin[wT (δ)G−1
T wT (δ)] = (D′

TG
−1
T DT )−1D′

TG
−1
T 1N (19)

Hansen’s statistic follows χ2 distribution since covariance matrix of pricing error is

used. In spite of the nice improvement by HJ-distance, it loses the asymptotic prop-

erty as second moment of returns replaces that of pricing error. Instead, [32] provides

the following algorithm computing empirical p-value.

p = M−1

M∑
j=1

I(uj ≥ T [HJT (δT )]2), (20)

where uj =
∑N−K

i=1 λivij. vj is χ2(1) random draws for M times and λi is non-negative

eigenvalues of

ψ = S1/2G−1/2[IN −G(−1/2)′D(D′G−1D)−1D′G−1/2](G−1/2)′(S1/2)′, (21)

where S = E[wt(δ)wt(δ)
′] and D = E[R′

tYt]. In practice, we replace S and D with

the usual consistent estimates ST = 1
T

∑T
t=1wt(δT )wt(δT )′ and DT .

2.4.2 Simulation Results

Simulation scheme here is similar to the one from Section 2.3. First, asset returns

are generated from three factor model, i.e. K = 4 including intercept. Three factor

linear model is expressed as Rti = α + Xt1β1i + Xt2β2i + Xt3β3i + eti, with Xṫ’s are

the factors and eti is the disturbance or idiosyncratic risk. Factor Xt’s are drawn

from N(0.0022, 6.944× 10−5), factor loading β’s are drawn from U(0, 2), and eti’s are

from N(0, 6.944 × 10−5). In order to see the difference across various dimensions,

the number of asset is set either to N=25 or to N=100, and the sample size is set to

T=160, T=330, or T=700. The simulation setting is taken after [1] and [42] for the
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comparison purpose.

The simulation results are given in table 6 through table 14. When the sample

size is large relative to dimension such as N=25 and T=700 case, all the estimators

show good performances because the rejection rate is close enough to the p-value.

Looking at the high dimensional cases, the sample covariance matrix turns out to

have severe overrejection especially in N=100, T=160 case. The rejection rates are

99.9%. Other estimators still have the same problem. Only MST shows improvement

in small sample properties (table 8). For instance, MST gives reasonable empirical

rejection rates in N=25/T=330 or N=100/700 cases. Since all the other estimators

are practically the same as the inverse of sample covariance matrix, MST is the only

option that we can replace the sample covariance matrix for the small sample size

with high dimensionality.

Table 6: Modified Adjusted estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.4
5% 14.3 9 7.3
10% 24.1 15.4 13.1

N=100
1% 99.4 48.3 11.2
5% 99.9 68.1 27.6
10% 99.9 78.4 38.7
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Table 7: Modified Perron-type estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.3
5% 14.2 9 7.2
10% 24.1 15.4 13

N=100
1% 99.4 48.3 11.7
5% 99.9 68.1 27.6
10% 99.9 78.8 39.3

Table 8: Modified Stein estimator

p-value T=160 T=330 T=700

N=25
1% 2.6 1.6 0.9
5% 8.6 6.7 6.2
10% 16.2 13.3 11.2

N=100
1% 46.1 10.8 3.5
5% 73 28.6 12.6
10% 83.3 41 22.1

Table 9: The usual estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.4
5% 14.7 9.1 7.3
10% 24.5 15.5 13.1

N=100
1% 99.5 48.7 11.3
5% 99.9 68.5 27.8
10% 99.9 79 39.4

Table 10: Efron-Morris-type estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.4
5% 14.7 9.1 7.3
10% 24.5 15.5 13.1

N=100
1% 99.5 48.7 11.3
5% 99.9 68.5 27.8
10% 99.9 49 39.4
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Table 11: Dey Estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.4
5% 14.7 9.1 7.3
10% 24.5 15.5 13.1

N=100
1% 99.5 48.7 11.3
5% 99.9 68.5 27.8
10% 99.9 49 39.4

Table 12: Adjusted Haff-type estimator

p-value T=160 T=330 T=700

N=25
1% 5.1 2.1 1.4
5% 14.7 9.1 7.3
10% 24.5 15.5 13.1

N=100
1% 99.5 48.7 11.3
5% 99.9 68.5 27.8
10% 99.9 49 39.4

Table 13: Diagonal Variance Matrix

p-value T=160 T=330 T=700

N=25
1% 1.2 0.7 0.8
5% 5.1 5.3 4.3
10% 11.2 11.5 8.9

N=100
1% 0.2 0.1 1
5% 2.2 2.6 4.9
10% 7 7.6 9.6

Table 14: True covariance

p-value T=160 T=330 T=700

N=25
1% 1.4 0.5 1.4
5% 5.2 4.5 4.7
10% 10.8 9.1 10.5

N=100
1% 1.9 1.8 1.8
5% 7.5 7.2 6.5
10% 15.4 14.2 12.8
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Furthermore, additional estimator is taken into consideration: diagonal variance

matrix. Diagonal variance matrix is computed by simply suppressing off-diagonal

elements of sample covariance matrix to zeros, and taking inverse. Of course, this es-

timator is somewhat unreasonable because we ignore the correlation among the asset

returns in the first place.

Recall that the asset returns are generated from three common factors with linear

model. Therefore the correlations among the assets exist significantly, and yet our

diagonal variance matrix only counts the variance. Surprisingly, empirical rejection

rates of HJ-distance using diagonal variance matrix are very close to theoretical p-

values even in N=100, T=160 case (table 13). Unlike all the other estimators, the

empirical rejection rates of diagonal variance matrix indicate underrejection problem

in high dimensional case.

However, the deviation of the rejection rate of diagonal variance matrix seems

not a big problem in that we still have the overrejection even with the simulation

with true covariance matrix(table 14). Hence, we may conclude that we can ob-

tain plausible testing results by suppressing the correlations to zeros. The pair plots

of p-values across the covariance matrix estimators are provided in figure 3 through 5.

The plots support the same conclusion as the tables. Comparing with the true

covariance matrix (upper right corner), all the empirical p-values of the estimators

look too small to be almost identical to x or y axis. p-values of MST is the only

one that can be comparable to true covariance matrix, although p-values of MST is

not perfectly aligned with 45 degree line. Pair plots of all the estimators with true

covariance matrix are getting closer to 45 degree line as the sample size increases, but

MST is still the closest to true covariance matrix.
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Figure 3: Pair Plot of p-values: T=160
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Figure 4: Pair Plot of p-values: T=330
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Figure 5: Pair Plot of p-values: T=700

35



2.4.3 Simulation of Misspecification

Simulation so far portraits the situation where the asset pricing model is correctly

specified. Remember the argument about the advantage of HJ-distance over Hansen

statistic. Our estimators as weighting matrices are invariant to model specifications

in HJ-distance, and we would like to explore the estimators from different aspects

in this subsection. We expect that the HJ-distance successfully differentiates various

candidate models from the true models with proper distance or degree because our

estimators do not change over the different model specifications.

Suppose the true data generating process is a four factors linear model. If one

candidate model correctly specifies three factors while the other candidate takes only

two of them into its specification, then the HJ-distance of the first model specification

should be less than that of the second specification. In other words, our interest lies in

how HJ-distance reacts to the model misspecification with different precision matrix

estimators.

The simulation setting of model misspecification is as follows. In data generat-

ing process, additional factor, X4 is introduced to linear factor model. Unlike the

four-factor true model, the specified models are assumed to be three-factors, i.e.

Rti = α + Xt1β1i + Xt2β2i + Xt3β3i + eti. On the other hand, the true model is

Rti = α + Xt1β1i + Xt2β2i + Xt3β3i + Xt4β4i + eti. X4 is the missing factor in the

specified model. By changing the values of coefficients β4i from 0 to 0.5, we examine

the HJ-distance distributions with respect to the degree of misspecification. β4i being

zero indicates there is no misspecification problem. Bigger β4i means greater degree

of misspecification. Figure 6 through 8 are the distribution plots of HJ-distance with

several degrees of misspecifications.
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As the degree of model misspecification gets larger, we expect that HJ-distance

distribution locates farther to the right comparing with the case of β4i = 0. We can

exactly observe this in case of using true covariance matrix and diagonal variance ma-

trix estimator. In addition to this, we have two interesting and intuitive observations.

As sample size T increases, the HJ-distance separates the various degrees mis-

specification more clearly. HJ-distributions are plotted as results of simulation of

5,000 repetitions for each model specification. Fixing the number of asset N , we can

examine how HJ-distance behaves across different sample sizes. We also can observe

that the more assets (larger N) we have, the better we can tell the differences between

the correctly specified model and misspecified models. This result is quite intuitive

because large N means that we have many cross sectional data to test the model with,

which should lead to better testing outcome. This justifies the reason why we need

to consider high dimensional covariance matrix estimation seriously in asset pricing.

The asset pricing models can be precisely tested only with large number of assets,

which requires high dimensional covariance matrix estimation.
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Figure 6: HJ-distance distribution: T=160
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Figure 7: HJ-distance distribution: T=330
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Figure 8: HJ-distance distribution: T=700
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All the other estimators including MST do not perform as clearly as diagonal vari-

ance matrix estimator or true covariance matrix. Among others, MST does relatively

good job in separating out the HJ-distance across different misspecified models. From

table 8, we have seen that MST is the best when we look at type-1 error. MST also

performs the best when type-2 error is considered. This is so because the more clearly

HJ-distance differentiates different levels of model misspecification, the less probable

we accept the wrong specified model as the true one.

2.5 Summary

Estimating high dimensional covariance matrices is challenging due to the large num-

ber of parameter to be estimated. In this chapter, we explored the effects of high

dimensional covariance matrix estimators in the context of financial asset pricing.

Empirical financial studies often require covariance matrix estimators for weighting

matrices. Estimating covariance matrix for the financial panel data, moreover, faces

small sample properties.

By simulation studies, we conducted simulation experiments on the effects of

several covariance matrix estimators both in two-pass procedure and in Hansen-

Jagannathan distance. We find that MST works pretty well in GLS setting even

with complicated correlation structure, while sample covariance matrix produces too

much error. On the other hand, in testing environment of HJ-distance, diagonal vari-

ance matrix works well. Among the seven precision matrix estimators, MST improves

the small sample properties, yet not a match for diagonal variance matrix. Moreover,

by the experiment of model misspecification, we have shown that MST is the best

candidate in measuring type-2 error among seven estimators. Again, our heuristic es-

timator of diagonal variance matrix is even better than MST in the case as well. We
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also discusses that high dimensional covariance matrix is important issue especially

in the asset pricing model because the cross-sectional relationship is crucial in testing

the model.

Based on the observation that we find in this chapter, we can go forward to in-

teresting research projects. As pointed out in the first section, the volatility of stock

returns is not constant over time, so that empirically constructed minimum-variance

portfolio performs unstable. We may apply the new precision matrix estimators to

make minimum-variance portfolio and see how the portfolio performs. Another possi-

ble application is the option pricing. Covariance matrix must play an important role

in a basket option with many underlying assets, therefore precise covariance matrix

estimation is crucial in pricing. Value-at-Risk of portfolios consisting of complicated

securities seems an interesting issue as well. From theoretical point of view, the con-

vergence speed of seven estimators is meaningful. In addition, mathematical study

on the relation of ratio of dimension to sample size might enlarge our understanding

of high dimensional covariance estimate.
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CHAPTER III

COVARIANCE MATRIX ESTIMATION AND

GENERALIZED LEAST SQUARES

3.1 Introduction

Among other statistical methodologies, Ordinary Least Square(OLS) has been one

of the most important and practical techniques both in theories and applications in

various fields. Especially in empirical studies, OLS is the most commonly adopted

method because it provides very useful statistical tools such as t-statistics or R2.

Moreover, OLS estimator has other plausible properties such as unbiasedness and

consistency. Efficiency, in particular, is considered the most important benefit of OLS

estimates. By Gauss-Markov theorem OLS estimator is proven to be the least vari-

ance among linear unbiased estimator. We will briefly review the usual assumptions

imposed on OLS analysis.

y = Xβ + ε (22)

Where y and ε are n × 1 vectors while X and β are n × k, k × 1 respectively. The

classical assumptions are:

1. Regressor X is non-stochastic.

2. E(y) = Xβ and var(Y ) = σ2In for some σ > 0

3. y is a random vector following multivariate normal distribution, i.e. y ∼
MN(Xβ, σ2In).
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Although the useful statistical properties of OLS are derived from these classi-

cal conditions, sometimes these should be relaxed when dealing with more realistic

models or data set. In the case of violating the second assumption, i.e. the errors

being homoscedastic and uncorrelated to each other, Generalized Least Square(GLS)

model has to be introduced as a remedy. Portfolio analysis is one of many examples.

If we are interested in the risk of the portfolio value with respect to oil price change,

a typical approach would be running a regression using historical returns of the port-

folio on oil price changes. In this case, it is not reasonable to preserve the second

classical assumption because stock returns might be significantly correlated to each

other even after conditioning with oil price changes. A portfolio containing Exxon

mobile and Shell will be an example. In reality , since it is impossible to introduce

all meaningful conditioning variables in the model especially in social sciences, OLS

is not always the best option in regression analysis.

In spite of the shortcoming explained above, GLS is not as often used as it should

be. The main reason is the covariance matrix. As will be explained in detail in the

following section, GLS is basically transforming the original variables with covariance

matrix to satisfy the classical conditions of OLS. However, covariance matrix is un-

known in most cases. Furthermore, we do not have any guideline when GLS has to

be used or under what kind of covariance structure it is even more useful to employ

GLS than OLS.

Motivated by importance of GLS, we would like to explore the covariance struc-

ture to study the effects of covariance matrix estimation on GLS. Sparse, diagonal

and factor covariance matrix are mainly considered as the essential ingredients of the

problem. Guided simulations from analytical derivations will be shown. The rest of

the chapter is organized as follows. We will start with brief review of GLS theory.
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In section 3.4, new covariance estimators will be suggested. Section 3.5 discusses the

conditions under which GLS is even more efficient, followed by the section of factor

covariance matrix.

3.2 GLS overview

Problems that classical assumptions do not hold are often found in practice. Gener-

alized Least Square(GLS) is a remedy for the breakdown of the second assumption

that covariance matrix of y or ε, is scalar variance, σI. In this situation, employing

OLS estimate does not guarantee the properties of OLS. OLS estimator would not be

the most efficient estimator, i.e. no longer Best Linear Unbiased Estimator(BLUE).

Since standard hypothesis tests are based on the scalar variance assumption, they

are not valid either. Therefore we need a method that allows more general forms of

linear model. In this section we briefly review GLS theory. Overall discussion both

on OLS and GLS is well described in [41],[23]. For details on GLS see [35].

3.2.1 OLS with general covariance matrix

We have the model as in (22):

y = Xβ + ε,

where y and ε are n × 1 vectors while X and β are n × k, k × 1, respectively. The

assumptions are the same as before except that var(y) = var(ε) = Σ. Σ needs not to

be diagonal. The only requirement is positive-semi definite symmetric matrix. Now

the OLS estimate becomes:

β̂OLS = (X ′X)−1X ′y.
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Even under our relaxed assumption, the OLS estimate is still unbias as long as

E(ε) = 0. Under general covariance structure, the variance of OLS has a form as,

var(β̂OLS) = (X ′X)−1X ′ΣX(X ′X)−1. (23)

From this, we can see that statistical inferences are not valid any more because

all the inferences such as t − statistics or F − statistics are based on the fact that

var(β̂OLS) = σ(X ′X)−1. Moreover, OLS estimator is not BLUE. This will be verified

by GLS version of Gauss-Markov Theorem. Therefore, under the relaxed assumption

on the general covariance structure of y or equivalently ε, we need to have different

approach from OLS.

3.2.2 Generalized Least Square Estimator

GLS, as a remedy for the violation of the second assumption, is basically transform-

ing the model in order to satisfy the classical OLS conditions. Consequently, the

transforming matrix is turned out to be Σ−1/2. The derivation and properties of GLS

estimator, also called as Aitken estimator, will be discussed.

Since covariance matrix Σ is positive semi-definite and symmetric, it can be

spectral-decomposed as follows.

Σ =UΛU ′

Σ−1 =UΛ−1U ′,

with positive diagonal matrix Λ and orthogonal matrix U . If we take G′ = UΛ−1/2

to transform the model (22), it becomes
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Gy = GXβ +Gε.

By renaming the transformed variables with asterisk mark, we have GLS model as,

y∗ = X∗β + ε∗. (24)

Then, the covariance matrix of y is computed as

var(y) = var(ε) = E(ε∗ε′∗)

= GΣG′

= Λ−1/2U ′UΛU ′UΛ−1/2

= In.

(25)

With transformed variables, we can apply OLS procedure to get GLS estimator.

β̂GLS = (X ′
∗X∗)−1X∗y

= (X ′U ′UX)−1X ′U ′Uy

= (X ′Σ−1X)−1X ′Σ−1y

(26)

And its variance-covariance matrix is computed as follows.

var(β̂GLS) = var((X ′Σ−1X)−1X ′Σ−1y)

= (X ′Σ−1X)−1

(27)

By Gauss-Markov theorem, we can verify that (27) is, in fact BLUE. In addition, if

we impose normality of ε, we can construct log-likelihood function as

L = −n
2
log(2π) − 1

2
log(|Σ|) − 1

2
(y −Xβ)′Σ−1(y −Xβ).

Then, by taking differentiating L with respect to β for the first order condition, we

get X ′Σ−1(y −Xβ) = 0, which leads to the maximum likelihood estimator,

β̂MLE = (X ′Σ−1X)−1X ′Σ−1y.
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And this is the same as what we get as GLS estimator (26). Furthermore, we have

the information matrix as below.

E[X ′Σ−1(y −Xβ)(y −Xβ)′Σ−1X] = X ′Σ−1X

Applying Cramer-Rao bound, we have the minimum variance (XΣ−1X)−1, which is

simply the variance of GLS as (27). Summing up, imposing normality of ε, GLS

estimator is equivalent to maximum likelihood estimator and it is the most efficient

estimator, or best unbiased estimator(BUE).

3.2.3 Feasible Generalized Least Squares

As seen above, GLS estimator is a reasonable remedy for non-scalar covariance struc-

ture. We also saw that GLS is the most efficient estimator. However, it is difficult to

obtain GLS estimator in practice because the covariance matrix Σ is not available in

most cases. Feasible Generalized Least Squares(FGLS) is the estimator with available

covariance estimator Σ̂ for Σ:

β̂FGLS = (X ′Σ̂−1X)−1X ′Σ̂−1y.

However, in most often situation we encounter in practice, we only have one obser-

vation in each yi. Thus, it is impossible to have an estimate for covariance matrix Σ.

Even though we have multiple observations such as in panel data analysis, estimating

Σ is not a simple job because n(n+ 1)/2 parameters are to be estimated. The usual

parametric approach is to impose assumptions on Σ with simple covariance structure.

One example is the case of serial correlation.

Suppose we believe that yi’s are serially correlated as in AR(1) model, i.e.

Cov(yt, yt−i) = ρiσ.

48



Then, we have the expression for Σ and G as below.

Σ = σ2

⎛
⎜⎜⎜⎜⎝

1 · · · ρn−1

...
. . .

ρn−1 · · · 1

⎞
⎟⎟⎟⎟⎠

G = Σ−1/2

=
1

σ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

−ρ√
1−ρ2

1√
1−ρ2

0 · · ·

0 −ρ√
1−ρ2

· · · 0

...
. . .

0 · · · 1√
1−ρ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FGLS with this transformation is called Cochrane-Orcutt estimation [10]. The es-

timation problem of Σ is reduced to estimate one parameter, ρ. Since we have at

least n observations to estimate this, GLS is quite feasible. There are other cases in

which FGLS is doable. Another simple example would be heteroscedasticity where

off-diagonals of covariance matrix are assumed to be zeros, but the diagonals are not

necessarily the same. Since we only need to estimate n estimates of diagonals, FGLS

is also doable under this assumption.

These parametrical approaches provide useful solutions in a few cases, yet not

reasonable to be generalized in practice: they impose too strong assumptions on co-

variance matrix. As a matter of fact, covariance structure is unlikely to be known at

all. Therefore, these parametrical approach to FGLS is not actually feasible in many

cases.
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In this chapter, we will explore effects of covariance matrix structure from var-

ious aspects in order to get a guideline for FGLS estimates. Heuristic approach of

banding is studied and sparsity, factor models are considered. Guided simulations by

analytical reasoning will be provided as well.

3.3 Sparsity and FGLS estimation

Let’s look at the regression model of (22):

y = Xβ + ε.

Suppose y and ε are n× 1. As emphasized previously, since we only have one obser-

vation for each yi, it is impossible to estimate covariance matrix of εi directly without

imposing additional assumptions on ε. One possible approach to FGLS, is via OLS

as follows:

(1) Run OLS to get residual vector e.

(2) Take ee′ to obtain n× n matrix.

(3) Make some changes of ee′ to estimate Σ.

Since e is n×1 vector, ee′ is rank 1 and thus not invertible. Thus it cannot serve as an

estimate for covariance matrix Σ. If we want to put an assumption that the matrix is

somewhat sparse, or, some of the off-diagonal elements of Σ are zeros, then we have

two natural ways of transforming the matrix: truncation and banding. Truncation is

a method that suppresses matrix elements to zeros if the elements do not meet the

pre-specified criteria. In this case, from our assumption of sparse covariance matrix,
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the off-diagonal elements whose absolute values are smaller than certain level are set

to be zeros.

Banding is suppressing sub- and symmetrically corresponding super-diagonals to

zeros. For example band-1 of 5× 5 matrix is setting (5,1) and (1,5) zeros and band-2

is to set (4,1), (5,2) and (1,4), (2,5) to zeros in addition to the result of band-1. In

other words, it is setting the sub- and super-diagonals zeros inward from the very last

sub- and super-diagonal.

To check if these methods work, the invertibility should be taken into consider-

ation. After banding and truncation with different degrees, the number of non-zero

singular values are counted. The simulations follow procedure as below.

(1) Generate the data, y = Xβ + ε, by random draws of X, β, and ε.

(2) Run OLS to get residual e, and compute ee′.

(3) Banding and truncating ee′, then count the number of non-zero singular values

for each degree.

(4) Numerical threshold of zero is set to 10−10.

The plots for the number of non-singular values using truncation and banding are

provided in figure 9 and figure 10, respectively. Note that the dimension n is set

to be 25 for truncation simulation. The thresholds of truncation procedure is 4 × i

percentage quantiles, i = 1, 2, · · · , 25.

As seen in figure 9, the numbers of non-zero singular values are not 25 in most

cases. Only the most truncated case, or diagonal matrix case, gives the invertible

matrix estimation. Therefore, the other truncation strategies are not usable since
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Figure 9: Number of non-zero Singular Values:Truncation

inverse of the covariance matrix estimate is needed in GLS estimation. The next

candidate is banding. Figure 10 shows the cases with three different dimensionality,

i.e. n = 25, 50, 75. The plot shows very interesting behavior of singular values.

The number of non-zero singular values increases gradually and hits the full rank

matrix when the banding is half the dimensionality and then oscillates thereafter.

The same behavior is shown under different dimensionality. More interesting obser-

vation is that almost all the random repetitions give the same result so that given

the same banding criteria the same number of non-zero singular values are returned.
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Figure 10: Number of non-zero Singular Values:Banding

3.3.1 Banding Strategy

Given this simulation result, we can try FGLS with different banding schemes. In

this simulation, we assume three regressors, i.e. k = 3. The procedure is as follows.

(1) Randomly generate X, β from N(0.0022, 0.00006944) and U(1, 2), respectively.
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(2) Generate Cholesky lower triangular matrix Q by drawing random non-zero ele-

ments from U(−0.5, 0.5) to make Σ = QQ′

(3) Randomly generate ε from multivariate normal distribution N(0,Σ).

(4) Following the data generating process (22).

(5) Run OLS and get residuals of ee′.

(6) FGLS using banded ee′.

Summation of squared error is computed in each case as [β − β̂FGLS]′[β − β̂FGLS].

The box plot comparing four banding strategies and OLS is provided in figure 11. As

shown in the plot, OLS estimator is better than any other estimators. Among other

banded strategies, Band25 is the best and almost as good as OLS estimator.

From this simple experiment suggests that FGLS has no advantage over OLS.

The reason is the following. We have only one observation for each residual. Even if

the errors are heavily correlated to each other, it is impossible to tell the difference

between zero and non-zero correlation with one observation. Therefore the only infor-

mation we can get from ee′ is variance. In previous simulation setting, the diagonals

of true covariance matrix Σ are similar to each other by construction. In order to

verify the claim, diagonals are set to be spread out intentionally. In order to see the

behavior GLS with connection to how far the diagonals are spread out, we set three

cases as below.

• εi ∼ log(1 + i) ×N(0, 1)

• εi ∼ i×N(0, 1)

• εi ∼ exp(0.1 × i) ×N(0, 1)

The simulation results are plotted from figure 12 to figure 14.
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Figure 11: Box plot:[β − β̂FGLS]′[β − β̂FGLS] Comparing with OLS
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Figure 12: MSE: logarithm diagonals
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Figure 13: MSE: linear diagonals
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Figure 14: MSE: exponential diagonals
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Clearly, the relative performance of FGLS to OLS improves and Band25 outper-

forms OLS. Moreover we can see that as the degree of spread-out of diagonal elements

changes from logarithm to linear and then to exponential, the relative performance

gets better. The rationale of the spread-out diagonal will be explored in the next

section. Putting this issue aside for a while, we will move onto sparsity.

3.3.2 Sparsity of Σ

Estimating covariance matrix is specifically challenging for it contains too many pa-

rameters. High dimensional problem gets even more challenging because the number

of parameter is increasing quadratically. In reality, correlations of random variables

of our interest may not be all significantly large in magnitude. Some of them could

be no different from zero. Portfolio construction with many asset makes a suitable

example. A portfolio consisting of different asset classes would have sparse covari-

ance matrix in its return. Several examples of different asset classes such as forward

and interest rate products are uncorrelated by construction. Even within the same

asset classes, say stocks, it is usually easy to find two stocks whose correlation is very

small. From numerical point of view, sparse matrix is beneficial because many of

the off-diagonal elements representing covariances are zeros and we have much less

parameters to estimate. Combining these two aspects of sparsity, studying sparse

covariance matrix may present useful insights. We first explore the sparsity and its

effects on GLS estimates to see the performance of banding strategy by simulations.

And then we will move on to the analytical considerations to view the conditions on

covariance matrix which make GLS estimates more efficient. Also simulation studies

will follow to support the analytical conjectures.
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3.3.2.1 Simulations on Sparsity

In this simulation, we’d like to examine the effects of sparsity of true covariance matrix

on efficiency of linear regression estimators. We set three simulation schemes. The

first one is the common case, where we only have one observation for each xij, yi, εi .

The second case is hypothetical situation where only εi’s are observed multiple times.

In other words, we have (22) where there are multiple observations on yi which comes

from multiple observations on εi. This hypothetical setting is explored in order to see

the potential behavior as the number of observations increasing. The third simulation

setting is the two-pass procedure. This is a popular method in empirical asset pricing

and usually the second procedure adopts GLS with sample covariance matrix for the

transformation matrix. In this simulation studies, we compare the banding strategy

with OLS for the first two cases and GLS with sample covariance matrix in the third

case since OLS and GLS with sample covariance matrix are the possible alternative

in each case.

The measure for estimating error is the same as before. After obtaining the esti-

mates for β1, β2, β3 using different methods, we compute the mean squared error as

(β̂1−β1)
2 +(β̂2−β2)

2 +(β̂3−β3)
2). The sparsity is defined as the percentage of zeros

in off-diagonal elements of true covariance matrix. The simulations are conducted

under dimensionality of 25. The experiment is repeated 1,000 times for each sparsity

(the first and second setting) or for each number of observations (the third setting).

The simulations include sparsity 30% through 90%. The box plot and pair plot

of sparsity 50% is given in figure 15 and 16. Since all the other sparsity settings

demonstrate similar results, plots for those are not reported here. First of all, only

banding 25, i.e. diagonal case, is comparable to OLS. All the other banding strategies

are worse off than OLS. The next point is that the performance of FGLS is getting
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worse as more banding is conducted but it becomes better when it comes to the ex-

treme banding, or exactly diagonals. It is easy to see that with one observation on

error term given, covariance estimate is meaningless in comparison with the estimate

for variance. However, it is quite puzzling why more banding leads to worse FGLS

estimate.
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Figure 15: Boxplot of MSE, sparsity=50%

In order to compare FGLS with banding strategy to that of OLS performance, we

consult table 15. The FGLS in the table indicates the feasible GLS that employs the

fully banding strategy which suppresses all the off-diagonal elements to zeros. Mean,

median and standard deviation ratios of FGLS MSE to OLS MSE are provided.
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Figure 16: Pairplot of MSE, sparsity=50%

Although FGLS performances get better as sparsity increases, it appears not to

be significant in any measures. Since the banding strategy is built based on one

observation, it is worth taking a glance at the hypothetical situation where we have

more than one observations on errors. We observe three sample sizes, n = 20, 50, 100

and report relative MSE ratio of fully banded FGLS to OLS in table 16.
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Table 15: MSE ratio of FGLS to OLS with different sparsity

Sparsity 30% 50% 70% 90%

Mean 1.01 1.00 0.99 0.98
Median 1.02 0.98 1.00 0.99
Standard Deviation 1.02 1.01 1.00 0.97

Table 16: MSE ratio of FGLS to OLS: multiple observation case

30% 50% 70% 90%

n=20 Mean 0.96 0.95 0.92 0.86
Median 0.95 0.89 0.87 0.79
Standard Deviation 0.96 0.99 0.98 0.88

n=50 Mean 0.96 0.95 0.92 0.86
Median 0.95 0.88 0.86 0.83
Standard Deviation 0.94 0.91 0.90 0.83

n=100 Mean 0.92 0.87 0.79 0.75
Median 0.94 0.86 0.82 0.75
Standard Deviation 0.89 0.87 0.81 0.86

Banded FGLS here is obtained by applying banding strategy to sample covariance

matrix. As expected, as the number of observation increases from 20 to 100, the

relative performance of fully banded FGLS to OLS is getting better. Furthermore,

the relative performance of FGLS behaves more nicely as the sparsity increases. In

case of sample size 100, the mean squared error is reduced to 75% of OLS, which

verifies that sparsity of covariance matrix matters in banding strategy.

The last simulation setting is two-pass procedure with panel data. Note that panel

data has both time-series and cross-sectional data set where regression coefficients are

not constant over cross-sectional direction. This is a good example of multivariate

problem in finance application. If there exist common factors as driving force to
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each individual stock return, we can model this problem as panel structure. In this

simulation study, two parameters are of our interest: sparsity and sample size. The

sample size is referred to the number of sample in time-series data. Again, three

factor model is assumed. The simulation model is as follows.

y = Xβ + ε (28)

where y, ε is T × n matrices, X is T × k regressor matrix, and β is k × n coeffi-

cient matrix. Each row of ε is assumed to be from multivariate normal distribution.

In simulation, we selected MN(0,Σ) for each row of ε. Coefficients β, regressor X

are randomly and independently drawn from U(0, 2) and N(0.0022, 0.000069442), re-

spectively. Three factor model and intercept implies k = 4, n is set to 25. We

define sparsity as the percentage of zeros in off-diagonals. By setting different time

series sample size T and sparsity of Σ, the behavior of MSE in two pass procedure is

evaluated. FGLS in the second-pass are conducted using sample covariance matrix

and several banding strategies. The full banding strategy works the best and a part

of simulation comparison with sample covariance matrix can be found in figure 17

through figure 20. As are enough to show the idea, sparsity 30%, 90% and sample

size 160, 700 are provided in figures. Full comparison with all the other alternatives

are demonstrated in the box plot of 18.
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Figure 17: Boxplot of MSE in two-pass GLS, sparsity=30%, n=160
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Figure 18: Boxplot of MSE in two-pass GLS, sparsity=90%, n=160
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Figure 19: Boxplot of MSE in two-pass GLS, sparsity=30%, n=700
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Figure 20: Boxplot of MSE in two-pass GLS, sparsity=90%, n=700
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Table 17: MSE ratio of FGLS in two-pass procedure: MSE with full banding strategy
to sample covariance matrix

30% 50% 70% 90%

n=160 Mean 0.35 0.44 0.56 0.75
Median 0.41 0.48 0.62 0.74
Standard Deviation 0.32 0.42 0.53 0.76

n=330 Mean 0.38 0.45 0.58 0.79
Median 0.41 0.49 0.61 0.76
Standard Deviation 0.37 0.43 0.54 0.82

n=700 Mean 0.41 0.48 0.58 0.81
Median 0.44 0.50 0.60 0.83
Standard Deviation 0.41 0.44 0.54 0.79

First of all, all the banding strategies outperform sample covariance matrix. We

also can see that more banding results in better estimation, agreeing with previous two

simulation setting. The obvious finding is that the large sample size makes relative

outperformance of full banding to be small. This is consistent with general statistical

convergence idea of sample covariance matrix. Sparsity truly matters in estimation

of panel data. Both from table 17 and figures 17 through 20, as we have more sparse

covariance matrix, the MSE ratio of banding strategy to sample covariance matrix

increases. The possible explanation is the following. If covariance matrix has many

non-zero off-diagonals, the estimates of those parameters by sample covariance matrix

are misleading the whole GLS estimate, which offsets the effects of suppressing zeros

for off-diagonal estimates. In panel data using two-pass procedure, FGLS with fully

banding strategy is suggested when time-series sample size is small and the covariance

matrix is believed to be less sparse.

In three simulations, we learned that sparsity of true covariance matrix really

matters. Combining the first and the second simulation setting, we have seen that

GLS estimation improves when sparsity increases comparing with OLS performance.
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The potential reason might be that banding strategy is getting closer to the true

covariance matrix by construction because banding is to suppress off-diagonals to

zeros which shares the main feature of sparse covariance matrices. In panel data,

sample covariance matrix and banding strategies are compared. As noted previously,

the sample size and sparsity affect the relative performance of banding strategy over

sample covariance matrix. Meanwhile, in all cases, the FGLS with full banding strat-

egy shows the best efficiency.

3.4 When does the relative efficiency of GLS to OLS im-
proves?

In previous sections, we have seen the simulation results showing that FGLS using

fully banding strategy provides improved estimation over OLS or FGLS with sample

covariance matrix. In this section, the focus is shed on the conditions under which

outperformance of GLS becomes even more. Unlike the preceding sections, popula-

tion version of GLS and OLS are considered. Analytical derivation along with guided

simulation verifies our claims. We first analyze diagonal elements and then move onto

factor decomposition of true covariance matrix Σ and their effects on GLS efficiency.

3.4.1 First glance at GLS efficiency

In order to find and verify the conditions that improve GLS efficiency, we start with

simple cases and develop the argument into more general cases. Since OLS is a special

case of GLS, if Σ is the identity matrix I, then estimates of OLS and GLS are the

same. For the simplicity of calculation, we take a constant regressor into account for

a while.

y = μ+ ε (29)
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where y, μ and ε are all n×1 vectors. ε is a random vector distributed with mean zero

and covariance matrix Σ. In addition to identity matrix I, we have special covariance

matrices that produce the same GLS and OLS estimates.

Proposition 3.4.1. Let Σ is a form of

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 a · · · a

a 1 · · · a

...
...

a · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with a constant a. Then

GLS estimate is the same as OLS.

Proof. Σ of stated form has a explicit expression of its inverse. See [44]. Since Σ−1 is

c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 d · · · d

d 1 · · · d

...
...

d · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for some scalar c and d, it is easily derived that

μ̂GLS = (1T Σ−11)−11T Σ−1y = ȳ = μ̂OLS

Therefore, the GLS estimate with this special covariance matrix form is not de-

pendent on the covariances a. It is interesting that correlations do not have any

influence on GLS estimates when the variances are the same.

The next case is when correlations are all zeros and the variances are not the same:

heteroscedasticity with zero-correlation case. The following proposition shows that

GLS is more efficient than OLS and that the more variances are spread out, the better

GLS’s relative efficient it gets.

Proposition 3.4.2. Let Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1 0 · · · 0

0 σ2 · · · 0

...
...

0 · · · σn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

then GLS estimator is more effi-

cient than OLS. Moreover, as σi

σi+1
increases, the relative efficiency of GLS to OLS
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becomes better. In other words, the more the variances are spread out, the better the

relative efficiency of GLS to OLS becomes.

Proof. The GLS estimate is computed as,

μ̂GLS = (1T Σ−11)−11T Σ−1y

=
1

σ−1
1 + · · · + σ−1

n

[σ−1
1 · · ·σ−1

n ]

⎛
⎜⎜⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎟⎟⎠

=
n∑

i=1

σ−1
i yi

σ−1
1 + · · · + σ−1

n

=
n∑

i=1

wiyi

where, wi =
σ−1

i

σ−1
1 +···+σ−1

n
. Since we have var(μ̂OLS) = var(ȳ) = 1

n2

∑n
i=1 σi, efficiency

of GLS and OLS is compared as follows.

var(μ̂GLS) = var(
n∑

i=1

wiyi)

=
n∑

i=1

(
σ−1

i

σ−1
1 + · · · + σ−1

n

)2σi

=
1

σ−1
1 + · · · + σ−1

n

≤ σ1 + · · · + σn

n2
= var(μ̂OLS)

To verify the last line, we assume without loss of generality that σ1 ≥ · · · ≥ σn. If n2

is less than 1
σ−1
1 +···+σ−1

n
(σ1 + · · · + σn) then we are done.
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n2 − 1

σ−1
1 + · · · + σ−1

n

(σ1 + · · · + σn)

= n2 − (1 +
σ1

σ2

+ · · · + σ1

σn

(30)

σ2

σ1

+ 1 + · · · + σ2

σn

(31)

· · ·
σn

σ1

+
σn

σ2

+ · · · + 1) (32)

(33)

Since for i �= j,

σi

σj

+
σj

σi

=
σ2

i + σ2
j

σiσj

≥ 2,

we verify that (33) is negative, thus GLS is more efficient than OLS.

Moreover, we can see that if σi’s are more spread out, the more efficient GLS is. To

see this, let σ2 < σ′
2

σ2
1 + σ2

2

σ1σ2

− σ2
1 + σ′2

2

σ1σ′
2

=
(σ′

2 − σ2)(σ
2
1 − σ′

2σ2)

σ1σ2σ′
2

< 0.

Considering the equation (33), it is straightforward that the more variances are spread

out, the better relative efficiency of GLS over OLS we have.

Two special cases of covariance matrix form in constant regressor model have been

seen. Next argument is still based on constant regressor model as (29), but the covari-

ance structure has no restriction, i.e. any matrices that are symmetric and positive

semi-definite are allowed.

Let Σ =

⎛
⎜⎜⎜⎜⎝

σ11 σ12 · · · σ1n

...
. . .

σn1 · · · σn1

⎞
⎟⎟⎟⎟⎠

. First of all, we have

var(μ̂OLS) = var(ȳ) =
1

n2

n∑
i

n∑
j

σij. (34)
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Now the GLS estimator is

μ̂GLS = (1T Σ−11)−11T Σ−1y

=
1∑n
i Si

[S1 · · ·Sn]

⎛
⎜⎜⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎟⎟⎠
,

where Si is the i-th column sum of matrix Σ−1. This leads us to variance of GLS as

var(μ̂GLS) =
1

(
∑n

i Si)2

n∑
i,j=1

SiSjσij. (35)

Comparing equation (34) with equation (35) we can see that the first is the arithmetic

average while the latter is the weighted average of σij. The variances of OLS and

GLS will be similar if the weights are similar, or Si ≈ Sj. We have already seen that

covariance matrix with the same off-diagonals with diagonal of 1 gives the same GLS

and OLS estimator. This is a special case of Si = Sj, and it makes a good example

of the argument.

Looking inside the summand of equation (35), we have

var(μ̂GLS) ∝ S2
1σ11 + · · · + S2

nσnn + S1S2σ12 + · · · . (36)

We can find two observations here.

• Σ with non-positive σij leads to more efficient GLS estimator than Σ with all-

positive.

• The more σii’s are spread out, the more efficient GLS estimator is.

The first one is obvious while the second one takes more consideration. The logic is

as follows.
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Let Σ−1 = {ξij}n
i,j, then ξ11 ≤ · · · ≤ ξnn, since σii ≥ · · · ≥ σnn. Others being equal,

Si is increasing function of ξii and if the order of ξii’s has inverse relation with σii

then equation (35) shows that smaller weight is for greater σii and greater weight is

for smaller σii. Therefore, with fixed
∑n

i=1 σii, the more σii’s are spread out the less

the GLS variance is. We will look into detail about this later on.

Finally general case will be studied. The regressors of linear model are no longer

assumed to be constant and covariance matrix is set to be any legitimate forms. The

only restriction we made on regression model (22) is k = 1, one-regressor model.

y = Xβ + ε,

with ε has covariance matrix of Σ, and X = [x1, x2, · · · , xn]′.

Similarly as before, the GLS estimator is

β̂GLS = (XT Σ−1X)−1XT Σ−1y

=
1∑n

i,j=1 xixjξij

n∑
i,j=1

xiξjiyj

=
1∑n

i,j=1 xixjξij

n∑
j

Wjyj,

where, Wj is weighted j-th column sum of Σ−1 with xi. The variance of GLS estimate

is computed as

var(β̂GLS) = var(
1∑n

i,j=1 xixjξij

n∑
j

Wjyj) (37)

=
1

(
∑n

i=1Wi)2

n∑
i,j=1

WiWjσij. (38)
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Figure 21: Boxplot of MSE for OLS and GLS estimates with different diagonal
structure: constant regressor
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Figure 22: Boxplot of MSE for OLS and GLS estimates with different diagonal
structure: non-constant three regressor
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With fixed X, we can reach the same conjecture as in constant regressor case: the

more σij’s are spread out, the more efficient GLS estimate is. The simulation results

support our conjecture both in constant and nonconstant regressor models. Figure 21

and 22 are the box plots of the MSE of GLS, MSE with different diagonal structure

in covariance matrices. The simulations is set as before except that true covariance

matrix is used for transformation matrix in GLS because we like to see the behavior

of GLS in population version, not estimation counterpart. Another note is that figure

22 is the result of three regressor model which, in fact, generalizes our claim to multi-

variate regression case. In these simulations, the diagonals of true covariance matrices

are assumed in three ways: constant, spread-out, and more spread-out. Spread-out

setting is to force the diagonals of σii to be 0.5i and more spread-out case to be 2i.

The figures show that more spread-out diagonals in Σ provides better relative perfor-

mance of GLS estimates in terms of MSE. Even the three-regressor case agrees with

our conjecture.

Although the analytical calculations and simulation experiments regarding vari-

ances of GLS estimators in various settings shed an intuition about covariance matrix

Σ, it is not conclusive. Direct analytical proof seems difficult here but we can explore

more into the structure of Σ and Σ−1 to verify our conjecture more clearly. The next

subsection provides an argument that supports our claim.

3.4.2 On diagonals of Σ and Σ−1

Let us change the point of view upon covariance matrix into numerical side. Since Σ

is symmetric and positive-semi definite, it can be decomposed as UDU ′, where U is

a matrix of eigenvectors with UU ′ = U ′U = I and diagonal matrix D of eigenvalues
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such that λ1 < · · · < λn. From different aspect, if V is a random vector uncorrelated

to each other with covariance matrix of D, then U can be seen as a linear transfor-

mation matrix for V into Z: Z = UV , cov(Z) = E(UV V ′U ′) = UDU ′ = Σ.

Let’s look into the expression of diagonal elements of Σ, the variances of Z:

σ11 = λ1u
2
11 + · · · + λnu

2
1n

σ22 = λ1u
2
21 + · · · + λnu

2
2n

· · · .
(39)

Since U is an orthogonal, u2
j1 + · · · + u2

jn = 1, σii can be seen as a weighted average

with weights u2
j1. If the transformation matrix U is such a matrix that makes vari-

ances of Z spread out each other, say, σ1 < · · · < σn, then we can guess that big

weights on smaller λi’s for smaller σjj and big weights on bigger λk for σll’s and so

on. Therefore, fixing the eigenvalues, the degree of spread-out of variances of Z is

decided by transformation matrix U . Therefore, if U is a matrix that preserves the

order of λ′is into the order of σ′
is, then the order of ξii of Σ−1 will be reversed because

Σ−1 = UD−1U ′.

The reasoning so far is somewhat abstract and the numerical examples help un-

derstand the behavior of U and Σ = UDU ′. Both of the matrices in the example are

4× 4 and have increasing diagonals. For the purpose of the comparison, the first one

has σii = 0.5i while the second has σii = 0.7i with i = 1, 2, 3, 4. All the other elements

of Σ are randomly generated and spectral decomposition is conducted in such a way

that eigenvalues are organized in ascending order. Therefore the more weights on the

small eigenvalues is given, the smaller the resulting σii. Let’s look at the following

example.
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U0.5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.858 0.434 0.134 −0.236

−0.375 0.695 0.565 0.236

0.0702 −0.529 0.804 −0.258

0.341 −0.219 0.117 0.906

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

U0.7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.969 −0.117 0.112 −0.184

−0.120 −0.826 0.509 0.205

−0.084 0.474 0.844 −0.232

0.197 0.277 0.120 0.932

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Square of elements (1,1) of the two matrices are the weights for the smallest eigen-

value to generate σ11. Square of (2,2) are for the second smallest eigenvalues and so

on. Looking up for equation (39), the rows of U0.5 and U0.7 are the weights in weighted

average of eigenvalues λ’s. The first observation is that the diagonals of the matrices

are the biggest in magnitude so that the corresponding eigenvalues are given the most

weights in calculating the corresponding σii. The next observation is that as the σii

are more spread out, the more the diagonals of U are spread-out. In other words, as

the variances are spread out, the weights on the corresponding λ increases, thus it is

likely to reverse the order of ξii because Σ−1 = UD−1U ′ and diagonals of D−1 is in

reversed order of diagonals of D. In fact, here is the corresponding Σ and Σ−1 of U0.7.

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.70000 −0.04316 −0.2596 0.4137

−0.04316 1.40000 −0.5317 −0.5094

−0.25967 −0.53173 2.1000 0.3075

0.41375 −0.50944 0.3075 2.8000

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Σ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.68751 0.05374 0.26157 −0.26831

0.05374 0.83660 0.20057 0.12224

0.26157 0.20057 0.56878 −0.06463

−0.26831 0.12224 −0.06463 0.42613

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The example shows the reasoning about the diagonals of Σ via spectral decomposi-

tion. It is not analytically proved but worth looking into it for it helps us understand

the numerical standpoint of covariance matrices and their inverses. The bottom line

of this analysis is as follows. If there exists an orthogonal matrix U that transforms

random vector V with diagonal covariance matrixD to a new random vector Z = UV .

Then the covariance matrix of Z becomes UDU ′, and if matrix U has a property that

preserves the order of magnitude of diagonals of D as in equation (39), then the order

diagonals of inverse matrix UD−1U ′ is reversed. Our claim or conjecture is that more

spread-out diagonals of UDU ′ likely come from the prescribed characteristic of U ,

which is shown by numerical examples.

Now we move onto the next argument about column summation of Σ−1. Σ−1,

the inverse of covariance matrix, is also symmetric and positive semi-definite matrix.

This can be easily seen by spectral decomposition. Therefore, Σ−1 also can serve as a

covariance matrix. For this reason, we are given Σ−1 = {ξij}n
i,j=1 with ξij = πij

√
ξiiξjj

where πij is a correlation coefficient. Simply substituting this expression to the Σ−1,

the column summation Si’s are written as below.

S1 =
√
ξ11(

√
ξ11 + π12

√
ξ22 + · · · + π1n

√
ξnn)

S2 =
√
ξ22(π21

√
ξ11 +

√
ξ22 + · · · + π2n

√
ξnn)

· · ·

(40)

The diagonal elements of ξii are the multipliers of corresponding column sum. The

76



remaining part in bracket is the weighted summation of all diagonal elements with

correlation coefficients πij. From this point of view, we can see that the magnitude

of Si is decided mainly by ξii, providing the parts in the bracket in equations (40) are

not different to each other. Putting in more mathematical form, let’s assume that

correlation coefficients πij’s are independently distributed with mean M and variance

V . Then the followings are obtained.

E(S1) = ξ11 +M(
√
ξ22 + · · · +

√
ξnn)

E(S2
1) = ξ11 +M(

√
ξ22 + · · · +

√
ξnn) + V ξ11(ξ22 + · · · + ξnn)

E(S2) = ξ22 +M(
√
ξ11 + · · · +

√
ξnn)

E(S2
2) = ξ22 +M(

√
ξ11 + · · · +

√
ξnn) + V ξ22(ξ11 + · · · + ξnn)

(41)

Therefore, if ξ11 ≥ ξ22 ≥ · · · ≥ ξnn, then the column summation of Σ−1 has a relation

as below.

E(Si) ≤ E(Sj) (42)

Taking the previous analysis on the relationship between orders of σii’s and ξii’s into

account, we have come to an useful conclusion. Since σii’s and ξii’s have reversed

order in magnitude, σii ≥ σjj leads to E(Si) ≤ E(Sj). Now recall that variances of

OLS and GLS estimates.

var(μ̂OLS) = var(ȳ) =
1

n2

n∑
i

n∑
j

σij

var(μ̂GLS) =
1

(
∑n

i Si)2

n∑
i,j=1

SiSjσij
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The variance of GLS is the weighted average of σij with weights , SiSj
(
∑n

i Si)2
. In this sub-

section we first argue that σii, the diagonals of Σ are likely to have the reversed order

of ξii’s, the diagonals of Σ−1. In addition, we show that E(Si) ≤ E(Sj) if ξii ≤ ξjj. By

the expression for variance of GLS estimate above, we can see that big σii is likely to

result in small ξii and then leads to small Sii, and finally small weights of Sii is put

on big σii in variance of GLS. For the smaller σjj, the opposite logic can be applied.

Therefore, if we ignore the cross-product in var(μ̂GLS) = 1
(
∑n

i Si)2

∑n
i,j=1 SiSjσij, as in

sparse covariance matrix case, the more spread-out the diagonals of Σ are, the smaller

the variance of GLS estimates are obtained. Since OLS estimates are invariant with

respect to covariance matrices, the relative efficiency of GLS becomes better as the

degree of spread-out of diagonals of covariance matrix Σ increases. Finally, we have

come to the conjecture as follows.

Conjecture 1. Let the linear model (22) with covariance matrix Σ0 = {σij}n
i,j=1

be given. We can write Σ−1
0 = {ξij}n

i,j=1 = {πij

√
ξiiξjj}n

i,j=1 with πij = 1 for all

i = j. Let’s assume that πij’s are independently and identically distributed. Suppose

another covariance matrix Σ1 is given to the same model, and diagonals of Σ1 are

more spread-out than Σ0. Then we claim that

var(β̂GLS|Σ1) ≤ var(β̂GLS|Σ0). (43)

As notified earlier, the conjecture is not analytically proved in this thesis, but

we can partly verify the claim via guided simulation. The following are the steps of

the simulation we are about to show. The first step is about generating covariance

matrix.
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1. Generate uniform random numbers from U(−0.8, 0.8) and use them as the en-

tries of lower triangular matrix L.

2. Make positive-semi definite matrix by A = LL′.

3. Let the diagonals of A be {di}n
i=1 and diagonal matrix B = diag( 1√

d1
, · · · , 1√

dn
).

4. Then we get correlation matrix Ω = BAB, or covariance matrix with constant

diagonals.

5. In order to get spread-out diagonal covariance matrix with correlations and sum

of diagonals fixed, generate a sequence si and get new diagonals di = si∑n
i=1 si

by

Σ = FΩF where F = diag(
√
d1, · · · ,

√
dn)

- We use si = i and si = i2, i = 1, 2, · · · , n.

The next step is about generating the data in linear model using pre-generated

covariance matrix Σ from the previous steps.

1. Generate data by the model, y = Xβ + ε where ε is randomly drawn from Σ, β

from 1√
k
× U(0, 1), X from N(0, 1) independently.

2. We experiment with three cases, k = 1, 2, 3.

3. By doing this, we maintain signal-noise ratio across the number of factors: 1-1.

Once covariance matrix and data X and y are generated we computed GLS and

OLS estimates and compare with true β’s. The estimating errors are computed by

γO = β̂OLS −β, γG = β̂GLS −β. We will look at MSE’s, i.e. γ′OγO and γ′GγG. The sim-

ulation is run with 1,000 repetitions for each diagonals structure si, and the statistics

of γ′OγO/γ
′
GγG are reported in tables 18 and 19.

For both of averages and standard deviations, the ratios are increasing signifi-

cantly as the degree of spread-out of diagonals of Σ increases. This simulation results
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Table 18: Ratio of squared errors of OLS to GLS: AVERAGE

Diagonal Sequence si = 1 si = i si = i2

One Factor 20.56 55.03 273.70
Two Factors 14.22 28.58 117.11
Three Factors 9.91 19.50 64.48

Table 19: Ratio of squared errors of OLS to GLS: Standard Deviation

Diagonal Sequence si = 1 si = i si = i2

One Factor 15.93 30.88 144.82
Two Factors 9.93 20.76 62.66
Three Factors 7.04 14.41 38.55

support our claim in conjecture 1. Now we conducted slightly different simulation to

see if our claim is valid when real data set is used. The same simulation procedure is

taken as described above.

The simulation results agree with the intuitions from our analytical derivations.

It is difficult to set up an empirical studies concerning various diagonals of covariance

matrix because we do not have ex ante knowledge about covariance matrix. There-

fore, a hypothetical GLS case is set up. This computer experiment is basically the

same simulation as before except that the covariance matrix is constructed from real

data. We used CRSP ex-dividend daily stock return data in 2008. After cleaning

the data set we have 6,299 stocks available for the experiment. We randomly pick 25

stocks from these and calculate sample covariance matrix and then use it as the true

covariance matrix for the simulation. The procedure is repeated for 1,000 times with

three stock picking criteria.

- Pick randomly 25 stocks and construct covariance matrix.
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- Pick randomly 25 stocks each from distinct industry group using SIC 2-digit

code.

- Pick Randomly 25 stocks each from distinct size group using ”share outstanding

× share price”.

Table 20: MSE ratio of OLS to GLS: AVERAGE, real stock return data

Criteria Random By industry By size
One Factor 5.12 3.21 5.66
Two Factors 4.99 3.39 5.36
Three Factors 4.61 3.24 4.59

Table 21: MSE ratio of OLS to GLS: Standard deviation, real stock return data

Criteria Random By industry By size

One Factor 26.59 10.20 33.11
Two Factors 27.24 12.50 40.00
Three Factors 26.40 11.09 22.83

The ratios of OLS to GLS regarding MSE of each estimate are reported in tables

20 and 21. The results are interesting in that it is consistent with our anticipation.

First of all, GLS estimates are more efficient than OLS in all cases. Among them the

GLS estimates using ”by size” criteria produce the most efficient GLS relative to OLS

estimates, which is consistent with our belief that the variances of stock returns have

something to do with size. ”By industry” is the least efficient GLS relative to OLS,

even less efficient than ”by random” case, which makes sense because stocks from

different industry may have very small correlations and this will make GLS similar

to OLS. In real data, though it is hypothetical setting, the result supports our claim.

The next section, we take a look at the factor structure of covariance matrices.
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3.5 Factor analysis of Σ

In this section, we will explore the factor covariance matrix. Recently factor analysis

is studied in the context of covariance matrix as in [20] showing that high dimensional

covariance matrix estimation is better estimated by factor modeling. As is argued in

the paper, covariance matrix estimation via factor modeling is very promising because

we only need to care for a handful of factors instead of p(p+1)/2 parameters. Factor

model is widely exercised in finance. Fama-French three factor model in [17], momen-

tum factor model in [9] where linear factors are modeled by using observable factors.

On the other hand, [14] and [37] model unobservable statistical factors using stock

return data via factor analysis and principal component analysis. Similar techniques

are introduced to fixed income market in [40] and [28].

Previous research on factor analysis shows that three principal components ex-

plain over 95% of stock and forward market movements. Here, we explore covariance

matrix of ε in equation (22) via factor modeling. Earlier research only focuses on

covariance matrix of return itself, but this paper looks into covariance matrix of er-

rors. As noted above, the higher dimensional covariance matrix may make the most

of factor structure by which we can detour too-many-parameter problem.

3.5.1 Factor analysis and linear model

Let’s assume the following model,

y = Xβ + ε,
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where error ε is a n × 1 random vector with covariance matrix Σ. Now, we model

the error with linear common factor F and factor loading L. See [3] or [33] for more

detail on factor analysis.

ε = LF + e, (44)

where e = [e1, · · · , en]′ and each component is independent to each other. ε, L, F

are n × 1, n × r, r × 1, respectively with r ≤ n. We have this assumption because

the number of factor is usually smaller than the dimensionality. As noted earlier, in

many finance literature it is found that only three principal components account for

most of the randomness. In our model, even smaller number of factors will capture

most of the movements because our covariance matrix is for error from linear model,

where regressor X is believed to explain significant portion of the movement of y, and

error ε is the rest. F is the common factor and orthogonal, i.e. FF ′ = I. L is the

factor loading and will be written as [l1, l2, · · · , ln]′. With standard assumptions in

orthogonal factor analysis, we have that E(εε′) = Σ = LL′ +D with diagonal matrix

D.

We start our argument on factor analysis and GLS estimates with a simple setting

of r = 1 and D = λI with constant λ. Number of factor r being set to be one is not

too much simplification as error is the remaining effect after conditioning y with X

in the linear model. The covariance matrix is expressed as

Cov(ε) = Σ = LL′ + λI. (45)

Since r = 1 < n, LL′ is not invertible. By so called, Sherman-Morrison formula, the

inverse matrix of Σ is explicitly known. Applying the formula to equation (45),
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Σ−1 =
1

λ
[I − 1

λ+
∑n

i=1
l2i
λ2

LL′], (46)

where li is the i-th component of factor loading vector L. In standard factor analysis,

we call l2i communality and call λ specific variance. This is easily seen from direct cal-

culations of equation (46) by substituting L = [l1, l2, · · · , ln]′. Providing the sequence

of l2i does not converge to zero, n → ∞ means Σ−1 → 1
λ
I = D−1. Of course, this is

not mathematically rigorous in that we have not defined matrix norm yet. But still,

we have an intuitive ground that n → ∞ leads to the fact that inverse of covariance

matrix Σ−1 may converge to inverse of specific variance matrix D−1. If the argument

is right, the inverse of high dimensional covariance matrix is approximated by inverse

of specific variance matrix. This is consistent with our previous simulation result of

fully banded matrix, which suppresses off-diagonals to zeros.

Now we move onto the case where specific matrix takes a general form, i.e.

D �= λI. D is a diagonal matrix but no longer contains constant diagonal elements.

By Sherman-Morrison formula, we have,

Σ−1 = D−1 − D−1LL′D−1

1 + L′D−1L
.

Plugging in each elements to the formula and obtain,

Σ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
λ1

0 · · · 0

0 1
λ2

0 · · ·
...

. . .

0 · · · 1
λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

− 1

wn

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
λ2
1
l21

1
λ1λ2

l1l2 · · · 1
λ1λn

l1ln

1
λ2λ1

l2l1
1
λ2
2
l22 0 · · ·

...
. . .

1
λnλ1

lnl1 · · · 1
λ2

n
l2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (47)

where wn = 1 +
∑n

i=1
l2i
λi

.
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Again, providing that
∑n

i=1
l2i
λi

does not converge to zero, it seems that Σ−1 → D−1,

which gives the same idea as D = λI. Since it is not analytically conclusive, we ex-

amine the behavior of H = D−1 −Σ−1 via simulation. Before going into the detail of

simulation, we first need to overview matrix norms because matrix convergence only

makes sense under pre-specified norms.

3.5.2 Matrix norms and behavior of H

In order to argue matrix convergence or distance between two matrices, matrix norms

have to be defined. Short overview of matrix norms followed by simulation result of

norms of H are discussed here.

‖A‖ denotes the norm of matrix A if the following conditions are satisfied. The

discussion of more intensive matrix norms and its computations can be found in [22]

and [27].

• ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0.

• For any constant α, ‖αA‖ = |α|‖A‖.

• ‖A+B‖ ≤ ‖A‖ + ‖B‖ for any conformable matrices A and B.

Given the conditions of matrix norms above, there are many norms available and we

focus on three of them useful in our applications here.

The first example is Frobenius norm which is not only intuitive but also straight-

forward to compute. The definition is
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‖A‖F =

√√√√
n∑

i=1

m∑
j=1

|aij|2

=
√
trace(A′A)

=

√√√√min(n,m)∑
i=1

φ2
i ,

(48)

where aij and φi are (i, j)-th entry and i-th singular value of matrix A.

The second example is the operator norm, which is a special case of induced norm.

Induced norm is defined as ‖A‖p = maxx �=0
‖Ax‖p

‖x‖p
, and operator norm is the induced

norm where p = ∞. Operator norm is known to be computed conveniently as below.

‖A‖op = max
i

{φi : φ′
is are the eigenvalues of A}

The last example is the maximum norm, which is simply the maximum absolute value

of the entries of the matrix.

‖A‖max = max
i

{|aij|}

Among the three norms introduced above, Frobenius norm is the most intuitive and

analytically computable. The proposition below shows that Frobenius norm of matrix

H is bounded.

Proposition 3.5.1. Let H = D−1 − Σ−1 and Σ is constructed by factor, i.e. Σ =

LL′ + D as in equation (47). Suppose 1
λi

and l2i are bounded from both sides, then

‖H‖F is bounded regardless of dimensionality n.
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Proof. By Sherman-Morrsion formula applying to Σ, we have

‖H‖2
F =

n∑
i=1

n∑
j=1

h2
ij

=

∑n
i=1

∑n
j=1

l2i l2j
λ2

i λ2
j

(
∑n

i=1

∑n
j=1

l2i l2j
λiλj

) + (
∑n

i=1
l4i
λ2

i
) + 1

.

Suppose inverse of specific variance 1
λj

is bounded by M and m, l2i is bounded by C

and c, then we have

m2c

MC
≤ lim

n→∞
‖H‖2

F ≤ M2C

mc
. (49)

Therefore ‖H‖F ≥ 0 is bounded as well.

As the dimensionality is increasing, the norm of H is bounded. This means

that the relative distance between D−1 and Σ−1 is getting close to each other as the

dimension increases. Proposition 3.5.1 does not tell us about the convergence, and the

convergence under the other norms are not shown, thus the simulation is conducted

to support the idea. The simulation procedure is taken by the steps below. In this

simulation, we take number of factor r is set from 1 to 3.

1. Generate Σ = LL′ +D by random draw factor loading L and diagonal matrix

D, each component drawn from uniform distribution.

2. Compute H = D−1−Σ−1 and measure different norms: Operator Norm, Frobe-

nius Norm and Max norm.

3. Repeat the procedure with dimension n increased.

4. We will take a look at the Norms of H as dimension increases.

5. The number of factor r is changed from 1 to 3.
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The simulation results are provided in figure 23 through 25. Under all three norms,

H looks not only bounded but also converging.

In addition to the convergence of norms of H, we find that as the number of
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Figure 23: Plot with Operator norm of H as n increases

factor increases, the distance between Σ−1 and D−1 increases, three lines are parallel

to one another. Therefore, D−1 is a good approximate especially when the number

of factor is small and the dimensionality is large. This is a theoretical support that

the inverse of high dimensional covariance matrix can be replaced by diagonal matrix,

such as GLS transformation matrix. We have already seen that fully banding strategy

outperforms sample covariance matrix in various GLS circumstances, and the factor

analysis in this chapter serves an explanation for the behaviors.
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Figure 25: Plot with max norm of H as n increases
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3.5.3 Communality and specific variance

As noted previously, if a covariance matrix is modeled with factor analysis, the di-

agonal elements of covariance matrix are decomposed into communality and specific

variances. Communality is the diagonals of LL′ and specific variances are those of

D. It is an interesting question what relationship between these two plays a role in

GLS estimation. In this subsection, the ratio of li
λi

is explored in the context of GLS

estimate efficiency.

Let’s assume one-regressor with one-factor Σ model again for simplicity. The vari-

ance of GLS estimation can be written as,

var(β̂GLS) = (X ′Σ−1X)−1

= (X ′(D−1 − D−1LL′D−1

1 + L′D−1L
)X)−1

= [
n∑

i=1

x2
i

λi

− (
∑n

i=1
li
λi
xi)

2

1 +
∑n

i=1
l2i
λi

]−1.

Let α =
l2i
λi

interpreted as variance ratio of communality to specific. Let us further

assume that α is constant. Then we have

var(β̂GLS) = (X ′Σ−1X)−1

= Φ−1,

where Φ = (nz−g)α2+{(n+1)z−g}α+z
1+αn

, z =
∑n

i=1 x
2
i and g = (

∑n
i=1 xi)

2. In order to see

the efficiency of GLS estimation with respect to α, differentiation is taken.

∂Φ

∂α
=
n(nz − g)α2 + 2(nz − g)α+ z − g

(1 + αn)2
(50)
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First note that nz−g =
∑n−1

i=1 (xi−xi+1)
2 ≥ 0. If z−g is bounded, we can see that

Φ is increasing function of α as long as n is large. Therefore, var(β̂GLS) is decreasing

function of α. This is the proof of the following proposition.

Proposition 3.5.2. Regression model (22) with one regressor is given. Suppose

Σ = LL′ + D with n × 1 vector L. In addition, let’s assume that communality-

specific ratio α = li
λi

is constant and
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 is bounded. Then there

exists N ∈ Z+ such that variance of GLS estimator for the regression model (22) is

a decreasing function of α for all n ≥ N .

The point of the proposition is clear. If the dimensionality is high enough, then

large portion of factor loading li in diagonals of covariance matrix leads to more ef-

ficient GLS estimation. In other words, the more portion of the covariance matrix

of error in regression model captured by common factor, the better the GLS perfor-

mance becomes. In order to expand proposition 3.5.2 to more general situation, we

set up a simulation as below.

1. Set α level: from 0.05 to 1

2. After compute corresponding E(l) and E(λ), randomly generate li ∼ U(E(l) −
0.25,E(l) + 0.25), λi ∼ U(E(λ) − 0.25,E(λ) + 0.25).

3. Simulate Σ = LL′ +D.

4. After random data generating process y = Xβ + ε with three regressors and

estimate β with OLS and GLS.

5. For each α repeat the process for 1,000 times and observe relative performance

of GLS to OLS via average MSE or variance of MSE.
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Figure 26: Plot: average and variances of GLS estimation as α increases

Figure 26 is the plot of average and variance of relative performance of GLS to

OLS. Averages and variances are both decreasing as α increase, which suggests that

proposition 3.5.2 can be extended to multivariate regression model with non-constant

α ratio. In summary, the communality to specific variance ratio plays a role in GLS

estimation and communality portion of the diagonals of Σ is a decreasing function of

efficiency of GLS estimates.

3.6 Summary

The main purpose of this chapter is to explore covariance matrix structure in the

context of generalized least squares estimation. We have started the discussion with
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feasible generalized least squares, which is practically difficult because knowledge

about covariance structure is required. Therefore, we proposed banding strategy as

the estimator of covariance matrix, among which fully banded strategy, i.e. diagonals

of matrix ee′ with e being residual of OLS, shows the best performance. In various

simulations, we have shown that diagonal matrix serves the most efficient covariance

matrix estimator.

We also examined the conditions under which relative performance of GLS esti-

mate to OLS becomes better in terms of efficiency. Inspired by analytical derivations,

guided simulations suggest that the more diagonals of true covariance matrix spread

out, the better the GLS estimates over OLS. By taking a close look at the behaviors

of diagonals of Σ and column summation of Σ−1, our conjecture is supported.

Changing the view to the problem, the factor covariance matrix is introduced.

Unlike preceding research, our focus lies in factor analysis to covariance matrix of

error in regression model (22), in the context of GLS estimation. From both analyt-

ical calculation and simulation, Σ−1 is very well approximated by inverse of specific

variance D−1 especially in higher dimensional case. Furthermore, communality to

specific variance ratio and its effect on GLS estimation is studied.

We first raise the question about FGLS, and we proposed fully banded strategy

for covariance matrix estimation. From several perspectives, such as sparsity, di-

agonal spread-out and factor modeling, the diagonal matrix is shown to be a good

approximation, which supports our proposal of fully banding strategy.
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CHAPTER IV

CONCLUSION

4.1 Summary and Conclusion

High dimensional covariance estimation has not been properly studied for its growing

importance in practice because it is very challenging to estimate one. Especially in

panel data, if sample size is relatively small to the dimensionality, the estimating

error is unbearably large. In this thesis, by focusing on simulation methods, high

covariance matrix estimation and its effects on asset pricing and generalized least

squares are explored.

In chapter 2, we have shown that modified Stein (MST) method in estimating

precision matrix works better than all the other techniques. Both in parameter es-

timation and model specification test, MST has the least squared error. Two-pass

procedure and Hansen-Jagannathan distance are mainly considered in our compu-

tational experiments. In addition to the existing techniques, we propose a heuristic

estimator of diagonal variance matrix for covariance matrix. In our simulation study

of model specification testing, the new method works better than all the other ones.

Throughout the chapter it is shown that small sample size relative to dimensionality

is very crucial in sample covariance matrix. Although it is most frequently used in fi-

nancial applications, it gives too large errors to bear with. In model specification test,

it gives 99% rejections with true model given when the sample size is 160 and dimen-

sionality is 100, for example. Even if the sample size increases to 330, the rejection

rate is too high to be used in practice. Our method of diagonal variance matrix, on

the other hand, provides almost the same rejection rate as the theoretical suggestions.
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In chapter 3, we slightly change the point of view into the generalized least squares

(GLS). GLS takes inverse of covariance matrix as a transformation matrix, and thus it

is very crucial to estimate covariance matrices. The chapter examined the efficiency

of banding strategy as a new method for covariance matrix estimator. The fully

banded matrix, in fact, shows impressive performances in estimation errors, which is

consistent with the result from chapter 2. Diagonal variance matrix is the same as

fully banded strategy.

Throughout the chapter, we study effects of covariance matrix estimation on ef-

ficiency of GLS estimates with analytic efforts along with simulation experiments.

Due to the nature of problem being multivariate, simplified version of the problems

are analytically taken into account. General case was shown by simulations, on the

other hand. We found that spread-out diagonals of covariance matrix are essential in

improving GLS efficiency. Furthermore, factor covariance matrix gives us even more

in-depth intuition about the diagonals in that communality-specific variance ratio is

another key point in GLS efficiency. These evidences partly explain the answer to

the simulation result in chapter 2 that diagonal variance matrix works very well.

In this thesis, linear asset pricing model and generalized least squares are mainly

taken for our simulation settings. Factor analysis reveals that diagonal matrix is a

reasonable estimator for covariance matrix. It is worth noting that our findings is

about the performance of diagonal variance matrix in our specific settings. Further

study on the performance of diagonal variance matrix in different situations would

expand our understanding on high dimensional covariance matrices.
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4.2 Future Research

Although covariance and precision matrix was intensively explored in chapter 2 and

chapter 3, the study does not contain much real data work. In chapter 3, we already

used real stock return data to see if our claim about degree of spread-out of diagonals

in covariance matrix, and it turned out to perform well. Therefore, our research is

expected to extend to a financial application with real data. Finding optimal weights

on different asset classes in asset allocation problem can be one example. Hedging

problem with multiple assets involved are another important extension we can think

of. Since correlations are the crucial factor in hedging, high dimension with short pe-

riod of hedging horizon may be a good place where our covariance matrix estimators

can be utilized.

Theoretical side regarding convergence rate is also an important extension. Since

this thesis is mainly showing the result using simulations, many of the essential re-

search questions are remained as conjectures. Some of the results are only shown in

univariate special cases, so there exists theoretical room to fill in for future research.
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APPENDIX A

ADDITIONAL PLOTS FOR CHAPTER 2

In Chapter 2, computer experiment with simulations are conducted to check the

performances of various precision matrix estimation. Especially section 2.3 is about

two-pass procedures. The following figures are the pair plots of MSE in two-pass

procedure with different covariance structures, which is not provided in the main

body of the thesis due to the space limit.
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Figure 27: AR(1), T=160
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Figure 28: AR(1), T=330
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Figure 29: AR(1), T=700
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Figure 30: AR(2), T=160
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Figure 31: AR(2), T=300
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Figure 32: AR(2), T=700
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Figure 33: Heteroscedastic random correlations, T=160
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Figure 34: Heteroscedastic random correlations, T=330
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Figure 35: Heteroscedastic random correlations, T=700
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APPENDIX B

ADDITIONAL PLOTS FOR CHAPTER 3

Followings are the miscellaneous plots which supports the ideas represented in chapter

3.
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Figure 36: Estimating error with OLS and various banding strategies
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Figure 37: Number of Nonzero singular values of banding strategies in multiple
observations case
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Figure 38: box and pair plots when sparsity of covariance matrix is 30%
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Figure 39: box and pair plots when sparsity of covariance matrix is 95%
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Figure 40: box and pair plots of panel data case when sparsity of covariance matrix
is 70% and sample size is 10.
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Figure 41: box and pair plots of panel data case when sparsity of covariance matrix
is 70% and sample size is 30.
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Figure 42: box and pair plots of panel data case when sparsity of covariance matrix
is 70% and sample size is 50.
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