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SUMMARY 

 

Because of the accuracy and ease of implementation, the Monte Carlo 

methodology is widely used in the analysis of nuclear systems. The estimated effective 

multiplication factor (keff) and flux distribution are statistical by their natures. In 

eigenvalue problems, however, neutron histories are not independent but are correlated 

through subsequent generations. Therefore, it is necessary to ensure that only the 

converged data are used for further analysis. Discarding a larger amount of initial 

histories would reduce the risk of contaminating the results by non-converged data, but 

increase the computational expense. This issue is amplified for large nuclear systems 

with slow convergence. One solution would be to use the convergence of keff or the flux 

distribution as the criterion for initiating accumulation of data. Although several 

approaches have been developed aimed at identifying convergence, these methods are not 

always reliable, especially for slow converging problems. This dissertation has attacked 

this difficulty by developing two independent but related methodologies. One aims to 

find a more reliable and robust way to assess convergence by statistically analyzing the 

local flux change. The other forms a basis to increase the convergence rate and thus 

reduce the computational expense. Eventually, these two topics will contribute to the 

ultimate goal of improving the reliability and efficiency of the Monte Carlo criticality 

calculations. 
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CHAPTER 1 

INTRODUCTION 

 

 The Monte Carlo method is a tremendous outcome from the Manhattan Project
1
. 

Although the computational power around 1940s was extremely low, the entire principle 

and concepts of the Monte Carlo method was established around that era. Due to the 

immense development of the new generations of work stations, clusters, and personal 

computers in the last half of the 20
th

 century, using the Monte Carlo method for statistical 

experiment is more and more feasible. As the direct inheritors of the initialization of the 

Monte Carlo method, nuclear engineers are using the Monte Carlo method to analyze 

nuclear systems, simulate nuclear facilities, and develop the next generation nuclear 

power plants. 

1.1 Time-dependent Neutron Transport Equation 

 The principle of the Monte Carlo method is to simulate the behaviors of neutrons 

in the specific systems. Essentially, the travelling and reactions of neutrons follow rules 

corresponding to the probabilities of certain interactions, which are summarized and 

expressed by the neutron transport equation
2
 

         tErqtErErtErtEr
tv

,,ˆ,,,ˆ,,,,ˆ,ˆ,,ˆ,
1




 
 . (1.1) 

In Eq. (1.1),  tEr ,,ˆ,


  is the neutron flux;  Er ,


  is the cross-section of the materials; 

and  tErq ,,ˆ,


 is the neutron source term. Although seven variables—position, 

direction, energy, and time—exist in the expression of the flux, solving the differential 

equation is not so hard if the source term is explicitly available. Unfortunately, the source 

term is almost always implicit even without multiplying materials because it contains the 

desired neutron flux in its expression as a scattering term. 
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      



0

,,ˆ,ˆˆ,,),,ˆ,(,,ˆ, tErEErdEdtErstErq s


   (1.2) 

In Eq. (1.2), ),,ˆ,( tErs 


 is the external source term, and   ˆˆ,, EErs


  is the 

scattering cross-section, which leads to the scattering source term. This type of problem 

is generally referred to as a fixed source or shielding problem. With this implicit source, 

solving the transport equation is more difficult. By applying certain approximations (e.g., 

discretization of space and energy and collocation of direction), the neutron flux can be 

solved numerically. However, when multiplying materials exist, such as uranium or 

plutonium, the source term has to include the fission source term 

    




0

,,ˆ,ˆˆ,, tErEErdEd f


 .   (1.3) 

In Eq. (1.3),   is the average number of neutrons born per fission reaction and 

  ˆˆ,, EErf


  is the fission cross-section. The transport equation is not 

stationary in time then with the presence of fission sources; the neutron flux is either 

increasing or decreasing in most cases exponentially. 

1.2 Steady-state Neutron Transport Equation 

 In the analysis of critical systems, the steady-state neutron flux is usually of 

interest. Therefore, by eliminating the time derivative term, discarding external sources, 

and introducing a parameter k, the neutron transport equation turns into Eq. (1.4). 

     

      














0

,,ˆ,ˆˆ,,
1ˆˆ,,

,,ˆ,,,,ˆ,ˆ

tErEEr
k

EErdEd

tErErtEr

fs









(1.4) 

The purpose of the parameter k is to balance the equation such that the solution is a time-

independent neutron flux. This type of problems is classified as criticality or eigenvalue 

problems, because with operator notations, k behaves like an eigenvalue. In steady-state, 

only the fundamental eigenvalue remains, and all the higher eigenvalues terms decay to 
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be zero. The fundamental eigenvalue is called the effective multiplication factor and 

denoted as keff. In general, both the fundamental eigenvalue and fundamental 

eigenfunctions, which is also the steady-state flux distribution, are of interest. 

1.3 Power Iteration Method 

 These two quantities can be solved either by numerical methods iteratively with 

approximations, or by Monte Carlo simulations. The power iteration method
3
 has been 

proved to be a reliable and efficient approach to accomplish this goal by applying to 

deterministic methods or Monte Carlo simulations. The power iteration method is 

originally proposed to solve for the fundamental eigenpair (eigenfunction and eigenvalue) 

of a matrix or operator A. Essentially, the matrix or operator A has a discrete set of 

eigenvalues, notated as ki, and eigenfunctions, notated as Ψi, which satisfy equation 

iii kA   .     (1.5) 

The subscript corresponds to the order of the absolute value of eigenvalues: 

 21 kk . All of the eigenfunctions together could generate a subspace because of 

the completeness and orthogonality of the eigenfunctions. Therefore, any ―well-behaved‖ 

function Ψ can be expanded into the eigenfunction basis, shown in Eq. (1.6). 







1i

iia       (1.6) 

If applying the operator A repeatedly on Ψ, certain estimates with normalization, shown 

in Eq. (1.7), converge to the fundamental eigenpair. 

1

1

1
lim  



n

nn
A

k
, and 




11 lim



n

n

n A

A
k   (1.7) 

 The ratio 12 kk , which is called the dominance ratio, determines the 

convergence rate of the power iteration method. Since the ultimately remaining 

components is the fundamental eigenfunction, larger dominance ratio leads to slower 
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decay or slower computation. In other words, smaller dominance ratio would lead to 

faster convergence of a numerical solution. 

1.4 Challenges and Possible Solutions 

 Unfortunately, small dominance ratio is typically not the case in real life 

applications. The size of nuclear systems is usually relatively large compared with the 

propagation ability (or mean free path, MFP) of neutrons. Therefore, the communication 

of neutrons is generally weak. Numerically, this kind of systems is represented by a high 

dominance ratio, which is close to but smaller than one. The slow convergence issue 

coming with high dominance ratio yields many challenging problems; one well-known 

example with slow convergence is the ―criticality of the world‖
4
 problem. These 

problems may still be difficult to simulate even with high performance computers. 

 With slow convergence systems, to determine the convergence is really difficult. 

Traditionally, due to the limit of the computational capability, only keff was computed and 

tested for convergence. The convergence diagnostics was based on the evolution of the 

keff sequence. However, the convergence of keff cannot guarantee the convergence of these 

detailed quantities. Therefore, the unreliability of the previous diagnostics methods was 

identified, which is because of the quicker convergence of integral quantities such as keff 

than the local detailed quantities such as flux distribution. Thus, one possible solution in 

order to obtain a reliable output, investigated in this thesis, is to utilize local information 

to perform convergence diagnostics. 

 On the other hand, if the convergence procedure can be accelerated, the difficulty 

of convergence diagnostics will decrease. Meanwhile, higher efficiency will also be 

achieved. Various attempts have been made during the past twenty years by combing 

deterministic methods and the Monte Carlo method to achieve this objective. Recently, a 

new approach that mainly depends on the Monte Carlo method has been proposed
5
, with 

an innovative approach to attack the challenge. 
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 This dissertation is trying to address several aspects of the challenge in order to 

prepare for the future modification and implementations from these two angles 

1. Development of a reliable and robust statistical method to assess the convergence 

by analyzing the trends of local flux distribution. 

2. Development of an efficient approach to increasing the convergence rate in order 

to assist the convergence diagnostics and reduce computational cost. 

Chapter 2 reviews several known convergence diagnostics methods from previous works. 

Chapter 3 provides a new approach to perform the convergence diagnostics by applying 

statistical methods (ordinary and auto-correlated linear regression) to diagnose 

convergence focusing on the local information, such as the flux or source distribution. 

Chapter 4 provides a critical review of several convergence acceleration methods. 

Chapter 5 presents the concept and results of numerical examples of the new acceleration 

method, based on modified power iteration method. Chapter 6 introduces a method for 

generating the second eigenpair (beside the fundamental one) together with a novel 

approach for determining the net-weight of positive/negative histories, which has been 

the main difficulty in development of this class of methods. Chapter 7 concludes this 

dissertation and lists some guidelines for future work. 
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CHAPTER 2 

REVIEW OF THE CONVERGENCE DIAGNOSTICS METHODS 

 

 Many attempts to determine the convergence of the Monte Carlo criticality 

simulations are available. Some of them are based on keff or other integral quantities, 

which have been proved to be unreliable
4, 6, and 7

 for slow convergence problems without 

extra cautions. The other methods rely on either different quantities extracted from local 

information or a series of quantities representing local information. In order to be able to 

identify the true and false convergence, it is necessary to understand the advantages and 

drawbacks of these methods for real-life computations. Several benchmark problems 

were proposed to assist to identify the performance and improvements of various 

diagnostics methods. One such problem will be used in this chapter to help present and 

review previously developed convergence diagnostics methods. 

2.1 Benchmark Problems 

 In order to determine the capability of each convergence diagnostics method and 

compare their performance, the OECD (Organization for Economic Co-operation and 

Development) Nuclear Energy Agency (NEA) established an expert group on source 

convergence in criticality safety analysis. The first task of this group was to assemble 

several representative test problems
8
 that exhibit slow source convergence. The following 

four problems, which are used as benchmark problems, have been developed 

1. Checkerboard Fuel Storage Array  

2. Pin-cell Array with Irradiated Fuel  

3. Loosely Coupled Uranyl Nitrate Solution Slabs 

4. Array of Interacting Spheres. 
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Among them, the first benchmark problem has been widely-used for the convergence 

diagnostics purpose. The system represents a fuel storage pool with a 24-by-3 array, 

surrounded by water layers and concrete walls.  

 Figure 2.1 shows the geometric structure of the benchmark problem. The system 

contains 36 fuel elements with uranium enriched in 
235

U to around 5.0% by weight. The 

lower left corner fuel assembly or unit is assigned as position (1, 1), with two indexes 

representing right and up directions. Therefore, all the other assemblies or units are 

identified by the same position format. For example, the right top corner assembly is 

denoted as position (24, 3). Besides these assemblies, the array of fuel assemblies is 

surrounded on three sides by concrete and on the fourth side by water, as shown in the 

figure. A layer of water is also above and below and in the gaps and channels between 

fuel assemblies. The fuel assembly is composed of a 1.44cm-pitch, 15-by-15 lattice. In 

the center of the fuel rod is a 0.44 cm-radius UO2 fuel pin with 0.05cm-thick Zirconium-

clad. Both the fuel and water assemblies have 0.5cm steel channel walls outside. The 

detailed atom densities for each part of the system are listed in Table 2.1.More detailed 

descriptions can be found in Ref. 8 and Ref. 9. 

 

 
(a) Top view of the array 
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(b) Fuel element (with fuel pin) and water channel 

 

 

(c) Front view from the center of the middle row with water in the top and bottom 

Figure 2.1. Geometry specification of the storage fuel pool benchmark problem (unit 

in cm) 
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Table 2.1. Material atom densities of the storage fuel pool benchmark problem 

(atoms/10
-24

cm
3
) 

Element Atom Density 

Fuel 

238
U 2.2380e-02 

O 4.6054e-02 

235
U 8.2213e-02 

Concrete 

H 5.5437e-03 

C 6.9793e-03 

Si 7.7106e-03 

Ca 8.9591e-03 

O 4.3383e-02 

Water 

H 6.6706e-02 

O 3.3353e-02 

Iron 

Fe 8.3770e-02 

Zirconium 

Zr 4.2910e-02 

 

 The description of the benchmark problem not only includes the geometry and 

material information, but also specifies parameters for simulations, such as initial source 

distributions, inactive and active number of generations or cycles, and the number of 

histories per generation. However, these parameters are not requirements; instead they 

are just guidelines intended to facilitate comparison of results. However, advances in 
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computational pose led us to modify these simulation parameters in order to better utilize 

this benchmark problem. However, before illustrating diagnostics results using the 

benchmark problem, the concept of each diagnostics method needs to be introduced first. 

2.2 The Bounding Approach 

 One attempt that tries to determine the convergence of keff is to compare the 

evolution of keff from multiple bounding runs. In principle, a well-chosen initial source 

distribution will reduce the computational expense for the convergence. In other words, 

the bias or distance between the initial source distribution and the converged source 

distribution would determine the efforts needed for the convergence. Therefore, a poorly-

chosen initial source distribution will require more efforts on the convergence, which 

should be avoided in real-life applications. However, certain special ―poorly-chosen‖ 

initial source distributions could help to determine the convergence of keff if based on 

preliminary analyses or other pre-simulation knowledge one can determine the high and 

low reactivity regions. One simulation with the initial source concentrated in the high 

reactivity regions will lead to a higher estimate of keff at the non-converged period. 

Similarly, a simulation with the initial source concentrated in the low reactivity region 

will yield a lower estimate of keff in the transient period. In some occasions, using the 

uniform initial source distribution to approximate the lower estimates of keff is acceptable. 

This diagnostics method has been recently reintroduced as the ―sandwich method‖ by Ref. 

10. However, the bounding approach method may be a more appropriate name for this 

method. 

 In this reference, the authors include the storage fuel pool benchmark problem as 

an illustration example. They first simulated several independent runs with different 

concentrated initial source to determine the highest reactivity region, which is position (1, 

3). This result is a consequence of the higher reflective ability of concrete compared with 

water. The corner with two sides surrounded by concrete has more neutrons reflected 
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back, so the multiplication factor in this corner is the largest among all positions. After 

determining the highest reactivity region, two independent simulations were performed to 

generate the sandwich bounding. One simulation employed initial sources concentrated in 

position (1, 3); and the other simulation employed initial source uniformly sampled from 

all fuel regions. The number of histories per generation was 20,000; and 0 inactive cycles 

and 2,000 active cycles were used to illustrate the evolution of the estimates of keff, as 

shown in Figure 2.2.  

 

 

Figure 2.2. Bounding of the sandwich method example (Fig.6 from Ref. 10) 

 

 They claimed that the accurate keff is between the bounds. However, the gap 

between the two curves is still relative large after 2,000 generations, which demonstrate 

the slow convergence of the system again. In principle, any simulation with different 

initial source distributions should be converged if the gap between the upper bounding 

and the lower bounding are within some specified level, which in this case is much 
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smaller than the gap. Therefore, 2,000 generations are clearly not sufficient for this 

problem with these initial source distributions. 

 The problem with the bounding method is that it requires a prior knowledge or a 

preliminary analysis to determine the high and low reactivity regions, followed by 

multiple runs, which is not practical for real life application, but may be useful for 

analyzing benchmark problems. 

 2.3 Variance Comparison with Parallel Runs 

 Taking into account the capability of parallel runs, Shi and Petrovic
11

 carried 

research in order to determine how many neutron generations it takes for keff to converge 

by comparing the relative variance of these parallel runs. They followed the original 

description of the benchmark problem about the initial source distributions. Four different 

source distributions were used to initialize four cases: 

Case 1  Uniform sources sampled over all 36 fuel assemblies 

Case 2  Uniform sources sampled over position (1, 1) 

Case 3  Uniform sources sampled over position (12, 2) 

Case 4  Uniform sources sampled over position (23, 3). 

In addition, the number of histories was chosen to be 50,000 in order to cover the large 

loosely coupled system. Totally, they simulated the four cases for 15,000 active 

generations without any inactive generations. Figure 2.3 shows the keff plots for the four 

cases. The 1σ error bars for the last 100 generations are also shown in the figure. 
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Figure 2.3. Evolution of keff for the four 50K cases without inactive cycles (Ref. 11) 

 

 Unlike the requirement of the sandwich method, the simulations in this reference 

does not include the case initilized with sources in the highest reactivity region, position 

(1, 3) in this problem. Despite this, the gap after 15,000 generations is still noticable, 

especially for the comparisons involving case 4. 

 The authors again used the same data set, but treated the first 5,000 generations as 

inactive generations. Figure 2.4 plots the similar results as Figure 2.3 with only 10,000 

active generations. The difference between the figures is because of the discarding of the 

initial non-converged estimates of keff. Still, the gaps after 10,000 generations are clearly 

showing the non-convergence of comparisons involving case 4. 
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Figure 2.4. Evolution of keff for the four 50K cases with 5,000 inactive cycles (Ref. 11) 

 

 In summary, the bounding approach and parallel runs methods may be capable to 

indicate the non-convergence of keff. However, they require significant extra efforts, such 

as determination of the highest and lowest reactive regions, multiple independent 

simulations, and different choices of inactive generations. Moreover, relying on keff 

convergence to ascertain the convergence of flux distribution is not convincing. 

Therefore, these methods are inefficient and unreliable for real-life calculations. 

2.4 The Shannon Entropy Indicator 

 In order to utilize the flux distribution, the Shannon entropy concept is 

introduced
12

 to represent the condition of convergence. The entropy value H is defined
13

 

as 
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In Eq (2. 1), B is the number of meshes used to divide the entire system; i is the index of 

each mesh; and S
B
(i) is the portion of source generated in the i

th
 mesh after certain cycle. 
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Therefore, this entropy value represents the entire flux distribution by only one value, 

which is easier for further analysis. Clearly, this entropy value is dependent on the 

simulations generations; in MCNP5
14

, which is a widely-used Monte Carlo simulation 

program for neutron calculation developed by the Las Alamos National Laboratory, it is 

employed as an indicator or warning for non-converged simulations. 

 In the user manual of MCNP5, the following paragraph describes the computation 

procedure of the entropy indicator 

Upon completion of the problem, MCNP will compute the average value of Hsrc 

for the last half of the active cycles, as well as its (population) standard 

deviation. MCNP will then report the first cycle found (active or inactive) 

where Hsrc falls within one standard deviation of its average for the last half of 

the cycles, along with a recommendation that at least that many cycles should 

be inactive. Plots of Hsrc vs. cycle should be examined to further verify that the 

number of inactive cycles is adequate for fission source convergence. (MCNP 

— A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: 

Overview and Theory) 

The entropy indicator is intended to determine the non-convergence of the flux 

distribution, but the criterion used to determine the stationarity of the entropy value is 

questionable. Therefore, a visual check is frequently more reasonable for diagnostics 

purposes. 

 In Ref. 13, they applied the entropy indicator to the benchmark problem. They 

chose 50,000 histories per generation for 1,500 active generations without inactive 

generations. Two initial source distributions were used; one is a uniform source sampled 

over all fuel bundles; the other is a uniform source sampled over position (1, 3), which is 

the highest reactivity region. The mesh structure used to calculate the entropy is based on 

the fuel bundle structure: one mesh per fuel bundle. Figure 2.5 shows the evolution of 

the cycle-wise entropy indicators for the two cases. 
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Figure 2.5. Cycle-wise entropies example (Fig. 14 from Ref. 13) 

 

 The entropy curve of the uniform initial sources case keeps decreasing throughout 

the entire 1,500 generations. Thus, they concluded that the flux distribution was not 

converged after 1,500 generations in this case. On the other hand, the other curve 

corresponding to the biased initial source distribution seems to be flat between 500
th

 and 

1,000
th

 generations. However, this observation does not indicate the convergence of the 

flux distribution, because a slight jump appears after 1,000 generations. Although the 

entropy curve seems again flat after ~1,300 generations, convergence conclusion cannot 

be reached. 

 This incapability of the entropy indicator is due to the discarding of the local 

information. Although the computation of the entropy value first gathers the source 

distribution appearing in each mesh, it eventually condenses this information to one 

single value. Discarding this valuable information leads to the insensitivity to the slight 

change of the flux distribution, so this indicator cannot determine the convergence of the 

flux distribution. Therefore, the ―convergence‖ result reported by the entropy indicator is 



17 

 

misleading because of the probability of the false positive diagnostics. To understand this 

limitation of the entropy indicator is important for real-life applications. 

 Despite this drawback of the entropy indicator, the bounding approach can be 

applied to the indicator plot in order to enhance the reliability. In Ref. 11, the authors 

plotted the entropy curves, which are shown in Figure 2.6, for the four cases described in 

Section 2.3. 
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Figure 2.6. Evolution of the entropy values for the four 50K cases (Ref. 11) 

 

At the beginning, the four curves are away from each other. After a while, they merge 

together and oscillate around certain number. However, if one examines in detail the 

apparent convergence of the flux distribution at the merging point, ~7,000 generations 

between case 4 and other cases, he will realize it is premature. In the reference, more 

information about the detailed mesh tally revealed that the flux distributions from case 4 

and those from other cases were still statistically quite different. Therefore, the 

conclusion of convergence is questionable in this case. This example again demonstrates 
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the incapability of the entropy indicator to determine convergence of the flux distribution, 

although it may help to determine non-convergence of the flux distribution. In other 

words, it is susceptible to false-positive convergence indication, which is non-

conservative and therefore of unacceptable. 

2.5 Entropy-related Diagnostics Methods 

 Beside this incapability of the entropy indicator, other downsides are also 

investigated. As a result, several modified entropy-related diagnostics methods have been 

proposed. One disadvantage of the entropy indicator is that it lacks a reliable reference 

value to determine whether the current entropy value is close to it or not. The distance 

between two flux distributions is defined as a relative entropy
16

, which is also known as 

the Kullback Leibler distance. The expression of the relative entropy is in Eq. (2.2) 
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in which T
B
(i) represents the normalized reference flux distribution. In Ref. 13, the 

authors also defined a so-called maximum stationary level (msl) with certain pre-defined 

confidence level f. Figure 2.7 shows the relative entropy plots for the same simulations 

described in Section 2.3 from the reference. 
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Figure 2.7. Posterior relative entropy example (Fig. 13 from Ref. 13) 

 

 The entire 1,000 generations was divided into 500 inactive generations and 500 

active generations in order to provide the reference flux distribution. However, based on 

the analysis in Section 2.3, the crossing points in Figure 2.7 cannot guarantee the 

convergence of the flux distribution. In other words, although this method could obtain 

the reference flux distribution, it still relies on the single simulation, which does not 

resolve this difficulty fundamentally. However, this quantity does provide a tool to 

measure the distance of two flux distributions, which is precious for further applications. 

 Another difficulty of the entropy indicator is that it is a posterior diagnostics 

method. Diagnostics results can only be obtained after the entire simulation. If the 

indicator reports non-convergence conclusion, re-simulation of the problem from very 

beginning is necessary. This difficulty is harmful to the efficiency. In Ref. 13, the authors 

proposed to introduce the concept of progressive relative entropy (PRE) with respect to 

the first active cycle, defined as Eq. (2.3) to assist the diagnostics. 
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In Eq. (2.3), S1
B
 represents the fission source distribution at the first active generation; 

index j represents the progressive relative entropy value for the j
th

 active generation. The 

criterion for the convergence diagnostics is PRE smaller than 2*msl. 

 In the same reference, two figures are used to illustrate the effects of PRE. Figure 

2.8 shows the PRE plots for the two cases with respect to the first cycle; in other words, 

no inactive cycles are assigned. The curve corresponding to the uniform initial sources 

clearly shows an increasing trend, which indicates the non-convergence. The other curve 

corresponding to the biased initial source distribution, however, shows a rough flat trend 

after ~300 generations. However, due to the previous analysis, this observation could not 

lead to the convergence conclusion. 

 

 

Figure 2.8. PRE with respect to the first cycle example (Fig. 11 from Ref. 13) 

 

 Figure 2.9 shows PRE plots with respect to the 501
th

 cycle; in other words, 500 

inactive cycles are assigned. This figure indicates similar conclusions: non-convergence 
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of the flux distribution for the case with uniform initial sources even after discarding 500 

generation. On the other hand, PRE for the case with biased initial sources stays under 

the 2*msl line all the time, but to conclude the convergence by this observation is 

hazardous due to the arguments in previous sections. 

 

 

Figure 2.9. PRE plots with respect to the 501
th

 cycle example (Fig. 12 from Ref. 13) 

 

2.6 Combined KPSS Method 

 Because of the drawbacks of the entropy indicator and entropy-related diagnostics 

methods, other researches aimed to combine other potential diagnostics method with the 

entropy indicator in order to take advantage of its merits. The combined KPSS 

(Kwiatkowski-Phillips-Schmidt-Shin) method
16

 could work with the entropy indicator 

together in order to increase the reliability of the convergence diagnostics. According to 

the definition, a time series yt is expressed as 

t

t

i

it udty   
1

, where t=1,…, T.    (2.4) 
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In Eq. (2.4), ui and εt are covariance stationary and short memory with mean zero; and 

coefficient d is between 0 and 1. The first two terms represent the linear behavior of the 

time series; the third term represents the random walk effect of the time series; and, the 

last term represents the stationary error component. 

 

Table 2.2.Null hypothesis conditions of the KPSS test 

Hypothesis Condition 

Hτ: trend stationarity d=0 

Hμ: level stationarity d=β=0 

Hο: zero mean stationarity d=β=α=0 

 

 Different hypothesis testing can be applied to the time series based on different 

null hypothesis. Table 2.2 summarizes the conditions for different null hypothesis. The 

test statistic is defined as 
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which can be estimated by 
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In these equations, St is partial summation of the residuals of a linear regression; and σ
2
 is 

the estimated long run variance, which needs a sophisticated estimation method to be 

accurate. Under the level stationarity (Hμ), w will converge to the first level Brownian 

Bridge; and under the trend stationarity (Hτ), w will converge to the second level 

Brownian Bridge. Different significance levels correspond to different values to reject the 

null hypothesis. 

 The time series the authors used is the center of mass (COM), which is defined as 
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In Eq. (2.7), g is the generation index; npg is the total number of histories per generation; 

M is total mass; mi is the mass of i
th

 history; and ri represents the position of i
th

 history. In 

Ref. 17, the authors applied the KPSS diagnostics method to the benchmark problem. 

They simulated an extreme case with 1,000,000 particles per generation for 2,000 

inactive cycles and 5,000 total cycles; and the simulation passed the entropy check but 

failed the KPSS test. However, this does not mean that the KPSS diagnostics method is 

much better. The author emphasized that it is best to combine the KPSS method with the 

entropy indicator in order to enhance the reliability of the diagnostics results. 

 The KPSS diagnostics method utilizes the COM as the testing time series data, 

but it can be actually extended to any time series, such as the entropy values and keff 

estimates. Nevertheless, it still relies on certain condensed quantities instead of taking 

advantage of local information. Therefore, this limitation may affect the reliability of the 

KPSS method. Moreover, the theory basis for the KPSS method is complex, which makes 

reliable uses difficult.  

2.7 Statistical Diagnostics with Mesh Sources 

 Realizing the significance of the local information, Shim and Kim
18

 introduced a 

statistical diagnostics method based on mesh sources. They defined the mesh-wise fission 

source intensity as Sm
n
, where m is the mesh index and n is the cycle index. As a result, 

the source convergence is determined based on the relative difference of the mesh-wise 

source intensities with L(>0) cycles as 
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.      (2.8) 

The standard deviation of this relative difference can be estimated by complicated 

mathematical deduction, and represented by σS. Moreover, a constant κ is used to 
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represent the significance level of the diagnostics, which can be chosen as 1, 2, and 3, 

under normality assumption. Therefore, the convergence of the source intensity in m
th

 

mesh can be obtained if 
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As a result, the global convergence conclusion can be achieved after verifying all the 

wish-wise convergence. 

 This method faces three unresolved difficulties. The first one is the assumption of 

normality of the mesh intensities, which is not proved by any analysis. Another difficulty 

is choosing an appropriate L, in order to avoid either premature (false-positive) 

convergence indication or inefficiency of too many unnecessary generations. In their 

examples, they divided the system into only 10 regions, which may be too small to 

capture all the detailed local information. The applicability of the method to systems with 

more meshes is still unclear. 

 Considering these difficulties, Shim and Kim
19

 updated the diagnostics method by 

using more sophisticated method to estimate the variance and covariance of the relative 

intensities. In addition, they proposed one formula to give an optimal L for the 

computation. Despite these efforts, they still did not resolve the difficulties fundamentally. 

More testing problems or examples are still necessary in order to validate this diagnostics 

method. However, the top level approach to the convergence diagnostics by investigating 

local source distribution is still valuable for later research, especially for the purpose of 

this dissertation. 
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CHAPTER 3 

LINEAR REGRESSION DIAGNOSTICS METHOD 

 

 The purpose of this research topic is to propose an innovative convergence 

diagnostics method based on local information or local flux distribution. Instead of 

condensing the detailed information into one or several quantities (such as keff or entropy), 

the diagnostics method should observe and maintain mesh-wise information. The 

diagnostics method in Section 2.6 is also inspiring in terms of the relation between local 

convergence and global convergence. If the convergence can be determined in each local 

mesh with sufficient local information, the global convergence can be guaranteed as a 

consequence. Therefore, the first task is to propose an approach to determine the 

convergence within any single mesh. One point needs to be noted is that in deterministic 

methods, the determination of convergence is generally simple; however, for the Monte 

Carlo method, due to the randomness, the convergence diagnostics becomes a major issue. 

3.1 Ordinary Linear Regression Model 

 The ordinary linear regression model
20

 seems to be appropriate for this purpose. 

In this model, Xi represents the predictor and Yi represent the observation accordingly, 

which is called responder. These predictors and responders should be independent in 

order for the model to be valid. The relation between the predictor and responder is 

assumed to be linear under this model as 

iii XY   10 .      (3.1) 

In Eq. (3.1), β0 is the constant term and β1 is the linear coefficient. In addition, εi is an 

independent random error term generally following a normal distribution N(0,σ
2
). In all, 

three unknown parameters, β0, β1, and σ
2
 need to be determined or estimated in order to 

fully describe this linear regression relation. 
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 The estimations of these parameters are based on observations. For n sets of 

observations from (x1,y1) to (xn,yn), the least square estimator of the linear coefficient β1 is 
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In addition, the least square estimator of the constant coefficient β0 is 
 

xy  10
ˆˆ  .     (3.3) 

Associated with these estimators, the standard deviation of 1̂  is 
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where ̂  is the estimator of the standard deviation of the normal distribution, which 

describes the behavior of the error term εi. This estimator is given by 
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With these formulas, the entire model can be fully described with these estimators. 

3.2 Hypothesis Testing of the Linear Regression Model 

 The cycle-wise volume flux estimates in any single mesh could serve as 

responders. The predictors of this model could be assigned as integers from 1 to n. 

Therefore, if the observed flux estimates are from a converged flux distribution, no linear 

term should be observed after fitting the data set accordingly. In other words, the 

estimated β1 should be around zero. As a result, the hypothesis test 

H0: β1=0 vs. Ha: β1≠0 

can be used to determine the relative amplitude of the linear coefficient. The null 

hypothesis for this test is that β1 equals zero, so no linear relation exists between the 
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predictors and responders. The null hypothesis will be accepted if there is no enough 

evidence to reject it. However, if there are sufficient evidences to reject the null 

hypothesis, the alternative hypothesis that β1 not equaling zero will be accepted. As a 

result, the linear relation would be confirmed, so the cycle-wise flux estimates are not 

converged. 

 The test statistic is defined as a t-value 
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t ,      (3.6) 

which follows a t-distribution with n-2 degrees of freedom. If the t-value is greater than 

the 1-α/2 quantile of the standard t-distribution, t1-α/2,n-2, the null hypothesis will be 

rejected. On the other hand, if the t-value is smaller than the 1-α/2 quantile, the null 

hypothesis will be accepted.  

3.3 Diagnostics Procedure for Monte Carlo Simulations 

 Applying this procedure could determine the convergence of the cycle-wise flux 

estimates. In a real-life application, assuming the total number of generations in Monte 

Carlo simulation is N, the regression size of the data set n needs to be specified 

beforehand. To determine when the flux estimate has converged, this diagnostics method 

is first applied to the first n estimates. If the null hypothesis is rejected, the first estimate 

will be deleted from the data set. In the meantime, the next estimate outside the previous 

data set will be included into the data set to maintain the total number of estimates to be n 

again. This moving window technique continues until the null hypothesis is accepted. At 

that time, the index of the next generation outside the data set will be reported as the 

converged point of the cycle-wise flux estimates. 

 For one nuclear system, the number of meshes used to divide the system should 

be sufficient to maintain the local information, but the number should not be too large 

based on two reasons: the computational efforts proportional to the number of meshes 
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will be costly with too many meshes; and with larger number of meshes, the size of each 

mesh will be small, so the uncertainty associated with each mesh will be undesirably 

large. The diagnostics method will be performed in each mesh, and the global 

convergence can only be guaranteed after all the cycle-wise mesh-based flux estimates 

are converged. In addition, several initial generations should not be included into the data 

set because of the inaccurate initial guess of keff. The choosing of the significance level α 

and regression size n will be discussed in later sections, after the first example.  

3.4 One-dimensional Test Example 

 The first example
21

 used to illustrate the procedure of the linear regression 

diagnostics method is a simple one-dimensional, one energy group problem with three 

regions. Figure 3.1 shows the geometry structure of this system; the left and right 

boundaries of the system are located at -4.5cm and +4.5cm. The high reactive material 

(HRM) fills the -4.5cm to -2.0cm and +2.0cm to +4.5cm regions; and the low reactive 

material (LRM) fills the central region between -2.0cm and +2.0cm. Vacuum boundary 

conditions are applied to both boundaries. Table 3.1 lists the material information for 

both HRM and LRM. 

 

 

Figure 3.1. Geometry structure of the one-dimensional test problem for the linear 

regression model (Ref. 21) 
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Table 3.1. Material information of both HRM and LRM for the one-dimensional 

testing problem for the linear regression model (Ref. 21) 

 HRM LRM 

Σt 1.0 cm
-1

 1.0 cm
-1

 

Σc 0.1 cm
-1

 0.45 cm
-1

 

Σs 0.8 cm
-1

 0.5 cm
-1

 

νΣf 0.3 cm
-1

 0.15 cm
-1

 

Σf 0.1 cm
-1

 0.05 cm
-1

 

ν 3.0 3.0 

 

 This problem exhibits the slow convergence difficulty because of the LRM in the 

middle of the system. As a result, the communication between the two HRM regions is 

weak. The Monte Carlo simulation employs initial source located at -4.0cm, so it may 

take a while for the simulated particles to travel through the LRM region and enter the 

HRM in the right half part of the system. It may take even longer for the entire flux 

distribution to converge as a result. The simulation uses 40,000 histories per generation 

for 400 generations without any inactive generations, because this mesh tally mechanism 

is used to determine the convergence instead of being used to estimate the desired tally. 

One hundred uniformly distributed meshes are used to divide the system and obtain 

cycle-wise mesh tally. The entropy indicator is also used to compute the cycle-wise 

entropy values and determine convergence in this manner as well. Figure 3.2 shows the 

plot of the entropy indicator for this example, which indicates that the flux distribution is 

not converged for at least ~150 generations. 
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Figure 3.2. Evolution of the entropy values for the one-dimensional test problem for 

the linear regression model (Ref. 21) 

 

 In order to eliminate the initial effect, the first 10 generations are not included into 

the diagnostics data set. After that, the linear regression diagnostics method is applied to 

the cycle-wise mesh tallies first with a significance level α=0.10. The regression size n is 

a variable in this case, which is chosen to be an odd number between 3 and 101. Figure 

3.3 plots the index of the first generation, when all the flux meshes have converged. In 

other words, this figure summarizes the diagnostics result with different regression sizes. 

Similarly, Figure 3.4 gives the diagnostics results with different regression sizes under 

the significance level α=0.20. 
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Figure 3.3. Converged generation for one-dimensional testing problem for the linear 

regression model with α=0.10 (Ref. 21) 
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Figure 3.4. Converged generation for one-dimensional testing problem for the linear 

regression model with α=0.20 (Ref. 21) 

 



32 

 

 Observing these two figures reveals that when the regression size n is too small, 

in these cases smaller than ~50, the predicted number of generations needed for 

convergence is increasing. Following by this period is a sudden jump, after which the 

diagnostics results remain roughly constant with regression size changing. The 

uncertainty of the estimated standard deviation depends on the size of the data set. The 

reliability of the t-value for a small set is less than that for a large set. Therefore, too 

small regression size should be avoided. Moreover, the insensitivity of the diagnostics 

result once the regression size is chosen to be large enough leads to robustness in real-life 

applications. Therefore, from these two figures, the convergence is reached after ~200 

generations. This diagnostics result is consistent with the entropy indicator. 

 Another observation is about the impact of the significance level: a larger 

significance level will lead to slightly tighter diagnostics. In this case, the average 

magnitude of the flat region in Figure 3.4 is slightly higher than that in Figure 3.3. This 

is because of the properties of the hypothesis testing, whose null hypothesis is β1=0. In 

other words, before performing the hypothesis test, the null hypothesis is assumed to be 

accepted unless strong enough evidence says to reject it. One effect of this feature is that 

reducing the significance level is actually making the convergence criterion looser. 

However, since the tail part of the t-distribution is relatively small, changing of the 

significance level in the tail part should not affect the diagnostics results much. As a 

result, in real-life applications, a significance level equaling between 0.10 and 0.20 is in 

general acceptable. The other effect of the hypothesis test is that the diagnostics method 

is non-conservative and tends to make under-estimate of the convergence diagnostics. 
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(a) 50
th

 Generation    (b) 100
th

 generation 

  

(c) 150
th

 generation    (d) 200
th

 generation 

  

(e) 250
th

 generation    (f) Reference 

Figure 3.5. Changes of the flux distribution from different generations with a 

reference flux distribution for one-dimensional testing problem for the linear 

regression model 

 

 Until now, although several diagnostics results have been obtained, there is still 

no clear indication for the flux convergence. In order to illustrate the changing of the flux 

distribution, Figure 3.5(a)-(e) shows the flux distributions from the 50
th

, 100
th

, 150
th

, 

200
th

, and 250
th

 generations, respectively, while Figure 3.5(f) shows a reference flux 
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distribution from another simulation with 40,000 particles per generation with 500 

inactive generations and 500 active generations. The changing trend of the flux 

distribution is quite clear. The mesh tally from the 150
th

 generation still shows unequal 

peaks in the two HRM regions. However, the entropy indicator in this case fails to report 

this non-convergence. This difference is diminishing along with the simulation, and after 

200 generations, this difference is even smaller and acceptable for tallying purpose. To 

verify this statement, a comparison between the flux distribution reported after the 250
th

 

generation and the reference flux distribution in terms of relative variance is listed in 

Table 3.2. 58 out of 100 meshes have relative differences of the fluxes smaller than 1σ; 

and all of the meshes have relative differences of the fluxes smaller than 3σ. This is 

consistent with the standard normal distribution, which supports the conclusion that 

convergence has been achieved by 250
th

 generation. 

 

Table 3.2. Summary of the relative differences of the flux distributions between the 

250
th

 generation and a reference simulation for one-dimensional testing problem for 

the linear regression model 

 <1σ <2σ <3σ 

Number of meshes (out of 100) 58 92 100 

 

 Therefore, the diagnostics result from the linear regression model is valid, and it 

performs more reliably than the entropy indicator as well. If considering the under-

estimation effect due to correlation, mesh tally should be reported after additional 

inactive generations. In this case, 250 generations was selected rather than 200 

generations as inactive generations before any tallying. From this figure, no noticeable 

difference exists between the two peaks, so the flux distribution seems converged by then. 

 This example is quite simple compared to three-dimensional, continuous energy 

problems. However, it provides a proof of principle and preliminarily demonstrates the 
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capability and advantages of the linear regression diagnostics method. This does not 

complete all the arguments about this method; more investigation and analysis are 

provided in the following examples and sections. 

3.5 Simplified Benchmark Problem—50,000 Case 

 The second example to test the linear regression diagnostics method is a 

simplified OECD/NEA benchmark problem. This problem is based on the storage fuel 

pool benchmark problem but with a smaller size. Therefore, it still possesses some slow 

convergence issue, but the computational effort needed will be less than for the original 

problem. The geometry and components of the individual fuel assembly and water 

channel remain the same as shown in Figure 2.1(b); while the geometry of the whole 

problem is shown in Figure 3.6. This system is composed of two rows of fuel assemblies 

and water channels, which are half the size of the original lattice structure due to the 

reflective boundary condition. The corner elements are only quarter size of the original 

lattice structure. All the four boundaries are reflective along this view direction to 

maintain the geometry property. Axially, the size of the fuel assemblies and water 

channels is shortened to 50cm with two 10cm-thick water gaps on the top and bottom 

with vacuum boundary conditions. The materials of the system remain the same as shown 

in Table 2.1. Thus, the volume of this system is about 100 times less than the original 

benchmark problem. This simplification reduces the difficulty of choosing an insufficient 

number of histories per generation and enhances the communication between different 

regions. 
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(a) Horizontal cross section view of the system 

 

(b) Vertical front view of the system 

Figure 3.6. Geometry of the simplified storage fuel pool benchmark problem (Ref. 

21) 

 

 The Monte Carlo simulations are performed with MCNP5 with 50,000 histories 

per generation. Initially, 300 total generations are specified as the analysis data set. The 

initial source distribution is biased: radially, 99% of the initial source is uniformly 

sampled from the very left row of the system and only 1% of the initial source is sampled 

from the rest of the system; axially, all initial sources are sampled uniformly. This biased 

initial source distribution needs many generations to spread over the entire system and 

converge to the correct distribution. The system is divided into 150 meshes (10 by 3 
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radially, and 5 axially) for mesh tally and diagnostics purpose. As a reference Figure 3.7 

shows the entropy indicator plot of the simulation, which indicates that the flux 

distribution is converged after ~150 generations. 

 

 

Figure 3.7. Evolution of the entropy values of the simplified benchmark problem for 

the linear regression model (Ref. 21) 

 

 The linear regression model is applied to this simulation as before. However, for 

some choices of regression sizes in this case, the mesh tally from 300 generations could 

not provide diagnostics. In other word, for these regression sizes, no t-value is smaller 

than the criterion for corresponding significance level. For now, these cases will throw a 

warning message indicating the insufficient data set. Figure 3.8 shows the number of 

generations required for the flux distribution to converge under significance levels 

α=0.10 and 0.20. The regression size is chosen to be odd numbers between 3 and 85. 

Observations from this figure indicate that when the regression size is chosen to be large 

enough, in this case larger than ~40, ~155 generations are needed for the convergence, 

which is consistent with the entropy indicator. The diagnostics result with the 

significance level α=0.20 is slightly tighter than that with α=0.10, again. 
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Figure 3.8. Converged generation for the simplified benchmark problem for the 

linear regression model (regression size n between 3 and 85) 

 

 One question needs to be answered in this case is the relation between the 

regression size and the amount of required data. From what regression size the 

diagnostics procedure requires for more data. Taking α=0.20 case as an example, when 

the regression size is 65, it still reports valid diagnostics result, but when the regression 

size increases to 67, it flags the warning. Obviously, this change is caused by the change 

of t-values in some meshes, or even in one mesh. After investigation, mesh no. 138 is 

responsible for this change. Therefore, investigation of the behavior of t-values for n=65 

and 67 in mesh no. 138 is necessary. Figure 3.9 shows the corresponding evolution of t-

values under these two regression sizes. 
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(a) T-values for regression size n=65 
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(b) T-values for regression size n=67 

Figure 3.9. Changes of T-values for regression sizes n=65 and 67 with mesh no. 138 

for the simplified benchmark problem for the linear regression model, under α=0.20 

 

 The two curves in Figure 3.9 both have minimal values when the index of the 

first generation in the moving window is slightly larger than 150. Table 3.3 summarizes 
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these minimal values and corresponding criteria for significance level α=0.20. The 

difference due to α value is much less than the difference between the minimal t-values. 

Thus, the root cause of the above warning is the changing of the t-values. Indeed, both 

Figure 3.9(a) and (b) show that after 150 generations, the t-values increase dramatically, 

which is the result of the statistical noise masking the actual (―average‖) t-values. Figure 

3.10 shows the flux evolution of mesh no. 138. Clearly, a moving window with length 

~60 generations starting from ~150
th

 generation includes an almost flat data set. After ~ 

230 generations, the flux increases again. This example shows the limitation of the 

regression model, especially the dependence of the regression size. 

 

Table 3.3. Summary of the minimal t-values for regression sizes n=65 and 67 with 

mesh no. 138 for the simplified benchmark problem for the linear regression model, 

under α=0.20 

Regression size Minimal t-value Criterion 

n=65 1.2414 1.2951 

n=67 1.3055 1.2947 
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Figure 3.10. Evolution of the estimated flux in mesh no. 138 for the simplified 

benchmark problem for the linear regression model, up to 300 generations 

 

 In order to better understand this problem, the simulation has been continued up 

to 2,000 generations. Figure 3.11 shows the extensive flux evolution in mesh no. 138. It 

shows large fluctuations of the flux estimate in this mesh. It is therefore difficult to 

determine the convergence of the flux distribution by examining mesh no. 138. Although 

it seems to be flat after ~1,600 generations, other observations from other meshes also 

show some trend after ~1,600 generations. One speculation of this behavior is due to 

undersampling. In this case, 50,000 histories per generation may not be sufficient for the 

system. Although the undersampling effect is not so severe in this case, it does cause 

noticeable local fluctuations larger than the change one would .like to observe. This 

behavior violates the assumption of this diagnostics method that after convergence, the 

flux estimates in one mesh should oscillate around certain number within some small 
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interval. Therefore, the diagnostics method tends to report convergence for a relative flat 

interval of generations whose size is larger than the regression size. 
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Figure 3.11. Evolution of the estimated flux in mesh no. 138 for the simplified 

benchmark problem for the linear regression model, up to 2,000 generations 

 

 With this larger data set, new diagnostics procedure is executed with regression 

size chosen as odd numbers from 51 to 151. Figure 3.12 shows the corresponding 

suggested converged generation in this case. As a continuation of Figure 3.8, when the 

regression size is less than ~70, the regression diagnostics method indicates the 

convergence as ~160 generations. When the regression size is between ~80 and ~120, the 

suggested converged generation is ~250. When the regression size is between ~120 and 

~150, the suggested converged generation is ~380. This comparison explicitly 

demonstrates the role of the allowed regression size: it is the user expected length of 

generations with relatively flat flux estimates that will be accepted as convergence. In 
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other words, the user should have some idea about the period of random oscillations 

(noise) and specify the regression larger than that. Otherwise, the diagnostics method 

would give him the message when this criterion is by chance met for the first time. 
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Figure 3.12. Converged generation for the simplified benchmark problem for the 

linear regression model (regression size n between 51 and 151) 

 

3.6 Simplified Benchmark Problem—500,000 Case 

 In order to reduce the undersampling effect, another run with 500,000 histories 

per generation is simulated for 1,600 total generations without any inactive generations. 

All the other parameters are the same as the previous run. Figure 3.13 shows the 

suggested converged generations for this simulation when the regression size n is chosen 

to be odd numbers from 3 to 301. Along with the increasing of the regression size, the 

suggested number of generations needed for convergence is in general increasing as well. 
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After each jump, a relative platform exists for some region of regression sizes, which is 

demonstrating the consistency of this method.  
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(a) Regression size n between 3 and 101 
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(b) Regression size n between 101 and 201 
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(c) Regression size n between 201 and 301 

Figure 3.13. Converged generation for the simplified benchmark problem with 

500K histories per cycle for the linear regression model (regression size n between 3 

and 301) 

 

 The first mesh is actually responsible for the diagnostics results ~750 when the 

regression size is between 201 and 301. Figure 3.14(a) shows the flux evolution in the 

first mesh for this case. In order to illustrate the trend of the flux estimates, Figure 3.14(b) 

uses a different axis scale instead. From Figure 3.14(a), it seems that the flux is 

converged after ~400 generations, despite the fluctuations. However, Figure 3.14(b) 

shows that the difference between the maximum and minimum after discarding the first 

400 generations is about 15% of the average flux estimate. Compared to Figure 3.11, this 

fluctuation is moderate due to the fact of using more histories per generation, but still this 

may cause some premature false convergence. 
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(a) Original axis scale 
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(b) Amplified axis scale 

Figure 3.14. Evolution of the estimated flux in mesh no. 1 for the simplified 

benchmark problem with 500K histories per cycle for the linear regression model, 

up to 1,600 generations 
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3.7 Auto-correlated Linear Regression Model 

 Previous analysis only focuses on the impact of the regression size, but another 

property, the independence assumption of the linear regression model needs to be 

addressed. The independence of the data set that validates the linear regression model is 

actually not satisfied because the flux estimates used as the responders are indeed 

dependent due to the inter-generation auto-correlation effect of Monte Carlo criticality 

simulations. As a result, the estimated standard deviation tends to be under-estimated, 

and eventually affects the t-values. Shi and Petrovic
22

 introduced the auto-correlated 

linear regression model in order to remove some of the auto-correlation effect from the 

linear regression model. The Hildreth-Lu method
23

 is used to estimate the auto-

correlation parameter, and then, the estimated auto-correlated components are removed 

from the data set. Therefore, an updated set of data is used for the diagnostics based on 

the linear regression model. 

 The same mesh tallies as in Section 3.5 with 300 generations are used for the 

illustration purpose. Figure 3.15 shows the comparison of the suggested converged 

generation from the ordinary linear regression model and this auto-correlated linear 

regression model (also called as transformed model) for regression size of the 

transformed model chosen as odd numbers from 5 to 71 and significance level α=0.10. 

Due to the estimate of the auto-correlation parameter, the number of degrees of freedom 

for this model is n-3 instead of n-2 for the ordinary linear regression model given the 

same regression size n. Figure 3.15 also includes the diagnostics results from the 

ordinary linear regression model by setting the auto-correlation parameter equaling zero 

in order to have the same number of degrees of freedom. This is the reason that the curve 

for the ordinary linear regression mode is slightly different than the curve in Figure 3.8. 

At each regression size, the transformed model requires less generations than the linear 

regression model does because the estimated variance is larger for the transformed model 
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after removing some underestimate effect. As a result, the t-values tend to be smaller and 

null hypothesis tends to be accepted with larger probability than before. However, this 

difference is insignificant with regression size not presenting jumps, compared to the 

reported converged generation. 
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Figure 3.15. Comparison of the linear regression model and the transformed model 

for the simplified benchmark problem 

 

 In addition, the estimation and removal of the auto-correlation using the Hildreth-

Lu method requires extra computational effort, which is more than the diagnostics based 

only on the linear regression model. Other sophisticated methods are also applicable in 

this case, but their requirements are even more costly. Based on these two reasons, the 

ordinary linear regression model is chosen to be the primary tool for the diagnostics 

purpose. While the expected benefit of auto-correlated regression method has not been 
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observed in this analysis, it should in principle provide more accurate results, and future 

work may try to establish conditions when its use would be justified. 

3.8 Conclusions and Future Work 

 The linear regression model is utilized for the convergence diagnostics purpose 

based on the cycle-wise mesh tally. Two parameters need to be specified for the linear 

regression model, the significance level α, and the regression size n. The significance 

level, which represents the strictness of the diagnostics, could be chosen to be between 

0.10 and 0.20 in general applications without significantly impacting the diagnosed 

number of generations to convergence. The maximum regression size is specified by the 

user as a criterion used when testing for the convergence. A larger regression size 

indicates a tighter convergence criterion and may lead to more generations required for 

the convergence. Future work should address automated selection of the regression size. 

 Two problems, a one-dimensional problem and a simplified benchmark problem, 

are used in this chapter to illustrate the diagnostics procedure and results. For the simple 

problem, a relatively large regression size and a reasonable significance level result in a 

comparable conclusion with other convergence indicators, such as the entropy indicator. 

In complex problems, the undersampling effect, and locally auto-correlation effect may 

be noticeable. Therefore, the diagnostics mainly depends on the regression size. The 

acceptable regression size magnitude still has to be determined by the user experience. 

This auto-correlation could be partially removed by using sophisticated tools. However, 

these tools have not noticeably improved the diagnostics and usually are computationally 

costly. Moreover, the removal of the auto-correlation effect tends to give larger variance 

estimate in the denominator of the t-value. Therefore, the transformed model provides 

looser diagnostics compared to the ordinary linear regression model, which is undesired 

based on the property of the hypothesis testing. 
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 Future work on this diagnostics method may include more testing examples to 

verify the applicability and limitations of this method, development of an auto-

determined regression size generator, and implementation to standard packages for its 

distribution. Moreover, some other potential topics could also be extended. One possible 

approach is the utilization of some well-developed Markov Chain Monte Carlo (MCMC) 

convergence diagnostics methods in order to achieve the ultimate reliability goal. 

Another possible research topic will be the on-the-fly monitoring scheme. Instead of 

determining the convergence and then assuming that all the data collected from 

subsequent generations are valid, an on-the-fly monitoring scheme could help to make 

sure this assumption is valid while collecting data. If the violation is reported by this 

scheme, the outcome from the simulation would be flagged as potentially non-reliable, or 

the start of the data accumulation would be postponed. 
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CHAPTER 4 

REVIEW OF THE CONVERGENCE ACCELERATION METHODS 

 

 Reliable fission source distribution convergence diagnostics methods are needed 

not only because of the required accuracy, but also due to the limited computational 

capabilities, especially for large loosely-coupled problems. Convergence acceleration is 

another, synergistic methods to reduce the computational expense. Moreover, 

acceleration of the convergence transient process also assists the convergence diagnostics, 

because inter-generation correlation is reduced. This chapter reviews several approaches 

to accelerate the convergence of the fission source distribution based on different theories. 

Although the purpose of these methods is to accelerate the Monte Carlo simulation, some 

of them are a combination of the deterministic and Monte Carlo method. 

4.1 Fission Matrix Method 

 One of the oldest attempts to accelerate the convergence of the fission source 

distribution is the well known fission matrix method
24

. Technically, this method does not 

belong to the hybrid method category, although the method does include numerical 

computations, which are not treated as conventional deterministic methods, besides the 

Monte Carlo simulations. However, the fission matrix method is sometimes still 

classified as a hybrid method, because it indeed includes not only Monte Carlo 

simulations. 

 The fission matrix method requires dividing the entire simulated system into a 

number of small meshes or bins. The probability that one simulated particle generated in 

i
th

 bin will lead to one fission source for the next cycle in j
th

 bin is of interest. This 

probability is computed by a Monte Carlo simulation: a large number of particles will be 

sampled uniformly with in i
th

 bin for the simulation first; then, the number of fission 
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sources generated in each j
th

 bin will be recorded; eventually, the ratio of these quantities 

gives the probability of interest. This probability can be represented by Pi,j; as a result, if 

the number of bins of the system is n, all of these probabilities could yield a large n-by-n 

matrix, denoted as the fission matrix. 

 Instead of using the Monte Carlo simulation to converge the fission source 

distribution, this fission matrix is used for the convergence. Actually, this matrix can be 

viewed as a discretization of the continuous system or operator in the neutron transport 

equation. Therefore, the eigenvalues and eigenfunctions of this fission matrix are also 

eigenvalues and eigenfunctions of the nuclear system. Thus, by using the power iteration 

method, the fundamental eigenpair of the fission matrix can be obtained. The estimated 

fundamental eigenfunction of the fission matrix could approximate the fission source 

distribution in the original system with meshes; and the estimated fundamental 

eigenvalue could also provide a preliminary estimate of keff. One more point that needs to 

be noted is that by standard linear algebra techniques, all the other higher eigenpairs of 

the fission matrix can also be obtained, but these algebra techniques are not as 

straightforward as the power iteration method for computing the fundamental eigenpair. 

These eigenpairs can also be viewed as approximations of the higher eigenmodes of the 

nuclear system. 

 After the convergence of the fission matrix, a new Monte Carlo simulation with 

the biased fission source distribution according to the estimated fundamental 

eigenfunction of the fission matrix will be performed. Clearly, this Monte Carlo 

simulation still requires inactive generations, because the initial fission source 

distribution is just an approximation. However, this initial distribution is close to the 

converged fission source distribution; thus, the number of inactive cycles is reduced 

dramatically for loosely-coupled problems. 

 The fission matrix method takes advantage of the fast calculation of the linear 

algebra portion. The fast convergence of the fission matrix by the power iteration method 
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replaces the slow convergence of the Monte Carlo simulation. The accuracy of this 

approximation depends on the number of meshes. A small number of meshes results in a 

large difference between the estimated eigenfunction of the fission matrix and the 

converged fission source distribution of the nuclear system. On the other hand, a large 

number of meshes face the difficulty of computing many elements of a large size matrix, 

with sufficient statistical precision, which not only requires computational efforts, but 

also demands a large storage space. Despite these disadvantages, the fission matrix 

method is still widely-used in many Monte Carlo simulation packages as a convergence 

acceleration option because of its ease and convenience. 

 The fission matrix method serves as a simple example of combining deterministic 

calculations with Monte Carlo simulations in order to improve the convergence speed. 

Such combination methods are generally referred to as hybrid method. The deterministic 

calculations could employ the spherical harmonics method (known as PN method), the 

discrete ordinates method (known as SN method), or other well developed deterministic 

methods for approximate preliminary calculations in order to obtain an approximate 

fission source distribution to initialize later Monte Carlo simulations. Since the precision 

requirements of the preliminary calculations are not so strict, the computational cost is 

inexpensive in general. By using this scheme, the convergence of the fission source 

distribution is easier to achieve by using the Monte Carlo method for tallying purpose. 

Other attempts include using forward approximate deterministic method to generate 

importance map
25

 to be used for later Monte Carlo method. As a result, the efficiency and 

reliability of the Monte Carlo simulation may be improved. 

4.2 Anchoring Method 

 Other hybrid acceleration method, which implement the deterministic calculation 

into the entire Monte Carlo simulation are pursued to accelerate the convergence. The 

anchoring method
26

 is one example of such hybrid methods; it contains the partial 
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current-based coarse mesh finite difference (p-CMFD) method
27

 as the deterministic 

method. The anchoring method is based on the steady-state neutron transport equation Eq 

(1.4), which is rewritten here as Eq. (4.1). 
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(4.1) 

The right hand side of Eq. (4.1) describes the source terms, consisting of the scattering 

source term and fission source term, for the neutron transports. The scattering source 

term is determined by Monte Carlo simulation, so no action is taken to change this term. 

However, the fission source term is decomposed into two contributions in the anchoring 

method, which are the Monte Carlo simulated source and deterministically calculated 

source. 

 The following Eq. (4.2) describes this decomposition as 

  Q
kk

ff  
1

1
1

.    (4.2) 

In the right hand side of Eq. (4.2), the first term represents the contribution from the 

conventional or ordinary Monte Carlo simulation, and the second term Q represents the 

deterministic source obtained by using the p-CMFD method. The factor α, which is 

referred to as anchoring factor, determines the portion of this decomposition: if α=0, the 

whole fission source for the next cycle is from previous Monte Carlo simulation, so the 

anchoring method reduces to the normal Monte Carlo method; if α=1, the whole fission 

source is from the deterministic computation, so the fission source generated by the 

Monte Carlo simulation is discarded. By adjusting the anchoring factor α, the 

deterministic source from the p-CMFD method and the Monte Carlo source together 

contribute to the next cycle simulation. 

 The deterministic source from p-CMFD method can be either fixed or updated 

after every several generations. Either way, the fission computed from the p-CMFD 
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method is an approximation of the converged fission source distribution. Therefore, by 

applying this approximation into the Monte Carlo simulation, number of generations 

required for the convergence procedure will be reduced as expected. Apparently, the 

accuracy of the approximated fission source from the p-CMFD method depends on the 

pre-specified performance of the deterministic method. Moreover, a better approximation 

does require more computational expense. Although the better approximation could lead 

to an even faster convergence rate for the anchoring method, considering the total 

computational expense, a good enough approximation is actually optional in terms of 

efficiency. This argument is reasonable, because if the p-CMFD could provide the exact 

converged fission source distribution, no extra generations would be required for Monte 

Carlo simulation. 

 To sum up, the anchoring method, which combines the p-CMFD deterministic 

method and the Monte Carlo method, is capable to accelerate the fission source 

convergence. The efficiency and performance of this hybrid method depends on the 

specifications from both the deterministic and the Monte Carlo method. In addition, the 

concept of the anchoring method could inspire more hybrid methods. Many other 

deterministic methods could also provide an approximation of the fission source 

distribution that could be used for Monte Carlo simulations in order to reduce the efforts 

for fission source convergence. 

4.3 Wielandt’s Method 

 In addition to these hybrid methods, there are also other methods based primarily 

on Monte Carlo simulations. Only certain modifications are required to be applied to the 

conventional Monte Carlo method in order to accelerate the source convergence. One 

well known example of such methods is the Wielandt’s method
28

. Considering the 

neutron transport equation, the fission source term is again divided into two separate 

terms as shown in Eq. (4.3) 
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An arbitrary parameter kw is introduced into Eq. (4.3) as a coefficient of this fission 

source division. Further manipulation
29

 changes the purpose of the Monte Carlo 

simulations from estimating 1/k (keff) to estimating 1/k-1/kw, as the coefficient of the first 

term in Eq. (4.3). Since the parameter kw is user-specified, the estimates of k is easily 

available afterwards.  

 The dominance ratio of the manipulated form, which determines the convergence 

rate for the power iteration method in the Monte Carlo simulation, for the Wielandt’s 

method is changed to 

1

2

1

2 *
k

k

kk

kk

w

w




.     (4.4) 

As long as the introduced factor kw is smaller than one, the convergence of the fission 

source is accelerated. Generally, the choice of the parameter kw requires that it is greater 

than both k1 and k2. However, since k1 is not known beforehand, a large enough but not 

too large kw is chosen for simulations.  

 The implementation of the Wielandt’s method in the Monte Carlo method 

requires modifying the source sampling and storing procedures. In the conventional 

Monte Carlo method, all the fission source positions will be recorded in the fission bank 

in order to serve as source points for the next generation. After this procedure, the current 

generation is officially finished; and the next generation will start over with only the 

fission bank. For the Wielandt’s method, this procedure is slightly changed by computing 

two expected numbers of fission source points: one is the expected number of fission 

source points stored in the fission bank; the other is the expected number of fission 

source points simulated in the current generation. New histories, which are generated 

according to the second expected number, will be simulated as parts of the current 
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generation. This procedure continues until the number of reproduction in one generation 

reaches certain limit. 

 Therefore, the traveling path from one initial source position is longer in one 

generation of the Wielandt’s method than that in one generation of a conventional Monte 

Carlo simulation. Thus, the Wielandt’s method could reduce the number of cycles 

required for the fission source distribution to convergence. However, the total 

computational expense of the Wielandt’s method is almost the same as (in some cases, 

may be larger than) the computational expense in a conventional Monte Carlo simulation. 

Despite this disadvantage, the Wielandt’s method is still useful for convergence 

diagnostics because of the more information contained in one simulation generation. In 

addition, the auto-correlation effect between consecutive generations is also reduced in 

the Wielandt’s method because of the less connection between the fission sources. 

4.4 Smoothed Residual Acceleration Method 

 Another acceleration method inspired by the linear extrapolation method. is called 

the smoothed residual acceleration (SRA) method introduced in Ref. 30 and 31. This 

method aims to accelerate the convergence based on the trend of the mesh-wise source 

distributions. By recalling Eq. (1.7), the estimate of the fundamental eigenfunction can be 

expressed as Eq. (4.5) after n iterations 
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k
 ,    (4.5) 

where the coefficients ai are defined as in Eq. (1.6) for the well-behaved function Ψ. An 

iterative expression of Eq. (4.5) is 

mm A
k

1

1

1

1
ˆ

1
ˆ   ,     (4.6) 

where m denotes the generation index. Therefore, the extrapolation expression of Eq. (4.6) 

is 
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with a certain value for the extrapolation coefficient α. As a result, a similar estimate as 

in Eq. (4.5) is 
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As long as the extrapolation coefficient satisfies 

 
1

2

1

)1max(
k

k

k

ki   ,     (4.9) 

the SRA method accelerates the convergence. 

 The implementation of the SRA method in the Monte Carlo simulation employs 

the mesh estimates of the fission source density. According to the extrapolation theory, 

the weights of the fission sources will be adjusted to satisfy the density trend within the 

certain mesh. New sources are re-sampled evenly in each mesh according to the weights 

adjustments. This procedure forces the source distribution to follow the previous 

changing direction. In other words, if the mesh-wise fission source density is increasing 

in the last two generations, the new fission sources will carry more weights in order to 

follow the increasing trend. As a result, this process leads the source distribution to the 

convergence faster than the conventional Monte Carlo simulations. 

 A constant or decreasing extrapolation coefficient α is used in the acceleration 

process, but eventually, the SRA technique should be turned off in order to prevent 

further pollution of the source distribution by extrapolation after convergence. However, 

when to turn off the SRA method depends on the reasonable convergence diagnostics 

method. The SRA acceleration method has been only recently proposed, so more testing 

and validations are necessary for the method to be widely accepted. 
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CHAPTER 5 

THE MODIFIED POWER ITERATION ACCELERATION METHOD 

 

 In addition to the acceleration methods discussed in Chapter 4, a recently-

developed modified power iteration method could also accelerate the convergence by 

using mainly the Monte Carlo method. 

5.1 Review of the Modified Power Iteration Method 

 The modified power iteration method
5, 32

 is based on the ordinary power iteration 

method. However, unlike Eq. (1.6), the decomposition of a well-behaved function Ψ is 

given as 

 

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iii xba  .      (5.1) 

Two sets of decomposition coefficients, ai and bi, are used in Eq. (5.1). In addition, a new 

unknown parameter x is introduced in the equation in order to balance the estimates. 

Applying the matrix or operator A to function Ψ as in the ordinary power iteration method 

will provide again the estimates of the eigenfunctions and eigenvalues. After convergence, 

only the two lowest eigenfunction components remain 
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In this case, the estimate of eigenvalues is 
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In this equation, different choices of the unknown parameter x would lead the estimate to 

a different eigenmode. For example, if x is determined to be –b1/a1, the fundamental 

eigenfunction components in Eq. (5.2) and Eq. (5.3) will be eliminated, so the estimate of 

the eigenfunction Eq. (5.2) will be the second eigenfunction, and the estimate of the 
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eigenvalue Eq.(5.3) will be k2. Likewise, if x is chosen to be –b2/a2, the estimates of the 

eigenfunction and eigenvalue will be the fundamental eigenmode. 

 The remaining question is how to choose x in order to be either –b1/a2 or –b2/a2.  

This task can be fulfilled by two separate estimates of the eigenvalue in two different 

regions, which are neither necessarily mutually exclusive nor necessarily covering the 

full space. Thus, by setting the two estimates equal, a quadratic equation of unknown x is 

obtained. One root of the equation is close to –b1/a1 as an estimate and the other root is 

close to –b2/a2 as an estimate. Hence, the fundamental eigenmode and the second 

eigenmode can be estimated simultaneously by applying these roots. Moreover, this 

procedure of the power iteration has the potential to increase the convergence rate to the 

fundamental mode, in terms of the dominance ratio, from k2/k1 to k3/k1
33

 as a significant 

achievement. 

5.2 Derivations of the Convergence and Convergence Rate
5
 

 Section 5.1 only gives the theory, procedures, and conclusions of the modified 

power iteration method. This section will provide more detailed demonstration and 

derivation of this scheme. 

 Based on Eq. (5.1), the following change of variables is used: 

xbay 22  ,      (5.4) 

iii b
b

a
a *

2

2 ,     (5.5) 

and 
2b

bi
i  .      (5.6) 

A new unknown parameter y replaces the position of x in previous expression; and two 

sets of new coefficients αi and βi take places of the old coefficients ai and bi. As a result, 

the decomposition expression in Eq. (5.1) will change to 
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This new expression simplifies the coefficients of the second component due to the fact 

that α2=0 and β2=1. 

 In order to estimate the eigenvalues, integrals or estimates are necessary. The 

integral of one eigenfunction Ψj in region Ri is defined as Nij, as given in Eq. (5.8). 

ij
R

j N
i

        (5.8) 

In the two pre-specified not exclusive regions R1 and R2, the integrals of the initial well-

behaved function Ψ are 
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Thus, the estimates of the eigenvalues in the two regions will be 
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After convergence, these two estimates should be the same. Thus, by setting Eq. (5.11) 

and (5.12) to be equal, the solution of the quadratic equation about unknown parameter y 

will lead the estimates to convergence. Clearly, this quadratic equation includes 

coefficients with infinite summation, which cannot be solved in general. However, 

reconsidering the iterative procedure reveals that after several iterations, one root of y 

will approach to zero, which leads all the high order harmonics to disappear. 
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 As a result, only the first two eigenmode components remain in the following 

approximation of the quadratic equation after sufficient number of iterations. The 

coefficient of the y
0
 term turns to 
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Likewise, the coefficient for the y
1
 term turns to 
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Another alternative expression for Eq. (5.14) is 
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Since the root close to zero is of interest here, the y
2
 term is neglected, because it is small 

compared with other terms. Thus, the estimate of this root will be 
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 Certain restrictions still apply to this estimate for further simplification: 

When i=j, then N1iN2j=N1jN2i; α2=0 and β2=1 hold all the time. As a result, the dominant 

portion of the numerator are the terms corresponding to i=1, j=3 and i=3, j=1 cases 

   1312311331321131 kkNNkkNN        

  311231321131 kkNNNN   .    (5.17) 

Likewise, the dominant portion of the denominator are the terms corresponding to i=1, 

j=2 and i=2, j=1 cases 

     2211122121212212211211 NNNNkNNNNk      



63 

 

  122122112121 NNNNkk   .    (5.18) 

With these approximations, Eq. (5.16) turns to be 
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 Going back to the Eq. (5.1), after one iteration, the well-behaved function for the 

next iteration changes to be 
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Thus, the coefficients are updated by 
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The new estimated root by Eq. (5.16) changes to be 
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According to the same restrictions, the dominant remaining of the numerator are i=1, j=3 

and i=3, j=1cases 
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Similarly, the denominator has its dominant parts with i=1, j=2 and i=2, j=1 cases 
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If taking Eq. (5.19) as the ―old‖ root, the updated ―new‖ root by plugging in Eq. (5.23) 

and (5.24) will be 
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Clearly, the comparison between Eq. (5.19) and (5.25) indicates that the convergence rate 

of the desired root of y, which leads the eigenvalue estimate to keff, to approach to zero is 

k3/k1. 

 With this result, the estimate of the fundamental eigenfunction is 
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The only desired remaining component in this estimate is the fundamental component, so 

all the other high eigenmodes are undesired error. One dominant undesired component is 

the second eigenmode component with coefficient 
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However, by taking the conditions about the coefficients as α2=0 and β2=1, Eq. (5.27) 

decays to zero with the same convergence rate as the root of y converges to zero, which is 

k3/k1. The other dominant undesired components is the third eigenmode component with 

coefficient 
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The convergence rate for the second term in Eq. (5.28) is smaller than that for the first 

term. Therefore, the component for this coefficient to converge to zero is also k3/k1. 
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Similarly, all the high eigenmode components have coefficients converging to zero even 

faster. Overall, the convergence rate for the undesired components in Eq. (5.26) is k3/k1 as 

claimed in Section 5.1.  

 A similar approach could also be applied to the estimate of the second eigenmode, 

the convergence rate of which will be k3/k2. However, due to the repetition of the 

derivation, it is not included here. 

5.3 Matrix Example and Collapse 

 As the first example to illustrate the capability of the modified power iteration 

method, the same matrix example as in Ref. 34 is used again in this section. The matrix A 

used here is given as 























4.2167     0.3917    2.1250    0.9833-   

0.1167-    4.0583    0.8750-   2.6833    

0.7167     0.6417    1.3750     0.5167    

1.9500-   3.0250-   0.6250-   1.1500-   

A . 

As a reference, the eigenvalues of the matrix A are 4, 3, 1, and 0.5. Two arbitrary initial 

vectors a=(1 1 1 1) and b=(1 0 1 1) before renormalization are used for the modified 

power iteration scheme, and the unknown parameter x is assigned in front of b. The first 

component of each vector is taken as the first group and the last three components of the 

vector are taken as the second group. These two groups correspond to the integral regions 

R1 and R2 in Section 5.2 in order to estimate the eigenvalues. Under this scheme, 100 

iterations are used for the convergence of the estimates of the eigenvalues. 
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Figure 5.1. Eigenvalue estimates for the matrix problem using the modified power 

iteration method (Ref. 34) 

 

 Figure 5.1 shows the estimated k1 and k2 after each iteration for this computation. 

After the initial transient stage, the two estimates converge to k1 and k2 respectively for 

~50 iterations. However, after ~55 iterations, the estimates behave abnormally with 

oscillations. This behavior, which is referred to as collapse of the modified power 

iteration method, is due to the fact that both a and b converge to the fundamental 

eigenfunction; after sufficient iterations, the difference between a and b is smaller than 

the numerical accuracy of the computational platform. Therefore, the estimates after the 

collapse are meaningless. 

 The collapse of the scheme may not be a big issue for a deterministic method, 

such as in this matrix example, because in general, deterministic method has a stopping 

criterion for the computation. Before the collapse of the scheme, the computation has 

typically converged; in order words, the computational error has met the stopping 

criterion. Therefore, accurate results for the deterministic calculation may be obtained. 

However, this is not the case for the Monte Carlo method because of the uncertain 
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property associated with the method. In order to reduce the uncertainty, Monte Carlo 

simulations require sufficient number of iterations. In this case, the collapse of the 

scheme will prevent obtaining an accurate solution. Thus, certain refinements are 

necessary in order to apply the method to Monte Carlo simulations successfully. 

5.4 Refinements to Avoid the Collapse 

 In Ref. 33, two refinements were proposed in order to avoid the collapse. 

The First Refinement 

 In the original scheme, the two initial vectors a and b will be changed to A*a and 

A*b after one iteration. Then, A*a and A*b are treated as a and b for the next iteration. 

The two roots of the unknown parameter x are denoted as x1 and x2; as a result, a+x1*b 

estimates the fundamental eigenfunction Ψ1, and a+x1*b estimates the fundamental 

eigenfunction Ψ2. The first refinement keeps A*b the same for the next iteration but takes 

A*a+x2*A*b to be the other vector for the next iteration. This refinement prevents vectors 

a and b from merging together to the fundamental eigenfunction after several iterations, 

which would cause the failure of the scheme with the finite computational accuracy. The 

parameter x2 could also serve as a convergence criterion, because the vector a is 

converging to the second eigenfunction, and consequently x2 is converging to zero. 

 Figure 5.1 shows another computational example of the matrix problem with 

different initial vectors a=(1 1 0 0) and b=(0 0 1 1) under the first refinement for 100 

iterations. After the transient stage, the two estimates converge to the first two 

eigenvalues, respectively. 
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Figure 5.2. Eigenvalue estimates for the matrix problem using the first refinement 

from of the modified power iteration method (Ref. 34) 

 

 Following the derivations in Section 5.2, the updated coefficients after one 

iteration are 
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In Eq. (5.29), the notation R represents the root of the equation x, which comes from the 

root r about changed unknown parameter y. Similar to Eq. (5.21), the updated new set of 

coefficients is 
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and 
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Comparing Eq. (5.30) and (5.31) with Eq. (5.21) reveals that the expressions of these 

coefficients are identical. Thus, the estimated root of y, which is noted as r, converges 

with the same rate, k3/k1, to zero. The convergence rate of the estimate of the 

eigenfunction is based on the definition of R as  
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ar
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
 .      (5.32) 

Under this relation, the estimate of the eigenfunction is 
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This expression is actually the same as the estimate in Eq. (5.26). Therefore, the 

convergence rate of the estimate of the fundamental eigenfunction is still k3/k1 for the first 

refinement. 

The Second Refinement 

 The second refinement is based on the first refinement. In addition to the 

replacement of A*a by A*a+x2*A*b, the second refinement also replace A*b by 

A*a+x1*A*b, in which x1 is the other root of the unknown x that leads the eigenfunction 

estimate to the fundamental one. The derivation of the second refinement is even more 

complex than that for the original scheme and the first refinement. Therefore, this section 

will not include the detailed derivation. Even though, the convergence rate under the 

second refinement does not change, so this refinement could achieve the fast convergence 

without the collapse described in previous section. 

 Unfortunately, this refinement contains a drawback for numerical 

implementations. As the iterations proceed, vector b converges to Ψ1 and vector a 
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converges to Ψ2, which results in the parameter x1 in A*a+x1*A*b converging to infinity 

and eventually out of the computational range. This drawback was not crucial for 

deterministic applications, because the estimated results should have reached the stopping 

criterion before this happens. However, when using this refinement for Monte Carlo 

simulations, one has to be aware of this drawback when increasing the number of 

iterations to improve the confidence interval. However, because of the statistical 

uncertainty, the root x1 in Monte Carlo simulation cannot reach infinity. Instead, it jumps 

from one very large number to another. The impact of this effect to the Monte Carlo 

simulation is not quite clear; for now, it seems that one could take this effect as 

acceptable. 

5.5 Net-Weight Calculation Schemes 

 One issue that arises in the iterative procedure with the refinements is that it 

requires basic numerical computation of summation and deduction. This may not be 

significant for the matrix problem, for example if A*a+x1*A*b is desired, because the 

computation is explicit with the known matrix, vectors, and value of x1. However, this 

issue is difficult to resolve for Monte Carlo simulations, because the simulation can be 

viewed as a continuous procedure, and explicit quantities are not available for 

computations. For instance, in one simple simulation, the refinements will introduce 

―negative‖ histories or particles that travel within the system. Thus, the contribution of 

this ―negative‖ particle to normal ―positive‖ regions can needs somehow to be 

determined. Therefore, schemes that allows to compute the net effects from both 

―positive‖ regular particles and imagined ―negative‖ particles are necessary. The 

calculation of the net-weight distribution is referred to as ―weight cancellation‖ in 

previous literatures. However, it seems that using the term ―net-weight‖ calculation is 

more appropriate since the purpose is not to obtain a result close to zero, which is the 

general meaning of cancellation. Therefore, ―cancellation‖ is only used in the following 
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discussion for consistency to name the methods described in the references as weight 

cancellation methods. These schemes could either be mesh-wise or point-wise depending 

on the design of the simulation. 

Point Detector Cancellation Scheme 

 In Ref. 35, a net weight calculation scheme similar to the point detector concept 

was proposed. Considering one single Monte Carlo simulation with N particles per 

generation, each particle possesses two weights, positive and negative, representing the 

two sets of different weights or flux distributions. Before starting the new simulation 

generation, N new points, which are treated as point detectors, are sampled randomly 

over the entire system. Thus, along with the simulation, each point detector records two 

net contributions from all the simulated particles with different sets of weights. After 

finishing the simulation, these point detectors will serve as fission sources for the next 

generation with renormalized weights accordingly. Since the positions of the point 

detectors are randomly determined, and they record all the contributions, this scheme 

computes the net-weight from positive and negative contributions exactly. However, the 

computational effort for point detectors is very high compared to other types of tallies. 

By using this scheme, N point detectors exist in the system within only one generation. 

Thus, the total computational expense is costly despite the accuracy of this net-weight 

calculation scheme. 

Mesh-wise Cancellation Scheme 

 Another set of net-weight calculation schemes is based on the mesh-wise tally 

proposed in Ref. 36 and 32. Basically, two sets of mesh-wise tallies, which are either flux 

tallies or fission density tallies, record the contributions for the two sets of weights 

carried by the simulated ―positive‖ and ―negative‖ particles. After each simulation 

generation, the two sets of mesh-wise tallies are used to represent the net weight or flux 
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distribution. Moreover, these two sets of mesh-wise tallies can be easily applied to 

summation and deduction. Therefore, the new fission sources for the next generation will 

carry the appropriate weights according to the mesh-wise weight distribution. In Ref. 36, 

the new fission sources are re-sampled evenly within the mesh with different weights. In 

Ref. 32, the fission sources are determined by the previous simulations. Only the weights 

are changed according to the mesh-wise tallies. This scheme is relatively easy to 

implement and the computational requirement is not too high. However, the accuracy of 

the mesh-wise tallies depends on the number of meshes or the size of meshes. For a fine 

mesh structure, this net-weight calculation is a good enough approximation, but it is 

computational intensive. For a coarse mesh structure, computational effort is reduced, but 

so is the accuracy. Thus, an optimal choice of the size of meshes is necessary to balance 

efficiency and accuracy. 

Exact Regional Weight Cancellation Scheme 

 Recently, Booth and Gubernatis
37

 proposed a new exact regional weight 

cancellation technique. Basically, the method combines the mesh-wise weight tally and 

point sources together to represent the weight or flux distribution. Essentially, one fission 

source generated after simulation can be treated as from either a flat fission density in the 

mesh or a changing fission density that represents the actual fission density. Therefore, 

with certain probability, the fission source will be preserved or deleted. If the fission 

source is deleted, it is treated as generated from the flat fission density. Thus, in order to 

maintain the entire weight contribution, the mesh-wise tally will record the contribution 

of this fission source. Together, the sets of fission sources and mesh-wise weights are 

used for the required computations.  

 According to the reference, this net-weight calculation scheme maintains all the 

information of the fission source distribution, so it is an exact scheme. In addition, the 
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required mesh structure is coarse, so no large storage is necessary for scheme. However, 

since this method has been proposed only recently, it has not been evaluated in this work. 

5.6 One-dimensional Two-group Monte Carlo Simulation Examples 

 In order to validate the modified power iteration method, two one-dimensional 

examples
38

 are used in this section. The examples are using two energy groups, which has 

not been tested before, to verify the applicability of the method for multi-group energy 

structure. Indeed, the concept of fundamental eigenfunction cannot be represented by any 

single group-wise flux distribution alone. Instead, the fission source distribution, which in 

simulations is treated as energy-independent once it is generated, is used to represent the 

eigenfunction. The mesh-wise net-weight calculation method is used in these examples 

with re-sampling sources in each mesh. The tally used is not a cell flux; instead, in order 

to contain all the energy-independent fissions, the fission density with collision estimator 
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DensityFission 
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   (5.33) 

serves as the mesh-wise tally. In Eq. (5.33), V is the mesh volume; N is the total number 

of particles per generation; i represents collisions taking place in the specific mesh; wi is 

the weight of a particle colliding; g represents the energy group the collision happens in; 

and νΣt is the average number of fission neutrons per fission times the total cross section 

for each collision. 

Single Region Example 

 The first example is a one-dimensional two-group nuclear system with only one 

type of fission material. Table 5.1 lists all the postulated information about this fission 

material. The system extends from -4.5cm to 4.5cm with vacuum boundary conditions on 

both ends. Two sub-regions, the left one (-4.5cm to 0cm) and the right one (0cm to 

4.5cm), are used to estimate the eigenvalues separately in order to obtain the quadratic 
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equation. Evenly distributed one hundred meshes are used for the flux estimate and mesh-

wise net-weight calculation. 

 

Table 5.1 Fissionable material information for one region example used for the 

modified power iteration method (Ref. 38) (cross-section in cm
-1

) 

Group 1 

Σt1 Σc1 Σf1 ν1 Σ1-1 Σ1-2 χ1 

1.0 0.05 0.05 3.0 0.1 0.8 1.0 

Group 2 

Σt2 Σc2 Σf2 ν2 Σ2-1 Σ2-2 χ2 

1.0 0.2 0.1 3.0 0.0 0.7 0.0 

 

 The simulation with the modified power iteration method employs 10,000 

particles per generation for 50 inactive generations and 100 active generations. For 

comparison, MCNP5 is used to obtain reference keff, with 50,000 particles per generation 

for 1,000 active generations after the convergence of the fission source distribution. 

Table 5.2 summaries the keff estimates from both methods. The results are consistent, 

which indicates the validity of the modified power iteration method. 

 

Table 5.2. Comparison of keff for one region example using the modified power 

iteration method (Ref. 38) 

MCNP5 Modified method Difference 

0.94386±0.00008 0.94401±0.00019 0.7σ 

 

 In addition to the estimates of the fundamental eigenvalue, the second eigenvalue 

is also obtained from the computation. The fission matrix method, which is also using 



75 

 

100 meshes, is used to obtain the reference result for comparison. Based on the previous 

discussion, this reference result is just an approximation, but still, it could indicate the 

applicability of the modified power iteration method for computing the second 

eigenvalue. Table 5.3 summarizes the comparison of k2, the results in which again agree 

with each other. 

 

Table 5.3. Comparison of k2 for one region example using the modified power 

iteration method (Ref. 38) 

Reference Modified method Difference 

0.71894 0.71907±0.00040 <0.3σ 

 

 Besides the comparisons of estimates of eigenvalues, the estimates of the 

fundamental and second eigenfunctions are also consistent with the reference. Figure 5.3 

shows the comparisons of the estimates of the total flux and group-wise fluxes from the 

modified power iteration method and MCNP5. By visual inspection, the curves seem 

consistent with each other. In order to quantify the consistency, Table 5.4 lists the 

fractions of meshes that have the relative distance within 1σ, 2σ, and 3σ combined 

standard deviations. Clearly, this distribution agrees well with a standard normal 

distribution, which again indicates the correctness of the method and the accuracy of the 

flux estimates. 
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Modified power iteration method with error bar

 

(a) Comparison of thermal fluxes 
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Modified power iteration method with error bar

 

(b) Comparison of fast fluxes 

-5 -4 -3 -2 -1 0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

-3

Position

F
lu

x

 

 

MCNP5

-5 -4 -3 -2 -1 0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

-3

Position

F
lu

x

 

 

Modified power iteration method with error bar

 

(c) Comparison of total fluxes 

Figure 5.3. Comparisons of reference fluxes and computed fluxes for the 

fundamental eigenmode for one region example using the modified power iteration 

method (Ref. 38) 

 



77 

 

Table 5.4. Fractions of relative distances in combined standard deviations for one 

region example (in %) using the modified power iteration method (Ref. 38) 

 Fast flux Thermal flux Total flux 

Within 1σ 67 72 67 

Within 2σ 92 95 93 

Within 3σ 99 100 100 

 

 In addition to the estimate of the fundamental flux distribution, the estimated 

second eigenfunction is also available. Figure 5.4 shows the estimated total flux and 

group-wise fluxes with a reference result from the fission matrix method. This reference 

is only for total flux, because the computation is based on all the simulated particles. Also, 

the magnitudes in Figure 5.4 have been renormalized according to the sum of squares of 

mesh-wise tallies (L2 norm). Therefore, only the shapes of these estimates are of interest. 

Again, good agreement may be obtained. 
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(c) Estimate of the fast group     (d) Estimate of the thermal group 

Figure 5.4. Comparisons of reference fluxes and computed fluxes for the second 

eigenmode for one region example using the modified power iteration method (Ref. 

38) 

 

Multiple Regions Example 

 The next example is still one-dimensional, but includes multiple regions with 

different materials. The system again extends from -4.5cm to +4.5cm with three regions 

and vacuum boundary conditions: one fissionable region in the middle (-3.0cm to +3.0cm) 

and two non-fissionable regions left and right (-4.5cm to -3.0cm and +3.0cm to +4.5cm). 

The structure of this example is shown in Figure 5.5. The fissionable material used is the 

same as in the previous example, with all information listed in Table 5.1. In addition, 

Table 5.5 shows the required information for the non-fissionable material. This example 

is trying to mimic the situation for a multiplying system with a reflector outside, although 

the specified cross-sections are not quite realistic. 
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Figure 5.5. Geometry structure of multiple regions example used for the modified 

power iteration method (Ref. 38) 

 

Table 5.5 Non-fissionable material information for multiple regions example used 

for the modified power iteration method (Ref. 38) (cross-section in cm
-1

) 

Group 1 

Σt1 Σc1 Σf1 ν1 Σ1-1 Σ1-2 χ1 

1.0 0.05 0.0 0.0 0.05 0.9 0.0 

Group 2 

Σt2 Σc2 Σf2 ν2 Σ2-1 Σ2-2 χ2 

1.0 0.1 0.0 0.0 0.0 0.9 0.0 

 

 MCNP5 is used to provide a reference keff from one simulation with 50,000 

particles per generation for 1,000 generations after convergence. The Monte Carlo 

simulation with the modified power iteration method employs 10,000 particles per 

generation for 100 active generations after 50 inactive generations. Table 5.6 summarizes 

the results of the comparison, which are again consistent. The comparisons of the flux 

estimates are shown in Figure 5.6, from which the agreements can be observed. Moreover, 

the different shapes of the flux distributions in different energy groups are because of the 

geometry structure. 
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Table 5.6. Comparison of keff for multiple regions example using the modified power 

iteration method (Ref. 38) 

MCNP5 Modified method Difference 

0.90898±0.00009 0.90878±0.00029 0.7σ 
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Modified power iteration method with error bar

 

(a) Comparison of thermal fluxes 
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(b) Comparison of fast fluxes 
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(c) Comparison of total fluxes 

Figure 5.6. Comparisons of reference fluxes and computed fluxes for the 

fundamental eigenmode for multiple regions example using the modified power 

iteration method (Ref. 38) 

 

 In addition to these computations, the fission matrix method is again used to 

compute the second eigenvalue and eigenfunction as a reference. Table 5.7 lists the 

estimated k2 from the modified power iteration method and the fission matrix method, 

which are agreeing well with each other. Figure 5.7 shows the estimated second 

eigenfunction. Since the fission matrix method could only give the eigenfunction estimate 

based on the fission source distribution, it could not provide a valid estimate in reflector 

regions. Thus, Figure 5.7 does not include any reference results. Nevertheless, the 

agreement in k2 and physical shape of the eigenfunction suggest that Figure 5.7 could 

serve as reference for further verifications. 

 

Table 5.7. Comparison of k2 for multiple regions example using the modified power 

iteration method (Ref. 38) 

Reference Modified method Difference 

0.61943 0.61963±0.00063 <0.3σ 
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(a) Estimate of the total flux 

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Position

 

 

Estimate of the fast group

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Position

 

 

Estimate of the thermal group

 

(b) Estimate of the fast group     (c) Estimate of the thermal group 

Figure 5.7. Comparisons of reference fluxes and computed fluxes for the second 

eigenmode for multiple regions example using the modified power iteration method 

(Ref. 38) 

 

5.7 Convergence Acceleration Illustration 

 The previous examples demonstrate the capability of the modified power iteration 

method for estimating the fundamental and second eigenvalues and eigenfunction for 

one-dimensional problems. However, the acceleration capability is only illustrated with 

simple matrix problem, not actual Monte Carlo simulations. Indeed, the acceleration 

effect is more difficult to analyze due to several reasons. First of all, most codes calculate 

only the fundamental eigenpair. Secondly, the random noise associated with the modified 
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power iteration method is quite large compared to the conventional Monte Carlo 

simulations. Thirdly, choosing of an appropriate example, which possesses high 

dominance ratio, but a small k3/k1 ratio, is generally hard. Fortunately, other researchers 

have established some examples for the illustration purpose of the acceleration effect. 

This section will show one mono-energetic example from the literature followed by the 

multi-group problem. 

 In Ref. 32, the authors used a multi-region one-dimensional mono-energetic 

problem to illustrate the convergence acceleration. The advantage of the problem is that 

the first several eigenvalues have been computed using a deterministic Green’s function 

method in previous works
15

. The dominance ratio of this problem is k2/k1=0.993 and 

k3/k1=0.306. The flux distribution is estimated based on 901 meshes and they use the Eq. 

(5.34), the mean squared error, to represent the difference between the current estimated 

flux distribution and a converged flux distribution. In Eq. (5.34), Ψestimated(i) represents 

the estimated flux in i
th

 mesh, and Ψconverged(i) represent the converged flux in i
th

 mesh. 
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 The MSEs (noted as rms error in their example) for a simulation using the 

standard power iteration method and a simulation with the modified power iteration 

method are shown in Figure 5.8. The dash line shows the slow convergence of the 

conventional Monte Carlo simulation and the red line shows accelerated convergence 

using the modified power iteration method. Although the exact convergence rate is not 

listed in this example, clearly, the acceleration has been achieved by using the modified 

power iteration method. 
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Figure 5.8. Convergence acceleration example (Fig. 5 from Ref. 32) 

 

 Thus far, the acceleration has been demonstrated with this mono-energetic 

problem. The following part analyzes the two-group multi-region problem from the 

previous section. The reference converged flux distribution is again obtained from the 

MCNP5 simulation with 50,000 histories per generation for 1,000 generations after 

convergence. Another two simulations with 500,000 histories per generation with the 

conventional Monte Carlo method and the modified power iteration method are carried 

out, respectively, for comparison. The flux estimates after each generation, without the 

unstable results from the first few generations from these two runs are normalized and 

compared to the normalized reference flux distribution. Figure 5.9 shows the differences, 

in terms of the MSE in logarithmic scale. This figure clearly shows the convergence 

acceleration effect of the modified power iteration method compared to the conventional 

Monte Carlo method. The MSE between the flux estimates and the reference flux 
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distribution decreases faster for the modified power iteration method. Since this 

illustration example does not have a dominance ratio close to one, the gain from the 

acceleration is not so significant. However, this demonstration of the acceleration in this 

two-group example still verifies the capability of the modified power iteration method to 

accelerate convergence for multi-group or continuous energy problems. 

 

 

 

Figure 5.9. Convergence acceleration shown with MSE of the flux distribution in 

logarithmic scale using the modified power iteration method (problem size 9 MFP)  

 

 In order to demonstrate the acceleration effect even more clearly, all the cross-

sections for the same example are multiplied by a factor of two and four, respectively, to 

increase the optical dimension of the system (in mean free path units) and thus enhance 

the loosely-coupled property. Figure 5.10 shows the convergence acceleration with MSE 

of the flux distribution in logarithmic scale for both cases. 

 



86 

 

 

(a) Two times increased cross-sections (problem size 18 MFP) 

 

(b) Four times increased cross-sections (problem size 36 MFP) 

Figure 5.10. Convergence acceleration shown with MSE of the flux distribution in 

logarithmic scale using the modified power iteration method with increased  

cross-sections 

 

 Table 5.8 summarizes the fitted convergence rates for the above three cases for 

the conventional Monte Carlo method and the modified power iteration method. The 
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fitted convergence rate was obtained using the approximately linear portion of each curve, 

i.e., before the statistical noise becomes dominant. Additionally, the corresponding 

numbers of generations needed for the MSE to decrease by one order of magnitude (10 

times) is shown. As the dominance ratio increases, the convergence rates for both the 

conventional Monte Carlo method and the modified power iteration method decrease. 

However, the impact of the acceleration mechanism will be more significant when the 

dominance ratio approaches one. Given this fact, the total gain from the modified power 

iteration method is still a problem-dependent factor, but in all three cases it would take 

about between two and three times less iterations to achieve the same convergence level 

using the modified power iteration method. 

 

Table 5.8. Summary of the convergence acceleration effect 

Problem 

size 

Conventional Monte Carlo 
Modified power iteration 

method 

Speedup 

factor Fitted 

convergence 

rate 

Number of 

generations 

for the MSE 

decrease by 

10 times 

Fitted 

Convergence 

rate 

Number of 

generations for 

the MSE 

decrease by 10 

times 

9 MFP 0.686 6.1 0.333 2.1 2.90 

18 MFP 0.859 15.1 0.710 6.7 2.25 

36 MFP 0.947 42.5 0.874 17.1 2.49 

 

5.8 Recent Developments of Related Methods 

 Using the modified power iteration method and power iteration related schemes to 

accelerate the convergence of the fission source distribution has been a topic of interest 

over the past several years. The work presented in this dissertation along with efforts 

from other researcher has contributed to this topic significantly. Booth
39, 40

 has used 
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another similar scheme to primarily estimate the fundamental eigenpair with the 

convergence acceleration feature, and his testing examples with both matrix problems 

and MCNP runs have proved the capability of this scheme. The advantage of this scheme 

is that it does not explicitly estimate the second eigenpair. As a result, the net-weight 

calculation does not include any negative contributions. Therefore, this implementation is 

quite straightforward and easy to understand. One disadvantage of this scheme is that it 

lost the capability of estimating the second eigenpair, which may be crucial in some 

transient and safety analysis for reactor physics. Another point needing to be pointed out 

is that this scheme is not fully completed. Although the testing examples seem to be 

convincing, more derivations and demonstrations are still necessary to understand the 

applicability and limitations of this scheme. 

 Another method proposed by Booth
41

 is a superfast power iteration method. This 

method is still based on the previous modified power iteration method with further 

manipulations. In some situations, an ad hoc bounding condition is necessary to assist the 

convergence. As a result, the convergence rate could exceed that of the standard modified 

power iteration method. The improvement of this method is impressive, but the presented 

work is not quite sufficient to fully understand this method; more analysis and 

investigations are necessary. 

 Another modification of the power iteration method has been recently proposed 

by Booth
42

. This method does not include any negative particles, so the net-weight 

calculation issue does not exist. This new version requires a set of coefficients assigned 

to all estimation meshes and sets the estimate of eigenvalue to be equal within these 

meshes. As a result, a set of multi-variable equations is constructed. By solving these 

equations and applying the solutions as weights to the source points, this method could 

also accelerated the convergence, as shown in a simple one-dimensional problem in the 

reference. However, more investigation is still necessary to validate the method for 

complex problems and identify the gain out of this scheme. 



89 

 

5.9 Conclusions and Future Work 

 This chapter demonstrates the capabilities of the modified power iteration method 

as a power tool to accelerate the convergence of the fission source distribution and 

compute the higher eigenpairs in the same time. The theoretical foundation of the 

standard version and refinement version of the method are solid. Testing matrix problems 

have also verified the convergence acceleration and computational capability. One-

dimensional nuclear systems, either with single material or multiple regions of different 

materials, are used to illustrate the performance of the modified power iteration method. 

In addition, the application of this method is also successfully extended to two energy 

group problems as a demonstration of the applicability of the method for multi-group or 

continuous energy problems. This is a big step forward for the method to be used for 

practical problems. 

 Despite these achievements, some questions remain open to be answered as future 

works as following: 

1. Implementation of the modified power iteration method to two-dimensional or 

three-dimensional problems is still not available. Although the confidence of the 

method to be working for multi-dimensional problems is strong, implementation 

examples are still necessary to complete the applicability analysis of the method.  

2. The behavior of the variance estimate, both for the fundamental eigenpair and the 

second eigenpair, still needs more investigation. In general, the conventional Monte 

Carlo method gives an underestimate of the variance. The variance estimates in the 

modified power iteration method yet needs to be addressed.  

3. The recent developments and improvements based on the modified power 

iteration method may provide deeper understanding of this method. The analyses of 

these set of method should be combined together in order to determine the best 

scheme out of these similar candidate in terms of efficiency, robustness, and 

requirements. 
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4. The net-weight calculation with mesh structure is not practical for large scale real-

life problems since it requires fine mesh structure for the accuracy of the 

approximation. As a result, the requirements of the storage space will increase 

dramatically. Additionally, the estimate of the mesh tally also requires extra 

computational expense, which sometime is not desired. 

5. In order to determine the accuracy of the higher eigenpairs, other practical 

methods are desired to provide reference results for the higher eigenpairs, such as the 

second eigenvalue and eigenfunction. Development of this kind of methods is 

beneficial not only to the modified power iteration method, but also to the other 

nuclear engineering fields requiring the higher eigenpairs for analysis, such as 

transient analyses. 

The remaining portion of this thesis aims to attack these open questions and difficulties 

one by one. The next chapter is the current effort trying to at least partly resolve the last 

two points. 
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CHAPTER 6 

THE SOURCE POINTS PAIRING SCHEME FOR NET-WEIGHT 

CALCULATION OT OBTAIN THE SECOND EIGENMODE 

 

 This chapter aims to develop innovative approach for net-weight calculation, 

previously referred as cancellation, when the imaginary negative particles are present in 

the Monte Carlo simulations. Meanwhile, this chapter is also trying to provide some 

alternative way to compute the second eigenpair for nuclear systems using only the 

Monte Carlo method. 

6.1 Taking into Account the Negative Neutrons 

 The conventional Monte Carlo method used for nuclear engineering is trying to 

mimic the behavior of real neutrons, so apparently there should not be any ―negative‖ 

neutrons in the simulations. The neutron flux distribution should also be non-negative 

everywhere, which could be represented well by using simulated neutrons. However, the 

transient states, or higher harmonics of the nuclear system always have some negative 

regions. These functions may be represented using positive and imaginary ―negative‖ 

neutrons. These problems with deterministic methods are not as challenging as that with 

the Monte Carlo method because of the quantitative representations of the deterministic 

methods. To compute the net-contribution or net-weight from both positive and negative 

particles can be easily conducted by simple numerical computations. However, the 

process of the Monte Carlo method includes discrete and random source points, which 

makes the net-weight calculation difficult to conduct. 

 In previous chapter, several approaches to compute the net-weight are introduced. 

Some of them require point-detector like mechanism
35

 to fulfill the task, which is quite 

computational expensive when the number of particles used in each generation is large. 
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Other approaches require a mesh-wise flux or fission density distributions
32, 36

 to 

represent the contributions from either positive or negative particles. As a result, the net-

weight calculation is conducted by numerical computation based on the mesh tally 

structure. Since these approaches are using approximate distribution estimate, the 

successes of these approaches highly depends on the mesh structure. Only fine mesh 

could give an accurate approximation in order to achieve accurate results. Thus, storage 

requirements and computational cost are both increasing along with the complexity of the 

nuclear system. Further development 
37

 using combination of source points and mesh-

wise estimates could relax the fine mesh requirements, but even with this improvement, a 

coarse mesh structure is still necessary for the net-weight calculation purpose. Other data 

process techniques such as the histopolating splines
43

 method could also be used based on 

the mesh-wise estimates, and provide a more accurate result than the simple histogram 

estimates with a coarse mesh structure.  

 Recently, the kernel density estimator
44

 is used for the net-weight calculation by 

Yamamoto
45

 in order to remove the mesh structure for the estimations. This approach 

attempts to use the kernel density estimator to accumulate the contributions for simulated 

particles, either positive or negative particles, and conduct the quantitative computations. 

Since choosing the kernel density is arbitrary, it still introduces some level of 

approximations. Fortunately, a well chosen kernel density could lead to acceptable level 

of accuracy for practical applications. Yamamoto also pointed out that the functional 

expansion tally method
46

 could also be used as an alternative tool to estimate the 

distributions, although no direct implementation is available at this point. 

 Indeed, Monte Carlo simulations with negative particles are not a totally new 

aspect. Some attempts have been carried out to deal with negative particles in other fields 

such as in chemistry. The eigenvalue problem nuclear engineers are trying to solve using 

the Monte Carlo method is similar to the eigenvalue problems that chemists are trying to 

solve for simple symmetric Bose or antisymmetric Fermi systems. The ground state of a 
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symmetric Bose system just corresponds to the fundamental eigenmode in a symmetric 

nuclear system, which is an everywhere non-negative symmetric function. Therefore, a 

simple Monte Carlo approach
47

 is capable to solve for this ground state. However, when 

one is interested in the first excited state of a symmetric Bose system or the ground state 

of an antisymmetric Fermi system, which include both positive and negative values for 

the functions, the imaginary negative particles have to be taken into account in the Monte 

Carlo simulation. In Ref. 48, the authors provided their perspectives and possible 

solutions for this kind of problems, which is the foundation of the following extensions. 

6.2 Pairing Net-Weight Calculation 

 The following analysis focuses on only one-dimensional problems, but the 

concept is applicable to multi-dimensional problems. However, the implementation may 

vary for one-dimensional and multi-dimensional problems. The general form of the 

eigenvalue problem is described in Chapter 1 from Eq. (1.5) to Eq. (1.7). For 

convenience, Eq. (6.1) shows the function that eigenvalues ki and corresponding 

eigenfunctions Ψi should satisfy 

iii kA   ,      (6.1) 

where  21 kk  is defined in order. Instead of estimating the fundamental 

eigenpair k1 and Ψ1 using the power iteration method, the eigenpair of interest in this 

chapter is the second one, k2 and Ψ2. For the simplicity of the description, two initial 

functions, Ψ
+
 and Ψ

—
, consisting of only the first two eigenfunction components are 

given as 

211
2

1
  a  and 211

2

1
  a .    (6.2) 

In this equation, the coefficient a1 is chosen such that both functions are everywhere 

positive. Therefore, the difference of these two functions is 

   2 ,     (6.3) 
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which is exactly the target eigenfunction in the computation. Thus, if the operator A is 

applied to Eq. (6.3), the resulting equation will be 

  222  kAA   .     (6.4) 

By applying the operator A iteratively to the difference, the estimates of the second 

eigenvalue and eigenfunction could be obtained just as the traditional power iteration 

method. If the two functions Ψ
+
 and Ψ

—
 initially have higher eigenmode components, 

they will be ―powered‖ out by the iterative method. The key feature here is that the 

operator A has to be applied to the difference as an entity. Calculating the AΨ
+
 and AΨ

—
 

separately and computing the difference will not give the desired answer because without 

effectively compute the difference, each one will converge to the fundamental eigenmode 

eventually. 

 Assuming the two functions Ψ
+
 and Ψ

-
 are represented with discrete points 

instead of analytical expression, the calculation of the difference have to be conducted 

with separate points. To illustrate the pairing scheme, one simple one-dimensional 

problem without boundaries is considered, which consists of a uniform absorber with 

Σt=1.0 cm
-1

. Neutrons could only travel in either positive or negative direction; in other 

words, the system has bi-directional angular dependence. One positive point source is 

located at x1= -1 cm and another negative point source is located at x2=+1 cm. Although 

x1 and x2 are symmetric around zero in this example, the symmetry property is not 

necessary in general. The collision density distribution or the absorption density 

distribution for this pure absorber example, corresponding to positive particles from the 

positive source at x1= -1 cm is 

1-

2

1
)(

xx
exf
  .      (6.5) 

Similarly, the collision density distribution corresponding to negative particles from the 

negative source at x2=+1 cm is 
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2

2

1
)(

xx
exf

  .      (6.6) 

10,000 collision positions each are sampled according to these two density distributions. 

Figure 6.1 shows the histogram of the two sets of samples in the neighborhood of the 

two point sources. Although the Figure 6.1(b) shows the counts as positive numbers, the 

collision should still be regarded as ―negative‖ collisions, and treated in the opposite way 

to the positive collisions. Clearly, these histograms represent the shapes of the 

corresponding density distributions. 
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(a) Histogram of the collision position samples for positve particles 
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(b) Histogram of the collision position samples for negative particles 

Figure 6.1. Histograms of the collision position samples (Ref. 49) 

 

 Therefore, the combination of these two histograms gives the shape of the net 

collision distribution when taking the sign of counts accordingly. Figure 6.2 shows the 

combined histogram, which contains both positive and negative count numbers. When 

the x coordinate of a collision is smaller than zero, the probability to have a positive 

collision is higher than the probability to have a negative collision because the position is 

closer to the positive source position. As a result, the combined histogram has positive 

counts in this region. A similar argument also applies to the position larger than zero. 

When the collision position is around zero, the middle of the positive and negative point 

sources, the probabilities to have either a positive or a negative collision are theoretically 

the same. Thus, the number of expected counts at positions around zero is almost zero, or 

relatively small compared to other positions. One more point still needs to be emphasized 

is that this histogram only represent the shape of the net collision distribution; the number 

of counts could change according to the initial number of samples. 
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Figure 6.2. Combined histogram of the collision position samples (Ref. 49) 

 

 In addition to the above first sampling, then combining procedure, one could 

actually reverse the procedure to find the shape of the net collision density distribution. 

From Eq. (6.5) and (6.6), the combined collision ―density distribution‖ is 

21

2

1

2

1
)()(

- xxxx
eexfxff

  .     (6.6) 

This equation does not represent the conventional density distributions because the 

function has both positive and negative parts. However, it is still appropriate to represent 

the collision densities in this example. Figure 6.3 shows these functions of positive 

collisions, negative collisions, and combined collisions. The combined function in Eq. 

(6.6) is positive when x is smaller than the middle of the two point sources, in this case 

zero; and the function is negative when x is larger than zero. This sign is again 

determined by the relative distance between the collision position and the point sources: 
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when the collision is closer to the positive point source, the collision should be regarded 

as a positive collision. 
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Figure 6.3. Collision density functions for collisions from positive, negative, and 

combined sources (Ref. 49) 

 

 In order to sample the combined collision appropriately, the absolute value of the 

function in Eq. (6.6) is taken to serve as a converntional density distribution after 

renormalization using a certain number C, as shown in Eq. (6.7). 

21

2

1

2

1

C

1 - xxxx
eef

       (6.7) 

As a result, collision positions could be sampled from this density distribution. In 

addition, the type of the collision, either positive or negative, will be determined again 

according to its relative position to the positve and negative point sources, as before.

 The above sampling technique is called a pairing mechanism. Instead of first 
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taking samples from two density distributions and calculating the difference, the collision 

positions are sampled after the combination of density distributions with paired point 

sources. By reversing the order of actions, this pairing mechanism is actually capable to 

achieve the previous goal for the net-weight calculation: taking the difference in Eq. (6.4) 

as an entity first, and applying the operator A, in this case sampling collision positions, to 

the difference of Ψ
+
 and Ψ

—
, in this case the two density distributions, f

+
(x) and f

—
(x). 

 The efficiency of the sampling depends on the distance between the positive and 

negative point sources. For example, if the positive and negative point sources are located 

at the same position, ideally, the net-weight from the collision should be everywhere zero. 

With the previous taking samples and calculating differences procedure, certain number 

of collision positions has to be sampled first, and the difference histogram will oscillate 

around zero, not exactly zero. On the other hand, using the pairing scheme, the computed 

combined density distribution is everywhere zero. No further sampling procedure is 

necessary at all to determine the net-collision density. This extreme example illustrates 

the improvement of the efficiency, and also accuracy to some extent. Figure 6.4 shows 

another comparison with positive and negative point sources located at ±0.1 cm and ±

10.0 cm, respectively. The combined density distribution in Figure 6.4(b) is almost the 

same as the individual density distribution. Therefore, the pairing scheme does not gain 

much compared to no pairing calculation for distant sources. The other case shown in 

Figure 6.4(a) on the other hand clearly shows the effect of the pairing mechanism in 

terms of the effective absolute area under the combined density distribution function. 

Thus, the net-weight calculation will be more effective in this case. To sum up, when the 

paired positive and negative point sources are close to each other, the pairing mechanism 

is more efficient for Monte Carlo simulations than when the paired sources are far from 

each other. 
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(a) Sources located at ±0.1 cm 
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(b) Sources located at ±10.0 cm 

Figure 6.4. Comparison of collision density functions of different point source 

positions (Ref. 49) 
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6.3 Issues and Adjustments Prepared for Application to  

Symmetric One-Dimensional Problems 

 In order to apply the pairing mechanism to one-dimensional problems, several 

issues or related adjustments have to be clarified first. 

Changes to Conventional Monte Carlo Simulations 

 Unlike the conventional Monte Carlos simulations, which have only one set of 

sources as the source bank after each generation, the pair scheme requires two sets of 

sources, one containing only positive source points and the other containing only 

negative source points, after each generation. The pairing and sampling technique is 

applied once to determine the first collision position and the type of collision, either 

positive or negative. After that, the conventional Monte Carlo simulation resumes to 

determine the reaction at this collision position and the following traveling and reaction 

of this simulated history until it is terminated. If the simulated particle causes any fission 

reaction, the fission position will be recorded in the corresponding source bank. 

 The number of collision points sampled from one pair is no longer exactly one. 

Actually, this number depends on the initial weight of the source points and the effective 

area under the combined density function. Due to this combination, it is most likely that 

the number of collisions is smaller than one; therefore, weight adjustment has to be 

performed after each generation to maintain the same total weights to initialize each 

generation. 

Sorting the Source Positions 

 Based on the efficiency argument in the previous section, it is highly desired to 

pair the closest positive and negative point sources. However, this desire may not be 

feasible in general. Arnow investigated several pairing schemes
50

 by comparing their 

effectiveness and efficiency. It turns out for one-dimensional problems, sorting the 
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positive sources and negative sources separately, and pairing one positive source with 

one negative source by the order would be one effective choice for the pair mechanism. 

For example, two sets of sources, both positive and negative, have five sources each, as 

shown in Figure 6.5. The relative positions of these sources are illustrated according to 

their true positions. Therefore, the arrows are indicating the pairs according to their 

orders used under this framework. 

 

 

Figure 6.5. Sorting and pairing example (Ref. 49) 

 

 This sorting and pairing scheme requires extra computational cost apparently. The 

quicksort algorithm is used in this dissertation to finish the one-dimensional sorting 

problem. The complexity of this algorithm is expected to be O(NlogN) in average, where 

N represents the number of elements in the set. Despite the capability of this sorting and 

pairing scheme for one-dimensional problems, it may not be suitable for multi-

dimensional problems. In multi-dimensional cases, no explicit criterion could be relied on 

in terms of organizing the pairs. Speculation of one possibility to resolve this difficult is 

using certain optimization algorithm to minimize the total distance within all pairs. 

However, this dissertation only addresses only one-dimensional geometries. 

Angular Dependence 

 The previous example using only two point sources assumes that the simulated 

neutrons travel bi-directionally. In other words, neutrons either travel along the positive 

direction or the negative direction. Therefore, for one-dimensional problems with bi-
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directional angular dependence, the same procedure can be easily applied. When the 

angular dependence changes to a general one-dimensional case, the sampling procedure 

becomes more complicated. In general, the cosine of the angle between the travelling 

direction and positive direction, denoted by μ, needs also to be determined in the 

sampling procedure. Figure 6.6 is an illustration of this sampling procedure. After 

pairing two point sources, μ is sampled first, before the sampling of the collision position. 

Then, the direction axis is rotated around the mid-point of the source pair from the 

original solid line to the dash line according to μ. The positive and negative point sources 

are projected to rotated direction as shown in the figure. The sampling procedure then is 

conducted along this rotated direction with the projections of the point sources. For 

instance, a collision position is sampled as the small dash circle in the figure, so it will be 

back-projected to the original direction as the resulting collision position, denoted with 

the large dash circle, in the one-dimensional problem. The sign of this collision position 

is determined the same way as for bi-directional case. By using this rotation, projection, 

and back-projection technique, the sorting and pairing mechanism could be applied to 

angular dependent one-dimensional problems. 

 

 

Figure 6.6. Illustration of the sampling procedure with angular dependence (Ref. 49) 
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Source Renormalization 

 Due to the statistical feature of the Monte Carlo method, the number of positive 

and negative source points is generally not the same. However, the pairing scheme 

requires one-to-one pairing. Therefore, adjustment is necessary for the pairing scheme to 

work. Let us assume that after one generation, the positive source bank contains n1 

positive sources and the negative source bank contains n2 negative sources. Without 

losing generality, here n1 is assumed to be larger than n2. Therefore, n1- n2 sources are 

randomly picked out from the positive source bank and discarded in order to make the 

numbers of sources in either bank the same. This re-sampling and discarding procedure 

does not introduce any bias to the simulation because of the randomness, the following 

renormalization and weight adjustments. Although this adjustment seems to work, it is 

not the optimal way to deal with the fission source renormalization. However, for now, 

this simple approach is used for the simplicity. 

Estimates of the Eigenfunction and Eigenvalue 

 The estimate of the eigenfunction still needs a mesh structure. However, this mesh 

structure is determined based on the objectives of the calculation. If one is only interested 

in the flux estimate in a certain region, a single mesh could obtain the desired estimation. 

Under the pairing framework, the positive and negative histories contribute to the tally 

estimates separately, using the collision estimator. The net flux estimate is calculated 

using the numerical computation based on the two sets of estimates, considering the sign 

of the weights contribution to the tally. 

 The estimate of the eigenvalue is more complicated. Only one set of contributions 

is recorded, using collision estimator for now, to estimate the eigenvalue. If one weight 

contribution is from a positive particle in a positive region, or a negative particle in a 

negative region, this weight contribution is considered positive. On the other hand, if one 

weight contribution is from a positive particle in a negative region, or a negative particle 
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in a positive region, this weight contribution is considered negative. In the end, the total 

net-weight contribution is recorded for further computation. Since the eigenvalue 

estimate requires some general knowledge of the simulated problem, i.e. of the positive 

and negative region, it may be more feasible to first roughly determine the boundaries 

separating these regions, in the inactive generations, and then appropriately reduce the 

regions’ size to effectively discard the contributions close to the boundaries in order to 

achieve better accuracy and smaller variance. In addition, the number of effective starting 

sources for one generation, which is the net number of source points in the eigenvalue 

estimate regions, should also be recorded before initializing each generation. With all 

these procedures, the estimate of the eigenvalue after one generation could be obtained by 

dividing the net-weight contribution in the tally region with the effective number of 

starting sources. 

6.4 Application to One-Dimensional Problems 

 With all the necessary issues and adjustments addressed in the previous section, 

the pairing net-weight calculation method is ready for computing simple one-dimensional 

testing problems. 

Uniform Mono-energetic Problem 

 The first one-dimensional example is mono-energetic with bi-directional angular 

dependence. The system extends from -4.5 cm to +4.5 cm, and only one kind of 

fissionable material is used to fill the system. The properties of this fissionable material 

are listed in Table 6.1. The simulation initially uses uniformly distributed 20,000 

particles per generation per, and is performed for 100 inactive generations and 400 active 

generations. The eigenfunction estimate is based on 100 equal-size meshes. For this 

simple example, it is well-known that the eigenfunction changes its sign at zero, so the 
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small region around zero, in this case chosen to be between -0.5 cm and +0.5 cm, is 

discarded for the estimate of the eigenvalue. 

 

Table 6.1. Properties of the fissionable material used for the mono-energetic 

example with pairing scheme (Ref. 49) 

Σt Σc Σs Σf ν 

1.0 cm
-1

 0.1 cm
-1

 0.8 cm
-1

 0.1 cm
-1

 3.0 

 Two pairing schemes are chosen to illustrate the efficiency of the net-weight 

calculation. The first one is the sorting and pairing scheme as described in the previous 

section. Figure 6.7 shows the second eigenfunction estimate under this pairing method. 

The estimate of the second eigenfunction is not renormalized because it is the shape one 

is trying to calculate. Figure 6.7(a) shows the contribution distribution for positive and 

negative particles, respectively, and Figure 6.7(b) shows the net-weight contribution 

distribution, which is a chopped-sine distribution as expected. 

 

  
 (a) Flux of the positive and negative particles, respectively, tallied over 100 meshes 
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(b) Estimates of the second eigenfunction without normalization 

Figure 6.7. Second eigenfunction estimate of the mono-energetic problem using 

sorting and pairing scheme (Ref. 49) 

 

 The comparison example uses a different pairing criterion. This time, choosing 

the pairs of positive and negative source points is random. In other words, each positive 

source point has an equal probability to be paired with a negative source point, without 

any preference. Except this difference, all the other parameters remain the same as in the 

previous run. Figure 6.8 shows the second eigenfunction estimate under this scheme. 

Compared to the Figure 6.7, Figure 6.8(b) shows a smaller absolute magnitude of the 

estimate as well as the large relative fluctuation. This difference is because of the low 

efficiency of the pairing scheme; the sorting and pairing scheme performs better. As 

stated before, Arnow shows other possible pairing
50

 criteria, among those, the sorting and 

pairing scheme is still the best of all in terms of efficiency. Therefore, in the following 

example, the sorting and pairing scheme is the only pairing scheme considered.  
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 (a) Flux of the positive and negative particles, respectively, tallied over 100 meshes 

 
(b) Estimates of the second eigenfunction without normalization 

Figure 6.8. Second eigenfunction estimate of the mono-energetic problem using 

random pairing scheme (Ref. 49) 

 

 For the estimate of the second eigenvalue, five repetitions/replicas are performed 

for comparison purpose. Table 6.2 lists all the second eigenvalue estimates along with 

computational times, and their average values with standard deviations across the replicas. 

The reference k2 is obtained using the previous modified power iteration method with 

50,000 particles per generation and 500 active generation after convergence. A fine mesh 

approximation with 100 equal-size meshes is used for the net-weight calculation. Another 

reference run with the conventional Monte Carlo method, with 20,000 particles per 

generation for 500 generations is used to illustrate the conventional computational time 

for this problem. Two replicas out of five have difference between their second 
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eigenvalue estimate and the reference result within two combined standard deviations, 

and the differences between the other three replicas and the reference results is within one 

combined standard deviation. The consistency demonstrates the capability and accuracy 

of the pairing mechanism for computing the second eigenvalue. Moreover, the 

computational time used for this pairing scheme in this case is comparable to the 

conventional Monte Carlo simulation. In other words, the price of this simulation is 

affordable in general. 

 

Table 6.2. Summary of the second eigenvalue estimates with computational time of 

the mono-energetic problem using pairing scheme (Ref. 49) 

  k2±1σ 

Computational 

Time 

Pairing method 

Replica 1 0.55962±0.00093 143.796s 

Replica 2 0.55834±0.00090 154.437s 

Replica 3 0.55744±0.00089 149.578s 

Replica 4 0.55896±0.00086 142.968s 

Replica 5 0.55857±0.00092 142.078s 

Average 0.55859±0.00036 149.695±2.402s 

Modified power 

method 

k2 reference 0.55773±0.00013 -- 

Conventional 

Monte Carlo 

k1 reference -- 118.906s 

 

 In addition to the estimate of the second eigenfunction and eigenvalue, another 

issue about the number of effective sources needs to be addressed as well. The net 
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number of effective sources is smaller than the initially specified 20,000 in this example. 

However, the determination of the adjusted weights for each point source is still 

according to the 20,000 rather than the number of effective sources. Since the estimate of 

the eigenvalue is a ratio, this adjustment does not bias the results, but it does impact 

efficiency. Therefore, understanding the impact of the number of effective sources is 

important, and requires more analysis in the future. 

Multi-region Two-group Problem 

 The second illustration example is more complex than the first one. Although it is 

still a one-dimensional system, it contains three regions filled with two kinds of materials, 

fissionable and non-fissionable. In addition, this example uses two energy groups instead 

of one in order to extend the applicability of this net-weight calculation method to more 

realistic problems. The properties of these materials, which are all arbitrary for 

illustration purpose, are summarized in Table 6.3. The system again extends from -4.5 

cm to +4.5 cm. The middle of the system, from -3.0 cm to +3.0 cm is filled with 

fissionable material, and the other part of the system is filled with non-fissionable 

material. This is actually the same system specification as used in Section 5.6. Finally, 

this example uses regular angular dependence for one-dimensional systems, rather than 

the bi-directional simplification. 
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Table 6.3. Material properties used in the two-group problem for the pairing 

scheme (all macroscopic cross sections in cm
-1

) (Ref. 49) 

 Fissionable material 

Non-fissionable 

material 

 Group 1 Group 2 Group 1 Group 2 

Σt 1.0 1.0 1.0 1.0 

Σc 0.05 0.2 0.05 0.1 

Σf 0.05 0.1 0.0 0.0 

ν 3.0 3.0 -- -- 

Σinscatter 0.1 0.7 0.05 0.9 

Σoutscatter 0.8 0.0 0.9 0.0 

χ 1.0 0.0 -- -- 

 

 As in the previous example, five repetitions/replicas are simulated with 20,000 

particles per generation per set initially for 100 inactive generations and 400 active 

generations to estimate the second eigenvalue. A reference result is obtained by using the 

modified power iteration method for 20,000 particles per generation for 400 generations 

after convergence. All these second eigenvalue estimates are summarized in Table 6.4 

along with some of the computational times. A conventional Monte Carlo simulation 

with 20,000 particles per generation for 400 generation is carried out for the comparison 

of the computational time. This time, all five replicas give estimates of the second 

eigenvalue within one combined standard deviation from reference result. This 

comparison indicates the capability and applicability of the pairing net-weight calculation 

method to estimate the second eigenvalue. In addition, the computational time is again 
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comparable to the conventional Monte Carlo method, which illustrates the efficiency of 

this method in terms of computational requirements. 

 

Table 6.4. Summary of the second eigenvalue estimates with computational time of 

the two-group problem using pairing scheme (Ref. 49) 

  k2±1σ 

Computational 

Time 

Pairing method 

Replica 1 0.61958±0.00098 158.421s 

Replica 2 0.61969±0.00093 167.625s 

Replica 3 0.61998±0.00101 169.093s 

Replica 4 0.61925±0.00104 170.171s 

Replica 5 0.62089±0.00098 181.421s 

Average 0.61988±0.00028 169.346±3.667s 

Modified power 

method 

k2 reference 0.61963±0.00063 -- 

Conventional 

Monte Carlo 

k1 reference -- 287.359s 

 

 In order to compare the accuracy of the estimate of the second eigenfunction, one 

another run is simulated with 1,000,000 particles per generation per set initially for 500 

active generations after convergence. Figure 6.9 shows the eigenfunction estimates 

without and with renormalization using the pairing net-weight calculation scheme. The 

estimate shown in Figure 6.9(b) agrees with the previous calculation using the modified 

power iteration method, shown in Figure 5.7.  
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(a) Without renormalization 

 

(b) With renormalization 

Figure 6.9. Second eigenfunction estimate of the two group problem using sorting 

and pairing scheme 

 

 To quantify this agreement, the combined standard deviations are computed 

between the renormalized second eigenfunction estimate from this simulation and the 

reference simulation. The difference of the estimates in each mesh is then divided by the 
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combined standard deviations to provide the relative difference. Figure 6.10 shows this 

relative difference in the unit of combined standard deviation. Expect for several outliers, 

most of the differences are within 3σ interval. Considering the possible underestimate 

effect of the variance, the estimates of the second eigenfunction is quantitatively 

consistent with reference result. 

 

 

Figure 6.10. Relative differences in the unit of combined standard deviation of the 

two group problem using sorting and pairing scheme 

 

6.5 Conclusions and Future Work 

 In this chapter, an innovative approach using pairing net-weight calculation 

scheme to compute the second eigenpair of a symmetric system is proposed. With certain 

adjusted procedures, this method could be applied to the Monte Carlo method. The one-

dimensional testing examples give consistent estimates of the second eigenvalue and 

eigenfunction with reference results. Therefore, this chapter has demonstrated the 

capability, applicability, and accuracy of this net-weight calculation method for 

symmetric one-dimensional problems. This method could be used to compute the second 
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eigenpair to provide reference estimates for the validation of other methods, such as the 

modified power iteration method, in certain cases In addition, this method could also be 

integrated to the modified power iteration method as an effective net-weight calculation 

approach for further development. 

 Several other issues must be clarified or analyzed to fully understand this method. 

Although this method works for symmetric one-dimensional problems, to extend the 

applicability to multi-dimensional problems is not straightforward. As stated in the 

previous section, since there is no clear criterion for sorting the source points in a multi-

dimensional space, alternative approaches, perhaps using optimization theory, are 

necessary for the method to succeed. The source renormalization for each generation 

needs to be investigated further for the future implementation or improvement. The 

behavior of the variance may be totally different than in traditional Monte Carlo 

simulations because the estimate of the second eigenpair using solely the Monte Carlo 

approach is novel and different. Thus, the understanding of the variance will help the 

comprehension of the estimates. All of these aspects could be topic of a future work. 

Again, this chapter only reveals several of the advantages of this pairing net-weight 

calculation method, but more research has to be done in the future to support the 

development of this method for practical 3-D multi-group problems. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

 The Monte Carlo method is widely used to solve the criticality or eigenvalue 

problems in nuclear engineering. The computation of the fundamental eigenvalue and 

eigenfunction is based on the power iteration method which requires discarding certain 

number of generations (cycles) before the convergence is reached. Several difficulties 

arise along with using the Monte Carlo method for power iteration calculation. One of the 

difficulties is that the non-convergence period is hard to determine in general due to the 

statistical nature of the Monte Carlo method. Another difficulty is the slow convergence 

rate for loosely coupled systems, which requires large amount of computational effort. 

Therefore, the objective of this dissertation is trying to provide some perspective and 

develop novel approaches to overcome these difficulties. 

 In Chapter 3, the linear regression model is applied to cycle-wise mesh tallies for 

convergence diagnostics purpose. The significance level could be chosen to be between 

0.10 and 0.20 in common cases, and different levels have almost no effect on the 

diagnostics. Another parameter, the regression size, should be chosen according to the 

experience of users, as an acceptable convergence criterion. In the two test examples 

analyzed, this method shows the capability of providing diagnostics results comparable to 

or even more robust than other indicators, such as the entropy indicator, with 

appropriately chosen parameters. The attempt to remove the auto-correlation did not 

produce the expected results when applied to the same simulation examples; however, 

since theoretically it should provide improvement, this attempt should be carried on in 

future work. Other future work should include more testing examples to verify the 

applicability and limitations of this method. An automated mechanism is also desired to 

determine the optimal regression size and confidence level for any given systems. 
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 In Chapter 5, the modified power iteration method is explained and demonstrated 

with detailed mathematical derivations. The modified power iteration method is capable 

of computing the fundamental eigenpair as well as higher eigenpairs, such as the second 

eigenvalue and eigenfunction of a nuclear system. Meanwhile, it could also accelerate the 

convergence rate in order to reduce the computational cost for convergence. After a 

simple matrix test problem, and several one-dimensional mono-energetic problems, the 

modified power iteration method is successfully applied to solve one-dimensional two-

group criticality problems. The applicability of the method to multi-group problems 

indicates the potential of the method to be applied to real-life problems. Future work 

should include extending this method to multi-dimensional problems and investigating 

the variance estimate. Moreover, the presence of the negative histories opens a new 

question about how to calculate the net-weight contribution from both positive and 

negative particles. 

 Chapter 6 answers the question about the net-weight calculation using a pairing 

scheme, which combines the collision density distribution from each pair of positive and 

negative sources to sample the collision position. By using two source banks, the pairing 

scheme works with an iterative method to compute directly the second eigenvalue and 

eigenfunction for symmetric one-dimensional systems. However, the concept of the 

pairing scheme is not limited to symmetric problems; future work could aim to extend the 

method to general asymmetric systems. It could then serve as an effective net-weight 

calculation method as one component of the modified power iteration method in order to 

relax the requirement for mesh-wise net-weight calculation. Future work should include 

choosing an optimal pairing criterion for multi-dimensional problems and applying this 

method into the modified power iteration method for efficient simulations. 
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