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SUMMARY

In this dissertation, we examine resource mobility in a supply chain that attempts to sat-

isfy geographically distributed demand through resource sharing, where the resources can

be inventory and manufacturing capacity. Our objective is to examine how resource mobil-

ity, coupled with data-driven analytics, can result in supply chains that without customer

service level reduction blend the advantages of distributed production-inventory systems

(e.g., fast fulfillment) and centralized systems (e.g., economies of scale, less total buffer in-

ventory, and reduced capital expenditures). Transportability of production capacity allows

a judicious overall investment due to risk pooling, in addition to better responsiveness to

demands. Given this novel form of manufacturing flexibility, namely, mobility of produc-

tion capacity, the value addition perceived operationally will guide the strategic decisions

on investment in necessary infrastructure. Towards smart decision-making, it is also of im-

portance to understand the power of effective information management through data-driven

demand learning, capturing various fluctuations of demand, such as seasonal patterns, mi-

gratory tendencies, trends, etc.

In the first part of this dissertation, we introduce the problem of planning the logistics

of a multi-location production-inventory system with transportable production capacity and

propose near-optimal heuristic methodologies to effectively manage its response to uncer-

tainty. A computational study of problems with stationary demand distributions, which

should benefit least from mobile capacity, demonstrates the effectiveness of the suboptimal

policies. For problems with twenty locations, the best heuristic solution cost provides 13%

savings over a system with an optimal fixed capacity allocation. Greater savings result

when the number of locations increases.

Next, we present an analysis of a single location inventory control problem with a

partially observed, demand-influencing Markov-modulation process. We present an easy-

to-compute newsvendor-styled criterion to determine the optimal myopic base stock policy

xvi



as a function of the belief of what the current modulation state is. We prove that this crite-

rion linearly partitions the belief space into regions with unique optimal myopic base stock

levels. We then prove that this policy is optimal for finite and infinite horizon problems

when an inventory position attainability assumption holds.

Finally, we consider the problem of planning the logistics of a multi-location production-

inventory system with the options of transportability of production capacity and trans-

shipment of inventory, while facing demands influenced by a partially observed, Markov-

modulation process. We propose efficient heuristic methods that result in cost savings as

high as 26% on ten location instances over a system with no flexibility. Additionally, the

computational performance of our heuristic approaches scales significantly well with the

problem size. The results reinforce the value addition due to the production capacity trans-

portability, independent of the option of transshipment flexibility.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

Logistics management is the set of planning and execution processes that target efficient

and effective flow and storage of goods, services, and information between the point of

origin and the point of consumption in a supply chain. Logistics systems should respond

to information about uncertainty, in anticipation of new information. The quality of in-

formation and the responsiveness of the system determine its efficiency and effectiveness.

Broadly, logistics efficiency and effectiveness may be achieved by two sets of approaches

information management and response management. Improving the accuracy of demand

estimation through better-informed demand models with greater predictive power over un-

certainty, for example through data-driven learning approaches, falls under information

management. Response management, on the other hand, includes approaches that enhance

supply flexibility and design optimized response to information. Today’s supply chains are

grappling with many disruptive forces that shape information on the demand side, such as

digitization and impatience of customers, increased competition in the market, and rapid

technological adoption [1]. On the supply side also, disruptive technologies have been

on the rise. Responses to the transforming demand patterns have evolved to be real-time,

highly customer-centric, and on-demand. In particular, the mobility of production capacity

is the latest breakthrough in the manufacturing industry. Major players in the pharmaceu-

tical industry are developing manufacturing innovations such as transportable production

facilities for synthesis of pharmaceutical outputs. Bayer demonstrated the production of

fertilizer intermediates in a twenty-foot-equivalent-sized container [2]. Pfizer is in collab-

oration with Glaxo Smithkline to commercialize portable, miniature, and modular man-

ufacturing technology for drug production [3]. Novartis developed a refrigerator-sized,

on-demand pharmacy unit for fast tablet production [4]. E-commerce giant Amazon won a

1



patent for the logistics of mobile, additive manufacturing based fabrication and fulfillment

[5, 6]. These developments signal a future where transportability of production facilities is

commonplace.

The aspect of mobility of production resources has multiple advantages for logistics op-

erations. First, production capacity can be shared across multiple locations that satisfy de-

mand. Response is relatively faster due to on-demand resource flexibility. Second, some of

the design-redundancy in the decentralized, no-flexibility system can be relaxed and fewer

production resources may be sufficient for addressing shifting patterns of demands across

locations. Third, due to the ease of modifying the stock of production resources on-demand

over time, even poor initial production capacity allocation configurations would not hurt the

system much; the logistics system will be quite resilient. Fourth, the mobility of production

capacity and inventory enables customizability through manufacturing postponement in ad-

dition to rapid response to demand. The key to realizing these advantages lies in designing

good solution methods that jointly manage production resource-sharing across locations

and resource use at each location. The core challenge in designing an optimized response

when mobility is incorporated into the logistics system is that managing dynamic produc-

tion capacity allocation across multiple locations requires centralized decision-making that

is inherently coupled with location-wise production capacity use. Location-wise produc-

tion capacity use is determined by location-wise inventory management. The problem is

further complicated by the ability to transship inventory in addition to transporting produc-

tion capacity.

In this dissertation, we specifically concern ourselves with the transportability of pro-

duction capacity in multi-location production-inventory systems. A multi-location produc-

tion - inventory system is one where production and inventory control decisions are man-

aged at multiple locations simultaneously. We specifically examine systems where produc-

tion capacity can be relocated over time between locations, and also where inventory can

be moved between locations when needed. With the goal of boosting logistics efficiency
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in the transforming landscape of customer expectations and manufacturing innovations,

we investigate the following problem settings in the domain of data-driven reconfigurable

supply chain design and inventory control and provide solution methods.

• Chapter 2: We consider a multi-location production - inventory system with supply

flexibility stemming from the mobility of production capacity between locations. To

develop an understanding of the value of mobile production capacity in this setting,

we build a Markov decision process (MDP) model for the problem of determining

production and demand fulfillment decisions over a finite decision horizon. We de-

velop heuristics by extending ideas from approximate dynamic programming to the

problems of this type facing stationary and location-independent stochastic demand,

test the heuristics, and obtain insights through an extensive computational study.

• Chapter 3: In order to better manage information, we develop a novel and general-

ized representation of demand uncertainty. We model demands modulated by an un-

derlying partially observed Markov-modulation process. We study a single location

inventory control system with a demand-influencing modulation process, of which

the decision-maker is partially informed. We model the problem of determining an

optimal replenishment policy over an infinite horizon as a partially observed MDP

(POMDP). We present a newsvendor-styled criterion to determine an optimal myopic

base stock policy and prove that when an attainability assumption holds, this myopic

policy is optimal over the infinite horizon. We demonstrate the linear partition of the

belief space induced by the proposed newsvendor criterion numerically.

• Chapter 4: We revisit the multi-location production-inventory system in Chapter 2,

now with supply flexibility arising from the mobility of both production capacity and

inventory between locations. We represent demand uncertainty using the partially

observed Markov modulation process introduced in in Chapter 3. This chapter syn-

thesizes the frameworks of Chapters 2 and 3 with the goals of analyzing the useful-
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ness of mobility of transportable capacity when inventory also can be transshipped

and enriching the problem to capture demand volatility and temporal variation of

uncertainty. We model the problem as a POMDP to determine two sets of deci-

sions: a) inventory and production capacity relocation and b) replenishment at all

locations. We propose approximate dynamic programming based heuristics based on

two approaches, namely, joint control and global-local control. The former makes

both sets of decisions jointly while the latter splits the control into making the global

movement decisions in a centralized fashion first followed by the local replenishment

decisions in a decentralized fashion.

The specific major contributions of this dissertation are now summarized.

1. The primary contributions of the investigation of the multi-location production - in-

ventory system with production capacity transportability (see Figure 1.1) in Chapter

2 are:

Figure 1.1: Mobile modular production-inventory system

• a formulation of the problem as an MDP model;

• the development of computationally efficient value function approximation-

based heuristics that scale well with the number of locations; and

• a computational study that demonstrates the value of mobility of production

capacity.
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2. The primary contributions of the analysis of a single location inventory control prob-

lem with incomplete information about the underlying demand-influencing modula-

tion process (see Figure 1.2) in Chapter 3 are:

Figure 1.2: Demand-influencing, partially observed modulation state

• a formulation of the problem as a POMDP;

• the development of an easy-to-compute newsvendor-styled criterion to deter-

mine an optimal myopic base stock policy as a function of the belief of the

current modulation state; and

• the proposition of the optimality of the myopic optimal base stock policy for

finite and infinite horizon problems when an inventory position attainability

assumption holds.

3. The primary contributions of the investigation of the multi-location production-inventory

system with production capacity transportability, inventory transshipment, and a demand-

influencing modulation process that is not completely observed (see Figure 1.3) in

Chapter 4 are:

• a formulation of the problem as a POMDP;
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Figure 1.3: Mobile modular production-inventory system with transshipment

• the development of computationally efficient heuristics based on joint and global-

-local approaches, drawing the best features from centralized control and decen-

tralized control; and

• a computational study that a) substantiates the value of mobility of multiple

resources, namely production capacity and inventory, operated jointly as well

as independently, b) corroborates the value of modeling a partially observed

Markov modulation process, and c) appraises the value of complete observabil-

ity of the modulation process.

Thus, we design an optimized response to uncertainty in a complex multi-location

production-inventory system by managing known information in a data-driven learning

environment. We now present our insights derived from the analysis performed in each of

the three chapters.

1. Our takeaways from Chapter 2 are presented below.

• A value addition of about 13% is achieved computationally over the best no-

flexibility system, using near-optimal heuristics when the number of locations

is twenty, even under stationary demands.

• It is computationally inferred that the value addition increases with increase in
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the number of locations, increase in the horizon length, and decrease in move-

ment cost in the problem.

• Decomposition by locations results in a value function approximation that forms

the backbone of a well-performing rollout heuristic.

2. Our insights from Chapter 3 are listed here.

• The proposed optimal myopic policy is a base stock policy with a newsvendor-

styled criterion, allowing quick computation.

• The belief space is linearly partitioned into regions with unique optimal myopic

base stock levels by the propose optimality criterion.

• The linear partition thus obtained is independent of the demand outcome values.

• The proposed optimal policy is computationally significantly superior to exist-

ing optimal solution search methods.

3. We present our takeaways from Chapter 4 here.

• It is computationally ascertained that both transportability of product capacity

and inventory transshipment capability lead to significant value addition over

a system with no mobility when acting independently. The value addition ob-

served when both forms of flexibility are active is higher than that with any one

of the two forms of flexibility.

• Around 26% savings are observed over the no-flexibility system for the consid-

ered instances with ten locations, when both forms of flexibility are available.

• When the number of locations is ten, if transshipment is the only available flex-

ibility, the independent savings over a no-flexibility system amount to 18% and

if only transportability of production capacity at the same unit cost is allowed,

independent savings of about 22% emerge.
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• It is determined that greater savings are created as the number of locations and

length of the horizon increase and as movement costs decrease.

• A significant additional value addition (6%) is observed by modeling demands

in the proposed dynamic data-driven learning fashion instead of an aggregate

static demand distribution.

• The value of the modeling dynamically updated demand distributions is signif-

icantly higher computationally for modulation transition dynamics with higher

staying probabilities than leaving probabilities for all modulation states.

• Complete observability of the modulation process improves the savings over a

no-flexibility system by a significant amount of 6 − 26% computationally on

instances with ten locations.
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CHAPTER 2

A DYNAMIC MOBILE PRODUCTION CAPACITY AND INVENTORY

CONTROL PROBLEM

2.1 Introduction

Mobile manufacturing capacity is an emerging innovation in the chemical process industry

and in the additive manufacturing industry. E-commerce giant Amazon has recently filed

a patent for mobile additive manufacturing in a make-to-order setting [5]. Bayer, a phar-

maceutical and agricultural chemicals company, has developed a containerized production

unit that operates an intensified continuous batch process for fertilizer production, and has

shown that mobile production units require lower setup costs than fixed facilities [2]. Pfizer

is conducting a large-scale collaborative research project on miniaturized modular produc-

tion technology for oral drugs [3]. Novartis has developed a refrigerator-sized on-demand

pharmacy that can produce common drugs [4]. Supply chain systems that rely on mobile

and modular production capacity may have many benefits, including:

• capacity sharing (via production module movement) may allow a smaller total ca-

pacity investment;

• perishable products and time-sensitive demand may be better served by producing

locally;

• demand variation over time may be better accommodated by relocating capacity in-

expensively; and

• new markets for products can be tested with recoverable, transportable production

modules.

To develop a better understanding of supply chain systems that rely on mobile and mod-

ular production capacity, this chapter explores a dynamic production-inventory planning
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problem in this emerging context. Suppose that product demands arise in a number of lo-

cations, and that each location can host one or more transportable production units referred

to hereafter as modules. At any given time, a fleet of production modules is available and

is deployed across the system. The module counts at each location at any given time will

be referred to as the capacity configuration, and this configuration can be altered by mov-

ing modules between locations. The mobile modular production and inventory problem

(MMPIP), introduced in this chapter, seeks to determine an optimal policy for managing

capacity configurations, production, and inventory over a finite planning horizon to serve

uncertain demands. In this problem setting, in addition to the typical trade-off between in-

ventory and shortage costs, there exists a trade-off between the cost of relocating modules

and the typical inventory costs.

We define an initial base problem in this study, and for simplicity we assume that de-

mand in one location cannot be satisfied by production in another location; inventory trans-

shipment between locations is also not modeled. This modeling choice was made to focus

squarely on capacity movement. There also may be some systems where production needs

to be local for a variety of reasons. We also focus this initial work on a typical make-

to-stock inventory system, and note that in one of the important applications in chemical

manufacturing that holding inventory is typical and that the time required for production

is significantly larger than the time taken for demand fulfillment. Finally, we will study

these systems in cases where location-wise demands are stationary and independent. Such

settings should provide the least value for mobile production capacity, but are still useful

to demonstrate the primary modeling ideas.

Successful operation of a production system with transportable, modular capacity also

depends on other important considerations that will not be specifically addressed in this

chapter. For example, effective inbound logistics systems for the inputs to production must

be available in each location, and must be rapidly scalable with allocated production capac-

ity. Similarly, outbound distribution systems must also accommodate potentially changing
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production rates. Efficient movement and rapid setup and breakdown of the mobile pro-

duction modules is also necessary for such systems to be effective. These considerations

will be considered out of the scope of this study.

We organize this chapter into the following sections. Section 2.2 provides a formal

problem definition and a formulation using a Markov decision process (MDP), and Sec-

tion 2.3 places the research in the context of related literature. Section 2.4 presents bounds

on the optimal cost function. In Section 2.5, we propose various heuristics for finding

sub-optimal model solutions. Section 2.6 provides a numerical study of computational

experiments using the heuristics on three different sets of instances. We summarize our

findings and conclude the chapter in Section 2.7.

2.2 Problem Description

Consider a production-inventory system facing uncertain demands at a set of L locations,

operated over a finite time horizon. Each location can produce product and store inventory

of product to meet its demand over time, with unmet demand backlogged. At any time, a

fleet of homogeneous production modules is available and distributed across the system,

with some units installed in place and the others moving between locations. Production

capacity at each location is limited by the number of production modules presently installed

there. The objective is to determine module movement, production, and inventory decisions

over time to minimize total system costs.

To make these decisions, consider a decision model with a planning horizon T dis-

cretized into T − 1 consecutive, equal-duration decision periods, {1, . . . , T − 1}. Each

location i must satisfy or backlog demand Di(t) during decision epoch t. Let Y (t) be the

total number of production modules available in the fleet at time t, and suppose that each

module can produce a maximum of G units of product per time period. Finally, let αij be

the time that a production module is unable to produce when moved from location i to j,

measured in fractional periods. Then, in each period two types of primary decisions are

11



made: module movement decisions to relocate capacity between locations, and production

decisions to use installed modules at each location. When combined with observed de-

mand, production decisions imply a change in the inventory position at each location each

period.

Our models assume the following sequence of events in each period, as depicted in

Figure 2.1. First, module movement decisions are determined and executed, yielding a

new capacity configuration. Next, given the current capacity configuration, production de-

cisions are determined and executed, yielding a post-replenishment inventory state across

all locations. Finally, uncertain demands are observed and the inventory state is updated

after filling or backlogging demands. Costs are incurred for module movement, produc-

tion, inventory holding, and demand backlogging. Module movement costs are modeled

as separable functions of number of modules relocated between specific location pairs,

while production and inventory costs are modeled as typical in the supply chain planning

literature.

Figure 2.1: Sequence of events within a period

In this chapter, we will define a simple problem in this setting that we denote as the mo-
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bile modular production and inventory problem (MMPIP). The MMPIP specifically models

systems of the type introduced above with the following additional assumptions:

• Location demands are modeled as discrete random variables, and are independent

and stationary across locations and time periods;

• Total available capacity is constant throughout the planning horizon, such that Y (t) =

Y for all t;

• Module movement costs are time-invariant, linear, and separable in the number of

modules moved between location pairs;

• Module movements require no movement or setup time such that αij = 0 for all

pairs of locations i and j, and thus modules moved during period t are immediately

available for production at a new location in that period;

• Production costs are linear in the number of units produced, and per period inventory

holding costs and backordering costs are linear in the number of units; and

• Production decisions executed during period t create new items available for imme-

diate use in period t.

In the next subsection, we present a detailed formulation for the MMPIP.

2.2.1 Formulation

We formulate the MMPIP as a Markov decision process (MDP) for a finite horizon with

T periods. Decisions are made in the first T − 1 epochs, T = {1, . . . , T − 1}, and epoch

T models a horizon end state. At every decision epoch t ∈ T , the multi-dimensional state

variable is composed of 2L components: the number of modules, ui(t), before modules are

moved and the inventory position, si(t), before production at each location i. The multi-

dimensional action variable at t is composed of L2 components: the number of modules

to move, ∆M
ij (t), from location i to location j 6= i and the production quantity, qi(t), at

each location i. Let Di(t) be the discrete demand random variable for location i in period
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t, where stationarity implies that the probability mass function for Di(t) is given by Pi for

all time periods t.

Module movement decisions outbound from location i in period t are limited by the

current number of modules location there, ui(t). The production decision at each location i

in period t is limited by the capacity provided by the post-movement module state, ui(t+1).

Note that this coupling of production decisions to module movement decisions defines the

extension that this model proposes to single-location inventory control models.

Costs are incurred for actions in this system as follows. Module movement costs are

linear in the number of modules moved between locations i and j, and given by KM
ij ∆M

ij (t)

in period t. Production and inventory costs are separable by location i, and follow the usual

form found in base stock models. Production costs are linear, and given by ciqi(t) in period

t. Holding costs accrue for each unit of positive inventory position at the end of period t,

hi(si(t) + qi(t)−Di(t))
+ where (y)+ ≡ max(y, 0). Similarly, backorder costs accrue for

each unit of negative inventory position, and are given by bi(Di(t) − si(t) − qi(t))+. We

assume no costs associated with any state in the final horizon period T .

If we let ξ(t) = ({ui(t)}, {si(t)}) represent the complete state variable tuple, we can

formulate the MDP as follows:

Vt(ξ(t)) = min
∆M
ij (t):∑

j ∆M
ij (t)≤ui(t)

min
∀i qi(t):

qi(t)≤Gui(t+1)

ED
[∑

i

{∑
j

KM
ij ∆M

ij (t) + ciqi(t)

+hi(si(t) + qi(t)−Di(t))
+ + bi(Di(t)− si(t)− qi(t))+

+Vt+1 (ξ(t+ 1))

}]
, ∀ ξ(t), ∀ t ∈ T (2.1)

where ξ(t) = (s1(t), s2(t), ..., sL(t), u1(t), u2(t), ..., uL(t)), ∀ t ∈ T

si(t+ 1) = si(t) + qi(t)−Di(t), ∀ i ∈ {1, . . . , L}, ∀ t ∈ T

ui(t+ 1) = ui(t)−
∑
j

∆M
ij (t) +

∑
k

∆M
ki (t), ∀ i ∈ {1, . . . , L}, ∀ t ∈ T∑

i

ui(1) = Y

VT (ξ(T )) = 0 ∀ ξ(T ). (2.2)

14



where Vt(ξ(t)) is the expected cost-to-go function of MMPIP from decision epoch t to the

end of the horizon. Extending this formulation and the solution approaches presented in

this chapter to include a per-period discount rate is straightforward.

The above MDP formulation leads to a state space whose cardinality is exponential

in the number of locations, L. The space of possible movement decisions each period is

similarly large, and thus finding exact optimal solutions to this model will not be possible

except for the smallest instances. We will thus develop heuristic solution methods for

identifying high-quality suboptimal designs.

2.3 Related Literature

The emergence of reconfigurable, mobile, decentralized/distributed manufacturing units

has generated significant interest in the manufacturing/process industry in recent years [7,

8, 9, 10, 11, 12, 13, 14, 15, 16]. Reconfigurable or mobile modular production systems

are characterized by transformability: scalability, adaptability (modularity, universality,

compatibility), and mobility [7, 12]. [17] and [18] present mathematical models for make-

to-stock and make-to-order scenarios for hyperconnected mobile production, which relies

on multiple threads of innovation and is attained by the interconnectivity of all logistics

systems.

The MMPIP models both dynamic capacity allocation and also joint capacity and in-

ventory management across multiple locations. When demands are deterministic, dynamic

modular capacity allocation and mobile capacity routing can be viewed as special cases

of the dynamic facility location problem (DFLP). The DFLP is the problem of determin-

ing locations and opening schedules for multiple facilities (equivalently, units of capacity)

over the planning horizon [19]. [12] model a special case of the MMPIP, a mobile mod-

ular production-inventory problem with deterministic demands, as a DFLP. A DFLP with

modular capacities is presented in [19], which provides a good review of DFLP literature.

Shifting a module in the MMPIP is equivalent to opening a facility at the new location and
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closing one at the old location in the DFLP. [20] present a capacitated DFLP with multi-

ple facilities in the same site for which [21] allow transfer of capacity between sites. The

mobile facility routing problem with deterministic demands [22] is a DFLP with mobile fa-

cilities with duration-based capacity. A study comparing the performance of conventional

production systems with mobile modular production systems can be found in [12], which

assumes a binomial option pricing model of value of future cash flows for two possible

“states of the nature”. The feature of managing mobile capacity and controlling inventory

under uncertain demands over all the locations is missing in all the versions of DFLP that

have appeared thus far to the best of our knowledge. In order to manage the mobile modular

production-inventory system effectively, it is necessary to consider inventory and capacity

management simultaneously. Hence, the MMPIP cannot be treated as a special case of the

existing DFLP settings.

In the context of joint capacity and inventory decision-making, [23] study a make-to-

stock production system with the ability to buy and sell capacity and prove that a target

interval policy is optimal in two cases (with and without carryover of inventory). Simul-

taneously planning inventory actions and capacity change decisions at a single location is

also studied in [24, 25]. [26] jointly plan the location and inventory of a single facility

facing spatially distributed deterministic demand, in the context of managing a sea base,

which is a collection of ships that serves as a military base at sea. [27] present results on

the analysis of priority-based operating rules for a production inventory system in which

two locations with low and high demand variabilities choose to pool their capacities.

We model the MMPIP using a Markov decision process (MDP). We assume that the

set of production locations is given, which may be determined using the qualitative and

quantitative approach suggested by [9]. The MMPIP for realistically-sized problems is

computationally intractable. Hence, our focus is on finding good heuristics that rely on

techniques that include: tractable bounds, value function approximations [28, Ch. 10], and

rollout methods [29]. For a rollout heuristic to be effective, the computation of the guid-
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ance mechanism must be tractable [30, 31, 32, 33]. We use the fixed future case a guid-

ance mechanism in the rollout heuristic we propose. We propose multiple well-performing

strategies that rely on the proposed bounds, for solving the MMPIP. The lookahead with

approximate fixed future performs particularly well even when the number of locations is

large. In the next section, we present bounds on the optimal total expected cost function.

2.4 Bounds on the Optimal Expected Cost Function

In this section, we present two lower bounds for the optimal expected cost function, speci-

fied by (2.1) and (2.2). We denote them as the perfect information relaxation (PIR) and the

most flexible system (LB) lower bounding functions respectively. Related to the most flexi-

ble system bound, we also develop an upper bound based on a fixed module configuration.

2.4.1 Perfect Information Relaxation: Lower Bound (PIR)

As is typical in dynamic programming, the structure of the recursion in (2.1) ensures that

decisions made in time period t do not anticipate the outcomes of Di(τ) for τ ≥ t. A

common approach for developing a lower bound for Vt(ξ(t)) is to suppose that this is not

the case, and to solve a deterministic planning problem for each possible demand trajec-

tory defined by outcomes of ({Di(t)}, {Di(t + 1)}, ..., {Di(T − 1)}). A lower bound on

the optimal expected cost is then given by the probability-weighted sum of the resultant

optimal objective function for each demand trajectory. The most straightforward way to

solve planning problems is to simply use value iteration for each trajectory to solve the

deterministic variant of (2.1) and (2.2) with the expectation removed.

Since the number of demand trajectories may be very large for longer horizon problems

with many production locations, this PIR bound can be approximated by instead computing

an average over a Monte Carlo sample of trajectories. We note that bounds of this type

(sometimes also called a posteriori bounds) are quite common for dynamic programming

models, but we have found that they are weak for MMPIP problem instances. We note that
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PIR bounds for problems in which capacity is fixed at locations in advance also tend to

be weak. The weakness of PIR bounds for the MMPIP does lead to a natural conjecture:

there may be significant value to move production modules in response to specific demand

trajectories, and therefore solving MMPIP problems effectively may lead to significant

value beyond systems with fixed installed capacity.

2.4.2 Most Flexible System: Lower Bound (LB)

We now present a lower bound for the MMPIP that we have found to be much tighter in

computational experiments. A mobile modular production system is highly flexible, since

the capacity configuration can be altered during the time horizon. Module movement costs,

however, mitigate the value of this flexibility. An approach to developing lower bounds is

to assume that production capacity can be allocated to locations immediately in any period,

and without module movement costs, in response to the current vector inventory state.

Since lower bounds of this type do not depend on the current capacity configuration,

we specify a lower bounding function Ṽ Lt ({si(t)}), where

Ṽ Lt ({si(t)}) ≤ Vt ({si(t)}, {ui(t)}) ∀ {ui(t)}.

We compute Ṽ Lt recursively using a simpler dynamic program, where we assume that the

lowest-cost capacity configuration can be used for each possible inventory state, as follows:

Ṽ Lt ({si(t)}) = min
{ui(t+1)}∑
i ui(t+1)=Y

min
qi(t)≤Gui(t+1)∀i

ED
∑
i∈I

[
hi(si(t) + qi(t)−Di(t))

+

+bi(Di(t)− si(t)− qi(t))+ + Ṽ Lt+1 ({si(t) + qi(t)−Di(t)})
]
,

∀ t ∈ T ,

Ṽ LT ({si(T )}) = 0 ∀ {si(T )}.

Note that it remains computationally expensive to compute the bounding function Ṽ Lt
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in general. It is more difficult than solving L independent inventory management problems.

Since the total number of modules defines total production capacity, it is necessary in most

instances to decide which locations, given a current inventory state, should be prevented

from selecting an optimal unconstrained production value by restricting their capacities.

However, it requires significantly less computation than solving the MMPIP problem to

optimality. Consider solving both problems by value iteration. The number of capacity

configurations possible isO
(
(Y +L)L−1

)
, since the number of ways to allocate Y modules

to L locations is given by
(
Y+L−1
L−1

)
. Thus, at each epoch, for a given vector inventory state,

value iteration for MMPIP requiresO
(
(Y +L)L−1

)
times more effort than solving for LB.

2.4.3 Fixed Capacity System: Upper Bound (UB)

A conventional production system with stationary capacity at all locations can be viewed

as a mobile modular production system where the capacity configuration is fixed for the

planning horizon. Given a fixed capacity configuration, an upper bound on the optimal

expected cost given an initial inventory state can be determined by solving L independent,

constrained inventory management problems. More specifically, let Ṽ F
t ({si(t)}, {ui}) be

the optimal cost-to-go function of the multilocation fixed system with capacity configura-

tion {ui} fixed from t until the end of the planning horizon, given initial inventory position

state {si(t)}. Let V F
i,t(s, C) be the optimal cost-to-go function of the single location inven-

tory control problem with production capacity C and initial inventory position s at location

i at time epoch t. When there are ui modules at i, then C = Gui. To determine this upper
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bound, we use the following optimality equations:

Ṽ F
t ({si(t)}, {ui}) =

L∑
i=1

V F
i,t(si(t), Gui)

=
L∑
i=1

min
qi(t)≤Gui

ED
[
hi(si(t) + qi(t)−Di(t))

+

+bi(Di(t)− si(t)− qi(t))+

+V F
i,t((si(t) + qi(t)−Di(t), Gui)

]
∀ {si(t)},∀t ∈ T

Ṽ F
T ({si(T )}, {ui}) = 0 ∀ {si(T )}.

We note that the computation of Ṽ F
t (·, {ui}) can be decoupled across locations. Let Q

be the cardinality of the inventory position state space for each location. Given capacity

configuration {ui}, for each location at each epoch computing the cost function above

requiresO
(
QGui

)
steps, and thus the total computational effort at each epoch isO

(
QGY

)
.

Again, this effort is significantly smaller than the corresponding O
(
QL(Y + L)L−1GY

)
effort required for computing the optimal value function for MMPIP at each epoch for a

given capacity configuration.

If we use this upper bounding approach beginning at the initial time epoch 1, we can

also compute the minimum (UBmin) and the maximum (UBmax) possible expected total cost

of a fixed system, given an initial inventory state of zero at all locations. Define the capacity

configuration that corresponds to UBmin as umin = arg min{ui} Ṽ
F

1 (0, {ui}). Determining

UBmin and umin requires comparing O
(
(Y + L)L−1

)
capacity configurations, or solving a

multiple choice knapsack problem [34, 35] as presented below:

min
∑L

i=1

∑Y
y=0 V

F
i,1(0, Gy)ziy

s.t.
∑L

i=1

∑Y
y=0 yziy = Y∑Y

y=0 ziy = 1 ∀ i ∈ {1, . . . , L}

ziy ∈ {0, 1} ∀ i ∈ {1, . . . , L}, y ∈ {0, . . . , Y }
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The idea of the knapsack formulation is to add one item for each location, where the size

of the item is its number of assigned modules and the knapsack size is Y . The cost of

adding item iy to the knapsack is the expected cost-to-go at epoch 0 for location i with y

modules. In the multiple choice problem, a set of constraints ensures that exactly one item

is chosen from each class of items (location). We note that the computational effort to solve

this integer program in practice is much smaller than the effort required to determine the

cost-to-go values for all locations and capacity levels.

We will see later fixed system configurations beginning at some time period can play

the role of a base heuristic within rollout approaches for determining good (but suboptimal)

dynamic policies for the MMPIP problem. Additionally, fixed system bounds will be used

as benchmarks to assess the value addition created by mobile modular production systems

and to evaluate the performance of heuristics for the MMPIP.

2.5 Heuristics

Since the MMPIP is characterized by a state space whose size is exponential in the number

of locations, L, and the length of the horizon, T , the model suffers from a curse of dimen-

sionality. Hence, we seek suboptimal policies for the problem constructed using approx-

imate dynamic programming techniques, such as rollout algorithms and decomposition-

based approaches, that do not require complete characterization of the optimal expected

cost function. Following the terminology presented in [29], a one-step rollout algorithm

is a value function approximation approach in which the decision at the current epoch is

determined by approximating the cost-to-go by the expected cost of implementing a base

policy for states beginning in the next epoch. We propose a decomposition-based rollout

algorithm, RF, that approximates the cost-to-go function by assuming that the capacity con-

figuration does not change again after decisions made in current epoch, and that an optimal

inventory control policy is used for future replenishment decisions given this fixed capacity.

Since this rollout can still be computationally expensive, we also present an alternative one-
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step lookahead policy, LAF, that approximates the expected cost of the optimal RF rollout.

A one-step lookahead policy is a suboptimal policy obtained by minimizing the sum of the

immediate cost for the current period and an approximation of the cost-to-go function for

the remaining horizon [36, Chapter 6]. In addition to these two core heuristics, we also

develop additional value function approximation policies that can be used for special case

problem instances with L = 2 locations.

2.5.1 Myopic Policy (MP)

In a myopic policy, we ignore the cost-to-go in the next epoch, and thus Vt+1({si(t +

1)}, {ui(t + 1)}) ≈ 0 for all system states. The myopic action in the current epoch can

found by solving an integer linear program (IP) that extends the classic formulation for

the discrete demand distribution newsvendor model. Let the set of demand outcomes from

stationary distribution Pi at every location i be {dki }, where for notational convenience k

indexes the outcomes in Ki. Given the current state ({si}, {ui}) of module allocation and

inventory positions, the IP formulation (2.3) is given by:

MMPIP-MP. min
L∑
i=1

[
L∑
j=1

KM
ij ∆M

ij +
M∑
k=1

pki (hir
k
i + bio

k
i )

]

rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}

0 ≤ qi ≤ G

(
ui −

∑
j

∆M
ij +

∑
l

∆M
li

)
∀ i ∈ {1, . . . , L}

∑
j

∆M
ij ≤ ui ∀ i ∈ {1, . . . , L}

qi,∆
M
ij ∈ Z+ ∀ i, j; rki , oki ∈ Z+ ∀ k,∀ i. (2.3)

The decision variables are the module movements {∆M
ij }, the replenishment quantities

{qi}, and the positive and negative parts of post-decision, post-information inventory po-
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sition {rki } and {oki } respectively. MMPIP-MP minimizes the immediate cost of module

movement and inventory holding or backordering. The first two constraints characterize a

newsvendor problem. The third constraint ensures that the post-module movement produc-

tion capacity is not exceeded at each location. The last constraint prevents removing more

modules than those available at any location.

The formulation for the single location discrete demand distribution newsvendor model

is proved to be a linear program [37]. We now present analogous structural results on the

integer program MMPIP-MP to enable increased computational efficiency.

Theorem 1. For integer values of G, dki , ui, and si for all k ∈ Ki and i ∈ {1, . . . , L},

(a) the integrality constraints on {oki }, {rki }, and {qi} for all k ∈ Ki, i ∈ {1, . . . , L} in the

integer program MMPIP-MP are redundant.

(b) when capacity per module G = 1, the linear programming relaxation of the integer

program MMPIP-MP has an integral optimal solution.

Proof of Theorem 1 is provided in SectionA1. Theorem 1(a) implies that it is sufficient

to impose integrality constraints on the variables {∆M
ij } only. Theorem 1(b) presents a

condition, namely, G = 1, under which, all the integrality constraints are redundant and

thus the MMPIP-MP can be solved by its linear programming relaxation. This implies fast

compute times when G = 1 even for relatively large values of L and T .

2.5.2 Rollout of Fixed Future (RF)

In this rollout heuristic, the base heuristic assumes that beginning in the next period mod-

ules will be fixed at their current locations until the end of the horizon. Thus, this approach

approximates the flexible capacity production system with one in which flexibility is only

available for the current period. We propose integer linear program (2.4) to determine the

optimal one-step decisions for this rollout, given the current state ({si}, {ui}) of module
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allocation and inventory positions. This problem is an extension of the integer program for

the myopic single-period action selection problem.

In (2.4), the objective is to minimize movement cost, expected inventory cost at all

locations, and the expected optimal fixed future cost. Note that since the capacity state

is fixed beginning in the next period, it is possible to decompose the optimal cost-to-go

function by location, and to only require the local production capacity and inventory state

as inputs to the precomputed functions V F
i,t+1(s, C). Thus, in addition to the {qi} and

{{∆M
ij }} decision variables used in the myopic integer program, binary variables zi(∆M , q)

are specified that take value 1 if ∆M modules are transferred to location i, and then used

in the current period to produce q items (note that q ≤ G(ui + ∆M) and that ∆M may be

negative). The first two constraints again are used to compute single-period underage or

overage units. The next three constraints ensure that only one set of module movement and

production decisions is made for each location, and that the module movement variables
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result in the selected capacity state for each location i. The formulation is provided here:

MMPIP-RF. min
L∑
i=1

[ L∑
j=1

KM
ij ∆M

ij +
M∑
k=1

pki {hirki + bio
k
i }

+
L∑
i=1

Y−ui∑
∆M=−ui

G(ui+∆M )∑
x=0

zi(∆
M , q)

∑
k

pki V
F
i,t+1

(
si + q − dki , G(ui + ∆M)

) ]
rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}
Y−ui∑

∆M=−ui

G(ui+∆M )∑
q=0

zi(∆
M , q) = 1 ∀ i ∈ {1, . . . , L}

−
∑
j

∆M
ij +

∑
l

∆M
li =

Y−ui∑
∆M=−ui

G(ui+∆M )∑
q=0

∆M zi(∆
M , q) ∀ i ∈ {1, . . . , L}

qi =

Y−ui∑
∆M=−ui

G(ui+∆M )∑
q=0

qzi(∆
M , q) ∀ i ∈ {1, . . . , L}

zi(∆
M , q) ∈ {0, 1}, ∀ q ∈ {0, . . . , G(ui + ∆M)},

∆M ∈ {−ui, . . . , Y − ui}, i ∈ {1, . . . , L}

qi, ∆M
ij ∈ Z+, ∀ i, j ∈ {1, . . . , L}; rki , o

k
i ∈ Z+ ∀ k ∈ Ki, ∀ i ∈ {1, . . . , L}.

(2.4)

It should be clear that the integer program (2.4) includes a large number of binary vari-

ables for larger values of L, Y , andG; the variable count grows atO(GY 2L). Furthermore,

before the formulation can be used, it is necessary to compute the function lookup tables

V F
i,t+1(s, C) for each possible module change ∆M

i ∈ {−ui, . . . , Y − ui} and inventory

state s at all locations using the approach described earlier. We also note that (2.4) is a

potentially useful model when V F
i,t+1(s, C) is an approximate value function, decoupled by

location, developed using any alternative approach and not necessarily limited to the case

where these functions represent the optimal cost-to-go of the single location fixed capacity

problem.
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2.5.3 Lookahead with Approximate Fixed Future (LAF)

The complete rollout heuristic RF can be computationally expensive since the integer pro-

gram becomes difficult in practice for larger problems. We therefore now develop an ap-

proximation of RF that is more computationally tractable. To do so, we approximate the

single location cost function by the average of two piecewise linear and convex functions.

Doing so bypasses the computationally expensive cost function lookup table modeling re-

quired in the RF heuristic. In this method, at every epoch decisions are made under the

assumption that the cost-to-go function is approximated by the following expression:

Vt+1({si(t+1)}, {ui(t+1)}) ≈
(
Ṽ F
t+1({s̄i(t+1)}, {ui(t)})+Ṽ F

t+1({si(t)}, {ui(t+1)})
)
/2,

where s̄i(t+ 1) = si(t) + qi(t)−
[
E[Di(t)]

]
and

[
a
]

rounds a to the nearest integer.

We can model this cost approximation using the optimal cost-to-go function of the fixed

system by leveraging the structural properties which establish that cost-to-go function of a

capacitated single location inventory control problem is convex in inventory position for a

fixed capacity level and convex in capacity level for a fixed inventory position [38]. This

result implies that V F
i,t(si, Gi) is piecewise linear (due to discrete inventory state space) and

convex in si for a fixed Gi. Thus, it can be represented as max{γijsi + γ̂ij : (γij, γ̂
i
j) ∈

Γit(ui)}, ∀i ∈ {1, . . . , L}. Similarly, for a fixed si, the function V F
i,t(si, Gi) is piecewise

linear and convex in ui (sinceGi = Gui) that can be expressed as max{θijui+θ̂ij : (θij, θ̂
i
j) ∈

Θi
t(si)}, ∀i ∈ {1, . . . , L}.

This approximation is again implemented by modifying the integer program (2.3), as
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follows:

MMPIP-LAF. min
L∑
i=1

[
L∑
j=1

KM
ij ∆M

ij +
M∑
k=1

pki {hirki + bio
k
i }+ (ζi + ηi)/2

]

ζi ≥ γij(si + qi −
[
E[Di(t)]

]
) + γ̂ij, ∀ (γij, γ̂

i
j) ∈ Γit+1(ui), i ∈ {1, . . . , L}

ηi ≥ θijyi + θ̂ij, ∀ (θij, θ̂
i
j) ∈ Θi

t+1(si), i ∈ {1, . . . , L}

rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}

0 ≤ qi ≤ Gyi ∀ i ∈ {1, . . . , L}

ui −
∑
j

∆M
ij +

∑
l

∆M
li = yi ∀ i ∈ {1, . . . , L}

qi, yi,∆
M
ij ∈ Z+, ∀ i, j; rki , oki ∈ Z+ ∀ k ∈ Ki, ∀ i ∈ {1, . . . , L};

ηi, ζi ∈ R ∀ i ∈ {1, . . . , L}. (2.5)

In addition to the decision variables described in the implementation of MP, ζi and

ηi represent the single location future costs at i expressed as a function of next period’s

inventory when capacity is held at the initial level ofGui, and as a function of new capacity

when inventory is held at the initial level of si respectively. The number of integer variables

required to represent the future cost-to-go is significantly lower by O(GY 2L) in MIP (2.5)

when compared with IP (2.4). This reduces the computational effort required to solve this

MIP dramatically. Furthermore, when module capacity G = 1, this MIP reduces to a linear

program.

Theorem 2. For integer values of G, dki , ui, and si for all k ∈ Ki and i ∈ {1, . . . , L},

when capacity per module G = 1, the linear programming relaxation of the mixed integer

program MMPIP-LAF has an optimal solution where decision variables q, y, w, r, and o

are integral.

Proof of Theorem 2 is presented in Section A2.
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2.5.4 L = 2 Heuristics

The general suboptimal policies that we have proposed so far rely on approximating the

future value function with a form that decomposes by location. Of course, if we assume that

production modules cannot be moved after the current time epoch, then indeed the optimal

value function decomposes by location. In this section, we explore suboptimal policies and

solution heuristics that no longer have this feature to understand how much incremental

value may be gained. For computational tractability, we focus on small problem instances

with L = 2 production locations.

Lookahead with Fixed or Purchasable Most Flexible Future (LFP)

The cost function computation of the lower bound LB presented in Section 2.4.2 is coupled

across locations and has severe computational drawbacks for larger numbers L of locations.

However, it is complementary to the fixed capacity upper bound and models the case where

there is no cost to moving production modules; we call this case the most flexible future. We

therefore investigate the potential of building a value function approximation that blends

these upper and lower bounds within a suboptimal lookahead policy.

We denote the blending heuristic LFP, denoting a lookahead with a fixed future capacity

or a “purchasable” most flexible future capacity. The LFP assumes that the decision-maker

chooses the best action at the current decision epoch by assuming that she has a choice

between (i) keeping capacity fixed for the remainder of the planning horizon and (ii) making

a one-time payment now to allow unlimited future module movements. That is, the cost-

to-go function in Eq. 2.1 is approximated as follows:

Vt+1({si(t+ 1)}, {ui(t+ 1)}) ≈ min

{
Ṽ F
t+1({si(t+ 1)}, {ui(t+ 1)}),

κF (t) + Ṽ Lt+1({si(t+ 1)})
}
,

where Ṽ F
t+1 as usual can be decomposed into

∑L
i=1 V

F
i,t+1(si(t+ 1), ui(t+ 1)).
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To use this approach, it is necessary to define the mobility purchase cost κF (t). We use

the following definition, which works well in practice:

κF (t) =
1

2
K
M

(T − t)P
(
{D1 = dmax

1 } ∪ {D2 = dmax
2 }

)
, ∀ t ∈ T

. The above expression qF (t) is designed to be an approximation of the cost of preventing

stock-outs by moving modules. First, let K
M

be the average (directed) cost of moving a

module between the pair of locations. Next, we approximate the stock-out likelihood using

the probability of the maximum demand occurring at either location. Finally, we assume

that given a stock-out, that it will be addressed by a module movement with probability one

half. It is certainly possible to use different approximations of the cost purchasing future

flexibility, but this approach led to good results for test instances.

We note that if the mobility purchase cost is very large, i.e., κF (t) = ∞ ∀ t ∈ T ,

the LFP policy is equivalent to RF. On the other hand, if mobility purchase cost κF (t) =

0 ∀ t ∈ T , we denote the resulting suboptimal policy as lookahead with most flexible future

(RLB). Under the RLB policy, decisions are made each period assuming that in the next

period there will be no additional cost of module movements.

Lookahead with Iteratively Updated Cost-to-go (LIU)

We now present a policy, LIU, generated by a simulation-based optimization method. The

method seeks an approximate characterization of the expected cost function in the form

of a lookup table covering the complete discrete state space of MMPIP. Once again, since

such a method becomes intractable for larger values of L, we develop and test this heuristic

policy using systems with only L = 2 production locations.

In each pass of the algorithm presented in Section A3 of the appendix, the initial esti-

mate of the cost-to-go function is set to the cost-to-go function of the fixed system. Demand

outcomes are generated for all periods from the given stationary demand distributions by
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Monte-Carlo simulation. The state at t = 1, ξ(1), has zero inventory at all locations and

the best fixed module configuration umin. At every epoch t, at the current state in the sam-

ple trajectory, a new iterate is created by approximating the cost-to-go of the current state.

This is done by blending the current approximation of the current state cost-to-do with a

new estimate created by finding the expected cost of an optimal single-period action when

using the current cost-to-go approximation at epoch t + 1. This approximation approach

is repeated and cost-to-go functions updated along N sample trajectories and then the al-

gorithm is terminated. The heuristic policy induced by the final estimate of the cost-to-go

function is referred to as LIU.

Let αn be the blending coefficient used in the nth iteration of the approach (for trajectory

n). The condition
∑∞

n=1 αn → ∞ prevents premature stalling of the algorithm [28, Ch.

11]. Additionally, the condition
∑∞

n=1 α
2
n < ∞ ensures fast convergence of the iterates

by limiting their variance. We test three blending coefficients, namely, a constant (0.5),

1/(n+ 1), and 1/ (number of visits to a particular state), where n is the trajectory counter.

We note that although the constant coefficient violates the second condition, it performs

better than the other two candidates. Thus, we present computational results only for the

constant blending coefficient.

2.6 Computational Study

We work with three different datasets for our study. Instance Set 1 is a set of L = 2

instances that are small enough to allow computation of the exact optimal solution by value

iteration. Instance Set 2 is a set of larger L = 2 instances (with respect to module fleet size

Y , horizon T , and capacity per module G) for which the heuristic policies are compared

with respect to UBmin, the upper bound computed at the best fixed system configuration.

Instance Set 3 focuses on problems with L ≥ 2 locations, and studies the performance

of MP, RF, and LAF with respect to UBmin. The design of these three sets of instances

is presented in Section A4 of the appendix. To evaluate heuristic performance on all the
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instance sets, on all forward dynamic programming paths, the initial state ξ(0) is set to zero

inventory at all locations and the best fixed capacity configuration umin. Without loss of

generality, we let K
M

be the average module movement cost between any two locations.

We also let bi = b and hi = h for all locations i.

2.6.1 Instance Set 1.

This set consists of 1280 instances with L = 2. We study the performance of the proposed

bounds and heuristics with respect to the value of optimal total expected cost function

(OPT).

We consider the subset of the instances for which the optimal policy prescribes module

movement in at least one of 50 simulated trajectories. Of the 1280 instances, 595 instances

exhibit movement in a simulation experiment with 50 sampling-based trajectories per in-

stance. Figure 2.2a of histograms of optimal movement tendency shows that movements

are observed for L = 2 both in early as well as later periods over various lengths of the

horizon. Figure 2.2b presents a bar plot of movement tendency for 50 simulated trajecto-

ries of one specific shifting instance from Instance Set 1 with the horizon length changed

to T = 100. This movement tendency establishes that module movements is not caused by

end effects and hints at effects of spatio-temporal dissimilarity and uncertainty.

We now pursue patterns in module movement tendency, which is observed in about

50% of the instances of Instance Set 1. We label each instance as (AB,CD) where

A,B,C,D ∈ {L,H} respectively indicate the level of expected demand (ED) at loca-

tion 1, location 2, coefficient of variation (CV) at location 1 and location 2 respectively.

For any location, the level of ED is high (H) if it is greater than or equal to 0.3Y and low

(L) otherwise. Likewise, CV is high(H) if it is greater than or equal to 0.5 and low (L)

otherwise. Based on such a classification of instances, we study the variation in movement

tendency in Instance Set 1 across these classes.

In Figure 2.3, we observe that instances with high ED at both locations show the high-
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Figure 2.2: Module movement tendency of the optimal policy

est tendency to move modules (the top three classes with HH before comma). Instances

with high CV at both locations and high ED at any one location come next. Instances with

opposite ED classes and CV classes at the two locations show moderate movement behav-

ior. The lowest movement tendency is observed when both locations have low ED or low

CV. This classification establishes that the nature of uncertainty plays a major role in the

movement inclination of an instance.

We use the above information to obtain the following infographic (Table 2.1) that

demonstrates the usefulness of mobile modularity (based on the percentage of instances

exhibiting movement in each subset, we classify as Very low: 0-10%, Low: 10-20%, Mod-
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Figure 2.3: Effect of variability of demand on movement tendency

Table 2.1: Instance Set 1 - Usefulness of mobile modularity

low ED at both low, high EDs high ED at both Overall
high CV at both Low High Very high High
low, high CVs Low Moderate Very high Moderate
low CV at both Very low Low Very high Moderate

Low Moderate High

erate: 20-45%, High: 45-70%, and Very high: ¿70%). Such a table can be used by firms

to evaluate how useful mobile modularity can be to their specific demand behavior. The

subset of Instance Set 1, which have high (> 0.3GY ) expected demand at both locations

(and hence, are expected to show higher tendency of module movement than the other in-

stances) are referred to as HH instances of Instance Set 1. Table 2.1 confirms the intuition

that at high CVs and EDs, there is greater benefit of using mobile modularity. Another key

takeaway is that the magnitude of ED of demand random variables has a stronger effect

than the magnitude of their CV. Irrespective of how high the variability of demand is, at

high average demands, there is immense utility of mobile modular systems.

In Tables 2.2, we study the variation in the quality of the bounds with the total number
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Table 2.2: Instance Set 1 - Variation of bounds w.r.t. OPT across T , Y , b, h, and K
M

(a) T

T PIR LB UBmax UBmin

5 0.224 0.946 4.8 1.021
7 0.228 0.938 6.5 1.033
10 0.221 0.930 9.2 1.062
15 0.199 0.931 13.2 1.086

(b) Y

Y PIR LB UBmax UBmin

3 0.520 0.871 4.2 1.119
5 0.221 0.923 7.4 1.059
7 0.105 0.961 9.6 1.020
10 0.026 0.990 12.4 1.004

(c) b

b PIR LB UBmax UBmin

1 0.218 0.938 6.4 1.036
2 0.218 0.934 10.5 1.065

(d) h

h PIR LB UBmax UBmin

0.5 0.234 0.927 10.5 1.060
1 0.201 0.945 6.4 1.041

(e) KM

K
M

PIR LB UBmax UBmin

0.5 0.181 0.960 8.6 1.079
5 0.255 0.912 8.2 1.021
Overall 0.218 0.936 8.4 1.050

of modules Y , length of the horizon T , backorder rate b, holding rate h, and movement

cost K
M

on set 1. PIR is consistently bad for all T and grows worse with increase in Y . It

is interesting to note that PIR, although bad, is significantly better on HH instances (Table

A.1 in appendix). This signifies the role of uncertainty and information in situations that

benefit from access to flexibility and confirms the intuition of using mobile modularity as a

hedge against spatio-temporal uncertainty of demand. We note that the performance of LB

and UBmin deteriorates with increasing T but improves with increasing Y . This behavior

is expected, as with increase in horizon length, period-wise difference between the bound

and the optimal accumulate and hence, the bound will be farther from the optimal on longer

horizons. When the number of modules is increased, a smaller fraction of modules will be

moved, thus making the bounds tighter. The cost of the worst fixed configuration, UBmax,

although a very bad bound, gives us an insight into the value addition by mobile modularity

under a) nonstationary demands, and b) poor forecast of stationary demand. As expected,

UBmax grows worse with increase in both T and Y . LB is tighter when Y is high (as
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moving fewer modules is profitable) and moves more frequently than required increasing

its optimality gap at higher K
M

, b, and lower h (Table 2.2). When b is low and/or K
M

is

high, there is not enough incentive in moving modules, making UBmin very tight.

Table A.2 in the appendix provides the results on value addition due to mobile mod-

ularity and the fractions of costs spent by an optimally run mobile modular system on

moving modules, backordering, and holding when compared to the best fixed system on

Instance Set 1. A significant reduction (18% on average and 30% for T = 15) in cost due

to backordering is observed due mobile modularity (on HH instances).
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Figure 2.4: Instance Set 1 - Performance of heuristics w.r.t. OPT across T and Y on HH
instances and all instances

Figure 2.4 presents the performance of heuristics over Instance Set 1 and HH instances
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of Instance Set 1. In all the sub-figures of Figure 2.4, the ratios of MP, RF, RLB, and LFP

with respect to the optimal solution are presented, compared with LIU (implemented with a

constant blending coefficient of 0.5). The performance of MP improves with increase in Y

and declines for larger horizon lengths. We note that MP leads to an overall average gap of

about 9% (15% among shifting instances). RLB performs better than MP at all levels of Y

and T with an overall average of 1.02 times the optimal MMPIP cost. RF outperforms RLB

leading to an overall average of 1.01 times the optimal MMPIP cost. LFP’s performance

is similar or better than that of LIU. For the L = 2 problem, LFP leads to the lowest

gap of 0.3% on average and it improves with increase in Y . LFP is computationally more

intensive compared to MP, RLB or RF. MP is the most computationally efficient heuristic

as it does not need to compute and store a lookup table over the entire state space while

estimating the future cost. When only HH instances are considered, the performance of

the proposed heuristics is still very good although the gaps are slightly higher. The lower

gaps over the entire instance set can be attributed to the behavior of the fixed system’s

cost, which guides the heuristics. We now discuss the movement tendency captured by

these heuristics. All instances showing module movement in MP and RLB have movement

tendency in the optimal policy as well. However, MP and RLB are more conservative than

the optimal policy and exhibit movement in only 66% and 74% of the optimal policy’s

shifting instances respectively. This result is intuitive as MP does not account for sustained

future benefit while moving modules and RLB would not be eager to shift modules in the

present due to its assumed zero cost future flexibility. RF and LFP show movement in

most (more than 97%) of the instances that show movement by the optimal policy. All the

heuristics work better at low b and high h (Table A.4). For high K
M

, LIU, RF, and LFP

perform well but MP and RLB are closer to optimality whenK
M

is low, as expected (Table

A.4).

Focusing on the HH subset of Instance Set 1, we note that the most flexible system and

the fixed system perform worse on HH instances than on the overall set, indicating the need
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for mobile modularity. We observe that optimality gap of all the heuristics on HH instances

is higher than the overall average, although, the magnitude of gap itself is still within 8%.

Figure 2.4 show that LFP outperforms all the heuristics and is closely followed by RF.

2.6.2 Instance Set 2.

This set consists of 720 two location instances with relatively higher values of horizon T ,

module fleet size Y , more spread in backorder cost b and module movement cost K, and

production capacity per module G. We compare the performance of the heuristics and the

lower bound, most flexible system’s optimal cost (LB), with respect to the upper bound,

the optimal cost of the best fixed system (UBmin).
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Figure 2.5: Instance Set 2 - Module movement tendency across G

Figure 2.5 presents the module movement tendency at different module capacity levels.

MP is the most conservative policy in moving modules as it aims to minimize the immediate

costs only. RF restricts movements at higher capacity levels due to assumed fixed future that

results in a greater impact due to removal at sending locations. As expected, RLB moves

modules more frequently compared to MP and RF at G > 1. LFP exhibits a movement

frequency, which falls between that of RF and RLB, as expected.

We observe that UBmax increases with increase in T , Y , and b but decreases with an

increase in Y , as expected. It stands at 13.9 times UBmin for G = 1 and increases to 20.1
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Figure 2.6: Instance Set 2 - Overall performance w.r.t. UBmin across Y , G, K
M

, and b

times UBmin at G = 3. These magnitudes establish that for larger instance sizes, the risk of

loss due to demand non-stationarity is higher as fixed systems do not have a recourse when

demand distributions vary. We now focus our attention on Figs. 2.6 and 2.7a. The most

flexible system lower bound LB is tighter for higher G and Y , and lower b, K
M

, and T ,

which is expected as mobile modularity is not fully utilized in these situations. We see that

RF and LFP perform much closer to optimality and significantly better than MP, LIU and

RLB.

The best heuristic, LFP, delivers an average improvement of about 4% over UBmin on

Instance Set 2. However, focusing on the HH instances of Instance Set 2 (Fig. 2.7b),
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Figure 2.7: Instance Set 2 - Performance w.r.t. UBmin across T

we note a 5% average advantage over fixed systems for LFP, which is close to RF(4.8%),

and higher than RLB (4%), LIU (3%), and MP (−0.4%). For certain configurations, LFP

costs about 9% less than UBmin. These results reveal promise in the resourcefulness of

the proposed heuristics and have encouraged our pursuit of the solution of the problem for

L > 2.

2.6.3 Instance Set 3.

This set consists of 540 instances generated by a procedure described in the appendix, with

L ≥ 2. We study the performance of three heuristics, viz., the the myopic policy(MP),

the lookahead with approximate fixed future (LAF), and the rollout of fixed future (RF)

on 50 simulated trajectories of every instance in this instance set. We conduct our study

by setting the initial state of the system to have zero inventory positions at all locations

and two different capacity configurations: a) usimple and b) umin. usimple is an allocation of

the modules based on both the mean demand and variable component of demand at each

location (see Appendix for details). umin is the best fixed system’s capacity configuration.

The computations for the study on Set 3 are performed on a single server of an Intel

Xeon Processor E5-2670 workstation. We first take stock of the times taken to compute

the best upper bound UBmin (one-time and offline) and the three heuristics MP, LAF, and
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RF (Table 2.3) on T = 15 instances. We note that LAF is significantly faster than RF and

is comparable to MP in its order of magnitude. Figure 2.8 shows that, as L increases, the

effort required to implement RF increases drastically and LAF is on average 35 times faster

than RF for L = 20. Additionally, we note that using LAF takes less than twice the effort

required for implementing the naive MP policy, even when L is high. Thus, LAF presents

remarkable computational advantage over RF.

Table 2.3: Instance Set 3 - Average compu-
tation time in seconds for T = 15 instances
across L

L UBmin MP LAF RF
(per instance) (per trajectory)

2 0.08 0.05 0.08 0.21
3 0.23 0.07 0.13 0.33
5 0.87 0.10 0.21 0.74

10 7.30 0.23 0.48 3.6
20 96.0 0.77 1.30 33.7
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Figure 2.8: Instance Set 3 - Average com-
putational effort relative to MP across L

We observe that LAF and RF perform almost identically, suggesting that the approxi-

mation of fixed future proposed in LAF is efficient both in speed and quality. LAF and RF

improve over UBmin by 4-9% and the savings increase with L on average. Also, lesser sav-

ings are obtained for higher Y for any given L, as fewer modules would be moved between

locations due to greater availability of capacity at each location. MP results in average

costs that are sometimes higher than UBmin also, indicating that naive approaches would

not yield the advantage that can potentially be garnered by mobile modularity. Fig. 2.9a

shows that the well-performing heuristics, RF and LAF, generally yield increasing benefit

with increasing L.

Fig. 2.9c confirms the intuition that, with increasing K
M

, well-performing heuristics,

such as LAF and RF, lead to lesser benefit over the fixed system. MP appears to be more

sensitive to higher values of K
M

, as moves made for immediate cost benefits may induce
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Figure 2.9: Instance Set 3 - Performance of heuristics w.r.t. UBmin, when initialized to
umin, across L, T , K

M
, and b

more movements to the escape the bad state that was landed in. As the backorder rate per

unit per period, b, increases, there is greater use of mobile modularity (Fig. 2.9d). In Fig.

2.9b, we note that higher value addition due to mobile modularity is attained on longer

horizons due to accumulated benefit (about 12% for T = 15). Motivated by this obser-

vation, we present at the performance of the heuristics across L for the longest possible

horizon, T = 15, in Fig. 2.10b. We achieve an average value addition ranging between 9

to 16% on realistically sized instances for T = 15.

We also compare the resilience of the two systems of interest, namely, mobile modular

systems and fixed systems, by studying the effect of configuring both systems to a simple
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Figure 2.10: Instance Set 3 - Performance of heuristics when initialized to umin and usimple

initial capacity allocation based on location-wise expected demand and variability, usimple,

instead of umin (see Fig. 2.10). In Fig. 2.10a, we note that the gap between the implemen-

tations of RF with two different initial configurations reduces as the horizon grows longer.

We may infer that the difference in heuristic performance is due to the amortization of a

one time movement cost to switch from usimple to the better capacity configuration umin.

The cost of the fixed system configured to usimple is about 25% higher than UBmin when the

length of the horizon, T , is 15 (Fig. 2.10b). However, setting the initial state to usimple in-

stead of umin leads to only about 2% decrement in the gaps of LAF and RF at T = 15. This

observation establishes that the mobile modular system is indeed very resilient compared

to fixed systems as it is able to retrieve most of the savings over fixed systems even with

suboptimal initial configurations (about 25-30% savings over the fixed system configured

to usimple). These observations indicate that LAF and RF perform robustly irrespective of

the initial capacity configuration and mobile modular systems are very resilient relative to

fixed systems.

Our computational study firmly establishes that mobile modular production systems

respond to the uncertainty of demands in multi-location, multi-period production-inventory

systems significantly more effectively (in terms of cost and resilience) than fixed systems.
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Table 2.4: Instance Set 3 - Performance of heuristics w.r.t. UBmin across L and Y

L Y MP LAF RF

2
4 0.96 0.914 0.908
5 0.97 0.960 0.961

3
6 0.96 0.913 0.897
8 1.00 0.990 0.986

5
10 0.94 0.866 0.860
12 1.00 0.974 0.965

10
19 0.93 0.851 0.848
24 1.00 0.973 0.970

20
38 0.93 0.834 0.829
48 1.00 0.985 0.981

Overall 0.97 0.93 0.92

2.7 Conclusion

We introduce the mobile modular production and inventory problem and present novel so-

lution techniques that are suitable for multilocation instances also. The proposed heuristics

for mobile modular production systems accomplish immense value addition over optimally

run fixed systems, providing evidence of efficiency, practicality, and suitability of mobile

modular production systems. Our heuristics perform very close to the optimal solution

for L = 2 and significantly better than the fixed system for L ≥ 2. Through our com-

putational study, we demonstrate the cost-effectiveness and resilience of mobile modular

systems in comparison to fixed systems. Addiitonally, the heuristic LAF achieves remark-

able computational efficiency. Future work may focus on better models of demand and the

incorporation of inventory transshipment also in the model. Lead times of module move-

ment and thus a down time in production for some of the modules may also be incorporated

into the stochastic optimization framework.
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CHAPTER 3

INVENTORY CONTROL WITH MODULATED DEMAND AND A PARTIALLY

OBSERVED MODULATION PROCESS

3.1 Introduction

We consider a periodic review, data driven inventory control problem over finite and infi-

nite planning horizons with instantaneous replenishment. We assume that there are several

interconnected processes: the completely observed inventory process that keeps track of

the inventory level, the uncensored demand process, the action process that represents re-

plenishment decisions, the underlying modulation process that affects demand, and the

additional observation data (AOD) process that together with the demand process partially

observes the modulation process. The inventory, demand, and action processes are com-

mon to inventory control problems. When completely observed by the demand and AOD

processes, the modulation process models the case where demand is Markov-modulated.

When the modulation process is only observed by the demand process and is assumed

static, then the model conforms to the model considered by the Bayesian updating litera-

ture. The modulation process can represent an unknown static parameter or index of the

demand process, the state of the world, etc., and can model dynamic exogenous factors,

such as the weather, seasonal effects, and the underlying economy. The AOD process can

model observations of the modulation process other than demand; e.g., macro-economic

indicators.

In Section 3.2, we model this problem as a partially observed Markov decision process

(POMDP) and present related preliminary results and a key assumption, A1, a generaliza-

tion of the Veinott attainability assumption, assuming the reorder cost K = 0. We assume

A1 holds in Section 3.3 and show there exists a myopic optimal base stock policy, the value
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of the optimal base stock level is constant within regions of the belief space, and these re-

gions can be described by a finite set of linear inequalities. A1 guarantees that the current

base stock (i.e., order up to) level is always at least as great as the current inventory level.

We then present conditions that imply A1 holds and present a procedure for computing the

optimal cost function.

We assume A1 does not hold in Section 3.4, present lower and upper bounds on the

optimal cost function based on the base stock policy that is optimal when A1 holds, and

present an upper bound on the difference between these two bounds. Interestingly, we

show that the upper bound on the optimal cost function is piecewise linear in the belief

function for the finite horizon case but may not be continuous; hence, improved observation

quality of the modulation process may not result in improved systems performance. We

then present a tighter lower bound based on the assumption that A1 holds within δ > 0 and

show that this tighter lower bound improves as δ gets smaller.

We consider the K > 0 case in Section 3.5 and assume throughout that A1 holds. We

show that there exists an optimal (s, S) policy and determine upper and lower bounds on s

and S for the finite and infinite horizon cases, where each bound and the values of s and S

are dependent on the belief function of the modulation process. Each of these bounds and

the values of s and S are shown to be constant within regions of the belief space described

by a finite number of linear inequalities. An outline of an approach for determining an

optimal (s, S) policy and the resultant expected cost function for the finite horizon case are

presented in the appendix. Conclusions are presented in Section 3.6.

3.1.1 Literature Review

Inventory control has been studied extensively over six decades; see [39], [40], [41], [42],

[43], [44], and [45] for detailed surveys. This survey is organized around various assump-

tions made in the literature regarding the modulation process. We also survey several non-

parametric approaches. We first consider the K = 0 case, followed by the K > 0 case.
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Assuming K = 0, the case where the modulation process is completely observed and

static was first considered by [46], and [47, 48], various extensions of which are detailed in

surveys by [39], [41], [42], and [43]. The case where the modulation process is completely

observed and nonstationary was first considered by [49, 50], [51], and [52, 53]. A base

stock policy dependent on the state of the modulation process (current demand distribu-

tion) was proved to be optimal in [49] and [50]. [51] developed computational approaches

for determining the base stock level. [54] extended these results to the average cost cri-

terion and to cyclic costs. [53] and [52] proved the existence of an optimal myopic base

stock policy when the base stock level at the next decision epoch is guaranteed to exceed

the current inventory position after satisfying demand (i.e., the attainability assumption) for

independent and correlated nonstationary demands across time periods, respectively. [53]

also provided sufficient conditions for this assumption. [55] studied an inventory system

with the additional option of disposal of inventory at a cost and nonstationary demands

in each period. [56] modeled explicit dependence of a generalized demand process on a

modulation process with exogenous parameters and demand history and derived an upper

bound on the optimal cost for scenarios such as Markov modulation and additive and mul-

tiplicative demand shocks. [57] modeled the modulation process as a completely observed

underlying “state-of-the-world” in a continuous time framework similar to [51], with a

Markov-modulated Poisson demand process. A “state-of-the-world” dependent base stock

policy was proved to be optimal. When attainability of the next period’s base stock level

is guaranteed, an optimal myopic policy was shown to exist. [58] extended the results of

[57] to a discrete time system and obtained analogous results. [59] dealt with martingale-

demand under a robust optimization framework.

[60], [61], and [62] analyzed the case where the modulation process is static, partially

observed by the demand process, completely unobserved by the AOD process, and rep-

resents unknown parameters of a single stationary distribution. While [61] proved the

optimality of a statistic-dependent base stock policy, [62] extended the results to determine
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a Bayesian update on unknown parameters. [63] and [64] extended these results ([61]) to

other distributions and compared this method with non-Bayesian mixture methods. [65]

built on their work to prove the optimality of a myopic base stock policy for “parameter

adaptive models” of demand, and [66] dealt with an unknown stationary distribution of

demand partially observed by a scale parameter and a shape parameter. [67] presented a

study of the Bayesian updating mechanism with and without nonstationarity and disposal.

Partial observability of demand outcomes results from limitations on the accuracy of

inventory book-keeping (in [68] and [69]), and censoring (in [70, 71]). [70, 71] treated

Markovian modulation of demand as a special case. Their problem formulation differs from

our framework as they learn the unknown stationary demand distribution in a Bayesian

fashion and the demand process (not the modulation process) is partially observed (cen-

sored). [72] presented an analysis of optimal policies for the Bayesian newsvendor problem

with and without censoring.

For the case where the modulation process is partially observed by the demand process,

completely unobserved by the AOD process, and dynamic, [73] proved the existence of

an optimal state-dependent base stock policy for an uncapacitated inventory system. [74]

proved the optimality of inflated state-dependent base stock policies for capacitated pro-

duction systems under Markov-modulated demand and supply processes (extending [75]).

[76] studied a completely unobserved Markov-modulated Poisson demand process in a

continuous-review inventory system with reorder cost and lost sales (censoring).

[73] and [74], however, did not prove the existence of an optimal myopic state-dependent

base stock policy, which we prove in this chapter, assuming A1 holds. Further, we show

that the belief space can be partitioned into subsets by a finite set of linear inequalities and

that the base stock level is constant within each of these subsets. Such regions have also

been observed in the numerical example provided in [76]; however, no explanation is given

for such behavior. The linear partition of the belief space we present provides an easily

computed approach to determine an optimal base stock level for any given belief vector.
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For theK > 0 case, [77] and [78] proved that there exists an optimal (s, S) policy under

finite and infinite horizons, respectively. [78] presented the first set of bounds on period-

wise reorder points and base stock levels, which were later tightened by [79]. [80] extended

[53, 52] to the K > 0 case. More recently, [81] presented sufficiency conditions of diver-

gence and K-convexity for the optimality of (s, S) policies under time-varying parameters

and correlated demand variables modulated by an underlying “state-of-the-world” variable.

Our results extended to the K > 0 case lead to significantly reduced computational effort

in determining the optimal policy compared to [76] when A1 holds.

More recently, nonparametric approaches for describing demand uncertainty have gar-

nered interest. [82] presented a bootstrap procedure when lead time distribution is un-

known. [83] and [84], [85] and [86] studied problems with partial information about the

demand randomness, viz., mean and variance, moments and shape, and censored data re-

spectively. [87] obtained history-dependent base stock levels while simultaneously opti-

mizing and learning the histogram of realized demand. For the distribution-free problem,

[88] and [89] employed censoring using statistical estimators, [90] and [91] used machine

learning techniques in conjunction with optimization, [92] and [93] studied the perfor-

mance of the sample average approximation (SAA), and [94] applied a piecewise linear

value function approximation. [95] estimated historical data for new products and pre-

sented an algorithm to perform price optimization. Future research may involve a blend

of nonparametric approaches with Bayesian approaches, such as the approach presented in

this chapter.

3.2 Problem Description and Preliminary Results

We describe the inventory control problem in Section 3.2.1. We then model the problem

as a POMDP and present optimality equations and other standard results in Section 3.2.2.

In Section 3.2.3 we present results associated with the single period expected cost function

that will be useful in later sections and also present the condition A1.
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3.2.1 Problem Definition

We consider an inventory control problem that involves the inventory process {s(t), t =

0, 1, . . . }, the modulation process {µ(t), t = 0, 1, . . . }, the demand process {d(t), t =

1, 2, . . . }, the additional observation data (AOD) process {z(t), t = 1, 2, . . . }, and the

action process {a(t), t = 0, 1, . . . }. These processes are linked by the state dynamics

equation s(t+ 1) = f
(
y(t), d(t+ 1)

)
, where y(t) = s(t) + a(t), and the given conditional

probability Pr
(
d(t + 1), z(t + 1), µ(t + 1) | µ(t)

)
. We assume the single period cost

accrued between decision epoch t and t + 1 is c
(
y(t), d(t + 1)

)
, where c(y, d) is convex

in y and lim|y|→∞ c(y, d) → ∞ for all d. We also assume that c(y, d) is piecewise linear

in y for all d and that the facets describing c(y, d) intersect at integers. We will have

particular interest in the case where f(y, d) = y − d, which assumes backlogging, and

c(y, d) = p
(
d− y

)+
+ h
(
y − d

)+
, where p is the shortage penalty per period for each unit

of stockout, h is the holding cost per period for each unit of excess inventory after demand

realization, and (g)+ = max(g, 0). Without loss of significant generality, this definition

of single period cost does not include an ordering cost. It is straightforward to transform

an inventory problem with a strictly positive ordering cost into an inventory problem with

no ordering cost for a wide variety of cost and dynamic models of inventory position, e.g.,

f(y, d) = y− d or f(y, d) = (y− d)+ and c(s, y, d) = c′(y− s) + p(d− y)+ + h(y− d)+,

where in this case the single period cost accrued between decision epochs is dependent on

s and c′ is the cost per unit ordered.

We assume that the modulation, demand and AOD state spaces are all finite, the inven-

tory process has a countable state space, and the action space is the set of non-negative inte-

gers. We assume the action at t can be selected based on s(t), d(t), d(t−1), . . . , z(t), z(t−

1), . . . , and the prior probability mass vector {Pr
(
µ(0) = µi

)
,∀i}. Thus, the inventory

process is completely observed, demand is not censored, and the modulation process is

partially observed by the demand and AOD processes. The problem is to determine a

policy that minimizes the expected total discounted cost over the infinite horizon, where
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we let β ∈ [0, 1) be the discount factor. It is assumed throughout that replenishment is

instantaneous.

We remark that the inventory, demand, and action processes are all part of inventory

control problems considered in the literature. As indicated in the literature review, the

modulation process is also part of the structure of inventory control problems with Markov-

modulated demand. The AOD process is intended to provide information about the modu-

lation process, where appropriate, in addition to that provided by the demand process, such

as macro-economic data. Throughout we assume demand realization is uncensored and

completely revealed. This assumption is in contrast to the censored demand case where

only sales data are available to the decision maker.

We note that the conditional probability Pr
(
d(t + 1), z(t + 1), µ(t + 1) | µ(t)

)
is the

product of two conditional probabilities:

1. Pr
(
d(t+1), z(t+1) | µ(t+1), µ(t)

)
, the demand and AOD probabilities, conditioned

on the modulation process

2. Pr
(
µ(t + 1) | µ(t)

)
, the state transition probabilities for the (Markov-modulated)

modulation process.

The Baum-Welch algorithm is typically used to estimate parameters of a POMDP, viz.,

observation and transition probabilities and initial belief state (see [96] for a review on

POMDP training methods).

We remark that demand is i.i.d. under several assumptions including:

1. if z(t+ 1) = µ(t+ 1) w.p.1 µ(t+ 1) = µ(t) w.p.1 and Pr
(
µ(0) = µi

)
= 1 for some

given i.

2. if z(t+ 1) is independent of µ(t+ 1) and µ(t) and µ(t+ 1) = µ(t) w.p.1.

3. if d(t+ 1) is independent of z(t+ 1), µ(t+ 1), and µ(t).
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3.2.2 The POMDP Model and Preliminary Results

Optimality equations.

This problem can be recast as a partially observed Markov decision problem as follows. Re-

sults in [97] and [98] imply that (s(t), x(t)) is a sufficient statistic, whereN is the number of

values the modulation process can take, the belief function x(t) = row{x1(t), . . . , xN(t)},

is such that xi(t) = Pr
(
µ(t) = µi | d(t), . . . , d(1), z(t), . . . , z(1), x(0)

)
, and x(t) ∈ X =

{x ∈ RN : x ≥ 0 and
∑N

i=1 xi = 1}. For g ∈ RN , let g1 =
∑N

n=1 gn. Thus, the inventory

process is completely observed, the modulation process is partially observed through the

demand and AOD processes, and the state of the modulation process is characterized by

the belief function. Let

Pij(d, z) = Pr
(
d(t+ 1) = d, z(t+ 1) = z, µ(t+ 1) = j | µ(t) = i

)
,

P (d, z) = {Pij(d, z)},

σ(d, z,x) = xP (d, z)1 =
N∑
i=1

xi
∑
j

Pij(d, z),

λ(d, z,x) = row
{
λ1(d, z,x), . . . , λN(d, z,x)

}
= xP (d, z)/σ(d, z,x),

σ(d, z,x) 6= 0,

L(x, y) = E
[
c(y, d)

]
=
∑
d,z

σ(d, z,x)c(y, d).

Define the operator H as

[Hv](x, s) = min
y≥s

{
L(x, y) + β

∑
d,z

σ(d, z,x)v(λ(d, z,x), f(y, d)
)}
. (3.1)

Results in [99] guarantee that there exists a unique cost function v∗ such that v∗ = Hv∗

and that this fixed point is the expected total discounted cost accrued by an optimal policy.

We can restrict search for an optimal policy to t-invariant functions that select a(t) on the

basis of
(
s(t),x(t)

)
, the function ψ such that ψ

(
s(t),x(t)

)
= a(t) causing the minimum
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in Equation 3.1 to be attained is an optimal policy, and limn→∞ ‖v∗ − vn‖ = 0, where the

(finite horizon) cost function vn+1 = Hvn for any given bounded function v0 and ‖.‖ is the

sup-norm. The function L(x, y) is the expected single period cost, conditioned on belief

x and inventory level y. From the perspective of Bayes’ Rule, note that x = x(t) can be

thought of as the prior probability mass function of µ(t), σ(d, z,x) is the probability that

the demand and AOD processes will have realizations d = d(t + 1) and z = z(t + 1),

respectively, given x, and x(t + 1) = λ(d, z,x) is the posterior probability mass function

of µ(t), given d, z, and x.

Piecewise linearity and concavity in x.

Results in [97] guarantee that vn(x, s) is piecewise linear and concave in x for each fixed

s for all finite n, assuming v0(x, s) is also piecewise linear and concave in x for each s. In

the limit v∗(x, s) may no longer be piecewise linear in x for each s; however, concavity

will be preserved.

Value of Information and Upper and Lower Bounds.

Let q(d, z | i, j) = Pr
(
d(t + 1) = d, z(t + 1) = z | µ(t + 1) = j, µ(t) = i

)
, and assume

Q = {q(d, z | i, j)}, which we call the observation array. The observation array Q is

stochastic in the sense that q(d, z | i, j) ≥ 0 for all i, j, d, z and
∑

d,z q(d, z | i, j) = 1 for

all (i, j). Following [100], the observation array Q′ is said to be at least as informative as

the observation array Q if there exists a stochastic array R = {r(d, z | d′, z′)} such that∑
d′,z′ q

′(d′, z′ | i, j)r(d, z | d′, z′) = q(d, z | i, j) for all i, j, d, z (or equivalently, Q′R =

Q). Consider two problems, the unprimed and primed problems, that are defined identically

except the unprimed problem is associated with the observation array Q and the primed

problem is associated with the observation array Q′. Let {vn} and v∗ be associated with

the problem having observation array Q, let {v′n} and v∗′ be associated with the problem

having observation array Q′, and assume there is a stochastic array R such that Q′R =
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Q. Then, according to results in [100], for all (x, s), v′n(x, s) ≤ vn(x, s) for all n and

v∗′(x, s) ≤ v∗(x, s). Thus, if the observation array Q′ is at least as informative as the

observation array Q, then the primed problem is guaranteed to perform as least as well as

the unprimed system (i.e., the value of more accurate information about the modulation

process is positive).

It is then straightforward to show (see [98]):

(i) If the modulation process is only observed by the demand process (and hence the

AOD process is not a function of µ(t + 1) and µ(t) and hence provides no informa-

tion regarding the state of the modulation state), then the resulting infinite and finite

horizon cost functions are upper bounds on the cost functions of the general case.

(ii) If Pr(z(t+ 1) | µ(t+ 1), µ(t)) = 1 if and only if z(t+ 1) = µ(t+ 1) w.p.1 (the case

where the modulation process is completely observed by the AOD process), then

the resulting infinite and finite horizon cost functions are lower bounds on the cost

functions of the general case.

For the case where Pr(z(t+ 1) | µ(t+ 1), µ(t)) = Pr(z(t+ 1) | µ(t+ 1)), i.e., observation

z(t + 1) is independent of modulation µ(t), the matrix {Pr(z(t + 1) | µ(t + 1))} has rank

1 for case (i) and is the identity matrix for (ii).

3.2.3 L(x,y) Analysis

We now examine L(x, y) in more detail, where we assume throughout this section that

f(y, d) = y − d and c(y, d) = p(d − y)+ + h(y − d)+. Let {d1, . . . , dM} be the set

of all possible demand values, where dm < dm+1, for all m = 1, . . . ,M − 1. Letting
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σ(d,x) =
∑

z σ(d, z,x), define for all m = 0, . . . ,M ,

Am(x) = h

m∑
k=1

σ(dk,x)− p
M∑

k=m+1

σ(dk,x),

Bm(x) = p
M∑

k=m+1

dkσ(dk,x)− h
m∑
k=1

dkσ(dk,x).

Note, A0(x) = −p and B0(x) = p
∑M

k=1 dkσ(dk,x). Proof of the next result, which

provides structure that will prove useful, is straightforward.

Lemma 1. For all x ∈ X:

(i) L(x, y) =


A0(x)y +B0(x) = p

∑M
k=1 σ(dk,x)(dk − y), y ≤ d1

Am(x)y +Bm(x), dm ≤ y ≤ dm+1, m = 1, . . . ,M − 1

AM(x)y +BM(x) = h
∑M

k=1 σ(dk,x)(y − dk), dM ≤ y.

(ii) for all m = 1, . . . ,M − 1, Am+1(x) = Am(x) + (h + p)σ(dm+1,x), and hence,

Am+1(x) ≥ Am(x).

(iii) for all m = 1, . . . ,M − 1, Bm+1(x) = Bm(x)− (p+ h)dm+1σ(dm+1,x), and hence,

Bm+1(x) ≤ Bm(x).

(iv) for all m = 1, . . . ,M , Am−1(x)dm +Bm−1(x) = Am(x)dm +Bm(x).

(v) L(x, y) = max0≤m≤M

[
Am(x)y +Bm(x)

]
.

Myopic Base Stock Policy: Linear Partition of Belief Space.

Lemma 1 establishes that L(x, y) is piecewise linear and convex in y for all x ∈ X . Let

s∗(x) be the smallest integer that minimizes L(x, y) with respect to y. Note that it is suffi-

cient to restrict s∗(x) to the set {d1, . . . , dM}. Hence, L(x, s∗(x)) = min1≤m≤M

{
Am(x)dm

+Bm(x)

}
. Let P1 be the partition of X composed of elements Xm = {x ∈ X : s∗(x) =
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dm}. Thus, P1 = {Xm,m = 1, . . . ,M}, where Xm is non-null for all dm such that

min{s∗(x) : x ∈ X} ≤ dm ≤ max{s∗(x) : x ∈ X}. We characterize Xm as follows.

Lemma 2. Let P (d) =
∑

z P (d, z), ∀ d. For m = 1, . . . ,M ,

Xm =

{
x ∈ X : x

m−1∑
k=1

P (dk)1 < p/(p+ h) ≤ x
m∑
k=1

P (dk)1

}
. (3.2)

Note that the criterion in Equation 3.2 can be re-written as:

m−1∑
k=1

σ(dk,x) < p/(p+ h) ≤
m∑
k=1

σ(dk,x),

where σ(dk,x) is the probability of observing demand outcome dk when the current be-

lief is x. This criterion is identical to the newsvendor problem’s criterion for determin-

ing the optimal base stock policy with the probability mass function of demand given by

σ(dk, x), ∀ k.

Due to the linearity of σ(d,x) in x, the above criterion results in a linear partition of

the belief space. We note that the partition thus obtained is independent of the values of

demand and AOD outcomes but depends only on the parameters, Pij(d, z), p, and h. We

remark that Xm for all m can be described by two inequalities linear in x, which is true

irrespective of the values N and M take, since L(x, y) is piecewise linear in x for fixed y.
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Example 1. Let M = 7, N = 3, h = 1, p = 3, d = [5, 10, 15, 20, 25, 30, 35],

P =


0.0192 0.8744 0.1063

0.0437 0.4712 0.4851

0.4467 0.0313 0.522

 , and

QD =


0.0207 0.2321 0.0717 0.2054 0.1519 0.0346 0.2837

0.2697 0.208 0.2044 0.1942 0.0748 0.0427 0.0062

0.0283 0.0378 0.0429 0.0605 0.1335 0.3001 0.3969


where P = {Pij} and Pij = Pr

(
µ(t+ 1) = j | µ(t) = i

)
,

QD ={qDjd}, qDjd = Pr
(
d(t+ 1) = d | µ(t+ 1) = j

)
,

where qjd is independent of i.

Note that Pij(d) = Pijq
D
jd is independent of z. The belief space is given by the triangle with

vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) (described by x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0,

and x3 ≥ 0), where modulation state n+ 1 indicates a stronger economy than modulation

state n, for all n. Figure 3.1 depicts the belief space, X , overlaid with the partition, P1

X
4

X
5

X
6

X
7

(0,0,1)

(1,0,0)

(0,1,0)

Figure 3.1: Example of P1 with N = 3 and M = 7

(derived in Lemma 2). P1 divides X into 4 regions of constant base stock level, viz., X4
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through X7. For any belief vector in Xm, the optimal order-up-to level for the one period

problem is dm. Hence, the optimal myopic base stock levels are 20, 25, 30, and 35 in X4,

X5, X6, and X7 respectively.

If the AOD process is dependent on µ(t+1) (e.g. current state of the economy), and has

two outcomes {z1, z2} (e.g. real estate price levels) withRZ = {rZjz}, rZjz = Pr
(
z(t+ 1) =

z | µ(t + 1) = j
)
, then Pij(d, z) = Pij q

D
jd r

Z
jz. The regions presented in Figure 3.1 do

not change as Equation 3.2 does not depend on the values of the outcomes of either the

AOD or demand processes. Note λ(d1, e3) = [0.28, 0.26, 0.46] when the AOD process is

uninformative. Let RZ = [1, 0; 0.7, 0.3; 0, 1] and hence the AOD process is informative.

Then, λ(d1, z1, e3) = [0.61, 0.39, 0] and λ(d1, z2, e3) = [0, 0.15, 0.85]. We note that the

availability of additional observation data leads to substantially different updated belief

functions.

3.2.4 Definition of A1

We now present a key assumption, A1.

Assumption 1 (A1). f
(
s∗(x), d

)
≤ s∗

(
λ(d, z,x)

)
for all x ∈ X , d ∈ {d1, . . . , dM}, and

z.

Assuming f
(
s∗(x), d

)
is the number of units of inventory after satisfying demand just

after the current decision epoch, λ(d, z,x) then becomes the belief function at the next

decision epoch and s∗(λ(d, z,x)) is the order-up-to level at the next decision epoch. A1

assumes that the amount of inventory after demand is satisfied never exceeds the order-up-

to level at the next decision epoch. This assumption is always satisfied when demand is i.i.d.

and is consistent with assumptions made in the inventory literature as early as [53, 52]. [53]

provides a sufficiency condition for the optimality of myopic base stock levels, viz., non-

decreasing base stock levels. [52] presents an attainability assumption that the remaining

inventory in every period after placing an order and satisfying demand is less than the next

period’s base stock level under nonstationarity. A1 is a generalized attainability assumption
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that we will show ensures the optimality of a myopic base stock policy for the general

problem.

3.3 When A1 holds

3.3.1 Main Result

We now present the main result of this section, which assumes throughout that A1 holds.

Proof of the following result is provided in the appendix.

Proposition 1. Assume A1 holds, L(x, y) is piecewise linear in y for all x ∈ X , s∗(x)

is the smallest integer that minimizes L(x, y) with respect to y, and that f(y, d) is non-

decreasing in y for each d. Then, vn(x, s) = vn
(
x, max{s∗(x), s}

)
is non-decreasing

and convex in s for all n and x. Further, the myopic base stock policy that orders up to

max{s∗(x), s} is an optimal policy.

Thus, when A1 is satisfied and recalling that s∗(x) is determined using the inequalities

presented in (3.2), ordering up to max{s, s∗(x)} at every decision epoch is optimal for any

finite horizon problem and the infinite horizon problem. This result ensures significantly

less computational effort for computing the optimal policy compared to the procedure pro-

posed in [76] for the special case where the modulation process is completely unobserved

by the AOD process.

3.3.2 A1 Analysis

Assuming A1, the above result ensures that there is an optimal policy that is a myopic base

stock policy, where the order-up-to level is max{s∗(x), s}, given state (x, s). We note that

s∗(x) is easily determined given the partition P1. We now examine conditions that imply

A1. Proof of the following result is straightforward.

Lemma 3. Assume A1 holds, apply the base stock policy “order up to max{ s∗(x), s}”,

and assume s(t) ≤ s∗(x(t)). Then, s(τ) ≤ s∗(x(τ)) for all τ ≥ t.
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Thus, once the inventory level falls at or below the base stock level, A1 guarantees that

the inventory level will always fall at or below the base stock level at the next decision

epoch.

We now present conditions that assure A1 holds. Let B0(x) = {x}, Bn+1(x) ={
λ(d, z,x′) : x′ ∈ Bn(x), d ∈ {d1, . . . , dM},∀ z

}
, and B(x) be such that Bn(x) ⊆ B(x)

for all n.

Assumption 2 (A2). There exists an m such that B(x) ⊆ Xm.

Proof of the following result is straightforward.

Lemma 4. Assume f(y, d) ≤ y for all y and d. Then, A2 implies that the base stock level

is stationary and hence A1 holds.

We remark that if the modulation process is static and completely unobserved by both

the demand and AOD processes and hence demand is i.i.d., then x(t + 1) = x(t) for all

t, Bn(x) = {x} for all n, B(x) can equal {x}, and the base stock level is stationary.

Let em ∈ X be such that the mth entry of em is 1 and its remaining entries are zero. If

{Pr
(
µ(0) = µi

)
,∀ i} = em and the modulation process is static, then x(t) = em for all

t, Bn(em) = {em} for all n, B(x) can equal {em}, and once again the base stock level is

stationary, irrespective of the demand and observation processes.

We now present a second set of conditions that imply A1 holds, following several pre-

liminary results.

Assumption 3 (A3). If i ≤ i′, then
∑M

k=m

∑
j Pij(dk) ≤

∑M
k=m

∑
j Pi′j(dk) for all m =

1, . . . ,M .

Define the binary operator for first order stochastic dominance, �, as follows: for

x,x′ ∈ X , x � x′ ⇐⇒
∑N

i=n xi ≤
∑N

i=n x
′
i ∀ n = 1, . . . , N.

Lemma 5. Let A3 hold. Then, x � x′, implies s∗(x) ≤ s∗(x′).
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Let the modulation process represent the state of the economy, and assume the higher

the state of the modulation process, the better the economy. Thus, e1 is the lowest perfor-

mance level of the economy and eN is the highest. Then, it is reasonable to assume that

for higher performance levels of the economy, the probability of observing greater demand

outcomes increases. Lemma 5 confirms the intuition that the optimal order quantities will

be greater when the economy is performing better.

Let xd,z ∈ X be such that xd,z � λ(d, z,x) ∀ x ∈ X . Existence is assured since

e1 � x for all x ∈ X .

Assumption 4 (A4). f
(
s∗(eN ), d

)
≤ s∗(xd,z) for all d and z.

Lemma 6. Assuming f(y, d) is non-decreasing in y for all d, A3 and A4 imply A1.

Ideally, we would want to select xd,z so that s∗(x′) ≤ s∗(xd,z) for all x′ such that

x′ � λ(d, z,x) ∀ x ∈ X , for all (d, z), which would strengthen Lemma 6 as much as

possible. We construct such an xd,z after the following preliminary result.

Lemma 7. The set {λ(d, z,x) : x ∈ X} =
{∑

i ξiλ(d, z, ei) : ξi ≥ 0 ∀i,
∑

i ξi = 1

}
.

We remark that if x � x′ and x � x′′, then x � αx′ + (1 − α)x′′ for all α ∈ [0, 1].

Thus, if xd,z is such that xd,z � λ(d, z, ei) for all i, then xd,z is such that xd,z � x′ for all

x′ ∈
{
λ(d, z,x) : x ∈ X

}
.

We now construct xd,z. Let

x̂d,zN = min
{
λN(d, z, ei), i = 1, . . . , N

}
x̂d,zn = min

{ N∑
k=n

λk(d, z, ei), i = 1, . . . , N

}
−

N∑
k=n+1

x̂d,zk ,

for n = N − 1, . . . , 2

x̂d,z1 = 1−
N∑
k=2

x̂d,zk .

By construction, x̂d,z � λ(d, z,x) ∀ x ∈ X . We now show that x̂d,z ∈ X and that

s∗(x′) ≤ s∗(x̂d,z) for all x′ ∈ X such that x′ � λ(d, z,x) ∀ x ∈ X .
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Lemma 8. (i) x̂d,z ∈ X . (ii) For any x′ � λ(d, z,x) ∀ x ∈ X, s∗(x′) ≤ s∗(x̂d,z).

Example 2. Consider the problem in Example 1. As there is a stochastic ordering: e1 ≺

e2 ≺ e3, A3 is satisfied. We remark that A4 can be verified by determining xd,z using

the process described above. Figure 3.2 shows {λ(d5, z,x) : x ∈ X} and x̂d5,z, where

both x̂d,z and λ(d, z,x) are independent of z (e.g., where Pr
(
z(t + 1) | µ(t + 1), µ(t)

)
is

independent of µ(t+1) and µ(t)). Thus since Example 1 satisfies A1 by Lemma 6, ordering

Figure 3.2: x̂d5,z and {λ(d5, z,x) : x ∈ X}

up to the myopic base stock level at every decision epoch is optimal over finite and infinite

horizons.

We remark that for the case where the modulation process is completely observed and

f(y, d) is non-increasing in d for all y, A1 is equivalent to f
(
s∗
(
µ(t)

)
, d(t+1)

)
≤ s∗

(
µ(t+

1)
)

for all d(t+ 1), and hence f
(
s∗
(
µ(t)

)
, d1

)
≤ s∗

(
µ(t+ 1)

)
. Note that this is equivalent

to the attainability assumption presented by [52, 53] that guarantees the optimality of a

myopic base stock policy for the completely observed nonstationary case.

3.3.3 Computing the Expected Cost Function, vn

We now present a procedure for computing vn(s,x). We only consider the case where

s = s∗(x) due to Proposition 1 and Lemma 3. For notational simplicity, we assume that

61



Pr
(
z(t + 1) | µ(t + 1), µ(t)

)
is independent of µ(t + 1) and µ(t). Extension to the more

general case is straightforward.

Assume v0 = 0, let n = 1, and recall v1

(
x, s∗(x)

)
= L

(
x, s∗(x)

)
. Note L(x, y) =

xγy, where γy =
∑

d,z P (d, z) 1 c(y, d). Let Γ1 = {γy}, and note that if c(y, d) = p(d−

y)+ + h(y − d)+, it is sufficient to consider only y ∈ {d1, . . . , dM}. Then, v1

(
x, s∗(x)

)
=

min
{
xγ : γ ∈ Γ1

}
. Assume there is a finite set Γn such that vn

(
x, s∗(x)

)
= min

{
xγ :

γ ∈ Γn
}
. Then,

vn+1

(
x, s∗(x)

)
= L

(
x, s∗(x)

)
+ β

M∑
m=1

σ(dm,x)vn
(
λ(dm,x), f

(
s∗(x), dm

))
= min

{
xγ : γ ∈ Γ1

}
+ β

M∑
m=1

σ(dm,x)vn
(
λ(dm,x), s∗(λ(dm,x))

)
= min

{
xγ : γ ∈ Γ1

}
+ β

M∑
m=1

σ(dm,x) min
{
λ(dm,x)γ : γ ∈ Γn

}
= min

γ
min
γ1

. . .min
γM

{
xγ + β

M∑
m=1

σ(dm,x)λ(dm,x)γm

}

= min
γ

min
γ1

. . .min
γM

{
x

[
γ + β

M∑
m=1

P (dm)γm

]}

Thus, Γn+1 is the set of all γ such that γ = γ + β
∑M

m=1P (dm)γm, where γ ∈ Γ1 and

γm ∈ Γn for all m = 1, . . . ,M , and for all n, vn
(
x, s∗(x)

)
is piecewise linear and concave

in x.

Let |Γ| be the cardinality of the set Γ. Then, |Γn+1| = |Γ1||Γn|M , where |Γ1| ≤ M ,

and hence the cardinality of Γn can grow rapidly. Many of the vectors in the sets Γn

are redundant and can be eliminated, reducing both computational and storage burdens.

An exhaustive literature study of elimination procedures and other solution methods for

solving POMDPs can be found in [101].
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3.4 When A1 Does Not Hold

We now consider the case where A1 does not hold and examine the quality of the myopic

policy “order up to max{s∗(x), s}”, which from results in Section 3.3 we know is optimal

if A1 does hold. We proceed by determining a lower bound on the optimal expected cost

function and outlining a procedure for determining the expected cost of the “order up to

max{s∗(x), s} ” policy. We note by example that this cost function may contain discon-

tinuities and hence is not concave in x and discuss the possible implications. Finally, we

present a simple procedure for determining an upper bound on the difference between the

expected cost function and the lower bound.

3.4.1 A Lower Bound, vL

We now present a lower bound on vn(x, s). Let

[HLv](x, s) = L(x, s∗(x)) + β
∑
d,z

σ(d, z,x)v
(
λ(d, z,x), s∗(λ(d, z,x))

)
,

vLn+1 = HLvLn , v
L
0 = 0,

and vL be the fixed point of HL, which we note is independent of s.

Proposition 2. For all x, s, and n, vLn (x) = vLn
(
x, s∗(x)

)
≤ vn(x, s).

The proof follows from the fact that the controller always brings the inventory to s∗(x),

which is not feasible when the inventory is higher than s∗(x). We remark that vLn (x)

can be computed as was vn(x, s) for s ≤ s∗(x), in Section 3.3. A tighter lower bound,

dependent on s for s > s∗(x), would replace L
(
x, s∗(x)

)
with L

(
x,max{s∗(x), s}

)
in the

definition of the operator HL. However, since such a definition of HL would complicate

later analysis, we have chosen not to use this tighter lower bound in the development of

results in the sections to follow.
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3.4.2 An Upper Bound, vU

Let

[HUv](x, s) = L
(
x,max{s∗(x), s}

)
+β
∑
d,z

σ(d, z,x)v
(
λ(d, z,x), f

(
max{s∗(x), s}, d

))
,

vUn+1 = HUvUn , v
U
0 = 0, and let vU be the fixed point of HU . We remark that vU is the

expected cost to be accrued by the “order-up-to max{s∗(x), s}” policy, which is feasible

but may not be optimal when A1 is not satisfied, and hence represents an upper bound on

the optimal cost function. It is straightforward to prove the following structural result.

Proposition 3. For all n and x, vUn (x, s) = vUn (x, s∗(x)) for s ≤ s∗(x), and vUn (x, s) is

non-decreasing and convex in s.

We show the following structural result in the appendix of this chapter.

Lemma 9. For each n ≥ 1, there is a partition Pn of X that is defined by a finite set of

linear inequalities such that on each element of this partition vUn is linear in x. Further,

Pn+1 is at least as fine as Pn (i.e., if S ∈ Pn+1, then there is an S ′ ∈ Pn such that S ⊆ S ′).

Thus, vn(x, s) is piecewise linear in x for each s. Note that P1 is identical to P1 defined

in Section 3.2.3. However, Example 3 shows that vUn (x, s) may be discontinuous and hence

not concave in x for each s. Thus, according to [102], it may not be true that improved

observation accuracy will improve the performance of the “order up to max{s∗(x), s}”

policy if A1 is not satisfied.

Example 3. Assume f(y, d) = y − d, c(y, d) = p(d− y)+ + h(d− y)+, and β = 0.9. Let

64



N = 2, M = 10, h = 1, p = 2, d = [0 1 2 3 4 8 12 17 18 19],

P =

0.4670 0.5330

0.4103 0.5897

 , and Q =



0.1747 0.0115

0.01716 0.0278

0.1417 0.0537

0.1153 0.0611

0.1095 0.1012

0.0993 0.1176

0.0712 0.1215

0.0658 0.1612

0.0368 0.1667

0.0142 0.1777



.

Then, minx s
∗(x) = 12 and maxx s

∗(x) = 17.

In Example 3, A1 does not hold. Figure 3.3 presents vU2 (x, s) and vL2 (x, s) for this

example. We note the discontinuity in the expected cost function for two periods, vU2 ,

obtained by implementing the myopic base stock policy when A1 does not hold.

We remark that although vUn (x, s) is piecewise linear in x for all s and n, in the limit as

n approaches∞, we may lose piecewise linearity. Thus, although implementing the policy

“order up to max{s∗(x), s}” is straightforward, determining vU , or for that matter vUn for

large n, is computationally demanding. For this reason, we seek an easily computable

upper bound on vU − vL in the next section.

3.4.3 An Upper Bound on vU − vL

Let ∆ = max(x,s)

{
L
(
x,max{s∗(x), s}

)
− L(x, s∗(x))

}
. We now present upper bounds

on vUn (x, s)− vLn (x) for all n. Let f(y, d) = y − d and c(y, d) = p(d− y)+ + h(d− y)+.

Proof of Proposition 4 follows from a standard induction argument and the fact that the

lower bound is independent of s.
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x1, where x = (x1, 1 − x1)
0 0.2 0.4 0.6 0.8 1

16.7

16.8

16.9

17

17.1

xcut

vU2 (x, 13)

vL2 (x, 13)

Figure 3.3: vU2 (x, s) and vL2 (x) at s = 13.

Proposition 4. For all x, s, and n,

vUn (x, s)− vLn (x) ≤ (1 + β + β2 + · · ·+ βn−1)∆

and vU(x, s)− vL(x) ≤ ∆/(1− β).

We now determine ∆. We only need to consider s such that s∗(x) < s ≤ maxx s
∗(x)−

d1 and we only need to consider s∗(x) such that minx s
∗(x) ≤ s∗(x) ≤ maxx s

∗(x) −

d1. Hence, ∆ is finite. Let m and l be such that s∗(x) = dm, s = dl and dm < dl ≤

maxx s
∗(x)− d1. Then,

L
(
x,max{s∗(x), s}

)
− L(x, s∗(x)) = L(x, dl)− L(x, dm)

= Al(x)dl +Bl(x)− Am(x)dm −Bm(x), (3.3)

subject to the constraints x ∈ X and
m−1∑
k=1

σ(dk,x) < p/(p+ h) ≤
m∑
k=1

σ(dk,x).

Note that all of the constraints on x are linear and that L(x, dl) − L(x, dm) is linear in x.
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Thus, maximizing (3.3) subject to the given constraints is a simple linear program. The

number of LPs that require solution in order to completely determine ∆ is the number of

(dm, dl) such that minx s
∗(x) ≤ dm ≤ maxx s

∗(x)− d1, and dm < dl ≤ maxx s
∗(x)− d1.

Example 4. We now continue Example 3 and note: ∆ = 0.1398, max(x,s)

(
vU2 (x, s) −

vL2 (x)
)

= 1.3508, where the max occurs at x = e1, ∆(1 + β) = 0.2656 and hence,(
vU2 (x, s) − vL2 (x)

)
/vL2 (x) ≤ ∆(1 + β)/vL2 (x) = 0.2656/16.9624 = 0.0156 at x =

e1. The term vL2 (x) is computed by successively applying the operator HL twice, using

L(x, s∗(x)) = min1≤m≤M
{
Am(x)dm +Bm(x)

}
from Section 3.2.3. We obtain vL2 (e1) =

16.9624. Note that the sub-optimal policy for n = 2 is no more than 1.56% sub-optimal

for x = e1, indicating that this sub-optimal policy when A1 is violated may still be a

high-quality heuristic.

3.4.4 A Tighter Lower Bound, v′

We assume throughout this section that f(y, d) = y−d and c(y, d) = p(d−y)++h(d−y)+.

When A1 does not hold, there will be a δ such that

s∗(x)− d ≤ s∗
(
λ(d, z,x)

)
+ δ (3.4)

for all d, z and x. Assuming δ satisfies Equation 3.4, we now consider a second problem,

the primed problem. We show that the primed problem satisfies A1 and generates a tighter

lower bound on the optimal cost function than the lower bound presented in Section 3.4.1.

Let P ′ij(d
′, z) = Pij(d, z) for d′ = d+δ. Then, σ′(d′, z,x) = σ(d, z,x) andλ′(d′, z,x) =

λ(d, z,x). Let σ′(d′,x) =
∑

z σ
′(d′, z,x). Define

A′m(x) = h
∑m

k=1 σ
′(d′k,x)− p

∑M
k=m+1 σ

′(d′k,x),

B′m(x) = p
∑M

k=m+1 d
′
kσ
′(d′k,x)− h

∑m
k=1 d

′
kσ
′(dk,x),
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L′(x, y′) =


A′0(x)y′ +B′0(x), y′ ≤ d′1

A′m(x)y′ +B′m(x), d′m ≤ y′ ≤ d′m+1, m = 1, . . . ,M − 1

A′M(x)y′ +B′M(x), d′M ≤ y′.

Proof of the following result is straightforward.

Lemma 10. For d′m = dm + δ and y′ = y + δ,

(i) A′m(x)d′m +B′m(x) = Am(x)dm +Bm for all m.

(ii) L′(x, y′) = L(x, y).

We define s∗′(x) as follows: s∗′(x) = d′m if A′m(x)d′m + B′m(x) < A′m−1(x)d′m−1

+B′m−1(x) and A′m(x)d′m +B′m(x) ≤ A′m+1(x)d′m+1 +B′m+1(x). Lemma 10 then implies

the following result.

Lemma 11. For all x and m where d′m = dm + δ and d′ = d+ δ,

(i)
{
x : s∗(x) = dm

}
=
{
x : s∗′(x) = d′m

}
(ii) s∗′(x)− d′ ≤ s∗′

(
λ′(d′, z,x)

)
.

Thus, the transformation has resulted in a problem that satisfies A1.

Define the operator H ′ as follows:

[H ′v′](x, s′) = min
y′≥s′

{
L′(x, y′) + β

∑
d′,z

σ′(d′, z,x)v′
(
λ′(d′, z,x), y′ − d′

)}
.

We now present the main result of this section, where v′ is the fixed point of H ′ and

v′n+1 = H ′v′n for all n.

Proposition 5. Assume vL0 (x) = v′0(x, s) = v0(x, s) = 0 for all x and s. Then for all n,

vLn (x) ≤ v′n(x, s) ≤ vn(x, s) and hence vL(x) ≤ v′(x, s) ≤ v(x, s) for all x and s.
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It is straightforward to show that v′ is non-increasing in δ; hence, as δ increases, the

lower bound v′ becomes weaker and can be shown to converge to vL. Thus, there is in-

centive to choose δ as small as possible to satisfy A1 in constructing a lower bound on

v.

3.5 Reorder Cost Case

We now consider the case where there is a reorder cost K ≥ 0, and assume throughout this

section that A1 holds. The following results combine the ideas presented for the K = 0

case with straightforward extensions of earlier results in the literature. Let the operatorHK

be defined as:

[HKv](x, s) = min
y≥s

{
Kξ(y − s) + [Gv](x, y)

}
,

where ξ(k) = 0 if k = 0 and ξ(k) = 1 if k 6= 0 and

[Gv](x, y) = L(x, y) + β
∑
d,z

σ(d, z,x)v
(
λ(d, z,x), f

(
y, d
))
.

We note that when K = 0, HK = H , as defined in Section 3.2.2.

We now assume that K > 0. Our objective is to present conditions under which (s, S)

policies exist and how such policies can be computed.

3.5.1 K-convexity and Optimal (s, S) Policies

We now present our first result following a key definition: the real-valued function g is

K-convex if for any s ≤ s′,

g
(
λs+ (1− λ)s′

)
≤ λg(s) + (1− λ)

(
g(s′) +K

)
, for all λ ∈ [0, 1].

Proof of the following result is a direct extension of results in [77] and elsewhere.
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Proposition 6. Assume: (i) v(x, s) isK-convex in s for all x, (ii) f(y, d) is non-decreasing

and convex in y for all d, and (iii) c(y, d) is convex in y and lim|y|→∞ c(y, d) → ∞ for all

d. Then,

1. [Gv](x, y) is K-convex in y for all x,

2. [HKv](x, s) is K-convex in s for all x, and

3. [HKv](x, s) =


K + [Gv]

(
x, S∗(x, v)

)
s ≤ s∗(x, v)

[Gv](x, s) otherwise,

where: S∗(x, v) is the smallest integer minimizing [Gv](x, y) with respect to y, and

s∗(x, v) is the smallest integer such that [Gv]
(
x, s∗(x, v)

)
≤ K+[Gv]

(
x, S∗(x, v)

)
.

Thus, the fact that v(x, s) is K-convex and non-decreasing in s for all x leads to the

existence of an optimal policy that is of (s, S) form: if the inventory drops below s, then

order up to S; otherwise, do not replenish.

3.5.2 Bounds on sn and Sn

Let v0 = 0, vn+1 = HKvn for all n ≥ 0, and Gn(x, y) = [Gvn](x, y). Let Sn(x) be the

smallest integer such that Gn

(
x, Sn(x)

)
≤ Gn(x, y) for all y, and let sn(x) be the smallest

integer such that Gn

(
x, sn(x)

)
≤ K+Gn

(
x, Sn(x)

)
. Following [79], we now define four

real-valued functions that represent bounds on the set
{(
sn(x), Sn(x)

)
: n ≥ 0

}
. Let the

values s(x), s(x), S(x), and S(x) be the smallest integers such that:

L
(
x, S(x)

)
≤ L(x, y) ∀ y (3.5)

L
(
x, s(x)

)
≤ K + L

(
x, S(x)

)
(3.6)

βK + L
(
x, S(x)

)
≤ L

(
x, S(x)

)
, S(x) ≥ S(x) (3.7)

L
(
x, s(x)

)
≤ L

(
x, S(x)

)
+ (1− β)K, (3.8)
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where, from earlier results, S(x) can be restricted to the set {d1, . . . , dM} and where S is

identical to the functions s∗ and S0. We remark that the convexity of L(x, y) in y for all x

insures that for each x, s(x) ≤ s(x) ≤ S(x) ≤ S(x).

3.5.3 A Partition based on

Extending results in [79], we now show that for all x and n, s(x) ≤ sn(x) ≤ s(x) and

S(x) ≤ Sn(x) ≤ S(x) and that for the infinite horizon discounted case, s(x) ≤ s∗(x) ≤

s(x) and S(x) ≤ S∗(x) ≤ S(x), where (s∗, S∗) represents an (s, S) belief-dependent

optimal policy. Proof is presented in the appendix of this chapter.

Proposition 7. (a) For the n-period problem, for all x, there exists an optimal (s, S) pol-

icy (sn(x), Sn(x)), where s(x) ≤ sn(x) ≤ s(x) ≤ S(x) ≤ Sn(x) ≤ S(x).

(b) For the infinite horizon problem, for all x there is an epoch-invariant (s, S) policy

(s∗(x), S∗(x)), where s(x) ≤ s∗(x) ≤ s(x) ≤ S(x) ≤ S∗(x) ≤ S(x).

Assume f(y, d) = y−d and c(y, d) = p(d−y)+ +h(d−y)+ and recall from Lemma 2

that S∗(x) = dm if x satisfies

x
m−1∑
k=1

P (dk)1 <
p

p+ h
≤ x

m∑
k=1

P (dk)1. (3.9)

Given S(x) = dm, let s(x) = di, s(x) = dj , and S(x) = dn satisfy

Ai(x)di +Bi(x) ≤ K + Am(x)dm +Bm(x) (3.10)

Aj(x)dj +Bj(x) ≤ (1− β)K + Am(x)dm +Bm(x) (3.11)

βK + Am(x)dm +Bm(x) ≤ An(x)dn +Bn(x). (3.12)

Let X(s, s, S, S) be the set of all x ∈ X such that s = di, s = dj , S = dm, and S = dn are

the smallest integers satisfying the five linear inequalities in Eqs. 3.9 - 3.12. Note that the

set of all X(s, s, S, S) such that X(s, s, S, S) is non-null is a partition of X .
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Example 5. Consider Example 1 with reorder cost, K = 5. Each region in the triangle

(3,4,4,6)

(3,4,4,7)

(3,4,5,7)

(4,4,5,7)(4,4,5,>7)

(4,4,6,>7)

(4,5,6,>7)

(5,5,6,>7)

(5,6,6,>7)
(5,6,7,>7)

(6,6,7,>7)

(0,0,1)

(1,0,0)

(0,1,0)

Figure 3.4: Example of partition of X , with N = 3 and M = 7

is described by (i, j,m, n) where, (s, s, S, S) =
(
d(i), d(j), d(m), d(n)

)
. For example,

the region labeled as (4, 4, 5, > 7) in Figure 3.4 has (s, s, S, S) = (20, 20, 25, 36). This

implies that s∗(x) = d4 = 20, ∀x ∈ (4, 4, 5, > 7). The search interval for S∗(x) is also

significantly restricted to the demand outcomes between S and S, making the computation

very easy. We remark that it is possible S > dM , as indicated (by > 7) in Figure 3.4. The

corresponding S is 36 in X5 and X6 and it equals 38 in X7.

A description of the determination of the sets Γn(s), where vn(x, s) = min{xγ : γ ∈

Γn(s)}, can be found in the appendix of this chapter.

3.6 Conclusions

We have presented and analyzed an inventory control problem having a modulation process

that affects demand and that is partially observed by the demand and AOD processes. The

demand and AOD processes inform the decision maker (DM) about the state of the modula-

tion process and hence inform the DM regarding future demand. We modeled the problem

as a POMDP assuming that the DM knows the current number of items in the inventory and
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the current belief function of the modulation process prior to making a replenishment de-

cision. Current and past demand and AOD data are used to construct and update the belief

function. This model was shown to generalize several of the Markov-modulated demand

and the Bayesian updating models in the literature.

Assuming A1 holds and the reorder cost K = 0, we generalized results found through-

out the literature that there exists an optimal policy that is a myopic base stock policy. We

also developed a simple, easily implemented description of the optimal myopic base stock

levels, as a function of the belief function. We determined conditions that imply A1 holds

and an algorithm for computing the expected cost function.

When A1 is violated andK = 0, we examined the base stock policy that is optimal when

A1 holds as a suboptimal policy and used the expected cost accrued by this suboptimal

policy as an upper bound on the optimal expected cost function. We presented a lower

bound on the optimal expected cost function and a bound on the difference between the

upper and lower bounds. An example indicated that the bound on the difference between

these two bounds can be quite small, indicating that even when A1 is violated, the optimal

base stock policy for the case where A1 is not violated may be quite good. A thorough

numerical investigation of the quality of this policy when A1 is violated is a topic for future

research. We then presented a tighter lower bound that assumed A1 holds within a δ > 0

and showed that this tighter lower bound improves as δ gets smaller.

When K > 0 and A1 holds, we showed that there exists optimal (s, S) policies, de-

pendent on the belief function, and determined upper and lower bounds on s and S for the

finite and infinite horizon cases, where each bound is dependent on the belief function of

the modulation process. We showed that each of these bounds and the values of s and S

for the finite and infinite horizon cases are constant within regions of the belief space and

that these regions can be described by a finite number of linear inequalities. We outlined an

approach for determining an optimal (s, S) policy and the resultant expected cost function

for the finite horizon case.
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CHAPTER 4

DATA-DRIVEN CONTROL OF DISTRIBUTED RECONFIGURABLE

PRODUCTION - INVENTORY SYSTEMS

4.1 Introduction

We investigate a multi-period, multi-location production-inventory system under stochas-

tic demand that allows backlogging, assumes instantaneous replenishment, and has the

capability to relocate transportable production units and/or transship inventory between

locations. Historically, transshipment has been a tool to reposition inventory in order to

improve supply chain performance. We now add the capability of repositioning produc-

tion capacity to further aid in improving the performance of a supply chain. Transportable

production units, which we refer to as modules, have recently generated significant interest

in manufacturing [6, 103, 3, 4]; we remark that manufacturing and/or storing the final, or

near-final, product close to demand can enable fast fulfillment. The aim of this chapter is to

help answer such questions as: (i) when, how much, and to where inventory and/or trans-

portable production capacity should be relocated? (ii) what replenishment decisions should

be made in coordination with this capability to relocate inventory and/or production capac-

ity? Our intent is that this research will lead to the design of reconfigurable supply chains

that share the advantages of centralized supply chain systems - having reduced buffer stock

and reduced capital investments and expenditures, relative to distributed systems - while

providing the fast fulfillment of distributed systems positioned in demand-dense geograph-

ical areas.

We develop and analyze a partially observed Markov decision process (POMDP) model

for this system, propose efficient heuristics that determine replenishment decisions, when

to transship and/or relocate production capacity, and hence determine the value of having
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the capability to transship and relocate production capacity. The objective of the model is

to minimize the expected total discounted cost criterion composed of backorder, holding,

transshipment, and module relocation costs.

More specifically, we consider a distributed production - inventory system with L lo-

cations and Y transportable production modules. None, one, or more of the modules are

located at each of the locations. At each decision epoch, we assume the (centralized) de-

cision maker (DM) knows the current demand forecast, inventory level, and production

capacity at each location. This production capacity is made up of fixed capacity and trans-

portable capacity. The DM decides how the current inventory and transportable production

capacity should be relocated. We assume these relocations occur instantaneously. Once the

inventory and transportable production capacity have been relocated, the DM determines

the replenishment decisions at each location based on current demand forecasts, the new

inventory levels, and the new production capacities at the locations. Replenishment is in-

stantaneous. Once replenishment is complete, demands at the locations are realized. Based

on these realizations and possibly other data, the demand forecast is updated just before the

next decision epoch.

Our model of data-driven demand forecasting assumes the existence of a stochastic pro-

cess, the modulation process, that affects demand. The modulation process is governed by

a Markov chain and is partially observed by the demand process and another process, the

additional observation data process. The modulation process can model exogenous fac-

tors, such as current macro-economic conditions, the weather, and seasonal effects that can

affect the demand process. Realizations of the observation process may provide additional

data useful for understanding the current state of the modulation process, e.g., interest rates,

unemployment rates, consumer price indices. We assume that the current belief function of

the modulation process influences the current demand forecast.
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4.1.1 Literature Review

The problem considered in this chapter involves inventory transshipment, mobile capac-

ity relocation, finite production capacity of each single location production facility, and

a centralized controller determining transshipment, module relocation, and replenishment

decisions.

Numerous innovative developments in manufacturing, such as containerized production

for pharmaceutical manufacturing processes [103, 3, 4] and on-demand mobile produc-

tion [6] necessitate the planning of logistics for flexible production and inventory systems

that are characterized by resource mobility, interconnectivity, sharing, and decentralization

[18]. [104] investigate the dynamic mobile production and inventory problem without the

option of inventory transshipment under stationary and independent demands and have pro-

posed heuristic approaches to solve the problem. A value addition of more than 10% over

in-the-ground production systems was determined for a system of than twenty locations.

[12] present a real options pricing based method of evaluating the value added by mobile

containerized production systems. Other research that address the operational logistics of

mobile facilities can be found in [22, 26].

Regarding multi-location inventory management with transshipment, [105, 106] con-

siders the multi-location inventory control problem over a single period and multiple peri-

ods, respectively, under uncertain demands. It is proved that when the inventory addition

and subtraction matrix has a Leontief structure, there exists a base stock policy that is op-

timal when attainable. In [107], a restricted Lagrangean dual -based lower bound and a

dual relaxation based upper bound on the optimal cost of the multi-location problem are

presented. The upper bound assumes the post ordering and shipment inventory position

does not fall below the initial inventory position. [108] indicate that localized transship-

ment strategies are outperformed by centralized strategies. [109] propose heuristics for a

problem that considers inventory held at a warehouse and allocated for distribution to var-

ious locations in a centralized fashion. [110] prove the optimality of order-up-to policies
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at each location in a multi-location inventory control system with reactive transshipment

for a long-run average cost criterion and present a heuristic for computation. The authors

consider only replenishment decisions that result in non-negative inventory positions post

replenishment at each location. [111] present a comparison of chain and group configu-

rations of transshipment network design building on the ideas of manufacturing process

flexibility [112] and restricted connectivity in a transshipment network [113]. [114] con-

sider a multi-retailer, one warehouse framework that allows reactive transshipment either

from the warehouse to the retailers and/or between retailers. The authors prove that it is

optimal to adopt either retailer only, or warehouse only, or retailer first, or warehouse first

protocols only, when considering transshipment. Various cost parameter thresholds based

intervals are presented to indicate the system that is optimal in each regime.

We consider the data-driven online learning demand model presented in [115] and adopt

it for the multi-location problem in this chapter. [115] analyze a single location, infinite ca-

pacity inventory control problem with demand and additional observation data influenced

solely by a Markov modulation process. The modulation process is intended to model

forces that may be partially observed, influence the demand process, but are not affected

by actions taken by the DM (e.g., the macro-economy, air currents, tides). Demand realiza-

tions and other data (e.g., housing starts, consumer spending) represent observations of the

modulation process. What is known to the DM about the modulation process is provided

by the belief function, which is updated with new data using Bayes Rule. A base stock

policy, having a base stock level dependent on the belief function, is proved to be optimal

for the infinite horizon problem when an attainability assumption holds. The modulation

process can be used to model the correlation between demands at different locations.

We consider approximate dynamic programming approaches that do not rely on main-

taining the cost function’s lookup table over the entire horizon to find good heuristic solu-

tions to the multi-location mobile capacity and inventory control problem [116, 33, 30, 29,

28]. In particular, we are interested in rollout based heuristics which are known to perform
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well on dynamic systems with stochasticity as suggested in [30] for solving the vehicle

routing problem with stochastic demands. [29] provide a systematic classification-aimed

analysis of rollout policies. Additionally, the literature suggests that centralized control is

expected to perform better than decentralized control from a solution-quality perspective;

however, there is an inherent tradeoff between solution quality and computational expense

[117, 118, 119]. In the current chapter, as determining a centralized control policy is com-

putationally intensive, we propose a decentralized control policy that performs comparably

with the centralized control policy.

4.1.2 chapter Outline

This chapter is organized as follows. Section 4.2 presents the problem definition, formu-

lation as a partially observed Markov decision process and some preliminary results. In

Section 4.3, we present bounds on the optimal cost function based on the single location

optimal cost function and propose a bounds blending based estimate of the optimal cost

function. We then propose two approaches, namely joint control and global control, in

Section 4.4 for solving the problem. After presenting methods for tractable estimation of

the single location cost function in Section 4.5, we propose our heuristics and benchmarks

in Section 4.6. We then present a computational analysis on multilocation problems in

Section 4.7 and finally, conclude the chapter in Section 4.8.

4.2 Problem Statement and Preliminary Results

We now define the general L location, Y module problem statement in Section 4.2.1 and

present the partially observed Markov decision process (POMDP) model of this problem

and general results for the model in Section 4.2.2. Section 4.6 then presents promising

heuristic approaches to the general problem; a decentralized control heuristic where there

is a Global Controller (GC) that determines the inventory and module relation decisions,

leaving local replenishment decisions up to the individual locations. This heuristic is based

78



on the solution of the L = 1, Y = 0 problem, for which we provide initial results in

Section 4.5.

4.2.1 Problem Statement

Consider a distributed production-inventory system with L locations and Y portable man-

ufacturing modules. At each decision epoch t we assume the decision-maker (DM) knows:

• s(t) = {sl(t), l = 1, . . . , L}, where sl(t) is the inventory level at location l,

• u(t) = {ul(t), l = 1, . . . , L}, where ul(t) ∈ {0, 1, . . . , Y ′l } is the number of modules

positioned at location l,

• I(t) = {d(t), . . . ,d(1), z(t), . . . ,z(1),x(0)}, where:

– dl(t) is the demand realized during period (t− 1, t) that location l is required to

fulfill (or back order) and d(t) = {dl(t), l = 1, . . . , L}

– z(t) represents data, in addition to the realization of demand, that might be of

use to the DM,

– x(0) is an a priori probability vector defined below.

We assume the demand process {d(t), t = 1, 2, . . . } and additional observation data

process {z(t), t = 1, 2, . . . } are linked to the modulation process {µ(t), t = 0, 1, . . . }

through the given conditional probability P (d(t + 1), z(t + 1), µ(t + 1) | µ(t)}, where

x(0) = {xi(0), ∀ i} for xi(0) = P (µ(0) = µi). A discussion of this general description of

data-driven demand and learning and how it generalizes and extends the Markov-modulated

demand and Bayesian updating literatures can be found in [115].

The chronology of events within period (t, t+ 1) is as follows:

Step 1. Given I(t), s(t), and u(t), the DM relocates inventory and modules to reach the

post-movement state (s′(t),u′(t)), where we assume
∑

l s
′
l(t) =

∑
l sl(t) and∑

l u
′
l(t) =

∑
l ul(t). Necessarily, −(sl(t))

+ ≤ ∆S
l (t) ≤

∑
k 6=l(sk(t))

+, where
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∆S
l (t) is the non-negative amount of inventory relocated to location l. Thus, s′l(t) =

sl(t)+∆S
l (t) for all l and hence s′(t) = s(t)+∆S(t), where ∆S(t) = {∆S

l (t), l =

1, . . . , L}. The decision variables are ∆S(t) and u′(t) for Step 1.

Step 2. Given I(t), s′(t), and u′(t), the DM determines q(t) = {ql(t), l = 1, . . . , L},

where ql(t) is the replenishment decision at location l. Necessarily, 0 ≤ ql(t) ≤

Ul+u
′
l(t)G, whereUl is the fixed amount capacity at location l andG is the capacity

of each module. Let yl(t) = s′l(t) + ql(t), the inventory level at location l after

inventory and module relocation and replenishment but before demand realization,

and assume y(t) = {yl(t), l = 1, . . . , L}. The decision variables are therefore

q(t), or equivalently y(t), for Step 2, where necessarily, s′l(t) ≤ yl(t) ≤ s′l(t) +

Ul + u′l(t)G for all l.

Step 3. The realizations of the random variables d(t + 1) and z(t + 1) become known

and unfulfilled demands are backordered, I(t + 1) = {d(t + 1), z(t + 1), I(t)},

s(t+ 1) = y(t)− d(t+ 1), and u(t+ 1) = u′(t).

Step 4. t = t+ 1.

We assume that for location l, cl(yl(t), dl(t+ 1)) = bl(dl(t+ 1)− yl(t+ 1))+ + hl(yl(t+

1)− dl(t+ 1))+ ≥ 0 is the single period cost accrued between t and t+ 1, where bl and hl

are respectively the backorder and holding cost per unit per period and for all dl, cl(yl, dl)

is convex in yl and lim|y|→∞ cl(y, dl) =∞.

We assume that the modulation and the observation state spaces are finite and that for

each location, the demand state space is finite and the inventory state space {. . . ,−1, 0, 1, . . . }

is countable.

Let the single period (t, t+ 1) cost be:

∑
l

(
KS+
l (∆S

l (t))+ +KS−
l (−∆S

l (t))+
)
+KM

∑
l

|ul(t)−u′l(t)|/2+
∑
l

cl
(
yl(t), dl(t+1)

)
,

80



where KS+
l (KS−

l ) is the cost of moving a unit of inventory to (from) location l, and KM

is the cost of moving a module from one location to another. A feasible policy determines(
q(t),∆S(t),u′(t)

)
based on I(t), s(t), and u(t) for all t.

The problem criterion is the expected total discounted cost over the infinite horizon,

where β ∈ [0, 1) is the discount factor. The problem is to determine a feasible policy that

minimizes the criterion with respect to the set of all feasible policies.

4.2.2 POMDP Model and General Results

This problem can be recast as a partially observed Markov decision process (POMDP)

as follows. Results in [97] and [98] imply that (x(t), s(t),u(t)) is a sufficient statistic,

where the belief function x(t) = {xi(t),∀i} is such that xi(t) = P (µ(t) = µi | I(t)) and

x(t) ∈ X = {x ≥ 0 :
∑

i xi = 1}. Let

Pij(d, z) = P (d(t+ 1) = d, z(t+ 1) = z, µ(t+ 1) = j | µ(t) = i)

σ(d, z,x) = xP (d, z)1 =
∑
i

xi
∑
j

Pij(d, z)

λ(d, z,x) = {λj(d, z,x),∀j} = xP (d, z)/σ(d, z,x), σ(d, z,x) 6= 0

L(x,y) = E[c(y,d)] =
∑
d,z

σ(d, z,x)c(y,d), c(y,d) =
∑
l

cl(yl, dl).

Thus, if x is the prior belief function, then λ(d, z,x) is the posterior belief function, given

realizations (d, z), and σ(d, z,x) is the probability that (d, z) will be the demand and

observation realizations, given prior x. Define the operator H as follows:

[Hv](x, s,u) = min
∆S ,u′,y

{G(x,y, v)}, where (4.1)

G(x,y, v) =
∑
l

(
KS+
l (∆S

l )+ +KS−
l (−∆S

l )+
)

+KM
∑
l

|ul − u′l|/2 + L(x,y)

+β
∑
d,z

σ(d, z,x)v
(
λ(d, z,x),y − d,u′

)
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and where the minimization is with respect to

∑
l

u′l = Y

0 ≤ u′l ≤ Y ′l , ∀ l∑
l

∆S
l = 0,

−(sl)
+ ≤ ∆S

l ≤
∑
k 6=l

(sk)
+, ∀ l

(sl + ∆S
l ) ≤ yl ≤ (sl + ∆S

l ) + Ul + u′lG, ∀ l

u′l, ∆S
l , yl ∈ Z, ∀ l

Results in [99] guarantee that there exists a unique v∗ such that v∗ = Hv∗ and that this fixed

point is the minimum expected total discounted cost over the infinite horizon. Further, a

policy that causes the minimum in (4.1) to be attained is an optimal policy and is decision

epoch invariant. For any given bounded function v0, let {vn} be such that vn+1 = Hvn.

Then, limn→∞||v∗ − vn|| = 0, where ||.|| is the sup-norm.

Results in [97] guarantee that vn(x, s,u) is piecewise linear and concave in x for fixed

(s,u) for all n, assuming v0(x, s,u) is also piecewise linear and concave in x for fixed

(s,u). In the limit, v∗(x, s,u) may no longer be piecewise linear in x for fixed (s,u);

however, concavity will be preserved. Further, results in [115] extended to the finite ca-

pacity case indicate that improved observation quality of the modulation process through

the demand and observation processes will result in a fixed point no greater than the fixed

point associated with the original quality of observation.

4.2.3 Complexity Analysis

We recall that the number of multiplications per successive approximations iteration of a

completely observed MDP is |S|2|A|, where S and A are the state and action spaces, re-

spectively, and |W | is the cardinality of the setW ,W ∈ {S,A}. Assuming we approximate
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the set of all inventory levels of location l with the finite set Sl and let Al(sl, u′l) = {yl :

sl ≤ yl ≤ sl + Ul + u′lG}, then for the L location, Y module problem where demand is

i.i.d. (e.g., the modulation process is completely observed and static), each successive ap-

proximation step requires
(∏L

l=1|Sl|
)2∏L

l=1(Ul + u′lG+ 1) multiplications. Let |Sl| = 50,

|Al| = (Ul+u
′
lG+1) = 50 for all l, and L = 10, assuming we only consider replenishment

decisions. Then, this number of multiplications is in the order of 1031 when the number of

locations is ten, making use of successive approximations intractable. Therefore, we seek

good sub-optimal approaches that significantly reduce this computational burden. Solving

each of the L local replenishment problems for the i.i.d. case requires |Sl|2|Al| multipli-

cations per successive approximation iteration, and L of these are required. For L = 10

and |Sl| = |Al| = 50, L|Sl|2|Al| is in the order of 105, which is a large but computationally

manageable problem.

4.3 Bounds and Approximate Value Function Based on L = 1 Case

One sub-optimal approach, which we now consider, is to base heuristics on the most

tractable problem, the single location inventory control problem, i.e., the L = 1, Y = 0

case. Then, the operator H simplifies to HF
l for location l, where

[HF
l v

F
l ](x, sl, ul) = min

{
GF
l (x, yl, vl)

}
,

GF
l (x, yl, v

F
l ) = LFl (x, yl) + β

∑
d,z

σ(d, z,x)vFl (λ(d, z,x), yl − dl)

and where the minimization is with respect to sl ≤ yl ≤ sl + Ul + ulG. In the appendix

section C1, we will show that the fixed point of HF
l , vFl , is non-decreasing in capacity for

fixed (x, sl). This monotonicity result implies

∑
l

vFl (x, sl, Y
′
l ) ≤ v(x, s,u).
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Further, since the local controllers assume that there is no inventory transshipment or mod-

ule relocation in the future,

v(x, s,u) ≤
∑
l

vFl (x, sl, ul).

Thus, the solutions of the local replenishment problems provide upper and lower bounds

on the cost function of the initial problem.

We now present a blending approach to approximate the optimal cost-to-go function of

the POMDP presented in (4.1). Let θ ∈ [0, 1], be such that

vF,θl (x, sl, ul) = (1−θ)vFl (x, sl, Y
′
l )+θvFl (x, sl, ul) and ṽθ(x, s,u) =

∑
l

vF,θl (x, sl, ul).

Hence, ṽθ(x, s,u) is an approximation of v(x, s,u) that relies solely on the solution of the

single location (L = 1, Y = 0) problem. Then,

[Hṽθ](x, s,u) = min
∆S ,u′

{∑
l

(KS+
l (∆S

l )+ +KS−
l (−∆S

l )+) +KM
∑
l

|ul − u′l|/2

+ min
y
{L(x,y) + β

∑
d,z

σ(d, z,x)ṽθ(λ(d, z,x),y − d,u′)}
}
.(4.2)

In (4.2), the inner minimization is over all yl such that sl+∆S
l ≤ yl ≤ sl+∆S

l +Ul+u
′
lG.
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4.4 Joint Control and Global-Local Control

A straightforward modification of (4.2) leads to the joint control (JC) problem:

JC: min
∆S ,u′,y

∑
l

{
(KS+

l (∆S
l )+ +KS−

l (−∆S
l )+) +KM

∑
l

|ul − u′l|/2

+
∑
d,z

σ(d, z,x)

[
cl(yl, dl) + βvF,θl (λ(d, z,x), yl − dl, u′l)

]}
,

subject to∑
l

u′l = Y∑
l

∆S
l = 0,

0 ≤ u′l ≤ Y ′l , ∀ l

−(sl)
+ ≤ ∆S

l ≤
∑
k 6=l

(sk)
+, ∀ l

(sl + ∆S
l ) ≤ yl ≤ (sl + ∆S

l ) + Ul + u′lG, ∀ l

u′l, ∆S
l , yl ∈ Z, ∀ l (4.3)

We refer to this problem as the JC problem since the DM jointly determines inventory

and production capacity relocations and replenishment decisions at all of the locations. We

propose a distributed decision-making structure in which all the relocation decisions are

made globally while replenishment decisions are made at the individual locations. In (4.2),

consider the inner minimization and note the terms in the inner brackets are bounded below

by

∑
l

[
(1− θ) min

yl

{
Ll(x, yl) + β

∑
d,z

σ(d, z,x)vFl (λ(d, z,x), yl − dl, Y ′l )
}

+θmin
yl

{
Ll(x, yl) + β

∑
d,z

σ(d, z,x)vFl (λ(d, z,x), yl − dl, u′l)
}]
, (4.4)

where the first minimization is now relaxed to operate over all yl such that sl + ∆S
l ≤ yl ≤
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sl + ∆S
l + Ul + Y ′l G and the second minimization is over all yl such that sl + ∆S

l ≤ yl ≤

sl + ∆S
l + Ul + u′lG. We note that the terms in (4.4) equal

∑
l

[
(1− θ)vFl (x, sl + ∆S

l , Y
′
l ) + θvFl (x, sl + ∆S

l , u
′
l)

]
,

and hence, the fixed point of the operator H̃ , evaluated at (x, s,u), can be approximated

by the global control (GC) problem:

GC: min
∆S ,u′

{∑
l

(KS+
l (∆S

l )+ +KS−
l (−∆S

l )+) +KM
∑
l

|ul − u′l|/2

+
∑
l

[
(1− θ)vFl (x, sl + ∆S

l , Y
′
l ) + θvFl (x, sl + ∆S

l , u
′
l)

]}
,

subject to∑
l

u′l = Y

0 ≤ u′l ≤ Y ′l , ∀ l∑
l

∆S
l = 0,

−(sl)
+ ≤ ∆S

l ≤
∑
k 6=l

(sk)
+, ∀ l

u′l, ∆S
l ∈ Z, ∀ l (4.5)

We now present the following decentralized control (global-local) design.

Assume there is a global controller (GC) that selects
(
∆S(t),u′(t)

)
, based on

(
x(t),

s(t),u(t)
)
. The GC assumes that at each location l there is a local controller that:

1. Selects al(t) based on
(
x(t), s′l(t), u

′
l(t)
)

in order to minimize the infinite horizon dis-

counted total cost criterion with single period (∆S,∆S + 1) cost cl(sl(∆S), dl(∆
S + 1))

for all ∆S ≥ t, given initial state s′l(t).

2. Assumes that there will be no inventory or module relocation in the future and hence

has capacity Ul + u′l(t)G over the infinite planning horizon.
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(a) Centralization (b) Decentralization (c) Legend
Figure 4.1: Centralized and decentralized decision-making

Thus, the local controllers do not attempt to coordinate their replenishment decisions.

All coordination is left up to the GC. We note, however, that the GC and the local con-

trollers know the belief function and hence share the same information about the state of

the modulation process.

These assumptions reduce the overall system coordination problem to determining(
∆S
l (t) u′l(t)

)
for all l, given

(
x(t), s(t),u(t)

)
, which eliminates determining the L lo-

cation replenishment decisions at the system level, leaving these decisions up to the local

controllers.

After determining the inventory transshipment and module movement quantities by

solving the GC problem, a replenishment order must be placed for each location. We

propose to replenish at each location up to the optimal myopic base stock level of the un-

capacitated single location inventory control problem when demand is Markov-modulated

with a partially observed modulation process [115], while satisfying the production capac-

ity constraint. From [115], we recall that the optimal myopic base stock level s∗l (x) = dlm,

the m-th demand outcome at location l, if and only if the following modified newsvendor

criterion is satisfied:

m−1∑
k=1

σ(dlk,x) < bl/(bl + hl) ≤
m∑
k=1

σ(dlk,x),

where σ(dlk,x) =
∑
z σ(dlk, z,x) is the probability of observing demand outcome dk when

the current belief is x. We remark that the additional observation data vector, z, can store

the demand realization information from other locations as well. Hence, the local order up
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to level at location l is given by

ŷl = min
{

max{s∗l (x), sl + ∆S
l }, sl + ∆S

l + Ul + u′lG
}
. (4.6)

We have thus far investigated a decentralized approach for determining a good heuristic

for the L location, Y module problem that involves a two-step approach for decision deter-

mination: (1) determine the solution to the finite capacity L = 1, Y = 0 problem and (2)

then use this solution to solve the GC problem. This decentralized approach has produced

a computationally tractable approximation of ṽ(x, s,u) in Section 4.2.2.

We also remark that the decentralized approach has variations that might prove of inter-

est. For example, our current approach assumes each location does not coordinate replen-

ishment decisions with other locations. An extension of the ‘totally local’ decision making

assumption is for small numbers of the locations that are closely located geographically to

coordinate their replenishment decisions (a ‘semi-global’ case). Further discussion can be

found in [120].

4.5 Solving the L = 1 Case

To develop heuristics based on JC and GC approaches, we require the cost-to-go function of

the fixed system (that is expressed as a sum ofL location-wise cost-to-go functions) at every

decision epoch. However, the cost-to-go function of the capacitated single location system

is intractable due to curse of dimensionality. We propose the following approximations of

it to allow developing decision support for large realistic systems.

4.5.1 A stationary approximation of vFl

We now present a tractable approximation of the value function of the L = 1 problem

having general modulated demand for all values of the belief function, noting that solution

of the general L = 1 problem is considerably more computationally complex than the
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i.i.d. case mentioned above. Our intent is to fully define the GC problem presented in

(4.5) using the approximation of vFl (x, sl, ul) presented above and the approximation of

the L = 1 case that we now develop. Our approximation is based on an L = 1 problem

(i) having the tractability of its i.i.d. special case for a given fixed belief function that (ii)

shares the structural properties of the optimal value function for the general modulated

demand case and (iii) is defined over all values of the belief function. We proceed as

follows. With respect to (i), assume that the modulation process has no dynamics and is

completely unobserved, and hence x(t + 1) = x(t) for all t. Given this assumption, the

L = 1 operator becomes

[
ĤF
l v̂

F
l

]
(x, sl, ul) = min

sl≤yl≤sl+Ul+Gul

{∑
dl

∑
i

xiPr(dl | i)
[
cl(yl, dl)

+βv̂Fl (x, yl − dl, ul)
]}

(4.7)

which for given x and ul, requires essentially the same number of operations per succes-

sive approximations step as required in the i.i.d. case. With respect to (ii), results presented

in the appendix insure that for the L = 1 problem having general modulated demand,

there exists an optimal policy that is a base stock policy, an optimal base stock level is

non-increasing in capacity, and the optimal value function is non-increasing in capacity

and convex in inventory level. Since the case where the modulation process has no dy-

namics and is completely unobserved is a special case of this problem, the fixed point of

ĤF
l v̂

F
l = v̂Fl inherits all of these characteristics. Requirement (iii) is satisfied by virtue of

the definition of the approximation.

We now present a result that bounds the gap between v̂Fl and vFl .

Proposition 1. We have vFl (x, sl, ul) ≥ v̂Fl (x, sl, ul) − ρ/(1 − β) for all x, sl, and ul,

where ρ =
∑

dl
k(dl)cl(ŷl, dl) and k(dl) =

(
maxk Pr(dl | k)−mink Pr(dl | k)

)
.

The proof of this proposition is presented in the appendix section C2.
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4.5.2 A piecewise linear and convex approximation of v̂Fl

We use the following approximation of v̂Fl , drawing inspiration from the approximation of

the cost-to-go function in the lookahead of fixed future (LAF) heuristic in [104].

v̂Fl (x(t+ 1), sl(t+ 1), ul(t+ 1)) ≈
(
v̂Fl (x(t+ 1), sl(t+ 1), ul(t))

+v̂Fl (x(t+ 1), sl(t), ul(t+ 1))
)
/2,

where s̄l(t+ 1) = yl(t)−
[
E[Dl(t)]

]
and

[
a
]

denotes the rounded a.

Since vFl (x, sl, ul) is piecewise linear and convex in sl when ul is held constant and

in ul when sl is held constant (from Proposition 3 and Proposition 6) and v̂Fl (x, sl, ul)

inherits these properties as it is a stationary special case, the latter can be represented as

max{γljsl + γ̂lj : (γlj, γ̂
l
j) ∈ Γlt(ul)}, ∀l ∈ {1, . . . , L} and as max{θljul + θ̂lj : (θlj, θ̂

l
j) ∈

Θl
t(sl)}, ∀l ∈ {1, . . . , L}. The set Γlt(ul) (Θl

t(sl)) is the set of coefficients describing

the facets of the piecewise linear and convex function v̂Fl (x, sl, ul), when ul (sl) is held

constant at time t.

The following expression is the proposed approximation:

v̂Fl (x(t+ 1), sl(t+ 1), ul(t+ 1))

≈
(

max{γljsl + γ̂lj : (γlj, γ̂
l
j) ∈ Γlt(ul(t))}

+ max{θljul + θ̂lj : (θlj, θ̂
l
j) ∈ Θl

t(sl(t))}
)
/2. (4.8)

4.6 Heuristics

In this section, we take the next step toward the development of a computable heuristic by

combining (4.1) and the bounds presented in Section 4.3. We now present all the heuristics

we implement in our computational study. We begin with the naive solution method of

determining dynamic decisions myopically. This is followed by a description of the policy
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that does not consider inventory and module relocation. We then propose our heuristics

resulting from the JC and the GC approaches.

4.6.1 Myopic Policy (MP)

For the myopic policy (MP), the decision-maker optimizes over the one period cost to

determine relocation and replenishment decisions. At every decision epoch with current

state (x, s,u), we solve the following integer program:

MP: min
∆S ,u′,y

∑
l

{
(KS+

l ∆S+
l +KS−

l ∆S−
l ) +KM

∑
l

|ul − u′l|/2 +

+β
∑
n

σ(dnl ,x)
[
hlr

n
l + blo

n
l

]}
subject to

∑
l

u′l = Y

0 ≤ u′l ≤ Y ′l , ∀ l∑
l

∆S+
l =

∑
l

∆S−
l ,

0 ≤ ∆S+
l ≤

∑
k 6=l

(sk)
+, 0 ≤ ∆S−

l ≤ −(sl)
+, ∀ l

(sl + ∆S+
l −∆S−

l ) ≤ yl ≤ (sl + ∆S+
l −∆S−

l ) + Ul + u′lG, ∀ l

rnl ≥ yl − dnl , onl ≥ dnl − yl, ∀ l, n

rnl , o
n
l ∈ Z+, u′l, ∆S+

l ,∆S−
l , yl ∈ Z, ηl, ζl ∈ R ∀ l (4.9)

MP accounts for transshipment quantities entering and leaving each location l as ∆S+
l and

∆S−
l respectively, the post module movement capacity count as u′l, the post-replenishment

inventory position as yl, and the held and backlogged inventory quantities as rnl , and onl for

the nth demand scenario. Following the flow balance constraints for modules and inventory

are the inventory accounting constraints.

The decision-making at multiple locations is dynamically coupled through the decision-

maker’s perception of the modulation state x. As a natural consequence, the potential next
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period’s belief state will require consideration of all possible demand vectors over all the

coupled locations, which is computationally intensive. However, we can circumvent this

challenge by assuming that at each location, only the demand possibilities at that location,

i.e.,, local information, would affect the belief update. This is equivalent to assuming that

the location-wise Markov-modulated demand random variables in this model are condi-

tionally mutually independent, given the current belief of the modulation state. We note

that this assumption will enable the implementation of JR and LAJ heuristics (presented

below), although such an assumption is not required for executing the global-local control

approach based GLR heuristic (also presented below).

4.6.2 No Flexibility Policy (NF)

The No Flexibility policy (NF), our benchmark policy, does not permit inventory and mod-

ule relocation, assumes that local replenishment is based on the policy presented in (4.6),

and assumes that the fixed, static production capacities at the locations are selected in order

to minimize the multi-location expected total cost with epoch-invariant steady state belief-

based demand distributions. The steady state belief is given by the row matrix π = πP̂ ,

where P̂ is transition probability matrix of the modulation process. The corresponding

static demand distribution at each location l is πOl where Ol is the matrix {{Ol
jk}} such

that Ol
jk is probability of observing demand outcome dk at location l given that the modu-

lation state is j.

4.6.3 Joint Rollout of Stationary Future (JR)

The joint rollout of stationary future (JR) is based on the JC approach. In JR, at each de-

cision epoch with current state (x, s,u), the following integer program must be solved.

In the integer program JR presented below, as the future cost term vθl is obtained from a

lookup table and is a nonlinear expression, we adopt the following formulation that uses

binary variables w(l,∆S,∆M , a) to choose the actions at the current epoch: transshipment
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quantity ∆S entering location l, the number of modules u entering location l, and the pro-

duction quantity a at location l. These binary variables enable suitable selection of vθl from

lookup tables. Additionally, we assume that the local information assumption, which en-

sures λ̂(dnl ,x) sufficiently approximates λ̂(d, z,x) when picking the approximate, local

cost-to-go function vF,θl , ∀ l, is satisfied.

In this approach, the number of binary variables required to solve the one period prob-

lem at every epoch grows linearly in L and quadratically in the total module strength Y .

Hence, we present a lookahead approach in Section 4.6.4 to improve the computational ef-

ficiency of the joint controller’s strategy using piecewise linear and convex approximation

of vF,θl that reduces the number of binary variables used.

JR: min
∑

l,∆S ,∆M ,a

w(l,∆S,∆M , q)

{
KS+
l (∆S)+ +KS−

l (−∆S)+ +KM |∆M |/2

+
∑
n

∑
i

xi
∑
j

PijO
l
nj

[
hlr

n
l + blo

n
l

+βv̂F,θl (λ̂(dnl ,x), sl + ∆S + q − dnl , ul + ∆M)

]}
,

subject to∑
l,∆S ,∆M ,q

w(l,∆S,∆M , q) ∆M = 0

∑
l,∆S ,∆M ,q

w(l,∆S,∆M , q) ∆S = 0,

rnl ≥ sl +
∑

∆S ,∆M ,q

w(l,∆S,∆M , q) (∆S + q)− dnl , ∀ l, n

onl ≥ dnl − sl −
∑

∆S ,∆M ,q

w(l,∆S,∆M , q) (∆S + q), ∀ l, n

rnl , o
n
l ∈ Z+, w(l,∆S,∆M , q) ∈ {0, 1}, ∀ ∆S ∈ {−(sl)

+, . . . ,
∑
k 6=l

(sk)
+},

∆M ∈ {−ul, . . . , Y ′l − ul}, q ∈ {0, . . . , Ul + (ul + ∆M)G},

l ∈ {1, . . . , L}. (4.10)
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4.6.4 Lookahead Strategy of Joint Controller (LAJ)

The mixed integer program LAJ, presented below, makes use of the piecewise linear and

convex approximation of the single location capacitated inventory control system’s cost-to-

go function presented in Section 4.5.2 in order to reduce the computational effort required

to implement the JC approach. Using this functional approximation of the cost-to-go func-

tion reduces the number of integer variables by O(GY 2LI) where G, Y, L, and I are re-

spectively the capacity per module, the total number of production modules, the number of

locations, and the available storage capacity at each location.

LAJ: min
∆S ,u′,y

∑
l

{
(KS+

l ∆S+
l +KS−

l ∆S−
l ) +KM

∑
l

|ul − u′l|/2

+
∑
n

σ(dnl ,x)

[
hlr

n
l + blo

n
l + β(ζl + ηl)/2

]}
,

subject to

ζl ≥ γlj(yl −
[
E[Dl(t)]

]
) + γ̂lj ∀ (γlj, γ̂

l
j) ∈ Γlt+1(ul) ∀ l

ηl ≥ θlju
′
l + θ̂lj ∀ (θlj, θ̂

l
j) ∈ Θl

t+1(sl) ∀ l∑
l

u′l = Y

0 ≤ u′l ≤ Y ′l , ∀ l∑
l

∆S+
l =

∑
l

∆S−
l ,

0 ≤ ∆S+
l ≤

∑
k 6=l

(sk)
+, 0 ≤ ∆S−

l ≤ −(sl)
+, ∀ l

(sl + ∆S+
l −∆S−

l ) ≤ yl ≤ (sl + ∆S+
l −∆S−

l ) + Ul + u′lG, ∀ l

rnl ≥ yl − dnl , onl ≥ dnl − yl, ∀ l, n

rnl , o
n
l ∈ Z+, u′l, ∆S+

l ,∆S−
l , yl ∈ Z, ηl, ζl ∈ R ∀ l (4.11)

This heuristic utilizes significantly fewer integer variables compared to the integer program

in (4.10).Additionally, we have the following result that shows LAJ can be solved as a linear

program to obtain an optimal solution when module capacity equals 1. This result improves
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the speed of implementing the JC approach drastically in such instances, in comparison

with JR.

Proposition 2. LAJ can be solved exactly by relaxing all the integrality constraints when

G = 1.

The proof of this result follows from Proposition 2 [104].

4.6.5 Global-Local Rollout of Stationary Future (GLR)

For the GLR heuristic, at every decision epoch with beginning state (x, s,u), we first solve

1. the following integer program to determine the GC decisions, namely, the amount of

inventory ∆S received at every location l and the number of production modules ∆M

received at every location l:

GLR: min
∑

l,∆S ,∆M

w(l,∆S,∆M)

{
KS+
l (∆S)+ +KS−

l (−∆S)+ +KM |∆M |/2

+v̂F,θl (x, sl + ∆S, ul + ∆M)

}
,

subject to∑
l,∆S ,u

w(l,∆S,∆M) ∆M = 0

∑
l,∆S ,∆M

w(l,∆S,∆M) ∆S = 0,

w(l,∆S,∆M) ∈ {0, 1}, ∀ ∆S ∈ {−(sl)
+, . . . ,

∑
k 6=l

(sk)
+},

∆M ∈ {−ul, . . . , Y ′l − ul}, l ∈ {1, . . . , L}. (4.12)

2. We then determine the local controllers’ replenishment decisions through the location-

wise order-up-to-policy presented in (4.6), in which the quantity transshipped to any

location l will be obtained using the solution of the above integer program GLR as

∆S
l =

∑∑
k 6=l(sk)+

∆S=−(sl)+

∑Y ′
l −ul

∆M=−ul
w(l,∆S,∆M)∆S for all locations l.
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4.7 Computational Study and Results

We designed a set of instances that allows us to study the variation of heuristic quality and

the value addition of mobility as a function of the number of locationsL, the movement cost

per unit of inventory between any pair of locations represented as KS , and the movement

cost per production module KM .

4.7.1 Instance design

We generated a set of 100 instances in the following manner. The number of modulation

states is N = 3 for all instances. The transition matrix P̂ is set to {{0.7, 0.3, 0}, {0.5, 0.3,

0.2}, {0, 0.8, 0.2}}; the underlying Markov chain is represented in Figure 4.2. There are

µ1 µ2 µ30.7

0.20.3

0.3

0.5 0.8

0.2

Figure 4.2: Underlying Markov chain of the modulation process in the instance set

three demand outcomes at every location, 0, 1, or 2. For each value of L ∈ {2, 3, 5, 10},

we generated discrete demand distributions at each location randomly for each modula-

tion state such that the expected demands are either increasing with modulation state or

decreasing with modulation state at each location. We ensured that exactly one of the three

expected demands at each location lies in [0, 0.6), [0.6, 1.4), and [1.4, 2]. The total number

of modules Y and the module holding capacity at each location Y ′l , ∀ l ∈ {1, . . . , L} are

set to equal d4
3
Le. We created a problem instance for each combination of the parameters

fixed above and inventory movement cost per unit KS ∈ {0, 1.5, 2, 2.5, 10000} for all l,

module movement cost per production module KM ∈ {0, 1.5, 2, 2.5, 10000}, holding cost

per unit per period hl = h = 1 for all l, and backorder cost per unit per period bl = b = 2
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for all l. Without loss of generality, we set the production cost cl at all locations to zero in

all the instances. Based on the analysis in [104], we note that capacity per module does not

affect the results observed significantly, and hence we set the capacity per module G to 1

in all the instances.

4.7.2 Results

We evaluated the heuristic policies, GLR, JR, LAJ, and the myopic policy MP on fifty

sample trajectories of the instance set, obtained by Monte Carlo simulation, for five values

of the blending coefficient θ ∈ {0, 0.2, 0.50.8, 1}. We compared their performance against

the following benchmark policy, NF. For each instance, we computed the approximate

cost-to-go value function of the L = 1, Y = 0 problem with the various capacities and

determined the minimum total fixed cost among all configurations. We then generated 50

sample demand trajectories at each epoch based on the current simulated modulation state.

For each trajectory, the beginning state is the zero inventory position at all locations and the

module configuration that minimizes the sum of the fixed expected total cost of the single

location problems with the steady state belief-based distribution of demand as the epoch-

invariant demand distribution at each location. We computed the upper bound v̂l(x, sl, ul)

for x ∈ X ′, u ∈ {0, . . . , Y }, ∀ sl,∀ l in a one time offline pre-computation step. We

approximated the belief space X = {x :
∑N

i=1 xi = 1, xi ≥ 0} with its non-empty,fixed,

finite subset X ′ = {x :
∑N

i=1 xi = 1, xi ∈ {0, 1/3, 2/3, 1}} ∪ π, for π such that π = πP̂

when it exists [121].

We performed a forward dynamic programming pass or a forward rollout implementing

the decision-making proposed by each method at each epoch. We obtained the average

performance of each heuristic over the 50 simulated trajectories of each instance to analyze

various resultant trends in comparison to NF.

We compared heuristic performance across values of the blending coefficient θ in Tables

C.1, C.2, and C.3 Table 4.1 (in Section C4) and found the best performance usually at
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θ = 0.2 for all the heuristics. Table 4.1 presents the comparison of the performance of

all heuristics at θ = 0.2. We note that the cost of the naive policy MP is very close to

that of NF, sometimes exceeding it. This observation establishes the need for intelligent,

dynamic heuristics that account for future costs. The proposed heuristics provide about a

20%−25% reduction in cost compared to NF, in effect extracting 20%−25% improvement

in system performance from the two forms of mobile flexibility. As the number of locations

L increases, we observe increasing value addition over NF generally. We note that heuristic

quality is ordered as JR (best), LAJ, and GLR with the bandwidth of 5% variation.

Table 4.1: Average performance of heuristics w.r.t. NF across L for θ = 0.2

L\θ = 0.2 GLR JR LAJ MP
2 0.903 0.890 0.903 1.126
3 0.705 0.661 0.690 0.945
5 0.833 0.797 0.796 0.986

10 0.726 0.673 0.695 0.997
Overall 0.792 0.755 0.771 1.013

JR and LAJ outperform GLR on average by 1% − 5% and 0% − 3% respectively.

The strength of GLR is its unique usefulness while managing instances where different

locations are coupled (or correlated) not only through the modulation process. JR and LAJ

rely on the assumption that the demands at different locations are mutually independent,

conditional on the belief state.

Table 4.2: Average computation times in seconds across L

L MP GLR JR LAJ v̂Fl ∀ l
per trajectory per instance

2 0.06 0.09 0.84 0.16 0.60
3 0.09 0.24 3.12 0.25 1.75
5 0.16 0.62 20.7 0.43 7.45

10 0.36 3.55 258 0.93 65.8

Although JR gives the best performance, its computational demands, indicated by the

average run time per trajectory in Table 4.2, makes it unattractive as a preferred heuristic for
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online implementation. LAJ and GLR, on the other hand, offer significant computational

advantages over JR and are amenable to online implementation. The time taken to compute

the upper bound v̂l(x, sl, ul) for x ∈ X ′, u ∈ {0, . . . , Y },∀ sl,∀ l is a one time offline

computation cost and it grows with L as expected (due to decentralization).

We now explore how the value of mobility of production capacity and inventory is

affected by the movement cost structure. In Table 4.3, the module movement cost per

module KM and the transshipment cost per unit of inventory KS are varied horizontally

and vertically respectively when the number of locations L = 10. We observe decreasing

Table 4.3: Value of mobility (% savings over NF) using JR with θ = 0.2 across KS and
KM for L = 10

Module movement cost KM

0 1.5 2 2.5 10000

Tr
an

ss
hi

pm
en

t
co

st
K
S

0 47% 50% 48% 47% 46%
1.5 41% 24.9% 24.6% 19.4% 18.6%
2 50% 26.2% 15.5% 12.8% 12.6%

2.5 45% 25.2% 10.7% 0.3% 0.1%
10000 46% 22.8% 8.4% -1% -0.7%

savings generally when we go radially outwards from the top-left corner, indicating greater

value of mobility when the cost of purchasing mobility is lower. Holding KM constant for

KM ≥ b, the savings decrease for increasing KS . Holding KS > 0 constant, we observe

higher savings at lower values ofKM . The value additions from the two forms of flexibility

independently can be obtained from the last row and last column of Table 4.3. We infer

that there is maximum benefit from these forms of flexibility when the average movement

cost of a unit of capacity or a unit of inventory are less than or equal to the backorder cost

per unit per period b = 2.

4.7.3 Demand modeling: epoch-invariant vs. epoch-variant

We now consider how valuable modeling the inherent epoch-variability of demand distri-

butions is. We accomplish this by repeating the experimental runs of heuristics, assuming
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steady-state, epoch-invariant distributions of demand in a Markov-modulated system with

partial observability. Table 4.4 considers the value lost in heuristic costs when epoch-

invariability is assumed by the decision-maker. The values in Table 4.4 may be obtained

as the difference between entries of Table C.5 presented in Section C5. We present the ob-

servations for θ = 0.2, which is the best blending coefficient for all heuristics with epoch-

variability-assuming decision-maker. We present θ = 0.8 results for GLR as it is the best

blending coefficient for epoch-invariability - assuming decision-maker’s GLR. We note that

only GLR performs better under an epoch-invariability assumption. This finding is counter-

intuitive. We tested the tractable heuristics GLR and LAJ on a longer horizon (T = 30)

Table 4.4: Value of non-stationarity w.r.t. NF across L, when the DM assumes steady state,
epoch-invariant demand distributions in a Markov-modulated system with partial observ-
ability

L
GLR

(θ = 0.8)
GLR

(θ = 0.2)
JR

(θ = 0.2)
LAJ

(θ = 0.2)
2 -0.028 0.003 -0.013 0.011
3 -0.048 0.029 0.014 0.007
5 -0.046 0.001 0.006 0.010

10 -0.071 0.017 0.017 0.006
Overall -0.048 0.013 0.006 0.009

with both epoch-invariant and epoch-variant assumptions of DM, assuming the modulation

system is epoch-variant (with partially observed Markov modulation). We obtained the

results presented in Table 4.5. These results indicate that all heuristics perform marginally

better over very long horizons under a stationary assumption, when the steady state distribu-

tion of the corresponding Markov chain of the state-of-the-economy is supplied. These re-

sults are now convincing, given that there are significant probabilities of transitioning away

from any given modulation state in the transition matrix P̂ = {{0.7, 0.3, 0}, {0.5, 0.3, 0.2},

{0, 0.8, 0.2}}. The opportunity to learn demands and infer a modulation state may be lost

too quickly due to fast transition to a different modulation state. We understand that if the

system is too volatile, a good steady state based epoch-invariant distribution works well to
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extract comparable gain from flexibility.

Table 4.5: Comparison of heuristic performance w.r.t. NF for T = 30 when the DM
assumes epoch-invariant and epoch-variant demand distributions in a Markov-modulated
system with partial observability

Non-stationary Stationary

L
GLR

(θ = 0.2)
LAJ

(θ = 0)
GLR

(θ = 0.5)
LAJ

(θ = 0)
2 0.79 0.77 0.77 0.77
3 0.45 0.47 0.45 0.47
5 0.71 0.72 0.67 0.71

10 0.53 0.59 0.52 0.59
Overall 0.62 0.64 0.60 0.63

We now establish the value of modeling epoch-variability by comparing heuristic per-

formance under the two demand assumptions of the DM in an epoch-variant system for

a transition matrix P̂ = {{0.95, 0.05, 0}, {0.05, 0.9, 0.05}, {0, 0.05, 0.95}} that has very

small probabilities of leaving the current modulation state (with all the other parameters of

the set remaining the same as before). Once again, we present the results for the best θ’s.

In Table 4.6, even on very long horizons, even GLR extracts 6% more average savings un-

der epoch-variant, belief-based demand modeling. These results confirm our intuition that

when the modulation states are vastly different in their location-wise demand distributions

and do not change too rapidly, our demand learning model produces significant value ad-

dition over assuming epoch-invariant demand models in a Markov-modulated system with

partial observability.

4.7.4 Complete observability of modulation process

We now pursue the value proposition of complete observability of modulation process.

How useful is it to completely (or more accurately) observe the state-of-the-economy? We

repeat the experiments on the instance set presented in Section 4.7.1 with the assumption

that the modulation process is completely observed. This relaxes the constraint of the

decision-maker being unaware of the current modulation state and hence results in a lower
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Table 4.6: Comparison of heuristic performance w.r.t. NF for T = 30 and P̂ =
{{0.95, 0.05, 0}, {0.05, 0.9, 0.05}, {0, 0.05, 0.95}} when the DM assumes epoch-invariant
and epoch-variant demand distributions in a Markov-modulated system with partial observ-
ability

Non-stationary Stationary

L
GLR

(θ = 0.2)
LAJ

(θ = 0.2)
GLR

(θ = 0.2)
LAJ

(θ = 0)
2 0.43 0.44 0.48 0.49
3 0.42 0.42 0.48 0.48
5 0.29 0.30 0.36 0.43

10 0.29 0.29 0.35 0.51
Overall 0.36 0.36 0.42 0.48

cost than without complete observability. Table 4.7 presents the additional value of mobility

under complete observability, or equivalently, the value of complete observability using JR

on L = 10 instances. These values are obtained as the difference of the values of Tables

4.3 and C.6. We note that end effects lead to some negative entries in the first column

that are found to be positive when tested on longer horizons. Value of observability can

significantly high (25.6% when KS = KM = 2.5), particularly on cost structures that

were indicating low value of mobility under partial observability. This finding signals

that exploring techniques to improve observability of the state-of-the-economy would be

greatly beneficial to the current logistics system. When costs are moderate (KS = KM =

1.5, there is about 8.5% improvement due to complete observability. We infer that under

moderate movement costs, the value of mobility with and without complete observability

is very high and under higher movement costs, with complete observability, the savings

obtained are quite lucrative.

Thus, we conclude our computational analysis by emphasizing the significant impact of

mobility, non-stationary demand modeling, and observability of the state-of-the-economy

on the profitability of production-inventory systems and reiterating the computational ad-

vantage offered by the heuristics LAJ and GLR over JR.
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Table 4.7: Additional value of mobility (% savings over NF) due to complete observability
using JR with θ = 0.2 across KS and KM for L = 10

Module movement cost KM

0 1.5 2 2.5 10000

Tr
an

ss
hi

pm
en

t
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st
K
S

0 1% 1% 0% 1% 1%
1.5 -3% 8.5% 8.5% 6.2% 5.8%
2 -4% 6% 11.3% 13.9% 13.4%

2.5 -1% 7.8% 15.3% 25.6% 22.2%
10000 -3% 5.7% 11.3% 22% 1.3%

4.8 Conclusion

We present computationally efficient heuristics LAJ and GLR that improve in solution

quality with the number of locations in the L location, Y module problem. We observe

savings from mobility that are as high as 26% in some instances over systems with no flex-

ibility. Also, we note that non-stationary modeling of demand in a non-stationary world

allows about 6% more profits in some cases and complete observability of the state-of-

the-economy increases value addition of mobility by 5− 27% on the instances considered.

Additionally, we infer that although joint control results in slightly lower costs, decentral-

ized control heuristics perform significantly faster. Our results reinforce the value addition

due to the production capacity portability, irrespective of the presence of transshipment

flexibility.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary of Results

In this dissertation, we consider some emergent logistics systems and pursue solution meth-

ods to maximize their operational efficiency and ease. We adopt a multi-pronged approach

of handling uncertainty - by managing response (on the supply side) and information (on

the demand side). To deliver a better logistics response using the novel characteristic of mo-

bility of production capacity, we also seek to manage revealed information effectively by

proposing a data-driven learning model of demand that is affected by a Markovian state-of-

the-world variable. Computational evidence in this research suggests that significant sav-

ings arise in a multi-location production - inventory system from resource mobility when

the resource is either production capacity or inventory. Multi-resource mobility (for ex-

ample, when both production capacity and inventory are transportable and shareable) also

taps additional savings over and above single resource mobility. A data - informed non-

stationary demand model is expected to have greater predictive power of anticipation over

a stationary demand model. The remainder of this section summarizes the primary results

of the research going into this dissertation.

In Chapter 2, we analyze a problem of dynamic logistics planning for a multi-location

production - inventory system with transportable modular production capacity facing un-

certain demands. In such systems, production modules provide units of capacity, and can

be moved from one location to another to produce stock and satisfy demand. We formulate

a dynamic programming model of a planning problem in this setting that considers pro-

duction and inventory decisions. Given the size of the state and action spaces, we focus on

developing suboptimal one period lookahead and rollout policies based on decomposition
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by locations, and upper and lower bounds on the optimal cost function that help quantify

the effectiveness of suboptimal policies as well as measure the value of transportable pro-

duction capacity. In some cases, finding these suboptimal policies requires solving single-

period problems to optimality. We propose mixed-integer linear programming models for

these generalizations of newsvendor problems, and show under certain circumstances the

feasible region polyhedra have only integer extreme points. A computational study of prob-

lems with stationary demand distributions, which should benefit least from mobile capacity,

demonstrates the effectiveness of the suboptimal policies. For problems with 20 locations,

the best heuristic solution cost provides 13% savings over a system with an optimal fixed

capacity allocation. Greater savings result when the number of locations increases.

In Chapter 3, we consider a periodic review inventory control problem having an un-

derlying modulation process that affects demand and that is partially observed by the un-

censored demand process and a novel additional observation data (AOD) process. Letting

K be the reorder cost, we present a condition, A1, which is a generalization of the Veinott

attainability assumption, that guarantees the existence of an optimal myopic base stock

policy if K = 0 and the existence of an optimal (s, S) policy if K > 0, where both policies

depend on the belief function of the modulation process. Assuming A1 holds, we show

that (i) when K = 0, the value of the optimal base stock level is constant within regions of

the belief space and that these regions can be described by a finite set of linear inequalities

and (ii) when K > 0, the values of s and S and upper and lower bounds on these values

are constant within regions of the belief space and that these regions can be described by

a finite set of linear inequalities. Computational procedures for K ≥ 0 are outlined, and

results for the K = 0 case are presented when A1 does not hold. Special cases of this

inventory control problem include problems considered in the Markov-modulated demand

and Bayesian updating literatures.

In Chapter 4, we analyze the value of mobile production capacity in a supply chain

with geographically distributed production facilities. For supply chains with fixed location
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facilities, changing geographical demands has usually been met by transshipment, expand-

ing or contracting production capacity at existing facilities, and either eliminating old or

adding new facilities. The increasing interest in additive manufacturing, which can be mo-

bile, and other forms of mobile production capacity (e.g., in the pharmaceutical industry)

offers an opportunity for improved performance of next generation supply chain design and

operations.

We model the L location, Y mobile production unit problem as a problem of sequential

decision making under uncertainty to determine transshipment, mobile production capacity

relocation, and replenishment decisions at each epoch. We include in this model a data-

driven demand forecasting capability that assumes the existence of a partially observed

stochastic process, the modulation process, that affects demand, is not affected by the ac-

tions of the decision maker, and reflects the reality that decision making environments are

often affected by exogenous and partially observed forces (e.g., the macro economy, sea

or air currents). We use a specially structured partially observed Markov decision process

as our model, develop several heuristic procedures for determining policies, and compare

these heuristics numerically, demonstrating that a decentralized decision making approach

shows promise. We note that the value of mobility is 26% on some instances with 10 lo-

cations, the value of non-stationary modeling is significant - around 6% - on instances in

which it is significantly more likely to stay in any modulation state than to transition away

from it, and the value of complete observability of the modulation process is 5 − 27% on

the instance set considered.

The two kinds of resources, namely production capacity and inventory, differ in some

respects. Firstly, production capacity is a re-usable resource unlike inventory which serves

a one time demand satisfaction purpose. Thus, relocating a unit of capacity appears to

create much more impact at both the sending as well receiving locations than relocating

a unit of inventory. Secondly, production capacity often requires an enabling setup for

plug-and-produce at all the locations and thus an implicit setup time before it is ready to
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use typically. We assume that this time is negligible relative to the length of the period

throughout Chapters 2 and 4.

5.2 Recommendations for Future Research

While the scope of research in supply chain logistics planning is very wide, some directions

of future research in logistics planning under certainty that are direct extensions of the

research in this dissertation are presented below.

5.2.1 Resource Mobility and Sharing

• Considering lead times of resource movement between locations.

• Considering setup times for resources that require a setup before usage.

• Allowing competition between locations instead of joint ownership.

• Exploring the impact of product perishability and demand impatience on the value

addition from resource mobility

• Investigating human resource mobility and sharing in the context of skilled service

providers (health care, specialized tasks, etc.)

• Considering design and operation questions in urban mobility, such as car sharing

and ride sharing, from a resource mobility perspective.

• Analyzing the value proposition of other novel forms of flexibility in logistics sys-

tems such as mobile storage capacity (warehouses and smart lockers).

5.2.2 Learning-based Demand Modeling

• Modeling inventory control with lost sales under demand-influencing Markov-modulation.
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• Modeling the problem of joint inventory control and pricing under demand-influencing

Markov-modulation.

• Analyzing the resultant correlation between demands at different locations due to

implicit coupling through the state-of-the-world.
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APPENDIX A

CHAPTER 2

A1 Proof of Proposition 1

Proof. (a) As the newsvendor constraint matrices are TU already, their rows can be sepa-

rated into partitions suitably to satisfy [122, Theorem 2.7, III.1]. Total unimodularity is

retained in the presence of location-wise capacity constraints when G = 1. Hence, the

constraint matrix of MMPIP-MP is TU when G = 1. As the right hand side is integral,

the polyhedron of the IP presented here for the implementation of the myopic policy,

MP, is integral.

(b) The objective function of each of the L newsvendor problems is given by

∑
k∈K

pki
{
hi(si + qi − dki )+ + bi(d

k
i − si − qi)+

}
.

hiP (Di ≤ dmi ) − biP (Di > dmi ) is the slope of the newsvendor objective function in

dmi ≤ qi + si ≤ dm+1
i . As the function is convex, its slope is decreasing from left to

right and increasing from right to left. The current problem involves re-allocation of

capacity followed by replenishment. In the one period problem, a module movement

from location i to location j occurs if

i. the available capacity is greater than the unconstrained optimal order quantity at

the sending location i, or

ii. if the positive gain at the receiving location j, hjP (Dj ≤ dnj )− bjP (Dj > dnj ) per

unit is higher than the (absolute value of) loss at the sending location i, hiP (Di ≤

dmi )−biP (Di > dmi ). The movement is feasible only if hiP (Di ≤ dmi )−biP (Di >

dmi )+hjP (Dj ≤ dnj )−bjP (Dj > dnj ) > KM
ij /G. The movement will be beneficial
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until this inequality is reversed when either sj + qj or si + qi reach a slope change

point, viz., a demand outcome (which is integral for this problem setup). Since

the starting inventory (si or sj) is an integer and the order-up-to level at one of

the locations is integral, it follows that the amount of effective potential inventory

increment/decrement at the locations is integral and hence the other order-up-to

level is also integral. This mechanism is in action for all module shifts induced by

the cost structure and hence, irrespective of {{∆M
ij }}’s integrality, for all i, qi will

be take integer values even without integrality constraints.

A2 Proof of Proposition 2

Proof. MMPIP-LAF is different from MMPIP-MP in the objective function that now con-

tains ζi and ηi terms additionally. The constraints now include the description of the ζi and

ηi terms as the maximum over piecewise linear facets of sets of convex curves. As these

inventory and capacity curves have with integer slope transition points, the minimization

of
∑L

i=1(ζi + ηi)/2 ensures that the yi’s and qi’s are still integers in addition to the con-

straints of MMPIP-MP. Having integer values for yi ensures that ∆M
ij ’s are integers as yi’s

are placeholder variables. Integer values of qi’s guarantees that rki and oki are integers as

rki + oki = si + qi− dki and dki ’s are integers. Hence, MMPIP-LAF can be solved as a linear

program.

A3 Algorithm for LIU

Algorithm 1 is the value function approximation algorithm used to implement LIU.

A4 Instance Sets for Computational Study

We generate three instance sets for our computational study.
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Algorithm 1: Approximate Value Iteration over finite horizon: LIU

Step 1. Initialization:

a. Initialize V
0

t (ξ(t)) for all states ξ(t).

b. Choose an initial state ξ(1).

c. Set n = 1.

Step 2. Choose a sample path dn.

Step 3. For t = 1, . . . , T − 1 do:

a. Solve v̂nt = mina∈A(ξn(t)) ED
(
Ct(ξ

n(t), a,D) + V
n−1

t+1 (f(ξn(t), a,D))
)

and let ant be a minimizer.

b. Blending: V
n

t (ξn(t)) = αnv̂
n
t + (1− αn)V

n−1

t (ξn(t)).

c. Greedy trajectory following: ξn(t+ 1) = f(ξn(t), ant , d
n(t)).

Step 4. Let n = n+ 1. If n < N , go to step 2.

A4.1 Instance Set 1

L = 2, Y ∈ {3, 5, 7, 10}, T ∈ {5, 7, 10, 15}, G = 1, c = 0, b ∈ {1, 2}, h ∈ {0.5, 1},

K
M ∈ {0.5, 5}, Initial allocation = {umin} = the best fixed system’s capacity allocation

Demand distributions. For each of the two stations:

• Set expected total demand to αGY , α = 0.75;

• Randomly obtain fraction of expected demand at station 1: β ∈ [0.2, 0.8]; µ1 = βµ;

µ2 = (1− β)µ. =⇒ µmax
i = αβmaxY = 0.6Y .

• Randomly generate three distinct samples each from {0, . . . , dγµ1e}, {0, . . . , dγµ2e},

γ = 1.1;Dmax
i = dγµmax

i e = d0.66Y e and sort them.

• Randomly generate three numbers from {1,2,3,4,5,6} and obtain probabilities from

them by dividing each by their sum.

For each combination of Y, T, b, h, and K
M

, obtain 10 different demand distributions. This

completes instance generation. Thus, we generate a total of 1280 instances.
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A4.2 Instance Set 2

L = 2, Y ∈ {5, 10, 15, 20}, T ∈ {5, 10, 15, 20}, G ∈ {1, 2, 3}, c = 0, b ∈ {1, 2, 3}, h = 1,

K
M ∈ {1, 3, 5}, Initial allocation = {umin} = the best fixed system’s capacity allocation

Demand distributions. For each of the two stations:

• Set expected total demand to αGY , α = 0.8;

• Randomly obtain fraction of expected demand at station 1: β ∈ [0.2, 0.8]; µ1 = βµ;

µ2 = (1− β)µ. =⇒ µmax
i = αβmaxY = 0.525GY .

• Randomly generate three distinct samples each from {0, . . . , dγµ1e}, {0, . . . , dγµ2e},

γ = 1.5;Dmax
i = dγµmax

i e = d0.7875GY e and sort them.

• Randomly generate three numbers from {1,2,3,4,5,6} and obtain probabilities from

them by dividing each by their sum.

For each combination of Y, T, b, h, and K
M

, obtain 10 different demand distributions. This

completes instance generation. Thus, we generate a total of 2160 instances.

A4.3 Instance Set 3

L ∈ {2, 3, 5, 10, 20}, Y ∈ {d1.9Le, d2.4Le}, T ∈ {5, 10, 15}, G = 1, c = 0, b ∈ {2, 3},

h = 1, K
M ∈ {1, 2, 3}, Initial allocation = {umin} = the best fixed system’s capacity

allocation

Demand distributions. For each location:

• Randomly generate three distinct samples each from {0, 1, 2, 3} and sort them.

• Randomly generate three numbers and obtain probabilities from them by dividing

each by their sum.

For each combination of L, Y, T, b, and K
M

, obtain three different demand distributions.

This completes instance generation. Thus, we generate a total of 540 instances.
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A5 A Simple Strategy for Module Allocation

Assign {bρicY } to each location i where,

ρi =
σi∑L
j=1 σj

× β +
µi∑L
j=1 µj

× (1− β),

β =
∑L

j=1
zασj∑L

j=1(zασj+µj)
, zα = 1.64 for a 95% service level.

If
∑L

i=1bρiY c < Y , then allocate the remaining modules in the decreasing order of

coefficient of variation, σi/µi, of locations. The final module allocation thus obtained is

represented by usimple.

A6 Additional Tables

Table A.1: Instance Set 1 - Variation of bounds w.r.t. OPT for HH instances across T , Y ,
b, h, and K

M

(a) T

T PIR LB UBmax UBmin

5 0.498 0.900 3.9 1.040
7 0.482 0.893 5.9 1.072
10 0.521 0.866 6.5 1.142
15 0.499 0.855 9.8 1.217

(b) Y

Y PIR LB UBmax UBmin

3 0.626 0.865 3.9 1.148
5 0.490 0.859 7.1 1.112
7 0.246 0.917 11.3 1.057
10 0.061 0.975 16.0 1.012

(c) b

b PIR LB UBmax UBmin

1 0.500 0.883 5.0 1.086
2 0.500 0.874 8.1 1.148

(d) h

h PIR LB UBmax UBmin

0.5 0.525 0.861 7.7 1.132
1 0.472 0.898 5.3 1.101

(e) KM

K
M

PIR LB UBmax UBmin

0.5 0.437 0.928 6.8 1.180
5 0.560 0.831 6.3 1.056
Overall 0.500 0.879 6.6 1.117
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Table A.2: Instance Set 1 - Value addition of mobile modularity w.r.t. OPT across Y , T ,
K
M

, h, and b

All HH Instances
Y ∆K −∆B −∆H ∆K −∆B −∆H
3 0.049 0.182 -0.011 0.055 0.223 -0.019
5 0.025 0.093 -0.010 0.044 0.170 -0.019
7 0.012 0.033 -0.001 0.026 0.097 -0.011
10 0.003 0.009 -0.002 0.008 0.033 -0.004
T ∆K −∆B −∆H ∆K −∆B −∆H
5 0.012 0.038 -0.005 0.025 0.075 -0.011
7 0.020 0.061 -0.004 0.035 0.123 -0.014
10 0.027 0.098 -0.010 0.057 0.221 -0.027
15 0.029 0.121 -0.004 0.065 0.304 -0.015
K
M

∆K −∆B −∆H ∆K −∆B −∆H
0.5 0.026 0.112 -0.005 0.046 0.248 -0.021
5 0.019 0.047 -0.007 0.044 0.113 -0.012
h ∆K −∆B −∆H ∆K −∆B −∆H
0.5 0.025 0.093 -0.007 0.048 0.199 -0.017
1 0.019 0.065 -0.005 0.041 0.158 -0.017
b ∆K −∆B −∆H ∆K −∆B −∆H
1 0.020 0.061 -0.005 0.041 0.139 -0.012
2 0.024 0.097 -0.006 0.049 0.220 -0.021
Overall 0.022 0.079 -0.006 0.045 0.179 -0.017

Table A.3: Instance Set 1 - Performance of heuristics w.r.t. OPT on HH instances w.r.t. b,
h, and K

M

LIU MP RF RLB LFP

b
1 1.020 1.066 1.014 1.032 1.005
2 1.030 1.076 1.022 1.056 1.007

h
0.5 1.028 1.068 1.019 1.049 1.007
1 1.022 1.075 1.017 1.039 1.005

K
M 0.5 1.037 1.052 1.027 1.009 1.004

5 1.013 1.090 1.009 1.078 1.008
Overall 1.025 1.071 1.018 1.044 1.006
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Table A.4: Instance Set 1 - Performance of heuristics w.r.t. OPT on all instances w.r.t. b, h,
and K

M

LIU MP RF RLB LFP

b
1 1.009 1.031 1.006 1.016 1.002
2 1.016 1.034 1.013 1.023 1.003

h
0.5 1.014 1.032 1.010 1.022 1.003
1 1.011 1.033 1.009 1.018 1.003

K
M 0.5 1.020 1.023 1.015 1.005 1.003

5 1.005 1.042 1.004 1.034 1.003
Overall 1.013 1.033 1.010 1.020 1.003
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APPENDIX B

CHAPTER 3

B1 No Reorder Cost Case

Proof of Lemma 2. If s∗(x) = dm, then

Am−1(x)dm−1 +Bm−1(x) > Am(x)dm +Bm(x),

Am+1(x)dm+1 +Bm+1(x) ≥ Am(x)dm +Bm(x),

which leads to the result.

Proof of Proposition 1. By induction. Letting v0 = 0, we note that

v1(s,x) = min
y≥s

L(x, y) = L
(
x,max{s∗(x), s}

)
for all x and L

(
x,max{s∗(x), s}

)
is non-decreasing and convex in s. Thus, the result

holds true for n = 1 (and, trivially for n = 0). Assume the result holds for n. Then, for

s ≤ s∗(x),

vn+1(x, s) ≤ L
(
x, s∗(x)

)
+ β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s∗(x), d

))
= L

(
x, s∗(x)

)
+ β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), s∗

(
λ(d, z,x)

))
(using A1).
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Also,

vn+1(x, s) ≥ min
y≥s

L(x, y) + β
∑
d,z

σ(d, z,x) min
y
vn
(
λ(d, z,x), f

(
y, d
))

= L
(
x, s∗(x)

)
+ β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), s∗

(
λ(d, z,x)

))
= L

(
x, s∗(x)

)
+ β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s∗(x), d

))
.

Thus, for s ≤ s∗(x),

vn+1(x, s) = L
(
x, s∗(x)

)
+ β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s∗(x), d

))
,

and vn+1(x, s) = vn+1(x, s∗(x)). Assume s ≥ s∗(x). Note

vn+1(x, s) ≤ L(x, s) + β
∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s, d
))
.

Also,

vn+1(x, s) ≥ min
y≥s

L(x, y) + β
∑
d,z

σ(d, z,x) min
y≥s

vn
(
λ(d, z,x), f

(
y, d
))

= L(x, s) + β
∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s, d
))
,

and hence for s ≥ s∗(x)

vn+1(x, s) = L(x, s) + β
∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f

(
s, d
))

and is non-decreasing and convex in s.

Proof of Lemma 5. It is sufficient to show that if y ≤ y′ and x � x′, then,

L(x, y)− L(x, y′) ≤ L(x′, y)− L(x′, y′),
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which follows from the assumptions and [99, Lemma 4.7.2].

Proof of Lemma 7. For any x ∈ X , noting that x =
∑

i xiei , it is straightforward to

show that λ(d, z,x) =
∑

i ξiλ(d, z, ei), where ξi = xiσ(d, z, ei)

/∑
j xjσ(d, z, ej).

Proof of Lemma 8. We have the following:

(i) Clearly, 0 ≤ x̂d,zN ≤ 1 and
∑N

n=1 x̂
d,z
n = 1. It is sufficient to show 0 ≤ x̂d,zn , n =

N − 1, . . . , 1. Note

N∑
k=n+1

x̂d,zk = min
1≤i≤N

{ N∑
k=n+1

λk(d, z, ei)

}
≤

N∑
k=n+1

λk(d, z, ei)

≤
N∑
k=n

λk(d, z, ei), ∀ i.

Thus,
∑N

k=n+1 x̂
d,z
k ≤ min1≤i≤N

{∑N
k=n λk(d, z, ei)

}
=
∑N

k=n x̂
d,z
k , and hence

x̂d,zn ≥ 0.

(ii) Let x′ � λ(d, z,x) ∀ x ∈ X and assume s∗(x̂d,z) < s∗(x′). Then by Lemma 5,

there is an n ∈ {1, . . . , N} such that
∑N

k=n x
′
k >

∑N
k=n x̂

d,z
k . However,

∑N
k=n x̂

d,z
k =

min1≤i≤N

{∑N
k=n λk(d, z, ei)

}
, which leads to a contradiction of the assumption

that x′ � λ(d, z,x) ∀x ∈ X .

Proof of Lemma 9. Assume f(y, d) = y − d and c(y, d) = p(d− y)+ + h(d− y)+, recall

that elements of P1 are sets of the form {x ∈ X : s∗(x) = dm} for all dm such that

minx s
∗(x) ≤ dm ≤ maxx s

∗(x). Further recall that {x ∈ X : s∗(x) = dm} is the set of

all x such that
m−1∑
k=1

σ(dk,x) < p/(p+ h) ≤
m∑
k=1

σ(dk,x),
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or equivalently,

x
m−1∑
k=1

P (dk)1 < p/(p+ h) ≤ x
m∑
k=1

P (dk)1,

which represents two linear inequalities. Further, for x ∈ {x ∈ X : s∗(x) = dm},

vU1 (x, s) = Al(x)dl +Bl(x) for l = max{s∗(x), s}, where we note

Al(x)dl +Bl(x) = x
[
h

l∑
k=1

(dl − dk)P (dk)1 + p
M∑

k=l+1

(dk − dl)P (dk)1
]
,

where Aj(x) and Bj(x) are defined in Section 3.2.3. Thus, on each element of P1, vU1

is linear in x for each s and each element of P1 is described by a finite number of linear

inequalities.

Let (x, s) be such that dl ≤ max{s∗(x), s} ≤ dl+1 for all x in an element {x ∈ X :

s∗(x) = dm}. Further, let dl(d,z) ≤ max{s∗(λ(d, z,x)),max{s∗(x), s} − d} ≤ dl(d,z)+1

for all x in an element {x ∈ X : s∗(λ(d, z,x)) = dm(d)}, which is the set of all x such

that:

λ(d, z,x)

m(d)−1∑
k=1

P (dk)1 < p/(p+ h) ≤ λ(d, z,x)

m(d)∑
k=1

P (dk)1,

or equivalently, for all x such that σ(d,x) 6= 0,

xP (d, z)

m(d)−1∑
k=1

P (dk)1 <
(
p/(p+ h)

)
xP (d, z)1 ≤ xP (d, z)

m(d)∑
k=1

P (dk)1,

where we assume m and m(d) for all d have been chosen so that the finite set of linear
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inequalities describes a non-null subset of X . We note that for such a subset,

vUn+1(x, s) = Al(x)dl +Bl(x) + β
∑
d,z

σ(d, z,x)×

×
[
Al(d,z)(λ(d, z,x))dl(d,z) +Bl(d,z)(λ(d, z,x))

]
= x

[
h

l∑
k=1

(dl − dk)P (dk)1 + p
M∑

k=l+1

(dk − dl)P (dk)1

+β
∑
d

[
h
∑
z

l(d,z)∑
k=1

(dl(d,z) − dk)P (d, z)P (dk)1

+p
∑
z

N∑
k=l(d,z)+1

(dk − dl(d,z))P (d, z)P (dk)1

]]
.

The resulting partition P2 is at least as fine as P1 and each element in P2 is described by a

finite set of linear inequalities. We have shown that on each element inP2, vU2 (x, s) is linear

in x for each s. A straightforward induction argument shows these characteristics hold for

all n. We illustrate by example (through Example 3) how vUn (x, s) may be discontinuous

in x for fixed s.

Proof of Proposition 5. The result holds for n = 0; assume the result holds for n. Then,

v′n+1(x, s′) ≥ min
y′≥s′

{
L′(x, y′) + β

∑
d′,z

σ′(d′, z,x)vLn
(
λ′(d′, z,x)

)}
= min

y≥s′−δ

{
L(x, y)

}
+ β

∑
d′,z

σ′(d′, z,x)vLn
(
λ′(d′, z,x)

)
≥ L

(
x, s∗(x)

)
+ β

∑
d′,z

σ′(d′, z,x)vLn
(
λ′(d′, z,x)

)
= vLn+1(x).
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Further, note

v′n+1(x, s) ≤ min
y′≥s

{
L′(x, y′) + β

∑
d′,z

σ′(d′, z,x)vn
(
λ′(d′, z,x), y′ − d′

)}
= min

y≥s−δ

{
L(x, y) + β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), y − d

)}
≤ min

y≥s

{
L(x, y) + β

∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), y − d

)}
= vn+1(x, s).

The result follows by induction.

B2 Reorder Cost Case

Proof of Proposition 6. The proof of Proposition 6 is a direct extension of the results in

[77].

Lemma 12. For all x and n:

(i) if s ≤ s′, then vn(x, s) ≤ vn(x, s′) +K

(ii) if y ≤ y′, then Gn(x, y′)−Gn(x, y) ≥ L(x, y′)− L(x, y)− βK

(iii) if s ≤ s′ ≤ S(x), then vn(x, s) ≥ vn(x, s′)

(iv) if y ≤ y′ ≤ S(x), then Gn(x, y′)−Gn(x, y) ≤ L(x, y′)− L(x, y) ≤ 0.

Proof of Lemma 12. (i) This result follows from the K-convexity of vn(x, s) in s, which

is a direct implication of the second item of Proposition 6.

(ii) This result follows from the definition of Gn(x, y), the previous result (i), and the fact

that f(y, d) is convex and non-decreasing.

(iii) Gn(x, sn(x)) ≤ K + Gn(x, Sn(x)) ≤ K + Gn(x, S(x)) implies that sn(x) ≤

Sn(x) ≤ S(x) (This is an implication of the definitions of sn(x) and Sn(x), and
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the fact that S(x) minimizes L(x, y) while Sn(x) minimizes the sum of L(x, y) and

a positive term.). It follows from the four cases of s ≤ s′ ≤ S(x) with respect to the

value of sn(x) that vn(x, s) ≥ vn(x, s′).

(iv) This result follows from the definition of Gn(x, y), the non-decreasing nature of

f(y, d) in y and (iii).

The proof of Proposition 7 requires four lemmas.

Lemma 13. For all n and x, S(x) = S0(x) ≤ Sn(x).

Lemma 14. For all n and x, sn(x) can be selected so that sn(x) ≤ s(x).

Lemma 15. For all n and x, Sn(x) can be selected so that Sn(x) ≤ S(x).

Lemma 16. For all n and x, s(x) ≤ sn(x).

Proof of Proposition 7. The proof of these results follow from the proofs of Lemmas 2 -

5 in [79]. Proof of Proposition 7(a) follows from Lemmas 13 - 16, and Proposition 7(b)

follows from (a) and Proposition 6.

Determining Γn(s)

As was true for the K = 0 case, when K > 0, there is a finite set of vectors Γn(s) such

that vn(x, s) = min{xγ : γ ∈ Γn(s)} for all s. Note that Γ0(s) = {0} for all s, where 0

is the column N -vector having zero in all entries. Given {Γn(s) : ∀ s}, we now present an

approach for determining {Γn+1(s) : ∀ s}. Recalling Section 3.3.3, let Γ = {γ1, . . . ,γM}

be such that miny L(x, y) = min{xγ : γ ∈ Γ}. Note

Gn(x, y) = L(x, y) + β
∑
d,z

σ(d, z,x)vn
(
λ(d, z,x), f(y, d)

)
,
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for y ∈ {d1, . . . , dM}. Then,

vn
(
λ(d, z,x), f(y, d)

)
= min{λ(d, z,x)γ : γ ∈ Γn(f(y, d))}.

Let Γ′n(y) be the set of all vectors of the form

γ + β
∑
d,z

P (d, z)γ(d, z),

where γ ∈ Γ and γ(d, z) ∈ Γn(f(y, d)). Then, Gn(x, y) = min{xγ : γ ∈ Γ′n(y)} and

vn+1(x, s) =


K +Gn

(
x, Sn(x)

)
s ≤ sn(x)

Gn(x, s) otherwise,

where Sn(x) and sn(x) are the smallest integers such that

Gn

(
x, Sn(x)

)
≤ Gn(x, y) ∀y.

Gn

(
x, sn(x)

)
≤ K +Gn

(
x, Sn(x)

)
.

Let Xn(s′, S ′) be the set of all x ∈ X such that sn(x) = s′ and Sn(x) = S ′. Thus, if

x ∈ Xn(s′, S ′), then s′ and S ′ are the smallest integers such that

Gn

(
x, S ′(x)

)
≤ Gn(x, y) ∀y.

Gn

(
x, s′(x)

)
≤ K +Gn

(
x, S ′(x)

)
.

Since Gn(x, y) is piecewise linear and convex in x for each y, Xn(s′, S ′) is described by a

finite set of linear inequalities. We remark that {Xn(s′, S ′) : s′ ≤ S ′, and Xn(s′, S ′) 6= ∅}

is a partition of X . Further, we remark that if X(s, s, S, S) ∩ Xn(s′, S ′) 6= ∅, then search

for (s′, S ′) can be restricted to s ≤ s′ ≤ s and S ≤ S ′ ≤ S. Let Γn+1(s) = {K1 + γ :
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γ ∈ Γ′n(S ′)} for all s ≤ s′, and let Γn+1(s) = Γ′n(s) for all s > s′. Thus, vn+1(x, s) =

min{xγ : γ ∈ Γn+1(s)} for all s.
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APPENDIX C

CHAPTER 4

C1 Analysis for the L = 1 Case

Assume v0 = 0, vn+1 = Hvn, define Gn(x, y) = G(x, y, vn) for all n, and let y∗n(x, C) be

the smallest value that minimizes Gn(x, y) with respect to y. We remark that

vn+1(x, s, C) =


Gn(x, s) if s ≥ y∗n(x, C)

Gn(x, s+ C) if s ≤ y∗n(x, C)− C

Gn(x, y∗n(x, C)) otherwise.

We now present claims for structured results with respect toGn, vn, and y∗n based on results

in [123] and [115].

Proposition 3. For all n, x, and C,

(i) Gn(x, y) is convex in y

(ii) vn(x, s, C) is:

(a) convex in s,

(b) non-decreasing for s ≥ y∗n(x, C),

(c) non-increasing for s ≤ y∗n(x, C)− C,

(d) equal to vn(x, y∗n(x, C), C) otherwise

(iii) vn+1(x, s, C) ≥ vn(x, s, C) for all s.

Proof of Proposition 3. The convexity of G0(x, y) in y for all x follows from the defi-

nitions and assumptions. Assume Gn(x, y) is convex in y for all x. It is then straight-

forward to show that item ii holds for n = n + 1 and all (x, C). We remark that the

126



function g(y) = w(f(y)) is convex and non-decreasing (non-increasing) if w is con-

vex and non-decreasing (non-increasing) and if f is linear and non-decreasing. Hence,

Gn+1(x, y) is convex in y for all x, and item i and item ii hold for all n by induction. Since

v1(x, s, C) ≥ v0(x, s, C), a standard induction argument guarantees that item iii holds.

Let vn(x, s) = vn(x, s, C), v′n(x, s) = vn(x, s, G), Gn(x, y) = G(x, y, vn), and

G′n(x, y) = G(x, y, v′n).

Proposition 4. Assume C ≤ C ′, and that y∗n(x, C)− d ≤ y∗n(λ(d, z,x), C) for all n and

all (d, z,x). Then for all n, x, and s,

(i) v′n(x, s, C) ≤ vn(x, s, C)

(ii) If y ≤ y′ ≤ y∗n(x, C), then Gn(x, y′)−Gn(x, y) ≤ G′n(x, y′)−G′n(x, y)

(iii) If s ≤ s′ ≤ y∗n(x, C), then vn+1(x, s′, C)−vn+1(x, s) ≤ v′n+1(x, s′, C)−v′n+1(x, s, C).

(iv) y∗n(x, C ′) ≤ y∗n(x, C).

Proof of Proposition 4. Proof of item i is straightforward. Regarding item ii-item iv, note

item ii holds for n = 0; assume item ii holds for n. Then item iv also holds for n. We now

outline the proof that item iii holds for n = n+ 1. Recall

vn+1(x, s, C) =


Gn(x, s+ C) if s ≤ yn − C

Gn(x, s) if s ≥ yn

Gn(x, yn) otherwise,

where yn = y∗n(x, C), and

v′n+1(x, s, C) =


G′n(x, s+ C ′) if s ≤ y′n − C ′

G′n(x, s) if s ≥ y′n

G′n(x, y′n) otherwise,
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where y′n = y∗n(x, G). Similar to the proof of 5 and the proof of [123, Theorem 3], there

are two cases: (1) yn −C ≤ y′n, (2) y′n ≤ yn −C, which are more completely described as

y′n − C ′ ≤ yn − C ≤ y′n ≤ yn,

y′n − C ′ ≤ y′n ≤ yn − C ≤ yn,

respectively. For each case, there are 10 different sets of inequalities that the pair (s, s′) can

satisfy. Showing that item iii holds when n = n + 1 for each of the 20 sets of inequalities

is tedious but straightforward. We now show that for s ≤ s′,

vn+1(x, s′, C)− vn+1(x, s, C) ≤ v′n+1(x, s′, C)− v′n+1(x, s, C)

implies that for y ≤ y′ ≤ yn, Gn+1(x, y′)−Gn+1(x, y) ≤ G′n+1(x, y′)−G′n+1(x, y). Note

vn+1(λ(d, z,x), y′ − d, C)− vn+1(λ(d, z,x), y − d, C) ≤

v′n+1(λ(d, z,x), y′ − d, C)− v′n+1(λ(d, z,x), y − d, C)

for y − d ≤ y′ − d ≤ y∗n(λ(d, z,x), C), which implies

Gn+1(x, y′)−Gn+1(x, y) ≤ G′n+1(x, y′)−G′n+1(x, y)

for all y ≤ y′ ≤ y∗n+1(x, C) assuming y∗n+1(x, C) − d ≤ y∗n+1(λ(d, z,x), C) for all

(d, z,x). A standard induction argument completes the proof.

Proposition 5. Assume y∗n(x, C)−dl ≤ y∗n(λ(d, z,x), C) for all n and all (d, z,x). Then

for all n, s ≤ s′ ≤ y∗n(x, C) implies:

(i) vn(x, s′, C)− vn(x, s, C) ≥ vn+1(x, s′, C)− vn+1(x, s, C),

(ii) Gn(x, s′)−Gn(x, s) ≥ Gn+1(x, s′)−Gn+1(x, s),
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(iii) y∗n(x, C) ≤ y∗n+1(x, C).

Proof of Proposition 5. We note item i holds when n = 0. Assume item i holds for n =

n − 1. Let y ≤ y′ ≤ y∗n−1(x, C), implying that y − d ≤ y′ − d ≤ y∗n−1(x, C) − d ≤

y∗n−1(λ(d, z,x), C) for all (d, z,x). Hence,

vn−1(λ(d, z,x), y′ − d, C)− vn−1(λ(d, z,x), y − d, C) ≥

vn(λ(d, z,x), y′ − d, C)− vn(λ(d, z,x), y − d, C),

and thus item ii holds for n = n− 1 for all y ≤ y′ ≤ y∗n−1(x, C). Letting y′ = y∗n−1(x, C),

we observe

0 ≥ Gn−1(x, y∗n−1(x, C))−Gn−1(x, y) ≥ Gn(x, y∗n−1(x, C))−Gn(x, y);

hence, item iii holds for n = n− 1.

We now outline a proof that s ≤ s′ ≤ y∗n(x, C) implies

vn(x, s′)− vn(x, s) ≥ vn+1(x, s′)− vn+1(x, s). (C.1)

Following an argument in the proof of [123, Theorem 2], we consider two general cases: (1)

y∗n(x, C)− C ≤ y∗n−1(x, C) and (2) y∗n−1(x, C) ≤ y∗n(x, C)− C. Letting the dependence

on (x, C) be implicit, cases (1) and (2) are more completely described as

y∗n−1 − C ≤ y∗n − C ≤ y∗n−1 ≤ y∗n

y∗n−1 − C ≤ y∗n−1 ≤ y∗n − C ≤ y∗n,

respectively. For each case, there are 10 different sets of inequalities that the pair (s, s′) can

satisfy. The values vn(x, s′), vn(x, s), vn+1(x, s′), and vn+1(x, s) are well defined for each
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of these inequalities in terms of Gn−1 and Gn. Showing that (C.1) holds for each of these

20 different sets of inequalities is tedious but straightforward.

A standard induction argument completes the proof of the proposition.

We now claim that v(x, s, C) is convex in C.

Proposition 6. (i) If y ∈ A(s, C) and y′ ∈ A(s, C ′), then λy + (1 − λ)y′ ∈ A(s, λC +

(1− λ)C ′).

(ii) If ξ ∈ A(s, λC + (1 − λ)C ′), then there is a y ∈ A(s, C) and a y′ ∈ A(s, C ′) such

that ξ = λy + (1− λ)y′.

(iii) For real-valued and continuous v,

min{v(ξ) : ξ ∈ A(s, λC + (1− λ)C ′)}

= min{v(λy + (1− λ)y′) : y ∈ A(s, C) and y′ ∈ A(s, C ′)}.

(iv) For all (x, s) and n, vn(x, s, C) is convex in C.

Proof of Proposition 6. (i) y ∈ A(s, C) and y′ ∈ A(s, C ′) imply λs ≤ λy ≤ λ(s + C)

and (1− λ)s ≤ (1− λ)y′ ≤ (1− λ)(s+ C ′); summing terms implies the result.

(ii) LetX = (λC+(1−λ)C ′+s) and ∆S = (X−ξ)/(X−s). Note ∆S ∈ [0, 1] and ξ =

∆Ss+(1−∆S)X . Let y = ∆Ss+(1−∆S)(s+C) and y′ = ∆Ss+(1−∆S)(s+C ′).

Then, y ∈ A(s, C), y′ ∈ A(s, C ′), and λy + (1− λ)y′ = ξ.

(iii) Proof by contradiction follows from items i and ii.

(iv) From item iii and the convexity of Gn(x, y) in y for all n and y (by Proposition 3
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item i), it follows that

vn(x, s, λC + (1− λ)C ′)

min{Gn(x, λy + (1− λ)y′) : y ∈ A(s, C), y′ ∈ A(s, C ′)}

≤ min{λGn(x, y) + (1− λ)Gn(x, y′) : y ∈ A(s, C), y′ ∈ A(s, C ′)}

= λvn(x, s, C) + (1− λ)vn(x, s, C ′).

Clearly, the assumption that y∗n(x, C)−dl ≤ y∗n(λ(d, z,x), C) for all n and all (d, z,x)

is in general a challenge to verify a priori. Arguments in [123] suggest that as n gets large,

y∗n(x, C) may converge in some sense to a function y∗∞(x, C). From [115], y∗0(x, C) is

straightforward to determine. Let ŷ(x, C) ≥ y∗∞(x, C) ≥ y∗n(x, C) for all n and x. Then

ŷ(x, C) − dl ≤ y∗0(λ(d, z,x), C) for all (d, z,x) implies the above assumption holds.

Determination of a function ŷ for the general case is a topic for future research. We present

a special case where y∗0 = y∗n for all n in appendix section.

We point out two key differences between the infinite capacity and the finite capacity

cases when the reorder cost, K ′ = 0. First, when C is infinite, the smallest optimal base

stock level y∗n(x) is independent of the number of successive approximation steps, making

it (relatively) easy to determine. Unfortunately, this result does not appear to hold when

C is finite except for the situation considered in Proposition 7. This apparent fact has

implementation implications for the controllers at the locations (determining the base stock

levels for the capacitated case will in general be more difficult than for the infinite capacity

case).

Second, Claims 4 and 6 state that v(x, s, C) is non-decreasing and convex in C. We also

know that v(x, s, C) is convex in s (from Proposition 3, which is also true for the infinite

capacity case) and concave and possibly piecewise linear in x (from earlier cited results,

which is also true for the infinite capacity case). We will find later that these structural
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results will be computationally useful in determining solutions to the GC problem.The GC

problem for determining (∆S,σ,u′), given (x, s,u), requires knowing vl(x, s′l, u
′
l) for all

l. We now consider approaches to compute or approximate v(x, s, C).

We now present a special case where we claim that y∗0 = y∗n for all n.

Proposition 7. Assume that for all (d, z, x), y∗0(λ(d, z,x), C) − C ≤ y∗0(x, C) − d ≤

y∗0(λ(d, z,x), C). Then, y∗n(x, C) = y∗0(x, C) for all n.

We remark that the left inequality in Proposition 7 essentially implies that although ca-

pacity may be finite, it is always sufficient to insure the inventory level after replenishment

can be y∗0(x, C).

Proof of Proposition 7. By induction. Assume y∗n(x, C) = y∗0(x, C). Note therefore,

vn+1(x, s, C) =


Gn(x, s+ C), s ≤ y∗0(x, C)− C

Gn(x, s), s ≥ y∗0(x, C)

Gn(x, y∗0(x, C)) otherwise.

Note

(i) miny Gn+1(x, y) ≤ Gn+1(x, y∗0(x,C))

(ii) miny Gn+1(x, y) ≥ miny L(x, y) + β
∑

d,z σ(d, z,x) miny vn+1(λ(d, z,x), y − d).

The minimum with respect to y vn+1(λ(d, z,x), y − d, C) is such that y∗0(λ(d, z,x), C)−

C ≤ y − d ≤ y∗0(λ(d, z,x), C). By assumption, y = y∗0(x, C) satisfies these inequalities.

Thus,

min
y
Gn+1(x, y) ≥ L(x, y∗0(x, y∗0(x, C))

+β
∑
d,z

σ(d, z,x)vn+1(λ(d, z,x), y∗0(x, C)− d, C)

= Gn+1(x, y∗0(x, C),
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and hence y∗n+1(x, C) = y∗0(x, C).

Determination of Γn(s,C): Earlier results cited state that for each n and (s, C), there

is a finite set of vectors Γn(s, C) such that vn(x, s, C) = min{xγ : γ ∈ Γn(s, C)}.

We remark that determination of the {Γn(s, C)} is a numerical challenge for the stan-

dard POMDP (where there is only a single s and a single C). Therefore, determining

{Γn(s, C)} for all (or large enough) n and (s, C) may represent a formidable computa-

tional challenge.

The following result may be computationally exploitable. Assuming that

vn(x, s, C) = min{xγ : γ ∈ Γn(s, C)},

vn+1(x, s, C) = min
y∈A(s,C)

{L(x, y) + β
∑
d,z

σ(d, z,x)vn(λ(d, z,x), y − dl, C)}

= min
y∈A(s,C)

{L(x, y) + β
∑
d,z

σ(d, z,x) min{λ(d, z,x)γ :

γ ∈ Γn(y − dl, C)}}

= min
y∈A(s,C)

{xγ̂(y) + β
∑
d,z

min{xP (d, z)γ : γ ∈ Γn(y − dl, C)}}

where γ̂(y) =
∑
d,z P (d, z)1c(y, dl).

Let Γ̂(s, C, y) = {γ̂(y)+β
∑
d,z P (d, z)γd,z : ∀γd,z ∈ Γn(y−dl, C), ∀(d, z)}. Define

Γn+1(s, C) = ∪y∈A(s,C)Γ̂n(s, C, y). Thus, vn+1(x, s, C) = min{xγ : γ ∈ Γn+1(s, C)}.

We therefore note that

Γn+1(s+ 1, C) = Γn+1(s, C) ∪ Γ̂n(s, C, s+ C + 1) ∼ Γ̂n(s, C, s).

Finite-Memory Approximation: As noted earlier, results in [69] and elsewhere imply that

{(x(t), s(t)), t = 0, 1, . . . } is a sufficient statistic for the (L = 1, Y = 0) problem. We

note that given {d(t), . . . ,d(t − ∆S + 1), z(t), . . . ,z(t − ∆S + 1),x(t − ∆S)}, we can
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determine x(t). Hence, there is a family of sufficient statistics for the L location, Y module

problem. Further, under reasonable assumptions (see [124] and [69]), the larger ∆S , the

less influential x(t − ∆S) is for determining x(t), suggesting the possibility of exploring

finite-memory policies for determining approximations to v(x, s, C).

Finite Horizon Approximation: For the case where the modulation process is completely

observed (or where the above finite-memory approximation is assumed) and a single value

iteration step is computationally intensive (due to, for example, a large state space), it

may be useful to approximate the salvage value of a finite horizon MDP in order to ap-

proximate the infinite horizon MDP. Bounds on cost, the discount factor, the coefficient of

ergodicity, and the length of the finite horizon can be used to bound the salvage value for

a completely observed MDP that can be solved by specially structured POMDP solution

techniques [125].

C2 Proof of Proposition 1

Proof. Let v0(x, s, C) = v̂0(x, s, C) = 0. Consider d = (dl,dj 6=l), where dj 6=l can be

considered as additional observation data z. Let
∑

z σ(dl, z,x) = σ(dl,x).

v1(x, s, C) = min
s≤y≤s+C

{∑
dl

σ(dl,x) [c(y, dl)]

}
= min

s≤y≤s+C

{∑
dl

∑
i

xi
∑
j

Pr(j | i)Pr(dl | j) [c(y, dl)]

}

= min
s≤y≤s+C

{∑
d

∑
i

xi

(
Pr(dl | i) +

∑
j

Pr(j | i)Pr(dl | j)− Pr(dl | i)

)
[c(y, dl)]

}
≥ min

s≤y≤s+C

{∑
dl

∑
i

xi

(
Pr(dl | i)−max

k
Pr(dl | k) + min

k
Pr(dl | k)

)
[c(y, dl)]

}
≥ min

s≤y≤s+C

{∑
dl

∑
i

xiPr(dl | i)c(y, dl)

−
∑
dl

(
max
k

Pr(dl | k)−min
k

Pr(dl | k)
)
c(y, dl)

}
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≥ min
s≤y≤s+C

{∑
dl

∑
i

xiPr(dl | i)c(y, dl)
}

+ min
s≤y≤s+C

{
−
∑
dl

(
max
k

Pr(dl | k)−min
k

Pr(dl | k)
)
c(y, dl)

}
= v̂1(x, s, C) + min

s≤y≤s+C

{
−
∑
dl

k(dl)c(y, dl)
}

= v̂1(x, s, C)− max
s≤y≤s+C

{∑
dl

k(dl)c(y, dl)
}

= v̂1(x, s, C)−
∑
dl

k(dl)c(ŷ, dl) = v̂1(x, s, C)− u, where u =
∑
dl

k(dl)c(ŷ, dl) and

ŷ ∈ {s, s+ C} due to convexity of c(y, dl) ∀ y, dl,

where k(dl) =
(

max
k

Pr(dl | k)−min
k

Pr(dl | k)
)
.

By induction and infinite summation,

vn(x, s, C) ≥ v̂n(x, s, C)− u(1 + β + · · ·+ βn); v(x, s, C) ≥ v̂(x, s, C)− u/(1− β).
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C3 Lookahead with Global-Local Stationary Future (LAGL)

LAGL min
∆S ,u′,y

∑
l

{
(KS+

l ∆S+
l +KS−

l ∆S−
l ) +KM

∑
l

|ul − u′l|/2 + (ζl + ηl)/2

}
,

subject to

ζl ≥ γlj(sl + ∆S+
l −∆S−

l ) + γ̂lj ∀ (γlj, γ̂
l
j) ∈ Γlt+1(ul) ∀ l

ηl ≥ θlju
′
l + θ̂lj ∀ (θlj, θ̂

l
j) ∈ Θl

t+1(sl) ∀ l∑
l

u′l = Y∑
l

∆S+
l =

∑
l

∆S−
l ,

0 ≤ u′l ≤ Y ′l , ∀ l

0 ≤ ∆S+
l ≤

∑
k 6=l

(sk)
+, ∀ l

0 ≤ ∆S−
l ≤ −(sl)

+, ∀ l

u′l, ∆S+
l ,∆S−

l ∈ Z, ηl, ζl ∈ R ∀ l (C.2)

Proposition 8. LAGLR can be solved exactly by relaxing the integrality constraints.

C4 Results: Additional Tables

Table C.1: Average performance of GLR w.r.t. NF across L and θ

L\θ 0 0.2 0.5 0.8 1

2 1.66 0.90 0.91 0.91 0.92

3 1.09 0.70 0.71 0.73 0.74

5 1.44 0.83 0.83 0.84 0.85

10 1.74 0.73 0.74 0.77 0.78

Overall 1.48 0.79 0.80 0.81 0.82
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Table C.2: Average performance of LAJ w.r.t. NF across L and θ

L\θ 0 0.2 0.5 0.8 1
2 0.89 0.90 0.94 0.97 0.99
3 0.73 0.69 0.75 0.79 0.81
5 0.84 0.80 0.84 0.89 0.91
10 0.76 0.70 0.74 0.81 0.84

Overall 0.80 0.77 0.82 0.86 0.89

Table C.3: Average performance of JR w.r.t. NF across L and θ

L\θ 0 0.2 0.5 0.8 1
2 0.89 0.89 0.90 0.92 0.93
3 0.71 0.66 0.67 0.70 0.72
5 0.85 0.80 0.80 0.81 0.83
10 0.74 0.67 0.69 0.73 0.75

JR - Overall 0.80 0.76 0.77 0.79 0.81

Table C.4: Average value of mobility (% savings over NF) using JR with θ = 0.2 across
KS and KM

Module movement cost KM

0 1.5 2 2.5 10000

Tr
an

ss
hi

pm
en

t
co

st
K
S

0 34% 34% 38% 36% 36%
1.5 32% 23.4% 19.3% 19% 18.3%
2 34% 23.3% 16.8% 20.7% 19.8%

2.5 36% 20.9% 23.3% 18.2% 15.4%
10000 34% 22.5% 18.8% 17.8% 0.3%
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C5 DM Assumes Epoch-invariant System

Table C.5: Average performance of heuristics w.r.t. NF across L, when the DM assumes
epoch-invariant and epoch-variant demand distributions in a Markov-modulated system
with partial observability

Steady-state, stationary demands

L GLR (θ = 0.8) GLR (θ = 0.2) JR(θ = 0.2) LAJ(θ = 0.2)

2 0.883 0.906 0.876 0.914

3 0.679 0.734 0.674 0.697

5 0.797 0.834 0.804 0.806

10 0.696 0.743 0.691 0.701

Overall 0.764 0.804 0.761 0.780

Partially observed, Markov-modulated demands

L GLR (θ = 0.8) GLR (θ = 0.2) JR(θ = 0.2) LAJ(θ = 0.2)

2 0.912 0.903 0.890 0.903

3 0.727 0.705 0.661 0.690

5 0.844 0.833 0.797 0.796

10 0.767 0.726 0.673 0.695

Overall 0.812 0.792 0.755 0.771
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C6 Complete Observability of Modulation Process

Table C.6: Value of mobility (% savings over NF) under complete observability using JR
with θ = 0.2 across KS and KM for L = 10

Module movement cost KM

0 1.5 2 2.5 10000
Tr

an
ss

hi
pm

en
t

co
st
K
S

0 48% 51% 48% 48% 47%

1.5 38% 33.4% 33.1% 25.6% 24.4%

2 46% 32.2% 26.8% 26.7% 26%

2.5 44% 33% 26% 25.9% 22.3%

10000 43% 28.5% 19.7% 21% 0.6%
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[8] S. Lier, D. Wörsdörfer, and J. Gesing, “Business models and product service sys-
tems for transformable, modular plants in the chemical process industry,” in Product-
Service Integration for Sustainable Solutions: Proceedings of the 5th CIRP Inter-
national Conference on Industrial Product-Service Systems, Bochum, Germany,
March 14th - 15th, 2013, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 227–238, ISBN: 978-3-642-30820-8.

[9] U. Clausen, S. Langkau, I. Goedicke, and S. Lier, “Location and network planning
for modular container plants in the process industry,” Chemie Ingenieur Technik,
vol. 87, no. 10, pp. 1365–1372, 2015.
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