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SUMMARY 

 

 Microbial metal reduction contributes to biogeochemical cycling, and reductive 

precipitation provides the basis for bioremediation strategies designed to immobilize 

radionuclide contaminants present in the subsurface.  Facultatively anaerobic γ-

proteobacteria of the genus Shewanella are present in many aquatic and terrestrial 

environments and are capable of respiration on a wide range of compounds as terminal 

electron acceptor including transition metals, uranium and transuranics.  S. putrefaciens is 

readily cultivated in the laboratory and a genetic system was recently developed to study 

U(VI) reduction in this organism.  U(VI) reduction-deficient S. putrefaciens point mutant 

Urr14 (hereafter referred to as CCMB1) was found to retain the ability to respire several 

alternate electron acceptors.  In the present study, CCMB1 was tested on a suite of 

electron acceptors and found to retain growth on electron acceptors with high reduction 

potential (E′0) [O2, Fe(III)-citrate, Mn(IV), Mn(III)-pyrophosphate, NO3
-] but was 

impaired for anaerobic growth on electron acceptors with low E′0 [NO2
-, U(VI), dimethyl 

sulfoxide, trimethylamine N-oxide, fumarate, γ-FeOOH, SO3
2-, S2O3

2-].  Genetic 

complementation and sequencing analysis revealed that CCMB1 contained a point 

mutation (H108Y) in a CcmB homolog, an ABC transporter permease subunit required 

for c-type cytochrome maturation in E. coli.  The periplasmic space of CCMB1 contained 

low levels of cytochrome c and elevated levels of free thiol equivalents (-SH), an 

indication that redox homeostasis was disrupted.  Anaerobic growth ability, but not 

cytochrome c maturation activity, was restored to CCMB1 by adding exogenous disulfide 

bond-containing compounds (e.g., cystine) to the growth medium.  To test the possibility 

 xiv



 

that CcmB transports heme from the cytoplasm to the periplasm in S. putrefaciens, H108 

was replaced with alanine, leucine, methionine and lysine residues via site-directed 

mutagenesis.  Anaerobic growth, cytochrome c biosynthesis or redox homeostasis was 

disrupted in each of the site-directed mutants except H108M.  The results of this study 

demonstrate, for the first time, that S. putrefaciens requires CcmB to produce c-type 

cytochromes under U(VI)-reducing conditions and maintain redox homeostasis during 

growth on electron acceptors with low E′0.  The present study is the first to examine 

CcmB activity during growth on electron acceptors with widely-ranging E′0, and the 

results suggest that cytochrome c or free heme maintains periplasmic redox poise during 

growth on electron acceptors with E′0 < 0.36V such as in the subsurface engineered for 

rapid U(VI) reduction or anoxic environments dominated by sulfate-reducing bacteria.  A 

mechanism for CcmB heme translocation across the S. putrefaciens cytoplasmic 

membrane via heme coordination by H108 is proposed. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Uranium is the most abundant naturally occurring actinide.  Nuclear energy and 

weapons development during the 20th century elevated uranium concentrations in the 

biosphere.  Uranium exists in the environment primarily in the U(VI) and U(IV) 

oxidation states and uranium mobility is highly dependent on the oxidation state.  The 

U(VI) uranyl oxocation (UO2
2+) is water soluble and mobile in the environment while the 

reduced U(IV) mineral uraninite (UO2(s)) is sparingly soluble and less mobile.  Microbial 

U(VI) reduction is therefore the basis of an alternative remediation strategy of uranium-

contaminated environments, especially the terrestrial subsurface.   

 Despite the potential benefits of microbial U(VI) reduction as an effective 

bioremediation strategy, the molecular mechanism of microbial U(VI) reduction remains 

poorly understood.  A variety of metal-reducing microorganisms reduce U(VI), including 

members of the genera Desulfovibrio (49, 67, 78), Geobacter (9), Anaeromyxobacter (68, 

85), Pyrobaculum (33), Thermus (34), Deinococcus (22), Clostridium (21), 

Desulfiosporosinus (75) and Shewanella (23, 48, 80).  Metal-reducing members of the 

genus Shewanella are attractive models for mechanistic studies of microbial U(VI) 

reduction because they are capable of growing anaerobically on a variety of compounds 

as terminal electron acceptor.  In addition, the genome sequence of S. oneidensis and 14 

other Shewanella species is available. 
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 A genetic system to study U(VI) respiration by S. putrefaciens was recently 

developed (80, 81).  A library of chemically-generated, U(VI) reduction-deficient point 

mutants were isolated on agar plates containing U(VI) as electron acceptor.  U(VI) 

reduction-deficient mutants were identified by the absence of insoluble U(IV) on colony 

surfaces after anaerobic growth on U(VI)-amended agar medium.  In the present study, 

the anaerobic growth rates of a U(VI) reduction mutant strain (CCMB1) were determined 

on a suite of electron acceptors with widely ranging E′0.  The mutated gene in CCMB1 

was identified via genetic complementation and DNA sequencing.  Site-directed 

mutagenesis was conducted to determine the molecular mechanism of CcmB, an ABC 

transporter subunit required by S. putrefaciens for a) U(VI) reduction, b) cytochrome c 

maturation and c) anaerobic respiration of electron acceptors with low E′0. 

Anaerobic respiration by bacteria 

 Microorganisms conserve the energy released in redox reactions by forming high-

energy phosphoanhydride bonds.  Adenosine-5’-triphosphate (ATP) (derived from 

adenosine-5’-diphosphate (ADP) and Pi) serves as the principal carrier of energy to drive 

biosynthetic reactions.  Generation of adenosine-5’-triphosphate (ATP) from adenosine-

5’-diphosphate (ADP) and Pi is a vital process of all living organisms. The two basic 

mechanisms of ATP generation are substrate level phosphorylation and electron transport 

chain-linked (oxidative) phosphorylation (52).  Substrate-level phosphorylation is 

coupled to the oxidation of organic substrates and high-energy phosphoryl bonds are 

formed during the intermediate steps.  Hydrolysis of the high-energy phosphoryl bond is 

coupled to transfer of the phosphate group to ADP.  Electron transport chain-linked 

phosphorylation involves coupling ATP synthesis to the flow of electrons between 
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membrane-bound electron carriers.  Electron flow proceeds from donors with more 

negative redox potentials to acceptors with more positive redox potentials.  Respiratory 

chains generate ATP by linking electron flow between electron transport chain 

components to proton translocation and formation of a proton motive force and 

membrane potential (24, 27, 57).  Respiratory chain components are localized in the 

cytoplasmic membrane of bacteria to allow a net flux of protons from the cytoplasm to 

the exterior of the cell.  The outer envelope of gram-negative bacteria is composed of 

three layers: cytoplasmic membrane, peptidoglycan and outer membrane (52).  The cell 

membrane is a phospholipid bilayer containing integral and membrane-associated 

proteins. The outer membrane is more commonly referred to as the lipopolysaccharide 

layer and is composed of phospholipids, polysaccharides and proteins.  The outer 

membrane is permeable to small molecules transported through porins.  The periplasmic 

space is the area confined by the exterior of the cytoplasmic membrane and interior of the 

outer membrane.  The peptidoglycan layer confers strength and rigidity to the cell 

membrane and lies within the periplasmic space.  The formation of a proton motive force 

and membrane potential requires that the cytoplasmic membrane (in bacteria) or inner 

membrane (in mitochondria) be impermeable to OH- and H3O+.     

 In the chemiosmotic hypothesis (58), energy obtained from electron transport is 

coupled to proton translocation from the cytoplasm to the periplasmic space, thereby 

generating an electrochemical gradient across the cytoplasmic membrane.  Controlled 

release of the protons back into the cell through a membrane-bound ATPase harnesses 

the electrochemical potential for ATP synthesis.  The free energy of electron transfer is 

determined by the redox potential of the electron donor/acceptor pairs.  Electron donors 
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such as nicotinamide-adenine dinucleotide (NADH) or flavin-adenine dinucleotide 

(FADH) may be produced by cytosolic catabolic reactions (e.g., glycolysis, citric acid 

cycle).  In addition, exogenous organic or inorganic compounds may be taken up, 

oxidized and the resulting electrons donated directly to membrane bound respiratory 

systems.   

     A typical oxidation-reduction reaction may be described as follows: 

 Ared → Aox + n electrons  (oxidation reaction) 

 Box + n electrons → Bred (reduction reaction) 

The tendency for a redox reaction to proceed towards the reduction of the desired 

electron acceptor (B) is determined by the reduction potential at standard conditions (E′0) 

of the individual reactions.  E′0 (given at 1 atm pressure, 25°C and pH 7 with respect to a 

hydrogen electrode) describes the tendency of a substance to act as an electron donor or 

acceptor.  E′0 for the major redox couples involved in microbial processes are displayed 

in the redox tower given in Figure 1.1.  The stronger reductants are at the top of the tower 

and the stronger oxidants are at the bottom.  The standard free energy of the reaction is a 

function of the difference between standard reduction potentials.  For example, electron 

transport chain components mediating the reduction of oxygen by H2 have E′0 between 

those of 2H+ and oxygen.  ΔE0 for the reduction of oxygen (+0.82 V) by H2 (-0.42 V) is 

1.24 V and the standard free energy of change for the transfer of 2 electrons from H2 to ½ 

O2 is –237 kJ/mol (79): 

(1.1) ΔG0 = -nFΔE0 

          n = number of electrons transferred per mole of reactants 
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Figure 1.1.  Ambient redox potential (Eh) vs. the predominant respiratory process in a 
redox-stratified environment.   
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F  = Faraday constant = 96,485 Coulomb/mol  

 E. coli reduces various electron acceptors during respiration including oxygen, 

fumarate, NO3
-, NO2

-, dimethyl sulfoxide (DMSO) and trimethylamine oxide (TMAO) 

(35, 36).  As E. coli shifts from aerobic to anaerobic respiration, changes are observed in 

cellular protein composition.  The most profound changes are found in respiratory chain 

components, including modification of cytochrome content (74).  These changes result in 

the expression of electron transport chain components with low reduction potential. 

 Electron transport chain components include dehydrogenases, flavoproteins, iron-

sulfur proteins, quinones and cytochomes.  Dehydrogenases are located at the beginning 

of the respiratory chain and serve as the primary oxidase of electron donors.  E. coli 

contains several dehydrogenases, including formate, lactate, NADH and hydrogenase.  

Flavoproteins are enzymes with a covalently bound riboflavin moiety.  The flavin 

prosthetic group is redox reactive and also translocates protons.  The quionones are 

highly hydrophobic non-protein-containing molecules that link dehydrogenases and 

various electron transport chain components.  Quinones contain isoprenoid side chains, 

rendering them lipid soluble.  E. coli produces three types of quinones:  

methylnapthoquinone (menaquinone), dimethylmenaquinone, and ubiquinone.  All three 

quinones serve as hydrogen atom acceptors and electron and proton donors (52). 

 Cytochromes are respiratory proteins usually involved in electron transfer at the 

terminal end of the electron transport chain (31, 41, 76).  Cytochromes contain 

tetrapyrole heme prosthetic groups that each consists of an iron-complexed (chelated) 

porphyrin ring (Figure 1.2).  There are four major cytochrome types: a, b, c and d.  Axial 

heme iron coordination is the primary mechanism of heme attachment to cytochromes.  
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Amino acid side chains in cytochromes (e.g., histidine imidazole or methionine 

methylsulfanyl) provide axial heme ligation to one or both of the two remaining 

coordination spheres of heme iron.  c-type cytochromes are the only cytochromes that 

covalently bind the porphyrin ring structure to the apoprotein.  The porphyrin ring is 

attached via a thioether bond between the vinyl side chain of the heme and conserved 

cysteine residues (of the signature CXXCH motif) in the apocytochrome.  Reduction 

potential and spectral properties of cytochromes are determined by the heme ligands, 

holo-cytochrome heme architecture and quarternary protein interactions (17, 54, 70, 82).  

The spectral properties of cytochromes are used to determine cytochrome content and 

composition in E. coli.  Reduced cytochromes yield three absorption peaks, designated α 

(~552 nm), β (~524 nm)  and γ (~419 nm).  The peak in the α region is used to identify 

different cytochrome types (1, 8, 25, 88).  Anaerobic respiration is actively studied in 

members of the genus Shewanella, facultatively anaerobic γ-proteobacteria that are able 

to grow on an extraordinary array of compounds as electron acceptor including O2, NO3
-, 

NO2
-, DMSO, TMAO, fumarate, Fe(III), Mn(IV), SO3

2-, S2O3
2-, S4O6

2-, and S0.  The 

presence of many c-type cytochromes with wide-ranging midpoint redox potential in 

Shewanella spp. (e.g., forty-two c-type cytochromes are predicted in the S. oneidensis 

genome) are thought to confer, in part, respiratory versatility and may provide a 

competitive advantage at the oxic-anoxic interface in sediments or in dynamic redox 

environments (14, 15, 28, 77).  c-type cytochromes are localized to the outer face of the 

outer membrane of Shewanella to reduce electron acceptors with low solubility such as 

Fe(III) and Mn(IV) (5, 18, 63).  c-type cytochromes are also part of branched electron 

transport pathways in S. oneidensis.  For example, cytochrome CymA is required by S.  
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Figure 1.2.  Heme cofactors of bacterial cytochromes.  In reduced heme, Fe is present as 
Fe2+; in oxidized heme, it is present as Fe3+.  Note that heme C is bound covalently by 
two thioether bonds to cysteinyl residues of the polypeptide.  The nomenclature of 
porphyrin rings A to D is identified for heme B (76). 
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oneidensis for anaerobic growth on Fe(III), NO3
-, NO2

-, DMSO, fumarate and As(V) (61, 

62, 72) (Figure 1.3).  

Uranium geochemistry 

 Uranium has the greatest atomic mass of the naturally-occurring elements on 

Earth.  Uranium is a member of the actinide series of elements and undergoes α 

radioactive decay.  Three isotopes occur naturally (234U, 235U and 238U) with isotopic 

prevalence of 0.0055%, 0.7200% and 99.2745%, respectively (71).  The half-life of the 

most prevalent isotope (238U) is approximately 4.7 x 109 years.  Uranium is found in 

Earth’s crust at an abundance of 3 μg/g, approximately as abundant as silver and boron 

but more abundant than tin or mercury (39).  Uranium concentrations in natural 

groundwater rarely exceed 20 μg/L, but may range up to 120 μg/L in locations near 

uranium ore deposits.  Uranium is found in several oxidation states, including U3+, U4+, 

U5+, U6+ and U7+. U4+ and U6+ are the most stable.  In oxidizing environments and at 

circumneutral pH, uranium is found in the 6+ oxidation state as the uranyl ion (UO2
2+).  

In reducing environments and at circumneutral pH, uranium is found in the 4+ oxidation 

state as uraninite (UO2).  At pH > 5, U(IV) is sparingly soluble (10-8 M) while U(VI) is 

highly soluble (10-4 M)  (69).  Complexation reactions influence U(VI) mobility in 

subsurface environments.  U(VI) forms complexes with inorganic ligands (e.g., hydroxyl, 

carbonate, phosphate, sulfate) and organic ligands (e.g., acetate, malonate, citrate, 

oxalate); the carbonate complexes are particularly important in natural systems open to 

atmospheric CO2.  In a typical groundwater system (CO2 partial pressure of 10-2.0 bar and 

pH > 5), carbonate may replace the hydroxyl functional group (-OH) in aqueous uranyl 

complexes.  Replacement of -OH with carbonate increases U(VI) solubility and limits  
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Figure 1.3.  Branched electron transport chains in S. oneidensis.  c-type cytochromes are 
shaded (72).   
 

 

adsorption (thereby enhancing uranium mobility) (39).  Carbonate also facilitates U(IV) 

oxidation reactions by enhancing U(VI) dissolution and detachment from U(IV) surfaces 

under aerobic conditions (13).  U(IV) on the other hand, is and relatively non-reactive 

with complexants.  The uranium Eh-pH diagram (Figure 1.4) illustrates uranium 

oxidation state and speciation over a range of ambient redox potential (Eh) and pH in a 

typical groundwater system.  Soluble uranyl complexes are found at high Eh while 

insoluble uraninite is favored at low Eh.  Uranyl ion and uranyl complexes with hydroxyl 

or hydroxyl carbonate are stable at pH < 7 while uranyl dicarbonate or uranyl tricarbonate 

complexes are stable at pH > 7.  
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Figure 1.4.  Eh-pH diagram of aqueous uranium in the system U-O2-CO2-H2O at 25°C 
and 1 bar total pressure.  Solid/aqueous boundaries (stippled) for U=10-5M, 
UDC=UO2(CO3)2

2- and UTC=UO2(CO3)3
4-.  Schoepite is insoluble U(VI) (UO3) (39). 
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Sources of uranium contamination and toxicity   

 Waste uranium mine and mill tailings have accumulated during the past six 

decades due to the demand for fissile 235U in nuclear reactors.  Since only 0.72% of 

uranium ore consists of 235U, the remaining isotopes must be removed.   The uranium 

isotopes are physically separated and the enriched 235U is used as fuel for nuclear 

reactions.  Depleted uranium is stored or incorporated into ship keel weights and aircraft 

counterbalances.  Uranium is extracted from open cut and underground mines and 

subsurface uranium-containing minerals are leached in situ with sulfuric acid or 

bicarbonate (42).   During milling operations, uranium is further purified from the ore 

body by crushing, grinding, extracting with acid, bicarbonate and kerosene, precipitating 

with ammonia, and drying the resulting yellowcake (U3O8) product (26).  The waste ore 

slurry is pumped to a tailings dam.  U3O8 is then converted to gaseous uranium 

hexafluoride (UF6) and isotopes of different mass are separated via ultracentrifugation.  

Enriched 235UF6 is converted to 235UO2 by vaporization and hydrolysis to 235UO2F2, 

followed by H2-catalyzed reduction at high temperature.  Enriched uraninite is pressed 

and sintered to form ceramic pellets and packaged into fuel rods.  Environmental 

contamination may occur following a breach at any stage of uranium processing. In situ 

leach mining is perhaps most problematic due to immediate mobilization of soluble 

U(VI) into the groundwater (60).  Soluble U(VI) may also enter the subsurface from 

compromised tailings ponds or waste storage drums.  The uranium concentration in 

groundwater at underground mines can range up to 400 μg/L and leachates from mill 

tailings often contain 10-20 mg/L uranium (39). 
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 Terrestrial and anthropogenic inputs from rivers contributes to elevated 

concentrations of uranium in marine environments (42).  Uranium concentrations range 

from 2 to 3.7 μg/L in seawater (39).  Uranium is immobilized under reducing conditions 

in marine sediments, where up to 70% of the U(VI) input is immobilized as U(IV) (89).  

In addition to enzymatic microbial U(VI) reduction, H2S, and CH4 sorbed to Fe3+-oxide 

mineral surfaces and clays, chemically reduce U(VI) in sediments  and Fe3+- and SO4
2-- 

reducing bacteria may participate in these processes by supplying Fe2+ and H2S, 

respectively (43, 65).  U(VI) may be re-oxidized, however, when oxygenated overlying 

water is introduced via physical disturbances such as convection or bioturbation.  U(IV) 

may also be chemically oxidized by Fe3+ or Mn4+ and the products of Fe2+- and Mn2+- 

oxidizing bacteria may supply these reactants (12, 44, 73).  U(VI) complexes may also 

adsorb to Fe3+-oxide surfaces without reduction thereby removing the uranium from the 

aqueous phase (38). 

 Uranium is considered a radiological hazard that may increase the incidence of 

cancer, but the greatest risk to public health is chemical toxicity.  Ingested uranium 

precipitates in kidney glomerulous tubules causing renal failure (30).  Uranyl ascorbate 

complexes may cleave the phosphodiester backbone of supercoiled DNA, however, it is 

not yet known if uranium-induced DNA hydrolysis is mutagenic in humans (87).  

Uranium mine workers may inhale toxic uranium dust and receive harmful levels of 

exposure to the uranium radioactive decay product radon.  The U.S. Environmental 

Protection Agency (EPA) has set a maximum contaminant level (MCL) for drinking 

water at 30 μg/L total uranium.  As a result, the U.S. Department of Energy (DOE) is 
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charged with remediating over 7,000 uranium-contaminated sites, including an estimated 

1.7 trillion gallons of groundwater and 40 million cubic meters of soil (10).   

Uranium remediation strategies 

 Efforts to remove uranium and prevent U(VI) mobility in the environment have 

been largely unsuccessful.  Pump-and-treat methods pump uranium-contaminated water 

to the surface where chemical processes (e.g., ion exchange) are employed to remove 

U(VI) from solution.  Common adsorbents in such systems include amidoxime (29) and 

dihydroxyazobenzene derivatives (40).  Costs associated with pumping groundwater, 

chemical treatment and soil excavation may be prohibitive, especially when handling 

low-level and wide-spread uranium waste.  The resulting contaminant levels after such 

treatments often fail to meet regulatory compliance.  For these reasons, pump-and-treat 

and chemical treatments have not been applied to contaminated environments containing 

low-level and widespread waste. 

 Innovative technologies are under development to remediate uranium waste in 

situ.  Zero valent iron (Fe0) is an example of a permeable reactive barrier to prevent 

U(VI) migration through the vadose zone (59).  U(VI) may adsorb to iron corrosion 

products or undergo surface-catalyzed reduction to U(IV) followed by U(IV) surface 

precipitation (64).  Phytoremediation is based on the ability of plants to remove U(VI) 

from arable soil by accumulating uranium in roots (a process termed rhizofiltration) (20).  

U(VI) may also be removed via bioadsorption to plant, fungi, and microbial biomass.  

U(VI) adsorbs to immobilized microorganisms such as Pseudomonas and Bacillus and is 

subsequently eluted with a carbonate/EDTA solution.  The binding capacity of the cells is 

regenerated, and the biosorbing columns are reused (53).  Citrobacter, Deinococcus, 
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Rahnella, and Bacillus display organophosphate activity that forms the basis of a 

promising strategy to immobilize U(VI) in oxic environments (3, 4, 32, 50, 51, 56).  

Phosphatases localized to the outer aspect of the outer membrane cleave extracellular 

organic phosphate and the inorganic phosphate combines with U(VI) forming an 

insoluble mineral such as autunite.     

Microbial uranium reduction 

 Microbial U(VI) reduction has recently received attention as an attractive 

alternate strategy for remediation of uranium-contaminated subsurface environments.  A 

variety of metal-reducing microorganisms reduce U(VI), including members of the 

genera Desulfovibrio (49, 67, 78, 83), Geobacter (9), Anaeromyxobacter (46, 85) 

Pyrobaculum (33), Thermus (34), Deinococcus (22), Clostridium (21), 

Desulfiosporosinus (75) and Shewanella (23, 48, 80).  

 The suitability of U(VI) as a terminal electron acceptor is highly dependent on the 

E′0 of available uranyl species.  U(VI) is commonly found as uranyl ion (UO2
2+), and 

UO2
2+ readily forms -hydroxy and -carbonate complexes at circumneutral pH.  

Complexes containing carbonate generally have higher E′0 than the UO2
2+

(aq)/UO2(s) 

couple and uranyl carbonate complexes containing calcium have lower E′0 than the 

UO2
2+

(aq)/UO2(s) couple.  The following half-reactions demonstrate the effect of 

complexation on E′0: 

(1.2) UO2(CO3)3
4- + 3H+ + 2e-  UO2(s) + 3HCO3

-  E′0 = -17 mV 

(1.3) UO2(CO3)2
2- + 2H+ + 2e-  UO2(s) + 2HCO3

-  E′0 = -62 mV 

(1.4) UO2
2+(aq) + 2e-  UO2(s)           E′0 = -70 mV 

(1.5) CaUO2(CO3)3
2- + 3H+ + 2e-  UO2(s) + 3HCO3

- + Ca2+        E′0 = -76 mV 
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(1.6) UO2CO3 + 6H+ + 2e-  UO2(s) + HCO3
-   E′0 = -78 mV 

(1.7) Ca2UO2(CO3)3 + 3H+ + 2e-  UO2(s) + 3HCO3
- + 2Ca2+      E′0 = -181 mV 

where pH=7.4, PCO2=10-3.5, U(VI)=10-8M, Ca2+=10-1.5M (6, 19, 39, 84). 

Uranyl tricarbonate has the highest E′0 of the species in equations 1.2-1.6 and is 

theoretically the most favorable electron acceptor.  Uranyl complexes containing calcium 

have lower E′0 and are reduced at lower rates (7).  Uranyl reduction coupled to hydrogen 

or organic carbon oxidation is thermodynamically favorable for microbial respiration.  

Free energy yield is proportional to the ΔE′0 between the two half-reactions (according to 

equation 1.1):  

(1.8) H2 + UO2(CO3)3
4- + H+  UO2(s)  + 3HCO3

-              ΔG0 = -77 kJ/mol 

(1.9) HCOOH + UO2(CO3)3
4- + H+  CO2 + UO2(s)  + 3HCO3

- ΔG0 = -77 kJ/mol 

(1.10)  ¼Acetate+UO2(CO3)3
4-+H2O+¾H+  UO2(s) +3½HCO3

-        ΔG0 = -51 kJ/mol 

(1.10) Ethanol + UO2(CO3)3
4-  Acetaldehyde + 3HCO3

-  ΔG0 = -35 kJ/mol 

(1.11) Lactate+UO2(CO3)3
4-+2H+  Pyruvate+UO2(s)+3HCO3

-      ΔG0 = -33 kJ/mol 

Assuming the thermodynamic efficiency of electron transport is 42% and the free energy 

required to synthesize 1 mole of ATP is approximately 32 kJ/mole, uranyl tricarbonate 

respiration is favorable by coupling with reductants with E′0 below ethanol (E′0 = -0.2 V). 

 Organic or inorganic ligands bound to U(VI) dramatically affect uranium 

solubility and bioavailability for reduction.  For example, U(VI) is bound by citrate with 

varying strength as a function of pH (66).  Desulfovibrio desulfuricans more rapidly 

reduces U(VI) bound to monodentate aliphatic complexes such as acetate, while 

Shewanella alga more rapidly reduces U(VI) bound to multidentate aliphatic complexes 

such as malonate, citrate and oxalate (23).  These differences may reflect different 
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molecular mechanisms of U(VI) reduction by SRB and FeRB, such as a requirement for 

ligand exchange between the U(VI) substrate and terminal reductase.  Microbial U(VI) 

reduction is also inhibited by competitive terminal electron acceptors.  In carbonate-

containing, redox-stratified groundwater at circumneutral pH, electron acceptors with E′0 

greater than –17 mV (e.g., O2, Mn(IV), NO3
-, Fe(III)) are reduced prior to UO2(CO3)3

4-.  

On the other hand, U(VI) is reduced prior to SO4
2- and CO2. 

 Recent field experiments demonstrate the utility of microbial U(VI) reduction for 

bioremediation of the contaminated subsurface.  U(VI) reduction was stimulated by 

injecting exogenous electron donors (e.g., acetate) into a contaminated aquifer in Rifle, 

CO (2).  U(VI) was reduced concomitantly with Fe(III) and 16S rRNA gene and 

phospholipid fatty acid analyses (PFLA) demonstrated that FeRB (members of the genus 

Geobacter) were the predominant members of the microbial community.  Uranium 

concentrations in reduced groundwater samples fell to less than 10-8 M.  After U(VI) 

concentrations in the groundwater dropped below detection limits, acetate-oxidizing SRB 

(e.g., Desulfotomaculum, Desulfosporosinus) dominated the microbial community.      

Subsequent electron donor injection field studies at the Department of Energy 

Field Research Center (FRC, Oak Ridge National Laboratory) indicated that SRB and 

URB community structure is modified by the choice of electron donor (86).  The 

subsurface field site was hydraulically controlled by a duel-loop well recirculation 

system.  High levels of aluminum and calcium were chemically precipitated and the pH 

was buffered by carbonate addition before electron donor amendment.  Ethanol was 

added as an electron donor to promote denitrification and removal of the competing 

electron acceptor nitrate.  Ethanol injection was continued and U(VI) levels decreased 

17 



 

concurrent with sulfate reduction.  In contrast to the Rifle, Colorado experiment, URB 

and SRB population activities overlapped.  URB apparently did not out-compete SRB for 

ethanol at the FRC. 

The first enzyme displaying U(VI) reductase activity (cytochrome c3) was isolated 

from U(VI)-reducing (but non-respiring) Desulfovibrio vulgaris (47, 67).  Cytochrome c3 

couples H2 oxidation to U(VI) reduction in vitro.  Cytochrome c7 of Geobacter 

sulfurreducens also displays U(VI) reductase activity in vitro, however, both cytochrome 

c3 and c7 mutant strains retain U(VI) reduction capability indicating that either 

cytochrome c3 and c7 do not reduce U(VI) in vivo or that D. vulgaris and G. 

sulfurreducens contain multiple U(VI) reductases (45).   

 UO2(s) is observed in both the periplasmic space and extracellular milieu after 

U(VI) reduction by S. putrefaciens (44, 55).  In S. oneidensis, many c-type cytochromes 

are required for Fe(III) and Mn(IV) reduction.  Mutant strains lacking all c-type 

cytochromes (CcmC-), outer membrane cytochromes (OmcA- and MtrC-) and a 

periplasmic cytochrome (MtrF-) were recently constructed and tested for U(VI) reduction 

activity (55).  MtrF- retained near wild-type U(VI) reduction rates.  OmcA-, MtrC- and 

double mutant OmcA--MtrC- retained 50% wild-type U(VI) reduction rates and CcmC- 

was unable to reduce U(VI).  UO2(s) was observed predominantly in the periplasm in 

MtrC- and double mutant OmcA--MtrC- in electron micrographs.  Only purified MtrC 

displayed U(VI) reducing activity in vitro.  These results suggest that c-type cytochromes 

are essential for U(VI) reduction, that outer membrane and periplasmic cytochromes c 

reduce U(VI) and that outer membrane MtrC plays a major role in extracellular U(VI) 

reduction by S. oneidensis. 
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A genetic system to study U(VI) respiration by S. putrefaciens 

 A genetic system was recently developed to study U(VI) respiration by S. 

putrefaciens (81).  A set of S. putrefaciens U(VI) reduction-deficient (Urr) mutants were 

generated by treating wild-type cultures with the chemical mutagen ethyl methane 

sulfonate (EMS).  Approximately 18,000 colonies arising from EMS-treated cells were 

transferred to agar growth medium supplemented with U(VI) carbonate as electron 

acceptor.  Plates were incubated under microaerobic conditions for 3-4 days and colonies 

were examined for production of a brown precipitate (presumably U(IV)) on their 

surface.  Strains unable to form the U(IV) precipitate were tested for anaerobic growth in 

liquid medium supplemented with U(VI) as electron acceptor.  Cell growth was 

monitored via direct counts of acridine orange-stained cells and U(VI) depletion was 

measured spectrophotometrically via an Arsenazo III-based assay (37).  Strains 

displaying a Urr phenotype on the rapid plate assay were also unable to respire U(VI) in 

anaerobic liquid growth medium.  Each Urr mutant strain was subsequently tested for 

their ability to grow on other compounds as terminal electron acceptor.  All Urr strains 

isolated also lacked the ability to respire NO2
-, and Urr mutant Urr14 retained the ability 

to respire all electron acceptors except U(VI) and NO2
- (80).   These results suggest that 

the electron transport chains terminating with the reduction of NO2
- and U(VI) share 

common respiratory components. 

Genetic complementation of Urr14 

 A clone library of wild-type chromosomal DNA fragments cloned into the broad-

host-range cosmid pVK100 (16) was mobilized into mutant Urr14 for genetic 

complementation.  A 32 kb DNA fragment (D14) restored NO2
- and U(VI) respiratory 

19 



 

capability to the Urr14 transconjugant (11).  HindIII digestion of fragment D14 yielded 

three fragments of size 14 kb (D14-1), 13 kb (D14-2) and 5 kb (D14-3).  Each of these 

fragments was cloned into cosmid pVK100 and mobilized into Urr14 via tri-parental 

conjugation.  Only transconjugant Urr14-D14-2 displayed wild-type NO2
- and U(VI) 

reduction activity.  Subsequent subcloning of D14-2 with BamHI fragments yielded 4 

fragments of size 6 kb (D14-2A), 4 kb (D14-2B), 2 kb (D14-2C) and 1 kb (D14-2D) but 

U(VI) and NO2
- reduction by Urr14 was not restored in Urr14 transconjugates containing 

these fragments.  The results of the D14-2 subcloning experiments suggest that the gene 

complementing Urr14 contains a BamHI recognition sequence.   
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RESEARCH OBJECTIVES 
 
 
 

 The main objective of the present study was to identify genes required for 

U(VI) reduction by S. putrefaciens.   Two experimental strategies were followed: 1) 

genetic complementation of S. putrefaciens mutants unable to reduce U(VI) but capable 

of growth and reduction activity on several alternate electron acceptors and 2) 

inactivation of respiratory chain components postulated to be involved in electron 

transport to U(VI) and testing the resulting knockout mutants for anaerobic growth 

deficiencies.   
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CHAPTER 2 

 

PERIPLASMIC C-TYPE CYTOCHROME C3, BUT NOT NITRITE 
REDUCTASE NRFA, IS INVOLVED IN U(VI) REDUCTION  

BY S. ONEIDENSIS 
 

 

Abstract 

 Members of the genus Shewanella are capable of anaerobic respiration with 

uranium [U(VI)] as terminal electron acceptor. The genes and gene products required for 

U(VI) respiration, however, are poorly understood.  Cytochrome c3 is widely distributed 

among sulfate reducing bacteria that are also capable of reducing U(VI).  Cytochrome c3 

from Desulfovibrio vulgaris was the first enzyme identified that displays U(VI) reduction 

ability in vitro (29) and D. desulfuricans c3 mutants were impaired for U(VI) reduction in 

vivo (42).  In the present study, a S. oneidensis cctA (c3 homolog) insertional mutant was 

found to reduce U(VI) at 60% the rate of the wild-type strain suggesting that S. 

oneidensis CctA is involved, but not required, for U(VI) reduction.  In a previous study, a 

set of randomly-generated U(VI) reduction deficient (Urr) point mutants of S. 

putrefaciens were constructed (57).  The Urr mutants displayed a variety of deficiencies 

for anaerobic growth on nitrate, nitrite, sulfite, thiosulfate, Fe(III), Mn(IV), fumarate or 

trimethylamine-N-oxide as electron acceptor. All Urr mutants were unable to grow on 

U(VI) and NO2
-, including mutant Urr14, which retained the ability to grow on the other 

electron acceptors.  These results suggest that the respiratory pathways leading to U(VI) 

and NO2
- reduction in Shewanella share electron transport components.  In the present 

study, however, a S. oneidensis nrfA (cytochrome c nitrite reductase structural gene) 
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insertional mutant was found to reduce U(VI) at wild-type rates suggesting that S. 

oneidensis NrfA is not involved in U(VI) reduction.  A NO2
- toxicity assay indicated that 

NO2
- is toxic above 2.0 mM and inhibits anaerobic growth by S. putrefaciens.     

Introduction 

 Cytochrome c3 from D. vulgaris was the first enzyme identified that displayed 

U(VI) reductase activity in vitro (29) and D. desulfuricans c3 mutants were impaired for 

U(VI) reduction in vivo (42).  Cytochrome c3 transfers electrons from hydrogenase to 

sulfite reductase (SiR) in sulfate-reducing bacteria (SRB) (27, 43, 53) (Figure 2.1).  In 

SRB, ATP sulfurylase activates sulfate by forming adenosine-5’-phosphosulfate (APS).  

APS is subsequently reduced by ApsR to sulfite and adenosine monophosphate (AMP) 

(55).  The dissimilatory sulfate reducing system also includes a transmembrane complex 

containing a nine-heme cytochrome c (HcA) and a 16-heme, high molecular weight 

cytochrome c (HmcA) that delivers electrons from hydrogenase to ApsR and may pump 

protons from the cytoplasm to the periplasm to generate PMF (16, 17).   Cytochromes c3 

from different SRB have low primary sequence similarity yet their three-dimensional 

structure show a common topology organized around a four-heme cluster with similar 

spatial orientation. 

 Cytochromes c3 in Desulfovibrio are classified into two types based on their 

biological and structural properties.  Type I (TpI-c3), also designated “basic” due to its 

high isoelectric point (pI), is the most abundant c3 in Desulfovibrio species, has a 

molecular weight of approximately 13 kDa, is characterized by several conserved lysine  
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Figure 2.1.  Dissimilatory sulfate reduction pathway.  In addition to external hydrogen 
(H2), H2 originating from the catabolism of organic compounds such as lactate and 
pyruvate can fuel hydrogenase (H2ase).  Adapted from (30). 
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residues at the proposed hydrogenase docking site near heme 4, is loosely attached to the 

periplasmic face of the cytoplasmic membrane and is encoded by a monocistronic ORF 

(45, 56).  Type II (TpII-c3), on the other hand, is designated “acidic” due to its low pI, has 

a molecular weight of approximately 14 kDa, lacks the lysine patch near heme 4, has a 

solvent-exposed negative surface charge near heme 1 and is membrane-bound.  TpII-c3, 

hcA and hmcA are transcriptionally coupled.  Purified TpI-c3 accepts electrons from 

hydrogenase 50-fold more efficiently than TpII-c3 and is most likely a physiological 

redox partner with hydrogenase in SRB (45).  TpII-c3 may receive electrons from TpI-c3 

and reduce components of the transmembrane complex (i.e., HcA, HmcA) or other 

electron transport chain components that depend on H2 oxidation. 

 Members of the genus Shewanella are the only facultative anaerobes that contain 

cytochrome c3 orthologs.  c3 orthologs in Shewanella are similar to the c3 cytochromes of 

Desulfovibrio in heme content and E′0, but the high-resolution (0.97 Å) crystal structure 

of the c3 ortholog in S. oneidensis (CctA) reveals that CctA may share characteristics 

with both TpI-c3 and TpII-c3 in Desulfovibrio (28).  As in TpII-c3, CctA lacks the basic 

lysine patch, and Heme 1 is the most solvent-exposed heme with several acidic residues 

nearby including D7, E11, E16, D21, D27, E31 and D66.  On the other hand, cctA is 

monocistronic and a soluble periplasmic protein.  In contrast to a defined electron path in 

TpI-c3 or TpII-c3 indicated by specific electron entry and exit points, CctA in S. 

oneidensis lacks identifiable intermolecular contacts.  CctA also contains a high heme-to-

amino acid ratio and appears to possess exceptional intramolecular flexibility (Figure 

2.2).  These findings suggest that CctA functions as a generic electron transport 

intermediate whereby productive collision between many redox partners may be possible. 
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 Cytochrome c3 from Desulfovibrio vulgaris was the first enzyme found to reduce 

U(VI) in vitro (29).  A multi-protein complex containing cytochrome c3 and hydrogenase 

catalyzed U(VI) reduction concurrent with H2 oxidation.  D. desulfuricans c3 insertional 

mutant I2 was constructed and tested for U(VI) reduction activity (42).  I2 reduced U(VI) 

at approximately 50% the rate of the wild-type strain, indicating that c3 may play a role in 

U(VI) reduction but it is not the sole U(VI) reductase.  Cytochrome c3 may fortuitously 

reduce U(VI) due to the presence of heme cofactors with low E′0.  The S. oneidensis c3 

ortholog CctA primary sequence is 29% identical and 39% similar to the cytochrome c3 

of D. vulgaris.  The 11.7 kDa cytochrome c3 of S. frigidimarina (also designated CctA) is  

 

 

 
 
Figure 2.2.  Ribbon structure of CctA in S. oneidensis.  α-helices of the amino acid 
backbone are represented in red, yellow, green and blue.  Heme prosthetic groups are 
represented as black ball-and-stick models.  Note the high heme-to-amino acid ratio and 
apparent intramolecular flexibility among α-helices (28, 31). 
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required for anaerobic growth on Fe(III), but not NO3
-, NO2

-, TMAO, DMSO, fumarate, 

S4O6
2- or SO3

2- (19).  S. oneidensis CctA is one of the most abundant periplasmic 

cytochromes during anaerobic growth and is capable of Fe(III) reduction when artificially 

reduced in vitro (28, 32, 54).  cctA insertional mutants of S. oneidensis MR-1, however,  

retain anaerobic growth ability on Fe(III) and Mn(VI) in vivo (34).  In the present study, a 

previously constructed S. oneidensis cctA mutant (C3965) is tested for U(VI) reduction 

ability to determine if CctA is required for U(VI) reduction by S. oneidensis.  

     Previous random mutagenesis and anaerobic growth experiments in S. 

putrefaciens indicated that the respiratory chains leading to U(VI) or NO2
- reduction 

shared electron transport components (57, 58).  Eight chemically-induced S. putrefaciens 

point mutants incapable of U(VI) reduction on agar plates (Urr) were isolated and 

subsequently tested for U(VI) reduction and anaerobic growth ability on a suite of 10 

alternate electron acceptors in liquid culture.  Each Urr strain retained the ability to grow 

on at least one electron acceptor besides O2; however, the ability to grow on NO2
- was 

abolished in all Urr strains.  

      Three types of respiratory NO2
- reductases are known in bacteria:  copper 

cofactor-containing NirK, cytochrome cd1-containing NirS and c-type cytochrome NrfA 

(35).  In the E. coli periplasm, NrfA catalyzes the 6-electron reduction of NO2
- to NH4

+ as 

the terminal reaction of a dedicated respiratory pathway termed ammonification (10, 21, 

40).  The NirK and NirS respiratory pathways, in contrast, reduce NO2
- to nitric oxide 

(NO), which is subsequently reduced to N2 via a nitrous oxide (N2O) intermediate in a 

process known as denitrification (11, 18, 22).  The S. oneidensis MR-1 genome was 

scanned for putative NO2
- reductases via Basic Local Alignment Search Tool (BLAST) 
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5
analysis (2).  Only nrfA was found in the S. oneidensis genome:  locus SO3980 is 65% 

identical and 79% similar to nrfA in E. coli.   

      The Nrf respiratory pathway in E. coli, Wollinella succinogenes and Desulfovibrio 

desulfuricans are well characterized (8, 51).  Three intermediate electron transport 

components link menaquinone oxidation to NrfA reduction in E. coli: NrfD, NrfC and 

NrfB.  NrfD is a hydrophobic protein localized to the cytoplasmic membrane and may 

function as a quinol oxidase and electron donor to NrfC, a cytoplasmic membrane-

spanning FeS protein.  NrfC delivers electrons to the soluble periplasmic c-type 

cytochrome NrfB, the NrfA reductase (21).  A single intermediate electron transport 

component is required to link menaquinone oxidation to NrfA reduction in W. 

succinogenes: NrfH, a transmembrane c-type cytochrome belonging to the NapC/NirT 

family of quinol oxidases (52).  nrfA is transcriptionally coupled to its electron donor in 

E. coli and W. succinogenes, while nrfA in S. oneidensis is monocistronic.  The S. 

oneidensis genome contains ORFs similar to both nrfB and nrfH:  paralogous MtrA and 

MtrD are involved in Fe(III) and Mn(IV) reduction and have similar heme arrangement 

as NrfB (7, 47).  NO2
- reduction in S. oneidensis requires CymA, a putative quinol 

oxidase similar to NrfH, NapC and NirT (38, 50).  S. oneidensis also requires CymA for 

anaerobic growth on Fe(III), NO3
-, DMSO, As(V) and fumarate as electron acceptor (37, 

38, 49).   In addition to nrfA and nrfB, S. oneidensis contains two ORFs that show 

similarity to nrfD (paralogous nrfD-1 and nrfD-2) but no identifiable nrfC.  Quinol 

oxidase CymA may transport electrons from menequinone or NrfD to NrfA and 

functionally replace NrfC in S. oneidensis (50).   
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      NrfA crystal structures from Sulfurospirillum deleyianum (15), E. coli (5) and 

Desulfovibrio desulfuricans (9) were recently determined (Figure 2.3).  The NrfA subunit 

contains five c-type heme prosthetic groups and forms a homodimer.  Active site heme 1 

iron is axially coordinated by lysine in a CXXCK heme-binding motif unique to NrfA 

homologs and the octaheme tetrathionate reductase (OTR) in S. oneidensis (36) (Figure 

2.3).  The five heme groups are tightly packed and arranged at near 90o angles to each 

other.  This heme packing motif is shared by cytochromes c3 in cytochrome c7 in 

Geobacter and hydroxylamine oxidoreductase (HAO) in Nitrosomonas europaea (3, 36).  

HAO oxidizes hydroxylamine (NH2OH) to NO2
- while NrfA reduces NO2

- and NH2OH 

to NH4
+.  Axial heme iron coordination may explain the difference in active-site 

oxidoreductase activity among this family of enzymes.  Replacement of histidine in the 

CXXCH heme binding site by lysine raises the E′0 of heme 1 and generates an electron 

sink in NrfA and OTR (3, 14, 36).  In the present study, a S. oneidensis nrfA insertional 

mutant (NRFA1) is tested for growth on NO3
- and NO2

- to establish that NrfA is the 

functional NO2
- reductase in S. oneidensis.  NRFA1 is also tested for U(VI) reduction to 

determine if NrfA is required for U(VI) reduction by S. oneidensis.    

Materials and methods 

Bacterial strains, growth media and cultivation conditions.  A previously isolated 

rifamycin resistant strain of S. oneidensis strain MR-1R  (hereafter referred to as S. 

oneidensis) was routinely cultured in the presence of 50 μg ml-1 rifamycin in either Luria 

Broth or a defined salts growth medium (SM, pH 7.5) (12, 13, 39).  S. oneidensis strains 

harboring cloning vectors were grown in media supplemented with appropriate 

antibiotics at the following concentrations:  chloramphenicol (25 μg ml-1) and gentamycin  
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Figure 2.3.  Ribbon structure of the cytochrome c nitrite reductase (NrfA) homodimer 
from S. deleyianum (A) and NrfA heme 1 with NO2

- bound to the active site.  Note the 
covalent attachment of heme to the polypeptide and heme iron coordination by Lys 134.  
Heme iron ligand His 277 is displaced by substrate binding (14).  
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 (15 μg ml-1) (see Table 2.1 for strains and plasmids used in the present study).  E. coli 

strains were routinely cultured in Luria Broth supplemented with the appropriate 

antibiotics.  Anaerobic growth experiments were carried out in 13-ml Hungate tubes 

(Bellco Glass, Inc.) containing 10 ml SM supplemented with sodium lactate (30 mM) and 

sealed with black butyl rubber stoppers under an N2 atmosphere.  Anoxic electron 

acceptors were added to the SM medium from filter-sterilized stocks to the following 

final concentrations: NO3
-, (15 mM); NO2

-, (0.3 mM); U(VI)-carbonate, (1.0 mM).  A 

U(VI)-carbonate (30 mM) stock solution was prepared by dissolving 127 g/L uranyl 

acetate in a 1M sodium bicarbonate buffer (pH 8.0).  The U(VI)-carbonate growth 

medium contained a final sodium bicarbonate concentration of 30 mM.  Control 

experiments consisted of inoculating SM liquid growth medium with S. oneidensis cells 

held at 80°C for 30 minutes (heat-killed control) or omitting inocula (abiotic control).       

Insertional mutagenesis of nrfA in S. oneidensis.  nrfA was inactivated in S. oneidensis by 

chromosomal plasmid insertion.  A 797 bp internal fragment of nrfA was PCR-amplified 

from the S. oneidensis chromosome with the nrfAINT primer set (nrfAINTF, 

gctcattagtgacgccaac; nrfAINTR, gctcattagtgacgccaac).  The purified PCR product was 

cloned into pCR2.1 (Invitrogen) and inserted into pKNOCK-GmR at the KpnI and XbaI 

endonuclease restriction sites.  E. coli S17-1 λ-pir was transformed with the resulting 

plasmid construct, pCRNR, via electroporation.  pCRNR was mobilized into S. 

oneidensis MR-1R by conjugation and insertional mutant NRFA1::pCRNR arising on LB 

agar plates containing 10 μg/ml gentamycin was confirmed by PCR amplifying nrfA and 

flanking DNA with the nrfAEXP primer set (nrfAEXPF, gtattcggtttcgggcatt; nrfAEXPR, 

gaactcggcgtcagtatttc) and noting a gel mobility shift by agarose gel electrophoresis.   
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Table 2.1.  Bacterial strains and plasmids used in this study. 

 

Strain or Plasmid Description Reference 
Shewanella oneidensis  

     MR-1R Spontaneous Rifr-derivative of S. oneidensis, Fe(III)- and 
Mn(IV)-reducing Oneida Lake isolate (12, 39) 

     NRFA1 MR-1R nrfA:pCRNR (57) 
     C3965 MR-1R, cctA::GmR (34) 
     200R Spontaneous Rifr-derivative of S. putrefaciens (NCIB 12577) (12) 
     Urr14 U(VI) reduction-deficient point mutant of 200R   (57) 
Escherichia coli   
     S17-1 λ-pir Prp thi recA hsdR; RP4-2 (Tn1:ISR1 tet::Mu Km::Tn7); λpir (44) 

     TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 
recA1 rpsL (StrR) endA1 nupG Invitrogen 

Plasmids   
     pCR2.1 TA cloning vector; AmpR, KmrR Invitrogen 
     pKNOCK-GmR Broad-host-range suicide vector for targeted DNA insertion (1) 

     pBBR1MCS Broad-host-range cloning vector, 4.7-kb α-lac/multiple cloning 
site, Cmr (25) 

     pCRNR pKNOCK-GmR with nrfAINT fragment cloned via KpnI, XbaI This study 
     pNRFA pBBR1MCS with nrfAEXP fragment cloned via KpnI, XbaI This study 

 

Insertion and correct orientation was verified by DNA sequencing.    

 A wild-type copy of nrfA was mobilized into NRFA1 to genetically complement 

the nrfA::pCRNR mutation in trans.  nrfA, along with 848 bp upstream and 761 bp 

downstream, was PCR-amplified from the S. oneidensis chromosome with the nrfAEXP 

primer set.  Fragment nrfAEXP was cloned into pCR2.1 (Invitrogen) and inserted into 

pBBR1MCS at the KpnI and XbaI endocuclease restriction sites.  pNRFA was mobilized 

into NRFA1 via conjugation and NRFA1 colonies arising on LB agar containing 25 

μg/ml chloramphenicol were tested for pNRFA uptake by plasmid purification and 

agarose gel electrophoresis. 

Analytical techniques  
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U(VI) reduction assay.  U(VI) reduction by S. oneidensis strains was measured in cell 

suspensions containing 2 X 108 cells/mL and 1.0 mM U(VI) in sodium bicarbonate buffer 

(30 mM NaHCO3, 1 mM KCl, pH 8.0) in an atmosphere consisting of 10% H2, 5% CO2 

and balance N2.  Samples were filtered (0.2 μm pore size) and centrifuged (10 minutes at 

16,000 x g in a microcentrifuge) to remove cells and insoluble U(IV) prior to 

spectrophotometric U(VI) determination.  U(VI) was measured colorimetrically with 

Arsenazo III reagent (26).   

Anaerobic cell growth.  S. oneidensis cultures were monitored for anaerobic growth on 

NO3
- as electron by simultaneously measuring cell number and NO2

- concentration.  

Three parallel yet independent anaerobic cultures of each strain were prepared and data 

was expressed as the arithmetic mean from the triplicate incubations.  Acridine orange-

stained cells were counted directly via epifluorescence microscopy (Nikon Diaphot 300 

microscope).  NO2
- was measured spectrophotometrically with sulfanilic acid-N-1-

naphthylethylene-diamine dihydrochloride reagent (33).   

NO2
- toxicity assay.  NO2

- was added to anaerobic SM medium containing 30 mM lactate 

at the following concentrations: 0.25, 0.50, 1.00, 2.00, 3.00, 5.00, 7.50, and 10.00 mM.  

Triplicate cultures were inoculated with S. putrefaciens (2 X 107cells/mL).  The extent of 

NO2
- reduction (expressed as % NO2

- consumed) was determined after 72 hours.  

Results 

CctA is involved in H2-dependent U(VI) reduction by S. oneidensis.  S. oneidensis and 

cctA insertional mutant C3965 were tested for U(VI) reduction ability.  C3965 reduced 

U(VI) at a rate of 4.85 X 10-14 M cell-1 hr-1, 60% that of the wild-type strain (Figure 2.4).  

U(VI) content in cultures containing heat-killed cells decreased at a rate 3% of the wild-
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type strain.  U(VI) adsorption to the cell surface of the metabolically inactive cells may 

contribute to the apparent U(VI) reduction in heat-killed S. putrefaciens cultures (20, 23, 

58).  U(VI) content in the uninoculated culture (abiotic control) did not significantly 

decrease, an indication that U(VI) did not precipitate via a purely chemical reaction.  

These results suggest that CctA plays a role in U(VI) reduction by S. oneidensis but is not 

the sole U(VI) reductase. 
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Figure 2.4.  Reduction of 1.0 mM U(VI) by NRFA1 (-■-), NRFA1-pNRFA (-▲-), S. 
oneidensis wild-type (-♦-),C3965 (-●-), S. oneidensis heat-killed control (-◊-) and abiotic 
control (- -). 
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NrfA is not required for H2-dependent U(VI) reduction by S. oneidensis.  S. oneidensis, 

nrfA insertional mutant NRFA1 and NRFA1 genetic complement NRFA1-pNRFA were 

tested for U(VI) reduction ability.  NRFA1 reduced U(VI) at a rate of 7.75 X 10-14 M hr-1 

cell-1, nearly identical to that of the wild-type strain and the positive control strain 

NRFA1-pNRFA (Figure 2.4).  U(VI) content in cultures containing heat-killed cells 

decreased at a rate 3% of the wild-type strain.  U(VI) adsorption to the cell surface of the 

metabolically inactive cells may contribute to the apparent U(VI) reduction in heat-killed 

S. putrefaciens cultures (20, 23).  U(VI) content in the uninoculated culture (abiotic 

control) did not significantly decrease, an indication that U(VI) did not precipitate via a 

purely chemical reaction.  These results suggest that NrfA is not required for U(VI) 

reduction by S. oneidensis.     

NrfA is required by S. oneidensis for anaerobic growth on NO2
-.  S. oneidensis, nrfA 

insertional mutant NRFA1 and NRFA1 genetic complement NRFA1-pNRFA were tested 

for anaerobic growth on NO3
- and NO2

-.  After stoichiometric reduction of NO3
- to NO2

-, 

growth of the wild-type strain and NRFA1-pNRFA continued on NO2
- until all NO2

- was 

depleted.   NRFA1, on the other hand, was able to grow at wild-type rates on NO3
- and to 

stoichiometrically convert NO3
- to NO2

- at a rate similar to the wild-type strain, yet was 

unable to sustain growth or deplete NO2
- after all NO3

- was reduced.  NRFA1 cell density 

and NO2
- concentrations remained unchanged after NO3

- was completely reduced to NO2
-

(Figure 2.5).  These results indicate that NrfA is required for growth of S. oneidensis on 

NO2
-. 

S. putrefaciens Urr14 retains partial U(VI) and NO2
- reduction activity in media 

containing subtoxic electron acceptor concentrations.  Previously isolated point mutant 
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Urr14 was unable to reduce U(VI) or NO2
- yet retained the ability to grow on a suite of 

alternate electron acceptors (57).  In the present study, S. oneidensis strains lacking the 

nitrite reductase NrfA retained U(VI) reduction capability. To investigate the possibility 

that Urr14 is more susceptible than the wild-type strain to NO2
- toxicity, Urr14 was tested 

for NO2
- reduction in growth medium containing subtoxic electron acceptor 

concentrations (i.e., 10-fold below the toxic level).  To determine the toxic level of NO2
- 

for anaerobic growth of S. putrefaciens, a toxicity assay was conducted with the wild-

type strain.  S. putrefaciens was unable to reduce NO2
- when added directly to anaerobic 

growth medium containing > 3.0 mM NO2
- (Figure 2.6).  Urr14 reduced NO2

- at rates < 

30% of the wild-type strain in cultures containing 300 μM NO2
- (Figure 2.7).  These 

results suggest that Urr14 is more susceptible to NO2
- toxicity than the wild-type strain 

and that an additional impairment in Urr14 may prevent growth at wild-type rates on 

NO2
-. 

Discussion 

      The main objective of the present study was to determine if the electron transport 

chain components CctA or NrfA are required for U(VI) reduction by S. oneidensis.  

Previous studies suggested that cytochrome c3 and the nitrite reductase NrfA are involved 

in U(VI) reduction by D. desulfuricans and S. putrefaciens (29, 42, 57).  Shewanella 

oneidensis cytochrome c3 (CctA) insertional mutant strain C3965 was tested for U(VI) 

reduction and was found to reduce U(VI) at rates 60% that of the wild-type strain.  c3 

mutants of D. desulfuricans G20, on the other hand, reduce U(VI) at only 30% wild-type 
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Figure 2.5.  Anaerobic growth of NRFA1 on nitrate (A) and corresponding NO2
- content 

(B).  S. oneidensis wild-type (-♦-), NRFA1 (-■-), NRFA1-pNRFA (-▲-), S. oneidensis 
heat-killed control (-◊-) and abiotic control (- -).   
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Figure 2.6.  Nitrite toxicity assay.  NO2
- was added to anaerobic S. putrefaciens cultures 

containing excess lactate at the indicated concentrations and the extent of NO2
- reduction 

(expressed as % NO2
- removed from solution) was determined after 72 hours.  Results are 

based on three parallel, yet independent incubations.   

0 10 20 30 40 5
0

50

100

150

200

250

300

350

0

[N
O

2- ] (
μM

)

Time (h)
 

Figure 2.7.  Reduction of 300 μM NO2
- by Urr14 at subtoxic electron acceptor 

concentrations.  Urr14 (-■-), S. oneidensis wild-type (-♦-), S. oneidensis heat-killed 
control (-◊-) and abiotic control (- -). 
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rates with H2 as electron donor (41, 42).  These results suggest that CctA is involved in 

U(VI) reduction but that S. oneidensis strains that lack CctA continue to reduce U(VI).  

Structural comparison of c3 cytochromes from D. desulfuricans, D. vulgaris (4, 28, 45, 

56) indicate that TpII-c3 (acidic) is involved in U(VI) reduction by Desulfovibrio.  CctA 

in S. oneidensis, however, shares structural characteristics with TpI-c3 and TpII-c3, 

suggesting that CctA may accept electrons from multiple electron donors (28).  CctA 

insertional mutants are not significantly impaired for anaerobic growth on any electron 

acceptor, suggesting that CctA may also donate electrons to multiple redox partners, 

possibly including U(VI) (34).   

      Previous studies with U(VI) reduction-deficient mutant Urr14 indicated that 

U(VI) and NO2
- reduction pathways share electron transport components (57).  The S. 

oneidensis genome contains the cytochrome c nitrite reductase NrfA.  In the present 

study, insertional mutant NRFA1 was found to reduce U(VI) at rates identical to the 

wild-type strain, indicating that NrfA is not required for U(VI) reduction in S. oneidensis.  

The redox partner of NrfA in S. oneidensis is unclear.  S. oneidensis lacks NrfB and NrfH 

homologs, but decaheme paralogs MtrA and MtrD are structurally similar to NrfB and 

CymA belongs to the NapC/NirT family of quinol oxidases.  CymA is required for NO2
- 

reduction by S. oneidensis and may functionally replace NrfH (50).  CymA is required in 

at least five electron transfer pathways in S. oneidensis including nitrite and nitrate 

reduction (38, 50).  Urr14 reduces nitrate at wild-type rates, however, suggesting that the 

mutation in Urr14 is downstream of CymA.  An intermediate electron transport chain 

component downstream of CymA and upstream of NrfA in S. oneidensis is presently 

unknown.  MtrA and MtrD are upregulated during U(VI) reduction and MtrA mutant SR-
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524 reduces U(VI) at only 30% the wild-type rate (6).  SR-524 should be tested for NO2
- 

reduction to determine if MtrA is required for both U(VI) and NO2
- reduction by S. 

oneidensis.   

       In addition to coupling with electron donor oxidation for energy conservation, 

dissimilatory ammonification via NrfA protects bacteria from oxidative damage (24, 46, 

48).  To determine if NO2
- reduction deficiency in U14 is due to electron acceptor 

toxicity, Urr14 was tested for NO2
- reduction in media containing electron acceptor 

concentrations 10-fold below the toxic level in S. putrefaciens.  U14 remained NO2
- 

reduction deficient, however, U14 reduced NO2
- at rates of about 30% that of the wild-

type strain.  In a previous study, Urr14 reduced NO2
- at rates < 5% of the wild-type strain 

in cultures containing NO2
- near the toxic level (58).  NO2

-, due to NO3
- reduction, 

apparently accumulated to deleterious levels in Urr14 cultures at a rate greater than NO2
- 

was detoxified via reduction to NH4
+.  These results suggest that point mutant Urr14 is 

more susceptible to NO2
- toxicity but the primary impairment in Urr14 remains unknown.  

The identification of the Urr14 mutation and its role in U(VI) and NO2
- respiration are the 

focus of future investigations.  
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CHAPTER 3 

 

A conserved histidine in cytochrome c maturation permease CcmB of 
Shewanella putrefaciens is required for anaerobic growth below a 

threshold standard redox potential 
 

 
 
Abstract 
 
 Shewanella putrefaciens strain 200 respires a wide range of compounds as 

terminal electron acceptor.  The respiratory versatility of Shewanella is attributed in part 

to a set of c-type cytochromes with widely varying mid-point redox potentials (E′0).  A 

point mutant of S. putrefaciens, originally designated Urr14 and here renamed CCMB1, 

was found to grow at wild-type rates on electron acceptors with high E′0 [O2, NO3
-, 

Fe(III)-citrate, MnO2 and Mn(III)-pyrophosphate] yet was severely impaired for growth 

on electron acceptors with low E′0 [NO2
-, U(VI), DMSO, TMAO, fumarate, γ-FeOOH, 

SO3
2- and S2O3

2-].  Genetic complementation and nucleotide sequence analyses indicated 

that the CCMB1 respiratory mutant phenotype was due to mutation of a conserved 

histidine residue (H108Y) in a protein that displayed high homology to E. coli CcmB, the 

permease subunit of an ABC transporter involved in cytochrome c maturation.    

Although CCMB1 retained the ability to grow on electron acceptors with high E′0, the 

cytochrome content of CCMB1 was < 10% of the wild-type strain.  Periplasmic extracts 

of CCMB1 contained slightly greater concentrations of the thiol functional group (-SH) 

compared with the wild-type strain, an indication that the Eh of the CCMB1 periplasm 

was abnormally low.  A ccmB deletion mutant was unable to respire anaerobically on any 
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electron acceptor, yet retained aerobic respiratory capability.  These results suggest that 

the mutation of a conserved histidine residue (H108) in CCMB1 alters the redox 

homeostasis of the periplasm during anaerobic growth on electron acceptors with low 

(but not high) E′0.  This is the first report of the effects of Ccm deficiencies on bacterial 

respiration of electron acceptors whose E′0 nearly span the entire redox continuum. 

Introduction 

 Cytochromes with covalently attached heme (c-type cytochromes) are often major 

components of anaerobic electron transport chains of prokaryotic microorganisms.  c-

type cytochromes displaying widely varying midpoint reduction potentials (E′0) may 

confer respiratory versatility to prokaryotes residing in redox-stratified environments (15, 

17, 21).  The genome of the metal-respiring γ-proteobacterium Shewanella oneidensis 

MR-1, for example, encodes 42 putative c-type cytochromes, several of which are 

involved in electron transfer to metals and other anaerobic electron acceptors with E′0 

values virtually spanning the entire redox continuum encountered by microorganisms in 

the environment. (28, 39, 48)  The molecular mechanism of bacterial metal respiration, 

however, remains poorly understood.  

 In several metal-respiring bacteria, c-type cytochromes are involved in electron 

transport to oxidized forms of metals and radionuclides.  In Geobacter sulfurreducens, 

outer membrane c-type cytochromes OmcB and OmcF are required for respiration on 

solid Fe(III)-oxides, and diheme c-type cytochrome MacA is an intermediate electron 

carrier (8, 31, 37).  Metal-respiring members of the genus Shewanella also require outer 

membrane c-type cytochromes OmcA and OmcB (MtrC) for respiration on U(VI) and 

solid Fe(III)- or Mn(IV)-oxides (3, 41, 46).  c-type cytochromes involved in periplasmic 
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electron transport in S. oneidensis include MtrA and CymA (43, 52).  CymA oxidizes 

quinol and transfers electrons to downstream components of the electron transport 

pathway terminating with the reduction of Fe(III), NO3
-, NO2

-, fumarate and DMSO (43, 

55, 56).  A purified cytochrome c3-hydrogenase complex isolated from U(VI)-reducing 

Desulfovibrio vulgaris Hildenborough displays H2-U(VI) oxidoreductase activity in vitro 

(40).  In addition, cytochrome c3 mutants of Desulfovibrio desulfuricans G20 are 

deficient in U(VI) reduction activity with H2 as electron donor (49, 50).   

 Bacteria, archaea, and the mitochondria and chloroplasts of eukarya require 

maturation systems to complete c-type cytochrome synthesis.  Cytochrome c maturation 

(Ccm) systems attach heme groups to the CXXCH motifs of apocytochrome c (i.e., 

immature cytochrome c with CXXCH heme-binding motifs not bound by heme) via 

stereospecific thioether covalent bonds.  Three Ccm systems are currently known [for 

recent reviews, see (58) and (60)].  System I, found predominantly in α- and γ-

proteobacteria, land-plant and protozoan mitochondria and some archaea, consists of 

eight dedicated components (CcmA-H).  System II, commonly found in Gram-positive 

bacteria, cyanobacteria, β- and δ-proteobacteria, chloroplasts and some archaea, includes 

the major components ResA-C and CcdA.  The third cytochrome c maturation system, 

System III, is restricted to fungal and animal mitochondria and consists of a single heme 

lyase component (CCHL). 

 Cytochrome c maturation System I is the most extensively studied cytochrome c 

maturation pathway.  A schematic of System I cytochrome c maturation components is 

given in Figure 3.1.  System I is organized into two branches that converge at heme lyase 

(CcmF): a heme delivery branch comprised of CcmA-E and a thioredoxin branch that 
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includes DsbD and CcmGH (60).  The heme delivery branch transfers heme to 

apocytochrome c and includes ABC transporter subunits CcmABC, membrane protein 

CcmD and heme chaperone CcmE.  The thioredoxin branch transfers reducing 

equivalents to the periplasm and ensures that the thiol groups of apocytochrome c remain 

reduced for heme attachment.  Maintenance of redox homeostasis in the periplasm is 

crucial for optimal Ccm activity (2, 9).   

 A random point mutant of S. putrefaciens strain 200 (originally designated Urr14 

and here renamed CCMB1) was isolated by combining chemical mutagenesis (ethyl 

methane  

 

 

A A

C

D

E
F H G

DsbD

TrxA

Sec

S-

S-

Heme Transport?

S S

Heme   
Lyase

OM

Periplasm

Cytoplasm

CM B

SH SH

Apocytochrome c

 

Figure 3.1.  Schematic representation of System I cytochrome c maturation in E. coli.  
CcmABCDE deliver heme to apocytochrome c and heme lyase CcmF.  CcmG, CcmH, 
DsbD and TrxA ensure that the thiol groups of apocytochrome c CXXCH motifs remain 
reduced.  The Sec translocase exports the apocytochrome polypeptide from the cytoplasm 
to the periplasm.  Cytochrome c and apocytochrome c (shaded) and CcmB (solid) are 
indicated. 
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sulfonate) procedures with a rapid mutant screen designed to detect respiratory mutants 

deficient in U(VI) reduction activity (62).  Subsequent anaerobic liquid growth 

experiments demonstrated that CCMB1 was unable to respire U(VI) or NO2
- as anaerobic 

electron acceptors, yet retained the ability to respire on O2, NO3
-, MnO2 and Fe(III)-

citrate.  In the present study, the gene mutated in CCMB1 was identified.  

Materials and methods 

Bacterial strains, growth media and cultivation conditions.  A previously isolated 

rifamycin resistant strain of S. putrefaciens strain 200 (hereafter referred to as S. 

putrefaciens) was routinely cultured in the presence of 50 μg ml-1 rifamycin in either 

Luria Broth or a defined salts growth medium (SM, pH 7.5) (16, 18, 44).  Growth 

experiments consisted of triplicate cultures of each strain, and cell number, electron 

acceptor depletion or end-product accumulation data was expressed as the arithmetic 

mean of the three parallel yet independent incubations.  Anaerobic growth experiments 

were carried out in 13-ml Hungate tubes (Bellco Glass, Inc.) containing 10 ml SM 

supplemented with sodium lactate (30 mM) and sealed with black butyl rubber stoppers 

under an N2 atmosphere.  Electron acceptor stocks were added at the following final 

concentrations (electron acceptor stock solutions were prepared as previously described 

(16, 62) except where indicated): NO3
-, (20 mM); NO2

-, (2.0 mM); U(VI)-carbonate, (1.0 

mM) (62); Fe(III) citrate, (50 mM); γ-FeOOH (12), (40 mM); MnO2 (as colloidal MnO2), 

(10 mM) (51); Mn(III)-pyrophosphate, (10 mM) (33); TMAO,  (30 mM); SO3
2-, (10 

mM); S2O3
2-, (10 mM); DMSO, (50 mM); fumarate, (35 mM).  Aerobically-grown cells 

were inoculated in batch cultures vigorously aerated with atmospheric gas.  U(VI) growth 

experiments were carried out in SM medium with the headspace gas consisting of 10% 
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H2, 5% CO2 and the balance N2.  Control experiments consisted of incubating wild-type 

S. putrefaciens in SM liquid growth medium with electron acceptor omitted or with heat-

killed cells as inoculum.  Antibiotics were added from filter-sterilized stocks at the 

following concentrations:  chloramphenicol (25 μg ml-1) and tetracycline (15 μg ml-1).        

Genetic complementation and nucleotide sequence analyses.  Standard genetic 

procedures were used in genetic complementation and subcloning experiments (54).  A 

previously constructed clone library of partially digested HindIII chromosomal DNA 

fragments of S. putrefaciens strain (harbored in broad-host-range cosmid pVK100 and 

maintained in Escherichia coli strain HB101) was mobilized into respiratory mutant 

CCMB1 following previously described tri-parental mating procedures that included 

helper strain E. coli HB101 (pRK2013) (16).  To identify CCMB1 transconjugates with 

restored U(VI) reduction activity, Rifr and Tetr transconjugate colonies were screened for 

a positive U(VI) reduction phenotype on SM agar growth medium supplemented with 

U(VI)-carbonate (1 mM) (62).  After screening approximately 1,000 transconjugates, a 

CCMB1 transconjugate (designated CCMB1-D14) with restored U(VI) reduction ability 

was identified and subsequently confirmed for wild-type U(VI) reduction activity in 

liquid culture.   

Transconjugate CCMB1-D14 was found to contain a 34 kb complementing 

cosmid (designated pD14; see Figure 3.2 for subcloning strategy).  D14 contained two 

internal HindIII restriction sites resulting in three HindIII fragments (D14-1, D14-2 and 

D14-3), each of which were ligated into cosmid pVK100.  The three resulting 

recombinant cosmids were electroporated into E. coli HB101 and the three corresponding 

transformants were mated tri-parentally with HB101 (pRK2013) and CCMB1.  Each 
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CCMB1 transconjugate was tested for anaerobic growth in liquid culture with U(VI) as 

electron acceptor.  CCMB1 transconjugates containing complementing subclone D14-2 

were restored for U(VI) reduction activity.  Complementing subclone D14-2 was 

sequenced (6X coverage) with an ABI 3700 automated sequencer.  Initial sequencing 

primers complementary to the unique cloning site of cosmid pVK100 included pvkF (gat 

cct ggt atc ggt ctg cga ttc cga ctc gtc) and pvkR (gta ctc ctg atg atg cat ggt tac tca cca ctg 

cga tcc).  The nucleotide sequence of D14-2 has been submitted to the GenBank database 

under accession number DQ682922.  Overlapping internal regions of D14-2 (designated 

DC1-to-10) were PCR-amplified and cloned into broad-host-range plasmid pBBR1MCS 

(34) for further genetic complementation analyses (see Table 3.1 for strains and plasmids 

used in the present study and Table 3.2 for primers and restriction sites used for 

subcloning).  The altered nucleotide in mutant CCMB1 was identified via PCR 

amplification of the CCMB1 chromosomal region that corresponded to complementing 

fragment DC9 of wild-type S. putrefaciens (primers were identical to those used to PCR  

amplify the DC-9 region of wild-type S. putrefaciens).  Nucleotide sequencing of the DC-

9 region of CCMB1 was carried out as described above.    

In-frame deletion mutagenesis of ccmB.  ccmB was deleted in-frame from the S. 

putrefaciens chromosome according to recently described procedures (7).  Briefly, 700 

bp fragments (CCMB-A and CCMB-B, see Table 3.2) flanking ccmB were PCR-

amplified with iProofTM high fidelity polymerase (Bio-Rad Laboratories, Hercules, CA), 

and CCMB-A and CCMB-B were fused by overlap 
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Figure 3.2.  Schematic of subcloning strategy for CCMB1 complementing fragment D14.  
+, restores wild-type U(VI) reduction capability to CCMB1; -, does not restore wild-type 
U(VI) reduction capability to CCMB1.  Fragments DC1-10 were PCR-amplified with 
primers designed from the D14-2 sequence (see Table 3.2).  Restriction endonuclease 
cleavage sites H, HindIII; B, BamHI.  Note the different scale bars for fragment D14 and 
the amplicons of the ccm operon. 
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Table 3.1. Bacterial strains and plasmids used in the present study. 

 

Strain or Plasmid Description Reference 
Shewanella putrefaciens  
     200R Spontaneous Rifr-derivative of S. putrefaciens (NCIB 12577) (16) 
     CCMB1 U(VI) reduction-deficient ccmB point mutant (H108Y) of 200R (62) 
     ΔccmB ccmB deletion mutant of 200R This study 
Escherichia coli   
     S17-1 thi pro recA hsdR [RP4-2Tc::Mu-Km::Tn7] Mob+ (57) 

     HB101 F- hsdS20(r- m-) recA13 ara-14 proA2 lacYl galK2 rpsL20 xyl-
5 mtl-l supE44 λ, Smr (5) 

     β2155 ThrB1004 pro thi strA hsdS lacZDM15 (F￠ lacZDM15 lacIq 
trajD36 proA+ proB+) ΔdapA::erm pir::RP4, Ermr, Kmr 

(14) 

Plasmids   
     pRK2013 ColE1 replicon containing RK2 transfer region; Kmr, Tra+ (25) 
     pVK100 Broad-host-range cosmid, 23-kb, Tcr Kmr Tra+ (32) 
     pKO2.0 Suicide vector, 4.5-kb, R6K replicon, mobRP4, sacB, Gmr (7) 

     pD14 pVK100 with cloned 34-kb partially digested chromosomal 
HindIII fragment D14 This study 

     pD14-1 pVK100 with cloned 15-kb D14-derived HindIII subclone 
fragment D14-1 This study 

     pD14-2 pVK100 with cloned 13-kb D14-derived HindIII subclone 
fragment D14-2 This study 

     pD14-3 pVK100 with cloned 6-kb D14-derived HindIII  subclone 
fragment D14-3 This study 

    pBBR1MCS Broad-host-range cloning vector, 4.7-kb α-lac/multiple cloning 
site, Cmr (34) 

     pDC1-10 pBBR1MCS with cloned PCR-amplified fragments DC1 thru 
DC10 This study 
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Table 3.2. PCR primers used in the present study. 
 

a Restriction endonuclease recognition sites are underlined 

 
Fragment 

 
Primer 

Restriction 
_Enzyme_ 

 
____Primer_Sequencea_____ 

 
ORFs Included 

DC1 DC1F BamHI GACTGGATCCGTTACGTGAAG
CAACCATG 

 DC1R SalI GACTGTCGACCATGCTTAGGA
TGGTCCCGC 

rpsH, rplF, rplR, rpsE, 
rpmD, rplO 

DC2 DC2F HindIII GACTAAGCTTGAAGTCACCAT
CGCAAATCG 

 DC2R XhoI GACTCTCGAGCTCACGACGTA
AGTCACC 

rpmD, rplO, secY, rpmJ 

DC3 DC3F HindIII GACTAAGCTTGCTCAAATAGA
TACACTACG 

 DC3R XhoI GACTCTCGAGGCATTGTGCTG
AGAGATCC 

rpsM, rpsK, rpsD, transp 

DC4 DC4F BamHI GACTGGATCCGCTGATCGTCG
AGCTTTAC 

 DC4R SalI GACTGTCGACGATGTTGTGAG
GCTCTGAAC 

transp, rpoA, rplQ 

DC5 DC5F HindIII GACTAAGCTTGATTATCATTT
AGTATAATTC 

 DC5R XhoI GACTCTCGAGCAATGTTCCTA
ATGCAAATAC 

ccmA, ccmB, ccmC, ccmD, 
ccmE 

DC6 DC6F BamHI GACTGGATCCGAACCCTCTAT
CTCAAGCCG 

 DC6R SalI GACTGTCGACGACTAGCGTTG
AAGTGATCG 

scyA 
 

DC7b DC7F XhoI GACTCTCGAGGAGCGCATACA
GTAGAAGCG ccmA, ccmB, ccmC, ccmD 

DC8b DC8F XhoI GACTCTCGAGCTGATAGAATC
GAATTGC ccmA, ccmB, ccmC 

DC9b DC9F XhoI GACTCTCGAGCGTTCAGGATC
CGCATA ccmA, ccmB 

DC10b DC10F XhoI GACTCTCGAGCTGAGTAAAGC
TGATGCC ccmA 

CCMB-A CCMB-A1 SalI GACTGTCGACCAACATCTCTG
CTGGCATCGT 

 CCMB-A2 none 

GTCTAGATTATCGCTTCATAT
AAGGTCAAGCATAGTACTAAC
TAAAATGTGGAAATGGTTACA
CCC 

partial ccmC 

CCMB-B CCMB-B1 none 

GGGTGTAACCATTTCCACATT
TTAGTTAGTACTATGCTTGAC
CTTATATGAAGCGATAATCTA
GAC 

 CCMB-B2 SpeI GACTACTAGTGGTTATTGGAA
CCACATCAAATTGCTG 

partial ccmA 

b Reverse primer sequence identical to that used with fragment DC5  
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extension PCR generating fragment CCMB-C.  CCMB-C was cloned into pKO2.0 with 

BamHI and SpeI restriction endonucleases and electroporated into E. coli strain β2155.  

pKO2.0-CCMB-C was mobilized into recipient 200R via bi-parental mating.  A plasmid 

integrant was identified by PCR analysis and the mutation was resolved on LB agar 

containing sucrose (10%).  The in-frame deletion of ccmB in S. putrefaciens (ΔccmB) 

was verified by PCR amplification with primers flanking the deletion (forward, 

CGCTTGTTATGATGAGTACCG and reverse, CCTTGGTGGAGGCAGACTCAT) and 

DNA sequencing.  A schematic of the in-frame deletion mutagenesis procedure is given 

in Figure 3.3. 

Analytical techniques.  Cell growth was monitored by simultaneously measuring cell 

number and electron acceptor depletion or end product production.  Acridine orange-

stained cells were counted directly via epifluorescence microscopy (Nikon Diaphot 300 

microscope).  Fe(III) reduction was monitored by measuring HCl-extractable Fe(II) with 

the ferrozine technique (59).  MnO2 reduction was monitored by measuring MnO2 

depletion with the benzidine blue colorimetric assay (6).  Mn(III)-pyrophosphate 

depletion was monitored spectrophotometrically at 480 nm (33).  U(VI) was measured 

colorimetrically with Arsenazo III reagent (35).  NO2
- was measured 

spectrophotometrically with sulfanilic acid-N-1-naphthylethylene-diamine 

dihydrochloride reagent (42).  Growth on O2, TMAO, DMSO, fumarate, S2O3
2- and SO3

2- 

was monitored by cell growth only.    Free thiol equivalents [exposed thiol functional 

groups (-SH) free to react with Ellman’s reagent] were determined with 5,5’-dithio-bis-2-

nitrobenzoic acid (DTMB) (19) standardized with reduced glutathione per μg protein.   
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Figure 3.3.  In-frame ccmB deletion mutagenesis strategy. 
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Protein concentration was determined with Coomassie Plus Bradford assay (Pierce 

Biotechnology) standardized with bovine serum albumen (BSA).  Homologous and 

orthologous protein sequences were identified by BLAST analysis and aligned with 

ClustalW (1, 29).  Membrane topology was predicted in silico with worldwide web-

interfaced software HMMTOP and TopPred2 (10). 

Cytochrome detection.  Wild-type and CCMB1 mutant cell cultures were grown on the 

array of electron acceptors in SM liquid medium supplemented with lactate (30 mM) as 

carbon and energy source.  Cells were harvested during late logarithmic growth phase 

and washed three times in anaerobic phosphate-buffered saline (PBS; 130 mM NaCl, 50 

mM sodium phosphate, pH 7.2, 4°C).  Cell extracts were prepared as in previously 

described procedures (20).  Briefly, cells were resuspended in cold extraction buffer (50 

mM sodium phosphate, 2 mg/ml polymyxin B sulfate, 300 mM NaCl, 5 mM EDTA, pH 

7.2, 4°C).  The suspension was stirred gently for 1 h at 4°C and centrifuged (Beckman 

Coulter Optima L-100 XP Ultracentrifuge 40,000 x g for 20 min at 4°C).  Extracts from 

each sample were collected and specific cytochrome content was determined by 

measuring dithionite-reduced-minus-ferricyanide-oxidized difference spectra on a 

Shimadzu UV-1601 spectrophotometer operated in the split-beam mode.  Estimates of 

total cytochrome content were based on the difference between absorbance values at the 

peak and trough of the Soret peak standardized per mg total protein (11, 45).  Protein 

fractions were separated by SDS-PAGE on a linear gradient gel (4% to 20% resolving) 

with 200 μg/ml total protein loaded per well (36).  Gels were stained for heme peroxidase 

activity by incubating in a solution containing 3, 3-dimethoxybenzidine-peroxide (1 μg 

ml-1) and H2O2 (30% stock solution, 0.0025 μl ml-1) (26). 
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Results 

Genetic complementation analysis of S. putrefaciens respiratory mutant CCMB1.  A 

transconjugate (designated CCMB1-D14) displaying wild-type U(VI) reduction activity 

was identified by re-applying the respiratory mutant screen that was originally used to 

identify U(VI) reduction-deficient mutant CCMB1 (Figure 3.4) (62).  Subsequent 

subcloning and anaerobic growth experiments demonstrated that only those subclones 

containing a wild-type copy of ccmB restored anaerobic growth capability to CCMB1 

(Figure 3.2).  The CCMB1 chromosomal region corresponding to the wild-type DC9 

subclone was PCR-amplified and sequenced with 6-fold coverage.  A single nucleotide 

transversion (H108Y) was identified in ccmB at amino acid position 108 (Figure 3.5).   

Sequence analysis of S. putrefaciens ccmB.  ccmB is the second gene in a five gene 

cluster that includes ccmA-E (Table 3.3).  The ccm gene cluster is conserved among all 

 
 

200-pVK100

CCMB1-pVK100

CCMB1-D14

 

Figure 3.4.  U(VI) reduction screening plate from which complementing transconjugate 
CCMB1-pD14 (second colony from left in fourth row) was identified. Strain 200-
pVK100 (colony in top row) and CCMB1-pVK100 (first colony from left in second row) 
were included as U(VI) reduction-positive and U(VI) reduction-negative control strains, 
respectively.   
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Shewanella species sequenced to date and, in S. putrefaciens and S. oneidensis MR-1, is 

flanked by divergently transcribed c-type cytochrome scyA and an operon encoding RNA 

polymerase subunits.  Gene assignments are based on The Institute for Genomic 

Research’s annotation of the MR-1 genome sequence (www.tigr.org) (28).  The ccm gene 

cluster has been studied most extensively in E. coli, and the translated amino acid 

sequences from the ccmABCDE genes of S. putrefaciens share high similarity with these 

proteins (40-61% identity, 62-74% similarity; Table 3.3).   

     Topology prediction analysis indicated that CcmB contains six transmembrane helices 

(Figure 3.5).  Based on similarity to previous results of C-terminal tagging analysis and 

prior topology models in E. coli, the N- and C-termini of CcmB in S. putrefaciens are 

both predicted to face the cytoplasm (13, 27).   Residue H108 is predicted to reside at the 

interface of a cytoplasmic loop and the third transmembrane helix.  Residue H108 of S. 

putrefaciens CcmB is highly conserved among α-, β- and γ- proteobacteria (Figure 3.5) 

and is one of six CcmB residues strictly conserved among several land-plant 

mitochondrial orthologs such as those found in Marchantia polymorpha, Arabidopsis 

thaliana, Triticum aestivum and Oenothera berteriana and in the red alga 

Cyanidioschyzon merolae (22). 

Respiratory mutant CCMB1 retains the ability to respire on electron acceptors with high 

(but not low) reduction potentials (E′0).  To determine the overall respiratory capability of 

CCMB1, anaerobic growth experiments were carried out on a set of 13 electron 

acceptors.  CCMB1 retained the ability to grow at wild-type rates with O2, MnO2, 

Mn(III)-pyrophosphate, NO3
-, and Fe(III)-citrate, yet was severely impaired for growth 
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Figure 3.5.  Multiple alignment of S. putrefaciens CcmB amino acid sequence with 
orthologs in three domains of life.  S. putrefaciens (Sputr), E. coli (Ecoli), orthologous 
Ccb206 of Arabidopsis thaliana (Athal), Orf206 of Triticum aestivum (Taest), Orf277 of 
Marchantia polymorpha (Mpoly) and YejV of Cyanidioschyzon merolae (Cmero).  
Identical residues are highlighted.  H108 of S. putrefaciens and corresponding identical 
residues are boxed. Predicted transmembrane domains in S. putrefaciens are indicated by 
bars above the sequence. 
 



a  Percent similarity (Sim), percent identity (ID) and expect value (E-value) between S. putrefaciens Ccm amino acid sequences translated from sequenced clone 
library fragment D14-2.  Ranges were determined for S. putrefaciens compared to the completed genome of S. oneidensis MR-1 and draft genomes of S. amazonensis 
SB2B, S. baltica OS155, S. denitrificans OS217, S. frigidimarina NCIMB 400, S. putrefaciens CN-32, Shewanella sp. ANA-3, Shewanella sp. MR-4, Shewanella sp. 
PV-4 and Shewanella W3-18-1.  

 

 

 

 

 

 

 

 

 

 

 

 
ORFd 

 
_____Shewanella spp.a_____ ___Escherichia  colib__ _____________GenBankc__________________  

 
 

Sim ID E-value 
 

Sim ID E-
value     Best Hit Sim ID E-value Putative Function 

CcmA 84-100 71-100 10-101 - 
10-122 63 46 10-48 Colwellia 

psychrerythraea 78 64 10-75 
ABC Transporter, 
ATP-binding 
subunit 

CcmB 96-100 82-100 10-82   - 
10-97 73 61 10-73 Colwellia 

psychrerythraea 87 72 10-90 ABC Transporter, 
permease subunit 

CcmC 93-100 84-99 10-96  - 
10-134 74 60 10-78 Vibrio fischeri 83 66 10-99 

Heme delivery 
subunit; required 
for CcmE heme 
attachment 

CcmD 81-100 69-100 10-19  - 
10-32 62 40 10-6 Mannheimia 

succiniciproducens 71 57 10-12 

Membrane 
protein; CcmCDE 
complex 
assembly 

 CcmE 86-100 81-100 10-40  - 
10-51 69 54 10-18 Vibrio cholerae 77 66 10-26 

Heme chaperone; 
covalently binds 
heme 

b  Percent similarity (Sim), percent identity (ID) and expect value (E-value) from S. putrefaciens compared to E. coli  
c  Organism outside the genus Shewanella with the ortholog of highest similarity to S. putrefaciens (Best Hit) determined by BLASTP analysis of the  

Table 3.3.  Sequence analysis of S. putrefaciens CcmABCDE gene cluster. 
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d  S. putrefaciens open reading frames translated from chromosomal DNA fragment D14-2.   
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on NO2
-, U(VI), DMSO, TMAO, fumarate, Fe(III)-oxide, SO3

2- or S2O3
2- as electron 

acceptor (Figure 3.6 and Figure 3.7).  CCMB1 transconjugates containing plasmid pDC9 

in trans displayed wild-type rates of growth and reduction of each electron acceptor.  

CCMB1 was unable to grow at wild-type rates on electron acceptors with E′0 values 

below a threshold value of approximately 0.36 V (NO2
-/NH4

+ couple) (Figure 3.8).  

CCMB1 grew at wild-type rates on NO3
- yet was unable to grow on NO2

-.  After 

stoichiometric reduction of NO3
- to NO2

-, growth of the wild-type strain continued on 

NO2
- until all NO2

- was depleted.   CCMB1, on the other hand, was able to grow at wild-

type rates on NO3
- and to stoichiometrically convert NO3

- to NO2
- at a rate similar to the 

wild-type strain, yet was unable to sustain growth or deplete NO2
- after all NO3

- was 

reduced.  CCMB1 cell density and NO2
- concentrations remained unchanged after NO3

- 

was completely reduced to NO2
-.    

CCMB1 contains low c-type cytochrome content.  CCMB1 retained the ability to grow 

anaerobically on electron acceptors with high E′0 [MnO2, Mn(III)-pyrophosphate, NO3
- 

and Fe(III)-citrate].  To determine if CCMB1 produced c-type cytochromes at wild-type 

levels during growth on these electron acceptors, the cytochrome content of CCMB1 cell 

extracts was determined via reduced-minus-oxidized difference spectra and by staining 

SDS-PAGE gels for covalently attached heme (Figure 3.9 and Table 3.4).  For 

comparison, wild-type S. putrefaciens cells were grown and extracts were prepared under 

identical conditions.  Prominent c-type cytochrome bands in the heme stain and 

pronounced reduced-minus-oxidized difference spectra at 552 nm were observed for 

wild-type cells grown on Fe(III)-citrate and fumarate.  The cytochrome content of 

CCMB1, however, was nearly undetectable for cells grown on any electron acceptor 
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Figure 3.6.  Growth rate of CCMB1 on a set of 13 electron acceptors (rates normalized to 
the wild-type strain S. putrefaciens).  Wild-type growth rates (h-1): O2 (1.39), MnO2 
(0.71), Mn(III)-pyrophosphate (0.32), NO3

- (0.38), Fe(III)-citrate (0.21), NO2
- (0.23), 

DMSO (0.87), TMAO (0.36), fumarate (0.91), U(VI) (0.04), SO3
2- (0.18), γ-FeOOH 

(0.25), S2O3
2- (0.14).  See Figure 3.7 for individual growth curves.  Error bars represent 

the standard deviation of three parallel yet independent incubations.   
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Figure 3.7.  Anaerobic growth and corresponding electron acceptor depletion or end-
product production of wild-type and mutant CCMB1 strains.  A (Fe(III)-citrate), B 
(MnO2), C [Mn(III)-pyrophosphate)], D (NO3

-), E (γ-FeOOH), F [U(VI)], G (O2), H 
(DMSO), I (TMAO), J (fumarate), K (S2O3

2-) and L (SO3
2-).  S. putrefaciens 

(pBBR1MCS) (-●-), mutant strain CCMB1 (pBBR1MCS) (-■-), CCMB1 (pDC9) (-□-).  
S. putrefaciens with electron acceptor omitted (- -) and heat-killed cells (inoculum held 
at 80°C for 30 min prior to inoculation) (- -) were included as negative controls. 
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Figure 3.7 continued.   
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Figure 3.7 continued. 
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Figure 3.7 continued. 
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Figure 3.7 continued. 
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Figure 3.8.    Reduction potential (E′0) of electron acceptors included in the present study.  
E′0 values were obtained from published values for the indicated couples at neutral pH.  
CCMB1 displayed wild-type growth rates on the set of electron acceptors that are boxed. 
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Figure 3.9.  Analysis of cytochrome content of wild-type S. putrefaciens and respiratory 
mutant CCMB1.  SDS-PAGE heme stains of periplasmic fractions of S. putrefaciens (A) 
and CCMB1 (B) cells grown on the indicated electron acceptors.  Horse heart 
cytochrome c was included as a positive control.  Molecular mass markers (Daltons) are 
indicated with arrows.  Reduced-minus-oxidized difference spectra (C) of cell extracts 
from S. putrefaciens (1, 2) and CCMB1 (3, 4) grown on Fe(III)-citrate (1, 3) and 
fumarate (2, 4).  Scale bar corresponds to absorbance units. 
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Table 3.4.  Mean specific cytochrome contenta in S. putrefaciens and CCMB1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Mean values from periplasmic fractions expressed as the difference between the 
absorbances at the peak and trough of the Soret region from reduced-minus-
oxidized difference spectra per mg protein ml-1.  ± standard deviation for three 
independent fractions is indicated 

Electron acceptor 
added to the 

growth medium 
S. putrefaciens CCMB1 

O2 0.04 ± 0.01 < 0.01b 

MnO2 0.09 ± 0.02 < 0.01b 

Mn(III)-
pyrophosphate 0.18 ± 0.02 < 0.01b 

NO3
- 0.12 ± 0.02 < 0.01b 

Fe(III)-citrate 0.43 ± 0.07 0.04 ± 0.01 

NO2
- 0.11 ± 0.02 ND 

DMSO 0.29 ± 0.03 ND 

TMAO 0.14 ± 0.01 ND 

Fumarate 0.37 ± 0.05 ND 

U(VI) 0.05 ± 0.01 ND 

SO3
2- 0.09 ± 0.02 ND 

γ-FeOOH 0.07 ± 0.02 ND 

S2O3
2- 0.13 ± 0.02 ND 

b Value was below detection limit 
ND, not determined 
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(Figure 3.9).  Wild-type levels of mature cytochrome c therefore, do not appear essential 

for anaerobic growth on electron acceptors with high E′0.   

Thiol content of the CCMB1 periplasm is greater than the wild-type strain.  Previous 

studies with a variety of other proteobacteria containing ccm mutations indicated that 

periplasmic redox homeostasis was disrupted (2, 9).  To determine if the periplasm of 

CCMB1 was more oxidizing or reducing than the wild-type strain, the thiol (-SH) content 

in periplasmic extracts of CCMB1 and wild-type S. putrefaciens cells was determined 

after growth on 13 alternate electron acceptors.  The thiol content of periplasmic extracts 

from S. putrefaciens after growth on O2, NO3
-, NO2

-, TMAO, DMSO, Mn(III)-

pyrophosphate and MnO2 ranged from 40-238 pmol μg protein-1 (Figure 3.10).  Although 

CCMB1 grew on NO2
-, TMAO and DMSO at rates less than 25% of the wild-type strain, 

the periplasmic thiol concentration of CCMB1 grown on the identical set of electron 

acceptors was slightly greater than the wild-type strain (Figure 3.10).  Periplasmic 

fractions could not be recovered from CCMB1 cultures grown on U(VI), SO3
2-, γ-

FeOOH, or S2O3
2- as electron acceptor due to low growth rates (and correspondingly low 

cell yields) under these growth conditions (data not shown).  Periplasmic extracts from 

the wild-type strain contained the highest thiol content after growth on γ-FeOOH, SO3
2-, 

or S2O3
2- as electron acceptor, ranging from 682-1130 pmol μg protein-1 (approximately 

5-10X greater than the other electron acceptors).  Overall, the periplasmic extracts 

recovered from CCMB1 contained a slightly greater concentration of thiol groups than 

the wild-type strain. 

CcmB deletion mutant ΔccmB is incapable of anaerobic growth on any electron acceptor.  

An in-frame deletion mutant of ccmB (ΔccmB) was constructed and subsequently tested  
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Figure 3.10.  Free thiol content in periplasmic fractions of S. putrefaciens and CCMB1 
cells grown on the indicated electron acceptors.  Box below the bar graph indicates 
CCMB1 growth ability on the electron acceptor (a).  +, growth rate > 80% wild-type; -, 
growth rate < 25% wild-type.   
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for growth on the entire suite of 13 electron acceptors respired by the wild-type strain.  

ΔccmB was unable to grow anaerobically on any electron acceptor, yet retained the 

ability to grow aerobically (Figure 3.11).  Transconjugates of ΔccmB, containing a wild-

type copy of ccmB in trans, were restored for the ability to respire at wild-type rates on all 

electron acceptors. 

Discussion 

The main objective of the present study was to identify the gene mutated in 

CCMB1, a S. putrefaciens respiratory mutant originally isolated for its inability to respire 

U(VI) as anaerobic electron acceptor.  Subcloning and nucleotide sequence analyses 

indicate that CCMB1 contains a H108Y mutation in a protein similar to the CcmB 

permease subunit of an ABC transporter required for cytochrome c maturation in E. coli 

(System I).  CcmABC works in concert with membrane protein CcmD and heme 

chaperone CcmE to transfer heme to apocytochrome c (60).   

S. putrefaciens respiratory mutant CCMB1 grows on electron acceptors with E′0 

values greater than a threshold level of approximately 0.36 V [O2, Fe(III)-citrate, MnO2, 

Mn(III)-pyrophosphate and NO3
-].  This finding is unexpected for several reasons.  First, 

anaerobic respiration by S. oneidensis on Fe(III)-citrate, MnO2 and NO3
- as electron 

acceptor involves several c-type cytochromes including CymA, MtrA, MtrC, and OmcA 

(3, 43, 46, 52).  Second, ccmC mutants of S. oneidensis are unable to produce mature 

cytochrome c or grow anaerobically on U(VI), fumarate, TMAO, DMSO, Fe(III)-citrate, 

MnO2, NO3
- or NO2

- as electron acceptor (4, 41).  Several possibilities may explain these 

differences in the anaerobic growth capability of the Shewanella ccm mutants: 1) S. 

putrefaciens ccmB and S. oneidensis ccmC mutant genotypes display different respiratory  
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Figure 3.11.  Anaerobic growth and corresponding electron acceptor depletion or end-
product production of wild-type and mutant ΔccmB strains.  A (Fe(III)-citrate), B 
(MnO2), C [Mn(III)-pyrophosphate)], D (NO3

-), E (γ-FeOOH), F [U(VI)], G (O2), H 
(DMSO), I (TMAO), J (fumarate), K (S2O3

2-) and L (SO3
2-).  S. putrefaciens 

(pBBR1MCS) (-●-), mutant strain ΔccmB (pBBR1MCS) (-■-), mutant ΔccmB (pDC9) (-
□-).  S. putrefaciens with electron acceptor omitted (- -) and heat-killed cells (inoculum 
held at 80°C for 30 min prior to inoculation) (- -) were included as negative controls.   
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Figure 3.11 continued. 
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Figure 3.11 continued. 
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Figure 3.11 continued. 
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Figure 3.11 continued. 
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deficiencies, 2) S. putrefaciens contains cytochrome c-independent respiratory pathways, 

or 3) replacement of the histidine residue at position 108 with tyrosine permits limited, 

but sufficient, CcmB activity to sustain growth of CCMB1 on electron acceptors with 

high E′0.  Results from the present study favor the third possibility.  Deletion mutant 

ΔccmB does not respire anaerobically on any electron acceptor, indicating that anaerobic 

electron transport pathways in S. putrefaciens require mature c-type cytochromes.  Point 

mutant CCMB1, on the other hand, retains growth on anaerobic electron acceptors with 

E′0 > 0.36 V, despite lacking the ability to produce c-type cytochromes at detectable 

levels.  These findings suggest that the H108Y CcmB mutant may retain partial Ccm 

activity, and produce low levels of mature cytochrome c that are adequate to sustain wild-

type growth rates on electron acceptors above a threshold E′0.   

Mutations in ccmA, ccmB or ccmC in other bacteria often result in mutant 

phenotypes not associated with cytochrome c activity.  Legionella pneumophilia CcmB 

and CcmC mutants, for example, display defective iron acquisition capability and 

aberrant virulence phenotypes (9, 47, 61).  Pseudomonas fluorescens CcmC mutants are 

unable to complete synthesis of the siderophore pyoverdine (2). CcmC mutants of 

Pantoea citrea, Gluconacetobacter diazotrophicus and Pseudomonas putida are unable to 

oxidize gluconate and 2-ketogluconate, synthesize indole-3-acetic acid or isomerize (cis-

trans) unsaturated fatty acids, respectively (30, 38, 53).  The seemingly unrelated Ccm 

mutant phenotypes are postulated to reflect improper redox homeostasis in the periplasm 

(2, 9).   

To determine if CcmB plays a similar role in maintaining periplasmic redox 

homeostasis in S. putrefaciens, CCMB1 and wild-type S. putrefaciens were grown on the 
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suite of 13 electron acceptors and free thiol content was determined in the corresponding 

periplasmic fractions.  The wild-type strain contained approximately 100 pmol μg 

protein-1 free thiol after growth on O2, NO3
-, Mn(III)-pyrophosphate and Mn(IV).  Free 

thiol content was approximately 2-3X greater after growth on NO2
-, TMAO, DMSO, 

Fe(III)-citrate and fumarate, and approximately 10X greater after growth on γ-FeOOH, 

SO3
2- and S2O3

2-.  The pattern of free thiol content in the wild-type strain reflects the 

ability of CCMB1 to grow on electron acceptors with E′0 > 0.36 V (NO3
-/NO2

- threshold).  

Periplasmic redox conditions corresponding to a free thiol content of > 300 pmol μg 

protein-1 require wild-type CcmB activity to sustain growth.   These results parallel those 

obtained with P. fluorescens ccmC mutants that are unable to complete pyoverdine 

biosynthesis (2).  The periplasm of the P. fluorescens mutant strain was abnormally 

reducing and contained high free thiol content.   

Increased free thiol in the periplasm of CCMB1 after growth on electron 

acceptors with low E′0 may result from several factors.  First, the low redox poise 

associated with growth of CCMB1 on electron acceptors below a threshold E′0 may 

prevent the oxidation of thiol by an CcmB transported allocrite such as an oxidant or free 

heme.  In contrast, electron acceptors with high E′0 may oxidize excess -SH in the 

periplasm of CCMB1 and thereby prevent deleterious accumulation of -SH.  Second, 

increased periplasmic free thiol content in CCMB1 may reflect an overabundance of 

periplasmic apocytochrome c.  The thioredoxin branch of Ccm may continue to reduce 

the thiols of the CXXCH motif in apocytochromes despite the inability of CCMB1 to 

deliver heme.  Finally, CcmABC may mediate periplasmic redox homeostasis via an as 

yet unknown mechanism (2, 9).    
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 The present study is the first to identify an amino acid residue critical for CcmB 

function.  Residue H108 is conserved in > 88% of the 185 bacterial and land-plant 

mitochondrial CcmB orthologs currently available in the non-redundant database.  

Residue H108 may therefore play a pivotal role in CcmB activity.  Membrane protein 

topology prediction in S. putrefaciens indicates that residue H108 is found at the interface 

of a hydrophobic transmembrane helix and a hydrophilic cytoplasmic loop, well situated 

for controlling CcmB complex formation with other Ccm subunits or for allocrite 

recognition and subsequent transport across the cytoplasmic membrane.  The identity of 

the CcmB allocrite in E. coli, however, remains controversial.  Initial studies in E. coli 

indicate that heme is the CcmB allocrite and that CcmABC functions as a high-affinity 

heme transporter (23, 24).  More recent results suggest that E. coli CcmABC drives the 

release of holo-CcmE (CcmE with covalently attached heme) from CcmC by coupling 

the release with ATP hydrolysis (24).  Current work is aimed at identifying the CcmABC 

allocrite and determining the role that H108 plays in cytochrome c maturation in S. 

putrefaciens.   
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CHAPTER 4 

 

Methionine functionally replaces conserved histidine H108 of 
cytochrome c maturation permease CcmB in Shewanella putrefaciens 

strain 200 
 
 
 

Abstract 

Shewanella putrefaciens strain 200 requires cytochrome c for anaerobic growth 

on a wide range of electron acceptors, including metals and radionuclides.  S. 

putrefaciens employs the System I cytochrome c maturation pathway (Ccm) to attach the 

heme cofactor to apocytochrome c.  Recent studies on uranium (U(VI)) respiration by S. 

putrefaciens demonstrated that a conserved histidine residue (H108) in the ABC-

transporter permease CcmB was required for both Ccm and anaerobic growth on electron 

acceptors with mid-point redox potentials (E′0) below a threshold value of 0.36V (15).  In 

the present study, addition of cystine to the growth medium restored anaerobic growth, 

but not Ccm activity, to the previously generated mutant CCMB1 (H108Y random point 

mutation in CcmB).  H108 was the first residue identified in a CcmB homolog that is 

required for function.  To test the hypothesis that H108 confers the ability to transport 

heme across the cytoplasmic membrane to S. putrefaciens CcmB, H108 was replaced 

with the hydrophobic residues alanine (H108A) and leucine (H108L), charged and polar 

residues lysine (H108K) and tyrosine (H108Y) or methionine (H108M), a hydrophobic 

residue that coordinates heme iron in cytochrome c via site-directed mutagenesis.  The 

site-directed mutants were grouped into three classes based on anaerobic growth 
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capability, cytochrome c content and periplasmic redox condition (measured by free thiol 

(-SH) content):  (i) H108Y and H108K were unable to grow anaerobically on electron 

acceptors with E′0 < 0.36V, produced periplasmic cytochrome c at levels < 10% of the 

wild-type strain and contained periplasmic (–SH) content at levels two-fold greater than 

the wild-type strain, (ii) H108A and H108L retained the ability to grow on electron 

acceptors with E′0 < 0.36V, produced periplasmic cytochrome c at levels < 20% of the 

wild-type strain and contained periplasmic -SH content at levels 50% greater than the 

wild-type strain, and (iii) H108M retained the ability to grow on electron acceptors with 

E′0 < 0.36V, produced periplasmic cytochrome c at near wild-type levels and contained 

wild-type levels of periplasmic SH.  –SH concentrations correlated inversely with the 

anaerobic growth rates and periplasmic cytochrome c content of the site-directed mutants.  

Addition of cystine to the growth medium restored anaerobic growth capability to the 

H108Y and H108K mutants.  These results demonstrate that S. putrefaciens CcmB 

requires either histidine or a hydrophobic residue capable of coordinating heme iron in a 

low spin state (i.e., methionine) at amino acid position 108 for maintenance of 

periplasmic redox homeostasis and production of mature cytochrome c. 

Introduction 

Cytochrome c is a key electron transport chain component for bacterial respiration 

and photosynthesis (20, 36, 72).  Cytochrome c is distinguished from other cytochromes 

by the presence of covalent thioether bonds between vinyl groups in heme and cysteine 

residues in the characteristic CXXCH heme attachment motif of the apocytochrome.  

Bacteria, archaea and the mitochondria and chloroplasts of eukarya employ three known 

cytochrome c maturation (Ccm) systems for stereospecific covalent attachment of heme 
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to apocytochrome c (for reviews, see references (72), and (73)).  System III Ccm is 

restricted to fungal and animal mitochondria and consists of a single heme lyase (CCHL).  

System II Ccm is found in gram-positive bacteria, β- and δ- proteobacteria, chloroplasts 

and cyanobacteria, and consists of four proteins (ResABC and CcdA) (39, 67, 72).  

System I Ccm is found in α- and γ- proteobacteria, land plant and protozoan 

mitochondria and many archaea, and consists of eight dedicated proteins (CcmA-H).   

 In Escherichia coli, System I Ccm is organized into two branches that converge at 

heme lyase CcmF (34, 58).  The thioredoxin branch consists of CcmG, CcmH and DsbD 

which transfers thiol (-SH)-reducing equivalents to the periplasm to ensure that cysteines 

of the apocytochrome c CXXCH motif remain reduced for heme attachment (22, 68-70).  

The heme delivery branch consists of CcmABCDE which transfers heme synthesized in 

the cytoplasm to apocytochrome c located in the periplasmic space in an ATP-dependent 

manner.  CcmA, a subunit of a cytoplasmic membrane-spanning ABC-type transporter, is 

located on the inner aspect of the cytoplasmic membrane and contains an ATP-binding 

(Walker A) domain.  CcmB and CcmC are cytoplasmic membrane proteins that contain 

six putative cytoplasmic membrane-spanning α-helices.  CcmC contains two highly 

conserved histidine residues that transiently coordinate heme iron at the periplasmic face 

of the cytoplasmic membrane and transfer heme to heme chaperone CcmE (34, 58).  

CcmE binds heme covalently at a conserved histidine residue and transfers heme to 

CcmF for incorporation into apocytochrome c (16, 24, 58, 63).  Integral membrane 

protein CcmD plays a role in formation of a CcmC and CcmE complex (1).   

 The function of the CcmAB transporter is a subject of controversy.  CcmAB was 

initially postulated to transport heme (45, 56, 72), although this hypothesis has been 
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brought into question by several recent findings.  First, heme-containing b-type 

cytochromes are produced at normal levels in the periplasmic space of ccm mutants of E. 

coli (72, 74).  Second, extracellular addition of heme does not restore cytochrome c 

maturation in ccmA and ccmB mutants of Parococcus denitrificans (56).  On the other 

hand, System I delivers heme to apocytochrome c with greater affinity than System II 

(59).  System I Ccm ABC transporter-like complexes are strikingly absent from System 

II, an indication that CcmAB may function as a heme transporter.  In addition, CcmC is 

unable to transfer heme to CcmE, and holo-CcmE is unable to transfer heme to 

apocytochrome c in ccmA and ccmB mutants of E. coli (11, 27, 28).  These results 

suggest that CcmA and CcmB are required for heme transport across the cytoplasmic 

membrane and participate in subsequent stepwise delivery of heme to CcmC, CcmE and 

ultimately CcmF for incorporation into the apocytochrome c located in the periplasm (11, 

28, 63).   

The aliphatic heme prosthetic group associates with hemoproteins via 

hydrophobic interactions and heme iron coordination (36, 41).  Ring nitrogen atoms of 

the heme tetrapyrole occupy four of the six coordination sites of iron.  Nitrogen, sulfur or 

oxygen atoms of amino acid side chains, O2, OH- or H2O occupy the remaining 

coordination sites of iron in hemoproteins.  The most common heme ligand in 

prokaryotic proteins is the imidazole moiety of histidine.  Histidine coordinates heme 

iron in cytochromes a, b, c, and d (3, 26, 31, 72), microperoxidases (55) and signal 

transduction sensors such as CooA of Rhodospirillum rubrum and FixL of 

Bradyrhizobium japonicum (54, 75, 76).  Methionine is an axial heme ligand in 

cytochrome c, cytochrome bd oxidase and bacterioferritin (10, 26, 61, 72, 75).  Tyrosine 
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is a heme ligand in CcmE, cytochrome cd1 and catalase (17, 29, 31, 33, 77).  Lysine is a 

heme ligand in the nitrite reductase subunits NrfA and NrfH (6, 37) and the octaheme 

tetrathionate reductase (OTR) in S. oneidensis (51).  Heme iron ligands are generally 

flanked by hydrophobic patches that stabilize heme-protein interaction in cytochromes b, 

c and f, CcmE and CcmC (14, 24, 34, 35, 80). 

Recent studies on U(VI) respiration by S. putrefaciens demonstrated that 

conserved histidine residue H108 in the ABC-transporter permease CcmB was required 

for cytochrome c maturation and anaerobic growth (15, 79).  Mutant strain CCMB1 

(H108Y random point mutation in CcmB) was impaired in its ability to grow 

anaerobically on electron acceptors with mid-point redox potentials (E′0) below a 

threshold value of 0.36V, contained cytochrome c at levels < 10% of the wild-type strain 

and contained concentrations of periplasmic -SH at levels 2-fold greater than the wild-

type strain.  H108 is predicted to reside at the interface of a transmembrane helix and a 

cytoplasmic loop containing a hydrophobic patch, a position suitable for heme iron 

coordination.  The main objective of the present study was to test the hypothesis that S. 

putrefaciens CcmB regulates periplasmic redox homeostasis during anaerobic growth at 

low redox potential by transporting heme from the cytoplasm to the periplasm.  To 

examine the possibility that CcmB regulates redox homeostasis in S. putrefaciens, CcmB 

mutant CCMB1 was tested for growth on electron acceptors with low E′0 in medium 

amended with the disulfide-containing compounds cystine and oxidized glutathione.  To 

determine if S. putrefaciens CcmB residue H108 may bind heme, a set of site-directed 

mutants were constructed with amino acid residues that are or are not capable of heme 

iron coordination.  H108 was replaced by hydrophobic residues that are not able to 
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coordinate heme iron (i.e., alanine, leucine), a hydrophobic residue that coordinates heme 

iron in a low spin state (i.e., methionine) and hydrophilic (polar and basic) residues that 

coordinate heme iron in a high spin state (i.e., tyrosine, lysine).  The resulting mutant 

strains were tested for anaerobic growth ability on a set of electron acceptors with E′0 

ranging from highly oxidizing (O2) to highly reducing (thiosulfate, S2O3
2-).  Cytochrome 

c is essential for anaerobic growth and U(VI) reduction by Shewanella (15, 49), and the 

results of this study demonstrate that the process of cytochrome c maturation provides 

both electron transport components (i.e., holocytochrome c) and a favorable periplasmic 

redox poise that sustain anaerobic activity. 

Materials and methods 

Bacterial strains, growth media and cultivation conditions.  A previously isolated 

rifamycin resistant strain of S. putrefaciens strain 200 was cultured in the presence of 50 

μg ml-1 rifamycin in either Luria Broth or a defined salts growth medium (SM, pH 7.5) 

(19, 21, 52).  S. putrefaciens and E. coli strains harboring cloning vectors were grown in 

media amended with appropriate antibiotics at the following concentrations: 

chloramphenicol (25 μg ml-1) and kanamycin (10 μg ml-1) (see Table 4.1 for strains and 

plasmids used in the present study).  Anaerobic growth experiments were carried out in 

N2-purged Erlenmeyer flasks containing 50 ml SM medium supplemented with sodium 

lactate (30 mM).  Electron acceptor stocks were added at the following final 

concentrations (electron acceptor stock solutions were prepared as previously described 

(19, 79), except where indicated): NO3
-, (20 mM); NO2

-, (2.0 mM); U(VI)-carbonate, (1.0 

mM); Fe(III) citrate, (50 mM); γ-FeOOH(64), (40 mM); MnO2 (as colloidal MnO2), (10 

mM) (57); Mn(III)-pyrophosphate, (10 mM) (43); TMAO,  (30 mM); SO3
2-, (10 mM); 
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    Table 4.1.  Bacterial strains and plasmids used in the present study  

Strain or plasmid Description Reference 
Strains   
     Shewanella putrefaciens   
          200R Spontaneous Rifr derivative of S. putrefaciens 

(NCIB 12577) 
(19) 

          CCMB1 Randomly generated point mutant of 200R 
containing H108Y in CcmB 

(79) 

          ΔccmB ccmB in-frame deletion mutant of 200R (15) 
     Escherichia coli   
          β2155 thrB1004 pro thi strA hsdS lacZΔM15 (F 

φlacZΔM15 lacIq traD36 proA+ proB+) 
ΔdapA::erm pir::RP4; Ermr Kmr 

(18) 

Plasmids   
     pBBR1MCS Broad-host-range cloning vector, 4.7-kb 

α−lac/multiple cloning site; Cmr 
(44) 

     pBCCMAB pBBR1MCS with cloned ccmAB from 200R This study 
     pBH108H pBCCMAB with substituted ccmB H108H codon This study 
     pBH108Y pBCCMAB with substituted ccmB H108Y codon This study 
     pBH108A pBCCMAB with substituted ccmB H108A codon This study 
     pBH108L pBCCMAB with substituted ccmB H108L codon This study 
     pBH108K pBCCMAB with substituted ccmB H108K codon This study 
     pBH108M pBCCMAB with substituted ccmB H108M codon This study 

 

S2O3
2-, (10 mM); DMSO, (50 mM); fumarate, (35 mM).  Aerobically-grown cells were 

inoculated in batch cultures vigorously aerated with atmospheric gas.  U(VI) growth 

experiments were carried out in SM medium with a headspace gas consisting of 10% H2, 

5% CO2 and the balance N2.  Control experiments consisted of incubating wild-type S. 

putrefaciens in SM liquid growth medium with electron acceptor omitted or with heat-

killed cells (held at 80°C for 30 minutes) as inoculum.          

Site-directed mutagenesis.  The conserved histidine residue H108 of CcmB was replaced 

with alanine (H108A), leucine (H108L), methionine (H108M), lysine (H108K), tyrosine 

(H108Y, CCMB1 control) or histidine (H108H, wild-type positive control) in S. 

putrefaciens by altering the corresponding ccmB nucleotides.  ccmAB and flanking 

regions were PCR-amplified from the wild-type strain and cloned into pBBR1MCS 

generating pBCCMAB (primer set CCMF and CCMR, Table 4.2).  Recombinant 
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expression vectors encoding CcmB-H108A, -H108L, -H108K, or -H108M were 

generated by annealing mutagenic oligonucleotides (Table 4.2) to pBCCMAB as 

template following a PCR-based mutagenesis protocol (QuickChange II XL Site-Directed 

Mutagenesis Kit, Stratagene, La Jolla, CA).  A wild-type positive control strain CcmB-

H108H and a CCMB1 control strain CcmB-H108Y were constructed in a similar manner.  

Constructs were verified by DNA sequencing and conjugally transferred into strain 

ΔccmB by bi-parental mating procedures (19).   

Analytical techniques.  Batch cultures were monitored for growth by simultaneously 

measuring cell number and electron acceptor depletion or end product production.  

Acridine orange-stained cells were counted directly via epifluorescence microscopy  

 
    Table 4.2.  Oligonucleotide sequences used in the present study 

     aEndonuclease recognition sequences for cloning ccmAB are underlined 

Primer                                  Sequence 
Cloning Primersa 
     CCMF GACTGTCGACGGGTGTAACCATTTCCACATTTTAGTTAGTAC 
     CCMR GACTACTAGTCCTTGGTGGAGGCAGACTCAT 
Sequencing Primers 
     CCMBSF GGGTAAAATCAGTAGGCTGAGC 
     CCMBSR CCTCCATGCTATCGCTTGAAC 
Mutagenic oligonucleotides for site-directed mutagenesisb 
     H108Hsens TATTGGCAAAAGTATTGGCGCAcTGGATATTGACTGGC 
     H108Hanti GCCAGTCAATATCCAgTGCGCCAATACTTTTGCCAATA 
     H108Lsens GGCAAAAGTATTGGCGCtTTGGATATTGACTGGCG 
     H108Lanti CGCCAGTCAATATCCAAaGCGCCAATACTTTTGCC 
     H108Asens TATTGGCAAAAGTATTGGCGgcTTGGATATTGACTGGCGTTC 
     H108Aanti GAACGCCAGTCAATATCCAAgcCGCCAATACTTTTGCCAATA 
     H108Ysens TTGGCAAAAGTATTGGCGtATTGGATATTGACTGGCG 
     H108Yanti CGCCAGTCAATATCCAATaCGCCAATACTTTTGCCAA 

     H108Msens CTTGTATTGGCAAAAGTATTGGCGatgTGGATATTGACTGGCGTTCCATTA 
     H108Manti TAATGGAACGCCAGTCAATATCCAcatCGCCAATACTTTTGCCAATACAAG 
     H108Ksens TATTGGCAAAAGTATTGGCGaAaTGGATATTGACTGGCGTTCC 

     H108Kanti GGAACGCCAGTCAATATCCAtTtCGCCAATACTTTTGCCAATA 

    bIn mutagenic oligonucleotides, changed nucleotides (lower case), altered codons       
    (bold).   
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(Nikon Diaphot 300 microscope).  Fe(III) reduction was monitored by measuring HCl-

extractable Fe(II) with the ferrozine technique (71).  MnO2 reduction was monitored by 

measuring MnO2 depletion with the benzidine blue colorimetric assay (8).  Mn(III)-

pyrophosphate depletion was monitored spectrophotometrically at 480 nm (43).  U(VI) 

was measured colorimetrically with Arsenazo III reagent (46).  NO2
- was measured 

spectrophotometrically with sulfanilic acid-N-1-naphthylethylene-diamine 

dihydrochloride reagent (50).  Growth on O2, TMAO, DMSO, fumarate, S2O3
2- and SO3

2- 

was monitored by cell growth only.      

Periplasmic protein fractions from S. putrefaciens cultures were recovered from 

cells by osmotic shock treatment (25) after anaerobic growth to late logarithmic phase in 

SM medium containing Fe(III)-citrate or fumarate as electron acceptor.  Cells were 

harvested by centrifugation, washed in anoxic PBS buffer (200 mM NaCl, 10 mM 

Phosphate, 2.7 mM KCl, pH 7.4, 4°C) twice and resuspended in hyperosmotic sucrose 

PBS buffer (20% sucrose w/v).  Cells were incubated on ice for 30 min., collected by 

centrifugation, resuspended in a hypoosmotic solution (5mM  MgCl2, pH 7.0, 4oC) and 

incubated on ice for 20 min.  The mixture was centrifuged at 40,000 x g for 20 min at 

4°C (Beckman Coulter Optima L-100 XP Ultracentrifuge) and the supernatant containing 

the periplasmic protein fraction was collected.  The extent of cytoplasmic protein 

contamination was determined by measuring shikimate dehydrogenase activity (which 

remained below 10% in all periplasmic fractions; data not shown).  

Free thiol equivalents (-SH free to react with Ellman’s reagent) were determined 

by reaction with 5,5′-dithio-bis-2-nitrobenzoic acid (23), standardized with reduced 

glutathione and reported on a per μg protein basis. Protein concentration was determined 
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with the Coomassie Plus Bradford assay (Pierce Biotechnology) standardized with bovine 

serum albumin. 

Cytochrome content in wild-type and ccmB mutant extracts was determined by 

measuring dithionite-reduced-minus-ferricyanide-oxidized difference spectra on a 

Shimadzu UV-1601 spectrophotometer operated in the split-beam mode.  Estimates of 

total cytochrome content were based on the difference between absorbance values at the 

peak and trough of the Soret peak standardized per mg total protein (12, 53).  Protein 

fractions were separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel 

electrophoresis on a linear gradient gel (4% to 20% resolving) with 200 μg total protein 

loaded per well (48). Gels were stained for heme peroxidase activity by incubating in a 

solution consisting of 0.5 M Tris-HCl (pH 7.5), 3,3-dimethoxybenzidine-peroxide (1 mg 

ml-1) and H2O2 (30% stock solution, 0.0025 μl ml-1) (30). 

Results 

Addition of exogenous cystine or oxidized glutathione to the growth medium restores the 

ability of S. putrefaciens mutant strain CCMB1 to grow anaerobically on electron 

acceptors with low E′0.  S. putrefaciens ccmB mutant CCMB1 was unable to grow on 

electron acceptors with E′0 < 0.36V and the periplasm of CCMB1 was found to contain 

elevated levels of -SH (15).  To determine if exogenous disulfide-containing compounds 

restore growth of S. putrefaciens CCMB1 on electron acceptors with low E′0, oxidized 

glutathione or cystine were added to anaerobic CCMB1 cultures containing either NO3
-, 

DMSO, TMAO, fumarate, U(VI), γ-FeOOH, SO3
2-,  or S2O3

2- as electron acceptor.  

Growth of CCMB1 on electron acceptors NO2
-, DMSO, TMAO, fumarate, U(VI) and γ-

FeOOH was restored to wild-type rates by the addition of cystine to the growth medium 
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(Figure 4.1 and Figure 4.2).  Addition of oxidized glutathione restored growth of CCMB1 

to 50% wild-type rates on NO2
-, DMSO, TMAO, fumarate, U(VI) and γ-FeOOH.  

CCMB1 was unable to grow anaerobically on either SO3
2- or S2O3

2- even after addition of 

cystine or oxidized glutathione to the growth medium.  Increasing the concentration of 

cystine to 1 mM did not restore anaerobic growth to CCMB1 on SO3
2- or S2O3

2- (data not 

shown).   
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Figure 4.1.  Comparison of logarithmic growth rate of CCMB1 and wild-type S. 
putrefaciens on a set of 13 electron acceptors in SM medium (solid bars), in SM medium 
containing 300 μM cystine (hatched bars) and in SM containing 300 μM oxidized 
glutathione (shaded bars).  Logarithmic growth rates are normalized to S. putrefaciens 
wild-type strain growth on each electron acceptor (h-1):  O2, 1.4; MnO2, 0.7; Mn(III) 
pyrophosphate, 0.3; NO3

-, 0.38; Fe(III) citrate, 0.2; NO2
-, 0.2; DMSO, 0.9; TMAO, 0.4, 

fumarate, 0.9; U(VI), 0.05; γ-FeOOH, 0.3; SO3
2-, 0.2; S2O3

2-, 0.1.  See Figure 4.2 for 
individual growth curves.  Error bars represent the standard deviations of three parallel 
yet independent incubations. 
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Figure 4.2.  Anaerobic growth and corresponding electron acceptor depletion or end-
product production of wild-type S. putrefaciens and CCMB1 in SM medium containing 
cystine or oxidized glutathione and the indicated electron acceptors.  CCMB1 with 
cystine added (–□-), CCMB1 with oxidized glutathione added (-Δ-), S. putrefaciens with 
cystine added (-■-), S. putrefaciens with oxidized glutathione added (-▲-), CCMB1 with 
no amendment (-○-), S. putrefaciens with no amendment (-●-), S. putrefaciens heat-killed 
control (- -). 
 

 

 

113 



 

 

 

0 20 40 60 80
0

5

10

15

Ce
ll 

nu
m

be
r (

10
7  m

l-1
)

Time (h)
0 20 40 60 8

0

200

400

600

800

1000

0

U
(V

I) 
(μ

M
)

Time (h)

C.  U(VI)

0 10 20 30 40 50
0

10

20

30

40

50

Ce
ll 

nu
m

be
r (

10
7  m

l-1
)

Time (h)
0 10 20 30 40 50

0

10

20

30

40

Ce
ll 

nu
m

be
r (

10
7  m

l-1
)

Time (h)

E.  DMSOD.  TMAO

 

Figure 4.2 continued. 
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Figure 4.2 continued. 
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Addition of exogenous cystine to the growth medium does not restore the ability of S. 

putrefaciens mutant strain CCMB1 to produce cytochrome c.  Anaerobic CCMB1 

cultures amended with cystine were analyzed for cytochrome c content.  CCMB1 and the 

wild-type strain were grown in SM medium containing fumarate as electron acceptor.  

Replicate cultures were prepared and cystine was added to the CCMB1 growth medium 

to restore anaerobic growth on fumarate.  The cytochrome c content of CCMB1 was at or 

below detection limits even with cystine added to the growth medium (Figure 4.3).  

These results demonstrate that ccmB mutants of S. putrefaciens grow anaerobically at 

wild-type rates in growth medium amended with exogenous cystine, while the 

cytochrome c content remains at CCMB1 mutant levels (< 10% of wild-type). 

S. putrefaciens site-directed mutants H108M, H108A and H108L retain the ability to 

grow anaerobically on all electron acceptors.  H108 of S. putrefaciens CcmB is predicted 

to be located at the inner aspect of the cytoplasmic membrane and is flanked by a 

transmembrane α-helix (TM III) and a hydrophobic patch in an otherwise hydrophilic 

cytoplasmic loop (Figure 4.4).  To determine if H108 amino acid substitutions affect 

cytochrome c maturation, periplasmic redox condition, and anaerobic growth ability, 

H108 was replaced by hydrophobic residues that are not able to coordinate heme iron 

(i.e., alanine, leucine), a hydrophobic residue that coordinates heme iron (i.e., 

methionine), and hydrophilic (polar and basic) residues that coordinate heme iron (i.e., 

tyrosine, lysine).  The resulting site-directed mutants were tested for growth on O2, 

Fe(III)-citrate, NO3
-, fumarate, γ-FeOOH, or S2O3

2- as electron acceptor.  Each mutant  
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Figure 4.3.  Reduced-minus-oxidized difference spectra of periplasmic protein extracts 
from CCMB1 and S. putrefaciens after anaerobic growth in SM medium containing 
fumarate as electron acceptor and amended with 300 μM cystine.  S. putrefaciens wild-
type with cystine added (1); S. putrefaciens wild-type without cystine added (2); point-
mutant CCMB1 without cystine added (3); point-mutant CCMB1 with cystine added (4). 
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Figure 4.4.  Hydrophobicity plot of region flanking H108 in CcmB.  S. putrefaciens (solid 
line) and average values from S. putrefaciens, E. coli, Tricicum aestivum, Arabidopsis 
thaliana and Vibrio cholerae (shaded line).  Transmembrane helices (TM II and TM III) 
are shaded.  Position of H108 in S. putrefaciens is indicated.  Bold arrow indicates 
putative hydrophobic platform.  Hydrophobicity was determined according to the Kyte-
Doolittle scale (47). 
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strain was capable of aerobic growth at near wild-type rates (Figure 4.5).  H108M, 

H108L and H108A grew anaerobically on all electron acceptors at near wild-type rates, 

while H108K was severely impaired in its ability to grow anaerobically on electron 

acceptors with E′0 < 0.36V (i.e., NO2
-, fumarate, γ-FeOOH, S2O3

2-).  The CCMB1 control 

strain H108Y grew at near wild-type rates on Fe(III)-citrate and NO3
-, but grew at < 30% 

of the wild-type rates on NO2
-, fumarate, γ-FeOOH and S2O3

2- (Figure 4.5).  H108Y 

displayed a phenotype nearly identical to CCMB1 indicating that CcmB activity of the 

H108Y site-directed mutant is nearly equal to that of the corresponding random point 

mutant CCMB1.  Control strain H108H grew anaerobically at rates nearly identical to the 

wild-type strain (Figure 4.5).  After cystine was added to the growth medium, H108Y and 

H108K were restored for anaerobic growth on NO2
-, fumarate and γ-FeOOH, but not on 

S2O3
2- (Figure 4.6).  These results demonstrate that CcmB constructs with histidine, 

methionine or a hydrophobic residue (i.e., alanine, leucine) at position 108 retain the 

ability to grow anaerobically on all electron acceptors, while CcmB constructs with 

hydrophilic (polar or basic) residues (i.e., tyrosine, lysine) at position 108 are unable to 

grow on electron acceptors with low E′0. 

CcmB mutant H108M retains the ability to produce cytochrome c at wild-type levels.  

CcmB mutants H108M, H108L and H108A retain the ability to grow on all electron 

acceptors.  To determine if H108M, H108L or H108A contained wild-type levels of 

cytochrome c,  periplasmic extracts from each mutant were collected after anaerobic 

growth on fumarate to late logarithmic phase.  Based on reduced-minus-oxidized 

difference spectra and heme stain analysis, H108K, H108Y, H108A and H108L each  
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Figure 4.5.  Growth rates of S. putrefaciens CcmB site-directed mutant strains on a set of 
7 electron acceptors (rates normalized to the wild-type strain S. putrefaciens).  S. 
putrefaciens ΔccmB deletion mutants containing H108 site-directed mutants in trans on 
plasmid pBH108H (positive control) (H),  pBH108M (M), pBH108L (L), pBH108A (A), 
pBH108Y (CCMB1 control) (Y) or pBH108K (K) grown on O2 (O), Fe(III)-citrate (FC), 
NO3

- (NA), NO2
- (NI), fumarate (FM), γ-FeOOH (FO) or S2O3

2- (TS) as electron 
acceptor.  Logarithmic growth rates are normalized to S. putrefaciens wild-type grown on 
each electron acceptor (See Figure 4.1).  Error bars represent the standard deviation of 
three parallel yet independent incubations. 
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Figure 4.6  Anaerobic growth and corresponding electron acceptor depletion or end-
product production of wild-type S. putrefaciens and CcmB H108 site-directed mutants.  
S. putrefaciens wild-type (-●-), S. putrefaciens heat-killed control (-►-), H108H  
(positive control) (-■-), H108M (-○-), H108L (-□-), H108A (-Δ-), Η108Y (- -), H108Y 
with cystine added (… …), H108K (-◊-), H108K with cystine added (…◊…). 
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Figure 4.6 continued. 
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Figure 4.6 continued. 
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Figure 4.7.  Reduced-minus-oxidized difference spectra (A) and SDS-PAGE heme stain 
(B) of periplasmic protein fractions of wild-type S. putrefaciens and CcmB H108 site-
directed mutants after growth on Fe(III)-citrate.  S. putrefaciens (pBBR1MCS) (WT) and 
ΔccmB deletion mutants containing H108 site-directed mutants in trans on plasmid 
pBH108H (positive control) (H), pBH108A (A), pBH108L (L), pBH108K (K), 
pBH108Y (Y) and pBH108M (M). 
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contained < 20% of the wild-type cytochrome c content, while H108M contained near 

wild-type levels of cytochrome c (Figure 4.7).  H108L and H108A grew at near wild-type 

rates on all electron acceptors even though the periplasmic cytochrome c content was < 

20% of the wild-type strain.   

-SH content in the periplasmic space is inversely related to the growth rate of H108M, 

H108L, H108A, H108Y and H108K.  The periplasmic -SH content of S. putrefaciens 

CCMB1 is two-fold greater than the wild-type strain after growth on electron acceptors 

with E′0 < 0.36V (Chapter 3, Figure 3.10).  To determine if elevated -SH levels correlate 

with the anaerobic growth deficiencies of the set of H108 site-directed mutants, the -SH 

content in the periplasmic fraction of each site-directed mutant was measured after 

anaerobic growth on fumarate and compared to that measured in the periplasm of the 

wild-type strain.  The wild-type strain, control strain H108H and H108M contained < 400 

pmol [-SH] μg protein-1 (Figure 4.8).  H108Y and H108K contained > 600 pmol [-SH] 

μg protein-1 and H108A and H108L contained > 400 and < 600 pmol [-SH] μg protein-1.  

-SH measurements correlated inversely with the growth rate and cytochrome c content of 

each strain, indicating that residue H108 plays a key role in both cytochrome c 

maturation and CcmB-driven regulation of periplasmic redox homeostasis in S. 

putrefaciens.  

Discussion 

 Rsults of a previous study demonstrated that S. putrefaciens ccmB mutant 

CCMB1 (H108Y random point mutation in CcmB) grew at near wild-type rates on 

electron acceptors with E′0 > 0.36 V [i.e., O2, Fe(III) citrate, MnO2, NO2
-] but displayed 

severe growth deficiencies on electron acceptors with E′0 < 0.36V i.e., NO2
-, DMSO,  
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Figure 4.8.  -SH content in periplasmic fractions of S. putrefaciens CcmB H108 site-
directed mutants after growth on fumarate.  S. putrefaciens (pBBR1MCS) (WT) and S. 
putrefaciens ΔccmB deletion mutant containing CcmB H108 site-directed mutants in 
trans on plasmid pBH108K (K), pBH108Y (Y), pBH108L (L), pBH108A (A), 
pBH108M (M) and positive control pBH108H (H).  The box below the bar graph 
indicates mutant growth ratea and cytochrome c contentb in the periplasmic protein 
fractions of each strain grown to mid log-phase (+, value > 80% of wild-type grown on 
fumarate; -, value < 30% of wild-type grown on fumarate). 
 
 

 

TMAO, fumarate, U(VI), -FeOOH, SO3
2-, S2O3

2-] (15).  An in-frame gene deletion 

mutant (ΔccmB) mutant was unable to grow anaerobically on any electron acceptor 

suggesting that S. putrefaciens requires CcmB to sustain anaerobic growth.  Regardless of 

the electron acceptor used for growth, the periplasm of CCMB1 contained < 10% of the 

cytochrome c content of the periplasm of the wild-type strain and contained abnormally 

high (two-fold greater than wild-type) levels  of –SH in the periplasmic space (Figure 
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3.10).  Abnormally high -SH was also detected in ccmC mutants of Pseudomonas 

fluorescens that are unable to complete cytochrome c maturation or biosynthesis of the 

fluorescent siderophore pyoverdine (7).  Addition of oxidized glutathione to the growth 

medium restored pyoverdine biosynthesis to the P. fluorescens ccmC mutants.  

Cytochrome c maturation, however, was not restored by the addition of oxidized 

glutathione.  A similar result was obtained in the present study with S. putrefaciens 

mutant CCMB1.  Addition of cystine (and to a lesser extent oxidized glutathione) to the 

growth medium restored anaerobic growth capability to CCMB1 (on all electron 

acceptors except SO3
2- or S2O3

2-) but not cytochrome c maturation activity.  Surprisingly, 

these results indicate that wild-type growth rates of S. putrefaciens are achieved in 

anaerobic cultures with abnormally low cytochrome c content.  CCMB1 cultures 

containing SO3
2- or S2O3

2- as electron acceptor were not restored to wild-type growth 

rates by addition of cystine to the growth medium.  The potent chemical reductant H2S, 

the end product of SO3
2- and S2O3

2- respiration, most likely accumulates to high 

concentration in the already overly-reducing CCMB1 periplasm and disrupts periplasmic 

redox homeostasis even in the presence of cystine.  These results indicate that 

maintenance of proper redox poise is a primary function of S. putrefaciens CcmB during 

anaerobic growth on electron acceptors with low E′0.  

The elevated periplasmic –SH content of the S. putrefaciens ccmB mutants may 

be due to a variety of factors including a decrease in periplasmic heme iron content, 

accumulation of apocytochrome c or the inactivation of periplasmic proteases that 

otherwise degrade immature apocytochrome c.  Heme iron oxidizes  –SH in vivo (5, 13, 

40, 65).  Periplasmic Fe(III) in the form of unincorporated heme or mature cytochrome c 
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may therefore be required for maintenance of periplasmic redox homeostasis.  The 

periplasmic –SH content in ccmB mutants of S. putrefaciens may also be elevated due to 

accumulation of apocytochrome c.  Although the heme delivery branch of the S. 

putrefaciens CcmB mutants is compromised, the Ccm thioredoxin branch (CcmGH) may 

continue to reduce cysteines in the CXXCH motif of apocytochrome c resulting in an 

increase in the periplasmic –SH content.  In E. coli, Rhodobacter sphaeroides and 

Paracoccus denitrificans, periplasmic proteases (e.g., DegP) that degrade immature 

apocytochrome c require an essential disulfide bridge for protease activity (32, 38, 60, 62, 

66).  The disulfide bridge does not form in E. coli dsbA mutants unable to oxidize the 

protease –SH groups (66), and apocytochrome c is not degraded (32).  Current work is 

focused on determining the stability of apocytochrome c in ccmB mutants and the effect 

of apocytochrome c accumulation on redox homeostasis during anaerobic growth of S. 

putrefaciens on electron acceptors with low E′0. 

  The S. putrefaciens site-directed ccmB mutants H108A, H108L, H108Y, H108K, 

and H108M were tested for cytochrome c production, periplasmic redox condition and 

anaerobic growth capability.  The site-directed mutants were grouped into three classes:  

(i) H108Y and H108K were unable to grow anaerobically on electron acceptors with E′0 

< 0.36V, produced periplasmic cytochrome c at levels < 10% of the wild-type strain and 

contained periplasmic (–SH) content at levels two-fold greater than the wild-type strain, 

(ii) H108A and H108L retained the ability to grow on electron acceptors with E′0 < 

0.36V, produced periplasmic cytochrome c at levels < 20% of the wild-type strain and 

contained periplasmic -SH content at levels 50% greater than the wild-type strain, and 

(iii) H108M retained the ability to grow on electron acceptors with E′0 < 0.36V, produced 
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periplasmic cytochrome c at near wild-type levels and contained wild-type levels of 

periplasmic SH.  H108Y and H108K were unable to grow anaerobically on electron 

acceptors with low E′0 and contained low cytochrome c content.  The –SH content in the 

H108Y and H108K mutants was two-fold greater than the wild-type strain.  These results 

indicate that CcmB activity is nearly abolished by replacing H108 with a hydrophilic 

(polar or charged) residue (tyrosine or lysine) even if the substituted residues are capable 

of ligating heme iron.  Hydrophobic patches in hemoproteins stabilize heme-protein 

interactions and modify the electrostatic potential surrounding the heme.  For example, E. 

coli CcmC contains a tryptophan-rich heme docking site (34, 58), which facilitates 

periplasmic heme transfer to CcmE.  E. coli CcmE also contains a hydrophobic heme 

docking site consisting of phenylalanine, valine and leucine (24, 33).  In addition, 

cytochrome c551, a physiological redox partner of cytochrome cd1 nitrite reductase (NIR) 

in Pseudomonas aeruginosa, contains a hydrophobic patch surrounding the heme 

docking site (4, 78).  Mutations in the c551 hydrophobic patch result in decreased 

cytochrome E′0 and lower electron transfer rates to NIR, possibly due to increased heme 

solvent exposure (14).  In a similar manner, S. putrefaciens CcmB (and E. coli and CcmB 

orthologs in land-plant mitochondria; Fig. 3) contains a hydrophobic patch (ranging from 

amino acid position 94 to 105) flanking the conserved histidine residue H108 in an 

otherwise hydrophilic cytoplasmic loop (Fig. 3).  The hydrophobicity of the cytoplasmic 

loop in CcmB decreases in CcmB site-directed mutants containing polar or charged 

amino acids (tyrosine or lysine) at amino acid position 108.    

S. putrefaciens CcmB mutants H108A and H108L contain hydrophobic residues 

in place of histidine at position 108.  Although H108A and H108L retained the ability to 
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grow on electron acceptors with E′0 < 0.36V, periplasmic cytochrome c content was less 

than 20% of the wild-type strain while the periplasmic -SH content was 50% greater than 

the wild-type strain.  In a previous site-directed mutagenesis study (42), the heme axial 

ligand of cytochrome b558 of E. coli was replaced with leucine and the resulting 

cytochrome bd oxidase mutant retained activity and aerobic growth capability.  The heme 

iron, however, was converted from low spin to high spin (42).  S. putrefaciens CcmB 

mutants H108L and H108A are able to maintain hydrophobicity at the interface between 

the cytoplasmic loop and TM III in CcmB but may be unable to maintain heme iron in 

the low spin form for incorporation into apocytochrome c.  The ability of H108L and 

H108A to grow anaerobically at wild-type rates suggests that laboratory-grown cultures 

of S. putrefaciens contain cytochrome c at a level approximately five-fold greater than 

that required for anaerobic growth at optimal rates.       

CcmB mutant H108M retained wild-type anaerobic growth capability and 

cytochrome c maturation activity.  Periplasmic –SH content of anaerobically grown 

H108M cultures was nearly identical to that of the wild-type strain.  Hydrophobic 

methionine residues coordinate heme iron via a thioether side-chain in many heme-

binding proteins (10, 26, 75).  For example, methionine occupies the 5th and 6th 

coordination sites of heme iron in bacterioferritin of E. coli and Pseudomonas aeruginosa 

(9, 10, 61, 72).  The ligand field strength of methionine is sufficient to coordinate heme 

iron in the low spin state (10), a possible requirement for S. putrefaciens CcmB activity.  

Results from the present study indicate that S. putrefaciens CcmB requires either 

histidine or a hydrophobic residue capable of coordinating heme iron in a low spin state 
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(i.e., methionine) at amino acid position 108 for maintenance of periplasmic redox 

homeostasis and production of mature cytochrome c. 

 H108 of S. putrefaciens CcmB is highly conserved among CcmB orthologs in 

other prokaryotic and eukaryotic organisms and is strictly conserved in organisms that 

employ the Ccm variant system containing CcmE with a HxxxY heme-binding motif 

(i.e., the majority of α- and γ-proteobacteria and plant mitochondria) (2).  H108 is absent 

in organisms that employ the Ccm system containing CcmE with either the CxxxY or 

HxxxHxxxH motifs (i.e., the majority of archaea and Desulfovibrio species).  E. coli 

CcmC contains two highly conserved histidine residues that transiently coordinate heme 

iron at the periplasmic face of the cytoplasmic membrane and transfer heme to heme 

chaperone CcmE (34, 58).  E. coli CcmE binds heme covalently at a conserved histidine 

residue and transfers heme to CcmF for incorporation into apocytochrome c (16, 24, 58, 

63).  The essential histidine residues in E. coli CcmC and CcmE are conserved in the 

CcmC and CcmE homologs of S. putrefaciens.  Current work is focused on determining 

the ability of CcmB to bind heme iron at H108 and examining the possibility that CcmB 

functions as the first component of a multi-component, histidine-based heme delivery 

system that transports heme across the cytoplasmic membrane for subsequent stepwise 

delivery to CcmC, CcmE and ultimately CcmF for incorporation into apocytochrome c. 
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CHAPTER 5 

 

CONCLUSIONS 
 

 
 

Subsurface uranium contamination is widespread due to anthropogenic activities 

associated with nuclear energy and weapons development over the past 60 years.  

Enhancement of microbial uranium reductive precipitation [U(VI) to U(IV)] is an 

attractive strategy to immobilize uranium in situ, however, the molecular mechanisms of 

U(VI) reduction are poorly understood.  Members of the γ-proteobacteria genus 

Shewanella are ubiquitous in the environment and capable of remarkable respiratory 

versatility.  S. putrefaciens strain 200 grows anaerobically on a wide variety of electron 

acceptors including uranium. 

In previous studies, a point mutant of S. putrefaciens (designated Urr14 and 

referred to as CCMB1 in this work) was isolated and found to retain anaerobic growth 

capability on several electron acceptors but was unable to grow anaerobically on NO2
- or 

U(VI).  A 35 kB wild-type DNA fragment restored anaerobic growth capability to 

CCMB1 on U(VI) and NO2
-.  In the present study, CCMB1 anaerobic growth rates on a 

suite of electron acceptors were compared with the wild-type strain.  CCMB1 was found 

to grow at near wild-type rates on electron acceptors with E′0 > 0.36V [O2, NO3
-, Fe(III)-

citrate, MnO2 and Mn(III)-pyrophosphate] but at rates < 30% that of the wild-type on 

electron acceptors with E′0  < 0.36V [NO2
-, U(VI), DMSO, TMAO, fumarate, γ-FeOOH, 

SO3
2- and S2O3

2-] (1).  The gene mutated in CCMB1, ccmB, was identified via genetic 
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complementation and DNA sequence analysis.  CcmB is a homolog of an ABC-type 

transporter permease subunit required for cytochrome c maturation in E. coli.   

An in-frame S. putrefaciens ccmB gene deletion mutant (ΔccmB) was constructed 

and was unable to grow on any anaerobic electron acceptor, suggesting that cytochrome c 

is required for anaerobic growth by S. putrefaciens.  CCMB1 contained < 10% the 

cytochrome c content of the wild-type strain after anaerobic growth demonstrating that 

wild-type levels of cytochrome c are not required by S. putrefaciens to sustain optimal 

growth rates on electron acceptors with E′0  > 0.36V.   

The CCMB1 periplasmic content of the thiol functional group (-SH) was 2-fold 

greater than the wild-type strain after anaerobic growth, an indication that redox 

homeostasis was disrupted in CCMB1 (1).  Anaerobic growth of CCMB1 on electron 

acceptors with E′0 < 0.36V was restored to near wild-type rates in growth medium 

containing 300 μM cystine, an oxidizing compound containing a disulfide bond (2).  

Cytochrome c content in CCMB1 cultures restored for anaerobic growth remained < 10% 

that of the wild-type strain, however, after cystine addition.  These results suggest that 

maintenance of redox homeostasis is a primary CcmB function during growth on electron 

acceptors with E′0 < 0.36V. 

The results of the present study suggest that the CcmAB-transported molecule 

(allocrite) or holocytochrome c maintains proper redox poise in the S. putrefaciens 

periplasm during growth at low redox potential, however, the allocrite transported by 

CcmAB is unknown.  In the present study, mutant CCMB1 was found to contain a 

H108Y mutation in the CcmB permease subunit.  H108 is highly conserved in CcmB 

orthologs in other γ-proteobacteria, α-proteobacteria and the mitochondria of land plants.  
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Histidine is a common iron axial ligand in heme-binding proteins and is present in the 

characteristic cytochrome c heme-binding motif (CXXCH).  To test the hypothesis that 

H108 confers the ability to transport heme across the cytoplasmic membrane in S. 

putrefaciens, a set of CcmB site-directed mutants was constructed.  H108 was replaced 

with the hydrophobic residues alanine (H108A) and leucine (H108L), charged or polar 

residues lysine (H108K) and tyrosine (H108Y) or methionine (H108M), a hydrophobic 

residue that coordinates heme iron in cytochrome c.    The site-directed mutants were 

grouped into three classes based on anaerobic growth capability, cytochrome c content 

and periplasmic redox condition (measured by free thiol (-SH) content):  (i) H108Y and 

H108K were unable to grow anaerobically on electron acceptors with E′0 < 0.36V, 

produced periplasmic cytochrome c at levels < 10% of the wild-type strain and contained 

periplasmic (–SH) content at levels two-fold greater than the wild-type strain, (ii) H108A 

and H108L retained the ability to grow on electron acceptors with E′0 < 0.36V, produced 

periplasmic cytochrome c at levels < 20% of the wild-type strain and contained 

periplasmic -SH content at levels 50% greater than the wild-type strain, and (iii) H108M 

retained the ability to grow on electron acceptors with E′0 < 0.36V, produced periplasmic 

cytochrome c at near wild-type levels and contained wild-type levels of periplasmic SH.  

–SH concentrations correlated inversely with the anaerobic growth rates and periplasmic 

cytochrome c content of the site-directed mutants.  Only a hydrophobic residue capable 

of coordinating heme iron (i.e., methionine) functionally replaced the conserved histidine 

in S. putrefaciens CcmB.  These results are consistent with the hypothesis that CcmB 

binds and transports heme from the cytoplasm to the periplasm.  Current work is focused 

on determining the ability of CcmB to bind heme iron at H108 and examining the 
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possibility that CcmB functions as the first component of a multi-component, histidine-

based heme delivery system that transports heme across the cytoplasmic membrane for 

subsequent stepwise delivery to CcmC, CcmE and ultimately CcmF for incorporation 

into apocytochrome c. 

The present study was the first to examine Ccm deficiencies during respiration on 

electron acceptors with a wide range of E′0.  Surprisingly, S. putrefaciens requires 10-

20% the cytochrome c content measured in laboratory-grown cultures to grow 

anaerobically on electron acceptors with E′0 < 0.36V at optimal rates.  Redox 

homeostasis, however, is disrupted in S. putrefaciens strains that are unable to transport 

heme from the cytoplasm to the periplasm or incorporate heme into apocytochrome c, 

and the overly reducing redox poise of the periplasm prevents anaerobic growth on 

electron acceptors with E′0  < 0.36V.   Ccm activity, and the associated translocation of 

heme from the cytoplasm to the periplasm, may therefore be essential to produce electron 

transport chain components and prevent thiol accumulation under highly reducing 

conditions such as those likely to develop in uranium-contaminated aquifers engineered 

for rapid U(VI) reduction or in anoxic environments containing electron acceptors with 

E′0 < 0.36V.   
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APPENDIX 

 

CYTOCHROME C CONTENT IN S. PUTREFACIENS 
CORRELATES INVERSELY WITH CULTURE AMBIENT REDOX 

POTENTIAL (EH) 
 

 
 
 The results of the present study indicated that the requirement for cytochrome c 

maturation subunit CcmB is greater during growth on electron acceptors with E′0 < 0.36V 

than during growth on electron acceptors with E′0 > 0.36V.  To test the hypothesis that S. 

putrefaciens maintains redox homeostasis by producing cytochrome c, culture ambient 

redox potential (Eh) was monitored with a platinum redox electrode (Corning 

Incorporated, Corning, NY).  Culture Eh decreased concomitantly with cell growth, 

electron acceptor depletion or end-product accumulation (Figure A.1).  Periplasmic 

protein extracts were isolated from each culture at late-logarithmic growth phase and 200 

μg total protein was separated via SDS-PAGE electrophoresis.  The SDS-PAGE gel was 

stained for heme with dimethoxybenzidine (see Materials and methods, Chapter 3).  This 

set of experiments demonstrates that the cytochrome c content in S. putrefaciens 

correlates inversely with culture Eh and indicates that cytochrome c participates in 

maintaining periplasmic redox homeostasis during growth at low redox potential. 
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Figure A.1.  Culture medium Eh during growth of S. putrefaciens on 13 electron 
acceptors.  Cell number, depletion of electron acceptors (i.e., NO2

-, F; Mn(III), H) or 
accumulation of end-products (i.e., Fe(II), C and L; NO2

-, F) were monitored 
concomitantly with Eh. 
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Figure A.1 continued. 
 
 
 
 

146 



 

0 5 10 15 20 25

-500

-400

-300

-200

-100

0

100

200
 

Eh
 (m

V)

Time (h)

 Eh

107

108

109

1010

ce
ll 

nu
m

be
r m

l-1

 cell number

E.  SO3
2-

F.  NO3
- and NO2

-

0 10 20 30 40 50 60 70

-500

-400

-300

-200

-100

0

100

200

 Eh

 

Eh
 (m

V)

Time (h)

0

5

10

15

20

25

30

35

40

45

 [NO2
-]

 [N
O

2- ] (
m

M
)

 
 
 

Figure A.1 continued. 
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Figure A.1 continued. 
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I.  TMAO
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Figure A.1 continued. 
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K.  Fumarate

L.  Fe(III)-citrate
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Figure A.1 continued. 
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Figure A.2.  SDS-PAGE heme stain of S. putrefaciens periplasmic fractions after growth 
on the indicated electron acceptors.  Samples are arranged in order of increasing 
cytochrome c content.  Horse heart cytochrome c was included as a heme-positive 
control.  Molecular mass markers (Daltons) are indicated with arrows. 
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