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And I urge you to please notice when you are happy,
and exclaim or murmur or think at some point,
”If this isn’t nice, I don’t know what is.”

Kurt Vonnegut, A Man Without a Country



To Kaci, for her neverending love, support, and belief in me.
To Grant and Van, for their hilarity, mischief, and refusal to let me forget how to play.
To my parents, Don and Felicia, for their encouragement, optimism, and patience.

To my grandparents, James and Aster Johnston, for loving me unconditionally.



ACKNOWLEDGEMENTS

I would like to thank the many people who have supported and challenged me along

throughout this process.

First, a big thank you to Dr. Valerie Thomas for her patience and support through this
overly drawn-out process - to Paul Kerl for pushing me to learn more, do better, be prov-
ably wrong (and be okay with it), think harder, and brew better beer - to Adaora Okwo for
expanding my horizons academically and personally - to Marcus Bellamy, for teaching me
about genuine kindness and integrity - to Dong Gu Choi, Todd Levin, Dexin Luo, Nathaniel
Tindall, and Soheil Shayegh for their friendships, partnerships, and feedback along the way.
These days have forever changed me for the better, and you have all been instrumental in

this process.

Thank you to Dr. Jerry Mazurek for taking me in for indefinite periods of time when
I was without an address on multiple occasions . Thank you to Cindy and Jake Wingfield
and Andy and Letsy Bruner for giving my family room and board during our transition
back to Little Rock - and for loving on my kids wholeheartedly. Thank you to Don and
Helen Williams for use of your beautiful cabin. We will always remember these times with
fondness. Many thanks to Dr. Richard Powell III for allowing me to invade his home and
use his desk and brewing equipment, and to Josh Counce for use of his apartment to work
and make a little music. Your kindness and hospitality humble me and challenge me to do

likewise.

Thank you to Dr. Jimmy and Desiree McCarty, Brad and Katelin East, Matt and
Stephanie Vyverberg, Bret and Amy Walker, and Karen and Patrick Gosnell for keeping

me grounded and growing spiritually while in Atlanta. Thank you to Shannon and Lezley



Cooper, Mac and Amy Bell, Chad and Andrea Tappe, Wade and Ranell Poe, John "Duck”
and Candace "Tiny” Rabon, and Allen and Micah Branson for welcoming us back to Little
Rock, living life with us, and giving me sufficient patience and grace to be open and hon-
est. Thank you to Kirk Perkins, Brian Beck, Richard Nash, Gary Sewell, and REB Betts
for continuing to be present, persistent, and prophetic.

Now to him who by the power at work within us is able to accomplish abundantly far
more than all we can ask or imagine, to him be the glory in the church and in Christ Jesus

to all generations, forever and ever. Amen.

vi



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . i ittt e e e e e v
Listof Tables . . . . . . . . . i i i it it et it ettt i et xi
Listof Figures . . . . . . . i i i i ittt ittt ittt et o onoeneseas xiii
Chapter 1: Introduction . . . . . . . . . i i i i i i it ittt et oo e oo nas 1
Chapter 2: The Levelized Cost of Electricity . ... ................ 4
2.1 Introduction . . . . . . . . . . .. 4
2.2 Literature Review . . . . . . . . . . . ... 6

2.3 Estimating Fuel Costs and Other Uncertain Future Cost Streams . . . . . . 8
2.3.1 Discounted Average Fuel Costs . . . . . . . .. ... ... ..... 8

232 FuelCostExamples . . . . ... ... ... ... .. ........ 9

24 Capital Cost Examples . . . . . ... ... ... ... ... .. ... 14
241 Coal . . . . . 14

242 Natural Gas . . . . . . . .. 16

243 Nuclear . . . . . . . . . e 16

2.5 Operation and Maintenance (O&M) Costs and Other Costs . . . . . . . .. 16
2.6 ResultsoftheCaseStudy . . . . .. ... ... ... ... ......... 19

Vil



2.7

2.6.1 Baseline Values . . . . . . . . . . .. 19

2.6.2 Sensitivity Analysis . . . . . .. .. 21
2.6.3 CarbonDioxide Costs . . . . . . .. .. ... ... ... 25
2.6.4 Comparison with Other Studies . . . . . . .. .. ... ... .... 26
Conclusions . . . . . . . . . . L 28

Chapter 3: Minimizing the Cost of Meeting a Carbon Dioxide Emissions Target

by Simultaneous Selection of Supply and Efficiency . . . . ... ... 29

3.1 Introduction . . . . . . . .. .. 29
3.2 Literature Review . . . . . . . . .. ... ... 29
33 Model . . .. 32
3.3.1 ParametersandData . . .. ... ... ... ... ... ... .. 33

332 Variables . . . . .. ... 36

3.3.3 Objective Function . . . . ... ... ... ... ... ... ... 37

334 Constraints . . . . . ... 39

335 SolutionTime . . . . ... ... ... ... ... 42

34 Conclusion . . . . ... 42
Chapter 4: Case Study - United States State of Georgia . . ............ 45
4.1 Introduction . . . . . . . . . . .. 45
4.2 SCenarios . . . ... e e 45
43 DataandInputs . . . . . . . .. ... 45
43.1 Demand . .. ... .. ... . ... 45
4.3.2 [Initial Electricity Generation Capacity . . . . . . ... .. .. ... 51

viil



4.3.3 Electricity Generation Capacity Factor . . . . . . ... .. ... .. 51

4.3.4 Electricity Generation Capacity Expansion and Demand Factors . . 52

4.3.5 Fixed Electricity Costs . . . . . . . . . . . ... ... . ... ... 54

4.3.6 Variable Electricity Costs . . . . . . . . ... ... .. ... ... 55

437 FuelCosts . . . . . . . . e 56

438 CO;EmissionsRates . . . . .. .. .. ... ... ... ... 60

439 Efficiency Measures . . . . . .. ... ... ... . 61

4.3.10 Carbon Dioxide Target . . . . .. . ... ... ... ........ 74

4.4 Results. . . . .. 75
4.4.1 Electricity . . . . . . . . . . e e 75

442 Natural Gas . . . . . ... L 82

4.4.3 Transportation Fuel . . . . . . ... ... ... ... .. ... 83

444 Efficiency Investment . . . . . . . ... ... ... .. ... ... . 84

4.5 Scenario - No New Nuclear Expansion . . . . . .. ... ... ....... 94
4.6 Conclusion . . . . . ... 107
Chapter 5: Conclusion . . . .. .. .. i i ittt ittt eeeeneseeos 110
Appendix A: Review of Levelized Cost of Electricity Calculation . . . . ... .. 113
A.1 Financial Parameters . . . . . . . . ... .. ... ... .. 113
A2 InvestmentCosts . . . . . . .. ... 114
A.3 Operational Costs . . . . . . . . . . .. e 115
A3.1 FuelCosts . . . .. . .. . e 116

A.3.2 Operation and Maintenance Costs . . . . . . . .. ... ... ... 116

1X



A33 Emissions CostS . . . . . . . . .. 117

A4 Levelized Costof Electricity . . . . . .. ... ... .. ... ....... 117

Appendix B: Linear Optimization Model - Minimizing the Cost of Meeting a
Carbon Dioxide Emissions Target by Simultaneous Selection of

Supply and Efficiency Investments . . . . ... ........... 119
Appendix C: Figure Generation from Model Outputs . . . ... ......... 183
References . . .. ... . i i i i ittt it it ittt ittt 229
L7 230



LIST OF TABLES

2.1 Overnight Costs for Proposed Supercritical and Ultra-Supercritical Coal
Plants (20108) . . . . . . . . . . e 15
2.2 Overnight Costs for Proposed Natural Gas Power Plants(2010$) . . . . . . 17
2.3 Overnight Costs for Proposed Nuclear Power Plants(2010$) . . . . . . . .. 18
2.4 Fixed and Variable O&M Costs in $/kW and $/kWh, Respectively(2010$) . 20
2.5 Baseline Estimated Levelized Costs of Electricity from New Generation
Capacity . . . . . . e e 21
2.6 Comparison of Levelized Cost Result to Previous Studies . . . . . . .. .. 27
4.1 2014 Electricity and Natural Gas Demand for Georgia [62] . . . . . . . .. 48
4.2 2014 Transportation Fuel Consumption for Georgia [62] . . ... ... .. 49
4.3 Electricity Capacity Generation in Georgia, 2015 . . . . .. ... ... .. 52
4.4 Capacity Factor by Generation Technology in Georgia . . . . . . . ... .. 52
4.5 Capacity Bounds by Generation Technology . . . . . . ... ... .. ... 53
4.6 Seasonality and Demand Factors [65] . . . . ... ... ... ....... 53
4.7  Annualized Capital Costs by Generation Technology [61] . . . . . . . . .. 54
4.8 Plant Lifespans by Technology . . . . . . ... ... ... ......... 55
4.9 Fixed O&M Costs by Generation Technology [61] . . . . . . . ... .. .. 55
4.10 Variable O&M Costs by Generation Technology (2015 $/MWh)[61] . . . . 56

X1



4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

CO; Emissions Rates by Generation Technology [63] . . . . . .. ... .. 60

Savings-weighted average total cost of saved electricity at the national level
by market sector [69] . . . . . .. ... 62

LCSE for Select Southeastern Utilities, 2011-2013 (2011$) [70] . . . . . . 64

The program administrator CSE for electricity efficiency programs by sec-
tor: national savings-weighted average [71] . . ... ... ... ... ... 64

The program administrator CSE for natural gas efficiency programs by sec-

tor: national savings-weighted averages ($/therm) [71] . . . . ... .. .. 64
Savings potential and LCOE by policy [73] . . .. ... ... ... .... 66
4Q 2015 Summary [74] . . . . . . ..o 68
Summary of results for four-year averages (2009-2012) for all states in

dataset [7T7] . . . . . . 70
Energy Efficiency Availability and Costs for Electricity . . . . . . .. . .. 73
Energy Efficiency Availability and Costs for Natural Gas . . . . . . . . .. 73
Energy Efficiency Availability and Costs for Transportation Fuels . . . . . . 74
Carbon Dioxide Emissions Targets . . . . . . . ... ... ... ...... 75
Energy Efficiency Costs by Segment for Electricity . . . . . ... ... .. &9
Energy Efficiency Costs by Segment for Transportation Fuels . . . . . . . . 89
Percent Change in Net Present Value from the Baseline Scenario . . . . . . 93

Percent Change in Net Present Value from the Baseline Scenario - No Nu-
clear Expansion . . . . . . . . .. ... 106

Xii



2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10

2.11

4.1

4.2

4.3

LIST OF FIGURES

Historical U.S. Coal Prices, AEO Forecast Scenarios, and the Historical
Discounted Average [23],[22] . . . . . . . . . .o

Historical U.S. Natural Gas Prices, AEO Forecast Scenarios, and the His-
torical Discounted Average [23],[22] . . . . . . . . . ... ... .. ...

Historical U.S. Natural Gas Prices, AEO Forecast Scenarios, and the His-
torical Discounted Average [23] . . . . . . . . ... ...

Historical U.S. Nuclear Fuel Prices and the Corresponding Historical Dis-
counted Average [23] . . . . . . ...

Levelized Cost Components by Technology . . . . . . ... ... ... ..
Levelized Cost Sensitivity to Nominal DiscountRate . . . . . .. ... ..
Levelized Cost Sensitivity to PlantLife . . . . . . ... ... ... ... ..
Levelized Cost Sensitivity to Carrying Charge Rate . . . . . . . . ... ..
Levelized Cost Sensitivity to Capital Cost and Fuel Price . . . .. ... ..
Effect of a Cost of Carbon Dioxide on the Levelized Cost of Electricity . . .

Levelized Cost Comparison with Other Studies . . . . . ... ... .. ..

Projected Electricity Demand for the U.S. State of Georgia, Based on EIA
ProjectionscMWh) . . . . . . ... L

Projected Natural Gas Demand for the U.S. State of Georgia, Based on EIA
ProjectionsMMTherms) . . . . . .. .. ... oL,

Projected Transportation Fuel Demand for the U.S. State of Georgia, Based
on EIA Projections (Thousand Barrels) . . . . . ... ... ... ......

Xiil



4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

Electricity Demand Projections Normalized to 2014, Based on EIA Projec-
HONS . . . . . . e

Natural Gas Demand Projections Normalized to 2014, Based on EIA Pro-
JECHONS . . . . v o o e e e e e e e e

Transportation Fuel Demand Projections Normalized to 2014, Based on
EIA Projections . . . . . . . . . . . . . . e

Hourly Demand Factor - Percentage of Consumption Occurring Each Hour
by Season [65] . . . . . . ..

Fuel Costs for Electricity for the U.S. State of Georgia, Based on EIA Pro-
jections ($2015/MWh) . . . . . . ..

Biomass Feedstock Costs for the U.S. State of Georgia, Based on Levin et.
al Q011) [67] . . . . .

Natural Gas Costs for the South Atlantic Region, Based on EIA Projections
[61] .

Transportation Fuel Costs for the South Atlantic Region, Based on EIA
Projections [61] . . . . . . . . ..

Savings-weighted average, median and interquartile range of total cost of
saved electricity values for all sectors. Only programs with claimed savings
areincluded. [69] . . . . . . . . ...

Savings-weighted average total cost of saved electricity, by state [69] . . . .

Supply curve for electricity efficiency resources in 2020. The weighted
average wholesale price is derived from the Intercontinental Exchange data
which reports price and volume information for daily transactions among
the 10 largest hubs in the USA[73] . . . . . . . .. . ... ... ... ...

Annual average value of LCSE at portfolio level for the United States in
2014 dollars, and average net energy savings as percentage of sales [76]

All sector LCSE values for the United States relative to electric savings as
apercentage of sales [76] . . . . . . . . .. ...

Electricity energy efficiency program CSE by year. Each dot represents

average costs for each state in a given year. 201183 per levelized net kWh at
meter. Assumes 5% real discountrate [77] . . . . . . . . . ... ... ...

X1V

68



4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

CSE values relative to electricity savings as a percentage of sales [77]
Efficiency Investments . . . . . . . . ... ...
Total Electricity Capacity - Coal, Natural Gas, and Nuclear MW) . . . . .
Total Electricity Capacity - Other Generation Technologies MW) . . . . .
Electricity Capacity Expansion - Coal, Natural Gas, and Nuclear (MW)
Electricity Capacity Expansion - Other Generation Technologies (MW)
Electricity Supply - Coal, Natural Gas, and Nuclear MWh) . . . . . . . ..
Electricity Supply - Other Generation Technologies MWh) . . . . . . . ..
Annual Electricity Supply MWh) . . . . ... ..o oo
Natural Gas Supply (Million Therms) . . . . ... ... ... ... ....
Transportation Fuel Supply (Thousand Barrels) . . . ... ... ... ...
Electricity Efficiency MWh) . . . . . .. ... oo o
Transportation Fuel Efficiency (Thousand Barrels) . . . . . . ... ... ..
Electricity Efficiency by Segment MWh) . . . . . .. .. ... ... ...
Transportation Fuel Efficiency by Segment (Thousand Barrels) . . . . . . .
Annual Emissions by Source and Scenario (Tonnes) . . . . . .. ... ...
Total Annual Emissions (Tonnes) . . . . . ... ... ... .........
Annual Costs . . . . . . . . L
Total Annual Costs . . . . . . . . .. . .

Total Electricity Capacity - Coal, Natural Gas, and Nuclear - No Nuclear
Expansion MW) . . . . . . L

Total Electricity Capacity - Other Generation Technologies - No Nuclear
Expansion MW) . . . . . .o L

XV

71

72

76

77

78

78



4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

Electricity Supply - Coal, Natural Gas, and Nuclear - No Nuclear Expan-
sionMWh) . . . .. 96

Electricity Supply - Other Generation Technologies - No Nuclear Expan-

sion MWh) . . . . . . . e 97
Annual Electricity Supply - No Nuclear Expansion (MWh) . . . . ... .. 98
Natural Gas Supply - No Nuclear Expansion (Million Therms) . . . . . .. 99

Transportation Fuel Supply - No Nuclear Expansion (Thousand Barrels) . . 100
Electricity Efficiency - No Nuclear Expansion MWh) . . . . . . . ... .. 101
Transportation Fuel Efficiency - No Nuclear Expansion (Thousand Barrels) 102

Annual Emissions by Source and Scenario - No Nuclear Expansion (Tonnes) 103

Total Annual Emissions - No Nuclear Expansion (Tonnes) . . .. ... .. 104
Annual Costs - No Nuclear Expansion . . . . . ... ... ......... 105
Total Annual Costs - No Nuclear Expansion . . . . . ... .. ... ... .. 106

XVi



SUMMARY

As many governments at local, state, and national levels seek to lessen their impacts
on climate change, carbon dioxide emissions reduction targets are becoming increasingly
common. Many of these plans set goals based on a combination of the feasibility and
economics of the policies and actions available and the necessary emissions reduction levels
identified by the scientific community.

Due to the intertemporal nature of analyses relating to climate and energy, many cost
inputs are more easily ingested as and are more clearly presented as annualized costs. In
Chapter II, a formalized methodology for the calculation of the levelized cost of electricity
is presented. The levelized cost is widely used as a concise estimate of the cost of electricity
generation or comparison between different technologies, incorporating the full lifecycle
costs of electricity generation into a unit price over the lifetime of the plant. Several is-
sues persist when these calculations are presented. First, the source and reliability of the
cost inputs are often unverifiable if they are based on insider information or models that
lack transparency. Second, the method typically involves projection of future fuel costs
throughout the projected lifetime of the project. These cost streams are highly uncertain
and have a significant effect on the result. Third, single point estimates are frequently used
for inputs, which results in point estimates for the levelized cost that do not reflect the wide
range of potential costs associated with electricity generation technologies. These issues
show a continuing need for a formalized approach for comparing the costs of generation
technologies.

In Chapter II1, a model is presented to evaluate the cost of meeting carbon dioxide emis-
sions targets using an electricity generation planning model incorporating natural gas and
transportation fuels with simultaneous selection of efficiency investments in order to satisfy
consumer service levels and policy-makers’ desired carbon dioxide emissions targets. This

model bridges the gap between two sets of existing literature. The first set uses scenario-
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based analysis to generate feasible paths for efficiency in order to meet an emissions target
and then calculates the resulting costs. The second set uses optimization techniques to min-
imize either costs or emission, thereafter calculating the other metric based on the results.
The framework presented herein allows a specific target to be met at minimum cost by
allowing the user to define the efficiency portfolios and directly incorporate them into the
cost structure of the optimization model. This framework is intended to be tractable and
easily extended to specific applications.

In Chapter 1V, the model presented in Chapter III is validated by performing a case
study on the United States state of Georgia. Considering electricity, natural gas, and trans-
portation fuel emissions, the case study examines three scenarios. The first involves only
business-as-usual considerations; the second incorporates efficiency investments; the third
adds a carbon dioxide emissions constraint along with the efficiency investments. By ana-
lyzing these three scenarios, the study finds that a 40% reduction in carbon dioxide emis-
sions from 2015 levels is achievable by 2050 at present value costs 17.5% below that of
business-as-usual, with the carbon dioxide emissions target itself accounting for costs being
4% above what would otherwise be achieved with efficiency investments alone.

The thesis illustrates a formalized, tractable approach to decision-making in climate and
energy policy, while providing the flexibility needed for future work requiring extensions
and application to specific contexts. The full source code is provided in order to assist in

this endeavor.
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CHAPTER 1
INTRODUCTION

The seed of this thesis began on a Saturday in the spring of 2008. Dr. Valerie Thomas put
out a call to assemble a group of PhD students to spend a couple of hours on a Saturday to
help the City of Atlanta, then under the direction of Mayor Shirley Franklin, to calculate
their first Greenhouse Gas Emissions Inventory. This one-day project became a multi-year
project, including updates to the Emissions Inventory, which led to work on the City’s
first Climate Action Plan under Mayor Kasim Reid. It became clear that I could use my
mathematical modeling skillset to provide assistance in aiding the planning and course of
action in situations like these.

The decisions made today surrounding energy and climate policy will have lasting ef-
fects on society, both at the micro and macro levels. The outcomes of these individual
decisions are inherently dependent upon each other across both space and time, and the
decision-maker must consider both economic and political aspects of the problem. In re-
cent history, many societies have preferred myopic, low cost solutions over long-term,
sustainable solutions. This trend is shifting as governing bodies from international to local
levels gain a better understanding of the long-term impacts of these near-term decisions.

In increasingly divided political and economic settings, it is growing more important
to have a level of transparency, tractability, and flexibility when presenting the basis for
decisions that have been and need to be made [1], [2]. There is no doubt that differing
viewpoints will be present, but the scientific community will need to become more per-
suasive and connected with the political and business realms if lasting change is to occur.
Transparency, tractability, and flexibility are steps in this direction. This thesis provides a
framework that moves towards this end.

In Chapter II, a formalized methodology for the calculation of the levelized cost of



electricity is presented. The levelized cost is widely used as a concise estimate of the cost
of electricity generation or comparison between different technologies, incorporating the
full lifecycle costs of electricity generation into a unit price over the lifetime of the plant.
Several issues persist when these calculations are presented. First, the source and reliability
of the cost inputs are often unverifiable if they are based on insider information or models
that lack transparency. Second, the method typically involves projection of future fuel costs
throughout the projected lifetime of the project. These cost streams are highly uncertain
and have a significant effect on the result. Third, single point estimates are frequently used
for inputs, which results in point estimates for the levelized cost that do not reflect the wide
range of potential costs associated with electricity generation technologies. These issues
show a continuing need for a formalized approach for comparing the costs of generation
technologies.

In Chapter 111, a model is presented to evaluate the cost of meeting carbon dioxide emis-
sions targets using an electricity generation planning model with simultaneous selection of
efficiency investments in order to satisfy consumer service levels and policy-makers’ de-
sired carbon dioxide emissions targets. This model bridges the gap between two sets of
existing literature. The first set uses scenario-based analysis to generate feasible paths for
efficiency in order to meet an emissions targets and then calculates the resulting costs. The
second set uses optimization techniques to minimize either costs or emission, thereafter
calculating the other metric based on the results. The framework presented herein allows
a specific target to be met at minimum cost by allowing the user to define the efficiency
portfolios and directly incorporate them into the cost structure of the optimization model.
This framework is intended to be tractable and easily extended to specific applications.

In Chapter IV, the model presented in Chapter III is validated by performing a case
study on the United States state of Georgia. Considering electricity, natural gas, and trans-
portation fuel emissions, the case study examines three scenarios. The first involves only

business-as-usual considerations; the second incorporates efficiency investments; the third



adds a carbon dioxide emissions constraint along with the efficiency investments. By ana-
lyzing these three scenarios, the study finds that a 40% reduction in carbon dioxide emis-
sions from 2015 levels is achievable by 2050 at present value costs 13% below that of
business-as-usual, with the carbon dioxide emissions target itself accounting for costs be-

ing 2% above what would otherwise be achieved with efficiency investments alone.



CHAPTER 2
THE LEVELIZED COST OF ELECTRICITY

2.1 Introduction

The levelized cost is widely used as a concise estimate of the cost of electricity generation
or comparison between different technologies, incorporating the full lifecycle costs of elec-
tricity generation into a unit price. The levelized cost (C}) is the cost that, when applied
to each unit over the lifetime of the asset, is equivalent to the present value of the cost
stream. It is calculated by taking the present value of total lifecycle costs and dividing by

the present value of total lifetime electricity generation as shown in Equation 2.1.

PV |[Costs]
PV [ElectricityGeneration]

C = 2.1

The levelized cost in isolation does have limitations in its potential for being used for
power planning. The levelized cost assumes each unit of electricity to be of equal value,
which particularly comes into effect when comparing dispatchable and baseload generation
technologies with intermittent technologies. This omits a key component in determining
why a certain type of technology is chosen over another, as the variations in output and
electricity price play significant roles in this decision (Joskow 2011) [3]. Along these same
lines, the value of having control over the output at specific times of day or within a season
is not factored into this framework. The cost and requirements for frequency and voltage
control and support are not included in the calculation. Reactive power planning, which
allocates reactive power sources considering location and size to maintain optimal power
flow, is a critical component in power planning (Zhang 2007) [4]. The levelized cost is
also dependent upon a projected utilization rate, which will vary depending on the times

of day and season for which the capacity is needed. The existing resource mix will also



affect the decision of which technology to install. The current generation resources will
determine the value of displacing the electricity generated by these resources. Portfolio
diversification is an important factor when making power planning decisions, as the price of
fuels can be volatile and projections over the entire lifespan of a plant are highly uncertain.
The levelized avoided cost of electricity (LACE), which measures what it would cost the
grid to generate the electricity otherwise displaced by a newly installed technology, is one
alternative metric. In theory, when the LACE exceeds the LCOE, the value outweighs the
cost, and thus the installation would be economically beneficial (EIA 2016) [5].

In addition to the planning element itself, a number of issues arise within the calculation
of the levelized cost as seen in practice. First, the source and reliability of the cost inputs
are often unverifiable if they are based on insider information or models that lack trans-
parency. Second, the method typically involves projection of future fuel costs throughout
the projected lifetime of the project. These cost streams are highly uncertain and have a
significant effect on the result. Third, single point estimates are frequently used for inputs,
which results in point estimates for the levelized cost that do not reflect the wide range
of potential costs associated with electricity generation technologies. These issues show a
continuing need for a formalized approach for comparing the costs of generation technolo-
gies. This paper specifically addresses the first two issues by developing more transparent
capital cost and fuel cost estimates, and seeks more clarity in presentation of cost ranges
and sensitivities.

Levelized cost analyses depend heavily on the capital cost and fuel cost associated with
a given technology. In this analysis, capital costs are based on publicly available cost es-
timates for real, commercial plants, published within the past five years. Fuel costs are
projected based on past and current prices and account for the effect of discounted future
costs. This approach avoids projecting exactly how fuel costs and technologies will change
in the future. While projections of future price changes can be credible and useful in eval-

uations of electricity generating technologies, this less prediction-dependent approach can



provide a baseline for evaluation of technologies and for evaluation of the implications of
future price changes. This approach does have limitations in that cost estimates for new
technologies for which commercial plants are not yet under construction need to be devel-
oped differently. Sensitivity analysis provides a basis for understanding the implications of
uncertain parameters.

We demonstrate this approach with a case study of new electricity generation in the
United States and calculate estimated levelized cost ranges for three different electricity
generation technologies: supercritical pulverized coal, natural gas combined cycle, and
nuclear fission. An implementation of this approach is available online !; a review of the
calculation of the levelized cost of electricity is provided in the appendix.

Our calculation includes five costs: capital costs, fuel costs, fixed operation and mainte-
nance (O&M) costs, variable O&M costs, and the cost of carbon dioxide emissions. Capital
costs are assumed to occur over the book life of the plant while the other costs occur over
the entire operational life of the plant. The levelized cost is calculated for three technolo-

gies: supercritical pulverized coal, natural gas combined cycle, and nuclear fission.

2.2 Literature Review

Levelized cost analyses have been developed by many academic, governmental, and pri-
vate entities; the history of levelized cost analyses shows increasing application to a wide
range of electricity technologies, cost types and externalities, in combination with contin-
uing work to clarify and improve the methods. In 1990, Bemis and DeAngelis, building
on substantial previous work in levelized cost analyses, calculated levelized costs for 70
electricity generating technologies and two facility ownership scenarios [6]. In 1995, the
National Renewable Energy Laboratory released a report outlining a set of equations for
calculating levelized costs [7]. In 2000, Vatavuk compared the levelized cost method to the

EPAs OAQPS Control Cost Manual, noting that the two methods are different and unlikely

Thttp://www2.isye.gatech.edu/esns/lcoe/



to converge completely [8]. In 2004, Roth and Ambs presented levelized cost calculations
including externalities for 14 generation technologies using fixed charge rates [9]; Previsic
et al. presented two methodologies for calculating levelized costs: one for utility genera-
tors and one for non-utility generators [10]. Also in 2004, Kammen and Pacca reviewed
four focus areas for comparing costs of electricity generation: busbar costs, market-based
costs that include risk premiums and cost variability, market costs including subsidies, and
monetization of externalities within energy costs. They also address a range of other issues
including the costing of combined heat and power systems, and the cost of conserved en-
ergy [11]. In 2005, Rosenberg et al. calculated the levelized cost of integrated gasification
combined cycle coal, including a derivation of the carrying charge [12]. In 2008, the Con-
gressional Budget Office detailed the equations used for calculating the levelized cost using
comprehensive financial parameters [13]. Also in 2008, Cambell calculated levelized costs
for solar photovoltaic electricity including a system degradation rate [14]. In 2009, the Cal-
ifornia Energy Commission calculated the levelized cost of 18 technologies for merchants,
independently owned utilities, and publicly owned utilities [15]. In 2010, the International
Energy Association calculated levelized costs for technologies throughout many countries.
Cost inputs were obtained by a questionnaire and sensitivity analyses were performed on
costs and input parameters [16]. The Electric Power Research Institute (EPRI) frequently
releases updates to their Renewable Energy Technical Assessment [17]. In 2011, Islegen
and Reichelstein, noting that there does not seem to be a commonly accepted formula for
calculating this average cost, use the levelized cost to calculate the break-even emissions
charges that justify investing in carbon capture and sequestration technology [18]. The lit-
erature indicates growing acceptance and application of LCOE calculations; we relegate
a basic methods review to the appendix. Yet calculations of similar systems by different
authors may have considerably different results. The focus of this work is on development

of a reference approach to key data inputs.



2.3 Estimating Fuel Costs and Other Uncertain Future Cost Streams

2.3.1 Discounted Average Fuel Costs

The market price of fuel will not remain constant over time, and therefore, the cost stream
will fluctuate from year to year. A levelized cost calculation, as detailed in the appendix,
requires calculation of fuel costs throughout the lifetime of the plant. Projecting these
fuel costs introduces substantial uncertainty and potential for deviation among analysts.
Operation and maintenance costs will recur over time and can be expected to fluctuate.
The approach developed below can be applied to any recurring cost stream; fuel costs are
emphasized here because of their substantial contribution to electricity costs.

As shown in Equation 2.1, only the present value of a cost stream is included in a
levelized cost calculation. All cost streams with the same discounted present cost will have
the same levelized cost. Specifically, for a projected fuel cost stream that fluctuates in time,
there is a constant fuel cost stream with the same present value. Given a variable fuel cost
(21 ... zp) throughout the plant life (L) of a generation facility, we define the discounted
average cost (2) as the value that satisfies this relationship, as shown in Equation 2.2.

L

I PR
2 T hr)  ro {1 (1—1—7“0)4 2.2)

=1

where 7, is a constant discount rate. Solving for z, we find
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A particular value of z may correspond to an infinite number of different fuel cost

(2.3)
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projections or other cost streams. However, it is the only parameter necessary to fully char-
acterize a particular time-variable cost stream for a levelized cost calculation. Therefore,
the discounted average cost provides a single metric for comparing the total cost impact of

differing cost streams.



A similar concept can be applied to past cost streams, with costs in the distant past
weighted less heavily than recent ones; we refer to this as the historical discounted average
fuel price (h) . The calculation, shown in Equation 2.4, is similar to an explicitly nor-
malized form of exponential smoothing, where ¢ is the index present year and h(i) is the

historical price in index year 7.

_ Zf;i (1+:Li)t—1
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2.3.2 Fuel Cost Examples

Coal

The cost of coal for a power plant depends on the type of coal used and the transportation
cost. Prices for coal used for electricity in the US for 1980 through 2009 are shown in Fig-
ure 1. During this period, the use of Appalachian coal decreased, while the use of Powder
River Basin coal increased [19]; both the type of coal and the transportation distance have
changed over time. The historical prices shown are free-on-board weighted averages for bi-
tuminous, sub-bituminous, lignite, and anthracite coal. Figure 1 also shows the discounted
average fuel price from 2009 back to 1980. A $0.50/MMBtu cost of transportation was
added to the historical prices in order to provide a more direct comparison between these
prices and forecasts made for delivered prices. Rail transportation costs about $.02/ton-
mile in 2010 dollars [20]. The longest distance from either the Powder River Basin located
in Wyoming and Montana or Central Appalachia to any other location in the United States
is roughly 2,000 miles or 3,200 km. The minimum distance that the coal would be trans-
ported is assumed to be 200 miles or 320 km. Thus, transportation adds between $4/ton
and $40/ton to the fuel cost [21].

Forecasting techniques are often scenario based, as with the Department of Energys

Annual Energy Outlook (AEO) [22]. Three scenarios from the Annual Energy Outlook,



are shown in Figure 2.1, the high coal cost and low coal cost scenarios and the reference
scenario. The discounted average fuel price of these scenarios is $2.75, $1.82, and $2.20,

respectively, when calculated over the 25 year horizon provided by the AEO.
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Figure 2.1: Historical U.S. Coal Prices, AEO Forecast Scenarios, and the Historical Dis-

counted Average [23],[22]

The historical discounted average is $1.98/MMBtu when discounted at a real rate of
4.9%. Comparing these discounted average fuel values: $1.82, $2.20 and $2.75 for the
AEO low, reference, and high cases respectively, to the historical discounted average of
$1.98/MMBtu provides some perspective on how various fuel price projections affect the
levelized fuel cost of electricity generation. Our case study uses a price of $2.25/MMBtu

in 2010 dollars for the baseline discounted average price of coal.

Natural Gas

Natural gas prices, shown in Figure 2, dropped significantly in 2010 after peaking above
$12/thousand cubic feet in mid 2008 (1000 cubic feet = 1.039 MMBtu) [23]. Three sce-
narios from the Annual Energy Outlook, along with their discounted average fuel prices,

are shown in Figure 2.2. The slow technology development and rapid technology develop-
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ment scenarios were selected since they are among the upper and lower range scenarios for
natural gas prices, respectively. When calculated over the 25 year horizon projected by the
AEQ, these scenarios have discounted average fuel prices of $4.85, $5.20, and $5.71 per

MMBtu in 2009 dollars for the rapid technology, reference, and slow technology scenarios,

respectively.
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Figure 2.2: Historical U.S. Natural Gas Prices, AEO Forecast Scenarios, and the Historical

Discounted Average [23],[22]

The historical discounted average price shown in Figure 2.2 is $5.34/MMBtu when
discounted at a real rate of 4.9% from 1980 to 2009. The selection of the discount rate and
years included can significantly affect the historical discounted average. This is particularly
important for natural gas, both because of its historic price volatility, and because fuel cost
is a substantial portion of the cost of electricity derived from natural gas. Figure 2.3 shows
the historical discounted average for various discount rates as a function of the first year of
price data included. For the 2% discount rate the low natural gas prices from 1920 to 1970
result in a low historical discounted average price, whereas for a 25% discount rate, the

prices in the past have less weight and thus the historical discounted average price reflects
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recent higher prices.
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Figure 2.3: Historical U.S. Natural Gas Prices, AEO Forecast Scenarios, and the Historical

Discounted Average [23]

Recognizing that the substantial variation in post and potential future prices precludes
confidence in projection of future fuel prices, we simply select a price of $5.50/MMBtu in
2010 dollars as the baseline discounted average price for natural gas, and focus the analysis

on the effect of the uncertainty of natural gas prices on the levelized cost of electricity.

Nuclear

Nuclear fuel costs include the purchase of uranium oxide and its conversion, enrichment,
and fabrication to obtain a high enough concentration of 2**U to be used as nuclear fuel.
The weighted average price of imported and domestically produced uranium oxide from

1983 to 2008 is shown in Figure 2.4.
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Figure 2.4: Historical U.S. Nuclear Fuel Prices and the Corresponding Historical Dis-

counted Average [23]

Average prices in nominal dollars and total quantities for purchased imports and do-
mestic concentrate production were obtained from the Energy Information Administrations
Annual Energy Review 2009 Table 9.3 [23]. The weighted average price was then updated
to 2010 dollars using the Consumer Price Index from the Bureau of Labor Statistics [24].
Approximately 2.6 1bs of U3Og are required to produce one lb of nuclear fuel [25]. The
historical discounted average price of one 1b of U305 is $25.70.

When purchased, the nuclear fuel is 60 to 85 percent U3Og. In the conversion process,
the fuel becomes 99.95 percent pure uranyl nitrate for light water reactors. The cost of
conversion is between $10 and $18 per kg nuclear fuel in 2010 dollars, updated from 1991
dollars. The fuel is then enriched from approximately 0.7% 235U to 3 to 4% 235U. The
cost of enrichment is between $130 and $210 per SWU (separative work unit). The fuel is
fabricated for use in the reactor by conversion to a powder, pelletization, and then sintering

into ceramic fuel. The cost of fabrication is between $320 and $560 per kg nuclear fuel
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and the energy density of the fuel is 1032 MWh/kg [26]. Section 302 of the Nuclear Waste
Policy Act of 1982 requires civilian nuclear power reactors to pay a spent fuel fee of 1.0
mil/kWh ($1/MWh) [27]. These full life-cycle costs of nuclear fuel material, conversion,
enrichment and fabrication are equivalent to a final cost of $0.37 to $0.57/MMBtu. Other
studies use fuel costs of $0.53/MMBtu with an escalation rate of 2.5% [28], $0.68/MMBtu
levelized [29], and $0.73/MMBtu with a real escalation rate of 0.5% [30]. These conversion
costs indicate a conversion factor of approximately 80 MMBtu/Ib U3Og. Using this scaling

factor, the historical discounted average price is $0.35/MMBtu.

2.4 Capital Cost Examples

For each generation technology, publicly available costs are used to identify a range of
possible capital costs. This allows for consistency among modelers and reduced bias for or

against specific technologies.

Even for established electricity generating technologies, only a small number of plants
may have been built or proposed within recent years. With a small number of data points,
there is little basis for determining the distribution of the costs or the cause of variation in
costs. Accordingly, we use the range of capital costs for new and proposed plants for each

technology as a range for sensitivity analysis.

24.1 Coal

Public filings are available for Duke Energy Carolinas’ Cliffside Generating Station, SWEP-
COs John W. Turk power plant, Florida Power and Lights Glades power plant, and AMP
Ohios American Municipal Power generating station. Table 2.1 shows the projected overnight
costs including and excluding transmission costs for the four proposed coal-fired power
plants.

We use an average of $2,450/kW for the capital cost of coal power plants.
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2.4.2 Natural Gas

Table 2.2 shows the projected overnight costs for proposed gas-fired combined cycle power
plants, as of 2011.
Based on these estimates, we use an average value for the overnight cost of natural gas

combined cycle plants of $950/kW.

2.4.3 Nuclear

Public filings for two new nuclear power plants being built by South Carolina Energy and
Gas and Georgia Power are available through state Public Service Commissions. Of the
several plants under consideration in 2011, these are the two that appear likely to move
forward with construction [36]. To provide some consistency among the estimates, we
have identified the overnight capital cost, that is, the capital cost excluding financing costs,
and then we have explicitly included the same financing costs, fuel costs, and other costs
for all the plants to provide an estimate of wholesale electricity costs on a consistent basis.
Table 2.3 summarizes the projected overnight costs with and without transmission costs for
the two proposed US nuclear power plants, both of which are Westinghouse AP1000s.

The costs shown in Table 2.3 reflect a considerable increase in costs over the past 15
years. Data on nuclear power plants built in Japan and in the Republic of Korea from 1994
to 2006 are consistent with a 15% annual increase in capital costs [30].

Based on the projected costs of the US nuclear power plants shown in Table 2.3, we use
an average value of $4,100/kW as the overnight capital cost of new nuclear power plants

excluding transmission costs.

2.5 Operation and Maintenance (O&M) Costs and Other Costs

Estimates of O&M costs from various sources are shown in Table 2.4. Note that these

values are not utility data, but rather reflect information or estimates from the authors of
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the cited studies. For nuclear O&M costs, Du and Parsons use a real escalation rate for
O&M costs of 1.0%, and Lazard, Ltd uses an annual escalation rate of 2.5% [30],[28].

Several other costs are sometimes considered when calculating the levelized cost of
electricity, including incremental capital costs, waste fees, and decommissioning costs.
FPL certified that financial assurance of approximately $376 million per unit would be pro-
vided for decommissioning [39]. Du and Parsons assume an incremental capital cost of
$27/kW/year, $10/kW/year, and $40/kW/year for coal, natural gas, and nuclear, respec-
tively [30]. We do not assume any additional costs in our case study calculations. The
effect of including a cost associated with carbon dioxide emissions from power generation
on the levelized cost is analyzed in Section 2.6.3.

We use fixed O&M costs of $30, $13.5, and $80 per kW for coal, natural gas, and
nuclear, respectively. Variable O&M costs used in this study are $2.80, $3.00, and $0.50

per MWh for coal, natural gas, and nuclear, respectively.

2.6 Results of the Case Study

2.6.1 Baseline Values

Table 2.5 shows our estimate of the levelized busbar cost of electricity from the technolo-
gies analyzed. Since the levelized cost is heavily tied to the capacity factor, any actual
construction should be reevaluated based on its actual production.

An annual inflation rate of 2% is used for the above calculation. The percentage of
the levelized cost associated with each cost component for nuclear, coal, and natural gas is

shown in Figure 2.5.
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Table 2.5: Baseline Estimated Levelized Costs of Electricity from New Generation Capac-
ity

Coal Natural Gas Nuclear

Nameplate Capacity MW) 1,000 600 2,200
Capacity Factor 85% 85% 90%
Nominal Discount Rate 7% 7% 7%
Book Life (years) 30 20 30
Plant Life (years) 50 50 60
Heat Rate (Btu/kWh) 9,000 6,800 10,400
Capital Cost ($/kW) 2,450 950 4,100
Fixed O&M ($/kW) 30 13.5 80
Variable O&M ($/MWh) 2.8 3.0 0.5
Fuel Cost ($/MMBtu) 2.25 5.50 0.50
Carrying Charge Rate 15% 15% 18%
Levelized Cost ($/MWh) 68 55 91
Coal Natural Gas Nuclear
23% 6%

30%\

M Capital
HO&M
Fuel

9%

10% 60%  68%./

Figure 2.5: Levelized Cost Components by Technology

2.6.2 Sensitivity Analysis

Figures 2.6 through 2.8 show the sensitivity of the levelized cost to three financial param-
eters: nominal discount rate, plant life, and carrying charge rate. The sensitivities are based

on the baseline values shown in Table 2.5.
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Figure 2.6: Levelized Cost Sensitivity to Nominal Discount Rate
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Figure 2.7: Levelized Cost Sensitivity to Plant Life
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Figure 2.8: Levelized Cost Sensitivity to Carrying Charge Rate

There is a considerable range in both the potential capital cost and the potential fuel
costs. Figure 2.9 shows the sensitivity of the levelized cost from nuclear, coal, and natural
gas with respect to discounted average fuel costs and capital costs. Capitals costs range
from $3,600 to $4,600, $1,500 to $3,400, and $600 to 1,500 per KW for nuclear, coal,
and natural gas, respectively. The figure indicates that at todays prices, nuclear is more
expensive than coal, and coal is more expensive than natural gas. However, the figure also
indicates that if both the coal price and the capital cost of a coal-fired power plant are at the
upper ranges shown here, electricity from coal can be more expensive than electricity from
nuclear power. Also, at sufficiently high natural gas prices and sufficiently low coal prices,

electricity from natural gas can be more expensive than electricity from coal.
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Figure 2.9: Levelized Cost Sensitivity to Capital Cost and Fuel Price

2.6.3 Carbon Dioxide Costs

The production of 1 MWh of electricity results in approximately 1 tonne of CO2-equivalent
lifecycle greenhouse gas emissions for coal-fired power plants and approximately 0.57
tonnes for natural gas fired power plants [42]. Although production of electricity from
nuclear power results in no net direct emissions of carbon dioxide, the activities required to
produce the fuel do result in some small net emissions, on the order of 0.05 tonnes/MWh
for nuclear generation. The effect of carbon prices on levelized costs are shown in Figure

2.10, with the ranges reflecting the minimum and maximum reported capital costs.
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Figure 2.10: Effect of a Cost of Carbon Dioxide on the Levelized Cost of Electricity

Although there is significant range in the cost of all the options, at about $20/tonne
of CO2, coal-derived electricity becomes as expensive as nuclear electricity. At about
$70/tonne, natural gas derived electricity becomes as expensive as nuclear electricity and
coal is more expensive than both nuclear and natural gas electricity. Historically, the price

of coal and natural gas have been independent of one another [43].

2.6.4 Comparison with Other Studies

The levelized cost of electricity as reported by other sources is shown in Table 2.6 and
Figure 2.11. Transmission costs are excluded where possible. Costs are updated to 2010

dollars using the Consumer Price Index.
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Table 2.6: Comparison of Levelized Cost Result to Previous Studies

Study Year Coal Natural Gas Nuclear
NETL[40] 2007  67.0 71.9 -
MIT[41] 2007 534 - -
Black & Veatch[29] 2007 73.6 80.0 96.3
MIT[44] 2009  65.2 68.4 88.3
Levelized Cost ($/MWh) EPRI[45] 2009  66.8 82.5 85.1
MITI[46] 2010  60.3 62.5 98.3
IEA[16] 2010 734 77.5 49.4
EIA[22] 2010 103.3 71.7 109.9
EIA[47] 2010 954 64.9 114.9
This Study 68 55 91

Coal Natural Gas Nuclear
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Figure 2.11: Levelized Cost Comparison with Other Studies

The use of the methodology results in levelized cost values that are comparable with
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values reported by other studies, while avoiding specific projections of future fuel prices

and technological change.

2.7 Conclusions

Fuel costs and technology costs will change over time. Cost projections can be credible, and
are an important component of decision-making and policy analysis. However, it can also
be useful to separate assumptions about future cost changes from the analysis of levelized
costs. The methodology presented in this paper provides a straightforward and transparent
way to calculate the levelized cost of electricity for various technologies, and is intended
as a complement to analyses of expected future price changes. Using publicly-available
data for capital costs, and considering discounted average fuel prices with sensitivity anal-
ysis allows for technologies to be compared in a straightforward manner. The case study
shows that the methodology produces results consistent with other studies while avoiding
assumptions about future price changes. The methodology allows for additional costs and
externalities to be incorporated with minimal alteration. To provide perspective on fuel
prices, we have used historical data to develop a discounted average fuel price; other val-
ues, such as the current price or projections of future fuel prices, can be used to develop the
discounted average fuel price.

The similarity of the results with other studies suggests that other analyses are in
essence assuming that capital costs in the future will be about what they are now, and
that future fuel prices will be, in effect, the same as in the recent past. By adopting this
somewhat clearer and more explicit approach to calculating levelized electricity costs, the
approach developed here could clarify future calculations and provide a basis for under-
standing how assumptions about future technology and fuel cost changes affect projections

of future electricity costs.
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CHAPTER 3
MINIMIZING THE COST OF MEETING A CARBON DIOXIDE EMISSIONS
TARGET BY SIMULTANEOUS SELECTION OF SUPPLY AND EFFICIENCY

3.1 Introduction

As many governments at local, state, and federal levels seek to lessen their impacts on cli-
mate change, carbon dioxide emissions reduction targets are becoming increasingly com-
mon. Many of these plans set goals based on a combination of the feasibility and economics
of the policies and actions available and the necessary emissions reduction levels identified
by the scientific community. This study evaluates the cost of meeting carbon dioxide ems-
sions targets using an electricity generation planning model with simultaneous selection
of efficiency investments in order to satisfy consumer service levels and desired emissions
targets. Additionally, this model provides the investment magnitudes and timing required

to guide the decision-maker down a path to meet the targeted levels.

3.2 Literature Review

Jacobson, et al. examine the technical and econmical feasibility of replacing New York
state’s current infrastructure with wind, water, and solar energy [48]. They find that this
conversion will reduce end-use electricity demand by 37% due to an increase in efficiency
gained from not using oil and gas for transportation and heating/cooling. The resulting cost
of electricity is estimated to be 4 to 8.8 cents/kWh. When these costs include externalities
at 5.7 cents/kWh, the cost is 12 cents/kWh less than fossil fuel generation in 2030.
Bosetti, et al. use a dynamic optimal growth general equilibrium model of the climate,
energy, and economic sectors to determine the optimal combination of technical progress

and alternative enrgy investment paths to achieve atmospheric carbon dioxide stabilization
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targets [49]. Equilibrium strategies are found between twelve regions of the world as the
result of a dynamic game. They conclude that concentrations of CO, can be sustained at
levels set by the Intergovernmental Panel on Climate Change’s Fourth Assessment Report
at reasonible economic costs. This would require significant changes in the energy sector,
a large investment in R&D, and the pursuit of energy efficiency and de-carbonization of
energy.

Deetman, et al. use the TIMER model of the IMAGE Integrated Assessment modeling
framework to analzye specific mitigation options in the industry, transport, and residential
sectors [50]. This model focuses on long-term dynamic relationships within the energy
system and models energy demand as a function of changes in population, economic ac-
tivity, and price-induced changes. They use the Power ACE model, which combines a
policy-driven diffusion model with optimization techniques, to analyze the power genera-
tion sector. The PowerACE-ResInvest model, an agent-based renewable energy investment
model, is used to describe the diffusion of technologies. Finally, the full IMAGE model is
used to analyze emission reduction options not included in the energy sector. The authors
find that GHG emissions can be reduced below European 1990 levels by 2050. Although
some of the most tangible measures have a very limited effect, technological advancement
and high energy prices in Europe ensure some actions will be already be taken. They note
that trade-offs exist between measures within and between sectors. Lastly, they conclude
that bottom-up modeling of climate change mitigation options provides a starting point for
exploring explicit dynamics and policy choices.

An integer-valued minimax regret analysis method, a hybrid of inverval parameter pro-
gramming and minimax regret analysis, is proposed for planning greenhouse gas abatement
under uncertainty in Li, et al. (2011) [51]. They note that in real world problems, the qual-
ity of information is not satisfactory to determine probabilistic specifications for uncertain
parameters. They find that the optimal abatement strategy found using this method can

reduce the worst regret level of any outcome under an uncertain greenhouse gas abatement
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targets.

Martinez, et al. (2012) propose a methodology using mixed integer linear programming
to select and determine operating loads for electricity generation plants in Argentina to
minimize greenhouse gas emissions and operating costs [52]. They compare costs and
greenhouse gas emissions when the objective is to minimize greenhouse gas emissions or
to minimize costs, but they do not look at these objectives simultaneously.

Costs and emissions are minimized simultaneously in Tekiner, et al. (2010) using a
weighted objective function [53]. They find a Pareto frontier for the multi-objective gen-
eration expansion planning problem. Then Monte-Carlo simulation is used to generate
scenarios for optimal solutions under a weighted objective function. A Pareto frontier is
then found by varying these weights.

A multi-stage interval-stochastic integer programming model is used to manage green-
house gas emissions and plan electric-power systems under uncertainty in Li and Huang
(2012) [54]. They perform a case study, suggesting that a greenhouse gas emissions target
could be achieved by low-emission energy technologies but at a high cost.

Pacala and Socolow (2004) find a feasible way to lower atmospheric carbon dioxide
levels to the stabilizing level of 254 GtC/year [55]. This is accomplished using current
technologies through the year 2054. Fifteen options are proposed in two categories: en-
ergy efficiency and conservation and decarbonization of electricity and fuels. The energy
efficiency and conservation options include improved fuel economy, reduced reliance on
cars, and more efficient buildings. The decarbonization options are as follows: substituting
natural gas for coal electricity production; storage of carbon captured in power plants, hy-
drogen plants, and synfuels plants; nuclear fission, wind, and solar photovoltaic electricity;
renewable hydrogen and biofuels for vehicles; natural sinks, forest management, and agri-
cultural soils management. They conclude that, as these options are already implemented
at industrial scales, they could feasibly be scaled up to reduce carbon dioxide emissions to

the desired level. They do not calculate costs for these options.
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Williams, et al. (2012) claim that technically feasible levels of energy efficiency and
decarbonization of the energy supply are insufficient to reduce California’s greenhouse gas
emissions levels to 80 percent below 1990 levels [56]. This is likely to be untrue for states
with more carbon intense energy and low levels of penetration for energy efficiency such
as those in the Southeast.

This study employs an optimization framework to explore the potential for cost re-
ductions under carbon dioxide emissions targets when the electricity generation mix and
demand side efficiency investments are chosen simultaneously by a state-level government.
Unlike other methods, the electricity generation mix is determined by an electricity gen-
eration capacity planning model rather than being established a priori and appended with
renewable energy in structured ways. Given this additional flexibility, costs will be no
higher than using a more structured method. Additionally, the scope of this study matches
areasonable operational scope. Some methods deal with global-level solutions to the global
problem. This approach requires cooperative strategies at macro and micro levels that are
difficult to negotiate and enforce. While analyses of this sort allow for high level goal and
strategy setting, more localized implementation strategies allow lower levels of govern-
ment and individuals to act upon realizable, relatively short-term actions that aim toward

long-term global progress.

3.3 Model

In this study, we seek to minimimze the total social cost of reaching target emissions lev-
els by choosing the electricity generation mix and the level of investment in efficiency
measures to meet consumer service levels. The study focuses on carbon dioxde due to its

position as the dominant anthropogenic greenhouse gas.
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3.3.1 Parameters and Data

Calculations are based on the period of interest, 2015 to 2050, but the model is run from
2015 to 2085 in order to achieve steady state behavior for latter years. This is necessary
due to the annualization of costs, particularly with respect to capital costs. Ten electricity

generation technologies, natural gas, and three transportation fuels are considered.

Sets and Indices

T': years in the planning horizon

T'un: years in the model run horizon

H: hours per day

S': seasons (winter, summer, and intermediate)

M sectors (commercial, industrial, residential, and transportation)
I: technologies for electricity generation

L: petroleum transportation fuels (gasoline, diesel, and jet fuel)

r: real discount factor

Demand

dy, .+ electricity demand for sector m at time ¢ (MWh)
d,?,: natural gas demand for sector m at time ¢ (million therms)

dfﬁ: transportation fuel demand for fuel [ at time ¢ (thousand barrels)
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Electricity Capacity
7;0: initial generation capacity for technology ¢
y,: lower bound annual capacity expansion for technology 7
y,: upper bound annual capacity expansion for technology ¢
?j{?: planned retirements for electricity generation technology 7 at time ¢
@jf;“: planned installation for electricity generation technology ¢ at time ¢
7;: plant life for technology ¢

R: reserve margin for capacity during peak demand

Electricity Generation

;> maximum annual capacity factor of technology ¢

osoler: maximum capacity factor for technology 4 in season s at hour h

Electricity Supply
ps: seasonal factor for season s
{ts.5: demand factor for season s and hour £
As: maximum hourly demand factor for season s
0s: peak demand ratio for season s
fs: days in season s

7: electricity reserve margin
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Electricity Costs

Electricity costs included in the model are shown below. The variable O&M and fuel costs
are dependent upon the heat rate of a specific technology. These are held constant in this
formulation but could be varied throughout time as technologies become more efficient or

as less efficient plants retire.

fE: annualized capital investment cost of electricity technology i ($/MW)
f2: fixed cost of O&M ($/MW)

v;: variable cost of O&M for technology ¢($/MWh)

cs - cost of fuel for technology 7 at time ¢ ($/MWh)

cpys: cost of natural gas for sector m at time ¢ ($/million therms)

cfi: cost of transportation fuel [ at time ¢ ($/thousand gallons)

Emissions

The emissions rate is currently held constant throughout time. This could be varied through
time if the emissions rates for certain technologies were expected to change due to research

and development efforts, governmental policies, or retirement of older, less efficient plants.
wf: emissions rate for electricity generation technology ¢
w™: emissions rate for natural gas

wff : emissions rate for transportation fuel

Efficiency Investments
K : index for electricity efficiency investment for sector m

K9: index for natural gas efficiency investment for sector m
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K, ; 7+ index for transportation efficiency investment actions for fuel [

MCy, ,.: marginal cost for electricity efficiency investment in sector m for segment k

M C’gf{ .- marginal cost for natural gas efficiency investment in sector m for segment &
M C’i’;: marginal cost for transportation fuel efficiency investment in fuel / for segment £
4y, - efficiency investment available for sector m for investment £ (MWh)

qﬁf .- efficiency investment available for sector m for investment £ (million therms)

qu; .- efficiency investment (MWh) available for sector [ for investment £ (MWh)

max,: maximum annual implementation for efficiency investment (% of total available)

3.3.2 Variables

Decision Variables

i+ : additional capacity for electricity technology ¢ at time ¢

b; ; : binary variable for additional capacity for electricity technolgy 7 at time ¢

z{ s ns: hourly electricity generation by technology ¢ for season s in hour % at time ¢
2,7 annual natural gas supply for sector m at time ¢

zf’: : annual transportation fuel supply for fuel [ at time ¢

98 1.+ annual electricity demand in sector m met by efficiency investment k£ € K7,

gs;?, .+ annual natural gas demand in sector m met by efficiency investment k& € K9

gs% .+ annual transportation fuel demand in fuel [ met by efficiency investment k € K lt f
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Intermediate Variables

7, total capacity of technology ¢ at time ¢

Yi ¢: additional capacity constructed by the model and then retired for technology 7 at time

t
9m.+ annual electricity demand met by efficiency investment in sector m at time ¢

gl annual natural gas demand met by efficiency investment in sector m at time ¢
glt{: annual petroleum transportation demand met by efficiency investment for fuel [ at

time ¢
T'CY: total electricity generation cost at time ¢
TC}"Y: total natural gas cost at time ¢
TC! 7+ total transportation fuel cost at time ¢
TC ey, total cost of demand reduction efficiency investment at time ¢

TC’;{ Jiciencye. total cost of demand reduction efficiency investment for sector m at time ¢

Tcefficiency,ng .

m,t

total cost of demand reduction efficiency investment for sector m at time

t

TCeeenevtl: total cost of demand reduction efficiency investment for sector 1 at time

t

3.3.3 Objective Function

The goal of the model is to find the least cost for reducing greenhouse gas emissions to
target levels. Costs included in this formulation are limited to the cost of supplying the fuel

by the producer and the cost of investments in efficiency programs and policies. This does
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not include costs such as the purchase of new equipment by the consumer corresponding
to implemented policies and programs, energy efficiency premiums paid by the consumer,
health impacts resulting from the decisions made, or macroeconomic costs including job
creation and loss.

Accounting for energy efficiency costs can be particularly complex due to the dispersion
of costs across the government, suppliers, and consumers. Costs for energy efficiency fall
into four categories: financial incentives; information and technical assistance; program
administration; and capital. Financial incentives include subsidies, rebates, tax credits,
low-interest loans, and loan guarantees. These are attributable to the cost of energy effi-
ciency investments, as the incremental cost of the investment relates directly to the energy
saved. Information and technical assistance may be needed to disseminate and promote the
policies, which could account for a significant portion of the costs. Program administration
costs may be difficult to estimate, as the resources needed may be shared among differing
programs. Lastly, capital is required to begin most ventures and thus the cost of acquiring
and holding the capital should be included, although this is typically not the case. Where
possible, all four categories of costs should be included in the cost of energy efficiency in
order to provide fair comparisons to supplying energy services (Brown and Wang 2015)
[57].

The objective function is shown in Equation 3.1.

minimize Y (TG; +TCM 4+ TCY 4 TC! "y) ot 3.0

t
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where

TC¢ = Z [fic . (xft + qi’;mt) + fl-o . IL‘SJ + (vi + cf’t) . Z (65 * z§s7h7t) \
i i,8,h

TC)Y = Z (chdy - zp) Vi

TC = 3y (cgg; : z;g;) vt
l

TCE fficiency _ Z TC’,‘;{’ {iciency,e n Z TC’,‘;{’ {iciency,ng n Z TC’i { ficiency,tf Vi
" " l (3.2)

3.3.4 Constraints

Electricity Capacity

Electricity generation may not be installed in year 0, as these are already incorporated into
planned installations, 7}*. Thus the total unplanned installed is zero at time 1. Total
capacity for any year is equal to previous total capacity, minus planned retirements, plus

planned and chosen installations.

~inst _ ~ret )

Tio = Tio T Yio T Yio —Yio

ret ~nst ~ret

Tit = Tig-1+Yir — Yy TYir —Yig Vit=1...T
Vi = it Vit=r...T (3.3)
Yig = big -y Vit

Yit < bi,t Y Vit

Electricity Generation

zi&h’t < xzt “Tish Vi, s, h,t
(3.4)
S afpi b SmicwigxY 0,-H Vit
s,h s
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Supply

Electricity demand must be met on an hourly basis and the maximum capacity must be
sufficient to meet peak demand for every season for electricity and year for natural gas and

transportation fuels.

Z Zieysyhat 2 % Z (d;Lt - gfn,t) VS, h7 t

s ° )\s : 55 e e
Z (i - @ig) > pW (dey — gmy) Vst
i oo 3.5)
> > (i — gp2) vt
2 > d — g/ Vi, t

Energy Efficiency Investment Constraints

The investments in efficiency are calculated below.

Tt ficieney.e  _ Z (gsfn,k,t ) MC;’;L,{) Vm, t

m,t
k
TC,:;{{z'ciency,ng — Z (gS;ng,ki . MC:;?k) Vm, t (36)
k

TCifer T =3 (gt MCH) Wt
k

The total level of investment in efficiency for each source and sector is calculated below.

gfn,t = ngfn,k,t Vm, t
k

g = gsid, Vmit 3.7)
k

gf{ = ngf”;’t Vi, t
k

Efficiency investments do not have hourly load profiles in this formulation. By includ-

ing hourly load profiles for each investment, there is potential to decrease the variation in
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the supply needed throughout the day. This would potentially lead to lower peaks, which
would require less capital investment for the installation of infrastructure. Specifically for
electricity, less generation capacity would need to be installed to meet the same annual
demand.

Since cost functions and demand met with efficiency are annualized, we require that
they be nondecreasing as a percentage of the total demand. Thus we do not allow the
percentage of demand met with investment in efficiency for any year to be less than that of

the preceding years.

Im,t > Imit—1" e \V/m,t

n n d:bn:q
it zgm‘ft_l-(dn—f) vm, i (3.8)

¢ t :
Dy Z 91 ra Vit
10

Efficiency measures cannot be implemented to its maximum level in a single year even
if the full investment were made. Since these costs are annualized, efficiency investments
are constrained by a maximum implementation for all years. In the first year, efficiency
implementation is limited by the maximum. In following years, the annual increase must
be less than the maximum percent implementation. Given sufficient data, this could be

incorporated into the model explicitly for each efficiency investment across all periods or
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for each specific period rather than as a general parameter.

ISmkt < mazg - q,, for t=0
ISkt < max, - q,, for t =0
gsg,k,t < mar, - qltj,; for t =0

3.9)
ISkt — 9Smpio1  <maxg- ¢, t=1...T
ISmiks — ISmipio1  <mazg-q’, t=1...T
tf

¢ t
9Smkp — gsn{;k’,t—l < mazxg - qﬂ; t=1...T

)

Emissions Target Constraints

The emissions target set by the Climate Action Plan is enforced below.

Z (wf . zf’&h’t) + W Z Zmyt t+ Z <wff . zf{) <Lk Vi (3.10)
m l

,8,h,t

3.3.5 Solution Time

Using the Gurobi solver in a Python environment on a business-grade laptop, the fully
constrained model solves in approximately 90 seconds. Relaxing the carbon dioxide target

constraint reduces the solution time to less than 15 seconds.

3.4 Conclusion

Here we have developed a framework that will allow for both the assessment of the cost of a
carbon dioxide emissions cap and a model that shows the timeline and investment path that
will make it achievable. This framework is similar to other optimization-driven decision
models and is able to encompass the nuances of studies using scenario-based emissions
targets. This framework contrasts with assessments built around technical and economic

feasibility independent of one another. This approach would be particularly useful in situ-
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ations where the scope of the decision-maker extends into the electricity generation sector,
although the general philosophy - that of using a precise objective function to establish
best alternatives within large sets of possibilities - is useful in many circumstances that
exist within and beyond the example presented herein.

Behavioral effects for consumers are not taken into account in the model. In particular,
rebound effects, both direct and indirect, are not accounted for in the model. As production
decreases, the marginal cost of supplying electricity decreases. Should this translate into
decreased prices to consumers, price effects are likely to lead to increased consumption
of energy and income effects may lead to the purchase of additional products requiring
energy. The extent to which these actually effect savings from energy efficiency remains
a subject of disagreement (Brown and Wang 2017) [58]. The model also assumes that
demand response at a macro level has been already taken into account and that effects at
a state level will not cause significant disruption. One possible area of further research
is including this, as shown in Choi (2012) [59]. These realities are partially incorporated
by using data inputs from models such as the National Energy Modeling System (NEMS)
which incorporates the rebound and macroeconomic effects.

The models assumes that all decisions are made at the current point in time using deter-
ministic forecasts. In reality, a high level of uncertainty is present in forecasts for demand
and prices, and the horizon for which decisions must be made is likely to be less than the
full time horizon of the model. In its present form, the model would need to be run with the
updated future expectations for each period when a decision is to be made as demand and
prices are realized. The model lends itself well to a few extensions that address these is-
sues. One possibility is to use Monte Carlo simulation to extend the problem into the realm
of stochastic optimization. In this setting, uncertainty would be introduced into the model
by sampling from distributions of inputs. This makes particular sense for future costs and
demands. The set of outcomes and their accompanying decisions would then be analyzed

to lead to a decision that fits the modelers desired objective, such as minimizing the maxi-
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mum cost of achieving a carbon dioxide emissions target. A second option is to incorporate
a rolling horizon approach where decisions made in each period consider the current state
of the system and forecasts for the time horizon needed for making decisions in that period.
The previous two extensions could be combined to incorporate both the Monte Carlo simu-
lation as well as the rolling horizon, incorporating both the uncertainty in forecasts and the
horizon for which decisions must be made at each point in time. One additional extension
would be using mutli-stage dynamic programming, whereby each periods decision would
be dependent the expected optimal solutions for future periods, as shown in Shapiro (2007)
[60].

Brown and Wang (2017) note a growing appreciation for designing energy efficiency
technologies and systems around the types of service, as opposed to linking them directly
to the energy source [58]. Another interesting extension would be to flex this model to
become driven by service types, such as thermal comfort, productivity, lighting, mobility,
nutrition, and entertainment. In this setting, energy services and efficiency would be an

input to consumer service demands.
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CHAPTER 4
CASE STUDY - UNITED STATES STATE OF GEORGIA

4.1 Introduction

In this chapter, the model developed in Chapter 3 is applied to the United States state of
Georgia. The selection of this state was based on previous work with the City of Atlanta
Office of Sustainability in developing a Greenhouse Gas Emissions Inventory and Climate
Action Plan for the city. For the situation outlined, we find that carbon dioxide emissions
for Georgia could feasibly be reduced to 40% of 2015 emissions by 2050 at a net present
value cost savings of 17.5% relative to the business-as-usual baseline scenario. The ac-
tual cost of meeting the carbon dioxide target is effectively 4% above the total cost of the

scenario where efficiency investments are utilized in the absence of a carbon dioxide target.

4.2 Scenarios

In order to provide bounds for the cost of the Climate Action Plan, three scenarios are
run: business as usual (BAU) without efficiency actions or a target, efficiency investment
without a carbon target, and efficiency investment with a carbon target. An annual discount

rate of 5% is used in all scenarios.

4.3 Data and Inputs

4.3.1 Demand

EIA data are used for Georgia’s energy consumption for each source and sector. Projections
are from the EIA’s Annual Energy Outlook 2016 Reference Case Scenario for the South
Atlantic Region in Supplemental Table 3.5 which runs from 2015 to 2040 [61]. These

values were normalized to 2014 levels and then scaled by 2014 consumption for Georgia
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from the EIA’s State Energy Data System (SEDS) [62]. In years 2040 to 2085, growth
rates from 2015 to 2040 are used to extrapolate the projections. These values are shown in
Figures 4.1, 4.2, and 4.3 for electricity, natural gas, and transportation fuels, respectively.
The figures show only the period of interest rather than the entire run length of the model.
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Figure 4.1: Projected Electricity Demand for the U.S. State of Georgia, Based on EIA
Projections(MWh)
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Figure 4.2: Projected Natural Gas Demand for the U.S. State of Georgia, Based on EIA

Projections(MMTherms)
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Table 4.1: 2014 Electricity and Natural Gas Demand for Georgia [62]

Sector Electricity (GWh) Natural Gas (MMTherms)
Commercial 46,608 609

Industrial 31,849 1,660
Residential 57,167 1,387
Transportation 16.5 84

140000

— Gasoline
— Distillate Fuel Oil

— Jet Fuel

120000 |

=
o
=3
S
=3
S

80000

60000

Demand (Million Barrels

40000 |

20000 |-

o ‘ ‘ ‘ ‘ ‘
2015 2020 2025 2030 2035 2040 2045 2050
Year

Figure 4.3: Projected Transportation Fuel Demand for the U.S. State of Georgia, Based on

EIA Projections (Thousand Barrels)

Table 4.1 shows Georgia’s 2014 consumption of electricity and natural gas, and Table
4.2 shows Georgia’s 2014 consumption of transportation fuels. Figures 4.4, 4.5, and 4.6
show demand projections normalized to 2014 consumption for electricity, natural gas, and

transportation fuels, respectively.
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Table 4.2: 2014 Transportation Fuel Consumption for Georgia [62]
Sector Thousand Barrels

Gasoline 116,590
Diesel 32,050
Jet Fuel 7,806
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Figure 4.4: Electricity Demand Projections Normalized to 2014, Based on EIA Projections
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Figure 4.5: Natural Gas Demand Projections Normalized to 2014, Based on EIA Projec-

tions
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Figure 4.6: Transportation Fuel Demand Projections Normalized to 2014, Based on EIA

Projections

4.3.2 Initial Electricity Generation Capacity

The initial electricity generation capacity of each technology is based on data from the US
Environmental Protection Agency’s eGRID2012, which uses 2012 data [63]. The initial

capacities used in this analysis are shown in Table 4.3.

4.3.3 Electricity Generation Capacity Factor

Maximum capacity factors by fuel type are from Borin et. al (2010) as shown in Table 4.4

[64]. Solar hourly capacity factors are used from Choi and Thomas (2012) [59].
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Table 4.3: Electricity Capacity Generation in Georgia, 2015
Technology Initial Capacity(MW)

Coal 14,782
Nuclear 4,042
Natural Gas 17,512
Hydro 3,354
Wood Waste Solids 147
Oil 1,230
Landfill Gas 27
Biomass 632
Solar 11
Wind 0

Table 4.4: Capacity Factor by Generation Technology in Georgia

Technology Capacity Factor

Coal 0.85
Nuclear 0.89
Natural Gas 0.85
Hydro 0.44

Wood Waste Solids 0.80
Oil 0.85
Landfill Gas 0.50
Biomass 0.85
Solar 0.20

Wind 0.30

4.3.4 Electricity Generation Capacity Expansion and Demand Factors

Although generation decisions in this model are made at the annual level, one must account
for the variation of demand throughout the day and across seasons. Hourly demand factors
are the percentage of daily demand associated with each hour and are used to ensure suf-
ficient capacity is available at peak consumption times. Seasonal demand factors account
for the percentage of demand occurring in each season in order to ensure, along with the
hourly demand factor, that sufficient generation capacity is available at peak consumption.
For this study, three seasons are used: winter, summer, and intermediate. A representative
day from each season is segmented into 24 one hour periods. Lower and upper bounds on

capacity expansion, as shown in Table 4.5, and seasonal and hourly demand factors, shown
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in Table 4.6 and Figure 4.7, are based on 2006 hourly load data from Georgia Power [65].

Biomass and wind capacity expansion are capped at 9 GW and 3 GW, respectively.

Table 4.5: Capacity Bounds by Generation Technology
Technology Lower Bound (MW, Annual) Upper Bound (MW, Total)
Coal 500 -
Nuclear 1000 -
Natural Gas 250 -
Hydro 0.1 2565
Wood Waste Solids 0.1 58
Oil 0.1 -
Landfill Gas 0.01 45
Biomass 10 2800
Solar 1 -
Wind 2 1000

Table 4.6: Seasonality and Demand Factors [65]

Season Seasonality Days Maximum Demand Peak
Factor (Annually) Factor Ratio

Winter 0.24 90 0.047 1.27
Summer 0.48 153 0.050 1.23
Intermediate 0.28 122 0.046 1.25
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Figure 4.7: Hourly Demand Factor - Percentage of Consumption Occurring Each Hour by

Season [65]

4.3.5 Fixed Electricity Costs

Capital costs are from the EIA’s Annual Energy Outlook 2016 as shown in Table 4.7 [61]

annualized at a 5% discount rate using plant lifespans shown in 4.8.

Table 4.7: Annualized Capital Costs by Generation Technology [61]
Technology Capital Cost (2015$/MW/year)

Coal 58,995
Nuclear 322,675
Natural Gas 62,189
Hydro 120,630
Wood Waste Solids 70,060
Oil 62,189
Landfill Gas 553,653
Biomass 70,060
Solar 199,002
Wind 106,945
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Table 4.8: Plant Lifespans by Technology
Generation Technology Plant Life (Years)

Coal 50
Nuclear 60
Natural Gas 30
Hydro 150
Wood Waste Solids 30
Oil 30
Landfill Gas 30
Biomass 30
Solar 20
Wind 30

Fixed O&M costs are from the EIA’s Annual Energy Outlook 2016 as shown in Ta-
ble 4.9 [61]. Wood waste solids are assumed to have the same costs as natural gas combined

cycle.

Table 4.9: Fixed O&M Costs by Generation Technology [61]
Technology Fixed O&M Cost (2015 $/MW/Year)

Coal 17,120
Nuclear 98,110
Natural Gas 10,760
Hydro 14,700

Wood Waste Solids 10,760
Oil 10,760
Landfill Gas 403,970
Biomass 108,630
Solar 21,330

Wind 45,980

4.3.6 Variable Electricity Costs

Variable O&M costs are from the EIA’s Annual Energy Outlook 2016 as shown in Ta-
ble 4.10 [61]. Wood waste and biomass are assumed to have the same variable O&M cost
as coal, and oil and landfill gas are assumed to have the same variable O&M cost as natural
gas combined cycle. Heat rates, which directly effect the variable O&M and fuel costs, are

assumed to be constant throughout time.

55



Table 4.10: Variable O&M Costs by Generation Technology (2015 $/MWh)[61]
Technology Variable O&M Cost (2015 $/MWh)

Coal 3.42
Nuclear 2.25
Natural Gas 3.42
Hydro 2.62
Wood Waste Solids 3.42
Oil 3.42
Landfill Gas 9.00
Biomass 3.42
Solar 0.0

Wind 0.0

437 Fuel Costs

Fuel costs for electricity generation technologies are shown in Figure 4.8. Coal, natural
gas, and distillate fuel oil prices for the electricity sector are from the EIA’s Annual Energy
Outlook 2016 Reference Case Scenario [61]. The average cost growth rate from 2015
to 2040 is used for years beyond 2040. The heat rates for coal, combined cycle natural
gas, oil, and biomass are 9,800, 6,600, 9,960, and 13,500 Btu/kWh, respectively, from the
Assumptions to the Annual Energy Outlook 2016 [66]. Nuclear prices per MWh are from
Borin, et al. (2010) [64].
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Figure 4.8: Fuel Costs for Electricity for the U.S. State of Georgia, Based on EIA Projec-
tions ($2015/MWh)

Feedstock availability and prices for biomass generation in Georgia are aggregated from
Levin et. al (2011) [67]. The marginal and average costs per MMBtu are adjusted to 2015
dollars using the United States Bureau of Labor Statistics Consumer Price Index, as shown
in Figure 4.9 [68]. For this analysis, the cost of biomass fuel over time is held constant at

$4.45/MMBtu, or $60/MWh.
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Figure 4.9: Biomass Feedstock Costs for the U.S. State of Georgia, Based on Levin et. al

(2011) [67]

Natural gas and transportation fuel price forecasts by sector are from the EIA’s Annual
Energy Outlook 2016 as shown Figures 4.10 and 4.11 [61]. The average growth rate from
2015 to 2040 is used for years beyond 2040.
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Figure 4.11: Transportation Fuel Costs for the South Atlantic Region, Based on EIA Pro-

jections [61]

4.3.8 CO5 Emissions Rates

Emissions rates for technologies used are from eGRID 2012 [63]. Net emissions rates for
nuclear, hydro, wood waste solids, landfill gas, biomass, and solar generation are assumed

to be negligible.

Table 4.11: CO, Emissions Rates by Generation Technology [63]
Technology Emissions Rate (tonnes/MWh)

Coal 1.141
Natural Gas 0.442
Oil 0.805
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4.3.9 Efficiency Measures

A significant issue in modeling efficiency investments is the availability of demand that can
be met with efficiency and the associated costs. Efficiency costs and quantities have been
developed using the best available sources. Fuel switching is not included in the model but,
given sufficient data on the substitutability and system dynamics of the sources, could be
incorporated into the model without. In future work, this could be incorporated into the

model without updating the base structure of the model.

Literature Review

Much work has been done to quantify costs and availability of efficiency investments, par-
ticularly for electricity programs.

Researchers at Lawrence Berkeley National Laboratory have analyzed estimates of en-
ergy efficiency programs funded by customers of investor-owned utilities to establish the
full cost of saving electricity [69]. They find the average cost for the U.S. to be $0.046 per
kWh, as shown in Table 4.12 with ranges shown in Figure 4.12. The total cost includes
program administrator costs and participant costs. Lost revenue recovery and performance
incentives for the program administrator, participant transaction costs, and tax credits were
excluded from the study. Programs for Georgia are not available in the report. Figure
4.13 shows the reported total levelized cost of saved energy for North Carolina and South

Carolina, the two states geographically closest to Georgia, to be $0.041 per kWh.
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Table 4.12: Savings-weighted average total cost of saved electricity at the national level by
market sector [69]

Total Program Administrator Participant
Cost of Saved Cost of Saved Cost of Saved
Sector .. .. . .
Electricity Electricity Electricity
(2012%$/kWh) (2012%$/kWh) (2012%$/kWh)
All Sectors $0.046 $0.023 $0.022
Residential $0.033 $0.019 $0.014
Commercial,
Industrial, $0.055 $0.025 $0.030
and Agricultural
Low Income $0.142 $0.134 $0.008
$0.30
3025
5
8
g $0.20
uB: $0.15 -
3 - 0132
% $0.10 -
% $0.069 -4 s0.072
g $0,063
3 5005 $0.042 e
e $0.030
$0.00 - .
All Sectors Residential Commercial, Industrial Low Income
n=1650 n=602 & Agricultural n=138
n=822
= Savings-Weighted Average Total Cost of Saved Electricity == Median Total Cost of Saved Electricity I Interquartile Range

Figure 4.12: Savings-weighted average, median and interquartile range of total cost of
saved electricity values for all sectors. Only programs with claimed savings are included.

[69]
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Figure 4.13: Savings-weighted average total cost of saved electricity, by state [69]

Methods for assessing the costs of energy efficiency programs are presented in South-
worth and Fox (2015) [70]. This supports use of the levelized cost of energy efficiency
as a means to establish the least cost path to meeting emissions regulations, including the
U.S. Clean Power Plan. In order to demonstrate the levelized cost methodology, they report
the cost of saved energy as shown in Table 4.13. The costs are calculated based on utility
spending and savings as reported in energy efficiency dockets filed with the state Public
Service Commissions for each year.

In Billingsley, et. al (2014), the authors focus on the savings and costs to program ad-
ministrators for energy efficiency programs [71]. Since these are not total costs, they are
not directly applicable to the model presented here, but these values can serve as a lower
bound on the cost of energy efficiency. Table 4.14 shows these values for electricity effi-

ciency programs, and Table 4.15 presents values for natural gas efficiency programs. They
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Table 4.13: LCSE for Select Southeastern Utilities, 2011-2013 (2011$) [70]

Levelized Cost of Saved Energy

Uulity 2011 2012 2013
Entergy Arkansas $0.03 $0.03 $0.03
LG&E/KU(projected) $0.02 $0.02 $0.03
Tennessee Valley Authority  $0.02  $0.02  $0.02
Duke Energy Carolinas $0.01 $0.01 $0.01
Gulf Power $0.04 $0.03 $0.02

Table 4.14: The program administrator CSE for electricity efficiency programs by sector:

national savings-weighted average [71]

Levelized CSE Levelized CSE Lifetime First Year
Sector (6% Discount) (3% Discount) CSE CSE
($/kWh) ($/kWh) ($/kWh) ($/kWh)

Commerical &

Industrial (C&I) $0.021 $0.018 $0.015 $0.188
Residential $0.018 $0.016 $0.014 $0.116
Low Income $0.070 $0.059 $0.049 $0.569
Cross Sectoral/Other  $0.017 $0.014 $0.012 $0.120
National CSE $0.021 $0.018 $0.015 $0.162

conclude that program administrator costs account for roughly one-third to one-half of the

total costs associated with energy efficiency programs. Participant costs were available for

a limited number of programs and are shown in order to provide the total resource cost. Due

to the small sample size and uncertainty in how the costs were derived, the total resource

costs are presented for illustrative purposes only.

In 2016, Nadel of the American Council for an Energy-Efficiency Economy updated a

Table 4.15: The program administrator CSE for natural gas efficiency programs by sector:
national savings-weighted averages ($/therm) [71]

Levelized CSE Levelized CSE Lifetime First Year
Sector (Natural Gas) (6% Discount) (3% Discount) CSE CSE

($/therm) ($/therm) ($/therm) ($/therm)
C&l $0.17 $0.14 $0.11 $1.61
Residential $0.56 $0.43 $0.32 $6.44
Low Income $0.59 $0.47 $0.36 $6.26
Cross Sectoral/Other  $1.78 $1.55 $1.34 $12.37
National CSE $0.38 $0.31 $0.24 $3.93
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previous report published in 2012 to assess opportunities for decreasing 2050 U.S. energy
use [72]. Nadel finds that the energy efficiency measures considered in the study could
reduce energy use by 34% by 2040, reducing carbon dioxide emissions by 35%. Savings
were largest in the transportation, commercial, industrial, and residential sectors.

Wang and Brown (2014) provides estimates for the economically achievable potential
for the availability of electricity end-use efficiency and the associated levelized costs using
GT-NEMS for the entire United States of America [73]. In this study, the authors focus
on assessing policies rather than technologies with resultant costs ranging from 0.005 to
0.081 $/kWh. They report a total savings of 0.45% per year, while other studies cited range
from 0.36% to 2.26% per year, with an achievable energy efficiency potential of 10.2% in
2035. The savings potentials and LCOE’s by policy are shown in Table 4.16. The supply
curve generated by these potentials and costs is shown in Figure 4.14. Since the authors
assess policies, the scope of the decision-maker fits well with the framework presented in
this paper. Having reported their results directly as levelized costs, these values provide a

direct fit with the parameters required for the model presented here.
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Table 4.16: Savings potential and LCOE by policy [73]

Electricity Electricity
Policy efficiency efficiency LCOE*
potential (TWh) potential (TWh) (cents/kWh)
in 2020 in 2035
Residential
Appliance incentives 17.6 35.5 6.7-8.0
On-bill financing 20.2 334 6.6-7.4
Building codes 27.0 51.0 0.5-0.8
Aggressive appliance policy 23.4 59.2 0.6-0.7
Market priming 136.9 164.1 2.7-3.6
Commercial
Financing 22.6 82.6 7.8-8.1
Building codes 11.1 46.3 3.4-4.6
Benchmarking 443 107.0 0.9-14
Industrial
Motor standard 8.4 12.3 24-39
Plant and technology upgrade 7.6 21.7 3.0-4.8
CHP incentives 334 39.3 1.5-2.3

*The ranges for levelized costs result from discounting private cost at different
rates, 7 and 3%. For details of the levelized cost calculation, see Appendix of [73].
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Figure 4.14: Supply curve for electricity efficiency resources in 2020. The weighted aver-
age wholesale price is derived from the Intercontinental Exchange data which reports price

and volume information for daily transactions among the 10 largest hubs in the USA[73]

As part of their Certified Demand-Side Management Programs Report, Georgia Power
reported costs and savings for residential and commercial demand-side management pro-
grams [74]. Table 4.17 is adapted from this filing.

Mary Shoemaker at the American Council for an Energy Efficient Economy confirmed
that additional energy efficiency resource analyses specific to the state of Georgia or the
southeast were not available in the public realm [75].

Baatz, et. al (2016) reviews fourteen leading electricity efficiency program administra-
tors [76]. They find the levelized cost of saved energy (LCSE), equivalent to cost measure
used in this study, to have been flat since 2010. This supports use of levelized cost for

efficiency investments developed since 2010. Figure 4.15 shows the levelized cost of saved
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Table 4.17: 4Q 2015 Summary [74]
Program YTD Savings YTD Costs

Name (MillionkWh)  (Million $) ~ COSUKWD
Lighting 16.6 $1.3 $0.08
Appliance 6.9 $1.8 $0.26
Refrigerator Recycling 17.2 $2.4 $0.14
New Homes 7.3 $3.6 $0.49
Home Energy Improvements 12.7 $9.5 $0.75
Residential Programs 60.7 $18.6 $0.31
Custom Incentive 235.4 $11.5 $0.05
Prescriptive Incentive 42.0 $6.4 $0.15
Small Commercial 10.2 $2.4 $0.23
Commercial Programs 287.7 $20.3 $0.07
Total 348.3 $38.9 $0.11

electricity from 2007 to 2014. Figure 4.16 shows that the LCSE does not inherently in-
crease when the total savings increase for savings percentages in a range of of roughly

0.8% to 1.8%.

50.045 2.0%
0 . 1.8%

$0.040 "
50.035 - 1.6%
-l 1.4%
$0.030 p— i
- - .
- 1.2%

50.025 -
1.0%
- - - a*
$0.020 e L
0.015 i
$0.015 0.6%
$0.005 0.2%
50.000 0.0%
2007 2008 2009 2010 2011 2012 2013 2014

s Average LOSE 20145 = e Average net savings as % of sales

Figure 4.15: Annual average value of LCSE at portfolio level for the United States in 2014

dollars, and average net energy savings as percentage of sales [76]
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Figure 4.16: All sector LCSE values for the United States relative to electric savings as a

percentage of sales [76]

In Molina (2014), the costs and cost effectiveness of utility energy efficiency programs
for 20 states from 2009 to 2012 are shown [77]. Electricity and natural gas efficiency pro-
grams are reported to have an average cost of $0.028/kWh and $0.35/therm, respectively.
Figure 4.17 and Table 4.18 shows the range of costs reported. None of the states included in
the study are located in the southeastern United States. The author finds only a very weak
correlation between the cost of saved electricity and energy savings levels, which implies
that costs may not increase substantially as investments in electricity efficiency increase
from currently observed levels. Savings as a percentage of retail sales is shown in Figure
4.18. The weak correlation between the cost of saved electricity and energy savings holds

for a range of roughly 0.25% to 2.6% of the total retail sales.
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Table 4.18: Summary of results for four-year averages (2009-2012) for all states in dataset

[77]

Electricity program ($/kWh) Natural gas programs ($/therm)

Average $0.028
Median $0.026
Minimum $0.016
Maximum $0.048

$0.35
$0.37
$0.10
$0.59

20118 per levelized net kWh or therm at meter. 5% real discount rate. Each
state’s four-year average is a distinct data point. The complete data set for
individual years has lower minimum and higher maximum values.
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Figure 4.17: Electricity energy efficiency program CSE by year. Each dot represents aver-

age costs for each state in a given year. 2011$ per levelized net kWh at meter. Assumes

5% real discount rate [77]
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The values used in this study for efficiency investments for electricity, natural gas, and

transportation fuels are show in Figure 4.19.
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Figure 4.19: Efficiency Investments

Electricity

Electricity efficiency availability is based on availability presented in Wang and Brown
(2014), updated to percentages by sources and sectors by using national consumption for
2035 presented in the Annual Energy Outlook 2011 [73], [78]. Values used in this study

are shown in Table 4.19.

72



Table 4.19: Energy Efficiency Availability and Costs for Electricity
Electricity Efficiency

Sector Policy Potential (%) LCOE($/MWh)
Commercial Benchmarking 6.9% 11.5
Building codes 3.0% 40
Financing 5.3% 79.5
Industrial CHP incentives 3.8% 19
Motor standard 1.2% 31.5
Plant and technology upgrade 2.1% 39
Residential ~ Building codes 3.6% 6.5
Aggressive applicance policy 4.2% 6.5
Market priming 11.7% 31.5
On-bill financing 2.4% 70
Appliance incentives 2.5% 73.5

Table 4.20: Energy Efficiency Availability and Costs for Natural Gas

2050 End Use Incremental levelized

Sector Measure No Reduction (Mtherms) % 2015 Demand annual measure cost

($/Mtherms)
Residential 2 1869 0.16% 812,000
Industrial 29 759 0.05% 1,523,000

Natural Gas

Marginal costs and available quantities of demand side management for industrial and res-
idential sectors are scaled to the United States state of Georgia from [56]. Williams, et al.
does not include demand side management for commercial and transportation sectors di-
rectly, but rather through fuel switching, which is excluded from this study. The costs and
quantities used in this study are shown in Table 4.20. No savings directly related to natural
gas for the residential sector were available. A broader set of all efficiency investments in
natural gas would provide an opportunity for reaching the desired carbon dioxide targets at

a lower cost than presented herein.
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Table 4.21: Energy Efficiency Availability and Costs for Transportation Fuels

2050 End Use Reduction (thousand Incremental levelized annual

Fuel Measure No barrels) measure cost ($/barrel)
Diesel 21 5216 11.52
Diesel 22 5216 124.36
Diesel 23 10432 139.05
Diesel 25 3599 157.48
Diesel 26 10954 157.48
Diesel 51 313 157.48
Diesel 53 26 157.48
Diesel 54 104 157.48
Gas 19 14458 30.81
Gas 20 892 30.81
Gas 31 15172 76.91
Gas 49 5950 101.00
Gas 50 2975 109.03
Jet Fuel 24 10598 136.87
Jet Fuel 52 583 155.02

Transportation Fuels

Marginal costs and reduction levels for efficiency investments for transportation fuel, shown

in Table 4.21, are scaled to the United States state of Georgia from Williams (2012) [56].

4.3.10 Carbon Dioxide Target

For this study, carbon dioxide targets are relative to the 2015 resultant emissions from the
scenario in which no efficiency investments are available and no carbon dioxide target is
in place. Targets are set to 80% by 2020, 50% by 2035, and 40% by 2050. These were
established based on the availability of efficiency investments used in this study. Targets are
graduated between years as opposed to being step-wise targets for specific years as shown

for select years in Table 4.22.
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Table 4.22: Carbon Dioxide Emissions Targets
Year Carbon Dioxide Target (% of 2015 BAU Emissions)

2020 80%
2025 70%
2030 60%
2035 50%
2040 47%
2045 43%
2050 40%

4.4 Results

4.4.1 Electricity

Capacity

Figures 4.20 and 4.21 show the total electricity generation capacity for years 2015 to 2050.
For the scenario in which a carbon dioxide target is enforced, coal capacity is significantly
decreased and nuclear capacity is significantly increased. Natural gas capacity remains
roughly in line with the scenario in which efficiency investments are made available but
a carbon target is not enforced. Capacity from hydroelectric power, wood waste solids,
landfill gas, biomass, and solar are constant across all scenarios. Oil capacity is installed
in the scenarios where a carbon target is not enforced, and the carbon target drives the

economic installation of wind capacity.
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Figure 4.20: Total Electricity Capacity - Coal, Natural Gas, and Nuclear (MW)
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Figure 4.21: Total Electricity Capacity - Other Generation Technologies (MW)

Figures 4.22 and 4.23 show the generation capacity expansion that occurs each year.
This is affected by the retirement schedule for existing generation facilities and capacity
constructed as a result of the model. When a carbon dioxide constraint is in place, coal
power plants continue to be constructed but to a much lesser extent than in the other sce-
narios, natural gas installations slightly decrease, and nuclear installations increase. The
carbon dioxide targets make the expansion of hydroelectric power occur sooner and the

installation of wind cost effective.
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Figure 4.23: Electricity Capacity Expansion - Other Generation Technologies (MW)
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Supply

Figures 4.24 and 4.25 show the total electricity supply generated by each fuel source by
scenario. As might be expected, the electricity supply corresponds well to the increase or

decrease in each generation technology’s change in capacity.
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Figure 4.25: Electricity Supply - Other Generation Technologies (MWh)

The total electricity supply is reduced in scenarios where efficiency investments are
available, as shown in Figure 4.26. By 2050, electricity consumption is decreased by 12.6%
when efficiency investments are included and an additional 0.7% when a carbon target is

in place.
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Figure 4.26: Annual Electricity Supply (MWh)

4.4.2 Natural Gas

The amount of natural gas supplied in each scenario is the same as shown in Figure 4.27.

As will be shown later, this is due to a lack of investment in efficiency measures.
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Figure 4.27: Natural Gas Supply (Million Therms)

4.4.3 Transportation Fuel

Both gasoline and diesel show decreased supply when efficiency investments are available.
Since the full efficiency investment is chosen, the carbon dioxide target does not decrease
the supply further. By 2050, supply is decreased by 75%, 36%, and 15% for diesel, gaso-
line, and jet fuel, respectively, as shown in Figure 4.28. If demand decreases, then costs of
fuels are likely to decrease. This in turn would make efficiency investments relatively less
attractive, which might then increase the need for a carbon dioxide target to achieve desired

emissions levels.
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Figure 4.28: Transportation Fuel Supply (Thousand Barrels)

4.4.4 Efficiency Investment

In both scenarios where efficiency investments are available to satisfy consumer demand,

significant quantities are invested in electricity efficiency as shown in Figure 4.29. For

the scenario in which the carbon dioxide target is enforced, efficiency investments are 6%

higher than without the carbon dioxide target in 2050.
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Figure 4.29: Electricity Efficiency (MWh)

No efficiency investment is made in natural gas. This is due both to the economics
of the price relative cost of efficiency investment and the cost of reducing carbon dioxide
emissions associated with natural gas relative to other reduction options.

Figure 4.30 shows the efficiency investment for transportation fuels for the two scenar-
ios in which efficiency investments are available. By 2045, the efficiency investments are
equivalent for both scenarios for all three fuels. The carbon dioxide target forces a few
discrepancies on when the investments begin for diesel and jet fuel. For jet fuel, efficiency
investments are slightly elevated for years 2030 to 2040 as a result of the carbon dioxide

target.
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Figure 4.30: Transportation Fuel Efficiency (Thousand Barrels)

Figures 4.31 and 4.32 show the investment in efficiency for electricity and transporta-
tions fuels, respectively. The corresponding policies and programs can be seen in tables
4.19 and 4.21. For commercial and residential sectors in electricity and jet fuel in trans-
portation fuels, investment in segments is strictly ordered by cost. That is, before an in-
vestment is made in a segment, the entire potential of the lower costs segments are chosen.
For industrial electricity and gasoline, contiguous segments show simultaneous efficiency
investment. If the maximum annual investment were decreased to create longer rollout pe-
riods, one could expect more simultaneous investment in multiple segments within a source

and sector or fuel.
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Figure 4.32: Transportation Fuel Efficiency by Segment (Thousand Barrels)

Emissions

Figure 4.33 shows the total annual emissions by source and scenario. The economics of ef-
ficiency investments drive decreased emissions for electricity and transportation fuels. The
carbon target has a significant effect on the emissions resulting from electricity generation,

reducing carbon dioxide emission from 82% of the baseline scenario to 31% of the baseline
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Table 4.23: Energy Efficiency Costs by Segment for Electricity

Sector Segment Policy LCOE($/MWh)
Commercial 0 Benchmarking 11.5
1 Building codes 40
2 Financing 79.5
Industrial 0 CHP incentives 19
0 Motor standard 31.5
1 Plant and technology upgrade 39
Residential 0 Bplldlng .COdeS . 6.5
Aggressive appliance policy
1 Market priming 31.5
2 On-bill financing 70
Appliance incentives 73.5

Table 4.24: Energy Efficiency Costs by Segment for Transportation Fuels

Fuel Segment Measure Description Incremental levelized annual
No. measure cost ($/barrel)
Diesel 0 21 Freight Truck 11.52
1 22 Freight Rail 124.36
2 23 Domestic Shipping 139.05
3 25 Bus 157.48
3 26 Passenger Rail 157.48
3 51 Freight Truck VMT 157.48
3 53 Passenger Rail VMT 157.48
3 54 Boats & Other VMT 157.48
Gas 0 19 Passenger Light Duty 30.81
0 20 Commercial Light Duty 30.81
1 31 Gas Efficiency 76.91
2 49 Passenger Light Duty VMT 101.00
3 50 Commercial Light Duty VMT 109.03
Jet Fuel 0O 24 Air Travel 136.87
1 52 Air Travel VMT 155.02
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scenario by 2050. Transportation fuels are slightly impacted by the carbon dioxide target,

which matches the discrepancy in efficiency investments.
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Figure 4.33: Annual Emissions by Source and Scenario (Tonnes)

Annual carbon dioxide emissions for each scenario are shown in Figure 4.34. Over the
course of the 35 year time horizon, carbon dioxide emissions are reduced by 2.6 billion
tonnes, resulting in decreased emissions of 141 million tonnes annually in 2050. Efficiency
investments alone account for 1.1 billion tonne decreases over the entire time horizon and
37 million tonnes annually in 2050. This leaves the carbon dioxide target to account an

emissions reduction of 1.5 billion tonnes in total and 104 million tonnes annually by 2050.
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Figure 4.34: Total Annual Emissions (Tonnes)

Costs

Figure 4.35 shows the annual costs by scenario and source. For both supply and efficiency,
transportation fuels make up a significant portion of the total costs. Natural gas plays
an insignificant role in total costs. The total annual costs for each scenario are shown in
Figure 4.34. As shown, the total cost for the scenario in which efficiency investments are
available with a carbon dioxide target are significantly lower than the baseline cost and
slightly higher than the scenario in which a carbon dioxide target is not enforced. The total
change in net present value is shown in Table 4.25. The cost difference between scenarios

where efficiency investment is available, that is, with or without enforcing the emissions
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constraint, provides an estimate for the total cost of meeting the carbon dioxide target. In

this study it is found to increase costs by 10% for electricity and 2% across all sources. In

relation to the baseline scenario, this is a savings of 14% in total.
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Total Cost (20159%)

Table 4.25: Percent Change in Net Present Value from the Baseline Scenario

Efficiency Investments, Efficiency Investments,
No Emissions Target Emissions Target
Electricity -7.2% 7.7%
Natural Gas 0.0% 0.0%
Transportation Fuels -20.3% -20.3%
Total -17.5% -14.4%
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Figure 4.36: Total Annual Costs
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4.5 Scenario - No New Nuclear Expansion

Due to the cost overruns and extended deadlines associated with nuclear plants currently
under construction, one interesting alternative is to see what the effect of preventing new
nuclear installation would have on the overall outcome. The data and parameters were held
constant with the preceeding scenario, but no new capacity was allowed to be installed for
nuclear.

Figures 4.37 and 4.37 show that the nuclear capacity installed the in the original sce-

nario is replaced by a combination of natural gas, oil, and biomass capacity.
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Figure 4.37: Total Electricity Capacity - Coal, Natural Gas, and Nuclear - No Nuclear

Expansion (MW)
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Figure 4.38: Total Electricity Capacity - Other Generation Technologies - No Nuclear Ex-

pansion (MW)

Figures 4.39 and 4.40 show that supply follows same trajectory as installed capacity,
with natural gas, oil, and biomass filling the gap left when nuclear capacity cannot supply

additional electricity.
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Figure 4.39: Electricity Supply - Coal, Natural Gas, and Nuclear - No Nuclear Expansion
(MWh)
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Figure 4.40: Electricity Supply - Other Generation Technologies - No Nuclear Expansion

(MWh)

The amount of electricity supply is slightly decreased in the scenario without nuclear
expansion, and natural gas and transportation fuel supplies are identical in both scenarios.

Without nuclear, less coal is used to generate electricity in the scenario with the carbon
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dioxide target. The emissions difference is accounted for by switching from coal to natural

gas.
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Figure 4.41: Annual Electricity Supply - No Nuclear Expansion (MWh)
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Figure 4.42: Natural Gas Supply - No Nuclear Expansion (Million Therms)
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Figure 4.43: Transportation Fuel Supply - No Nuclear Expansion (Thousand Barrels)

In relation to the full technology set scenario, commercial electricity efficiency invest-
ments drop between 1% and 3% for year 2020 through 2024, but new policies are invested
in beginning in 2025. These lead to increases of 15% by 2038 and 21% by 2050. Natural
gas fuel efficiency remains constant. Diesel and jet fuel efficiency investments both begin

sooner when nuclear capacity is not allowed to expand.
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Figure 4.45: Transportation Fuel Efficiency - No Nuclear Expansion (Thousand Barrels)

Since generation from newly constructed nuclear capacity was only significant in the
carbon constrained case and that the carbon target constraint was tight in the original sce-

nario, emissions remain consistent in both cases as shown in Figures 4.46 and 4.47.
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Table 4.26: Percent Change in Net Present Value from the Baseline Scenario - No Nuclear

Expansion
Efficiency Investments, Efficiency Investments,
No Emissions Target Emissions Target
Electricity -7.2% 9.5%
Natural Gas 0.0% 0.0%
Transportation Fuels -11.7% -11.7%
Total -10.7% -7.2%

Total Cost (20159%)
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Figure 4.49: Total Annual Costs - No Nuclear Expansion

When nuclear capacity expansion is prohibited, the cost of the carbon target remains

roughly 4% below the cost of business as usual. Overall, removing the option to expand

nuclear capacity has no effect on the scenarios where a carbon dioxide target is not en-
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forced. For the scenario in which a carbon target is met, a 1% increase in the net present

value results from not allowing the expansion of nuclear capacity.

4.6 Conclusion

In the case study of Georgia, this analysis shows that, under a centralized decision maker,
efficiency measures are sufficient to drive the majority of the carbon dioxide emissions
reductions to meet a desired target. The total cost is approximately 18% less than the base-
line scenario and only 4% above the scenario in which efficiency investments are available
without a carbon dioxide target that must be met.

The results indicate that there is an energy efficiency gap since energy efficiency in-
vestments lead to decreased costs. Brown and Wang (2017) reviews the arguments made
by both advocates and skeptics in order to answer three areas of contention: 1) whether an
energy efficiency gap exists; 2) the size of the energy efficiency gap; and 3) how the size
energy efficiency gap can be decreased [58]. In this review, they argue that market barriers
exist that interfere with assumptions made by economists about markets. If the assump-
tions of a free market hold, which requires rational consumers with complete information
maximizing their personal utility, then all cost-effective energy efficiency investments have
already been made. Brown and Wang use ten questions to examine where market failures
and energy efficiency barriers potentially interfere with the concept of a perfect market.
Relevant issues are addressed as follows. Prices may not reflect the full cost of energy, par-
ticularly in relation to climate change, air quality, and solid waste pollution. If accounted
for in this study, it would be expected that investment in energy efficiency would increase.
Another issue is that local markets may have differing levels of efficiency investments.
Since this study is at the state level, future work could include the positive externalities
associated with energy efficiency and negative externalities associated with fossil fuel com-
bustion. This study assumes that naturally occurring efficiency is already accounted for by

using results from the National Energy Modeling System as inputs. It would be appropri-
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ate to ensure that any naturally occurring efficiency that was achieved inside the simulation
model is not available in this formulation prior to solidifying a plan. Discount rates will
also affect the attractiveness of an investment. Sensitivity analysis is useful in determining
the potential effect on outcomes under differing valuations of the future. The rebound ef-
fect is likely to decrease the net savings from energy efficiency seen in this model for some
of the policies. The magnitude of the rebound effect is still a matter of debate. For some
policies, there is no latent demand to provide a direct rebound effect. Brown and Wang
provide the example of vacuum cleaners which, if made more efficient, are not likely to
induce consumers to vacuum more frequently. This study does not account for the rebound
effect, but the use of inputs from the National Energy Modeling System negates part of this
effect on the outputs of this model. The difficulty of deploying energy efficiency is another
barrier that could create an energy efficiency gap. This is difficult to model, both in quan-
tifying the transaction costs and in establishing the adoption rate. This creates a perceived
energy efficiency gap that may not be realizable in this study. To partially account for this
difficulty, a maximum annual adoption rate is included and where possible program and
policy costs are included in the levelized cost of the electricity efficiency investment. Utili-
ties sometimes have difficulty building energy efficiency into their current business models,
which can lead to disincentives for implementing efficiency programs. Decoupling utility
revenue from profits is one approach to correcting the misalignment of incentives.

One option for decreasing demand is to increase the cost to consumers of the price of
energy services. Rate increases are not included in this study, but this would present an
alternative lever for decreasing consumption, thus likely decreasing emissions. This could
be in the form of restructured tariffs for regulated electricity producers or Pigouvian-style
taxes on energy services for consumers to internalize some of the negative externalities.
This would lead to a lessened need for carbon dioxide targets. The model also does not
account for the electricity producers’ ability to maintain profitability. Should demand de-

crease due to efficiency investments, electricity rates will need to increase in order to cover
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the large capital investment associated with electricity generation. In situations where de-
creased demand leads to decreased prices, efficiency investments will become relatively
less attractive, at which point the carbon dioxide targets may be required to decrease emis-
sions to desired levels.

The approach used in this study could be enhanced by allowing for fuel switching,
for instance intentionally moving from gasoline-powered vehicles to vehicles powered by
natural gas or electricity beyond where business-as-usual economics would drive change in
consumption behavior, and by incorporating a broader set of efficiency investments. Fuel
switching can be incorporated in a straightforward and tractable manner given good data on
a realistic adoption rate. As global climate change becomes an increasingly studied topic,

more reliable values for efficiency investments will become available at the state level.
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CHAPTER §
CONCLUSION

Borne from a desire to aid the City of Atlanta in planning and executing their Climate
Action Plan, this thesis uses optimization and economic decision analysis principles to
develop a framework for evaluating the cost of achieving a carbon dioxide target at the
state level. Initially, a formalized framework is developed for assessing the levelized cost
of electricity for coal, natural gas, and nuclear power generation. This provides a key
input to the many energy decisions and models. A model is then developed to analyze the
decisions that would lead to least-cost paths to achieving a carbon dioxide emissions target,
and the model is then applied to the United States state of Georgia.

By bridging the gap between scenario-based assessments and optimization models that
do not simultaneously address supply and efficiency, this thesis provides a new approach
to decision-making in the realm of climate and energy policy. The model evaluates the cost
of meeting carbon dioxide emissions targets using an electricity generation planning model
incorporating natural gas and transportation fuels with simultaneous selection of efficiency
investments in order to satisfy consumer service levels and policy-makers’ desired carbon
dioxide emissions targets. By requiring the decision-maker to clarify the decisions that
can or must be made, their objective function, their desired results (e.g. a carbon dioxide
target), and the system’s inherent constraints, a more transparent view of the model and the
modelers intentions is made available. This framework aims to help move these types of
analyses in the direction of transparency, tractability, and flexibility.

The Python code is provided in Georgia Tech’s GitHub repository which will allow
others to run the optimization model, to generate figures that show inputs to the model, and
to generate figures that show outputs from the model. Should you find it valuable, please

use it freely to drive this methodology forward in assisting policy-makers in achieving their
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climate and energy objectives.
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APPENDIX A
REVIEW OF LEVELIZED COST OF ELECTRICITY CALCULATION

We briefly reveiw the calculation fo the levelized cost of electricity.

A.1 Financial Parameters

The present value of a cash flow stream accounts for the time value of money by converting
the stream into its equivalent value at a single point in time. Cash flows in future years are
rolled back to a specific time period by applying a discount rate. The use of a real discount
rate (1) adjusts the nominal discount rate for inflation.

(i+r) | _r=f

R IS R R

(A.1)

Here r is the nominal discount rate, or the interest rate at which future cash flows are
discounted by the investor and f is the expected rate of inflation. The present value (PV)

of a cost stream (xg, 1, . .., T,) is thus,

T o) T . Z;
PV = a0+ + o=y A2
" T4y (1472 (I+ro)" = (1+ro) (A.2)

]

When annual costs are fixed in real terms over the life of the plant, the above equation

can be represented in closed form.

T 1
PViiged = — - |1 — ——— A3
Fiwed = T [ (1+7‘0)”} (A.3)

where x is a constant annual cost for years ¢=1...n. If costs escalate by a given rate,
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g, each year, the present value is

x 1+g)" }
P radient — 1= A4
Véradient = R [ T+ (A4)

where g is less than 7.

A.2 Investment Costs

Costs such as capital costs, periodic maintenance, or infrastructure upgrades only occur in
certain years of the life of the plant. The present values of costs of this nature are calculated
using Equation A.2.

Capital costs can account for a large portion of the total levelized cost of electricity. In
order to provide the present value of capital costs from an investors perspective, many pa-
rameters must be known. These include the percentage of the total investment that is from
debt and equity, the interest rate on debt, the required return on equity, income tax rates,
property taxes, insurance costs, construction time, tax life, and others. Estimating these
parameters to a high level of accuracy is important for a decision maker analyzing a single
plant. However, these parameters can vary greatly by location, technology, company, and
regulatory scheme. For this reason, we use a carrying charge approach when calculating
the present value of capital costs. The carrying charge approach is also used by Katzer et
al. [41] and Rosenberg et al. [12]. The carrying charge rate exchanges the variable cost
stream of capital costs for a fixed annual cost stream over the book life of the plant. The
total investment (/) is the cost of constructing the plant without consideration of financing
and discounting. The cost of construction without financing, also known as the overnight

cost (C,), is often expressed in $/kW. The total investment is

I =Cy-Cap (A.5)

where C'ap is the nameplate capacity expressed in units of power (e.g., kW). The car-

114



rying charge is applied each year over the book life of the plant and the annual capital cost

(C¢) calculated by multiplying the total investment by the carrying charge rate (y).

Co=1-y (A.6)

Thus, the present value of capital costs is

Y 1
Pvaia osts — — ° 1— — A7
CapitalCost To |: (1+T0)BL:| ( )

where BL is the book life of the plant. The book life and plant life are not necessarily
equivalent. The book life is the length of time over which initial capital costs affect the
operational finances of a company. This includes the time for the plant to fully depreciate
and for all financing to be paid in full. The plant life is the operational life of the plant,
which generally exceeds the book life of a plant by a decade or more for most power plants.
The book life and plant life may be treated as equal from an investment perspective, but this
provides inaccurate information when determining the costs of technologies. For instance,
nuclear power plants will be financed and depreciated for less than the length of the original
40 year operating permit. Most nuclear plants are then granted another 20 year extension
to their operating permit during which they operate without costs or tax benefits associated
with the initial construction. The present value of other investment costs, such as periodic

maintenance and infrastructure upgrades, can be calculated using Equation A.2.

A.3 Operational Costs

Some costs, including fuel costs and O&M costs, occur each year that the plant is in oper-

ation.
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A.3.1 Fuel Costs

Given the heat rate (H R) of a plant in units of electricity per input energy (e.g. kWh/MMBtu),
the annual electricity output (E£O) and a constant fuel price per unit energy (pr) (e.g.,
$/MMBtu), the annual fuel cost (Cr) is

The present value of fuel costs can be found by letting = equal the annual fuel cost in

Equation A.2.

A.3.2  Operation and Maintenance Costs

Operation and maintenance (O&M) costs often have fixed and variable components. The
annual fixed O&M (C'rpys) costs are determined by the nameplate capacity of the plant in

kW and the fixed O&M cost per kW (cpOM).

Crom = Cap - crom (A9)
The annual variable O&M costs (Cy oy )are determined by the annual electricity output

in kWh and the variable O&M cost per kWh (cyoar).

Cvom = EO - cyom (A.10)

Under the assumption that annual real costs of fixed and variable O&M are constant,
the present value of O&M costs can be found by letting x equal this constant total annual

cost in Equation A.3.
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A.3.3 Emissions Costs

Legislation has been considered in the United States that would place a price on carbon

emissions. The annual carbon cost is then

0002 = Pco, ER-EO (A.ll)

where the CO2 price (pco,) is in, for example, $/ton CO, and the CO, emissions rate
(E'R) is in tons COy/kWh. The carbon price could be fixed, as with a carbon tax, or it
could be variable with the calculation of a discounted average present cost as discussed in
section 2.3.1. This includes carbon costs that may start at a future date. The constant, or
discounted average, carbon price can be applied to all years of operation using Equation

A.3 to find the present value of carbon costs.

A.4 Levelized Cost of Electricity

The levelized cost, (', is calculated by finding a constant cost per kWh that when applied
to every unit of generated electricity is equal to the present value of the sum of all costs.

That is,

PV[Costs| =PV [Cc + Cp + Crom + Cvom + Cco,]
n n (A.12)

o CL Yi . Y
Z (1+ ro) G- ;(1+r0)i

where y; is the quantity of electricity generated in year :. This gives a levelized cost of

o - PV[Costs] PV[Costs] (A.13)
s Ty ~ PV|ElectricityGeneration] '

117



If y; is constant and equal to y for all 7 ,the then levelized cost can be expressed as

) - PV[Costs] (A.14)

yoo(1 - —1_
To <1 (H—To)")
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APPENDIX B
LINEAR OPTIMIZATION MODEL - MINIMIZING THE COST OF MEETING A
CARBON DIOXIDE EMISSIONS TARGET BY SIMULTANEOUS SELECTION
OF SUPPLY AND EFFICIENCY INVESTMENTS

from gurobipy import x

import numpy as np

import matplotlib.pyplot as plt
from pylab import x

import csv

import datetime

import time

import os

import pandas as pd

### Notes:
#base directory for local execution

#cd C:\ Users\Seth\Dropbox\Borin.Thesis\Gurobi

#set to True if running on GT’s server
run_condor = False
#Prints variables if True

print_var = True

date_string = datetime.datetime .now () .strftime (9%atod79NS ")

time_stamp = str(int(time.time()))
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#carbon _target = True

#DSM _actions = True

if run_condor == True

data_dir = r’/home/stu/sborin3/Data/’

out_dir = r’/home/stu/sborin3/Output/’

else

data_dir = r’C:/Users/Seth/Dropbox/Borin.Thesis/Gurobi/Data/

out_dir = r’C:/Users/Seth/Dropbox/Borin. Thesis/Gurobi/Output
/>

#Create new directory for output
new_out_dir = out_dir + date_string
os.makedirs (new_out_dir)

file_.name = new_out_dir + r’/obj’ + ’.csv’
with open(file_name ,’w’) as csvfile
csvwriter = csv.writer(csvfile)

csvwriter . writerow ((*Target’ ,’DSM’ ,’ Value ’))
file_.name = new_out_dir + r’/var’ + ’.csv’

with open(file_name ,’w’) as csvfile

csvwriter = csv.writer(csvfile)
csvwriter . writerow ((’Target’ ,’DSM’ , ’Name’ , ’Type’,  Source’,’
Tech’,’ Sector’,’Fuel’,’Segment’,’ Year’,’Season’, Hour’,’
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Units’,’ Value’))

file_name = new_out_dir + r’/tgt’ + ’.csv’
with open(file_.name ,’w’) as csvfile

csvwriter = csv.writer(csvfile)

#optimization model function

def opt(tgt,dsm,data_dir ,new_out_dir ,r,num_years,
max_yearly_implementation ,dsm_cost_multiplier ,
dsm_seg _multiplier , first_target_year ,second_target_year ,
third _target_year ,first_target_percentage ,

second _target_percentage ,third_target_percentage)

####E  sets  HAHHH
sources = [“electricity ’,
"natural_gas’,

“transportation_fuel’] #e, ng, and tf

seasons = [’ winter’,
>summer

intermediate ’ | #S

elec_techs = [’coal’,
’nuclear’,
"natural_gas’,

“hydro’,
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>wood_waste_solids ’,
‘o1l 7,
"landfill _gas’,
>biomass ’,

>solar’,

wind’ ] #1

sectors = [’ ’commercial’,
>industrial
"residential ’,

‘transportation’] #M

fuels = [’gasoline’,
diesel

“jet_fuel '] #L

years = list(range(num_years))
num_hours = 24 #H, number of hours in load curve
hours = list (range(num_hours))

#####  parameters HHHAHAH

discount_factor = {} #r

for year in years:
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discount_factor[year] = float((1 / ((1 + r) *x year)))

#Reserve margin for electricity gemeration

elec_res_margin = 0.85 #\eta

#emissions targets
baseline_emissions = 155464338.96 #False/False Year 2015
Results from 9/14/2015 — consistent with results from

emissions_target = {} #E_t

#Use linear interpolation between targets — i.e. targets
change each year, hitting the predefined targets at the
desired year

for year in years

emissions_target[year] = None
if year ==
emissions_target[year] = baseline_emissions

elif 0 < year <= first_target_year

emissions_target[year] = baseline_emissions *x (I — (1 —
first_target_percentage )x(year — 0)/(first_target_year —
0))

elif first_target_year < year <= second_target_year

emissions_target[year] = baseline_emissions x (
first_target_percentage — (first_target_percentage —
second _target_percentage ) *x (year—first_target_year)/(
second_target_year — first_target_year))

elif second_target_year <= year < third_target_year
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emissions_target[year] = baseline_emissions *x (
second_target_percentage — (second_target_percentage —
third target_percentage) x (year—second_target_year)/(
third_target_year — second_target_year))

elif year >= third_target_year

emissions_target[year] = baseline_emissions x

third _target_percentage

if tgt == True and dsm == True

file_.name = new_out_dir + r’/tgt.csv’

with open(file_name ,’a’) as csvfile

csvwriter = csv.writer(csvfile)

csvwriter . writerow (( > Year’,’ Emissions_Target’))
for year in years:

csvwriter . writerow ((year ,emissions_target[year]))

#####  forecasts + data H#HH#HAH

#create dictionaries for demand and cost
demand = {} #d"e_{m,t}, d"{ng} _{m,t,0 $d~{tf}_{1,t}$
cost = {} #%c_{m, t}"{ng}$, $c_{l,t}{tf}$

for source in sources
demand[source] = {}
cost[source] = {}
for sector im sectors

if source == ’electricity’
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demand[source ][ sector] = {}

for year in years:
demand[source ][ sector J[[ year] = None
elif source == ’natural_gas’
for sector in sectors:
demand[source ][ sector] = {}

cost[source ][ sector] = {}

for year in years:

demand[source ][ sector ][ year] = None
cost[source ][ sector J][ year] = None
elif source == ’transportation_fuel’

for fuel in fuels:
demand[source ][ fuel] = {}
cost[source ][ fuel] = {}

for year in years:
demand[source ][ fuel ][ year] = None

cost[source ][ fuel [[year] = None

#read demand

for source in sources

if source == ’electricity ’:

filename = data_dir + ’electricity_demand.csv’
with open(filename , mode = 'r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader

year = int(line[0])
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com_read float (line[1])

ind_read

float (line[2])
res_read = float(line[3])

tra_read = float(line[4])

demand[source ][ 'commercial ][ year] = com_read
demand|[source ][ "industrial *][year] = ind_read
demand[source |[ "residential ][ year] = res_read
demand|[source ][ "transportation’][year] = tra_read
elif source == ’natural_gas’:

filename = data_dir + ’natural_gas_demand.csv’

with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader

year = int(line[0])

com_read = float(line[1])

ind_read = float(line[2])

res_read

float(line [3])

tra_read = float(line[4])

demand|[source |[ "commercial ][ year] = com_read
demand|[source ][ "industrial *][year] = ind_read
demand[source |J[ "residential ][ year] = res_read
demand|[source ][ "transportation’][year] = tra_read

elif source == ’transportation_fuel ":

filename = data_dir + ’transportation_fuel_demand.csv’

with open(filename , mode="r’) as infile

reader = csv.reader(infile)
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header = next(reader)

for line in reader

year = int(line[0])
gas_read = float(line[1])
die_read = float(line[2])

jet_read = float(line[3])

demand|[source |[ *diesel ][ year] = gas_read
demand [ source ][ *gasoline’ [[ year] = die_read
demand[source ][ jet_fuel " J[year] = jet_read
### costs

#create electricity cost dictionaries
capital_cost = {} #f_i"C
fixed_om_cost = {} #f_i {0}
variable_om_cost = {} #v_i

fuel_cost = {} #$c_{i,t}"e$

for tech in elec_techs:

capital_cost[tech] = None
fixed_om_cost[tech] = None
variable_om_cost[tech] = None

fuel _cost[tech] = {}
for year in years:

fuel _cost[tech][year] = 0

#read costs

for source in sources:
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if source =="electricity’

filename = data_dir + ’electricity_fuel_costs.csv’
with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader

tech = line[0]

year = int(line[1])

fc_read = float(line[2])

fuel _cost[tech][year] = fc_read

filename = data_dir + ’electricity_costs.csv’
with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader:

tech = line [0]

cap_read = float(line[1])

fom_read

float(line [2])

vom_read = float(line[3])

capital _cost[tech] = cap_read
fixed_om_cost[tech] = fom_read
variable_om_cost[tech] = vom_read

elif source == ’natural_gas’

filename = data_dir + ’“natural_gas_costs.csv’
with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)
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for line in reader
year = int(line[0])

com_read = float(line[1])

ind_read float (line[2])
res_read = float(line[3])

tra_read = float(line[4])

cost[source ][ "commercial’ [[ year] = com_read
cost[source ][ "industrial > J[year] = ind_read
cost[source ][ residential *][year] = res_read
cost[source ][ 'transportation’ J[year] = tra_read

else

filename = data_dir + ’transportation_fuel_costs.csv’

with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader

year = int(line[0])

die_read = float(line[1])

gas_read = float(line[2])

jet_read = float(line[3])
cost[source ][ "diesel " ][ year] = die_read

cost[source ][ *gasoline’][year] = gas_read

cost[source ][ jet_fuel ’]J[year] jet_read

### emissions rate

# create dictionary
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emissions_rate = {} #\omega_i“e, \omega*{ng}, \omega l"{tf}

for source in sources:
if source == ’electricity ’:
emissions_rate[source] = {}

for tech in elec_techs

emissions_rate[source |J[tech] = None
elif source == ’natural_gas’:
emissions_rate[source] = None

elif source == ’transportation_fuel’
emissions_rate[source] = {}

for fuel in fuels:

emissions_rate[source ][ fuel] = None

#define dictionary , default to zero
for tech in elec_techs

emissions_rate[ electricity "]J[tech] = 0

#include emissions rates for specified sources and fuels

emissions_rate [ electricity " J[ coal’] = 1.141772461 #tonnes/
MWh

emissions_rate[ electricity ][ natural_gas’] = 0.442026346 #
tonnes /MWh

emissions_rate [ electricity > J[ oil’] = 0.29599316 #tonnes/

MWh

emissions_rate [ 'natural_gas’] = 5306 #tonnes/million therms
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emissions_rate [ transportation_fuel ][ gasoline’]
209.5238095 #tonnes/thousand barrels

emissions_rate [ transportation_fuel  |[ diesel’] =
240.4761905 #tonnes/thousand barrels

emissions_rate [ transportation_fuel ][ jet_fuel ’]

227.8571429 #tonnes/thousand barrels

###electricity parameters

#create general technology dictionaries

initial _capacity = {} #x_i{i,0} e

capacity_factor = {} #\pi_i

min_expansion {} #\underline{x} _i" e
max_expansion = {} #\overline{x}_i e
plant_life = {} #\tau_i

for tech in elec_techs:

initial _capacity [tech] = None
capacity_factor[tech] = None
min_expansion[tech] = None

max_expansion[tech] = None

plant_life[tech] = None

filename = data_dir + ’electricity_parameters.csv

#read general technology inputs

with open(filename , mode="r’) as infile
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reader = csv.reader(infile)
header = next(reader)

for line in reader

tech = line[0]

in_cap_read = float(line[1])

cap_fac_read float (line[2])

min_exp_read

float(line [3])

max _exp_read

float (line [4])
life_read = int(line[5])
initial_capacity[tech] = in_cap_read
capacity _factor[tech] = cap_fac_read
min_expansion[tech] = min_exp_read
max_expansion[tech] = max_exp._read

plant_life[tech] = life_read

#create technology—specific dictionaries
hourly_capacity _factor = {} #\lambda_s
planned_retirements = {} #y_ {i,r}"{e, ret}

planned_installations = {} #y_{i,r} {e, inst}

for tech in elec_techs
hourly_capacity_factor[tech] = {}

for season in seasons

hourly capacity _factor[tech][season] = {}
for hour in hours

hourly _capacity_factor[tech][season][hour] = 1
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#read hourly capacity factor

filename = data_dir + “hourly_cap_fac.csv’
with open(filename , mode="r’) as infile
reader = csv.reader(infile)

header = next(reader)

for line in reader

tech = line[0]

season = line[1]

hour = int(line[2])

hcf_read = float(line[3])

hourly _capacity _factor[tech][season][hour] = hcf_read

for tech in elec_techs

if tech != ’solar’ and tech != ’wind’:
for season in seasons:

for hour in hours:

hourly _capacity_factor[tech][season ][ hour] = 1

#create retirements/installations dictionaries
for tech in elec_techs
planned_retirements[tech] = {}
planned_installations[tech] = {}

cap_year = 0

while cap_year < 71:
planned_retirements [tech ][ cap_year] = 0
planned _installations[tech][cap_year] = 0

cap_-year += 1
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#read retirements/installations

filename = data_dir + “planned_capacity.csv’
with open(filename , mode = 'r’) as infile:
reader = csv.reader(infile)

header = next(reader)

for line in reader

tech = line[0]

year = int(line[1])
ret_read = float(line[2])

inst_read = float(line[3])

planned_retirements [tech ][ year] = ret_read
planned_installations[tech][year] = inst_read
seasonal_factor = {}

days = {}

{}
{}

max_demand_factor

peak_demand_ratio

for season in seasons:
seasonal_factor[season] = {}

days[season] = {}

max_demand _factor[season] = {}
peak_demand_ratio[season] = {}
filename = data_dir + "demand_factors_seasonality.csv’
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with open(filename, mode = ’r’) as infile:
reader = csv.reader(infile)
header = next(reader)

for line in reader

season = line [0]

sf_read = float(line[1])
days_read = int(line[2])
max_dem_read = float(line[3])

peak _dem_read = float(line [4])

seasonal_factor[season] = sf_read
days[season] = days_read
max_demand_factor[season] = max_dem_read

peak_demand_ratio[season ] peak_dem_read

#create seasonal demand factor dictionary
demand _factor = {} #\mu_{s,h}

for season in seasons:

demand _factor[season] = {}

for hour in hours

demand_factor[season ][ hour] = None

#read seasonal demand dictionary

filename = data_dir + “demand_factor.csv’

with open(filename , mode="r’) as infile

reader = csv.reader(infile)
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header = next(reader)
for line in reader
season = line [0]

hour = int(line[1])
df_read = float(line[2])

demand_factor[season ][ hour] = df_read

#create demand multipliers

{}
{J

peak_seasonal_adjustment

hourly_demand_adjustment

for season in seasons:

None

{}

peak _seasonal_adjustment[season ]

hourly _demand_adjustment[season ]
for hour in hours:

hourly demand_adjustment[season ][ hour] = None

#define demand multipliers

for season in seasons:

#adjusts annual demand to the maximum hourly demand for that
vear — % by season x max % by hour / days in season x
peak/average ratio / reserve margin for capacity

peak _seasonal_adjustment[season] = seasonal_factor[season] x
max_demand _factor[season] / days[season] x
peak _demand _ratio[season] / elec_res_margin

for hour in hours

#adjusts annual demand to hourly demand — % by season x % by
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hour / days in season
hourly demand_adjustment[season ][ hour] = seasonal_factor |

season] * demand_factor[season][hour] / days[season]

#maximum number of segments for all sources, sectors, and

years
num_segments = 5
segments = list(range(num_segments))

#create action cost function dictionaries by creating bin
sizes and marginal action costs by source, sector, and
vear — defaulting to 0 length and large cost

seg_percent = {}

seg_size = {}

marg_ac = {}

for source in sources

seg_percent[source] = {}
seg_size[source] = {}
marg_ac[source] = {}

if source == ’transportation_fuel  :

for fuel in fuels:

seg_percent[source ][ fuel] = {}
seg_size[source ][ fuel] = {}
marg_ac[source ][ fuel] = {}

for year in years
seg_percent[source ][ fuel ][ year] = {}

seg_size[source ][ fuel J[year] = {}
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marg_ac[source ][ fuel ][ year] = {}

for seg in segments
seg_percent[source ][ fuel J[year][seg] = {}
seg_size[source ][ fuel ][ year][seg] = {}
marg_ac[source ][ fuel ][ year][seg] = {}
else :

for sector in sectors:

seg_percent[source ][ sector] = {}
seg_size[source][sector] = {}
marg_ac[source ][ sector] = {}

for year in years:

seg_percent[source][sector][year] = {}
seg_size[source ][ sector][year] = {}
marg_ac[source ][ sector ][ year] = {}

for seg in segments

seg_percent[source ][ sector ][ year][seg] = {}
seg_size[source][sector][year][seg] = {}
marg_ac[source ][ sector ][ year][seg] = {}

#default to 0 size and

for source in sources

for year in years

for seg in segments:

if source == ’transportation_fuel’

for fuel in fuels
seg_percent[source ][ fuel ][ year][seg] = 0

seg_size[source ][ fuel J[year][seg] = 0
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marg_ac[source ][ fuel ][ year][seg] = 1
else

for sector in sectors

seg_percent[source ][ sector ][ year][seg] = 0
seg_size[source ][ sector ][ year][seg] = O
marg_ac[source ][ sector ][ year |[seg] =1

#read dsm segment sizes

filename = data_dir + “dsm_action_seg.csv’

with open(filename , mode="r’) as infile

reader = csv.reader(infile)

header = next(reader)

for line in reader

dsm_source = line[0]

dsm_sector_fuel = line[1]

dsm_year = int(line[2])

dsm_seg = int(line[3])

seg_percent_read = float(line [4])

seg_cost_.read = float(line[5])

seg_percent[dsm_source ][ dsm_sector_fuel J][dsm_year ][ dsm_seg]
= seg_percent_read * dsm_seg_multiplier

marg_ac[dsm_source [[dsm_sector_fuel [[dsm_year][dsm_seg] =
seg_cost_.read * dsm_cost_multiplier #for sensitivity
analysis purposes

#constant segment percentages throughout forecast period

constant_dsm_percents = True
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if constant_dsm_percents == True

for year in years

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

for seg in segments

seg_percent[source ][ fuel ][ year ][seg] = seg_percent[source ][
fuel [[O][seg]

else

for sector in sectors

for seg in segments

seg_percent[source ][ sector ][ year][seg] = seg_percent[source

][ sector ][0][seg]

for year in years

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

for seg in segments

seg_size[source |[ fuel ][ year|[seg] = seg_percent[source ][ fuel
][year][seg] * demand[source ][ fuel ][ year]

else

for sector im sectors

for seg in segments

seg_size[source ][ sector |[ year][seg] = seg_percent[source ][

sector |[ year][seg] * demand[source][sector][year]
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#if costs are annualized, set to true — else, write new code
, fill in new values

annualized _marg_ac = True

if annualized _marg_ac == True

for year in years

for seg in segments:

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

marg_ac|[source |[ fuel ][ year][seg] = marg_ac[source ][ fuel J[0]][
seg]

else

for sector in sectors

marg_ac[source |J[ sector ][ year][seg] = marg_ac[source ][ sector
1[0][seg]
if tgt == True and dsm == True

with open(new_out_dir + r’/marg_ac.csv’,’w’) as file

file . write (’ Year, Source, Sector_Fuel ,Segment, Size , Percent ,
Marginal_Cost\n’)

for year in years

for seg in segments:

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

file . write ("%s,%s,%s,%s,%f,%f,%f\n” %

(year ,source , fuel ,seg, seg_size|[source ][ fuel J[year][seg],

seg_size[source ][ fuel ][ year ][seg]/demand[source ][ fuel ][
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year ] ,marg_ac[source ][ fuel ][ year][seg]))

else

for sector in sectors

file . write ("%s,%s,%s,%s,%f,%f, % f\n” %

(year ,source ,sector ,seg, seg_size[source ][sector][year][seg
],seg_size[source ][ sector |[ year ][seg]/demand[source ][

sector |[ year ], marg_ac[source J[ sector ][ year][seg]))

try :
#####  Create a new model #H#H#H#HH

m = Model(”cost_CAP”)

mip_gap = 0.00001 #optimality gap — 0.0025 as default
m. setParam ("MIPGap”, mip_gap)

2 2

m. setParam (”LogFile”, out_dir + 7/ + str(tgt) +7_7 + str(

b

dsm) + ”.log”)

##### Create variables

#Decision variables

b = {} #binary variable for electricity

y = {} #electricity capacity installed

y_retired = {} #electricity capacity retired, costs assumed
to be included in capital cost

w = {} #total newly installed capacity

x = {} #total electricity capacity

z = {} #source supply
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g = {} #action supply

#Intermediate variables

annual_e_supply = {} #annual electricity supply by

technology
total_annual_emissions = {} #total emissions
source_annual_emissions = {} #total emissions by source
total_annual_cost = {} #total annual cost
source_annual_cost = {} #source annual cost
source_annual _efficiency_cost = {} #source annual cost

#Variables for electricity
source = ‘electricity’
for tech in elec_techs

for year in years

# binary variable — installed = 1, not installed = 0
b[tech ,year] = m.addVar(vtype = GRB.BINARY,
name = “expansion , binary ,%s,%s,,,,%s,,,” % (source ,tech,h year

)
# new capacity installed — MW by technology and year

y[tech ,year] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’expansion,continuous,%s,%s,,,,%s,, MW % (source,
tech ,year))

# new capacity installed — MW by technology and year

y _retired [tech ,year] = m.addVar(1lb=0.0,

ub=GRB. INFINITY ,
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vtype = GRB.CONTINUOUS,

name = ’'retirement ,continuous,%s,%s,,,,%s,, MW % (source ,
tech ,year))

# total new capacity requiring payment of capital costs — MW

w[tech ,year] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’tot_expansion ,continuous ,%s,%s,,,,%s,, MW’ % (source
,tech ,year))

# total capacity — MW by technology and year

x[tech ,year] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’total_capacity ,continuous,%s,%s,,,,%s,, MV % (

source ,tech ,year))

#Supply variables

for source in sources

if source == ’electricity’

for tech in elec_techs

for hour in hours

for season in seasons

for year in years

# generation — MWh by technology for a single representative
hour in a season by year

z[source ,tech ,season ,hour,year] = m.addVar(lb=0.0,

ub=GRB. INFINITY ,
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vtype = GRB.CONTINUOUS,

name = ’supply,continuous,%s,%s,,,,%s,%s,%s ,MWh’ % (source,
tech, year, season, hour))

for year in years

# total annual generation by technology

annual_e_supply[source ,tech,year] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’annual_e_supply ,continuous ,%s,%s,,,,%s,, ,MWh’ % (
source , tech, year))

elif source == ’'natural_gas’

for sector im sectors

for year in years

# supply — million therms

z[source ,sector ,year] = m.addVar(lb=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’supply,continuous,%s,,%s,,,%s,,,Mtherms’ % (source,
sector , year))

elif source == ’transportation_fuel’

for fuel in fuels

for year in years

# supply — thousand barrels

z[source , fuel ,year] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’supply,continuous ,%s,,,%s,,%s,,,1000gal’ % (source,
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fuel , year))

#DSM Action Variables by Source and Sector

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

for year in years

for seg in segments

g[source , fuel ,year,seg] = m.addVar(1lb=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’action_supply ,continuous,%s,,,%s,%s,%s,,,’ % (source

, fuel, seg, year))

else

for sector in sectors

for year in years

for seg in segments

g[source ,sector ,year ,seg] = m.addVar(1b=0.0,

ub=GRB. INFINITY ,

vtype = GRB.CONTINUOUS,

name = ’action_supply ,continuous ,%s,,%s,,%s,%s,,, % (source

, sector, seg, year))

#Emissions variables
for year in years

total_annual_emissions[year] = m.addVar(vtype = GRB.
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CONTINUOLUS,

name = ’total_annual_emissions ,continuous,,,,,,%s,,,tonnes’
% year)

total _annual_cost[year] = m.addVar(vtype = GRB.CONTINUOUS,

name = ’total_annual_cost ,continuous,,,,,,%s,,,dollars’ %
year)

for source in sources

source_annual_emissions[source,year] = m.addVar(vtype = GRB.
CONTINUOLUS,

name = ’source_annual_emissions ,continuous,%s,,,,,%s,,,

tonnes’ % (source, year))

source_annual_cost[source ,year] = m.addVar(vtype = GRB.
CONTINUOUS,
name = ’source_annual_cost ,continuous,%s,,,,,%s,,,dollars’ %

(source , year))
source_annual_efficiency_cost[source ,year] = m.addVar(vtype

= GRB.CONTINUOUS,
name = ’source_annual_efficiency_cost ,continuous,%s,,,,,%s

,,,dollars’ % (source, year))

m. update ()

####E  Constraints  #HAHH#H

### Electricity Capacity

#lnitial Capacity
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init_cap = {}

init_add_cap = {}

for tech in elec_techs

#Initial capacity

init_cap[tech] = (m.addConstr(x[tech,0] == initial_capacity [
tech] + y[tech, 0] + planned_installations[tech][0]—
planned_retirements [tech ][0],

“Initial _Capacity _%s” % tech))

#Expansion

tot_cap_installed = {}

tot_new_cap = {}

for tech in elec_techs

inst_year = 1

while inst_year < num_years

#Change in capacity

tot_cap_installed[tech,inst_year ]=(m.addConstr(x[tech ,
inst_year |

== (x[tech ,(inst_year — 1)] + y[tech, inst_year] — y_retired
[tech ,inst_year] + planned_installations[tech][inst_year ]
— planned_retirements [tech ][ inst_year]),

"Total_Capacity_Installed_%s_%i1” % (tech, inst_year)))

#Change in installed capacity

tot_new_cap[tech,inst_year] = (m.addConstr(w[tech,inst_year]

== (w[tech, (inst_year — 1)] + y[tech,inst_year] — y_retired
[tech ,inst_year] + planned_installations[tech][inst_year

D))

148



inst_year += 1
tot_new _cap[tech ,0] = (m.addConstr(w[tech ,0]
== y[tech ,0] — y_retired[tech,0] + planned_installations [

tech ][0]))

#Retirement/Installation

cap_retired = {}

cap_retired_0 = {}

for tech in elec_techs

plant_year = plant_life[tech]

while plant_year < num_years

year_built = plant_year — plant_life[tech]

cap_retired [tech, plant_year] = m.addConstr(y_retired [tech,
plant_year|]

== y[tech,year_built] + planned_installations[tech]][
year_built])

plant_year += 1

plant_year = 0

while plant_year < plant_life[tech]

if plant_year < num_years

cap_retired_O[tech,plant_year] = m.addConstr(y_retired[tech,
plant_year] == 0)

plant_year += 1

#Minimum yearly expansion/maximum total expansion
bin_exp_-1 = {}
{}

bin_exp_2
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for year in years

for tech in elec_techs:

bin_exp_1[tech,year] = (m.addConstr(y[tech, year] >= b[tech,
year] x min_expansion[tech],

"Min %s _%d” % (tech, year)))

bin_exp_-2[tech,year] = (m.addConstr(y[tech, year] <= b[tech,
year]| % max_expansion[tech],

"Max %s _%d” % (tech, year)))

#Maximum total hydro expansion

max _tot_exp = {}

max_tot_exp|[ "hydro’] = (m.addConstr(sum(y[ hydro’,year] for
year in years) <= 5 % min_expansion[ hydro’],

”Max_total_hydro”))

#Hourly capacity factors

hour_cap = {}

for year in years

for season in seasons

for hour in hours

for tech in elec_techs

hour_cap[tech, season, hour, year] = (m.addConstr(z[’
electricity ’ ,tech ,season ,hour,year]

<= x[tech ,year] * hourly_capacity_factor[tech][season][hour

I,
"Hourly _Capacity _%s _%s _%d %d” % (tech, season, hour, year)))

150



#Yearly capacity factors

cap_fac = {}

for year in years

for tech in elec_techs

cap_fac[tech, year] = (m.addConstr(sum(sum(z[’ electricity ',
tech ,season ,hour,year] for hour in hours) % days[season]
for season in seasons)

<= capacity _factor[tech] x x[tech,year] * num_hours *x sum(
days[season] for season in seasons),

”Capacity _Factor_%s _%s _%d” % (’electricity’, tech, year)))

#Meet energy demand

season_elec_demand

{}
{}

hourly_elec_demand
annual_ng_demand = {}

{}

annual _tf_demand

ann_e_supp = {}

#Note: if dsm == False, DSM actions are forced to zero

for source in sources:

for year in years

if source == ’electricity’

for season in seasons

#Sufficient capacity to meet peak hourly seasonal demand

season_elec_demand[season, year] = (m.addConstr(sum((x[tech,
year] x capacity_factor[tech]) for tech in elec_techs) #

available MW for peak hour in season
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# MW of capacity * capacity factor (¥ one hour) = capability
of meeting demand for one specific hour slot given
capacity limits

>= sum((demand[ source ][ sector |[ year] — sum(g[source ,sector ,
year ,seg] for seg in segments)) for sector im sectors) =x
peak_seasonal_adjustment[season],

#(demand — offsets) x peak seasonal adjustment = highest
hourly demand for a season

”Peak_Seasonal _%s_Demand_%s _%d” % (source, season, year)))

for hour in hours

#Sufficient generation to meet hourly demand

hourly_elec_demand[season ,hour,year] = (m.addConstr(sum(z[
source ,tech ,season ,hour,year] for tech in elec_techs)

# MWh generated for one hour x days for season = total MWh
for one hour of a season

>= sum((demand[source ][ sector ][ year] — sum(g[source ,sector ,
year ,seg] for seg in segments)) for sector im sectors) x
hourly demand_adjustment[season ][ hour],

# total (MWh demanded — offset MWh) x hourly demand
adjustment = total MWh for one hour of season

“Hourly %s_Demand %s _%d %d” % (source, season, hour, year)))

elif source == ’natural_gas’

for sector im sectors

annual _ng _demand [source ,sector, year] = (m.addConstr(z[
source ,sector ,year] >= demand[source ][ sector][year] — sum
(g[source ,sector ,year ,seg] for seg in segments),

”Annual _%s_Demand _%s _%d” % (source, sector, year)))
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else

for fuel in fuels

annual _tf_demand|[source , fuel ,year] = (m.addConstr(z[source,
fuel ,year] >= demand[source ][ fuel ][ year] — sum(g[source,
fuel ,year ,seg] for seg in segments),

”Annual _%s_Demand_%s _%d” % (source, fuel, year)))

for year in years

for tech in elec_techs

ann_e_supp|[’ electricity ’,tech,year] = (m.addConstr (
annual_e_supply[’electricity ’,tech,year]

== sum(sum((z[ electricity ’,tech,season ,hour,year] *x days]|

season]) for season in seasons) for hour in hours)))

HARABHAGAARABRABAARABRABRAGAARABRAGAAR AR AR RARABRABRARAAR AR AR R AR A

### DSM Constraints

#force DSM to zero if not available
if dsm == False

DSM_off = {}

for source in sources

if source == ’transportation_fuel’
for fuel in fuels:

for year in years

for seg in segments:

DSM_off [ source , fuel ,year ,seg] = (m.addConstr(g[source , fuel ,
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year ,seg] == 0))
else
for sector in sectors
for year in years

for seg in segments

DSM_off[ source , sector ,year ,seg] = (m.addConstr(g[source,
sector ,year ,seg] == 0))
else

###Actions nondecreasing

action_nondec = {}

dsm_per_year = {}

dsm_constr = {}

for source in sources

if source == ’transportation_fuel’

for fuel in fuels:

for seg in segments:

for year in years

if year > 0

action_nondec [source , fuel ,year,seg] = (m.addConstr(g[source,
fuel ,year ,seg] >= g[source, fuel ,(year — 1),seg]xdemand][
source ][ fuel ][ year ]/demand[source ][ fuel ][(year — 1)]))

else

for sector in sectors:

for seg in segments:

for year in years

if year > 0

action_nondec [source ,sector ,year ,seg] = (m.addConstr(g[
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source ,sector ,year ,seg] >= g[source, sector ,(year — 1),

seg]xdemand[source |[ sector |[ year ]/ demand[ source ][ sector

IlCyear — 1)1))

#max dsm implementation per year per segment

for year in years:

if year ==

for source in sources

if source == ’“transportation_fuel’

for fuel in fuels

for seg in segments

dsm_per_year[source , fuel ,year ,seg] = (m.addConstr(g[source,
fuel ,year ,seg]

<= max_yearly_implementation x seg_size[source ][ fuel ][year][
seg 1))

else:

for sector in sectors

for seg in segments

dsm_per_year[source ,sector ,year ,seg] = (m.addConstr(g[source
,sector ,year ,seg|

<= max_yearly implementation x seg_size|[source][sector][year
IlsegD))

else:

for source in sources

if source == ’transportation_fuel’

for fuel in fuels

for seg in segments
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dsm_per_year[source , fuel ,year ,seg] = (m.addConstr(g[source,
fuel ,year ,seg] — g[source, fuel ,(year—1),seg]

<= max_yearly implementation x seg_size[source ][ fuel ][year][
seg 1))

dsm_constr[source , fuel ,year,seg] = (m.addConstr(g[source,
fuel ,year ,seg] <= seg_size[source ][ fuel [[year][seg]))

else:

for sector im sectors

for seg in segments

dsm_per_year[source ,sector ,year,seg] = (m.addConstr(g[source
,sector ,year ,seg] — g[source ,sector ,(year—1),seg]

<= max_yearly_implementation * seg_size[source |[sector ][ year
I[seg]))

dsm_constr[source ,sector ,year ,seg] = (m.addConstr(g[source,

sector ,year ,seg] <= seg_size[source ][sector][year][seg]))

###Emissions

#calculate annual emissions by source and year for
simplified checking and calculation

ann_emiss = {}

source_emiss = {}

for year in years:

source_emiss|[’electricity ’, year] = (m.addConstr(
source _annual_emissions[’electricity ’,year ]

== sum((annual_e _supply[’electricity ’,tech,year] x
emissions_rate[ electricity *J[tech]) for tech in

elec_techs)))

156



b

source_emiss [’ natural_gas’, year] = (m.addConstr(
source_annual_emissions [’ natural_gas’,year]

== sum(z[ natural_gas’,sector ,year] for sector im sectors) x
emissions_rate[ 'natural_gas’]))

source_emiss [’ transportation_fuel’, year] = (m.addConstr(
source_annual_emissions [’ transportation_fuel’ ,year]

== sum((z[’ transportation_fuel’, fuel, year] x
emissions_rate [ transportation_fuel ][ fuel]) for fuel in

fuels)))

for year in years
ann_emiss[year] = (m.addConstr(total_annual_emissions|[year ]
== sum(source_annual_emissions[source ,year] for source

in sources)))

#emissions target enforced when tgt = True

if tgt == True

emiss_constr = {}

for year in years:

if year > 0

emiss_constr[year] = (m.addConstr(total_annual_emissions |
year] <= emissions_target[year],

“Emissions_Constraint_%s” % year))

else

None
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#generate_costs

tot_ann_cost = {}
source_cost = {}
source_emi_cost = {}

for year in years

tot_ann_cost[year] = (m.addConstr(total_annual_cost[year] ==

sum((x[tech, year] % fixed_om_cost[tech]) for tech in

elec_techs)

sum ((w[tech ,year] * capital_cost[tech]) for tech in
elec_techs)

sum(sum(sum((z[ electricity ’,tech ,season ,hour,year] * (
variable_om _cost[tech] + fuel_cost[tech][year]) x days][
season]) for tech in elec_techs) for season imn seasons)
for hour in hours)

sum((z[’ natural_gas’,sector ,year] x cost[ natural_gas’ ][
sector |[ year]) for sector im sectors)

sum((z[’ transportation_fuel’,fuel ,year] x cost[’
transportation_fuel ][ fuel ][ year]) for fuel in fuels)

sum(sum(g[’electricity ’,sector ,year ,seg] * marg_ac[’
electricity ’][sector ][ year|[seg] for sector im sectors)
for seg in segments)

sum(sum(g[’natural_gas’,sector ,year,seg] * marg_ac[’
natural_gas’ ][ sector ][ year][seg] for seg in segments) for
sector in sectors)

sum(sum(g[’ transportation_fuel’, fuel ,year,seg] % marg_ac[’
transportation_fuel ][ fuel [[year][seg] for seg in

segments) for fuel in fuels)
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,total_annual_cost_%s” % year))

source_cost[’electricity’, year] = (m.addConstr(
source_annual _cost[’electricity ’,year] ==

sum((x[tech, year] x fixed_om_cost[tech]) for tech in
elec_techs)

+ sum((w[tech ,year] * capital_cost[tech]) for tech in
elec_techs)

+ sum(sum(sum((z[ electricity ’,tech,season ,hour,year] x (
variable_om_cost[tech] + fuel_cost[tech][year]) x days|[
season]) for tech in elec_techs) for season in seasons)
for hour in hours)))

source_cost[ natural_gas’, year] = (m.addConstr(
source_annual _cost[ natural_gas’,year] ==

sum((z[ natural_gas’ ,sector ,year] x cost[ natural_gas’][
sector |[[ year]) for sector im sectors)))

source_cost[’transportation_fuel’, year] = (m.addConstr(
source_annual_cost[’ transportation_fuel’ ,year] ==

sum((z[’ transportation_fuel’ ,fuel ,year] *x cost[’
transportation_fuel ’ ][ fuel [[year]) for fuel in fuels)))
if dsm == True

source_emi_cost[’electricity’, year] = (m.addConstr(
source_annual_efficiency_cost[ electricity ’,year] ==

sum(sum(g[’ electricity ’,sector ,year,seg] * marg_ac[’
electricity " ][ sector ][ year][seg] for sector imn sectors)
for seg in segments)))

source_emi_cost[ ’ natural_gas’, year] = (m.addConstr(

source_annual_efficiency_cost[ natural_gas’,year] ==
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sum(sum(g[ natural_gas’,sector ,year,seg] * marg_-ac[’
natural_gas’ ][ sector ][ year][seg] for seg in segments) for
sector in sectors)))

source_emi_cost[’ transportation_fuel’, year] = (m.addConstr(

source_annual_efficiency_cost[ transportation_fuel’,year]

sum(sum(g[’ transportation_fuel ’, fuel ,year,seg] * marg_ac|[’
transportation_fuel ][ fuel J[year][seg] for seg in

segments) for fuel in fuels)))

##### Set Objective #A###

obj = sum(

(

sum((x[tech, year] % fixed_om_cost[tech]) for tech in
elec_techs)

+ sum((w[tech ,year] x capital_cost[tech]) for tech in
elec_techs)

+ sum(sum(sum((z[  electricity ’,tech,season ,hour,year] x (
variable_om_cost[tech] + fuel_cost[tech][year]) x days|[
season]) for tech inm elec_techs) for season in seasons)
for hour in hours)

+ sum((z[ natural_gas’,sector ,year] x cost[’natural_gas’ ][
sector |[[ year]) for sector im sectors)

+ sum((z[ transportation_fuel’, fuel ,year] x cost[’
transportation_fuel ][ fuel ][ year]) for fuel in fuels)

+ sum(sum(g[’electricity ’,sector ,year ,seg] * marg_ac[’

electricity " ][ sector ][ year][seg] for sector im sectors)

160



for seg in segments)
sum(sum(g[’ natural_gas’,sector ,year,seg] *x marg_ac[’

natural _gas’ ][ sector ][ year][seg] for seg in segments) for

sector inm sectors)
sum(sum(g[’ transportation_fuel ', fuel ,year,seg] * marg_ac[’
transportation_fuel ][ fuel [[ year][seg] for seg in

segments) for fuel in fuels)

discount_factor[year] for year im years)

.setObjective (obj, GRB.MINIMIZE)

##### Optimize model #####

m. optimize ()

print_stats = False

if print_stats == True

m. printStats

print_quality = False

if print_quality == True

m. printQuality ()

#####E Print model

#mod _file = new_out_dir + r ’/mod’ + date_string + ’.Ilp’

#m. write (mod _file)
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##### Print objective function values
obj_file = new_out_dir + r’/obj.csv’
with open(obj_file ,’a’) as csvfile
obj_writer = csv.writer(csvfile)

obj_writer . writerow ((tgt ,dsm,m.ObjVal))

#H###E Print variables

var_attr = {}

var_name _list = []

for v in m. getVars ()

var_.name = v.VarName

var_name _list.append(var_name)
var_attr [var_.name] = {}

var_attr [var_name ][ 'Name’] = {}
var_attr [var_name ][ "Type’] = {}
= {}
{}

[—

var_attr[var_name |[ *Source’

var_attr [var_name |[ Tech’ ]

var_attr [var_name ][’ Sector’] = {}
var_attr [var_name ][ *Fuel’] = {}
var_attr [var_name ][ Segment’] = {}
var_attr [var_name ][’ Year’] = {}
var_attr [var_name ][ *Season’] = {}
var_attr [var_name ][ "Hour’] = {}
var_attr [var_name ][ *Units ] = {}
var_attr [var_name ][ *Value’] = {}
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for v in m. getVars ()
var_name = Vv.VarName

attr = v.VarName. split(’,”)

var_attr[var_name ][ 'Name’] = attr [0]
var _attr[var_.name ][ "Type’] = attr[1]
var_attr [var_name |[ *Source’] = attr [2]
var_attr[var_name ][ "Tech’] = attr [3]
var_attr [ var_name ][ *Sector’] = attr [4]
var_attr[var_name ][ Fuel’] = attr[5]
var_attr [var_name ][ Segment’] = attr [6]
var_attr[var_name ][ *Year’ ] = attr[7]
var_attr|[var_name ][ *Season’] = attr[8]
var_attr[var_name |[ "Hour’] = attr [9]
var_attr[var_name |[ Units’] = attr[10]

var_attr[var_name |[ *Value ]

(7{0:.2f}”.format(v.x))

var_file = new_out_dir + r’/var.csv’

with open(var_file, ’a’) as csvfile:

for name in var_name _list

var_writer = csv.writer(csvfile)

var_writer . writerow ((tgt ,dsm, var_attr [name ][ 'Name’ ], var_attr
[name ][ "Type’], var_attr [name ][ Source’], var_attr [name |[ ’
Tech’],var_attr [name][ *Sector’], var_attr [name][ ’Fuel '],
var_attr [name ][ *Segment’], var_attr [name ][ ’Year’ ], var_attr

[name ][ Season’], var_attr [name][ "Hour’ ], var_attr [name ][

Units ’],var_attr [name ][ *Value’]))
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except GurobiError
m. printStats ()
print (’Error_reported —%s, %s’ % (tgt,dsm))

print (”Message: %s” % GurobiError.message)

#call opt() and output() functions

def execute ()

####A## Input parameters

#Thesis range : 71 years

num_years = 71 #T, length of model run
#Maximum yearly dsm implementation by segment
max_yearly implementation = 0.25

#Discount rate and discount factor

r = 0.05
dsm_cost_multiplier = 1.0
dsm_seg_multiplier = 1.0

first_target_year = 5 #2020

second _target_year = 15 #2030
third_target_year = 35 #2050
first_target_percentage = 0.8
second _target_percentage = 0.5

third_target_percentage = 0.4

params_file = open(new_out_dir + r’/params.txt’ ,’a’)
params _file . write ("%s.: %s.\n’ % (’num_years’ ,num_years))
params_file . write ("%s.: %s.\n’ % (’max_yearly_implementation

’,max_yearly_implementation))
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params _file . write ("%s.: %s._\n’
params_file . write ("%s.: _%s.\n’
dsm_cost_multiplier))
params _file . write ("%s.: . %s._\n’
dsm_seg _multiplier))
params_file . write ("%s.: %s._\n’
first_target_year))
params_file . write ("%s.: . %s._\n’
second_target_year))
params_file . write ("%s.: _%s.\n’
third _target_year))
params _file . write ("%s.: . %s._\n’
first_target_percentage))
params _file . write ("%s.: %s._\n’
,second _target_percentage))
params_file . write ("%s.: . %s._\n’

third _target_percentage))

params_file.close ()

#A##E## Scenarios

%

%

('r’,r))

(’dsm_cost_multiplier’,

b

(’dsm_seg _multiplier’,

("first_target_year’,

9

(’second_target_year’,

(’third_target_year’,

(’first_target_percentage ’,

(’second_target_percentage’

(’third_target_percentage’,

opt(False , False ,data_dir ,new_out_dir ,r,num_years,

max_yearly_implementation ,dsm_cost_multiplier ,

dsm_seg _multiplier , first_target_year ,second_target_year ,

third target_year ,first_target_percentage ,

second_target_percentage ,third_target_percentage)

opt(False , True,data_dir ,new_out_dir ,r,num_years ,

max_yearly_implementation ,dsm_cost_multiplier ,
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dsm_seg_multiplier , first_target_year ,second_target_year ,

third target_year ,first_target_percentage ,

second _target_percentage ,third_target_percentage)
opt(True, True,data_dir ,new_out_dir ,r,num_years ,

max_yearly_implementation ,dsm_cost_multiplier ,

dsm_seg_multiplier , first_target_year ,second_target_year ,

third target_year ,first_target_percentage ,

second _target_percentage ,third_target_percentage)

execute ()

# coding: utf—8

# In[1]:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd

from pylab import figure

from pandasql import sqldf

pd.set_option (’display.width’, 200)

get_ipython () . magic(  matplotlib_inline ’)

base_dir = r’C:/Users/Seth/Dropbox/Borin. Thesis/Gurobi/Data/
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output_dir = r’C:/Users/Seth/Dropbox/Borin. Thesis/Gurobi/’

fig_format TLopdf”

fig_years = 35

linestyles = ['=", "—, =7, 7]

# In[2]:

def generate_electricity_demand_projection ()

df = pd.read_csv(base_dir+ electricity_demand.csv’,
index_col=False , header=0)

sources = list (df.columns. values)

dfl = df[df.year <= fig_years|]

plt.figure(figsize=(15,9))

labels = []

x = dfl.year + 2015

y = dfl.commercial

plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append (’Commercial ’)

y = dfl.industrial

plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
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labels .append(’ Industrial )

y = dfl.residential
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Residential *)

y = dfl.transportation
plt.plot(x,y,linewidth=2.5, linestyle=linestyles[0])

labels .append(’ Transportation’)

plt.ylabel (’Demand.(TWh)’ ,fontsize =18)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)

plt.xlabel(’Year’,fontsize=18)

plt.savefig(output_dir+’ Figures/ +’ electricity_demand’ +
fig _format,

dpi=1000,bbox_inches="tight’)

plt.close ()

generate_electricity_demand_projection ()

# In[3]:

def generate_electricity_demand_projection_normalized ()
df = pd.read_csv(base_dir+’ electricity_demand.csv’,
index_col=False , header=0)

sources = list (df.columns. values)
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dfl = df[df.year <= fig_years]
plt.figure (figsize=(15,9))

labels = []

commercial_ 2014 46608000

industrial 2014 31849000

residential _ 2014 = 57167000
transportation_2014 = 165000

x = dfl.year + 2015

y = dfl.commercial/commercial 2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Commercial )

y = dfl.industrial/industrial_ 2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Industrial )

y = dfl.residential/residential_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Residential *)

y = dfl.transportation/transportation_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Transportation’)
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plt.ylabel (’Demand.(Relative_to.2014)’ ,fontsize=18)

plt.gca().set_ylim (bottom=0)

plt.legend(labels ,loc="upper_left’)

plt.xlabel(’Year’,fontsize=18)

plt.savefig(output_dir+’Figures/ '+’
electricity _demand _normalized’ + fig_format,

dpi=1000,bbox_inches="tight’)

#plt.show()

plt.close ()

generate _electricity _demand _projection_normalized ()

# In[4]:

def generate_ng_demand_projection ()

df = pd.read_csv(base_dir+’natural_gas_demand.csv’,
index_col=False , header=0)

sources = list (df.columns. values)

dfl = df[df.year <= fig_years|]

plt.figure(figsize=(15,9))

labels = []

x = dfl.year + 2015

dfl .commercial

<
1]
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plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Commercial )

y = dfl.industrial
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Industrial )

y = dfl.residential
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Residential *)

y = dfl.transportation
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Transportation’)

plt.ylabel (’Demand.(Million _Therms)’ ,fontsize=18)
plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)
plt.xlabel(’Year’,fontsize=18)
plt.savefig(output_dir+’ Figures/ +’ ng_demand’ + fig_format,
dpi=1000,bbox_inches="tight )

plt.close ()

generate_ng_demand_projection ()

# In[5]:
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def generate_ng_demand_projection_normalized ()

df = pd.read_csv(base_dir+’natural_gas_demand.csv’,
index _col=False , header=0)

sources = list (df.columns. values)

dfl = df[df.year <= fig_years]

plt.figure(figsize=(15,9))

labels = []

x = dfl.year + 2015

609

commercial_2014

industrial_2014 1660

residential_ 2014 = 1387

transportation_2014 = 84

y = dfl.commercial/commercial 2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append (’Commercial ’)

y = dfl.industrial/industrial 2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
labels .append(’ Industrial )

y = dfl.residential/residential_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Residential *)
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y = dfl.transportation/transportation_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Transportation ’)

plt.ylabel (’Demand.(Million._.Therms)’ ,fontsize=18)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)

plt.xlabel(’Year’,fontsize=18)

plt.savefig(output_dir+’Figures/ + ng_demand_normalized’ +
fig _format,

dpi=1000,bbox_inches="tight’)

plt.close ()

generate_ng_demand_projection_normalized ()

# In[6]:

def generate_tf_demand_projection ()

df = pd.read_csv(base_dir+’transportation_fuel_demand.csv’,
index_col=False , header=0)

sources = list (df.columns. values)

dfl = df[df.year <= fig_years]

plt.figure(figsize=(15,9))

labels = []
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x = dfl.year + 2015

y = dfl.gasoline
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Gasoline )

y = dfl.diesel
plt.plot(x,y,linewidth=2.5, linestyle=linestyles[0])
labels .append(’ Distillate ~Fuel _Oil ")

y = dfl.jet_fuel
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’Jet _Fuel )

plt.ylabel (’Demand.(Million_.Barrels)’,fontsize=18)
plt.gca().set_ylim (bottom=0)

plt.legend(labels ,loc="upper_right’)
plt.xlabel(’Year’,fontsize=18)
plt.savefig(output_dir+’ Figures/ +’tf_demand’ + fig_format,
dpi=1000,bbox_inches="tight’)

plt.close ()

generate_tf_demand_projection ()

# In[7]:

def generate_tf_demand_projection_normalized ()
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df = pd.read_csv(base_dir+’transportation_fuel_-demand.csv’,
index_col=False , header=0)

sources = list (df.columns. values)

dfl = df[df.year <= fig_years]

plt.figure(figsize=(15,9))

labels = []

x = dfl.year + 2015

gasoline_2014 = 116590
diesel_2014 = 32050
jet_fuel_2014 = 7806

y = dfl.gasoline/gasoline_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Gasoline ’)

y = dfl.diesel/diesel_2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
labels .append(’ Distillate .Fuel .Oil *)

y = dfl.jet_fuel/jet_fuel_ 2014
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
labels .append(’Jet_Fuel ")

plt.ylabel (’Demand.(Million_Barrels)’,fontsize=18)
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plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_right’)

plt.xlabel(’Year’,fontsize=18)

plt.savefig(output_dir+’ Figures/ 4+’ tf_demand_normalized’ +
fig_format ,

dpi=1000,bbox_inches="tight’)

plt.close ()

generate_tf_demand_projection_normalized ()

# In[8]:

def generate_hourly_demand_factor ()
df = pd.read_csv(base_dir+’demand_factor.csv’, index_col=
False , header=0)

plt.figure(figsize=(15,9))

labels = []
x = df.hour[df.season == ’winter’]
y = df.demand_factor[df.season == ’summer’ ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append (’Summer’)

y = df.demand_factor[df.season == ’intermediate ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
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labels .append(’ Spring/Fall’)

y = df.demand_factor[df.season == ’winter’ ]
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Winter’)

plt.ylabel (’Percentage _of_.Daily.Demand’,fontsize=18)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)

plt.xlabel (’Hour’,fontsize=18)

plt.savefig(output_dir+’Figures/ + hourly_demand_factor’ +
fig _format,

dpi=1000,bbox_inches="tight’)

plt.close ()

generate _hourly _demand_factor ()

# In[9]:

#need to add the remaining technologies

def generate_electricity _fuel_costs ()

df = pd.read_csv(base_dir+’electricity_fuel_costs.csv’,
index_col=False , header=0)

dfl = df[df.year <= fig_years]

techs = df.tech.dropna().unique ()

plt.figure (figsize=(15,9))
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labels = []

x = dfl.year[dfl.tech == ’coal’] + 2015

for t in techs

y = dfl.fuel_cost[dfl.tech == t]
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(t. title ().replace(”_-7,7.7"))

plt.ylabel (’2015$_per MWh’ ,fontsize=18)
plt.gca().set_ylim (bottom=0)
plt.legend (labels ,loc="upper_left’)

plt.xlabel (’Year’,fontsize=18)

9

plt.savefig(output_dir+’ Figures/ + electricity _fuel_costs’ +
fig_format ,

dpi=1000,bbox_inches="tight”)

plt.close ()

generate_electricity _fuel_costs ()

# In[10]:

def generate_ng _fuel_costs ()

df = pd.read_csv(base_dir+ natural_gas_costs.csv’, index_col

=False , header=0)
dfl = df[df.year <= fig_years]
plt.figure(figsize=(15,9))

labels = []
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x = dfl.year + 2015

y = dfl.commercial
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append (’Commercial ’)

y = dfl.industrial
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
labels .append(’ Industrial )

y = dfl.residential
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Residential *)

y = dfl.transportation
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Transportation’)

plt.ylabel (’2015%_per_Million_Therms’ ,fontsize=18)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="lower_right’)

plt.xlabel(’Year’,fontsize=18)

plt.savefig(output_dir+’Figures/ +’ng_fuel_costs’ +
fig_format ,

dpi=1000,bbox_inches="tight’ ,fontsize=18)

plt.close ()
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generate_ng_fuel_costs ()

# In[l11]:

def generate_tf_fuel_costs ()

df = pd.read_csv(base_dir+’transportation_fuel_costs.csv’,
index_col=False , header=0)

dfl = df[df.year <= fig_years]

plt.figure (figsize=(15,9))

labels = []

x = dfl.year + 2015

y = dfl.gasoline
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’ Gasoline )

y = dfl.diesel
plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])
labels .append(’ Distillate ~Fuel _Oil ")

y = dfl.jet_fuel

plt.plot(x,y,linewidth=2.5, linestyle=linestyles [0])

labels .append(’Jet _Fuel )
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plt.ylabel (’Cost_(2015%$_per_Million_Barrels)’,fontsize=18)
plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)
plt.xlabel(’Year’,fontsize=18)

’

plt.savefig(output_dir+’ Figures/ +  tf_fuel_costs’ +

fig_format,
dpi=1000,bbox_inches="tight’)
plt.close ()

generate_tf_fuel_costs ()

# In[12]:

def generate_biomass_feedstock_costs ()
plt.figure (figsize=(15,9))

labels = []

#TBtu_to MMBtu = float((10xx12)/(10%x%6))

#MMBtu_to MWh = 13.5

(0,0.1,3.1,6.1,30.1,35.1,72.1,72.2,233.2,235.2,269.2,301.2,333.2,42¢

#x[:] = [i*xTBtu_to_ MMBtu for i in x]
y_mc =

[0,1.2,1.68,1.93,3.04,3.07,3.3,3.31,3.65,4.47,4.55,4.55,4.84,5,5.7,7

#y_mc[:] = [i*MMBtu_to MWh for i in y_mc]
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labels .append(’Marginal .Cost’)
plt.plot(x,y_mc,linewidth=2.5,linestyle=linestyles [0])
y_ac =

[1.2,1.2,1.66,1.84,2.76,2.9,3.1,3.17,3.42,3.78,4,4.13,4.28,4.43,4.6°

#y_ac[:] = [i*MMBtu_to MWh for i in y_ac]

labels .append(’ Average.Cost’)

plt.plot(x,y_ac,linewidth=2.5,linestyle=linestyles [0])

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)

plt.xlabel (’ Availability .(TBtu)’,fontsize=18)

plt.ylabel (’Cost.(2015$/MMBtu)’,fontsize =18)

plt.savefig(output_dir+’ Figures/ + biomass_fuel_costs’ +
fig_format,

dpi=1000,bbox_inches="tight’)

#plt.show()

plt.close ()

generate _biomass _feedstock_costs ()
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APPENDIX C
FIGURE GENERATION FROM MODEL OUTPUTS

# coding: utf-—8

# In[40]:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd

from pylab import figure

from pandasql import sqldf

pd.set_option (’display.width’, 200)

get_ipython () .magic(  matplotlib_inline )

base_dir = r’C:\ Users\Seth\Dropbox\Borin. Thesis\Gurobi/’

folder_num ’0224190334°

fig_format

" pdf’

df _var = pd.read_csv(base_dir+r’Output/’+folder_num+r’/ +°

var.csv’, index_col=False, header=0)
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df_tgt = pd.read_csv(base_dir+r’ Output/’+folder_.num+r’/’+’

tgt.csv’, index_col=False, header=0)
df _obj = pd.read_csv(base_dir+r’Output/’+folder_num+r’/’+’
obj.csv’, index_col=False, header=0)

df_eff = pd.read_csv(base_dir+r’ Output/’+folder_num+r’/’+’

marg_ac.csv’, index_col=False, header=0)
var_list = []
source_list = []
sector_list = []

fuel_list = []

var _list = df_var.Name.dropna () .unique ()
source_list = df_var.Source.dropna().unique ()
sector_list = df_var.Sector.dropna().unique ()

fuel_list = df_var.Fuel.dropna().unique ()

tech_list = df_var.Tech.dropna().unique ()
linestyles - [’_’, ’__” ’_.’, ’:’,’*’,”\’]
dsm_scenarios = [True, False]

tgt_scenarios = [True, False ]

fig_years = 35

print (var_list)
print (source_list)
print (tech_list)

print (tgt_scenarios)
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# In[41]:

def generate_total_capacity(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,18))

i=1

for tech in tech_list

if tech in [’coal’,’ nuclear’,’natural_gas’]:

plt.subplot(10,1,1)

labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl .DSM
== dsm) ].empty == False

x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(dfl.Tech == tech) & (dfl.Target == tgt) & (
df1 .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])
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labels .append(’ Target: %s_Efficiency: _%s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel (%s’ % str(tech).title ().replace(”_.7,7."),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="lower_left’)

1+=1

plt.xlabel (’Year’,fontsize=14)

plt.savefig(base_dir+’ Figures/’ +’%s _%s_1" % (v,s) +
fig _format,

dpi=1000,bbox_inches="tight’)

#plt.show()

plt.close ()

plt.figure (figsize=(15,21))

i=1

for tech in tech_list

if tech not in [’coal’, nuclear’,’natural_gas’]:
plt.subplot(10,1,1)

labels = []

j =20

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if df1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl .DSM

== dsm) ].empty == False
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x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(df]l.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s_Efficiency: _%s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_-7,7.7),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==1

plt.legend (labels ,loc="lower._left’)

1+=1

plt.xlabel(’Year’,fontsize=14)

plt.savefig(base_dir+’ Figures/’ +’%s_%s_-2° % (v,s) +
fig_format ,

dpi=1000,bbox_inches="tight’)

#plt.show ()

plt.close ()

#generate total_electricity_capacity

v = “total_capacity’
s = “electricity”’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)
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& (df_var[’Source’] == s)
]

generate _total_capacity (v,s,df_v)

# In[42]:

def generate_expansion(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value ) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

t_list = dfl.Tech[dfl.Total > 0].unique ()

plt.figure (figsize=(15,18))

i=1

for tech in t_list

if tech in [’coal’,’nuclear’,’natural_gas’]:
plt.subplot(10,1,1)

labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl.DSM
== dsm) |].empty == False
x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl

.DSM == dsm)] + 2015
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y = dfl.Total [(dfl.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

labels .append(’ Target: %s_Efficiency: _%s’ %(str(tgt),str (dsm)
)

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

] +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_",7.7"),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_left’)

i+=1

plt.xlabel(’Year’,fontsize=14)

plt.savefig(base_dir+’Figures/ 4+ %s _%s_-1" % (v,s) +
fig_format ,

dpi=1000,bbox_inches="tight )

#plt.show()

plt.close ()

plt.figure (figsize=(15,21))

i=1

for tech in t_list

if tech not in [’coal’,’nuclear’,’natural_gas’]:
plt.subplot(10,1,1)

labels = []

j =0

for tgt in tgt_scenarios
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for dsm in dsm_scenarios

if df1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl .DSM
== dsm) ].empty == False
x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl

.DSM == dsm)] + 2015

y = dfl.Total[(dfl.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

labels .append(’ Target: %s_Efficiency: %s’ %(str(tgt),str (dsm)
)

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

j +=1

plt.ylabel (%s’ % str(tech).title ().replace(”_.7,7."),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==1

plt.legend (labels ,loc="upper_center’)

1+=1

plt.xlabel(’Year’,fontsize=14)

plt.savefig(base_dir+’ Figures/’ +’%s_%s_-2" % (v,s) +
fig_format ,

dpi=1000,bbox_inches="tight’)

#plt.show()

plt.close ()

#generate electricity capacity expansion
v = ’expansion’

s = “electricity’
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df_.v = df_var[(df_var[ ’Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]

generate_expansion(v,s,df_v)

# In[43]:

def generate_tot_expansion(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

t_list = dfl.Tech[dfl.Total > 0].unique ()

plt.figure (figsize =(15,20))
i=1

for tech in t_list

if tech in [’coal’,’ nuclear’,’natural_gas’]:
labels = []
j =20

for tgt in tgt_scenarios
for dsm in dsm_scenarios
if df1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl .DSM

== dsm) ].empty == False
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x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(df]l.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s_Efficiency: _%s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_-7,7.7),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==1

#plt.legend(labels ,loc="upper left )

plt.legend (bbox_to_anchor=(0, 1), loc="upper_left’, ncol=1)

i+=1

plt.xlabel(’Year’,fontsize=14)

#plt.savefig(base_dir+ Figures/ + %s_%s_-1" % (v,s) +
fig_format ,

# dpi=1000,bbox_inches="tight ’)

plt.show ()

plt.close ()

#generate total electricity capacity expansion
v = “tot_expansion’

s = “electricity’
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df_.v = df_var[(df_var[ ’Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]

#generate_tot_expansion(v,s, df_-v)

# In[44]:

def generate_retirement(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,20))

t_list = dfl.Tech[dfl.Total > 0].unique ()

i=1

for tech in t_list

plt.subplot(10,1,1)

labels = []

j =20

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if df1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl .DSM

== dsm) ].empty == False
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x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(df]l.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s_Efficiency: _%s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_-7,7.7),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==1

plt.legend (labels ,loc="best’)

#plt.legend(bbox_to_anchor=(0, 1), loc="upper left’, ncol=1)

i+=1

plt.xlabel (’Year’,fontsize=14)

plt.show ()

#plt.savefig(base_dir+ Figures/ + %s _%s’ % (v,s) +
fig_format ,

# dpi=1000,bbox _inches="tight ’)

plt.close ()

#generate electricity capacity retirement

v = ’retirement’
s = “electricity”’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
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& (df_var[’Name’] == v)
& (df_var[’Source’] == s)
]

#generate _retirement (v,s, df_v)

# In[45]:

def generate_annual_e_supply(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

plt.figure (figsize=(15,24))

t_list = dfl.Tech[dfl.Total > 0].unique ()

i=1

for tech in t_list
plt.subplot(10,1,1)
labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl.DSM
== dsm) |].empty == False
x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl

.DSM == dsm)] + 2015
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y = dfl.Total [(dfl.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]])

labels .append(’ Target: %s_Efficiency: %s’ %(str(tgt),str (dsm)
)

] +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_",7.7"),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_right’)

i+=1

plt.xlabel (’Year’,fontsize=14)

#plt.show()

plt.savefig(base_dir+  Figures/’ + %s_%s’ % (v,s) + fig_format

dpi=1000,bbox_inches="tight’)

plt.close ()

#generate annual electricity supply

v = “annual_e_supply’
s = “electricity’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]
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generate_annual_e_supply (v,s,df_v)

# In[46]:

def generate_annual_e_supply_2(v,s,df)

q = """select df.Target, df.DSM, df.Tech, df.Year, sum(df.
Value ) as Total

from df group by df.Target, df.DSM, df.Tech, df.Year;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,18))

t_list = dfl.Tech[dfl.Total > 0].unique ()

i=1

for tech in t_list

if tech in [’coal’,’ nuclear’,’natural_gas’]:
plt.subplot(3,1,1)

labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl.DSM
== dsm) ].empty == False
x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl

.DSM == dsm)] + 2015
y = dfl.Total [(df]l.Tech == tech) & (dfl.Target == tgt) & (
dfl1 .DSM == dsm) ]
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plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s_Efficiency: %s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_7,7.7"),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_left’)

1+=1

plt.xlabel (’Year’,fontsize=14)

#plt.show()

plt.savefig(base_dir+’ Figures/’ +’%s _%s_1" % (v,s) +
fig_format,

dpi=1000,bbox_inches="tight’)

plt.close ()

plt.figure(figsize=(15,21))

i=1

for tech in t_list

if tech not in [’coal’,’ nuclear’,’ natural_gas’]:
plt.subplot(7,1,1)

labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios
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if df1[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl.DSM
== dsm) |].empty == False

x = dfl.Year[(dfl.Tech == tech) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(dfl.Tech == tech) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s_Efficiency: %s’ %(str(tgt),str (dsm)
)

j +=1

plt.ylabel ("%s’ % str(tech).title ().replace(”_7,7.7"),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if 1 ==

plt.legend (labels ,loc="lower_left’)

i+=1

plt.xlabel(’Year’,fontsize=14)

#plt.show()

plt.savefig(base_dir+’ Figures/’ +’%s_%s_-2" % (v,s) +
fig_format ,

dpi=1000,bbox_inches="tight’)

plt.close ()

#generate annual electricity supply

v = ’annual_e_supply’
s = “electricity”’
df_v = df_var[(df_var[ ’Type’] ==’continuous’)

199



& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]

generate_annual_e_supply_2(v,s,df_v)

# In[47]:

def generate_tot_annual_e_supply(v,s,df)

q = """select df.Target, df.DSM, df.Year, sum(df.Value) as
Total

from df group by df.Target, df.DSM, df.Year;”””

dfl = sqldf(q,locals())

plt.figure (figsize=(15,6))

labels = []

j =0

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

x = dfl.Year[(dfl.Target == tgt) & (dfl .DSM == dsm)] + 2015

y = dfl.Total [(dfl.Target == tgt) & (dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]])
labels .append(’ Target: %s;_Efficiency: %s’ %(str (tgt),str (dsm

)))
plt.ylabel ('"MWh’ , fontsize =14)

200



plt.gca().set_ylim (bottom=0)

plt.xlabel(’Year’,fontsize=14)

plt.legend (labels ,loc="upper_left’)

plt.savefig(base_dir+’  Figures/ +’total_%s _%s’ % (v,s) +
fig_format ,

dpi=1000,bbox_inches="tight’)

#plt.show ()

plt.close ()

#generate total annual electricity supply

v = “annual_e_supply’
s = “electricity”’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]

generate_tot_annual_e_supply(v,s,df_v)

# In[48]:

def generate_natural_gas_supply(v,s,df)

q = """select df.Target, df.DSM, df.Sector, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Sector, df.Year;”’””

dfl = sqldf(q,locals())
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plt.figure (figsize=(15,12))

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

plt.subplot(3,1,1)

j =0

labels = []

for sector in sector_list

x = dfl.Year[(dfl.Sector == sector) & (dfl.Target == tgt) &
(df1 .DSM == dsm)] + 2015

y = dfl.Total [(df]l.Sector == sector) & (dfl.Target == tgt) &
(df1 .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(str(sector). title ())

plt.ylabel (’Target: %s_Efficiency:.%s’ %(str(tgt),str(dsm)),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_right’)

1+=1

plt.xlabel(’Year’,fontsize=14)

plt.savefig(base_dir+’ Figures/’ + %s_%s’ % (v,s) + fig_format

dpi=1000,bbox_inches="tight’)

plt.close ()

202



#generate total annual natural gas supply

v = “supply’
s = ’“natural_gas’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

]

generate _natural_gas_supply(v,s,df_v)

# In[49]:

def generate_transportation_fuel_supply (v,s,df)

q = """select df.Target, df.DSM, df.Fuel, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Fuel, df.Year;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,12))

i=1

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

plt.subplot(3,1,1)

j =0
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labels = []

for fuel in fuel_list

x = dfl.Year[(dfl.Fuel == fuel) & (dfl.Target == tgt) & (dfl
.DSM == dsm)] + 2015

y = dfl.Total [(dfl.Fuel == fuel) & (dfl.Target == tgt) & (
dfl .DSM == dsm) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(str (fuel). title ().replace(”_7,7.7"))

plt.ylabel (’Target: %s_Efficiency: %s’ %(str(tgt),str(dsm)),
fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==1

plt.legend (labels ,loc="upper_right’)

1+=1

plt.xlabel(’Year’,fontsize=14)

plt.savefig(base_dir+’ Figures/’ + ’%s_%s’ % (v,s) + fig_format

dpi=1000,bbox_inches="tight )

plt.close ()

#generate total annual transportation fuel supply

v = “supply’
s = ’transportation_fuel’
df v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)
& (df_var[’Source’] == s)
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]

generate _transportation_fuel_supply (v,s,df_v)

# In[50]:

def generate_electricity_efficiency (v,s,df)

q = """select df.Target, df.DSM, df.Sector, df.Year, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Sector, df.Year;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,12))

i=1

for tgt in tgt_scenarios

if dfl1 [(dfl.Target == tgt) & (dfl.DSM == True) ].empty ==
False

plt.subplot(2,1,1)

j =0

labels = []

for sector in sector_list

x = dfl.Year[(dfl.Sector == sector) & (dfl.Target == tgt)] +
2015
y = dfl.Total [(dfl.Sector == sector) & (dfl.Target == tgt)]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]])
labels .append(str(sector).title ().replace(”_",7."))
plt.ylabel (’Target: %s ' %str (tgt),fontsize=14)

plt.gca().set_ylim (bottom=0)

205



if i ==1

plt.legend (labels ,loc="upper_left’)

1+=1

plt.xlabel(’Year’,fontsize=14)
plt.savefig(base_dir+’ Figures/’ +’%s_%s’ % (v,s) + fig_format
dpi=1000,bbox_inches="tight ")

#plt.show()

plt.close ()

#generate total electricity efficiency by sector

v = ’action_supply’
s = “electricity”’
df_v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)
& (df_var[’'DSM’] == True)
]

generate _electricity _efficiency (v,s,df_v)

# In[51]:

def generate _natural_gas_efficiency (v,s,df)
q = """select df.Target, df.DSM, df.Sector, df.Year, sum(df.

Value) as Total
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from df group by df.Target, df.DSM, df.Sector, df.Year;”””

dfl = sqldf(q,locals())

plt.figure (figsize=(15,12))

i=1

for tgt in tgt_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == True) ].empty ==
False

plt.subplot(2,1,1)

j =0

labels = []

for sector in sector_list

x = dfl.Year[(dfl.Sector == sector) & (dfl.Target == tgt)] +
2015
y = dfl.Total[(dfl.Sector == sector) & (dfl.Target == tgt)]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(str(sector).title ().replace(”_",7.7))
plt.ylabel (" Target: %s %str (tgt),fontsize=14)
plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_left’)

i+=1

plt.xlabel (’Year’,fontsize=14)
plt.savefig(base_dir+  Figures/’ + %s_%s’ % (v,s) + fig_format
dpi=1000,bbox_inches="tight’)

plt.close ()

207



#generate natural gas efficiency by sector

v = Taction_supply’
s = ’“natural_gas’
df_.v = df_var[(df_var[ Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)

& (df_var[’DSM’] == True)

]

generate _natural_gas_efficiency (v,s,df_v)

# In[52]:

def generate_transportation_fuel_efficiency (v,s,df)

q = """select df.Target, df.DSM, df.Fuel, df.Year, sum(df.
Value) as Total

from df

group by df.Target, df.DSM, df.Fuel, df.Year;”””

dfl = sqldf(q,locals())
plt.figure (figsize=(15,12))
i=1

for tgt in tgt_scenarios
plt.subplot(2,1,1)

j =0

labels = []
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for fuel in fuel_list

x = dfl.Year[(dfl.Fuel == fuel) & (dfl.Target == tgt)] +
2015
y = dfl.Total [(dfl.Fuel == fuel) & (dfl.Target == tgt)]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])
labels .append(str (fuel). title ().replace(”_.7,7.7))
plt.ylabel (’Target: %s %str (tgt),fontsize=14)
plt.gca().set_ylim (bottom=0)

if i ==1

plt.legend (labels ,loc="center_right’)

i+=1

plt.xlabel(’Year’,fontsize=14)
plt.savefig(base_dir+’ Figures/’ + ’%s_%s’ % (v,s) + fig_format
dpi=1000,bbox_inches="tight’)

#plt.show()

plt.close ()

#generate natural gas efficiency by sector

v = ’action_supply’
s = ’transportation_fuel’
df_v = df_var[(df_var[ ’Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)
& (df_var[’Name’] == v)

& (df_var[’Source’] == s)
& (df_var[’'DSM’] == True)
]
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generate _transportation_fuel_efficiency (v,s,df_v)

# In[53]:

def generate_annual_emissions_source (v, df)

q = """select df.Target, df.DSM, df.Year, df.Source, sum(df.
Value ) as Total

from df group by df.Target, df.DSM, df.Year, df.Source;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,12))

i=1

for source in source_list

plt.subplot(3,1,1)

j =20

labels = []

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

x = dfl.Year[(dfl .DSM == dsm) & (dfl.Target == tgt) & (dfl.
Source == source)] + 2015

y = dfl.Total [(dfl .DSM == dsm) & (dfl.Target == tgt) & (dfl.
Source == source) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])
labels .append(’ Target: %s;_Efficiency: _%s’ %(str (tgt),str (dsm
)))
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plt.ylabel (str(source). title ().replace(”.7,”."),fontsize=14)
plt.gca().set_ylim (bottom=0)

if i ==

plt.legend(labels ,loc="upper_right’)

1+=1

plt.xlabel(’Year’,fontsize=14)

’

#plt.savefig(base_dir+ Figures/ + %s’ % v + fig_format,
# dpi=1000,bbox _inches="tight ’)

plt.close ()

#generate annual emissions by source

v = ’source_annual_emissions’

df v = df_var[(df_var[ ’Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)

]

generate_annual_emissions_source (v,df_v)

# In[54]:

def generate_annual_emissions_total (v, df)

q = """select df.Target, df.DSM, df.Year, sum(df.Value) as
Total

from df group by df.Target, df.DSM, df.Year;”””

dfl = sqldf(q,locals())

plt.figure (figsize=(15,12))
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labels = []

X

df _tgt.Year[df_tgt.Year <= 35] + 2015

y df_tgt.Emissions_Target[df_tgt.Year <= 35]
plt.plot(x,y,linewidth=2.5)
labels .append (’Emissions._Target’)

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

x = dfl.Year[(dfl .DSM == dsm) & (dfl.Target == tgt)] + 2015

y = dfl.Total [(df]l .DSM == dsm) & (dfl.Target == tgt)]

plt.plot(x,y,linewidth=2.5)

labels .append(’ Target: %s;_Efficiency: _%s’ %(str (tgt),str (dsm
)))

plt.xlabel(’Year’,fontsize=14)

plt.ylabel (’Tonnes_CO_2’ ,fontsize=14)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="upper_left’)

plt.savefig(base_dir+’ Figures/’+’%s’ % v + fig_format,

dpi=1000,bbox_inches="tight’)

plt.close ()

#generate annual emissions by scenario

v = ’“total _annual_emissions’

df v = df_var[(df_var[ ’Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)
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]

generate_annual _emissions_total (v,df_v)

# In[55]:

def generate_annual_costs_source (v, df)

q = """select df.Target, df.DSM, df.Year, df.Source, sum(df.
Value ) as Total

from df group by df.Target, df.DSM, df.Year, df.Source;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,12))

i=1

for source in source_list

plt.subplot(3,1,1)

j =20

labels = []

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl[(dfl.Target == tgt) & (dfl .DSM == dsm) |]. empty ==
False

x = dfl.Year[(df]l .DSM == dsm) & (dfl.Target == tgt) & (dfI.
Source == source)] + 2015

y = dfl.Total[(df] .DSM == dsm) & (dfI1.Target == tgt) & (dfI.
Source == source)]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[j])
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labels .append(’ Target: %s; Efficiency: %s %(str(tgt),str(dsm
)))

plt.ylabel(str(source). title ().replace(”_",” 7),fontsize=14)

plt.gca().set_ylim(bottom=0)

if i ==

plt.legend(labels ,loc="upper left )

i+=1

plt.xlabel(’Year’, fontsize=14)

)

plt.savefig(base_dir+’ Figures/’+ %s’ % v + fig_format,
dpi=1000,bbox_inches="tight ’)

plt.close ()

#generate annual emissions by source

v = ’source_annual_emissions’

df v = df_var[(df_var[ Type’] ==’continuous ’)
& (df_-var[’ Year’] <= fig_years)

& (df-var [ Name’] == v)

I

generate_annual_costs_source (v, df_-v)

# In[56]:

def generate_annual_costs_source(v,df)

q = """select df.Target, df.DSM, df.Year, df.Source, sum(df.
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Value) as Total
from df group by df.Target, df.DSM, df.Year, df.Source;”””
dfl = sqldf(q,locals())
plt.figure (figsize=(15,12))
i=1
for source in source_list
plt.subplot(3,1,1)
j =0
labels = []
for tgt in tgt_scenarios

for dsm in dsm_scenarios

if dfl1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False

x = dfl.Year[(dfl .DSM == dsm) & (dfl.Target == tgt) & (dfl.
Source == source)] + 2015

y = dfl.Total [(df] .DSM == dsm) & (dfl.Target == tgt) & (dfl.
Source == source) ]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append (’ Target: _%s;_Efficiency:_%s %(str (tgt),str (dsm
)))

plt.ylabel (str(source). title ().replace(”_.7,”."),fontsize=14)

plt.gca().set_ylim (bottom=0)

if i ==

plt.legend (labels ,loc="upper_left’)

i+=1

plt.xlabel (’Year’ ,fontsize=14)

plt.savefig(base_dir+’ Figures/’+’%s’ % v + fig_format,
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dpi=1000,bbox_inches="tight”)

plt.close ()

#generate annual emissions by source

v = ’source_annual_cost’

df_.v = df_var[(df_var[ ’Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)

]

generate_annual _costs_source (v,df_v)

# In[ ]:

def generate _total_annual_cost(v,df)

q = """select df.Target, df.DSM, df.Year, df.Source, sum(df.
Value) as Total

from df group by df.Target, df.DSM, df.Year, df.Source;”””

dfl = sqldf(q,locals())

plt.figure(figsize=(15,12))

j =0

labels = []

for tgt in tgt_scenarios

for dsm in dsm_scenarios

if df1[(dfl.Target == tgt) & (dfl .DSM == dsm) ].empty ==
False
x = dfl.Year[(dfl .DSM == dsm) & (dfl.Target == tgt)] + 2015
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y = dfl.Total [(dfl .DSM == dsm) & (dfl.Target == tgt)]

plt.plot(x,y,linewidth=2.5, linestyle=linestyles[]j])

labels .append(’ Target: %s;_Efficiency: _%s’ %(str (tgt),str (dsm
)))

j +=1

plt.ylabel (’Total _Cost’,fontsize=14)

plt.gca().set_ylim (bottom=0)

plt.xlabel (’Year’,fontsize=14)

plt.legend (labels ,loc="upper_left’)

plt.savefig(base_dir+’ Figures/’+’%s’ % v + fig_format,

dpi=1000,bbox_inches="tight )

#plt.show()

plt.close ()

#generate total annual costs

v = ’“total_annual_cost’

df_.v = df_var[(df_var[ Type’] ==’continuous’)
& (df_var[’Year’] <= fig_years)

& (df_var[’Name’] == v)

]

generate total_annual _cost(v,df_v)

# In[ ]:

def generate_annual_costs_scenario(v,df)

q = """select df.Name, df.Target, df.DSM, df.Year, df.Source
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, sum(df.Value) as Total

from df

group by df.Name, df.Target, df.DSM, df.Year, df.Source;”””

dfl = sqldf(q,locals())

dfl.to_csv(r’C:\ Users\Seth\Desktop\ann_cost.csv’)

plt.figure (figsize=(15,18))

names = dfl.Name.unique ()

i =1

for t in tgt_scenarios

for d in dsm_scenarios

if dfl1[(dfl.Target == t) & (dfl.DSM == d) ].empty == False

plt.subplot(3,1,1)

labels = []

for n in names

for s in source_list

x = dfl.Year[(dfl.Target == t) & (dfl .DSM == d) & (dfl.Name
== n) & (dfl.Source == s)] + 2015

y = dfl.Total [(dfl.Target == t) & (dfl .DSM == d) & (dfl.Name
== n) & (dfl.Source == s)]

plt.plot(x,y,linewidth=2.5)

if n == “source_annual_cost’

labels .append(str(s).title ().replace(”_-",7.7) + ’_—_Supply’)
else

labels .append(str(s).title ().replace(”_",7.7) + ~_—._

Efficiency )
plt.ylabel (’Target: %s;_Efficiency: %s’ %(str(t),str(d)),

fontsize=14)
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plt.gca().set_ylim (bottom=0)
if 1 ==

plt.legend (labels ,loc="center_left’)

1+=1

plt.xlabel (’Year’,fontsize=14)

plt.savefig(base_dir+’  Figures/’+ %s_scenario’ % v +
fig_format ,

dpi=1000,bbox_inches="tight”)

#plt.show ()

plt.close ()

#generate annual efficiency costs by scenarios

v = “annual_costs’

df vl = df_var[(df_var[ Type’] ==’continuous’)

& (df_var[’Year’] <= fig_years)

]

df_.v = df_v1[(df_vl[’Name’] == "~
source_annual_efficiency_cost’)

| (df_vI[’Name’] == ’source_annual_cost’)

]

generate_annual_costs_scenario(v,df_v)

# In[ ]:

def generate_efficiency_curves ()
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plt.figure (figsize=(15,15))

eff_sources = df_eff.Source.unique ()

dfl = df_eff[(df_eff.Year == 0)]

i =1

for source in eff_sources

plt.subplot(3,1,1)

labels = []

eff_sector_fuels = df_eff.Sector_Fuel[df_eff.Source ==
source ].unique ()

for sf in eff_sector_fuels

eff_segs = df_eff.Segment[(df_eff.Source == source) & (
df _eff.Size > 0) & (df_eff.Sector_Fuel == sf)].unique ()

labels .append(sf.title ().replace(’ -7, _."))

x = [0]

y = []

xl1 =0

for seg in eff_segs

x-max = eff_segs .max()
x1 += float (dfl.Size[(dfl.Source == source) & (dfl.
Sector_Fuel == sf) & (dfl.Segment == seg)])

x.append (x1)

y.append(float (dfl.Marginal _Cost[(dfl.Source == source) & (
dfl.Sector_Fuel == sf) & (dfl.Segment == seg)]))

y.append(float (dfl.Marginal _Cost[(dfl.Source == source) & (
dfl.Sector_Fuel == sf) & (dfl.Segment == seg)]))

if seg < x_max
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x.append (x1)

if len(y) > 0

plt.plot(x,y,linewidth=2.5)

if source == ’electricity’

plt.ylabel (source. title (). replace(’_"," . ), fontsize=14)

plt.xlabel ('"MWh’ , fontsize =14)

elif source == ’natural_gas’

plt.ylabel (source. title (). replace(’_",’ . ), fontsize=14)

plt.xlabel (" Million._.Therms’ ,fontsize=14)

else:

plt.ylabel (source. title (). replace(’_","."),fontsize=14)

plt.xlabel (’Thousand_Barrels’,fontsize=14)

plt.gca().set_ylim (bottom=0)

plt.legend (labels ,loc="lower_right’)

i +=1

plt.savefig(base_dir+’Figures/’+  efficiency_curves’ +
fig_format ,

dpi=1000,bbox_inches="tight’)

plt.close ()

generate_efficiency_curves ()

# In[ ]:

#check baseline year 0 emissions

print (df_var.Value[(df_var.Name == ’total_annual_emissions’
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) & (df_var.Year == 0) & (df_var.Target == False)
& (df_var .DSM == False)])

# In[ ]:
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