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SUMMARY 

 

Environmental indicators are developed and evaluated to assess the impact of mobile 

sources on emissions, air quality and health outcomes. Single species and multipollutant 

indicators are discussed. Among single pollutants, CO, NOx and elemental carbon (EC) were 

chosen as indicators of mobile sources because emissions of these pollutants are largely 

attributed to mobile sources and ambient concentrations have a close response to the change 

in mobile source emissions. CO, NOx and EC were used in the construction of the integrated 

mobile source indicators (IMSI), a metric that contributes in multipollutant air quality risk 

analyses. 

The IMSI are simple to construct and calculate and demonstrate advantages over the 

use of single species. IMSI have stronger spatial representativeness, suggesting they are 

better indicators of the regional impact of mobile sources. They agree well with observed 

trends of traffic and they have stronger associations with emergency department visits for 

cardiovascular diseases (CVD), possibly due to their better spatial representativeness. The 

use of IMSI in epidemiologic modeling constitutes an alternative approach to assess the 

health impact of pollutant mixtures and can provide support for the setting of multipollutant 

air quality standards and other air quality management activities. 

The changes in the incidence of adverse CVD impacts as result of the change in 

indicators of mobile source activity were examined. Single and multipollutant indicators 

were compared, finding that a multipollutant framework is more consistent to understanding 

health risk from mobiles source emissions than using single species. 



 

xv 

The concept of indicator sets, which include a group of indicators and their 

relationships, along with associated attributes, facilitates a comprehensive analysis of the air 

quality chain, from emissions to ambient concentrations and to health outcomes. This 

proposed framework is of great utility for policy makers in the setting of cost-benefit analysis 

of air pollution reduction. 

Uncertainties in estimates of emissions were found the lowest and uncertainties in 

source impacts from receptor models were found the highest. The estimation of health 

benefits were found also highly uncertain. While consideration of uncertainties is important, 

they do not obscure the choice of selecting multipollutant indicators versus singles species as 

surrogates of mobile source impact on air quality, exposure and cardiovascular health. 

Four different methods were used to estimate long-term trends in secondary organic 

carbon (SOC) concentrations for use in epidemiologic studies and other applications. A 

regression method was found to be a simple and accurate approach to estimate SOC and 

primary OC (POC) from PM2.5 speciated data and gases concentrations. POC was found 

significantly associated with CVD in an epidemiologic model. 

A method to estimate the fraction of potassium attributable to biomass burning (Kb) 

was developed and evaluated. This method demonstrated that Kb is a more robust indicator of 

the source than total potassium. The use of Kb in a receptor model results in a lower fraction 

of PM2.5 apportioned to biomass burning and a greater fraction to mobile sources. The use 

of Kb in health studies can help to distinguish the potential impacts of biomass burning and 

mobile sources on CVD. 
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CHAPTER 1 INTRODUCTION 

 

The World Health Organization (WHO) estimates that two million people die 

prematurely per year as a result of air pollutants worldwide (WHO, 2006). In the United 

States (US), it is estimated that 160,000 cases of premature mortality in 2010 were prevented 

with reductions in particle matter (PM) and ozone (O3) from the 1990 Clean Air Act 

amendments (US-EPA, 2011). Air pollution is particularly important in developing countries, 

where resources for measurement and control are scarce and legislation is more flexible.  

The recognition that air pollutants have effects on health supported the establishment 

of the National Ambient Air Quality Standards (NAAQS) in the US in 1970 and similar 

legislation in other countries. Under the NAAQS, carbon monoxide (CO), nitrogen dioxide 

(NOx), sulfur dioxide (SO2), particulate matter (PM10 and PM2.5), ozone (O3) and lead (Pb) 

are recognized as criteria pollutants and their concentration limits are legislated. 

In particular, PM2.5 has been recognized as one of the pollutants with more adverse 

health effects (Brook et al., 2010; Pope et al., 2002; Pope et al., 1995). PM2.5 is emitted by 

multiple sources and formed in the atmosphere from conversion of gas into particle phase 

(Seinfeld and Pandis, 2006) resulting in a diverse chemical composition. Though it is not 

clear what components of the PM2.5 are more responsible for particular health effects (Bell 

et al., 2009; Franklin et al., 2008; Ostro et al., 2009), the carbonaceous fraction of the PM2.5 

has been associated with cardiovascular diseases and respiratory outcomes (Metzger et al., 

2004; Mohr et al., 2008; Peel et al., 2005; Peng et al., 2009).  

Elemental carbon (EC) is a primary pollutant directly emitted by the source and 

organic carbon (OC) is simultaneously emitted and formed in the atmosphere. Primary OC 
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(POC) is mainly emitted from fossil fuel combustion in mobile sources and biomass 

combustion (e.g., forest fires). Secondary OC (SOC) is formed in the atmosphere by 

photochemical reactions of volatile organic compounds (VOCs) of biogenic and 

anthropogenic origin followed by the condensation of reaction products onto particles (Kroll 

and Seinfeld, 2008).  At present, there is no measurement approach that definitively 

differentiates between POC and SOC, and different methods have been used to estimate SOC. 

Methods that rely on the use of tracer species of primary activity and secondary 

photochemistry formation include the EC tracer (Turpin and Huntzicker, 1991) and 

regression (Blanchard et al., 2008) methods.  Receptor models have also been used to 

estimate primary and secondary fractions in the PM2.5, notably Chemical Mass Balance 

(CMB) (Watson et al., 1984) and Positive Matrix Factorization (PMF) (Norris and 

Vedantham, 2008).  

Source apportionment studies have associated PM2.5 elemental carbon (EC) and 

organic carbon (OC) with combustion sources, such as vehicles and biomass burning (Kim et 

al., 2003; Lee et al., 2008; Marmur et al., 2006). Furthermore, the application of 

epidemiologic models using source contributions from receptor models has permitted the 

association of health outcomes with specific emission sources (Laden et al., 2000; Mar et al., 

2000). This approach has found that mobile sources, for example, are generally more closely 

associated with cardiovascular diseases than other primary sources (Sarnat et al., 2008). 

The likely adverse impact of mobile sources on health is due in part to the magnitude 

of these sources in urban centers, in addition to their composition. In the Atlanta area, for 

example, traffic emissions are estimated to account for 30% of the PM2.5, 84% of the NOx 

and 97% of the CO emissions (US-EPA, 2007). Results from source apportionment indicate 
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that the contribution of tailpipe mobile source emissions to ambient PM2.5 varies from 17 to 

26% and the total impact from mobile sources is likely larger considering that a significant 

amount of crustal material (i.e. Al, Si, Ca, Fe, K) originates from the re-suspension of dust 

due to vehicles (Kim et al., 2003, 2004; Lee et al., 2008; Liu et al., 2005). Formation of 

secondary species can contribute further (Docherty et al., 2008). 

Biomass burning also emits carbonaceous material (EC and OC) that can be difficult 

to apportion in heavy traffic impacted areas without the use of accurate source profiles. In the 

Atlanta area, biomass burning is estimated to contribute between 1.7 and 3.7 μg/m3 to PM2.5 

(6-22% of total PM2.5 mass) (Kim et al., 2003, 2004; Lee et al., 2008; Liu et al., 2005). The 

upper limit is likely an overestimation of the real source impact due to the use of potassium 

(K) in the apportionment of PM2.5. Potassium has multiple emission sources (e.g., wood 

smoke, soil dust, sea salt, coal fire, industry and meat cooking) (Andreae, 1983; Watson and 

Chow, 2001; Watson et al., 2001) that can impact factor analysis receptor modeling. 

Air quality management involves multiple tasks with different levels of complexity 

from the estimation of emissions from sources, analysis of ambient concentrations, 

assessment of exposure to air pollutants, and evaluation of health and ecosystem effects. A 

quantitative evaluation at every step is an important task for policy makers in order to show 

that specific policy decisions have produced the desired benefits, i.e. the accountability 

paradigm.  However, the intended outcomes are not always quantifiable, or even observable. 

As a result of that limitation, surrogate measures of the environmental impacts are typically 

used as indicators of the range of outcomes experienced. 

 



 

4 

Environmental indicators, as defined by EPA, are numerical values whose time trends 

represent the condition of the environment on a particular geographic location (US-EPA, 

2008). Bell et al. (2011) reviews environmental indicators related to human health at each 

step in the health system, from emissions through exposure and health endpoint. They 

conclude that indicators are useful for policy-makers and the general public to assess the state 

of the environment and the associated health and socio-economic impacts. They also 

comment on limitations of environmental indicators, such as the spatial and temporal 

representativeness of single pollutant indicators, and the lack of consideration to the 

simultaneous exposure to multiple pollutants.  

Environmental indicators are often linked to health in the form of health outcome-

based indicators. These indicators not only represent the state of the environment, but also 

describe their relationships to particular health outcomes (US-EPA, 2006), facilitating the 

evaluation of public health policy effectiveness as result of improvement in environmental 

conditions.  In this thesis, emission and health outcome-based environmental indicators are 

developed and evaluated for use in air quality and health studies. Different indicators are 

explored, from single to multipollutant, with the idea that indicators should be easy to 

calculate from readily available data and should be able to represent a range of outcomes 

associated with source emissions and policies (Figure 1.1).  

Indicators sets for single and multipollutant indicators are presented to facilitate their 

application in air quality management. Indicator sets include not only indicator values and 

uncertainties, but also relationships between indicators at different stages of the air quality 

chain, from emission to ambient concentrations to health outcomes. The attributes 

accompanied the indictor sets include type of information needed to estimate the indicator, 
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ease of use, range of validity or appropriate references. The indicator sets are expected to be 

useful for policy makers who are interested not only in the value of the indicators, but also in 

their associated uncertainties and their applicability at other times and other regions. 

 

 

Figure 1.1 Proposed approach to developing and assessing outcome-based indicators and indicator 
sets. 

 

The thesis is organized as follows. 

Chapter 2: Comparison of SOC estimates and uncertainties from aerosol chemical 

composition and gas phase data in Atlanta. POC and SOC as indicators of combustion and 

photochemical activity are estimated and compared using four different methods: the EC 

tracer method, a regression method, PMF and CMB. Uncertainties for every method are 

calculated. SOC estimates are compared with the water soluble fraction of the OC, which has 

been suggested as a surrogate of SOC when biomass burning is negligible. Finally, total OC 
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and primary and secondary OC fractions are used in an epidemiologic model to assess 

differences in health outcomes. 

Chapter 3: Revising the use of potassium (K) in the source apportionment of PM2.5. A 

method to estimate the fraction of potassium associated with biomass burning (Kb) is 

evaluated based on a linear regression with iron. Temporal and spatial variability of Kb is 

explored over a period of six years in the Atlanta area. Kb is implemented in a receptor model 

to assess the changes in PM2.5 apportionment with respect to the use of regular K. Finally, K 

and Kb and biomass burning source impacts are used in an epidemiologic model to assess 

differences in health outcomes. 

Chapter 4: Development of outcome-based, multipollutant mobile source indicators. 

Multipollutant indicators of mobile source impacts are developed from readily available CO, 

NOx, and elemental carbon (EC) data for use in air quality and epidemiologic analysis. The 

development and assessment of Integrated Mobile Source Indicators (IMSI) are based on 

emission and health outcomes. The emission-based IMSI are derived from analysis of 

emissions such that pollutant concentrations are mixed and weighted based on emission 

ratios. EB-IMSI are developed and compared for Atlanta, GA and Dallas, TX. The health-

based indicators (HB-IMSI) are weighted combinations of pollutants that have the strongest 

association with health outcomes in an epidemiologic model in Atlanta. 

Chapter 5: Mobile source air quality impact indicator sets for policy utilization:  

evaluation and uncertainties. The analysis of long-term emission trends, pollutant 

concentrations, and concentration-response functions is used to develop a link between 

emissions and health outcomes for single and multipollutant indicators. The comparison of 

human health benefits (HHB) associated with CO versus NOx and EC suggests that emission 
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controls on gasoline vehicles have been more effective to improve public health than 

emission controls on diesel vehicles from 1999-2004. The evaluation of HHB using 

integrated indicators supports the previous finding. In addition, HHB estimated using IMSIs 

were found more consistent than using single indicators, possibly due to IMSIs being better 

surrogates of the source. Indicators sets for single and multipollutant indicators are presented 

to facilitate their application on air quality management. 

Chapter 6: Conclusions and future research. Emission- and health-based multipollutant 

indicators for mobile sources were developed and evaluated using a novel approach. A 

framework to estimate human health benefits as a result of mobile source emission controls 

was proposed using indicators. Indicators sets were developed to assist with the application 

of indicators in other regions. Although this dissertation was focused on mobile sources, 

methods developed here can be extended to other sources. 
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CHAPTER 2 COMPARISON OF SOC ESTIMATES AND UNCERTAINTIES FROM 

AEROSOL CHEMICAL COMPOSITION AND GAS PHASE DATA IN ATLANTA 

(Pachon, J. E., Balachandran, S., Hu, Y., Weber, R. J., Mulholland, J. A. and Russell, A. G. 

Atmospheric Environment 44, 3907-3914, 2010). 

 

2.1.  Abstract 

In the Southeastern US, organic carbon (OC) comprises about 30% of the PM2.5 mass. 

A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC 

and uncertainties are necessary in the evaluation of air quality policy effectiveness and 

epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and 

respective uncertainties are compared utilizing PM2.5 chemical composition and gas phase 

data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the 

regression methods, which rely on the use of tracer species of primary and secondary OC 

formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, 

chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance 

equations to estimate primary and secondary fractions based on source profiles and 

statistically-derived common factors, respectively. CMB had the highest estimate of SOC 

(46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC 

uncertainties, estimated based on propagation of errors, led to the regression method having 

the lowest uncertainty among the four methods. We compared the estimates with the water 

soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass 

burning is negligible, and found a similar trend with SOC estimates from the regression 

method. The regression method also showed the strongest correlation with daily SOC 
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estimates from CMB using molecular markers. The regression method shows advantages 

over the other methods in the calculation of a long-term series of SOC estimates. 

2.2.  Introduction 

In the Southeastern US, OC comprises approximately 30% of the PM2.5 mass. OC can be 

of both primary and secondary origin. Primary OC (POC) is mainly emitted from fossil fuel 

combustion in stationary, area and mobile sources, and biomass combustion (e.g., forest 

fires). In Atlanta, the major sources of POC are motor vehicles and biomass burning (Lee et 

al., 2007; Zheng et al., 2002). Secondary OC (SOC) is formed in the atmosphere by 

photochemical reactions of volatile organic compounds (VOCs) of biogenic and 

anthropogenic origin followed by the condensation of reaction products onto particles (Kroll 

and Seinfeld, 2008).  At present, there is no measurement approach that definitively 

differentiates between POC and SOC, though detailed speciation can identify specific 

components that would be dominantly primary or secondary.  Epidemiologic studies suggest 

differences in health outcomes associated with POC attributed to mobile and biomass 

burning sources, versus other OC, presumably SOC (Sarnat et al., 2008). 

Typically, as part of the Speciation Trends Network for example, OC in PM2.5 is 

measured on 24-hour filter-based samples, although greater resolution is possible using semi-

continuous in situ instruments (Solomon et al., 2000).  The amount of OC on the filters is 

quantified using thermal-optical techniques (Chow et al., 1993; Turpin et al., 2000). These 

techniques are designed to measure the total OC fraction, and do not distinguish between 

primary and secondary components. Since the formation of SOC leads to oxygenated, polar 

compounds, it has been suggested that the water soluble fraction of the OC (WSOC) is a 

surrogate for the SOC when biomass burning impact is negligible (Hennigan et al., 2008; 
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Weber et al., 2007). WSOC can be measured in the laboratory using PM2.5 filters and 

posteriori separation of the water soluble fraction or in-situ using a Particle Into Liquid 

Sampler (PILS) that captures particles in water from where the carbonaceous fraction is 

quantified using a Total Organic Carbon (TOC) analyzer (Sullivan et al., 2006).  

Summertime measurements in Atlanta find that WSOC is about 55-65% of total OC.  

Different methods have been used to estimate SOC. Methods that rely on the use of 

tracer species of primary activity and secondary photochemistry formation include the EC 

tracer and regression methods.  Receptor models have also been used to estimate primary and 

secondary fractions in the PM2.5, notably Chemical Mass Balance (CMB) and Positive 

Matrix Factorization (PMF). While estimates from chemical transport models (CTM) are 

available, simulated SOC values are viewed as highly uncertain, and likely biased (Eder and 

Yu, 2006; Tesche et al., 2006). Some studies have used organic molecular markers and 

specific compounds to separate the POC and SOC fractions (Zheng et al., 2006). Given that 

speciated organic compound concentrations are not widely available and that their 

measurement is resource intensive, methods that rely on typically available PM2.5 speciation 

and gaseous data are preferable. Such methods are used in this study to construct multi-year 

time series of pollutants for epidemiologic analysis and air quality policy effectiveness 

studies. 

Estimates of SOC in Atlanta vary between methods and have focused on different 

periods of time from one or two months during summer and winter to three years (Blanchard 

et al., 2008; Lee et al., 2008b; Lim and Turpin, 2002; Marmur et al., 2005; Zheng et al., 

2007; Zheng et al., 2002). These studies have defined uncertainties in the SOC estimates as 

the standard deviation of the mean, with the exception of Blanchard et al., (2008) who 



 

14 

estimated uncertainties as one-half the range from alternative regressions. The standard 

deviation represents a good measure of the variation in SOC estimates but does not consider 

the different types of uncertainties involved in the SOC calculation (e.g. ambient 

measurements, source profiles, regression coefficients, primary ratios, fitting methods). Here, 

we assess and compare the uncertainty in the SOC estimates from four different methods, 

considering uncertainties in input datasets and methods. 

2.3.  Methods 

Nine-year time series of SOC concentrations and respective uncertainties are estimated 

using four methods: EC tracer (Turpin et al., 2000), regression (Blanchard et al., 2008), CMB 

(Watson et al., 1984) and PMF (Paatero and Tapper, 1994). The results are then compared 

under the following metrics in order to choose the most accurate estimate: uncertainties 

(lowest uncertainty preferred) estimated by propagation of errors (Bevington and Robinson, 

2003), seasonal estimates (summer SOC should exceed winter), day-to-day variability 

(smooth for a secondary pollutant), comparison with related work (i.e. molecular marker-

based CMB) and comparison with WSOC measurements (as a surrogate of SOC). 

2.3.1.  EC tracer method 

The EC tracer method consists of estimating a primary OC/EC ratio during periods 

when SOC is expected to be negligible (e.g. night, winter, overcast, clean background, 

minimal long range transport). 

                             POC = (OC/EC)p * EC + (OC)nc                                                   (2.1) 

                                        SOC = OC – POC                                                               (2.2) 
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Here (OC)nc is the non-combustion contribution to the OC, from sources such as vegetative 

detritus, tire wear and industrial processes. Equation 2.2 can result in negative values of SOC, 

in which case SOC is set to zero. 

 Typically, (OC/EC)p in Equation 2.1 is determined from the linear regression 

between OC and EC (e.g. Demming regression, (Saylor et al., 2006) over a long period of 

time, with the intercept determining (OC)nc. Alternatively, (OC/EC)p can be estimated from 

days when primary or secondary activity is more pronounced (such as in (Cabada et al., 

2004). For this study, the (OC/EC)p ratio was estimated in three steps: i) we selected days 

from 1999-2007 with low photochemical activity, defined as days with O3 (max 8hr average) 

concentration below the 25th percentile, O3<41ppb in summer and O3<20ppb in winter ii) we 

plotted time series of OC, EC, OC/EC, CO and O3 and identified days when primary activity 

was more pronounced (an example of this selection is shown in Figure 2.1) and iii) we 

computed averaged OC/EC ratios on those days, obtaining 1.7 for summer and 2.4 for winter. 

The application of a unique (OC/EC)p ratio for year-round estimates may not account for 

seasonal variation (Snyder et al., 2009). The larger winter value suggests an increased 

influence of biomass burning which has a higher OC/EC primary emissions ratio. Other 

studies in the area have found similar values for these ratios. Using time-resolved OC 

fractions in summer time for the estimation of SOC, Lim and Turpin (2002) found a ratio 

(OC/EC)P of 1.8 as reasonable and 2.1 as the upper limit. Using a multiscale air quality 

model over the United States, Yu et al (2007) found (OC/EC)p ratios for Atlanta of 1.76 in 

summer and 2.76 in winter. For this study, the EC tracer refers exclusively to the application 

of the method using summer/winter ratios. Variation of the (OC/EC)p ratio on time scales 

less than half a year is beyond the scope of this study. 



 

16 

 
(a) 
 

0

2

4

6

8

10

12

12
/1

12
/8

12
/1

5

12
/2

2

12
/2

9

1/
5

1/
12

1/
19

1/
26 2/
2

2/
9

2/
16

2/
23

C
O

 (p
pm

)  
E

C
, O

C
 (u

g 
m

-3
)

OC EC OC/EC CO

 
(b)  
 
Figure 2.1 Time series of primary and secondary species and OC/EC ratio during (a) summer 
2002 (b) and winter 2002.  During summer, the circled days have a decrease in O3 
concentrations, and high levels of OC, EC and CO, denoting a predominance of primary 
activity. For those days the average (OC/EC) ratio was 1.7. During winter, days with ozone 
concentrations below the 25th percentile had an average (OC/EC) ratio of 2.4. 
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The initial estimate of the uncertainty (σ) is calculated using propagation of relative 

errors.
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Here, the uncertainty in the EC and OC components was calculated using the procedure of 

Polissar et al (1998). Briefly, the uncertainty in the observed concentrations was set as the 

sum of the analytical uncertainty times the concentration plus one-third of the detection limit 

(DL) value. The uncertainty in the primary (OC/EC) ratio was defined as one standard 

deviation of the estimated ratios. The uncertainty in the secondary organic fraction was 

calculated by propagating the uncertainties in the POC fraction and the measured OC. 
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The root mean square average of the uncertainty for the POC and SOC estimates over the 

nine-year period of time is calculated as 

                                                     
∑

=
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21 σσ                                                               (2.5) 

where σij is the uncertainty in the ith parameter on the jth day, with a total of N days.   

2.3.2.  Regression method 

The regression method uses tracers of primary emissions (EC, 8-h average CO) as well as 

photochemical activity (8-h average O3, sulfate SO4, nitrate NO3) to determine POC and 

SOC. We modified this approach by adding potassium (XRF K from the SEARCH data) to 

identify POC from biomass burning which accounts for a large part of the POC in the 

southeastern US (Kim et al., 2003, 2004): 
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                       OC = a + b*EC + c*CO + d*O3 + e*lag(O3) + f*SO4 + g*NO3 + h*K       (2.6) 

                                                     POCo = b*EC + c*CO + h*K                                          (2.7) 

                                           SOCo = d*O3 + e*lag(O3) + f*SO4 + g*NO3                                          (2.8) 

 

The regression coefficients (a-h) are determined using least square fitting (LSF), and each 

coefficient is evaluated for its statistical significance. Here POCo and SOCo are initial 

estimates for each day. To guarantee that the sum of POC and SOC is equal to the observed 

OC, we distributed the initial estimates based on the mass fraction ratios.  

 

                                                      OC
SOCPOC

POCPOC
OO

O
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=                                         (2.9) 

                                                      OC
SOCPOC

SOCSOC
OO

O
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=                                        (2.10) 

On a year-round basis, multivariate regression of OC with EC, CO, K, SO4, NO3 and 

O3 led to an R2=0.65 (n=2921), suggesting common sources between OC and primary and 

secondary pollutants. In summer, regression of OC with EC, K, SO4, NO3 and O3 results in a 

slightly stronger statistical fit (R2=0.68, n=1476). The regression coefficient for NO3 was not 

statistically significant (p>0.05) and the independent term ‘a’ (in Equation 2.6) had the 

lowest significance; therefore, the regression was performed with an intercept of zero. In this 

case, the significance of secondary tracers, such as O3 (t-Stat=22.7, p<0.01), is comparable 

with primary tracers, such as EC (t-Stat=21.4, p<0.01). In winter, regression of OC with EC, 

CO, K, NO3 and O3 results in a stronger statistical fit (R2=0.78, n=1427) than the summer 

regression. The independent term ‘a’ and the SO4 regression coefficient were not statistically 

significant (p>0.05); EC (t-Stat=26.8, p<0.01) and K (t-Sat=13.6, p<0.01) were the most 
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significant coefficients, suggesting a strong impact of mobile sources and biomass burning 

on OC. Hereafter the regression method will refer to the application of the method using 

separate summer/winter regression results. 

 We calculate the uncertainty by propagating errors for every term in the regression 

method. The uncertainty in each regression coefficient (i.e. σb) was obtained from the 

standard error in the regression analysis and the uncertainty in the species concentration (i.e. 

σEC) was estimated using the procedure of Polissar et al (1998). The uncertainties were 

propagated to find daily uncertainties in POC and SOC: 

 

         (σPOC)2 = (σEC)2 *b2+ (σCO)2*c2+ (σK)2*h2 +(σb)2*EC2 +(σc)2*CO2 +(σh)2*K2        (2.11) 

  (σSOC)2 = (σO3)2*d2 + (σSO4)2*f2 + (σNO3)2*g2 + (σd)2*O3
2 + (σf)2*SO4

2 + (σg)2*NO3
2   (2.12) 

 

The average uncertainties for the POC and SOC estimates, over the nine-year period, are 

calculated using the root mean square average (Equation 2.5). 

2.3.3.  Chemical Mass Balance (CMB)   

To estimate the SOC fraction in the CMB model, we include six primary source profiles 

and four profiles that represent secondary species formation (Marmur et al., 2005). PM2.5 

components NO3, SO4, NH4, EC, OC, and metals Br, Al, Si, Ca, Fe, K, Mn, Pb, Cu, Se, Zn 

and Cr were used as fitting species. Primary source profiles used include gasoline vehicles 

(LDGV), diesel vehicles (HDDV), soil dust (SDUST), biomass burning (BURN), coal-fired 

power plants (CFPP) and cement production (CEM). Both BURN and LDGV have high 

fractions of OC in their source profiles (0.64 and 0.55 respectively). Profiles for components 

formed from atmospheric reactions are secondary ammonium sulfate (AMSULF), secondary 



 

20 

ammonium bisulfate (AMBSLFT), secondary ammonium nitrate (AMNITR) and other OC 

(OTHROC). CMB reproduces 91% of PM2.5 mass (R2 =0.90, n=2698, χ2 =3.39), 

apportioning 15% of the PM2.5 mass as ‘other OC’ which we take as the SOC fraction.  It is 

recognized that there are potential non-secondary sources of OTHROC, including vegetative 

detritus, and unapportioned primary organic carbon in this source (e.g., (Zheng et al., 2002) 

and therefore OTHROC may not include only SOC (Ding et al., 2008).  

Uncertainties in CMB source contributions are given by the model and were calculated 

using a weighted variance approach: 
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where fkj is the source profile of species j in source k, 
jkfσ is the uncertainty in the profile, gk 

is the source contribution of source k, 
ikgσ is the uncertainty in the contribution, and 

ijcσ is 

the uncertainty in the measured concentration cij. The uncertainty in the POC fraction was 

estimated by propagating the uncertainties in the organic carbon fraction of the primary 

sources (SDUST, BURN, HDDV, LDGV, CFPP, CEM) and the uncertainty in the SOC 

fraction was estimated propagating the uncertainties in the POC and the measured OC (such 

as in Equation 2.4). The average uncertainties for the POC and SOC estimates, over the nine-

year period, are calculated using the root mean square average (Equation 2.5). 

2.3.4.  Positive Matrix Factorization (PMF)  

We used EPA-PMF 3.0 (Norris and Vedantham, 2008) for our simulations and classified 

species in the input model based on the signal/noise ratio. Strong species for this study were 

NO3, SO4, NH4, EC, OC, Br, Al, Si, Ca, Fe, and K. Weak species were Mn, Pb, Cu, Se, Zn 
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and Cr. Since PM2.5 was included and classified as a total variable, the model assigns it as a 

weak species in order to not double count its importance (Reff et al., 2007). We used 10 

convergent runs and chose the run with the lowest error in the minimization of the mass 

balance equation. PMF reproduces 87% of the PM2.5 (R2=0.91, n=2931). To identify the 

optimum number of factors, we ran PMF with five, six and seven factors and obtained the 

best fit with six factors (soil dust, biomass burning, secondary sulfate, secondary nitrate, 

cement and mobile sources). The SOC fraction in PMF is calculated by adding the OC 

fractions in the secondary factors and the unidentified OC fraction, defined as the difference 

between measured and fit OC (Lee et al., 2008b). The procedure of Polissar et al. (1998) was 

used in this study to calculate uncertainties in the species concentrations. Briefly, for data 

below DL, the concentrations were replaced with the value DL/2 and the uncertainty was set 

as (5/6)*DL. For missing data, concentrations were replaced by the geometric mean and the 

respective uncertainty was set at four times that of this mean concentrations. PMF provides 

uncertainties in factor profiles (
jkfσ ), defined as the standard deviation of 100 bootstrapping 

runs. The uncertainty in factor contribution of species j (σij) is calculated as the product of 

the factor contribution (gik) times the uncertainty in the factor profiles.  

 

                                                                  ∑=
k

kifji g
jk

222 σσ                                              (2.14) 

Similar to CMB, POC uncertainty was propagated from the uncertainty in the OC fraction of 

primary factors (soil dust, biomass burning, cement and mobile sources). The uncertainty in 

the SOC estimate was propagated from the uncertainty in OC in the secondary factors 

(sulfate, nitrate) and the unidentified OC fraction. The average uncertainties for the POC and 
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SOC estimates, over the nine-year period, are calculated using the root mean square average 

(Equation 2.5). 

2.3.5.  Air Quality Data 

Aerosol chemical composition and gas phase data for this project were obtained for the 

Jefferson Street (JST) monitoring site, a mixed industrial-residential area near downtown 

Atlanta, GA (coordinates 33.7 N, 84.4 W and at an elevation of 275m above sea level) during 

the period 1/2/1999-12/31/2007. Sampling at JST is part of a larger study called the 

Southeastern Aerosol Research and Characterization (SEARCH) network. Further 

information on this study and characteristics of the network are found elsewhere (Edgerton et 

al., 2005, 2006; Hansen et al., 2003). PM2.5 monitoring includes daily 24-hour average 

measurements of ionic, carbonaceous and metal species concentrations. For the period, a 

total of 2937 days had valid data available. Data treatment of missing data and values below 

detection limits was performed as suggested by the network to ensure data quality (Hansen et 

al., 2003). A sample in which one or more major components were missing after the data 

treatment was discarded.  Samples from the 4th of July, New Years (12/31) and adjacent days 

were removed from the analysis to avoid unusual noise in the concentrations due to fireworks 

(e.g. unusually high K concentrations). Measurements of WSOC in Atlanta were available 

for 120 days in the summer of 2007 (5/17-9/20). The WSOC fraction was measured semi-

continuously using a PILS-TOC instrument at the roof of the Ford Environmental Science & 

Technology building at the Georgia Institute of Technology (GT). This site is approximately 

two miles away from the JST site. More information on the WSOC measurements can be 

found elsewhere (Hennigan et al., 2008; Sullivan and Weber, 2006). We found that OC 

measured with the continuous instruments at GT was higher than the OC measured at JST 
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(5.76 vs 3.97 ug-C m-3). Explanation for this bias includes the loss of semi-volatile 

compounds from the filters (Edgerton et al., 2005; Turpin et al., 2000) and the positive 

artifact in the use of semi-continuous analyzers associated with the low air volume sampled 

and instrumental blanks (Offenberg et al., 2007; Peltier et al., 2007). To estimate the amount 

of WSOC at JST, we adjusted the WSOC at GT using the OC ratio between both sites.  

                                         avgGT

JST
GTJST OC

OCWSOCWSOC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= *                                            (2.15) 

For the summer of 2007, the (OCJST/OCGT) ratio was 0.69, giving an estimated averaged 

WSOC value of 2.29 μg-C/m3 at JST (vs. 3.31 μg-C/m3 at GT).  

2.3.6.  Associations of SOC estimates with health outcomes 

Estimates of POC and SOC from the regression method were implemented in an 

epidemiologic model to evaluate the health impacts of different OC fractions. Cardiovascular 

diseases were chosen as the health endpoint for evaluation given that they have shown a 

significant association with OC in previous studies (Sarnat et al., 2008). The epidemiologic 

model is described in detail elsewhere (Metzger et al., 2004; Peel et al., 2005) and later in 

this dissertation (see Section 4.6).  

2.4.  Results 

 During the nine-year period, the average OC concentration in Atlanta was 4.09±2.25 

μg-C/m3 (± one standard deviation), with a summer (April-September) mean of 

3.90±1.80 μg-C/m3 and a winter (October-March) mean of 4.25±2.63 μg-C/m3. The higher 

OC value in winter in Atlanta is explained by an increase in mobile emissions and biomass 

burning activity (Lee et al., 2009; Zheng et al., 2002) accompanied by a decrease in the 

mixing layer.  
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2.4.1.  EC tracer method 

The EC tracer method estimates 1.51±1.36 μg-C/m3 (± root mean square of the 

uncertainty as defined in Equation 2.5) of SOC in summer (39% of OC) and 0.77±1.96 μg-

C/m3 in winter (18% of OC). The lower amount of SOC in winter is consistent with the SOC 

formation mechanisms and fewer emissions of biogenic VOCs, which are responsible for a 

large portion of SOC in Atlanta (Weber et al., 2007). The greater SOC uncertainty in winter 

(> 100% of the SOC) vs. summer (90% of the SOC) is explained by the higher uncertainties 

in the OC and EC species and the uncertainty in the primary (OC/EC) ratio during winter. 

The average of summer and winter estimates gives a SOC fraction of 1.19±1.71 μg-C/m3 

(29% of OC). 

2.4.2.  Regression Method 

The regression method estimates 1.70±0.80 μg-C/m3 of SOC (44% of OC) in summer 

and 0.76±0.60 μg-C/m3 of SOC (18% of OC) in winter. The SOC uncertainty is higher in 

summer given the larger concentrations and uncertainties in O3 and SO4 and the larger values 

of the regression coefficients. However, the amount of SOC is significantly lower in winter 

and the uncertainty represents 80% of the SOC value vs. 47% in the summer. The overall 

SOC uncertainty is driven by the estimate in winter, similar to the EC tracer method. The 

average of summer and winter estimates gives a SOC fraction of 1.25±0.71 μg-C/m3 (30% of 

OC). 

2.4.3.  Chemical Mass Balance and Positive Matrix Factorization 

We applied CMB and PMF with data from 1/2/1999 to 12/31/2007. The fit between 

measured and predicted OC was better in CMB (R2=0.99, n=2698) than PMF (R2=0.77, 

n=2931). The SOC estimates are 1.92±0.98 μg-C/m3 (46% of OC) in CMB and 1.12±0.87 
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ug-C m-3 (26% of OC) in PMF. Summer SOC estimates are higher in both methods 

(2.00±0.93 μg-C/m3 in CMB and 1.37±0.81 μg-C/m3 in PMF) with lower uncertainties. In 

winter, the uncertainty in the SOC estimate is a significant fraction of the SOC concentration 

(56% in CMB & >100% in PMF). In CMB, it is known that uncertainties in source 

contributions are more influenced by uncertainties in the source profiles than ambient 

measurement data (Lee and Russell, 2007). Uncertainties in PMF are driven by the 

uncertainty in the measured OC species.  

2.5.  Comparison of SOC estimates and uncertainties 

The four methods estimate SOC fractions between 1.12±0.87 and 1.92±0.98 μg-C/m3 

representing 26-46% of the OC respectively (Figure 2.2). CMB led to the highest estimate of 

SOC while the PMF led to the lowest. The EC tracer and the regression methods provided 

intermediate estimates of SOC.  The higher SOC estimate in CMB is explained by the 

inclusion of all unapportioned OC into one secondary source. The other-OC source in CMB 

is correlated with both biomass burning (R2=0.57) and mobile (R2=0.55) factors in PMF. 

This correlation can be explained in part by: i) the other-OC includes primary OC from 

unidentified sources (such as meat cooking and natural gas combustion) that may correlate 

with biomass burning and mobile factors in PMF, ii) SOC may be included in the biomass 

burning factor in PMF since carbon emitted during biomass burning is in some cases 

oxygenated and water soluble (Lee et al., 2008a), or in the mobile factor since OC emissions 

from traffic can potentially evolve into SOC (Robinson et al., 2007). The low estimate of 

SOC by PMF has been found in previous studies in the southeastern US (Lee et al., 2008b). 

Without use of detailed oxygenated species, PMF is not able to provide further information 

on SOC because of the colinearity of OC sources. 
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Figure 2.2  Comparison of the four estimates from 1999-2007. The EC tracer (n= 2932) and 
regression (n=2932) estimates include the use of summer/winter datasets with respective 
(OC/EC)p ratios and regression coefficients. For CMB (n= 2698) and PMF (n=2932) the data 
was not separated by season. Error bars denote the root mean square of the uncertainty in 
POC and SOC fractions estimated by a propagation of errors. 
 
2.5.1.  Uncertainties 

 The lowest uncertainty in the SOC estimate is found in the regression method and the 

highest is the EC tracer method (Table 2.1). The CMB uncertainties are comparable to the 

regression method, and if expressed as a fraction of the SOC concentrations they are even 

lower. The PMF uncertainties are significantly higher than the uncertainties in the CMB 

method. 
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Table 2.1 Comparison of SOC Estimates using four methods 
 

 EC Tracer Regression CMB PMF 
n (days) 2931 2931 2698 2931 
POC (μg-C/m3) 2.90 (2.04)a 2.84 (1.25)b 2.24 (0.41)c 3.18 (0.51)d 

SOC (μg-C/m3  ) 1.19 (1.71) 1.25 (0.71) 1.92 (0.98) 1.12 (0.87) 
SOC/OC 0.29 0.30 0.46 0.26 
σSOC/SOC 1.44 0.57 0.51 0.78 
CV 1.06 0.60 0.87 0.92 
Zero days of SOC 478 0 114 0 
Summer SOC (μg-C/m3) 1.51 (1.36) 1.70 (0.80) 2.00 (0.93) 1.37 (0.81) 
Summer SOC/OC 0.39 0.44 0.51 0.34 
σSOC/SOC 0.90 0.47 0.46 0.60 
Winter SOC (μg-C/m3) 0.77 (1.96) 0.76 (0.60) 1.84 (1.03) 0.86 (0.89) 
Winter SOC/OC 0.18 0.18 0.45 0.19 
σSOC/SOC 2.56 0.80 0.56 1.03 

a uncertainties in EC tracer method calculated with Equation 2.3-2.5; b uncertainties in the regression method 
calculated with Equation 2.5, 2.11-2.12; c uncertainties in CMB calculated with Equation 2.5,2.13; d 
uncertainties in PMF calculated with Equation 2.5,2.14. 
 

2.5.2.   Seasonal estimates 

In summer, the proportion of SOC estimated by the four methods is similar, with 

CMB having the highest and PMF the lowest fractions (Figure 2.3). In winter, CMB 

estimates are much higher than the other methods, indicating the likely inclusion of primary 

OC in this fraction and therefore, an overestimate of the SOC fraction. 
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Figure 2.3   Seasonal Estimates of SOC from 1999-2007. Units are μg-C/m3, for 
concentrations and uncertainties (defined as the root mean square average). 

 

2.5.3.   Day-to-day variability 

 During the summer 2002, the four estimates exhibit similar day to day variability 

(Figure 2.4). In winter 2002/2003, regression is the only method that yields smooth pattern, 

which would be expected for a secondary pollutant. The other estimates have significant 

variability typically more associated with primary pollutants. The lowest coefficient of 

variance, associated with this temporal trend, was for the regression method (Table 2.1). The 

EC tracer and the CMB methods had 478 and 114 days of zero estimated SOC, respectively, 

occurring when estimated POC is greater than measured OC.  
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Figure 2.4  Day to day variability of SOC estimates for (a) June-July 2002 and (b) Dec. 
2002-January 2003 
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2.6.  Comparison with related work 

The range of SOC estimates in this study was 26-47% which is comparable with 

findings of other studies at Jefferson St in Atlanta (Table 2.2). The lowest SOC estimate 

(19% of OC) was obtained using PMF (Lee et al., 2008b) and the highest (58% of OC) using 

CMB-LGO (Marmur et al., 2005). For summer, our estimates vary from 34 to 51% as 

compared to results of other studies in Atlanta ranging from estimated SOC of 34% using the 

EC tracer method (Blanchard et al., 2008) to 75% using CMB-MM (Zheng et al., 2007). 

Since the time periods differ between studies, different SOC estimates are expected. Some 

studies (De Gouw and Jimenez, 2009; Robinson et al., 2007) suggest an underestimation of 

SOA in urban centers due to the rapid formation of SOA from semi-volatile and 

intermediate-volatile organic compounds emitted by traffic. Docherty et al. (2008) found 

ratios of SOA/OA between 70-90% on aged aerosols downwind of Los Angeles in a summer 

period with an ozone concentration of 86ppb. Our SOC estimate is equivalent to 35-57% 

being SOA using ratios of SOC/SOA=1.8 and POC/POA=1.2 (similar to Docherty et al., 

2008) and for Atlanta the average 8h-maximum O3 concentration was 60ppb, lower than the 

observed in the L.A. basin. While estimates of SOA formation using aerosol mass 

spectrometry have also being conducted (Jimenez et al., 2009), such data were unavailable in 

Atlanta for comparison here. 
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Table 2.2 Comparison of SOC Estimates with related work, SOC (ug-C m-3) or (%) 
 

 Year-round 
μg-C/m3   (%) 

Summer time 
μg-C/m3   (%) 

This study, EC tracer 1.19 (30%) 1.52 (40%) 
This study, regression 1.25 (33%) 1.70 (44%) 
This study, CMB 1.92 (46%) 2.00 (51%) 
This study, PMF 1.12 (26%) 1.37 (34%) 
EC tracera 34% 34% 
CO tracera 45% 57% 
Multiple regressiona 27% 35% 
Regular CMBb 1.59 (39%) - 
CMB-LGOc 2.59 (58%) - 
CMB-MMd - 2.43 (57%) 
CMB-MMe - 3.18 (75%) 
PMFb 0.77 (19%) - 
Time resolvedf - 3.9±2.2 (46%) 

aEC tracer, CO tracer and Multiple regression from  (Blanchard et al., 2008), bRegular CMB and PMF from 
(Lee et al., 2008a), cCMB-LGO from (Marmur et al. 2005),  dCMB-MM in 1999 from (Zheng, 2002), eCMB-
MM in summer 2001 and winter 2002 from (Zheng et al, 2007)  fTime resolved from (Lim and Turpin, 2002). 

 

We compare our estimates with results from CMB using molecular markers during 

summer of 2001 (Zheng et al., 2007). Data were not available to conduct a long-term analysis 

of SOC estimated by CMB-MM. Here SOC is estimated the same way using regular CMB, 

as the difference between measured OC and the identified primary fraction, but using a 

greater number of fitting species from PM2.5 organic speciation. The correlation was 

strongest with estimates from the regression method (Table 2.3a). 

 

Table 2.3 Comparison of SOC Estimates to SOC from CMB-MM and WSOC 
 a. CMB-MM b. WSOC 

 R2 Bias* Error& R2 Bias Error 
Regression 0.87 -1.05 1.86 0.50 -0.48 0.93 
EC tracer 0.58 -1.45 2.20 0.41 -0.49 1.10 
CMB 0.75 -1.53 2.42 0.48 -0.10 0.98 
PMF 0.80 -1.30 1.90 0.45 -0.68 1.14 

a. CMB-MM from Zheng et al., 2007, b. WSOC from Hennigan et al., 2008 
*,& expressed in μg-C/m3, Bias expressed as 1/N Σ(SOCi-WSOC) and Error expressed as  1/N Σ(SOCi-WSOC)2, 
where i denotes the method and N the number of samples. 
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2.7.  Comparison with WSOC measurements 

In an effort to compare our estimates with new methods to quantify organic aerosols, we 

compared the four estimates with the WSOC fraction in Atlanta during the summer of 2007, 

when biomass burning contribution was negligible (Zhang et al., 2010) and therefore, we 

expect WSOC to be a good surrogate of SOC. The ratio of WSOC/OC observed was 0.52, 

slightly higher than our summer SOC/OC estimates (0.34-0.51). The strongest correlation 

and the lowest error were between WSOC and estimates from the regression method (Table 

2.3b). The regression estimate had a slope close to 1.0 when plotted against WSOC (Figure 

2.5) indicating a good estimation of this secondary fraction. 

 

 

 
 
 
Figure 2.5  Comparison of WSOC measurements with SOC estimates in 2007 by the (a) EC-
tracer,  (b) regression method, (c) CMB and (d) PMF. Solid line is the 1:1. 
 
 

(a) (b) 

(c) 
(d) 
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2.8.  Association of SOC estimates with health outcomes 

Results from the inclusion of OC fractions in an epidemiologic model show a significant 

association of POC and CVD in the same day (lag0), while associations of OC and SOC with 

CVD were not significant (Figure 2.6). This finding suggests that combustion-emitted OC, 

and not photochemistry-formed OC, is responsible for associations of OC with CVD. 

 

 
Figure 2.6  Association of OC, POC and SOC with CVD outcomes in Atlanta 
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CHAPTER 3 REVISING THE USE OF POTASSIUM (K) IN THE SOURCE 

APPORTIONMENT OF PM2.5 

(Pachon, J. E., Weber, R. J., Zhang, X., Mulholland, J. A. and Russell, A. G. Atmospheric 

Environment. Submitted) 

 

3.1.  Abstract 

Elemental potassium has been extensively used as an indicator of biomass burning in the 

source apportionment of PM2.5. However, soil dust and sea-salt are also significant sources 

of atmospheric potassium. We present a method to estimate the fraction of potassium 

associated with biomass burning (Kb) based on a linear regression with iron. The estimated 

fraction has a significantly greater correlation with levoglucosan (R2=0.63), an organic tracer 

of biomass burning, than total potassium (R2=0.39). We explore temporal and spatial 

variability of Kb over a period of six years in the Atlanta area. Kb is larger in spring when 

biomass burning activity is more prevalent and during weekends due to the use of fireplaces 

in winter and outdoor charcoal cooking in summer. Kb is the predominate form of potassium 

in rural areas. The use of Kb in a receptor model results in a lower fraction of PM2.5 

apportioned to biomass burning and a greater fraction to mobile sources. Results suggest that 

Kb is a good indicator of biomass burning as opposed to total K in source apportionment 

studies when source profiles are not available. The use of Kb in health studies can help to 

distinguish the potential impacts of biomass burning and mobile sources on cardiovascular 

diseases. 
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3.2.  Introduction 

Source apportionment is an important tool to identify emission sources contributing to 

ambient PM2.5. Receptor models solve the mass balance equation with or without the use of 

source profiles to estimate source impacts at a receptor site. When source profiles are 

available, specific species are often identified as indicator of sources, alone or in concert with 

other species. For example, the elemental carbon (EC) to organic carbon (OC) ratio is used to 

differentiate  combustion sources (e.g. gasoline and diesel vehicles, biomass burning) and 

potassium (K) has been used to further differentiate the impact of biomass burning (Lee et al., 

2008; Pio et al., 2008; Watson et al., 2008). When sources profiles are not available, the same 

species can be used to associate factors with emissions sources.  Potassium, for example, has 

been extensively used to apportion PM2.5 to biomass burning in Positive Matrix 

Factorization EPA-PMF model applications (Kim et al., 2003, 2004; Lee et al., 2009; Liu et 

al., 2005, 2006; Marmur et al., 2006; Marmur et al., 2005). 

One disadvantage of using potassium in source apportionment modeling by factor 

analysis is that this element has multiple emission sources (e.g., wood smoke, soil dust, sea 

salt, coal fire, industry and meat cooking) (Andreae, 1983; Watson and Chow, 2001; Watson 

et al., 2001) and can result in an overestimation of biomass burning contributions to total 

PM2.5 mass. Furthermore, recent studies indicate that soluble potassium (K+) concentrations 

do not exhibit seasonal trends expected if it is dominantly from biomass burning and have a 

low correlation with fire counts from satellite data (Zhang et al., 2010). Several studies have 

proposed that organic tracers, such as levoglucosan and retene, can be used as a biomass 

tracer instead of K (Jordan et al., 2006; Lewis et al., 1988; Puxbaum et al., 2007; Simoneit et 

al., 1999). Zhang et al. (2010) have found levoglucosan to be more correlated with satellite 
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fire counts when biomass burning emissions are expected to be mainly from outdoor burning 

(e.g., not winter), while Li et al. (2009) found retene more concentrated in March and 

December when prescribed fires and residential wood burning are more intense. 

Unfortunately, measurements of these organic compounds are not as widely available as 

potassium. 

 Attempts to estimate the fraction of potassium from biomass burning have used 

relationships between K and other metals. Andreae (1983) defined excess potassium as the 

portion not attributable to sea salt or soil dust in aerosol samples collected on a cruise in the 

Atlantic Ocean. The excess potassium was estimated as K’=K-0.75*Ca. The K/Ca ratio of 

0.75 was the best fit in the coarse fraction (Dp > 2μm). In that study Ca was selected for its 

abundance in sea salt. The K’ fraction showed a similar temporal trend to soot and was 

attributed to biomass burning emissions from land (fire wood, waste incineration, agricultural 

burning). Lewis et al. (1988) estimated a soil-corrected potassium as K’=K–0.45*Fe. The 

K/Fe ratio of 0.45 was the average of samples in the coarse fraction taken in Albuquerque, 

NM. The K’ fraction had a maximum value at night because of residential wood burning. 

Miranda et al. (1994) used a similar approach defining non-soil K (NSK)=K–0.52*Fe, then 

applying K/Fe ratio of coarse soil. Using ratios of K/Ca and K/Na, Pio et al. (2008) estimated 

potassium not associated with sea salt and soil particles as Kbb=K-0.036*Na-0.12(Cans-Cabb) 

and is proposed to be related with biomass combustion. 

 Though these methods have been successfully employed to estimate K in biomass 

burning emissions in these studies, they have not been applied in the source apportionment of 

PM2.5 in urban regions where potassium is emitted by multiple sources and biomass burning 

can greatly impact air quality. In the Atlanta area, for example, biomass burning was 
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estimated to contribute between 1.72 and 3.68 μg/m3 to PM2.5 (6-22% of total PM2.5 mass) 

(Kim et al., 2003, 2004; Lee et al., 2008; Liu et al., 2005, 2006). Biomass burning also emits 

carbonaceous material (EC and OC) that can be difficult to apportion in heavily traffic 

impacted areas without the use of accurate source profiles. The OC/EC ratio has been used to 

confirm the profiles of biomass burning and mobile sources, since biomass burning usually 

has higher OC/EC ratios (Lee et al., 2005; Pio et al., 2008) than gasoline (3.0-4.0) or diesel 

vehicles (<1.0) (Lee and Russell, 2007; Zheng et al., 2007).   

The objective of this study is to estimate the fraction of potassium associated with 

biomass burning (here called Kb) in the PM2.5, using a relationship between K and a species 

(M) that shares similar sources with K but is not emitted by biomass burning. From previous 

studies, it is expected that either Fe or Ca can be used for M. We examine temporal and 

spatial variability of Kb and compare Kb concentrations with levoglucosan concentrations. 

Finally, we assess the changes in source apportionment of PM2.5 when PMF is implemented 

with Kb instead of total K and compare factor impacts with other studies. 

3.3.  Methods 

This work follows five steps to estimate the Kb fraction and assess its performance as an 

indicator of biomass burning activity: i) estimation of the Kb fraction, ii) assessment of 

temporal and spatial variability of Kb, iii) evaluation of the relationship between Kb and 

organic tracers, iv) assessment of changes in source apportionment using Kb and v) 

comparison with similar studies. 

3.3.1.  Estimation of the Kb fraction 

Factor analysis is used to examine the variability in PM2.5 data and identify species (M) that 

share similar sources with K but are not emitted by biomass burning. The statistical package 
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R (R Development Core Team, 2011) is used to conduct traditional factor analysis. The 

number of factors are selected based on the number of eigenvalues greater than one and the 

overall statistical fit of the analysis. The association of factors with PM2.5 emissions sources 

is conducted based on the analysis of factor loadings (i.e., correlations between factor scores 

and the original species). PM2.5 speciation data was obtained at the Jefferson Street site in 

downtown Atlanta from 1999-2007. A total of 2,586 samples were available with 

concentrations of the needed species above their detection limits. JST is part of the SEARCH 

project and description of the network is found elsewhere (Edgerton et al., 2005; Hansen et 

al., 2003). The PM2.5 species considered in the analysis are NO3, SO4, EC, OC, Al, Si, K, Fe, 

Ca, Br, Se and Zn. Total K, measured by X-ray fluorescence, is reported in its oxidized form 

(K2O) by SEARCH. 

After an associated species (M) is identified, linear regression between total K and M, 

based on the 2,586 samples, is used to estimate the fraction of potassium from common 

sources and excess potassium (intercept in Equation 3.1). Daily estimates of Kb can then be 

obtained using the regression results and total potassium (Equation 3.2). 

          K = a + b*M                         (3.1) 

          Kb = K – b*M                                  (3.2) 

 

One condition that this estimate should satisfy is that Kb>0 in all cases. If Kb<0 for a 

particular day, Kb is set to zero. 

3.3.2.  Assessment of temporal and spatial variability of Kb 

Daily and seasonal trends of K and Kb are examined at the JST site. Two additional 

monitoring sites in the area are considered for the assessment of spatial variability: South 



 

44 

DeKalb (SD) and Yorkville (YKV) (Figure 3.1). SD is part of the Speciation Trends Network 

(EPA-STN) and is located 15 km southeast from JST. SD is 200 m away from a major 

interstate with significant heavy-duty traffic. YKV is a rural site operated by the SEARCH 

project located 60 km west of JST. JST and SD are classified as urban and suburban sites 

predominately influenced by traffic. In contrast, YKV is a rural site influenced 

predominantly by area sources, such as biomass burning. 

 

 

 

Figure 3.1 Monitoring station location (area in yellow is the 5-county Atlanta metro area). 
 

To explore the variability in combustion source impacts between sites, we apply 

factor analysis again, but this time including only the following species: EC, OC, K and Fe, 

measured at JST, YKV and SD. Kb at YKV and SD was also estimated similarly to Kb at JST 

(Equations. 3.1-3.2) and included in the inter-site variability analysis. In addition, correlation 

between K and Kb for each pair of sites (JST-SD, JST-YKV, YKV-SD) is also assessed as 

part of the spatial variability analysis. 



 

45 

3.3.3.  Evaluation of the relationship between Kb with organic tracers 

Levoglucosan concentrations were available during 2007 from PM2.5 filters collected from 

the EPA-STN monitoring sites in the Southeastern US. PM2.5 is determined using the 

Federal Reference Method on a six-day basis (e.g. 1 filter/6 days) and levoglucosan was 

quantified using ion chromatography with pulsed amperometric detection (IC-PAD) (Zhang 

et al., 2010). Because JST is not an EPA-STN site, surrogate data from the SD site was used. 

Similar emissions sources at JST and SD and the relatively short distance between sites 

supports the use of SD levoglucosan as a surrogate for JST levoglucosan. These 

concentrations were compared with the estimated Kb fraction at JST. Ratios between 

levoglucosan and potassium (K and Kb) are estimated and compared with ratios from 

biomass burning samples. 

3.3.4.  Assessment of changes in source apportionment using Kb 

Changes in source apportionment of PM2.5 are assessed when Kb is used instead of K in 

EPA-PMF v.3.0 (Norris and Vedantham, 2008). SO4, NO3, NH4, EC, temperature-resolved 

OC1 through OC4, Al, Si, Ca, Br, Mn, and Zn were selected as strong species, while Cu, Pb, 

and Se were selected as weak species. Two cases were compared: the first included K as a 

strong species, while the second considered Kb as strong species. Since K constitutes less 

than 1% of the PM2.5 mass, it is expected that changes in the PM2.5 are a result of the 

redistribution of major species associated with combustion.  

3.3.5.  Comparison with similar studies 

Comparing source apportionment results from PMF with previous studies is challenging. 

First, differences in source impacts from different time periods may be influenced by the 

implementation of controls or economic considerations. Secondly, data treatment (e.g. 
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methods by which missing days and samples below the detection limit are treated and 

uncertainty is estimated) vary considerably, resulting in different factor impacts in PMF.  

Third, the association of factors in PMF with emission sources is subjective; thus, species 

used as indicators of a particular source may change with time. Reff et al. (2007) offers a 

more complete review of methodological details in PMF. Here, local studies with similar 

conditions were compared to our PMF results using K (PMF-K) and Kb (PMF-Kb) to 

examine how using Kb can improve source apportionment results. 

3.3.6.  Association of K and Kb with health outcomes 

Biomass burning source impacts from PMF-K and PMF-Kb were implemented in an 

epidemiologic model to assess the health impact of these fractions. Cardiovascular diseases 

were chosen as the health endpoint for evaluation given that they have shown a significant 

association with PMF wood smoke in previous studies (Sarnat et al., 2008). The 

epidemiologic model is described in detail elsewhere (Metzger et al., 2004; Peel et al., 2005) 

and later in this dissertation (see Section 4.6).  

3.4.  Results 

3.4.1.  Development of a method to estimate K from biomass burning 

The application of factor analysis to the JST data resolved four factors with eigenvalues 

greater than one leading to a good statistical fit (p-value<0.01), explaining 67% of the total 

variance. The interpretation of the factors was conducted based on the most significant 

species in each factor (highlighted in bold in Table 3.1a, base case): soil dust factor (F1) has 

high correlations with Al and Si, traffic factor (F2) with EC and OC, biomass burning factor 

(F3) with K and Br, and secondary sulfate factor (F4) with SO4. K has the strongest 
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correlation with F3, but significant correlations with F1 and F2, suggesting multiple sources 

of this species.  

 

Table 3.1 Factor loadings using K and Kb (factors denoted with prime) for the 4-factor 
solution.  
 

 
a. Factors using regular K 

(Base Case) 
b. Factors using Kb 

 
Species F1 F2 F3 F4 F1’ F2’ F3’ F4’ 
NO3 -0.16 0.08 0.45 -0.09 -0.16 0.18 0.36 -0.11 
SO4 0.08 0.08 -0.08 0.99 0.08 0.08 -0.05 0.99 
EC 0.10 0.88 0.26 0.17 0.10 0.90 0.13 0.16 
OC 0.12 0.71 0.46 0.24 0.12 0.78 0.35 0.22 
Al 0.95 -0.03 -0.05 0.04 0.95 -0.03 -0.04 0.04 
Si 0.99 0.09 -0.02 0.01 0.99 0.08 -0.02 0.01 
Fe 0.67 0.65 0.11 0.13 0.66 0.69 -0.05 0.11 
Ca 0.58 0.43 0.01 0.09 0.58 0.43 -0.07 0.09 
K 0.41 0.35 0.67 0.13 - - - - 
Kb - - - - 0.02 0.07 0.87 0.05 
Br 0.01 0.27 0.60 0.14 0.00 0.40 0.46 0.11 
Se 0.02 0.16 0.10 0.39 0.01 0.19 0.04 0.38 
Zn 0.07 0.54 0.30 0.11 0.06 0.59 0.19 0.10 
Variance 0.24 0.20 0.12 0.11 0.23 0.22 0.11 0.10 
Cumulative 0.24 0.44 0.56 0.67 0.23 0.45 0.56 0.66 

 

Fe and Ca have significant loadings on F1, since they are crustal elements. In addition, 

these elements are also observed in F2, likely due to the presence of Fe and Ca in mobile 

source emissions (e.g. from brake dust, tire wear, road dust and oil) (Majestic et al., 2009). 

The correlations between Fe and Ca with F3, however, are poor, suggesting that Fe and Ca 

are not significant constituents of biomass burning emissions. This result is consistent with 

the chemical composition of PM2.5 from prescribed burning emissions,  where Ca and Fe are 

typically found in low percentages of the PM2.5 mass (<0.1%) compared to K (0.57%) (Lee 

et al., 2005). Based on this result, Fe or Ca can be used to identify the fraction of potassium 

largely associated with traffic and soil dust rather than biomass burning (i.e., Fe or Ca serves 

as the M species in the linear regression in Equation 3.1). These results support the use of Fe 
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and Ca in PM2.5 for source attribution to improve the use of K as biomass burning tracer as 

previously proposed in the coarse fraction by several studies (Andreae, 1983; Lewis et al., 

1988). However, in coastal areas, Ca should be included to subtract the influence of sea-salt 

as shown by Pio et al.(2008).  

The linear regression of K with Fe and Ca for all data (1999-2007) gives the 

following results: 

 

K = 30.1 (±0.93) + 0.38 (±0.02)*Fe, R2=0.35                                          (3.3) 

K = 40.6 (±0.99) + 0.41 (±0.02)*Ca, R2=0.16                                          (3.4) 

 

where K, Fe and Ca are expressed in ng/m3. A more significant correlation (R2) with K is 

observed for Fe rather than Ca. Furthermore, the use of Ca to estimate Kb resulted in more 

cases of Kb< 0 (23% of the days vs. 4% for Fe). For this reason, our analysis was based on 

the separation of K with Fe as Kb = K – 0.38*Fe. The intercept of Equation 3.3 (30.1±0.93 

ng/m3) represents the average amount of potassium from sources other than traffic and soil 

dust, e.g. biomass burning. The slope (K/Fe) of 0.38 is slightly lower than those reported in 

previous studies (0.45-0.52) in the coarse fraction (Lewis et al., 1988; Miranda et al., 1994) 

which is explained by lower potassium concentrations in the PM2.5 fraction or differences in 

soil composition. 

The estimated Kb is used instead of K in a new application of factor analysis. The 

number of factors and their association with emissions sources is similar to the base case 

(F1’-soil dust, F2’-traffic, F3’-biomass burning, F4’-secondary sulfate in Table 3.1b), but 

some important changes are highlighted. The correlation of Kb with F3’ (R2=0.87) is larger 
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than the corresponding correlation of K with F3 (R2=0.67), denoting a better separation of the 

biomass burning factor. Kb is not correlated with F1’ or F2’ which suggests little to no 

influence of soil and traffic dust on Kb. The total variance (67%) explained by the four 

factors is maintained in both cases 

3.4.2.  Assessment of temporal variability of K and Kb 

Daily estimates of Kb were obtained from 1999 through 2007. Approximately half of the 

PM2.5 potassium loading is from biomass burning (Table 3.2) which implies that the other 

half is associated with soil and traffic dust. These results are in agreement with local source 

profiles where potassium is associated with multiple sources (Marmur et al., 2007). 

 

Table 3.2 Temporal trends of K and Kb 
 K Kb 
Average 1999-2007 (ng/m3) 57.6 30.4 
Standard deviation (ng/m3) 33.2 26.7 
Weekend/weekday ratio 0.97 1.23 

Winter (Dec-Feb) 62.4 35.8 
Spring (Mar-May) 58.6 32.3 
Summer (Jul-Sep) 45.5 18.4 

Seasonal 
averages 
(ng/m3) 

Fall (Oct-Dec) 64.0 29.9 
Spring/Summer ratio 1.3 1.8 

 

K concentrations are similar during weekdays and weekends, whereas Kb 

concentrations are larger during weekends, possibly due to the use of fireplaces during winter 

and more intense yard waste and charcoal cooking during summer. K is largest in fall and 

winter, while Kb is largest in winter and spring. During spring, and particularly in March and 

April, prescribed burning activities around Georgia is more intense (Li et al., 2009). In 

summer, biomass burning is expected to be less pronounced (Tian et al., 2008; Zhang et al., 
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2010) and Kb is lowest during this season. The spring/summer ratio is higher for Kb than K, 

which is more consistent with observed biomass burning activity. 

3.4.3.  Evaluation of the correlation with levoglucosan 

Levoglucosan was more strongly correlated with the estimated Kb fraction than the total 

potassium during winter of 2007 (Figure 3.2). The intercept of the regression between 

levoglucosan and Kb (18.5 ng/m3) is half of the value of the intercept with K (41.5 ng/m3) 

denoting a closer relationship between Kb and levoglucosan. The regression slopes of K and 

Kb with levoglucosan were both about 0.15. These slopes are similar to the K/levoglucosan 

ratio of 0.1 found in samples taken during biomass burning campaigns in Georgia (Lee et al., 

2005). Puxbaum et al. (2007) report that K/levoglucosan ratios < 0.2 are associated with 

domestic heating with wood in the US. It is expected then that both prescribed fires and 

wood smoke from fireplaces impact the receptor at JST, supporting the greater 

weekend/weekday ratio for Kb due to the use of fireplaces observed during the winter. 

Kb

y = 0.15(±0.02)x + 18.5(±3.84)
R2 = 0.63

K
y = 0.16(±0.04)x + 41.5(±6.56)

R2 = 0.39
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Figure 3.2 Correlation between K & Kb with levoglucosan during winter 2007 
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3.4.4.  Assessment of spatial variability of K and Kb 

The regression of K with Fe for the JST site is compared to results for the SD and YKV sites 

(Table 3.3). The correlation between K and Fe is significantly lower at YKV (R2=0.18) 

compared to JST and SD, and suggests that only 18% of the variability of K is explained by 

common sources with Fe. The K/Fe ratio (slope) is approximately the same for JST and SD 

and larger for YKV due to relatively large concentrations of K with respect to Fe at this rural 

site.  

Table 3.3 Results of regression of K into Fe for the three sites 
 Slope 

± std error 
Intercept ± std 
error (ng/m3) 

R2 K 
(ng/m3)

Kb/K 
(summer - winter) 

JST 0.38 ± 0.02 30.1 ± 0.93 0.35 57.6 0.46 – 0.58 
YKV 0.45 ± 0.03 33.3 ± 0.98 0.18 45.0 0.64 – 0.82 
SD 0.32 ± 0.02 31.8 ± 1.70 0.32 59.0 0.34 – 0.49 

 

The fraction of Kb to K is the largest at YKV, confirming that a significant amount of 

potassium is associated with biomass burning at this rural site. This fraction explains the low 

correlation coefficient between K and Fe, the latter species more associated with soil and 

traffic dust. At the three sites, Kb/K ratios are greater in winter than summer in concordance 

with more intense biomass burning in winter. The fact that 82% of the K is estimated as Kb 

for YKV suggests that separation of potassium at rural sites is not as critical as in urban sites. 

A new application of factor analysis, this time using only EC, OC, Fe and K species 

at the three sites, resulted in four factors explaining a variance between 75% and 78% when 

Kb or K were considered respectively (Table 3.4). Analyses of inter-site variability suggest 

that carbonaceous species (EC, OC) are more similar between JST and SD (higher loadings 

in F1) than YKV and is explained by a significant influence of traffic at the urban sites, while 

EC and OC at YKV have an independent source (higher loadings in F3) attributed to biomass 
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burning. F2 explains the shared variability between K at the three sites with similar 

correlations that denotes a low spatial variability of total potassium. 

When Kb is included in the analysis instead of K, a similar interpretation of F1’ and 

F3’factors is observed, this is, F1’ explains the variability of traffic impacts at JST and SD, 

whereas F2’ explains the influence of biomass burning impacts at YKV. However, Kb has a 

higher correlation with F2’ at JST than YKV and SD, denoting a greater spatial variability of 

Kb compared to K. In fact, correlations between K and Kb among the three sites shows that 

Kb has a stronger association between JST and YKV (R2=0.6) while correlations of Kb 

between JST-SD (R2=0.45) and YKV-SD (R2=0.36) are lower. The high impact of traffic on 

SD may explain the low correlations of Kb to other sites. 

 
Table 3.4 Factor loadings using K and Kb (factors denoted with prime) for three sites in the 
Atlanta area. Most influential species are highlighted in bold. 
 

 a. Factors using regular K b. Factors using Kb 
 F1 F2 F3 F4 F1’ F2’ F3’ F4’ 

EC 0.89 0.14 0.21 0.00 0.95 0.03 0.22 -0.04 
OC 0.75 0.32 0.37 -0.02 0.77 0.24 0.35 0.09 
Fe 0.71 0.17 0.08 0.56 0.72 -0.12 0.12 0.49 
K 0.45 0.78 0.19 0.18 - - - - 

JST 

Kb - - - - 0.14 0.91 0.11 0.09 
EC 0.19 0.14 0.62 -0.02 0.23 0.14 0.63 -0.03 
OC 0.21 0.22 0.93 0.18 0.23 0.19 0.92 0.24 
Fe -0.01 0.27 0.05 0.81 0.06 -0.03 0.08 0.69 
K 0.12 0.79 0.28 0.31 - - - - 

YKV 

Kb - - - - 0.26 0.77 0.25 0.03 
EC 0.74 0.24 0.16 0.16 0.76 0.12 0.14 0.25 
OC 0.59 0.41 0.45 0.03 0.60 0.34 0.42 0.22 
Fe 0.60 0.29 0.10 0.62 0.62 0.01 0.07 0.78 
K 0.29 0.79 0.16 0.22 - - - - 

SD 

Kb - - - - -0.09 0.76 0.09 -0.17 
Variance 0.29 0.21 0.15 0.13 0.29 0.19 0.14 0.13 
Cumulative 0.29 0.50 0.65 0.78 0.29 0.48 0.62 0.75 
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3.4.5.  Inclusion of K into source apportionment using PMF 

PMF-K and PMF-Kb were run independently at JST solving for eight factors in each 

case. Resolved factor profiles are included in the Appendix A (Figure A.1-A.2). In both cases, 

the correlation between PM2.5 estimated and predicted was R2=0.88. Factors were associated 

with secondary sulfate (SULF), secondary ammonium (add it to the secondary sulfate), 

secondary nitrate (NITR), soil dust (SOIL), gasoline vehicles (GV), diesel vehicles (DV), 

biomass burning (BURN) and industrial source (IND). Gasoline and diesel vehicles were 

grouped into a mobile factor (MOB) since major species (EC, OC) are present in both GV 

and DV factor profiles and we found that separation of factor impacts using the thermal 

fractions of OC is problematic. The lumped mobile factor also facilitates comparison with 

other studies. Kb
 is almost exclusively apportioned to the biomass burning factor, compared 

to K which is apportioned to multiple sources (Figure 3.3), supporting the use of Kb as a 

better indicator of biomass burning impacts. 
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Figure 3.3    Distribution of potassium (K) and estimated potassium from biomass burning 
(Kb) among emission sources at JST 
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The major difference between PMF-K and PMF-Kb is in the apportionment of PM2.5 

to biomass burning and mobile factors (Figure 3.4). The biomass burning impact decreases 

from 2.67 μg/m3 in PMF-K to 1.40 μg/m3 in PMF-Kb (reduction of 47%) while the mobile 

source impact increases from 3.23 μg/m3 in PMF-K to 4.55 μg/m3 in PMF-Kb (increase of 

41%).  
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Figure 3.4  PM2.5 apportionment using K and Kb as indicator species for biomass burning 
 

Since K constitutes less than 1% of the PM2.5 mass, the changes in the PM2.5 

apportionment are attributed to the re-distribution of major species in the factors. EC, and 

especially OC, had the largest changes when PMF is implemented with Kb (Figure 3.5). EC 

from BURN is apportioned to GV while OC from BURN and SOIL is redistributed to GV 

and DV. This re-distribution is explained by the change in correlations between major 

species used to resolve the factors. In fact, the correlation between OC and K (R2=0.31) 

decreases with Kb (R2=0.1) resulting in a transfer of OC from BURN to MOB where the 
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correlation between OC and EC is higher (R2=0.66). Similar changes in correlations are 

observed between factor contributions and major species supporting the previous analysis. 

The OC/EC ratio for biomass burning increases from 4.1 in PMF-K to 5.1 in PMF-Kb more 

consistent with OC/EC ratios found in biomass burning emissions (Lee et al., 2005). 
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Figure 3.5  Changes in carbonaceous species (EC and OC) estimated as the contribution in 
PMF-Kb minus the contribution in PMF-K. 
 

3.4.6.  Comparison with similar studies 

The use of Kb in PMF resulted in 9% of the PM2.5 mass apportioned to biomass burning 

versus 16% using total K from 1999-2004 (Table 3.5). Both estimates are within the range 

found in other studies (7-22%), but the larger fraction is probably an overestimation of the 

biomass impact given the use of total K as indicator of the source. Our estimate of the mobile 

source impact (28%) is larger than previous studies (17-22%) which may be more realistic 

for a source that is ubiquitous in Atlanta. Analysis of emission inventories shows that 92% of 

EC emissions in the metro area are from mobile sources and approximately 50% of the 

primary PM2.5 is emitted by vehicles (Air Resources Specialists, 2007). Such large 
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emissions explain the large impact of vehicles to ambient PM2.5. The application of CMB in 

Atlanta, using specific source profiles for mobile and biomass burning sources, finds that 

mobile sources contribute approximately 4.0 μg/m3 to total PM2.5 mass and biomass burning 

contributes 1.2 μg/m3 (Lee et al., 2008), similar to here. The same study points out the 

overestimation of biomass burning impacts and underestimation of mobile source 

contributions by PMF. 

 

Table 3.5 Comparison of factor impacts from PMF in similar studies 
 
Study SULF NITR MOB BURN IND SOIL MIX* UND* Ref. 
Atlanta 
(1998-2000) 

8.85 
(56%) 

1.15 
(7%) 

3.53 
(22%) 

1.72 
(11%) 

0.08 
(0.5% 

0.18 
(1%) 

0.36 
(2%) - (Kim et 

al., 2003) 
Atlanta 
(1998-2000) 56% 9% 17% 7% 3% 2% 7% - (Kim et 

al., 2004) 
Atlanta 
(2000-2002) 37% 8% 17% 13% 9% 2% 3% 11% (Liu et al., 

2005) 
Atlanta 
(2000-2002) 

4.93 
(30%) 

1.53 
(9%) 

2.83 
(17%) 

3.68 
(22%) 

1.0 
(6%) 

0.52 
(3%) 

0.42 
(2%) 

1.81 
(11%) 

(Liu et al., 
2006) 

Atlanta 
(1999-2004) 

8.08 
(45%) 

1.53 
(9%) 

3.23 
(20%) 

2.67 
(16%) 

0.1 
(1%) 

0.6 
(4%) - 0.5 

(3%) 
PMF-K 

Atlanta 
(1999-2004) 

7.95 
(49%) 

1.41 
(9%) 

4.55 
(28%) 

1.40 
(9%) 

0.1 
(1%) 

0.73 
(5%) - 0.5 

(3%) 
PMF-Kb 

* MIX: mixed source, UND: unidentified 

 

3.4.7.  Association of K and Kb with health impacts 

A significant association of biomass burning source impacts with CVD is observed when the 

epidemiologic model is implemented with results from PMF-K (Table 3.6). This association 

may have been influenced by the presence of traffic in the biomass burning factor solved by 

PMF-K as suggested above. Using the estimated Kb fraction in PMF, biomass burning source 

impacts loses significance in the association with CVD, however, the subtle differences in 
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the associations between PMF-K and PMF-Kb do not permit to confirm the influence of 

traffic in the association of biomass burning with CVD outcomes. 

 
Table 3.6 Association of biomass burning source impacts with CVD outcomes 

 
Indicator  IQR  RR per IQR  Lower RR  Upper RR  p‐value 
PMF‐K  0.91  1.010  1.001  1.020  0.038 
PMF‐Kb  1.57  1.008  0.999  1.018  0.066 

 

3.5.  Implications 

This study finds that a simple transformation of ambient potassium is more strongly 

associated with biomass burning activities and produces significant changes in the source 

apportionment of PM2.5. The Kb fraction can be estimated at any monitoring site where K 

and Fe concentrations are available, for example, any of the EPA-STN sites throughout the 

US, not impacted by sea-salt. Future studies of source apportionment may benefit from the 

use of Kb instead of K, especially when local source profiles are not available. In areas where 

measurement of levoglucosan is not available, Kb constitutes a good indicator of biomass 

burning. 

Health studies can also benefit from the use of Kb. PM2.5 from mobile sources and 

biomass burning has been associated with cardiovascular diseases (CVD) and EC and OC 

have been found to have somewhat stronger associations with CVD outcomes than other 

species (Peng et al., 2009; Sarnat et al., 2008). However, similar characteristics of traffic and 

vegetative burning sources profiles do not permit precisely delineating between the health 

impacts of these sources and it is suggested that mobile sources might have influenced the 

association of biomass burning with CVD (Sarnat et al., 2008). Our preliminary results 
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suggest the influence of traffic in the association of biomass source impacts with CVD, but 

further analyses are necessary. 
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CHAPTER 4 DEVELOPMENT OF OUTCOME-BASED, MULTIPOLLUTANT 

MOBILE SOURCE INDICATORS 

(Pachon, J. E., Balachandran, S., Hu, Y. T., Mulholland, J. A., Darrow, L. A., Sarnat, J. A., 

Tolbert, P. E. and Russell, A. G., 2011. Journal of the Air & Waste Management Association. 

Submitted) 

 

4.1.  Abstract 

Multipollutant indicators of mobile source impacts are developed from readily 

available CO, NOx, and elemental carbon (EC) data for use in air quality and epidemiologic 

analysis. Two types of outcome-based integrated mobile source indicators (IMSI) are 

assessed. The first is derived from analysis of emissions of EC, CO and NOx such that 

pollutant concentrations are mixed and weighted based on emission ratios for both gasoline 

and diesel vehicles. This emission-based indicator (EB-IMSI) captures the impact of mobile 

sources estimated from receptor models and its uncertainty is comparable to measurement 

and source apportionment uncertainties. The EB-IMSIs have less spatial variability than 

single pollutants, suggesting they are better indicators of the regional impact of mobile 

sources. A sensitivity analysis of fractions of pollutants in a two-pollutant mixture and the 

inclusion in an epidemiologic model is conducted to develop a second type of indicators 

based on health outcomes. The health-based indicators (HB-IMSI) are weighted 

combinations of CO, NOx and EC pairs that have the lowest p-value in their association with 

cardiovascular disease emergency department visits, possibly due to their better spatial 

representativeness. These outcome-based, multipollutant indicators can provide support for 

the setting of multipollutant air quality standards and other air quality management activities. 
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4.2.  Introduction 

Air quality standards, such as the National Ambient Air Quality Standards (NAAQS) 

in the US, have traditionally focused on setting maximum limits to ambient concentrations of 

individual pollutants The NAAQS, and air quality standards in general, are developed from 

exhaustive studies, both  mechanistic and epidemiologic, that seek to deduce the impacts to 

human health from air pollution. To date, most air pollution epidemiologic work has 

examined associations between health outcomes and individual pollutants. However, human 

exposure to air pollution occurs in a multipollutant setting. Thus, a multipollutant approach 

may be more realistic to understanding risks and regulating urban air pollution. 

Multipollutant approaches have been extensively applied in controlling emissions of 

pollutants to the atmosphere. Pollutants are rarely emitted in isolation by a source and control 

devices for one pollutant can usually modify emissions of all of the compounds. For example, 

methods that remove NOx and SOx in electrical generating units can also remove Hg from 

the flue gas (US-EPA, 2007b). Furthermore, multipollutant control has been demonstrated to 

be cost-effective. 

Multipollutant regulations already exist for primary standards and are being utilized 

for secondary standards. For example, heavy and light-duty fleets are required to meet NOx, 

CO, PM, HC, NMHC standards(US-EPA). In addition, EPA recently created the aquatic 

acidification index (AAI), a multipollutant index developed based on analysis of ecological 

effects, to be used as part of a potential combined NAAQS standard considering the 

combined effects of NOx and SOx deposition on aquatic ecosystems (US-EPA, 2011). 

In the past years, substantial progress has been made to move towards a result-

oriented, risk-based multipollutant approach in air quality management (NARSTO, 2010). A 
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consistent limitation of adopting this multipollutant approach has been in the identifying 

mixtures of relevance in the atmosphere and the health effects of such mixtures (Hidy and 

Pennell, 2010; National Research Council, 2004; US-EPA, 2007b). Statistical tools such as 

factor analysis (FA) have been suggested to overcome this limitation. Receptor models are 

also useful with the constraint of conserving mass. However, these techniques rely on an 

abundant amount of air quality data including availability of specific components that are not 

routinely measured. 

Multipollutant models in epidemiologic analysis have generally included two or more 

pollutants at a time within a model, with the goal of identifying confounders in the 

associations with health rather than the effects of a mixture of pollutants (Bell et al., 2011; 

Dominici et al., 2010; Mauderly et al., 2010; Mauderly and Samet, 2009). Multipollutant 

models are subject to exposure measurement error in the same way that single pollutant 

models are, but can also have differential errors (e.g., where the pollutant measured with the 

least amount of error is the one with the strongest signals) and reduced statistical power 

(when more than one pollutant at a time is included) (Vedal and Kaufman, 2011). Moreover, 

the mixtures included in multipollutant models do not always represent an actual or unique 

source of emissions which complicates designing effective measures to improve public 

health (Franklin et al., 2008; Hart et al., 2011; Lenters et al., 2010; Metzger et al., 2004; Peng 

et al., 2009). 

Mobile source emissions have been identified as a key urban air pollution component 

adversely affecting public health (Beelen et al., 2008; Tonne et al., 2007). In the Atlanta area, 

elevated NO2, CO, PM2.5, organic carbon (OC) and EC concentrations, pollutants 

traditionally related to traffic, have been associated with Emergency Department (ED) visits 
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for cardiovascular disease (CVD) (Health Effects Institute, 2010; Metzger et al., 2004). 

Results from using receptor models in epidemiologic analysis provide further support that 

combustion-related sources are associated with CVD (Sarnat et al., 2008). 

The adverse impact of mobile sources on health is due to the magnitude of these 

sources in the Atlanta area, where traffic emissions are estimated to account for 30% of the 

PM2.5, 84% of NOx emissions and 97% of CO emissions (US-EPA, 2007a). Results from 

source apportionment indicate that the contribution of tailpipe mobile source emissions to 

ambient PM2.5 varies from 17 to 26% and the total impact from mobile sources is likely 

larger considering that a significant amount of crustal material (i.e. Al, Si, Ca, Fe, K) 

originates from the re-suspension of dust due to vehicles (Kim et al., 2003, 2004; Lee et al., 

2008b; Liu et al., 2005). 

Our objective in this work is to develop and assess outcome-based, multipollutant 

indicators for mobile sources here called Integrated Mobile Source Indicators (IMSI). IMSIs 

are simple to construct and calculate from readily available data and are for use in air quality 

and epidemiologic analyses. The species considered are CO, NOx and EC available from 

routine air quality monitoring networks. Two types of IMSIs are developed: the first is based 

on outcomes from analysis of pollutant emissions and observed concentrations (here called 

EB-IMSI). EB-IMSI are developed for Atlanta, GA and compared to Dallas, TX. A 

sensitivity analysis is used to refine the indicators based on two-pollutant mixtures of NOx-

EC, NOx-CO and CO-EC and develop a second type of indicators based on health outcomes 

(here called HB-IMSI) exclusively in Atlanta. Temporal and spatial variability of IMSIs are 

assessed and compared with source impacts from receptor models. While developed for 

mobile sources, such integrated indicators could be developed for other sources as well. 
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4.3.  Methods 

IMSI development and assessment follows four steps: i) selection of pollutants and analysis 

of emission inventories, ii) development of the emission-based integrated indicators (EB-

IMSI), iii) comparison of air pollutant impact analysis using indicators with results from 

receptor models, iv) inclusion in models examining associations with acute health responses 

in Atlanta and development of health-based indicators (HB-IMSI). 

4.3.1.  Pollutant selection and analysis of emission inventories 

Traditionally, CO and NOx have been used as gaseous indicators of vehicular activity. CO is 

emitted primarily by gasoline-fueled engines, while both gasoline and diesel engines have 

substantial NOx emissions. Mobile source based PM2.5 is generated not only via combustion 

processes but also mechanical grinding and secondary formation (i.e. formation in the 

atmosphere from PM2.5 precursors under photochemical conditions). Since PM2.5 can have 

several sources, it is preferable to use components that are better indicators of PM2.5 from 

combustion sources. PM2.5 EC and OC are formed during combustion, with OC being 

produced in early stages of combustion and EC at later stages and higher temperatures. OC is 

also formed from other processes, including secondary formation from biogenic emissions. 

Gasoline vehicles (GV) usually have a higher OC/EC ratio than diesel vehicles (DV), with 

values around 3.0-4.0 for GV and below 1.0 for DV (Lee and Russell, 2007; Zheng et al., 

2007). Because diesel exhaust contains much higher EC concentrations than gasoline exhaust, 

EC has been used as a tracer for diesel impacts on PM (Marmur et al., 2005). 

Other PM2.5 components, including  heavy metals such as zinc (Zn), nickel (Ni), 

vanadium (V), copper (Cu) and lead (Pb), have also been used as tracers to identify mobile 

source impacts on air quality, and specifically to split calculated impacts between gasoline 
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and diesel vehicles (Lee et al., 2008b). Zn is used as a tracer of GV and is an additive in 

lubricating oil, Pb and Cu are produced from brake wear and road traffic, and Ni and V are 

found in diesel exhaust. Organic compounds, such as hopanes and polycyclic aromatic 

hydrocarbons (PAHs), are used as tracers of traffic-related PM impacts as well (Brook et al., 

2007; Zheng et al., 2002). While these organic compounds are very useful in the 

identification of specific source impacts, their measurement is more resource intensive and 

their concentrations are not as widely available. 

We chose CO, NOx and EC to develop the traffic-related IMSI because these species 

are ubiquitous to monitoring stations in the US and emissions inventories. A detailed analysis 

of CO, NOx and EC emissions and ambient air concentrations in downtown Atlanta (Fulton 

County) and downtown Dallas (Dallas County) was conducted for the period 1999-2007. 

Emissions from mobile sources (on-road and non-road) were obtained from the EPA 

National Emission Inventory (NEI) (US-EPA, 2007a) and the Visibility Improvement State 

and Tribal Association (VISTAS) project (Air Resources Specialists, 2007). Additionally, we 

applied the EPA Motor Vehicle Emissions Simulator (MOVES 2010) to identify the fraction 

of emissions from on-road GV and DV (US-EPA, 2010). Both NEI and MOVES use nation-

wide information of vehicle miles traveled (VMT) to estimate on-road emissions, but 

emissions factors used in MOVES 2010 have been revised from those used in NEI. 

Ambient air quality data in Atlanta were obtained from the Jefferson Street 

monitoring location (JST), a site operated by the Southeastern Aerosol Research and 

Characterization Study (SEARCH). Description of the measurement methods is found 

elsewhere (Edgerton et al., 2005; Hansen et al., 2003). Briefly, elemental carbon (EC) is 

measured on 24-hour PM2.5 samples using quartz filters from a particle composition monitor 
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(PCM) and analyzed by the thermal-optical reflectance (TOR) method at the Desert Research 

Institute (DRI) following the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) protocol (Chow et al., 1993). CO, NO and NO2 are measured every minute and 

averaged to the hour. CO is measured using non-dispersive infrared spectrophotometry. NO2 

is measured via photolytic conversion to NO, followed by chemiluminescence. NO and NO2 

are summed and reported as NOx. O3 is measured using UV-absorption. For the period 1999-

2004, a total of 1701 days were selected for use after removing days with missing data or 

data with high uncertainty. An additional site, the South DeKalb (SD) monitoring station 

from the EPA’s Speciation Trends Network (STN) located 15.3 km to the southeast of JST 

(Figure 4.1) was examined to assess the spatial variability of EB-IMSIs.  Both JST and SD 

are heavily impacted by traffic emissions and have daily ambient CO, NOx and EC 

measurements, with the exception of EC at SD where it is measured every third day. 

In Dallas, air quality data is collected from the US EPA’s Air Quality System (AQS) 

for the Hinton site located four miles northwest of downtown Dallas (Figure B.1 in Appendix 

B). Air quality from Hinton has been used in several studies because Hinton is the main 

monitoring site in the area (Qin et al., 2007; Smith et al., 2011). PM2.5 is sampled following 

the Federal Reference Method (FRM) and, at that time, EC and OC were measured using the 

STN thermal optical transmittance (TOT) method, similar to the National Institute of 

Occupational Safety and Healthy (NIOSH) method (Birch and Cary, 1996). Continuous 

monitoring for CO is performed by use of the FRM non-dispersive infrared correlation 

method and NO2 is measured using the FRM chemiluminescence and UV methods. CO and 

NOx at the Hinton site were available from 1999 to 2007, while EC was only available for 

the period 2003-2008 
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Figure 4.1  Location of Jefferson Street (JST) and South DeKalb (SD) monitoring stations in 
Atlanta, GA. Area in gray is Fulton County. 
 
 
4.3.2.  Carbon Monoxide (CO) 

The NEI reports total CO emissions of 294,932 tons/year for Fulton County in 2002, of 

which 97% are from mobile sources (75% on-road and 22% non-road). The on-road CO 

emissions estimated with MOVES are slightly lower (189,664 tons/year) due to revisions in 

the emission factors from 1992 to 2002. MOVES estimates that 98% of the on-road CO 

emissions are from GV and 2% are from DV.  

On a daily basis, on-road CO emission estimates are 20% higher during weekdays 

than weekends, indicating a decrease in GV travel during weekends. On a monthly basis, CO 

emissions from GV have two periods of increase during the year (Figure 4.2a): June through 
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August due to the use of air conditioning in summer, and December through February as 

result of cold start emissions.(US-EPA, 2008) 

Ambient CO concentrations are the lowest during the summer months (Figure 4.2a), 

especially during June and July when dispersion of contaminants is favored and CO 

photochemical destruction is faster. The highest concentrations are found from October 

through December when wind speeds are slower (Figure B.3 in the Appendix B) and thermal 

inversion episodes trap pollutants nearer the ground. From January through March inversions 

are still present, but wind speeds are significantly higher than prior months resulting in 

greater dispersion of pollutants.  

On an annual basis, there is a clear trend between reductions in ambient air 

concentrations of CO and emission reductions from 1999 to 2007 (Figure 4.2b). Comparison 

of CO emission estimates from MOVES and NEI in 1999, 2002 and 2005 shows good 

agreement between both methods. The reduction of CO emissions in 2007 with respect to 

1999 was 48% in NEI and 45% in MOVES.  

These results support using CO concentrations as an indicator of GV impacts, though 

this indicator is limited to local sources and can lead to potential biases in a regional 

assessment. 
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Figure 4.2  Monthly and annual trends of CO, NOx and EC. Bars represent emissions 
estimates from MOVES in tons/month (a, c, e) or tons/yr (b, d, f). Bold line represents 
ambient air concentrations of CO (ppm), NOx (ppb) and EC (μg/m3) on right vertical scale. 
Error bars are the root mean square (RMS) error of daily uncertainties from measurements. 
R2 denotes the correlation between annual emissions and annual average concentrations. 
 

4.3.3.  Nitrogen Oxides (NOx) 

The NEI reports total NOx emissions of 47,103 tons/year for Fulton County in 2002, of 

which 87% are from mobile sources (72% on-road and 15% non-road). NOx emissions 

estimated with MOVES are slightly lower than the NEI estimates (37,781 tons/year) due to 

c. d. 

e. f. 

a. b. 

NOx(ppb)= 0.26(±0.07)*NOx(102tons/yr) + 20.63(±23.30) 
R2 = 0.68 

EC (μg/m3) = 0.50(±0.15)*EC(102tons/yr) - 1.32(±0.87) 
R2 = 0.60 

CO(ppm) = 0.007(±0.001)*CO(103tons/yr) - 0.22(±0.14) 
R2 = 0.92 
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lower exhaust emissions from heavy-duty vehicles.(US-EPA, 2010) MOVES estimates that 

60% of the on-road NOx emissions are from GV and 40% are from DV. Although diesel 

engines emit more NOx than spark ignition engines per mile traveled, the gasoline fleet is 

significantly larger (about 10 times) than the diesel fleet for Fulton County.(Blanchard et al., 

2010) Other sources contributing to NOx emissions are classified as area and point sources, 

in particular fuel combustion in electrical generating utilities (EGU) and biomass burning. It 

is expected, however, that most of the NOx impacting the receptor stations come from 

mobiles sources, because EGU have high effective stack heights such that pollutants are 

better dispersed before impacting the monitor station at the surface. Further, NOx emissions 

from point sources were 13% of the total emissions in 1999, but only 2% in 2007. 

On a weekly basis, NOx ambient air concentrations are 24% higher on weekdays than 

on weekends, consistent with a larger reduction of DV than GV traffic during weekends.  On 

a monthly basis, NOx follows a similar trend to CO, with higher concentrations in winter and 

lower concentrations during summer (Figure 4.2c) when NOx is more rapidly removed by 

photochemical reactions. NOx emissions from DV are relatively constant throughout the year, 

whereas NOx emissions from GV have a similar trend to CO emissions, increasing in 

summer months due to the use of A/C systems and in winter months due to cold start 

emissions.(US-EPA, 2008) 

On a yearly basis, NOx ambient concentrations decreased from 1999 to 2001, 

increased during 2002 and 2003, and decreased again until 2007 (Figure 4.2d). The 

significant reduction during the period 1999-2001 (from 154 to 103 ppb) is likely a result of 

the implementation of the EPA acid rain program and stationary controls to reduce ozone, 

combined with mobile source reductions.(US-EPA, 2005) From 2002-2007, reductions in 
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ambient NOx are attributed largely to decreases in on-road NOx emissions. NOx emissions 

from on-road sources have a stronger correlation with ambient NOx during the period 2002-

2007 (R2=0.65) than 1999-2007 (R2=0.36).  

These results indicate that mobile source NOx emissions have a large impact on 

ambient NOx concentrations, but are not as dominant as mobile source CO emissions on 

ambient CO concentrations. 

4.3.4.  Elemental Carbon (EC) 

VISTAS estimates of EC emissions for 2002 is 92% from mobiles sources (on-road and non-

road) and 8% from other sources, such as biomass burning. From the on-road fraction, 

MOVES estimates 91% from DV and 9% from GV. On a weekly basis, EC concentrations 

are 30% higher during weekdays than weekends, due to the higher fraction of diesel vehicle 

traffic on weekdays. On a monthly basis, EC concentrations are lowest in spring and summer 

as compared to the October-December period.  During the cooler months, dispersion of 

pollutants is not favored due to increased thermal inversions and reduced wind speeds 

(Figure 4.2e). 

EC emissions from DV increase in summer due to an increase in VMT and greater 

construction activity with the subsequent increase in non-road emissions. Although not as 

large as emissions from DV, EC emissions from GV can be an important source during 

winter time because of cold starts (US-EPA, 2008). 

On an annual basis, EC concentrations decreased from 1.97 μg/m3 in 1999 to 1.13 

μg/m3 in 2007 (Figure 4.2f) as a result of changes in fuel composition and controls on mobile 

sources, such as the introduction of low and ultra low sulfur diesel in 2002 and 2006, 

respectively. Controls in point and open fires might also have helped on this reduction, such 
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as the open burning ban implemented in the 13-county metro Atlanta area in 1996. These 

results indicate that EC emissions are dominated by mobile sources for Fulton County, 

particularly by DV. 

In summary, data from Atlanta using a number of emissions and monitoring 

databases show that CO and EC are likely good indicators of GV and DV, respectively. NOx 

appears to be an indicator of overall mobile sources and cannot be easily used to discern 

between GV and DV.  Since only 20% of the total OC emissions are from mobiles sources 

(on-road and non-road) (Air Resources Specialists, 2007) and a fraction between 26%-47% 

of ambient OC can be formed secondarily (Pachon et al., 2010), our development of EB-

IMSI does not use OC, though the indicators can be used to estimate the OC from mobile 

sources.  

A similar analysis of ambient concentrations and emissions of CO, NOx and EC is 

conducted for Dallas and presented in Appendix B.1. 

4.4.  Development of the emission-based integrated indicators 

We propose a multipollutant indicator of CO, NOx and EC to assess mobile source impacts 

on air quality. In this work, the 1hr maximum values for CO and NOx were chosen because 

the 1hr metric has been found more associated with health outcomes than other metrics 

(Metzger et al., 2004). The EB-IMSI uses ratios of mobile-source-to-total emissions for each 

pollutant as weighting coefficients. Mobile source fractions of each pollutant can be 

estimated by multiplying these ratios by the ambient air concentrations. For example, the 

fraction of EC from mobile sources is estimated here as the total EC concentration multiplied 

by the ratio (ECmob/ECtot)Emis. Since the original pollutants have different units (μg/m3 for EC 
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and ppm for CO and NOx), a scaling of the ambient air concentrations by the standard 

deviation of each variable was performed:   
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where 
EC

ECEC
σ

=' , 
CO

COCO
σ

=' , 
NOx

NOxNOx
σ

='  represent the scaled concentrations (i.e., 

divided by the standard deviation) and the ratios correspond to emission ratios.  The EB-

IMSI uses normalization by the sum of the emission ratios in such a way that the indicator 

can be easily compared with other IMSI. 

The weighting coefficients (ratios between mobile sources and total emissions) for 

NOx and CO, obtained from the NEI database, are 0.84±0.03 and 0.97±0.01, respectively. 

The weighting coefficient for EC was estimated from VISTAS in 2002 to 0.92±0.04. The 

fractional contribution of each one of the weighting coefficients is approximately the same 

(0.33 for EC, 0.31 for NOx, 0.36 for CO).  

We were also interested in differentiating impacts from gasoline and diesel exhaust 

emissions, since the contribution at the receptor site can be quite different and the control 

mechanisms are specific to each type of vehicle. Therefore, we define integrated indicators 

for gasoline vehicles (EB-IMSI-GV) and diesel vehicles (EB-IMSI-DV) using specific 

emission ratios from gasoline and diesel emissions estimated with MOVES.  
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The ratio of gasoline-to-mobile emissions was used as a weighting coefficient for 

each species, being 0.58±0.02 for NOx and 0.98±0.01 for CO, obtained from the application 

of MOVES. For EC, the ratio of gasoline-to-mobile emissions is more seasonally dependent, 

with a summer value of 0.06±0.01 and a winter value of 0.12±0.04. The fractional 

contribution of each weighting coefficient is 0.05 for EC, 0.32 for NOx and 0.63 for CO, 

which indicates more weight on the CO and NOx than EC. Therefore, EB-IMSI-GV was 

defined as a weighting mixture of CO and NOx only: 
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Similarly, the ratios of diesel-to-total mobile emissions obtained from MOVES, used 

as weighting coefficients, for NOx was 0.42±0.02 and for CO 0.02±0.01. For EC, the ratio of 

diesel-to-total mobile emissions was more seasonally dependent, with a summer value of 

0.94±0.01 and a winter value of 0.88±0.04. The contribution of each weighting coefficient 

was 0.69 for EC, 0.29 for NOx, 0.02 for CO, which implies more weight on EC and NOx 

than CO. Therefore, EB-IMSI-DV was defined as a weighting mixture of EC and NOx only: 
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Specification of the EB-IMSIs has limitations. First, the emission fraction for a 

pollutant is translated to an ambient fraction assuming that the average source and receptor 

fractions are the same. This assumption has been tested in the past with good results: gas-to- 

PM2.5 emission ratios were used to optimize source profiles in Atlanta, finding a more 

accurately apportionment of PM2.5 from mobile sources and coal-fire power-plants.(Marmur 

et al., 2005) A second limitation is the use of an annual average emission ratio across the 

time series; however daily estimates of emissions are not available at this time. 

The EB-IMSI expressions for Dallas use the same values for the weighting 

coefficients than Atlanta since emissions estimates were obtained from the same sources. 

4.5.  Comparison of air pollutant impact analysis using indicators with results from 

receptor models 

 The EB-IMSIs were compared with source impacts from receptor models. The 

chemical mass balance method CMBv.8.2 (Watson et al., 1984) and the Positive Matrix 

Factorization method PMFv3.0 (Norris and Vedantham, 2008) were applied to the same 

period of time as the indicators. For PMF, strong species were NO3, SO4, NH4, EC, four OC 

thermal fractions, Al, Si, Fe, K, Ca, Br, Mn, Zn and weak species were PM2.5, Cu, Pb, Se. 

The temperature-resolved OC fractions were chosen to help on the separation between 

gasoline and diesel source impacts.(Kim et al., 2004; Liu et al., 2005) Missing data were 

replaced by their geometric mean to conserve the original number of samples for better 

performance of the PMF algorithm.(Reff et al., 2007) For CMB, optimized source profiles 

were chosen from a previous study in Atlanta and sources were eliminated to avoid negative 

source impacts.(Marmur et al., 2005) 
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4.6.  Inclusion in models examining associations between pollutant mixtures and acute 

health responses in Atlanta 

Based on the combination of pollutants in the EB-IMSI-GV and EB-IMSI-DV, a 

sensitivity analysis was performed between two-pollutant mixtures. For EB-IMSI-GV, 

mixtures of CO and NOx were evaluated and for EB-IMSI-DV mixtures of EC and NOx 

were chosen. In addition, mixtures of EC and CO were also evaluated. The sensitivity 

analysis was performed as follows. 

                                        NOx-EC = α * NOx’ + (1-α) * EC’                                         (4.4) 

                                       NOx-CO = α * NOx’ + (1-α) * CO’                                        (4.5) 

                                          CO-EC = α * CO’ + (1-α) * EC’                                           (4.6) 

where EC’, CO’ and NOx’ represent the scaled concentrations and α is a parameter that 

varies from 0 to 1, in such a way that allows comparing pollutants individually (when α is 

equal to 0 or 1) versus two-pollutant mixtures. The combination of NOx-EC at α=0.3 

corresponds to EB-IMSI-DV and the mixture of NOx-CO at α=0.3 corresponds to EB-IMSI-

GV.  

The impact of multipollutant metrics associated with mobile sources on health was 

assessed in an epidemiologic analysis. CVD ED visits were chosen as the health endpoint for 

this analysis given as those have been found to be associated with combustion-related 

activities in Atlanta.(Metzger et al., 2004; Sarnat et al., 2008) Briefly, ED visits for CVD 

were collected from 41 hospitals in metro Atlanta from 1999 to 2004. Daily ED counts are 

regressed with air pollution indicators using a Poisson generalized linear model (GLM).  
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where E(Y) is the predicted count of CVD visit and β is the regression coefficient of the 

indicator of interest. Day of week, holiday and hospital entry and exit are modeled using 

indicator variables (as the hospitals provided data for varying amounts of time). Long-term 

temporal trends are accounted for using cubic splines with monthly knots (g1). Daily (lag 0) 

temperature is controlled using indicator variables for each degree Celsius and cubic terms 

for lag1 and lag 2 moving average temperature (g2); dew point is controlled using cubic 

terms for lag 0-1-2 moving average (g3). The model specifications are described, in detail, 

elsewhere.(Metzger et al., 2004; Sarnat et al., 2008) 

Unlike traditional multipollutant models that solve for different regression 

coefficients, our approach solves for only one β for a multipollutant indicator. The points at 

which the two-pollutant mixtures show the strongest association with CVD define the health-

based integrated indicators (HB-IMSI). 

4.7.  Results 

The assessment and relevance of the EB-IMSIs was conducted as follows: i) analysis of EB-

IMSI trends, ii) comparison with mobile source impacts from receptor models, iii) 

uncertainties in the estimation of the indicators, iv) comparison with HB-IMSI derived from 

associations with CVD ED visits and v) implication for multipollutant air quality standards. 
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4.7.1.  EB-IMSI trends 

EB-IMSIs exhibit similar temporal trends as ambient EC, CO and NOx, with a decrease 

during summer and increase during fall and reduction in annual averages from 1999 to 2007 

(Fig 3). The total EB-IMSI was strongly correlated with EC (R2=0.74), CO (R2=0.86) and 

NOx (R2=0.81), which was expected since they are the species forming the indicator. EB-

IMSI-GV was most strongly correlated with CO (R2=0.94) whereas EB-IMSI-DV was more 

strongly correlated with EC (R2=0.91). On a monthly basis, EB-IMSI-GV showed a larger 

reduction in concentrations during summer than EB-IMSI-DV, consistent with less 

commuting from light-duty traffic during the summer months. On an annual basis, there is a 

larger decrease in EB-IMSI-GV than EB-IMSI-DV, explained by a more rapid introduction 

of new control technologies in the gasoline fleet than diesel vehicles. The comparison of EB-

IMSIs annual averages with reduction in emissions of CO, NOx and EC with respect to 1999 

shows a similar trend suggesting a good agreement between indicators estimated with 

ambient air concentrations and emissions from mobile sources. 

 

 
Figure 4.3 Temporal trends (a. monthly; b. annual) of EB-IMSI, EB-IMSI-GV and EB-IMSI-
GV (unitless). The indicators are normalized such as they have a standard deviation of one. 
Annual trend is compare with reduction in emissions of CO, NOx and EC with respect to 
1999 (on right y axes). 

a b
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On a daily basis, EB-IMSI is 22% larger during weekdays than weekends, capturing 

the increase in traffic during the week. The EB-IMSI-DV trend has a large decrease during 

weekends (30%) than EB-IMSI-GV (14%) and is explained by reduced diesel traffic during 

the weekend. 

In Dallas, EB-IMSI annual trends peak in 2005, similar to CO, NOx and EC (Fig. B.2 

in the Appendix B) due to dry conditions during this year. A slight increase in EB-IMSI and 

EB-IMSI-DV is also observed in 2007 and explained by lower wind speeds during that year. 

On a weekly basis, EB-IMSIs are greater on weekdays than weekends, similar to traffic 

trends. EB-IMSI-DV has a larger weekday/weekend ratio than EB-IMSI-GV (1.39 and 1.20 

respectively), suggesting a larger reduction of heavy-duty traffic during weekends, as 

expected. 

4.7.2.  Comparison with results from receptor models 

CMB and PMF methods yield similar estimates for PM air quality impacts for the chosen 

sources (Table B.1 in the Appendix B). The correlation between gasoline and diesel source 

impacts resolved by CMB and PMF (Table 4.1) was substantially lower than the correlation 

of the combined fractions into one mobile source (R2=0.83) in both summer and winter, 

which demonstrates the difficulty of receptor models to adequately capture the  split between 

gasoline and diesel daily contributions. The proposed EB-IMSI correlates strongly with total 

mobile source impacts from CMB (R2=0.86 in winter and R2=0.73 in summer) and PMF 

(R2=0.85 in winter and R2=0.69 in summer). The EB-IMSI-DV correlates stronger with 

diesel source impacts from CMB and PMF than the corresponding correlation of EB-IMSI-

GV with gasoline source impacts from the receptor models. This is due to both CMB and 

PMF using EC as a fitting species to solve for diesel contributions, and EB-IMSI-DV is 
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heavily weighted by EC, whereas EB-IMSI-GV uses CO, a species that is typically not used 

to fit the CMB or PMF gasoline source categories.  

 

Table 4.1 Correlations between EB-IMSI, EB-IMSI-GV and EBIMSI-DV with single species 
and daily source impacts from CMB and PMF 

 

*Values in the upper right represent correlations during winter time (Oct-Mar); values in the 
lower left represent correlations during summer time (Apr-Sep). 
 

 

In the southeastern US, biomass burning can also be a significant source of EC, CO 

and NOx to ambient air.(Lee et al., 2008a) EB-IMSI does not seem to be influenced by daily 

impacts from this source. On selected days with biomass burning activity over 4.0 μg/m3 of 

PM2.5 identified by both CMB and PMF, the integrated indicators were more strongly 

correlated with source impacts from mobile sources than wood burning. On those days, the 

correlation between EB-IMSI and mobile source impacts from CMB (R2=0.86) or PMF 

(R2=0.83) were significantly higher than the correlation between EB-IMSI and source 

impacts from biomass burning from CMB (R2=0.13) or PMF (R2=0.34). This result supports 

the emissions estimates and analyses detailed above that found emissions of EC, CO and 

NOx in Atlanta predominantly from mobile sources. 
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4.7.3.  Uncertainties in mobile source indicators 

Uncertainties are involved in several steps of the calculations (e.g. emission estimates, 

ambient measurements, receptor models), and we estimate uncertainties in EB-IMSIs and 

compared them with uncertainties from singles species and receptor model source 

contributions. Uncertainties in ambient measurements (EC, CO, NOx) were estimated as one-

third of the detection limit (μg/m3 or ppm) plus the product of analytical uncertainty 

(percentage) and concentration. Both detection limit and instrument uncertainty were 

obtained from the SEARCH study.(Hansen et al., 2003) Uncertainties in CMB source 

impacts are estimated using the effective variance method which considers uncertainties in 

both source profiles and ambient concentrations.(Lee and Russell, 2007) In PMF, 

uncertainties in factor contributions are not given explicitly by the model, so a bootstrapping 

procedure is used(Norris and Vedantham, 2008). Uncertainties in EB-IMSIs are propagated 

from individual uncertainties taking into account that CO, NOx and EC are correlated 

between each other and therefore, covariance terms need to be included.(International 

Organization for Standardization, 1993) 
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Application of the propagation of errors in the estimation of the EB-IMSI uncertainties is 

explained in detail in the Appendix B.2. 

 Among single species, CO and NOx have lower uncertainties than EC because gas 

species are typically more accurately measured than filter-based PM2.5 species measurements 

(Table 4.2). The EB-IMSIs show uncertainties larger than the ambient measurements since 
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uncertainties in emissions ratios are involved in addition to the ambient measurement 

uncertainties. Furthermore, the calculation of uncertainties in EB-IMSIs includes the 

uncertainty provided by correlated quantities, as it has been demonstrated they can impact 

uncertainty results (Espinosa et al., 2010). Here, the uncertainty in EB-IMSIs is primarily 

driven by the uncertainties in the covariance relationships between EC, CO and NOx. For 

EB-IMSI-GV, the uncertainties are driven by the covariance relationships of CO and NOx. 

For EB-IMSI-DV, uncertainties are mostly driven by uncertainties in EC measurements and 

emissions ratios and the covariance relationships of EC and NOx. 

 
 

Table 4.2 Comparison of uncertainties between indicators 
Indicator Indicator 

value
Standard 
deviation

Uncertainty* Relative 
uncertainty

CO-1h (ppm) 1.16 1.00 0.16 0.14
NOx-1h (ppm) 0.12 0.10 0.03 0.25
EC (μg/m3) 1.53 0.97 0.64 0.42
EB-IMSI 1.31 0.90 0.72 0.55
EB-IMSI-GV 1.17 0.96 0.80 0.68
EB-IMSI-DV 1.48 0.94 0.76 0.51
PMF-mob (μg/m3) 2.94 2.30 1.11 0.38

PMF-GV (μg/m3) 1.37 1.21 0.36 0.26

PMF-DV (μg/m3) 1.57 1.65 1.05 0.67

CMB-mob (μg/m3) 2.54 1.70 2.53 1.00

CMB-GV (μg/m3) 1.35 1.15 2.00 1.48

CMB-DV (μg/m3) 1.27 1.02 1.60 1.26  

* Uncertainties are estimated as the RMS average ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ 21

ii N
σσ of daily uncertainties 

from 1999-2004. 
 

The range of uncertainties of EB-IMSIs (0.51-0.68) is comparable to the range of 

uncertainties in PMF (0.26-0.67) which is a standard method to estimate contributions from 
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mobile sources. The high range of uncertainties in CMB (1.00-1.48) is mostly explained by 

uncertainties in the source profiles (Lee and Russell, 2007). 

4.7.4.  HB-IMSIs derived from associations with CVD ED visits 

The epidemiologic model (Equation 4.7) was implemented with time series of pollutant 

concentrations (CO, NOx, EC), sources impacts (from CMB and PMF), EB-IMSIs and the 

two-pollutant mixtures from the sensitivity analysis. A total of 40 metrics were evaluated and 

compared for the daily association between the metric and corresponding ED visits for CVD 

in the period 1999-2004. Within the single species, NOx-1hr was most strongly associated 

with CVD, followed by CO-1hr (Table 4.3).  Pollutants that are better measured such as CO 

and NOx typically have stronger associations in a epidemiologic model,(Vedal and Kaufman, 

2011) and NOx has been proposed as indicator of toxic species emitted by traffic.(Brook et 

al., 2007) When the three pollutants are combined to form the EB-IMSI, the strength of 

association is greater than either for EC or CO-1hr separately, but less than NOx-1hr. Using 

EB-IMSI-GV as a predictor of CVD-related ED visits in model resulted in greater statistical 

significance than EB-IMSI-DV. In this study, gasoline and diesel source impacts from CMB 

and PMF were not shown to be significantly associated with CVD. This may be explained as 

both CMB and PMF use EC as a fitting species for mobile fractions, and the association 

between this pollutant and CVD in this particular analysis was only borderline significant. 

Differences in time periods, health outcomes and analytic methods (e.g., tighter controls in 

the epidemiologic analyses) may explain the significant association between mobile source 

daily contributions and CVD found in other studies in the Atlanta area.(Metzger et al., 2004; 

Sarnat et al., 2008)  
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Table 4.3 Results for the associations of ED for CVD with mobile source impacts metrics 
(sorted by p-value) 
 

Indicator IQR RR per IQR 95% CI p-value 
CMB-DV 1.0 μg/m3 1.005 0.997 – 1.014 0.206 
PMF-GV 2.3  μg/m3 1.005 0.997 – 1.012 0.206 
PMF-DV 2.3 μg/m3 1.006 0.998 – 1.014 0.168 
CMB-GV 1.0 μg/m3 1.006 0.999 – 1.012 0.079 
EC 1.0 μg/m3 1.008 1.000 – 1.017 0.054 
CO-1h 0.9 ppm 1.007 1.001 – 1.014 0.033 
EB-IMSI 2.3 1.007 1.001 – 1.014 0.029 
EB-IMSI-DV 0.7 1.010 1.001 – 1.018 0.022 
NOx-1h 0.1 ppm 1.008 1.001 – 1.015 0.018 
EB-IMSI-GV 0.8 1.009 1.002 – 1.017 0.018 

 

The inclusion of the two-pollutant mixtures (NOx-EC, NOx-CO, CO-EC) in the 

epidemiologic model is represented in three curves with a minimum point where the 

association with CVD is strongest (Figure 4.4). The minimum point suggests that the 

combinations of pollutants at specific fractions are more prone to explain associations with 

health outcomes than individual species. 

The minimum point in the curves occurs at α=0.6 for NOx-CO, at α=0.7 for NOx-EC 

and at α=0.5 for CO-EC. It would seem reasonable that a large fraction of NOx in the NOx-

CO and NOx-EC pairs would give a more strongly significance to the association with CVD 

outcomes. However, at larger NOx fractions than the minimum point the significance 

actually decreases. Similarly, for the CO-EC pair one could also expect that a larger fraction 

of CO in the mixture would give greater significance. The minimum occurs when both 

pollutants are approximately equally weighted. 
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Figure 4.4 Sensitivity analysis of the association between pairs of pollutants and CVD 
outcomes; the dashed line represents p-value = 0.05.  
 
 

The points where the association of the two-pollutant mixtures and CVD is strongest 

defined the health-based indicators. That is, we define HB-IMSI-NC at α=0.6 for NOx-CO, 

HB-IMSI-NE at α=0.7 for NOx-EC, and HB-IMSI-CE at α=0.5 for CO-EC. Pollutants used 

in the two-pollutant HB-IMSIs are denoted by a suffix, e.g., “-NE” for NOx and EC. The 

HB-IMSIs hold different fractions of pollutants than the EB-IMSIs, suggesting that other 

sources, besides traffic, may be contributing in the association with CVD though the p-values 

are relatively constant between the both integrated indicators. The advantage of using EB-

IMSIs is that specific control mechanisms can be suggested to mobile sources facilitating the 

work of policy-makers. 

The IMSIs and the two-pollutant mixtures showing different associations with CVD 

outcomes at different α values can be partially explained by the correlations between 
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individual pollutants and the two-pollutant mixture and more clearly by the spatial variability 

analysis.  

With respect to the first explanation, the correlation of each pair of pollutants and the 

third pollutant not included in the pair changes with the α fraction (Figure 4.5). For example, 

the correlation between NOx-EC and CO has a maximum value at α=0.5 (R2=0.63) which is 

larger than the correlation between CO-EC (R2=0.49) or CO-NOx (R2=0.55). Similarly, 

NOx-CO and CO-EC have stronger correlations with EC and NOx at α=0.4 and α=0.6 

respectively. 
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Figure 4.5  Correlation (R2) between pair of pollutants and the third pollutant not included in 
the two-pollutant mixture (NOx-EC vs CO; NOx-CO vs EC; CO-EC vs NOx). Vertical scale 
starts at 0.3 to emphasize correlations. 
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A higher correlation of a pair of pollutants with a third pollutant more strongly 

associated with CVD, may explain the higher association of that pair with the health outcome. 

For example, the strongest association of CO-EC with CVD at α=0.5 (Figure 4.4) might be 

explained by the higher correlation of the CO-EC pair and NOx at that fraction (Figure 4.5). 

However, this is not the case for NOx-EC and NOx-CO pairs which already include the 

statistical power of NOx in the health association. 

A more clear explanation can be found in the spatial variability analysis. We observe 

that the correlations between pairs of pollutants estimated at JST and the corresponding pairs 

calculated at SD are stronger at certain value of α than others (Figure 4.6). These values are 

α=0.5 for NOx-EC (R2=0.72) and NOx-CO (R2=0.72) and α=0.4 for CO-EC (R2=0.76). The 

correlations between pair of pollutants at JST and SD are stronger than the correlations 

between single pollutants at both sites (R2=0.64 for EC; R2=0.55 for CO; R2=0.59 for NOx) 

suggesting that mixtures of pollutants have a greater spatial representativeness than 

individual species. Previous studies have found that for pollutants with large spatial error, 

health associations are likely attenuated(Goldman et al., 2010). Pollutant mixtures having a 

more robust spatial representativeness than single pollutants may offer a better explanation of 

the stronger association with health.  
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Figure 4.6 Correlation (R2) between pair of pollutants calculated at JST and the 
corresponding pair estimated at SD. Vertical scale starts at 0.3 to emphasize correlations.  
 

As a result of the greater spatial representativeness, EB-IMSI-GV and EB-IMSI-DV 

constitute better indicators for mobile sources which are expected to be ubiquitous in the area. 

This result complements a previous spatial analysis in which mobile source impacts were 

classified as having “intermediate” spatial representativeness of the Atlanta area due to the 

lack of a unique marker (EC was used as the only mobile tracer) (Marmur et al., 2006). Using 

EB-IMSIs, mobile source impacts show a more robust representativeness in the area. 

Finally, the association of pollutant mixtures with health outcomes could be related to 

interaction between pollutants as has been shown in laboratory studies (Mauderly and Samet, 

2009). This hypothesis needs further study. 

 



 

91 

4.7.5.  Implications for multipollutant air quality standards 

EB-IMSIs and HB-IMSIs can provide support to the setting of multipollutant air quality 

standards in a manner similar to that used in the development of the aquatic acidification 

index (AAI)(US-EPA, 2011) (Figure 4.7). The AAI was designed to take into account the 

combined effects of NOx and SOx in the acidification of aquatic ecosystems, given that these 

two species are linked from atmospheric chemistry. Similarly, HB-IMSIs assess the effects of 

mixtures of pollutants associated with mobile sources on health and EB-IMSIs assess 

mixtures representing the gasoline and diesel vehicle impacts on air quality. Since mobile 

sources and their composition are ubiquitous, it is expected that the integrated indicators can 

be applied in other cities. IMSIs are simple to construct and calculate and can be estimated at 

any monitoring site where EC, CO and NOx concentrations are available. 

 

 

Figure 4.7  Analogy between the design of the AAI and IMSIs 
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CHAPTER 5 MOBILE SOURCE AIR QUALITY IMPACT INDICATOR SETS 

FOR POLICY UTILIZATION: EVALUATION AND UNCERTAINTIES 

(Jorge E. Pachon, Marissa Maier, Sivaraman Balachandran, Yongtao Hu, James A. 

Mulholland, Jeremy A. Sarnat, Lyndsey A. Darrow, Armistead G. Russell. In 

preparation) 

 

5.1.  Abstract 

The analysis of long-term emission trends and pollutant concentrations is used to develop 

relationships between traffic emissions and single and multipollutant indicators of mobile 

sources. Using concentration-response functions, a direct link between emissions and 

health outcomes is developed for single and multipollutant indicators and then is 

translated into health benefits using estimates of illness costs. The comparison of human 

health benefits (HHB) associated with CO versus NOx and EC suggests that emission 

controls on gasoline vehicles have been more effective to improve public health than 

emission controls on diesel vehicles. The evaluation of HHB using integrated indicators 

supports the previous finding. In addition, HHB estimated using integrated indicators 

were found more consistent than using single species, supporting our selection of 

multipollutants as better surrogates of mobile sources. A vehicular ozone indicator was 

developed from sensitivities of ozone to mobile NOx emissions in a chemical transport 

model. An inverse response of ozone concentrations to NOx emissions overall was found, 

which is expected for NOx-rich areas. Together, this information is grouped into 

indicator sets for use by policy-makers. 
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5.2.  Introduction 

Assessing the effectiveness of policies designed to reduce adverse outcomes of human 

activities is becoming increasingly central to environmental management. Quantitative 

evaluation of the steps in the air quality chain, from emission sources to ambient 

measurements to exposure and to health effects (i.e., the accountability paradigm), is an 

important task for policy makers in order to show that specific policy decisions have 

produced the desired benefits. However, the intended outcomes are not always 

quantifiable, or even observable. As a result of this limitation, surrogate measures of the 

environmental impacts are traditionally used as indicators of the range of outcomes 

experienced. 

Environmental indicators, as defined by EPA, are numerical values whose time 

trends represent the condition of the environment on a particular geographic location 

(US-EPA, 2008). Bell et al. (2011) reviews environmental indicators related to human 

health at each step in the health system (i.e., from emissions through exposure and health 

endpoint), finding that indicators are useful for policy-makers and the general public to 

assess the state of the environment and the associated health and socio-economic impacts. 

The authors also note the limitations of environmental indicators such as the spatial and 

temporal representativeness of single pollutant indicators and the lack of consideration to 

the simultaneous exposure to multiple pollutants. Since impacts on the environment at 

times lead to impacts on human health, environmental indicators are often linked to 

health outcomes in the form of health outcome-based indicators. These indicators not 

only represent the state of the environment, but also describe their relationships to 



 

99 

particular health outcomes (US-EPA, 2006), facilitating the evaluation of public health 

policy effectiveness as result of improvement in environmental conditions 

Associations between air pollutant exposures within a population and health 

effects are characterized using a range of epidemiologic approaches (Brook et al., 2010; 

Laden et al., 2006; Pope et al., 2002) and used in the development of policies aiming to 

reduce pollutant concentrations and improve public health. However, pollutants are 

emitted by multiple sources or formed in the atmosphere from primary precursors, and 

are differentially removed, obscuring the association of health outcomes with specific 

emission sources. To overcome this limitation, several epidemiologic studies have used 

results from source apportionment (SA) modeling (Laden et al., 2000; Mar et al., 2000; 

Sarnat et al., 2008). This approach has found that mobile sources, for example, are 

generally more associated with cardiovascular diseases than other primary sources 

(Sarnat et al., 2008).  

The accountability in the air quality chain is conducted through the evaluation of 

environmental indicators at different stages in the link from air pollution sources to 

adverse health effects (Health Effects Institute, 2003). In order to evaluate how emission 

changes may impact health response, a two-step process is traditionally conducted. First, 

ambient concentrations are estimated from first principles using emission inventories, 

meteorology and photochemistry in chemical transport models (CTM), such as CMAQ. 

Second, data from CTMs is used in conjunction with concentration-response functions 

(CRF) from epidemiologic models to estimate how emission changes affect human health, 

such as in BenMAP (Davidson et al., 2007; Fann et al., 2011; Tagaris et al., 2009; 

Voorhees et al., 2011). This two-step process has been commonly applied for single 
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pollutants and more recently for multipollutants. Wesson et al. (2010) assessed and 

compared benefits from single and multipollutant control strategies and concluded greater 

health benefits from multipollutant controls. Their work, however, do not include 

multipollutant analysis at other steps in the air quality chain, for example, in the 

estimation of health-impact functions.  

Ozone (O3) is a secondary pollutant formed from volatile organic compounds 

(VOC) and NOx in the presence of sunlight. Automobiles have a marked impact on 

ozone because they emit a large fraction of both VOC and NOx emissions in urban areas. 

In Atlanta, for example, estimates suggest that 84% of the NOx and 36% of the 

anthropogenic VOCs are emitted by mobile sources (US-EPA, 2007). Understanding the 

impact of automobile emissions on O3 is difficult, since other emission sources 

participate significantly in its formation (e.g., power plants and biogenic sources) and 

emissions can lead to a net formation or destruction of ozone under different 

meteorological conditions, emission densities and other factors (Chameides et al., 1988; 

Cohan et al., 2005; Lin et al., 1988). 

One approach to determine the impact of vehicles on ozone is by quantifying the 

responsiveness or “sensitivities” of ozone to its precursors (e.g., NOx, VOCs) in CTMs 

(Hakami et al., 2004). The sensitivities represent how pollutant concentrations would 

respond to reductions in precursors if the system were linear, which is typically the case 

for emission reductions of 25-50% (Cohan et al., 2005). Using sensitivity analysis, Tian 

et al (2010) found that reductions in mobile on-road NOx emission would contribute 

most to corresponding decreases in Atlanta ozone concentrations, followed by reductions 

in mobile non-road and point NOx emissions. Further, Liao et al (2008) found that 
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sensitivities of ozone to NOx emissions are typically correlated with the corresponding 

ozone concentration. 

In previous work, we discussed the use of EC, CO and NOx as indicators of 

mobile sources in Atlanta, observing that CO concentrations respond closely to the 

change in emissions of gasoline vehicles (GV); ambient EC had a relatively good 

response to the change in emissions of diesel vehicles (DV); and NOx was found an 

indicator of the overall fleet (GV+DV) (Pachon et al., 2011). That work also examined 

multispecies indicators finding that mixtures of CO and NOx were more spatially 

representative of the GV source impacts and mixtures of EC and NOx were more 

representative of DV source impacts than using single species. Those traffic emission 

indicator mixtures were also more strongly associated with cardiovascular diseases 

(CVD) in epidemiologic models than single species indicators, possibly be due to their 

greater spatial representativeness. 

In the current analysis, we estimate HHB using single and multipollutant 

indicators of mobile sources in two steps. First, long-term relationships between ambient 

concentrations and emissions are examined to evaluate the response in single and 

multipollutant indicators as a result of the change in emissions (separate and integrated 

respectively). Such relationships are used along with CRF to estimate how emission 

changes may impact health response. For this analysis, CRF for multipollutant indicators 

were obtained using mixtures of pollutants in an epidemiologic model, providing a 

framework to evaluate multipollutants throughout the air quality chain. This is the first 

time, to our knowledge, that a comprehensive air quality analysis is conducted comparing 

single and multipollutant indicators.  
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Indicators sets for single and multipollutant indicators are presented to facilitate 

their application in air quality management. Indicator sets include not only indicator 

values and uncertainties, but also relationships between indicators at different stages, 

from emission to ambient concentrations to health outcomes. The attributes accompanied 

the indictor sets include type of information needed to estimate the indicator, ease of use, 

range of validity or appropriate references. The indicator sets are expected to be useful 

for policy makers who are interested not only in the value of the indicators, but also in 

their associated uncertainties and their applicability at other times and other regions. 

5.3.  Methods 

Our previous work discussed indicator development strategies for single and 

multipollutant species, conducted health association modeling and sensitivity analysis, 

and explored the propagation of uncertainties from emissions and ambient concentrations 

in the indicators using data for Atlanta during 1999-2004 (Pachon et al., 2011). The 

proposed approach includes: i) the quantification of relationships between emissions and 

ambient concentrations using both single and multipollutant indicators of mobile sources 

in Atlanta; ii) an estimation of human health benefits associated with reductions in these 

single and multipollutant indicators, iii) the development of a vehicular ozone indicator, 

iv) the construction of indicator sets and v) the evaluation of uncertainties in different 

metrics. 

5.3.1.  Development of relationships between emission and ambient concentrations for 

single and multipollutant indicators of mobiles sources 

The development of emission-based integrated mobile source indicators (EB-

IMSI) builds on our previous work using ratios of mobile-source-to-total emissions as 
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weighting coefficients in the combinations of ambient EC, CO and NOx  (Pachon et al., 

2011). 
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where EC′, CO′ and NOx′ are scaled concentrations (divided by the standard deviation). 

For the period 1999-2004, normalized values of IMSI were: EB-IMSI: 3.58 ± 1.38, EB-

IMSI-GV: 1.81 ± 0.42 and EB-IMSI-DV: 1.52 ± 0.67.  

The rate of change in pollutant concentrations as a result of the change in 

emissions is estimated as the regression slope between long-term concentrations and 

emissions for EC, CO and NOx (‘m’). Estimated emissions are normalized by the area of 

the city (i.e., Fulton County in Atlanta or 210 km2) to facilitate comparison with other 

cities. To evaluate a relationship between emissions and multipollutant indicators, mobile 

emissions of EC, CO and NOx are integrated using a similar approach in the construction 

of EB-IMSI (Equations 5.1-5.3). 
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The rate of change in integrated mobile source emissions (IMSE) is regressed against the 

rate of change in ambient values of EB-IMSIs. 

5.3.2.  Estimation of human health benefits using single and multipollutant indicators in 

Atlanta  

From previous work, we have obtained the CVD-ED risk per change of pollutant 

concentrations (EC, CO, NOx) and multipollutant indicators (EB-IMSI) in Atlanta during 

1999-2004 (Pachon et al., 2011). This concentration-response function (β) along with the 

concentration-emission relationship, ‘m’, is used to model the influence of changing 

emissions and corresponding incidences on adverse health impacts (here called ‘h’): 
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where ‘risk’ is a unitless variable. The evaluation of the uncertainty in this metric is 

conducted using propagation of errors, assuming that β and m are uncorrelated, which is 

strongly likely to be the case because β and m are the result of different health and 

emission analyses. 

                                                  22222
βσσβσ mmh +=                                                     (5.8) 
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where σm is the uncertainty in the relationship between ambient concentrations and 

emissions obtained from the slope standard error of the regression and σβ is the 

uncertainty in the risk signal obtained from the standard error in the epidemiologic model. 

Estimates of HHB are expressed as the number of CVD-ED visits avoided per 

year during 1999-2004 as a result of reductions in mobile source emissions of EC, CO 

and NOx. The HHB is estimated as the product of ‘h’ (ton/yr)-1 and emission reduction 

( ) 620041999 EEE −=Δ  from 1999 to 2004 in ton/yr. 
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The factor 25,000 accounts for the average number of CVD-ED visits per year in 

Atlanta during 1999-2004 (Tolbert et al., 2007). The uncertainty in HHB can be 

expressed as follows. 

                                             2222 ***000,25 hEHHB Eh σσσ Δ+= Δ                           (5.10) 
  

where σh is the uncertainty obtained from Equation 5.8 and σΔE is the uncertainty in 

reduction of emissions 62
2004

2
1999 EEE σσσ +=Δ . 

The annual savings in costs of HHB (S) can then be estimated applying the typical 

cost of treating one CVD visit. Our calculations are based on the cost of illness (COI) for 

CVD provided by EPA (2004), which considers only direct expenditures (costs of 

treating or mitigating the health effect) and not the value of avoided pain and suffering or 
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premature mortality, which are considered in more comprehensive cost-benefit analyses 

of air pollution. 
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with respective uncertainty estimated as HHBS COI σσ *= . 

5.3.3.  Development of the vehicular ozone indicator 

Ozone concentrations typically do not have a linear response to the change in precursor 

emissions as described for EC, CO and NOx. Therefore, the estimation of a 

concentration-emission relationship for ozone is not feasible using the same approach 

(i.e., long-term analysis of concentrations and emissions). The use of sensitivities from 

CTMs can be used to assess such relationship. Sensitivities in CTMs are defined as the 

rate of change in ambient concentrations as a result of the perturbation in model 

parameters (Dunker, 1981; Hakami et al., 2003). The first-order sensitivity (Si,j) of 

pollutant concentration i (Ci) to source emissions j (Ej) is calculated as (Hakami et al., 

2003): 
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Liao et al (2008) calculated first-order sensitivities of daily maximum 8-h ozone 

concentrations to anthropogenic NOx (SMDA8hO3,ANOx) and VOC (SMDA8hO3,AVOC) for 

Atlanta during 2001. The SMDA8hO3,ANOx was found linearly correlated with ozone 

concentrations. 
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                                                [ ]3,38 * ObaS ANOxhOMDA +=                                   (5.13) 

 

The sensitivity of ozone to mobile NOx can be estimate from the previous relationship 

and using the ratio between mobile-source-to-total NOx emissions. 
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The sensitivities of ozone to NOx are significantly greater in magnitude to the 

sensitivities of ozone to anthropogenic VOCs, due to higher biogenic VOC emissions and 

subsequently lower sensitivity of ozone to anthropogenic VOC emissions (Tian et al., 

2010). Furthermore, sensitivities of ozone to anthropogenic VOCs do not exhibit a linear 

relationship with ozone concentrations. Therefore, in this work the vehicular ozone 

indicator (VOI) corresponds to the sensitivity of ozone to mobile NOx emissions plus a 

fixed value of the sensitivity of ozone to anthropogenic VOCs. 

5.3.4.  Construction of indicator sets 

Indicators sets for single and multipollutant indicators are presented to facilitate their 

application in air quality management. Indicator sets include not only indicator values 

and uncertainties, but also relationships between indicators at different stages of the air 

quality chain, from emission to ambient concentrations to health outcomes (Fig. 5.1). The 

attributes accompanied the indictor sets include type of information needed to estimate 

the indicator, ease of use, range of validity or appropriate references. The indicator sets 

are expected to be useful for policy makers who are interested not only in the value of the 
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indicator, but also in their associated uncertainties and their applicability at other times 

and other regions. 

 

 

Figure 5.1 Conceptual framework of Indicator Sets 
 

Indicator sets, as opposite to single indicators, provides a framework to assess 

policy effectiveness throughout the air quality chain. It is applicable to both single and 

multipollutant indicators, since information at every step is available from this and 

previous work (Pachon et al., 2011). 

5.3.5.  Estimation of uncertainties 

Uncertainties in the indicator sets are estimated at every step of the air quality chain: 

from emission sources to ambient measurements to exposure and to health effects. 

Although comparison of uncertainties is complicated since they were obtained from 

different approaches, an assessment of relative uncertainties (uncertainty/indicator value) 

offers some insights. To facilitate the comparison, uncertainties are assessed in five 

different groups: emissions, emission-concentration response functions, ambient 

concentrations, HHB and receptor models. 
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5.3.6.  Air quality and emissions data 

Single and multipollutant indicators were developed for Atlanta during the period 1999-

2004 in previous work. This study expands the indicators throughout 2007 using air 

quality data from the Jefferson Street site (JST), a highly-instrumented monitoring site 

near downtown and part of the SEARCH project (located at 33.8 degrees North and -84.4 

degrees West). Description of the measurement methods is found elsewhere (Edgerton et 

al., 2005; Hansen et al., 2003). Briefly, elemental carbon (EC) is measured on 24-hour 

PM2.5 samples using quartz filters from a particle composition monitor (PCM) and 

analyzed by the thermal-optical reflectance (TOR) method at the Desert Research 

Institute (DRI) following the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) protocol (Chow et al., 1993). CO, NO and NO2 are measured every minute 

and averaged to the hour. CO is measured using non-dispersive infrared 

spectrophotometry. NO2 is measured via photolytic conversion to NO, followed by 

chemiluminescence. NO and NO2 are summed and reported as NOx. O3 is measured 

using UV-absorption. 

Emissions from mobile sources were estimated in Atlanta using the EPA-MOVES 

2010 model (US-EPA, 2010). Nationwide vehicle information was used to determine 

emissions for GV and DV from 2005 to 2007 for Fulton County in Georgia. Emissions of 

EC, NOx and CO for other sources were obtained from the Visibility Improvement State 

and Tribal Association of the Southeast (VISTAS) project (Air Resources Specialists, 

2007). 
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5.4.  Results 

Results are presented in the development of long-term relationships between ambient 

concentrations and emissions for single and multipollutant indicators of mobiles sources, 

the estimation of human health benefits of emission controls, the development of 

indicator sets and uncertainties, and the vehicular fraction of the ozone. 

5.4.1.  Development of relationships between ambient concentrations and emissions for 

single and multipollutant indicators of mobiles sources 

Ambient concentrations of CO, NOx and EC are plotted versus CO, NOx and EC 

emissions respectively in Atlanta from 1999 to 2007 observing high correlation 

coefficients (R2=0.94 for CO, R2=0.68 for NOx, R2=0.60 for EC) (Fig. 5.2). 

Concentration-emission regression slopes are statistically significant at the 95% 

confidence interval (CI), but regression intercepts are not. The rate of change in ambient 

concentrations of CO as a result of change in CO emissions is 1.51 ± 0.17 ppm/103 

tons/yr/km2, which is equivalent to 7.2x10-6 ± 8.1x10-7 ppm/(ton/yr) when de-normalized 

by the area of Fulton County. For NOx, the rate of change in ambient concentrations as a 

result of change in emissions is 0.54 ± 0.14 ppm/103 tons/yr/km2 (2.6x10-6 ± 6.7x10-7 

ppm/ton/yr). The rate of change in ambient CO is greater than the rate of change in 

ambient NOx as a result of change in emissions, which is explained by higher CO 

concentrations in the atmosphere than NOx (1.05ppm CO and 0.11ppm NOx averages 

during 1999-2007). 

The rate of change in ambient concentrations of EC as a result of change in EC 

emissions is 1.04 ± 0.32 (μg/m3)/(tons/yr/km2), which is equivalent to 5.9x10-3 ± 1.5x10-3 
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(μg/m3)/(ton/yr). The relative uncertainty (uncertainty/slope) of the regression slopes is 

larger for EC and NOx (approx. 30%) than CO (10%).  
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Figure 5.2 Ambient pollutants vs. emissions in Atlanta for 1999-2007 
 

Estimated EB-IMSIs (Equations 5.1-5.3) are plotted versus IMSEs (Equations 

5.4-5.6) for Atlanta (Fig. 5.3). Significant correlations are observed for the three 

integrated indicators, with concentration-emission regression slopes statistically 

significant at the 95% CI, buy intercepts not significant (i.e., not different than zero). 
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Figure 5.3 Ambient multipollutants vs. integrated emissions in Atlanta during 1999-2007 
period. 
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The rates of change in ambient concentrations of EB-IMSIs as a result of change 

in IMSEs, after de-normalizing by the area, are: 4.36x10-6±7.1x10-7 EB-IMSI/(ton/yr), 

5.2x10-6±5.2x10-7 EB-IMSI-GV/(ton/yr), 4.5x10-5±1.6x10-5 EB-IMSI-DV/(ton/yr), which 

denotes a larger response in EB-IMSI-DV per ton of integrated pollutants reduced than 

EB-IMSI and EB-IMSI-GV. The similarity in the rate of changes for EB-IMSI and EB-

IMSI-GV is explained by the weight of CO and NOx in both indicators and suggests that 

most of the vehicles source impacts are from GV.  

The relative uncertainties in the regression slopes are about 20% for EB-IMSI, 

10% for EB-IMSI-GV and 30% for EB-IMSI-DV.  

5.4.2.  Human health benefits of emission controls using single and multipollutant 

indicators of mobile sources  

The changes in incidences on adverse cardiovascular impacts associated with the increase 

in mobile emissions ‘h’ (ton/yr)-1 is substantially larger for EC than CO or NOx (Table 

5.1), due to the greater health signal per μg/m3 (β) observed for EC compared to that for 

CO (7.41x10-6 (μg/m3)-1) or NOx (6.1x10-5 (μg/m3)-1), though signal for EC was 

borderline significant at the 95% CI (Table 5.1). 

The savings in costs of CVD visits avoided per ton of pollutant reduced (S’) 

($/ton) is the largest for EC. Fann et al. (2009) also found larger health benefits ($/ton) in 

the reduction of directly emitted carbonaceous particles over gases (NOx, NH3, SOx and 

VOC) in the US. They suggested that particles are more stable in the atmosphere and 

emitted more closely to the population than gases, resulting in larger health effects. 
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Table 5.1 Savings in CVD visits avoided by reduction in emissions of CO, NOx and EC 
in Atlanta 
 

 CO NOx EC 
β estimate for CVD 
outcomes  
(p-value) 

0.0085 ± 0.004 
ppm-1 

(0.033) 

0.095 ± 0.04 
ppm-1 

(0.018) 

0.0078 ± 0.004 
(ug/m3)-1 
(0.054) 

Rate of change in 
ambient conc. to 
change in emissions 
‘m’ 

7.2x10-6 ± 8.1x10-7 
(ppm/ton/yr) 

 

2.6x10-6 ± 6.7x10-7 
(ppm/ton/yr) 

 

5.0x10-3 ± 1.5x10-3 
(μg/m3)/(ton/yr) 

 

Risk per ton of 
emission ‘h’ 
(ton/yr)-1 

6.1x10-8 ± 2.9x10-8 
 

2.4x10-7 ± 1.2x10-7 
 

3.9x10-5 ± 2.3x10-5 
 

Average emission 
reduction 1999-
2004 (ton/yr)  

10,690 ± 5,000 
(5.4%)& 

1,450 ± 330 
(3.8%)& 

7.3 ± 4.7 
(1.3%)& 

HHB (CVD-ED 
visits avoided/yr) 
from 1999-2004 

16 
(5-27) 

9 
(4-14) 

7 
(1-13) 

Annual savings in 
costs of CVD visits 
avoided from 1999-
2004 ‘S’ (million $) 

0.30 
(0.10-0.50) 

0.16 
(0.07-0.25) 

0.13 
(0.02-0.24) 

Savings in CVD per 
ton of emissions 
(S’) ($/ton) 

28 
(15-41) 

112 
(56-168) 

17,800 
(7200-28400) 

* Cost of Illness (COI) for all-cardiovascular diseases estimated at $18,387 per unit (US-EPA, 
2004) & (percentage with respect to average emissions during 1999-2007) 
 
 

However, reduction in emissions of EC (average of 8 tons/yr from 1999-2004) is 

much less than the reduction in emissions of CO and NOx (averages of 10,000 tons/yr 

and 1,500 tons/yr from 1999-2004 respectively). When this reduction in emissions is 

taken into account, the number of CVD visits saved per year (HHB) and the respective 

annual savings (S) are larger for CO than NOx or EC. The largest HHB for CO is 

explained by the greater reduction in emissions of CO in comparison of NOx and EC. 

Given that CO was found to be a good indicator of GV impacts, the HHB associated with 

CO can be interpreted as result of the controls in GV emission from 1999-2004. Similar 
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analysis for DV impacts is difficult since EC was not found a robust indicator of DV and 

NOx is significantly emitted by both GV and DV in Atlanta. With these limitations, the 

HHB associated with NOx and EC are similar in magnitude and can be partially 

explained by the controls in DV emissions from 1999-2004.  

The comparison of HHB among pollutants suggest that emission reductions in  

CO, likely explained by emission controls on GV, have been more effective for 

improving public health than emission reductions in NOx or EC, partially explained by 

emission controls on DV. However, improvements in public health should consider 

further reductions in NOx and EC emissions, and therefore controls on DV, since health 

benefits per ton of emission are much larger for these two pollutants than for CO. 

The CVD risk associated with the increase in IMSE ‘h’ (ton/yr)-1 is larger for 

IMSE-DV than IMSE-GV or IMSE (Table 5.2) because the EB-IMSI-DV has a larger 

health signal per unit of IMSI (β) than EB-IMSI and EB-IMSI-GV. The association of 

EB-IMSIs and CVD outcomes is statistically significant in all cases (p-value<0.05). 

Integrated emission reductions from 1999-2004 are larger for EB-IMSI and EB-IMSI-GV 

than EB-IMSI-DV, because the first two indicators include reductions of CO, which are 

larger than reductions in NOx or EC (Table 5.1). Nonetheless, reductions in integrated 

emissions are between 5-6% of their average emission for the integrated indicators, a 

range that is smaller than the range of reductions for single pollutants (1-6%). 
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Table 5.2 Savings in CVD visits avoided by reduction in integrated emissions and 
assessed through EB-IMSI 
 

 EB-IMSI EB-IMSI-GV EB-IMSI-DV 
β estimate for CVD 
outcomes 
(p-value) 

0.0103 ± 0.0048 
(0.029) 

0.0088 ± 0.0042 
(0.018) 

0.0115 ± 0.0054 
(0.022) 

Rate of change in 
ambient conc. to 
change in emissions 
‘m’ (IMSI/ton/yr) 

 
4.3x10-6 ± 7.1x10-7 

 
5.2x10-6 ± 5.2x10-7 4.5x10-5 ± 1.6x10-5 

Risk per ton of 
emission ‘h’ 
(ton/yr)-1 

4.5x10-8 ± 2.2x10-8 
 

4.6x10-8 ± 2.3x10-8 
 

5.2x10-7 ± 3.0x10-7 
 

Average emission 
reduction 1999-
2004 (ton/yr)  

12,150 ± 5,000 
(6.0%)& 

11,300 ± 5,000 
(4.5%)& 

830 ± 170 
(6.0%)& 

HHB (CVD-ED 
visits avoided/yr) 
from 1999-2004 

14 
(5-23) 

13 
(4-22) 

11 
(4-18) 

Annual savings in 
costs of CVD visits 
avoided from 1999-
2004 ‘S’ (million $) 

0.25 
(0.09-0.41) 

0.24 
(0.08-0.40) 

0.20 
(0.08-0.32) 

Savings in CVD per 
ton of emissions 
(S’) ($/ton) 

21 
(11-31) 

21 
(11-31) 

240 
(100-380) 

 
* Cost of Illness (COI) for all-cardiovascular diseases estimated at $18,387 per unit (US-
EPA, 2004)  

 

 

Using the integrated indicators, the calculated human health benefits (HHB) 

during 1999-2004 vary between 11 and 14 visits avoided per year, equivalent to $0.20-

0.25 million annually, as a result of reductions in mobile source emissions (Table 5.2). 

EB-IMSI, as an indicator of the overall fleet, has a larger HHB than EB-IMSI-GV or EB-

IMSI-DV. Although, integrated emissions for EB-IMSI are the sum of the integrated 

emissions for EB-IMSI-GV and EB-IMSI-DV (Equations 5.4-5.6), the HHB are not 



 

116 

expected to be additive, since the health response of EB-IMSI is not the sum of health 

signals for EB-IMSI-GV and EB-IMSI-DV.  

Similar to the analysis using single species, the calculated HHB associated with 

the reduction in GV emissions were observed to be greater than the benefits accrued from 

reducing DV emissions. Using CO finds similar results than using EB-IMSI-GV (5-27 vs. 

4-22 avoided CVD visits per year respectively). The slightly smaller HHB using EB-

IMSI-GV is explained by the presence of NOx in the integrated indicator leading to a 

lower value of ‘h’ in comparison to CO alone. Previously, we have suggested EB-IMSI-

GV as a better indicator of GV than CO, based on a larger spatial representativeness of 

EB-IMSI-GV that is consistent with emissions from GV spread around the metro Atlanta 

area (Pachon et al., 2011).  

On the other hand, using EC resulted in less HHB than using EB-IMSI-DV as 

indicator of DV impacts (1-13 vs. 4-18 avoided CVD visits per year respectively). The 

larger HHB using EB-IMSI-DV is explained by the presence of NOx in the integrated 

indicator leading to greater average emission reductions from 1999-2004, even though 

the value of ‘h’ is substantially smaller for EB-IMSI-DV than EC. Similarly to EB-IMSI-

GV, our previous work suggested EB-IMSI-DV as a better indicator of DV than EC, 

based on a larger spatial representativeness of EB-IMSI-DV (Pachon et al., 2011). 

Additionally, while the association of EC with CVD outcomes was only border line 

significant, EB-IMSI-DV was found significantly associated with CVD outcomes in an 

epidemiologic model.  

NOx has been suggested as an indicator of mobile sources, without distinction 

between GV and DV, and it has been used to study associations between mobile source 
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impacts and cardio-vascular health in several studies (Brook et al., 2007; Burnett et al., 

2004; Metzger et al., 2004). In previous work, we found NOx as the species most 

significantly associated with CVD outcomes, probably due to its larger spatial 

representativeness over CO and EC (Pachon et al., 2011). The calculation of HHB using 

NOx resulted in less number of CVD visits avoided than EB-IMSI (4-14 vs. 5-23). The 

larger HHB using EB-IMSI is explained by the presence of CO in the integrated indicator 

leading to greater average emission reductions from 1999-2004, even though the value of 

‘β’ is substantially smaller for EB-IMSI than NOx. 

5.4.3.  Vehicular ozone indicator (VOI) 

The daily maximum 8h O3 concentration has decreased in Atlanta from 47 ppbv to 40 

ppbv (i.e., 15% reduction) from 1999-2004, largely due to regional NOx reductions and 

lowering VOC levels from point sources. An estimate of 8.6±2.5 ppbv of ozone is 

attributed to mobile NOx (Tian et al., 2010). From the 2002 National Emission Inventory 

(US-EPA, 2007) a ratio of mobile-source-to-total NOx emissions of 0.84 is obtained and 

used to estimate the sensitivity of ozone to mobile NOx (Equation 5.14), which shows a 

linear correlation with ozone concentrations with a high regression coefficient and 

statistically significant slope and intercept (Figure 5.4). Sensitivities of ozone to mobile 

NOx are positive (i.e., reductions in mobile NOx decreases ozone) for estimated ozone 

concentrations greater than 50 ppbv, and likewise, sensitivities are negative (i.e., 

reduction in mobile NOx increase ozone) when estimated peak 8-hr ozone is below 50 

ppbv, typically during winter months. 
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y = 0.61(±0.01)x - 31.53(±0.99)
R2 = 0.84
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Figure 5.4 Sensitivity of daily maximum 8-h O3 to mobile NOx in downtown Atlanta 
during 2001 from Liao et al. (2008) 

 

Using the linear relationship with ozone developed for 2001, the VOI is estimated 

for the period 1999-2004 from observed O3 concentrations from the JST site. The 

estimated sensitivities are negative because annual average observed ozone 

concentrations are below 43 ppbv, though during the summer they are higher (56 ppbv). 

Negative sensitivities in NOx-rich areas, such as downtown Atlanta, are observed in 

several studies (Dunker et al., 2002; Hu et al., 2006; Mendoza-Dominguez et al., 2000; 

Xiao et al., 2010). 

Mobile sources also emit VOCs to the atmosphere. From the NEI, the ratio of 

mobile-source-to-total VOC emissions is 0.38. However, sensitivity of ozone to VOCs 

does not exhibit a linear relationship with ozone concentrations as the one observed for 

NOx. Therefore, the impact of VOC emissions from mobile sources to ozone is estimated 

as the product of 0.38 (mobile-source-to-total VOC emissions ratio) and 3.22 ppbv 

(average sensitivity of ozone to VOCs). The result of 1.22 ppbv does not depend on the 

ozone concentration, unlike NOx. 
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The average VOI from 1999-2004 is 7.14 ppv O3, which resulted from the sum of 

5.85 ppbv O3 (based on sensitivities of O3 to mobile NOx) and 1.22 ppbv O3 (based on 

sensitivities of O3 to mobile VOCs). Uncertainties in the VOI have been estimated as 

29%, based on uncertainties in sensitivities of ozone to mobile NOx in Atlanta (Tian et 

al., 2010). In this work, uncertainty in the average VOI is estimated as 2.07 ppbv. 

5.4.4.  Construction of Indicator sets 

Indicator sets include not only indicator values and uncertainties, but also relationships 

between indicators at different stages of the air quality chain, from emission to ambient 

concentrations to health outcomes, in order to facilitate their application in air quality 

management. An example of indicator sets for NOx (Fig. 5.5) and EB-IMSI (Fig. 5.6) is 

discussed in this section that can be expanded to a more comprehensive list of indicators 

developed throughout this project (Table 5.3).  

 

 

Figure 5.5 Framework of Indicator set for NOx 
 

The indicator set for NOx is comprised of individual indicators and the relationships 

among them. For this study, long-term NOx emissions is an indicator of effectiveness of 

policies to reduce NOx from mobile sources; ambient NOx is an indicator of mobile 

NOx emissions 
34,400±3,100 

tons/yr 

 Ambient NOx 
0.12±0.03ppm 

Health impact 
RR per IQR=1.008 

(1.001-1.015) 

Policies to 
reduce NOx 

‘m’ 0.54±0.14  
(ppm/tons/yr/km2) 

‘β’ 0.0095±0.004 
(ppm)-1 

‘h’ 2.4x10-7±1.2x10-7 
(tons/yr)-1 

+ Attributes 
‘S’ 0.16(0.07-0.25) 

($/yr) 

‘HHB’ 9 (4-14) 
(visits/yr) controls 
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source impacts on air quality; the association of NOx with CVD outcomes (quantified as 

the RR per IQR) is an indicator of the impact of mobile source activity on cardiovascular 

health. The slope in the linear regression between NOx emissions and concentrations is 

denoted as ‘m’ and represents the change in NOx as a result of the change in NOx 

emissions from mobile sources. The use of NOx in an epidemiologic model provides a 

relationship between changes in NOx concentrations and changes in the incidence of 

adverse CVD impacts, denoted as ‘β’. The ‘m’ and ‘β’ ratios are used to find the 

response in the incidence of adverse CVD impacts as a result of change in NOx 

emissions from mobile sources ‘h’. The reduction in mobile source emissions in Atlanta 

from 1999-2004 is used along with ‘h’ to estimate the number of CVD visits avoided per 

year (HHB) and the respective savings in costs of those visits (S). 

 The HHB and savings are of utility for policy-makers in the setting of cost-

benefits analysis of air pollution reduction. Emission controls for mobile sources and the 

respective costs are drawn in the indicator sets framework, but their quantification are 

beyond the scope of this study. The attributes in the indicator set for NOx includes 

information, range of validity or appropriate references to estimate each one of the 

individual indicators and the described relationships among them (Table 5.3). 
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Figure 5.6 Framework of Indicator set for EB-IMSI 
 

The indicator set for EB-IMSI is comprised of individual indicators and the 

relationships among them in a multipollutant framework. Integrated mobile source 

emissions (IMSE) trend is an indicator of effectiveness of policies to reduce emission of 

CO, NOx and EC from mobile sources; EB-IMSI is an indicator of mobile source 

impacts on air quality; the association of EB-IMSI with CVD outcomes (quantified as the 

RR per IQR) is an indicator of the multipollutant impact of mobile source activity on 

cardiovascular health. The slope in the linear regression between IMSE and  EB-IMSI is 

denoted as ‘m’ and represents the change in EB-IMSI as a result of the change in 

emissions of NOx, CO and EC from mobile sources. The use of EB-IMSI in an 

epidemiologic model provides a relationship between changes in multipollutant 

concentrations and changes in the incidence of adverse CVD impacts, denoted as ‘β’. The 

‘m’ and ‘β’ ratios are used to find the response in the incidence of adverse CVD impacts 

as a result of change in integrated emissions of NOx, CO and EC from mobile sources ‘h’. 

The reduction in mobile source emissions in Atlanta from 1999-2004 is used along with 

‘h’ to estimate the number of CVD visits avoided per year (HHB) and the respective 

savings in costs of those visits (S). 

IMSE 
200,000±20,000 

tons/yr 

EB-IMSI 
1.31±0.72 

Health impact 
RR per IQR=1.007 

(1.001-1.014) 

Policies to reduce 
EC, CO, NOx 

‘m’ 0.91±0.15  
(EB-IMSI/tons/yr/km2) 

‘β’ 0.0103±0.005 
(EB-IMSI)-1 

‘h’ 4.5x10-8±2.2x10-8 
(tons/yr)-1 

+ Attributes 
‘S’ 0.25(0.09-0.41) 

($/yr) 

‘HHB’ 14 (5-23) 
(visits/yr) 

multipollutant 
controls 
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 The HHB and savings obtained from the analysis of EB-IMSI can support the 

setting of cost-benefits analysis of air pollution reduction in a multipollutant framework. 

Therefore, multipollutant emission controls for mobile sources and respective costs can 

be evaluated in the indicator set for EB-IMSI, but their quantification are beyond the 

scope of this study. The attributes in the indicator set for EB-IMSI includes information, 

range of validity or appropriate references to estimate each one of the individual 

indicators and the described relationships among them (Table 5.3). 

5.4.5.  Comparison of uncertainties among indicators 

In general, uncertainties from mobile source emission estimates were found to be the 

lowest among indicators and uncertainties from mobile source impacts from receptor 

models were found to be the highest (Table 5.3). The reason for obtaining low 

uncertainties in emissions is that they were estimated as one standard deviation of 

emissions in the six-year period, and therefore they are only reflecting the variance over 

those years. Uncertainties in mobile emissions are expected to be larger if information on 

emissions factors, driving patterns, meteorological conditions and vehicular activity are 

considered, but unfortunately MOVES 2010 (US-EPA, 2010) does not provide an 

estimate of an uncertainty at present. 
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Table 5.3 Comprehensive list of indicators 
 

Indicator Value Unc. Relative 
unc. Associated outcome Attribute

NOx mobile 
emissions (ton/yr) 34400 3100 0.09 Long-term trend reflect effectiveness of policies. Reduction of 21% from 

1999-2004 Estimated with MOVES 2010a, uncertainty provided as one standard deviation

Indicator of mobile source emissions, rate of change: 0.54±0.14 
ppm/ton/yr/km2

Correlation coefficient between emissions and concentrations R2=0.63, 
regression slope significant at the 95% CI.

Indicator of impact of mobile sources on CVD outcomes, RR per 
IQR=1.008 (1.001-1.015)

NOx ambient concentrations obtained at a central monitor for epidemiologic 
analysis.

SNOx ($/ton) 112 56 0.50 Economic benefits for saving CVD-ED* visits per ton of NOx reduced Product of concentration-health response function and emission-concentration 
response

CO mobile 
emissions (ton/yr) 170000 35000 0.21 Long-term trend reflect effectiveness of policies. Reduction of 28% from 

1999-2004 Estimated with MOVES 2010a, uncertainty provided as one standard deviation

Indicator of mobile source emissions, rate of change: 1.51±0.17 
ppm/ton/yr/km2

Correlation coefficient between emissions and concentrations R2=0.93, 
regression slope significant at the 95% CI.

Indicator of impact of GV sources on CVD outcomes, RR per IQR=1.007 
(1.001-1.014)

CO ambient concentrations obtained at a central monitor for epidemiologic 
analysis.

SCO ($/ton) 28 13 0.46 Economic benefits for saving CVD-ED* visits per ton of CO reduced Product of concentration-health response function and emission-concentration 
response

EC mobile 
emissions (ton/yr) 580 17 0.03 Long-term trend reflect effectiveness of policies. Reduction of 7% from 

1999-2004 Estimated with MOVES 2010a, uncertainty provided as one standard deviation

Indicator of mobile source emissions, rate of change: 1.04±0.32 
ppm/ton/yr/km2

Correlation coefficient between emissions and concentrations R2=0.60, 
regression slope significant at the 95% CI.

Indicator of impact of DV sources on CVD outcomes, RR per IQR=1.008 
(1.000-1.017)

EC ambient concentrations obtained at a central monitor for epidemiologic 
analysis.

SEC ($/ton) 17800 10800 0.61 Economic benefits for saving CVD-ED* visits per ton of EC reduced Product of concentration-health response function and emission-concentration 
response

Indicator of mobile source integrated emissions, rate of change: 
1.13±0.12 IMSI/IMSE

Integrated EC, CO and NOx concentrations scaled and weighted by mobile-to-
total emissions, see Pachon et al (AWMA, 2011) Eq. 1

Indicator of impact of mobile sources on CVD outcomes, RR per 
IQR=1.007 (1.001-1.014)

NOx, CO and EC ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

SEB-IMSI ($/ton) 23 11 0.48 Economic benefits for saving CVD-ED* visits per ton of EB-IMSI 
reduced

To express IMSE in units of ton/yr, mobile emissions of EC, CO, NOx were 
added up.

Indicator of mobile source integrated emissions, rate of change: 
1.13±0.12 IMSI/IMSE

Integrated CO and NOx concentrations scaled and weighted by mobile-to-total 
emissions, see Pachon et al (AWMA, 2011) Eq. 2

Indicator of impact of mobile sources on CVD outcomes, RR per 
IQR=1.009 (1.002-1.017)

NOx, CO and EC ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

SEB-IMSI-GV ($/ton) 21 11 0.52 Economic benefits for saving CVD-ED* visits per ton of EB-IMSI-GV 
reduced

To express IMSE-GV in units of ton/yr, 98% of mobile CO and 58% of NOx 
mobile emissions were added up.

EB-IMSI-GV 1.17 0.8 0.68

EB-IMSI 1.31 0.72 0.55

EC ambient 
(μg/m3) 1.53 0.64 0.42

CO ambient (ppm) 1.16 0.16 0.14

NOx ambient 
(ppm) 0.12 0.03 0.25
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Table 5.3 Comprehensive list of indicators (cont.) 
 

Indicator Value Unc. Relative 
unc. Associated outcome Attribute

Indicator of mobile source integrated emissions, rate of change: 
0.92±0.3 IMSI/IMSE

Integrated EC and NOx concentrations scaled and weighted by mobile-to-total 
emissions, see Pachon et al (AWMA, 2011) Eq. 3

Indicator of impact of mobile sources on CVD outcomes, RR per 
IQR=1.010 (1.001-1.018)

NOx, CO and EC ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

SEB-IMSI-DV ($/ton) 240 140 0.58 Economic benefits for saving CVD-ED* visits per ton of EB-IMSI-DV 
reduced

To express IMSE-DV in units of ton/yr, 94% of mobile EC and 42% of NOx 
mobile emissions were added up.

HB-IMISI-NC 1.17 0.93 0.79 Indicator of impact of NOx-CO mixture on CVD outcomes, RR per 
IQR=1.010 (1.002-1.018)

NOx and CO ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

HB-IMISI-NE 1.29 0.92 0.71 Indicator of impact of NOx-EC mixture on CVD outcomes, RR per 
IQR=1.009 (1.002-1.016)

NOx and EC ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

HB-IMSI-CE 1.37 0.92 0.67 Indicator of impact of EC-CO mixture on CVD outcomes, RR per 
IQR=1.009 (1.001-1.017)

EC and CO ambient concentrations obtained at a central monitor for 
epidemiologic analysis.

PMF-mob (μg/m3) 2.94 1.11 0.38 Indicator of mobile factor contribution from PMF Uncertainty in PMF estimated using bootstrapping of 100 runs

PMF-GV (μg/m3) 1.37 0.36 0.26 Indictor of GV factor contribution from PMF Uncertainty in PMF estimated using bootstrapping of 100 runs

PMF-DV (μg/m3) 1.57 1.05 0.67 Indicator of DV factor contribution from PMF Uncertainty in PMF estimated using bootstrapping of 100 runs

CMB-mob (μg/m3) 2.54 2.53 1.00 Indicator of mobile source impact from CMB CMB using optimized sources profiles for Atlanta, see Marmur et al., 2007

CMB-GV (μg/m3) 1.35 2.0 1.48 Indictor of GV factor contribution from CMB CMB using optimized sources profiles for Atlanta, see Marmur et al., 2007

CMB-DV (μg/m3) 1.27 1.6 1.26 Indicator of DV factor contribution from CMB CMB using optimized sources profiles for Atlanta, see Marmur et al., 2007

SOC (μg/m3) 1.25 0.71 0.57 Indicator of photochemical activity Estimated using the regression method, see Pachon et al., AE, 2010

POC (μg/m3) 2.84 1.25 0.44 Indicator of combustion activity Estimated using the regression method, see Pachon et al., AE, 2010

Kb (μg/m
3

) 30.4 26.7 0.88 Indicator of biomass burning activity Estimated based on regression with Fe., see Pachon et al., AE, 2011

VOI 5.85 1.7 0.29 VOI estimated as the sensitivity of ozone to mobile NOx Uncertainty estimated as 29% of VOI according to Tian et al, AWMA, 2010

EB-IMSI-DV 1.48 0.76 0.51

 
 
* Emergency department visits for Cardiovascular diseases, economic analysis assuimg a cost of illness (COI) of $18,387 per CVD (EPA, 2004) 
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Estimates of health benefits as a result of reduction in mobile emissions were also 

found to be highly uncertain. Such estimates include uncertainties in the CRF, in the 

relationship between emissions and concentrations and in the estimation of illness costs. 

Uncertainties were in the same order of magnitude for estimates of health benefits using 

singles species and multipollutant indicators. While consideration of uncertainties is 

important, they do not obscure the choice of selecting multipollutant indicators versus 

singles species as better surrogates of mobile source impact on air quality, exposure and 

cardiovascular health. 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 

 

Environmental indicators were developed and evaluated to assess the impact of 

mobile sources on emissions, air quality, exposure and health. Different levels of 

indicators are discussed, from single species to multipollutant indicators. Human health 

benefits of reducing mobile source emissions were assessed and compared using single 

and multipollutant indicators. Indicator sets, including the indicator value and 

uncertainties, accompanied with their associated outcomes and attributes were developed. 

The indicator sets are expected to be useful for policy makers who are interested not only 

in the indicator, but also in their associated uncertainties and their applicability at other 

times and other regions. 

Comparison of SOC estimates and uncertainties from aerosol chemical composition 

and gas phase data in Atlanta.  

Comparison of four methods to estimate the SOC fraction in the PM2.5 suggests 

that between 26 and 47% of the OC in Atlanta is secondary in origin on a year-around 

basis. Uncertainties in the estimated SOC fraction range from 51% to more than 100% 

and are largely influenced by estimation of SOC in winter time. The SOC fraction 

estimated by the regression method has the lowest uncertainty, a greater value in summer 

than winter, shows less day-to-day variability and has a more similar trend to the WSOC 

measurements as compared to the other methods, suggesting the regression method is the 

most accurate method for developing multi-year SOC estimates useful in epidemiologic 

analysis and evaluation of air quality policy effectiveness. The regression method only 
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requires readily measured speciated PM2.5 components (i.e., EC, OC, K, sulfate and 

nitrate), ozone and CO data. 

Revising the use of potassium (K) in the source apportionment of PM2.5.  

We apply a method to estimate the fraction of potassium attributable to biomass 

burning and demonstrated that Kb is a more robust indicator of this source than total 

potassium. The analysis of temporal variability shows a larger concentration of Kb during 

spring when biomass burning is more intense and greater correlation with levoglucosan, 

an organic compound found to be a good tracer of biomass burning. The examination of 

spatial variability suggests that Kb is an important fraction in urban areas not impacted by 

sea-salt where K has multiple sources, but not as important in rural areas where most of 

the K is from biomass burning. The application of PMF with total potassium appears to 

overestimate the contribution of biomass burning in urban sites and underestimate the 

impact of other sources such as traffic. This limitation is avoided when PMF is 

implemented with Kb, resulting in a modified allocation of PM2.5 mass as a result of the 

re-distribution of the carbonaceous species within factors.  

Development of outcome-based, multipollutant mobile source indicators.  

This study proposed an approach to develop multipollutant indicators based on 

analysis of emissions inventories and health outcomes. The EB-IMSIs are simple to 

construct and calculate and demonstrate advantages over the use of single species: EB-

IMSIs have stronger spatial representativeness, suggesting they are better indicators of 

the regional impact of mobile sources, they agree well with the observed trends of traffic 

and they have stronger associations with observed health effects, possibly due to their 

better spatial representativeness. Uncertainties in EB-IMSIs are similar to uncertainties in 
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ambient measurements and receptor models. A sensitivity analysis of fractions in EB-

IMSIs led to the development of HB-IMSIs, suggesting mixtures of pollutants more 

strongly associated with CVD outcomes. The use of IMSIs in epidemiologic modeling 

constitutes an alternative approach to assess the health impact of pollutant mixtures. 

Although the approach presented in this manuscript was developed for mobile sources, 

this work can be extended to other sources. IMSI can support the setting of multipollutant 

air quality standards since they represent the impact of traffic on health. 

Using independent air quality from Dallas, TX we observed CO and NOx as 

indicators of mobile sources, with NOx being more indicator of regional mobile source 

impact than CO. The Dallas basin was found more ventilated than Atlanta, favoring 

dispersion of pollutants and lower ambient air concentrations. EB-IMSIs estimated in 

Atlanta and Dallas followed traffic trends adequately.  

Mobile source air quality impact indicator sets for policy utilization: evaluation and 

uncertainties.  

We have examined changes in the incidence of adverse CVD impacts as result of 

change in indicators of mobile source activity. We have compared single and 

multipollutant indicators, finding that a multipollutant framework is more consistent to 

understanding health risk from mobiles source emissions than using single species. Our 

results contribute in the setting of multipollutant approaches for air quality management. 

The concept of indicator sets, which include a group of indicators and their 

relationships, along with associated attributes, facilitates a comprehensive analysis of the 

air quality chain, from emissions to ambient concentrations and to health outcomes. This 
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proposed framework is of great utility for policy makers in the setting of cost-benefit 

analysis of air pollution reduction. 

Uncertainties in estimates of emissions were found the lowest and uncertainties in 

source impacts from receptor models were found the highest. The estimation of health 

benefits were found also highly uncertain. While consideration of uncertainties is 

important, they do not obscure the choice of selecting multipollutant indicators versus 

singles species as surrogates of mobile source impact on air quality, exposure and 

cardiovascular health. 

6.1.  FUTURE RESEARCH 

This work developed and evaluated single and multipollutant indicators for mobile 

sources, given the large impact of vehicles to air quality in urban centers. The approaches 

developed here are extendable to other emission sources, which may have a greater 

impact in other areas. Outcome-based indicators can provide links between expected 

direct policy impacts, atmospheric concentration and health. 

Comparison of SOC estimates and uncertainties from aerosol chemical composition 

and gas phase data in Atlanta.  

The use of water soluble organic carbon (WSOC), as a surrogate of SOC, was 

useful in the evaluation of methods to estimate SOC. The availability of additional 

measurements of WSOC in the future can facilitate the comparison of estimates of SOC 

in longer periods of time. 

New methods for quantifying organic aerosols in short time scales, such as the 

aerosol mass spectrometer (AMS), are expected to be available in the Atlanta area. Such 
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methods will quantify oxygenated and hydrogenated organic species that can be used for 

more specific estimations of primary and secondary organic fractions. 

The ensemble of estimates of SOC from different methods is expected to provide 

an accurate estimate of SOC, as it has been found with source impacts from primary and 

secondary emissions sources. Such estimate can be compared with results from the 

regression method for refining of the SOC fraction. Furthermore, the comparison of 

individual estimates with the ensemble can provide estimates of uncertainties that are 

more comparable between methods. 

Associations of organic carbon (OC) with health outcomes have found OC linked 

with the increase in CVD. However, our preliminary analyses suggest that the primary 

fraction is more responsible of such health outcomes. The availability of more extensive 

SOC estimates will permit health researchers to clarify this complexity.  

 

Revising the use of potassium (K) in the source apportionment of PM2.5.  

Levoglucosan was useful in the evaluation of Kb as a better tracer of biomass 

burning than total potassium. However, measurements of levoglucosan concentrations are 

limited. The availability of more levoglucosan data will allow stronger analysis of 

biomass burning impacts and validation of indicators. 

Biomass burning source impacts estimated using total potassium in receptor 

models have been associated with the increase in CVD in epidemiologic models. 

However, given the multiple sources of potassium to the atmosphere, it is not clear 

whether this association is due exclusively to biomass burning impacts or is also 

impacted by different sources emitting K. The use of Kb in receptor modeling and 
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subsequent epidemiologic analysis will provide information on the associations between 

impact on health endpoint and more refined source impacts. 

Development of outcome-based, multipollutant mobile source indicators.  

The outcome-based approach discussed as part of this work to assess the impacts 

of mobile sources on emissions, air quality and health, can be extended to the evaluation 

of other sources. Sources such as biomass burning, power plants, industrial processes, 

agriculture, are suitable to be evaluated on their impact to air quality through the use of 

outcome-based indicators, in places where information on emissions and ambient 

pollutants is available 

 This work contributed to the multipollutant risk science providing new 

approaches to combine pollutants and evaluating the health effects of such combinations. 

Since our focus was indicators for mobile sources, we limited our approach to EC, CO 

and NOx, but multiple species can be selected to form integrated indicators of other 

emissions sources. Of particular interest will be the integration of organic species that are 

identified as specific tracers of emission sources. 

 This study found a greater significance in the association of mixtures of pollutants 

with health outcomes than single species, possibly explained by their larger spatial 

representativeness of the mixtures. However, synergistic effects may be playing a role in 

the increase of association with mixtures. Toxicological studies can be conducted to 

investigate this potential. 

Uncertainties in mobile source emissions were estimated as one standard 

deviation from the mean. However, a comprehensive estimate of the uncertainties from 

mobile sources should include information on emission factors, activity data, driving 
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patterns and meteorological conditions. Currently, such uncertainty estimates are not 

available from MOVES 2010, but as they become available, better estimates of 

uncertainties on emission and relationships with concentrations can be obtained. 

Mobile source air quality impact indicator sets for policy utilization: evaluation and 

uncertainties.  

Our preliminary estimates of human health benefits are based on local 

relationships between emissions and concentrations and local association between 

pollutants and health outcomes. The availability of air quality and health data in other 

urban centers will facilitate the replication of these analyses. In this estimation, only 

benefits due to reduced CVD-ED visits were captured, and not for reduced premature 

mortality. The inclusion of mortality impact will contribute to strength the benefits of air 

pollution management through the use of indicators. 

Indicator sets, that are expected to be useful for policy makers, were developed 

for Atlanta in this project. Concurrently with the development of additional indicators for 

mobile and other emission sources, indicator sets can refined to include new information 

associated with the application of the indicators and estimates of uncertainty. 

Emission-based integrated mobile source indicators were estimated for Dallas, TX 

during 2003-2008 to support an ongoing epidemiologic work in the area. Results from 

that epidemiologic work can be used to develop health-based IMSI in a similar way it 

was discussed in Atlanta, GA. Specific characteristics of these cities will facilitate the 

evaluation of health outcome-based indicators for use in policy analysis. 
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SUPPORTING INFORMATION FOR CHAPTER 3 
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Figure A.1 Factor profiles for PMF-K 
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Figure A.2 Factor profiles for PMF-Kb 
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Table A.1 Correlations between factor contributions in PMF-K and PMF-Kb and PM2.5 species  

R GV DV Biomass Soil dust Industrial Sec. sulf Sec. Ammon. Sec. Nitrate GV DV Biomass Soil dust Industrial Sec. sulf Sec. Ammon. Sec. Nitrate
GV 1.00
DV 0.56 1.00
BURN 0.46 0.46 1.00
SOIL 0.04 0.12 0.04 1.00
IND 0.52 0.36 0.35 -0.01 1.00
SULF -0.06 0.04 -0.16 0.06 -0.06 1.00
AMMON 0.22 -0.01 0.03 -0.09 0.15 0.46 1.00
NITR -0.01 0.01 0.07 -0.20 0.12 -0.16 -0.06 1.00
GV 1.00 0.57 0.46 0.04 0.52 -0.07 0.21 -0.03 1.00
DV 0.62 0.98 0.48 0.10 0.42 -0.03 0.02 -0.01 0.63 1.00
BURN -0.01 0.12 0.82 0.04 0.06 -0.03 -0.02 0.11 -0.03 0.05 1.00
SOIL 0.04 0.09 0.02 1.00 -0.01 0.06 -0.09 -0.20 0.03 0.07 0.03 1.00
IND 0.57 0.42 0.33 0.01 0.99 -0.01 0.17 0.10 0.57 0.49 0.00 0.01 1.00
SULF -0.05 0.04 -0.17 0.05 -0.06 1.00 0.46 -0.16 -0.07 -0.03 -0.04 0.05 -0.01 1.00
AMMON 0.21 -0.03 -0.09 -0.08 0.13 0.46 0.98 -0.08 0.20 0.00 -0.17 -0.07 0.16 0.46 1.00
NITR 0.01 0.01 0.05 -0.19 0.13 -0.19 -0.08 1.00 0.00 0.00 0.07 -0.20 0.12 -0.18 -0.10 1.00
PM2.5 0.43 0.46 0.36 0.12 0.32 0.73 0.55 0.08 0.41 0.42 0.24 0.11 0.37 0.73 0.50 0.06
NO3 0.15 0.14 0.20 -0.18 0.24 -0.17 -0.01 0.98 0.14 0.13 0.16 -0.19 0.22 -0.16 -0.05 0.98
SO4 0.04 0.08 -0.11 0.05 0.01 0.99 0.57 -0.10 0.03 0.02 -0.03 0.06 0.06 0.99 0.56 -0.12
NH4 0.11 0.01 -0.06 -0.02 0.08 0.80 0.86 0.04 0.09 -0.02 -0.01 -0.02 0.11 0.80 0.86 0.01
EC 0.73 0.71 0.58 0.08 0.54 0.10 0.33 0.04 0.73 0.74 0.22 0.06 0.58 0.10 0.29 0.04
OC 0.63 0.85 0.75 0.10 0.45 0.13 0.26 0.02 0.63 0.84 0.45 0.07 0.48 0.13 0.18 0.01
Al -0.01 0.09 -0.02 0.90 -0.06 0.02 -0.16 -0.18 -0.01 0.06 0.01 0.90 -0.04 0.01 -0.13 -0.17
Si 0.16 0.16 0.09 0.97 0.12 0.08 0.02 -0.18 0.15 0.14 0.06 0.97 0.14 0.07 0.03 -0.18
K 0.40 0.41 0.83 0.39 0.37 0.05 0.07 0.11 0.39 0.41 0.70 0.37 0.36 0.04 -0.02 0.09
Kb -0.03 0.07 0.72 0.09 0.06 0.04 -0.02 0.16 -0.04 0.02 0.88 0.07 0.01 0.04 -0.13 0.13
Ca 0.36 0.24 0.19 0.45 0.43 0.10 0.21 -0.03 0.35 0.27 0.03 0.44 0.45 0.10 0.20 -0.02
Fe 0.68 0.58 0.38 0.63 0.51 0.10 0.18 -0.09 0.68 0.64 -0.02 0.62 0.56 0.09 0.19 -0.07
Br 0.39 0.33 0.49 -0.03 0.36 0.01 0.09 0.20 0.38 0.35 0.33 -0.04 0.36 0.01 0.04 0.19
Cu 0.15 0.14 0.09 0.02 0.10 0.00 0.06 -0.01 0.15 0.15 0.01 0.02 0.11 0.00 0.05 0.00
Mn 0.51 0.40 0.29 0.39 0.49 0.06 0.20 0.03 0.52 0.45 -0.03 0.38 0.53 0.06 0.21 0.04
Pb 0.30 0.25 0.26 -0.03 0.41 -0.06 0.05 0.10 0.31 0.27 0.10 -0.03 0.41 -0.06 0.03 0.11
Se 0.19 0.16 0.07 0.03 0.15 0.33 0.20 0.14 0.18 0.15 0.00 0.02 0.17 0.33 0.19 0.14
Zn 0.53 0.41 0.44 0.00 0.98 -0.02 0.16 0.16 0.53 0.46 0.18 -0.01 0.98 -0.02 0.11 0.17  

Area in gray is PMF implemented with Kb 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 4 

 

B.1 Analysis of ambient concentrations and emissions of CO, NOx and EC in Dallas, 

TX 

In Dallas, air quality data is collected from the US EPA’s Air Quality System (AQS) for the 

Hinton site located four miles northwest of downtown Dallas (Figure B1 in Appendix B). 

 

 

 

Figure B.1 Location of Hinton site in downtown Dallas, TX 
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Estimated NOx mobile emissions in Dallas decrease from 88,500 tons in 2000 to 

61,900 tons in 2007, representing a 30% decrease (Fig. B.2a), with 57% from GV and 43% 

from DV. On a monthly basis, NOx emissions from GV increase in summer months due to 

the use of air conditioning (A/C)  while NOx emissions from DV are relatively constant 

throughout the year (Fig B.2b). 
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Figure B.2 Annual and monthly trends of NOx, CO and EC in Dallas. 
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In 2000, only 219 days recorded NOx concentrations at Hinton affecting the annual 

average for that year. Ambient NOx decreases from 98.5 ppb in 2001 to 67.4 ppb in 2007 

representing a 32% decrease. However, the decrease has not been constant and average 

ambient NOx peaks in 2005 (86.6 ppb) which can be explained by meteorology, since this 

year was the driest in the period 2000-2007 (48 cm water versus an average of 90 cm water), 

and storms increase dispersion.  On a monthly basis, ambient NOx decreases during summer 

months as a result of more rapid photochemical loss. The low concentrations in May and 

June are explained by larger precipitation during those months. On a weekly basis, NOx has 

higher concentrations during weekdays with respect to weekends (weekday/weekend ratio of 

1.43) suggesting a similar trend to traffic. 

CO mobile emissions decrease from 422,300 tons in 2000 to 264,000 tons in 2007, 

representing a 37% decrease (Fig B.2c). Of the total mobile CO emissions, 97% are 

estimated from GV and 3% from DV. On a monthly basis, CO emissions from GV increase 

in summer months due to the use of A/C and in winter months due to cold start emissions  

(Fig. B.2d).  

Average ambient CO concentrations decrease from 0.86 ppm in 2000 to 0.64 ppm in 

2007, representing a 25% decrease. Similar to NOx, CO decreases have not been constant 

throughout the years and ambient CO has a slight increase in 2001 (0.89 ppm) and 2005 

(0.78 ppm). The peak in 2005 is explained by the dry meteorology for that year.  On a 

monthly basis, ambient CO decreases during summer months as a result of an active 

photochemistry and greater dispersion. On a weekly basis, CO has higher concentrations 

during weekdays with respect to weekends (weekday/weekend ratio of 1.13) suggesting a 

similar trend to traffic. 
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EC ambient concentrations were available only during 2003-2008 at the Hinton site 

with a sampling period that vary from one filter collected every three days to one filter 

collected every six days, in contrast to CO and NOx which are measured every day. EC has 

an annual average of 0.59 μg/m3 and a peak of concentration of 0.66 μg/m3 during 2005 and 

2007 (Fig. B.2e). The high values during those years are explained by lower precipitation 

(2005) and lower wind speeds (2007) with respect to other years. On a monthly basis, EC 

increases during September and October as a result of low precipitation and lower values are 

observed the rest of the months due to higher wind speeds. On a weekly basis, EC has higher 

concentrations during weekdays with respect to weekends (weekday/weekend ratio of 1.37). 

However, fewer samples were collected on Mondays (46) and Fridays (56) than the rest of 

the days (average 100 samples). While this bias is not expected to affect monthly or annual 

trends, it impacts weekly analysis of EC.  

Estimated EC mobile emissions decrease from 1,260 tons in 2003 to 962 tons in 2008, 

representing a 24% decrease (Fig. B.2e). From the total mobile emissions, 93% are estimated 

from DV and 7% from GV. On a monthly basis, EC emissions from DV increase in summer 

months due to the increase in miles traveled by heavy-duty traffic (Fig B.2f). 

 

B.2 Estimation of EB-IMSI uncertainties from propagation of errors 

Uncertainties in multipollutant indicators were estimated propagating uncertainties 

from individual species and taking into account that CO, NOx and EC are correlated between 

each other and therefore, covariance terms need to be included, as in Equation 1. 
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The expression for EB-IMSI can be expressed as: EB-IMSI= e*EC + c*CO + n*NOx, where 

e=re/(R*sEC), c=rc/(R*sCO), n=rn/(R*sNOx), re=(ECmob/ECtot), rc=(COmob/COtot), 

rn=(NOxmob/NOxtot), R=re+rc+rn and s are standard deviations of EC, CO and NOx 

respectively. 

The uncertainty in EB-IMSI is expressed as follows: 
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Similarly, the expression for EB-IMSIGV can be expressed as: EB-IMSIGV= cg*CO + 

ng*NOx, where cg=rcg/(Rg*sCO), ng=rng/(Rg*sNOx), rcg=(COGV/COtot), rng=(NOxGV/NOxtot), 

Rg=rcg+rng and s are standard deviations of CO and NOx respectively. 

The uncertainty in EB-IMSIGV is expressed as: 

 

),cov())((2222222222 NOxCOngcgngNOxcgCO NOxngCOcgEBIMSIGV ++++= σσσσσ       (A.3) 

Where  
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In the same way, the expression for EB-IMSIDV can be expressed as: EB-IMSIDV= ed*EC 

+ nd*NOx, where ed=red/(Rd*sEC), nd=rnd/(Rd*sNOx), red=(ECDV/ECtot), rnd=(NOxDV/NOxtot), 

Rd=red+rnd and s are standard deviations of EC and NOx respectively. 

 

The uncertainty in EB-IMSIDV is expressed as: 
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Figure B.3 Monthly average wind direction (degrees) and speed (m s-1) at the JST station in 
Atlanta 
 

 

Table B.1 Source impacts from CMB and PMF in μg/m3 in Atlanta from 1999-2004 

Source PMF£ CMB§ 
Secondary Sulfate 8.10 ± 0.34 6.59 ± 6.37  
Secondary Nitrate 1.38 ± 0.16 1.25 ± 0.99 
Light duty GV 1.37 ± 0.27 1.35 ± 1.99 
Heavy duty DV 1.57 ± 0.73 1.27 ± 1.60 
Industrial source 0.04 ± 0.11 0.14 ± 0.30 
Biomass burning 2.76 ± 0.26 1.65 ± 1.88 
Soil dust 0.63 ± 0.16 0.34 ± 0.35 
Other sources* 0.61 ± 0.92 2.47 ± 3.30 

 

* Other sources not included in the balance for PMF and Secondary Organic Carbon for 
CMB. §The performance of CMB was: predicted vs. observed PM2.5 R2=0.94, χ2=2.4, 
predicted PM2.5 mass=93.2%. £All 20 runs in PMF converged, predicted vs. observed PM2.5 
R2=0.88 and residuals of species were normally distributed.  
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