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SUMMARY

Studies of the concentration-dependence of electrolyte diffusion have been

made for quite a number of neutral electrolytes and for a few acids. These

studies reveal that the diffusion of 1:1 electrolytes such as sodium chloride

and potassium chloride are consistent with the Onsager-Fuoss theory at low con-

centrations and at 25°C. In addition, it has been found that hydrochloric acid

diffusion is compatible with the Onsager-Fuoss theory at high concentrations.

It was thus the main purpose of this thesis to investigate the premise that

sodium hydroxide diffusion was reasonably consistent with the Onsager-Fuoss

theory over a relatively wide range of concentration. Second, it was the objec-

tive of the thesis to determine why the diffusion of sodium hydroxide did not

fit the Onsager-Fuoss theory if the above premise were found invalid. While

much experimentation has been done concerning concentration-dependence of

electrolyte diffusion, the temperature-dependence of diffusion has received

essentially no consideration. The final purpose of the thesis was to study the

temperature-dependence of sodium hydroxide diffusion in light of the reaction

rate theory.

The "oil lye" method of sodium hydroxide purification was shown to be quite

satisfactory for preparing solutions for physicochemical study if the procedure

were slightly modified and the manipulations carried out in a controlled atmos-

phere.

From a comparison of the diffusion of sodium hydroxide at 25°C. with the

predictions of the Onsager-Fuoss theory, it was shown that the premise of the

applicability of the theory was invalid except at very low concentrations. It

was shown also that the modified Hartley-Crank relationship, for solvent counter-

diffusion, hydration effects, and solution viscosity changes, was not applicable

except at low concentrations. At low concentrations, the Hartley-Crank
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relationship showed that the sodium ion was hydrated as in other electrolytes but

the hydroxide ion was not.

It was shown that sodium hydroxide conductivity data from the literature

could be analyzed theoretically, up to three-tenths molal, by: (1) treating the

ions individually and applying Kohliausch's law, (2) applying the electrophoretic

correction and Falkenhagen relaxation correction to the sodium ion, (3) applying

only the relaxation correction to the hydroxide ion, and (4) utilizing the value

of the distance of closest approach obtained from activity data. Above three-

tenths molal, it was shown from conductivity data of sodium hydroxide that ion-

pairs existed in solution and the extent of the phenomenon was calculated.

It was found that the extent of ion-pair formation calculated from conduc-

|
tivity data could be used in the modified Hartley-Crank relationship to calculate

the diffusion coefficient of the ion-pair. A slight decrease, with increasing

sodium hydroxide concentration, was shown for the calculated ion-pair diffusion

coefficients. By considering the effects of size, shape, and diffusion mechanism,

it was shown that the calculated values of the ion-pair diffusion coefficients

were quite realistic. From nuclear magnetic resonance data in the literature,

it was found that ion-pairs would be present in sodium hydroxide solution but

not in potassium hydroxide solutions. Limited potassium hydroxide diffusion

data from the literature showed that this electrolyte exhibited the character-

istic minimum in the diffusion coefficient-concentration curve as expected from

the N.M.R. data. F

From the investigation of the diffusion of sodium hydroxide at 20, 30, and

35°C., it was shown that the general concentration-dependence effects exhibited

at 25°C. were present at the other temperatures. The concentration-dependence

did, however, tend to decrease with increasing temperature in the high concentration
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range. By analyzing the temperature-dependence according to the reaction rate

theory, it was shown that there were two regions of diffusion behavior with

respect to temperature at a concentration of one-tenth normal. The region of

highest activation energy was attributed to the existence of ion-pairs (42) and

the lowest activation energy region being essentially free of ion-pairs. At

seven-tenths normal, it was found that the activation energy tended to decrease

slightly with increasing temperature. Comparison of the temperature-dependence

of sodium chloride diffusion with that of sodium hydroxide showed that the sodium

chloride activation energy was greater by as much as 1400 cal./mole. This differ-

ence was considered to be evidence for the existence of a Grotthus-type transfer

mechanism (36) for sodium hydroxide diffusion in the absence of ion-pairs.



I,

INTRODUCTION

Because of its tremendous industrial usage and importance, one would expect

that the diffusional behavior of sodium hydroxide has been thoroughly investi-

gated and discussed. However, a review of the literature showed that such was

not the case. In fact, no experimental data on sodium hydroxide diffusion has

been found in literature since 1904 (1). In addition, correspondence with the

five major producers of sodium hydroxide showed that there were no unpublished

data available either. While some data were available from the work of 1904,

these results were obtained at 180°C., with limited temperature control, and

utilizing a measurement method which gave integral diffusion coefficients in-

stead of differential coefficients At 18°C., the amount of auxiliary informa-

tion available for theoretically analyzing diffusion data is quite negligible,

if at all existent. Also, the diffusion data available for sodium hydroxide

were of the integral type and were therefore not amenable to theoretical analysis.

In theoretically analyzing simple electrolyte diffusion, the theory of

Onsager and Fuoss (2) has been the most successful and widely utilized. It is

seen in Fig. 1 (3) and 2 (3) that the Onsager-Fuoss theory will predict diffu-

sion coefficients with reasonable accuracy for potassium chloride and sodium

chloride, particularly at low concentrations. In addition, it has been pointed

out (4) that the diffusion of hydrochloric acid is predicted quite well at high

concentrations but not so well at low concentrations. An additional consideration

of electrolyte diffusion is the fact that there has been no accurate and detailed

study of the temperature-dependence of diffusion in light of the reaction rate

theory (5).

Because of the applicability of the Onsager-Fuoss theory to the diffusion of

other electrolytes, it was felt that sodium hydroxide diffusion should be reasonably







-7-

consistent with the theory. This conclusion was arrived at because the chloride

ion was present in both cases and was, therefore, not expected to be responsible

for the compatibility of the acid diffusion with theory at high concentrations.

Thus, due to the similarity of the hydronium and hydroxide ions in solution, the

sodium hydroxide should behave in a reasonably ideal manner at the high end of

the concentration range. Also, because of the presence of the sodium ion it

would be expected that sodium hydroxide diffusion should coincide with the

prediction of the Onsager-Fuoss theory at low concentrations.

The first objective of this study was to determine the validity of the

premise that sodium hydroxide diffusion could be reasonably predicted from the

Onsager-Fuoss theory. In addition, a second objective of the study was to

determine why the diffusion of sodium hydroxide did not behave according to the

Onsager-Fuoss theory if the original premise were not supported. Finally, an

additional objective of this work was to investigate the temperature-dependence

of sodium hydroxide diffusion in light of the reaction rate theory.
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THE THEORIES OF DIFFUSION

ELECTROLYTE DIFFUSION THEORY

Attempts to predict the diffusion coefficients of electrolytes in aqueous

solution have been in progress for many, many years. While there have been more

attempts made than space would allow reporting here, the most successful, from

the standpoint of recognition, were provided by Nernst (6), Debye and Hlckel (7),

and Onsager and Fuoss (2). In acknowledging these theories, it must be mentioned

that in the latter two cases (7, 2) the primary concern was obtaining mathematical

descriptions of the forces existing in electrolyte solutions. More recently, the

work of Kirkwood (8) and of Mayer (9) has been concerned with a more rigorous

statistical mechanical approach to solution theory. Although the "cluster theory"

of Mayer (9) has been shown to be quite good for the prediction of activity co-

efficients in more concentrated solutions (10), it has been pointed out (11) that

the "cluster theory" is not sufficiently developed for use in studying transport

phenomena.

While not designed specifically for electrolytic phenomena, the so-called

"theory of absolute rates" (12) has been adopted for use with electrolyte dif-

fusion. Specifically, the theory is primarily concerned with the temperature-

dependence of diffusion and considers the effect of concentration on diffusion

to be limited to the variation of activity coefficient with concentration.

In the subsequent sections a brief review will be given of the chronological

development of electrolyte transportlltheory. Although such a review might entail

several volumes, consideration will be given to the works of Nernst, Debye and

Huckel, and Onsager and Fuoss. To conclude the presentation of transport theory,

a brief section on the absolute rate theory of diffusion will be presented with

particular emphasis on the temperature effect on diffusion.
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NERNST'S THEORY OF DIFFUSION

·In the theory of Nernst, as developed by Robinson and Stokes (13) and

Harned (14), for electrolyte diffusion, it was first assumed that for a single

electrolyte

V = V1 V2 (1)

where the V's were the mean ionic velocity, cation velocity, and anion velocity,

respectively. Or, more specifically, in order to maintain electroneutrality all

of the ions must move at the same rate. The fluxes of ions are given by

J1 = NlV and J2 = 22 (2)

where the J's are fluxes and the N's are the molecules/cubic centimeter. To

evaluate the mean ion velocity, the mobility, c, is introduced such that

V = Kl1 = K22 (3)

where the K's are the forces acting on the ions. These forces are related to

the total force acting on an electroneutral ensemble of the electrolyte by

K= lK + v2 (4)

Here, the v's represent the ions per molecule for the two ionic species. The

force, K, acting on the ensemble is now defined as the negative of the gradient

of chemical potential, -V.i. From this and Equations (3) and (4), it is possible

to show that the mean velocity is given by

V ..- -12 V[i (5).
V1L + v201

For an ideal solution, the chemical potential is given by



o
1 p= 1° + ( v

where p is the chemical potential i

of chemical potential is

I 10-

I + v2) kT in N

n a standard state.

Vi = (vI + v2 ) kT -

A total flux, J, may now be defined as

J = J1 1 J2 = NV + N2V2

but from Equation (1), Equation (8) becomes

J = (N1 + N2 ) V =

or

(u + v2)CuDl1

NV

(6)

From this, the gradient

(7)

(8)

(9)

(10).

However, from Fick's law, the flux is defined by the diffusion coefficient

according to

J -DVN

Therefore,

D =D
0

which, when the mobilities E

(v + ;2)U1m2
= 2) 2 kT

V1d2 ?+ V20 1

are defined in terms

(11).

(12)

of the conductivities, becomes

D
o

RT

I1
where the mobility a. = 2- ; 7 = Avogadro's number; k = R/. In Equation (l1

the X's are the equivalent conductances, the Z's are the valences per ion, and F

is the Faraday (96,500 coulombs equiv. -).

5),
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If the solution is not ideal as shown by Equation (6), the chemical potential

would be given by

where C+ is the activity coefficient on the molecular scale. Thus,

or

From Equations (5), (9), and (11) it is seen that the diffusion coefficient becomes

In the above development it is first assumed that the diffusion coefficient

is a constant for a particular electrolyte or that the development applies to the

hypothetical diffusion at infinite dilution. Secondly, it is assumed that the

deviation from the behavior at infinite dilution is due to the nonideality of the

solution equilibrium properties as shown by Equation (14).

While not specifically part of the Nernst derivation, it is worthwhile to

note one additional relationship. In Equation (11) it is shown that the flux,

J, is given by

J = -DVN (11)

from Fick's first law. Since it is commonly recognized that the driving force
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for diffusion is the gradient of the chemical potential rather than the gradient

of concentration per se, Equation (11) may be written in the following form

From this it is seen that

and Equation (17) may be put in the form

or, on a molar concentration scale

where y+ is the mean molar ionic activity coefficient, C is in moles per liter,

One of the reasons why Equation (22) is written in this form is to note that

from Equations (3) and (5) it is seen that the quantity (ji) in Equation (22)

represents a mean ionic mobility. More specifically, (s) represents the ionic

mobility in a unit chemical potential field. This point was emphasized because

the above derivation of the diffusion coefficient assumes that ion interaction

plays no part in the variation of the diffusion coefficient with concentration.

In subsequent derivation this mobility term will be adjusted to account for ion-

pair interaction.
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THE DEBYE-HUCKEL THEORY

Although they were not the first to recognize the effect of electrostatic

forces on the thermodynamic and irreversible properties of electrolyte solutions,

Debye and Huckel (15, 16) were the first to make any successful mathematical

treatment of the problem. Even though Debye and Hickel made no attempt to treat

the problem of electrolyte diffusion they did consider the conduction of electro-

lytes. Thus, this section will be primarily concerned with the description of

the forces existing in an electrolyte solution as presented by Debye and Hickel.

This theory is based first on the assumption that strong electrolytes are

completely dissociated into ions. If there were no forces acting between ions,

they would be randomly distributed in a solution. However, because of the forces

between ions as partially described by Coulomb's Law, the probability of finding

a positive ion in the vicinity of another positive ion is not as great as the

probability of finding a negative ion in the vicinity of a positive ion. In

order to account for the electrostatic interactions, Debye and Huckel found it

necessary to calculate the average electrical potential .. of a given ion in

solution due to the other ions. To do this, the potential was related to the

average charge density, p, in any region of the solution by Poisson's equation,

where D. is the dielectric constant. In spherical co-ordinates, Equation (23)

may be represented by

where r is the radial direction from an ion. The charge density in a particular

region of solution may be represented by the product of the ions in that region

and the charge per ion. The charge density would thus be given by



where N is the number of ions, i, of charge qi in a region of potential 4.

To represent the number of ions, N, in a region of potential A, Debye and

H&ckel chose to use the Boltzmann distribution law in the form

N! = N.e (26)

where the potential energy is given by q.. If Equations (25) and (26) are

combined, the result is

Debye and Hickel then assumed that the potential energy, q_.i, was much

less than the average thermal energy, kT, and the exponential term in (27)

was expanded to give

All terms beyond the second were neglected, and p thus became

If -i is represented by Z.e, the first term of (29) vanishes by the requirement

of over-all neutrality and the charge density is given by

where e is the electronic charge and Z. is the valence of the i ion.

In order to determine the average potential about ions in the solution,

Equation (24) and (30) were combined to give
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In order to simplify Equation (31), the following definition was made

This reduced Equation (31) to

which has the general solution

A -br B br
r r

Since . must vanish as r goes to infinity, B must be equal to zero. This gives

A -br (35)
r

Debye and Huckel reasoned that when b = 0, the concentration was zero, and

hence the potential was that of a single ion in the absence of any other charges.

Thus, Equation (35) became

This solution for the potential, however, assumed that each ion was a point charge

and had no volume.

later, Debye (17, 18) accounted for the volume of ions by observing that

in Equation (35) represented the potential of an ion and its atmosphere at

some distance r from that ion. Thus, the potential could be written as



where the first term represented the

and t*(r) represented the potential

If the ion were represented by a rig

closest approach of another ion then

gradient of the total potential t. (:

potential of the ion alone, 6/5r(Z.EJ
- .J

and

From Equations (38) and (39), the va

A=

Hence, the Debye-Hickel average

Z

D

when the ion was considered as a rig

Although they did not treat the

and Huckel (18) did analyze electrol;

ment. In so doing they recognized ti

the mobility of ionic species in a s

two phenomena are referred to as the

effect (19). The electrophoretic ef:

moves through a viscous medium there

potential at r due to the ionic charge Z

f the ionic atmosphere at this distance.

d sphere of diameter a. or distance of

in order to insure a continuous field the

)/or, must be equal to the gradient of the

'D.r), when r = a.. Thus, from Equation (35)

+ br) e

r D.r

(38)

Z

D

.ue of A was obtained, for r = a as

potential about an ion was given by

b(a-r)

(39).

(40).

(41)

d sphere of diameter a..
-

problem of electrolyte diffusion, Debye

rte conduction in light of the above treat-

wo electrostatic effects which would alter

olution subjected to external forces. These

electrophoretic effect and the relaxation

ect arises from the fact that when an ion

is a tendency for it to drag along solution
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in its vicinity. Therefore, neighboring ions must move with or against the

stream, and not in a stationary medium, depending on whether they are in the

direction of the first ion or opposite. It is apparent that the effect is

concentration-dependent and will thus produce an effect on the mobility of an

ion inan irreversible process. The relaxation effect arises from the condition

whereby the influence of an external force on an ion tends to disturb the sym-

metrical distribution of ions about a central ion in a solution at equilibrium.

As a result of the external force, the central ion will tend to move out of a

position of spherical symmetry with respect to its atmosphere and will thereby

experience a restoring force. This restoring force would be expected to die

away rapidly as a result of thermal motions of the ions which tend to reorganize

the atmosphere of the ion under consideration. Thus, the relaxation effect tends

to alter the ion mobility for a given external force and is, in addition, a

concentration-dependent effect.

THE ONSAGER-FUOSS THEORY

The theoretical work of Onsager and Fuoss (2) was primarily an extension of

the results of Debye and Huckel (7) with a more vigorous treatment of solution

theory and the inclusion of an analysis of the diffusion process. Their general

derivation (2, 20) for the description of irreversible processes, first, involved

obtaining a distribution function which would describe the chance of finding two

ions in two volume elements of solution, dV1 and dV2, at the same time. These

volume elements are vector distances rl and L2 from a point of reference. If

two types of ions, i and ,. were considered, the average bulk concentrations of

these ions could be represented by N. and N.. In addition, N.. was defined as

the time average concentration of i ions in dV2 in the vicinity of a single j ion

in.dV1; likewise Nij was the time average concentration of j ions in dV1 in the



vicinity of an i ion in dV2. Due to

were represented by the vector funct

.

where r2 1 and r12 were the vector dii

As a result of the above definitions

Fuoss showed that the desired distri'

and that

In these expressions, f represents

pheres of N. ions of the type j. Thu
-

of irreversible processes was fulfill

The second requirement was that

due to the presence of the ions them.

certain general considerations, Nji and N..

_ons

(42)

tances between volume elements dVl and dV2.

and probability considerations, Onsager and

ution functions were given by

(44)

the concentration of i ions in the atmos-

s, the first requirement for the description

ed.

of evaluating the forces acting on the ions

elves and to external forces.

and similarly

it was possible to relate the two ve

Thus, as shown in (21), the following

(45)

ocities by use of the equation of continuity.

equation was derived

=
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In Equation (46), the subscripts 1 and 2 on the operators refer to differentiation

with respect to the vectors rl and r2. For the case of steady state, Equation (46)

reduces to

It is pointed out (21) that ions move as a result of external or internal

forces on the ions, thermal motion, and bulk flow of the solution. The forces

on the ions may be the result of an electric field, a concentration gradient, or

electrostatic interaction of the ions. For an i ion exposed to a force K. and

having a mobility i., the velocity of the ion will be K.M.. For an assumed

diffusion coefficient per ion of kTWi and a concentration gradient Vfi, the

total velocity, V.i, is given by

and

where V(r ) and V(_r) and the bulk velocities of the solution at the points

r1 and r2 . If the velocities, Vji and Vij, in Equation (48) are utilized in

Equation (47), the result is, for steady state,

(49).

While Equation (49) is the general equation of continuity for a generalized

irreversible process, the case of electrolyte diffusion may be treated in a
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seemingly simpler manner. Such an analysis was made by Onsager and Fuoss (2) for

diffusion in the following manner.

Due to the requirement, for the diffusion process, of over-all electro-

neutrality, the relaxation effect previously discussed would not exist for this

case. Thus, the problem for diffusion would be to account for the electro-

phoretic effect on the mobility. This effect was evaluated by first defining

the forces acting on the ions in a unit volume as

(50)

where N. is the average concentration of j-ions, K. is the force acting on each

j-ion, N is average total ion concentration, K is the average force acting on

each ion in solution, and s is the number of types of ions. These forces, for

an equilibrium case, will be transferred to the N solvent molecules to give

for the bulk properties

NK + (51).

However, if an element of volume dV is considered near a j-ion, the force

acting on the ions in this volume will be different due to the change in concen-

tration in dV as a result of the presence of the j-ion which produces an electro-

static attraction. Since the force on the solvent is unaffected by the electro-

static forces, it will remain as N K dV. Thus, there is a net force acting on
--

the volume dV which is equal to

Thus, in spherical co-ordinates, the! force acting on a shell of solution at a

distance r from the j-ion is
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If the applicability of Stokes' equation is assumed, then the change in velocity

dV. of an ion due to the above form is

dF.

where r is the liquid viscosity and r is the radius of the ion!s atmosphere. In

order to evaluate the force in Equation (53) it is necessary to utilize the

Boltzmann distribution from Equation (26) in an expanded form. This gives

where the potential, A., is equal to the function given in Equation (41); namely,

b(a -r)
Z.e

When Equations (41), (55), and (53) are introduced into Equation (54), the

limits of integration of the radius function are set at a. to o, and the force

K. = Y/., the electrophoretic correction to the diffusion velocity of a 1-1

electrolyte, is given by

where

0(ba) = e2baEi(2ba)/(1 + ba)2
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x

, = 2ba.

For the simple electrolyte considered,

(56) will influence the forces K1 and K2 by

where p. = 1/c.. From Equation (4) and the

the velocity correction in Equation

(j = 1,2) (57)

definition of K, it is seen that for

which may be employed along with Equation (56) to eliminate AY_ and AV2 and

give

b

58)

(59)

where N = Nl/v = N2/v . If Equation (59) is solved for V and is multiplied by

N, the result is the flux, J. When second and higher order powers of EV and

AV2 are neglected, one obtains

where

and

and X



If the concentration is expressed in moles per liter, and the mobility is

(61)

where

The function 0(ba) is given by the relationship in Equation (56). Previously,

the diffusion coefficient was given by Equation (22) and thus for a 1-1 electro-

lyte becomes

(62)

where the electrophoretic contribution to the diffusion coefficient is considered.

The derivation of Debye and HIckel and the extensions of Onsager and Fuoss

involve a number of assumptions and limitations. One of the first assumptions

is that the Boltzmann distribution function in Equation (26) may be applied.

C2 0(ba)
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This point was reviewed by Fowler (22) from a statistical mechanical approach and

was concluded to be applicable for moderate concentrations. Fowler (22), however,

questioned the use of a bulk average dielectric constant in the Poisson Equation,

(24). This point is valid even in dilute solution. Fowler pointed out that

although the use of such a dielectric constant was questionable, the error in-

curred by its use was not of a large magnitude.

Debye and Hickel also assumed that the potential energy, qi, in Equation (27)

was small compared to the thermal energy, kT. This assumption would seem question-

able for more concentrated solution since the potential function, 4, is dependent

on the distance of separation of ions. However, in an aqueous solution the

possibility of hydration of ions might tend to provide sufficient ion separation

to satisfy this condition.

Another point of question in the Debye-Hdckel theory is the use of only the

first two terms in the exponential expansion of Equation (28). Because of the

change in sign of qi as a result of both positive and negative ions, it can be

shown that for all symmetrical electrolytes all odd-numbered terms of the expan-

sion given by Equation (29) vanish. 'Also, due to the anticipated convergence of

the series in Equation (28), the inclusion of the term . _) in Equa-

tion (29) was considered unnecessary.

An additional effect unaccounted for in the theory is that of ion-solvent

interaction; or, more specifically, i6n hydration. Such an effect would show up

in the potential function of Equation (41) since hydration would probably affect

the distance of closest approach, a_. In addition, hydration, through a_., would

affect the integration limits of the differential velocity function of Equation

(56).
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One final consideration of the theory is that of the viscosity change at

fairly high concentrations. This effect appears in the use of Stokes' Equation

(54), to evaluate the velocity change due to the electrophoretic effect. While

it might seem simple to account for the viscosity change by including the solu-

tion viscosity in Equation (61), the situation is not quite so simple. In the

development of the electrophoretic effect for diffusion, consideration has been

given to the volume force transfer between an ion and its atmosphere. Such a

force transfer is part of the consideration of the theory of electrolyte solution

viscosity. Thus,.part of the viscosity correction is included in the theory of

diffusion. Hence, replacing the solvent viscosity T , in Equation (61) with the

solution viscosity would tend to overcompensate for the effect.

THE ABSOLUTE RATE THEORY OF DIFFUSION

In the application of the so-called absolute rate theory to the diffusion

process (5), the primary result of this application is the relation of diffusion

coefficient to temperature. The theory proceeds by evaluating the velocity of

forward movement of solute across a 1 sq. cm. cross section in a concentration

gradient as

and the rate of movement in the backward direction as

where is Avogadro's number, C is concentration in moles/cc,, X is the distance

between equilibrium positions of a solute molecule, and T is the specific re-

action rate for diffusion (the number of times a molecule moves from position to

position per second). If the resultant flow is obtained as
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then from Fick's law the diffusion coefficient becomes

(66).

According to the theory of absolute reaction rates, the rate constant T is given

by

where h is Plank's constant, F and 'F are the partition functions of the system

in the activated and normal states, and e is the activation energy per molecule

at 0°K. Equation (67) may also be written in the form

where AS and AH are, the entropy and

fusion involves a negligible volume

2 kT
D = e

(68)

enthalpy changes, respectively. Since dif-

change the diffusion coefficient becomes

where E is the experimentally determined activation energy of diffusion.

For purposes of evaluating expe

written in the form

where A is an assumed constant. Sin

mentally, it thus is possible to eva

to the diffusion process.

rimental data,. Equation (69) is usually

ce both A and E may be evaluated experi-

luate approximately the entropy change due
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The theory of absolute reaction rates for diffusion gives no consideration

to the nonideality of the phenomenon or the interaction of ionic species. Thus,

the use of this theory is limited to temperature dependence correlation where it

has been shown to be applicable if comparisons are made at the same diffusion

concentrations. In particular, the concept of activation energy of diffusion has

been used to compare diffusion in aqueous and nonaqueous solutions. In addition,

the concept of entropy of diffusion has been found to exhibit changes which give

indications of the nature of the systems being investigated.
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MATERIALS AND APPARATUS

MATERIALS

SODIUM HYDROXIDE

Preparation

Since reagent-grade sodium hydroxide pellets contain an insignificant

(>0.01%) amount of impurities other than sodium carbonate, this was the reagent

used as a starting material. The sodium carbonate impurities were removed by

the "oil lye" method (23, 24) after modification, to produce an essentially

carbonate-free stock solution. The 'oil lye" method was modified because the

amount of carbonate present after purification by this method (=s0.15%) was

thought to be excessive for physicochemical study.

The modified "oil lye" method consisted first of preparing a solution of

sodium hydroxide which was saturated at approximately 100°C. By cooling the

solution slowly to room temperature, a supersaturated solution resulted in

which sodium carbonate was insoluble, The supersaturated solution was then

filtered through a Gooch crucible containing a thick acid-washed asbestos mat

to remove the precipitated sodium carbonate. By carrying out the filtration

in a dry, CO -free atmosphere, some of the sodium hydroxide precipitated because

of evaporation and there was no carbon dioxide contamination from the atmosphere.

The filtrate was then diluted to approximately 3.5 normal to produce a stock

solution and stored in a leached polyethylene bottle under a CO -free atmosphere.

Analysis

The carbonate content of the stock sodium hydroxide solution was determined

by two methods in order to compare the results and insure greater accuracy in
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the determination. Both methods are considered to be sufficiently accurate for

analyzing solutions of low carbonate content.

With the so-called Winkler method (25) the total alkali of a sample was

determined by titration with approximately 0.50N standard HC1 to a mixed indi-

cator (bromocresol green-methyl red) end point. The free hydroxide was then

determined on a duplicate sample by precipitation of the carbonate with excess

barium chloride and titration to a phenolphthalein end point with the standard

acid. By subtracting the free hydroxide value from the total alkali, the amount

of carbonate was obtained. Triplicate analyses by this method indicated that

the stock NaOH solution contained an insignificant amount of carbonate (>0.01%)

based on the total alkali.

Comparison analysis of the NaOH solution was carried out by the Warder

method (24) in the following manner. A sample was titrated with LN HC1 until

a phenolphthalein end point had almost been reached. The titration was then

continued with 0.05N HC1 to the end point and the two volumes recorded. At this

point all of the hydroxide and one-half of the carbonate had been neutralized.

A known excess of acid was subsequently added and the solution boiled for five

minutes to expel all C02. After cooling the solution to room temperature, it

was back titrated with standard base to determine the amount of acid consumed

by the remaining bicarbonate. The portion of the excess acid that was consumed

by the liberated free hydroxide represents one-half of the carbonate present in

the solution. Triplicate analyses by the Warder method showed that the amount of

carbonate present in the NaOH solution was approximately 0.01% (based on the total

alkali).
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WATER

The water used as solvent in the preparation of all of the solutions in

this experimentation was prepared by a two-stage distillation procedure. De-

ionized water was used in the first stage of the still along with small amounts

of sodium hydroxide and potassium permanganate. The distillate from this stage

of the still passed through a condenser and into the flask of the second stage

which contained a small amount of sulfuric acid. Distillate collected from the

second stage was used for preparing solutions. Since this was a continuous

operation, the first 1.5 liters obtained from the second stage, after distilla-

tion commenced, was discarded to insure maximum purity. The conductivity of this

water was approximately 2 x 10-7 (oh-cm.) 1 at 25°C. This procedure is quite

similar to that discussed by Weissberger (26). The double distilled water was

placed in a special flask fitted with an ascarite tube, boiled to remove any

dissolved CO2 in the water, and storsd in the controlled atmosphere chamber.

STANDARD SOLUTIONS FOR ANALYSIS

In order to analyze all the so dium hydroxide solutions used in the diffusion

experimentation, it was necessary to prepare volumetric standard acid and base

solutions. Hydrochloric acid of approximately 0.5N was prepared by dilution of

the concentrated reagent-grade acid. The above dilute acid was standardized by

the use of freshly prepared, pure so dium carbonate using the technique of Pierce

and Haenisch (27). Volumetric standard sodium hydroxide solution of 1/lON was

prepared (23), and then standardized by comparison with the standard 0.5N hydro-

chloric acid.

Additional standard acids were prepared by diluting the above acid to the

desired concentrations using calibrated pipets and volumetric flasks. A standard



-31-

1N hydrochloric acid solution was prepared by diluting concentrated acid and then

comparing the diluted acid with the above standard base.

APPARATUS

RAYLEIGH. DIFFUSIOMETER

The diffusiometer used for this work is a Beckman Spinco Model H electro-

phoresis-diffusion apparatus* with the optics arranged to give Rayleigh inter-

ference patterns. In essence, the apparatus is composed of four parts: a

slit-source, schlieren lens, a Tiselius cell and mirror, and a camera assembly.

To provide a greater light path length without requiring excessive space and

thus increase the refractive sensitivity, the optical axis is folded and the

light passes through the cell twice.

Light from a mercury vapor lamp is filtered by a Kodak Wratten filter 15

and a didymium filter to produce a monochromatic source of 546 m>t. The light

then passes through a vertical slit and a schlieren lens before passing through

the cell. A highly polished mirror is mounted in the constant temperature bath

and returns the light through the cell into the schlieren lens again. From the

schlieren lens, the light passes into the camera assembly where it is focused

on the image plane.

For the condition where the diffusion cell contains a uniform liquid of

refractive index quite close to that of the bath or there is no cell in the

light path, the system is optically the same as a double slit interference

set-up. In this type of set-up, the coherent monochromatic light source is

split into two paths by impingement of the light on a double slit mask

*Beckman Instrument Company, Spinco Division, Palo Alto, California.
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in front of the cell. One of the slits is in front of a channel of the U-shaped

diffusion cell while the other slit is in front of the portion of the channel

windows which extends into the bath and provides a reference light path. The

result of the above set-up is a standard double slit interference pattern consist-

ing of parallel lines of varying intensity, with the intensity decreasing slightly

on both sides of a central line or fringe. This series of lines is due to the

constructive and destructive interference of light waves bent by their interaction

with the slit edges of the mask. When the diffusion cell contains a liquid of

different refractive index from that in the reference path, the result is standard

Rayleigh interference. For such a condition the central line or fringe is shifted,

in a direction perpendicular to it, by an amount that is proportional to the dif-

ference in refractive index of the solution and reference. If a solution of varying

concentration, or refractive index, lis placed in the sample channel, the position

of the central fringe will again be shifted by an amount proportional to the

difference in refractive index between the solution path and reference path.

However, the solution has a varying refractive index in the vertical direction

of the cell and hence the central fringe, and all secondary fringes, will shift

by a varying amount from point to point along the vertical cell direction. More

specifically, the central and secondary fringes will shift one fringe unit when

the product of the cell path and the refractive index difference is equal to the

wavelength of incident light. The result of these fringe shifts will be a pattern

such as that shown in Fig. 3.

DIFFUSION CELL

A Beckman Spinco Model H electrophoresis-diffusion cell of the Tiselius type

was used in this experimentation. The top and bottom sections of the cell were

made of crown glass. However, the center section was made from quartz (fused
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Figure 3. Photograph of Rayleigh Diffraction Pattern
for a Diffusion Run
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silica) because of its mechanical, thermal, and chemical resistance. This cell

center section was the 11 milliliter size with the optical path being two times

2.50 centimeters since the light passes through the cell twice. The optical

windows on the center section are extended laterally to provide, with the temper-

ature bath liquid, a reference light path for the Rayleigh optics.

MICROCOMPARATOR

The instrument used for measuring the Rayleigh interferograms was a Wilder

Model C Micro Projector. Measurement of the interferograms is affected by mount-

ing the developed photographic plates on the transparent portion of the movable

stage. The photographic image is then projected, by series of mirrors and a

focusing lens, onto a Plexiglas viewing screen. Horizontal movement of the stage

is adjusted by a two-inch micrometer screw. The stage is spring-loaded to maintain

uniform contact with the screw point. In addition to the horizontal movement, the

lateral movement is controlled by alone-inch micrometer screw with spring-loading

being provided in this direction also. For adjusting the angular alignment of the

photographic plates, the stage may be rotated through an angle of 20 to 30° in the

horizontal plane by manipulation of a third screw mechanism.

CALIBRATION OF THE DIFFUSION CELL

In evaluating diffusion data from Rayleigh interferograms, it is assumed

that the fringes are linear in all regions where there is no concentration gradient.

For the above cell center section used in this experimentation, it was observed

that the fringes were not linear for pictures taken of the cell containing only

water (Fig. 4). To correct for this situation by use of a graph, such as Fig. 4,

was felt to be unnecessarily tedious and hence a more direct method of correction

was adopted.





-536-

To make direct corrections for the nonlinearity of fringes for gradient-

free interferograms, it was necessary to construct a uniform trace of the fringe

irregularities by a method developed in co-operation with James Tostevin*. Such

a trace was obtained by marking a scribe line on a photographic plate having

gradient-free interferograms. By mounting a smoothly polished needle point

gently against the photographic plate and in the microcomparator field of view,

it was possible to obtain a trace of the fringe deviations as the stage of the

microcomparator was moved horizontally along the interferogram. The microcom-

parator stage was moved by a multigeared synchronous motor and the comparator

screen cross-hair was maintained at the center of a horizontal fringe by adjust-

ment of the lateral micrometer screw. As a result of these operations, a contin-

uous record of the center of a horizontal fringe as a function of longitudinal

cell position was obtained for essentially the entire length of the diffusion

cell center section. Traces such as described above were prepared periodically

during this experimentation, particularly after the temperature bath was cleaned

and the temperature changed.

CONTROLLED ATMOSPHERE CHAMBER

In order to prepare and handle electrolyte solutions under atmospheric

conditions which were not conducive to contamination, it was necessary to manipu-

late these solutions in a chamber with a controlled atmosphere. The chamber was

approximately 3 by 3 by 8 feet with a glass viewing port in the front of about 2

square feet. In the back of the chamber, numerous valve-controlled tube ports

were available for providing vacuum, liquid, and gas supplies. Introduction of

samples into the chamber was affected through a small port compartment at one end

*Thesis student, The Institute of Paper Chemistry.
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of the main chamber. This small compartment could be opened to the exterior by a

small door, for inserting samples without affecting the interior. The exterior

opening could then be closed and the compartment evacuated to remove most of the

exterior atmospheric gases which had entered. Subsequently, the samples could be

placed into the main chamber by opening the interior door on the entry compart-

ment. Once the samples were in the port compartment, they were manipulated with

rubber gloves fitted to the chamber body.

Because of a minor leak in the chamber which could not be detected, it was

necessary to maintain a slight positive gas pressure of approximately one-half

inch of water to prevent contamination from the exterior atmosphere. The gas

used for maintaining the positive pressure was obtained by partially purifying

compressed air. To remove carbon dioxide, air was bubbled successively through

two gas washing bottles containing 28% solutions of potassium hydroxide (24).

Since this treatment rendered the resulting gas essentially saturated with water

vapor, the moisture was removed by bubbling the water-saturated gas through con-

centrated sulfuric acid. Final treatment of the gas was accomplished by passing

it through a large drying tube filled with drierite and ascarite adsorbents.

Since the principal gaseous impurity of concern was carbon dioxide, an adsorp-

tion trap was fashioned for removing from the chamber atmosphere any carbon

dioxide that might have been admitted during the transfer of samples from the

outside. The adsorption trap consisted of an ascarite and drierite-filled

Plexiglas cylinder which was covered at each end with fine mesh wire and a coarse

Plexiglas grate. To insure that all the gas in the chamber was passed through

the trap to effect CO2 adsorption, the trap was attached to the exhaust of a

squirrel-cage blower. This arrangement provided excellent circulation of the gas

in the chamber and it was found that operation of the blower and trap for
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approximately thirty minutes would remove all measurable carbon dioxide from the

atmosphere. The interior atmosphere was tested for the existence of carbon di-

oxide by leaving a saturated barium hydroxide solution exposed for 48 hours.
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EXPERIMENTAL PROCEDURE

PREPARATION OF SOLUTIONS

Solutions used in this study were all prepared in the controlled atmosphere

chamber. The sample containers were placed in the chamber and the atmosphere

conditioned for at least two hours before any solutions were prepared. Because

of the difficulty of handling pipets in the chamber with rubber gloves, all the

solutions were prepared to approximate concentrations and analyzed at a later

date. The solutions of various concentrations were obtained by diluting the

stock sodium hydroxide with carbon dioxide-free distilled water. Pipets of

varying sizes were used with a rubber bulb pipetter to deliver quantities of

stock NaOH solution, which would give the desired concentration, to 100-milli-

liter volumetric flasks where dilution was accomplished. Once a sample had

been prepared, it was divided into two approximately equal parts; one part was

used for the diffusion run while the other part was available for volumetric

analysis.

ANALYSIS OF SOLUTIONS

All of the solutions prepared in the above manner were volumetrically

analyzed to determine accurately the sodium hydroxide concentrations. Because

of the precautions taken in handling the stock sodium hydroxide solution, no

analyses for carbonate content were performed on the diffusion run samples.

The analyses for sodium hydroxide content were performed by titrating a known

volume of sample, delivered from one of the calibrated pipets, with standard

hydrochloric acid solution. A five-milliliter microburet was used for deliver-

ing the acid and the titration was extended to a bromocresol green-methyl red

mixed indicator end point. To reduce carbon dioxide adsorption during exposure
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of the samples to the atmosphere, a gentle stream of nitrogen was maintained over

the neck of the titration flasks during the course of each analysis. The bromo-

cresol green-methyl red indicator was used for these analyses since no indicator

blank is required and the end point is essentially unaffected by minute amounts of

carbonate.

TRANSFER OF SOLUTIONS

The portions of the above-prepared solutions which were to be used in diffu

sion experimentation were placed in specially designed transfer vessels while

still inside the controlled atmosphere chamber. Essentially, the transfer vessels

consisted of standard 125-ml. polyethylene wash bottles which had been fitted with

inlet tubes in the caps. To insure that the solutions were not contaminated after

preparation, the transfer vessels were leached in several changes of distilled

water for six weeks. Once the solutions were placed in the transfer vessels,

the outlet and inlet tubes were clamped shut. Thus, the solutions could be

prepared and transferred to the diffusion apparatus without being exposed to

possible contamination from the atmosphere. With the above transfer apparatus,

a slight pressure from a nitrogen source to the inlet tube would force the solu-

tion out of the delivery tube into any desired container.

DIFFUSION EXPERIMENTS

FILLING THE CELL

Once the solutions had been prepared for use in a diffusion experiment, the

cell was assembled according to the Beckman Spinco Model H Instrument Instruction

Manual. The extension tubes from both cell channels were then closed with rubber

stoppers having 3-mm. glass inlets; the right channel having one inlet and the

left channel two inlets. One of the inlets on the left channel was connected by
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tygon tubing to a small drying tube containing ascarite. The other left channel

inlet was fitted with a short section of tygon tubing which could be closed with

a pinch clamp. An identical inlet arrangement was fitted to the stopper on the

right channel. These two inlets were what might be termed "filling inlets."

The assembled cell, fitted with rubber stoppers, was flushed with nitrogen

to remove any carbon dioxide by inserting a 12-inch needle from a nitrogen tank

into the left filling inlet and allowing the gas to flow for approximately one

hour. After flushing the cell with nitrogen, the outlet of the transfer vessel

having the most concentrated solution was attached to the needle inserted in

the left channel of the cell. Solution was then forced out of the transfer

vessel, through the needle and into the diffusion cell. The solution was added

slowly to the cell until the level in the two channels was approximately at the

middle of the cell center section. At this point the bottom section of the cell

was displaced so that the level in the right channel would not rise and additional

solution was added to the left channel until it had been adequately filled. The

cell and its supporting rack were then placed in the constant temperature bath

and allowed to equilibrate for fifteen minutes. In the meantime, a motor-driven

20-ml. syringe was filled with the less concentrated solution by attaching a

section of tygon tubing from the second transfer vessel to the syringe. This

procedure allowed the syringe to be filled without exposing the solution to the

atmosphere. The cell and rack were positioned properly in the bath and a second

needle, of smaller bore, was inserted through the filling inlet of the right

channel to a position very slightly above the liquid level in this channel.

After attaching the section of tygon tubing from the syringe to the second needle,

the syringe motor was activated and the less dense solution delicately layered

above the more dense solution. During addition of this solution, the needle

point was gently raised as the liquid level rose, always maintaining the needle
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point slightly under the liquid surface. This second or less concentrated solu-

tion was added until the liquid level in the right arm was slightly above (approxi-

mately 1/16 inch) the level in the left arm. After the solutions have been allowed

to equilibrate for 15 minutes, the bottom section of the cell was aligned so that a

continuous column of liquid existed in a U-shape.

SHARPENING THE BOUNDARY

Once the U-shaped cell had been properly filled, it was then essential to

remove as much of the mixed region existing between the phases as possible. While

the "layering" technique described above will produce in many cases very small

regions of mixing, it was always felt that better results would be obtained by

reducing the region of nonuniformity existing between the two solutions. Sharpen-

ing of the boundary was accomplished by lowering the point of the "layering" needle

to a spot at the approximate center of the cell center section and reversing the

syringe drive-motor. Solution was withdrawn at a rate of approximately 1 to 2 ml.

per minute until the boundary separating the two solutions was almost the desired

size. At this point the rate of solution withdrawal was reduced to an amount that

would just maintain the boundary in a stationary state. This condition was main-

tained for several minutes during which time the "linear" portions of the Rayleigh

fringes reached a state of equilibrium. If this equilibrium period was not

allowed, the theoretically linear portions of the fringes would change their

curvature and consequently the calibration curve would not be applicable for

early pictures. However, proper equilibration resulted in fringes whose semi-

straight portions are not time-dependent.

PHOTOGRAPHING THE EXPERIMENTS

Once the diffusion cell had been assembled, filled, and the boundary

sharpened, the sodium hydroxide movement was recorded by photographing the
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Rayleigh interference patterns at various time intervals. The camera assembly

is such that -the interference images are focused on the film plane. Pictures

were obtained by simply inserting a loaded film holder into the holder insert and

exposing the film for the desired period of time with the timing device on the

instrument. For the work under consideration, it was found that Kodak type IV-G

Spectroscopic photographic plates provided the best conditions of graininess and

contrast. The exposure times were 16 seconds. This exposure was arrived at by

trial-and-error experimentation using the diffusion cell filled with water. In

addition to the Rayleigh patterns, the schlieren patterns for a diaphragm angle

of 90° were also photographed. The patterns, which were solid black bands, served

the purpose of preliminarily lining up each of the Rayleigh patterns.

The exposed photographic plates were developed in Kodak D-19 developer for

2 minutes and then placed in Kodak fix solution for five minutes to remove un-

developed chemicals. After developing, the plates were washed continuously for

two hours.

MEASURING THE RAYLEIGH FRINGES

The Rayleigh interferograms obtained during the diffusion run are quite

similar to those shown in Fig. 3, with the exception that the regions of curved

fringes may be of different width. In order to determine diffusion coefficients

from the interferograms, it is necessary to measure the distances between fringe

centers, in the region of curved fringes, along a line parallel to the horizontal

portions of the fringes. This would be the task if the cell optics were perfect;

however, this is not the case and modifications must be made.

In a previous section the optical imperfections of the system were discussed

and the calibration of the cell was described. This calibration plate, or scribe
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record, was used to make the measurements necessary for determining diffusion

coefficients. If some type of calibration technique were not used for these

measurements, the positions of the fringe centers would be in error. Also, the

alignment of the photographic plate on the microcomparator stage could be in-

correct and this would produce an additional error in the fringe measurement.

While an error due to lack of calibration would not be very sizable for fringes

in the center of the boundary, the inaccuracies incurred at the outer fringes

could be 20% or more (30). The error induced by improper alignment would be

sizable for essentially the whole boundary.

The alignment and measurement technique described in this section was

developed in co-operation with James Tostevin. In measuring photographs from

a particular diffusion run, the plate with the calibration curve was placed on

the microcomparator stage and fastened in place with double-faced masking tape.

The plate was then aligned by rotating the stage until the edge of the projected

solid schlieren image remained parallel to the screen cross-hair as the stage

was moved horizontally. Once the reference plate was positioned, the observation

plate, having the interferograms from the run, was placed above the reference

plate and properly fastened. Fastening was accomplished by placing a small metal

rod (1/4 x 1/4 x 6 inches) across the observation plate; the rod having small

pieces of double-faced tape attached to it to secure the observation plate. One

end of the rod was connected to a small magnet, on the metal stage, in such a

manner that a point of rotation was established for the rod. The opposite end

of the rod was pressure loaded against the end of a micrometer screw. With the

observation plate arranged in this manner, it could be aligned properly by manipu-

lation of the micrometer screw. However, in this position, only one of the photo-

graphic plates would be in focus at once. Therefore, the observation plate was
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put in focus and a microscope slide was placed over the scribe line of the refer-

ence plate to bring it into focus.

After the reference and observation plates had been secured and the refer-

ence plate aligned, the observation plate was initially aligned by comparing the

parallelism of its solid schlieren image with that of the reference plate and

then making adjustments accordingly. This alignment was subsequently checked by

comparing the horizontal portion of the observation-plate fringes with those of

the reference plate by use of two cross-hairs on the comparator viewing screen.

The above operations were performed on the first picture of each diffusion run

for the purpose of determining the fractional fringe shift. The integral number

of fringes shifted was obtained by simply counting the number of fringes which

a cross-hair intersected in passing horizontally across a boundary.

Since the shift of Rayleigh fringes is the product of the refractive index

difference between solutions of any two concentrations and the path length .

through the solutions, it is readily seen that the shift could entail some

fractional fringe if the above product is different from a multiple of the wave-

length of light. Because the boundary region is smallest for the initial photo-

graph in a diffusion run, this photograph was used for determining the fractional

fringe.

To determine the fractional fringe for a particular diffusion run, it was

necessary to position one of the comparator-screen cross-hairs on the center of

a horizontal fringe of the observation plate and to position the other, or bottom,

cross-hair on the scribe line of the reference plate. This initial positioning

was for fringes on the more concentrated side of the boundary. After positioning,

the stage was moved horizontally until the straight portions of the fringes on

the less concentrated side of the boundary were visible on the comparator screen.



The bottom cross-hair was then positioned on the scribe line, if it were not in

that position. By adjusting the bottom cross-hair to coincide with the scribe

line, the plate was in the position it would be if the optics were perfect. After

the bottom cross-hair was positioned a reading was then recorded from the lateral

micrometer screw. The image on the comparator was then moved down until the top

cross-hair was centered on the first horizontal fringe and the lateral micrometer

reading recorded again. The difference in these two readings represented the

absolute portion a fringe had shifted. By measuring the distance between two

horizontal whole fringes, it was then straightforward to compute the ratio of

the partial shift distance to the shift of a whole fringe. In order to provide

a third check on the alignment of the observation plate, the fractional fringe

shift was determined at several positions along the horizontal portions of the

fringes on the solvent, or less concentrated, side of the boundary.

Once the fractional fringe had been determined on the first picture of a

diffusion run, the observation plate was moved so that a later picture in the

run might be viewed and measured. Pictures for measurement were selected on the

basis of fringe separation in the boundary region and total boundary width. It

was desired to have fringe separation such that the individual fringes were

distinctly resolved. However, the boundary width had to be limited because the

micrometer screw adjusting the horizontal travel was only two inches long.

After selecting the pictures to be measured, the observation plate was properly

aligned on a particular picture in the manner described for determining the

fractional fringe. Measurement was initiated by moving along a particular

horizontal fringe until a curved fringe was intersected. The bottom cross-hair

was adjusted to the scribe line and the top cross-hair centered on the fringe.

After recording the position on the horizontal micrometer screw, the stage was

moved until another fringe had been intersected and the orientation process of
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the cross-hair was repeated. This sequence of positioning the cross-hairs,

recording the micrometer reading, and moving to the intersection of another fringe

was repeated until all the positions of the boundary had been recorded. The num-

ber of such positions to be recorded usually amounted to seventy-five to one

hundred. In addition, it was necessary to measure four or five pictures for each

run; with each picture corresponding to a particular period of diffusion from the

time of sharp boundary formation.
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ANALYSIS OF FRINGE DATA

CALCULATION OF DIFFUSION COEFFICIENTS

For the case of unrestricted diffusion in a rectangular cell from an

initially sharp boundary between two solutions of a homogeneous and single

solute, one may use Fick's second law of diffusion in the form

for predicting solute concentration as a function of time and distance from the

boundary. In this case, the position x = 0 is taken as the boundary and the x

axis is positive in the downward direction. The diffusion coefficient, D, here

is assumed to be a constant for a particular solute. Initial and boundary condi-

tions for this physical set-up would be

C = CA(t = 0,-mc < x < 0) less concentrated
(72)

C = CB(t =0, 0 < x < m) more concentrated

and

C ~ CA(t > O, x i -a )

(73).
C CB(t > O, x )

The solution of Equation (71) for tie above initial and boundary conditions is

where C = (CA+CB)/2 and A -C = CB-CA From the physical relationships of the

Rayleigh interference system, g(C), or 2(C-C)/AC may be equated to 2j- /J (28),

where J is the total number of fringes and j is a fringe corresponding to concen-

tration C. This relationship is valid since the refractive index is a linear

function of concentration; a condition quite closely approached for AC of 0.10N
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or less as shown in Fig. 5 (29). If x/2(Dt) /2 is defined as Z, the right side

of Equation (74) becomes the well-known error function

H(Z) =2 Z e- 2 d (75);
Jfv o

therefore

H(Z) = (2j - J)/J (76).

From this it can be seen that for a diffusion system of J fringes one can calcu-

late an H(Z) value for each fringe in the system. By use of probability tables,

the values of Z may be obtained from the calculated value of H(Z).

If the position of the center of the boundary were known, it would be a

simple matter to calculate the diffusion coefficient, D, by use of the above

definition of Z. However, since the original boundary center is not known, we

can utilize the differences in position of fringes and the definition of Z to

arrive at the following relationship.

(Xi - k)/(Z i - Zk) = 2M/ (77)

In this case, M is the magnification factor of the optical system and the sub-

scripts, i and k, denote two different fringes. If the diffusion coefficient

were truly a constant, the fringe numbers to be paired, i and k, could be any

two, with the only consideration being the accuracy of determining the quantity,

(X. - X). Longsworth (28) considered the situation and concluded that the

proper pairing would be that of maintaining the fringe-number difference, (i-k),

constant. In this case, the diffusion coefficient is evaluated as

n

jj fJ/2+j = 2M/T (78)
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where the subscripts are the same as above. By doing this, advantage was taken

of averaging the fringe differences.

In actuality, almost no solutes have constant diffusion coefficients; there-

fore, additional procedures must be added to account for this nonideality. It

was noted by Longsworth (28) that some diffusion boundaries were skewed from the

assumed Gaussian distribution of concentration gradient. To account for this

skewness, Creeth (31), utilizing treatment for Gouy optics by Gosting and Fujita

(52), developed the mathematics of concentration-dependent diffusion for a Rayleigh

optical system. Briefly, the treatment consisted of expressing the diffusion co-

efficient and the refractive index as polynomial functions of concentration and

solving Fick's second law in the form

The result of Creeth's analysis showed that, except for strong second-order

concentration dependence effects, the differential diffusion coefficient corre-

sponding to the mean concentration could be calculated by symmetrically pairing

fringes about the Fringe J/2. In addition, the analysis showed that second-order

effects were proportional to (EC/2) and by proper choice of AC these effects

would become negligible.

Realizing the above conditions for proper analysis of fringe data, the

present experimentation was carried out such that AC was never greater than 0.10M

for any of the diffusion experiments. As a result of this, second-order effects

2
were essentially eliminated because of the magnitude of (AC/2) . In addition,

the differential diffusion coefficient, D-, for the mean concentration was calcu-

lated by symmetrical pairing of fringes about the central fringe, J/2. For this

condition a diffusion coefficient, - was calculated for each diffusion time by
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n

where the X's are the comparator readings for the two particular fringes and n

is equal to C/2. Since the accuracy of the comparator measurements are not as

good for the outer fringes by virtue jof their angle from the horizontal base,

Y values were calculated for n, n-2 n-4, etc., pairings. In the calculations,

a pair of the innermost fringes and a pair of the outermost fringes were dropped

from each of the successive calculations, thereby accounting for the n, n-2, n-4,

etc., pairings per calculation. The inner pairings were dropped because the most

probable error in a comparator reading would be a greater percentage of the

position differences of inner paired fringes than of outer paired fringes. As

a result of these successive calculations of Yt, the various values of Y would

approach a value which was constant to the fourth decimal place. It is seen

that the diffusion coefficient, D-, can be calculated by use of Equation (80).

In all these calculations, the quantities t' and D have been used instead

of t and D. This condition exists because t and D- refer to a diffusion co-

efficient calculated on a time scale which starts when there exists in the

diffusion cell an infinitely sharp boundary. In actuality it is difficult to

determine the base line for such a tiime scale; hence, the base line of the time

scale for each diffusion experiment was taken as the time of the first photo-

graphic exposure. Thus, each exposure time, or diffusion time, was incorrect

by some amount At. It can be shown (33) that for the above condition the actual

diffusion coefficient, D- is related to the apparent one, D, by the relationship

DC = IC [1 + (81).
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Thus, it is seen that by calculating an apparent diffusion coefficient, D, for

each apparent time, or photograph, the actual differential diffusion coefficient

was determined by a regression of D on l/t'. A typical plot of D versus l/t'

is shown in Fig. 6. The value of the D- is determined by extrapolation of l/t'

to zero.

ANALYSIS OF ASSUMED LINEAR CONCENTRATION
DEPENDENCE OF DIFFUSION

In the extended analysis of Creeth (31) for concentration-dependent systems,

it is shown that the deviations of a diffusion boundary from a Gaussian distribu-

tion of concentration gradients may be represented by complex functions of Z.

If Z* represents an idealized position on the gradient distribution curve and Z

represents the actual position, the difference between these two quantities may

be represented by

where a- , , k 1 , and k2 are polynomial coefficients in the assumed refractive

index-doncentration and diffusion coefficient-concentration functions. The other

quantities in Equation (82), H(Z*), U(q*), R(Z*), W(Z*), V(Z*), S(Z*), and T(Z*),

are complex functions of the error function or its derivative. If it is assumed

that the second-order concentration effects are negligible, Equation (82) is

reduced to
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This could be considered a good assumption for the present experimentation because

the quantity (Cp/2)2 was purposely kept small. .In addition, it is seen from Fig.

5 that for the concentration increments used in this experimentation, 0.10N, the

deviations from linearity would be quite small. Thus, Equation (83) may be reduced,

for two fringes, J and -2' to

Since the Function R(Z*) is symmetrical about the Fringe J/2, it can be seen that

Equation (84) will be most operative for the condition where the Fringes J and

are j and 2+ Recognizing that t in Equation (80) is a characteristic

quantity of a fringe pattern, it can be seen from the definition of Z that (Z -Z )

may be replaced by (X2-X1)/ Yt , where X and X are comparator readings. Thus,

Equation (84) becomes

The Function R(Z*) has been shown by Creeth (31) to be given by

2

where H(Z*) is given by Equation (75) and H'(Z*) is the derivative. Values of

Z* for a particular fringe are obtained through the use of Equations (75) and

(76) and the error function probability tables (30).

From the above presentation it is seen that the only unknown quantity in

Equation (85) is kL. This, therefore, may be obtained from a plot of the left

side of Equation (85) versus R(Z*).
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RESULTS AND DISCUSSION

DIFFUSION OF SODIUM HYDROXIDE AT 25°C.

The diffusion runs, at 25.00 + 0.01°C., were carried out according to the

procedure given in a previous section. Fringe positions were measured from the

resulting photographs (such as Fig. 5) and the data analyzed according to the

previously described method of Creeth (31). Because of the large number of

arithmetic manipulations involved in the data analysis, a computer program was

developed for use with an IBM 1620-II computer. Results of the computer analysis

may be found in Table I and are shown graphically in Appendix I. The results in

the figures indicate the zero-time correction discussed in a previous section.

In addition, Fig. 7 shows the validity of the Creeth method of calculation since

the refractive index gradient is essentially.a linear function of concentration.

This is concluded from the fact that the refractive index gradient, / AC, would

be linear over the one-tenth normal concentration range of each diffusion run.

The series of apparent diffusion coefficients for each run were correlated

by a second computer program which carried out the zero-time corrections by a

standard linear extrapolation procedure of D vs. 1/t' to infinite time. From

these correlations, the differential diffusion coefficients corresponding to the

various mean concentrations were obtained. The standard error of the extrapo-

-8 -8
lated diffusion coefficients in all Ithis work ranged from 3.2 x 10 to 7.9 x 10

The results for 25°C. are found in Table II.

The results of Table II are shown graphically in Fig. 8 using the normal

graphical co-ordinates of differential diffusion coefficient and square root of

concentration. According to the original premise of this study, it was hypothe-

sized that the diffusional behavior of sodium hydroxide would be reasonably

consistent with the Onsager-Fuoss Theory. At first observation, the
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TABLE I

RESULTS OF SODIUM HYDROXIDE DIFFUSION

Temperature = 25.00 + 0.01°C.

Apparent Diffusion Reciprocal Time,
Coefficient, sq.cm./sec. sec.-

Mean Concentration = 0.0312N

2.063 x 10 5 2.564 x 10-4

2.048 2.083
2.040 1.719
2.033 1.515
2.028 1.333

Mean Concentration = 0.0515N

2.308 x 10 5 2.778 x 10 4
2.230 2.083
2.178 1.667
2.141 1.389
2.123 1.2355

Mean Concentration = 0.1026N

1.960 x 10 5 2.083 x 10 4
1.952 1.754
1.949 1.515
1.946 1.333
1.937 1.191

Mean Concentration = 0.3014N

1.946 x 10- 5 2.193 x 10-4
1.923 1.736
1.905 1.418
1.898 1.272
1.889 1.142

Mean Concentration = 0.7035N

1.849 x 10- 5 1.852 x 10 4
1.837 1.522
1.825 1.333
1.822 1.191
1.814 1.072
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TABLE I FContinued)

RESULTS OF SODIUM HYDROXIDE DIFFUSION

Temperature =l25.00 +

Apparent Diffusion
Coefficient, sq.cm./sec.

Mean Concentration = 1. OlN

1.807 x 10- 5

1.794
1.782
1.778
1.770

0.01°C.

Reciprocal Time,
sec.

2.381
1.852
1.515
1.282
1.149

x 10

Mean Concentration = 2.1'8N

1.748
1.742
1.737
1.735
1.733

x 10- 5 1.389
1.190
1.111
1.042
0.980

TABLE II

DIFFERENTIAL DIFFUSION COEFFICIENTS OF

x 10 4

SODIUM HYDROXIDE

Mean Concentration,
mole/i.

perature = 25.00°C.

Differ
Coeffi

II

ential Diffusion
cient, sq.cm./sec.

0.03120
0.05149
0.1026
0.3015
0.7035
1.010
2.178

Standard deviation = + 0. %
I

1.990
1.975
1.913
1.829
1.778
1.739
1.696

x 10- 5x 10

8
Standard error = + 3.2 x 10 8

to 7.9 x 10
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concentration-dependence of sodium hydroxide seems to be consistent with the be-

havior of sodium chloride and potassium chloride shown in earlier figures. How-

ever, closer examination of Fig. 8 shows that while the diffusion coefficient

seems to be approaching a minimum, the concentration range is considerably dif-

ferent. In addition, it is quite apparent that the diffusion coefficient of

sodium hydroxide is considerably higher than the diffusion coefficient of sodium

chloride even though the two electrolytes should be of comparable size. In

assessing the situation, it was found that the diffusivity of hydrochloric acid

(34, 35) is extremely high also. Thus, the difference in diffusivity of sodium

chloride and sodium hydroxide must be due to the difference in anion mobility.

From the literature, it was found that the hydronium and hydroxide ions both

have extremely high mobilities (36, 37). This condition was first attributed,

by Grotthus, to the existence of a molecular transport mechanism whereby either

of the two ions may interact with a water molecule to liberate a comparable ion

on the opposite side of the water molecule. By successive transformations such

as this the complementary ion is pulled through the medium as a result of

electrostatic forces arising from charge separations. - While some changes have

evolved in the physical picture of hydroxyl and hydronium ion transfer, a picture

of the Grotthus mechanism similar to the brief one described above is generally

accepted (36, 37).

In Fig. 9, the diffusion data for sodium hydroxide at 25°C. are shown in

conjunction with the values of the diffusion coefficient predicted by the Onsager-

Fuoss theory and the associated equations. The diffusion coefficient is given by
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where

All of the symbols have been defined previously. Values of the dielectric con-

stant, viscosity, ionic conductivity, and activity were obtained from Harned

and Owen (38). In calculating the activity function, (1 + C - ), data

from (38) were utilized along with an empirical equation of the type, in y+ =

ACB+DC, as suggested by Harned (39).

It is apparent from Fig. 9 that the diffusion of sodium hydroxide is not

comparable in concentration-dependence to sodium chloride or potassium chloride

(Fig. 1 and 2). In fact, the behavior of sodium hydroxide diffusion is compar-

able to only one of the 1:1 electrolytes reported by Robinson and Stokes (34),

namely ammonium nitrate. While ammonium nitrate is by no means as structurally

simple as sodium hydroxide, it is nevertheless of interest to note the postu-

lation given by Wishaw and Stokes to explain the results of ammonium nitrate

diffusion measurements. To explain the behavior they observed, Wishaw and

Stokes (40)postulated that ion-pairs were being formed. The concept of ion-

pairs used by Wishaw and Stokes was the same as that introduced by Bjerrum (41,

42) to denote ion combinations due purely to electrostatic forces between ions
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of opposite charge and not due to the formation of covalent bonds. To show the

existence of ion-pairs, they proceeded to use the theoretical conductivity equa-

tion of Onsager and Fuoss (2) and Falkenhagen, et al. (43),

in determining the degree of dissociation, . They showed that, if C was replaced

by a-C in Equation (87), it was possible to calculate a by trial and error through

the use of the relationship

where A is the experimentally observed conductivity. Wishaw and Stokes (40)

found that it was indeed possible to determine the extent of ion-pair formation

by the use of Equations (87) and (88). Thus, it was considered possible that

the extent of ion-pair formation in sodium hydroxide, if it existed, might be

calculated from the conductivity data of Darken and Meier (44).

Before investigating the possi ility of calculating the extent of ion-pair

formation, two distinctive features had become apparent about the diffusion of

sodium hydroxide. First, there was some unusual phenomenon causing the diffus-

ivity of sodium hydroxide to be quite high in comparison to similar electrolytes;

this phenomenon might be a Grotthus-type transfer mechanism. Secondly, the same

phenomenon as above, a second phenomenon, or a combination of the two was causing

sodium hydroxide to exhibit quite unusual concentration-dependence. Since a

Grotthus-type transfer was considered quite likely to exist, the first feature

of sodium hydroxide diffusion mentioned above was felt to be briefly explained.

As a result of the diffusional behavior observed for ammonium nitrate by Wishaw

and Stokes (40), it was considered quite possible that ion-pair formation was



-65-

occurring in the sodium hydroxide-water system even though it, in general, would

not be suspected.

As discussed in more detail in Appendix II, it became apparent on first

inspection that the theoretical conductivity relationships represented by Equa-

tions (87) and (88) were not applicable to the data of Darken and Meier (44).

It was then concluded from the accepted physical picture of the system that in

order for Equation (87) to be applicable the ions must be considered on an indi-

vidual basis rather than in pairs. By considering the ions on an individual

basis, one can account for the effects of the assumed Grotthus mechanism. For

the sodium ion both the electrophoretic and relaxation effects would exist, but

for the hydroxyl ion only the relaxation effect would exist due to the transfer

mechanism. As pointed out in the Appendix, when the above reasoning was applied

to the conductivity data the theoretical results coincided with the experimental

results up to approximately 0.35M. Beyond this concentration the theoretical

values were higher than the experimental values. This result is contrasted to

that of applying Equation (87) to the data directly, instead of on an individual

ion basis, in which the theoretically calculated results were considerably-lower

than the experimentally observed results. Since it was felt that Equation (87)

should not predict quite low conductivity values for the composite ion case if

it actually represented the physical picture, the results obtained by individually

treating the ions were tentatively accepted. Thus,' it:was possible . the

ion-pair formation. The results of these calculations are presented in detail

in Appendix II and are shown graphically in Fig. 10. While one might readily

reject the idea of ion7pair formation in a 1:1 electrolyte such as sodium hy-

droxide, it is worthwhile to note from Fig. 10 that ion-pair formation is
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Figure 10. The Extent of Ion-Pair Formation for Sodium
Hydroxide at! 25°C. Calculated from Conductivity
Data
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predicted at a concentration region in which the diffusion coefficients of most

other 1:1 electrolytes begin to increase.

Since the result of an analysis of conductivity data leads to the conclu-

sion that ion-pairs are formed in the sodium hydroxide - water system, the next

obvious investigation concerns the quantitative significance of ion-pair forma-

tion on sodium hydroxide diffusion. Even though the Onsager-Fuoss theory has

been shown to predict the diffusional behavior of some electrolytes, there are

a number of factors involved in electrolyte diffusion which the theory does not

take into account; namely, countermovement of solvent, change in solution vis-

cosity, and rigidly bound water of hydration. Agar (45) has extended the theo-

retical development of Hartley and Crank (46) for two-component diffusion and

flow so that it will be applicable to an electrolyte diffusion system. The

development of Agar (45) takes into account the countermovement of solvent

molecules, the movement of a permanently bound layer of solvent molecules along

with the ions, and the change in drag forces on the ions due to viscosity changes.

This analysis led to the following equation relating the diffusivity to a number

of other variables.

In this equation, h* is the moles of bound solvent per mole of electrolyte, m

is the morality, A and A2 are the electrophoretic corrections, HD20 is the

self-diffusion coefficient of water, and D is the diffusion coefficient of

sodium hydroxide at zero concentration. Equation (89) may be simplified by

combining the two middle brackets and neglecting (.018 h*m) to give
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Robinson and Stokes (47) have used Equation (90) to determine hydration numbers,

h* for a series of electrolyte systems. In so doing, they have been able to

determine hydration numbers for seven individual ions; among this group sodium

ion has a hydration number of 0.70.

For the case of sodium hydroxide diffusion, it has been assumed, that be-

cause of the evidence for a Grotthus transfer mechanism, the sodium ion would

be the only one having permanent hydration and h* would be 0.70. Thus, Equation

(90) was rearranged in the following manner to give

and

sents a plot of Equation (91) which might be defined as the theoretical function

of D, f(D)theo . If D in Equation (.92) is now replaced by the observed value of

the diffusion coefficient, D-ob it lis then possible to calculate values of f(D)

which correspond to the actual diffu sion behavior observed. The points in Fig.

11 represent the values calculated from Equation (92). It is to be noted that

the slope of the straight line in the figure is dependent on the self-diffusion

coefficient of water which is somewhat uncertain.

Since the calculated values of f(D) from Equation (92) tend to approach

those of Equation (91) as the molalilty approaches zero, the first reaction is

to accept the fact that the hydroxyl ion is not hydrated. However, deviation

of the f(D) points below the line indicates from Equation (91) that the hydroxyl
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ion is taking up water of hydration as the molality increases. Consideration

of the physical picture of this situation leads one to conclude that the prob-

ability of such an occurrence is rather small, since the ratio of water to

hydroxide ion would be decreasing with increasing hydroxide concentration.

An entirely different explanation of the results in Fig. 11 considers the devia-

tions to be due to the formation of ion-pairs as previously discussed. For such

a case it was shown by Wishaw and Stokes (40) and can be readily seen from

Equation (90) that one may define a diffusion coefficient for the ion-pair and

thus arrive at the following equation:

In this equation, a is the degree of dissociation, DC is the limiting diffusion

coefficient for ionized sodium hydroxide plus the two electrophoretic corrections,

and D. is the diffusion coefficient for the ion-pair. Utilizing the values of

a calculated from conductivity data, it was thus possible to calculate the dif-

fusion coefficient of the ion-pair, Di. . The results of these calculations are

given in Table III. By showing the existence of ion-pairs and calculating their

diffusivities, it can be concluded from Fig. 11 that the hydroxyl ion is not

hydrated since the points in this figure approach the theoretical line at low

concentrations.

Reviewing the results presented' in Table III, it is readily seen that the

ion-pair diffusivities vary to only a slight degree. Such a result would, in

general, indicate that the degree of dissociation, from which the ion-pair

diffusivities were calculated, are reasonably consistent. When the magnitude

of the ion-pair diffusivities are viewed, one wonders whether the values are
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TABLE III

THE DIFFUSION COEFFICIENT OF ION-PAIRS

m a D.
ip

0.70 0.975 1.05 x 10 - 5

1.00 0.951 1.01 x 10- 5

1.50 0.894 0.97 x 10- 5

2.00 0.855 0.95 x 10-5

realistic. If the two ions are assumed to be spheres of equal size because of the

similarity of mass, the resulting ion-pair would have twice the volume of either

of the ions. If an ion-pair represented a uniform sphere of twice the volume of

an ion, the radius of this sphere would be approximately' .26 times the radius of

one of the ions. In actuality, an ion-pair would be more likely to exist as a

prolate spheroid with an axial ratio of two. For such an irregular shape, the

friction factor would be 1.048 (48). If the above two assumed factors were

correct, the friction factor of an ion-pair would be 1.52 times that of an in-

dividual ion. In attempting to apply the above friction factor correction, an

additional complication arises; namely, the effect of the assumed Grotthus-type

transport mechanism. Thus, the friction factor correction cannot be applied

directly to the sodium hydroxide diffusivity because it does not take into

account the loss in diffusivity due to the elimination of the Grotthus mechanism.

One possible solution to this dilemma is to assume, again because of similarity

of mass, that the diffusivity of sodium hydroxide without the Grotthus mechanism

is approximated by the diffusivity of sodium chloride or bromide. Using the

diffusion coefficient of sodium chloride and applying the friction factor correc-

tion of 1.52, one obtains 1.14 x 10 -5 for the diffusion coefficient of the ion-pair.
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Having calculated the degree of' ion-pair formation from a modification of

the Onsager-Fuoss theory for conductance and also having calculated the diffusion

coefficient of the ion-pair from the modified Hartley-Crank equation, there re-

mained a very significant question. How realistic is the concept of ion-pair

formation in aqueous sodium hydroxide solution? The author's attention was

pointed to nuclear magnetic resonance measurements which determine the nature of

a proton's atmosphere. Gutowsky and Saika (49) found that for hydrochloric acid

and potassium hydroxide solutions the proton shift was a linear function of the

fraction of protons in solution which theoretically should be associated with

the hydronium and hydroxide ions. However, for sodium hydroxide the proton shift

was not a linear function of the fraction of protons in the hydroxide ion over

any significant portion of the concentration range studied, up to maximum solu-

bility. They (49) concluded that the results for sodium hydroxide could be ex-

plained only by the formation of Na OH- ion-pairs. Thus, the previously assumed

existence of ion-pairs, as shown by the diffusion and conductivity data, appears

to be substantiated by an essentially direct measurement. In addition to this

evidence, it can be pointed out that the limited data on potassium hydroxide

diffusion (50) show the characteristic minimum in the diffusion coefficient-

concentration curve, a condition predicted by the N.M.R. spectral results. While

the potassium hydroxide diffusion coefficients are of the integral type, the

trends are sufficient to indicate the diffusion coefficient minimum.

THE TEMPERATURE DEPENDENCE OF SODIUM HYDROXIDE DIFFUSION

In addition to the diffusion measurements at 25°C. discussed in the previous

section, measurement series were alsp made at 20, 30, and 35°C. The procedures

used in making these measurements were the same as those used at 25°C. Results

for the three temperatures are given in Tables IV, V, and VI and summarized in

Table VII. The results from the last table are shown graphically in Fig. 12-14
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TABLE IV

RESULTS OF SODIUM HYDROXIDE DIFFUSION

Temperature = 20.00 + 0.010C.

Apparent Diffusion Reciprocal Time,
Coefficient, sq.cm./sec. sec.-

Mean Concentration = 0.02783N

1.809 x 10- 5 2.545 x 10- 4

1.788 1.754
1.782 1.383
1.778 1.287
1.775 1.191

Mean Concentration = 0.05440N

1.734 x 10- 5 1.149 x 10- 4

1.731 1.075
1.728 1.025
1.728 0.980
1.730 0.939

Mean Concentration = 0.1028N

1.712 x 10- 5 1.852 x 10-4

1.705 . 1.515
1.701 1.333
1.700 1.191
1.695 1.075

Mean Concentration = 0.3181N

1.636 x 10- 5 1.282 x 10- 4

1.633 1.111
1.631 1.010
1.631 1.952
1.629 0.901

Mean Concentration = 0.7413N

1.547 x 10 5 1.191 x 10- 4

1.546 1.075
1.544 0.980
1.544 0.926
1.542 0.877
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TABLE V

RESULTS OF SODIUM HYDROXIDE DIFFUSION

Temperature 5 30.06 + 0.01°C.

Apparent Diffusion
Coefficient, sq.cm./sec.

Mean Concentration = 0.'102543N

2.546
2.449
2.403

2.372
2.349

x 10 5

Reciprocal Time,
sec.

3.745
2.506
1.927
1.558
1.235

x 10 4

Mean Concentration = 0.03675N

2.330
2.276
2.250
2.240
2.226

4.105
2.637
1.943

1.575
1.325

x 10 4

Mean Concentration = 0.[08905N

2.267
2.240
2.210
2.207
2.190

x 10 5 1.805
1.482
1.212
1.026
0.889

Mean Concentration = 0.12341N

2.193 x 10 5
a. I00

2.128
2.119
2.106

3.086
2.252
1.754
1.456
1.244

x 10 4

x 10

Mean Concentration = 0.5444N

2.062 x 10- 5

2.057
2.052
2.047
2.044

Mean Concentration = 1.O1011N

2.044 x 10- 5

2.020
2.016
2.011
2.007

1.852
1.658
1.501
1.386
1.277

-4
x 10 4

x 10- 42.381
1.667
1.515
1.389
1.282

x 10-5
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TABLE VI

RESULTS OF SODIUM HYDROXIDE DIFFUSION

Temperature = 35500 + 0.01°C.

Apparent Diffusion Reciprocal Time,
Coefficient, sq.cm./sec. sec.

Mean Concentration = 0.02889N

2.627 x 10- 5 4.065 x 10- 4

2.558 2.381
2.521 1.667
2.511 1.515
2.517 1.589

Mean Concentration = 0.05717N

2.502 x 10 - 5 2.222 x 10 - 4

2. 487 1.961
2. 482 1.754
2.473 1.587
2.466 1.449

Mean Concentration = 0.09954N

2.930 x 10 5 35.030 x 10- 4

2.806 2. 381
2.720 1.961
2.664 1.667
2.631 1.515

Mean Concentration = 0.3139N

2.327 x 10 5 1.667 x 10 - 4

2.315 1.389
2.313 1.277
2.311 1.212
2. 308 1.149

Mean Concentration = 0.7523N

2.297 x 10 - 5 .2.81 x 10- 4

2.271 1.587
2.253 1.282
2.244 1.149
2.237 1.093
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TABLE VII

DIFFERENTIAL DIFFUSION COEFFICIENTS OF SODIUM HYDROXIDE

Mean Concentration,
moles/i.

Differential Diffusion
Coefficient, sq.cm./sec.

Temperature

0.02783
0.05440
0.1028
0.3181
0.7413

Temperature

0.02543
0.03675
0.08905
0.2341
0.5444
1.101

20.00 + 0.01°C.

1.746
1.707
1.674
1.615
1.532

30.06 + o.01C.

2.251
2.179
2.117
2.047
2.002
1. 964

Temperature

0.02889
0.05717
0.09954
0.3139
0.7521

35.00 + 0.01°C.

2.448
2.402
2.335
2.267
2.194

x 10 5

x 10 5

x 10 5
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using the normal co-ordinates of diffusion coefficient and square root of concen-

tration. In order to assess the consistency of the data, zero-time correction

plots are presented in Appendix III. ! Since sufficient supplementary data are

not available for a quantitative analysis of these results, it will be necessary

to discuss them in qualitative terms. It becomes immediately apparent from Fig.

12-14 that the general concentration-dependence of sodium hydroxide diffusion is

not radically changed by changes in temperature from 20 - 35°C. If one compares

the concentration-dependence for each of the four temperatures investigated as

shown in Fig. 15 it can be seen that the rate of change of diffusion coefficient

with concentration, at a seven-tenths molar concentration, generally decreases

with increasing temperature. In the previous section it was indicated that be-

cause of ion-pair formation sodium hydroxide did not exhibit the rather charac-

teristic minimum in the diffusion coefficient-concentration curve. From the

indication of ion-pair formation, one would expect the above effect of tempera-

ture on concentration-dependence bas d on the Bjerrum theory of ion-pair forma-

tion (41) as presented by Robinson and Stokes (51). According to the Bjerrum

theory, the probability of ion-pair formation at a particular ion concentration

is inversely proportional to the abs lute temperature. This result arises from

the fact that the forces tending to cause ion-pair formation, the electrostatic

forces, are opposed by the thermal forces which give rise to Brownian motion;

the thermal forces being proportional to the product of Boltzmann's constant

and the absolute temperature.

In Table VIII and Fig. 16, the temperature-dependence of sodium hydroxide

diffusion at two concentrations is s hown along with that of sodium chloride.

The usual co-ordinates of the log of the diffusion coefficient and the reciprocal

of the absolute temperature are used in the figure. For sodium hydroxide at one-

tenth normal it is seen that the activation energy, as indicated by the slope of
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2.43

2.33

2.23 - 350 C.

2.13

, 2.03-

The Diffusion of Sodium Hydroxide at 20, 25, 30, 35°C.Figure 15.
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TABLE VIII

TEMPERATURE DEPENDENCE (

1/T, °K

)F DIFFUSION

log1 0 (D x 10 5 )

Sodium Hydroxide (C = O.O1N)

3.41
3-35

x 10-3

x 103
).)u X IU -

5.25 x 10

Sodium Hydroxide

3.41 x 10-3
3.35 x 10l-
3.30 x 10-_
3.25 x 10-

Si a
Sodium Chloride

- __x, I!
3.53
3.47
3.41
3.35
3.30

x 10 )x O-3
x 10-~

x 10-3
x 10-3
x 10-3

0.224
0.282
0.324
0.369

(c = 0.70N)

0.188
0.248
0.299
0.342

(C = 0.1ON)

0.013
0.076
0.143
0.207
0.265

Data from International Critical Tables (55).

the line, is

tween 20 and

essentially constant from 25 to 35°C. but is measurably higher be-

25°C. as shown in Table IX.

TABLE IX

ACTIVATION ENERGY OF DIFFUSION

Temp. Range, °C. C

20-25 0.10

25-35

20-35

10-30

0.10

0.70

0.10

Activation Energy,
cal./mole

4700

3700

4300a

5100

For assumption of constant activation energy.

t, 0C. D x 105

20.00
25.00
30.06
35.00

20.00
25.00
30.06
35.00

10.0
15.0
20.0
25.0
30.0

1.673
1.912
2.111
2.341

1.543
1.772
1.992
2.200

1.03
1.19
1.39
1.61
1.84

Solute

NaOH

NaOH

NaOH

NaC1

37
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Specifically, the activation energy between 20 and 25°C. is 4700 cal./mole

and between 25 and 35°C. is 3700 cal/mole. The difference between these two

activation energies has been found to be statistically significant by regression

analysis. While it is not possible to attach quantitative significance to the

activation energies, they are of qualitative importance. According to Glasstone,

Laidler, and Eyring (52), the activation energy is a measure of the energy re-

quired for a molecule to enter into a physical or chemical reaction. Thus, it

is seen that sodium hydroxide requires more energy to diffuse in the 20 to 25°C.

range than in the 25 to 35°C. range. Such a situation is consistent with the

previously presented indication thatlion-pair formation exists in sodium hydrox-

ide solutions. In the previous section it was shown that at 25°C. ion-pair

formation was expected in the 0.25 to 0.30N concentration range. It is thus

conceivable that in the 20 to 25°C. range ion-pairs are being formed at a

considerably lower concentration and because of their formation more energy is

required for diffusion. Such an explanation is partially supported by the

results of Wang (53) for the self-diffusion of water. Wang observed that from

10 to 50°C. the activation energy of self-diffusion of water was constant and

therefore he concluded that the structure of water did not change appreciably

with temperature in the range studied. His view of the structure of water was

the same as that presented by Cross and co-workers (54) from Raman spectra

experiments. Since the structure of water does not change over the temperature

range of this investigation, the change in activation energy for diffusion must

be due to a change in the diffusing species.

In Fig. 16, the temperature-dependence of sodium hydroxide diffusion at

seven-tenths normal concentration is; shown to be somewhat like that at one-tenth

normal. The essential difference between the two concentrations is the region

over which the different activation energies exist.. At seven-tenths normal,



the average activation energy is 4300 cal./mole over the 20 to 35°C. temperature

range. This activation energy is statistically significant from the activation

energy between 25 and 35°C. at one-tenth normal. While the activation energy for

a concentration of seven-tenths normal was presented as a constant, it should be

noted that the data in Fig. 16 for this concentration actually describes a curve

that is concave downward. Since it is not possible to analyze these data by

regression statistics, it can be pointed out that one could not adjust the dif-

fusion coefficients within their statistical confidence limits and eliminate the

curvature. Although this curvature may be fortuitous, it does suggest the possi-

bility that the activation energy is decreasing with increasing temperature.

Such a change in activation energy, if real, would be consistent with the exis-

tence of ion-pairs and would be in the proper direction based on the Bjerrum

theory (51).

In addition to the data on the temperature-dependence of sodium hydroxide

diffusion, Fig. 16 shows this effect on sodium chloride; the data being taken

from the International Critical Tables (55). It is apparent from the figure

that the sodium chloride diffusion coefficient yields a linear temperature-

dependence plot. This is contrasted to the partially curved plots of sodium

hydroxide and suggests that, like the self-diffusion of water, the structure

of the species and its surroundings are not affected by temperature. It is

also to be noted that the activation energy for sodium chloride diffusion is

5100 cal./mole as compared to a range of 3700 to 4700 cal./mole for sodium

hydroxide at one-tenth normal. Such a difference between the two solutes, which

may amount to 1400 cal./mole and is statistically significant, suggests that the

mechanism of diffusion is somewhat different for the two electrolytes when ion-

pairs are not present. The possibility of a different mechanism of diffusion
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for sodium hydroxide such as a Grot-

temperature-dependence as well as b

the previous section.

I-86-thus-type mechanism is thus indicated by the

the concentration-dependence discussed in
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CONCLUSIONS

It was shown that, by proper modification of the "oil lye" method of

sodium hydroxide purification and manipulation of the material in a controlled

atmosphere, a highly purified solution of sodium hydroxide could be prepared for

physicochemical study.

Comparison of the diffusion of sodium hydroxide at 25°C. with the predic-

tions of the Onsager-Fuoss theory showed that the original premise of the appli-

cability of the theory was invalid except at very low concentrations. The

diffusion of sodium hydroxide also does not coincide with the modified Hartley-

Crank relationship, except at low concentrations. This relationship accounts

for counterdiffusion of solvent, ionic hydration effects, and solution viscosity

changes. From application of the Hartley-Crank relationship at low concentra-

tions the sodium ion appeared to be hydrated normally but the hydroxide ion was

not.

It was shown that sodium hydroxide conductivity data from the literature

could be analyzed theoretically, up to three-tenths molal, by: (1) treating

the ions individually and applying Kohlrausch's law, (2) applying the electro-

phoretic correction and Falkenhagen relaxation correction to the sodium ion,

(3) applying only the relaxation correction to the hydroxide ion, and (4) util-

izing the value of the distance of closest approach obtained from activity data.

Above three-tenths molal, it was shown from the conductivity data that ion-pairs

existed and the extent of this phenomenon was calculated.

From the calculated values of the extent of ion-pair formation it was possible

to utilize the modified Hartley-Crank relationship to calculate the diffusion co-

efficient of the ion-pair. The ion-pair diffusion coefficients that were



-88-

calculated showed a slight decrease with increasing sodium hydroxide concentra-

tion. Consideration of the effects of size, shape, and diffusion mechanism of

the ion-pairs showed that the calculated values of the ion-pair diffusion co-

efficients were quite realistic. In addition, nuclear magnetic resonance data

in the literature shows that ion-pairs would be present in sodium hydroxide

solutions but not in potassium hydroxide solutions. Limited data in the liter-

ature also showed that potassium hydroxide exhibited the characteristic minimum

in the diffusion coefficient-concentration curve as expected from N.M.R. data.

An investigation of the diffusion of sodium hydroxide at 20, 30, and 35°C.

showed that the general concentraticn-dependence effects exhibited at 25
° were

present at the other temperatures. One of the results of increasing the temper-

ature was a reduction in the concentration-dependence of diffusion at the higher

concentrations. From a presentation of the temperature-dependence according to

the reaction rate theory, it was shown that there were two regions of diffusion

behavior with respect to temperature; this effect being shown for one concen-

tration. The region of highest activation energy was attributed to the existence

of ion-pairs and the lowest activation energy region being considered essentially

free of ion-pairs for a concentration of one-tenth normal. Comparison of the

temperature-dependence of sodium chloride diffusion with that of sodium hydrox-

ide showed that the activation energy of sodium chloride diffusion may be greater

by as much as 400 to 1400 cal./mole at the same concentration. Such a difference

was considered to be evidence for the existence of a Grotthus-type transport

mechanism in sodium hydroxide diffusion in the absence of ion-pairs.
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NOMENCLATURE

a the distance of closest approach for an electrolyte

_a ~ the distance of closest approach, angstroms

a. diameter of an ion of species, j
-a

constants in the Creeth concentration-dependence analysis

B ,B ,B constants in the conductivity theory equation-1' -2 - ]

b reciprocal of the Debye length; defined by Equation (32)

C concentration in moles per liter

D diffusion coefficient at finite concentration

D' apparent diffusion coefficient

D- diffusion coefficient at a mean concentration

D diffusion coefficient of electrolyte at infinite dilution

D* self-diffusion coefficient of water
H20
D. diffusion coefficient of sodium hydroxide ion-pair

D. dielectric constant of the medium
_1 I
E activation energy per molel

e base of the Naperian logarithm

Fl F* partition functions of the normal and activated states

f. . distribution of j ions in the atmosphere of i ions

F Faraday, 96,500 coulombs/equivalent

H enthalpy

H(Z*) error function, H(Z*) = 2 r ~ e - d-
/ o

h Plank's constant

h* the moles of bound solvents per mole of electrolyte (degree of
hydration) |

J total number of Rayleigh fringes

J. fluxes of ion species, i 1

ii
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J specific Rayleigh fringe

K. forces acting on ion specie, i

k Boltzmann constant

k-'k2 constants in the Creeth concentration-dependence analysis

M magnification factor of diffusion apparatus optical system

^YI ~complex function in the diffusion theory which is proportional to the
diffusion coefficient by the realtionship (/t/_n) = D

m concentration in moles per 1000 grams of solvent

9? Avogadro's number

N concentration in molecules per cc.

n. number of ions of type i per cc.

n number of fringe pairs used in calculation of Y-t

charge on an ion of species, i

R the gas constant per mole

r radius of electric field around an ion

r. radius vector about an ion of species, i

_~i
ri. radius vector between ions i and J

S entropy

T absolute temperature, °K.

t_ time, sec.

t' apparent time

U(Z*),R(Z*),W(Z*) complex function of the error function

V mean ionic velocity

,VIV2, etc. individual ion velocity

V(r.) bulk velocity of the solution at the end of vector r.

V(Z*),S(Z*),T(Z*) complex functions of the error function

X co-ordinate on a Rayleigh interferogram

x direction co-ordinate in Fick's law



!92-

y+ mean molar activity coefficient

Z the probability co-ordinate, X/2(Dt) /

Z. the charge on ion, i

;a ~ the degree of dissociation of an electrolyte

7y mean molal activity coefficient

A' A2 electrophoretic correction'terms

At zero-time correction

Ax6x the relaxation correction

e the charge of an electron

eC activation energy per molecule

_+ mean ionic activity coefficient on the molecular scale

PT viscosity of the solution

T] viscosity of the solvent

A ° the equivalent conductivity of an electrolyte

A(^) equivalent conductivity calculated for particular values of a and C

A experimentally determined equivalent conductivity

X the distance between equilibrium positions of a diffusing particle
(reaction rate theory)

equivalent conductivity of ion species, i

p. chemical potential

vi ions of species i formed per molecule of electrolyte

p the charge density in a particular region

T specific reaction rate forIldiffusion

t the average electrical potential

x.i mobility of ion species, ij

V differential operator
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APPENDIX I

ZERO-TIME CORRECTION DATA FOR SODIUM
HYDROXIDE DIFFUSION AT 25°C.

The zero-time correction data for all diffusion runs at 25°C. are shown in

Fig. 17 to 23.
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APP

CALCULATION OF DEGREE OF

From the theoretical analysis

Stokes (57), it has been shown that

given by

ENDIX II

DISSOCIATION FROM CONDUCTIVITY

of Onsager (56), Onsager and Fuoss (2), and

the conductivity of a strong electrolyte is

The negative quantity in the first parenthesis represents the electrophoretic

contribution to the concentration-dependence while the quantity in the second

parenthesis represents the relaxation contribution. While the relaxation effect

was evaluated by Onsager for dilute solution, it has been more recently evalu-

ated by Falkenhagen, et al. (43) for more concentrated solutions. It has been

observed (40, 58) that Equation (87) is applicable to a considerable number of

electrolyte solutions up to a relatively high concentration (4-5m) in the form

In Equation (94), the B's are constants dependent on the temperature, the solvent

dielectric constant, the electronic charge, Avogadro's number, and the solvent

viscosity. The quantity a is the closest distance of approach of the ions (ang-

stroms) and F is a complex function given by

(95)

where b has been previously defined as the reciprocal of the Debye length.

For the case of an electrolyte which tends to form ion-pairs, it has been

shown (40) that C in Equation (94) may be replaced by a-C, where (1-a) is the

extent of ion-pair formation. If this substitution is made, the following

t
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relationship is obtained.

In this equation,.A is the experimentally determined conductivity and A(a C)

is the conductivity calculated from Equation (94) with C replaced by a-C.

When Equations (94) and (88) were applied to the sodium hydroxide conduc-

tivity data of Darken and Meier (44) along with the viscosity data of Huckel and

Schaaf (59), it was observed that the results predicted by Equation (94) would

fit the observed data only if the adjustable parameter, a, were made to equal

5.25 angstroms. In addition, it was observed that even though Equation (94)

would fit the conductivity data for a = 5.25 the range of applicability was only

up to 0.05M. However, instead of the theory predicting high results as would be

the case if ion-pairs existed, the predictions were lower than the experimental

values. An additional point is the fact that the 5.25 angstrom value used up

to 0.05M is considerably higher than the 3.24 angstrom value predicted empiric-

ally from activity data (60).

In reviewing the physical picture of the possible phenomena involved in the

conductivity of sodium hydroxide, it was felt that, because of the probability

of a Grotthus-type transfer mechanism, certain modifications were necessary to

make the conductivity theory applicable. The existence of a Grotthus-type

transfer mechanism seems to be quite widely accepted (36, 37) particularly for

the hydronium ion, and will be assumed in the succeeding development. Since the

two ions involved, sodium and hydroxide, would behave differently in transport

due to a Grotthus mechanism, their individual concentration-dependence were

evaluated. For the sodium ion the concentration-dependence would be the same

as any neutral electrolyte (NaCl,. KCl) and would be given by



However, for the hydroxide there would be no electrophoretic effect or relative

viscosity effect since these two effects arise from the viscous drag forces in-

volved in the movement of a particle through uniform media. Thus, the equivalent

ionic conductivity of the hydroxide ion would be given by

since the relaxation effect would be the only one operating. It is then assumed

that the law of Kohlrausch is applicable to ions at finite concentrations with the

result being

I

The use of Kohlrausch's law is supported by the analysis of Stokes (57) for the

concentration-dependence of transference numbers in which he evaluated the

individual ion effects and then summed them.

Equations (96), (97), and (98) were applied to the sodium hydroxide conduc-

tivity data of Darken and Meier (44) 'and the results of this analysis are shown

in Table X. It can be seen that up to approximately 0.4M these equations are

quite applicable; even for an a value of 3.24, which is the same as that obtained

from activity data (60). Beyond 0.4M, the calculated values of the equivalent

conductivity at particular concentrations are greater than the experimental values.

Such results are indicative of ion-pair formation and should be amenable to

analysis using Equation (88) along with Equations (96), (97), and (98).
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TABLE X

RESULTS OF CONDUCTIVITY CALCULATIONS

Temp. = 25°C.

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

0.995
0.988
0.969
0.932
0.897
o.806

AaAC

247.70
246.87
246.30
245.64
245.27
244.79

244.50
244.10
243.85
241.13
239.53
238.22

234.39
227.71
225.70
222.40
216.70
207.70

200.00
195.00
186.20
173.80
164.10
142.90

Concentration and conductivity are from Darken and Meier (44).

When Equations (88), (96), (97), and (98) were applied to the conductivity

data up to approximately 2.5M, it was found that the degree of ion-pair forma-

tion increased fairly rapidly as shown in Table X. It is to be noted that a

represents essentially the degree of dissociation and thus (1-a) represents the

degree of ion-pair formation. The values of a were determined by trial and

error using an IBM 1620-II computer.

a = .24a = 3.24NaOH

Ca

0.0001
0.0003
0. 0005
0.0008
0.0010
0.0013

0.0015
0.0018
0.0020
0.0050
0.0075
0.0100

0.0200
0.0500
o.o608
0.09139
0.15173
0.29312

0.44827
0.5665
0.7954
1.1617
1.4737
2.2273

(C' A(C)

247.69
246.85
246.28
245.62
245.25
244.77

244.47
244.07
243.83
241.10
239.50
238.18

234.31
227.36
224.93
221.49
215.70
207.03

199.87
194.98
186.21
173.73
164.05
142.87



APPENDIX III
I

ZERO-TIME CORRECTIONJ DATA
SODIUM HYDROXIDE AT 20,

FOR DIFFUSION OF

30, AND 35°C.

The zero-time correction data for all diffusion runs at 20, 30, and 35°C.

are shown in Fig. 24 to 39.
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APPENDIX IV

DIFFUSION OF SODIUM HYDROXIDE IN SUPPORTING ELECTROLYTES

In addition to the experimentation of principal importance to this thesis

presented in the previous sections, there were two diffusion runs carried out

that are of passing interest. The first of these runs was undertaken to deter-

mine whether the hydroxide ion contributed principally to the concentration-

dependence of sodium hydroxide diffusion. For this run at 25°C., a solution of

0.1050N sodium hydroxide and 0.2085N sodium chloride was allowed to diffuse into

0.2085N sodium chloride. In essence, this run involved only the diffusion of

sodium hydroxide through a solution of sodium chloride with the mean concentra-

tion of hydroxide being 0.0515N. Because of the presence of the sodium chloride,

one would expect the diffusion coefficient to be lower than would be obtained for

the same mean concentration of hydroxide alone. However, the diffusion coeffic-

ient for this run in the presence of sodium chloride was 2.146 x 10-5 cm. /sec.

as compared to 1.962 x 10- 5 for the diffusion coefficient of sodium hydroxide

alone at the same mean hydroxide concentration. While this result was quite un-

expected, it is consistent with the effect of potassium chloride on hydrochloric

acid diffusion as shown by McBain and Dawson (61). An explanation of these

results was not given by McBain and Dawson, and the author has been unable to

explain them either.

Thinking that the above results, of sodium hydroxide diffusion in the

presence of sodium chloride, were due to some type of common ion effect, it was

decided to carry out a second experiment in which the sodium chloride was re-

placed by potassium chloride. Thus, eliminating any common ion effect, it was

expected that the diffusion coefficient of the hydroxide in this case would be

below that given above. Once again the result was unexpected as the diffusion
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coefficient of the hydroxide was 2.282 x 10 -5 cm. /sec. in this case for a mean

hydroxide concentration of 0.0562N and a potassium chloride concentration of

0.2100N. As in the first run above, the result could again not be explained.

Br
il

Since the above two diffusion runs were of sideline significance in this

thesis and the results were not understood, it was decided that additional

experimentation would not be possible. However, further investigation concern-

ing diffusion in such mixed electrolyte systems would be quite interesting and

the results would be potentially relevant to the kraft pulp process.
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