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SUMMARY

The objective of this dissertation is to present a detection-based pattern recogni-

tion framework and demonstrate its applications in automatic speech recognition and

broadcast news video story segmentation.

Inspired by the studies of modern cognitive psychology and real-world pattern

recognition systems, a detection-based pattern recognition framework is proposed to

provide an alternative solution for some complicated pattern recognition problems.

The primitive features are first detected and the task-specific knowledge hierarchy is

constructed level by level. Then, a variety of heterogeneous information sources are

combined together and the high level context is incorporated as additional information

at certain stages.

A detection-based framework is a “divide-and-conquer” design paradigm for pat-

tern recognition problems, which will decomposes a conceptually difficult problem

into many elementary subproblems that can be handled directly and reliably. Some

information fusion strategies will be employed to integrate the evidence from a lower

level to form the evidence at a higher level. Such a fusion procedure continues until

reaching the top level. Generally, a detection-based framework has many advantages:

(1) more flexibility in both detector design and fusion strategies, as these two parts

can be optimized separately; (2) parallel and distributed computational components

in primitive feature detection. In such a component-based framework, any primitive

component can be replaced by a new one while other components remain unchanged;

(3) incremental information integration; (4) high level context information as addi-

tional information sources, which can be combined with bottom-up processing at any

xi



stage.

This dissertation presents the basic principles, criteria, and techniques for detector

design and hypothesis verification based on the statistical detection and decision

theory. In addition, evidence fusion strategies were investigated in this dissertation.

Several novel detection algorithms and evidence fusion methods were proposed and

their effectiveness was justified in automatic speech recognition and broadcast news

video segmentation system. We believe such a detection-based framework can be

employed in more applications in the future.
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CHAPTER I

INTRODUCTION

Pattern recognition is a complicated procedure of information acquisition and pro-

cessing to correctly perceive, describe, categorize, and interpret ambiguous sensory

information. It is an elementary yet remarkable internal mental process of human

beings. Cognitive psychologists and computer scientists alike have been conduct-

ing research on pattern recognition over the last several decades but from different

perspectives.

Computer scientists have invented numerous computational models and algo-

rithms to mimic human beings’ pattern recognition capabilities and make computers

think more like human beings. These models and techniques have been employed

in many real-world applications such as automatic speech recognition (ASR), video

analysis, text categorization (e.g., spam/non-spam emails), automatic handwriting

recognition, and face recognition, just to name several examples.

For cognitive psychologists, the study of pattern recognition is of great importance

because pattern recognition is a critical part of human perception. The core focus of

cognitive psychology is on how human beings acquire, process, and store information.

Cognitive psychology research has been unified by a common approach based on an

analogy between the human mind and computers, which is the information-processing

approach in modern cognitive psychology [25]. Many cognitive psychologists treat

people as dynamic information-processing systems whose mental operations might be

described in computational terms.

To leverage the studies of cognitive psychology in practical pattern recognition

systems, it is worth reviewing the research on human perception from a cognitive
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psychologist’s perspective.

1.1 Top-down and Bottom-up Perception

Studies on human perception focus on how human beings take stimuli from the envi-

ronment and convert it into a representation that the mind can use. Many cognitive

psychologists think that two major classes of approaches are generally used in human

perception: top-down and bottom-up processing [25].

Top-down processing refers to expectation-driven perception, which posits vary-

ing degrees of influence of higher cognitive processes on what we actually perceive.

Our perceptual experience is influenced by higher level cognitive processes, such as

expectation, knowledge, context, experience, and thoughts. Human perception is not

determined simply by stimulus patterns; rather it is a dynamic searching for the best

interpretation of the available data [25].

Bottom-up processing refers to stimulus-driven perception. In other words, the

physical properties of a stimulus (e.g., color, pitch, motion) can influence the per-

ception of a given stimulus. Human perception builds up hierarchically from a set of

primitive features to our internal representations. All bottom-up theories rely on the

notion that perception builds upward from a foundation of primitives to a represen-

tation our cognitive system can use. It takes place without any influence from higher

cognitive processes. There are several theories of bottom-up perception in cognitive

psychology. The following description is a brief summary of the major bottom-up

theories [25]. According to this viewpoint, information processing typically proceeds

through two stages: (1) specific forms of processing in several brain subsystems; (2)

integration of information from these brain subsystems.

Direct perception Perception is a direct result of stimulus energy affecting receptor

cells. No higher cognitive processes or internal representations are necessary.

Template/Exemplar theory Examples of all the objects we have seen are stored
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as exemplars or templates in our mind. We compare a perceived object to this

set of exemplars until we find a match.

Prototype theory Instead of storing many exemplars or rigid templates, we store a

prototype, which is an average of objects in some sense. We compare a perceived

object to these prototypes until we find the closest match.

Feature theory Perception starts with the identification of basic features, such as

lines and corners, that are then put together into more complex objects until

we identify an object.

Top-down and bottom-up processing can be summarized as follows: bottom-up (or

stimulus-driven processing) is directly affected by stimulus input, whereas top-down

(or expectation-driven processing) is directly affected by context and past experience.

As an example of top-down processing, it is easier to identify the word “wheel” in

poor handwriting if it is presented in a sentence context, “The *eel was on the axle”

[25], than when it is presented on its own. This indicates the importance of context

for human perception and how it can greatly improve the robustness of perception.

Other studies from computer vision and cognitive psychology show that human

vision perception often occurs in a bottom-up style [109]. The study of vision, in both

humans and machines, can be viewed as the discovery of constraints. As additional

constraints are added, the hypotheses become sharper and more focused, particu-

larly when the constraints span several descriptive levels. Enough constraints will

become known finally at each level so that a hypothesis will become the correct one

[28] [109]. As Gazzaniga stated in [36], “Visual perception is a divide-and-conquer

strategy. Rather than have each visual area represent all attributes of an object, each

area provides its own limited analysis. So, the processing is distributed and special-

ized.” This visual perception model has provided the motivation for the investigation

of component-based detection algorithms [2] [18] [40] [102], where the detection of the

3



entire object is through an integration of the detection of its parts; the different fea-

tures of an object are probably integrated in a subsequent higher integrative cortical

area. This approach may provide a powerful means to overcome the limitation of the

top-down object detectors, because the variability of the target object is decomposed

into the local variability of its individual parts.

There is evidence to support the concept that human speech recognition (HSR) in-

volves a hierarchical bottom-up analysis [3]. For instance, people do not continuously

convert speech signals into words as an ASR system attempts to do. Instead, they

detect acoustic and auditory cues, combine them to form cognitive hypotheses, and

then validate the hypotheses until consistent decisions are obtained. Then, multiple

knowledge sources are integrated into the recognition process [59]. Human speech

recognition involves a bottom-up, divide-and-conquer strategy. We recognize speech

based on a hierarchy of context layers. As in vision, entropy decreases as we integrate

context.

Other evidence demonstrates that human speech recognition is achieved by a mix-

ture of bottom-up processing triggered by acoustic signals and top-down processing

generated from linguistic contexts. However, there have been disagreements about

precisely how information from bottom-up and top-down processes is combined to

produce word recognition [25].

The notion that bottom-up processing in HSR makes use of lower level distinctive

feature information was supported in a classic study by Miller and Nicely [79]. They

gave their participants the task of recognizing consonants against background noises.

The most frequently confused consonants were those differing on the basis of only one

distinctive feature, which means if we can detect these distinctive features accurately,

these consonants could be correctly identified [25].

Evidence that top-down processing based on context is involved in speech percep-

tion was obtained by Warren and Warren [104]. In their experiments, participants
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heard a sentence in which a small portion had been removed and replaced with a

meaningless sound. The auditory stimulus was always the same, so all that differed

was the contextual information. They concluded that the perception of the crucial

element in the sentence was influenced by sentence context.

In a later study by Samuel [25], he identified two possible explanations for these

experimental results. First, context may interact directly with bottom-up processes.

Second, the context may simply provide an additional source of information. Perfor-

mance in Samuel’s study was better when the word was predictable, indicating the

importance of context. He concluded that the contextual information did not have

a direct effect on bottom-up processing and that it influences the listeners’ expecta-

tions in a top-down fashion, but these expectations then needed to be confirmed with

reference to the sound that was actually presented [25].

1.2 Advantages and Limitations of Two Schemes

Top-down and bottom-up are strategies of information processing, which have been

used in a variety of studies, including psychology, management, and software design.

In a top-down approach, an overview of the system is first formulated, specifying

but not detailing any first-level subsystems. Each subsystem is then refined in greater

detail, sometimes in many additional subsystem levels, until the entire specification is

reduced to primitive elements. A top-down model is often specified with the assistance

of “black boxes,” which make it easier to manipulate. However, black boxes may fail

to elucidate elementary mechanisms or be detailed enough to realistically validate the

model.

In a bottom-up approach, the individual base elements of the system are first

specified in great detail. These elements are then linked together to form larger

subsystems, which then in turn are linked, sometimes at many levels, until a complete

top-level system is formed. This strategy often resembles a “seed” model, whereby the
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beginnings are small but eventually grow in complexity and completeness. However,

this procedure may result in a tangle of elements and subsystems due to isolated

development and may be subject to local optimization as opposed to meeting a global

purpose.

We can interpret some pattern recognition techniques from a perception perspec-

tive. For instance, the well-known hidden Markov model (HMM)-based automatic

speech recognition system can be regarded as a top-down framework, which explicitly

puts all the available knowledge, practical constraints, and conceptual expectations

into a huge network [44] that cannot be easily modified over time. It is an expectation-

driven framework and some expectations are imposed on the system’s input. It is also

a “black-box,” which means that when the system’s behavior is different from our ex-

pectation, it is hard to diagnose and figure out a solution to the problem. Due to

the scarcity of data, it is always impossible to completely and accurately model the

inherent uncertainties in the data during the system development stage. Therefore,

the top-down framework tends to be fragile, with mismatches always occurring, and

it cannot effectively handle many of the uncertainties and complexities in real-world

situations.

The eigenface method [101] for face detection and recognition is another example

of top-down processing in computer vision. The system analyzes a human face based

on patterns known as eigenfaces, which are represented through a series of high-

dimensional vectors derived from statistical analysis of many face images. It tries

to model a face image as a whole and each face image is represented by a vector

in a high-dimensional space and then projected to an eigenface space spanned by

the eigenvectors of a set of face images. However, in real-world conditions of light

variance, partial occlusion, and image deformation, the face detection performance

quickly degrades.

We can conclude from the examples above that a top-down processing framework is

6



a “black-box” insufficient for dealing with the kinds of variations occurring in practical

pattern recognition systems, while for the bottom-up or stimulus-driven processing,

its failure to adequately consider top-down processing is its greatest limitation. The

relative importance of top-down and bottom-up processing depends on various factors.

For instance, visual perception can be dependent mostly on bottom-up processing

when the viewing conditions are good, but will need to involve top-down processing

as the viewing conditions deteriorate because of lack of stimulus clarity.

1.3 Detection-based Pattern Recognition Framework

Inspired by the studies of modern cognitive psychology and some practical pattern

recognition applications, it is natural to propose a detection-based pattern recognition

framework, within which the primitive features are first detected and the knowledge

hierarchy is constructed level by level; then a variety of heterogeneous information

sources are combined together and the high level context is incorporated as additional

information at certain stages.

A detection-based framework is a “divide-and-conquer” design paradigm for pat-

tern recognition problems, which will decompose a conceptually difficult problem into

many elementary subproblems that can be handled directly and reliably. Some in-

formation fusion strategies will be employed to integrate the evidence from a lower

level to form the evidence at a higher level. Such a fusion procedure continues until

reaching the top level. Generally, a detection-based framework has many advantages:

(1) more flexibility in both detector design and fusion strategies, as these two parts

can be optimized separately; (2) parallel and distributed computational components

in primitive feature detection. In such a component-based framework, any primitive

component can be replaced by a new one while other components remain unchanged;

(3) incremental information integration; (4) high level context information as addi-

tional information sources, which can be combined with bottom-up processing at any
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stage.

1.3.1 Detector Design and Knowledge Hierarchy

The first component of a detection-based framework is a collection of primitive feature

detectors and the task-specific knowledge hierarchy. In principle, detector design is

similar to the matched filter design in communication systems for artificial signals.

However, it is more difficult to design detectors for natural signals like speech and

video.

Statistical decision and detection theory provides the theoretical foundation for

optimal detector design, detector comparison, and hypothesis verification. We can de-

sign detectors based on different criteria, e.g., Bayes criterion, Min-Max criterion, and

Neyman-Pearson criterion [52]. Each individual detector can be optimally designed

to detect a particular event reliably. In addition, the coverage and completeness of

primitive features need to be considered thoroughly.

Two kinds of primitive feature detectors were investigated in this dissertation:

knowledge-guided signal processing methods and data-driven model-based methods.

These approaches will be used in different scenarios. When task-specific knowledge

is explicitly presented, knowledge-guided methods will be preferred. This is because

signal processing methods have the advantage of requiring only a small amount of

training data to achieve good detection performance, with the help of domain-specific

knowledge. For instance, phonetic and phonological knowledge were used in landmark

detection of speech signals. In some cases, data-driven model-based methods will

outperform signal processing methods.

For data-driven methods, unsupervised, semi-supervised, and supervised learning

methods are employed regarding the amount of labeled training data. A multi-modal

spectral clustering algorithm is proposed and investigated, which is different from
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hierarchical clustering algorithms because only a pair-wise adjacency matrix is re-

quired. When the amount of the labeled training data is relatively small, a prob-

abilistic model-based semi-supervised learning approach is proposed to utilize the

large amount of unlabeled training data. Both theoretical analysis and experimental

studies were conducted.

Designing detectors that are robust to imperfect measurements and noisy condi-

tions is always a challenging task. It is well-known that a point on receiver operating

characteristics (ROC) or precision-recall (P-R) curves represents a potential operat-

ing point. A novel algorithm is proposed in this dissertation to optimize the area

under the ROC and P-R curve. By maximizing the area under curve (AUC), robust

detectors that have the best performance for all practical operating points can be

obtained.

1.3.2 Information Integration

Within the knowledge hierarchy of a detection-based framework, the higher level

knowledge can be obtained by combining its lower level knowledge sources and level-

specific information. For instance, the knowledge about phonemes could be obtained

from the knowledge of distinctive features and phonological rules. Knowledge integra-

tion will be carried out at each level of a knowledge hierarchy, such as signal (sensor),

feature, and decision level.

At the feature level, feature concatenation is a simple combination scheme, while

at the decision level, some intuitive knowledge integration strategies are usually used,

such as majority voting, weighted majority voting, and arithmetic average. Knowl-

edge integration can be conducted in either a parallel manner, such as a logistical

combination of classifiers, or a sequential (cascade) fashion, such as a decision tree.

The basic principle is to gradually remove false alarms while keeping the true positive

probability as high as possible for meaningful detection by adding more evidence and

9



constraints to the fusion procedure.

Knowledge integration is similar to ensemble classifiers in some sense, such as

bagging [7], boosting [93], stacking, and so on. Generally, ensemble classifiers work

on the same feature set through different kinds of re-sampling and weighting tech-

niques for each classifier, while evidence fusion focuses on integrating heterogeneous

knowledge sources from different detectors.

Feature concatenation and model combination schemes were first discussed and

then the maximum entropy (MaxEnt) model was investigated, which is a log-linear

model for combining heterogeneous sources. Finally, a novel discriminative fusion

strategy, regularized maximum figure-of-merit (rMFoM) approach was proposed, which

is a discriminative fusion strategy working with any discriminant function, such as

linear discriminant functions (LDF) used in both MaxEnt models and support vector

machines (SVMs).

1.4 Summary and Reading Guide

The objective of this dissertation is to present a detection-based pattern recognition

framework and then to demonstrate its applications in automatic speech recognition

and broadcast news video story segmentation.

Inspired by the studies of human vision and auditory perception, a “divide-and-

conquer” strategy was used with primitive feature detection and decision combination.

In contrast to the conventional top-down frameworks, a detection-based framework

first detects a collection of candidate hypotheses and events. Then, knowledge-guided

evidence fusion and hypothesis verification strategies are used to prune false alarms.

Evidence fusion is conducted in an incremental manner, which means that as more

evidence and constraints are available, the hypotheses will become sharper and more

focused until a consistent decision can be made.

This dissertation is organized as follows:
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In Chapter 2, basic principles for detector design and hypothesis verification based

on statistical detection and decision theory are presented. Two novel detection ap-

proaches were proposed in this dissertation: a supervised robust detector design al-

gorithm and a semi-supervised model-based detector design algorithm. Experimental

results on various datasets clearly demonstrate the effectiveness of the proposed meth-

ods.

In Chapter 3, commonly used information integration methods such as feature

concatenation, model combination, and the maximum entropy (MaxEnt) model are

discussed first for combining heterogeneous knowledge sources and then a regularized

maximum-figure-of-merit (rMFoM) learning algorithm is proposed for information

fusion.

In Chapter 4, we present our study on detection-based automatic speech recog-

nition. First, several low level detectors are described, such as landmark detection,

manner and place of articulation detection, and then the MaxEnt model is used to

combine the low level attributes into phoneme level for phoneme classification. In

addition, these low level features have been incorporated into both digit recognition

and large vocabulary continuous speech recognition (LVCSR) systems by hard and

soft decisions, respectively. Finally, a comparative study was conducted to compare

four commonly used combination schemes in LVCSR systems.

In Chapter 5, we demonstrate a detection-based broadcast news video story seg-

mentation system. First, multi-modality features were detected by different methods,

such as anchor shot detection using unsupervised multi-modal spectral clustering and

semantic concepts detection by supervised robust detectors. Then, the regularized

maximum figure-of-merit (rMFoM) method was used to combine these multi-modality

features to predict story boundaries.

Chapter 6 concludes the studies of this dissertation. The contributions from this
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dissertation are highlighted and summarized. Meanwhile, some future research direc-

tions are also briefly discussed.

12



CHAPTER II

DETECTOR DESIGN

A detection-based pattern recognition framework consists of several components: a

collection of primitive feature detectors, construction of the knowledge hierarchy, and

some knowledge integration schemes. It decomposes the total variability, uncertain-

ties, and complexity of a large system into local ones. Therefore, it is very flexible in

optimal detector design and fusion strategy optimization.

Although the detector design for low level primitive features is application-dependent,

some common criteria and techniques are shared by a variety of real-world applica-

tions. In the following sections, the theoretical foundation of detector design will be

briefly presented at first. Then, some detector design criteria and techniques will be

discussed in detail, including signal processing methods and data-driven model-based

methods.

2.1 Statistical Decision and Detection Theory

Statistical decision and detection theory provide the theoretical foundation for opti-

mal detector design, detector comparison, and hypothesis verification.

Statistical decision theory [10] [103] is all about making the best decision and

inference under uncertainty. It is a set of concepts applied to statistical hypothesis

testing, signal detection theory, and many others (e.g., parameter estimation). Util-

ity functions are generally used to express our preference for consequences and the

inductive use of probability is employed to express our knowledge about uncertain-

ties. A decision function is used to incorporate the cost of different types of errors

and prior information for each class into a single performance measure. The accuracy

of a decision is usually measured by a loss function. The risk is a function of the
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decision rule, and is defined to be the expectation of a loss with respect to the joint

distribution.

Detection is essentially a statistical hypothesis testing problem. Detection theory

has been studied intensively in statistical hypothesis testing [81] and statistical signal

processing [52]. A null hypothesis H0 states that a specific “feature” is absent, while

the alternative hypothesis H1 states that it is present. Figure 1 shows how to perform

a one-sided hypothesis test concerning a testing statistics y. It also illustrated the

conditional distributions of testing statistics y given H0 and H1, respectively. By

changing the threshold γ, a detector can work at different operating points. Its

performance can be indicated as PF and PD, which are called the size and power of

a test, respectively.

Figure 1: Statistical hypothesis testing.

Table 1 and Table 2 show the statistical hypothesis testing and statistical signal

detection models. Their relationship and differences can be clearly observed.

Table 1: Statistical hypothesis testing model.

Decision
Reality

H0 true (µ1 − µ2 = 0) H0 false (µ1 − µ2 6= 0)
Do not reject H0 correct decision type II error, P(II) = β

Reject H0 type I error, P(I) = α correct decision
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Table 2: Statistical signal detection model.

Decision
Reality

Noise only (N) Noise + Signal (NS)
Noise correct rejection Miss
Signal False Alarm Correct Detection

Table 3: Neyman-Pearson criterion.

Statistics Detection Theory
Prob. Name Notation Name Notation

P (R|H0) size α false-alarm prob. PF

P (R|H1) power 1 - β detection prob. PD

All the relevant quantities regarding Neyman-Pearson theory are summarized in

Table 3, where α and β are called type-I error and type-II error, respectively. PF and

PD are related to each other through the rejection region R of the null hypothesis.

Therefore, PF and PD represent the two degrees of freedom in a binary hypothesis

test. They represent the fundamental trade-off in hypothesis testing and detection

theory. Under the Neyman-Pearson criterion, a significance level α (the size of the

test) is specified on the false alarm probability (type-I error), and one seeks a detector

that satisfies this constraint while minimizing the miss probability (type-II error), or

equivalently maximizing the detection probability (power). The Neyman-Pearson

lemma specifies necessary and sufficient conditions for the most powerful test of size

α, provided the distributions under the two hypotheses are known, or (in special cases)

the likelihood ratio is a monotonic function of an unknown parameter. The Neyman-

Pearson criterion offers an alternative to the Bayesian framework when different types

of error have different consequences or the priori probabilities are unknown. Neyman-

Pearson theory states that for a simple point hypothesis, the likelihood ratio test is

the most powerful test. It means that at a given type-I error α, this likelihood ratio

detector can achieve the maximal power, or equivalently, minimal type-II error, β.

This is the theoretical foundation for verification and likelihood ratio test.
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2.2 Detector Performance Metrics

The performance of a detector can be measured both locally and globally. For a given

operating point γ, we could use error rate, recall, precision, or other cost functions

to measure its local performance. A receiver operating characteristics (ROC) graph

[26] is commonly used to display the relationship between PD and PF for all possible

operating points and therefore shows the global performance of a detector. For many

detection problems, an single error rate or classification accuracy cannot indicate

the system performance correctly, especially for imbalanced data. In this type of

asymmetric situation, other performance metrics such as recall, precision, and F1

measure are more appropriate.

The x-axis of a ROC graph is the false positive probability PF and the y-axis is the

true-positive probability PD. A ROC graph is a useful tool for detector performance

analysis and visualization. ROC analysis provides tools to select optimal models and

discard suboptimal ones independently from the cost context or the class distribution.

It is also related in a direct and natural way to cost/benefit analysis of diagnostic

decision making. A proper detector always has its ROC curve on the left-top part of

the graph, which means that PD ≥ PF for every operating point.

Figure 2 shows several different operating points on the ROC graph of a detector.

For instance, the point at the upper left corner indicates a perfect detector. The one

at the top shows a low missing error and another one at the middle left shows a low

false alarm error. Similarly, a recall-precision graph could be used to indicate the

performance of both detection and ranking. We will design detectors that work at

different operating points for different purposes. For instance, candidate detection

needs to have a maximal recall [68].
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Figure 2: A ROC graph of a probabilistic detector.

2.3 Detector Design Principles, Criteria, and Techniques

At different levels of a knowledge hierarchy, different requirements are imposed on

detector design. At the candidate level, high detection rate is expected to avoid can-

didate missing, whereas at the decision level, the detector design is expected to match

the performance evaluation metrics. The different detectors correspond to different

points in the ROC or recall-precision graph and they are working under different

operating points. Therefore, they provide supplemental information for further per-

formance improvement. For instance, Figure 3 shows four detectors for broadcast

news video story segmentation; some of them have better coverage, while some have

better precision.

All of the existing binary classification techniques, such as artificial neural net-

works (ANNs) [5], support vector machines (SVMs) [8], and HMMs [87] could be used

at different levels of a knowledge hierarchy. For example, we need word detectors,

sub-word detectors, and attribute detectors in ASR, and event detectors from image,

audio, text, and so on for video story segmentation.

Most binary classification algorithms are designed to minimize the probability of
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Figure 3: Four detectors in recall-precision space.

errors. In some situations, the cost of the two types of errors is asymmetric and the

distribution of the samples from two classes is imbalanced, such as fraud detection,

spam filtering, and novelty detection, just to name several examples. Therefore, some

of the commonly used binary classification algorithms are not suitable for detection.

When the class prior information and the misclassification cost are unknown, the

Neyman-Pearson criterion provides a way to design optimal detectors. It first specifies

a significance level, and then finds the most powerful detector [81]. With the Neyman-

Pearson criterion, a very low missing probability (or a very high detection probability)

is specified, while keeping the false alarm probability as small as possible. When the

misclassification cost is known, some cost-sensitive learning schemes can be used to

optimize the expected loss on the training data [24]. In addition, when both the prior

and misclassification cost information are available, Bayesian decision theory can be

used to find a detector with minimal expected cost [10] [23].

2.4 Construction of Knowledge Hierarchy

The first step of a detection-based framework is to build the infrastructure of a task-

specific knowledge hierarchy, which represents the domain-specific knowledge sources

18



at different levels, different resolutions, and their dependency structure. Such a knowl-

edge hierarchy would be shared among many different applications. For example,

the meta knowledge detected from speech signals can be used in speech recognition,

speaker identification, and language identification. As our understanding of speech

becomes more mature, the knowledge hierarchy of speech will cover more intrinsic

properties of speech.

For any level in a knowledge hierarchy, there is knowledge from its lower levels

and its level-specific information. Fusion strategies could be employed to combine

the lower level information and level-specific information to construct the knowledge

hierarchy. For instance, landmarks, manner and place of articulation, and phonolog-

ical rules could be used to identify phonemes. As this procedure repeats itself, the

task-specific knowledge hierarchy could be constructed level-by-level in a bottom-up

manner.

2.5 Signal Processing Methods

Matched filters are the optimal linear detectors that maximize the signal-to-noise

ratio (SNR) for artificial signals used in communication systems. Detector design for

natural signals (e.g., speech and video) is much more difficult.

With the help of domain-specific knowledge, signal processing methods can be

invented to detect low level attributes efficiently and effectively. For instance, land-

mark detection and voice activity detection (VAD) in speech signals are conducted

using signal processing methods. Conversely, when task-specific knowledge is explic-

itly presented, knowledge-guided methods will be preferred. For instance, phonetic

and phonological knowledge were used in landmark detection of speech signals. One

of the advantages of signal processing methods is that only a small amount of training

data is needed to achieve good detection performance with the help of domain-specific

knowledge.
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2.6 Supervised Robust Detector Design

As stated in previous sections, if we do not have the class prior information and the

cost of misclassification, the Neyman-Pearson criterion is one way to design optimal

detectors. However, the detector designed under the Neyman-Pearson criterion is

optimal only at a single operating point. It has no performance guarantee on other

operating points. Sometimes, it is desirable to have robust detectors that have good

performance on other operating points as well. Such an optimal detector should have

maximal power at size α in the sense of the Neyman-Pearson criterion. For general

cases, it is not easy to find such a uniformly most powerful detector.

Table 4: Contingency table.

Test
positive negative

Reference
positive True Positive (TP) False Negative (FN)
negative False Positive (FP) True Negative (TN)

Almost all the metrics used in detection performance evaluation can be computed

from the contingency table shown in Table 4, such as error rate (Err), recall, precision,

and F1 measure, which are computed as follows:

Err =
FP + FN

TP + TN+ FP + FN
, (1)

Recall =
TP

TP + FN
, (2)

Precision =
TP

TP + FP
, and (3)

F1 =
2TP

FP + FN+ 2TP
. (4)

Based on an analytic approximation of the counts in the table, these performance

metrics can be optimized in a discriminative manner [31]. As in the Neyman-Pearson

criterion, these metrics are used to measure the detector’s performance at a single

operating point.

Previous studies showed that by optimizing the area under a ROC curve, a robust
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classifier can be obtained [26]. Studies also show that the area under the ROC curve

is equivalent to the Wilcoxon-Mann-Whitney (WMW) rank statistics [30].

Similarly, the area under a precision-recall curve is the performance metric used

in many information retrieval systems, such as automatic image annotation (AIA)

systems, which return a ranked list of relevant images according to a confidence score

from a collection of images for each semantic concept. An average precision (AP) is

the average of the precision scores at the rank locations of each relevant image, which

emphasizes the returning of more relevant images earlier. It can be considered as

the measure of the area under the precision-recall curve. There are several analytic

approximations for these two metrics. For instance, some discriminative learning

algorithms have been investigated to optimize the recall, precision, accuracy, and

F1 measure on the training set [31]. In addition, approaches such as an ensemble

learning framework and support vector methods were proposed to optimize the area

under the ROC curve [30] [64]. However, when working on large training data set,

optimizing AP and the area under the ROC curve require heavy computations at

each iteration. So in this section, a numerical approximation algorithm is proposed

to design discriminant function based robust detectors.

In this study, we proposed an efficient gradient computation approach for robust

detector design such that the model parameters can be estimated by directly opti-

mizing the performance metric AP on very large training datasets.

2.6.1 Non-linear Performance Metrics

The above-mentioned performance metrics such as recall, precision, and F1 mea-

sure are non-linear performance metrics, which cannot be decomposed into a sum

of the loss over individual instances. These performance metrics are obtained from

an unordered score set and can be computed directly from the four items in a con-

tingency table. However, other non-linear performance metrics, such as the area
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under the ROC curve (AUC-ROC) [105] and the area under the precision-recall curve

(AUC-PR) [105] cannot be computed from a contingency table, because they require

predicting a ranking function instead of a classification function. Studies showed that

these two performance metrics are inconsistent in some cases, i.e., optimizing one

of them cannot guarantee an optimal value for the other [20]. By its definition, we

know that average precision (AP) used in some detection evaluation is equivalent to

AUC-PR, which can be expressed as follows:

AUC-PR =
1

M

M∑

i=1

i
∑N

j=1 I(s
+
i , s

−
j ) + i

, (5)

where I(s+i , s
−
j ) is an indicator function that is 1 if s+i < s−j and zero otherwise, s+i is

the ith highest positive score and s−j is the jth negative score. M andN are the number

of positive and negative samples, respectively. Smooth differentiable functions can be

used to approximate the discrete ranking count indicator function analytically, such

as sigmoid functions [30]. By this way, we can compute the gradient of AUC-PR by

a sum of the gradient of all M ∗N pairs-wise gradient from this analytic form of the

indicator function.

In practical systems, representing all M ∗N pairs would be rather inefficient when

M ∗ N is a huge number as in a semantic concept detection task. So in this study,

we present an efficient numerical approximation approach that requires only M +N

gradient computation in every iteration of gradient descent optimization. The pro-

posed method and the MFoM method [31] [30] differ in two aspects: (1) In the MFoM

method, the gradient is calculated from an analytically smoothed indicator function,

while in the proposed approach, the gradient is calculated by small perturbation in

the ranking score space; (2) In the MFoM method, the gradient calculation consists

of M ∗N pair-wise gradients from each indicator function; while in our approach, the

gradient calculation consists of M + N point-wise gradients from each observation

instance. In most cases, the performance metrics optimization will be more efficient.

It should be noted that the individual gradient calculation in our approach is more
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computationally expensive than that in the MFoM method.

2.6.2 Discriminant Functions and Decision Scores

The proposed robust detector is based on the notation of discriminant functions. The

discriminative robust detector for each event consists of two discriminant functions:

one for the positive instances and the other one for the negative instances. They are

represented as fpos(x) and fneg(x), respectively.

For each observation sample x, its uncalibrated ranking score is computed as

follows:

s(x; θ) = fpos(x; θpos)− fneg(x; θneg), (6)

where θ = (θpos, θneg) represents the model parameters. There are many choices for

discriminant functions, such as linear discriminant functions (LDFs), log-likelihood

of class conditional probability density functions (e.g., Gaussian mixture models and

hidden Markov models). fneg(x; θneg) could be a single discriminant function when

focusing on single events. It could also be a combination of multiple discriminant

functions as well when dealing with multiple event detection simultaneously. For

instance, it could be a geometrical mean of the discriminant functions of several

competing event [31].

2.6.3 Gradient Calculation

To optimize AUC-PR given a collection of training instances, its derivatives with

respect to each score will be numerically approximated. The AUC-PR is a func-

tion of all the ranking scores from both positive and negative samples, AUC-PR =

f(s1, s2, · · · , sM+N). It is a function in the score space and also a function of θpos and

θneg. The AUC-PR gradient at each score can be computed from the change of AUC-

PR by a small perturbation in score from si to si+ δ, ∇AUC-PR(si) = ∆AUC-PR/δ.

To get a more reliable and smooth gradient estimation for each training instance, an

23



average of the gradient from different perturbation step sizes are used.

The numerical approximation of the gradient at each score si is expressed as

follows:

∇AUC-PR(si) ≈
1

2L

L∑

l=−L
l 6=0

∇AUC-PR(si + l ∗ δ). (7)

Here δ is a step size decided by the spread of the ranking scores. L is used to control

the smoothness of the obtained gradient curve.

2.6.4 Parameter Update

We aim to maximize the AUC-PR by updating the parameters of both positive and

negative discriminant functions. Either the batch gradient descent or the generalized

probabilistic descent (GPD) algorithm can be used to optimize the model parameters

on the training set [31]. For each training instance x, the gradient for the input data

and current model parameters is used to update model parameters. By using the

chain rule of the derivative, AP can be maximized by updating the parameters θpos

and θneg of the discriminant functions,

θt+1 = θt + γ
M+N∑

i=1

∂si
∂θ
∇AUC-PR(si). (8)

To speed-up the parameter update procedure, we can use a larger step size γ.

Another way is to perform instance sampling at each iteration based on the obtained

score list given to current model parameters. Actually, this is necessary when dealing

with imbalanced training data. Generally, only a small number of positive instances

are available. By instance re-sampling, we can keep positive and negative instance

balanced and none of them will dominate the gradient calculation. After the ranking

scores for all the instances are computed based on the current model parameters,

both positive and negative scores are sorted. Then a uniform sampling is conducted

on these two sorted list independently, which is equivalent to a sampling from the

distribution of both positive and negative scores.
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Figure 4: Robust detector design results.

Figure 4 shows the result of a robust detector design scheme. It’s clear that the

area under the precision-recall curve have been increased. The discriminant functions

are Gaussian mixture models and the EM algorithm is used to initialize the model

parameters. The AP has been improved from 0.53 to 0.85 on the training set and

from 0.53 to 0.75 on the testing set.

2.7 Semi-supervised Model-based Detector Design

In some situations, even for a single attribute or event, there is not enough data

for model training, or it is too expensive to collect sufficient labeled data. So in

this section, a semi-supervised statistical model-based learning scheme is proposed to

leverage the large amount of unlabeled data and limited labeled data.

The target value y associated with each observation vector x is discrete and finite,

y ∈ {1, 2, · · · , K}. In supervised learning, the label y for each x in the training set

is provided. This supervision information can be represented by a label distribution

φx(y) for each x. The label distribution is used to represent the class membership
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for each observation x and it is a probability mass function. With the notion of

the label distribution, full supervision (e.g., φx(y) = [1, 0]), partial supervision (e.g.,

φx(y) = [0.7, 0.3]), and no supervision (e.g., φx(y) = [1/2, 1/2]) can be expressed in

a unified manner. We assume that all pairs (x, y) are independent and identically

distributed (i.i.d.) samples from an unknown distribution p(x, y; θ). Here, θ are the

parameters of a generative model. For detection tasks, it includes the parameters of

both positive and negative models.

We are aiming to incorporate unlabeled data into the modeling process; so a

labeling strategy is necessary. Given the current model parameters θ, a posterior

probability distribution P (y|x; θ) can be estimated using Bayes rule for each obser-

vation sample x. A labeling strategy is used to generate a label distribution from the

posterior distribution. There are two kinds of labeling strategies: soft decision and

hard decision. In the soft decision strategy, we always take φx(y) = P (y|x; θ), which

means that the label distribution is identical to the posterior distribution for each

sample, while in the hard decision strategy, the sample will be labeled as the class

with the highest posterior probability. For original labeled data, their label distribu-

tion will be fixed during the learning process, while for unlabeled samples, their label

distributions φx(y) will be updated at each iteration.

In semi-supervised learning settings [13], only a small part of the observation

samples has full supervision and most of them are unlabeled. The whole training

data X can be represented as the union of two subsets Xl and Xu, where Xl =

{xi, i = 1, · · · , N} is the labeled data and Xu = {xi, i = N+1, · · · , N+M}, M ≫ N

is the unlabeled data.

With the assumed joint distribution p(x, y; θ), the log-likelihood for single obser-

vation x is defined as follows:

Lx(θ) := log
K∑

y=1

p(x, y; θ). (9)

The log-likelihood over the whole training set X is defined as follows and does not
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depend on the label distribution φx(y):

L(θ) =
∑

x∈X

Lx(θ). (10)

The following function is defined for semi-supervised learning for single observation

x:

Fx(φx(y); θ) := Lx(θ)− λKL(φx(y)‖P (y|x; θ)). (11)

Here, KL(φx(y)‖P (y|x; θ)) is the Kullback-Leibler divergence [17] between the

label distribution φx(y) and the posterior distribution P (y|x; θ) given the current

model parameters. With the properties of KL-divergence, we have the following

inequality:

Fx(φx(y); θ) ≤ Lx(θ). (12)

The equality holds if and only if

KL(φx(y)‖P (y|x; θ)) = 0 ⇔ φx(y) = P (y|x; θ). (13)

The proposed objective function of the whole training set X is the following:

Q(φx(y), θ) :=
∑

x∈Xl

F (φx(y), θ) + C
∑

x∈Xu

F (φx(y), θ). (14)

It means that this function is a lower bound of the likelihood function of the

joint distribution and it is a combination of the log-likelihood and the KL-divergence.

With this objective function, we aim to maximize the log-likelihood of each sample

(better data fitting), meanwhile keeping the divergence between the label distribution

and the predicted label distribution as small as possible (better label agreement). λ

is a scaling factor to make the two parts comparable and C is used to control the

contribution from labeled data.

In the following, a detailed discussion and theoretical justification of this objective

function are presented. The batch gradient descent algorithm or the stochastic gradi-

ent descent algorithm could be used to estimate the parameters θ and the expectation

maximization (EM) will be used in the following sections.
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Case 1: In the case of the fully unlabeled data and soft decision labeling strategy,

the proposed objective function is equivalent to the maximum likelihood (ML) crite-

rion. The EM algorithm is a method for estimating ML parameters of a model with

missing or latent variables [22] and it is a maximization-maximization procedure of

the proposed objective function Q(φx(y), θ) with regard to φx(y) and θ, respectively.

The E-step is actually a relabeling procedure and the aim is to find an optimal

φ
(t)
x (y) given that θ(t−1) is fixed.

φ(t)
x (y) = argmax

φx(y)

F (φx(y), θ
(t−1))

= argmin
φx(y)

KL(φx(y)‖P (y|x, θ(t−1)))

= P (y|x, θ(t−1)) (15)

So, the following inequality always holds by this relabeling strategy for any obser-

vation x from both Xl and Xu:

F (φ(t)
x (y), θ(t−1)) ≥ F (φ(t−1)

x (y), θ(t−1)) (∀ x ∈ X). (16)

Moreover, if we take φ
(t)
x (y) = P (y|x, θ(t−1)), we get the following:

Lx(θ
(t−1)) = F (φ(t)

x (y), θ(t−1)). (17)

The M-step is a re-estimation procedure to find the optimal parameter θ(t) over

the whole training data X given that the label distribution φ
(t)
x (y) of each observation

x is fixed as shown:

θ(t) = argmax
θ

Q(φ(t)
x (y), θ)

= argmax
θ

∑

x∈Xl

F (φ(t)
x (y), θ) + C

∑

x∈Xu

F (φ(t)
x (y), θ). (18)

Whatever the label distribution φ
(t)
x is, when θ is chosen according to Equation (18),

the following inequality always holds:

Q(φ(t)
x (y), θ(t)) ≥ Q(φ(t)

x (y), θ(t−1)). (19)
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From Equations 16, 17, and 18, it is easy to see that

L(θ(t)) = Q(φ(t+1)
x (y), θ(t)) ≥ Q(φ(t)

x (y), θ(t))

≥ Q(φ(t)
x (y), θ(t−1)) = L(θ(t−1)). (20)

This means that the EM algorithm will increase the proposed objective function

iteratively until it converges to a local maximizer. This is the well-known monotonic-

ity property of the EM algorithm.

Case 2: Now for the semi-supervised learning settings, some constraints are im-

posed on the relabeling strategy, which is as follows:

φ(t)
x (y) =







φ
(0)
x (y) x ∈ Xl

P (y|x, θ(t−1)) x ∈ Xu.
(21)

This means that for the original labeled data, their label distributions will remain

unchanged. So this constrained relabeling strategy can guarantee that inequality (16)

still holds for both x ∈ Xl and x ∈ Xu. However, the equality (17) will never hold

for x ∈ Xl.

The re-estimation step is the same as that in Case 1. Overall, we have the following

inequalities:

Q(φ(t+1)
x (y), θ(t)) ≥ Q(φ(t)

x (y), θ(t))

≥ Q(φ(t)
x (y), θ(t−1)). (22)

Case 3: Now let’s change the soft-decision labeling strategy in Case 2 for x ∈ Xu to

the hard-decision labeling strategy. It is equivalent to imposing some constraints on

the label distribution φx(y) such that the entropy of the label distribution φx(y) of

the newly labeled data must be zero, H(φ
(t)
x (y)) = 0. So an unlabeled data will be

definitely assigned to one class by “hard decision” instead of “soft assignment” used
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in Case 2. Now we can rearrange the objective function a little bit as follows:

Q(θ, φx(y)) =
∑

x∈X

F (φx(y), θ)

=
∑

x∈X

(Lx(θ
(t−1))−D(φx(y)‖P (y|x, θ)))

=
∑

x∈X

(Lx(θ
(t−1))−H(φx(y)‖P (y|x, θ)) +H(φx(y))

︸ ︷︷ ︸

= 0

)

,
∑

x∈X

G(φx(y), θ). (23)

Here, H(φx(y)‖P (y|x, θ)) is the cross-entropy defined as follows in information

theory [17]:

H(φx(y)‖P (y|x, θ)) = D(φx(y)‖P (y|x, θ)) +H(φx(y)). (24)

The E-step (relabeling) is to find an optimal φ
(t)
x (y) with H(φ

(t)
x (y)) = 0, given

that θ(t−1) is fixed:

φ(t)
x (y) = argmax

φx(y),H(φx(y))=0

G(φx(y), θ
(t−1))

= argmax
φx(y),H(φx(y))=0

(Lx(θ
(t−1))−H(φx(y)‖P (y|x, θ(t−1))))

= argmin
φx(y),H(φx(y))=0

H(φx(y)‖P (y|x, θ(t−1))). (25)

Based on the property of cross-entropy [17] and our constraints, the φ
(t)
x (y) can

be obtained by assigning the observation to the class with the highest predictive

probability P (y|x, θ(t−1)).

By using such a re-labeling strategy, the following inequality holds:

G(φ(t)
x (y), θ(t−1)) ≥ G(φ(t−1)

x (y), θ(t−1)) (∀ x ∈ X). (26)

The M-step (re-estimation) is to find the optimal θ(t) given that φ
(t)
x (y) is fixed:

θ(t) = argmax
θ

∑

x∈X

G(φ(t)
x (y), θ)

= argmax
θ

∑

x∈X

K∑

k=1

φ(t)
x (y = k) log p(x, y|θ). (27)
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Then we have

∑

x∈X

G(φ(t)
x (y), θ(t)) ≥

∑

x∈X

G(φ(t)
x (y), θ(t−1)). (28)

From the above inequalities, it’s easy to see that

∑

x∈X

G(φ(t+1)
x (y), θ(t)) ≥

∑

x∈X

G(φ(t)
x (y), θ(t))

≥
∑

x∈X

G(φ(t)
x (y), θ(t−1)). (29)

Case 4: Until now, all the training data X are used in the re-estimation step in

a batch mode. It is desirable to have the unlabeled data labeled in an incremental

way. In the following, an incremental self-training algorithm is proposed and its

convergence property is justified.

First, we define the objective function as follows:

Q(t)(φx(y), θ) =
1

|X(t)
l |

∑

x∈X
(t)
l

G(φx(y), θ). (30)

In the incremental mode, the cardinality |X(t)
l | of X

(t)
l will be increased at each

iteration. This objective function emphasizes the average objective value over the

labeled data set X
(t)
l .

Let’s start from X(0) and φ
(0)
x (y). We can get θ(0) as the following:

θ(0) = argmax
θ

∑

x∈X
(0)
l

G(φ(0)
x (y), θ). (31)

The average value of objective function will be represented as λ(0):

λ(0) = Q(0)(θ(0), φ(0)
x (y))

=
1

|X(0)
l |

∑

x∈X
(0)
l

G(φ(0)
x (y), θ(0)). (32)

Now let’s assume we have φ
(t−1)
x (y), θ(t−1), X

(t−1)
l known. The objective function

is represented as the following:
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λ(t−1) = Q(t−1)(φ(t−1)
x (y), θ(t−1))

=
1

|X(t−1)
l |

∑

x∈X
(t−1)
l

G(φ(t−1)
x (y), θ(t−1)). (33)

According to the original source of data in both X
(t−1)
l and X

(t−1)
l , the E-step

(relabeling) will be categorized into three scenarios:

• x ∈ X
(0)
l

For these observations, their label distributions will remain unchanged,

φ(t)
x (y) = φ(0)

x (y). (34)

• x ∈ X
(t−1)
l \X(0)

l

For these observations, the re-labeling strategy used in Case 3 will update their

label distribution. Moreover, some of the data will be moved back to the un-

labeled data set again if their objective value satisfies the following conditions.

These removed data are represented as {x(t−1)
l→u },

G(φ(t)
x (y), θ(t−1)) ≤ α(t−1)

≤ λ(t−1) (∀x ∈ {x(t−1)
l→u }). (35)

Overall, for all the observations in X
(t−1)
l \X(0)

l , the following inequality holds:

G(φ(t)
x (y), θ(t−1)) ≥ G(φ(t−1)

x (y), θ(t−1)). (36)

• x ∈ X
(t−1)
u

For these observations, if their objective value satisfies the following conditions,

they will be moved to the labeled data set,

G(φ(t)
x (y), θ(t−1)) ≥ β(t−1)

≥ λ(t−1) (∀x ∈ {x(t−1)
u→l }). (37)
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After the relabeling process, the labeled data set is the following:

X
(t)
l = X

(0)
l ∪ {X

(t−1)
l \X(0)

l \ {x
(t−1)
l→u }} ∪ {x

(t−1)
u→l }. (38)

The following inequalities hold:

1

|X(t)
l |

∑

x∈X
(t)
l

G(φ(t)
x (y), θ(t−1)) ≥ λ(t−1). (39)

Now the M-step (re-estimation) is to find the optimal θ(t) over the labeled data

set X
(t)
l given that φ

(t)
x (y) is fixed:

θ(t) = argmax
θ

∑

x∈X
(t)
l

G(φ(t)
x (y), θ). (40)

It’s clear that

λ(t) =
1

|X(t)
l |

∑

x∈X
(t)
l

G(φ(t)
x (y), θ(t))

≥
1

|X(t)
l |

∑

x∈X
(t)
l

G(φ(t)
x (y), θ(t−1))

≥ λ(t−1). (41)

By this iterative procedure and appropriately chosen α(t) and β(t), we can control

the number of observations moved between Xu and Xl. Meanwhile, the objective

function will increase until no more data will be moved between X
(∞)
l and X

(∞)
u .

Some experiment results on audio event detection are shown in Figure 5 and Fig-

ure 6. For such an iterative procedure, the asymptotic convergence property is of

concern. It’s desirable to have some theoretical analysis for the asymptotic property

of such a bootstrapping procedure. An alternative choice is to conduct asymptotic

analysis through many experiments. These figures show the asymptotic convergence

of the proposed method. The x-axis of both figures is the iteration number of the

procedure. The y-axis of Figure 5 is the precision of the detected “applause/cheering”
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Figure 5: Semi-supervised audio event detection.

0 2 4 6 8 10 12 14 16 18 20
18

19

20

21

22

23

24

25

26

27

28

Iterations

E
rr

o
r 

R
a
te

(%
)

split 1

split 2

split 3

split 4

split 5

split 6

split 7

split 8

split 9

split 10

split 11

split 12

Figure 6: Semi-supervised audio event detection.

event. These figures indicate that with additional newly labeled positive and nega-

tive samples being added into the training set, the detection performance could be

improved gradually.
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CHAPTER III

INFORMATION INTEGRATION

Within the knowledge hierarchy of a detection-based framework, the higher level

knowledge can be obtained by combining its lower level knowledge sources and level-

specific information. For instance, the knowledge about phonemes could be obtained

from the knowledge of distinctive features and phonological rules. Knowledge integra-

tion will be carried out at each level of a knowledge hierarchy, such as signal (sensor),

feature, and decision level.

At the feature level, feature concatenation is a simple combination scheme, while

at the decision level, some intuitive knowledge integration strategies are usually used,

such as majority voting, weighted majority voting, and arithmetic average. Other

fusion strategies such as the Dempster-Shafer theory has also been studied and em-

ployed for several decades [21].

In addition, detector interpolation (or randomized detectors) is another combina-

tion strategy. For instance, given a detector with a false positive probability 0.1 and

true positive probability 0.2, and another detector with a false positive probability

0.25 and true positive probability 0.6, we could get detectors with the false positive

probability in the range from 0.1 to 0.25 under the Neyman-Pearson criterion by

detector randomization [26].

Knowledge integration can be conducted in either a parallel manner such as lo-

gistical combination of classifiers, or a sequential (cascade) fashion such as a decision

tree. The basic principle is to gradually remove false alarms while keeping the true

positive probability as high as possible by adding more evidence and constraints to

the fusion procedure.
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Knowledge integration seems similar to ensemble classifiers in some sense, such as

bagging [7], boosting [93], stacking and so on. Generally, ensemble classifiers work on

the same feature set through some kinds of re-sampling and weighting techniques for

each classifier, while evidence fusion focuses on integrating heterogeneous knowledge

sources from different detectors.

Knowledge integration could be formulated as follows: given a collection of de-

tectors, d1, d2, · · · , dn, we are aiming to build a mapping g(d1, d2, · · · , dn) from the

input detectors to a higher level decision. Here, each di could either be a categorical

classifier (output yes or no as in a decision rule) or a probabilistic classifier (output

continuous score that can be calibrated into probability, as in ANNs) and g could be

either an arithmetic function, a logical function, or a probabilistic model.

In the following sections, some commonly used combination schemes will be briefly

discussed and then a novel discriminant function based combination approach is pro-

posed.

3.1 Feature Concatenation and Model Combination

For signal and feature level integration, one simple approach is to concatenate the low-

level features from different sources into a large vector, which is also called early fusion.

However, from previous studies, it is known that some features are more informative

than others and therefore scaling of each dimension is important. Otherwise, some

dimensions will dominate the feature vectors. For instance, in a broadcast news video

story segmentation system, the anchor shot is more significant than other pieces of

video features. Another disadvantage of feature concatenation is that it is hard to

incorporate heterogeneous information sources, e.g., combining numerical features

with categorical features.

Model combination, or late fusion, is an alternative choice. By building a sepa-

rate model for each knowledge source, the fusion is conducted at the decision level.
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One disadvantage of model combination is the much higher computational complex-

ity. For instance, we need to build separate decision trees, acoustic models, and

transformation matrices for each feature stream in LVCSR systems.

These two combination schemes will be discussed in more detail in Chapter 4 for

a comparative study on combination schemes for LVCSR systems.

3.2 Maximum Entropy Evidence Fusion

The maximum entropy (MaxEnt) model is a log-linear model that combines multi-

ple binary features to approximate the posterior probability of an event (i.e., story

boundary) given some evidence (e.g, audio, visual, or text information), which has

also been studied for natural language processing and many other applications, [91],

P (event|evidence) =
1

Zλ(evidence)
exp

(
K∑

k=1

λkfk(event, evidence)

)

. (42)

Here, fk are feature functions which are wrappers of the input evidence and the

target event. The λk are the parameters of the MaxEnt model and Zλ(evidence)

is a normalization constant which ensures that probabilities sum to one. Since the

normalization constant tends to contrast the ground truth label against any other

label, this model is best suited for detection. In addition, it is ideally suited for

combining detectors from different knowledge sources. A probabilistic detector can be

quantized, thereby providing the ability to combine arbitrary detectors. The MaxEnt

model is capable in dealing with heterogeneous features (acoustic, lexical, etc.) and

sparse features.

The MaxEnt model has an equivalent formulation that maximizes the penalized

log-likelihood as follows:

L =

l∑

i=1

P (yi|xi; Λ)−
∑

k

λ2
k

2σ2
, (43)

where a regularization term has been added to control the generalization capability
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of the model. The parameters Λ = {λ · · · } are trained to maximize penalized log-

likelihood of a set of training labeled data DL = (x1, y1), · · · , (xl, yl), where x is

evidence and y is a event. The second sum is a Gaussian prior on the parameters

to handle sparsity in the training data. For each y ∈ Y there is a separate “default

feature” that is always independent of x; this allows the model to represent a class

prior probability. We use a single pooled variance σ2 for all features. In practice,

system performance seemed relatively insensitive over a large range of σ.

Each evidence from the data fits into a feature function that associates the at-

tribute and a possible label as follows:

fk(event, evidence) =







1, dk(evidence) = event

0, otherwise,
, (44)

where a feature function takes a positive value if the attribute appears in the data,

while a zero value if the attribute is not in the data. Each feature function carries a

weight λk that gives the strength of that feature function for the proposed label. High

positive weights indicate a good association between the feature and the proposed

label. High negative weights indicate a negative association between the feature and

the proposed label. Weights close to zero indicate the feature has little or no impact

on the identity of the label.

The model parameters λk are trained using standard optimization techniques such

as generalized iterative scaling (GIS), conjugate gradient (CG), or limited-memory

BFGS (L-BFGS) methods [84].

The gradient is computed as follows:

∂L

∂λk

=
k∑

i=1

fk(xi, yi)−
∑

y
′
∈Y

P (yi|xi)f(xi, y
′

)−
λk

σ2
. (45)

This model corresponds to an undirected graphical model (also known as a Markov

random field (MRF)) in which the observed random variables xi are connected by an
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undirected edge to their corresponding random variables yi, and the cliques of the

graph are exactly these pairs, with clique potential Φi = exp(
∑

k λkfk(xi, yi)).

A speaker identification experiment is conducted on the transcriptions of the

broadcast news using the MaxEnt model. Our task aimed to assign a speaker name to

each speaker cluster. And the input detectors are the N-gram pattern detectors, po-

sition detectors, gender detectors and acoustic speaker detectors. Experiments were

carried out on two subsets of the broadcast news training datasets with testing set

LDC97S44 and LDC97T22, and testing set LDC98S71 and LDC98T28. To increase

the statistical significance of the results, 85-hours of data are used for testing.

Figure 7 shows the results of all the system configurations on the test set. With

the same lexical trigger features, the MaxEnt system outperforms the N-gram system.

We attribute the gain to the discriminative nature of the conditional training of

parameters in the MaxEnt framework. In contrast, the N-gram system uses maximum

likelihood estimates of parameters. The MaxEnt system jointly trains the feature

combination parameters in contrast to the N-gram system where the rule combination

is heuristic. With the position feature and gender information incorporated into the

MaxEnt system, system performance is further improved. The results also show

that the acoustic feature bears little incidence on overall performance. As mentioned

before, acoustic detector can only help for the common speakers in the train and test

sets. In our experimental setup, there are about 150 such common speakers. These

common speakers account for 10% of the speakers in the test set and 30% of the test

set in time-weighted proportion. An insufficient number of bins, or the relatively low

discriminative power of the acoustic detector might be additional reasons for the lack

of performance improvement.

We showed the benefit of the sound method for joint training of the parameters

in the maximum entropy framework by demonstrating better performance than the

state-of-the-art N-gram system while using the same set of lexical features. Our
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experimental results show that at a fixed precision of 95%, our best MaxEnt system

increases the recall from 38% to 67%.
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Figure 7: Maximum entropy fusion results.

3.3 Regularized MFoM for Integration

The MaxEnt model is a log-linear model that can be used to combine heterogeneous

knowledge sources. In this section, a novel linear model is proposed to conduct

information integration. The MaxEnt model is used to approximate the posterior

probability, while the proposed discriminant function based approach aims at ap-

proximating any performance metric, such as error rate, recall, precision, and F1

measure.

In statistical decision theory, the optimal classifiers obtained by minimizing the

Bayes risk are always defined in terms of a conditional probability P (y|x) [23] [6] [38],

where x is a feature vector and y is a class label. For most real-world classification

problems, an exact knowledge of P (y|x) is usually unavailable. There are two ways

to handle the problem through using discriminative or generative models. Discrimi-

native methods directly model the conditional probability distribution P (y|x) with a
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parametric form, such as logistic regression (LR) [66] and maximum entropy (Max-

Ent) model [4]. In contrast, generative methods assume the data is generated by a

joint probabilistic distribution P (x, y), which is usually factorized into a product of

two terms: a prior probability P (y) such as a binomial or multinomial distribution,

and a class conditional probability distribution, P (x|y). These generative models

include naive Bayes models, Gaussian mixture models (GMM) and hidden Markov

models (HMM) [87]. The posterior distribution P (y|x) is derived from P (x, y) by the

Bayes theorem. The parameters of discriminative and generative models are typically

estimated by either the maximum likelihood (ML) or maximum a posterior (MAP)

estimation criteria [60] [10].

Two aspects of these statistical learning and inference schemes need to be elab-

orated as follows: First, the success of these statistical modeling schemes depends

on the correctness of the model assumptions. In case the actual training and testing

data do not support the model assumptions needed in generative methods as we lack

complete knowledge of the parametric form of the underlying distributions, system

performance can no longer be optimal. Discriminant function based approaches are

more flexible, because it directly maps feature vector, x, to its class label, y. Discrim-

inant functions are used to partition the sample space into several non-overlapping

regions. We only specify a parametric form of the discriminant functions gi(x) for

each class i. Support vector machine (SVM) is a linear discriminant function (LDF)

based classifier [8]. Discriminant functions can also be regarded as a generalization

of the conditional distribution if we regard P (y|x) as a discriminant function and

generative models can be transformed to discriminant functions by the Bayes rule.

Second, the performance metrics used in system evaluation on unseen test data are

often different from the ML and MAP criteria used in model training. For instance,

word error rate is usually adopted in the evaluation of automatic speech recognition
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systems [88]. Whereas, recall, precision, and F1 measure are often employed in infor-

mation retrieval (IR) [76] and video story segmentation systems [68]. On the other

hand, automatic image annotation systems are usually evaluated by mean average

precision [75], and speaker verification systems are commonly measured by equal er-

ror rate and detection cost functions [77]. So in the last two decades, there are many

efforts devoted to making model training criteria consistent with the performance

evaluation metrics. Minimum classification error (MCE) learning was proposed to

directly minimize the objective function approximating the empirical errors on the

training set by embedding discriminant functions and decision rules into parame-

ter learning criteria [48]. The MCE criterion has been successfully used in speech

recognition [47] [94], speaker recognition [69], and many other applications, where

the generative models, such as hidden Markov models, are discriminatively trained

by optimizing the MCE criterion. Maximum figure-of-merit (MFoM) learning [31]

generalizes the MCE criterion to cover more performance metrics such as recall, pre-

cision, F1 measure, and the area under the receiver operating characteristic (ROC)

curve [30] [26]. MFoM learning have been successfully used in many applications,

such as text categorization [31], automatic image annotation and video segmentation

[68].

In this section, we propose a regularized maximum figure-of-merit (rMFoM) ap-

proach to supervised learning within the framework of Tikhonov regularization [100].

The rMFoM learning criterion has all the advantages of the original MFoM learning,

i.e., it can be tailored to task-specific performance metrics for practical applications.

Furthermore, it can deal with the problem of insufficient training data because it is

less sensitive to potential data variations [33] [31].

The rMFoM approach is also successfully extended to the general semi-supervised

learning (SSL) scenarios [13]. Recently, SSL has been investigated extensively in

text categorization (TC) [83], web mining and computational linguistics [1], where
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labeled data are often difficult and expensive to obtain. The semi-supervised rM-

FoM approach provides a theoretical justification of the commonly used self-training

algorithm [83] [108]. Both quasi-Newton and trust region Newton methods [84] are

applied to this non-convex optimization problem and several implementation issues

are discussed in detail.

We evaluate supervised rMFoM learning on the Reuters-21578 text categorization

task. For semi-supervised rMFoM learning, we also conducted experiments on other

two text categorization datasets. We focus our study on binary classification with

linear discriminant functions. The results clearly show that the performance of each

classifier is consistent between the training and evaluation stage, and the classifier is

able to obtain the best chosen metric on the testing data.

3.3.1 Maximum Figure-of-merit Learning

Let’s start with a brief review of the maximum figure-of-merit (MFoM) approach to

supervised learning [33]. Suppose we are given a dataset, X = {(x(i), y(i))}Mi=1, con-

sisting of M labeled training samples, here x(i) ∈ R
n is a n-dimension feature vector

and y(i) ∈ Y = {1, 2, · · · , K} is its class label. Discriminant function approaches

do not require knowledge of the forms of underlying probability density functions of

the joint distribution, p(x, y), in generative models or the conditional distribution,

p(y|x), in discriminative models. We only assume we have a parametric form of the

discriminant functions, gj(x;wj), parameterized by wj for each class j ∈ Y . An in-

tuitive decision rule for discriminant function based classification is to maximize over

all the class scores of an instance x as follows:

Ĉ(x) = argmax
j∈Y

gj(x;wj), (46)

where Ĉ(x) is the predicted class label for x.

For any labeled instance x ∈ Cj , a correct classification means Ĉ(x) = Cj. To

quantify the classification performance of an instance x ∈ Cj, a class misclassification
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measure dj(x) is defined for each class Cj by:

dj(x) = −gj(x;wj) +

{
1

K − 1

[ K∑

i=1,i 6=j

gηi (x;wi)
]}1/η

, (47)

where the second term is the geometric mean of the scores from all competing classes

and η is a positive constant. When η approaches +∞, the second term becomes the

maximal score from all competing classes,

dj(x) = −gj(x;wj) + max
i 6=j

gi(x;wi). (48)

If dj(x) is positive, it means that x ∈ Cj is misclassified as one of the other classes. In

this case, dj(x) can also be regarded as the negative of a generalized functional margin.

It quantifies the separation between class Cj and all other competing classes. The

misclassification measure for each x ∈ Cj can be embedded into a sigmoid function

to approximate the error count of the classification process, e.g., 0-1 for correct or

incorrect decisions as follows:

ℓj(x) =
1

1 + exp
[
−α
(
dj(x) + βj

)] , (49)

where α controls the steepness of the approximation curve and βj control the position

of the decision boundary for class Cj.

The confusion matrix (a.k.a. contingency table) for class Cj consisting of true

positive (TP), false positive (FP), false negative (FN) and true negative (TN) is

shown in Table 5 in terms of a smooth continuous and differentiable loss function,

ℓj(x).

Table 5: Confusion matrix

Ĉ(x) = Cj Ĉ(x) 6= Cj

x ∈ Cj TPj ≈
∑

x∈Cj

(
1− ℓj(x)

)
FNj ≈

∑

x∈Cj

ℓj(x)

x /∈ Cj FPj ≈
∑

x/∈Cj

ℓj(x) TNj ≈
∑

x/∈Cj

(
1− ℓj(x)

)
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For a specific class Cj, several performance metrics, like error rate, precision,

recall and F1 can be calculated as shown in Table 6. Here, TP, FP, FN and TN are

approximated with the loss function for each training sample.

Table 6: Performance metrics

Error Ej =
FPj + FNj

TPj + TNj + FPj + FNj

Recall Rj =
TPj

TPj + FNj

Precision Pj =
TPj

TPj + FPj

F1 F1j =
2TPj

FPj + FNj + 2TPj

By this way, these performance measures are differentiable functions with respect

to the model parameters, and they can therefore be directly optimized. The basic

idea of MFoM learning approach is to directly optimize the abovementioned perfor-

mance metrics with respect to discriminant function parameters. It allows quite a bit

of flexibility in choosing the discriminant functions for each class. For instance, the

discriminant functions gj(x;wj) could be linear discriminant functions (LDF) if the

data is fairly linearly separable in the feature space. LDFs are essentially minimum er-

ror Bayesian classifiers, which assume that the class conditional probability densities

are multivariate Gaussians with equal covariance matrices for every class. Other-

wise, some nonlinear discriminant functions like quadratic discriminant functions, or

more complicated probabilistic discriminant functions like log-likelihood function of

Gaussian mixture models (GMM) and hidden Markov models (HMM) could be em-

ployed. An advantage of MFoM learning is that it can be applied to both binary and

multi-class classification problems.

3.3.2 Supervised rMFoM Learning

The MCE criterion with LDFs can be regarded as a single layer artificial neural

network (ANN) with a sigmoid transfer function. Discriminative training methods
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with the MCE criterion are very effective in practice. However, they are prone to

overfitting [85] [89] and smoothing techniques such as I-smoothing are used to alleviate

overfitting [85]. We believe similar phenomena can be observed in MFoM learning

as well. For instance, suppose we are using MFoM learning with LDFs, g(x;w, β) =

wTx+β, for binary classification problems, if we scale up the parameters w to 2w, the

classification hyperplane will not change. However, the value of the objective function

in Eq. (49) will decrease. So it is necessary to add some penalty or regularization

terms to the original MFoM formulation in order to achieve better generalization and

stability.

An intuitive way is to add a norm constraint on the parameters of the classification

hyperplane as follows:

min
w,β

f(w, β) =







1
M
(FP + FN), MCE

− 2TP
2TP+FP+FN

, F1

subject to ‖w‖2 = 1. (50)

Here the nonlinear equality constraint ‖w‖2 = 1 restricts the feasible set ofw to be the

non-convex surface of the unit sphere. In the following sections of this paper, we will

derive detailed algorithms for the two typical MFoM criteria: minimum classification

error (MCE) and maximum F1 as shown in Eq. (50). Using the method of Lagrange

multipliers, the Lagrangian can be formed as follows:

min
w,β,λ

L(w, β, λ) = f(w, β) + λ(wTw− 1), (51)

where λ is a Lagrange multiplier.

From another perspective, this problem can be reformulated within the framework

of Tikhonov regularization [100]. In statistics [38] and machine learning, regulariza-

tion is usually used to prevent overfitting, e.g., ridge regression [6], Lasso [99], and

ℓ2-norm regularization in support vector machines [95]. Tikhonov proposed a class of
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Tikhonov regularizers that are formulated as follows:

min
h∈H

[

ℓ
(
h(X),y

)
+

λ

2
‖h‖2H

]

, λ > 0, (52)

where h is a prediction function in the functional space H, ℓ
(
h(X),y

)
is a loss func-

tion, and ‖h‖H is the norm in the functional space H. Tikhonov regularization seeks

a function which simultaneously exhibits a small empirical loss on the training set

and a small norm in a reproducing kernel Hilbert space. Of course, other types of

regularization like ℓ1-norm regularization can be used in other scenarios, which does

both variable selection and norm shrinking and can produce sparse parameter vectors

as well [55].

To simplify the derivation of related algorithms, in this paper, our discussion of

the regularized MFoM learning algorithm will focus on binary classification using

linear discriminant functions, i.e., Y = {1,−1}. Each feature vector and the LDF

parameters are augmented with an additional dimension like this: x(i) ← [x(i), 1],

and wT ← [wT , β]. It can be extended to multi-class classification problems as well

[31]. For binary classification, the whole training set is explicitly partitioned into two

parts, X = {Xpos, Xneg} and the loss functions is represented as follows:

ℓ(x(i);w) =
1

1 + exp (αy(i)wTx(i))
. (53)

In this paper, as a simple case of the Tikhonov regularizer for linear discriminant

functions, we employed the following regularization terms:

f(w) =







λ
2
wTw + 1

M
(FP + FN), MCE

λ
2
wTw − 2TP

2TP+FP+FN
, F1

(54)

In the case of MCE learning, the gradient and Hessian matrix of the regularized

MFoM objective function f(w) can be represented as follows:

∇wf(w) = λw +XTc, (55)

∇2
w
f(w) = λI+XTDX. (56)
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Here XT = [x(1) x(2) · · · x(M)] is the data matrix and c is a vector with each entry

ci =
αy(i)

M
ℓ(x(i))

(
ℓ(x(i))− 1

)
.

I is the identity matrix and D is a diagonal matrix with

Dii =
α2

M
ℓ(x(i))

(
ℓ(x(i))− 1

)(
2ℓ(x(i))− 1

)
.

In the case of maximizing the F1 measure, the gradient and Hessian matrix of the

regularized MFoM objective function are the following:

∇wf(w) = λw +XTv, (57)

∇2
w
f(w) = λI+XT (KTSK+Q)X. (58)

Here v is a vector with

vi = riαℓ(x
(i))
(
ℓ(x(i))− 1

)
,

and ri is defined as follows:

ri =







2(TP+FP+FN)
(FP+FN+2TP)2

, x(i) ∈ Xpos

−2TP
(FP+FN+2TP)2

, x(i) ∈ Xneg

Both K and Q are diagonal matrices, and S is a symmetric matrix whose elements

are defined in Table 7.

Kii = αℓ(x(i))
(
ℓ(x(i))− 1

)

Qii = riα
2y(i)ℓ(x(i))

(
ℓ(x(i))− 1

)(
2ℓ(x(i))− 1

)

Table 7: Matrix S

Sij x(j) ∈ Xpos x(j) ∈ Xneg

x(i) ∈ Xpos

4(TP+FP+FN)
(FP+FN+2TP)3

2(FP+FN)
(FP+FN+2TP)3

x(i) ∈ Xneg

2(FP+FN)
(FP+FN+2TP)3

−4TP
(FP+FN+2TP)3
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Table 8: Three learning frameworks for binary classification

Algorithm min
w

f(w)

SVM
λ

2
wTw +

1

M

M∑

i=1

(1− y(i)wTx(i))+

rLR
λ

2
wTw +

1

M

M∑

i=1

log
(
1 + exp(−y(i)wTx(i))

)

rMFoM
λ

2
wTw +

1

M

M∑

i=1

1

1 + exp(αy(i)wTx(i))

Linear support vector machine (SVM) [8], regularized logistic regression (rLR)

[66], and regularized maximum figure-of-merit (rMFoM) learning with linear discrim-

inant functions are all binary classifiers. Their objective functions are summarized in

Table 8. Although derived from different motivations, they share some similarities in

the form of their objective functions: summation of an empirical loss function and a

regularization term. Nevertheless, their differences lie in the choice of the loss func-

tions as shown in Figure 8: a hinge loss function for SVM, a logistic loss function

for rLR, and a sigmoid loss function for rMFoM. An advantage of linear SVM and

rLR is that their objective functions are convex function in term of model parame-

ters and will converge to a global minimizer. However, the Hessian matrices of the

rMFoM objective functions are usually indefinite and so their objective functions are

non-convex functions, which means that it can only converge to a local minimum.

However, only the rMFoM criteria are consistent with defining the model training

criteria and evaluation metrics.

For the regularization term in the regularized logistic regression in Table 8, it

can be interpreted as posing a Gaussian prior on the parameters w. As for the linear

SVM, the regularization term is related to its functional margin around the hyperplane

separating the two classes. On the other hand, for rMFoM learning, we don’t have a

probabilistic interpretation on the regularization term. Generally speaking, when a

regularization term is added to the original objective function, it works as a constraint
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Figure 8: Comparison of loss functions.

in the optimization problem and it conveys some kind of prior knowledge about the

target function to be learnt.

3.3.3 Semi-supervised rMFoM Learning

Table 9: Four terms in a contingency table

TP ≈
∑

x(i)∈Xpos

(
1− ℓ+(x

(i);w)
)
+ γ

∑

x(j)∈Xu

z(j)
(
1− ℓ+(x

(j);w)
)

FN ≈
∑

x(i)∈Xpos

ℓ+(x
(i);w) + γ

∑

x(j)∈Xu

z(j)ℓ+(x
(j);w)

FP ≈
∑

x(i)∈Xneg

ℓ−(x
(i);w) + γ

∑

x(j)∈Xu

(1− z(j))ℓ−(x
(j);w)

TN ≈
∑

x(i)∈Xneg

(
1− ℓ−(x

(i);w)
)
+ γ

∑

x(j)∈Xu

(1− z(j))
(
1− ℓ−(x

(j);w)
)

Now we extend the discussion of rMFoM learning to semi-supervised learning

(SSL). In an SSL scenario, the whole training set X is divided into two subsets, Xl

and Xu, where Xl = {(x(i), y(i))}Mi=1 is the original labeled data and Xu = {x(j)}Uj=1,

U ≫ M is the unlabeled data and y(i) ∈ {−1, 1} is the class label. To fully leverage

the abundance of unlabeled data, almost all SSL algorithms make some assumptions

about the underlying data distribution, such as smoothness and manifold assumptions

[13] [108]. Self-training [83] is the most intuitive SSL algorithm. It is an iterative

wrapper learning setup. At first, part or all of the unlabeled data are labeled by the
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current model. Then, the classifier parameters are re-estimated with all the newly

labeled data assuming the labels are correct. This procedure repeats itself until

convergence or some stop criteria are met. Other SSL algorithms include generative

model based SSL methods, semi-supervised or transductive support vector machine

(TSVM) based on a cluster assumption that there is a wide margin in a kernel induced

feature space between unlabeled data from different classes [46], graph-based SSL

algorithms assume that labeled and unlabeled examples are connected by a graph,

where edges represent similarity between examples [108].

For an unlabeled sample, x ∈ Xu, we need to explicitly represent its loss with

respect to the both positive and negative classes. So we use ℓ+(x
(i);w) as the loss

function if x(i) is a positive instance and ℓ−(x
(i);w) if x(i) is a negative instance:

ℓ+(x
(i);w) =

1

1 + exp (αwTx(i))
, and (59)

ℓ−(x
(i);w) =

1

1 + exp (−αwTx(i))
= 1− ℓ

(i)
+ . (60)

For each unlabeled instance x(j) ∈ Xu, we assume there is a missing class label

z(j) ∈ {0, 1} associated with it. Here we use z = [z(1), z(2), · · · , z(U)]T as the missing

labels for all unlabeled instances Xu. With the help of the missing label vector z,

it is straightforward to extend the four terms of a confusion matrix in Table 5 to

incorporate unlabeled data in terms of the two explicit loss functions ℓ+(x
(i);w) and

ℓ−(x
(i);w). The confusion matrix in the semi-supervised learning scenario is shown

in Table 9, where γ is a weight assigned to unlabeled data.

In the case of minimum classification error (MCE) learning, the proposed objective
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function can be represented as follows:

min
w,z

f(w, z) =
λ

2
wTw +

1

M

[ ∑

xi∈Xpos

ℓ
(i)
+ +

∑

xi∈Xneg

ℓ
(i)
−

]

+
γ

U

∑

xj∈Xu

(
z(j)ℓ

(i)
+ + (1− z(j))(1− ℓ

(i)
+ )
)

subject to
1

U

U∑

j=1

z(j) = r and z(j) ∈ {0, 1}. (61)

Here we impose a constraint on the missing label vector z by restricting the ratio of

positive instances in Xu to be a prefixed constant r. Similar constraints have been

proposed in several other SSL algorithms such as transductive support vector machine

(TSVM) [13] [95].

The proposed objective function involves a mixed optimization problem with both

continuous variable w and discrete variable z. This objective function can be opti-

mized with a coordinate descent algorithm [84]. First, given a fixed zt, the optimal

wt can be obtained by optimizing the unconstrained objective function. Secondly,

given a fixed wt, a better label assignment zt+1 could be obtained by optimizing the

constrained objective function with respect to z.

The gradient and Hessian matrix of the objective function f(w; zt) can be evalu-

ated as follows:

∇wf(w; zt) = λw +XTc, (62)

∇2
w
f(w; zt) = λI+XTDX. (63)

Here XT = [x(1) x(2) · · · x(M) x(M+1) · · · x(M+U)] is the data matrix and c is a vector

with

ci =







αy(i)

M
ℓ
(i)
+ (ℓ

(i)
+ − 1), x(i) ∈ Xl

αγ(2z
(i)
t −1)

U
ℓ
(i)
+ (ℓ

(i)
+ − 1), x(i) ∈ Xu

I is the identity matrix, D is a diagonal matrix with

Dii =







α2

M
ℓ
(i)
+ (ℓ

(i)
+ − 1)(2ℓ

(i)
+ − 1), x(i) ∈ Xl

α2γ(2z
(i)
t −1)

U
ℓ
(i)
+ (ℓ

(i)
+ − 1)(2ℓ

(i)
+ − 1), x(i) ∈ Xu
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With a fixed wt, the optimal label assignment vector zt+1can be obtained by the

following 0-1 integer programming problem.

min
z

f(z;wt) =
∑

xj∈Xu

z(j)(2ℓ
(i)
+ − 1)

subject to
1

U

U∑

j=1

z(j) = r and z(j) ∈ {0, 1}. (64)

Although integer programming problems are often difficult, the solution to this

problem is quite straightforward. First, all the loss value of unlabeled data {ℓ(j)+ }
U
j=1

are sorted in a descent order. Then assign z
(j)
t+1 = 1 for these instances whose loss

value ℓ
(j)
+ is one of the top ur smallest in the sorted list. For all the other instances,

their z
(j)
t+1 will be 0.

This procedure provides us with a theoretical justification of the widely-used self-

training algorithm in semi-supervised learning [13]. It coincides with our intuition

for self-training. Actually, this procedure can be regarded as an extension of the EM

algorithm [22] to discriminant function based semi-supervised learning.

An alternative strategy to the abovementioned integer programming problem is

to use deterministic annealing [90] [95], which has been successfully applied to many

combinatorial optimization problems, such as graph partitioning and clustering [90].

Deterministic annealing is a commonly used relaxation technique that can be used

to relax discrete variables in combinatorial optimization problems to continuous vari-

ables and the original objective function is augmented by an entropy term H(p)as
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follows:

min
w,p

f(w,p) =
λ

2
wTw +

1

M

[ ∑

xi∈Xpos

ℓ
(i)
+ +

∑

xi∈Xneg

ℓ
(i)
−

]

+
γ

U

∑

xj∈Xu

(

p(j)ℓ
(i)
+ + (1− p(j))(1− ℓ

(i)
+ )
)

+
T

U

∑

xj∈Xu

(

p(j) log (p(j)) + (1− p(j)) log (1− p(j))
)

subject to
1

U

U∑

j=1

p(j) = r and p(j) ∈ [0, 1]. (65)

Here we replace the discrete variable z with a continuous variable p, where p =

[p(1), p(2), · · · , p(U)]T and can be regarded as the probability of being positive for each

instance of Xu and p(j) ∈ [0, 1]. Here T is the temperature that evolves according

to a pre-specified annealing scheme. When T approach 0, the augmented objective

function will become the original objective function.

When the label assignment vector pt is given, the optimization with respect to w

is the same as the procedure described in Section 3.3.3 by replacing z
(j)
t by p

(j)
t .

With a fixed wt, the optimal label assignment vector pt+1can be obtained by

optimizing the following constrained problem:

min
p

f(p;wt) =
γ

U

∑

xj∈Xu

p(j)(2ℓ
(i)
+ − 1)

+
T

U

∑

xj∈Xu

(

p(j) log (p(j)) + (1− p(j)) log (1− p(j))
)

subject to
1

U

U∑

j=1

p(j) = r and p(j) ∈ [0, 1]. (66)

By introducing a Lagrange multiplier ν for the equality constraint in Eq. 66, pt+1

can be solved in a closed-form. In order to compute pt+1 we need to know the value

of the multiplier ν by solving a scalar nonlinear equation as shown in Eq. (68) in

the following, which can be solved using a combination of interval bisection, linear

interpolation, and inverse quadratic interpolation [84]. Figure 9 shows an example
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of the histogram of ℓ
(i)
+ for some unlabeled data and the corresponding nonlinear

equation at two different annealing temperature T .

p
(j)
t+1 =

1

1 + exp
(γ(2ℓ

(j)
+ −1)−ν

T

)
, (67)

1

U

∑

xj∈Xu

1

1 + exp
(γ(2ℓ

(j)
+ −1)−ν

T

)
= r. (68)
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Figure 9: Nonlinear scalar equation for ν.

In the case of maximizing the F1 measure, the proposed objective function can be

represented as follows:

min
w,p

f(w,p) =
λ

2
wTw−

2TP

2TP + FP + FN

+
T

U

∑

xj∈Xu

(

p(j) log (p(j)) + (1− p(j)) log (1− p(j))
)

subject to
1

U

U∑

j=1

p(j) = r and p(j) ∈ [0, 1]. (69)

Similarly, this objective function can be optimized with a coordinate descent algo-

rithm.

The gradient and Hessian matrix of the objective function are evaluated as follows:

∇wf(w;pt) = λw +XTv, (70)

∇2
w
f(w;pt) = λI+XT (KTSK +Q)X. (71)
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Here v is a vector with

vi = riαℓ
(i)
+ (ℓ

(i)
+ − 1),

and ri is defined as follows:

ri =







2(TP+FP+FN)
(FP+FN+2TP)2

, x(i) ∈ Xpos

−2TP
(FP+FN+2TP)2

, x(i) ∈ Xneg

γ
2(TP+FP+FN)p

(j)
t −2TP(1−p

(j)
t )

(FP+FN+2TP)2
, x(i) ∈ Xu

Here S is a symmetric matrix whose last column is defined in Table 10. The first two

columns are the same as Table 7. Both K and Q are diagonal matrices defined as

following:

Kii = αℓ
(i)
+ (ℓ

(i)
+ − 1) and

Qii = riα
2ℓ

(i)
+ (ℓ

(i)
+ − 1)(2ℓ

(i)
+ − 1).

Table 10: Last column of matrix S

Sij x(j) ∈ Xu

x(i) ∈ Xpos γ
4(TP+FP+FN)p

(j)
t +2(FP+FN)(1−p

(j)
t )

(FP+FN+2TP)3

x(i) ∈ Xneg γ
2(FP+FN)p

(j)
t −4TP(1−p

(j)
t )

(FP+FN+2TP)3

x(i) ∈ Xu γ2 4(TP+FP+FN)p
(i)
t p

(j)
t +2(FP+FN)p

(i)
t (1−p

(j)
t )+2(FP+FN)p

(j)
t (1−p

(i)
t )−4TP(1−p

(i)
t )(1−p

(j)
t )

(FP+FN+2TP)3

With a fixed wt, the optimal label assignment vector pt+1can be obtained by

optimizing the following constrained problem:

min
p

f(p;wt) = −
2TP

2TP + FP + FN

+
T

U

∑

xj∈Xu

(

p(j) log (p(j)) + (1− p(j)) log (1− p(j))
)

subject to
1

U

U∑

j=1

p(j) = r and p(j) ∈ [0, 1]. (72)
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Similarly, we can get the closed-form solution for this constrained optimization

problem by Lagrange multipliers.

p
(j)
t+1 =

1

1 + exp
(
γUr(j)−ν

T

) , (73)

1

U

∑

xj∈Xu

1

1 + exp
(
γUr(j)−ν

T

) = r. (74)

where r(j) is defined as following:

r(j) =
2(FP + FN)(1− ℓ

(j)
+ ) + 2TP(1− 2ℓ

(j)
+ )

(FP + FN + 2TP)2
.
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Figure 10: Nonlinear scalar equation for ν.

Figure 10 shows an example of the histogram of ℓ
(i)
+ for some unlabeled data and

the corresponding nonlinear equation at two different annealing temperature T .

3.3.4 Implementation Issues

To get the rMFoM criteria working properly and effectively in practical applications,

there are several implementation issues that need to be accounted for carefully: 1)

initialization of model parameters; 2) setting of nuisance parameters and 3) selection

of optimization methods.

As mentioned in previous sections, the objective functions of rMFoM criteria are

usually non-convex functions. So there is no guarantee of convergency to a global

optimizer and the obtained local optimizer depends on the initial value of model
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parameters. In the case of linear discriminant functions, there are three ways to

initialize discriminant function parameters w.

1. Random initialization: Random initialization is a simple initialization strat-

egy and it works well in some practical applications.

2. Initialization by Perceptron algorithm: In this paper, the parameters of

linear discriminant functions are initialized by Perceptron algorithm [23].

3. Initialization by surrogate convex criteria: Sometimes, it may be neces-

sary to initialize the parameters of linear discriminant functions by optimizing a

surrogate convex criterion. For instance, the model parameters can be obtained

by optimizing the regularized logistic regression criterion, which is a convex

function in terms of model parameters.

There are several parameters which have impacts on the rMFoM learning proce-

dure in both supervised and semi-supervised learning scenarios.

As shown in Figure 8, α controls the slope of the sigmoid loss function. It’s clear

that when α = 20, the sigmoid loss function is a very good approximation of the ideal

0-1 loss function used in binary classification. α also controls the number of instances

involved in the model parameter update. When α increases, this number decreases.

In this paper, α is set to 20 for all experiments, which has the same value as in [33]

to make a fair comparison.

λ is a real-value regularization parameter in the rMFoM criteria. By varying λ,

we can change the strength of the regularization term and get a regularization path of

evaluation metrics at different λ. λ is introduced to improve the generalization capa-

bility within the Tikhonov regularization framework. From the perspective of numeri-

cal computation,λ is used to improve numerical stability, which is similar to the damp-

ing coefficient used in damped Newton method and Levenberg-Marquadt method to
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overcome the singularity problem by adding a diagonal correction to the Hessian ma-

trix [84]. If labeled data are sufficient, λ can be obtained by cross-validation. It’s

obvious that λ depends on the dimension of the feature vector. In our experiments,

we found that λ ∈ [10−7, 10−3] is a proper choice for text categorization with feature

vector dimension larger than ten thousand.

γ is the parameter used in semi-supervised learning as a weighting factor for

unlabeled instances. By varying the value of γ, we can control the contribution of

unlabeled data to the final decision boundary. In this paper, γ is set to 1 for all

experiments.

T is used in semi-supervised learning to control the deterministic annealing pro-

cedure. T is gradually decreased by multiplying a damping factor at each iteration

[90] [95].

The proposed objective functions can be optimized efficiently. Batch gradient

descent, conjugate gradient descent or stochastic gradient descent (a.k.a. general-

ized probabilistic descent [50]) can be applied to this problem. With the help of a

proper line search scheme such as backtracking and Wolfe conditions [84], these first

order optimization algorithms could converge to a local optimum. To speed up the

convergence in large scale problems, a better choice is the quasi-Newton methods,

e.g., limited-memory BFGS (L-BFGS) method [84], which uses the gradient vectors

of previous iterations to approximate the Hessian matrix used in the current iteration

and can yield superlinear convergence. In addition, the Hessian matrix doesn’t need

to be stored explicitly.

Trust region methods [16] [84] is another choice for many large scale optimization

problems. It uses a local quadratic model to approximate the original objective

function in the neighborhood of current parameters wt as shown in following:

min
‖w‖2≤∆t

mt(w) = f(wt) +∇f(wt)
Tw +

1

2
wTBtw, (75)

where ∆t is the radius of trust region and wt+1 will be found by minimizing the
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model function mt(w) within trust region. Here Bt could be the Hessian matrix, i.e.,

Bt = ∇2f(wt) or BFGS approximated Hessian matrix. An advantage of trust region

method is that it can work with non-symmetric positive definite Hessian matrices.

A Newton trust region strategy allows the use of complete Hessian information even

in regions where the Hessian has negative curvature. The trust region methods have

a smooth transition from the steepest descent direction to the Newton direction. In

the trust-region Newton Steihaug method [16], approximate conjugate gradient (CG)

is used [16]. In each CG step, only a Hessian-vector multiplication is needed, which

means that we don’t need to compute and store the Hessian matrix explicitly. So we

can leverage the sparsity pattern of the Hessian matrix efficiently.

3.3.5 Experimental Study for Supervised Learning

Several experiments were conducted on a large scale text categorization dataset to

demonstrate the effectiveness of the regularized MFoM learning criteria for supervised

learning tasks. The same dataset was used in the original MFoM learning paper [33].

In TC experiments, a document is usually represented by a vector in a high-

dimension vector space using a bag-of-words (BoW) model (or uni-gram model),

where each dimension of the vector corresponds to an element of a large lexicon.

An advantage of this representation is that variable length of documents can be

converted into fixed length vectors. For many real-world TC tasks, the size of the

lexicon is usually greater than ten thousand. In this paper, the ModApte version of

the Reuters-21578 corpus is used to evalute the supervised rMFoM criteria, which

is a standard benchmark dataset for TC evaluation. To increase the discrimination

power of such representation, some preprocessing and normalization have been con-

ducted as described in [33] [32]. The size of our lexicon is 10,118 and there are 90

categories preserved in the corpus after preprocessing. The training set consists of

7,700 documents and testing set has 3,019 documents.
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To reduce the dimensionality of each document vector, latent semantic analysis

(LSA) is usually used to project the original vectors into a compact latent semantic

space. The original MFoM paper showed that using a 1,613 dimensional LSA vector

can achieve the same performance as the original 10,118 dimensional vector [33]. A

drawback of such a compact representation is that the sparsity of the original term-

document matrix is lost because the LSA term-document matrix is usually a dense

matrix. For instance, the original term-document matrix (10,118 * 7,770) of training

set has only 381,249 non-zero elements, i.e., 49 non-zero elements per document.

After SVD factorization, the new term-document matrix (1,613 * 7,770) in the latent

semantic space is about 30 times denser with 12,533,010 non-zero elements. It’s more

computational and memory consuming because it require more memory space and

more float computation. So in this paper, we are working in the original vector space.

The performance of TC is evaluated in terms of precision, recall and F1 measure

for each category as defined in Table 6. The average performance over all 90 categories

is indicated by the macro-average F1 (F1M) and micro-average F1 (F1µ) defined as

following:

F1M =
2
∑K

i=1Ri

∑K
i=1 Pi

K(
∑K

i=1Ri +
∑K

i=1 Pi)
(76)

F1µ =
2
∑K

i=1TPi

2
∑K

i=1TPi +
∑K

i=1 FPi +
∑K

i=1 FNi

(77)

So in this section, we use the rMFoM criteria to directly maximize F1 measure on the

training set as reported in [33].

Previous studies of MFoM learning algorithms for text categorization on Reuters-

21578 obtained slightly better result than SVM classifiers [33]. In our experiments,

we compare the original MFoM and the regularized MFoM on Reuters-21578 to in-

vestigate the importance of regularization.

Table 11 summarizes the results for top-10 topics that have more than 180 positive

training samples for each topic. For the top-10 topics, regularized MFoM gives much
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Table 11: Performance comparison for top-10 topics.

Category MFoM rMFoM
Earn 0.979 0.987
Acq 0.961 0.967

Money-fx 0.769 0.836
Grain 0.931 0.949
Crude 0.872 0.904
Trade 0.746 0.808
Interest 0.769 0.802
Wheat 0.832 0.892
Ship 0.842 0.884
Corn 0.850 0.867

Micro-avg(all 90) 0.869 0.887
Macro-avg(all 90) 0.531 0.561

better results than the original MFoM criteria with linear classifiers. The performance

improvement is statistically significant and the p-value of the Wilcox paired signed

rank test is 0.002. We can conclude that regularization is very effective for topics

having larger number of positive samples.

As discussed in previous sections, λ has great importance on system performance.

We investigated the system performance with different λ for the topic ”earn” in

Reuters-21578 dataset. The right part of Figure 11 shows that w decreases when λ

increases. The left part shows the F1 measure on both the training and test set at

different λ. It shows that a proper selection of regularization terms will improve the

generalization capability. The λ will also improve the stability of numerical compu-

tation.

We now investigate some properties of rMFoM criteria by looking into the class

conditional distributions p(wTx|y) obtained by different criteria as shown in Figure

12. It is clear that both MFoM and rMFoM could improve the separation between

positive and negative classes over the original random initialized models. The orig-

inal MFoM learning tends to have larger values for model parameters so that both

distributions have longer support and tails. The regularized MFoM classifiers have a
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Figure 11: Regularization path in rMFoM learning.

more compact distribution while keeping good separation.
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Figure 12: Class conditional probability density of wTx.

3.3.6 Experimental Study for Semi-supervised Learning

We also conducted text categorization experiments to demonstrate the effectiveness

of rMFoM on semi-supervised learning.

For semi-supervised rMFoM learning, two widely used datasets aut-avn and real-

sim are employed to evaluate the proposed semi-supervised classification algorithms

[95]. These two datasets come from a collection of UseNet articles from four discussion

groups, for simulated auto racing, simulated aviation, real autos, and real aviation.

The basic information about these two datasets are listed in Table 12, where the
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dimension of vectors, number of training and testing instances, and the ratio of pos-

itive instances in the whole dataset are listed. To get a reliable evaluation, these two

datasets are randomly split into 10-fold training data (both labeled and unlabeled)

and test sets. Because the data from positive and negative classes are fairly balanced,

we use the rMFoM criteria to directly optimize the classification error on the training

data as in some earlier work [95] [13].

Table 12: Two semi-supervised learning datasets

Dataset dim. train (l+u) test r
aut-avn 20707 35588 35587 0.65
real-sim 20958 36155 36154 0.31

We first investigate the effectiveness of rMFoM criteria for semi-supervised learn-

ing tasks.
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Figure 13: Test error rate of semi-supervised rMFoM learning on two datasets.

Figure 13 shows the boxplot of the test error rate of semi-supervised rMFoM

learning as a function of the number of labeled instances on two datasets, which

clearly shows the median and variance of test error rate at each setting. It’s obvious

that with additional labeled data become available, the system performance will be

improved. However, when the proportion of labeled data reach some ratios, e.g. 5%,

the system performance tends to be saturated. It means that for some real-world

applications, it’s possible to label only a small part of training data while achieving

very good performance.
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Table 13: Comparison with supervised learning.

aut-avn l=45 89 178 356 712 1424
SVM 31.8 24.0 15.6 10.3 7.6 5.8

rMFoM 5.9 5.6 5.5 5.2 4.8 4.3

real-sim l=46 91 181 362 724 1447
SVM 28.7 24.9 18.2 12.8 9.8 7.5

rMFoM 14.6 13.7 11.5 9.2 7.5 6.4

In Table 13, we compare the semi-supervised rMFoM learning with SVM that

only use the labeled instances for training. It is clear that with rMFoM criteria, the

unlabeled data can improve the system performance significantly.
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Figure 14: Class conditional probability density of wTx.

In Figure 14, we demonstrate the class conditional probability density of the

misclassification measure in semi-supervised learning. In the beginning, wTx for

positive class, negative class and unlabeled data overlapped each other. After the

rMFoM learning, positive and negative instances are well separated. Meanwhile,

unlabeled training data demonstrate a clear two-modal distribution which correspond

to positive and negative classes. And it explains why unlabeled data will help to

improve system performance in semi-supervised learning tasks.
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3.3.7 Discussions

We present a regularized maximum figure-of-merit (rMFoM) approach for supervised

and semi-supervised learning, and demonstrate the effectiveness of the rMFoM cri-

teria and the importance of regularization by several large-scale text categorization

experiments.

The regularized MFoM criteria have all the advantages of the original MFoM

learning criteria: (1) explicitly optimize the metrics of interest to keep the consis-

tency between model training and performance evaluation. It can be used for any

discriminant function, including both generative models and discriminative models;

(2) The performance measures obtained in the training stage can also be used to

predict the performance on a similar testing set. This is highly beneficial when it is

expensive to have a separate evaluation set; (3) It is robust and still effective when

only a small number of positive instances are available. It is also as insensitive to the

training data variation and unseen testing conditions.

By reformulating the MFoM learning criteria in the Tikhonov regularization frame-

work, the rMFoM criteria seeks to improve the generalization capability of any clas-

sifiers based on discriminant functions.

Another important novelty of this study is that the rMFoM learning criteria is

successfully extended to more general semi-supervised learning scenarios. It provides

us a theoretical justification on the widely used self-training algorithm.

The proposed rMFoM learning approach with LDF has very good scalability. As

shown in our experiments on large scale text categorization, it can handle datasets

with huge number of instances and feature dimensions. The optimization techniques

discussed in this paper have less memory and computational demand.

We conducted comprehensive experimental studies of rMFoM criteria on several

large scale text categorization tasks. We compared the MFoM-learned classifiers with

the binary tree classifiers learned by MFoM criteria, our results showed that the
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F1-based rMFoM is able to achieve high performance by introducing a properly set

regularization term.
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CHAPTER IV

A DETECTION-BASED ASR SYSTEM

The state-of-the-art hidden Markov model (HMM)-based automatic speech recogni-

tion (ASR) systems [87] are generally formulated as follows:

Ŵ = argmax
Wn

1

p(OT
1 |W

n
1 )P (W n

1 )

= argmax
Wn

1




∑

ST
1

p(OT
1 |S

T
1 )p(S

T
1 |W

n
1 )



P (W n
1 ), (78)

where W n
1 is a sequence of n words, OT

1 is a sequence of T acoustic observations,

ST
1 is any state sequence of length T , P (W n

1 ) is the probability of a particular word

sequence W n
1 obtained from a language model (LM), and p(OT

1 |W
n
1 ) is the acoustic

model (AM) representing the probability of an observation sequence OT
1 given the

word sequence W n
1 . This is the well-known maximum a posterior (MAP) channel

decoding framework for ASR aiming at finding the word sequence Ŵ with maximum

likelihood for a given observation sequence OT
1 .

All the acoustic knowledge (i.e., state probability distributions), phonetic knowl-

edge (i.e., context dependency and phonological rules), lexical knowledge (i.e., pro-

nunciation dictionary), linguistic knowledge (i.e., grammar and language models),

and practical constraints are integrated into a huge decoding network for recognition

[44], which is a typical expectation-driven top-down processing approach.

The HMM-based ASR systems have witnessed dramatic progress and great suc-

cess in the last several decades. More improvements have been obtained in the field

of speech and language modeling due to the extensive use of statistical learning tech-

niques and more speech and language data collections. One possible reason why

HMMs are used in speech recognition is that a speech signal could be viewed as a
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short-time stationary signal. Speech could thus be modeled with a Markov model.

Another reason why HMMs are so popular is because their parameters can be es-

timated automatically and efficiently, and HMMs are simple and computationally

feasible in practical applications.

However, ASR systems performs much worse than human speech recognition

(HSR) in most situations. The variability in speakers, acoustic channels, and en-

vironment noises will greatly degrade the ASR performance, because it is impossible

or very expensive to collect sufficient data to cover all the uncertainties in real-world

situations. To partially compensate the acoustic and linguistic mismatch, some at-

tempts were made to find robust distinctive features which are invariant to speak-

ers and speaking environments [67] [49]. In addition, some adaptation techniques

have been developed. The basic idea is to compensate for the mismatch between

training and test conditions by transforming the signal, feature vectors, or model

parameters based on adaptation data that are collected for task-specific applications.

For instance, acoustic model adaptation using maximum likelihood linear regression

(MLLR) [61], maximum a posterior (MAP) criterion [35]), and language model adap-

tation with maximum entropy (ME) approach [91] have been widely used.

In some applications, such as broadcast news transcription or human-machine

dialog systems, adaptation techniques are still insufficient. There are many out of vo-

cabulary (OOV) words, out of grammar sentences, and many other unexpected audio

events. For instance, in human-machine spoken dialog systems, all the expected and

acceptable sentences are represented by a deterministic finite state grammar (FSG).

Nevertheless, a wide sentence variation including extraneous words, hesitations, repe-

titions, disfluency, and many other unexpected expressions were observed in practical

scenarios [51].

Some pioneering studies on a key-phrase detection-based spoken dialog system

have been proposed [51], where a group of task-specific key-phrases are first detected
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and then the verifiers at the phrase and sentence levels are used for decision making.

4.1 Overview of Detection-based ASR Systems

Inspired by the studies of cognitive psychology and linguistics, a detection-based

framework has been proposed as an alternative framework for speech recognition

recently [59] [58]. In cognitive psychology, human speech recognition could be a mix-

ture of bottom-up and top-down processing. In linguistics, it is features and not

phonemes that are viewed as the fundamental units of speech, where phonemes are

coded in terms of distinctive features. The brain recognizes sounds by doing a dis-

tinctive feature analysis from the information going to the brain. These features are

somewhat insensitive to speaker, noise, background, and reverberation, i.e., they are

robust and reliable for auditory perception and speech recognition. Therefore, some

research efforts have been focused on the detection of low level distinctive attributes

and knowledge integration schemes in detection-based speech recognition systems.

The detection-based framework approaches ASR from a more linguistic perspective.

Speech is modeled as connected sequences of interacting features rather than individ-

ual phoneme segments. One key feature of the detection-based approach is that the

outputs of the detectors do not have to be synchronized in time and therefore the sys-

tem is flexible enough to allow a direct integration of both short-term detectors, e.g.,

for detection of voice onset time (VOT), and long-term detectors, e.g., for detection

of pitch, syllables, and particular word sequences.

What we intend to do is to simulate the human auditory perception to some extent.

We want to incorporate some low level acoustic-phonetic features into the standard

HMM-based ASR system to bridge the gap between ASR and HSR. Meanwhile, we

could improve its robustness and accuracy.

Some knowledge supplemental systems have been developed, where the evidence

from the low level attributes (such as the manner and place attributes) was combined
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Figure 15: Bottom-up knowledge hierarchy for ASR.

with the N -best list [63] or the lattice [96] generated by the conventional HMM based

ASR system. However, these knowledge supplemental techniques are still insufficient

to incorporate all the knowledge sources into a single search network as required by

the maximum a posterior (MAP) decoding paradigm. So in this study, a bottom-

up detection-based framework is proposed to allow more flexibilities in knowledge

integration.

Our detection-based ASR system has several components: (1) individual detector

design; (2) fusion algorithms in the attribute detection hierarchy; (3) integration

with the standard HMM-based system. The key components of our system are a

collection of articulatory feature detectors and most of these detectors are language

independent.
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Figure 16: Energy-based landmark detection (from [67]).

4.2 Landmark Detection

Landmarks are times in an utterance when the acoustic correlation of distinctive

features are most salient. In a pure knowledge-based speech recognition system,

landmarks are elementary components. In this study, we follow the exact signal

processing methods described in [67] for landmark detection. As shown in Figure

16, energy contours in 6 frequency bands are computed first and then pivot points

are detected. Based on phonetic and phonological knowledge, some of those pivots

are verified and classified as one of 4 landmarks investigated in our study, which are

summarized as follows.

• G(lottis): [+g] means turning on of glottal vibration and [-g] means turning off.
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Figure 17: Landmark detection example.

• S(onorant): [+s] means end of sonorant and [-s] means begin of sonorant.

• B(urst): [+b] means burst start and [-b] means burst end.

• V landmarks are missed “g” landmarks but detected based on higher band rate

of rise (ROR) peaks.

Figure 17 shows an example of the detected landmarks for a speech segment.

Some intuitive interpretation about these landmarks are as follows: a [-s] landmark

shows the start of a sonorant (nasal + semi-vowel) sound and the region between a

[+g] and [-g] landmark is a voiced sound. [+b] indicates the start of a burst. The

performance of landmark detection on a variety of experiment conditions and datasets

was described and summarized in [67].

4.3 Speech Attribute Detection

As stated above, from a linguistic perspective, it is distinctive features not phonemes

that are the basic units of speech recognition. In this study, these distinctive features

will be part of our speech attribute collection.

The following are some of the speech attributes that will help improve speech

recognition: (1) manner of production (oral, nasal, fricative, or involving a partial

blockage of the airflow); (2) place of articulation (dental, lip, etc.); (3) voicing: the
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larynx vibrates for a voiced phoneme and does not for a voiceless phoneme. (4)

prosodic features of speech signals include duration, pitch, stress, and loudness.

4.3.1 Manner of Production

In linguistics (articulatory phonetics), manner of articulation describes how the tongue,

lips, jaw, and other speech organs that are involved in making a sound make contact.

This concept is usually only used for the production of consonants. In English, con-

sonants that have the same place of articulation are said to be homorganic. For any

place of articulation, there may be several manners, and therefore several homorganic

consonants. Usually, the following manners of articulation are studied for English

sounds.

Stop Also named plosive, it is a complete occlusion of both the oral and nasal cavities

of the vocal tract, and therefore no air flow occurs. Stop sounds in English

consists of /p/, /t/, /k/ (unvoiced) and /b/, /d/, /g/ (voiced).

Nasal There is complete occlusion of the oral cavity, and instead the air passes

through the nose. The shape and position of the tongue determine the resonant

cavity that gives different nasal stops their characteristic sounds. Nasal sounds

in English consists of /m/, /n/ and /ng/.

Fricative There is continuous frication (turbulent and noisy airflow) at the place of

articulation. Fricative sounds in English consists of /f/, /s/ (unvoiced) and /v/,

/z/ (voiced), etc.

Affricate It begins like a stop sound, but it releases into a fricative rather than

having a separate release of its own. Affricate sounds in English consists of

/ch/ and /j/.

Glide It pronounced like a vowel but with the tongue closer to the roof of the mouth,

so that there is a little obstruction and slight turbulence. In English, /w/ is the
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semivowel equivalent of the vowel /u/, and /y/ is the semivowel equivalent of

the vowel /i/ in this usage. /r/ and /l/ are also glides.

4.3.2 Place of Articulation

In articulatory phonetics, the place of articulation of a consonant is the point of

contact, where an obstruction occurs in the vocal tract between an active (moving)

articulator (typically some part of the tongue) and a passive (stationary) articulator

(typically some part of the roof of the mouth). Along with the manner of articulation

and phonation, this gives the consonant its distinctive sound.

A place of articulation is defined as both the active and passive articulators.

For instance, the active lower lip may contact either a passive upper lip (like [m])

or the upper teeth (like [f]). There are five basic active articulators: the lip (”labial

consonants”), the flexible front of the tongue (”coronal consonants”), the middle/back

of the tongue (”dorsal consonants”), the root of the tongue together with the epiglottis

(”radical consonants”), and the larynx (”laryngeal consonants”). These articulators

can act independently of each other, and two or more may work together in what is

called coarticulation.

The passive articulation, on the other hand, is a continuum without many clear-

cut boundaries. Some places of articulation such as palatal and velar merge into one

another, and a consonant may be pronounced somewhere between the named places.

4.3.3 Segment-based Attribute Detection using HMMs

The manner and place of articulation can be detected by either segment-based or

frame-based data-driven methods. For segment-based attribute detection, each man-

ner and place of articulation is modeled by two HMMs: one target model (e.g., vowel)

and one imposter model (e.g. non-vowel) or a collection of competing cohort models.

It is essentially a hypothesis verification problem and log-likelihood ratio (LLR) or

generalized log-likelihood ratio (GLLR) is used as the detection statistics [70].
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Figure 18: Attribute verification for VOWEL on WSJ.

Performance evaluation experiments have been conducted for 15 acoustic-phonetic

attributes on both the WSJ nov92 evaluation dataset (330 utterances) and the RT03

dataset (468 segments). All the utterances were aligned using a set of cross-word tri-

phone HMMs and the segment boundary information is obtained from the alignment.

All the target and imposter HMMs are trained on the TIMIT dataset to simulate

the acoustic mismatch conditions. On the WSJ dataset, there are 23,593 segments

being evaluated with respect to 15 pairs of models, and on the RT03 dataset, there

are 95,449 segments obtained from alignment.

From our experiments, the detection performance is good in terms of ROC and

equal error rate (EER) for some attributes, such as vowel shown in Figure 18 and

Figure 19, while the detection performance for some attributes is poor, such as labial

shown in Figure 20 and Figure 21. We conclude that the place of articulation is much

harder to detect than the manner of articulation. It would be better to consider the

context of each attribute for the place of articulation.

4.3.4 Frame-wise Attribute Detection using ANNs and SVMs

Two frame-wise attribute detection approaches were investigated in our study without

the phoneme boundary information: artificial neural networks (ANNs) and support

vector machines (SVMs).

A multiple layer perceptron (MLP) neural network is trained for each manner
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Figure 19: Attribute verification for VOWEL on RT03.
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Figure 20: Attribute verification for LABIAL on WSJ.
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Figure 21: Attribute verification for LABIAL on RT03.
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and place of articulation and its output can be interpreted as an approximation of

posterior probability or confidence measure of detection. A MLP is trained on a

set of 3-hour broadcast news speech (2.5-hour for training and 0.5-hour for cross-

validation). The raw feature used as input of MLP is the TRAP feature, which is

the temporal trajectory of log energy from 31 consecutive frames (± 15 frames of a

central frame) for each critical band. Band-wise mean and variance normalization

was also conducted. Then discrete cosine transformation (DCT) is applied to each

band to perform dimension reduction and de-correlation. Only the first 10 DCT

coefficients and the log-energy of each band are preserved in our experiments. There

are 23 critical bands used for 16k Hz speech data. TRAP features were extracted

using the trapper software1.

The topology of the MLP has 253 input units, 800 hidden units and 2 output

units that corresponds to target attribute and its competing model. The MLP was

trained using the ICSI’s QuickNet toolkit2. For SVM based detectors, both PLP and

FMPE features were investigated in our experiments. Table 14 shows a comparative

study of frame-wise ANN and SVM attribute detectors.

As expected, the detection results are quite noisy compared to segment-based

detectors. We also conclude that place of articulation is much harder to detect than

manner of articulation, which is consistent with the segment-based detectors.

4.4 Construction of Knowledge Hierarchy

After the lower level speech attributes have been detected, we could construct the

task-specific knowledge hierarchy level by level. In chapter 3, we have described

several approaches for information integration. In this section, we will demonstrate

how to combine manner and place of articulation to phoneme level through a phoneme

classification experiment.

1http://speech.fit.vutbr.cz/files/software/trapper.html
2http://www.icsi.berkeley.edu/Speech/qn.html
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Table 14: Comparison of frame-wise ANN and SVM detectors.

ANNs SVMs
Attribute Train CV Test PLP FMPE
back vowel 88.64% 86.68% 86.68% 85.23% 87.67%
continuant 86.15% 82.77% 82.50% 75.76% 83.00%
coronal 85.94% 82.29% 82.70% 76.25% 84.11%
fricative 92.07% 88.86% 89.04% 85.84% 87.70%

high vowel 88.86% 86.46% 86.24% 84.90% 88.86%
labial 90.47% 88.26% 88.03% 86.11% 89.04%

low vowel 91.86% 89.21% 89.38% 90.37% 92.41%
nasal 92.96% 90.76% 90.63% 88.69% 91.35%

retroflex 94.74% 93.15% 93.07% 93.95% 94.86%
round 90.92% 88.19% 88.48% 86.67% 89.89%

semivowel 91.39% 89.75% 89.54% 87.44% 90.34%
sonorant 87.42% 84.61% 83.81% 81.33% 85.02%
stop 89.11% 86.40% 86.56% 81.56% 84.68%
vowel 86.39% 83.68% 83.35% 79.10% 85.13%

The maximum entropy (MaxEnt) model was used as the fusion strategy. Input to

the MaxEnt model is the detected landmarks and articulatory attributes, which were

represented by some feature functions fk(x, y) as follows:

f/n/,nasal(x, y) =







1, if y = /n/ and nasal(x) = true

0, otherwise

A feature function is nonzero only if the label y match the label of the observation,

which is used to indicate the existence or nonexistence of a particular attribute,

landmark or phone class in the observed speech segment. For example, the above

feature function indicates that a particular phone label (/n/) is dependent on the

existence or nonexistence of nasality in the observed data in a segment. We create a

feature function for each label/attribute pair. In addition, a bias feature function is

nonzero if the label that they are defined for occurs.

Phoneme classification experiments were conducted on the TIMIT dataset and we

follow the same experiment settings as described in [37]. The output of each ANN

detector was discretized and then employed in feature functions. Table 15 shows the
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Figure 22: A single word detector.

phoneme classification results of three systems. We conclude that MaxEnt fusion

could achieve comparable or slightly better results than HMM-based system using

MFCC features, while it is worse than the results using hidden conditional random

field (HCRF) [37].

Table 15: Phoneme classification error rate.

MaxEnt HMM(MFCC+ML) HCRF (L-BFGS)
27.3% 28.1% 21.7%

4.5 Information Integration by Hard Decision

Instead of using the low level attributes to construct a knowledge hierarchy, we can

incorporate these information into either the word-level detectors by hard decision or

the state-of-the-art large vocabulary continuous speech recognition (LVCSR) system

by soft decision.

This section demonstrates an implementation of a single word detector and digits

recognition. The system consists of three parts: (1) word detector design; (2) knowl-

edge guided word hypotheses verification and false alarm pruning; (3) combining word

hypotheses into word strings. The system is realized for connected digit recognition

task and selected function words and content words recognition on a LVCSR task.

Figure 22 is a prototype of a detection-based digit recognition system.

In a detection-based ASR framework, each lexical item in the vocabulary has a

separate detector. In this implementation, HMM modeling techniques are used for

single word detector design. One of the crucial issues is to choose an appropriate
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Figure 23: Word candidates from 11 detectors.

grammar network [74] [71].

Figure 22 shows the grammar network used in this study. For each target word,

a collection of filler (or cohort) models and a silence model will compete with it.

According to the basic requirement of candidate detection, fewer misses are expected.

For each target word, we can choose several competing words as its cohorts. More

generally, a phone-loop network is used as the filler model to absorb all the other

events except for the target word. Using this network, the target word can be detected

with a very high detection probability.

Figure 23 shows an example of the output of 11 digit detectors. The first and

second panels are the waveform of the test utterance 31o2 and its corresponding

spectrogram, respectively. The following 11 panels are the detector outputs, with

the level on the y-axis for each panel indicating a confidence measure for detecting

these words. For example, the bottom panel has three segments above the x-axis. It

means that the “oh” detector tells us these segments are digit “oh.” Actually, only

the second segment is really a digit “oh.” The first and third ones are false alarms.
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Figure 24: Knowledge sources for detected words.

Figure 24 shows the detected knowledge sources using phoneme detectors, land-

mark detectors, and word detectors for a LVCSR task [71]. The top-most panel is

the recognized phone sequence using an ANN-based phone recognizer. The second

sequence is landmarks, as described in [67]. The speech segment between the two

arrows is a hypothesized segment for the word “company.” The vertical lines indicate

the location of each landmark. For example, a [-s] landmark shows the start of a

nasal sound. The region between a [+g] and [-g] landmark is a voiced sound. For

this voiced region, we can further analyze the formant transition pattern. A similar

procedure can be applied to the voiceless region indicated by [-g] and [+g] landmarks.

4.5.1 Word Pruning and Verification

After the word candidates have been detected, a word level information fusion and

verification were conducted. Three pruning strategies are used to incorporate at-

tribute information by hard decision.

First, phoneme-dependent duration constraint is a simple pruning strategy. The

duration constraints can be used to eliminate those very short segments from the

detection results. The statistics of phoneme duration were obtained from the aligned

training set. For example, the duration of word “one” (/w/-/ah/-/n/) should be

greater than 150 ms.

The second method is to use the models of the manner and place attributes to

generate the attribute sequence for each detected segment. Each manner attribute
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is modeled with a HMM. Then for each detected segment, it can be decoded as a

sequence of manner attributes. If correctly decoded, each word has its own attribute

sequence pattern. Any obvious deviation from the desired pattern can be pruned by

some rules. For example, among all the outputs of detector “one”, some of them are

actually from speech for “nine”. So we can prune those segments whose manner at-

tribute sequence doesn’t contain glides. This kind of model based pruning techniques

have shown their effectiveness in our evaluation experiments.

Model based pruning can easily be implemented and used. However, we still

need to train these manner attribute models from some training set. Inevitably,

the robustness problem still exists. So it’s desirable to have some robust pruning

strategies. Signal feature based pruning is one of them. For example, from research

in acoustics, we know that the energy of a nasal sound /n/ is often concentrated on

the low frequency region (below 400 HZ), while the fricative sound /f/ has a relatively

flat spectrum and energy distribution in high frequency region. So the percentage of

low frequency energy in the total energy is useful and robust in distinguishing the

nasal and fricative sound. Also the formants position of vowels and other spectral

features can be used to distinguish certain pair of sounds.

4.5.2 Hypothesis Combination

A weighted directed graph (WDG) is one of the methods that can be used to combine

the detector output into a digit string. The hypothesis combination can be formulated

as a search problem on a weighted directed graph G, which is a pair (V,E), where

V is a set of vertices, and E is a set of edges between the ordered vertices E =

{(u, v)|u, v ∈ V }. Meanwhile, there is a weight Wu,v associated with each edge.

The following procedure can be used to convert the hypothesis lattice into a di-

rected graph.

1. Constructing the node set, V , which consists of all the detected digit boundaries.
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For instance, for one detected segment (Ta, Tb), both Ta and Tb will be elements

of V .

2. Ranking all the detected boundaries in a time line and adding a edge for each

pair of adjacent nodes in the graph in order to guarantee the existence of a path

from the start node to the end node.

3. For each detected segment, adding a edge from its start node to its end node.

4. Adding reversal edge to those nodes which are very close to each other (e.g.

within 20 ms) or merging these nodes into one node, due to the potential overlap

in the detected boundaries.

Given the constructed directed graph, the weight we choose should be consistent

with our search criterion. For example, when the search is based on the maximum

likelihood criterion, the log-likelihood can be used as the weight. Of course, we can

put other score metrics to each edge under a certain criterion.

Finding the best path in a WDG is a well studied problem in computer science

and operation research. So finding the best matched string over the detector output

lattice is equivalent to finding a path with the maximal weight. The well-known

Dijkstra’s algorithm can be used to find the best matched path. To further improve

the recognition performance by rescoring with other detectors’ results, the K -shortest

path algorithm can be used to find the K -best digit strings. Figure. 25 is the WDG

converted from Figure. 23. Each node in the graph is a detected digit boundary. The

number in the node is the time stamp (in 10 ms). Each edge represent a detected digit

or a silence edge. The number beside each edge is the frame average log-likelihood.

And the red edges are the best path we obtained for the utterance 31o2.
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Figure 25: A weighted directed graph.

4.5.3 Digit Recognition Experiments and Result Analysis

All the evaluation experiments were conducted on the TIDIGITS corpus [62]. The

digit vocabulary is made of 11 digits, one to nine, plus oh and zero. The training

set has 8623 digit strings and the test set has 8700 digit strings. A conventional

procedure is used for front-end processing. 12-dimensional MFCC and the log-scaled
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energy were extracted for each 10-ms frame. Their first and second order derivatives

are also computed for each frame. To conduct cross-corpus evaluation and reduce

the channel effects, every element of the feature vector has been normalized with

zero-mean and unit variance.

In this experiment, the training set from the TIDIGITS corpus are used to train

the whole-word HMM model for each digit. Each HMM has 12 states and use a simple

left-to-right topology without state-skip. A state-of-the-art HMM based ASR system

and a detection-based ASR system are built for comparison. The conventional HMM

based ASR gave a word error rate of 0.48% and the detection-based ASR was slightly

worse at 0.73%. So in the matched acoustic condition, the detection-based system

can get comparable results as the conventional ASR system.

Now we simulate a real ASR scenario. We purposely introduced a mismatched

condition to illustrate the benefits of incorporating knowledge into the detection based

ASR system. TIMIT [34] was used for mono-phone model training while the TIDIG-

ITS was down-sampled from 20 KHz to 16 KHz and used for testing. Each mono-

phone model is a 3-state left-to-right HMM. A conventional Viterbi-based ASR system

and a detection-based ASR system were built for the experiment. The deletion, sub-

stitution and insertion errors of step-by-step knowledge-based pruning are shown in

Table 1.

The word error rate of the conventional ASR system is 4.54%. For the detection-

based ASR system without pruning, it is 6.37%. It’s clear that the detection-based

system has much more substitution and insertion errors.

Duration Pruning : When we took a look at the recognition results of the detection-

based ASR system, we found too many short segments were detected and recognized

as words. So the phone-dependent duration constraints can be imposed on the de-

tection results. After pruning with the duration constraints, the word error rate of

the detection based ASR system was reduced to 5.03%. The insertion errors were
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reduced from 791 to 351, while the deletion errors increase from 167 to 227.

Manner Pruning : We also observed that some confusion pairs are very signifi-

cant in the word confusion matrix. For example, five/nine (ground-truth/recognized

result), five/four, one/nine, eight/three, seven/five, four/oh, etc. Some of these sub-

stitution errors can be reduced by manner model based pruning discussed in Section

3.2. The rules used for pruning can be learned from some development data by de-

cision tree. The manner sequence pattern pruning method can generally be used

to prune those clear confusions. The overall performance after manner model based

pruning is 4.23%. We can see that the substitution errors were reduced from 860 to

620 and the insertion error were reduced from 351 to 302.

Signal Feature Pruning : Signal feature based pruning is often more meaningful

and robust. The spectral features of nasal and fricative can be used in five/nine

confusion pair. The substitution errors of five/nine were reduced from 51 to 11 by

using the low frequency energy ratio and a voicing detector. As for the eight/three

confusion pair, the spectrum before the segment /iy/ in three and segment /ey/ in

eight are different due to the existence of the fricative /th/ and glides /r/. With

a voicing detector and high frequency energy ratio in these two segments, we can

reduce the substitution of eight/three from 56 to 24. Similar work can be done on

other confusion pairs to reduce those hard confusions. Now the overall performance

was improved to 3.74%. The substitution errors have been further reduced (from 620

to 524), while the deletion errors was increased a little (from 258 to 286).

From our experiment results, this kind of signal feature based pruning is very

promising. It should be noted that no digit model was used in digit detection and

pruning. For reference, if we use the digit-specific models for pruning, the word error

rate of the detection-based ASR system is 2.15%. That is better than the result of

conventional state-of-the-art ASR system. It shows that even if the acoustic model

for detector design is not perfect, we can still have very good recognition performance
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by word detection and appropriate pruning strategies. We want to point out that if

digit-specific database is used with a new discriminative training algorithm, the string

accuracy of TIDIGITS task is 99.33%.

Table 16: Digit recognition results.

Del. Sub. Ins. Word Err. (%)

Detection W/O Pruning 167 864 791 6.37
W/ Duration Pruning 227 860 351 5.03
W/ Manner Pruning 258 620 302 4.23
W/ Feature Pruning 286 524 260 3.74
Digit-specific Pruning 370 118 126 2.15

Conventional ASR 469 617 211 4.54

4.5.4 KWS Experiment Setup and Result Analysis

Another experiment was conducted on a LVCSR task for arbitrary single word de-

tection. All the evaluation experiments were carried out on the WSJ0 corpus. Both

the WSJ0 training set (7132 sentences from 84 speakers) and the TIMIT training set

(3696 sentences from 462 speakers) were used in acoustic modeling of context inde-

pendent monophone models, broad phonetic class models and background models for

cross-corpus evaluation. The WSJ0 testing set (Nov92 non-verbalized 5k closed set)

consists of 330 sentences from 8 speakers. A conventional procedure is used for front-

end processing. To conduct cross-corpus evaluation and reduce the channel effects,

every element of the feature vector is normalized with zero-mean and unit-variance

[74].

The keywords, including both content and function words, were randomly selected

from the original 5k WSJ vocabulary. 30 content and 20 function words had been

chosen. The cut-off frequency was set to 8 when selecting keywords to ensure a reliable

evaluation.

The performance of a keyword spotting (KWS) system is usually measured using

a ROC curve and figure-of-merit (FOM). FOM is an upper-bound estimate of word
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spotting accuracy averaged over 1 to 10 false alarms per hour. It’s the area under the

part of the ROC curve with false alarms from 1 to 10 per hour. In practice, we have

little interest in the area beyond 10 false alarms per hour. A keyword is considered

successfully detected if the mid-point of the hypothesis fell within the reference time

interval. All the hypothesized keywords are sorted with respect to their confidence

score, and the probability of detection at each false alarm rate was then computed. An

average FOM over all keywords is used as the overall performance measure. Generally

speaking, there will be more false alarms with more keywords in the keyword list.

Several comparative experiments have been conducted. The first one was to eval-

uate the performance of the conventional KWS system under matched (WSJ0 mono-

phone models) and mismatched (TIMIT monophone models) acoustic conditions. It’s

clear that there is a big performance gap between content words and function words.

Even in matched acoustic condition, FOM of content words is two times larger than

that of function words, 48.8% versus 22.3% respectively. The performance drop caused

by the acoustic mismatch agrees with our expectation. FOM decreased from 48.8%

to 42.6% for content words and from 22.3% to 18.4% for function words in matched

condition.

Table 17: FOM for conventional method.

WSJ0 Model TIMIT Model
Function Words 22.3% 18.4%
Content Words 48.8% 42.6%

The second experiment (as shown in Table 18) was to conduct knowledge-based

pruning and rescoring on the output of a conventional KWS system. We can see

significant improvements for both content words and function words, under both

matched and mismatched conditions. FOM increased from 48.8% to 58.9% for content

words in matched condition and similar results are achieved for function words. It

manifests the effectiveness of the knowledge-based pruning and rescoring strategy.
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Table 18: FOM for conventional method with pruning.

WSJ0 Model TIMIT Model
Function Words 29.5% 25.1%
Content Words 58.9% 54.7%

The third experiment (as shown in Table 19) was to conduct knowledge-based

pruning and rescoring on the output of the proposed network and filler model selec-

tion. For content words, FOM increased from 58.9% in Table 18 to 61.5% in Table

19. This small improvement is attributed to the new network structure. Comparing

with the result in Table 17, the performance improvement is significant. For content

words, FOM increased from 48.8% to 61.5%.

Table 19: FOM for proposed method with pruning.

WSJ0 Model TIMIT Model
Function Words 33.1% 29.7%
Content Words 61.5% 58.3%

It’s clear that both the proposed grammar network and the knowledge-based prun-

ing and rescoring strategy are very effective, even with less detailed acoustic model

(monophone models) and under mismatched condition (TIMIT models).

4.6 Information Integration by Soft Decision

Another way is to incorporate the attribute information into the LVCSR system by

soft decision. A variety of combination schemes exist in the literature of speech

recognition, e.g., recognizer output voting error reduction (ROVER) [27] [57], feature

concatenation [80], multi-stream model combination [19] [54] and lattice rescoring [97].

These techniques are usually used at different levels of a LVCSR system. Previous

research reported performance improvements using one or two of these schemes on

different tasks [29] [80] [97]. In this section, we conducted a comparative evaluation

of all these typical system combination schemes on a large vocabulary broadcast

news transcription task. The effectiveness, advantages and computational cost of
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each of these approaches have been investigated and analyzed. We can draw some

conclusions from our experiments: (1) Although the MLP feature alone is 5.9% worse

than the PLP feature, it does encode complementary information to PLP features; (2)

Model combination with independent tree is an effective combination scheme, which

consistently outperforms ROVER, feature concatenation, and lattice rescoring.

Four typical combination schemes are briefly described in the following sections.

The feature streams investigated in this paper are denoted by o
t
PLP (PLP features),

o
t
MFCC (MFCC features) and o

t
MLP (MLP-based phoneme posterior probability fea-

tures) respectively for time instance t.

4.6.1 Feature Concatenation and Single-stream System

A simple and straightforward method of system combination is to augment the con-

ventional PLP features with the MLP posterior features at the input to a HMM

system, i.e., o
t = [ot

PLP,o
t
MLP], which is a time-synchronous early fusion scheme.

Then a single stream HMM-based ASR system is built in the conventional way and

all feature streams are modeled jointly. The output probability distribution of state

j at time t is usually represented by a Gaussian mixture model (GMM) as shown in

Eq. (79):

bj(o
t) =

Mj∑

m=1

cjmN (ot;µjm,Σjm), (79)

where Mj is the number of mixture components of state j, cjm is the weight of the

m’th component of state j andN (·;µ,Σ) is a multivariate Gaussian with mean vector

µ and covariance matrix Σ.

Feature concatenation usually results in a high-dimensional feature vector o
t.

Sometimes it is too large to model all feature streams efficiently. When covari-

ance matrices Σ are diagonal matrices (and they usually are), each state j has

Mj (2dim(ot) + 1) parameters to be estimated, where dim(ot) is the dimension of

vector ot.
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4.6.2 Model Combination and Multi-stream System

Model level combination is generally formulated as a multi-stream system, which is

more flexible and enables separate modeling of multiple information sources, permits

different number of states and different number of Gaussian components in each

stream. Log-likelihood scores from all feature streams are combined by weighted

linear functions. A basic assumption on multi-stream systems is that given the state

qt at any time t, the feature vectors from each of these streams are statistically

independent from all other streams. So in the decoding stage, the state output

probability distribution is factorized as follows:

bj(o
t) =

S∏

s=1





Mjs∑

m=1

cjmsN (ot
s;µjms,Σjms)





wjs

, (80)

where S is the number of streams in a multi-stream system and the exponent wjs is a

state-dependent weight for state j of stream s or simply a shared state-independent

stream weight ws. It is used to control the contribution from each of these feature

streams and indicate our confidence on each feature stream.

In the case of using diagonal covariance matrices, each state j will have a number

of
∑S

s=1Mjs (2dim(ot
s) + 1) parameters to be estimated and bj(o

t) can be equiva-

lently represented as a single-stream system with
∏S

s=1Mjs (2dim(ot) + 1) parame-

ters. Therefore, a multi-stream system can model the feature streams more accurately

than a single-stream system with a similar number of parameters.

Several approaches have been proposed to estimate the parameters of multi-stream

systems [19], which consists of two parts: estimation of HMM parameters for each

stream and estimation of appropriate stream exponents. For instance, parameters of

each stream can be estimated independently such that we have separate models for

each feature stream, which means different streams will have independent decision

trees and HMM model sets. For the optimal stream weight estimation, there are

some techniques discussed in [19] [41] and it is beyond the intention of this paper.
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A computationally efficient model combination scheme [19] is employed in this

paper for LVCSR tasks, where a primary feature stream (e.g., PLP features) is chosen

to build the phonetic decision trees and the initial maximum likelihood models. Then

a single-pass retraining is carried out to estimate the HMM model parameters for each

stream based on the state occupation probabilities accumulated from the primary

feature stream. One advantage of this approach is that only one decision tree and

one decoding graph are needed. The stream weights are set to equal for all feature

streams in this paper, which had been demonstrated to be as good as state-dependent

weights in [19].

4.6.3 Lattice Rescoring

A lattice is a compact representation of the competing hypotheses generated by a de-

coder. It can be expanded by additional acoustic and language model scores. Usually

the lattice oracle word error rate is much smaller than the best path word error rate,

which means that it is possible to improve recognition accuracy by re-ranking these

competing hypotheses using complementary knowledge sources.

The MLP phoneme (or articulatory attribute) posterior probability was used to

rescore word lattices [97]. We followed the exact lattice rescoring scheme proposed in

[97]. The phoneme posterior probability is added to the conventional acoustic score

by a weighted linear function for each hypothesized word, which corresponds to an

arc in the lattice. The rescoring formula used in [97] can be reformulated as Eq. (81):

bj(o
t) =

[
bj(o

t
PLP)

]w1
[
fj(o

t
MLP)

]w2 , (81)

where fj(o
t
MLP) simply outputs the phoneme posterior probability corresponding to

the hypothesized phoneme at time t based on the aligned state information.

By this reformulation, the difference between lattice rescoring and model com-

bination multi-stream system is clear: in lattice rescoring, the phoneme posterior

probability vector MLPt is directly used in score combination, while in the model
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combination system, it is integrated through a probability distribution.

4.6.4 ROVER

Recognizer output voting error reduction (ROVER) [27] is a post-processing scheme

for multiple ASR system combination. The rationale behind ROVER is that multiple

ASR systems usually exhibit different error patterns, which means that simple ma-

jority voting can achieve a lower word error rate than any of the individual systems.

The outputs of multiple ASR systems are aligned into a word transition network

(WTN) by dynamic programming and then a majority voting is performed for each

correspondence set. In contrast to other combination schemes, ROVER works at the

output of multiple ASR systems and no acoustic and language models are involved

at this stage.

4.6.5 LVCSR Experiment Setup and Result Analysis

A MLP is trained on a set of 3-hour broadcast news speech (2.5-hour for training and

0.5-hour for cross-validation), which is separate from the data sets used in LVCSR

experiments. The raw feature used as input of MLP is the TRAP feature, which is

the temporal trajectory of log energy from 31 consecutive frames (± 15 frames of a

central frame) for each critical band. Band-wise mean and variance normalization

was also conducted. Then discrete cosine transformation (DCT) is applied to each

band to perform dimension reduction and de-correlation. Only the first 10 DCT

coefficients and the log-energy of each band are preserved in our experiments. There

are 23 critical bands used for 16k Hz speech data. TRAP features were extracted

using the trapper software3.

The topology of the MLP has 253 input units, 800 hidden units and 44 output

units that corresponds to 44 phonemes used in LVCSR experiments. The total number

of the parameters of the MLP is about 240k. The MLP was trained using the ICSI’s

3http://speech.fit.vutbr.cz/files/software/trapper.html
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QuickNet toolkit4.

Usually, the output of MLP before the final softmax activation function is used

as input to PCA to perform de-correlation. In our experiment, we took the log of

the MLP output posterior vector to generate o
t
MLP such that each dimension can

be modeled as a Gaussian more accurately. LDA is employed instead of PCA as a

discriminant transformation for dimension reduction.

Figure 26 shows the posteriogram of a test utterance, which is a visualization of

the MLP features used in system combination experiments. The top panel of the

figure is the aligned phoneme sequence and each row corresponds to a sequence of

posterior probabilities with respect to a phoneme.

The training and test sets used in LVCSR experiments have 50-hour and 2-hour

of English broadcast news speech data respectively. After the MLP was trained, both

training and test sets of LVCSR experiments were forwarded through the MLP to get

phoneme posterior features. Since the MLP was trained using speaker independent

TRAP features, for a fair comparison, no vocal tract length normalization (VTLN)

was used in our LVCSR experiments.

Baseline systems were built using PLP and MFCC features. 13 dimensional PLP

features were first extracted for each frame and utterance level cepstral mean nor-

malization was performed. Then LDA was used to project 9 contiguous PLP vectors

to a 40 dimensional vector, which is the o
t
PLP used in this paper. In addition, 40

dimensional MFCC features ot
MFCC were extracted for each frame following the same

pipeline as PLP features. Phonetic decision trees and maximum likelihood (ML)

HMM models were built using o
t
PLP feature stream, which consist of 3k shared quin-

phone states as the leaves of decision trees and 50k Gaussian components in the

ML models. A 4-gram language model and a lexicon with 84K words were used in

LVCSR experiments. A dynamic decoder is used in stead of the pre-compiled finite

4http://www.icsi.berkeley.edu/Speech/qn.html
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Figure 26: Phoneme posteriogram of sentence “you are welcome”.

state decoding graph.

Table 20: WERs of feature concatenation.

WER (%)
PLP 30.8
MFCC 31.0

TRAPMLP 36.7
PLP-TRAPMLP 32.2

First, we compared the word error rates (WERs) of LVCSR systems using separate

and concatenated feature streams. Each feature stream has its independent decision

tree and HMM models. In Table 20, TRAPMLP indicates the TRAP MLP feature

streams and PLP-TRAPMLP indicates the concatenated feature stream from PLP

and TRAPMLP streams. We observed that the best single system is with PLP
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features and MFCC can achieve comparable results as PLP features. TRAPMLP

system is worse in WER by 5.9%, which is consistent with previous research [29]

[80]. The MLP used in this paper was trained with very limited data (2.5-hour), so

performance is expected to improve when trained on more data. PLP-TRAPMLP is

worse than PLP by 1.4% in WER but better than TRAPMLP by 4.5%.

This experiment is to evaluate the model combination scheme, where each stream

has its independent decision tree and HMM models as in section 4.6.5. The WERs for

each feature stream is shown in Table 20. Table 21 summarizes the WERs for both

model combination and ROVER, where “+” means model combination. We observed

that multi-stream decoding is better than ROVER and always get improvements over

the PLP baseline system. In addition, the best combination (PLP + MFCC + PLP-

TRAPMLP) is 1.9% better in WER than best single system (PLP).

Table 21: WER of independent tree model combination.

WER (%)
PLP + TRAPMLP 30.7

PLP + MFCC + TRAPMLP 29.8
ROVER 30.1

PLP + MFCC + PLP-TRAPMLP 28.9
ROVER 29.7

In this experiment, the decision tree of TRAPMLP was shared by all feature

streams. The HMM models for each stream is obtained by a single pass retraining

procedure [19]. From Table 22, we observed that combining three models with shared

TRAPMLP tree (32.2%), we get a nice improvement (1.8%) ER over the best single

component model (PLP 34.0%). However, with this tree, the PLP model is sub-

optimal: 3.2% worse than a decision tree trained using PLP (30.8%) in Table 20.

In this experiment, the decision tree of PLP was shared by all feature streams

[19]. It is clear that the MFCC, TRAPMLP and PLP-TRAPMLP systems are worse
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Table 22: WER of shared MLP tree.

WER (%)
TRAPMLP 36.7

PLP 34.0
MFCC 34.2

PLP + MFCC 34.0
TRAPMLP + PLP + MFCC 32.2

than that with their independent trees. In addition, combining three models (PLP

+ MFCC + TRAPMLP) with a shared PLP tree didn’t yield any improvements

over the PLP baseline system. However, combining three models (PLP + MFCC +

PLP-TRAPMLP) achieved an improvement about 1.3%.

Table 23: WER of shared PLP tree.

WER (%)
PLP 30.8
MFCC 31.7

TRAPMLP 38.6
PLP-TRAPMLP 32.8

PLP + MFCC + TRAPMLP 31.2
ROVER 30.7

PLP + MFCC + PLP-TRAPMLP 29.5
ROVER 30.2

Lattice rescoring experiments were conducted on speaker adapted systems. We

evaluated the combined systems with several configurations, which correspond to

some pairs of w1 and w2. The experiment results are shown in Table 24. The baseline

system has a WER of 24.2% when w1=0.055 (which is the acoustic score scaling

factor used in LVCSR experiments) and w2=0. When both w1 and w2 are 0, only the

language model score was used to find the best path and can achieve a WER of 39.2%.

When only the MLP posterior score was used to find the best path (w1=0,w2=0.05),

WER is about 34.8%. When both w1 and w2 are set appropriately, we observed a

very slight (0.2%) improvement over the PLP baseline system.

Some observations from lattice rescoring experiments are: (1) phoneme recognition
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Table 24: WER of lattice rescoring.

w1 w2 WER (%)
0.0 0.0 39.2
0.0 0.05 34.8
0.055 0.000 24.2
0.055 0.005 24.0

accuracy could be critical to the effectiveness of lattice rescoring. In our experiments,

the MLP based phone recognizer achieved a frame-wise accuracy of 59% on broadcast

news; (2) Because the MLP features were obtained from a long-span TRAP features,

the phoneme boundaries on the posteriogram as shown in Fig. 26 are not sharp,

which caused some errors in lattice rescoring.

This section described a comparative study on system combination schemes for

LVCSR tasks. Long-span MLP posterior probability features and conventional short-

term cepstral feature are combined using 4 typical combination schemes. Even though

the MLP features by themselves are 5.9% worse than PLP, when they are employed in

conjunction with conventional cepstral features using model combination with inde-

pendent tree yields a 1.9% improvement. Simple feature concatenation scheme doesn’t

work in our experiments and lattice rescoring can achieve a very slight improvement.

We observed that multi-stream decoding is better than ROVER.
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CHAPTER V

A DETECTION-BASED VIDEO STORY

SEGMENTATION SYSTEM

Video broadcast news is hierarchically structured, from frames to shots, scenes, and

stories. Figure 27 shows some shots in a video segment, and Figure 28 shows some

contiguous frames in a shot. Among these pieces of structure information, story

boundaries are of great importance for real-world applications, because the story is a

basic unit of many multimedia indexing, retrieval, and management systems.

The task of video story segmentation is to identify the individual news items in

a news show, which can be formulated as a sequence segmentation problem. Some

studies have been conducted using different knowledge representations and machine

learning algorithms based on different design strategies. For instance, the Informedia

system [39] was one of the early rule-based systems. Some ad hoc rules were designed

to combine visual, acoustic, and textual features. Other state-of-the-art video story

Figure 27: Shots in a video segment.

Figure 28: Frames in a video shot.
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segmentation systems are based on statistical modeling approaches. Within the Shan-

non’s channel decoding framework for pattern recognition, some algorithms have been

investigated. For instance, the broadcast news was modeled with a hidden Markov

model (HMM) [11] [14] or a probabilistic context-free grammar (PCFG) [45] such that

the story boundaries and other complicated structure information can be obtained

by a decoding procedure or a parsing tree. For a HMM or PCFG based system, to-

kenization of the multimedia stream is crucial. The story segmentation performance

greatly depends on the selection of the tokens used to represent the video structures.

For example, 17 predefined shot categories are used to capture the structure informa-

tion [11]. Some of them are program specific logos, such as “SPORT” and “TOP”.

These tokens are helpful in finding the structures of broadcast news videos. However,

its limitation is obvious: the production rules and the style of the broadcast news

video vary over programs and time. So a complete and accurate channel specification

that is the key to the success of Shannon’s channel decoding paradigm cannot be

easily realized for such a complex system, which deals with so many diverse sources

of information that cannot be handled in an integrated manner.

Another problem of the existing story segmentation systems is that the optimiza-

tion criteria in the training phase is inconsistent with the performance metric used

in the evaluation phase. This problem becomes more severe when dealing with im-

balanced data, where negative instances will generally dominate both the training

and evaluation data sets. For example, in video story segmentation, the portion of

the true story boundaries in all the candidate story boundaries is about 4%. The

widely used up-sampling with replacement of positive instances or down-sampling of

negative samples will bring some difficulties. When re-sampling is finished, the two

group of instances tend to have equal number of examples or have a pre-fixed ratio.

However, the class prior information was lost.

In this chapter, we present a detection-based video story segmentation system,
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which consists of multi-modal event detection and a discriminative evidence fusion

scheme. The maximum figure-of-merit (MFoM) learning approach stated in chapter 3

is used for discriminative evidence combination, which directly optimizes the perfor-

mance metrics used in segmentation performance evaluation, such as precision, recall,

and F1 measure. Another advantage from using rMFoM learning is that in previous

studies, this approach demonstrated good performance for imbalanced data as well

[31]. Our experimental result on TRECVID 2003 dataset also showed its effectiveness

for video story segmentation.

5.1 Overview of Detection-based Segmentation System

Inspired by the studies of human vision [109] and auditory perception [3], a detection-

based framework is proposed to deal with heterogeneous multi-modalities of broadcast

news video. By decomposing a difficult problem into small pieces, a divide-and-

conquer strategy would provide attractive and feasible solutions. Each subproblem

could be solved with different design instead of a single feature or a single likelihood

computation. By solving smaller pieces one by one, the evidence collected from

subproblems will be combined to obtain a solution for the complex system.

For video story segmentation with many diverse and heterogeneous information

sources, a detection-based framework provides a natural and intuitive solution, where

story segmentation is divided into two steps: event detection and evidence fusion.

First, a collection of possible story boundaries were detected as candidates. And

then the evidence around each candidate point was collected and some fusion ap-

proaches were used to combine the heterogeneous information. For instance, support

vector machine (SVM) [43] and maximum entropy (MaxEnt) model [42] have been

successfully investigated. Figure 29 shows a detection-based design for video story

segmentation. From the context of each candidate boundary, there is rich of informa-

tion from heterogeneous knowledge sources, such as anchor information, key-phrases,
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Figure 29: Detection-based video story segmentation system.

and audio events.

5.2 Knowledge Sources and Event Detection

In the knowledge hierarchy of broadcast news video, a shot is the basic unit of a

story segmentation system. Our experimental results show that 93.3% of the true

story boundaries were covered by shot boundaries. Shot boundary detection can be

regarded as a “solved” problem [65]. We take the union of shot boundaries and long

audio pauses as candidate points but remove duplications within 2.5-second fuzzy

window. Our study showed these two sets of candidate points account for 98% of the

true story boundaries in video broadcast news.

At each candidate point of story boundaries, visual, acoustic, and textual features

could be extracted and different multi-modal event detectors will be constructed. It

is natural to design detectors for different modalities separately. The criteria and

techniques discussed in Chapter 2 will be employed to conduct primitive feature

detection.

Detectors are basic units of a detection-based automatic video analysis system.
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They can be implemented at different levels such as face detectors, anchor detectors,

speech/music detectors and so on.

In addition, automatic indexing of video data requires knowledge at multiple lev-

els. Therefore, a detection-based framework is a natural way of knowledge represen-

tation and meta information extraction. In broadcast news video story segmentation,

detection and verification are performed for each knowledge source, such as anchor

shot, audio type information, image annotation, key-phrase information and so on.

5.2.1 Unsupervised Anchor Shot Detection

Anchor shot is a crucial primitive feature of broadcast news videos. We are aiming

to find all the shots with one or two anchor persons in a studio background. Our

experiments on a 17-hour broadcast news video dataset show that if an anchor shot

location is treated as a news story boundary, this feature alone can achieve an accuracy

of 61.7% in story segmentation. Similar results have been verified by many other

studies. Research work on significant feature selection for story segmentation using

an information gain criterion also shows that anchor shot is the most important

feature for video story segmentation [14]. A probabilistic confidence score can also

be obtained for each shot instead of a hard decision.

Previous studies on anchor shot detection include both supervised and unsuper-

vised methods [92] [106]. Almost all systems use only visual features and face infor-

mation from keyframes. To utilize the spatial information in anchor shots, some re-

searchers employed pattern matching with several predefined spatial structures [107].

A supervised system using SVM gave an average accuracy of 91.3% on the TRECVID

2005 dataset [106], and the unsupervised anchor shot detection usually results in an

average accuracy of about 60%-80% [14]. Although supervised systems have better

performance for a specified channel and program, and can be used in on-line process-

ing, its limitation is obvious: the production rules and the style vary dramatically

104



over channels and time.

Generally, unsupervised anchor shot detection systems perform clustering on the

shots with detected faces using visual features, such as a color histogram and texture

information [14]. In another unsupervised system, graph-theoretical clustering (GTC)

with minimum spanning tree (MST) is used with only visual features and a face

detector [92]. In all these unsupervised systems, cues from the audio track were

ignored. Part of the reason is that it is not trivial to find suitable representations for

multi-modalities to integrate these heterogeneous features into a unified framework.

In this section, a novel unsupervised learning approach to represent multi-modal

features in a unified and systematic manner is proposed. Spectral clustering with

multi-modal features from video, audio, and high level information is investigated

thoroughly.

Spectral clustering originated from graph partitioning based on spectral graph

theory and has been studied intensively and extensively in machine learning commu-

nities [15] [82]. The core idea can be formulated as follows.

Given n vectors, X = (x1, x2, · · · , xn), xi ∈ R
d, a weighted undirected graph

G = (V,E) is constructed to encode the neighborhood structure of X , where V is the

vertex set and E is the edge set. Each edge ei,j connecting nodes i and j is associated

with a weight d(i, j) > 0. An affinity matrix A, is formed for G to represent the

pairwise similarity. In practice, the affinity matrix is often obtained using kernel

tricks to project the data into a high dimensional feature space as follows and a

Gaussian kernel is the commonly used one,

Aij = exp(−
d(i, j)

σ2
), (82)

where σ is the size of the Gaussian kernel and used as a scaling factor.

There are many variants of spectral clustering algorithms. The major difference

is in the construction of the affinity matrix. In our study, we followed Ng’s algorithm

[82] for single affinity matrix and extend it to work with multiple affinity matrices.

105



1. Define D = diag(d1, d2, · · · , dn) to be the degree matrix of A, here di =

∑n
j=1Aij , and construct a normalized affinity matrix L as follows:

L = D− 1
2AD− 1

2 (83)

2. Find the k largest eigenvectors of L, and form a matrix U by stacking the

eigenvectors in columns, U = [u1, u2, · · · , uk] ∈ R
n∗k.

3. Form a matrix R from U by normalizing each row of U to have unit length.

A row vector in R is a new feature vector associated with each node. Now all

the nodes are on a unit sphere in the spectral space spanned by the k largest

eigenvectors.

4. Cluster the rows of R into k clusters with a k-means algorithm or any other

clustering algorithms.

Spectral clustering has many advantages over conventional clustering algorithms.

First, kernel techniques are used to project the data into a high-dimensional feature

space in which the clusters can be more spatially distinct and compact. Second,

spectral clustering is also a nonlinear dimensionality reduction method. The actual

clustering process is performed in a low-dimensional spectral space spanned by the

first k largest eigenvectors of the normalized affinity matrix. It’s more efficient and

robust for initialization. Third, theoretical analysis shows that spectral decomposition

can reveal the block structure of the affinity matrix, which is related to the number of

intrinsic clusters [82]. Finally, in spectral clustering, only a distance matrix is needed

instead of individual samples for each attribute or a centroid of a cluster. For instance,

it’s hard to find a centroid of a group of audio segments with different durations. So

it’s difficult to integrate acoustic features into conventional k-means based clustering

algorithms, whereas the shot-wise distance matrix from acoustic features or other

attributes can be constructed easily. These properties make spectral clustering an

106



ideal choice for integrating multiple heterogeneous information encoded in attribute

distance matrices for unsupervised anchor shot detection.

A subset from TRECVID 2004 [56] is used for the anchor shot detection evaluation.

It consists of 34 video clips with a total length of about 17 hours. The data are

CNN and ABC broadcast news videos from 1998. For a reliable evaluation, all the

anchor shots were manually labeled for this dataset. The performance of an anchor

shot detection system is usually evaluated with precision and recall measures used

in information retrieval. Meanwhile, a single F1 score that combines the recall and

precision is also used for performance comparison.

Table 25 shows the performance of the unsupervised and supervised anchor shot

detection system. It’s clear that the performance of our unsupervised system (F1 =

0.871) approaches the performance of the supervised system (F1 = 0.902). When

visual features are combined with acoustic features with an appropriate weight, the

unsupervised detection performance can be improved dramatically. It demonstrates

the effectiveness of combining heterogeneous features. Experiment results show that

such an integration can greatly improve the performance of the unsupervised system,

and the performance of the unsupervised system can approach the performance of

the supervised system.

Table 25: Anchor shot detection results.

Precision Recall F1
unsupervised 86.5% 87.6% 0.871
supervised 95.1% 85.8% 0.902

5.2.2 LSI-based AIA Detectors

Semantic concept detectors can help to bridge the semantic gap between the low level

features and the high level semantics. Previous studies showed that the semantic

concepts provide important information of story boundaries [11]. In addition, the

dynamic patterns of semantic concepts showed the structure of a broadcast news
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video. Large-scale concept ontology for multimedia (LSCOM) [53] is designed to

provide a dictionary of semantic units for general purpose indexing and retrieval of

video. And these concepts were used for broadcast news story segmentation in our

study.

Forty-three semantic concepts were manually selected and these concepts are

shown to be closely related to the story boundaries. For each candidate point, a

change of the detected concepts often indicates a potential story boundary.

A latent semantic indexing (LSI)-based automatic image annotation (AIA) system

was constructed as described in [9]. This system was verified to perform very well in

the AIA task for the Corel photo dataset. As the training and validation set, we used

the TRECVID 2005 development set for which all the LSCOM semantic concepts

were annotated [53]. Every shot in the TRECVID 2003 used for the story boundary

segmentation task was then annotated with the AIA-based detectors. One thing to

note is that the video data in TRECVID 2003 and in TRECVID 2005 have large

mismatches in video qualities. So instead of creating a hard-decision for each shot,

a confidence measure is given by each concept detector. The confidence vectors are

combined with the proposed discriminative fusion method.

5.2.3 Audio Type Detection

There are various types of audio signals in the audio track of broadcast news video,

e.g, speech, music, silence, and speech with music background, etc. Both the type of

audio signal and the change of the audio type imply important information for story

segmentation. In our study, each audio type is modeled with a hidden Markov model

(HMM) and each shot is represented by a confidence vector of audio type. This is

similar to the confidence vectors in AIA detectors.
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5.2.4 Cue-phrase Detection

Intuitively, there are some cue phrases around the story transition. The automatic

speech recognition (ASR) transcriptions were used to detect the cue phrases within

each shot period. To extract a list of cue phrases, we compute the N -gram lexical

sequences around reference story boundaries. From this list, 16 transition word se-

quences are manually selected, e.g., “ABC news”, “CNN”, “thanks for watching”,

“coming up”, and “ahead on”, etc. To be suited in the evidence fusion framework,

the detected cue phrases are converted into a score according to the occurrence fre-

quencies. With more cue phrases detected within a shot, the confidence is higher.

5.2.5 Speaker Change and Long Pause Detection

Story transitions in broadcast news video are usually accompanied with significant

pause or silence. In addition, speech prosody can contribute to the detection of

story breaks, with speaker pause duration often being the most important feature.

We usually assume a larger pause between stories than between the sentences of a

story. Therefore, we use an energy-based voice-activity detector (VAD) to extract

the duration of all the silences in the audio channel. And then we identified the

longest silence fragment immediately preceding a sentence, and used this duration as

a feature.

5.3 Discriminative Evidence Integration

When the evidence from diverse knowledge sources around each candidate story

boundary is available, some fusion strategies could be employed to obtain a final

decision by integrating heterogeneous sources. A discriminative fusion scheme, max-

imum figure-of-merit (MFoM) approach, is used for feature and classifier combina-

tion. Unlike other fusion approaches such as maximum entropy (MaxEnt) method

that maximizes the likelihood, and SVM that maximize the margin between decision
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boundaries, the maximum figure-of-merit (MFoM) learning algorithm directly opti-

mizes the performance metrics used in video story segmentation evaluation: precision,

recall, and F1 measure [31].

5.3.1 Maximum Figure-of-merit (MFoM) Learning

The maximum figure-of-merit learning approach [31] approximates the four terms in

the contingency table with a differentiable function with regards to the model pa-

rameters and directly optimizes the performance metrics. It allows quite a bit of

flexibility in choosing the discriminant functions for each class. The discriminant

functions f(x;w) can be linear discriminant functions (LDF), quadratic discriminant

functions (QDF), or complicated probabilistic discriminant functions such as Gaus-

sian mixture model (GMM) and HMM. With the help of the discriminant functions

for both positive (boundary) and negative classes (non-boundary), a misclassification

measure d(x;w) can be used to measure the correctness of a decision at a single

candidate point. Here x and w are evidence vector and parameters of the discrim-

inant functions respectively. Xpos and Xneg are training instances from positive and

negative classes.

d(x;w) =







fneg(x;wneg)− fpos(x;wpos), x ∈ Xpos

fpos(x;wpos)− fneg(x;wneg), x ∈ Xneg

(84)

The role of a loss function l(x;w) is to use a smooth function to approximate the

errors obtained on a dataset. And the sigmoid function is the most widely used one.

Here α control the steepness of the curve and β control the covered area of the loss

function.

ℓ(x;w) =
1

1 + exp (β − α ∗ d(x;w))
(85)

The performance metrics such as error rate, precision, recall, and F1 measure can

be calculated from the contingency table as shown in Table 26. Here, true positive

110



(TP), false positive (FP), false negative (FN), and true negative (TN) are approxi-

mated by the loss function for each training sample.

Table 26: Contingency table.

test (+) test (-)

+ TP ≈
∑

x∈Xpos

(1− ℓ(x;w)) FN ≈
∑

x∈Xpos

ℓ(x;w)

- FP ≈
∑

x∈Xneg

ℓ(x;w) TN ≈
∑

x∈Xneg

(1− ℓ(x;w))

Given the approximation of the four terms in a contingency table, the F1 measure

can be approximated as follows:

F1 =
2TP

FP + FN+ 2TP
. (86)

5.3.2 Parameter Initialization and Update

One issue that needs to be considered is the initialization of the optimization proce-

dure. Because the approximated F1 measure is a non-convex function with regards

to the model parameters, there is no guarantee of finding a global optimal solution.

And the obtained local optimal solution greatly depends on the initial value of the

parameters. The initialization in our experiments is performed using the expectation

maximization (EM) algorithm [22] for GMM and perceptron algorithm [23] for LDF.

The parameter update can be conducted using batch gradient descent method, or

generalized probabilistic descent method, or quasi-Newton optimization techniques

(e.g., L-BFGS).

For each candidate point, there are four evidence scores from different detectors.

For example, if the shot right after the candidate point is detected as an anchor

shot with a high confidence and there are some cue phrases detected right before

the candidate point, this candidate point is very likely to be a true story boundary.

When evidence is detected with a hard-decision, some logical rules can be deduced

and constructed for video story segmentation. In this paper, GMM discriminant
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functions are used in AIA feature fusion and LDFs are used in story segmentation

fusion. The MFoM learning approach is used to improve the performance of the final

decision. This data-driven approach will assign a weight for each evidence and an

offset from both the positive and negative instances. It allows quite a bit of flexibility

in evidence detector design. When new detectors are built, their relative importance

for final decision making will be learned automatically and discriminatively from data.

The inference step becomes really straightforward.

5.4 Experiment Setup and Result Analysis

All experiments were conducted on a standard benchmark dataset. The complete

dataset of TRECVID 2003 [98] is used for story segmentation evaluation. It consists of

about 110 video clips for development and another 105 video programs for evaluation.

Each video clip has a length of about 30 minutes. The data are CNN and ABC

broadcast news video of year 1998. We have conducted our experiments using the

methodology proposed by TRECVID [98].

The shot segmentation, keyframe extraction, and ground-truth story segmentation

were provided by LDC [86]. The audio track was demultiplexed from the MPEG

stream with 16 KHz sampling rate and 16 bits. Mel frequency cepstral coefficient

(MFCC) features were extracted from audio signals in the audio type detector design

[78].

The performance of a story segmentation system is usually evaluated with pre-

cision and recall. Meanwhile, a single F1 measure, which is the harmonic mean of

the recall and precision, is also used for performance comparison. According to the

guideline of TRECVID 2003, when conducting performance evaluation, each refer-

ence boundary was expanded with a fuzziness factor of 5 seconds in each direction,

resulting an evaluation interval of 10 seconds.
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5.4.1 Comparison with SVM Fusion

The first experiment is to compare the performance of the MFoM fusion method

with the SVM fusion method using the AIA features. For each candidate point, a

confidence vector of 86 dimension is constructed using the AIA detector output for

the shot right before and after the candidate boundary. Two fusion strategies have

been investigated. The first one is a SVM fusion approach using the LIBSVM [12]

toolkit. And the second one is the MFoM scheme. In the MFoM scheme, both the

positive class (boundary) and negative class (non-boundary) are modeled by a GMM

with 2 mixtures. Figure 30 shows the result of story segmentation using this AIA

confidence vector. It’s clear that MFoM significantly outperformed the SVM fusion

method. The F1 measure from the MFoM scheme is about 0.51 and the F1 measure

from SVM is about 0.44.
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Figure 30: Comparison of SVM fusion and MFoM fusion.

5.4.2 Heterogeneous Information Source Fusion

The second experiment is to demonstrate the effectiveness of MFoM fusion scheme

with more heterogeneous information sources. Table 27 shows the performance of

story segmentation under different combinations. The upper part of the table shows
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the performance using individual detectors. For instance, using only AIA detectors

achieves a F1 measure of 0.514, while using only anchor detector can achieve a F1

measure about 0.605. It’s also clear that anchor detector has a high precision for story

segmentation. It means that the evidence from the anchor detector is a reliable cue.

Nevertheless, audio type detectors demonstrated a high recall. It means that audio

type changes can cover most of the true story boundaries. These kinds of comple-

mentary information gives the detection-based story segmentation system plenty of

room for performance improvement. In this detection-based framework, when more

and more evidences are available, the system performance can be improved in an

additive manner in terms of F1 measure. For example, when the cue phrase detector

was combined with the anchor detector, even a simple “OR” operation can improve

the F1 measure by 1% from a high performance baseline system. Similar experiments

have been done with AIA detectors and audio type detectors in the bottom part of

Table 27. It’s obvious that as more evidences were combined using MFoM scheme,

the recall was greatly increased while the precision was decreased a little.

Table 27: Performance of story segmentation.

Precision Recall F1
Text (T) 0.382 0.208 0.269

Long Pause (P) 0.633 0.296 0.403
Audio (A) 0.194 0.771 0.310
AIA (V) 0.552 0.481 0.514
anchor 0.780 0.494 0.605

anchor + T 0.762 0.520 0.618
anchor + T + V 0.753 0.552 0.637

anchor + T + V + A 0.739 0.581 0.651
anchor + T + V + A + P 0.718 0.613 0.661

5.5 Summary

In this chapter, we presented a detection-based framework for pattern recognition

and demonstrated its application to video broadcast news story segmentation. In the
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proposed approach, event detectors and fusion schemes can be designed and optimized

separately. Therefore, it offers quite a bit of flexibility in system construction and

performance improvement. With more and more event detectors available, system

performance can be improved in an additive manner. This study also presents a

set of multi-modal event detectors built with different signal processing and machine

learning methods, and a discriminative fusion method for video story segmentation,

which directly optimizes F1 measure.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The objective of this dissertation is to present a detection-based pattern recogni-

tion framework and demonstrate its applications in automatic speech recognition and

broadcast news video story segmentation. This research was motivated by the studies

of human vision and auditory perception. In contrast to the expectation-driven top-

down frameworks for pattern recognition, a detection-based framework first detects

a collection of primitive features; then, it constructs the domain-specific knowledge

hierarchy level-by-level by information integration schemes. Task-specific knowledge

and context information were incorporated into this framework as additional features

at any stage. Domain-specific information was also used to detect low-level features

using knowledge-guided signal processing methods. In some cases, evidence fusion

could be conducted in an incremental manner, which means that when more evidence

and constraints are available, the hypotheses will become sharper and more focused

until a consistent decision can be made.

6.1 Contributions of This Dissertation

This dissertation presents the basic principles, criteria, and techniques for detector

design and hypothesis verification based on the statistical detection and decision the-

ory. Two novel detection algorithms are proposed in this proposal: a semi-supervised

learning and a discriminative detection algorithm. The knowledge hierarchy of a

detection based framework is task-dependent and domain-dependent knowledge is

required to design low-level attribute and event detectors.
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For evidence fusion, several fusion strategies have been investigated: feature con-

catenation, model combination, maximum entropy fusion, and a novel proposed reg-

ularized maximum-figure-of-merit (rMFoM) approach as discriminative evidence fu-

sion. A detection-based speech recognition recognition system and a detection-based

video story segmentation system demonstrate effectiveness and promising results from

our experimental studies.

Some of the expected contributions from this dissertation are highlighted in the

following and most of my research work have been published in [70] [74] [71] [73] [72]

[68].

1. A detection-based pattern recognition framework It was motivated by the

studies of human vision and auditory perception model and we are aiming to

mimic the human being’s pattern recognition process. It decomposes a complex

system into smaller pieces, solves each subproblem one by one effectively and

reliably, and then forms the solution to the original problem. The detection-

based framework is proposed to deal with the uncertainties and complexities of

real-world applications.

2. Investigation of real-world applications A detection-based ASR system and

a detection-based broadcast news video story segmentation system have been

implemented to demonstrate the basic principles and general techniques for de-

tector design and evidence fusion, which is different from conventional LVCSR

systems. Our study shows that the detection-based framework itself can achieve

promising results. In addition, the low-level attributes could provide comple-

mentary information for the state-of-the-art LVCSR systems.

3. A novel supervised robust detector design approach A point on the precision-

recall or ROC curve corresponds to an operating point of a detector. By max-

imizing the area under the P-R or ROC curve, the proposed robust detector
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design approach can achieve the best overall performance over all practical op-

erating points.

4. A novel semi-supervised model-based detector design approach A semi-

supervised algorithm is proposed to leverage both the limited amount of labeled

data and huge amount of unlabeled data. In some experiments, this approach

illustrated very promising performance.

5. A novel regularized maximum-figure-of-merit (rMFoM) fusion strategy

This study is an extension of the MFoM learning approach. By adding a regular-

ization term, this approach demonstrated very good generalization capability.

In addition, this approach has been extended to general semi-supervised learn-

ing conditions, theoretical analysis and experimental results demonstrate the

effectiveness of this approach.

6.2 Future Research Problems

The research work in this dissertation is not meant to claim a complete solution to

all related problems. I presented a general framework and some common techniques

that could be used in other real-world pattern recognition applications. The studies

presented in this dissertation are expected to contribute to many research areas of

pattern recognition, such as automatic speech recognition, video analysis, and com-

puter vision. For future research, I believe we should look into the following aspects:

1. Detector Design As stated in this dissertation, detector design for primitive fea-

ture detection is task-dependent. Accurate and comprehensive domain-specific

knowledge will help both detector design and evidence fusion. The basic prin-

ciples, criteria , and general techniques have been discussed in this dissertation.

More studies could be done in both general detection techniques and task-

specific detection approaches.
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2. Integration Schemes We have presented some common strategies for informa-

tion integration. However, no scheme can always achieve the best performance

for all situations. More fusion strategies could be explored both theoretically

and experimentally, especially for real-world applications.

3. Real-world Applications In this dissertation, two real-world pattern recogni-

tion applications have been investigated. In the future, I expect the detection-

based pattern recognition framework could be used in other computer vision

and audio processing applications to further validate its effectiveness.
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