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SUMMARY

The cathode is one of the most important components for development in solid

oxide fuel cells (SOFCs). The reduction of oxygen at the cathode is the slow step in

the cell reaction at low temperatures, meaning that improvements in cathode performance

translates directly to higher cell power densities and lower costs per kilowatt.

Understanding of the reaction process at the cathode is key to its development, but

quantitative understanding of cathodic oxygen reduction has been hard to come by due

to the complexity of the reaction. In mixed ionic-electronic conductors (MIECs), such

as the dominant LaxSr1−xMnO3±δ (LSM), the reduction process includes adsorption and

dissociation of the gas, both surface and bulk transport pathways, oxygen transfer at the

LSM-electrolyte interface and a triple-phase boundary (TPB) reaction. The existence of

each of these aspects of the reaction is fairly well established; quantitative characterization

remains lacking.

A program of study for solid oxide fuel cell (SOFC) cathodes has been established. The

program involves the design and fabrication of test cells which simplify the reaction process

(blocked electrodes and dense thin films) or restrict each step to a well-known geometry

(patterned electrodes), while reducing the dimensionality of the corresponding model to two

dimensions or less. The results of electrochemical testing are then compared rigorously and

quantitatively to the model using a non-gradient optimization technique and robust test for

uniqueness.

Specific results have been achieved in the areas of surface modeling for air-MIEC reac-

tions, sheet resistance in mixed conductors, defect equilibrium in LSM and a new model for

the interface between LSM and the electrolyte yttria-stabilized zirconia.
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CHAPTER I

INTRODUCTION

Solid oxide fuel cells (SOFCs) may not ultimately solve the world’s crisis of energy, but

they are achievable in the short-term, integrable with current energy streams and much

more efficient than the current energy conversion infrastructure. The existence of many

operating installations worldwide is testament to their achievability. The most prominent

reason behind this roll-out is that SOFCs run on natural gas – which is readily available in

most urban areas – as well as hydrogen. The high electrical conversion efficiency (50% as

a practical matter) combined with very good scalability, such that stacks can be designed

for micro-power applications all the way up to power plants, means that fossil fuels can be

utilized very efficiently. For combined heat and power applications the thermal efficiency

may increase even higher; if every home and business were equipped with SOFC stacks

operating on natural gas or gasified coal, greenhouse emissions in this country would be a

fraction of what they are today, and much of the power carrying infrastructure could be

dismantled. The stage would also be set for use of renewable fuels, since SOFCs run just

as well on hydrogen as methane. The off-gas from SOFCs can also be used in gas turbines

to boost electrical conversion efficiencies at a power plant 10% or more.

Of course, despite its promise, there are still several problems in the electrochemical

operation of SOFCs which keep the technology still firmly within the niche market cate-

gory. Many of these difficulties are related to poisoning of cell components during normal

operation – in particular, the standard anode of nickel and yttria-stabilized zirconia (YSZ)

is sensitive to sulfur poisoning, and at lower temperatures (or in heavier carbon-based fuel

streams), coking. The standard cathode, strontium-doped lanthanum manganate (LSM) is

sensitive to chromium poisoning from the stainless steel cell interconnects. The high tem-

perature of the cell itself, which is an advantage for fuel reforming purposes, is a hinderance

in a thermo-mechanical context, since the seals between fuel and air compartments must
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be ceramic, and are therefore both expensive and prone to failure during thermal cycling.

Whatever the problems of SOFCs, better understanding of the cell’s operation shows

the way to the solutions. As a concrete example, it can be expected that new and better

cathode microstructural designs will follow when the resistances of various steps in the

reduction of oxygen have been quantified.

The primary contribution of this work is the design and initial implementation of a

long-term program that will lead to better understanding of the electrochemistry of SOFC

operation. The program involves simple, routine electrochemical experiments performed

on novel, precisely designed and fabricated test cells, that are compared with sophisticated

electrochemical models in a rigorous way in order to quantify the behavior of cell compo-

nents. It is expected that the tools developed in the course of this work will be useful for

the study of many different materials and cell components.

The component chosen for the initial study, on which this work focuses its practical un-

dertakings, was the cathode. The specific material was LSM, in particular La0.8Sr0.2MnO3±δ,

which is currently the dominant cathode material in the industry.

1.1 The state of knowledge for oxygen reduction on LSM

A brief survey of electrochemical studies on LSM will underscore the challenges inherent in

studying this material, and motivate the actions taken in pursuit of a better, quantitative

understanding.

1.1.1 General

There are now several reviews on the topic of oxygen reduction on LSM available,[1, 17,

32, 59, 72, 83, 95, 96] and much knowledge has been gained over the past two decades.

However, as the cited reviews will attest, there are considerable gaps. Notably, there are

still unanswered questions on the defect structures for LSM and that of the interfaces with

the gas and typical electrolyte materials such as YSZ. Our quantitative knowledge of bulk

and surface transport properties is also deficient, and there is little knowledge of the reaction

sequence at the gas-exposed surface.

2



The overall reaction for a p-type, oxygen-conducting SOFC cathode (such as LSM) is:

1

2
O2(gas) + V··

O → Ox
O + 2h· (1)

where, in the Kröger-Vink notation, V··
O denotes an oxygen vacancy in the solid state with

two effective positive charges (with respect to the perfect crystal), Ox
O denotes a neutral

oxygen ion in a solid state oxygen site, and h· denotes a positively charged electron hole.

However, the reaction divides into several elementary steps, including:

• adsorption of gaseous molecular oxygen

• reduction and dissociation of the adsorbed molecule in multiple steps

• diffusion of adsorbates to various incorporation sites on the MIEC surface and at the

triple phase boundary (TPB) between air, the MIEC and the electrolyte

• transport of vacancies to the incorporation sites

• transport of electron holes away from the reduction sites

• the incorporation reaction (combination of adsorbed atomic oxygen and oxygen va-

cancies)

and

• the transfer of vacancies from the electrolyte into the MIEC.

Early electrochemical experiments focused on drawing distinctions between bulk-mediated

and surface-mediated processes in the cathodic reaction (1). The bulk-mediated process

involves diffusion of oxygen through a bulk phase, while the surface-mediated process

involves diffusion of oxygen across a surface. Thin film experiments on LSM showed

a linear thickness dependence for the electrode resistance, suggesting a bulk-mediated

process.[26, 27, 45, 53, 54, 77] However, experiments on porous electrodes or cracked films

suggested that resistances in LSM frequently scale with the TPB length, with lower re-

sistances than their dense-film counterparts.[77, 28, 93] This points to a surface-mediated

mechanism.
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The data from patterned electrodes[60, 11, 7] also shows that both bulk and surface

contributions can be active, depending on the geometry. These parallel paths of surface and

bulk greatly complicate our ability to get a quantitative grip on the reaction mechanism.

Moreover, LSM displays a decreased electrode resistance at high cathodic potentials or after

extended cathodic polarization.[77, 69, 94] These phenomena may reflect an increase in the

oxygen deficiency near the electrolyte interface under applied cathodic potential,[42, 50]

and changes in cathode surface structure,[65, 48, 49, 107] respectively.

By contrast, given the high electronic transference numbers of both materials, and data

provided through electronic measurements such as the four-point probe and thermoelec-

tricity, there is greater confidence in electronic structure and transport models. These

generally depict a hopping mechanism involving eg and t2g energy levels of the Mn ion in

LSM.[88, 79, 51]

Techniques for measuring surface exchange and ionic diffusivity in LSM and related

materials include electron blocking, current interrupt and isotope exchange/secondary ion

mass spectroscopy (SIMS).[53, 42, 10, 20, 21, 22, 43, 59, 66, 67, 114, 113] But because the

overall rate law for the surface reaction is likely nonlinear, and the rate laws for elementary

steps depend exponentially on the surface potential, the utility of average measurements

(generally taken at or near equilibrium) is limited to small perturbations from equilibrium.

New TEM and electron energy loss spectroscopy (EELS) data on the YSZ-LSM interface

shows that La and Mn species inhabit cation sites in YSZ near the interface, leaving behind

cation vacancies.[5] This is important information that could lead to a better understanding

of the structure of this interface and its role in oxygen reduction, and will be discussed in

depth later.

1.1.2 Existing quantitative continuum modeling

1.1.2.1 One-dimensional models and porous electrode theory

Treatments of a one-dimensional, homogeneous medium with multiple charged species using

the Nernst-Planck and Poisson equations date back decades. Brumleve and Buck numer-

ically solved the full nonlinear problem in one dimension in 1978.[13] Recently, it became
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more popular to follow Brumleve’s alternate approach of treating the linearized problem

(which is appropriate for low-signal experiments such as impedance spectroscopy) using

an “exact” equivalent circuit.[14] Many of the resulting transmission-line circuits apply to

MIECs.[8, 47] These approaches are appropriate for thin films with an absence of multi-

dimensional effects at the continuum scale.

The most popular modeling technique for MIECs appearing in the literature is a vari-

ation on porous electrode theory,[19, 2, 25, 97, 98, 109] as initially developed for porous

electrodes submerged in liquid electrolytes. In the context of SOFC electrodes, this ap-

proach reduces a porous material to a monolithic continuum, with the reactions at the

internal surfaces treated as homogeneous reactions within the system. Combined with an

assumption of infinite electronic mobility (not a bad assumption for macroscopic materi-

als) symmetry considerations permit a reduction of the problem domain to one dimension.

If a low-overpotential signal is used, the field variables in the resulting equations may be

expanded about an equilibrium value and truncated after first-order terms, enabling an

analytical solution. Nonlinear results are obtainable through finite difference discretization

and Newton’s method.[81]

Several porous electrode models considered both bulk and surface transport in LSM,

leaving equations in nonlinear form and solving through finite difference discretizations.[19,

25, 97, 98] One such model produced an interesting result in accordance with experimental

evidence, showing that, in a relatively poor ionic conductor such as LSM, the reduction pro-

cess may gradually shift from surface-mediated toward a more active bulk with increasingly

negative applied potential.[19]

The principal difficulty with porous electrode theory is its limitation in terms of model

geometry; it is linked to a porous structure, probably single-phase due to difficulties incor-

porating the effects of connectivity. Also, one-dimensional modeling regimes will not suffice

for any geometry engendering multi-dimensional effects, as is the case with many patterned

electrodes and thin films appropriate for fundamental investigation in LSM.
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1.1.2.2 Multi-dimensional simulations

A few multi-dimensional simulations of SOFC cathodes which appeared over the past few

years[31, 36, 41, 35] illustrated the benefits of expanding dimensionality. They have ad-

dressed issues such as current constriction at TPBs and grain boundaries. However, they

have continued to use diffusion-only models, ignoring the possibility of sheet resistance in

MIECs.

1.1.3 Bulk defects in LSM

The defect chemistry of LSM has been assessed using for nonstoichiometry experiments.[64,

76, 82, 112] The best of the resulting bulk defect models for LSM[101, 64, 76, 82, 88] depict

six major defects, including A and B site cation vacancies, two defective valence states for

Mn (one effective positive and the other negative), oxygen vacancies and dopants. The

mixture is random. This random model, which was improved upon in the course of this

work, predicts high-temperature nonstoichiometry curves well, but fails at low temperatures

and also in the prediction of conductivity.

1.2 Framework for quantitative study

The complexity of the LSM-YSZ system demands precisely controlled experiments, as well

as unique and detailed models corresponding to those experiments, and robust methods

of comparing the two. The established program of study therefore contains three primary

development tracks:

• Design and fabrication of test cells that limit the complexity of the reaction or pro-

scribe various processes to areas with well-characterized geometries

• The conversion of basic hypotheses into quantitative physical models appropriate to

the test cells, and their corresponding computational implementation

• Development and implemetation of robust methods of optimization

6



The following chapters chronicle progress made in all three areas to this point in an

ongoing project. The first chapter develops a hypothesis on the sequence of oxygen cataly-

sis on the oxygen-exposed MIEC surface into a quantitative physical model applicable to a

computational approach. The second chapter uses the results from the first, incorporating

them into a quantitative model suitable for thin-film and patterned test cells, and surveys

progress made toward the fabrication of these cells. The third chapter focuses on the de-

velopment of the bulk defect theory for LSM, using the particle swarm optimizer (PSO) to

judge the suitability of a new proposal against nonstoichiometry experiments, while simul-

taneously estimating model parameters. The fourth chapter establishes a new hypothesis

for the causes behind the structure seen at the LSM-YSZ interface, and chronicles progress

made to date in development of an appropriate physical model and design of test cells for

the investigation.
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CHAPTER II

CLASSICAL, PHENOMENOLOGICAL ANALYSIS OF THE

KINETICS OF REACTIONS AT THE GAS-EXPOSED SURFACE OF

MIXED IONIC ELECTRONIC CONDUCTORS

2.1 Introduction

One of the most interesting and dynamic areas of study in the field of MIECs involves the

phenomenological picture of reactions occurring on the gas-exposed surface of a charged

MIEC. It is not an electrochemical reaction in a traditional, familiar sense: no net current

flows across the electrified interface at a nonequilibrium steady state. Yet some elementary

steps at the gas surface do involve the transfer of electrons between the bulk MIEC and some

adsorbed surface state (see Figure 1). The question then becomes, are the rates of these

reactions directly or indirectly controlled by the outside potential applied to the MIEC?

The literature reflects some disagreement.[2, 3, 19, 97, 70, 102]

The work of Vayenas and co-workers on the response of Pt surface species to applied

potential forces a refinement of the question. Vayenas’s work focused on the electrochemical

promotion of Pt-catalyzed oxidation reactions. A wealth of experimental data produced in

the course of studying this phenomenon indicates that the application of outside potential

to a Pt working electrode on a solid electrolyte influences the surface potential through ad-

sorbates on the Pt surface. This, in turn, influences the rate of chemical reactions occurring

on the surface. (See [106] and citations therein.) But as Fleig and Jamnik point out in a

theoretical analysis inspired by Vayenas’s results, the influence of applied potential on the

surface potential is not necessarily a direct proportionality, as Vayenas held.[34]

In a subsequent paper, Fleig analyzed the gas surface kinetics problem for MIECs.[33]

Fleig’s analysis was notable for its use of electrochemical rate expressions to describe surface

processes. But the Butler-Volmer style expressions for adsorption and incorporation Fleig

started with respond in a direct manner to polarization changes at the MIEC-air interface,

8



Figure 1: (a) electron transfer from MIEC to the LUMO of oxygen to form O′
2 and O′′

2 (b)
oxygen ions combine with vacancies on the surface of the MIEC. While each step represents a
reaction involving charge transfer, the overall reaction results in zero net charge transferred
out of the MIEC. Figure created by Yongman Choi.

as opposed to the overpotential applied to the MIEC. Again, the results show a complex

relationship between the overpotential applied at the electrode and the change in surface

potential, which is the driving force for the reactions. This work is a significant step forward

in our theoretical understanding of gas-surface reactions on MIECs.

This work will complement Fleig’s in two respects. First, we provide a derivation of the

relevant phenomenological rate expressions from first principles. Second, we incorporate

these expressions into a phenomenological model of an MIEC cathode and use the results

to draw conclusions affecting the debate on whether the reactions occurring at the surface

can be described by purely chemical rate expressions.

The following analysis will follow the electrochemical potential-transition state theory

derivation first published by Parsons,[84] but also appearing in Erdey-Gruz,[29] Delahay[23]

and Bockris, et al.[9] The analysis contains several assumptions, although these assumptions

do not prevent general conclusions from being drawn on the kinetic phenomenology at

MIEC-gas interfaces. The discussion following the analysis presents a pair of examples

that, while not universal, nonetheless illustrate some important implications.

2.2 Analysis

Consider the reaction at the oxygen-exposed surface of an MIEC electrode conducting

oxygen vacancies and electron holes under cathodic polarization, written above in equation

9



(1). Now consider a simple breakdown of equation (1), into dissociative adsorption and

incorporation steps:

1

2
O2 + s→ O′

ads + h· (2)

O′
ads + V··

O → Ox
O + h· (3)

where s represents an adsorption site on the surface of the MIEC. Figure 2 depicts the

standard free energy surface along a reaction coordinate for a reaction under cathodic

polarization. Applying the figure to reaction (2), the standard free energies for states I and

II are:

µ̄0
I,2 =

1

2
µ0

O2
(4)

µ̄0
II,2 = µ0

O′ − Fφs + µ0
h + Fφm (5)

where φ is the electrostatic potential and the subscripts m and s refer to the MIEC just

beneath the surface and on the MIEC surface, respectively. The key to the derivation is the

introduction of the transfer coefficient, α, which allows for the definition of the electrical

part of the free energy in the activated state:

µ̄0
A,e − µ̄0

I,e = α
(

µ̄0
II,e − µ̄0

I,e

)

(6)

where the subscript e refers to the electrical part of the electrochemical potential. Equation

(6) leads to an expression for the standard free energy of the activated state:

µ̄0
A,2 = µ0

A,2 + α2F (φm − φs) (7)

According to transition state theory (TST), the rate constant of any elementary chemical

reaction is given by:

k = κ
kBT

hP
exp
−∆G0

A

RT
(8)

where κ is the transmission coefficient, kB is Boltzmann’s constant, hP is Planck’s constant

and ∆G0
A is the standard activation energy. Equations (4), (5), (7) and (8) now yield
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Figure 2: Reduced dimensionality free energy surface for charge transfer reactions.

expressions for the forward and backward rate constants in reaction (2):

−→
k 2 =−→κ 2

kBT

hP
exp
−

(

µ0
A,2 − µ0

O2
+ α2Fχ

)

RT
(9)

←−
k 2 =←−κ 2

kBT

hP
exp
−

(

µ0
A,2 − µ0

O′ + (α2 − 1)Fχ
)

RT
(10)

where χ = φm−φs is the surface potential. The forward and backward rates for the reaction

are therefore:

−→r =
−→
k ′

2 exp
−α2Fχ

RT
a

1/2
O2

as (11)

←−r =
←−
k ′

2 exp
(1− α2)Fχ

RT
ahaO′ (12)

where the k′ terms are a set of collected constants and a represents the activity. Assuming

dilute concentrations of surface species and holes, and ideal gas, the following expression

emerges for the overall rate of reaction 2:

r2 =
−→
k ′′

2 exp

[

−α2Fχ

RT

]

P
1/2
O2

Γ(1− θ)−
←−
k ′′

2 exp

[

(1− α2)Fχ

RT

]

chΓθ (13)

where θ is the occupied site fraction, Γ is the total density of surface sites, and ch is the

concentration of holes at the MIEC surface. The k′′ terms now include activity coefficients,

assumed constant.

When reaction 2 is at equilibrium, r = 0. The forward and backward terms are then

both equal to a constant, which is the exchange rate:

k0
2 =
−→
k ′′

2 exp

[

−α2Fχ0

RT

]

P
1/2
O2,0

Γ(1− θ0) =
←−
k ′′

2 exp

[

(1− α2)Fχ0

RT

]

ch,0Γθ0 (14)

11



Factoring out k0 from (13) yields the familiar form of the equation:

r2 = k0
2





P
1/2
O2

(1− θ)

P
1/2
O2,0

(1− θ0)
exp
−α2F∆χ

RT
−

chθ

ch,0θ0
exp

(1− α2)F∆χ

RT



 (15)

where ∆χ = χ− χ0.

Turning attention to reaction (3), the relevant standard electrochemical potentials are:

µ̄0
I,3 = µ0

O′ − Fφs + µv + 2Fφm (16)

µ̄0
II,3 = µ0

h + Fφm (17)

µ̄0
A,3 = µ0

A,3 + F (2φm − φs) + α3F (φs − φm) (18)

Taking the analysis through the same procedure as above, the forward and backward rate

constants are therefore:

−→
k 3 =−→κ 3

kBT

hP
exp
−

(

µ0
A,3 − µ0

O′ − µv − α3Fχ
)

RT
(19)

←−
k 3 =←−κ 3

kBT

hP
exp
−

(

µ0
A,3 − µ0

h − (α3 − 1)Fχ
)

RT
(20)

This leads to the expression for the rate of reaction (3):

r3 =
−→
k ′′

3 exp

[

α3Fχ

RT

]

cvΓθ −
←−
k ′′

3 exp

[

−(1− α3)Fχ

RT

]

chΓ(1− θ) (21)

and the corresponding introduction of an exchange rate constant:

r3 = k0
3

[

cvθ

cv,0θ0
exp

α3F∆χ

RT
−

ch(1− θ)

ch,0(1− θ0)
exp
−(1− α3)F∆χ

RT

]

(22)

2.3 Implications

Since α is always a positive constant between 0 and 1 (assuming the reaction is an elementary

step) the results presented in equations (15) and (22) illustrate that if both adsorption and

incorporation reactions are thermally activated, the effect of the surface potential on the

rates of these steps must be opposing. (That is, tending to increase the rate of one and

to decrease the rate of the other.) The observation that r2 = r3 at steady state leads to

a significant implication: the chemical (pre-exponential) terms in equations (15) and (22)
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Figure 3: Schematic of the model geometry for the MIEC half cell model. The vertical
sides on each side are considered to be symmetrical boundaries.

must play a dominant role in one or both reactions, leading to practical chemical control of

the rate of reactions.

To illustrate this point, a 2D model of a dense, patterned MIEC electrode in a half-cell

experimental setup was created. The geometry of the test cell appears in Figure 3. The

model utilizes the reaction mechanism (2)-(3), and the attending rate expressions (15)-(22)

as flux boundary conditions at the air surface of the MIEC. The other features of the model

are dilute solution transport theory (with holes and vacancies as mobile defects), no surface

diffusion, and electroneutrality. The surface potentials are calculated using a Helmholtz

model of the double layer, which allows calculation of the potential difference from the site

fraction of adsorbates. The method of solution is an iterative finite volume method. (This

model is derived in detail in the next chapter.)

Table 1 lists values for parameters in the model. Most were adapted from approximate

data given by Svensson for perovskite MIECs LaxSr1−x(Co,Mn)O3±δ (LSC and LSM).[97,

98] One exception is the equilibrium concentration of holes, which is loosely based on the

defect chemistry of LSM, but chosen for the most part in order to create an MIEC rich in

electronic species. The other exceptions are the exchange rate constants for adsorption and
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Table 1: Parameters used in the simulation

run 1 run 2

cv,0 2.0x10−4 mol/m2 same
ch,0 300.0 mol/m2 same
k

0

2
10−8 mol/m·s 10−2 mol/m·s

k
0

3
10−2 mol/m·s 10−6 mol/m·s

θ0 2.0x10−3 same
T 1173 K same
Γ 10−3 same

incorporation, which hew closely to Svensson’s numbers for the first run but were modified

for the second as described below. The model geometry is 1 µm square, with a regular mesh

size of .01 µm square for run 1 and 0.1 µm square for run 2. (Slower convergence times

necessitate a coarser mesh for run 2.) Applied potential across the half cell is -0.1 V for

both runs. All transfer coefficients are assumed to be 0.5.

For the first run of the model, the incorporation and adsorption exchange rate constants

remain in the ranges given by Svensson, which is to say that the incorporation constant is

much lower (by six orders of magnitude). The vacancy distribution in the MIEC is shown

in Figure 4. Note that the distribution is nearly uniform, with very gentle concentration

gradients leading towards the air surface, but throughout the level is much higher than the

equilibrium value for vacancies in the MIEC. The site fraction of adsorbates on the MIEC

surface (not shown) is nearly uniform across the surface, and is almost exactly equal to the

equilibrium value of the adsorbate concentration. (The numbers are actually higher than

equilibrium value listed in Table 1 by much less than 1%.)

This result makes sense in consideration of the mechanism (2)-(3). A high exchange

rate constant for the adsorption reaction ensures that (2) stays very close to equilibrium,

which means that the concentration of adsorbates and, correspondingly, surface potentials

remain close to their equilibrium values. As a result, the potential dependent terms in

equation (22) have almost no effect on the rate of incorporation. Instead, the increase in

the concentration of vacancies in the MIEC drives the reaction.

The situation changes when the adsorption step becomes rate limiting. For the second
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Figure 4: Vacancy distribution in the MIEC, mol/m2, for model run 1.

run of the simulation, an adsorption rate constant of 10−6 mol/m2-s and an incorporation

constant of 10−2 mol/m2-s were used. Figure 5 shows the vacancy distribution, which rises

to a similar average value as that of the incorporation limited case, although the gradient in

concentration is slightly higher. However, the adsorbate site fraction in this case deviates

significantly from equilibrium. The change is negative, with the concentration at steady

state approximately 8% less than the equilibrium value on average. This tends to drive

the adsorption reaction faster, through both chemical and potential-dependent terms in

equation (15). In effect, the surface potential changes in such a manner as to drive the

slower adsorption reaction, while the faster incorporation reaction relies on the chemical

driving force associated with the change in vacancies.

Which scenario is more likely in an actual cell? Equation (21) shows that the incorpo-

ration exchange rate constant, k0
3, involves a product of the equilibrium concentration of

vacancies and the equilibrium site fraction. In MIECs used in solid oxide fuel cells, such

as LSM and LSC, both numbers are small. This suggests that incorporation exchange rate

constants may be low on the surfaces of these materials. If that is the case, one expects

that the concentrations of surface species as a whole on the MIEC surface will not deviate

appreciably from equilibrium.
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Figure 5: Vacancy distribution in the MIEC, mol/m2, for model run 2.

This, of course, is the same situation one would expect if the rate expressions were

affected by deviations of chemical concentrations from equilibrium only. The effect of the

potential-dependent terms is, in general, simply to reinforce the chemical response of the

rate of an elementary process to changes in adsorbate concentrations. For an adsorption-

dominated mechanism, for instance, the deviation of adsorbate concentration from equilib-

rium is not as large as it would be in the case of chemical rate control. For more complicated

mechanisms involving more than one adsorbed species, the picture becomes more interest-

ing. For example, a buildup of charged, chemisorbed peroxide moeties (O′′
2) due to a slow

dissociation step would have the effect of increasing the rate of the oxygen incorporation

reaction.
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CHAPTER III

THIN FILM AND PATTERNED ELECTRODE TEST CELLS AND

MODELS: REDUCING COMPLEXITY AND DIMENSIONALITY,

AND THE PROBLEM OF SHEET RESISTANCE

Thin films and patterned electrodes are effective vehicles for study of electrodics in MIECs,

since it is possible to precisely control the geometry related to triple phase boundary (TPB)

and bulk reaction pathways. Many experimental studies involving thin films and patterned

electrodes for the electrode MIECs La1−xSrxMnO3±δ (LSM) and LaxSr1−xCo1−yFeyO3±δ

(LSCF) have appeared over the years.[7, 11, 12, 26, 28, 27, 44, 45, 46, 54, 53, 60, 61, 74, 77,

80, 91, 99, 110, 111]

None of these studies has yet combined the kind of experimental control and ingenuity

required to create these cells with the theoretical rigor seen in the context of porous elec-

trodes. One reason for this is that these cells – especially those requiring photolithography

or other microfabrication processes – are particularly difficult to make. They typically re-

quire high-vacuum and sometimes cleanrooms, and many of the materials involved are not

standard for the semiconductor industry. Another is that there is no appropriate model

framework for the thin-film/patterned electrode geometry. One of the thrusts of the pro-

gram of quantitative study of which this work forms a part is to solve these problems, by

designing useful test cells based on thin and patterned film geometries that limit the com-

pexity of the reactions to be studied, fabricating those cells, and developing physical models

appropriate to them.

This chapter will present our results in these areas to this point. These results include

the apparently successful fabrication of thin films and patterned electrodes conforming to

a design that eliminates the influence of platinum current collectors while enabling the

reduction of the problem to two dimensions. We have also successfully derived and im-

plemented two-dimensional computational simulations for the steady-state DC behavior of
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these electrodes, which includes a treatment of sheet resistance. Experimental evidence for

sheet resistance in thin and patterned MIEC electrodes has been reported, but never before

treated theoretically. The behavior of the simulations qualitatively conforms to most of the

results on thin and patterned films available in the literature.

3.1 Test cell design and fabrication

As discussed in section 1, one of the difficulties in studying the reduction reaction on LSM

is the existence of multiple pathways, each with multiple steps. The advantage of thin film

and patterned cell designs is that one gains the power to control the rate of these different

steps by controlling the associated geometry. Thin dense films, for instance, eliminate the

surface mediated, TPB-dependent pathway. When a TPB is introduced in a patterned film,

the ratio of its length to the exposed surface area is easily measured.

We also sought to reduce the dimensionality of our models, by controlling the symmetry

of the patterned cells. The idea is shown here in Figure 6. What the figure depicts is simply

a thin, dense film of LSM deposited on YSZ, with patterned platinum current collectors

deposited on top as long stripes. If the stripes are long enough, and there are enough

of them, and if additionally the size and placement of the counter electrode is carefully

controlled, we can ignore edge effects and the model can be reduced to the dashed-line box

shown in the cross-section of Figure 6b).

A TPB can be introduced by patterning gaps in the LSM film in strips parallel to

the current collectors. This retains the two-dimensional aspect of the model. Finally, the

adsorption reactions at the platinum surface can be avoided by depositing an inert cover

(such as undoped ZrO2). A cross-section of the final designs are shown in Figure 7.

Patterned cells fitting this design have been successfully fabricated using photolithogra-

phy and plasma sputtering; optical images appear in Figure 8. The photolithography and

sputtering of platinum was performed by Xiaoyuan Lou; sputtering of LSM and undoped

zirconia was performed by Songho Choi. LSM targets for sputtering were prepared by Matt

Lynch and Lei Yang through solid-state reaction. The next step in the process will be the

affixing of a porous platinum or silver counter electrode, followed by electrochemical testing
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Figure 6: a) Top view and b) cross-sectional view of the cell geometry. The dashed-line
box in part b) indicates the smallest symmetrical element in the cross-section, which is used
as the model geometry for thin films.

Figure 7: Cross-sectional a) thin film and b) patterned cell with TPB schematics. Figure
originally created by Matt Lynch.
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Figure 8: Optical images of patterned electrodes a) without and b) with TPB. Electrodes
produced in collaboration with Xiaoyuan Lou, Songho Choi, Matt Lynch and Lei Yang.
Images by Matt Lynch.

using potential-dependent impedance spectroscopy (IS).

3.2 Sheet resistance in thin MIEC electrodes

Modeling studies on MIECs to date have avoided consideration of sheet resistance, by

assuming either perfect current collection (an implicit assumption in any one-dimensional

model)[13, 14, 47] or uniform Fermi level throughout the material.[2, 97, 98, 31, 35, 19,

109, 24] Such assumptions are usually valid for a macroscale electrode, since electronic

conductivities far outstrip their ionic counterparts in the most popular MIECs for electrode

applications. However, some studies on La0.8Sr0.2MnO3±δ (LSM20) patterned electrodes

found evidence of a sheet resistance effect, which calls these assumptions into question for

the case of high aspect ratio.[11, 61] These results force a reconsideration of the effects

of sheet resistance if patterned electrodes and thin films are to be more widely used for

scientific inquiry, and if nanostructured electrodes are to be considered for high performance

applications.[108, 89, 71]

A rigorously derived model explicitly treating the effects of both ionic and electronic

transport in thin film MIECs has been developed. The simulation treats the case of steady-

state DC polarization in the linear or nonlinear response regime on a two-dimensional do-

main. The application of nonlinear numerical schemes for the treatment of multiple species

in one dimension is a relatively well-studied problem.[13, 30] However, the multi-dimensional
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case can present difficulties for numerical analysis, especially with mixed boundary condi-

tions.

Using parameter data collected from the literature, the simulation shows that sheet re-

sistance will play an important role for thin LSM films contacted by moderate-sized Pt mesh

at moderate to high overpotentials, but not in the limit approaching zero polarization. The

shape of the model-generated I-V curves, which conform to most found in the literature for

LSM thin films, are dissected in terms of rate-limiting steps, which are bulk ionic transport

and sheet resistance for our parameterization. However, when compared to experiment, we

find that the electrode resistance generated by the model in the low-polarization limit is

considerably higher. Possible reasons for this divergence are discussed.

3.2.1 Model

The model geometry is shown in the dotted-line box of Figure 6. As mentioned in the

previous section, the thin-film patterned design allows for a two-dimensional simulation

space, with a lack of reactions at the platinum current collector (due to shielding) and at

the LSM-YSZ-air TPB.

The overall reaction is shown in equation (1). For the purpose of building the model,

we assume the simple reaction sequence (2)-(3), leading to the rate equations (15)-(22).

We further assume, however, that there is no pressure drop at the electrode surface, and

therefore the partial pressure terms drop out of equation (15).

The flux of species k in the MIEC and electrolyte is:

Nk = −ukck∇µk (23)

where uk is the mobility, ck the concentration and µk the electrochemical potential of species

k. If we adhere to a strictly dilute model, which should usually be valid for mobile species

in LSM, we can re-write the above flux in terms of the concentration and the electrostatic

potential:[81]

Nk = −RTuk∇ck − zkFukck∇φ (24)

where zk is the formal charge on species k, and φ is the electrostatic potential. If we

assume that only vacancies and holes are mobile, with the (negatively charged) cation
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defects essentially immobile, then the values for k are v and h in the MIEC and v only in

the electrolyte.

The mass continuity equation is:

∂ck

∂t
= −∇ ·Nk + Gk (25)

where Gk is the net generation rate of species k, which is zero for all species in the bulk

phases. The principle of electroneutrality is a very good approximation in the bulk phases,

and we employ it even though it prevents a detailed description of the interfaces:

F
∑

k

zkck + ρb = 0 (26)

where ρb denotes the background charge. Combining equations (23), (25) and (26) in the

MIEC produces a coupled system of equations in cv and φ. In the electrolyte, electroneu-

trality leads to a constant cv,e = cv,e0, where the subscript e denotes the electrolyte, and

the equation of state becomes Laplace’s equation.

The boundary conditions are the potential applied across the current collector and the

counter electrode, which are considered to be reversible interfaces, with a grounded counter

and no loss in the external circuit. A zero-flux condition holds at symmetrical boundaries,

and the rate expressions (15) and (22) define the flux of vacancies at the air-exposed surface.

In addition to the air-surface reactions, The vacancy transfer from the electrolyte to the

MIEC is an electrochemical reaction, whose rate law (derived according to the method

discussed in chapter 2), obeys the following equation:

ri = k0
i

[

exp
2αiF∆χi

RT
−

cv

cv,0
exp
−2 (1− αi) F∆χi

RT

]

(27)

where the value of cv is taken at the interface. Assuming zero interfacial polarization at

equilibrium, the ∆χi term in equation (27) is the jump in electrostatic potential across the

electrolyte/MIEC interface.

3.2.2 Discretization

We derived a conservative, finite volume discretization that is second-order in space and

first-order in time. Keeping time dependence in the solver (the solution effectively iterates

to steady-state) enables its linearization through mixing of implicit and explicit terms.
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Defining the MIEC domain by a set of rectangular control volumes {Pi,j}, we integrate

equation 25 over the cell area located at (xi, yj). This yields the standard form for a

semi-discrete finite volume scheme:

∂ĉi,j

∂t
= −

1

∆x

(

N̂i+1/2 − N̂i−1/2

)

−
1

∆y

(

N̂j+1/2 − N̂j−1/2

)

(28)

where the carat indicates averages over the cell area (for ĉ) and cell boundary (N̂). We

then apply the backward Euler time discretization:

ĉn+1
i,j − ĉn

i,j = −
∆t

∆x

(

N̂n+1
i+1/2 − N̂n+1

i−1/2

)

−
∆t

∆y

(

N̂n+1
j+1/2 − N̂n+1

j−1/2

)

+O (∆t) (29)

where the superscript n refers to the value at time tn. We approximate N at a cell boundary

based on the field values in neighboring cells:

N̂n+1
i+1/2

= −
RTu

∆x

(

ĉn+1
i+1,j − ĉn+1

i,j

)

−
zFu

(

ĉn
i,j + ĉn

i+1,j

)

2∆x

(

φ̂n+1
i+1,j − φ̂n+1

i,j

)

+O
(

∆x2
)

(30)

The restriction of the concentrations in the drift term to the nth time level allows for a linear

solver, which greatly increases the available options. Since the MIEC equations cannot be

decoupled, we solved them successively, using the equation written for vacancy conservation

to solve for vacancy flux while keeping electrostatic potential constant, then using the hole

conservation equation to solve for electrostatic potential while keeping vacancy concentra-

tion constant, repeating the process until steady-state is reached. We used a line-by-line

iterative solver for each step.[85]

For the parameters listed in Table 2, a geometry of 400 µm in the breadth of current

collector and 400 µm between current collectors, film heights from 50-1000 nm, and at

moderate cathodic overpotentials (down to -750 mV), the scheme stabilized with respect to

the mesh at a cell count of 60 in the MIEC y-direction (the thin dimension of the film) and

100 in the x-direction. The scheme stabilized with respect to the time step at ∆t = 10−5.

The iterations to each time step terminated when the change in the infinity-norm of the

vacancy vector (equal to its largest element) from that of the previous iteration was less than

0.1%. The simulation stopped when the current of vacancies at the electrolyte interface,

matched that of vacancies and holes at the air surface to within 0.01%. Convergence was
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Table 2: Parameters gathered from the literature for LSM20

Parameter Value Units

cv,0 3.0 x 10−5 mol/m3

ch,0 1.1 x 104 mol/m3

k0
inc 6.7 x 10−7 mol/m2·s
uv 2.6 x 10−14 mol·m2/J·s
uh 1.4 x 10 −12 mol·m2/J·s

cv,e0 5.0 x 102 mol/m3

uv,e 5.8 x 10−14 mol·m2/J·s

fast – usually a matter of a few seconds, although this could extend to several minutes

depending on overpotential, film thickness and the specific parameters.

3.2.3 Parameters

We require reliable data for a number of physical parameters. We sought data for LSM20

and 8% Y2O3-doped ZrO2 at an operating temperature of 750 ◦C in air. We obtained

estimates for all required parameters except k0
v .

The equilibrium concentration of oxygen vacancies in LSM20 at atmospheric PO2
can-

not be directly measured, and must therefore be calculated using classical defect models

derived from nonstoichiometry data[64, 101, 82, 76, 88] or thermodynamic models derived

from phase equilibria.[38] Because it is broad in its consideration of defect phenomena yet

straightforward in presentation, we used the classical defect model developed by Poulsen.[88]

Poulsen’s model requires three equilibrium constants, estimated from nonstoichiometry

data. We obtained these constants from Nowotny and Rekas (“random defect model”).[82]

We should mention that Nowotny and Rekas’s method of calculating equilibrium constants

from nonstoichiometry data seems somewhat inexact, as gravimetry-derived deviations from

stoichiometry are used interchangably with vacancy concentration in their calculations, ap-

parently without regard to the influence of cation vacancies. However, Nowotny and Rekas’s

listing of standard enthalpies and entropies is convenient for conversion of the data to dif-

ferent temperatures, and the constants thus calculated are easily converted to the form

required by Poulsen’s model. Calculating the values of equilibrium constants at 750 ◦C for

the Schottky reaction, reduction of LSM and disproportionation of Mn from Nowotny and
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Rekas’s data, and employing Poulsen’s technique for the small polaron model in Matlab R©

code (with A-site nonstoichiometry assumed to be 5%), yielded the values for cv,0 and ch,0

reported in Table 2.

Kilner noted a correlation between the diffusivity of oxygen tracer atoms and the effective

surface exchange constants in MIECs used for SOFC cathodes.[59] This correspondence

suggests that the reactions at the air-exposed surface in these MIECs are rate limited by

some step involving oxygen vacancies at the surface (although the exact nature of this

step is not yet known). In our surface model (2)-(3), the only reaction involving oxygen

vacancies is the incorporation step (3). We therefore assume that the incorporation step is

rate-limiting, and reaction (2) is in equilibrium.

This assumption carries several implications. First, it is no longer important to find an

accurate value for k0
ads, it must simply be considerably higher than k0

inc. Second, an equili-

brated adsorption step – combined with the fact that in the case of LSM the concentration

of holes is always much larger than that of vacancies – means that the concentration of ad-

sorbates on the surface will not deviate appreciably from equilibrium. Since the deviation

of the adsorbate concentration from equilibrium controls the surface potential, ∆χ ≈ 0.

Third, the value for the equilibrium site fraction, θ0, is not important.

The final implication of incorporation rate control at the surface is that the average ex-

change constant measured via isotope exchange / SIMS and the exchange rate constant k0
inc

of our model are the same. With that in mind, we used DeSouza and Kilner’s measurement

of the oxygen exchange rate constant.[21] We also used DeSouza’s isotope exchange / SIMS

measurement of the oxygen tracer diffusivity and activation energy in LSM20, which along

with the formula D∗ = f∗Dv [V··
O], where D∗ is the tracer diffusion coefficient and f∗ is the

tracer correlation factor (equal to 0.69), yields the diffusivity of vacancies.[20] The mobility

then follows directly from the Nernst-Einstein relation. These values are reported in Table

2.

Because of its high electronic transference number, the electronic conductivity of LSM20

can be accurately measured. The electronic conductivity at 750 ◦C was calculated from con-

ductivity and activation energy data reported in Minh and Takahashi,[75] and the mobility
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of electron holes follows from the conductivity. Oxygen vacancy concentration in the elec-

trolyte was calculated by assuming a full ionization of acceptor dopants (Y′
Zr) and 100%

compensation by oxygen vacancies. Ionic conductivity data[75] was then converted into the

value for uv,e appearing in Table 2.

We assume that the transfer coefficient in equation (27) is 1/2.

As mentioned, the only parameter whose estimate eluded us is that of the exchange rate

constant at the LSM-YSZ interface, k0
v . Our literature search revealed no attempts at direct

measurement of this parameter, but a parametric study by Baumann, et al. indicated that

the vacancy transfer reaction between LSCF and the electrolyte is not rate limiting.[7] We

assume this is the case for LSM-YSZ.

3.2.4 Sheet resistance at high cathodic overpotential

Figure 9 shows a typical result for the simulation, using the parameters listed in Table 2

and a cell geometry of 400 µm in current collector width, 400 µm between current collectors

and 1 µm in film height, with a cell overpotential of -50 mV. Here we see the basic response

for the vacancy distribution (part a) and the potential (part b) in the MIEC film. There

is almost zero sheet resistance at this geometry and polarization, as reflected by the nearly

equipotential state of the MIEC. The vacancy gradient drives species from the region under

the current collector toward the air surface, and from the interface with the electrolyte

toward the top surface. The gradient in holes runs in the opposite direction, as dictated by

the electroneutrality condition. The flux of holes is not simply opposite to that of vacancies,

however; due to their much higher concentration the drift of holes due to the tiny gradients

in electrostatic potential counteract the concentration gradient, driving holes toward the

current collector.

Figure 10 shows the situation at -750 mV. There is now a significant sheet resistance

effect, with the electrostatic potential rising almost 150 mV at the midpoint between current

collectors (part b) and the vacancy distribution shows a strong variation, with a precipitous

drop occurring at the current collector edge (part a). It is clear that the gradient in vacancies

and potential right at the junction is nearly singular, and this is a source of instability at
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Figure 9: a) Vacancy and b) electrostatic potential distribution for a 1 µm thin film with
a 400 µm-wide current collector and 400 µm between current collectors, at -50 mV, using
the parameters of Table 2.
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Figure 10: a) Vacancy and b) electrostatic potential (contour plot) for the same film
geometry and model parameters as Figure 9, at -750 mV polarization.

even higher cathodic overpotentials.1 The maximum vacancy concentration underneath the

current collector is 736 mol/m3, which translates to a vacancy site fraction of about 0.028.

This is over seven orders of magnitude higher than at equilibrium.

Figure 11 shows a set of I-V curves for films of various thicknesses, from 50 nm up to

1 µm (part a) and the corresponding utilization curves (part b). Here we define utilization

as the percentage of the potential applied at the current collector attained by the average

1Possible cures for this instability are an upwind formulation in the drift term of the flux or a compact

scheme. For the purposes of the present analysis, the stability of the current scheme is sufficient.
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electrostatic potential in the portion of the MIEC underneath the air-exposed surface. The

semi-log I-V plot (part a) shows two straight-line regions, with the slope at high overpoten-

tials shallower than that at low overpotentials. Comparing the two parts of Figure 4 reveals

that the change in slope is due to a transition to a sheet resistance-limited regime.

3.2.5 Transport limited at low cathodic overpotential

The straight lines in the semi-log plots suggest a process limited by charge transfer. How-

ever, we chose the value of k0
v in Table 2 specifically because we did not want a limiting

charge transfer process, and all of the evidence suggests that we succeeded (at least at low

overpotentials). Figure 12 shows a set of I-V curves taken at 1 µm thickness with vastly

different values for k0
v but with other parameters held to their Table 2 values, with very

little change in the film resistance above -500 mV. However, the change in current with the

mobility of vacancies (Figure 13) is much more pronounced; the correspondence is almost

1:1. Figure 14 is a log-log plot showing the almost precisely inverse relationship between

thickness and current at -5 mV. Actually, the slope is slightly greater than 1, which is likely

due to the increasing reduction of the bulk as thicknesses decrease. As cathodic overpo-

tentials increase, the slope of the log-log current-thickness plot also decreases, eventually

becoming negative.

Figure 15 shows that in this parameterization, k0
inc is right at the edge of co-limitation

with the bulk, as changes of increasing magnitude are seen for a reduction in the parameter

but there is virtually no change for increases.

These features – exponential I-V relationship with linear relationship between thickness

and resistance – reflect those seen in thin-film experiments and in DC models of mixed

conducting cathodes. Our explanation for the behavior is essentially the same as that of

Svensson.[98] To say it succinctly, Boltzmann statistics yields an exponential relationship

between the extra energy applied to the system and the excess concentration of vacancies

which the MIEC may accomodate, in analogy to Hebb-Wagner polarization.[90] However, in

our treatment there is no need to break down the overall applied voltage into separate terms

as is normally done,[97, 98, 19] since everything is tied up in the single kinetic expression
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Figure 11: a) I-V curves and b) utilization curves for films of various thicknesses.
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of Equation (27).

When sheet resistance becomes significant at high overpotentials, the effect is to limit

the active area of the film. However, if ionic transport near the current collector is still

rate-limiting, current will still respond exponentially to overpotential increases. Therefore

the response is another straight-line region in the semi-log plot, albeit with a shallower

slope.

3.2.6 Comparison with experimental studies

Since we chose our parameters from the literature based on LSM, we will briefly survey

studies featuring LSM thin films. Mizusaki[77] and Ioroi[45, 46] reported on thin LSM films

deposited by laser ablation (for Mizusaki) and EVD (for Ioroi). The most striking feature

of the comparison between these experiments and the model is the large disagreement

on area-specific polarization resistance (ASR) near the limit of zero polarization. Ioroi

reports open-circuit ASR on the order of 250 Ω·cm2 for 1.7 µm thick LaMnO3 at 800 ◦C in

air,[45] and Mizusaki reports the same order of magnitude (somewhat lower) for an 0.9 µm

La0.63Sr0.27MnO3±δ film at 800 ◦C. By contrast, the model’s ASR for 1 µm thick LSM20

at -5 mV (reflecting 750 ◦C in air) is 6.5x105 Ω·cm2, a difference of over three orders of

magnitude.

While several factors may explain the discrepancy, one likely cause is that the exper-

imental films are defective in some unaccounted-for manner. We base this conclusion on

more recent results from Imanishi, et al.[44] Imanishi and co-workers developed a method

for producing epitaxial films of LSC on YSZ substrates (see also Mori, et al.[80]). Epitaxial

or near-epitaxial films are much less likely to contain nanoporosity, and by definition contain

fewer grain boundaries. The DC-measured, electrolyte compensated current for Imanishi’s

30 nm LSM20 film deposited on the YSZ (110) surface at approximately -17 mV, 0.1 atm

PO2
and 700 ◦C was -10−5 A·cm−2, whereas that of our model at the same thickness and

polarization at 750 ◦C is -7.4x10−7 A·cm−2 – still over an order of magnitude lower, but

notably, much closer than the earlier experiments. At higher overpotentials, the difference

narrows even more: Imanishi reports -10−4 A·cm−2 at approximately -109 mV, whereas the
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simulation gives -1.6x10−5 A·cm−2.

Qualitatively, the shape of Imanishi’s I-V curves are consistent with the shape of the

curves in Figure 11, displaying two plausibly linear regimes on the semilog scale separated

by a transition region. I-V curves reported by Mizusaki and Endo[27] display similar shapes.

The remaining difference in ASR between Imanishi and the model is probably due (in

large part) to incorrect values for diffusivity, equilibrium vacancy concentration, incorpo-

ration rate constant or a combination. It seems otherwise unlikely that the model’s ap-

proximations (at low overpotential, these chiefly pertain to the surface model) would make

an order of magnitude difference. The narrowing of the difference at high overpotentials

further corroborate the idea that Imanishi’s experiments encounter a sheet resistance effect.

3.2.7 Implications

The favorable comparisons between the behavior of the model and the experimental systems

suggest that these thin film experiments are encountering sheet resistance at overpotentials

common to operating fuel cells. Although it is difficult at this point to provide quantitative

guidance, it should be pointed out that in experiments where the thickness of the LSM

electrode falls below 1 µm, there may be sheet resistance to contend with. This is the case

for patterned electrodes, thin films or porous electrodes. Especially in the case of nanos-

tructuring, it would seem prudent to take current collection into account when designing

new electrode architectures.

3.3 Incorporation of a triple-phase boundary

Matt Lynch has taken the lead in deriving and implementing a model that incorporates a

TPB reaction. The model geometry is similar to that shown in Figure 6b), but with an

opening in the LSM film as depicted in Figure 7b). Mr. Lynch derived a rate expression for

the reaction at the TPB (wherein an adsorbed oxygen combines directly with a vacancy in

YSZ) under the same principles discussed in chapter 2. Mr. Lynch also derived a method

for incorporating surface diffusion of species. Results of the simulation appear in Figure 16,

which shows the division of current between the surface and bulk pathways as a function

of thickness and TPB reaction rate, and 17, which shows the thickness-dependent behavior
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for films with different vacancy mobilities. Both results reflect the qualitative behavior

of thin film and patterned electrode experiments. In particular, Figure 17 replicates the

thickness-dependent critical behavior seen in patterned electrodes and attributable to sheet

resistance.[60]
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CHAPTER IV

REFINEMENT OF THE BULK DEFECT MODEL FOR 20%

STRONTIUM-DOPED LSM

4.1 Introduction

Toward the overall goal of a better quantitative understanding of LSM, one of the first

challenges is an accurate understanding of the bulk defect structure. The behavior of

bulk defects in LSM are experimentally accessible through gravimetry and wet chemical

methods (such as iodometry), and the defects themselves are directly observable through

TEM and neutron diffraction. The principal difficulty is that oxygen defects, which are

crucial to LSM’s behavior as a mixed ionic-electronic conductor, are very rare in LSM at

near-atmospheric partial pressures of oxygen and low cathodic overpotentials. This means

that direct measurement of the oxygen defect concentration at near-atmospheric pressures

is extremely difficult; it can only be indirectly calculated through a thermodynamic model.

The search for such a model for LSM is now decades old, and the principal tool in its

development is the nonstoichiometry experiment, wherein a powder sample on a precision

balance is brought to a certain temperature and exposed to various partial pressures of

oxygen. The weight change can be converted into changes in the oxygen stoichiometry.

Early measurements by Kamata[52] were followed by a more in-depth study by Kuo and

Anderson.[64] Since then, several authors have made additional measurements (a difficult

undertaking, especially for the very low oxygen pressures required to obtain significant

oxygen deficiency in LSM) or contributed analysis of the data.[101, 105, 103, 104, 78, 76,

82, 88, 112]

Poulsen [88] devised a flexible random defects model that can be viewed as the cul-

mination of years of experimental observation and theoretical development by various au-

thors, and applied it to Kuo and Anderson’s nonstoichiometry data as well as conductivity

data.[63] The ability of the model to replicate nonstoichiometry data was very good, while
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the fit to conductivity data was less accurate.

Our initial goal was to use Poulsen’s model straightforwardly to estimate defect reaction

equilibrium constants at temperatures and compositions of interest to us, while perhaps

improving somewhat on Poulsen’s mathematical solution technique in order to obtain a

more accurate and verifiable parameter estimate. However, we found that a completely

random model inadequately described the behavior of the samples at low temperatures.

This led us to modify the random theory slightly, in order to account for cation defect

interactions. This resulted in a significant improvement in both the fit to nonstoichiometry

and perhaps to conductivity data.

4.2 Inverse Problem Techniques

This crucial element of the entire program of study was developed, tested and successfully

implemented in the course of this work. We chose a particle swarm optimizer (PSO) as the

optimization tool, and developed a rigorous method of determining local identifiability.

4.2.1 Particle swarm optimizer

The most important part of the mathematical analysis is the optimizer. We sought a robust

optimizer, proven effective in finding global optima in a complex, multidimensional search

space. Non-gradient methods such as evolutionary and genetic algorithms are the best

candidates, and of these perhaps the best (and simplest) is the particle swarm optimizer.

The PSO was first devised by behavioral scientists to model the flocking behavior of

birds, but the inventors quickly realized that they had found a powerful method of compu-

tational optimization.[55] The basic principle is that a number of agents, each representing

a point in parameter space, move about the space with a velocity influenced by the best

positions found by its neighbors. Using the notation of Mendes, et al. [73], the process of
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updating the position of each agent at each iteration may be written:

φk = U

[

0,
φmax

‖N‖

]

∀k ∈ N (31a)

−→
P m =

∑

k φk
−→
P k

∑

k φk
(31b)

−→v t+1 = χ

[

−→v t +
(−→

P m −
−→
X t

)

∑

k

φk

]

(31c)

−→
X t+1 =

−→
X t +−→v t+1 (31d)

where N is the set of all agents in the neighborhood of the agent being updated, U [a, b] is

an operator returning a random number between a and b,
−→
P k is the best position found by

agent k, −→v is the agent’s velocity and
−→
X its position. χ and φmax are constants that must

take particular, theoretically-derived values in order to encourage convergence.[18]

Mendes, et al.[73] introduced the idea of using the best positions of all the agents in

a predetermined neighborhood in the update process, instead of merely the best agent,

and also tested several different topologies for determining each agent’s neighborhood. The

most reliable topology for a series of test runs was what Mendes called the “unselfed ring”

topology, wherein an agent’s neighborhood consists of its two nearest neighbors, but not

itself. This is the topology we used in the following analysis.

4.2.2 Identification

It is well known in the discipline of parameter estimation that care must be taken in complex

problems to ensure that results are unique. That is, one must ensure that the optimum

does not occur at a saddle point. For linear problems, there may be methods to determine

global identifiability of a model a priori. However, for nonlinear problems of the type we

are likely to encounter, it is only possible to examine local identifiability a posteriori.

The method we chose is an analysis of the behavior of each individual misfit, or the

difference between each data point and the corresponding model output, with respect to

changes in the parameters.[15] (The sum of the squares of the misfits is the cost, or the
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function to be optimized.) One computes a rectangular matrix J via the following:

η : R
P → R

N , N > P (32a)

J(α) = ∇η(α) (32b)

where η is the mapping from parameter space into the output space represented by the

model, P is the number of parameters, N is the number of output data points, and α is the

optimum parameter set. We compute partial derivatives by finite difference, using a highly

accurate algorithm involving complex numbers.[37] The matrix J has dimensions NxP .

The test for local identifiability at α is whether the columns of J are linearly independent.

Here we encounter the problem that, in a system with model, experimental and compu-

tational errors, we will never encounter a truly linearly dependent set of vectors. We must

therefore devise methods for analyzing the proximity to linear dependence of this vector

set, along with standards to apply to the results. The method we developed here takes the

form of a constrained minimization:

min‖Jx‖2 (33a)

‖x‖2 = β, β > 0 (33b)

Solving with Lagrange multipliers,

JT Jx + λx = 0

xT x = β

(34a)

⇒ xT JT Jx = −λxTx = −λβ (34b)

So the size of the eigenvalue indicates the proximity of the corresponding eigenvector x to

the nullspace of J , with the lowest eigenvalue corresponding to the direction in parameter

space x along which there is the lowest change in the cost function.

A more precise proof:

‖η(α + sx)− η(α)‖ = sJx +O(s2) (35a)

with ‖x‖ = 1 and s a scalar. Therefore,

‖η(α + sx)− η(α)‖2 = s2xT JT Jx +O(s4) (35b)
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Let λi and ri, i ∈ [1, P ] be the eigenvalues and eigenvectors, respectively, of JT J . Since

JT J is symmetric, ri is an orthonormal set. Therefore

x =
∑

i

ciri (35c)

xT JT Jx =
∑

i

c2
i λi ≧ λ0 (35d)

with λ0 the smallest eigenvalue. Therefore, by (35b), for any fixed perturbation s which is

small enough, ‖η(α + sx)− η(α)‖ finds a minimum at x = r0.

With the direction of smallest change identified, we may easily produce a cost contour

along this direction, looking at the change in the least sensitive parameter versus the change

in the cost. The threshold we used is a ratio of the latter to the former of 0.2 over a 5% total

change in the least sensitive parameter. A ratio any less than this is considered non-unique

in the affected parameter.

4.3 Random Model

4.3.1 Model review

Following Poulsen [88], the random defect model is

Schottky: nil ⇋ 3V··
O + V′′′

B + V′′′
A (36a)

Reduction:
1

2
O2 + 2Mnx

B + V··
O ⇋ Ox

O + 2Mn·B (36b)

Disproportionation: 2Mnx
B ⇋ Mn′B + Mn·B (36c)

leading to

κs = [V′′′
A ][V′′′

B ][V··
O]3 (37a)

κr =
[Mn·B]2(1− [V··

O])

(1− [Mn·B]− [Mn′B]− [V′′′
B ])2[V··

O]pO2
1/2

(37b)

κd =
[Mn′B][Mn·B]

(1− [Mn·B]− [Mn′B]− [V′′′
B ])2

(37c)

rA =
1− [Sr′A]− [V′′′

A ]

[Sr′A]
(37d)

rB =
1− [V′′′

A ]

1− [V′′′
B ]

(37e)

0 = 6[V··
O] + [Mn·B]− 3[V′′′

A ]− 3[V′′′
B ]− [Sr′A]− [Mn′B] (37f)
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where rA and rB are the cation ratios of lanthanum to strontium and total A-site cations

to manganese, respectively. The mass-action expressions are a result of rigorous derivation

of the configurational entropy, taking site restrictions into account and assuming no defect

interaction. Given the equilibrium constants and cation ratios, this is a system of 6 equations

and 6 unknowns. Poulsen solved the system using a searching procedure based on a range

of possible values for [V··
O]. We augmented this method by using a Newton solver to find

the final solution, using the best result from the searching procedure as an initial guess.

4.3.2 Data selection

In this work we have used nonstoichiometry data gathered by Mizusaki, et al.[76] One

reason for this is that we are interested in relatively low temperatures, and Mizusaki’s

experiments covered a temperature range of interest, from 873 to 1273K. Another reason is

that Mizusaki corrected for the changes in the buoyancy of the atmosphere by subtracting

the weight change of an alumina sample subjected to the same atmosphere and temperature.

This approach seems to make a significant difference, as there is a noticeable divergence

between Kuo’s results and Mizusaki’s at 1273K (the only temperature for which the two

overlap), especially at low oxygen pressures. The best fit of Poulsen’s model to Mizusaki’s

data for 20% Sr-doping is almost five times better (per data point) than the best fit of the

same model to Kuo’s measurements at the same composition and temperature (see Figure

18).

4.3.3 Results

Fits to the data for La0.8Sr0.2MnO3±δ (LSM20) are found in Figure 19. The fit to low-

pressure data are generally quite good except at 873K. At high pressures, however, the

experimental data is not captured by the model very well, with an increasing separation as

temperature decreases. The experimental increase in stoichiometry is suppressed compared

to that of the model. At 873K, the model completely fails to replicate the data, even at the

low-pressure end.
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4.4 Strain model

4.4.1 Rationale and derivation

The suppression of oxygen stoichiometry at high-pressures and low temperatures was pointed

out by Mizusaki.[76] It was also clearly reflected in the data of vanRoosmalen and Cordfunke

for samples with zero Sr content.[103] Since oxygen is added through the creation of new

sites via the Schottky reaction, these results indicate either a shifting of the equilibrium of

the Schottky reaction (36a) toward the perfect crystal as pressures increase, or a shifting of

the equilibrium in the reduction reaction (36b) toward the gas.

A suppression of the oxygen vacancy concentration through a clustering reaction could

cause the latter, but vanRoosmalen, et al. [105] found no evidence of defect clustering or

small-scale phase changes in LSM using HRTEM. This suggests that an interaction between

cation defects is behind the behavior. Given that the excess free energy we seek is positive,

and that relatively large strain fields can be expected to develop around the trivalent cation

vacancies, it seems likely that the source of the excess free energy is a strain interaction

between cation defects.

The excess free energy due to strain field interaction between crystal defects is quadratic

in the concentration of the defect, leading to an excess term in the chemical potential

proportional to the concentration.[68] Considering vacancies on the A and B sites to be

the only defects for which the strain effect is considerable, and further assuming an equal

strain due to each type of defect, leads to a re-writing of the mass-action law for Schottky

equilibrium:

κs exp

[

−γ([V′′′
A ] + [V′′′

B ])

RT

]

= [V′′′
A ][V′′′

B ][V··
O]3 (38)

where γ is a constant depending on the average elastic constant of the material and the

amount of strain imparted by each new defect.

The basic solution methodology remains the same for this model as for the random

model – a search through candidate values for [V··
O] followed by Newton’s method.
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Figure 20: Parameters found by fitting the strain model to data for LSM20 at each
temperature individually, and for all temperatures together. The parameters are (a) κd

(disproportionation) (b) κr (reduction) (c) κs (Schottky) (d) γ (strain coefficient).

4.4.2 Results and discussion

Fits of the strain model to the data for LSM20 show a distinguishably better fit than

for the random model at all temperatures (see Figure 19). The improvement increases as

temperature drops, since the effect of strain interaction becomes more significant at lower

temperatures. It is clear that the model suitably represents the data at 873K.

To estimate activation energy and vibrational entropy for the three equilibrium con-

stants, we created Arrhenius plots. We also plotted the parameter γ vs. temperature (see

Figure 20). Notably, while the data for reduction and disproportionation constants fall

more or less on a straight line, the data for Schottky equilibrium and strain interaction are

erratic.

A look at the local identifiability for these fits reveals the likely culprit for the erratic
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behavior in the Schottky constant: it is by far the least sensitive of all the parameters in

the area of the optimum at each temperature, and the analysis described above reveals that

each of these fits fails the test of identifiability. At 1273K, for instance, κs may change

more than 5% while the cost function changes less than 0.01%.1 This means that the data

gathered in a single nonstoichiometry experiment is insufficent to uniquely determine the

constants in this model.

We solve this problem, however, if we take advantage of the power of the optimizer to fit

this model to all of the temperatures at once. We do this by using the activation energy and

vibrational entropy for each defect reaction as parameters, and by requiring the values for

γ also to fall on a straight line. This is an eight-parameter optimization problem, reduding

the ratio of parameters to data points by more than half.

One test of the validity of this procedure is whether or not the fitted result continues to

outperform the random model. Figure 21, a comparison of optimum cost functions at each

temperature, shows that it does. As for uniqueness, as expected, the behavior is much more

stable. Figure 22 shows a plot of the change in the least sensitive parameter (the vibrational

entropy for the Schottky reaction) along the least sensitive direction in parameter space at

the optimum. It clearly exceeds our standard.

Table 3 lists the optimized constants for LSM20, while Table 4 lists parameters for

La0.9Sr0.1MnO3±δ (LSM10). The constants for LSM10 were also found through the all-

temperature approach, leading to a consistently better fit than the random model and

an acceptable degree of uniqueness. (See Figure 22. The change in the overall cost is

less than that for LSM20, most likely due to noisier data, but it still well exceeds the

standard.) The disproportionation reaction changes from a positive activation energy with

positive vibrational entropy in LSM20 to the opposite in LSM10, but Nowotny and Rekas

reported similar behavior.[82] Also, for LSM20 the strain coefficient goes up slightly with

temperature, whereas in LSM10 the trend is reversed. One expects that this parameter

should decrease slightly with temperature, as both the elastic modulus and the average

strain induced by a defect will likely decrease (albeit slightly) as temperatures go up. The

1The random model is closer to identifiable, but still fails the standard at 1273K.
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Figure 21: Comparison of cost values for the fit to data of ref. [76] using the random
model, the strain model fit individually to each temperature, and the strain model fit to all
temperatures at once.
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Table 3: Parameters for LSM20

κd κr κs γ

-∆H0/R, K -1.18 2.57 -2.99 1.09x104 J/mol·K

(slope) x104 x104 x104

∆S0
vib/R 7.82 -3.36 -26.2 -4.23x106 J/mol

(intercept)

Table 4: Parameters for LSM10

κd κr κs γ

-∆H0/R, K 1.96 4.24 -6.30 -7.35x102 J/mol·K

(slope) x103 x104 x104

∆S0
vib/R -2.43 -14.5 -8.01 2.91x106 J/mol

(intercept)

fact that there is an increase with temperature in LSM20 suggests that there may still be

some interaction effect not accounted for; perhaps strain due to some other defect or an

electrical interaction.

Poulsen’s fit to conductivity models was somewhat problematic, since the random model

(fit to Kuo’s data) predicts a sharp increase in the availability of mobile electronic charge

carriers in the superstoichiometric region [88], where conductivity measurements show no

change.[63, 79] We did not fit the results to conductivity data in order to estimate mobilities;

however, the Kröger-Vink plots of Figure 23 reveal an interesting result. The strain model

shows less change in the total Mn(IV) concentration at high pressures. The total charge

carrier concentration on the B-site shows a similar profile, with the strain model closest to

the optimum carrier-to-site ratio of 0.5.
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Figure 23: (a) Mn(IV) and (b) Mn(IV) + Mn(II) concentrations for various models fit to
nonstoichiometry data at 1273K.

48



CHAPTER V

TOWARD BUILDING A MODEL AND TESTING REGIME FOR THE

LSM-YSZ INTERFACE

5.1 Blocked electrodes

The best experimental vehicle for isolating the processes at the LSM-YSZ interface and

determining its structure is a blocked electrode (see Figure 24). In the blocked electrode

experiment, a dense film of LSM is deposited on a YSZ substrate, followed by a dense layer

of Pt. A porous Ag counter electrode is applied to YSZ, and the capacitance of the entire

structure is measured for a variety of different terminal potentials. The capacitance at the

counter electrode, being a free surface for the transport of oxygen, should contribute little

to the capacitance compared with the LSM-YSZ and LSM-Pt interfaces. In any event, for

a truly sealed system, it should be possible to estimate polarizations at the Pt-YSZ and

Ag-YSZ interfaces using potentiometry. Such an experimental cell design has been used to

study the structure of the interface between YSZ and Pt.[16, 40, 100]

The characterization method for the blocked electrode experiments is impedance spec-

troscopy (IS) under applied bias. IS is the application of a small-signal A/C voltage per-

turbation through several decades of frequency (typically mHz to MHz range). For the

equilibrium case, we are interested only in the behavior of the low-frequency capacitance

with respect applied potential. We can analyze the frequency-dependent behavior using the

nonequilibrium model described below.

Figure 24: Schematic of the blocked electrode test cell
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5.2 Theory

5.2.1 Randomly distributed mobile defects

A naive approach to modeling the interface – one concordant with the assumption of a

random distribution of defects in both YSZ and LSM – is the solution of the Poisson-Fermi

equation with Dirichlet boundary conditions at the current collectors and a partition in

the domain at the LSM-YSZ boundary. Such a problem has been derived and solved using

adaptive finite elements (a discretization scheme which is identical to a finite difference

scheme for elliptic equations in one dimension for a regular mesh, but not for an irregular

mesh as required in adaptive meshing).

Poisson’s equation is:

d2φ

dξ2
= −

ρ(ξ)

κǫ0
(39)

where φ is the electrostatic potential, acting over a one-dimensional domain ξ ∈ [0, L], ρ

is the excess charge, κ is the dielectric constant of the medium and ǫ0 is the permittivity

of free space required by the SI system of units. Both κ and ρ are discontinuous at the

interface, leading to a split in the overall domain. The boundary conditions at the interface

are defined by the continuity of the dielectric displacement:

κYSZ

dφ

dξ
|YSZ,int = κLSM

dφ

dξ
|LSM,int (40)

where the subscript “int” indicates the interface. The Galerkin finite element discretization,

for an indexing starting just off the boundary for φ is:

−
φi−1

∆ξi
+

φi

∆ξi
+

φi

∆ξi+1
−

φi+1

∆ξi+1
−

ρi

2κǫ0
(∆ξi + ∆ξi+1) = 0 (41)

where the source term was calculated using trapezoidal quadrature.

The expression for ρ is generally dependent on φ, although the particular form depends

on the defect equilibrium. It arises from the condition for eqilibrium in the bulk domain, that

is, ∇µ̄j = 0 ∀j, where j indicates each mobile species. Considering randomly distributed,

mobile oxygen vacancies in YSZ, with static, randomly distributed dopant cations, we may

write:

[V··
O]

1− [V··
O]

=
[V··

O]0
1− [V··

O]0
exp

[

−2F (φ− φ0)

RT

]

(42)
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The reference potential and site fraction are constants that may be solved for by writing

chemical equilibrium equations at the boundaries (these involve equilibrium constants that

can be directly estimated using potentiometry, as mentioned above), yielding potential-

dependent expressions for ρ in the electrolyte.

In LSM, the defect equilibrium is more complicated, as discussed in chapter 4. However,

we may still assume a fixed concentration profile of metal vacancies and dopant ions. This

leads to a potential-dependent system of equations for the mobile defect site fractions at

each point. It is a differentiable system, so it can be used in the calculation of the Jacobian

required for Newton’s method.

Newton’s method is used for the solution. The Jacobian in this case is tri-diagonal, so

the complexity in the solver is O(N).

Typical results are displayed in Figure 25, for the case of cathodic applied potential to

the working electrode (LSM), and 8 mol% yttrium doping in YSZ. (The model used here for

LSM is the random model discussed in chapter 4; there is no strain term. Later models did

incorporate strain in LSM.) The view is focused on the interface, at a range of only a couple

of nanometers. The most salient feature of the result, which is typical for a wide range

of potentials and equilibrium constants, is the very tight collection of defects found on the

YSZ side of the interface; the concentration profile covers less than a nanometer. This is

not particularly surprising, since the Debye length depends inversely on the concentration

of mobile defects and the dielectric constant of the material.

5.2.2 A picture of the actual interface

Such a formalism as presented in the previous section might be sufficient to move for-

ward with the blocked electrode experiment and analysis, if we did not have a very clear

qualitative picture of the LSM-YSZ interface as provided by TEM and EELS. This work

by Backhaus-Ricoult, mentioned above,[5] depicts quite a different picture of the interface

than that seen in the results of the model derived in the previous section. Figure 26, taken

from ref. [5], depicts cation profiles across the LSM-YSZ interface as determined by EELS.

Three things are striking about these results. One, it shows a significant concentration of
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Figure 25: (a) potential and (b) charge density distributions at the YSZ/LSM interface
in a blocked electrode under cathodic polarization.

Figure 26: Profiles of La and Mn species near the interface between LSM and YSZ, taken
from reference [5]

Mn and La species near the interface in YSZ. Two, the profile extends over several nanome-

ters, as opposed to the profile in Figure 25, which only extends a nanometer or so. Third,

and perhaps most important, given that TEM images show no signs of interstitial cations

in YSZ or any transitional phase at the boundary, the interface seems, at first glance, to

be non-equilibrium: negative defects in LSM (in the form of cation vacancies) share an

interface with negative defects in YSZ (substitutional Mn′Zr, Mn′′Zr and La′Zr).

It is, in fact, the opinion of Backhaus-Ricoult that this is a non-equilibrium profile,

with metal species partially diffusing into the YSZ structure. While this certainly makes

sense from a standpoint of what are likely to be very slow diffusion coefficients for metals
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in YSZ, the transport of metal vacancies in LSM should be much faster; there is seemingly

no reason for the buildup of cation vacancies on the metal side of the interface, especially

with negatively charged dopants opposing it. This suggests clustering of defects on one side

of the interface or the other is creating a region of positive charge buildup.

As discussed in chapter 4, the TEM evidence for LSM does not indicate defect clustering.

However, the fact that the conductivity decreases with increased aliovalent dopants past the

point of approximately 8 mol% Y2O3 suggests a clustering of defects in stabilized zirconia,

as an attractive interaction between oxygen vacancies and dopant cations. This suggests

that a clustering of oxygen vacancies among the negatively-charged substitutional dopants

in YSZ could be responsible for the buildup of negatively-charged cation vacancies near

the interface in LSM. Additionally, clustering in YSZ may prove to be responsible for the

extension of the interface over several nanometers, as opposed to the highly compressed

interface seen in Figure 25. In this way, the profile seen in Figure 26 may actually represent

an equilibrium or near-equilibrium state.

5.2.3 Cluter variation method in defective ionic solids

The difficulty in writing an equilibrium model for YSZ that considers clusters is the calcu-

lation of configurational entropy. One approach to this problem is cluster variation method

(CVM). CVM was originally developed as a method of determining phase equilibria in

binary alloys, but may be thought of as a general method for calculating configurational

entropy for collections of atomic cluster configurations.

The method begins with the selection of a basic configuration of atomic sites in a crystal.

Each site is assigned an occupancy operator, which designates the occupancy of the site.

Each distinct configuration of this basic figure may be thought of as a distinct cluster.

Designation of the fraction of figures in the crystal adhering to each cluster configuration

(the cluster variables, xl) may be thought of as a statistical description of the phase. The

task becomes writing the free energy of the crystal in terms of the xl, then minimizing with

respect to them.
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Given a pairwise interaction energy between nearest neighbor species (or some higher-

order interaction energy), one can easily write the internal energy of the crystal as an

appropriate sum over the cluster variables. Writing the entropy in terms of the cluster

variables, then, is the key to the method. It is not the purview of this work to present

the full derivation of CVM, as several different derivations of the technique appear in the

literature.[4, 6, 57, 56, 58, 86, 92] The derivation is carried out with a view to preserving the

well-known combinatoric result for the case of completely random distributions of species

over the available sites (Fermi-Dirac statistics), and the mathematical certainty of extrap-

olation to exact results for the case of a basic cluster equal in size to the size of the system.

An overview of the basic technique follows.

The entropy of the crystal (per site) can be approximated as:

S ≈ R
∑

η

γη

∑

lη

xlη log xlη (43)

Here, η denotes certain sub-figures of the basic figure, and lη the distinct configurations

(cluster variables) of sub-figure η. The γη are coefficients, the calculation of which is dis-

cussed below. Since all of the cluster variables of a given sub-figure, xlη′
, can be written

in terms of cluster variables of the basic figure, xl0 (where the subcript 0 is added here for

clarity, and will hereafter denote the cluster variables of the basic figure), equation (43)

enables the writing of the free energy per site F = E(xl0) − TS(xl0) in terms of the basic

cluster variables.

The appropriate sub-figures to include in the sum (43) are those that can be formed

by all overlaps of the basic cluster with itself. The coefficients γη can then be calculated

based upon the number of such figures appearing in the crystal, along with the number of

sub-figures appearing in each sub-figure of higher order.

The case of an ionic solid with defects has not been considered up until now to the

best of my knowledge, but actually the technique may be applied as discussed above for

an ionic solid (having two interpenetrating and mutually exclusive sublattices) so long as

the chosen figure adheres to two conditions. These are, that the ratio of sites in the crystal

must be preserved in the basic figure, and all sites comprising the basic figure must have
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Figure 27: Schematic of the basic figure used with CVM. a) view of cluster orientation
with respect to the fluorite (110) b) view with respect to the fluorite (001).

an identical environment within the figure. These requirements preserve the principle that

the method becomes exact when the basic figure increases its size to that of the system.[86]

The first provision is simple to enforce in the selection of the basic figure. The second can

be difficult to accomplish in basic figure selection, but may also be enforced as a constraint

on the minimization.

The other constraints on the minimization are normalization (
∑

l xl0 = 1) and, for the

case of the bulk ionic solid, electroneutrality. The method for constrained minimization is

Lagrange multipliers, and for solution Newton’s method combined with a so-called natural

iteration method (NIM), as introduced by Kikuchi.[57]

The basic figure chosen for the initial analysis of defect clustering in YSZ appears in

Figure 27. It was chosen for its relative symmetry and low number of sites (there are only

34 unique cluster variables for the system with only one cation defect). In addition, there

are several cation-anion relationships of interest: first and second-nearest neighbors, both

of which have attractive bond energies. Solution of the problem using CVM for this figure,

with all bonding energies equal to zero produced the random distrbution of defects, as

expected.

The method employed for finding bond energies is density functional theory (DFT)

calculations, which are quantum-mechanical simulations. The DFT calculations themselves

have been performed by Dr. Jeng-Han Wang (now a professor at National Chiao Tung

University, Department of Applied Chemistry, Hsinchu, Taiwan). The specific methodology
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Table 5: Bond energies for various defect pairs in YSZ

defect pair energy, eV

(Y-Y)1NN 0.5551
(Y-V)1NN -0.7392
(Y-V)2NN -0.3516
(V-V)1NN 0.8671
(V-V)2NN 0.7325

utilizes a simulation space consisting of eight unit cells. Neutral combinations of defects

are dispersed in the collection at random. The energy of the ensemble is then calculated

using DFT. When a number of cells have been constructed and their energies calculated, a

least-squares problem can be solved for the bond energies. Bond energies calculated in this

manner for yttrium and oxygen defects appear in Table 5.

Minimizations utilizing these bond energies and the cluster appearing in Figure 27 con-

verged at a wide range of temperatures (300-1000K) and doping fractions (0.0628 - 0.504

mol% yttrium). Evidence of a slight phase changes can be seen at 0.28 mol% between

700 and 800K. An attempt to correlate the cluster information with measured activation

energies[39] for conduction in YSZ was unsuccessful. In this effort, we used outside DFT

estimates of migration enthalpies for vacancies moving through cation-cation edges of var-

ious characters (either Zr-Zr, Zr-Y or Y-Y).[62] Our lack of success here is evidence that

ionic conductivity for vacancies cannot be fully described by the energy required to traverse

cation-cation edges. DFT-Monte Carlo simulations considering a broader environment when

calculating migration enthalpies have had more success in replicating measured activation

energy data.[87] Imitating (and perhaps improving upon) these results might be possible

using a larger basic figure. However, since the smaller figure may still be suitable for the pur-

poses of accounting for the effects of clustering on the equilibrium structure of the interface,

this avenue of study was not pursued further at this time.

5.2.4 Extending CVM for interface studies

In order to extend the CVM technique to the study of the interface, we must apply CVM

to a free energy minimization over an entire one-dimensional material domain. This means

56



that xl0 = xl0(ξ), and the free energy F = E(xl0) − TS(xl0) + (φ − φ0)ρ(xl0) (re-written

to include electrical energy) becomes a functional over the domain, which we will restrict

for the purposes of initial derivation to the YSZ domain, ξ ∈ [0, L], with metal electrodes

(blocking at one side and porous at the other). The free energy functional is:

Φ =

∫ L

0
Fdξ (44)

To minimize Φ, we use constrained calculus of variations. The constraints in this case

are of two types, pointwise constraints and domain constraints. The pointwise constraints

are the normalization condition, the equality of sites condition, and Poisson’s equation. The

domain constraint is the limitation of the total number of defects, such that the average

concentration is equal to the doping fraction. The Lagrange multipliers for the pointwise

constraints are also functions of ξ, and as such the pointwise constratins can simply be

added to the integrand in equation (44). The domain constraint has a scalar multiplier,

and takes an integral form over the domain. The functional becomes:

Φ =

∫ L

0

[

F + nλ(1−
∑

l

xl0) + oλ
∑

l

νlxl0 + φλ

(

d2φ

dξ2
+

∑

l ρlxl0

κǫ0

)

− yλ
1

L

∑

l

ylxl0

]

dξ

+ yλf (45)

where the νl are the relevant coefficients for the site equality constraint, yl are the coefficients

for calculating the concentration of yttrium at a given point, ρl are the coefficients for

calculating the charge density at a given point and f is the doping fraction.

The method of calculus of variations is to set the first-order variation of the functional

for each minimizing function equal to zero. The first-order variation for the cluster variable

xω is:

∂Φ

∂xω
δxω =

∫ L

0
δxω

(

∂F

∂xω
− nλ + oλνω + φλ

ρω

κǫ0
− yλ

yω

L

)

dξ = 0 (46)

For the entire expression to be zero for every variation δxω, the integrand must be zero. This

leads to a set of algebraic equations relating the functions xl0 to the lagrange multipliers

and φ.

Similarly, for φ,

∂Φ

∂φ
δφ =

∫ L

0

(

∂F

∂φ
δφ + φλδφ′′

)

dξ = 0 (47)
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Here, the second term in the integrand is integrated by parts twice in order to transfer

the derivatives to φλ. The boundary terms generated along the way are zero, due to the

requirements that the variational term, δφ, as well as the Lagrange multiplier φλ, are zero

at the boundaries. This leads to

∂Φ

∂φ
δφ =

∫ L

0
δφ

(

∂F

∂φ
+ φλ′′

)

dξ = 0 (48)

which again requires that the integrand be zero.

A similar procedure involving variations of the pointwise boundary conditions yields

equations setting these conditions identically equal to zero. Since the multiplier yλ is a

constant, no variational argument is necessary; we are simply left with the integral constraint

as a final equation.

The reference potential, φ0, does not require a separate Lagrange multiplier, since it

can be calculated separately as an analysis of the condition at the boundary. At the porous

electrode boundary, we require equilibrium for the reaction

1

2
O2 + V··

O + 2e′ ⇌ Ox
O (49)

which leads to the equilibrium condition:

1

2
µO2

+ µv(ξ = 0) + 2µe = 0 (50)

where potential-dependent terms in the electrochemical potential have canceled each other

out. The electrochemical potential of vacancies at equilibrium is uniform, meaning that

the chemical potential at the electrode can be related to that at any reference point. We

choose the point (which needs not be actually present in the domain) at which the solid is

electrically neutral:

µv(ξ = 0) = µv,0 + 2F [φ0 − φ(ξ = 0)] (51)

Combining equations (49), (50) and (51), and setting φ(0) = 0 yields:

φ0 = −
1

2F

(

1

2
µO2

+ µv,0 + 2µe

)

(52)

The first and last terms on the right-hand side of equation (52) are constants that can be

calculated based on the identity of the metal used in the electrode and the partial pressure
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of oxygen. The middle term, µv,0, which is the chemical potential of vacancies in the neutral

solid, is also well-defined, and can be calculated by running the zero-dimensional CVM with

enforced vacancy concentrations, using finite difference to calculate the change in the free

energy with respect to changes in vacancy concentrations at the point of electroneutrality

for the given overall doping fraction.

The system (46)-(48), along with the constraints, is an algebraic-integral-differential

set of equations on the domain ξ ∈ [0, L]. It can be solved by discretizing the differential

equations – each elliptic, according to the finite element method of equation (41), with, in

the case of a known potential drop across the domain, Dirichlet boundary conditions. The

FEM, again in this case, allows for easy implementation of adaptive meshing.

In the case of Dirichlet conditions, it is not necessary to include the endpoints of the

simulation in the discretization of the algebraic part, equation (46). This is because there

is no interdependence between the equations involving xl0(0) and xl0(L) and the rest of

the equations in the simulation. In fact, in order to solve for these two sets of variables,

additional constraints must be employed, equating the electrochemical potentials at those

boundaries with the electrochemical potential at the electrically neutral composition.

Implementation of the solution is still in progress.
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CHAPTER VI

CONCLUSION

A program of study for quantitative study of oxygen reduction on LSM has been estab-

lished. The principal parts of the program are carefully designed test cells, which reduce

the complexity of the process, the modeling appropriate for those cells, and robust inverse

problem techniques that connect the two. Progress in the program of study completed as

work for this thesis includes:

1. detailed modeling of oxygen-surface reactions for mixed conductors

2. design and fabrication of patterned films and electrodes of LSM on YSZ (as part of a

collaboration)

3. development of detailed electrochemical models for thin films and patterned elec-

trodes, along with their implementation and solution

4. development and implementation of optimization and identification methods

5. proposal of a new theory for bulk defect equilibrium in LSM, along with the testing

of that theory against nonstoichiometry data

6. proposal of a new theory to explain the observed structure of the LSM/YSZ interface,

along with the design of an experiment to test the theory and the partial development

of a quantitative model

The formalism for oxygen reduction on the surface of mixed conductors is unique in that

it adheres to a classical theoretical edifice that has been well-studied, in showing that the

surface potential does affect the rate of reactions at the MIEC-air interface. This reduces

to purely chemical control in certain situations, but charged intermediates may also affect

the rate of surface reactions by altering the surface dipole.
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The modeling work associated with patterned electrodes is unique for its incorporation of

the detailed formalism for oxygen reduction presented in chapter 2, as well as its treatment

of sheet resistance. The behavior of the models compare reasonably with experiments

performed on thin films and patterned electrodes.

The new model for defects in LSM seems to replicate both nonstoichiometry data,

especially at low temperatures, and conductivity data better than its predecessors, even

while reducing the ratio of parameters to data points through the simultaneous fitting of

the model to multiple temperatures.

The proposal of an equilibrium structure influenced by clustering in YSZ at the bound-

ary with LSM is still in development. The theoretical methodology proposed is a unique

expansion of cluster variation method.

I am very hopeful and confident that the program begun in the work for this thesis

will continue, producing quantitative knowledge about LSM in the short term that can

be used in the optimization of microstructure. I also hope that in the long term a viable

methodology for the study of many different types of electrodes has been established.
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