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SUMMARY 

   

 

Stochastic Particle Response Calculator, SPaRC, is a new stochastic neutron 

transport code that has been developed and optimized for the computation of response 

functions for use in response matrix based whole-core transport solvers. SPaRC transports 

neutrons from a specified fixed source distribution and computes responses as neutrons 

stream through and then exit regions of interest. The code makes use of both multi-group 

and continuous energy nuclear data and takes advantage of parallel computing through the 

message passing interface (MPI). In order to test the neutron transport routine, various 

small benchmark problems were solved with SPaRC and compared to results generated 

with MCNP. Results show excellent agreement between the solutions generated by these 

codes for both multi-group and continuous energy calculations. 

The responses generated by SPaRC have been tailored for use in the coarse mesh 

transport (COMET) method. COMET is a hybrid stochastic/deterministic method shown 

to compute fast and accurate solutions for a variety of nuclear systems. In order to obtain 

these solutions, COMET makes use of pre-computed response functions aggregated into a 

library for use in a deterministic iteration scheme. Previously these response functions were 

calculated with MCNP and took place before a transport calculation. SPaRC also generates 

these response functions for use with the COMET method, with the added capability of 

performing these calculations during the transport routine as needed. This on-the-fly 

capability for response generation enables the use of the COMET method for calculations 

where the state of a problem changes with time. SPaRC’s ability to generate responses 

during a calculation eliminates the need for a fully pre-computed response library to cover 

the entire possible solution space, extending the capability of COMET to neutronics 

problems involving multi-physics feedback, such as thermal-hydraulic and depletion 

calculations. 



 

 

xi 

Sample calculations on the reactor assembly level were performed in order to test 

the accuracy of the SPaRC generated response functions. First, responses were generated 

for uncontrolled, controlled, and gadded assemblies with both MCNP and SPaRC. Next, 

COMET calculations were performed using these two sets of responses for the different 

assembly types in order to generate eigenvalues and pin fission density distributions. The 

results generated from the MCNP and SPaRC responses agreed within 0.05% for the core 

eigenvalue and within 0.002% for pin powers.  

SPaRC is a newly developed fixed-source radiation transport code. The neutron 

transport method has been benchmarked against the stochastic transport code MCNP with 

good agreement and new database management and creation routines have been developed 

to aid response generation. SPaRC introduces a response function flexibility to the COMET 

method that facilitates thermal hydraulic and depletion calculations.  
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CHAPTER 1 

INTRODUCTION 

 

 For the design and safety of nuclear systems, it is important to have accurate models 

and simulations. In the case of nuclear power reactors, it is important to know the 

eigenvalue and the power distribution within the core at any moment in time. Traditional 

methods of generating solutions for these whole reactor core systems consist of a multi-

stage approach. First, detailed transport calculations are performed on a lattice level such 

as a single fuel assembly. These calculations are typically two dimensional, use specular 

reflective boundary conditions to simulate the environment of the whole reactor, and make 

use of a pre-generated set of nuclear data tailored to the specific system. From these lattice 

level calculations, a library of spatially homogenized and energy collapsed cross sections 

is generated for each unique assembly type [1]. Then, using the library of homogenized 

nuclear data, solutions on the larger, whole core level are generated. This series of 

calculations introduces errors and the accuracy of the solution decreases as core 

heterogeneity increases. These errors are due to the homogenization of the cross sections 

as well as the approximation of the boundary conditions during the lattice calculation. In 

order to address these issues, the coarse mesh radiation transport (COMET) method was 

developed. 

COMET is a hybrid deterministic stochastic method that has been shown to solve 

reactor problems fast and accurately. Much like the traditional methods of solving reactor 

problems, COMET uses a domain decomposition to divide the problem into unique coarse 

mesh regions. However, an angular flux expansion technique is used on the boundary 

instead of assuming a specular boundary condition. For each unique mesh region, rather 

than generating homogenized cross sections, both surface to surface and surface to volume 

response functions are stochastically generated. These responses are then incorporated into 
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a data library where they are used to deterministically generate fast and accurate results for 

large reactor systems. The COMET method has been proven to be a fast and accurate 

method to obtain whole-core solutions for multiple nuclear reactor designs including 

pressurized water reactors (PWRs)[2], boiling water reactors (BWRs)[3], Canada deuterium 

uranium reactors (CANDUs)[4], and high-temperature gas-cooled reactors (HTGRs)[5].  

 

1.1 Motivation 

The current implementation of COMET involves a multi-stage process. First, 

response functions are generated using the Monte Carlo n-particle transport code MCNP[6]. 

Once the responses are generated, a routine is run to process the response data and then to 

create a database to store the responses. It is from this database that the responses are 

accessed during the deterministic calculations to generate solutions. If there is a need to 

update the database, similar steps need to be performed, but the post processing routine 

now appends to, instead of creates, the database. 

Since updating the database and generating new responses is not a trivial procedure, 

it is important that the response database cover the entire solution space of a problem. 

However, this is not always possible in situations where the reactor state changes with time. 

Two such situations where the reactor state changes in time are in reactor depletion, where 

the material composition of the system changes with time, and in thermal-hydraulic 

calculations, where the temperature of the system changes with time. In these situations, 

the procedure of generating responses and then processing them into a database must be 

performed after each step since the future state of the problem is not known a priori. Thus, 

the previous COMET implementation of updating responses and managing the database 

does not easily facilitate these problems where the reactor state changes in time. In order 

for COMET to become a multi-physics code that can handle systems where the reactor 

state changes it is important that the response generation and database management 

routines be updated and improved upon. 
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1.2 Objectives 

 The objective of this dissertation is the development of an incident response 

generator that is optimized to generate on-the-fly response functions for COMET. This 

response generation ability, along with new response function database management 

routines, must allow COMET to perform depletion and thermal-hydraulic calculations. The 

response generation method must be flexible, allowing for arbitrary response specification, 

and must also be implemented in parallel since response generation is the most 

computationally expensive portion of a COMET calculation. The database management 

and creation routines must also be flexible, allowing for easy modification and access, to 

be able to facilitate future parallel deterministic calculations in COMET. All of these 

routines must also all be run in memory not only for ease of use, but also to save 

computational time.  

 

1.3 Organization 

 This paper will first review the COMET methodology for solving nuclear systems. 

This will detail the domain decomposition, response generation, and the deterministic 

calculations all involved in solving a nuclear system with COMET. Next, a mathematical 

basis for stochastic neutron transport will be provided. Then the theoretical and practical 

details involved with transporting neutrons stochastically will be discussed. Having 

discussed stochastic transport in general, some specifics of the SPaRC response generation 

implementation will be detailed along with the new database management scheme. Next, 

having introduced the methodology of both COMET and SPaRC, benchmarks will be 

introduced that will test the codes. Various small fixed source benchmarks and their 

solutions will be compared to test the neutron transport routine of the SPaRC code with 

both multi-group and continuous energy cross sections. Finally, an EPR benchmark on the 

assembly level will be introduced for uncontrolled, controlled and gadded assembly types. 
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COMET solutions to these systems will then be compared for calculations using both the 

old MCNP and the new SPaRC generated responses. 
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CHAPTER 2 

COMET METODOLOGY 

 

For nuclear systems, it is important to know the angular flux distribution throughout 

the volumes or regions of interest. By obtaining the flux distribution, the eigenvalue of the 

system, the power distribution, and other reactions of interest can be obtained. The angular 

neutron flux in a system 𝑉 with boundary 𝜕𝑉 can be solved for with the following 

Boltzmann transport equation, 

 

 
𝑯𝛹(𝑟̅, 𝛺̂, 𝐸) =  

1

𝑘
𝑭𝛹(𝑟̅, 𝛺̂, 𝐸)      𝑟 𝜖 𝑉 (1) 

 

with the following boundary condition, 

 

 𝛹(𝑟̅, 𝛺̂, 𝐸) = 𝑩𝛹(𝑟̅′, 𝛺̂′, 𝐸′)      𝑟̅, 𝑟̅′ ∈ 𝜕𝑉    𝑛̂ ∙ 𝛺̂ < 0 𝑎𝑛𝑑 𝑛̂ ∙ 𝛺̂′ > 0  (2) 

 

This is a steady state equation with 𝛹(𝑟̅, 𝛺̂, 𝐸) representing the angular neutron flux at 

position 𝑟̅ with direction 𝛺̂, and energy 𝐸. The system is defined in a volume 𝑉 with 

boundary 𝜕𝑉. The value 𝑘 represents the global eigenvalue, a value to scale the fission 

source of neutrons in order to ensure a balance in Equation 1, and 𝑛̂ represents the outward 

normal on the boundary. B represents the general boundary condition operator and H and 

F are operators defined as follows, 

 

 
𝑯 =  𝛺̂ ∙ ∇ + 𝜎𝑡(𝑟̅, 𝐸) −  ∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′ 𝜎𝑠(𝑟̅; 𝛺̂′, 𝐸′ →  𝛺̂, 𝐸)

4𝜋

 (3) 
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𝑭 =  

𝜒(𝑟̅, 𝐸)

4𝜋
∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′

𝟒𝝅

𝜈(𝐸′)𝜎𝑓(𝑟̅, 𝐸′)  (4) 

 

where σ𝑡(𝑟̅, 𝐸) is the total cross section, 𝜎𝑠(𝑟̅; 𝛺̂′, 𝐸′ →  𝛺̂, 𝐸) is the scattering cross 

section for neutrons scattering from direction and energy 𝛺̂′, 𝐸′ to 𝛺̂, 𝐸, 𝜒(𝑟̅, 𝐸) is the 

energy distribution function of fission neutrons, 𝜈(𝐸′) is the number of neutrons produced 

from fission, and 𝜎𝑓(𝑟̅, 𝐸′) is the fission cross section. 

 

 

 

The first step in the COMET methodology is to split the spatial domain of the 

problem into non-overlapping coarse meshes (see Figure 1). This spatial decomposition 

transforms the larger transport problem into the smaller local problems given below, 

 

 
𝑯𝛹𝑖(𝑟̅, 𝛺̂, 𝐸) =  

1

𝑘
𝑭𝛹𝑖(𝑟̅, 𝛺̂, 𝐸)        𝑟 𝜖 𝑉𝑖 (5) 

   

with the following boundary condition, 

 

Figure 1. Spatial domain decomposition, the volume V is split into non-overlapping 

regions Vi/j with boundary conditions dependent on adjacent volumes. 
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 𝛹𝑖(𝑟̅, 𝛺̂, 𝐸) = 𝛹𝑖𝑠(𝑟̅, 𝛺̂, 𝐸)      𝑟̅ ∈ 𝜕𝑉𝑖𝑠     𝑛̂𝑖𝑠
+ ∙ 𝛺̂ < 0 (6) 

 

where 𝜕𝑉𝑖𝑠 represents the surface of mesh 𝑖 with volume 𝑉𝑖, 𝑛̂𝑖𝑠
+  represents the outward 

normal on 𝜕𝑉𝑖𝑠, and 𝛹𝑖𝑠(𝑟̅, 𝛺̂, 𝐸) is the incoming angular flux from adjacent coarse meshes. 

It should be noted that the eigenvalue 𝑘 in Equation 5 is the global eigenvalue of the entire 

problem and not just the eigenvalue of that specific coarse mesh.  

The spatial decomposition in principle does not introduce any approximations to 

the system. If the incoming angular fluxes on the boundary 𝛹𝑖𝑠(𝑟̅, 𝛺̂, 𝐸) are known 

beforehand, the angular flux throughout the coarse mesh 𝛹𝑖(𝑟̅, 𝛺̂, 𝐸) can be obtained. 

However, since these boundary fluxes are not known beforehand, the inward and outward 

angular fluxes on the boundaries are represented in terms of orthogonal expansion 

functions, 

 

 𝛹𝑖𝑠
±(𝑟̅, 𝛺̂, 𝐸) = ∑ 𝐽𝑖𝑠

±,𝑚𝛤𝑚(𝑟̅, 𝛺̂, 𝐸)

𝑠,𝑚

    𝑟̅ ∈ 𝜕𝑉𝑖𝑠     𝑛̂𝑖𝑠
± ∙ 𝛺̂ > 0 (7) 

 

where 𝛤𝑚(𝑟̅, 𝛺̂, 𝐸) are orthogonal expansion functions and 𝐽𝑖𝑠
±,𝑚

 are the associated 

expansion coefficients. Using this angular flux representation and using the fact that the 

Boltzmann transport equation is linear, the solution to the angular flux within a mesh can 

be constructed as, 

 

 𝛹𝑖(𝑟̅, 𝛺̂, 𝐸) = ∑ 𝐽𝑖𝑠
−,𝑚𝑅𝑖𝑠

𝑚(𝑟̅, 𝛺̂, 𝐸)

𝑠,𝑚

     𝑟̅ ∈ 𝜕𝑉𝑖  (8) 

 

where 𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸) is the solution to the fixed source problem, 
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𝑯𝑅𝑖𝑠

𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) =  
1

𝑘
𝑭𝑅𝑖𝑠

𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘)        𝑟 𝜖 𝑉𝑖 (9) 

 

with the following boundary condition, 

 

 𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) = 𝛤𝑚(𝑟̅, 𝛺̂, 𝐸)      𝑟̅ ∈ 𝜕𝑉𝑖𝑠      𝑛̂𝑖𝑠

+ ∙ 𝛺̂ < 0 (10) 

 

It can be seen that  𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) corresponds to the angular flux distribution within a 

mesh due to an incoming flux corresponding to the distribution 𝛤𝑚(𝑟̅, 𝛺̂, 𝐸) imposed on the 

mesh surface.  

For the choice of expansion functions, it is natural that the 0th order expansion 

function represent the isotropic flux. Since the neutron distribution in a reactor core is 

isotropic on average it is important that the magnitude of the partial current is preserved. 

To meet these requirements, the following orthogonality condition is enforced, 

 

 
∫ 𝑑𝐸 ∫ 𝑑𝑟̅

𝜕𝑉𝑖𝑠

∫ 𝑑𝛺̂ (𝑛̂𝑖𝑠
± ∙ 𝛺̂)𝛤𝑚(

𝑛̂𝑖𝑠
± ∙𝛺̂>0

𝑟̅, 𝛺̂, 𝐸)𝛤𝑚′(𝑟̅, 𝛺̂, 𝐸) = 𝐴𝑚𝛿𝑚𝑚′ (11) 

 

where  𝐴𝑚 is a constant and  𝛿𝑚𝑚′ is the Kronecker delta. Previous work into the choice of 

expansion functions has been completed. It was found that expansion functions constructed 

as a product of Legendre polynomials 𝑃𝑛(𝑥) and Chebyshev polynomials of the second 

kind  𝑈𝑛(x) give good results to a number of nuclear systems. The angular flux on the 

surface is represented using the following expansion, 

 

 𝛤𝑖𝑗𝑘𝑔(𝑟̅, 𝛺̂, 𝐸) = 𝑃𝑖(𝑟̅)𝑈𝑗(cos θ)𝑃𝑘(cos φ)𝛿(𝐸 − 𝐸𝑔) (12) 
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with the position variables and the cosine of φ represented with Legendre polynomials and 

the cosine of θ being represented by Chebyshev polynomials of the second kind. The 

energy variable is treated with the Dirac delta function signifying a multi-group 

formulation. The formulations for obtaining the Chebyshev polynomials expansions can 

be obtained using Equations 13 and the Legendre expansions can similarly be obtained 

using Equation 14. From these equations, the 0th order expansion can be seen to represent 

an isotropic flux. 

 

 𝑈0(𝜇) = 1 

𝑈1(𝜇) = 2𝜇 

𝑈𝑛+1(𝜇) = 2𝜇𝑈𝑛(𝜇) − 𝑈𝑛−1(𝜇), 𝑛 ≥ 1 

(13) 

 

 𝑃0(𝑥) = 1 

𝑃1(𝑥) = 𝑥 

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥), 𝑛 ≥ 1 

(14) 

 

2.1 Response Generation 

The outgoing and incoming partial currents (expansion coefficients) for a surface 

𝑠′ and a coarse mesh 𝑖 are related by the following equation, 

 

 𝐽 𝑖𝑠′
+,𝑚′ = ∑ 𝑅𝑖𝑠𝑠′

𝑚𝑚′𝐽𝑖𝑠
−,𝑚

𝑠,𝑚

 (15) 

 

where 𝑅𝑖𝑠𝑠′
𝑚𝑚′ is the surface-to-surface response function related to 𝑅𝑖𝑠

𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) by the 

following relation, 
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𝑅𝑖𝑠𝑠′

𝑚𝑚′
(𝑘) = ∫ 𝑑𝐸 ∫ 𝑑𝑟̅

𝜕𝑉𝑖𝑠′

∫ 𝑑𝛺̂ (𝑛̂𝑖𝑠
± ∙ 𝛺̂)𝛤𝑚′(

𝑛̂𝑖𝑠′
+ ∙𝛺̂>0

𝑟̅, 𝛺̂, 𝐸)𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) (16) 

 

Here 𝑅𝑖𝑠𝑠′
𝑚𝑚′

can be seen to be the magnitude of the outgoing flux from surface 𝑠′ in moment 

𝑚′ from a unit incoming flux distributed on surface 𝑠. 

For each unique coarse mesh 𝑖 both surface-to-surface 𝑅𝑖𝑠𝑠′
𝑚𝑚′

(𝑘)  and surface-to-

volume 𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘) response functions have to be calculated. This response function 

generation is done with stochastic neutron transport in order to make use of its ability to 

model complex geometry and easily treat continuous expansion functions. The choice of a 

stochastic code also allows for the direct treatment of the energy variable instead of just a 

multi-group formulation. During the stochastic response calculations, particles are first 

spawned from an incoming distribution 𝛤𝑚(𝑟̅, 𝛺̂, 𝐸). The particles are then tracked through 

the coarse mesh and volume responses of interest are calculated by path length tallies as 

described in Chapter 3. When a particle leaves the coarse mesh through a surface, the 

surface-to-surface response function can then be calculated through the following equation, 

 

 
𝑅𝑖𝑠𝑠′

𝑚𝑚′
=

1

𝑁
∑ 𝛤𝑚′(𝑟̅𝑛 , Ω̂𝑛 , 𝐸𝑛)𝑤𝑛

𝑛,𝑟̅∈𝜕𝑉𝑠

 (17) 

 

where 𝑁 is the total number of source particles, 𝑟̅𝑛 , Ω̂𝑛 , 𝐸𝑛 and 𝑤𝑛 are the position, angle, 

energy, and weight of particle 𝑛 as it escapes through coarse mesh surface 𝜕𝑉. 

With stochastic calculations there is an inherent uncertainty associated with the 

solutions. The sample variance for the responses is calculated using the following equation, 

 

 

𝛿2 [𝑅𝑖𝑠𝑠′
𝑚𝑚′

] =
1

𝑁
∑[𝛤𝑚′(𝑟̅𝑛 , 𝛺𝑛 

̂ , 𝐸𝑛)𝑤𝑛]
2

−  [
1

𝑁
∑ 𝛤𝑚′(𝑟̅𝑛 , 𝛺𝑛 

̂ , 𝐸𝑛)𝑤𝑛]

2

 (18) 
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It was seen earlier that the response functions are dependent on the global 

eigenvalue 𝑘. Since the eigenvalue is not known beforehand, responses are calculated at 

multiple bounding eigenvalues and then can be interpolated upon for a given eigenvalue 

using the following equation, 

 

 

𝑅𝑖𝑠𝑠′
𝑚𝑚′

(𝑘) =  

1
𝑘⁄ − 1

𝑘1
⁄

1
𝑘2

⁄ − 1
𝑘1

⁄
𝑅𝑖𝑠𝑠′

𝑚𝑚′
(𝑘1) +  

1
𝑘2

⁄ − 1
𝑘⁄

1
𝑘2

⁄ − 1
𝑘1

⁄
𝑅𝑖𝑠𝑠′

𝑚𝑚′
(𝑘2) (19) 

 

where the global eigenvalue 𝑘 lies between response libraries generated at 𝑘1and 𝑘2. As 

long as the response library generated encompasses the global eigenvalue the responses 

can be interpolated in order to obtain the solution. Other methods have been developed to 

get around this need for generating responses at multiple 𝑘 values including a perturbation 

calculation method[7] and a fission collision separation method[8]. The SPaRC responses 

generated for this paper use the 𝑘 grid scheme. 

 Responses only have to be generated for unique coarse meshes based on their 

geometry and material composition. Thus for systems such as nuclear reactor cores where 

there are repeated assemblies as well as repeated pins, significant improvements in 

computational efficiency can be made. 

 

2.2 Deterministic Iteration Scheme 

Once the responses have been generated stochastically, they are processed and then 

formatted into a database. Then an iterative deterministic method is used to generate 

solutions for the system by iterating upon the responses from the coarse meshes that make 

up the system. The deterministic solution involves both outer iterations on the eigenvalue 

𝑘 and inner iterations on the currents between meshes. The COMET deterministic solution 

method is as follows: 
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(A) First an initial guess is made for both the global eigenvalue 𝑘 and the expansion 

coefficients 𝐽.   

(B) The responses are updated for the eigenvalue 𝑘 using Equation 19. 

(C) Inner iterations are performed to solve for the currents using the following 

equation, 

 ∑ 𝑅𝑖𝑠𝑠′
𝑚𝑚′

(𝑘) 𝐽𝑖𝑠
−,𝑚

𝑠,𝑚

=  𝜆 𝐽𝑖𝑠′
+,𝑚′

 (20) 

 

(D) Once the currents are converged, the global eigenvalue is then updated using 

the following equation, 

 

 
𝑘(𝑢 + 1) =

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑢)

(𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝑢) + 𝐿𝑒𝑎𝑘𝑎𝑔𝑒(𝑢))

=  
∑ 𝐽𝑖𝑠

−,𝑚′(𝑢) ∫ 𝑑𝐸 ∫ 𝑑𝑟̅
𝑉𝑖

∫ 𝑑𝛺̂
4𝜋𝑖,𝑠,𝑚 𝜈𝜎𝑓𝑅𝑖𝑠

𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘(𝑢)) 

∑ 𝐽(𝑢) ∫ 𝑑𝐸 ∫ 𝑑𝑟̅
𝑉𝑖

∫ 𝑑𝛺̂
4𝜋

𝜎𝑎𝑅𝑖𝑠
𝑚(𝑟̅, 𝛺̂, 𝐸; 𝑘(𝑢)) + ∑ (𝐽𝑖𝑠

+,0(𝑢) − 𝐽𝑖𝑠
−,0(𝑢))𝜕𝑉𝑖𝑠⊂𝜕𝑉𝑖,𝑠,𝑚

 

(21) 

 

where 𝑢 is the outer iteration index. This equation is a formulation of the 

neutron balance equation accounting for neutron production from fission and 

neutron losses from absorption and leakage. 

(E) The steps (B)-(D) are repeated until the following convergence criterion is 

satisfied, 

 
|
𝑘(𝑢 + 1)

𝑘(𝑢)
| < 𝜖𝑘 (22) 

 

Once the system has converged for both the eigenvalue and interface coefficients, the 

values of interest within a coarse mesh can be calculated using the surface to volume 

responses and the incoming interface currents. 
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Many improvements have been made to speed up the deterministic calculations. 

Both a low order acceleration routine and a Chebyshev acceleration method have been used 

in order to speed up convergence to the global eigenvalue. A more detailed discussion of 

these acceleration routines as well as a detailed overview of the COMET method can be 

found in Reference 9. 
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CHAPTER 3 

STOCHASTIC TRANSPORT METHODOLOGY 

 

Neutron transport through a medium can be understood as a stochastic process. As 

a neutron traverses through a material, the total cross section defines the probability that a 

neutron will have a collision over a certain path length. Then, if the neutron has a collision, 

the probability of a certain type of collision is based on the individual cross sections of the 

different collision types. Since the neutron cross sections define probabilities of interaction 

rather than certainties, random numbers can be used to sample the events a neutron 

experiences while traveling through a system. Stochastic neutron transport is synonymous 

to running a physical experiment where the neutron is tracked step by step as it travels and 

interacts with a medium. By simulating many neutrons, the neutron flux of the problem 

can be determined as the flux is the mean value of the neutron distribution function. By 

simulating a larger number of neutrons, the mean behavior of all the neutrons in the system 

is obtained with greater accuracy. The rest of this chapter provides a mathematical basis 

for stochastic neutron transport, describes the details involved in transporting a neutron 

through a material, and goes over some practical implementation details. 

 

3.1 Mathematical Foundation for Stochastic Neutron Transport 

The purpose of a stochastic neutron transport code is to solve for the Boltzmann 

transport equation which can be formulated as, 
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 1

𝑣

𝜕𝜓

𝜕𝑡
(𝑟̅, Ω̂, 𝐸, 𝑡) +  Ω̂ ∙ ∇𝜓(𝑟̅, Ω̂, 𝐸, 𝑡) +  σ𝑡(𝑟̅, 𝐸)𝜓(𝑟̅, Ω̂, 𝐸, 𝑡) 

=  ∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′𝜎𝑠(𝑟̅; 𝛺̂′, 𝐸′ →  𝛺̂, 𝐸)
4𝜋

𝜓(𝑟̅, Ω′̂, 𝐸′, 𝑡) 

+ 
𝜒(𝑟̅, 𝐸)

4𝜋
∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′

𝟒𝝅

𝜈(𝐸′)𝜎𝑓(𝑟̅, 𝐸′)𝜓(𝑟̅, Ω′̂, 𝐸′, 𝑡) + 𝑆(𝑟̅, Ω̂, 𝐸, 𝑡) 

(23) 

 

where 𝜓(𝑟̅, Ω̂, 𝐸, 𝑡) is the angular flux at position 𝑟̅ with direction Ω̂ and energy 𝐸 at time 

𝑡, 𝑣 is the velocity of the neutron, 𝑆(𝑟̅, Ω̂, 𝐸, 𝑡) is an external source not dependent on the 

neutron flux and the other variables are as defined in Chapter 2. The equation can be 

modified by using the method of characteristics to obtain the flux at position 𝑟̅ along 

direction Ω̂ at time 𝑡. To do this a path length variable 𝑠 is introduced that goes through 

position and angle. It can be seen that, 

 

 𝑑𝜓

𝑑𝑠
=  

𝜕𝜓

𝜕𝑡

𝑑𝑡

𝑑𝑠
+ 

𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑠
+  

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑠
+  

𝜕𝜓

𝜕𝑧

𝑑𝑧

𝑑𝑠
 (24) 

 

and for Cartesian coordinates, 

 

 1

𝑣

𝜕𝜓

𝜕𝑡
+ Ω̂ ∙ ∇𝜓 =

1

𝑣

𝜕𝜓

𝜕𝑡
+  Ω𝑥

𝜕𝜓

𝜕𝑥
+  Ω𝑦

𝜕𝜓

𝜕𝑦
+  Ω𝑧

𝜕𝜓

𝜕𝑧
 (25) 

 

By equating both Equation 24 and 25 the following expression can be obtained, 

 

 𝑑𝜓

𝑑𝑠
=  

1

𝑣

𝜕𝜓

𝜕𝑡
+  Ω̂ ∙ ∇𝜓 (26) 

 

Then by equating orthogonal terms the following relations can be obtained, 
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 1

𝑣

𝜕𝜓

𝜕𝑡
=  

𝜕𝜓

𝜕𝑡

𝑑𝑡

𝑑𝑠
   →    

𝑑𝑡

𝑑𝑠
=  

1

𝑣
   →   𝑡 = 𝑡0 +  

𝑠

𝑣
 

 

Ω𝑥

𝜕𝜓

𝜕𝑥
=  

𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑠
 →    

𝑑𝑥

𝑑𝑠
= Ω𝑥  →    𝑥 = 𝑥0 + 𝑠Ω𝑥  

 

Ω𝑦

𝜕𝜓

𝜕𝑦
=  

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑠
 →    

𝑑𝑦

𝑑𝑠
= Ω𝑦  →    𝑦 = 𝑦0 + 𝑠Ω𝑦 

 

Ω𝑧

𝜕𝜓

𝜕𝑧
=  

𝜕𝜓

𝜕𝑧

𝑑𝑧

𝑑𝑠
 →    

𝑑𝑧

𝑑𝑠
= Ω𝑧  →    𝑧 = 𝑧0 + 𝑠Ω𝑧 

(27) 

 

 

where 𝑡0, 𝑥0, 𝑦0, and 𝑧0 are constants and the position variables can be combined to obtain, 

 

 𝑟̅ =  𝑟̅0 + 𝑠Ω̂ (28) 

 

 

Equation 23 can then be rewritten using these relations to obtain the following transport 

equation, 

 

 

𝑑

𝑑𝑠
𝜓 (𝑟̅0 + 𝑠Ω̂, Ω̂, 𝐸, 𝑡0 +

𝑠

𝑣
) + σ𝑡(𝑟̅0 + 𝑠Ω̂, 𝐸)𝜓 (𝑟̅0 + 𝑠Ω̂, Ω̂, 𝐸, 𝑡0 +

𝑠

𝑣
) 

=  ∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′𝜎𝑠(𝑟̅0 + 𝑠Ω̂; 𝛺̂′, 𝐸′ →  𝛺̂, 𝐸)
4𝜋

𝜓 (𝑟̅0 + 𝑠Ω̂, Ω′̂, 𝐸′, 𝑡0 +
𝑠

𝑣
) 

+ 
𝜒(𝑟̅0 + 𝑠Ω̂, 𝐸)

4𝜋
∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′

𝟒𝝅

𝜈(𝐸′)𝜎𝑓(𝑟̅, 𝐸′)𝜓 (𝑟̅0 + 𝑠Ω̂, Ω̂′, 𝐸′, 𝑡0 +
𝑠

𝑣
)

+ 𝑆 (𝑟̅0 + 𝑠Ω̂, Ω̂, 𝐸, 𝑡0 +
𝑠

𝑣
) 

(29) 

 

By using an integrating factor and integrating over the phase space the following relation 

can be obtained for the angular flux, 
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𝜓(𝑟̅, Ω̂, 𝐸, 𝑡) =  ∫ 𝑒−𝜏 (∫ 𝑑𝐸′ ∫ 𝑑𝛺̂

′
𝜎𝑠 (𝑟0 − 𝑠Ω̂; 𝛺̂

′
, 𝐸′ →  𝛺̂, 𝐸)

4𝜋
𝜓 (𝑟0 −

∞

0

𝑠Ω̂, Ω′̂, 𝐸′, 𝑡0 −
𝑠

𝑣
)) 𝑑𝑠 +  ∫ 𝑒−𝜏  

𝜒(𝑟̅0+𝑠Ω̂,𝐸)

4𝜋
∫ 𝑑𝐸′ ∫ 𝑑𝛺̂′

𝟒𝝅
𝜈(𝐸′)𝜎

𝑓
(𝑟, 𝐸′)𝜓 (𝑟0 −

∞

0

𝑠Ω̂, Ω̂
′
, 𝐸′, 𝑡0 −

𝑠

𝑣
) 𝑑𝑠 + ∫ 𝑒−𝜏 𝑆 (𝑟0 + 𝑠Ω̂, Ω̂, 𝐸, 𝑡0 −

𝑠

𝑣
)

∞

0
𝑑𝑠   

(30) 

 

where 𝜏 is the optical distance and is defined as, 

 

 
𝜏 =  ∫ 𝜎𝑡(

∞

0

𝑟̅ − 𝑠Ω̂, 𝐸)𝑑𝑠′ (31) 

 

 

In operator notation Equation 30 can then be represented as 

 

 𝜓 =  𝑲𝜓 +  𝑆′ (32) 

 

where 𝑲 is the integral operator and 𝑆′ is the attenuated source. A solution to Equation 32 

can then be written in terms of how many collisions a neutron has undergone before 

reaching a location. This formulation is as follows, 

 

 𝜓0 =  𝑆′ 

 𝜓1 =  𝑲𝜓0  

⋮ 
𝜓𝑛+1 =  𝑲𝜓𝑛  

 

(33) 

 

which can then be written in the following summation form if the series converges, 

 

 
𝜓 =  ∑ 𝜓𝑛

∞

𝑛=0

 (34) 
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Equation 34 is known as a von Neumann series. It can be seen from Equation 33 that 𝜓𝑛 

represents the angular flux at a point that has made 𝑛 collisions. Thus 𝜓0 is the angular flux 

at a point due to neutrons having no collisions traveling from the source, 𝜓1 is the angular 

flux at a point from neutrons undergoing one collision, and so on. The stochastic tracking 

of neutrons that have not undergone a collision gives an estimate for 𝜓0, and then the 

continued tracking of particles that have undergone collisions gives estimates for 𝜓1, 𝜓2, 

etc. The stochastic process thus estimates the von Neumann series solution for the integral 

formation of the transport equation. For a detailed description of this mathematical 

derivation readers are referred to Reference 10. 

 

3.2 Transport Implementation 

A mathematical basis has been provided for the solution to the Boltzmann transport 

equation. Next, the practical implementation details of transporting neutrons through a 

medium and obtaining results will be discussed. For stochastic neutron transport, 

individual neutrons and their interactions are tracked as neutrons travel from a given source 

and then leave the system of interest. By simulating a large number of neutrons and 

recording their mean behavior, solutions of interest are obtained. The process of running a 

stochastic neutron transport simulation is as follows: 

1) First, the problem must be defined. This includes specifying the following: 

a. The geometry of system. This is done by defining surfaces and then 

defining regions bounded by those surfaces.  

b. The material compositions that fill the regions of the problem, including 

both the isotopic makeup, density, and temperature. 

c. The calculation type, whether continuous energy or multi-group, and the 

location of the data libraries used for the calculation. 
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d. The specification for the source, which includes the neutron location, 

direction, and energy. 

e. The boundary conditions of the system. 

f. The results of interest to be recorded. 

g. The run parameters of the calculation including the number of particles 

to simulate, parallel computing parameters, etc. 

2) Once the problem is sufficiently defined, a neutron history is started by 

sampling from the specified source distribution. In this step, the neutron is 

assigned a position, direction of travel, energy, and weight. Then, based on the 

position of the particle, the region containing the particle is defined. 

3) Next, the distance that the neutron will travel until it has a collision is sampled 

in terms of mean free path. 

4) Based on the current region/material the neutron is in, the total cross section as 

well as other cross sections of interest are obtained from the data library. 

5) Using the position of the particle and its direction as well as the geometry 

specification, the distances to the boundaries of the problem regions along the 

path of the neutron are determined. 

6) Depending upon how far the boundary is and how far the distance to the next 

collision, the neutron either makes a collision along its current path or reaches 

the boundary and goes to another region. The neutron position is then updated 

to be at the collision site or at the boundary. 

7) If a collision happens, the type of collision is sampled based upon the cross 

sections for each reaction type. Depending on the type of collision, a new 

neutron is spawned with a different energy and direction based off the nuclear 

data. If more than one neutron is produced from the collision, extra neutrons 

are stored in a bank until the tracking of the current neutron is terminated. The 
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neutron coming out of a collision then acts as the source neutron in step 2) and 

the process is repeated starting at step 3). 

8) If no collision happens before the neutron reaches the boundary, the neutron is 

transported along the path to just on the other side of the boundary. The distance 

to collision is then updated by subtracting the distance that the neutron has 

travelled. The transport history then starts over at step 4). 

9) If the particle crosses a boundary out of the system of interest, the history is 

then terminated. The properties of the exiting neutrons are then used to generate 

the surface to surface response functions. 

10) During the calculation, when neutrons enter regions of interest such as fuel pins, 

tallies are made to record quantities of interest. 

The previous list provides an overview of the steps involved during a stochastic 

neutron transport simulation. Next, more details will be provided into how the transport 

routine is implemented in SPaRC and other stochastic transport codes. 

 

3.2.1 Pseudo Random Number Generation 

For stochastic calculations, values of interest for neutron transport are often given 

in distributions or probabilities. In order to sample correctly from these distributions 

without biases, it is important to have good random numbers. It is important that the 

numbers are random, a requirement ensured by having a uniform distribution, and have a 

long period so that numbers do not repeat during the calculation. For practical purposes, 

the random numbers should be reproducible so as to be able to perform perturbation 

calculations as well as to allow the ability to reproduce results. The generation method 

should also be fast and efficient since multiple random numbers are required to perform 

the transport of just one neutron. In order to fill the previous requirements, many algorithms 

have been developed to generate pseudo random numbers over an integral. There has been 
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a great amount of research in developing these random number algorithms as well as in 

developing tests in order to check their randomness. However, choosing a suitable pseudo 

random number generator (PRNG) for a particular problem is not always easy[11]. SPARC 

makes use of the Mersenne Twister[12] PRNG to generate random numbers. This is a PRNG 

with a long period of 219937 – 1, has a relatively low number generation time, and passes 

many of the common tests for randomness.  

 

3.2.2 Geometry Specification 

 The first step for any stochastic calculation is to define the problem. SPARC makes 

use of combinatorial geometry in order to specify the geometry and regions of the problem. 

In this method, bodies such as spheres, parallelepipeds, and cylinders are used to build the 

problem geometry. Then different regions can be defined by indicating whether the region 

is inside or outside of a given body. Figure 2 shows a simple 2D example of this. 

 

 

Figure 2. An example of combinatorial geometry specification. Areas 1 through 4 can be 

defined by whether or not they are inside or outside of the circle, triangle, or rectangle. 

 

 In the 2D geometry represented in Figure 2 areas 1 through 4 can be specified by 

indicating whether they fall inside or outside a given shape as well as using AND and OR 

logical constructions. With these specifications, regions can be specified with relation to 
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the given surfaces. Table 1 gives an example of how some regions might be specified. By 

knowing the position of the particle as well as the mathematical formulas that describe the 

surfaces of the geometry, it is possible to determine whether the particle is within a region 

or not and then determine which region it is currently located in. A simple example of this 

would be to determine if a particle located at position 𝑥, 𝑦, 𝑧 is located within a sphere of 

radius 𝑅 located at the origin. In this case, if √𝑥2 + 𝑦2 + 𝑧2 < 𝑅 then the particle is 

currently located within the sphere; otherwise particle is located outside of the sphere. 

 

Table 1. Combinatorial geometry specifications for regions in Figure 2. 

 

Region Specification 

1 inside sphere AND outside triangle 

2 inside sphere AND inside triangle 

3 outside sphere AND inside triangle 

4 inside rectangle AND outside sphere AND outside triangle 

1+2+3 inside sphere OR inside triangle 

 

3.2.3 Sampling the Distance to a Collision 

 Once a neutron has been created from a source distribution and given a position, 

direction, and energy, the distance the particle will travel before it has a collision must be 

sampled. For a neutron traveling along a path the probability that a collision will happen is 

characterized by the total cross section 𝜎𝑡. Over a distance 𝑠 the probability of collision 

within a distance 𝑑𝑠 is 𝜎𝑡𝑑𝑠, and the probability that a neutron does not have a collision 

over a distance 𝑠 is 𝑒−𝜎𝑡𝑠. The combination of these probabilities is as follows, 

 

 𝑝(𝑠) =  𝜎𝑡𝑒−𝜎𝑡𝑠𝑑𝑠 
 

(35) 

 

In order to sample the distance traveled before a collision, the following can be solved, 
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𝑅𝑁 =  ∫ 𝜎𝑡𝑒−𝜎𝑡𝑠𝑑𝑠

𝑙

0

 

 

(36) 

 

where 𝑅𝑁, is a random number on the interval [0,1) and 𝑙 is the distance to collision. 

Solving for the distance to collision the following relation is obtained, 

 

 
𝑙 =  

−ln (𝑅𝑁)

𝜎𝑡
 (37) 

 

where 𝑅𝑁 − 1 was set to 𝑅𝑁 since it represents the same distribution of random numbers.  

 It can be seen from Equation 37 that the distance traveled to the next collision is 

dependent upon the total cross section within the current region. If a particle travels through 

multiple regions before a collision happens, Equation 37 must be used to obtain a new 

distance to collision upon entering a new region. In order to avoid this, Equation 37 can be 

reformulated in terms of mean free path. Noting that the mean free path of a neutron is 𝜆 =

 1 𝜎𝑡
⁄ , Equation 37 becomes, 

 

 𝑑 =  −ln (𝑅𝑁) (38) 

 

where d is the distance to collision in mean free paths. For the SPaRC code, upon the 

generation of a new neutron, Equation 38 is used to sample the distance to collision. 

 

3.2.4 Determining Distances to Surfaces 

The surfaces that define a geometry have a mathematical equation that can be used 

to determine how far a particle has to travel in order to intersect them. Table 2 specifies the 

equations for some simple geometries used to set up the geometry of a transport simulation. 
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Table 2. Formulas for some simple geometries. 

 

Surface Specifying Equation 

Plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = −𝑑 

Sphere (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑐 − 𝑧)2 = 𝑅2  

Cylinder (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑅2 

 

  

 SPaRC uses a Cartesian coordinate system in order to track neutrons. The position 

of a particle is defined by 𝑥, 𝑦, and 𝑧 and the direction cosines along those directions are 

given by the following relation, 

 

 𝑢 = sin 𝜃 cos 𝜑 

𝑣 = sin 𝜃 sin 𝜑 

𝑤 = cos 𝜃 

(39) 

 

where 𝜃 is the polar angle from the z-axis and 𝜑 is the polar angle from the x-axis on the 

xy-plane. A pictorial representation of the directional cosines of the Cartesian coordinate 

system can be seen in Figure 3. 

 

Figure 3. Cartesian direction cosines. 
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 In order to see how the distance to surfaces is calculated, a simple 2D example 

problem will be introduced. Figure 4 represents a situation where a neutron characterized 

by position (𝑥𝑜 , 𝑦𝑜) and direction Ω̂ travels and intersects with a circle located at the origin. 

 

 

Figure 4. Example problem for determining the distance to a surface for a sphere located 

at the origin. 

 

 

At any point in time, a neutron being tracked can be characterized by its position 

and direction. In order to see if a neutron will intersect a surface, a path length variable 𝑠 

can be introduced along the direction of travel of the neutron. If a particle located at a 

position (𝑥𝑜 , 𝑦𝑜) travels a distance 𝑠 along direction Ω̂, the new position can be calculated 

using the following equation, 

 

 𝑥 = 𝑥𝑜 + 𝑢𝑠 
 

𝑦 = 𝑦𝑜 + 𝑣𝑠 

(40) 

 

where 𝑢 and 𝑣, are the direction cosines in two dimensions. Next, the equation for a circle 

located at the origin can be defined as, 
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 𝑥2 + 𝑦2 = 𝑅2 (41) 

 

where 𝑅 is the radius of the sphere. By plugging in the relations from Equation 40 into 

Equation 41 and then simplifying, the following expression can be obtained, 

 

 𝑠2 + 2𝑠𝑟̅ ∙ Ω̂ + 𝑥𝑜
2 + 𝑦𝑜

2 − 𝑅2 = 0 (42) 

 

where, 

 𝑟̅ ∙ Ω̂ = 𝑢𝑥𝑜 + 𝑣𝑦𝑜 (43) 

 

Solving for Equation 42 gives the following solutions, 

 

 
𝑠 =  −𝑟̅ ∙ Ω̂ ± √(𝑟̅ ∙ Ω̂)2 − (𝑥𝑜

2 + 𝑦𝑜
2 − 𝑅2)2 (44) 

 

Using this equation one can determine the position of a particle. If the solutions are 

positive, they correspond to the distances of entry and exit into a surface (𝑑1 and 𝑑2 in 

Figure 4). If both solutions are negative, the surface lies in the opposite direction of the 

neutron path and thus the neutron will not intersect the surface. If one solution is positive 

and one solution negative, the particle is located within the surface with the positive value 

corresponding to the distance to exit the surface. Finally, If the discriminant is negative, 

the surface is not in the path of the particle and thus the particle will not enter the surface 

because there are no solutions to Equation 44. 

 The procedure to determine distances to surfaces can be done for all of the surfaces 

that define a problem. By determining the distances to the surfaces as well as knowing the 

geometry specification as defined in Section 3.2.2, the region that a neutron is in as well as  

the distance until the neutron exits that region can be calculated. 
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3.2.5 Determining Whether a Collision Happens Within a Region 

 In Section 3.2.3 the distance a neutron will travel in mean free paths before a 

collision was determined and in Section 3.2.4 the procedure for calculating the distances 

to surfaces (and therefore region boundaries) was described. With these values, as well as 

the total neutron cross section of the current problem region, whether a neutron has a 

collision or whether it reaches the boundary can be determined. First, the distance to the 

boundary can be converted to be in terms of mean free path using the total cross section of 

that region and remembering that 𝜆 =  1
𝜎𝑡

⁄ . Then, if the distance to the boundary in mean 

free paths is greater than the distance to sampled distance to collision, a collision happens 

within the current region and the neutron is transported the distance determined by the 

sampled distance to collision. If the distance to the boundary is less than the distance to 

collision, the neutron is transported to the boundary and the distance to collision is updated 

by subtracting the distance to the boundary. If the neutron reaches the boundary, the 

process is repeated until the neutron either leaves the system or a collision is sampled. 

  

3.2.6 Sampling Collision Type 

 Once it has been determined that a neutron has had a collision, the type of collision 

can then be determined by sampling from all the possible reaction types. The probability 

that a certain reaction happens is just the cross section for that reaction divided by the total 

cross section. Figure 5 shows a case where three different reactions are possible namely 

scattering, absorption, and fission. Noting that the total cross section for this case can be 

represented as a sum of the three reactions, namely 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎 + 𝜎𝑓, the sum of the 

separate reactions divided by the total sum to one. Given a random number, RN, distributed 

over an interval (0, 1) the type of reaction can be determined by where the number falls on 

the line (Table 3). 
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Figure 5. Sampling collision type.  

 

 

Table 3. Sampling collision type. 

 

Condition Collision Type 

RN < 
𝜎𝑠

𝜎𝑡
⁄  Scattering 

𝜎𝑠
𝜎𝑡

⁄  < RN < 
𝜎𝑠

𝜎𝑡
⁄ +

𝜎𝑎
𝜎𝑡

⁄  Absorption 

𝜎𝑠
𝜎𝑡

⁄ +
𝜎𝑎

𝜎𝑡
⁄  < RN Fission 

 

 The nuclear data used to determine when a collision happens, the type of collision, 

and the result of the collision come in two formulations. There is a multi-group 

formulation, where the energy variable is integrated into a group structure, and a 

continuous energy formulation where the neutron can take any energy value. These two 

energy representations and some practical details involved in neutron transport will be 

discussed next. 

 

3.2.7 Multi-group energy formulation 

 Multi-group treatment involves reducing the energy spectrum down to a finite 

number of discrete energy groups by integration over the energy variable. In order to create 

nuclear data for these energy groups, the continuous energy data must be transformed. This 

transformation involves integration of the data over the range of an energy group. 

Continuous energy cross sections are condensed down in energy using Equation 45. 
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𝜎𝑔 =
∫ 𝑑𝐸 𝜎(𝐸)𝜙𝑎𝑝𝑜𝑟𝑜𝑥(𝑟̅, 𝐸)

𝐸𝑔−1

𝐸𝑔

∫ 𝑑𝐸 𝜙𝑎𝑝𝑝𝑟𝑜𝑥(𝑟̅, 𝐸)
𝐸𝑔−1

𝐸𝑔

 (45) 

 

where 𝐸𝑔 are the energy group bounds and 𝜙𝑎𝑝𝑝𝑟𝑜𝑥 is an assumed scalar flux. It is important 

that during this process of creating multi-group data that the reaction rate (∫ 𝜑 𝜎 𝑑𝐸 ) be 

conserved. This conservation requires that the scalar flux 𝜑 for the system is known 

beforehand. Since the flux is not known beforehand it must be approximated. This is often 

done by running a smaller calculation that aims to represent the system as a whole. This 

approximation often leads to errors in the solution if not done correctly, and is one of the 

drawbacks of the multi-group formulation. 

 

Table 4. Multi-group cross section definitions. 

 

Cross 

Section 
Definition 

𝜎𝑡
𝑔

 
Total cross section for group 𝑔, probability of a neutron having any 

interaction 

𝜎𝑎
𝑔

 
Absorption cross section for group 𝑔, probability of a neutron in group 

𝑔 being absorbed (no neutron exiting after collision) 

𝜎𝑓
𝑔

 
Fission cross section for group 𝑔, probability of a neutron in group 𝑔 

having a fission collision 

𝜎𝑃0
𝑔→𝑔′

 
P0 scattering cross section for group 𝑔 scattering to group 𝑔′, 
probability of a neutron scattering from group 𝑔 to group 𝑔′ 

𝜎𝑃1
𝑔→𝑔′

 

P1 scattering cross section from group 𝑔 to group 𝑔′, anisotropic term 

to modify scattering angle from neutrons scattering from group 𝑔 to 

group 𝑔′ 

𝜈𝑔 
The number of neutrons produced (on average) due to a fission collision 

in group 𝑔 

𝜒𝑔 
Fission energy distribution for group 𝑔, the probability that a fission 

neutron is born in group 𝑔 

 

 The values in Table 4 are used during a multi-group calculation to sample what 

happens during a neutron transport calculation. The total cross section is used to determine 
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if a collision happens and then the other cross sections determine the result of that collision. 

The absorption, fission, and P0 cross sections are used to determine the reaction type for a 

given group with the total cross section in a group being defined as, 

 

 𝜎𝑡
𝑔

= 𝜎𝑎
𝑔

+  𝜎𝑓
𝑔

+ ∑ 𝜎𝑃0
𝑔→𝑔′

𝑔′

 (46) 

 

Using the collision sampling method described in 3.2.6, the type of collision is determined. 

If absorption is sampled, then the neutron track is ended. If fission is sampled, then 

Equation 47 is used to sample how many neutrons are spawned from the reaction, 

 

 # 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑓𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑓𝑙𝑜𝑜𝑟(𝑅𝑁 + 𝜈𝑔) (47) 

 

where RN is a random number on (0, 1). Equation 47 ensures that there is only an integer 

number of neutrons spawned from fission while preserving the average. For each of these 

neutrons spawned from fission, an energy group is assigned by sampling from the fission 

energy distribution 𝜒𝑔. Since the ∑ 𝜒𝑔
𝑔 = 1, the new energy group can be sampled the 

same as collisions are sampled in Figure 5. Each of these neutrons is then given a direction 

by sampling from an isotropic distribution. The neutron is assigned an angle using Equation 

48 and 49 below, 

 

 𝜇 = 2 ∗ 𝑅𝑁 − 1 (48) 

 

 𝜑 = 2𝜋 ∗ 𝑅𝑁 (49) 

 

where RN is a random number on (0, 1), 𝜇 is the polar angle, and 𝜑 is the azimuthal angle. 

Here the polar angle is defined from the neutrons direction of travel. For scattering, the 

probability a neutron is assigned to a certain group is based off the scattering to a certain 
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group when compared to the total. So the probability of scattering from group 𝑔 to a certain 

group 𝑔′′ would be represented by Equation 50 below, 

 

 𝜎𝑃0
𝑔→𝑔′′

∑ 𝜎𝑃0
𝑔→𝑔′

𝑔′

 (50) 

 

Using Equation 50, the probability of scattering from group 𝑔 to every other group can be 

determined and thus sampled much like the fission exiting group or type of collision. In 

order to take into account anisotropy in the scattering cross sections, the P1 scattering cross 

section is used.  The MORSE[11] treatment of the P1 cross section is used in order to take 

into account this anisotropy. This treatment uses the following equation for determining 

the average scattering angle 𝜇̅ from the P0 and P1 cross sections, 

 

 
𝜇̅ =

𝜎𝑃1
𝑔→𝑔′

𝜎𝑃0
𝑔→𝑔′ (51) 

 

The scattering angle is then set to the discrete 𝜇̅ value, the same way as it is handled in 

MCNP[12]. Finally, to sample the azimuthal angle out of the collision, Equation 49 is used. 

 

3.2.8 Continuous energy formulation 

 A continuous energy representation of nuclear data aims to accurately represent the 

probabilities of various neutron interactions as faithfully as possible. There are many 

different nuclear datasets but one of the most detailed forms of data provided in the United 

States are the evaluated nuclear data files (ENDF)[13]. These files are released by the Cross 

Section Evaluation Working Group and make use of both theory and experimental data to 

recreate nuclear data as closely as possible. These ENDF files are in the form of raw data 

that must be processed first in order to be used in neutron transport codes. Codes such as 
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NJOY[14] and AMPX[15] take the ENDF files and generate pointwise cross sections that 

recreate the nuclear data on a grid that can then be interpolated upon.  

 Determining the outcome of collisions for the continuous energy case is much like 

in the multi-group case except now the cross sections are often determined by interpolation. 

The continuous energy case is also able to account for many other reaction types such as 

(n, 2n), (n, He), (n, p), etc. From the nuclear data, cross sections for all of these reaction 

types can be obtained along with energy and angular distributions for the outgoing 

neutrons. SPaRC utilizes cross section data processed through the NJOY code system. 

MCNP also uses cross sections processed from NJOY, a detailed explanation of both how 

the data is formatted as well as how to correctly use the data can be found in the manual[6]. 

In order to take into temperature effects, the cross sections utilized in SPaRC must be 

processed through NJOY at the appropriate temperature. At present SPaRC does not 

account for temperature if it differs than the specified nuclear data, but this is being 

investigated for future implementations. 

 

3.2.9 Computing Responses 

In neutron transport calculations, it is of importance to know what reactions of 

interest are occurring. In principle any value of the following form can be determined 

through the stochastic calculation, 

 

 
𝑇 =  ∫ 𝜙(𝐸)𝑓(𝐸)𝑑𝐸 (52) 

 

where 𝑓(𝐸) is often a cross section of interest. In order to approximate this integral SPaRC 

makes use of both collision and path length tallies. 

 Reaction rates can be estimated by recording values of interest when a particle 

makes a collision in a region. First a counter is implemented by using the following 

equation, 



 

 

33 

 

 𝐶𝑇 = 𝐶𝑇 + 𝑤
𝜎𝑥

𝜎𝑡
 (53) 

 

where 𝜎𝑥 is the reaction of interest that is being estimated, and 𝐶𝑇 is the counter for that 

reaction. The reaction rate can then be estimated by normalizing by the source 𝑆, and 

volume ∆𝑉, of the tally region of interest. 

 

 
𝑅𝑅𝐶𝑇 =

𝐶𝑇

𝑆∆𝑉
 (54) 

 

Then after the calculation is finished the counter is normalized to account for the number 

of source particles, volume, and energy domain. The result is a reaction rate per source 

(neutrons or neutrons per second), per unit energy, and per unit volume. 

  For optically thin regions where neutrons might not make many collisions, the path 

length estimator for tallies is a better option. This tally records results any time a neutron 

passes through a region and can be represented by the following equation, 

 

 𝑃𝑇 = 𝑃𝑇 + 𝑤 ∗ 𝑝 ∗ 𝜎𝑥  (55) 

 

where 𝑃𝑇 is the path length counter and 𝑝 is the distance traveled by the neutron in that 

region. Much like with the collision tally the reaction rate can be determined by 

normalizing by the source and volume, 

 

 
𝑅𝑅𝑃𝑇 =

𝑃𝑇

𝑆∆𝑉
 (56) 

 

For the tallies of interest for surface to volume responses in the SPaRC code, the path 

length formulation is used. For each incoming angular flux expansion, the reaction rate of 
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interest is recorded (e.g. fission), and then the total reaction rate is reconstructed at the end 

of the calculation once the coefficients for each of the expansions is determined. 

 

3.2.10 Variance Reduction 

 Any stochastic calculation will have some variance associated with the solution. 

This variance can be reduced by simulating more particles, but unfortunately scales 

proportionally to the square root of the number of samples. In a physical experiment, if a 

neutron undergoes an absorption process the neutron disappears. During a simulation we 

can introduce a weight 𝑤, to a neutron and then modify that weight instead of terminating 

a neutron after an absorption reaction. When an absorption collision happens the neutron 

weight can be modified by the following equation, 

 

 𝑤𝑎𝑓𝑡𝑒𝑟 =  𝑤𝑏𝑒𝑓𝑜𝑟𝑒 ∗ (1 −
𝜎𝑎

𝜎𝑡
⁄ ) (57) 

 

Not terminating the neutron if an absorption collision is sampled allows for the neutron to 

continue on and generate results of interest instead of just being terminated. Here for an 

absorption collision the weight of the particle is reduced by its absorption probability. In 

this way, the neutron survives to generate results while the weight is modified to correctly 

account for the absorption. 

 Particles with little or no weight will have little effect on generating tallies of 

interest. In order to not waste computational resources on these low weight particles a 

process known as Russian Roulette is performed. In this process, if a neutrons weight falls 

below a threshold value, a random number will be sampled to see if the neutron history 

gets terminated. If the random number sampled is less than the current weight of the 

neutron, the neutron weight is set to 1.  Conversely, if the random number is above the 

current weight of the neutron, the neutron history is terminated. 
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For a more detailed survey of stochastic transport methods References 6, 10, and 

16 provide a good start. 
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CHAPTER 4 

SPARC IMPLEMENTATION DETAILS 

 

The following chapter will detail some of the specifics involved with the SPaRC 

implementation for generating cross sections as well as the database management 

techniques. The various sampling techniques and procedures in Chapter 3 describe the 

theory behind the SPaRC implementation. This section will go into detail on some of the 

specifics of the implementation for use in COMET as opposed to general neutron transport. 

 

4.1 Response Generation Implementation 

 The input for response generation and management consists of a main input file 

that details the main components of the calculation and then there are separate files for 

each coarse mesh detailing its geometry and materials. The following lists details the 

contents of the main input file: 

 Run parameters – The number of particles to calculate each response is specified 

as well as how many times the response function calculation is split (for parallel 

calculation). 

 Expansion orders – Sets the maximum orders of the position and angular 

expansions for response generation as well as the maximum order of the cross 

terms. 

 Eigenvalue (k) grid – The number of eigenvalues and their values are specified at 

which responses are generated. It should be noted that multiple responses based on 

k are only needed in the case that a coarse mesh contains fissionable material. 

 Random number generator seed – Number used to initialize the PRNG to allow for 

repeated runs. If no seed is given, the PRNG is initialized using a seed based off of 

the current time at calculation. 
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 Coarse mesh parameters – Lists the coarse meshes used in the problem, specifies 

the name of the file where the geometric and material properties are located and 

indicates whether or not the region contains a fissionable isotope for generating 

responses on a k-grid and for depletion calculations. 

 Calculation type – Specifies either that the calculation is multi-group or continuous 

energy, and then specifies the number of groups (for a multi-group calculations) or 

the energy expansion on the surface in the continuous energy case. 

 Depletion – Indicator as to whether this is a depletion calculation, and specifies the 

burnup points. Will lead to the creation of a response database for reactions 

important to depletion. 

 Work directory – Specifies the location where responses will be outputted. 

 Data directory – Specifies the location of the nuclear data. 

 Symmetry – Indicates whether half, quarter, or no symmetry is able to be used for 

the generation of responses. 

 As indicated earlier, there are separate files containing the data specific to a unique 

coarse mesh. These files contain the following data: 

 Geometry – Surfaces are specified that make up the problem. The first surface 

defined represents the coarse mesh boundary, then the rest of the surfaces are 

defined that compose the rest of the coarse mesh. The first surface is defined in 

such a way in order to set the surfaces that surface-to-surface responses are 

calculated from. This implementation is for Cartesian COMET so the coarse 

meshes are right parallelepipeds. New boundaries can be implemented to make use 

of other geometries such as hexagonal.  

 Cells – For a given region the material is specified followed by the density in that 

region and then indicators as to whether the cell falls inside or outside a given 

surface as defined in the geometry section. 
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 Materials – The materials are indicated by giving the identifier to the cross section 

data and then specifying what atom percent of that material makes up the whole. 

 Fuel – Specifies regions where there is fissionable material present. This indicator 

allows for the generation of production and fission density responses that are used 

for the deterministic calculations. If depletion is specified, the number of regions 

in which to track isotopics and reactions is also specified. 

 With these parameters from both the main input file and from the coarse mesh files, 

the response function parameters are fully defined. Response calculations are started by 

reading in the main input file and then generating a list of responses that need to be 

calculated. The number of responses are based off how many coarse meshes are specified, 

how many of those coarse meshes contain fissionable material, the size of the eigenvalue 

grid, and the symmetry specified. With the number of responses specified along with what 

responses need to be generated, the details of the coarse mesh are read in from its geometry 

file and the calculation begins. Calculations are started by spawning a neutron from the 

boundary of a coarse mesh and then tracking that neutron until it leaves the mesh and the 

surface-to-surface response is calculated. Along the way, responses are generated for 

production, depletion, etc. based off what was specified in the file. After the responses are 

generated, they are stored in a database format. 

 

4.2 Database Management 

 For managing the response database, one of the key points to consider is that only 

surface-to-surface responses and the surface-to-volume neutron production responses are 

needed for the deterministic COMET calculations. These surface-to-surface responses are 

needed to update the coefficients during the inner iterations (Equation 20) and then the 

eigenvalue can be updated using the production and surface-to-surface responses (Equation 

21). It should be noted that the absorption response in Equation 21 can be reconstructed 
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from the production and surface responses. Separate responses such as all of the reaction 

rates for various isotopes needed for depletion calculations can be stored in a separate 

database.  

 For a given coarse mesh, surface, and energy group, two separate binary database 

files are generated. The first binary database file contains the surface-to-surface and 

production responses needed for the COMET deterministic iterations while the second file 

contains all of the other responses of interest. For depletion calculations, this file contains 

the reaction rate responses for 10 different reactions and 300 different isotopes. The files 

have the same format of integer pointers followed by the response data in double format. 

The pointers for the first database contain the response expansion, orders, number of 

groups, surface, and eigenvalue while the pointers for the depletion database indicate the 

same values except with pointers for the number of reactions and isotopes to be tracked, as 

well as how many regions of the fuel are being depleted. 

 The database was formatted this way, with many separate binary files to allow for 

parallel computations for both the COMET deterministic calculations and the depletion 

calculations. This way data can be accessed from separate files without any competition 

conditions. The format is flexible enough to allow for changes in the data representation 

when developing this parallel capacity in the future. 

 

4.3 Parallelization through the Message Passing Interface (MPI) 

 SPaRC makes use of parallel computing through the message passing interface 

(MPI). Since all of the neutron histories simulated for the response calculation are, in 

principle, independent of one another, the calculation can be parallelized almost arbitrarily 

up to the total number of neutrons simulated. The results of these parallel runs can then be 

combined at the end of the calculations to obtain a solution. For practical applications, it is 

not feasible to parallelize the calculation to that extent. The amount of parallelization used 

in the response calculations will be discussed after the parallel scheme is introduced. 
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 A “master-slave” paradigm is used for the parallel computation. In this 

implementation, the master node performs all of the input, output, and combination of 

responses, while the slave nodes perform the transport calculations and generate the 

responses. For a given response generation calculation, the master node first reads the main 

input file and determined how many calculations are to be performed and splits the 

response generation tasks up to be sent out to the slave processes. The master node then 

reads in the coarse mesh geometry and the nuclear data used in the calculation and then 

sends the data out to each of the slave nodes. Finally, the master node sends out a response 

generation task to be completed to each of the slave nodes. These calculations are naturally 

split by surface, energy group, coarse mesh type, and eigenvalue but are further divided by 

specifying how many particles are used for each calculation. After the master node sends 

the task data, it waits until the slave processes complete their calculations. At the 

completion of the response generation, the slave node sends the data back to the master 

node where the response data is combined. The master node then sends the next task out to 

the slave node that just finished the calculation. Once the master node receives all of the 

response data for a specific calculation, the master node prints the response data out to a 

binary file and purges the data from memory. Once all of the tasks have been completed 

the master node signals the slave nodes to terminate the MPI process. Figure 6 shows a 

representation of the generation process. 

When implementing parallel programs, it is of interest to know how the calculation 

speed scales with the number of processors. In theory, fixed source neutron transport 

should be perfectly scalable since the calculations are independent of one another. In 

practice however, time must be taken at both the beginning and end of the calculation to 

send out tasks and then combine the solutions. In order to test the scalability of the SPaRC 

code, a response calculation was run on a different number of nodes and the time to solution 

was recorded. The calculation involved the simulation of 10,000,000 particles per response 

with a (2 2 2 2) expansion order in space and angle for a 4 group energy structure. The 
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calculation involved the generation of 48 separate responses which can then be split further. 

If a response calculation is split 100 times, that equates to 4,800 separate response 

calculations. The calculations were run on a cluster with 112 processors. Table 5 gives the 

time for response generation based on the number of particles and how many times each 

response calculation is split. 

 

 

Figure 6. Parallelization of response calculation through the master-slave paradigm. 
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Table 5. Time to solution for response function generation using different parallelization 

schemes. 

 

Processors 
Number of times a response calculation is split 

1 10 50 100 200 500 

1 23347 23693 23361 23736 23629 24276 

10 2971 2718 2688 2673 2707 2722 

25 1036 1024 1013 1012 1016 1378 

50 563 508 500 500 499 506 

75 541 351 322 331 332 337 

96 547 261 261 259 259 266 

112 542 250 223 223 222 231 

 

As seen in Table 5, it is important to split the response functions correctly in order 

to achieve the best time to solution. If the response function is split too many times, the 

communication time between the master and slave nodes increases and the time to solution 

also increases. However, if the response generation is not split enough times, there may not 

be enough different calculations to take advantage of the number of nodes available. In the 

extreme case of not splitting the response function calculations at all, no speedup is 

obtained for using any more processors after 49. This is because there are only 48 separate 

responses to be generated so there will be no work after all of the responses are being 

calculated. It is up to the user to specify how many times the response functions are split 

based upon the number of processes and the number of neutrons used for a calculation. 

To show the scalability of the response function generation, the speedup and 

parallel efficiency obtained when increasing the number of processors was calculated using 

Equation 58 and 59. 

 

 
𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑛 =  

𝑡1

𝑡𝑛
 (58) 

 

 

 
𝑝𝑎𝑟𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑛 =  

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑛

𝑛
 (59) 
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where 𝑛 is the number of processors used, 𝑡1 is the time to solution when using one 

processor for the calculation and 𝑡𝑛 is the time to solution for a calculation using 𝑛 

processors. Figure 7 shows the scalability of the response generation with the number of 

processors and Figure 8 shows the parallel efficiency. It is seen that SPaRC response 

generation scales well with around 95% parallel efficiency for calculations run on a 112 

core cluster. The lower efficiency at a lower number of processors is related to the fact that 

the master node does not do any response generation but only updates the responses and 

performs I/O. 

 

 

Figure 7. Parallel scaling of the response function generation. 
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Figure 8. Parallel efficiency of the response generation. 
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CHAPTER 5 

RESULTS 

 

 In order to test SPaRC, several neutronics benchmarks were created. Several fixed 

source “toy” benchmark problems were tested with MCNP and compared to SPaRC results. 

In addition, responses were generated with the previous COMET generation method and 

with the new SPaRC generation code. The results from the deterministic COMET iterations 

were then compared.  

 

5.1 Fixed Source Benchmarking 

 In order to test the accuracy of SPaRC, multiple small-scale benchmark problems 

were developed. These benchmarks are similar in that they have very simple geometry, 

consisting of a couple of regions, and only a few unique materials. The simplicity of the 

benchmarks allows for comparisons to be made with other transport codes, by allowing for 

it to be easily seen if the codes treat the nuclear data or geometry differently. Results for 

the SPaRC code were tested against MCNP in order to validate the neutron transport 

routine. There were many benchmark cases that were investigated in order to test the 

transport code. These cases covered a range of different geometrical configurations as well 

as many different isotopes and used both multi-group and continuous energy data. The 

following is a list of some of the benchmarks cases tested: 

1. A cube with 5cm sides with UO2 fuel. The calculation was run with 8 energy groups 

with an isotropic point source at the center of the cube spawning neutrons in the 8th 

energy group. 

2. A cylinder with a height of 5cm and a radius of 2.5cm with UO2 fuel. The 

calculation was run with 47 energy groups with an isotropic point source at the 

center spawning neutrons in the 20th energy group. 
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3. A sphere with a radius of 5cm containing H1 and the associated S(α,β) thermal file. 

The calculation is performed in continuous energy and the isotropic point source 

generates at the center generates neutrons at an energy of 0.1 MeV. 

4. A sphere with a radius of 2.5cm containing U235. The calculation is performed in 

continuous energy and the isotropic point source at the center generates neutrons at 

an energy of 0.1 MeV. 

5. Fuel pin cell with materials and geometry as described for the uncontrolled 

assembly in 5.2.1. The calculation was run with continuous energy cross sections 

and the isotropic point source at the center generates neutrons at an energy of 0.01 

MeV. 

While the list is not inclusive of all the cases tested, it provides a good overview of 

the scope of tests. For each of the benchmark cases, Table 6 contains the calculated escape, 

absorption, and fission tallies normalized to a source particle for both SPaRC and MCNP 

calculations. The differences in SPaRC and MCNP results are shown in Table 7. 

 

Table 6. Fixed source benchmark results for escape, absorption, and fission for MCNP 

and SPaRC. 

 

Benchmark 

Case 

MCNP SPaRC 

Escape Absorption Fission Escape Absorption Fission 

1 1.70120 0.19244 0.61602 1.70144 0.19246 0.61617 

2 0.45735 0.62283 0.05530 0.45733 0.62294 0.05537 

3 0.62625 0.37377 - 0.62592 0.37387 - 

4 2.03710 0.14181 0.77392 2.05191 0.14269 0.77864 

5 0.98385 0.01802 0.00132 0.98388 0.01802 0.00132 

*Standard deviations ~5e-4 
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Table 7. Difference in fixed source benchmark results between MCNP and SPaRC. 

 

Benchmark 

Case 

Difference (%) 

Escape Absorption Fission 

1 0.01411 0.01195 0.02354 

2 0.00459 0.01750 0.12856 

3 0.05206 0.02595 - 

4 0.72701 0.62337 0.61040 

5 0.00285 0.00444 0.20942 

 

 The code was benchmarked for multiple isotopes and situations not listed in Table 

6. However, these results are provided to show that for both multi-group and continuous 

energy fixed source calculations, the results generated from SPaRC and MCNP show 

excellent agreement (under 1% difference). For most of the cases, the differences between 

SPaRC and MCNP are within one standard deviation. There is only a significant difference 

in case 4 which contains U235 at an unphysical density of 25 g/cm3. This case, which is 

developed to introduce a case with a lot of fission, highlights the fact that fission is treated 

slightly differently between MCNP and SPaRC. However, the difference seen in case 4 is 

not seen in case 5 which contains U235 in a realistic nuclear fuel composition. Determining 

the source of this difference between the two codes is an area of future work. 

 Next, to benchmark the codes further within the COMET framework, an assembly 

benchmark will be introduced and eigenvalue and fission density responses will be 

compared from calculations using SPaRC and MCNP generated responses. Since a 

continuous energy version of COMET has not yet been developed, the results compared 

will be from multi-group calculations. 

5.2 European Pressurized Reactor Benchmark 

 The European Pressurized Reactor or Evolutionary Power Reactor, now just EPR, 

is a commercial pressurized water reactor developed by AREVA[17]. The reactor is a 4 loop 

PWR with 241 fuel assemblies laid out in a Cartesian grid and is designed to operate at 

1,650 MWe. For benchmarking purposes, the assembly design for the EPR was stylized 
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and transformed for use as a benchmark problem. The dimensions of the assemblies found 

in Table 8 were taken from the design, as well as the control composition and the 

composition of the Gadded fuel rods. The UO2 fuel pins have been modified from the EPR 

design to a higher enrichment and the cladding was changed to be natural zirconium. 

Lastly, values were assumed for the soluble boron concentration and for the temperatures 

and densities of all of the materials. 

 

5.2.1 Assembly Specifications 

 Three separate assembly specifications where chosen in order to simulate a range 

of situations that may occur in a reactor core. The three assemblies include an uncontrolled 

case, a controlled case, and a gadded case. All three of these assemblies have pin cells laid 

out in a 17 x 17 Cartesian grid with 24 guide tubes/control rods and 265 pins containing 

fuel. The geometric parameters of the assembly are laid out in Table 8. 

 

Table 8. EPR geometric assembly parameters 

 

Fuel Rods 265  

Guide Tubes 24  

Pin Pitch 1.259840 cm 

Cladding Outer Radius 0.474980 cm 

Cladding Inner Radius 0.417957 cm 

Fuel Pellet Radius 0.409575 cm 

Guide Tube Outer Radius 0.622300 cm 

Guide Tube Inner Radius 0.572770 cm 

Control Cladding Outer Radius 0.433070 cm 

Control Cladding Inner Radius 0.386080 cm 

Absorber Outer Radius 0.381889 cm 

Absorber Inner Radius 0.220980 cm 

 

 The uncontrolled assembly is made up of two unique pin cells a fuel pin cell and a 

guide tube cell. The fuel pin consists of UO2 fuel with uranium enriched to 3.5 wt% U235 
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with the balance consisting of U238. The fuel pin cell has cylindrical geometry with a central 

fuel region followed by a small voided gap, zirconium cladding, and then moderator 

surrounding the cladding. The pin cell geometry can be seen in Figure 8 (A). The guide 

tube cells consist of a cylindrical central moderator region followed by zirconium cladding 

and then more moderator on the outside of the cladding. The guide tube geometry can be 

seen in Figure 9 (B). Figure 10 shows the locations of the fuel and guide tube cells for the 

uncontrolled assembly. The controlled assembly has the same layout as the uncontrolled 

assembly, but the guide tubes now have control material inside them. The control material 

has an annular geometry with a central void and a small void between the control material 

and cladding and this all is located inside of the guide tube. Figure 8 (C) shows the control 

rod geometry. 

 

 

Figure 9. EPR assembly pin geometry for: (A) Fuel/Gadded Pin, (B) Guide Tube, (C) 

Guide Tube with Control Rod 

 

 

The gadded assembly is similar to the uncontrolled case except that 16 of the fuel 

pins have been replaced with pins that contain gadolinium. Of these 16 pins, 4 have 2 wt% 

gadolinium while 12 have 8 wt% gadolinium. These gadolinium fuel pins have the same 

geometry as the UO2 fuel pins and are laid out in the assembly as shown in Figure 10.  
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Figure 10. EPR uncontrolled/controlled assembly layout 

 

 

The material compositions for the fuel, gadded fuel, cladding, and moderator are 

located in Table 9. The temperature of the fuel and gadded fuel is assumed to be 900K 

while everything else (the moderator and cladding) is assumed to be 600K. 

 

 

 

 

Fuel pin: 3.5 wt% U
235 Guide tube / control rod
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Table 9. EPR material compositions 

 

Material Composition Density Details 

Fuel UO2 10.4 g/cm3 
Uranium is 3.5 wt% U235 and 96.5 

wt% U238 

2% Gd Fuel UO2 & Gd2O3 10.4 g/cm3 

Gd composes 2 wt% of the fuel, 

the uranium is 3 wt% U235 and 97 

wt% U238 

8% Gd Fuel UO2 & Gd2O3 10.4 g/cm3 

Gd composes 8 wt% of the fuel, 

the uranium is 2.27 wt% U235 and 

97.73 wt% U238 

Cladding Natural Zr 6.514 g/cm3 - 

Moderator H20 & Natural B 0.7 g/cm3 1000 ppm boron 

 

 

 

Table 10. EPR assembly temperatures 

 

Fuel Temperature 900 K 

Moderator/Structure Temperature 600 K 
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Figure 11. EPR gadded assembly layout. 

 

 

5.2.2 HELIOS Nuclear Data Generation 

 In order to generate multi-group nuclear data for use in response generation, 

HELIOS[18] version 1.10 was used. HELIOS is an advanced lattice depletion code that 

utilizes method of characteristics (MOC) and collision probability (CPM) solvers in 2D 

general geometry. The code has been widely used and verified for the development of 
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nuclear data libraries for both light and heavy water reactors. The uncontrolled, controlled, 

and gadded assemblies as defined in section 5.2.1 were modeled in HELIOS utilizing the 

1/8th symmetry of the assemblies. The transport mesh used for the three assemblies can be 

seen in Figure 12, 13, and 14. The calculations were performed using the 190 group 

adjusted library provided by HELIOS and cross sections were outputted for each unique 

material in an assembly in 2, 4, and 8 energy groups. The energy group structure for 2, 4, 

and 8 groups is shown in Table 11. The cross sections generated for the uncontrolled 

assembly include a fuel, moderator, and cladding cross section. For the uncontrolled 

assembly, fuel, moderator, cladding, and absorber cross sections were generated. Finally, 

for the gadded assembly there are cross sections for the fuel, 2% gadolinium fuel, 8% 

gadolinium fuel, cladding, and moderator. The nuclear data provided include the total, 

absorption, P0 and P1 cross sections and if the material is fissionable, the fission cross 

section is provided along with the fission spectrum and the number of neutrons emitted 

from fission. These cross sections were used to generate responses in the following sections 

and are provided in Appendix B so that the reader can recreate the calculations performed. 

 

Table 11. Energy group structure for cross section generation. 

 

 Two 

Group 

Four 

Group 

Eight 

Group 
Lower Energy Bound (eV) 

1 

1 

1 2.2313E+06 

2 8.2085E+05 

3 9.1188E+03 

2 
4 1.3007E+02 

5 3.9279E+00 

3 6 6.2506E-01 

2 4 
7 1.4572E-01 

8 1.0000E-04 
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Figure 12. HELIOS model of the uncontrolled 17x17 EPR assembly. 

 

 

 

 

Figure 13. HELIOS model of the controlled 17x17 EPR assembly. 
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Figure 14. HELIOS model of the 17x17 gadded EPR assembly. 

 

 

5.2.3 COMET Response Calculations 

 The uncontrolled, controlled, and gadded assemblies were solved using the 

COMET methodology. For the calculations, unique pin cells were set to be the coarse 

meshes. This meant that the deterministic COMET calculations for the assemblies 

consisted of iterating on the responses of a 17 x 17 grid of pin coarse meshes as laid out in 

Figure 10 and 11. For the uncontrolled assembly there are two unique coarse meshes, a fuel 

pin mesh and a guide tube mesh. The controlled assembly similarly has two coarse meshes, 

a fuel and a control rod coarse mesh. The gadded assembly has 4 unique coarse meshes 

namely, a fuel pin, guide tube, 2% gadolinium fuel pin, and 8% gadolinium fuel pin. The 

list of coarse meshes for the assembly types can be found in Table 12, 13, and 14. 
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Table 12. Uncontrolled assembly coarse meshes. 

 

Coarse Mesh  Description 

1 Fuel pin 

2 Guide tube 

 

Table 13. Controlled assembly coarse meshes 

 

Coarse Mesh  Description 

1 Fuel pin 

2 Control rod 

 

Table 14. Gadded assembly coarse meshes. 

 

Coarse Mesh  description 

1 Fuel Pin 

2 Guide Tube 

3 2% Gd Fuel Pin 

4 8% Gd Fuel Pin 

 

 
For each of these coarse meshes, responses were generated using the multi-group 

cross sections generated in section 5.2.2. In order to benchmark the new response 

generation method, responses were generated with both MCNP and SPaRC. The surface-

to-surface and surface-to-volume responses were then compared between the two 

generation methods. Next, the two sets of responses were used to generate both eigenvalue 

and fission results with COMET. These eigenvalue and fission density results were also 

compared for the uncontrolled, controlled, and gadded cases. 

For the analysis of fission densities, the relative difference between the two 

solutions in a pin 𝑖 can be introduced as follows, 
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𝑅𝐷𝑖 =   

𝐹𝐷𝑖 − 𝐹𝐷𝑖
𝑟𝑒𝑓

𝐹𝐷𝑖
𝑟𝑒𝑓

 (60) 

 

where 𝐹𝐷𝑖
𝑟𝑒𝑓

is the reference solution fission density and 𝐹𝐷𝑖 is the calculated fission 

density. In order to compare the fission densities in an assembly, the average, max, and 

mean relative differences for the pin fission densities can be calculated using Equation 61, 

62 and 63. 

 

 
𝐴𝑉𝐺 =   

∑ |𝑅𝐸𝑖|𝑖

𝑁
 (61) 

 

 𝑀𝐴𝑋 =  max
𝑖

𝑅𝐸𝑖 (62) 

 

 
𝑀𝑅𝐷 =   

∑ |𝑅𝐸𝑖|𝑖 ∗ 𝐹𝐷𝑖

𝑁 ∗ 𝐹𝐷𝑎𝑣𝑔
 (63) 

 

 

Responses for the three assemblies were performed with MCNP and SPaRC in two 

energy groups for expansion orders up to (2244), second order in the special variables, and 

fourth order in the angular variables. The average, maximum, and mean relative differences 

between the responses for each of the unique coarse meshes are given in Table 15, 16, 19, 

20, 23, 24, 25, and 26. The differences from the COMET eigenvalues for the three 

assemblies can be found in Table 17, 21, and 27 while the pin fission density differences 

can be found in Table 18, 22, and 28. 
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5.2.4 Uncontrolled Assembly Results 

 The uncontrolled assembly consists of a fuel pin coarse mesh and a guide tube 

coarse mesh. Responses were calculated for these coarse meshes with both MCNP and 

SPaRC and the responses were compared. The responses were also used to generate 

assembly level results with COMET. The normalized fission density distribution calculated 

by COMET can be seen in Figure 15. It can be seen that the fission density is highest 

around the guide tubes where neutrons are thermalized. 

 

 
Figure 15. Uncontrolled assembly pin fission density. 
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Table 15. Difference between MCNP and SPaRC response functions for the fuel pin 

coarse mesh in the uncontrolled assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.0495 3.708E-04 0.3162 3.503E-07 0.0121 4.193E-07 

Surface-

to-volume 
0.0246 9.462E-08 0.0252 9.894E-08 0.0243 3.477E-06 

 

As seen in Table 15 and 16, the responses calculated with both MCNP and SPaRC 

for the uncontrolled case agree very well. While the maximum error may seem high at 

0.3%, this maximum value is seen at responses of very low magnitude. This effect is 

characterized by the mean relative error which weights the differences between the MCNP 

and SPaRC generated responses by their magnitude. For both the fuel pin and guide tube 

responses, the mean relative difference is very low, indicating that the SPaRC and MCNP 

agree well when calculating the responses that will have the most impact on the solution to 

the problem. 

 

 

Table 16. Difference between MCNP and SPaRC surface-to-surface response functions 

for the guide tube coarse mesh in the uncontrolled assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.0508 3.731E-04 0.1580 1.191E-06 0.0102 3.760E-07 

 

 

Table 17 shows the COMET eigenvalue results for the uncontrolled assembly using 

responses generated with MCNP and SPaRC. The results were generated for a number of 
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different expansion orders and there was found to be good agreement. It was also found 

that the agreement in the pin powers was very good as seen in Table 18. 

 

Table 17. COMET eigenvalue results and standard deviations for the uncontrolled EPR 

assembly with responses generated by both MCNP and SPaRC. 

 

Expansion MCNP 

Standard 

Deviation 

(pcm) 

SPaRC 

Standard 

Deviation 

(pcm) 

Diff (pcm) 

Standard 

Deviation 

(pcm) 

0000 1.24954 4.8 1.24968 4.8 14.6 6.73 

2200 1.24575 4.7 1.24590 4.7 14.6 6.71 

0022 1.24908 4.8 1.24923 4.8 14.9 6.73 

2222 1.24576 4.8 1.24591 4.8 15 6.72 

2244 1.24554 4.8 1.24569 4.9 15 6.81 

 

 

Table 18. Difference in COMET pin powers for the uncontrolled EPR assembly with 

responses generated by both MCNP and SPaRC. 

 

Expansion AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

0000 1.15E-03 2.99E-04 3.10E-03 3.23E-05 1.14E-03 3.66E-04 

2200 1.50E-03 3.00E-04 4.28E-03 4.58E-05 1.49E-03 3.70E-04 

0022 2.54E-03 2.96E-04 2.54E-03 4.55E-05 9.14E-04 3.63E-04 

2222 1.58E-03 3.02E-04 4.10E-03 4.81E-05 1.57E-03 3.73E-04 

2244 1.49E-03 3.03E-04 4.15E-03 4.81E-05 1.49E-03 3.75E-04 

 

 

For the uncontrolled assembly case the results obtained from COMET using the 

MCNP and SPaRC responses agree very well. Next, results will be presented for both the 

controlled and gadded assembly cases. 
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5.2.5 Controlled Assembly Results 

 The controlled assembly contains a fuel pin and control rod coarse mesh. Table 

19, 20, 21 and 22 detail the differences between the MCNP and SPaRC generated results 

for the controlled assembly. The fission density distribution can be seen in Figure 16 with 

the fission density depressed around the control rod locations where neutrons are being 

absorbed. 

 

 
Figure 16. Controlled assembly pin fission density. 
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Table 19. Difference between MCNP and SPaRC response functions for the fuel pin 

coarse mesh in the controlled assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.1145 9.147E-04 0.3732 3.072E-05 0.0190 9.076E-07 

Surface-

to-volume 
0.0243 3.475E-07 0.0250 3.732E-07 0.0240 3.438E-06 

 

 

The fuel pin responses for the controlled case show similar agreement to that of the 

uncontrolled case but, as seen in Table 20, the control rod response shows slightly larger 

differences. The largest difference, 1.6885% occurs in a response from the lowest energy 

group of the incoming response to the highest energy group of the outgoing response. For 

a control rod mesh, the absorption probability of low energy neutrons is very high, leading 

to very small responses from the lowest energy group to the highest group. The largest 

differences are once again seen in very small responses leading the mean relative difference 

to still be very small. 

 

 

Table 20. Difference between MCNP and SPaRC response functions for the control rod 

coarse mesh in the controlled assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-

surface 

0.4669 1.767E-03 1.6885 1.478E-05 0.0036 9.515E-07 
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Table 21. COMET eigenvalue results and standard deviations for the controlled EPR 

assembly with responses generated by both MCNP and SPaRC. 

 

Expansion MCNP 

Standard 

Deviation 

(pcm) 

SPaRC 

Standard 

Deviation 

(pcm) 

Diff (pcm) 

Standard 

Deviation 

(pcm) 

0000 0.92382 3.6 0.92430 11.3 47.78 11.86 

2200 0.93837 3.6 0.93887 11.5 49.62 12.08 

0022 0.91228 3.5 0.91275 11.1 46.23 11.66 

2222 0.91264 3.5 0.91310 11.1 45.1 11.67 

2244 0.91254 3.5 0.91300 11.1 45.47 11.68 

 

 

 

The eigenvalue results for the uncontrolled assembly case are detailed in Table 21. 

The differences between the eigenvalues are slightly larger than the uncontrolled case, at 

around 50 pcm, but are still very similar. As seen in Table 22, the fission density 

distribution generated from the SPaRC and MCNP responses agree very well. 

 

 

 

Table 22. Difference in COMET pin powers for the controlled EPR assembly with 

responses generated with both MCNP and SPaRC. 

 

Expansion AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

0000 3.19E-03 5.46E-04 9.45E-03 9.89E-05 3.10E-03 7.58E-04 

2200 3.43E-03 5.56E-04 9.61E-03 8.64E-05 3.42E-03 7.81E-04 

0022 7.30E-03 5.44E-04 1.80E-02 8.23E-05 7.34E-03 7.48E-04 

2222 8.70E-03 5.74E-04 2.15E-02 1.01E-04 8.79E-03 7.93E-04 

2244 8.68E-03 5.76E-04 2.22E-02 9.94E-05 8.76E-03 7.96E-04 
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5.2.6 Gadded Assembly Results 

 The gadded assembly contains the most unique coarse meshes with a fuel pin, 2% 

gadolinium fuel pin, 8% gadolinium fuel pin, and guide tube coarse mesh. Table 23, 24, 

25, 26, 27 and 28 detail the differences between SPaRC and MCNP calculations and the 

fission density distribution can be seen in Figure 17. In Figure 17 it can be seen that the 

fission density is lowest in and around the fuel pins containing the gadolinium absorber. 

 

 
Figure 17. Gadded assembly pin fission. 
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Table 23. Difference between MCNP and SPaRC response functions for the fuel pin 

coarse mesh in the gadded assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.0691 7.731E-04 0.2206 7.876E-06 0.0357 3.386E-06 

Surface-

to-volume 
0.0146 1.596E-06 0.0170 1.267E-06 0.0146 4.132E-06 

 

 

 

Table 24. Difference between MCNP and SPaRC response functions for the guide tube 

coarse mesh in the gadded assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.1034 9.102E-04 0.3322 1.287E-06 0.0302 2.899E-06 

 

 

Table 25. Difference between MCNP and SPaRC response functions for the 2% 

gadolinium fuel pin coarse mesh in the gadded assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.0779 7.294E-04 0.4397 3.055E-06 0.0300 2.029E-06 

Surface-

to-volume 
0.0013 9.305E-08 0.0015 7.882E-08 0.0012 3.667E-07 
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Table 26. Difference between MCNP and SPaRC response functions for the 8% 

gadolinium fuel pin coarse mesh in the gadded assembly case. 

 

Response 

Type 

Difference Between MCNP and SPaRC for Fuel Pin Responses 

AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

Surface-

to-surface 
0.5269 8.578E-04 4.6922 1.356E-05 0.0466 1.786E-06 

Surface-

to-volume 
0.0186 1.391E-07 0.0235 1.398E-07 0.0135 6.742E-06 

 

 

Table 27. COMET eigenvalue results and standard deviations for the gadded EPR 

assembly with responses generated by both MCNP and SPaRC. 

 

Expansion MCNP 

Standard 

Deviation 

(pcm) 

SPaRC 

Standard 

Deviation 

(pcm) 

Diff (pcm) 

Standard 

Deviation 

(pcm) 

0000 1.07772 12.9 1.07822 13.0 50.3 18.32 

2200 1.08756 13.1 1.08806 13.1 48.9 18.53 

0022 1.06637 12.8 1.06686 12.8 48.3 18.06 

2222 1.06599 12.8 1.06644 12.8 45 18.08 

2244 1.06594 12.8 1.06639 12.8 44.1 18.08 

 

 

Table 23, 24, 25, 26, 27 and 28 detail the results obtained from the gadded assembly 

response and COMET calculations. The response results are all very similar with a notable 

difference in the 8% gadolinium fuel responses. For this case the maximum difference is 

4.7% occurring in responses from the lower energy group to the upper energy group like 

the controlled case. Since gadolinium is a strong neutron absorber these responses are also 

very small leading to large percent errors. The eigenvalue and pin fission density results 

are similar for both the MCNP and SPaRC responses. 
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Table 28. Difference in COMET pin powers for the gadded EPR assembly with responses 

generated with both MCNP and SPaRC. 

 

Expansion AVG (%) 
Standard 

Deviation 
MAX (%) 

Standard 

Deviation 
MRD (%) 

Standard 

Deviation 

0000 8.59E-03 7.07E-04 5.30E-02 2.31E-05 6.77E-03 9.03E-04 

2200 1.46E-02 7.17E-04 7.15E-02 2.01E-05 1.24E-02 9.26E-04 

0022 1.25E-02 7.04E-04 4.97E-02 2.14E-05 1.15E-02 8.96E-04 

2222 1.56E-02 7.29E-04 5.71E-02 2.44E-05 1.46E-02 9.34E-04 

2244 1.61E-02 7.36E-04 6.01E-02 2.46E-05 1.50E-02 9.41E-04 

 

 

Responses for the different EPR assembly types have been generated with both the 

old MCNP response generator and the new SPaRC generator. It was found that there is 

good agreement between both the responses themselves and the eigenvalue and pin power 

distributions from the COMET deterministic calculations. The detailed pin fission density 

distributions and uncertainties can be found in Appendix B. There is a slight difference 

between the SPaRC and MCNP responses in all cases and the COMET eigenvalue with 

SPaRC responses is greater than the MCNP eigenvalue for all of the cases. The source of 

this difference is under investigation. 
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CHAPTER 6 

CONCLUSION 

 A new code SPaRC has been developed for the generation of response functions 

for the COMET method. The new code provides this response function generation to 

facilitate further multi-physics calculations in the future. The transport routine has been 

validated against MCNP for both multi-group and continuous energy calculations with 

good results. It was also seen that the responses generated with SPaRC and MCNP agree 

well as well as the COMET eigenvalue and fission densities generated from those 

responses. Along with the response generation, database generation routines have also been 

developed. The response database has been split into separate binary files to both permit 

parallel deterministic COMET calculations and to separate out depletion data not needed 

during the deterministic iterations. The response generation has been implemented in 

parallel and the response function database has been developed with parallel computation 

in mind. 

 Future work includes incorporating SPaRC into a multi-physics code based on the 

COMET method, determining how to treat the energy variable on the boundaries of a 

coarse mesh for continuous energy calculations, and performing lattice depletion 

calculations. The code has been developed in order to easily facilitate the development of 

these new capabilities. 
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APPENDIX A 

FISSION DENSITY DISTRIBUTION PLOTS 

 

 

 

Figure 18. Fission density for the uncontrolled assembly. 
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Figure 19. Fission density for the controlled assembly. 
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Figure 20. Fission density for the gadded assembly. 
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APPENDIX B 

MULTI-GROUP CROSS SECTIONS 

  

 A library of multi-group cross sections has been generated for uncontrolled, 

controlled, and gadded EPR assemblies using the lattice depletion transport code HELIOS 

version 1.10. These cross section were then used to generate many of the results presented 

in this paper. To enable the reader to conduct their own calculations consistent with the 

calculations done in this paper, cross sections are provided in 2, 4, and 8 groups for the 

uncontrolled, controlled, and gadded assembly types. These cross sections are provided for 

each unique material in an assembly and are formatted as follows, 

 

{𝜎𝑎𝑔}
𝑔=1

𝐺
, {𝜎𝑓𝑔}

𝑔=1

𝐺
, {𝜈𝑔}

𝑔=1

𝐺
, {𝜒𝑔}

𝑔=1

𝐺
, {{{𝜎𝑠𝑛

𝑔′→𝑔
}

𝑔′=1

𝐺
}

𝑔=1

𝐺

}
𝑛=0

𝑁

 

 

where for 𝐺 energy groups 

 𝜎𝑎𝑔 = group 𝑔 absorption cross section 

 𝜎𝑓𝑔 = group 𝑔 fission cross section 

 𝜈𝑔 = group 𝑔 fission yield 

 𝜒𝑔 = fission spectrum corresponding to group 𝑔 

𝜎𝑠𝑛
𝑔′→𝑔

 = 𝑛’th (of 𝑁) Legendre moment of the scattering cross section from 𝑔′ to 

group 𝑔. 

 

The cross sections that follow are organized first by assembly, then by group structure, and 

finally by material. Further details into the generation of these cross sections can be found 

in chapter 4 under the HELIOS benchmark results and nuclear generation section. 
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Uncontrolled EPR Assembly Cross Sections 

 The following are the cross sections for the uncontrolled EPR assembly. Cross 

sections are provided for the three unique regions namely, the UO2 fuel, the zirconium 

cladding, and the moderator. 

 

2 Group Cross Sections 

Fuel 

3.0293E-02 

1.0000E+00 

4.4424E-02 

2.8822E-01 

0.0000E+00 

-1.7301E-04 

9.3919E-03 

3.9581E-01 

-1.9530E-04 

2.1950E-01 

1.8739E-03 

8.8885E-03 

2.5380E+00 

8.4189E-04 

2.4338E+00 

4.0549E-01 

 

Cladding 

1.7498E-03 

0.0000E+00 

3.8125E-02 

4.0983E-03 

0.0000E+00 

-9.9772E-05 

0.0000E+00 

3.1380E-01 

-6.9536E-05 

0.0000E+00 

8.0584E-04 

2.5442E-03 

0.0000E+00 

2.9605E-04 

0.0000E+00 

2.7446E-01 

 

Moderator 

6.7210E-04 

0.0000E+00 

3.5983E-01 

2.3682E-02 

0.0000E+00 

1.3819E-03 

0.0000E+00 

6.0397E-01 

8.1001E-03 

0.0000E+00 

2.2208E-03 

5.2031E-01 

0.0000E+00 

2.7435E-02 

0.0000E+00 

1.7642E+00 

 

4 Group Cross Sections 

Fuel 

8.4556E-03 

3.0061E-02 

8.1685E-02 

2.1950E-01 

4.9477E-02 

2.7308E+00 

2.8822E-01 

2.4338E+00 

4.8602E-03 

2.4338E+00 

1.6654E-02 

2.4338E+00 
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9.9980E-01 

0.0000E+00 

0.0000E+00 

1.5425E-02 

4.9116E-04 

1.2274E-02 

1.9568E-04 

0.0000E+00 

2.4333E-03 

4.0549E-01 

9.1447E-03 

-1.7301E-04 

0.0000E+00 

1.6005E-03 

3.7848E-01 

6.1728E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.9558E-01 

1.8739E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.5527E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-3.5782E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-7.3792E-04 

8.8885E-03 

 

Cladding 

5.7640E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.2893E-03 

-1.3859E-04 

3.6354E-03 

4.7147E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.2623E-04 

2.7446E-01 

2.6486E-03 

-9.9772E-05 

1.0506E-03 

0.0000E+00 

0.0000E+00 

5.4409E-04 

2.6882E-01 

5.5984E-02 

0.0000E+00 

0.0000E+00 

4.0983E-03 

0.0000E+00 

0.0000E+00 

3.3077E-01 

8.0584E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.0971E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.2423E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-2.0566E-04 

2.5442E-03 

 

Moderator 

1.5728E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9635E-05 

4.0293E-01 

2.6898E-02 

7.9994E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

8.5712E-02 

1.7642E+00 

5.9344E-01 

6.0137E-03 

0.0000E+00 

0.0000E+00 

6.1525E-02 

6.8330E-01 

2.0735E-01 

0.0000E+00 

2.3682E-02 

0.0000E+00 

0.0000E+00 

9.3777E-01 

2.2208E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.5581E-01 

0.0000E+00 

1.2992E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5988E-02 

0.0000E+00 

4.0408E-02 
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4.5466E-01 1.3819E-03 0.0000E+00 2.7844E-03 1.2860E-01 5.2031E-01 

 

8 Group Cross Sections 

Fuel 

1.4562E-02 

1.7601E-01 

3.0600E-02 

2.4507E+00 

3.5053E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2578E-02 

0.0000E+00 

0.0000E+00 

2.1172E-25 

0.0000E+00 

4.1565E-03 

0.0000E+00 

0.0000E+00 

9.7380E-02 

0.0000E+00 

0.0000E+00 

4.9256E-02 

3.9937E-07 

8.1888E-03 

3.8033E-01 

3.0061E-02 

2.4338E+00 

4.1072E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8717E-02 

0.0000E+00 

0.0000E+00 

5.2518E-03 

0.0000E+00 

0.0000E+00 

1.5425E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.5013E-03 

1.3543E-02 

1.3141E-01 

2.4338E+00 

2.3856E-01 

1.7493E-01 

0.0000E+00 

0.0000E+00 

4.2420E-01 

9.3657E-06 

0.0000E+00 

4.6387E-01 

0.0000E+00 

0.0000E+00 

3.6655E-01 

0.0000E+00 

0.0000E+00 

-3.8468E-04 

0.0000E+00 

0.0000E+00 

-8.8737E-04 

3.8748E-02 

6.2266E-03 

2.9181E-01 

2.4338E+00 

1.9568E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.1143E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.8801E-02 

0.0000E+00 

0.0000E+00 

7.3095E-02 

0.0000E+00 

0.0000E+00 

1.0018E-02 

1.5132E-01 

1.2677E-03 

2.8825E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

3.6057E-02 

0.0000E+00 

0.0000E+00 

2.8847E-03 

2.9926E-25 

0.0000E+00 

6.3799E-03 

0.0000E+00 

0.0000E+00 

3.1973E-02 

0.0000E+00 

0.0000E+00 

2.9523E-04 

0.0000E+00 

0.0000E+00 

4.9477E-02 

8.0553E-03 

2.6120E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

2.3750E-01 

0.0000E+00 

0.0000E+00 

5.0986E-01 

0.0000E+00 

0.0000E+00 

3.7848E-01 

0.0000E+00 

0.0000E+00 

3.8240E-01 

0.0000E+00 

0.0000E+00 

-1.0583E-02 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

1.0339E-02 

0.0000E+00 

0.0000E+00 

1.4370E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-4.8472E-03 

-2.7551E-07 

0.0000E+00 

0.0000E+00 

-1.9348E-03 

0.0000E+00 

0.0000E+00 

-5.1652E-03 

0.0000E+00 

0.0000E+00 

1.2274E-02 

0.0000E+00 

0.0000E+00 

1.3476E-02 

0.0000E+00 

0.0000E+00 

-3.8376E-04 

0.0000E+00 

0.0000E+00 

-1.6104E-03 

0.0000E+00 

0.0000E+00 

-3.5779E-03 

0.0000E+00 

 

Cladding 

7.9172E-05 

2.5006E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.0523E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.8553E-03 

0.0000E+00 

0.0000E+00 

5.3510E-02 

4.9487E-04 

5.3250E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5877E-02 

0.0000E+00 

0.0000E+00 

1.2578E-03 

0.0000E+00 

0.0000E+00 

5.2893E-03 

0.0000E+00 

0.0000E+00 

7.8107E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1833E-01 

0.0000E+00 

0.0000E+00 

3.8579E-01 

3.1313E-07 

0.0000E+00 

2.6962E-01 

0.0000E+00 

0.0000E+00 

2.5849E-01 

0.0000E+00 

0.0000E+00 

7.5568E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

9.6352E-03 

0.0000E+00 

0.0000E+00 

2.6954E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.4604E-02 

0.0000E+00 

0.0000E+00 

9.7681E-04 

0.0000E+00 

0.0000E+00 

1.6057E-03 

0.0000E+00 

0.0000E+00 

1.4151E-02 

0.0000E+00 

1.0506E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2795E-01 

0.0000E+00 

0.0000E+00 

3.6861E-01 

0.0000E+00 

0.0000E+00 

2.6882E-01 

0.0000E+00 

0.0000E+00 

2.6623E-01 

0.0000E+00 
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0.0000E+00 

0.0000E+00 

4.6438E-02 

0.0000E+00 

0.0000E+00 

2.5267E-03 

0.0000E+00 

0.0000E+00 

5.4484E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.7412E-03 

0.0000E+00 

-4.7573E-04 

0.0000E+00 

0.0000E+00 

-2.4884E-04 

0.0000E+00 

0.0000E+00 

-5.2732E-04 

0.0000E+00 

0.0000E+00 

-2.7036E-03 

7.9668E-02 

0.0000E+00 

0.0000E+00 

3.1395E-03 

0.0000E+00 

0.0000E+00 

3.6354E-03 

0.0000E+00 

0.0000E+00 

4.1314E-03 

0.0000E+00 

-1.2522E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-2.2971E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-7.2424E-04 

0.0000E+00 

0.0000E+00 

-4.1295E-04 

0.0000E+00 

0.0000E+00 

-1.2423E-03 

0.0000E+00 

 

Moderator 

7.7378E-04 

1.4252E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.6426E-02 

0.0000E+00 

0.0000E+00 

1.4938E-03 

0.0000E+00 

4.2560E-06 

3.0657E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.2258E-01 

0.0000E+00 

0.0000E+00 

2.0679E-01 

0.0000E+00 

1.9970E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8890E-02 

0.0000E+00 

0.0000E+00 

4.8313E-01 

2.9100E-04 

0.0000E+00 

8.0133E-01 

3.5151E-05 

2.5280E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.2284E-03 

0.0000E+00 

0.0000E+00 

5.3516E-03 

1.6405E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.8423E-02 

0.0000E+00 

0.0000E+00 

1.0799E-01 

0.0000E+00 

0.0000E+00 

2.0916E-01 

6.0137E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1710E-01 

0.0000E+00 

0.0000E+00 

8.1980E-01 

9.8440E-06 

0.0000E+00 

6.8330E-01 
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5.2226E-03 

2.9943E-02 

0.0000E+00 

3.3549E-02 

0.0000E+00 

0.0000E+00 

2.9147E-01 

8.7307E-06 

0.0000E+00 

5.3454E-01 

0.0000E+00 

0.0000E+00 

4.7244E-01 

7.9591E-04 

0.0000E+00 

3.3466E-01 

2.1470E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.4025E-05 

0.0000E+00 

0.0000E+00 

4.7294E-04 

0.0000E+00 

3.4210E-02 

5.2035E-03 

0.0000E+00 

8.9215E-01 

9.0852E-03 

0.0000E+00 

3.1465E-02 

0.0000E+00 

0.0000E+00 

4.8039E-02 

0.0000E+00 

0.0000E+00 

1.0176E-01 

0.0000E+00 

0.0000E+00 

6.6815E-02 

0.0000E+00 

1.8966E-01 

6.8265E-02 

0.0000E+00 

6.3946E-02 

0.0000E+00 

0.0000E+00 

5.3881E-01 

0.0000E+00 

0.0000E+00 

4.5466E-01 

2.0943E-05 

0.0000E+00 

4.7208E-01 

2.3258E-06 

0.0000E+00 

4.5850E-01 

0.0000E+00 

0.0000E+00 

9.3931E-03 

0.0000E+00 

0.0000E+00 

7.8210E-05 

0.0000E+00 

3.2499E-03 

6.2338E-03 

0.0000E+00 

7.7636E-04 

0.0000E+00 

1.8804E+00 

0.0000E+00 

0.0000E+00 

5.6494E-02 

0.0000E+00 

0.0000E+00 

9.2966E-02 

0.0000E+00 

0.0000E+00 

1.2340E-01 

0.0000E+00 

 

Controlled Assembly Cross Sections 

 The following are the cross sections for the controlled EPR assembly. Cross 

sections are provided for the four unique regions namely, the UO2 fuel, the zirconium 

cladding, the moderator, and the absorber material in the control rod. 

 

2 Group Cross Sections 

Fuel 

2.9111E-02 

1.0000E+00 

2.7851E-01 

0.0000E+00 

9.0524E-03 

3.9495E-01 

2.1196E-01 

2.3385E-03 

2.5429E+00 

7.0748E-04 

2.4338E+00 

4.0465E-01 
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 4.5079E-02 -2.1306E-04 -1.6440E-04 8.9366E-03 

 

Cladding 

1.7552E-03 

0.0000E+00 

3.8641E-02 

3.9476E-03 

0.0000E+00 

-1.2842E-04 

0.0000E+00 

3.1535E-01 

-5.7803E-05 

0.0000E+00 

1.0402E-03 

2.5783E-03 

0.0000E+00 

2.4593E-04 

0.0000E+00 

2.7416E-01 

Moderator 

6.1750E-04 

0.0000E+00 

3.6009E-01 

2.2816E-02 

0.0000E+00 

1.7660E-03 

0.0000E+00 

6.0540E-01 

7.0438E-03 

0.0000E+00 

2.8308E-03 

5.2170E-01 

0.0000E+00 

2.4128E-02 

0.0000E+00 

1.7259E+00 

 

Absorber 

1.6558E-01 

0.0000E+00 

5.9967E-02 

7.5004E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.3121E-01 

0.0000E+00 

0.0000E+00 

2.2696E-03 

2.0060E-03 

0.0000E+00 

1.2388E-04 

0.0000E+00 

2.5886E-01 

 

4 Group Cross Sections 

Fuel 

8.4277E-03 

2.9657E-02 

9.9980E-01 

0.0000E+00 

0.0000E+00 

1.4949E-02 

-4.8541E-04 

7.9953E-02 

2.1196E-01 

1.9568E-04 

0.0000E+00 

2.2148E-03 

4.0465E-01 

9.0782E-03 

4.9041E-02 

2.7294E+00 

0.0000E+00 

1.5816E-03 

3.7883E-01 

6.1761E-02 

0.0000E+00 

2.7851E-01 

2.4338E+00 

0.0000E+00 

4.9642E-01 

2.3385E-03 

0.0000E+00 

0.0000E+00 

4.8422E-03 

2.4338E+00 

3.5512E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.6416E-02 

2.4338E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-6.7152E-04 
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1.2162E-02 -2.1306E-04 0.0000E+00 0.0000E+00 -3.4736E-03 8.9366E-03 

 

Cladding 

5.8071E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.1175E-03 

-1.3925E-04 

3.5885E-03 

4.7735E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.6151E-04 

2.7416E-01 

2.6354E-03 

-1.2842E-04 

1.0426E-03 

0.0000E+00 

0.0000E+00 

5.4669E-04 

2.6899E-01 

5.5958E-02 

0.0000E+00 

0.0000E+00 

3.9476E-03 

0.0000E+00 

0.0000E+00 

3.3193E-01 

1.0402E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.1113E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.2028E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.8440E-04 

2.5783E-03 

 

Moderator 

1.5001E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9963E-05 

3.9735E-01 

2.7341E-02 

4.5754E-01 

7.7638E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

8.1448E-02 

1.7259E+00 

5.9588E-01 

1.7660E-03 

5.9711E-03 

0.0000E+00 

0.0000E+00 

6.2569E-02 

6.8824E-01 

2.0965E-01 

0.0000E+00 

0.0000E+00 

2.2816E-02 

0.0000E+00 

0.0000E+00 

9.4258E-01 

2.8308E-03 

0.0000E+00 

0.0000E+00 

2.6153E-03 

0.0000E+00 

0.0000E+00 

3.5952E-01 

0.0000E+00 

1.3194E-06 

0.0000E+00 

0.0000E+00 

1.2631E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5201E-02 

0.0000E+00 

3.7968E-02 

5.2170E-01 

 

Absorber 

1.5159E-02 

0.0000E+00 

3.1354E-01 

0.0000E+00 

2.7791E+00 

0.0000E+00 

7.5004E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

0.0000E+00 

0.0000E+00 

4.8754E-03 

0.0000E+00 

1.5551E-03 

0.0000E+00 

0.0000E+00 

1.9301E-04 

2.5886E-01 

2.9737E-03 

0.0000E+00 

0.0000E+00 

5.5317E-04 

2.0981E-01 

8.3770E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.7231E-01 

2.2696E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.1930E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.0060E-03 

 

8 Group Cross Sections 

Fuel 

1.4556E-02 

1.7209E-01 

3.0650E-02 

2.4510E+00 

3.5053E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2601E-02 

0.0000E+00 

0.0000E+00 

2.1521E-25 

0.0000E+00 

4.7958E-03 

0.0000E+00 

0.0000E+00 

8.1900E-03 

3.7977E-01 

2.9657E-02 

2.4338E+00 

4.1072E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8696E-02 

0.0000E+00 

0.0000E+00 

5.1650E-03 

0.0000E+00 

0.0000E+00 

1.4949E-02 

0.0000E+00 

6.4706E-03 

1.3536E-02 

1.2851E-01 

2.4338E+00 

2.3856E-01 

1.7468E-01 

0.0000E+00 

0.0000E+00 

4.2359E-01 

9.2849E-06 

0.0000E+00 

4.6528E-01 

0.0000E+00 

0.0000E+00 

3.6870E-01 

0.0000E+00 

3.8552E-02 

6.2282E-03 

2.9137E-01 

2.4338E+00 

1.9568E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.1124E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.9115E-02 

0.0000E+00 

1.5013E-01 

1.2647E-03 

2.8809E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

3.6144E-02 

0.0000E+00 

0.0000E+00 

2.8443E-03 

2.9690E-25 

0.0000E+00 

5.9691E-03 

0.0000E+00 

0.0000E+00 

2.9068E-02 

4.9041E-02 

8.0191E-03 

2.6120E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

2.3744E-01 

0.0000E+00 

0.0000E+00 

5.0963E-01 

0.0000E+00 

0.0000E+00 

3.7883E-01 

0.0000E+00 

0.0000E+00 

3.8208E-01 
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9.7299E-02 

0.0000E+00 

0.0000E+00 

4.9455E-02 

3.9532E-07 

0.0000E+00 

1.0217E-02 

0.0000E+00 

0.0000E+00 

1.4049E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-4.8708E-03 

-2.6659E-07 

0.0000E+00 

-3.9346E-04 

0.0000E+00 

0.0000E+00 

-8.7506E-04 

0.0000E+00 

0.0000E+00 

-1.8098E-03 

0.0000E+00 

0.0000E+00 

-4.7888E-03 

0.0000E+00 

7.3071E-02 

0.0000E+00 

0.0000E+00 

9.9926E-03 

0.0000E+00 

0.0000E+00 

1.2162E-02 

0.0000E+00 

0.0000E+00 

1.3499E-02 

0.0000E+00 

0.0000E+00 

2.9595E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-4.3695E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.0557E-02 

0.0000E+00 

0.0000E+00 

-1.5863E-03 

0.0000E+00 

0.0000E+00 

-3.4733E-03 

0.0000E+00 

 

Cladding 

8.2289E-05 

2.4507E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.0572E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.9489E-04 

5.3075E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5881E-02 

0.0000E+00 

0.0000E+00 

1.2288E-03 

7.7965E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1834E-01 

0.0000E+00 

0.0000E+00 

3.8561E-01 

3.1634E-07 

0.0000E+00 

2.6969E-01 

7.5195E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.6514E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.4604E-02 

0.0000E+00 

0.0000E+00 

9.6863E-04 

0.0000E+00 

0.0000E+00 

1.0426E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2816E-01 

0.0000E+00 

0.0000E+00 

3.6861E-01 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

2.1850E-03 

0.0000E+00 

0.0000E+00 

5.3491E-02 

0.0000E+00 

0.0000E+00 

4.6522E-02 

0.0000E+00 

0.0000E+00 

2.4861E-03 

0.0000E+00 

0.0000E+00 

5.1996E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.1175E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.7745E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.5974E-01 

0.0000E+00 

0.0000E+00 

-4.8532E-04 

0.0000E+00 

0.0000E+00 

-2.4675E-04 

0.0000E+00 

0.0000E+00 

-4.8715E-04 

0.0000E+00 

0.0000E+00 

-2.4152E-03 

0.0000E+00 

0.0000E+00 

9.8485E-03 

0.0000E+00 

0.0000E+00 

7.9755E-02 

0.0000E+00 

0.0000E+00 

3.1298E-03 

0.0000E+00 

0.0000E+00 

3.5885E-03 

0.0000E+00 

0.0000E+00 

4.1656E-03 

1.4834E-03 

0.0000E+00 

0.0000E+00 

1.2558E-02 

0.0000E+00 

0.0000E+00 

-1.1908E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-2.6976E-04 

0.0000E+00 

0.0000E+00 

2.6899E-01 

0.0000E+00 

0.0000E+00 

2.6601E-01 

0.0000E+00 

0.0000E+00 

-7.3094E-04 

0.0000E+00 

0.0000E+00 

-4.0343E-04 

0.0000E+00 

0.0000E+00 

-1.2028E-03 

0.0000E+00 

 

Moderator 

7.6570E-04 

1.3980E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.2470E-06 

3.0539E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9968E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8780E-02 

0.0000E+00 

0.0000E+00 

2.5167E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.6195E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.8590E-02 

0.0000E+00 

5.9711E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1700E-01 

0.0000E+00 
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2.6510E-02 

0.0000E+00 

0.0000E+00 

1.4917E-03 

0.0000E+00 

6.0694E-03 

2.9191E-02 

0.0000E+00 

3.3481E-02 

0.0000E+00 

0.0000E+00 

2.9166E-01 

8.7740E-06 

0.0000E+00 

5.3829E-01 

0.0000E+00 

0.0000E+00 

4.7705E-01 

7.6756E-04 

1.2324E-01 

0.0000E+00 

0.0000E+00 

2.0510E-01 

0.0000E+00 

0.0000E+00 

3.2996E-01 

2.1279E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.4460E-05 

0.0000E+00 

0.0000E+00 

4.6790E-04 

0.0000E+00 

3.4859E-02 

5.1538E-03 

4.8347E-01 

2.9196E-04 

0.0000E+00 

8.0763E-01 

3.5086E-05 

0.0000E+00 

9.0075E-01 

8.8566E-03 

0.0000E+00 

3.1586E-02 

0.0000E+00 

0.0000E+00 

4.7940E-02 

0.0000E+00 

0.0000E+00 

9.8225E-02 

0.0000E+00 

0.0000E+00 

6.1960E-02 

0.0000E+00 

1.2338E-03 

0.0000E+00 

0.0000E+00 

5.3085E-03 

0.0000E+00 

1.9104E-01 

6.7383E-02 

0.0000E+00 

6.3860E-02 

0.0000E+00 

0.0000E+00 

5.3972E-01 

0.0000E+00 

0.0000E+00 

4.5754E-01 

2.0669E-05 

0.0000E+00 

4.7171E-01 

0.0000E+00 

1.0783E-01 

0.0000E+00 

0.0000E+00 

2.0380E-01 

2.3189E-06 

0.0000E+00 

4.3745E-01 

0.0000E+00 

0.0000E+00 

9.4298E-03 

0.0000E+00 

0.0000E+00 

7.8023E-05 

0.0000E+00 

3.7865E-03 

6.0170E-03 

0.0000E+00 

0.0000E+00 

8.2146E-01 

9.9184E-06 

0.0000E+00 

6.8824E-01 

7.7010E-04 

0.0000E+00 

1.8737E+00 

0.0000E+00 

0.0000E+00 

5.6770E-02 

0.0000E+00 

0.0000E+00 

9.2007E-02 

0.0000E+00 

0.0000E+00 

1.2116E-01 

0.0000E+00 

 

Absorber 

2.5466E-03 

5.1754E+00 

0.0000E+00 

0.0000E+00 

5.6983E-03 

1.1825E+01 

0.0000E+00 

0.0000E+00 

2.3329E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.3177E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.5859E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.7791E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.0017E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.4896E-03 

0.0000E+00 

0.0000E+00 

6.7087E-02 

0.0000E+00 

0.0000E+00 

7.7282E-02 

0.0000E+00 

0.0000E+00 

2.0505E-03 

0.0000E+00 

0.0000E+00 

2.0408E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.2780E-02 

0.0000E+00 

0.0000E+00 

1.4012E-03 

0.0000E+00 

0.0000E+00 

4.8754E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.2788E-01 

0.0000E+00 

0.0000E+00 

3.6613E-01 

1.0522E-06 

0.0000E+00 

3.2955E-01 

0.0000E+00 

0.0000E+00 

2.5351E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.6714E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.4846E-03 

0.0000E+00 

0.0000E+00 

1.1017E-01 

0.0000E+00 

0.0000E+00 

3.4601E-03 

0.0000E+00 

0.0000E+00 

1.5551E-03 

0.0000E+00 

0.0000E+00 

1.9413E-03 

0.0000E+00 

0.0000E+00 

5.6921E-02 

0.0000E+00 

0.0000E+00 

9.5059E-04 

0.0000E+00 

0.0000E+00 

5.5941E-04 

0.0000E+00 

0.0000E+00 

4.0153E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.3506E-01 

0.0000E+00 

0.0000E+00 

3.9343E-01 

2.8836E-06 

0.0000E+00 

2.0981E-01 

0.0000E+00 

0.0000E+00 

2.5385E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

 

 



 

 

86 

Gadded Assembly Cross Sections 

The following are the cross sections for the gadded EPR assembly. Cross sections 

are provided for the five unique regions namely, the UO2 fuel, the zirconium cladding, the 

moderator, the fuel with 2 wt% gadolinium, and the fuel with 8 wt% gadolinium. 

 

2 Group Cross Sections 

Fuel 

2.9935E-02 

1.0000E+00 

4.4766E-02 

2.8411E-01 

0.0000E+00 

-1.9043E-04 

9.3329E-03 

3.9496E-01 

-1.9064E-04 

2.1631E-01 

2.0752E-03 

8.9092E-03 

2.5399E+00 

8.2126E-04 

2.4338E+00 

4.0514E-01 

 

 

Cladding 

1.7460E-03 

0.0000E+00 

3.8257E-02 

4.0343E-03 

0.0000E+00 

-1.1260E-04 

0.0000E+00 

3.1381E-01 

-6.8211E-05 

0.0000E+00 

9.1070E-04 

2.5593E-03 

0.0000E+00 

2.9031E-04 

0.0000E+00 

2.7433E-01 

 

Moderator 

6.6739E-04 

0.0000E+00 

3.6004E-01 

2.3325E-02 

0.0000E+00 

1.5511E-03 

0.0000E+00 

6.0439E-01 

8.0116E-03 

0.0000E+00 

2.4896E-03 

5.2086E-01 

0.0000E+00 

2.7157E-02 

0.0000E+00 

1.7484E+00 

 

2% Gadolinium 

3.6388E-02 

1.0000E+00 

2.2416E+00 

0.0000E+00 

8.3297E-03 

4.0020E-01 

1.1956E-01 

4.8076E-03 

2.5444E+00 

8.5424E-04 

2.4338E+00 

4.1218E-01 
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4.3913E-02 -4.2817E-04 -1.9812E-04 9.3425E-03 

 

8% Gadolinium 

5.0278E-02 

1.0000E+00 

4.4443E-02 

4.5416E+00 

0.0000E+00 

-6.3128E-04 

6.4369E-03 

4.0692E-01 

-1.8861E-04 

7.2908E-02 

7.7169E-03 

9.7278E-03 

2.5652E+00 

8.1456E-04 

2.4338E+00 

4.2652E-01 

 

4 Group Cross Sections 

Fuel 

8.4574E-03 

3.0073E-02 

9.9980E-01 

0.0000E+00 

0.0000E+00 

1.5391E-02 

-4.8470E-04 

1.2268E-02 

8.1334E-02 

2.1631E-01 

1.9568E-04 

0.0000E+00 

2.4250E-03 

4.0514E-01 

9.1416E-03 

-1.9043E-04 

4.9501E-02 

2.7311E+00 

0.0000E+00 

1.5795E-03 

3.7851E-01 

6.1897E-02 

0.0000E+00 

0.0000E+00 

2.8411E-01 

2.4338E+00 

0.0000E+00 

4.9556E-01 

2.0752E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.8820E-03 

2.4338E+00 

3.5465E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-3.5728E-03 

1.6619E-02 

2.4338E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-7.3527E-04 

8.9092E-03 

 

Cladding 

5.7620E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.2717E-03 

4.7178E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.2477E-04 

2.7433E-01 

1.0505E-03 

0.0000E+00 

0.0000E+00 

5.4241E-04 

2.6884E-01 

5.6036E-02 

4.0343E-03 

0.0000E+00 

0.0000E+00 

3.3085E-01 

9.1070E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.0968E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 
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-1.3816E-04 

3.6318E-03 

2.6487E-03 

-1.1260E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.2386E-03 

-2.0518E-04 

2.5593E-03 

 

Moderator 

1.5642E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9689E-05 

4.0275E-01 

2.6972E-02 

4.5475E-01 

7.9835E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

8.5477E-02 

1.7484E+00 

5.9355E-01 

1.5511E-03 

6.0124E-03 

0.0000E+00 

0.0000E+00 

6.1693E-02 

6.8347E-01 

2.0767E-01 

0.0000E+00 

0.0000E+00 

2.3325E-02 

0.0000E+00 

0.0000E+00 

9.3803E-01 

2.4896E-03 

0.0000E+00 

0.0000E+00 

2.7763E-03 

0.0000E+00 

0.0000E+00 

3.5633E-01 

0.0000E+00 

1.3027E-06 

0.0000E+00 

0.0000E+00 

1.2853E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5945E-02 

0.0000E+00 

4.0291E-02 

5.2086E-01 

 

2% Gadolinium 

8.3134E-03 

2.5588E-02 

9.9980E-01 

0.0000E+00 

0.0000E+00 

1.5568E-02 

-5.0745E-04 

1.2331E-02 

9.1621E-02 

1.1956E-01 

1.9630E-04 

0.0000E+00 

2.4716E-03 

4.1218E-01 

9.2034E-03 

-4.2817E-04 

1.0293E-01 

2.7355E+00 

0.0000E+00 

1.6629E-03 

3.7785E-01 

6.1533E-02 

0.0000E+00 

0.0000E+00 

2.2416E+00 

2.4338E+00 

0.0000E+00 

5.0109E-01 

4.8076E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.5531E-03 

2.4338E+00 

3.5802E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-3.6106E-03 

1.4100E-02 

2.4338E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-7.4886E-04 

9.3425E-03 

 

8% Gadolinium 

8.1867E-03 1.1882E-01 2.3423E-01 4.5416E+00 4.0374E-03 1.0027E-02 
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1.8608E-02 

9.9980E-01 

0.0000E+00 

0.0000E+00 

1.5758E-02 

-5.1347E-04 

1.2438E-02 

7.2908E-02 

1.9764E-04 

0.0000E+00 

2.5045E-03 

4.2652E-01 

9.3415E-03 

-6.3128E-04 

2.7449E+00 

0.0000E+00 

1.7117E-03 

3.7613E-01 

6.2047E-02 

0.0000E+00 

0.0000E+00 

2.4338E+00 

0.0000E+00 

5.1337E-01 

7.7169E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.4338E+00 

3.6311E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-3.6488E-03 

2.4338E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-7.5554E-04 

9.7278E-03 

 

8 Group Cross Sections 

Fuel 

1.4561E-02 

1.7423E-01 

3.0603E-02 

2.4509E+00 

3.5053E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2579E-02 

0.0000E+00 

0.0000E+00 

2.1394E-25 

0.0000E+00 

4.4447E-03 

0.0000E+00 

8.1946E-03 

3.8033E-01 

3.0073E-02 

2.4338E+00 

4.1072E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8674E-02 

0.0000E+00 

0.0000E+00 

5.2373E-03 

0.0000E+00 

0.0000E+00 

1.5391E-02 

6.4807E-03 

1.3541E-02 

1.3009E-01 

2.4338E+00 

2.3856E-01 

1.7495E-01 

0.0000E+00 

0.0000E+00 

4.2387E-01 

9.3513E-06 

0.0000E+00 

4.6379E-01 

0.0000E+00 

0.0000E+00 

3.6757E-01 

3.8703E-02 

6.2334E-03 

2.9181E-01 

2.4338E+00 

1.9568E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.1093E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.8893E-02 

1.5089E-01 

1.2657E-03 

2.8822E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

3.6064E-02 

0.0000E+00 

0.0000E+00 

2.8605E-03 

2.9879E-25 

0.0000E+00 

6.3814E-03 

0.0000E+00 

0.0000E+00 

4.9501E-02 

8.0483E-03 

2.6120E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

2.3745E-01 

0.0000E+00 

0.0000E+00 

5.0978E-01 

0.0000E+00 

0.0000E+00 

3.7851E-01 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

9.7388E-02 

0.0000E+00 

0.0000E+00 

4.9425E-02 

3.9858E-07 

0.0000E+00 

1.0339E-02 

0.0000E+00 

0.0000E+00 

1.4220E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-4.8527E-03 

-2.7475E-07 

0.0000E+00 

0.0000E+00 

-3.8457E-04 

0.0000E+00 

0.0000E+00 

-8.7993E-04 

0.0000E+00 

0.0000E+00 

-1.9349E-03 

0.0000E+00 

0.0000E+00 

-4.9898E-03 

0.0000E+00 

0.0000E+00 

7.3069E-02 

0.0000E+00 

0.0000E+00 

1.0013E-02 

0.0000E+00 

0.0000E+00 

1.2268E-02 

0.0000E+00 

0.0000E+00 

1.3480E-02 

3.0609E-02 

0.0000E+00 

0.0000E+00 

2.9533E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-4.0787E-04 

0.0000E+00 

0.0000E+00 

3.8231E-01 

0.0000E+00 

0.0000E+00 

-1.0557E-02 

0.0000E+00 

0.0000E+00 

-1.6059E-03 

0.0000E+00 

0.0000E+00 

-3.5726E-03 

0.0000E+00 

 

Cladding 

7.9668E-05 

2.4764E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.0529E-02 

0.0000E+00 

0.0000E+00 

4.9487E-04 

5.3248E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.5877E-02 

0.0000E+00 

0.0000E+00 

7.8037E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1833E-01 

0.0000E+00 

0.0000E+00 

3.8568E-01 

3.1364E-07 

0.0000E+00 

7.5481E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.6944E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

3.4600E-02 

0.0000E+00 

0.0000E+00 

9.7367E-04 

0.0000E+00 

1.0505E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2797E-01 

0.0000E+00 

0.0000E+00 

3.6856E-01 

0.0000E+00 
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0.0000E+00 

0.0000E+00 

2.0101E-03 

0.0000E+00 

0.0000E+00 

5.3508E-02 

0.0000E+00 

0.0000E+00 

4.6523E-02 

0.0000E+00 

0.0000E+00 

2.5270E-03 

0.0000E+00 

0.0000E+00 

5.3237E-03 

0.0000E+00 

1.2550E-03 

0.0000E+00 

0.0000E+00 

5.2717E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-1.7500E-03 

0.0000E+00 

2.6962E-01 

0.0000E+00 

0.0000E+00 

2.5912E-01 

0.0000E+00 

0.0000E+00 

-4.7662E-04 

0.0000E+00 

0.0000E+00 

-2.4804E-04 

0.0000E+00 

0.0000E+00 

-5.2765E-04 

0.0000E+00 

0.0000E+00 

-2.5604E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

9.6948E-03 

0.0000E+00 

0.0000E+00 

7.9676E-02 

0.0000E+00 

0.0000E+00 

3.1382E-03 

0.0000E+00 

0.0000E+00 

3.6318E-03 

0.0000E+00 

0.0000E+00 

4.1404E-03 

0.0000E+00 

1.6067E-03 

0.0000E+00 

0.0000E+00 

1.3359E-02 

0.0000E+00 

0.0000E+00 

-1.2404E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-2.4852E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.6884E-01 

0.0000E+00 

0.0000E+00 

2.6617E-01 

0.0000E+00 

0.0000E+00 

-7.2483E-04 

0.0000E+00 

0.0000E+00 

-4.1205E-04 

0.0000E+00 

0.0000E+00 

-1.2386E-03 

0.0000E+00 

 

Moderator 

7.7294E-04 

1.4122E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.2546E-06 

3.0652E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.9972E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.8861E-02 

0.0000E+00 

2.5266E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.6399E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

4.8447E-02 

6.0124E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.1709E-01 
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0.0000E+00 

2.6438E-02 

0.0000E+00 

0.0000E+00 

1.4939E-03 

0.0000E+00 

5.6165E-03 

2.9927E-02 

0.0000E+00 

3.3534E-02 

0.0000E+00 

0.0000E+00 

2.9150E-01 

8.7370E-06 

0.0000E+00 

5.3460E-01 

0.0000E+00 

0.0000E+00 

4.7469E-01 

7.9543E-04 

0.0000E+00 

1.2268E-01 

0.0000E+00 

0.0000E+00 

2.0658E-01 

0.0000E+00 

0.0000E+00 

3.3451E-01 

2.1446E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.4091E-05 

0.0000E+00 

0.0000E+00 

4.7230E-04 

0.0000E+00 

3.4365E-02 

5.2007E-03 

0.0000E+00 

4.8318E-01 

2.9114E-04 

0.0000E+00 

8.0146E-01 

3.5153E-05 

0.0000E+00 

8.9634E-01 

9.0803E-03 

0.0000E+00 

3.1482E-02 

0.0000E+00 

0.0000E+00 

4.8042E-02 

0.0000E+00 

0.0000E+00 

1.0170E-01 

0.0000E+00 

0.0000E+00 

6.4461E-02 

0.0000E+00 

0.0000E+00 

1.2292E-03 

0.0000E+00 

0.0000E+00 

5.3461E-03 

0.0000E+00 

1.8999E-01 

6.8239E-02 

0.0000E+00 

6.3933E-02 

0.0000E+00 

0.0000E+00 

5.3893E-01 

0.0000E+00 

0.0000E+00 

4.5475E-01 

2.0907E-05 

0.0000E+00 

4.7192E-01 

0.0000E+00 

0.0000E+00 

1.0800E-01 

0.0000E+00 

0.0000E+00 

2.0905E-01 

2.3259E-06 

0.0000E+00 

4.4834E-01 

0.0000E+00 

0.0000E+00 

9.3984E-03 

0.0000E+00 

0.0000E+00 

7.8214E-05 

0.0000E+00 

3.4993E-03 

6.2302E-03 

0.0000E+00 

0.0000E+00 

0.0000E+00 

8.2002E-01 

9.8554E-06 

0.0000E+00 

6.8347E-01 

7.7557E-04 

0.0000E+00 

1.8798E+00 

0.0000E+00 

0.0000E+00 

5.6536E-02 

0.0000E+00 

0.0000E+00 

9.2844E-02 

0.0000E+00 

0.0000E+00 

1.2333E-01 

0.0000E+00 

 

2% Gadolinium 

1.4238E-02 

7.6685E-01 

2.5960E-02 

7.9802E-03 

8.8339E+00 

2.5588E-02 

6.5162E-03 

1.3197E-02 

1.0339E-01 

4.3952E-02 

5.9774E-03 

1.9185E-01 

1.6878E-01 

1.0697E-03 

2.8821E+00 

1.0293E-01 

6.7736E-03 

2.6127E+00 
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2.4506E+00 

3.5053E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.2810E-02 

0.0000E+00 

0.0000E+00 

2.1008E-25 

0.0000E+00 

5.8831E-03 

0.0000E+00 

0.0000E+00 

9.7524E-02 

0.0000E+00 

0.0000E+00 

4.8906E-02 

3.9370E-07 

0.0000E+00 

1.0394E-02 

0.0000E+00 

0.0000E+00 

1.3302E-02 

0.0000E+00 

2.4338E+00 

4.1065E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.9097E-02 

0.0000E+00 

0.0000E+00 

5.2778E-03 

0.0000E+00 

0.0000E+00 

1.5568E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-6.6265E-03 

-2.7733E-07 

2.4338E+00 

2.3862E-01 

1.7495E-01 

0.0000E+00 

0.0000E+00 

4.2563E-01 

9.0826E-06 

0.0000E+00 

4.6479E-01 

0.0000E+00 

0.0000E+00 

3.8055E-01 

0.0000E+00 

0.0000E+00 

-4.2171E-04 

0.0000E+00 

0.0000E+00 

-9.0308E-04 

0.0000E+00 

0.0000E+00 

-1.9611E-03 

0.0000E+00 

0.0000E+00 

-3.8995E-03 

2.4338E+00 

1.9630E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

7.8939E-06 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

5.2223E-02 

0.0000E+00 

0.0000E+00 

7.4005E-02 

0.0000E+00 

0.0000E+00 

1.0079E-02 

0.0000E+00 

0.0000E+00 

1.2331E-02 

0.0000E+00 

0.0000E+00 

1.5701E-02 

2.4338E+00 

0.0000E+00 

0.0000E+00 

3.6433E-02 

0.0000E+00 

0.0000E+00 

2.9523E-03 

2.9962E-25 

0.0000E+00 

6.4724E-03 

0.0000E+00 

0.0000E+00 

2.1526E-02 

0.0000E+00 

0.0000E+00 

2.9068E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-5.2395E-04 

0.0000E+00 

0.0000E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

2.3924E-01 

0.0000E+00 

0.0000E+00 

5.1824E-01 

0.0000E+00 

0.0000E+00 

3.7785E-01 

0.0000E+00 

0.0000E+00 

4.0515E-01 

0.0000E+00 

0.0000E+00 

-1.0613E-02 

0.0000E+00 

0.0000E+00 

-1.6107E-03 

0.0000E+00 

0.0000E+00 

-3.6104E-03 

0.0000E+00 
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8% Gadolinium 

1.3391E-02 

1.8954E+00 

1.8675E-02 

2.4508E+00 

3.5055E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

2.3470E-02 

0.0000E+00 

0.0000E+00 

2.0880E-25 

0.0000E+00 

8.4282E-03 

0.0000E+00 

0.0000E+00 

9.8406E-02 

0.0000E+00 

0.0000E+00 

4.8670E-02 

3.7252E-07 

0.0000E+00 

1.0508E-02 

0.0000E+00 

7.5658E-03 

3.3247E+01 

1.8608E-02 

2.4338E+00 

4.1050E-01 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.0104E-02 

0.0000E+00 

0.0000E+00 

5.2737E-03 

0.0000E+00 

0.0000E+00 

1.5758E-02 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.7888E-03 

1.2286E-02 

6.7232E-02 

2.4338E+00 

2.3875E-01 

1.7630E-01 

0.0000E+00 

0.0000E+00 

4.2953E-01 

8.4805E-06 

0.0000E+00 

4.6393E-01 

0.0000E+00 

0.0000E+00 

3.9663E-01 

0.0000E+00 

0.0000E+00 

-5.0934E-04 

0.0000E+00 

0.0000E+00 

-9.0624E-04 

0.0000E+00 

0.0000E+00 

-2.0044E-03 

6.0340E-02 

5.4415E-03 

1.3448E-01 

2.4338E+00 

1.9764E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

1.0504E-05 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

6.1103E-02 

0.0000E+00 

0.0000E+00 

7.6798E-02 

0.0000E+00 

0.0000E+00 

1.0224E-02 

0.0000E+00 

0.0000E+00 

1.2438E-02 

2.1549E-01 

7.6340E-04 

2.8818E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

3.7259E-02 

0.0000E+00 

0.0000E+00 

3.0132E-03 

2.9893E-25 

0.0000E+00 

6.6444E-03 

0.0000E+00 

0.0000E+00 

1.3641E-02 

0.0000E+00 

0.0000E+00 

2.7430E-04 

0.0000E+00 

0.0000E+00 

0.0000E+00 

0.0000E+00 

-6.8948E-04 

2.3423E-01 

4.7957E-03 

2.6138E+00 

2.4338E+00 

0.0000E+00 

0.0000E+00 

2.4458E-01 

0.0000E+00 

0.0000E+00 

5.3800E-01 

0.0000E+00 

0.0000E+00 

3.7613E-01 

0.0000E+00 

0.0000E+00 

5.4165E-01 

0.0000E+00 

0.0000E+00 

-1.0770E-02 

0.0000E+00 

0.0000E+00 

-1.5881E-03 

0.0000E+00 

0.0000E+00 
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0.0000E+00 

1.2366E-02 

0.0000E+00 

0.0000E+00 

-6.5896E-03 

-2.7853E-07 

0.0000E+00 

0.0000E+00 

-2.6576E-03 

0.0000E+00 

0.0000E+00 

1.6532E-02 

0.0000E+00 

0.0000E+00 

-3.6485E-03 

0.0000E+00 
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