
CROSSBAR SCHEDULING ALGORITHMS FOR INPUT-QUEUED SWITCHES

A Dissertation
Presented to

The Academic Faculty

By

Long Gong

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2020

Copyright © Long Gong 2020

CROSSBAR SCHEDULING ALGORITHMS FOR INPUT-QUEUED SWITCHES

Approved by:

Dr. Jun Xu, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Mostafa H. Ammar
School of Computer Science
Georgia Institute of Technology

Dr. Ellen W. Zegura
School of Computer Science
Georgia Institute of Technology

Dr. Siva Theja Maguluri
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Bill Lin
Department of Computer Science
and Engineering
University of California, San Diego

Date Approved: April 30, 2020

ACKNOWLEDGEMENTS

I would like to express my thanks to my advisor, Jun (Jim) Xu, for his kind guidance

and persistent support during my Ph.D. study. I would also like to give my thanks to other

members of my committee for their teaching, and their interests in my research work and

their helpful suggestions and valuable comments: Mostafa H. Ammar, Ellen W. Zegura,

Siva Theja Maguluri, and Bill Lin.

I would like to thank Yi Xie (Xiamen University), Xinbing Wang (Shanghai Jiao Tong

University), and Paul Tune (University of Adelaide) for their guidance and support on our

collaborated research works.

I would also like to extend my special gratitude to senior members in our research

group, namely Sen Yang and Liang Liu, for their enormous help in both my academic

research and daily life. In addition to them, I would also like to express my sincere grat-

itude to current and former lab members, Lanxi Huang, Tarun Mangla, Yimeng Zhao,

Huayi Wang, Jingfan Meng, and many others, and lab visiting scholars, Shenglin Zhang

(Tsinghua University), Jianyuan Lu (Tsinghua University), Pin Yin (UCSD), Ziheng Liu

(Peking University), Minghua Ma (Tsinghua University), and all others. Thank them for

the helpful research conversions and enriching my life at Georgia Tech. My gratitude also

goes to my friends, Jingfan Sun, Bichen Zhang, Qiang Hu, Xinyuan Nan, Hongnan Lin,

Haolin Zhang, and many others, for making my life more enjoyable.

I give my deepest gratitude to my family, especially my mother, Xiyun Long; and my

father, Xinming Gong for their support and great love. Without them, none of this work

would be possible.

This work is supported in part by US NSF through award CNS-1909048.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Input-Queued Crossbar Architecture 2

1.2.2 System Models . 3

1.2.3 Three Types of Matchings . 4

1.2.4 Performance Metrics . 4

1.2.5 Admissible Traffic Patterns . 5

1.2.6 The Four Standard Traffic Patterns 6

1.3 Summary of Contributions . 7

1.3.1 SERENADE (Chapter 3) . 8

1.3.2 QPS (Chapter 4) . 9

1.3.3 QPS-r (Chapter 5) . 11

1.3.4 SB-QPS (Chapter 6) . 12

iv

1.4 Bibliographic Note . 14

Chapter 2: Literature Review . 15

2.1 Crossbar Scheduling Algorithms . 15

2.1.1 Parallel/Distributed MWM Algorithms 15

2.1.2 MVM and LHPF . 16

2.1.3 BP-Assisted Algorithms . 16

2.1.4 Lower-Complexity Randomized Algorithms 16

2.1.5 Parallel Iterative Algorithms . 18

2.1.6 Batch Scheduling Algorithms . 18

2.2 Queue-Proportional Resource Allocation 19

2.3 Wireless Transmission Scheduling . 20

Chapter 3: SERENADE . 22

3.1 SERENA . 22

3.1.1 Overview of The MERGE Procedure 23

3.1.2 A Combinatorial View of MERGE 25

3.1.3 Walks on Cycles . 26

3.2 Overview of SERENADE . 27

3.2.1 Core Idea of SERENADE . 27

3.2.2 High-Level Description of SERENADE 28

3.3 Knowledge-Discovery Stage . 29

3.3.1 Knowledge Sets . 30

3.3.2 Knowledge-Discovery Procedure 31

v

3.3.3 Complexity Analysis . 36

3.3.4 Early Halt: The Ouroboros Cycles 36

3.4 Leader Election . 37

3.4.1 Leader Election . 38

3.4.2 Distribute Leaders’ Decisions . 39

3.5 Distributed Binary Search Stage . 39

3.5.1 Distributed Binary Search . 40

3.5.2 Complexity Analysis . 42

3.6 Early Stop: O-SERENADE . 42

3.7 Performance Evaluation . 43

3.7.1 Simulation Setup . 44

3.7.2 Throughput Performance . 44

3.7.3 Delay Performance . 45

3.8 Conclusion . 46

Chapter 4: QPS . 47

4.1 Queue-Proportional Sampling (QPS) . 47

4.1.1 The QPS Proposing Strategy . 47

4.1.2 Augmenting iSLIP and SERENA 49

4.1.3 QPS vs. ShakeUp . 51

4.2 QPS Implementation . 52

4.2.1 Overview of The Sampling Algorithm 54

4.2.2 The Detailed Data Structure . 55

vi

4.3 Stability Proof of QPS-SERENA . 57

4.3.1 Background and Notations . 57

4.3.2 TASS, SERENA, and Their Stability 58

4.3.3 Stability of QPS-SERENA . 61

4.4 Performance Evaluation . 62

4.4.1 Simulation Setup . 63

4.4.2 Throughput Performance . 64

4.4.3 Delay Performance . 66

4.5 Conclusion . 70

Chapter 5: QPS-r . 71

5.1 The QPS-r Algorithm . 71

5.2 Throughput and Delay Analysis . 72

5.2.1 Preliminaries . 72

5.2.2 Why QPS-1 Is Just as Good? . 75

5.2.3 Proof of Lemma 5.2.1 . 77

5.2.4 Throughput Analysis . 78

5.2.5 Delay Analysis . 81

5.3 Performance Evaluation . 83

5.3.1 Simulation Setup . 84

5.3.2 Throughput and Delay Performances 84

5.3.3 How Mean Delay Scales with N 85

5.3.4 Bursty Arrivals . 86

vii

5.4 Conclusion . 87

Chapter 6: SB-QPS . 89

6.1 Batch Scheduling Algorithms . 89

6.2 The SB-QPS Algorithm . 90

6.3 Performance Evaluation . 93

6.3.1 Simulation Setup . 94

6.3.2 How Large Should Batch Size T Be? 95

6.3.3 Throughput and Delay Performances 95

6.4 Conclusion . 97

Appendix A: Appendix for Chapter 3 . 99

A.1 Parallelized Population . 99

A.2 Proof of Lemma 3.2.1 . 100

A.3 Proof of Lemma 3.3.1 . 101

A.4 Proof of Lemma 3.3.2 . 101

A.5 Why Not Use More Than 1 + log2N Iterations? 102

A.6 SERENADE vs. MIX . 103

A.7 An Idempotent Trick . 104

A.8 More Performance Evaluations . 105

A.8.1 Message Complexities . 105

A.8.2 How Mean Delay Scales with N 106

Appendix B: Appendix for Chapter 4 . 108

viii

B.1 QPS Variants . 108

B.2 Space Complexity of QPS . 109

B.3 Proof of Theorem 4.3.2 . 109

B.3.1 Proof of Lemma B.3.2 . 111

B.3.2 Proof of Lemma B.3.3 . 113

B.3.3 Proof of Lemma B.3.1 . 116

B.3.4 Proof of Theorem 4.3.2 . 117

B.4 Proof of Lemma 4.3.1 . 118

B.5 More Performance Evaluations . 119

B.5.1 Mean Delay Performance for FQPS 119

B.5.2 How Mean Delay Scales with N 121

B.5.3 “Longest VOQ First” vs. Proportional Accepting 123

B.5.4 QPS vs. O(1) Algorithm in [37] 124

Appendix C: Appendix for Chapter 6 . 126

C.1 More Performance Evaluations . 126

C.1.1 How Mean Delay Scales with N 126

C.1.2 Bursty Arrivals . 127

C.1.3 FFA vs. MFA vs. MWFA . 129

References . 137

Vita . 137

ix

LIST OF TABLES

4.1 Maximum achievable throughput. 64

A.1 Examples of “hardcore non-ouroboros” numbers. 103

A.2 Average per-port message complexities of SERENADE (bytes). 105

x

LIST OF FIGURES

1.1 Input-queued crossbar switch. 2

3.1 Cycles in Sr(I→O)
⋃
Sg(O→ I): Edges with red and green shadows are

from Sr(I→O) and Sg(O→I) respectively. 24

3.2 Combinatorial cycles correspond to the cycles in Figure 3.1. 25

3.3 Illustration of the knowledge-discovery procedure: messages sent by vertex
3 in Figure 3.2. 33

3.4 Mean delays of O-SERENADE, SERENA and MWM under the 4 traffic
patterns. 45

4.1 Illustrating the action of the QPS data structures on a single input port. . . . 53

4.2 Mean delays under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns. 65

4.3 95th percentile delay under i.i.d. Bernoulli traffic arrivals with the 4 traffic
patterns. 67

4.4 Mean delays under bursty traffic arrivals with the 4 traffic patterns. 69

5.1 Illustration of neighborhood of qij , i.e., Q†ij 73

5.2 Mean delays of QPS-1, QPS-3, iSLIP, and MWM under the 4 traffic patterns. 85

5.3 Mean delays scaling with number of ports N for QPS-3, iSLIP, and MWM. 86

5.4 Mean delays under bursty traffic arrivals with the 4 traffic patterns. 87

6.1 A joint calendar. “–” means unmatched. 89

xi

6.2 Mean delays of SB-QPS with different batch sizes under the 4 traffic patterns. 94

6.3 Mean delays under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns. 96

A.1 Illustration of three cases corresponding to cycle lengths belonging to the
three forms of the ouroboros numbers. 101

A.2 Histogram for number of non-ouroboros cycles in SERENADE (N = 256,
ρ=0.6). 106

A.3 Mean delays scaling with number of ports N for O-SERENADE, SER-
ENA, and MWM under the 4 traffic patterns. 107

B.1 Mean delays for different FQPS-iSLIP and FQPS-SERENA under the 4
traffic patterns. 120

B.2 Mean delays scaling with number of ports N for different scheduling algo-
rithms under the 4 traffic patterns. 122

B.3 Mean delays for QPS-iSLIP and QPS-SERENA with the 2 different accept-
ing strategies under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns.
. 123

B.4 Mean delays for QPS-iSLIP (offered load: 0.75) and QPS-SERENA (of-
fered load: 0.95) with the 2 different accepting strategies under bursty traf-
fic arrivals with the 4 traffic patterns. 124

B.5 Mean delays for QPS-iSLIP/QPS-SERENA against O(1) algorithm in [37]
under the 4 traffic patterns. 125

C.1 Mean delays scaling with number of ports N under the 4 traffic patterns. . . 126

C.2 Mean delays under bursty traffic arrivals with the 4 traffic patterns. 128

C.3 Mean delays of SB-QPS with the 3 different accepting strategies under the
4 traffic patterns. 128

xii

SUMMARY

Many of today’s switches and routers adopt an input-queued crossbar architecture to in-

terconnect the input ports with the output ports. Such a switch needs to compute a crossbar

schedule, or a matching, between the input ports and the output ports during each switching

cycle, or time slot. A key research challenge in designing large (in number of input/output

ports N) input-queued crossbar switches is to develop crossbar scheduling algorithms that

can compute high-quality matchings – i.e., those that result in high switch throughput (ide-

ally 100%) and low queueing delays for packets – yet have a very low time complexity

to support high link speeds. Indeed, there appears to be a fundamental tradeoff between

the time complexity of the crossbar scheduling algorithm and the quality of the computed

matchings (crossbar schedules).

This dissertation research consists of two aspects. The first aspect is to investigate

crossbar scheduling algorithms that are low in time complexities (preferably O(1) and def-

initely no more than O(logN) per port), yet have excellent throughput (ideally equal or

close to 100%) and delay performances. The second aspect is to analyze the throughput

and the delay performance guarantees of some of the proposed algorithms using Lyapunov

stability analysis techniques.

Along the first aspect, we have proposed four algorithms. The first algorithm, called

SERENADE (SERENA, the Distributed Edition), is a parallel iterative algorithm that can

provably, with a time complexity of only O(logN) per port, exactly emulate SERENA, a

centralized algorithm with O(N) time complexity, which can attain 100% throughput and

acceptable delay performance. The second algorithm, called Queue-Proportional Sampling

(QPS), is an “add-on” approach that generates superior starter matchings than all other

known strategies, yet incurs only O(1) additional time complexity at each input/output

port. We use QPS to augment two existing crossbar scheduling algorithms, namely SER-

ENA and iSLIP. The augmented algorithms, which we call QPS-SERENA and QPS-iSLIP,

xiii

outperform the original algorithms by a wide margin, under various load conditions and

traffic patterns. Building upon QPS, we propose the third algorithm, which we call QPS-r,

a parallel iterative crossbar scheduling algorithm with O(1) time complexity per port. We

have shown that QPS-3 (r=3 iterations) has comparable empirical throughput and delay

performances as maximal matching algorithms that have much higher time complexities.

The last algorithm, call Small-Batch QPS (SB-QPS), is a batch (crossbar) scheduling al-

gorithm that builds upon and significantly improves the throughput performance of QPS-r,

yet has a time complexity of O(1) per port (per time slot).

Along the second aspect, we have proved, using Lyapunov stability analysis, that QPS-

SERENA can achieve 100% throughput and that using matchings generated by QPS-r (even

when r=1) as crossbar schedules results in at least 50% switch throughput and order-optimal

(i.e., independent of the switch size N) average delay bounds for various traffic arrival

processes.

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

The volume of network traffic across the Internet and in data-centers continues to grow

relentlessly, thanks to existing and emerging data-intensive applications, such as big data

analytics, cloud computing, and video streaming. At the same time, the number of network-

connected devices is exploding, fueled by the wide adoption of smart phones and the emer-

gence of the Internet of things. To transport and “direct” this massive amount of traffic to

their respective destinations, switches and routers capable of connecting a large number of

ports (called high-radix [1, 2, 3]) and operating at very high line rates are badly needed.

Many present day high-performance switching systems in Internet routers and data-

center switches employ an input-queued crossbar to interconnect their input ports and out-

put ports. In an input-queued crossbar switch, each input port can be connected to only

one output port and vice versa in each switching cycle or time slot. Hence, in every time

slot, the switch needs to compute a one-to-one matching between input and output ports

(i.e., the crossbar schedule). A major research challenge in designing high-link-rate high-

radix switches is to develop algorithms that can compute “high quality” matchings – i.e.,

those that result in high switch throughput and low queueing delays for packets – in a few

nanoseconds. Clearly, a suitable crossbar scheduling algorithm has to have very low time

complexity, yet output “fairly good” matching decisions most of time.

While considerable research was performed on crossbar scheduling around the turn of

the century, the resulting algorithms either have a (relatively) high time complexity that pre-

vents a matching computation from being completed in a short time slot, or cannot deliver

excellent throughput and delay performances. For example, SERENA [4] and iSLIP [5] are

1

VOQ 1

VOQ N

Input 1

Output 1

VOQ 1

VOQ N

Input N

Output N

Crossbar

Figure 1.1: Input-queued crossbar switch.

two well-known crossbar scheduling algorithms of that generation. On one hand, although

SERENA can attain 100% throughput and has acceptable delay performance, its time com-

plexity is O(N), which is still too high for the matching to be computed in a short time

slot when N is large. On the other hand, iSLIP is a parallel iterative algorithm and has

a lower per-port time complexity of O(logN) for each iteration, but iSLIP cannot attain

100% throughput except under the uniform traffic.

1.2 Background

1.2.1 Input-Queued Crossbar Architecture

Figure 1.1 shows a generic input-queued switch employing a crossbar to interconnect N

input ports with N output ports. Each input port has N Virtual Output Queues (VOQs) [6].

A VOQ j at input port i serves as a buffer for the packets going into input port i destined for

output port j. In such a switch, each input port can be connected to only one output port,

and vice versa, in each time slot. Hence, it needs to compute, per time slot, a one-to-one

matching between input and output ports.

Throughout this thesis, we assume that all incoming variable-length packets are seg-

mented into fixed-length packets (sometimes referred to as cells), which are then reassem-

bled when leaving the switch. Hence we consider the switching of only fixed-length packets

in the sequel, and each such fixed-length packet takes exactly one time slot to transmit. We

2

also assume that both the output ports and the crossbar operate at the same speed as the

input ports. Both assumptions above are widely adopted in the literature (e.g., [7, 5, 4]).

1.2.2 System Models

In crossbar scheduling, an N × N crossbar is generally modeled as a bipartite graph and

the crossbar scheduling needs to solve a bipartite matching problem [8] in such a bipartite

graph during each time slot. Based on whether taking into the weight (e.g., VOQ length)

information into consideration, there are two commonly used problem models, namely, the

weight-oblivious model and the weight-aware model.

Weight-Oblivious Model. In this model, an N × N input-queued crossbar is modeled

as a (unweighted) bipartite graph G(I
⋃
O), of which the two disjoint vertex sets I =

{I1, I2, · · · , IN} and O={O1, O2, · · · , ON} are the N input ports and the N output ports

respectively. We note that the edge set in this bipartite graph might change from a time slot

to another. In this bipartite graph during a certain time slot t, there is an edge between input

port i and output port j, if and only if the VOQ j at input port i, the corresponding VOQ,

is nonempty at time slot t. A set of such edges constitutes a valid crossbar schedule, or a

matching, if any two of them do not share a common vertex.

Weight-Aware Model. In this model, an N × N crossbar is modeled as a weighted com-

plete bipartite graph G(I
⋃
O), with the N input ports and the N output ports represented

as the two disjoint vertex sets I = {I1, I2, · · · , IN} and O = {O1, O2, ·, ON} respectively.

We note that the weight of each edge in this bipartite graph might change from a time slot

to another. Each edge (Ii, Oj), i.e., the edge between input port i and output port j, corre-

sponds to the VOQ j at the input port i, and its weight is the queue length (i.e., the number

of packets buffered) of the VOQ at the corresponding time slot. We denote this edge also

as Ii → Oj when its direction is emphasized. Same as in the weight-oblivious model, a

valid schedule, or matching, is a set of edges between the N input ports and the N output

ports, in which no two distinct edges share a vertex. The weight of a matching is the total

3

weight of all the edges belonging to it (i.e., the total length of all corresponding VOQs).

We say a matching is full if all vertices in the bipartite graph G(I
⋃
O) are an endpoint of

an edge in the matching, and is partial otherwise. Clearly, in an N ×N crossbar, any full

matching contains exactly N edges.

In both models, each matching M can be represented as an N × N sub-permutation

matrix (a 0-1 matrix that contains at most one entry of “1” in each row and in each column)

S= (sij) as follows: sij = 1 if and only if the edge between input port i and output port j

is contained in M (i.e., input port i is matched to, or paired with, output port j in M). To

avoid any confusion, only S (not M) is used to denote a matching in the sequel, and it can

be both a set (of edges) and a matrix.

1.2.3 Three Types of Matchings

Three types of matchings play important roles in crossbar scheduling problems: (I) max-

imal matchings, (II) maximum matchings, and (III) maximum weighted matchings. A

matching S is called a maximal matching, if it is no longer a matching, when any edge not in

S is added to it. A matching with the largest possible number of edges is called a maximum

matching or maximum cardinality matching. Neither maximal matchings nor maximum

matchings take into account the weights of edges, whereas maximum weighted matchings

do. A maximum weighted matching is one that has the largest total weight among all

matchings. By definition, any maximum matching or maximum weighted matching is also

a maximal matching, but neither converse is generally true.

1.2.4 Performance Metrics

The research objective of crossbar scheduling is to design scheduling algorithms that com-

pute a good matching, as measured by certain performance metrics, in each time slot, with

a reasonable amount of computation. Typically, scheduling algorithms are evaluated on

three performance metrics: throughput, delay, and complexity.

4

Throughput. Normalized throughput is defined as the average number of packets that exit

an output port during each time slot. It is a value between 0 and 1 (i.e., 100%). Throughout

this thesis, we mean normalized throughput whenever we use the word “throughput”.

We say a switch, employing a certain crossbar scheduling algorithm, is stable

[9] – under a certain workload – if its total queue (VOQ) length ‖Q(t)‖1 satisfies

sup
0≤t<∞

E
[
‖Q(t)‖1

]
<∞. A crossbar scheduling algorithm is said to achieve 100% through-

put, if the switch is stable under any traffic arrival process that is admissible (defined next)

and satisfies certain other mild conditions (see §4.3.1). For example, SERENA [4, 10] can

achieve 100% throughput under any such admissible arrival process, whereas iSLIP [5]

generally cannot.

Delay. We define delay as the number of time slots elapsed since the arrival of a packet to

its eventual departure from the switch. An ideal scheduling algorithm has 100% throughput

and low delay. Achieving 100% throughput is relatively easier than achieving low delay.

For instance, in TASS [11], 100% throughput is achieved, at the cost of high delays, using

a simple randomized adaptive algorithm that we will describe in §4.3.2.

Complexity. Another criterion for evaluating a scheduling algorithm is the time complexity

of computing a matching. As mentioned earlier, folklore suggests a tradeoff between the

quality of matching and the time complexity. A key contribution of this thesis is to strike

better performance-complexity tradeoffs than existing crossbar scheduling algorithms such

as iSLIP and SERENA.

1.2.5 Admissible Traffic Patterns

Let λij be the normalized (to the percentage of the rate of an input/output link) mean arrival

rate of packets to the VOQ j (i.e., those destined for output port j) at input port i. Then the

traffic pattern, represented by an N ×N traffic matrix Λ = {λij}N×N , is called admissible

5

if ρΛ < 1, where ρΛ, defined as,

ρΛ , max
{

max
1≤i≤N

{
∑

j

λij}, max
1≤j≤N

{
∑

i

λij}
}

(1.1)

is the maximum load factor imposed on any input or output port by Λ. Clearly, ρΛ < 1

is a necessary condition for any crossbar scheduling algorithm to ensure the stability of

an input-queued crossbar switch. In the sequel, we drop the subscript term from ρΛ and

simply denote it as ρ.

Now we state a well-known fact that has been used, usually without a proof, in almost

every switch stability proof in the literature.

Fact 1.2.1. For each N ×N admissible traffic matrix Λ, whose maximum per input/output

load is ρ (defined in (1.1)), there exist N × N matching (sub-permutation) matrices Mn,

n = 1, 2, . . . , K such that

Λ =
K∑

n=1

αnMn (1.2)

where K ≤ N2 − 2N + 2, αn > 0 and
∑K

n=1 αn ≤ ρ.

This fact follows from the fact that Λ/ρ is a sub-stochastic matrix, which can be ex-

pressed as a linear combination of sub-permutation matrices with positive coefficients sum-

ming up to a value no larger than 1, known as the Birkhoff–von Neumann decomposition

[12, 13, 14].

1.2.6 The Four Standard Traffic Patterns

Like in many of the literature on crossbar scheduling, the following four standard types

of traffic patterns (i.e., load matrices) are used to generate the workloads of the switch in

all simulations in this thesis: (I) Uniform: packets arriving at any input port go to each

output port with probability 1
N

. (II) Quasi-diagonal: packets arriving at input port i go to

6

output port j= i with probability 1
2

and go to any other output port with probability 1
2(N−1)

.

(III) Log-diagonal: packets arriving at input port i go to output port j = i with probability

2(N−1)

2N−1
and go to any other output port j with probability equal 1

2
of the probability of output

port j − 1 (note: output port 0 equals output port N). (IV) Diagonal: packets arriving at

input port i go to output port j = i with probability 2
3
, or go to output port (imodN) + 1

with probability 1
3
. The traffic patterns above are listed in order of how skewed the traffic

volumes to different output ports are: from uniform being the least skewed, to diagonal

being the most skewed.

1.3 Summary of Contributions

In this thesis, we have tackled the crossbar scheduling problem from the following two

aspects. The first aspect is to investigate next-generation bipartite matching algorithms for

crossbar scheduling, that are low in time complexities (preferably O(1) and definitely no

more than O(logN) per port), yet have excellent throughput and delay performances. The

second aspect is to rigorously analyze the throughput and the delay performance guarantees

of some of the proposed algorithms using Lyapunov stability analysis techniques [15].

Along the first aspect, we have made four breakthroughs. Our first breakthrough is

to discover that SERENA can after all be parallelized: In Chapter 3, we have proposed

SERENADE (SERENA, the Distributed Edition) that exactly emulates SERENA and has

a low per-port time complexity of O(logN). Our second breakthrough is an add-on algo-

rithm called Queue-Proportional Sampling (QPS). We have shown in Chapter 4 that QPS

can be used to augment and significantly boost the throughput and delay performances

of other crossbar scheduling algorithms such as SERENA [4] and iSLIP [5], at virtually

no additional computation cost due to its low time complexity of O(1) per port. Our third

breakthrough is QPS-r, a standalone parallel iterative scheduling algorithm that simply runs

a constant r rounds (iterations) of QPS to compute a matching. We have shown in Chap-

ter 5 that in a single iteration (i.e., when r = 1), QPS-1 outputs a matching that is in general

7

not even maximal, yet has exactly the same quality as maximal matchings, in the following

sense: Using such matchings as crossbar schedules results in exactly the same provable

throughput lower bound of 50% and delay guarantees as using maximal matchings. This

discovery is significant because, to the best of our knowledge, all existing parallel iterative

crossbar scheduling algorithms (e.g., PIM [16], iSLIP [5], RR/LQF [17]) require up to N

iterations to compute a maximal matching. In other words, all existing parallel iterative

crossbar scheduling algorithms require up to N iterations to achieve the same provable

throughput and delay performance guarantees. Building on QPS, we have made our fourth

breakthrough: Small Batch QPS (SB-QPS), a batch scheduling algorithm that has all the

desired properties of next-generation matching algorithms (for crossbar scheduling) men-

tioned above. Along the second aspect, we have investigated the throughput and/or the

delay performance guarantees of some of these crossbar scheduling algorithms, such as

QPS-SERENA and QPS-r.

We now present an overview of the aforementioned crossbar scheduling algorithms

proposed in this thesis, along with the key contributions.

1.3.1 SERENADE (Chapter 3)

In this work, we propose SERENADE (SERENA, the Distributed Edition), a parallel itera-

tive algorithm that emulates each matching computation of SERENA using only O(logN)

iterations between input ports and output ports. Hence, each input or output port needs to

do only O(logN) work to compute a matching, making SERENADE scalable in both the

switch size and the line rate per port.

SERENADE consists of two stages: a knowledge-discovery stage and a distributed bi-

nary search stage. The knowledge-discovery stage uses a knowledge-discovery procedure,

which has at most 1+log2N iterations, to gather information at each input port. After

this stage, some input ports might be able to make the same matching decisions as they

would under SERENA, whereas other input ports are not able to do so. Then, in the dis-

8

tributed binary search stage, those input ports will also be able to make the same matching

decisions as they would do under SERENA by performing an additional distributed binary

search, which has at most log2N iterations, guided by the information gathered during the

knowledge-discovery stage. We prove that SERENADE exactly emulates SERENA.

SERENADE overcomes the challenge of parallelizing SERENA, namely the mono-

lithic nature of the MERGE procedure, by making do with less. More specifically, we will

show toward the end of §3.3.1, in SERENADE, after itsO(logN) iterations, each input port

has much less information to work with than the (central) switch controller in SERENA. In

other words, SERENADE does not precisely parallelize SERENA, in that it does not du-

plicate the full information gathering capability of SERENA; rather, it gathers just enough

information needed to make a matching decision that is exactly as wise. This making do

with less is a major innovation and contribution of this work.

To reduce the complexities, we propose an early-stop version of SERENADE, called

O-SERENADE, to approximately emulate SERENA. O-SERENADE gets rid of the dis-

tributed binary search and only approximately emulates SERENA by making opportunistic

matching decisions after the knowledge-discovery stage. Despite this approximation, the

delay performance of O-SERENADE is similar to or slightly better than that of SERENA,

under various load conditions and traffic patterns.

1.3.2 QPS (Chapter 4)

In this work, we propose a general approach that can significantly boost the performance

of both SERENA and iSLIP, yet incurs only O(1) additional time complexity at each in-

put/output port. Our approach is a novel proposing strategy, called Queue-Proportional

Sampling (QPS), that generates an excellent starter matching, better than the arrival graph

used by SERENA. Scheduling algorithms that start from “scratch” (i.e., an empty match-

ing), such as iSLIP, may also benefit significantly from QPS, by instead starting from a

QPS-generated starter matching.

9

Our proposing strategy, QPS, at any input port, is extremely simple to state: the input

port proposes to an output port with a probability proportional to the length of the cor-

responding VOQ. QPS’s name comes from the fact that the output port proposed to by

any input port is sampled, out of all N output ports, using the queue-proportional distri-

bution at the input port. We note that, although this general approach – of serving queues

at rates/probabilities proportional to their lengths – to resource allocation is classical [18],

QPS is a novel application of this approach to crossbar scheduling.

We will show in §4.2 that QPS is also extremely cheap to execute: we developed an

O(1) data structure and algorithm for generating such a sample at each input port. This

may be surprising to readers, since even to “read” the lengths of all N VOQs at an input

port takes O(N) time. Due to its O(1) (per port) time complexity, any QPS-augmented

algorithm has the same asymptotic complexity as the original algorithm.

In this work, we consider two QPS-augmented algorithms: QPS-iSLIP and QPS-

SERENA, which combine QPS with iSLIP [5] and SERENA [4, 10] respectively. Both

QPS-augmented algorithms are shown to outperform the original algorithms, in both

throughput and delay, under various load conditions and traffic patterns, by a wide mar-

gin in §4.4. As the QPS approach is very general, it can be used to augment other low-

complexity crossbar scheduling algorithms in the future.

We make the following three major contributions in this work. First, we propose QPS,

a simple yet effective approach to crossbar scheduling, and use it to augment both iSLIP

and SERENA. Second, we propose a data structure that carries out each QPS operation

with only O(1) computation per port. Third, for proving the stability of QPS-SERENA,

we derive a new and stronger theorem for proving the stability of a large family of crossbar

scheduling algorithms.

10

1.3.3 QPS-r (Chapter 5)

In this work, we propose QPS-r, a parallel iterative algorithm that has the lowest possible

time complexity: O(1) per port. More specifically, QPS-r requires only r (a small constant

independent of N) iterations to compute a matching, and the time complexity of each itera-

tion is only O(1); here QPS stands for Queue-Proportional Sampling, an add-on technique,

as mentioned earlier, we will describe it in detail in Chapter 4. Yet, even the matchings

that QPS-1 (running only a single iteration) computes have the same quality as maximal

matchings in the following sense: Using such matchings as crossbar schedules results in ex-

actly the same aforementioned provable throughput and delay guarantees as using maximal

matchings, as we will show using Lyapunov stability analysis. Note that QPS-r performs as

well as maximal matching algorithms not just in theory: We will show that QPS-3 (running

3 iterations) has comparable empirical throughput and delay performances as iSLIP (run-

ning log2N iterations), a refined and optimized representative maximal matching algorithm

adapted for switching, under various load conditions and traffic patterns.

QPS-r has another advantage over parallel iterative maximal matching algorithms such

as iSLIP and PIM: Its per-port communication complexity is also O(1), much smaller than

that of maximal matching algorithms such as iSLIP. In each iteration of QPS-r, each input

port sends a request to only a single output port. In comparison, in each iteration of PIM or

iSLIP, each input port has to send requests to all output ports to which the corresponding

VOQs are nonempty, which incurs O(N) communication complexity per port.

Although QPS-r builds on the QPS data structure and algorithm proposed in Chapter 4,

our work on QPS-r is very different in three important aspects. First, in Chapter 4, QPS was

used only as an add-on to other crossbar scheduling algorithms such as SERENA [4, 10]

and iSLIP [5] by generating a starter matching for other crossbar scheduling algorithms to

further refine, whereas in this work, QPS-r is used only as a stand-alone algorithm. Second,

in this work, we discover and prove that (QPS-r)-generated matchings and maximal match-

ings provide exactly the same aforementioned throughput and delay guarantees, whereas

11

in Chapter 4, no such mathematical similarity or connection was mentioned. Third, the es-

tablishment of this mathematical similarity is an important theoretical contribution in itself,

because maximal matchings have long been established as a cost-effective family both in

crossbar scheduling [16, 5] and in wireless networking [19, 20], and with this connection

we have considerably enlarged this family.

Although we show that QPS-r has exactly the same throughput and delay bounds as that

of maximal matchings established in [21, 19, 20], our proofs are different for the following

reason. A departure inequality (see Property 5.2.1), satisfied by all maximal matching

algorithms was used in the stability analysis of [21] and the delay analysis of [19, 20].

This inequality, however, is not satisfied by QPS-r in general. However, QPS-r satisfies

this departure inequality in expectation, which is a weaker guarantee. A methodological

contribution of this work is to prove two theorems stating that this much weaker guarantee

is sufficient for obtaining the same throughput and delay bounds respectively.

1.3.4 SB-QPS (Chapter 6)

This work is motivated by the following two observations: (I) The throughput performance

of QPS-r, even when r=3, is only around 80% under the aforementioned four standard

traffic patterns and grows very slows when r increases beyond 3; and (II) it is possible to

improve the quality of the matching without increasing the time complexity of the cross-

bar scheduling algorithm using a strategy called batching [22, 23, 24]. Unlike in a regular

crossbar scheduling algorithm, where a matching decision is computed for every time slot,

in a batch scheduling algorithm, multiple (say T) consecutive time slots are grouped as

a batch and these T matching decisions are batch-computed. Hence, in a batch schedul-

ing algorithm, each of the T matchings-under-computation in a batch has a period of T

time slots to find opportunities to have the quality of the matching (in terms of cardinality

and/or weight) improved by the underlying bipartite matching algorithm, whereas in a reg-

ular crossbar scheduling algorithm, each matching has only a single time slot to find such

12

opportunities. As a result, a batch scheduling algorithm can usually produce matchings

of higher qualities than a regular crossbar scheduling algorithm using the same underly-

ing bipartite matching algorithm, because such opportunities for improving the quality of a

certain matching usually do not all present themselves in a single designated time slot (for

a regular crossbar scheduling algorithm to compute this matching). Clearly, the larger the

batch size T is, the better the quality of a resulting matching is, since a larger T provides

a wider “window of opportunities” for improving the quality of the resulting matching as

just explained.

However, existing batch scheduling algorithms are not without shortcomings. They all

suffer from at least one of the following two problems. First, all existing batch scheduling

algorithms except [24] are sequential algorithms and it is not known whether any of them

can be parallelized. As a result, they all have a time complexity of at least O(N) per

matching computation, since it takes O(N) time just to “print out” the computed result.

This O(N) time complexity is clearly too high for high-radix high-line-rate switches as

just explained. Second, most existing batch scheduling algorithms require a large batch size

T to produce high-quality matchings that lead to high throughputs, as will be elaborated

in Chapter 2. A large batch size T is certain to lead to poor delay performance: Regardless

of the offered load condition, the average packet delay for any batch scheduling algorithm

due to batching is at least T/2, since any packet belonging to the current batch has to wait

till at least the beginning of the next batch to be switched.

In this work, building upon QPS, we propose a novel batch scheduling algorithm, called

SB-QPS (Small-Batch QPS), that addresses both weaknesses of existing batch scheduling

algorithms. First, it can attain a high throughout of over 0.87, under various traffic patterns,

using only a small batch size T being 32 time slots. This much smaller batch size translates

into much better delay performances than those of existing batch scheduling algorithms, as

will be shown in §6.3. Second, SB-QPS is a fully distributed algorithm so that the matching

computation load can be efficiently divided evenly across the 2N input and output ports.

13

As a result, its time complexity is the lowest possible: O(1) per matching computation per

port.

1.4 Bibliographic Note

The contents presented in Chapter 3, Chapter 4 and Chapter 5 appear as three conference

papers in [25], [26] and [27], respectively.

14

CHAPTER 2

LITERATURE REVIEW

2.1 Crossbar Scheduling Algorithms

2.1.1 Parallel/Distributed MWM Algorithms

Using Maximum Weighted Matchings (MWM) as crossbar schedules results in 100%

throughput and near-optimal delay performance, but its state-of-the-art implementa-

tion [28] has a prohibitively high time complexity of O(N2.5 logW), where W is the max-

imum possible length of a VOQ. Note that MWM-α [29] and MWM-0+ [30] are variants

that only explore the MWM policy space by adopting different edge weight functions;

they contain no algorithmic innovations that would reduce the complexity of MWM. This

dilemma has motivated the development of a few parallel or distributed algorithms that,

by distributing this computational cost across multiple processors (nodes), bring down the

per-node time complexity.

The most representative among them are [31, 32, 33]. A parallel algorithm with a sub-

linear per-node time complexity of O(
√
N log2N) was proposed in [31] for computing

MWM exactly in a bipartite graph. However, this algorithm requires the use of O(N3)

processors. Another two [32, 33] belong to the family of parallel/distributed iterative algo-

rithms based on belief-propagation (BP). In this family, the input ports engage in multiple

iterations of message exchanges with the output ports to learn enough information about

the lengths of all N2 VOQs so that each input port can decide on a distinct output port

to match with. The resulting matching either is, or is close to, the MWM. Note that the

BP-based algorithms are simply parallel/distributed algorithms to compute the MWM: the

total amount of computation, or the total number of messages needed to be exchanged, is

O(N3), but is distributed evenly across the input and the output ports (i.e., O(N2) work for

15

each input/output port).

2.1.2 MVM and LHPF

Another approach to reducing the complexity toO(N2.5) while achieving performance sim-

ilar to MWM is the family of Maximum Vertex-weighted Matching (MVM) policies [7].

The MVM family was later extended to a larger family called Lazy Heaviest Port First

(LHPF) [34] that also has O(N2.5) complexity. In a standard MVM policy, each input or

output port, denoted as a vertex, is assigned a weight that is equal to the total number of

packets (across all N VOQs) queued at the vertex. The weight of an edge (i, j) is the sum

of the weights of its two vertices i and j, if there is at least one packet in the corresponding

VOQ (i.e., the VOQ j at input port i), and is 0 otherwise. An MVM policy dictates that the

heaviest (vertex-weighted) matching be used for crossbar scheduling. MVM can achieve

100% throughput, and has a delay performance quite close to that of MWM.

2.1.3 BP-Assisted Algorithms

A technique called BP-assisted scheduling (here BP stands for Belief Propagation) was

proposed in a recent work [35], in which BP is used to boost the performance of certain

parallel/distributed iterative algorithms (called “carrier” algorithms) that are not BP-based

such as iLQF [36]. Its idea is to replace the contents of the messages exchanged between

input and output ports by those that would be exchanged in a BP-based algorithm. The “BP

assistance” part alone has a total time complexity of O(N2), so it is best suited for a carrier

algorithm that has the same asymptotic complexity, such as iLQF.

2.1.4 Lower-Complexity Randomized Algorithms

Several randomized algorithms, starting with TASS [11] and culminating in SERENA [4,

10] were proposed to push the total complexity further down toO(N) (i.e., linear complex-

ity). We will describe in §4.3.2 both TASS and SERENA in detail.

16

A randomized scheduling algorithm specialized for switching variable-length packets

was proposed in [37] that has O(1) total time complexity (per switch). It belongs to a

family of randomized algorithms (e.g., [38, 39, 40, 41]) primarily designed for computing

a collision-free transmission schedule, which corresponds to an independent set in the in-

terference graph, in a wireless network. These algorithms all build upon a Markov Chain

Monte-Carlo (MCMC) technique called Glauber dynamics [42] for computing independent

sets (convertible to bipartite matchings in the switching context).

The algorithm in [37] for computing, at each time slot t, the matching for the next time

slot S(t+ 1), works follows. It samples one of the N2 VOQs (edges) uniformly at random.

Suppose the sampled VOQ (edge) is the VOQ j at input port i (i.e., edge (i, j)). Then,

with probability ew/(ew + 1), it adds the edge (i, j) (i.e., pairing input port i with output

port j) to or keeps the edge in S(t + 1), if neither i nor j is currently matched (in S(t)) or

(i, j) already belongs to the S(t). Here the weight w is set to the celebrated slowly varying

weight function ln(ln(e+x)) proposed in [38], where x is the weight of the edge (i, j) (i.e.,

the length of the corresponding VOQ). Clearly, the algorithm makes at most one change

(hence O(1) total complexity), from any time slot t to the next, to the configuration of the

crossbar (i.e., the matching).

It was proven in [38] that all such algorithms that use this weight function, including

the algorithm in [37], can achieve 100% throughput. However, our simulation results (pre-

sented in §B.5.4) show that, when used for switching fixed-length packets, the algorithm

in [37] has very poor delay performance and the total queue length does not stabilize (i.e.,

keeps increasing) until after a very large number of time slots. These simulation results are

not surprising: all algorithms that adopt this ln ln(e+ ·) weight function have similar poor

delay performance, because as explained in [39], the ln ln(e+ ·) weight function, aimed at

achieving 100% throughput [38], reacts very slowly to changes in queue lengths and hence

allows long queues to build up.

17

2.1.5 Parallel Iterative Algorithms

As mentioned earlier, maximal matchings have long been recognized as a cost-effective

family in switching. Among various types of algorithms that compute maximal matchings,

the family of parallel iterative algorithms [43, 17, 44, 36, 45, 46] is widely adopted. Par-

allel iterative algorithms compute a maximal matching via multiple iterations of message

exchanges between the input and output ports. Generally, each iteration contains three

stages: request, grant, and accept. In the request stage, each input port sends requests to

output ports. In the grant stage, each output port, upon receiving requests from multiple

input ports, grants to one. Finally, in the accept stage, each input port, upon receiving

grants from multiple output ports, accepts one. Unfortunately, all these parallel iterative

algorithms in switching require up to N iterations to guarantee that the resulting matching

is a maximal matching. In other words, they need up to N iterations to achieve the same

provable throughput and delay performance guarantees as QPS-1 (running 1 iteration).

2.1.6 Batch Scheduling Algorithms

In all algorithms above, a matching decision is made every time slot. An alternative type of

algorithms is batch scheduling [22, 23, 47, 24, 48] in which multiple (say K) consecutive

time slots are grouped a batch and these K matching decisions are batch-computed, which

usually has lower time complexity than K independent matching computations. However,

since K is usually quite large (e.g., O(N2) [22]), and a packet arriving at the beginning

of a batch has to wait till at least the beginning of the next frame to be switched, batch

scheduling generally results in higher queueing delays.

Although batch scheduling can reduce the average time complexity of a matching com-

putation via amortization over the batch, most of existing batch scheduling algorithms are

centralized and have a relatively high time complexity even after the amortization. For ex-

ample, the Fair-Frame algorithm [23] based on the Birkhoff–von Neumann Decomposition

(BvND) has a time complexity of O(N1.5 logN) per matching computation.

18

Recently, a parallel batch scheduling algorithm based on complex coloring [49] was

proposed in [24]. Although this algorithm requires a batch size of only O(logN) and has a

relatively low time complexity of only O(logN) per time slot per port, it does not provide

any provable throughput guarantees. In addition, the constant factor in the first O(logN) is

large: A batch size of 3,096 was needed for the algorithm to attain around 96% throughputs

under some traffic patterns when N=300 as reported in [24].

2.2 Queue-Proportional Resource Allocation

Serving queues at rates or probabilities proportional to their (queue) lengths is an intuitively

appealing resource allocation approach that has been used in various computer and com-

munications systems for many years. For example, in [18], a simple queue-proportional

scheduler was proposed for scheduling transmissions in wireless broadcast channels, and

a geometric programming based formulation of this problem specialized to the Gaussian

broadcast channel was later established in [50, 51]. However, unlike our QPS strategy, in

which an input port proposes to an output port with a probability proportional to the length

of the corresponding VOQ, the scheduler in [18, 50, 51] dictates that each link receives an

service rate proportional to its current queue length during each time slot. As a result, it

has to solve a convex optimization problem that has a much higher time complexity.

In [52], B. Li et al. proposed a generalized version of the above queue-proportional

scheduler called Queue-Proportional Rate Allocation (QPRA), with the objective of achiev-

ing maximum throughput in a multi-hop wireless network. As the QPRA algorithm is

generally hard to implement in practice, they further proposed a low-complexity version

called LC-QPRA to make their scheme more practical. The LC-QPRA algorithm resem-

bles the proposing step in our QPS scheme in that, during each time slot, a sender proposes

(attempts to transmit) to each receiver with a probability proportional to the length of the

corresponding “VOQ”.

There are three key differences between QPRA and QPS however. First, in QPRA,

19

during any time slot, the probability with which each sender proposes (to any receiver)

is also proportional to its total queue length, whereas in QPS, this probability is 1 for

any sender unless its total queue length is 0. Second, in QPRA, if two senders propose

(transmit) to the same receiver during a time slot, both transmissions are corrupted, whereas

in QPS, only one is allowed to eventually transmit a packet to the receiver. Third, in QPRA,

the outcomes (successful or corrupted) of these proposals (attempted transmissions) define

the final matching, whereas QPS only generates a starter matching that will be further

refined into a full or more complete matching.

Finally, another policy was proposed in [53] for scheduling packets in a single-hop

network, where crossbar scheduling is a special case. However, this policy is closely related

to MWM-0+ [30], and is unrelated to QPRA or QPS.

2.3 Wireless Transmission Scheduling

Transmission scheduling in wireless networks with primary interference constraints [54]

shares a common algorithmic problem with crossbar scheduling: to compute a good match-

ing for each “time slot”. The matching computation in the former case is however more

challenging, since it needs to be performed over a general graph that is not necessarily

bipartite. Several wireless transmission scheduling solutions were proposed in the litera-

ture [55, 54, 56, 57, 58, 59] that are based on distributed computation of matchings in a

general graph.

Most of these solutions tackle the underlying distributed matching computation prob-

lem using an adaptation/extension of either [60] (used in [58, 57, 59]), or [61] (used in [56,

55]). In [60], a parallel randomized algorithm was proposed that outputs a maximal match-

ing with expected runtime O(log |E|), where |E| is the number of edges in the graph. This

time complexity, translated into our crossbar scheduling context, is O(logN). However,

maximal matching algorithms are known to only guarantee at least 50% throughput [7].

The work of Hoepman [61] converts an earlier sequential algorithm for computing approx-

20

imate MWM [62] to a distributed one. However, the distributed algorithm in [61], like its

sequential version [62], can only guarantee to find a matching whose weight is at least half

of that of the MWM, and hence can only guarantee at least 50% throughput also.

The only exception, to distributed matching algorithms being based on either [60]

or [61], is [54], in which the scheduling algorithm, called MIX, is a distributed version

of the MERGE procedure in SERENA, albeit in the wireless networking context. The

objective of MIX is to compute an approximate MWM for simultaneous non-interfering

wireless transmissions of packets, where the weight of a directed edge (say a wireless link

from a node X to a node Y) is the length of the VOQ at X for packets destined for Y ,

in the SERENA manner: MERGE the matching used in the previous time slot with a new

random matching. Unlike in SERENA, however, neither matching has to be full and the

connectivity topology is generally not bipartite in a wireless network, and hence the graph

resulting from the union of the two matchings can contain both cycles and paths.

MIX has three variants. As we will explain in §A.6 in details, all three variants compute

the total – or equivalently the average – green and red weights of each cycle or path either

by linearly traversing the cycle or path, or via a gossip algorithm [63]; they all try to mimic

SERENA in a wireless network and have a time complexity at least O(N), as compared

to O(logN) for SERENADE. To summarize, they are clearly all “wireless SERENA”, not

“wireless SERENADE”.

21

CHAPTER 3

SERENADE

3.1 SERENA

To explain SERENADE, we first explain SERENA [4, 10], the algorithm it parallelizes.

SERENA consists of two steps. The first step is to derive a full matching R(t) from the set

of packet arrivalsA(t). The second step is to mergeR(t) with the full matching S(t−1) used

in the previous time slot, to arrive at the full matching S(t) to be used for the current time

slot t. After we briefly describe the first step, we will focus on the second step, MERGE,

in the rest of this section. In [4, 10], the set of packet arrivals A(t) is modeled as an arrival

graph, which we denote also as A(t), as follows: an edge (Ii, Oj) belongs to A(t) if and

only if there is a packet arrival1 to the corresponding VOQ at time slot t. Note that A(t) is

not necessarily a matching, because more than one input ports could have a packet arrival

(i.e., edge) destined for the same output port at time slot t. Hence in this case, each output

port prunes all such edges incident upon it except the one with the heaviest weight (with

ties broken randomly). The pruned graph, denoted as A′(t), is now a matching.

This matching A′(t), which is typically partial, is then populated into a full matching

R(t) by pairing the yet unmatched input ports with the yet unmatched output ports in a

round-robin manner. Although this POPULATE procedure alone, with the round-robin

pairing, has O(N) time complexity, we will show in §A.1 that it can be reduced to the

computation of prefix sums and solved using the classical parallel algorithm [64] whose

time complexity in this context is O(logN) per port.

1Like in [4, 10], we assume the arrival processes are i.i.d. Bernoulli. Therefore, there is at most one
packet arrival to any input port during each time slot.

22

3.1.1 Overview of The MERGE Procedure

In this section, we explain the MERGE procedure through which SERENA selects heavier

edges for S(t) from bothR(t) with S(t−1), so that the weight of S(t) is larger than or equal

to those of both R(t) and S(t−1). We color-code and orient edges of R(t) and S(t−1),

like in [4, 10], as follows. We color all edges in R(t) red and all edges in S(t−1) green,

and hence in the sequel, rename R(t) to Sr (“r” for red) and S(t−1) to Sg (“g” for green) to

emphasize the coloring. We drop the henceforth unnecessary term t here with the implicit

understanding that the focus is on the MERGE procedure at time slot t. We also orient all

edges in Sr as pointing from input ports (i.e., I) to output ports (i.e., O) and all edges in Sg

as pointing from output ports to input ports. We use notations Sr(I→O) and Sg(O→I) to

emphasize this orientation when necessary in the sequel. Finally, we drop the term t from

S(t) and denote the final outcome of the MERGE procedure as S.

Now we describe how the two color-coded oriented full matchings Sr(I → O) and

Sg(O→ I) are merged to produce the final full matching S. The MERGE procedure con-

sists of two steps. The first step is to simply union the two full matchings, viewed as two

subgraphs of the complete bipartite graph G(I
⋃
O) (see the Weight-Aware Model de-

scribed in §1.2.2), into one that we call the union graph and denote as Sr(I→O)
⋃
Sg(O→

I) (or Sr
⋃
Sg in short). In other words, the union graph Sr(I→O)

⋃
Sg(O→I) contains

the directed edges in both Sr(I→O) and Sg(O→I).

It is a mathematical fact that any such union graph can be decomposed into disjoint

directed cycles [4]. Furthermore, each directed cycle, starting from an input port Ii and

going back to itself, is an alternating path between a red edge in Sr and a green edge in

Sg, and hence contains equal numbers of red edges and green edges. In other words, this

cycle consists of a red sub-matching of Sr and a green sub-matching of Sg. Then in the

second step, for each directed cycle, the MERGE procedure compares the weight of the

red sub-matching (i.e., the total weight of the red edges in the cycle), with that of the green

sub-matching, and includes the heavier sub-matching in the final merged matching S.

23

I3 O1 I4 O14 I14 O11 I7 O16 I11 O9

O4 I2

I12 O3 I10 O8 I16 O15 I5 O12 I8 O5

I13 O2 I9

O13 O10

I15 O7 I6

I1

O6

6

6
2

9

12

19
18

7

6

5

15

15

5

10

3

10

1

6

9
6

7

16

16

10

16

4

4

0
0

2

19

19

Figure 3.1: Cycles in Sr(I→O)
⋃
Sg(O→I): Edges with red and green shadows are from

Sr(I→O) and Sg(O→I) respectively.

An Illustrative Example. To illustrate the MERGE procedure by an example, Figure 3.1

shows the union graph of the following two full matchings over a 16 × 16 bipartite

graph (crossbar). The number around each edge is its weight. The first full matching

Sr(I → O), written as a permutation with input port numbers (1 as I1, 2 as I2, and so

on) at the top and output port numbers at the bottom (1 as O1, 2 as O2, and so on), is
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 5 1 14 15 7 16 12 10 3 9 4 2 11 13 8

)
. We denote this permutation as σr. For ex-

ample, σr mapping (input port) 3 to (output port) 1 corresponds to the red edge I3→O1

in Figure 3.1 (i.e., I3 pairing with O1 in Sr, the “red” matching). The second full match-

ing Sg(O → I), written as a permutation with output port numbers at the top and input

port numbers at the bottom, is
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 9 12 3 8 1 15 10 2 6 7 5 13 14 16 11

)
. We denote this

permutation as σ−1
g . The union graph contains three disjoint directed cycles that are of

lengths 22, 8, 2 respectively. Now, we illustrate the MERGE procedure on the leftmost cy-

cle in Figure 3.1. It is not hard to check that the total weight of the red sub-matching in

this cycle is 82 and that of the green sub-matching is 84. Then, the heavier sub-matching,

i.e., the green one, is included into the final merged matching S. The standard centralized

algorithm for implementing the MERGE procedure is to linearly traverse every cycle once,

by following the directed edges in the cycle, to obtain the weights of the green and the

red sub-matchings that comprise the cycle [4, 10]. Clearly, this algorithm has a time com-

plexity of O(N). The primary contribution of SERENADE is to reduce this complexity to

O(logN) per input/output port through parallelization.

24

3 4 14 7 11

2

12 10 16 5 8

13 9

15 6

1
6

5

15

15

5

10

3

10
1

6

9
6

7

16

16

10

16

4

4

0
0 2

6

6
29

12

19
18 7

19 19

Figure 3.2: Combinatorial cycles correspond to the cycles in Figure 3.1.

3.1.2 A Combinatorial View of MERGE

In this section, to better describe MERGE under SERENADE however, we introduce

a combinatorial view of MERGE, through which the MERGE procedure can be very

succinctly characterized by a single permutation σ , σ−1
g ◦ σr, the composition of the

two aforementioned full matchings Sr(I → O) and Sg(O → I) written as permu-

tations. We do so using the example shown in Figure 3.1. It is not hard to verify

that, in this example, σ , σ−1
g ◦σr =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 8 4 14 16 15 11 5 6 12 2 3 9 7 13 10

)
. We

then decompose this permutation σ into disjoint combinatorial cycles. In this example,

σ=(3 4 14 7 11 2 8 5 16 10 12)(13 9 6 15)(1), and its cycle decomposition graph, which con-

tains precisely these three combinatorial cycles, is shown in Figure 3.2.

Note there is a one-to-one correspondence between the graph cycles (of the union graph

Sr
⋃
Sg) shown in Figure 3.1 and the combinatorial cycles of σ shown in Figure 3.2. For

example, cycle I3→O1→I4→O14→· · ·→O3→I12→O4→I3, the leftmost cycle in Figure 3.1,

corresponds to the leftmost combinatorial cycle (3 4 14 7 11 2 8 5 16 10 12) in Figure 3.2.

Note that two consecutive edges – one belonging to the red matching Sr and the other to

the green matching Sg – on the graph cycle “collapse” into an edge on the corresponding

combinatorial cycle. For example, two directed edges (I3, O1) (∈ Sr) and (O1, I4) (∈ Sg)

in Figure 3.1 collapse into the directed edge from (input port) 3 to (input port) 4 in the

combinatorial cycle (3 4 14 7 11 2 8 5 16 10 12) in Figure 3.2. Hence each combinatorial

cycle subsumes a red sub-matching and a green sub-matching that collapse into it. Note

also that each vertex on the cycle decomposition graph corresponds to an input port. For

example, vertex “3” in (3 4 14 7 11 2 8 5 16 10 12) in Figure 3.2 corresponds to input port 3

25

(i.e., I3) in Figure 3.1. Hence, we use the terms “vertex” and “input port” interchangeably

in the sequel of this chapter.

We assign a green weight wg(·) and a red weight wr(·) – to each combinatorial edge

e in the cycle decomposition graph – that are equal to the respective weights of the green

and the red edges that collapse into e. For example, the green and red numbers around each

edge shown in Figure 3.2 represent its green and red weights respectively. We also define

the green (or red) weight of a combinatorial cycle as the total green (or red) weight of all

combinatorial edges on the cycle. Clearly, this green (or red) weight is equal to the weight

of the green (or red) sub-matching this cycle subsumes. Under this combinatorial view, the

MERGE procedure of SERENA can be stated as follows: For each combinatorial cycle of

σ, we compare its red weight with its green weight, and include in S the corresponding

heavier sub-matching.

3.1.3 Walks on Cycles

Finally, we introduce the concept of walk on a cycle decomposition graph. It greatly sim-

plifies the descriptions of SERENADE, as it will become clear later that SERENADE is

all about how to emulate SERENA using information, each input port obtains, regrading

a few walks with lengths of power of 2. Recall that a walk in a general graph G(V,E)

is an ordered sequence of vertices, v1→ v2→· · ·→ vk such that (vj, vj+1) ∈ E for any

j ∈ {1, 2, . . . , k − 1}; note that a walk, unlike a path, can traverse a vertex or edge more

than once. Clearly, in the cycle decomposition graph of σ, every walk (say starting from

a vertex i) circles around a combinatorial cycle (the one that i lies on), and hence nec-

essarily takes the following form: i→σ(i)→σ2(i)→· · ·→σm(i). For notational con-

venience, we denote this walk as i ; σm(i). For example, with respect to the com-

binatorial cycle (3 4 14 7 11 2 8 5 16 10 12) in Figure 3.2, the walk 3 ; σ8(3) represents

3→4→14→7→11→2→8→5→16, which consists of 8 directed edges on the cycle.

Generalizing this notation (of a walk), we define σm1(i) ; σm2(i) as the (m2−m1)-

26

edge-long walk σm1(i)→σ(m1+1)(i)→· · ·→σm2(i), where m1 <m2 are integers, and both

m1 andm2 could be negative. We define its red weight, denoted aswr(σm1(i);σm2(i)), as

the sum of the red weights of all edges in σm1(i);σm2(i). Note that if an edge is traversed

multiple times in a walk, the red weight of the edge is accounted for multiple times. The

green weight of the walk, denoted as wg(σm1(i);σm2(i)), is similarly defined.

3.2 Overview of SERENADE

In this section, we provide a high-level overview of SERENADE. We first introduce the

core idea of SERENADE that is based on an important concept called “discover”. Then,

we give a high-level description of two algorithmic stages of SERENADE: a knowledge-

discovery stage and a distributed binary search stage. For ease of presentation (e.g., no

need to put floors or ceilings around each occurrence of log2N), we have assumed that N

is a power of 2 throughout this chapter; SERENADE works just as well when N is not.

3.2.1 Core Idea of SERENADE

The core idea of SERENADE is for all vertices on a combinatorial cycle, or a designated

vertex among them, to discover (defined next) itself or another vertex on the same cycle

twice. As will be shown next in Lemma 3.2.1, when this happens, these vertices will know

precisely whether the green weight or the red weight of the cycle is larger, and hence will

select the same heavier sub-matching as they would under SERENA. If this happens on

every combinatorial cycle, then SERENADE exactly emulates SERENA.

Definition 3.2.1. Given two vertices i, j in any combinatorial cycle of σ, we say that vertex

i discovers vertex j if i learns the identity of j and the (green and red) weights of a walk

from i to j or from j to i.

By this definition, every vertex i discovers itself, once at the beginning (i.e., before any

algorithmic steps), via the empty (0-edge-long) walk from i to i.

27

Lemma 3.2.1 (Property of “Discover”). Let i and j be two vertices, which may or may not

be the same vertex, on a combinatorial cycle of σ. If i discovers j twice via two different

walks, then vertex i knows precisely whether the green weight or the red weight of the

cycle is larger.

Proof: See §A.2.

3.2.2 High-Level Description of SERENADE

As mentioned earlier, SERENADE consists of two algorithmic stages: a knowledge-

discovery stage and a distributed binary search stage. In this section, we give the high-level

descriptions of these two stages, deferring their details to §3.3 and §3.5 respectively.

Knowledge-Discovery Stage. The knowledge-discovery stage uses the standard technique

of two-directional exploration with successively doubled distance in distributed comput-

ing [65]. The basic idea of the algorithm is for each vertex i to exchange information, dur-

ing the kth (1≤k≤ log2N) iteration2, with vertices “(±2k−1) σ-hops” away (i.e., σ2k−1
(i)

and σ−(2k−1)(i)) to discover two vertices “(±2k) σ-hops” away (i.e., σ2k(i) and σ−(2k)(i)).

If either of the two vertices has been discovered twice by i, then, by Lemma 3.2.1, we

know that vertex i can make the same matching decision as it would under SERENA. In

the example shown in Figure 3.2, vertex 3 communicates, during the 1st iteration, with

vertices 4 = σ(3) and 12 = σ−1(3) to discover vertices 14 = σ2(3) and 10 = σ−2(3), and

communicates, during the 2nd iteration, with the newly-discovered vertices 14 and 10 to

discover vertices 11 = σ4(3) and 5=σ−4(3), and so on in the next (log2N)−2 iterations.

Distributed Binary Search Stage. After the 1+log2N iterations of the knowledge discov-

ery, a vertex i, residing on a cycle, will discover a vertex on the same cycle twice and hence

make the same matching decision as it would under SERENA, if the cycle is ouroboros (to

be defined in §3.3.4). However, not all cycles are ouroboros, as will be shown in §3.3.4.

2As will be shown in §3.3.2, there is a 0th iteration at the beginning, with which each vertex i discovers
σ(i) and σ−1(i).

28

Those and only those vertices, residing on non-ouroboros cycles, then perform an addi-

tional distributed binary search, the purpose of which is to let a designated vertex in each

non-ouroboros cycle discover itself for a second time. We will show in §3.4 that the elec-

tions of those designated vertices (i.e., leader election) can be seamlessly embedded into

the 1+log2N iterations of the knowledge-discovery procedure. We will show in §3.5 that

the distributed binary search finishes in at most log2N iterations. After the distributed

binary search, each designated vertex informs the switch controller whether the green or

the red sub-matching should be selected on the non-ouroboros cycle it resides on. The

switch controller then broadcasts these decisions to all N vertices, and every vertex on a

non-ouroboros cycle will carry out the corresponding matching decision.

Theorem 3.2.1 is a main result of this work. Its proof is straightforward after we have

proved the correctness of the knowledge-discovery procedure (§3.3.2) and the distributed

binary search (§3.5).

Theorem 3.2.1. SERENADE exactly emulates SERENA [4, 10] within O(logN) itera-

tions. More precisely, at most 1+log2N iterations are needed for the knowledge discovery

procedure and at most log2N iterations for the distributed binary search.

3.3 Knowledge-Discovery Stage

In this section, we describe the details of the knowledge-discovery stage. We start with

describing the information obtained by the knowledge-discovery procedure in §3.3.1; the

detailed algorithmic steps in each iteration will be described later in §3.3.2. In §3.3.3, we

analyze the time and message complexities of the knowledge-discovery procedure. Finally,

we explain in §3.3.4 which vertices can discover some vertex twice during the knowledge-

discovery procedure by introducing the concept of “ouroboros cycle”.

29

3.3.1 Knowledge Sets

We will show next that, for 0 ≤ k ≤ log2N (there is a 0th iteration at the beginning),

after the kth iteration, each vertex i learns the following two knowledge sets: φ(i)
k+ and

φ
(i)
k−. Knowledge set φ(i)

k+ contains three quantities concerning the vertex (input port) that

is 2k σ-hops “downstream” (w.r.t. the “direction” of σ), relative to vertex i, in the cycle

decomposition graph of σ:

(1) σ2k(i), the identity of that vertex,

(2) wr(i; σ2k(i)), the red weight of the 2k-edge-long walk from i to that vertex, and

(3) wg(i; σ2k(i)), the green weight of the walk.

Similarly, knowledge set φ(i)
k− contains the three quantities concerning the vertex that

is 2k σ-hops “upstream” relative to vertex i, namely σ−2k(i), wr(σ−2k(i) ; i), and

wg(σ
−2k(i) ; i). For example, after the 3rd iteration, vertex 3 learns the identities of

16 = σ8(3) and 7 = σ−8(3) (vertices “(±8) σ-hops” away) and the green and the red

weights of the walks 3;σ8(3) and σ−8(3);3.

As we will show in §3.3.2, the knowledge-discovery procedure might halt before finish-

ing the 1+log2N iterations, so each vertex learns at most 2+2 log2N knowledge sets during

the knowledge-discovery procedure. Note the 2+2 log2N knowledge sets are a tiny percent-

age of information the switch controller has under SERENA: the former scales asO(logN)

whereas the latter scales as O(N). For example, in Figure 3.2, vertex 3 knows only the val-

ues the permutation function σ(•) takes on argument values 3, 4, and 12, whereas under

SERENA the (central) switch controller would know that on all N = 16 argument values.

In general, different vertices have very different sets of such partial knowledge under SER-

ENADE. For example, vertex 2 knows only the values the permutation function σ(•) takes

on argument values 2, 8, and 11. However, despite this “blind men (different vertices) and

an elephant (σ and the green and the red weights of all walks on the combinatorial cycles

of σ)” situation, these vertices manage to collaboratively perform the approximate or the

30

1 for k ← 0 to log2N do
2 if k = 0 then

// The 0th iteration

3 Receive from output port or pairing with i in Sr: identity σ(i) and weight
wg(i→σ(i));

4 Receive from output port og pairing with i in Sg: identity σ−1(i) and weight
wr(σ

−1(i)→ i);
5 Compute knowledge set φ(i)

k+: φ(i)
k+←{σ(i), wr(i→σ(i)), wg(i→σ(i))};

6 Compute knowledge set φ(i)
k− similarly;

7 else
// The subsequent iterations

8 iD ← σ2k−1
(i);

9 iU ← σ−2k−1
(i);

10 Send to iU the knowledge set φ(i)
(k−1)+;

11 Receive from iD the knowledge set φ(iD)
(k−1)+;

12 Send to iD the knowledge set φ(i)
(k−1)−;

13 Receive from iU the knowledge set φ(iU)
(k−1)−;

14 Compute knowledge set φ(i)
k with φ(i)

(k−1)+ and φ(iD)
(k−1)+ by (3.1);

15 Compute knowledge set φ(i)
k− similarly with φ(i)

(k−1)− and φ(iU)
(k−1)−;

// Halt checking
16 Halt if vertex i discovers any vertex twice (in light of newly discovered

vertices σ2k(i) and σ−2k(i));

Algorithm 1: Knowledge-discovery procedure at vertex i.

exact MERGE operation (i.e., making do with less).

3.3.2 Knowledge-Discovery Procedure

We now describe the 1+log2N iterations of the knowledge-discovery procedure in detail

and explain how these iterations allow every vertex i to concurrently obtain its knowledge

sets φ(i)
k+ and φ(i)

k− for 0≤ k≤ log2N . The pseudocode of the knowledge-discovery proce-

dure at vertex i is presented in Algorithm 1, that executed at any other vertex is identical.

31

3.3.2.1 The 0th Iteration

We start with describing the 0th iteration, the operation of which is slightly different than

that of subsequent iterations in that whereas messages are exchanged only between input

ports in all subsequent iterations, messages are also exchanged between input ports and

output ports in the 0th iteration. Suppose input port i is paired with output port or in the

(red) full matching Sr and with output port og in the (green) full matching Sg. The 0th

iteration contains two rounds of message exchanges. In the first round, input port i receives

from output port or a message which includes the identity σ(i) and the weight of edge

or → σ(i), i.e., the green weight of edge i→ σ(i) (Line 3). Note that input port σ(i) is

paired with or in Sg, so or knows the identity of σ(i) and the weight of edge or → σ(i).

With the newly received information, input port i can calculate knowledge set φ(i)
0+ (Line 5).

For example, in this round, input port 3 in Figure 3.1 receives from output port 1 the identity

of input port 4 and the weight, which is 5, of edge O1→I4. Similarly, in the second round,

input port i receives from output port og a message which includes the identity σ−1(i) and

the weight of edge σ−1(i)→ og, i.e., the red weight of edge σ−1(i)→ i (Line 4). Note

that input port σ−1(i) is paired with og in Sr. With the newly received information, input

port i can calculate knowledge set φ(i)
0− (Line 6). For example, in this round, input port

3 in Figure 3.1 receives from output port O4 the identity of input port 12 and the weight,

which is 0, of edge I12→O4. Therefore, after this 0th iteration, each input port i obtains

the knowledge sets φ(i)
0+ and φ(i)

0−, or in other words, discovers σ(i) and σ−1(i).

3.3.2.2 Subsequent Iterations

The subsequent iterations can be described inductively as follows. Suppose after iteration

k−1 (for any 1≤ k≤ log2N), every vertex i discovers its upstream vertex iU =σ−2k−1
(i)

and its downstream vertex iD = σ2k−1
(i). Lines 10-15 in Algorithm 1 show how vertex i

discovers σ2k(i) and σ−2k(i) via two rounds of message exchanges of the iteration k. In the

first round, vertex i sends the knowledge set φ(i)
(k−1)+, obtained during iteration k−1, to the

32

12

10
16 5

8

2

11
714

4

3

φ
(3)
0+={4, 6, 5} φ

(3)
0−={12, 0, 2}

φ
(3)
1+={14, 21, 20} φ

(3)
1−={10, 4, 2}

φ
(3)
2+={11, 29, 40} φ

(3)
2−={5, 36, 16}

φ
(3)
3+={16, 62, 78} φ

(3)
3−={7, 56, 54}

Figure 3.3: Illustration of the knowledge-discovery procedure: messages sent by vertex 3
in Figure 3.2.

upstream vertex iU (Line 10). Meanwhile, vertex i receives from the downstream vertex

iD its knowledge set φ(iD)
(k−1)+ (Line 11), which, as explained earlier, contains the values

of σ2k−1
(iD), wr(iD ; σ2k−1

(iD)), and wg(iD ; σ2k−1
(iD)). Having obtained these three

values, vertex i pieces together its knowledge set φ(i)
k+ (Line 14) as follows.





σ2k(i) ← σ2k−1(
iD
)

wr
(
i; σ2k(i)

)
← wr

(
i; σ2k−1

(i)
)

+ wr
(
iD ; σ2k−1

(iD)
)

wg
(
i; σ2k(i)

)
← wg

(
i; σ2k−1

(i)
)

+ wg
(
iD ; σ2k−1

(iD)
)

(3.1)

Note that vertex i already knows φ(i)
(k−1)+, which includes wr(i ; σ2k−1

(i)) and wg(i ;

σ2k−1
(i)).

Similarly, in the second round of message exchanges, vertex i sends φ(i)
(k−1)− to the

downstream vertex iD (Line 12), and meanwhile receives φ(iU)
(k−1)− from the upstream vertex

iU (Line 13). The latter knowledge set (i.e., φ(iU)
(k−1)−), combined with the knowledge set

φ
(i)
(k−1)− that vertex i already knows, allows i to piece together the knowledge set φ(i)

k−.

Therefore, vertex i obtains φ(i)
k+ and φ(i)

k−, or in other words discovers σ2k(i) and σ−2k(i),

after the kth iteration.

An Illustrative Example. Figure 3.3 shows the messages sent by vertex 3 in Fig-

ure 3.2 during the kth (1 ≤ k ≤ 4) iteration of the knowledge-discovery procedure. For

33

example, in the 3rd iteration, vertex 3 sends to vertex 11 = σ4(3) the knowledge set

φ
(3)
2−={σ−4(3), wr(σ

−4(3);3), wg(σ
−4(3);3)}={5, 36, 16} (the 3rd up arrow from top

to bottom in right half of Figure 3.3) it learns during the 2nd iteration. It also sends to vertex

5=σ−4(3) the knowledge set φ(3)
2+ ={σ4(3), wr(3;σ4(3)), wg(3;σ4(3))}={11, 29, 40}

(the 3rd down arrow from top to bottom in right half of Figure 3.3). Though it is not

shown in Figure 3.3, in the same iteration, vertex 3 receives φ(11)
2+ = {σ4(11), wr(11 ;

σ4(11)), wg(11; σ4(11))}= {16, 33, 38} from vertex 11 = σ4(3) so that it can compute,

by (3.1), σ8(3)=16, wr(3;σ8(3))=wr(3;σ4(3))+wr(11;σ4(11))=29+33=62, and

wg(3;σ8(3))=wg(3;σ4(3))+wg(11;σ4(11))=40+38=78, which is precisely φ(3)
3+.

It also receives φ(5)
2−={σ−4(5), wr(σ

−4(5);5), wg(σ
−4(5);5)} from vertex 5 = σ−4(3).

Similarly, it can compute φ(3)
3−={σ−8(3), wr(σ

−8(3);3), wg(σ
−8(3);3)}={7, 56, 54}.

Therefore, vertex 3 discovers vertices 16=σ8(3) and 7=σ−8(3) respectively. Note in this

example and Figure 3.3, numerical green and red weights in knowledge sets are not in bold.

3.3.2.3 Early Halt Checking

The knowledge-discovery procedure might halt before finishing the 1+log2N iterations. As

shown in Line 16, the procedure will halt if vertex i discovers some vertex twice. More pre-

cisely, if vertex i discovers the same vertex twice in the same iteration, i.e., σ2k(i)=σ−2k(i)

or it discovers a vertex that has been discovered in the previous iterations, i.e., vertex i has

already discovered σ2k(i) (or σ−2k(i)) in the previous iterations. By Lemma 3.2.1, we con-

clude that vertex i can make the exact same matching decision as it would under SERENA.

Halt Checking in O(1) Per Iteration. Vertex i can finish this halt checking in O(1) (per

port) per iteration, or O(logN) in total, using a pointer array B[1..N]. Here, we only need

to show that the latter case described above, i.e., checking whether vertex i has already

discovered σ2k(i) (or σ−2k(i)) in the previous iterations, in O(1), as the checking for the

former case (i.e., whether σ2k(i) = σ−2k(i)) is obviously O(1). Each array entry B[i′]

initially points to NULL. At the end of each iteration (including the 0th iteration), vertex i

34

simply checks whether B[σ2k(i)] 6= NULL (or B[σ−2k(i)] 6= NULL). If so, then σ2k(i) (or

σ−2k(i)) has been discovered in the previous iterations. Otherwise, we updateB as follows:

pointing B[σ2k(i)] and B[σ−2k(i)] to the knowledge set φ(i)
k+ and φ(i)

k− respectively.

Note that we need to reset the values of all N entries of B to NULL at the end of a

matching computation. The time complexity of the reset is O(logN) (instead of O(N))

because each non-null entry of B is indexed by the identity field of a knowledge set, the

total number of which is upper-bounded by 2+2 log2N . Hence the total time complexity

for each vertex i to finish halt checking, i.e., Line 16 of Algorithm 1, is O(1) (per port) per

iteration, or O(logN) in total.

All or None Lemma. Using the similar operations as in the proof of Lemma 3.2.1, vertex

i can use O(1) operations to decide which is heaver between the green weight and the red

weight of the cycle that vertex i belongs to. So can other vertices belonging to the same

cycle (as vertex i) by using the following lemma.

Lemma 3.3.1 (All or None). During the execution of the knowledge-discovery procedure

in SERENADE, if any vertex i halts before finishing the 1+log2N iterations, i.e., halting

because of discovering some vertex twice in Line 16 of Algorithm 1, then all other vertices

belonging to the same cycle will also halt in the same iteration

Proof: See §A.3.

3.3.2.4 Discussions

In describing the knowledge-discovery procedure, we assume that input ports can commu-

nicate directly with each other. This is a realistic assumption, because in most real-world

switch products, each line card i is full-duplex in the sense the logical input port i and

the logical output port i are co-located in the same physical line card i. In this case, for

example, an input port i1 can communicate with another input port i2 by sending informa-

tion to output port i2, which then relays it to the input port i2 through the “local bypass”,

35

presumably at little or no communication costs. However, SERENADE also works for the

type of switches that do not have such a “local bypass,” by letting an output port to serve

as a relay, albeit at twice the communication costs. More precisely, in the example above,

the input port i1 can send the information first to the output port i1, which then relays the

information to the input port i2.

3.3.3 Complexity Analysis

We now analyze the time and message complexities of the knowledge-discovery procedure.

Time Complexity. The time complexity of the knowledge-discovery procedure is (at most)

1+log2N iterations, and that of each iteration is several operations for local computation

for computing knowledge sets (Lines 14-15 of Algorithm 1) and halt checking (Line 16 of

Algorithm 1). Clearly, those operations can be performed in O(1).

Message Complexity. The message complexity of the knowledge-discovery procedure is

O(logN) messages per vertex, since every vertex needs to send (and receive) two messages

during each iteration. In every message, it suffices to only include wr(·)−wg(·), the dif-

ference between the red and the green weights of the corresponding walk. Therefore, each

message (i.e., knowledge set) can be encoded in C+log2N bits, where C is the maximum

number of bits needed to encode this difference.

3.3.4 Early Halt: The Ouroboros Cycles

In this section, we define the concept of an ouroboros cycle, and prove Lemma 3.3.2, which

states that all vertices on an ouroboros cycle can halt (Line 16 of Algorithm 1) and make

the exact same matching decisions as they would under SERENA, without performing

the distributed binary search. Ouroboros is the ancient Greek symbol depicting a serpent

devouring its own tail. We “borrow” this concept because what happens in ouroboros cycles

is very similar to what is depicted by the symbol “Ouroboros”.

36

Definition 3.3.1 (Ouroboros Cycle). A cycle is said to be ouroboros if and only if its length

` is an ouroboros number (w.r.t. N), defined as a positive divisor of a number that takes

one of the following three forms: (I) 2α, (II) 2β−2γ , and (III) 2β+2γ , where α, β and γ are

nonnegative integers that satisfy α≤dlog2Ne and γ<β≤dlog2Ne.

It is not hard to check that, in Figure 3.2, the leftmost cycle (of length 11) is not

ouroboros (i.e., non-ouroboros), but the other two are.

The following lemma shows a nice property of ouroboros cycles, whose proof can be

found in §A.4.

Lemma 3.3.2 (Ouroboros Lemma). Vertex i will discover twice a vertex on the same cycle

(as itself) during the knowledge-discovery stage, if it is on an ouroboros cycle.

Remark. Readers may wonder if we can do away with the distributed binary search simply

by running a little more iterations (say 0.5 log2N more iterations), because more iterations

means that more vertices may discover a vertex twice. Unfortunately, as shown in §A.5,

there exists some numbers (cycle lengths) that are “hardcore non-ouroboros” in the sense

a vertex i on a cycle of such a length ` needs to run exactly d`/2e iterations to discover a

vertex twice.

3.4 Leader Election

We have shown that the 1+log2N iterations of the knowledge-discovery procedure alone

is not enough for SERENADE to emulate SERENA exactly. To do so, SERENADE needs

an additional distributed binary search. As mentioned in §3.2, the distributed binary search

requires every non-ouroboros cycle to elect a designated vertex, which is decided through

a leader election by vertices on this cycle. In this section, we describe how to embed this

leader election seamlessly into the knowledge-discovery procedure of SERENADE.

37

3.4.1 Leader Election

We explain this process on an arbitrary combinatorial cycle of σ, focusing on the actions

of an arbitrary vertex i that belongs to this cycle. We follow the standard practice [66] of

making the vertex with the smallest identity (an integer between 1 and N) on this cycle

the leader. Recall that in the knowledge-discovery procedure, after each (say kth) iteration,

vertex i discovers σ−2k(i) that is “2k σ-hops away” from it on the cycle. More precisely,

vertex i learns φ(i)
k−, which contains the identities of the vertex σ−2k(i), and the red and green

weights of the walk σ−2k(i) ; i. Our goal is to augment this kth iteration to learn the vertex

with the smallest identity on this walk σ−2k(i); i, which we denote as L(σ−2k(i); i) and

call the leader of the level-k precinct right-ended at i.

Like in the knowledge-discovery procedure, we explain this augmentation inductively.

The case of k=0 (i.e., the 0th iteration) is as follows: Each vertex i considers the one with

smaller identity between itself and σ−1(i) to be the leader of the level-0 precinct right-ended

at i.

For the kth (k ≥ 1) iteration, each vertex i only needs to augment the knowledge set

it sends downstream to iD = σ2k−1
(i) with L(σ(−2k−1)(i) ; i) (the leader of the level-

(k−1) precinct right-ended at i) in Line 12 of Algorithm 1. Meanwhile, it receives, from

iU =σ(−2k−1)(i), the vertex 2k−1 σ-hops upstream, L(σ(−2k−1)(iU); iU) (the leader of the

level-(k − 1) precinct right-ended at iU) in Line 13 of Algorithm 1, as iU also augments

its knowledge set. In addition, each vertex i also adds the following local computation

in Line 15 of Algorithm 1.

L(σ−2k(i) ; i)←min
{
L(σ(−2k−1)(iU); iU),L(σ(−2k−1)(i); i)

}

The following lemma concerns the correctness of and the minimum number of itera-

tions (i.e., 1+log2N) required by the above embedded leader election. This is also the

reason why we choose to execute the knowledge-discovery procedure for 1+log2N itera-

tions. Its proof is straightforward, we omit it in this thesis.

38

Lemma 3.4.1. Given any non-ouroboros cycle, each vertex belonging to it will learn,

through the augmented knowledge-discovery procedure, the identity of the leader for the

cycle, after at most 1 + log2N iterations. Besides, there exists some non-ouroboros cy-

cle such that some vertices belonging to it need at least 1 + log2N iterations to learn the

identity of the leader.

3.4.2 Distribute Leaders’ Decisions

Once the leader of a non-ouroboros cycle is decided, through a distributed binary search

(to be described in §3.5), the leader will discover itself (through a non-empty walk). Ac-

cording to Lemma 3.2.1, the leader now can make the same matching decision as it would

under SERENA. Then, the leader informs the switch controller of its decision on whether

to choose the green or the red sub-matching, and the switch controller then broadcasts de-

cisions of all leaders to the N vertices. Since each vertex on a non-ouroboros cycle knows

the identity of its leader by Lemma 3.4.1, it will follow the decision made by its leader in

choosing between the red and the green sub-matchings.

The size of this broadcast, equal to the number of non-ouroboros cycles in σ, is small

(with overwhelming probability). For example, we will show in §A.8.1 that even when

N = 256, the average number of non-ouroboros cycles is no more than 1.69 and in more

than 99% of instances, there are no more than 4 non-ouroboros cycles per time slot.

3.5 Distributed Binary Search Stage

As mentioned above, only vertices on ouroboros cycles can make the exact same decisions

as they would under SERENA, for vertices on non-ouroboros cycles, SERENADE needs

an additional distributed binary search stage. In this section, we will describe the binary

search stage focusing on an arbitrary non-ouroboros cycle.

39

1 Procedure BinarySearch(i, k, wg, wr)
2 if i (self) is L0 then halt;
3 if σ(−2k−1)(i) = L0 then
4 wg ← wg − wg

(
σ(−2k−1)(i) ; i

)
;

5 wr ← wr − wr
(
σ(−2k−1)(i) ; i

)
;

6 BinarySearch(L0, k−1, wg, wr);
7 else
8 if L0 = L(σ(−2k−1)(i) ; i) then
9 BinarySearch(i, k − 1, wg, wr);

10 else
11 wg ← wg − wg

(
σ(−2k−1)(i) ; i

)
;

12 wr ← wr − wr
(
σ(−2k−1)(i) ; i

)
;

13 BinarySearch(σ(−2k−1)(i),k−1,wg,wr);

Algorithm 2: Distributed binary search at vertex i.

3.5.1 Distributed Binary Search

Without loss of generality, we assume that L0 is the leader of, and i a vertex on, this non-

ouroboros cycle. The objective of this distributed algorithm is to let its leader L0 discovers

itself twice by searching a repetition (i.e., other than its first occurrence as the starting point

of the walk) of L0 along the walk L0 ; σN(L0), the level-(log2N) precinct right-ended

at σN(L0); this repetition must exist because N , the length of the walk L0 ; σN(L0),

is no smaller than the length of this cycle. To this end, vertices on this non-ouroboros

cycle perform a distributed binary search, guided by the leadership information each vertex

obtains through the leader election. In the following, we describe the high-level ideas

of this binary search algorithm, in which the detailed actions of a vertex i are captured

by Algorithm 2. Unlike the knowledge-discovery procedure, during each iteration of the

distributed binary search, only one vertex on this non-ouroboros cycle performs the search

task, which we call the search administrator.

High-Level Ideas. This binary search is initiated by the vertex σN(L0), who learns

“who herself is” (i.e., that herself is σN(L0)) during the last iteration of the augmented

knowledge-discovery procedure; in other words, the initial search administrator is σN(L0).

40

The initial search interval is the entire walk L0 ; σN(L0), also the level-(log2N) precinct

right-ended at σN(L0). The search administrator σN(L0) first checks whether itself or

σN/2(L0), the middle point of the search interval, is a repetition of L0. If so, the en-

tire search mission is accomplished, so the search ends. Otherwise, it checks whether

there is a repetition of L0 in the right half of the search interval by checking whether

L(σN/2(L0) ; σN(L0)) is equal to L0; note the identity of L(σN/2(L0) ; σN(L0)), the

leader of the level-(log2(N) − 1) precinct right-ended at σN(L0), is known to σN(L0),

since it is one of the leadership information σN(L0) learns through the leader election. If

so, the same search administrator σN(L0) carries on this binary search in the right half of

the search interval. Otherwise, the middle point of the search interval σN/2(L0) becomes

the new search administrator and carries on this binary search in the left half.

Pseudocode Explanation. As mentioned above, the detailed actions of any search admin-

istrator i are captured by Algorithm 2. Initially i is σN(L0) who assigns log2N to k, the 2nd

argument of Algorithm 2, which indicates the search interval is σ−2k ; i. To ensure that

L0 can discover itself, i.e., learning the green and red weights of a non-empty walk from

L0 to itself, search administrator i also maintains the weight information wg, wr (the 3rd

and 4th arguments of Algorithm 2), which are the green and red weights of the walk from

L0 to i. Initially, search administrator σN(L0) knows the green and red weights of the walk

L0 ; σN(L0), because they belong to the knowledge sets that σN(L0) learns during the

last iteration of the augmented knowledge-discovery procedure. We will not describe Al-

gorithm 2 line-by-line, since the actions of search administrator i are the same as those

of the initial search administrator we described above, except that Algorithm 2 details the

operations for bookkeeping weight information.

The correctness of the distributed binary search and the number of iterations it requires,

which are summarized in the following lemma, can be proved with mathematical induction.

Here, we omit it for brevity.

Lemma 3.5.1. Given any non-ouroboros cycle with a length of `, the distributed binary

41

search enables the leader L0 of this cycle to discover itself twice with at most dlog2 `e

iterations.

3.5.2 Complexity Analysis

In this section, we analyze the time and message complexities of the distributed binary

search.

Time Complexity. The time complexity (i.e., number of iterations) of the distributed bi-

nary search is upper-bounded by dlog2 ηe (≤ log2N) iterations, where η is the length of the

longest non-ouroboros cycle, since binary searches at different non-ouroboros cycles are

performed simultaneously. Hence, it can be as large as log2N iterations, each of which has

O(1) time complexity.

Message Complexity. As explained in §3.5.1, during the binary search, on each non-

ouroboros cycle a message (to maintaining the weight information) is transmitted only

when the search administrator moves from one vertex to another, so the message complex-

ity of the binary search, in the worst-case, is at most 1 message per vertex. Each message

needs dlog2 log2Ne+C bits, where C is the number of bits for encoding wr(·)−wg(·).

3.6 Early Stop: O-SERENADE

In this section, we present an early-stop version of SERENADE to approximately emulate

SERENA, without performing the distributed binary search, in which vertices on any non-

ouroboros cycle make a decision based on the (insufficient) information at hand after the

augmented knowledge-discovery procedure. As will be shown in §3.7, O-SERENADE

trades no degradation of delay performances for significant reduction in time complexities

(i.e., without performing the distributed binary search that has up to log2N iterations).

Decision Rule. Now we describe the decision rule of this early-stop version in an arbitrary

non-ouroboros cycle. The decision rule is for the leader L0 of this cycle to compare the

42

green and the red weights of the longest such walk L0 ; σN(L0), and pick, on behalf

of the whole cycle, the green or the red sub-matching according to the outcome of this

comparison; note we cannot simply let every vertex i on this cycle to pick the green or the

red edge individually based on its local view of wr
(
i ; σN(i)

)
vs. wg

(
i ; σN(i)

)
, since

these local views can be inconsistent. For example, for the leftmost cycle in Figure 3.2, it

is not hard to check vertex 2 and vertex 3 have inconsistent local views: wg
(
2;σ16(2)

)
=

120< 134 = wr
(
2 ; σ16(2)

)
(vertex 2’s local view) and wg

(
3 ; σ16(3)

)
= 130> 112 =

wr
(
3 ; σ16(3)

)
(vertex 3’s local view). It is clear that O-SERENADE will pick the red

sub-matching in this cycle based on the local view of its leader (i.e., vertex 2), which

is different from the decision under SERENA. This strategy is opportunistic as it does not

hesitate to pick a sub-matching that appears to be larger, even though there is a small chance

this appearance is incorrect. Therefore, we call it O-SERENADE. Like SERENADE, this

early-stop version also needs the switch controller to broadcast the decisions of all the

leaders to the N vertices.

Rationale. The rationale behind the opportunistic strategy is as follows. When the weight

difference between the red and the green sub-matchings is small, it matters little which

sub-matching is picked. When the difference is large, however, this strategy likely will

further inflate the already large difference and hence result in the correct sub-matching

being picked.

3.7 Performance Evaluation

In this section, we evaluate, through simulations, the throughput and delay performances

of O-SERENADE under various load conditions and traffic patterns specified in §1.2.6;

there is no need to evaluate the throughput and delay performances of SERENADE, which

exactly emulates SERENA. Note that we have also evaluated the message complexity of

SERENADE, and investigated how the mean delay performance of O-SERENADE scales

with respect to N, the number of (input/output) ports; these results can be found in §A.8.

43

3.7.1 Simulation Setup

In all our simulations, the number of input/output portsN is 64, unless otherwise stated. To

measure throughput and delay accurately, we assume each VOQ has an infinite buffer size

and hence there is no packet drop at any input port. Every simulation run lasts 30,000×N2

time slots. This duration is chosen so that every simulation run enters the steady state

after a tiny fraction of this duration and stays there for the rest. The throughput and delay

measurements are taken after the simulation run enters the steady state.

Like in [4, 10], we assume, in the following simulations, that the traffic arrival pro-

cesses to different input ports are mutually independent, and each such arrival process is

i.i.d. Bernoulli (i.e., at any given input port, a packet arrives with a constant probability

ρ ∈ (0, 1) during each time slot). Note that we only use synthetic traffic (instead of that

derived from packet traces) because, to the best of our knowledge, there is no meaningful

way to combine packet traces into switch-wide traffic workloads. As mentioned earlier

in §1.2.6, the four standard types of traffic patterns are used to generate the workloads of

the switch. Finally, we emphasize that, every non-zero diagonal element (i.e., traffic from

an input port i and an output port i), in every traffic matrix we simulated on, is actually

switched by the crossbar and consumes just as much switching resources per packet as

other traffic matrix elements, and never takes advantage of the “local bypass” (see §3.3.2.4)

that may exist between the input port i and the output port i.

3.7.2 Throughput Performance

Our simulation results show that O-SERENADE can achieve close to 100% throughput

under all 4 traffic patterns and i.i.d. Bernoulli traffic arrivals: The VOQ lengths remain

stable under an offered load of 0.99 in all these simulations.

44

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 D

e
la

y

Uniform
O-SERENADE SERENA MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

Figure 3.4: Mean delays of O-SERENADE, SERENA and MWM under the 4 traffic pat-
terns.

3.7.3 Delay Performance

Now we shift our focus to the delay performance of O-SERENADE. We compare its de-

lay performance only with those of SERENA and MWM. We refer readers to [4, 10] for

comparisons between SERENA and some other crossbar scheduling algorithms such as

iSLIP [5] and iLQF [36].

O-SERENADE vs. SERENA. Figure 3.4 shows the mean delays of the three algorithms

under the 4 traffic patterns above respectively. Each subfigure shows how the mean de-

lays (on a log scale along the y-axis) vary with different offered loads (along the x-axis).

Figure 3.4 shows that overall O-SERENADE and SERENA perform similarly under all 4

traffic patterns and all load factors. Upon observing these simulation results, our interpreta-

tion was that the decisions made by O-SERENADE agree with the ground truth (i.e., which

sub-matching is indeed heavier on a non-ouroboros cycle) most of time. This interpretation

was later confirmed by further simulations: They agree in between 90.57% and 99.99% of

the instances.

Perhaps surprisingly, Figure 3.4 also shows that O-SERENADE performs slightly bet-

ter than SERENA when the traffic load is low (say < 0.4) under log-diagonal and diag-

onal traffic patterns. Our interpretation of this observation is as follows. It is not hard to

verify that decisions made by O-SERENADE can disagree with the ground truth, with a

45

non-negligible probability, only when the total green and the total red weights of a non-

ouroboros cycle are very close to one another. However, in such cases, picking the wrong

sub-matchings (i.e., disagreeing with the ground truth) causes almost no damages. Further-

more, we speculate that it may even help O-SERENADE jump out of a local maximum

(i.e., have the effect of simulated annealing) and converge more quickly to a near-optimal

matching (in terms of weight), thus resulting in even better delay performance.

3.8 Conclusion

In this chapter, we propose SERENADE, a parallel iterative algorithm that can provably,

with a time complexity of only O(logN) per port, exactly emulate SERENA, a centralized

algorithm with O(N) time complexity. We also propose an early-stop version of SERE-

NADE, called O-SERENADE, which only approximately emulates SERENA. Through

extensive simulations, we demonstrate that O-SERENADE can achieve close to 100%

throughput. We also demonstrate that O-SERENADE has delay performances either simi-

lar as or better than those of SERENA, under various load conditions and traffic patterns.

46

CHAPTER 4

QPS

4.1 Queue-Proportional Sampling (QPS)

In this section, we first describe the QPS proposing strategy in detail. Then we explain

how to augment iSLIP [5] and SERENA [4, 10] using QPS. We next compare QPS with

ShakeUp [67], another “add-on” technique that can be used to augment iterative crossbar

scheduling algorithms such as iSLIP and iLQF [36]. In §B.1, we discuss a QPS variant

called FQPS, which samples a VOQ with a probability proportional to a function of the

VOQ length.

4.1.1 The QPS Proposing Strategy

In all QPS-augmented crossbar scheduling algorithms, the first step is for input ports and

output ports to perform one iteration of message exchanges to generate a starter matching.

This iteration consists of two phases, namely, a proposing phase and an accepting phase.

1 Procedure QPS-Propose()
2 Sample an output port j with probability mj

m

3 Send mj (length of VOQ j) to output port j

Algorithm 3: Proposing phase at input port 1.

Proposing Phase. In this phase, each input port proposes to exactly one output port –

decided by the QPS strategy – unless it has no packet to transmit. Algorithm 3 shows the

pseudocode of the QPS proposing strategy at input port 1; that at any other input port is

identical. Denote as m1, m2, · · · , mN the respective lengths of N VOQs at input port 1,

and as m their total (i.e., m ,
∑N

k=1mk). Input port 1 simply samples an output port j

with probability mj/m (Line 2), i.e., proportional to the length of the corresponding VOQ;

47

it then proposes to output port j (Line 3), with the value mj that will be used in the next

phase.

1 Procedure Accept()
2 if one or more proposals are received then
3 Accept the one with largest VOQ length

Algorithm 4: Accepting phase at output port 1.

Accepting Phase. We adopt the same accepting strategy as in SERENA: “longest VOQ

first”. The pseudocode of the accepting phase, at output port 1, is shown in Algorithm 4;

that at any other output port is identical. The action of output port 1 depends on the number

of proposals it receives. If it receives exactly one proposal from an input port, it will accept

the proposal and (tentatively) match with the input port. However, if it receives proposals

from multiple input ports, it will accept the proposal accompanied with the highest VOQ

length, with ties broken uniformly at random.

The time complexity of this accepting strategy is O(1) in practice although in theory an

output port could receive up to N proposals and have to compare their accompanying VOQ

lengths. This is because the probability for an output port to receive proposals from more

than several (say 5) input ports is tiny, and even if this rare event happens, the output port

can ignore/drop all proposals beyond the first several (say 5) without affecting the quality

of the final matching much. In our evaluations, we indeed set this threshold to 5.

We have also considered and experimented with another accepting strategy: accepting

each competing proposal with a probability proportional to the length of the corresponding

VOQ, which we refer to as Proportional Accepting (PA). The advantage of PA over “longest

VOQ first” above is that when the switch is severely overloaded (i.e., with offered load

> 100%), PA could provide better fairness to competing input ports and help prevent certain

starvation situations. For example, consider the pathological scenario in which, for a fairly

long period of time (say 1 minute), packets destined for an output j would arrive at input

ports i1 and i2 with rates 1.2 and 0.1 respectively. Under “longest VOQ first”, the output

48

port j would keep accepting proposals from input port i1 (because its VOQ length is longer,

assuming the two respective VOQs are empty before this period) and hence starve input

port i2, whereas under PA, the output port j would accept proposals from input port i2 with

roughly 1/13 probability.

However, we prefer “longest VOQ first” over PA because, as we will show in §B.5.3, the

former generally has better mean delay performance, albeit slightly, and guarantees almost

the same fairness and lack of starvation, under all admissible workloads. We believe the pri-

mary mission of a crossbar scheduling algorithm is to deliver excellent performance under

admissible workloads; such “grace under fire” (proportional fairness and lack of starvation

even when severely overloaded) is a secondary consideration and can be better achieved

through other “knobs or levers” orthogonal to switching such as congestion control, packet

scheduling, or traffic policing/shaping. This said, we prove in §B.4 that QPS-SERENA

with PA can also achieve 100% throughput just like QPS-SERENA with “longest VOQ

first”, in case the former is preferred in certain application scenarios.

Message Complexity. The message complexity of each “propose-accept” iteration is O(1)

messages per input or output port, because each input/output port transmits no more than

one message during the propose/accept phase.

4.1.2 Augmenting iSLIP and SERENA

Now we describe, in QPS-iSLIP and QPS-SERENA respectively, how iSLIP and SERENA

are augmented using QPS. We also describe iLQF [36] in this section, because it is closely

related to iSLIP, and its performance will be compared against QPS-iSLIP in §4.4.

4.1.2.1 iSLIP, QPS-iSLIP, and iLQF

The iSLIP algorithm is a parallel iterative algorithm that computes an approximate MCM

(Maximum Cardinality Matching) via multiple iterations of message exchanges between

the input and output ports. Each iteration consists of three stages: request, grant, and

49

accept. In the request stage, each input port sends requests to all output ports whose corre-

sponding VOQs are not empty. In the grant stage, each output port, upon receiving requests

from multiple input ports, grants to one in a round-robin order. This round-robin order is

enforced through a grant pointer that records the identifier of the input port – to whom a

grant was accepted in the first iteration – during the most recent time slot when this situ-

ation occurred. Finally, in the accept stage, each input port, upon receiving accepts from

multiple output ports, accepts one in a round-robin order, enforced similarly through an

accept pointer.

QPS-iSLIP can be viewed as adding a “0th iteration” to iSLIP. In this 0th iteration,

QPS is executed to generate a starter matching. Then iSLIP is called to match only those

input/output ports not matched in the 0th iteration, through multiple request-grant-accept

iterations. We specify that in QPS-iSLIP, it is those ports matched in the 1st iteration (by

iSLIP), not those matched in the 0th iteration (by QPS), who update the values of their

grant or accept pointers. The rationale is that the aforementioned objective of enforcing the

round-robin order is not accomplished in the QPS iteration.

iLQF [36] operates in the same way as iSLIP, except that (1) it is aware of the edge

weights (i.e., lengths of VOQs), and (2) it favors the request or grants with the heaviest

weight (i.e., greedy) in the grant or accept stage respectively. Hence, iLQF can be viewed

as a greedy approach to approximately compute the MWM. iLQF generally performs better

than iSLIP, but has a higher time complexity of O(N) per port (compared to O(log2N) for

iSLIP). We show in §4.4 that our QPS-iSLIP algorithm has a similar performance as iLQF,

but the same per-port complexity as iSLIP.

4.1.2.2 SERENA and QPS-SERENA

As described earlier in §3.1, SERENA derives a starter matching from the arrival graph.

This starter matching, which is typically partial, is then populated into a full matching by

pairing the unmatched vertices in the bipartite graph in a round-robin manner. SERENA

50

then combines, using a MERGE procedure, this full matching with the matching used in the

previous time slot, to arrive at a new matching that is at least as heavy as both matchings.

This new matching will then be used for the current time slot. We omit the details of

this MERGE procedure, since it is not related to how QPS augments SERENA. Finally,

to precisely specify QPS-SERENA, it suffices to note that the only difference between

QPS-SERENA and SERENA is that QPS-SERENA uses a QPS-generated starter matching,

instead of one derived from the arrival graph.

4.1.3 QPS vs. ShakeUp

As we have shown, QPS is used mainly as an “add-on” to certain crossbar scheduling

algorithms. In the literature, the only other add-on technique that we are aware of is

ShakeUp [67]. ShakeUp is a set of randomized algorithms designed to boost the perfor-

mance of certain iterative crossbar scheduling algorithms, such as iSLIP and iLQF. It does

so by preventing these iterative algorithms from getting stuck at (locally) maximal match-

ings during their iterative executions. ShakeUp is typically used as follows: a ShakeUp-

augmented crossbar scheduling algorithm alternates between an iteration of the underlying

crossbar scheduling algorithm (e.g., iSLIP) and a ShakeUp iteration.

There are two types of ShakeUp algorithms: unweighted and weighted. The un-

weighted ShakeUp is designed to augment crossbar scheduling algorithms that do not con-

sider VOQ lengths in their decision-making, such as Parallel Iterative Matching (PIM) [16]

and iSLIP [5]. In each unweighed ShakeUp iteration, unmatched input ports are first per-

muted in a random order. From this (random) order, each unmatched input port sends a

request to an output port uniformly at random (i.e., unweighted) chosen from the set of out-

put ports to which the corresponding VOQs are nonempty. An output port, upon receiving

such a request, must now pair with this input port, even if it was already paired with another

input port. If an output port receives multiple requests during the same ShakeUp iteration,

it selects one of them uniformly at random. The iSLIP scheme augmented this way was

51

called SLIP-SHAKE in [67]. In §4.4, we will compare the its performance (renamed to

iSLIP-ShakeUp) with that of QPS-iSLIP.

The weighted ShakeUp [67] is designed to augment crossbar scheduling algorithms that

incorporate VOQ lengths in their decision-making, such as iLQF [36]. In each weighed

ShakeUp iteration, each unmatched input port, one after another in the above-mentioned

randomly order, sends a request to an output port with a probability proportional to the

length of the corresponding VOQ.

Admittedly, weighted ShakeUp’s proposing strategy sounds very similar to our QPS

strategy. However, there are four key differences: how they are used, how widely applicable

they are, their intended purpose, and how they are implemented. First, in ShakeUp, only

unmatched input ports execute this strategy to “shake up” an existing suboptimal matching,

whereas in QPS, all input ports execute the strategy at the very beginning to generate a

starter matching for other crossbar scheduling algorithms to build on. In a sense, ShakeUp

is designed for “post-processing” whereas QPS is designed for “pre-processing”. Second,

while our QPS scheme can easily augment a non-iterative algorithm such as SERENA, it is

not known whether ShakeUp, weighted or unweighted, can do the same. Third, it was never

suggested in [67] that this (weighted) strategy might be suitable for “weight-oblivious”

crossbar scheduling algorithms such as PIM or iSLIP; only the unweighed ShakeUp was

“prescribed” for PIM or iSLIP. Last, unlike in our work, there was no mention of how the

queue-proportional proposing strategy could be carried out in O(1) time (per port), and no

data structure was proposed for doing so [67].

4.2 QPS Implementation

In this section, we describe the data structure and algorithm that allows an input port to

sample a VOQ in the queue-proportional manner (i.e., Line 2 of Algorithm 3), and, if

needed, to remove the Head-of-Line (HOL) packet of any VOQ (for receiving switching

service), both withO(1) (per port) time complexity. This data structure is extremely simple,

52

...
mj

...
j B j E j · · · A j · · · F j /

G • • • B • • • A • • • C D

head

tail

sampled packet

HOL packet

m

(a) Before scheduling

...
mj

...
j E j · · · A j · · · F j /

G • • • D • • • A • • • C

head tail

m− 1

(b) After scheduling

Figure 4.1: Illustrating the action of the QPS data structures on a single input port.

although we have so far not been able to find anything sufficiently similar in the literature.

The memory overhead of the QPS data structure is no more than 20 bytes per packet;

the detailed “accounting” is shown in §B.2. Assuming an average packet size of 500 bytes,

the amount of memory consumed by the QPS data structure is no more than 4% of what is

needed for storing the actual packets. This is a modest space overhead ratio to pay, for the

significant improvements in switching performance.

53

4.2.1 Overview of The Sampling Algorithm

We first provide a high-level overview of the sampling algorithm. It consists of two steps.

In the first step, we sample a packet, out of all packets currently queued at the input port,

uniformly at random. Specifically, if there are a total ofm packets across allN VOQs at the

input port, each packet is sampled with probability 1/m. With such uniform sampling, the

jth VOQ, which has length mj , will have one of packets sampled with probability mj/m.

This is precisely the QPS behavior called for in Line 2 of Algorithm 3.

Suppose a packet is thus sampled. A part of the second step is to find out which VOQ

this packet belongs to so that the input port can propose to the corresponding output port

with its queue length (see Line 3 of Algorithm 3). However, more effort is still required.

Since all crossbar scheduling algorithms serve packets in a VOQ strictly in the FIFO order,

if this proposal is successful (i.e., accepted by the output port), and the input and output

port pair is eventually a part of the final matching, the HOL packet of this VOQ, which may

or may not be the sampled packet, needs to be located and serviced. Hence, the other part

of the second step is to locate the HOL packet of this VOQ.

Before going into the details, we list two other basic operations that this data structure

needs to also support. The first operation is that any new incoming packet must be recorded

in the data structure so that it is logically “added to the end of the VOQ that it belongs to”.

The second operation is that, when the scheduling algorithm eventually decides to pair

the input port with a different output port than was proposed to, which could happen due

to either the proposal being rejected or the initially accepted proposal being overridden

by the scheduling algorithm (e.g., during SERENA’s MERGE operation in the case of

QPS-SERENA), the HOL packet of the (new) corresponding VOQ needs to be located

and removed for receiving the switching service. Both operations can be supported with

O(1) complexity, as will be shown next.

54

4.2.2 The Detailed Data Structure

We show that the two steps of the QPS proposing strategy can be performed in O(1) time,

at any input port, via a main and an auxiliary data structures, that are the same for all input

ports. Figure 4.1a and Figure 4.1b present the data structures, at a single input port, before

and after the HOL packet of its jth VOQ is chosen for (switching) service. The top half

and bottom half of the figures show the main and the auxiliary data structures respectively.

Main Data Structure. The main data structure is an array of N records, corresponding to

the N VOQs at the input port. Each record j (i.e., array entry j) is associated with a linked

list, which corresponds to (pointers to) packets queued at a VOQ in the order they arrived,

starting with the HOL packet. Each node in the linked list contains two pointers encoded as

“〈letter〉” (e.g., A); one points to the actual packet (e.g., packet A) in the packet buffer (not

shown in the figure) and the other to the corresponding entry (e.g., entry A) in the auxiliary

data structure, which we refer to as a back pointer.

For simplicity, Figure 4.1 shows only record j (corresponding to VOQ j). Each record

contains a head and a tail pointers that point to the head node and the tail node of the linked

list respectively. The head pointer is needed for locating and for removing the head node

(i.e., the HOL packet) in O(1) time; it is also needed for locating and replacing the array

entry that corresponds to the HOL packet in the auxiliary data structure. The tail pointer

is needed for inserting a newly arrived packet to the “end of the VOQ” (i.e., the first basic

operation) in O(1) time.

Auxiliary Data Structure. The bottom half of Figure 4.1 shows the auxiliary data structure

used for performing the sampling. Suppose there are a total of m packets queued across

all N VOQs at the input port. The auxiliary data structure is simply an array of m entries,

each of which is a pointer that points to a distinct (packet) node (e.g., node A) in one of the

N linked lists in the main data structure.

Despite arrivals and departures of packets over time, the auxiliary data structure always

55

occupies a contiguous block of array entries, the boundaries of which are identified by a

head and a tail pointer as shown in the bottom half of Figure 4.1. This contiguity allows any

array entry (packet) to be sampled uniformly at random in O(1) time, an aforementioned

key step of QPS. Hence this contiguity needs to be maintained in the event of packet arrivals

and departures. The case of a packet arrival is easier: the entry corresponds to the new

packet is inserted after the current tail position, and the tail pointer updated. The case of

a packet departure is only slightly trickier: if the departing packet leaves a “hole” in the

block, the tail entry is moved to fill this hole, and the tail pointer updated.

In the case of a packet departure, the (packet) node in the main data structure that is

pointed to by the former tail entry (now moved to “fill the hole”) needs to have its back

pointer updated to the offset of the former hole, where the former tail entry now is. This

is clearly an O(1) procedure. A similar procedure can be used to support the second basic

operation in O(1) time.

An Illustrative Example. To see how the main and the auxiliary data structures work

together to facilitate QPS, consider the example shown in Figure 4.1. In Figure 4.1a, the

packet A was sampled out ofm packets in the auxiliary data structure. However, it is not the

HOL packet, so its destination (output) port (i.e., VOQ identifier) is checked, which turns

out to be j. By accessing the jth record in the main data structure, which corresponds to

VOQ j, the HOL packet is packet B. Now, the input port proposes to match with output port

j. In Figure 4.1b, if the proposal is accepted by, and the input port is eventually matched

to, output port j, packet B will depart (for output port j) in the current time slot. The head

pointer in the jth record of the main data structure is updated to (point to) E, the new HOL

packet. These operations, i.e., the search for the HOL packet, and the updates to both data

structures, all take O(1) time.

56

4.3 Stability Proof of QPS-SERENA

In this section, we prove that the QPS-SERENA algorithm is stable (i.e., can achieve 100%

throughput) under any arrival processes that are admissible and satisfy certain mild con-

ditions. In §4.3.1, we introduce some background information and notations that we need

in the stability proofs. In §4.3.2, we describe a theorem used in [11] to prove the stability

of the TASS algorithm. Unfortunately, this theorem is not applicable to QPS-SERENA,

because QPS-SERENA in general does not satisfy the so-called Property P, a condition

required by the theorem. In §4.3.3, we state a stronger theorem that requires only a weaker

condition than Property P, which is satisfied by QPS-SERENA.

4.3.1 Background and Notations

We first define threeN×N matricesQ(t),A(t), and S(t). LetQ(t) =
(
qij(t)

)
be the queue

length matrix where qij(t) is the length of the jth VOQ at input port i during time slot t. Let

A(t) =
(
aij(t)

)
be the traffic arrival matrix where aij(t) is the number of packets arriving

at the input port i destined for output port j during time slot t, which can be viewed as the

counting process associated with underlying traffic arrival process. Let S(t) =
(
sij(t)

)
be

the schedule (matching) matrix for time slot t output by the crossbar scheduling algorithm.

As we explained earlier, each S(t) is a 0-1 matrix in which sij(t) = 1 if and only if input

port i is matched with output j during time slot t. Then, the queue length matrix Q evolves

over time as follows. For ∀1 ≤ i, j ≤ N ,

qij(t+ 1) = [qij(t) + aij(t)− sij(t)]+ (4.1)

where [·]+ is defined as max{ · , 0}. With a slight abuse of the notation, we rewrite (4.1),

into the matrix form, as Q(t+ 1) = [Q(t) + A(t)− S(t)]+.

Like in [68], we assume that, for each 1 ≤ i, j ≤ N , {aij(t)}∞t=0 is a sequence of i.i.d.

random variables, and the second moment of their common distribution (= E
[
a2
ij(0)

]
) is

finite. Note that, the same or even stronger assumptions (e.g., i.i.d. Bernoulli arrivals) were

57

made for proving the stabilities of TASS [11] and SERENA [4, 10] respectively. For ease

of presentation, we refer to such an A(t) as an i.i.d. arrival (counting) process in the sequel

of this chapter.

Now we flatten theN×N matricesQ,A, and S intoN2-dimensional vectors in the row-

major order, i.e., the first row of the matrix becomes the first N scalars in the vector, the

second row becomes the next N scalars, and so on. Now that Q, A, and S are vectors, we

can take their inner products, denoted as 〈·, ·〉, in the following derivations. For example,

〈S(t), Q(t)〉 is the weight of the schedule (matching) S(t), w.r.t. the queue length vector

Q(t), at time slot t.

4.3.2 TASS, SERENA, and Their Stability

4.3.2.1 The Adaptive and Non-Degenerative Family

The idea of TASS [11], shown below, is very simple: generate a “fresh” (i.e., indepen-

dent of all other random vectors) random matching R(t), compare its weight with that of

S(t − 1), the matching used in the previous time slot, and use the winner as the match-

ing for the current time slot (i.e., S(t)). Here R(t) is a random vector whose distribution

is parameterized only by the current VOQ length vector Q(t). Amazingly, such a simple

adaptive algorithm can achieve 100% throughput, albeit at the cost of higher delays.

S(t) =





R(t) if 〈R(t), Q(t)〉 ≥ 〈S(t− 1), Q(t)〉

S(t− 1) otherwise
(4.2)

Note that the TASS algorithm is also by definition (i.e., (4.2)) non-degenerative, defined

next.

Definition 4.3.1. A scheduling algorithm is non-degenerative if it guarantees that for any

time slot t ≥ 1, we have

〈S(t), Q(t)〉 ≥ 〈S(t− 1), Q(t)〉

58

4.3.2.2 Generalized Algorithm Family Π̃

Denote Π as the family of adaptive algorithms defined by (4.2). For the TASS’ stability

proof and theorem to apply also to SERENA, we need to generalize the family of Π to Π̃

that is defined by

S(t) = F
(
R(t), S(t− 1), Q(t)

)
(4.3)

where F is an operator, the resulting S(t) satisfies the non-degenerative property defined

above, and R(t) is a random schedule whose probability distribution is a function only of

Q(t). To ease proving our result, we also force S(t) = R(t) when all queues (VOQs) are

empty at time slot t, i.e., to “forget the previous schedule S(t− 1)” and reset to the “default

random schedule” R(t).

In TASS, this F is clearly the “MAX operator”, that is, choosing the heavier schedule

w.r.t. Q(t), between R(t) and S(t − 1). In SERENA, this F is the MERGE operator, that

is, S(t) = MERGE
(
R(t), S(t − 1), Q(t)

)
. As we explained in §4.1.2.2, the MERGE

operator combines two matchings into one that is at least as heavy, w.r.t. Q(t), as either,

so the SERENA algorithm, like TASS, is also non-degenerative. Hence, SERENA also

belongs to this extended family Π̃. Now it is clear that QPS-SERENA also belongs to Π̃

because it differs from SERENA only in how the random scheduleR(t) is computed, and in

QPS-SERENA this R(t) is generated in the “Q(t)-proportional” manner (so its probability

distribution is a function only of Q(t)).

We claim that, given any crossbar scheduling algorithm π ∈ Π̃, the joint queueing and

scheduling process
{(
Q(t), S(t)

)}∞
t=0

, resulting from π and any i.i.d. arrival process A(t)

(not necessarily admissible), is a Markov chain. This property is clear from the following

two facts. First, by (4.3), S(t) is a function of only Q(t) and S(t − 1) (note R(t) is a

function only of Q(t)). Second, by (4.1), Q(t) is a function of only Q(t− 1), S(t− 1), and

the random packet arrival vector A(t) that is independent of all other random vectors.

59

4.3.2.3 Stability Theorem for Family Π̃

The following theorem, concerning the stability of the family of crossbar scheduling algo-

rithms Π̃, was proven in [11].

Theorem 4.3.1. For any (randomized) algorithm π ∈ Π̃ that satisfies Property P, defined

next, and under any admissible i.i.d. arrival process A(t) (defined in §4.3.1), the joint

queueing and scheduling process
{(
Q(t), S(t)

)}∞
t=0

is an ergodic Markov chain, and as a

consequence, the queueing process {Q(t)}∞t=0 converges in distribution to a random vector

Q̂. Furthermore,

E[‖Q̂‖1] <∞

where ‖ · ‖1 is the 1-norm.

Fix a randomized crossbar scheduling algorithm π. Let W (t) , 〈S(t), Q(t)〉 be the

weight of the schedule output by π at time slot t. Denote as WQ the weight of the MWM

w.r.t. a queue length vector Q, i.e., WQ , max
S
{〈S,Q〉}. Let SQ be one of the schedules

that attain this maximum weight (i.e., 〈SQ, Q〉 = WQ).

Definition 4.3.2 (Property P [11]). A crossbar scheduling algorithm π satisfies Property P

if at any time slot t,

P
[
W (t) = WQ(t)

]
≥ δ

where δ > 0 is a constant independent of the time slot t and the queue length vector Q(t).

In other words, π satisfies Property P if, at any time slot t, the schedule S(t) output

by π is a MWM with at least a constant probability δ. Both TASS and SERENA satisfy

Property P because there is a constant (w.r.t. Q(t)) probability for R(t) to be a MWM in

both cases, and when this happens, S(t) remains a MWM after a “MAX” or “MERGE”

operation. Since both TASS and SERENA also belong to family π ∈ Π̃, Theorem 4.3.1

implies that both can achieve 100% throughput.

60

4.3.3 Stability of QPS-SERENA

Although QPS-SERENA also belongs to family Π̃, Theorem 4.3.1 is not applicable to QPS-

SERENA, because it can be shown that QPS-SERENA does not satisfy Property P. We

establish a stronger theorem that allows us to prove that QPS-SERENA can achieve 100%

throughput. More specifically, we first show in Lemma 4.3.1 that QPS-SERENA satisfies a

weaker condition called (ε, δ)-MWM, defined next1. Then we show in Theorem 4.3.2 that

this weaker condition, combined with the Π̃ family membership, is sufficient for a crossbar

scheduling algorithm to achieve 100% throughput.

Definition 4.3.3. A crossbar scheduling algorithm π is called (ε, δ)-MWM, if ∀ε > 0, there

exists a constant 0 < δ ≤ 1 s.t.

P
[
W (t) ≥ (1− ε)WQ(t)

]
≥ δ

where δ is a constant independent of the time slot t and the queue length vector Q(t). Note

this δ can depend on ε and other (constant) system parameters such as N . Here, W (t) and

WQ(t) are similarly defined as before.

In other words, an algorithm π is called (ε, δ)-MWM if, at any time slot t, the schedule

S(t) output by π is within (1 − ε) of the optimal (i.e., MWM) with at least a constant

probability δ. This condition is clearly weaker than Property P, which requires S(t) to be

optimal (i.e., MWM) with at least a constant probability.

The following lemma (Lemma 4.3.1) shows that QPS alone is (ε, δ)-MWM. Since at

any time slot t, QPS-SERENA merges S(t − 1) with the schedule R(t) output by QPS,

resulting in a schedule S(t) that is at least as heavy as R(t), QPS-SERENA is also (ε, δ)-

MWM. Therefore, by Theorem 4.3.2 below, we conclude that QPS-SERENA can achieve

100% throughput.

Lemma 4.3.1. QPS is (ε, δ)-MWM.

1Note that, the definition of (ε, δ)-MWM is quite different than that of the 1-APRX (to MWM) defined in
[69].

61

Proof: See §B.4.

Theorem 4.3.2. For every algorithm π ∈ Π̃ that is (ε, δ)-MWM, the conclusion of Theo-

rem 4.3.1 (i.e., convergence to a stationary distribution with finite first moment) continues

to hold, under admissible i.i.d. arrivals.

Proof: See §B.3.

Remarks. Like Theorem 4.3.2 above, Theorem 1 in [54] also establishes stability with

conditions weaker than that are needed in Theorem 4.3.1. However, they weaken different

parts of the assumptions made in Theorem 4.3.1, and hence their proofs are very differ-

ent. Theorem 4.3.2 above weakens Property P in Theorem 4.3.1 above to (ε, δ)-MWM.

In contrast, Theorem 1 in [54] requires Property P, but weakens the non-degenerative re-

quirement (see Definition 4.3.1) in Theorem 4.3.1 above, by allowing it to be violated with

a tiny probability.

4.4 Performance Evaluation

In this section, we compare the performance of two QPS-augmented algorithms, QPS-

iSLIP and QPS-SERENA, against the iterative Longest Queue First (iLQF) [36], iSLIP-

ShakeUp (iSLIP augmented by ShakeUp [67]), and the two original algorithms, iSLIP [5]

and SERENA [4]. We evaluate, through simulations, their throughputs and delays under

various load conditions and traffic patterns. Maximum Weighted Matching (MWM) is also

simulated to provide a benchmark for these comparisons.

The evaluation results show conclusively that QPS-iSLIP and QPS-SERENA outper-

form iSLIP and SERENA respectively in both throughput and delay. They also show that

QPS-iSLIP brings about the same amount of performance improvement to iSLIP as iLQF,

even though QPS-iSLIP is far less computationally expensive (O(log2N) per port) than

iLQF (O(N) per port), thus giving the “same bang for less buck”. Furthermore, they show

QPS-iSLIP overall performs better than iSLIP-ShakeUp.

62

4.4.1 Simulation Setup

In all our simulations, we set the number of input/output ports N = 32. Note that we

have also investigated how the mean delay performance of various crossbar scheduling

algorithms scales with respect to N ; these results are shown in §B.5.2. For the accurate

measurement of throughput and delay, each VOQ is assumed to have infinite buffer, so

that there is no packet drop at any input port. Every simulation run lasts 6,000 × N2

(= 6.144× 106) time slots. This duration is chosen so that every simulation run enters the

steady state after a tiny fraction of this duration and stays there for the rest. The throughput

and delay measurements are taken after the simulation run enters the steady state.

We initially assume i.i.d. Bernoulli traffic arrivals: the distributions of arrivals to differ-

ent input ports are i.i.d., and in each time slot, there is a probability ρ∈ (0, 1) that a packet

will arrive. We will then look at bursty traffic arrivals further below. As mentioned earlier

in §1.2.6, the four standard types of traffic patterns are used for generating the switch’s

workloads.

In both iSLIP and iLQF, the total number of iterations in a time slot is usually set to

log2N . However, to achieve a fair comparison between iSLIP, iLQF, and QPS-iSLIP, in

simulating these algorithms, the total number of iterations in a time slot is set to 1+log2N .

For instance, with QPS-iSLIP, this means that we ran 1 iteration of QPS followed by log2N

iterations of iSLIP. In doing so, we emphasize that the outperformance of QPS-iSLIP does

not come from an extra iteration. Note that, with 1 + log2N iterations, the complexity of

both iSLIP and QPS-iSLIP remains O(log2N) per port and that of iLQF remains O(N)

per port.

For iSLIP-ShakeUp, we alternate between an iSLIP iteration and a ShakeUp iteration

also for a total of log2N + 1 iterations (i.e., log2N+1
2

iterations for each). This algorith-

mic setting and parameter setting both follow the guidelines provided in [67] for iSLIP-

ShakeUp, and the throughput numbers we have obtained (shown in Table 4.1) match those

reported in [67].

63

Table 4.1: Maximum achievable throughput.

Traffic Uniform Quasi-diagonal Log-diagonal Diagonal
iSLIP 100.00% 81.70% 83.85% 83.47%
QPS-iSLIP 100.00% 99.38% 96.46% 88.36%
iSLIP-ShakeUp 99.98% 91.08% 92.73% 92.41%
iLQF 100.00% 99.41% 96.47% 89.32%

We consider two performance metrics: throughput and delay. We measure two types

of delays: the mean delay and the 95th percentile delay. The 95th percentile delay is the

delay value exceeded by exactly 5% of the packets. This 95th percentile delay gauges

whether a crossbar scheduling algorithm sacrifices the delay performance of packets in the

longest VOQs when evacuating other VOQs. In our simulations, the 95th percentile delay

is measured by using the high dynamic range (HDR) histograms [70].

4.4.2 Throughput Performance

We have measured the maximum achievable throughputs of iSLIP, QPS-iSLIP, iSLIP-

ShakeUp and iLQF, under the 4 different traffic patterns and an offered load close to 100%.

The results are presented in Table 4.1. We do not include the throughputs of MWM, SER-

ENA and QPS-SERENA in Table 4.1 because they provably achieve 100% throughput.

There are three important observations from Table 4.1. First, for all traffic patterns

except the uniform, or non-uniform traffic patterns, where iSLIP does poorly, QPS-iSLIP

significantly boosts the throughput performance of iSLIP, increasing it by an additive term

of 0.1768, 0.1261, and 0.0489 for the quasi-diagonal, log-diagonal, and diagonal traffic

patterns respectively. Moreover, for non-uniform traffic, the throughput of QPS-iSLIP are

very close to those of iLQF, which is much more expensive computationally. Second, the

throughput of QPS-iSLIP is higher than that of iSLIP-ShakeUp under all traffic patterns

except the diagonal. Third, just like iSLIP, QPS-iSLIP can achieve 100% throughput under

the uniform traffic.

We highlight a subtle fact that may sound counterintuitive to some readers: That a

64

switch (running a scheduling algorithm) has a (maximum achievable) throughput of µ < 1

when the offered load is 100% does not imply that the switch is stable under any offered

load (say ρ) smaller than µ. This is because the extra 1 − ρ “switching resource” freed

up by the reduced offered load may not all be efficiently utilized by the scheduling algo-

rithm to clear up the longest queues. For example, iSLIP-ShakeUp is not stable under the

quasi-diagonal traffic when the offered load is 90% (see the corresponding missing point in

Figure 4.2 (1st row, 2nd from left)), even though its throughput under 100% offered load,

i.e., the maximum achievable throughput, is 91.08%. In the sequel, we use the terms “load”,

“normalized load”, “offered load”, “traffic load” and “load factor” interchangeably.

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform
SERENA QPS-SERENA MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Diagonal

Figure 4.2: Mean delays under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns.

65

4.4.3 Delay Performance

4.4.3.1 Bernoulli Arrivals

Figure 4.2 (the 1st row) presents the mean delays of iSLIP, QPS-iSLIP, iSLIP-ShakeUp,

iLQF, and MWM under the 4 different traffic patterns. Since iSLIP, QPS-iSLIP, iSLIP-

ShakeUp, and iLQF generally cannot achieve 100% throughput, we only measure their

delay performance under the offered loads that make them stable; in all figures in the sequel,

each “missing point” on a curve indicates that the corresponding scheduling algorithm is

not stable under the corresponding offered load.

Figure 4.2 (the 1st row) clearly shows that QPS-iSLIP has lower mean delays than

iSLIP under all traffic patterns, especially when the load factor is high (e.g., 80%); we note

that the differences between the curves unfortunately look smaller on a log scale (on the

y-axis) than they actually are. In addition, the mean delays of QPS-iSLIP are very close to

those of iLQF, the more expensive algorithm computationally, under all traffic patterns and

load factors.

Figure 4.2 (the 1st row) also shows that QPS-iSLIP has either similar or slightly higher

mean delays than iSLIP-ShakeUp under all traffic patterns, when the traffic load is low to

moderate. However, when the traffic load is high (say > 80%), the iSLIP-ShakeUp either

becomes unstable or has higher mean delays than QPS-iSLIP, under all traffic patterns.

Figure 4.2 (the 2nd row) presents the mean delays of SERENA, QPS-SERENA, and

MWM under the 4 different traffic patterns. We can see that QPS-SERENA outperforms

SERENA under all traffic patterns for all load factors. More specifically, QPS-SERENA

outperforms SERENA by a wide margin, under uniform and diagonal traffic patterns for all

load factors; it does so also under quasi-diagonal and log-diagonal traffic patterns for load

factors that are not too high (≤ 0.8).

Figure 4.2 (the 2nd row) also shows that the relative difference of the mean delay be-

tween QPS-SERENA and SERENA generally becomes larger as the traffic load becomes

66

lighter. This phenomena is due to the choice of the starter matching. In SERENA, the

starter matching is the arrival graph, and when the load is light, the arrival graph does

not provide enough “cue” for the scheduling algorithm to select the longest VOQs. QPS-

SERENA, on the other hand, has a better starter matching that accounts for the VOQ lengths

under any load conditions, and thus beats SERENA in mean delay. The outperformance of

QPS-SERENA over SERENA reinforces our message about the importance of choosing a

good starter matching.

Figure 4.3 (the 1st row) shows the 95th percentile delays of iSLIP, QPS-iSLIP, iSLIP-

ShakeUp, iLQF, and MWM under the 4 different traffic patterns. Due to the presence of

delay values that are very close to 0, which would severely “deform” all the curves if they

were plotted in a log scale on the y-axis, Figure 4.3 is plotted in the linear scale on the

y-axis. Figure 4.3 (the 1st row) shows that QPS-iSLIP and iLQF achieve much lower 95th

percentile delays than iSLIP and iSLIP-ShakeUp, especially under heavy loads.

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

9
5

th
 P

e
rc

e
n

ti
le

 D
e

la
y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

25

50

75

100

125

150

175

200
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

70

140

210

280

350

420

490

560
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

15

30

45

60

75

90

105

120
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

200

400

600

800

1000

1200

9
5

th
 P

e
rc

e
n

ti
le

 D
e

la
y

Uniform
SERENA QPS-SERENA MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

4000
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

100

200

300

400

500

600

700

800
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500
Diagonal

Figure 4.3: 95th percentile delay under i.i.d. Bernoulli traffic arrivals with the 4 traffic
patterns.

67

Figure 4.3 (the 2nd row) shows the 95th percentile delays of QPS-SERENA, SERENA,

and MWM under the 4 different traffic patterns. Again QPS-SERENA outperforms SER-

ENA by a wide margin under all 4 traffic patterns for almost all load factors.

4.4.3.2 Bursty Arrivals

In real networks, packet arrivals are likely to be bursty. In this section, we evaluate the

performance of these scheduling algorithms under bursty traffic, generated by a two-state

ON-OFF arrival process described in [4]. The durations of each ON (burst) stage and OFF

(no burst) stage are geometrically distributed: the probabilities the ON and OFF state lasts

for t ≥ 0 time slots are given by

PON(t) = p(1− p)t and POFF (t) = q(1− q)t,

with the parameters p, q ∈ (0, 1) respectively. As such, the average duration of the ON and

OFF states are (1− p)/p and (1− q)/q time slots respectively.

In an OFF state, an incoming packet’s destination (i.e., output port) is generated ac-

cording to the corresponding traffic pattern. In an ON state, all incoming packet arrivals to

an input port would be destined to the same output port, thus simulating a burst of packet

arrivals. By adjusting p, we can control the desired average burst size while by adjusting q,

we can control the load of the traffic.

We first compare QPS-iSLIP against iSLIP, iSLIP-ShakeUp, iLQF, and MWM, with

average burst sizes ranging from 8 to 1024 packets, on an offered load of 0.75. We use this

load factor because iSLIP is not stable under certain load matrices when the offered load is

larger than or equal to 0.8.

The simulation results are shown in Figure 4.4 (the 1st row). We can see that QPS-

iSLIP beats iSLIP, and is on par with iLQF and QPS-ShakeUp, under all traffic patterns

for all burst sizes. Furthermore, QPS-iSLIP beats iSLIP by a wide margin, under quasi-

diagonal and log-diagonal traffic patterns. In fact, the starter matching generated by QPS

for iSLIP is so superior that QPS-iSLIP is only slightly worse than MWM in the mean

68

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

M
e

a
n

 D
e

la
y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Diagonal

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

M
e

a
n

 D
e

la
y

Uniform
SERENA QPS-SERENA MWM

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

Diagonal

Figure 4.4: Mean delays under bursty traffic arrivals with the 4 traffic patterns.

delay performance under all traffic patterns for all burst sizes.

We then evaluate QPS-SERENA’s mean delay performance against SERENA’s and

MWM’s. Figure 4.4 (the 2nd row) presents the results with average burst sizes ranging

from 8 to 1024 packets under an offered load of 0.95, under the 4 traffic patterns respec-

tively. Performance under other heavy loads, such as at 0.9, is similar to this case.

We can see from Figure 4.4 (the 2nd row) that the mean delay increases for all schedul-

ing algorithms when the burst size increases, under all 4 traffic patterns, which is not sur-

prising. However, Figure 4.4 (the 2nd row) also clearly shows that QPS-SERENA handles

highly bursty traffic much better than SERENA, as we will elaborate next.

We make the following two observations from Figure 4.4 (the 2nd row). First, QPS-

SERENA outperforms SERENA by an increasingly wider margin, in both absolute and

relative terms, as the burst size becomes larger. Second, the gap between QPS-SERENA

and MWM shrinks rapidly as the burst size becomes larger. Our explanation for the first

69

observation is that, because QPS-SERENA obtains information directly from the current

lengths of the VOQs, rather than indirectly from the current arrivals, QPS-SERENA reacts

to the rapid build-up of packets in a VOQ from a past traffic burst much more promptly

than SERENA. For the second observation, the reason is as follows. When the burst size in-

creases, the longest one or two VOQs at every input port account for an increasingly higher

percentage of all packets queued at the input port, and hence have an increasingly higher

chances of being sampled by QPS, so the resulting starter matching becomes increasingly

closer to an MWM.

4.5 Conclusion

In this chapter, we propose a new proposing strategy, called queue-proportional sampling

(QPS), that generates superior starter matchings than all other known strategies. We use

QPS to augment two existing crossbar scheduling algorithms, namely SERENA and iSLIP.

We show that the augmented algorithms, namely QPS-SERENA and QPS-iSLIP, outper-

form the original algorithms by a wide margin, under various load conditions and traffic

patterns. These performance enhancements come at virtually no additional computational

cost due to QPS being an O(1) algorithm (per port). Finally, to prove that QPS-SERENA

can achieve 100% throughput, we have proved a new and stronger stability theorem.

70

CHAPTER 5

QPS-r

5.1 The QPS-r Algorithm

The QPS-r algorithm simply runs r iterations of QPS (see Chapter 4) to arrive at a matching.

so its time complexity per port is exactly r times those of QPS. Since r is a small constant,

it is O(1), same as that of QPS.

Recall that, QPS was used in Chapter 4 as an “add-on” to augment other crossbar

scheduling algorithms as follows. It generates a starter matching, which is then populated

(i.e., adding more edges to it) and refined, by other crossbar scheduling algorithms such as

iSLIP [5] and SERENA [4, 10], into a final matching. To generate such a starter matching,

QPS needs to run only one iteration, which consists of two phases, namely, a proposing

phase and an accepting phase. The details of the two phases were described in §4.1.1.

The QPS-r Scheme. The QPS-r scheme simply runs r QPS iterations. In each iteration,

each input port that is not matched yet, first proposes to an output port according to the QPS

proposing strategy (see §4.1); each output port that is not matched yet, accepts a proposal

(if it has received any) according the “longest VOQ first” accepting strategy. Hence, if an

input port has to propose multiple times (once in each iteration), due to all its proposals

(except perhaps the last) being rejected, the identities of the output ports it “samples” (i.e.,

proposes to) during these iterations are samples with replacement, which more precisely

are i.i.d. random variables with a queue-proportional distribution.

At the first glance, sampling with replacement may appear to be an obviously subopti-

mal strategy for the following reason. There is a nonzero probability for an input port to

propose to the same output port multiple times, but since the first (rejected) proposal im-

plies this output port has already accepted “someone else” (a proposal from another input

71

port), all subsequent proposals to this output port will surely go to waste. For this rea-

son, sampling without replacement (i.e., avoiding all output ports proposed to before) may

sound like an obviously better strategy. However, it is really not, since compared to sam-

pling with replacement, it has a much higher time complexity of O(logN), but improves

the throughput and delay performances only slightly according to our simulation studies.

5.2 Throughput and Delay Analysis

In this section, we show that QPS-1 (i.e., running a single QPS iteration) delivers exactly the

same provable throughput and delay guarantees as maximal matching algorithms. When

r>1, QPS-r clearly should have better throughput and delay performances than QPS-1, as

more input and output ports can be matched up during subsequent iterations, although we

are not able to derive stronger bounds.

5.2.1 Preliminaries

In this section, we introduce the notation and assumptions that will later be used in our

derivations. We define three N×N matrices Q(t), A(t), and D(t). Let Q(t) ,
(
qij(t)

)

be the queue length matrix where each qij(t) is the length of the jth VOQ at input port i

during time slot t. With a slight abuse of notation, we refer to this VOQ as qij (without the

t term).

We define Qi∗(t) and Q∗j(t) as the sum of the ith row and the sum of the jth column

respectively of Q(t), i.e., Qi∗(t) ,
∑

j qij(t) and Q∗j(t) ,
∑

i qij(t). With a similar abuse

of notation, we define Qi∗ as the VOQ set {qi1, qi2, · · · , qiN} (i.e., those on the ith row),

and Q∗j as {q1j, q2j, · · · , qNj} (i.e., those on the jth column).

Now we introduce a concept that lies at the heart of our derivations: neighborhood. For

each VOQ qij , we define its neighborhood as Qi∗
⋃
Q∗j , the set of VOQs on the ith row

or the jth column. We denote this neighborhood as Q†ij , since it has the shape of a cross.

Figure 5.1 illustrates Q†ij , where the row and column in the shadow are the VOQ sets Qi∗

72

q11 q12 · · · q1j · · · q1N

q21 q22 · · · q2j · · · q2N

...
...

. . .
...

. . .
...

qi1 qi2 · · · qij · · · qiN

...
...

. . .
...

. . .
...

qN1 qN2 · · · qNj · · · qNN







Figure 5.1: Illustration of neighborhood of qij , i.e., Q†ij .

and Q∗j respectively. Q†ij can be viewed as the interference set of VOQs for VOQ qij [19,

20], as no other VOQ in Q†ij can be active (i.e., transmit packets) simultaneously with qij .

We define Q†ij(t) as the total length of all VOQs in (the set) Q†ij at time slot t, that is

Q†ij(t) , Qi∗(t)− qij(t) +Q∗j(t). (5.1)

Here we need to subtract the term qij(t) so that it is not double-counted (in both Qi∗(t) and

Q∗j(t)).

Let A(t)=
(
aij(t)

)
be the traffic arrival matrix where aij(t) is the number of packets ar-

riving at the input port i destined for output port j during time slot t. For ease of exposition,

we assume that, for each 1≤ i, j≤N , {aij(t)}∞t=0 is a sequence of i.i.d. random variables,

the second moment of their common distribution (= E
[
a2
ij(0)

]
) is finite, and this sequence

is independent of other sequences (for a different i and/or j). Our analysis, however, holds

for more general arrival processes (e.g., Markovian arrivals) that were considered in [19,

20], as we will elaborate shortly. Let D(t) =
(
dij(t)

)
be the departure matrix for time slot

t output by the crossbar scheduling algorithm. Similar to S (the matching matrix described

in§1.2.2), D(t) is a 0-1 matrix in which dij(t) = 1 if and only if a packet departs from qij

73

during time slot t. For any i, j, the queue length process qij(t) evolves as follows:

qij(t+ 1) = qij(t)− dij(t) + aij(t). (5.2)

Recall from §1.2.5 that Λ =
(
λij
)

is the (normalized) traffic rate matrix (associated

with A(t)) where λij is normalized (to the percentage of the line rate of an input/output

link) mean arrival rate of packets to VOQ qij . With aij(t) being an i.i.d. process, we have

λij = E
[
aij(0)

]
.

As mentioned before, we will prove in this section that, same as the maximal matching

algorithms, QPS-1 is stable under any traffic arrival process A(t) whose rate matrix Λ

satisfies ρ<1/2 (i.e., can provably attain at least 50% throughput, or half of the maximum),

where ρ (defined in (1.1)) is the maximum load factor imposed on any input or output port

by the traffic matrix Λ. We also derive the average delay bound for QPS-1, which we show

is order-optimal (i.e., independent of switch size N).

Similar to Q†ij(t), we define A†ij(t) as the total number of packet arrivals to all VOQs in

the neighborhood set Q†ij:

A†ij(t) , Ai∗(t)− aij(t) + A∗j(t), (5.3)

where Ai∗(t) and A∗j(t) are similarly defined as Qi∗(t) and Q∗j(t) respectively. D†ij(t),

Di∗(t), and D∗j(t) are similarly defined, so is Λ†ij(t). We now state some simple facts

concerning D(t), A(t), and Λ as follows.

Fact 5.2.1. Given any crossbar scheduling algorithm, for any i, j, we have, Di∗(t) ≤ 1

(at most one packet can depart from input port i during time slot t), D∗j(t) ≤ 1, and

D†ij(t) ≤ 2.

Fact 5.2.2. Given any i.i.d. arrival process A(t) and its rate matrix is Λ whose maximum

load factor is defined in (1.1), for any i, j, we have E[A†ij(t)] = Λ†ij≤2ρ.

The following fact is slightly less obvious.

Fact 5.2.3. Given any crossbar scheduling algorithm, for any i, j, we have

dij(t)D
†
ij(t) = dij(t). (5.4)

74

Fact 5.2.3 holds because, as mentioned earlier, no other VOQ in Q†ij (see Figure 5.1)

can be active simultaneously with qij . More precisely, if dij(t) = 1 (i.e., VOQ qij is

active during time slot t) then D†ij(t),Di∗(t)−dij(t)+D∗j(t) = 1−1+1 = 1; otherwise

dij(t)D
†
ij(t)=0 ·D†ij(t)=0=dij(t).

5.2.2 Why QPS-1 Is Just as Good?

The provable throughput and delay bounds of maximal matching algorithms were derived

from a “departure inequality” (to be stated and proved next) that all maximal matchings

satisfy. This inequality, however, is not in general satisfied by matchings generated by

QPS-1. Rather, QPS-1 satisfies a much weaker form of departure inequality, which we

discover is fortunately barely strong enough for proving the same throughput and delay

bounds.

Property 5.2.1 (Departure Inequality, stated as Lemma 1 in [20, 19]). If during a time slot

t, the crossbar schedule is a maximal matching, then each departure process D†ij(t) satisfies

the following inequality

qij(t)D
†
ij(t)≥qij(t). (5.5)

Proof: We reproduce the proof of Property 5.2.1 with a slightly different approach for this

thesis to be self-contained. Suppose the contrary is true, i.e., qij(t)D
†
ij(t)<qij(t). This can

only happen when qij(t)>0 and D†ij(t)=0. However, D†ij(t)=0 implies that no nonempty

VOQ (edge) in the neighborhood Q†ij (see Figure 5.1) is a part of the matching. Then this

matching cannot be maximal (a contradiction) since it can be enlarged by the addition of

the nonempty VOQ (edge) qij .

Clearly, the departure inequality (5.5) above implies the following much weaker form

of it:

∑

i,j

E
[
qij(t)D

†
ij(t)

]
≥
∑

i,j

E
[
qij(t)

]
. (5.6)

In the rest of this section, we prove the following lemma:

75

Lemma 5.2.1. The matching generated by QPS-1, during any time slot t, satisfies the much

weaker “departure inequality” (5.6).

Before we prove Lemma 5.2.1, we introduce an important definition and state four facts

about QPS-1 that will be used later in the proof. In the following, we will run into several

innocuous possible 0
0

situations that all result from queue-proportional sampling, and we

consider all of them to be 0.

We define αij(t) as the probability of the event that the proposal from input port i to

output port j is accepted during the accepting phase, conditioned upon the event that input

port i did propose to output port j during the proposing phase. With this definition, we

have the first fact

E
[
dij(t) | Q(t)

]
=

qij(t)

Qi∗(t)
· αij(t), (5.7)

since both sides (note dij(t) is a 0-1 random variable) are the probability that i proposes to

j and this proposal is accepted. Summing over j on both sides, we obtain the second fact

E
[
Di∗(t) | Q(t)

]
=
∑

j

qij(t)

Qi∗(t)
· αij(t). (5.8)

The third fact is that, for any output port j,

E
[
D∗j(t) | Q(t)

]
= 1−

∏

i

(
1− qij(t)

Qi∗(t)

)
. (5.9)

In this equation, the LHS is the conditional probability (D∗j(t) is also a 0-1 random vari-

able) that at least one proposal is received and accepted by output port j, and the second

term on the RHS of (5.9) is the probability that no input port proposes to output port j (so

j receives no proposal). This equation holds since when j receives one or more proposals,

it will accept one of them (the one with the longest VOQ).

The fourth fact is that, for any i, j,

αij(t) ≥
∏

k 6=i

(
1− qkj(t)

Qk∗(t)

)
. (5.10)

This inequality holds because when input port i proposes to output port j, and no other

input port does, j has no choice but to accept i′s proposal.

76

5.2.3 Proof of Lemma 5.2.1

Now we are ready to prove Lemma 5.2.1. It suffices to show that for any i and j, we have

∑

i,j

E
[
qij(t)D

†
ij(t) | Q(t)

]
≥
∑

i,j

qij(t) (5.11)

because with (5.11), we have

∑

i,j

E
[
qij(t)D

†
ij(t)

]

=E
[
E
[∑

i,j

qij(t)D
†
ij(t) | Q(t)

]]

≥E
[∑

i,j

qij(t)
]

=
∑

i,j

E
[
qij(t)

]
.

By the definition of D†ij(t),Di∗(t)−dij(t)+D∗j(t), we have,

∑

i,j

E
[
qij(t)D

†
ij(t) | Q(t)

]

=
∑

i,j

qij(t)E
[
Di∗(t) | Q(t)

]
−
∑

i,j

qij(t)E
[
dij(t) | Q(t)

]

+
∑

i,j

qij(t)E
[
D∗j(t) | Q(t)

]
. (5.12)

Focusing on the first term on the RHS of (5.12) and using (5.8), we have,

∑

i,j

qij(t)E
[
Di∗(t) | Q(t)

]

=
∑

i

Qi∗(t)E
[
Di∗(t) | Q(t)

]

=
∑

i

Qi∗(t)
(∑

j

qij(t)

Qi∗(t)
· αij(t)

)

=
∑

i,j

qij(t)αij(t). (5.13)

Focusing the second term on the RHS of (5.12) and using (5.7), we have

−
∑

i,j

qij(t)E
[
dij(t) | Q(t)

]
=−

∑

i,j

qij(t)αij(t)
qij(t)

Qi∗(t)
. (5.14)

77

Hence, the sum of the first two terms in (5.12) is equal to

∑

i,j

qij(t)αij(t)
(

1− qij(t)

Qi∗(t)

)

≥
∑

i,j

qij(t)
(∏

k 6=i

(
1− qkj(t)

Qk∗(t)

))(
1− qij(t)

Qi∗(t)

)
(5.15)

=
∑

i,j

qij(t)
∏

i

(
1− qij(t)

Qi∗(t)

)

=
∑

i,j

qij(t)
(

1− E
[
D∗j(t) | Q(t)

])
. (5.16)

Note that (5.15) is due to (5.10) and (5.16) is due to (5.9). We now arrive at (5.11), when

adding the third and last term in (5.12) to the RHS of (5.16).

5.2.4 Throughput Analysis

In this section we prove, through Lyapunov stability analysis, the following theorem

(i.e., Theorem 5.2.1) which states that any crossbar scheduling algorithm that satisfies the

weaker departure inequality (5.6), including QPS-1 as shown in Lemma 5.2.1, can attain at

least 50% throughput. The same throughput bound was proved in [21], through fluid limit

analysis, for maximal matching algorithms using the (stronger) departure inequality (5.5)

which as stated earlier is not in general satisfied by matchings generated by QPS-1.

Theorem 5.2.1. Let {Q(t)}∞t=0 be the queueing process of a switching system that is an

irreducible Markov chain. Let the departure process of {Q(t)}∞t=0 satisfy the weaker “de-

parture inequality” (5.6). Then whenever its maximum load factor ρ < 1/2, the queueing

process is stable in the following sense: (I) The Markov chain {Q(t)}∞t=0 is positive re-

current and hence converges to a stationary distribution Q̄; (II) The first moment of Q̄ is

finite.

Proof. Here we prove only (I), since Theorem 5.2.2 that we will shortly prove implies (II).

We define the following Lyapunov function of Q(t): L
(
Q(t)

)
=
∑

i,j qij(t)Q
†
ij(t), where

Q†ij(t) is defined earlier in (5.1). This Lyapunov function was first introduced in [19] for

78

the delay analysis of maximal matching algorithms for wireless networking. By the Foster-

Lyapunov stability criterion [71, Proposition 2.1.1], to prove that {Q(t)}∞t=0 is positive

recurrent, it suffices to show that, there exists a constant B>0 such that whenever the total

queue (VOQ) length ‖Q(t)‖1>B (because it is not hard to verify that the complement set

of states {Q(t) : ‖Q(t)‖1≤B} is finite and the drift is bounded whenever Q(t) belongs to

this set), we have

E
[
L
(
Q(t+ 1)

)
− L

(
Q(t)

)
| Q(t)

]
≤ −ε, (5.17)

where ε > 0 is a constant. It is not hard to check (for more detailed derivations, please refer

to [19]),

L
(
Q(t+ 1)

)
− L

(
Q(t)

)

=2
∑

i,j

qij(t)
(
A†ij(t)−D†ij(t)

)
+
∑

i,j

(
aij(t)− dij(t)

)(
A†ij(t)−D†ij(t)

)
. (5.18)

Hence the drift (LHS of (5.17)) can be written as

E
[
L
(
Q(t+ 1)

)
− L

(
Q(t)

)
| Q(t)

]

=E
[
2
∑

i,j

qij(t)
(
A†ij(t)−D†ij(t)

)
| Q(t)

]

+ E
[∑

i,j

(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)
| Q(t)

]
. (5.19)

Now we claim the following two inequalities, which we will prove shortly.

E
[
2
∑
i,j

qij(t)
(
A†ij(t)−D†ij(t)

)
| Q(t)

]
≤2(2ρ−1)‖Q(t)‖1. (5.20)

E
[∑
i,j

(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)
| Q(t)

]
≤CN2. (5.21)

With (5.20) and (5.21) substituted into (5.19), we have

E
[
L
(
Q(t+ 1)

)
− L

(
Q(t)

)
| Q(t)

]
≤2(2ρ−1)‖Q(t)‖1 + CN2.

where C > 0 is a constant. Since ρ<1/2, we have 2ρ− 1<0. Hence, there exist B, ε > 0

such that, whenever ‖Q(t)‖1>B,

E
[
L
(
Q(t+ 1)

)
− L

(
Q(t)

)
| Q(t)

]
≤ −ε.

79

Now we proceed to prove (5.20).

E
[
2
∑

i,j

qij(t)
(
A†ij(t)−D†ij(t)

)
| Q(t)

]

=2
(∑

i,j

E
[
qij(t)A

†
ij(t) | Q(t)

]
−
∑

i,j

E
[
qij(t)D

†
ij(t) | Q(t)

])

≤2
(

2ρ
∑

i,j

E
[
qij(t) | Q(t)

]
−
∑

i,j

E[qij(t) | Q(t)]
)

(5.22)

=2(2ρ− 1)‖Q(t)‖1. (5.23)

In the above derivations, inequality (5.22) holds due to (5.11), A(t) being independent of

Q(t) for any t, and Fact 5.2.2 that E[A†ij(t)]≤2ρ.

Now we proceed to prove (5.21), which upper-bounds the conditional expectation

E
[(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)
| Q(t)

]
. It suffices however to upper-bound the un-

conditional expectation E
[(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)]
, which we will do in the fol-

lowing, since we can obtain the same upper bounds on E[D†ij(t)] and E[dij(t)] (2 and 1

respectively) whether the expectations are conditional (on Q(t)) or not. Note the other two

terms A†ij(t) and aij(t) are independent of (the condition) Q(t).

As for any i, j, aij(t) is i.i.d., we have,

E
[(
aij(t)− dij(t)

)(
A†ij(t)−D†ij(t)

)]
(5.24)

=E[aij(t)A
†
ij(t)− dij(t)A†ij(t)− aij(t)D†ij(t) + dij(t)D

†
ij(t)]

=E[a2
ij(t)]−λ2

ij+λijΛ
†
ij−E[dij(t)]Λ

†
ij − λijE[D†ij(t)]+E[dij(t)D

†
ij(t)]

=E[a2
ij(t)]−λ2

ij+λijΛ
†
ij−E[dij(t)]Λ

†
ij − λijE[D†ij(t)]+E[dij(t)]. (5.25)

In arriving at (5.25), we have used (5.2). The RHS of (5.25) can be bounded by a

constant C > 0 due to the following assumptions and facts: E[a2
ij(t)] =E[a2

ij(0)]<∞ for

any t, dij(t) ≤ 1, D†ij(t) ≤ 2, λij ≤ ρ < 1/2, and Λ†ij ≤ 2ρ < 1. Therefore, we have (by

applying
∑

i,j to both (5.24) and the RHS of (5.25))

∑

i,j

E
[(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)]
≤CN2.

80

Remarks. Now that we have proved that {Q(t)}∞t=0 is positive recurrent. Hence, we have,

in steady state, for any 1 ≤ i, j ≤ N , E[dij(t)] =λij . Therefore, we have, in steady state,

for any 1 ≤ i, j ≤ N

E
[(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)]
= σ2

ij−λijΛ†ij+λij, (5.26)

where σ2
ij =E[a2

ij(t)]−λ2
ij is the variance of aij(t), because (5.25) can be simplified as the

RHS of (5.26) in steady state.

The following lemma (Lemma 5.2.2), in combination with Lemma 5.2.1, shows that

Theorem 5.2.1 applies to QPS-1. Therefore, QPS-1 can attain at least 50% throughput

under any i.i.d. arrival process.

Lemma 5.2.2. Under any i.i.d. arrival process whose maximum load factor ρ < 1/2,

when using QPS-1 as the crossbar scheduling algorithm, the resulting queueing process

{Q(t)}∞t=0 is an irreducible Markov chain.

Proof. {Q(t)}∞t=0 is clearly a Markov chain, since in (5.2), the term dij(t) is a function of

Q(t) and aij(t) is a random variable independent ofQ(t). The reasoning for the irreducibil-

ity of this Markov is the same as in §B.3.

5.2.5 Delay Analysis

In this section, we derive the bound on the expected total queue length E[‖Q̄‖1] (readily

convertible to the corresponding delay bound using Little’s Law) for QPS-1 under i.i.d.

traffic arrivals using the following moment bound lemma (i.e., Lemma 5.2.3) [71, Propo-

sition 2.1.4]. This bound, shown in (5.28), is identical to that derived in [19, 20, Section

III.B] for maximal matchings under i.i.d. traffic arrivals. Note this equivalence is not lim-

ited to i.i.d. traffic arrivals: It can be shown that the delay analysis results for general

Markovian arrivals derived in [19, 20] for maximal matchings (using the stronger “depar-

ture inequality” (5.5)) hold also for QPS-1.

81

Lemma 5.2.3. Suppose that {Yt}∞t=0 is a positive recurrent Markov chain with countable

state space Y . Suppose V , f , and g are non-negative functions on Y such that,

V (Yt+1)− V (Yt) ≤ −f(Yt) + g(Yt), for all Yt ∈ Y . (5.27)

Then E[f(Ȳ)]≤E[g(Ȳ)], where Ȳ is a random variable with the stationary distribution of

the Markov chain {Yt}∞t=0.

Now we derive the following bound on E[‖Q̄‖1], which is stronger than the part (II)

of Theorem 5.2.1.

Theorem 5.2.2. Under the same assumptions and definitions as in Theorem 5.2.1, we have

E[‖Q̄‖1] ≤ 1

2(1− 2ρ)

∑

i,j

(
σ2
ij−λijΛ†ij+λij

)
. (5.28)

Proof. We define function V in Lemma 5.2.3 as L, the Lyapunov function used

in the proof of Theorem 5.2.1 and Yt as the queue length matrix Q(t). Let

f(Yt) , −2
∑

i,j qij(t)
(
A†ij(t) − D†ij(t)

)
+ h(Yt), where h(Yt) , 2

∑
i,j qij(t)A

†
ij(t) +

∑
i,j aij(t)D

†
ij(t), and g(Yt) ,

∑
i,j

(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)
+ h(Yt). It is not

hard to check that both f(·) and g(·) are non-negative functions and inequality (5.27) holds

for V, Yt, f, g defined above. Furthermore, we have proved before, {Q(t)}∞t=0 is a positive

Markov chain whenever the maximum load factor ρ < 1/2. Hence, we have, in steady

state,

− 2(2ρ− 1)E[‖Q̄‖1]

≤E
[
− 2
∑
i,j

qij(t)
(
A†ij(t)−D†ij(t)

)]
(5.29)

=E[f(Ȳ)]− E[h(Ȳ)]

≤E[g(Ȳ)]− E[h(Ȳ)] (5.30)

=E
[(
aij(t)−dij(t)

)(
A†ij(t)−D†ij(t)

)]

=
∑

i,j

(
σ2
ij−λijΛ†ij + λij

)
. (5.31)

82

In the above derivation, inequality (5.29) is because taking expectation on both sides

of (5.20), we have E
[
2
∑
i,j

qij(t)
(
A†ij(t)−D†ij(t)

)]
≤ 2(2ρ − 1)E[‖Q(t)‖1], thus, in steady

state,

−2(2ρ− 1)E[‖Q̄‖1] ≤ E
[
− 2
∑
i,j

qij(t)
(
A†ij(t)−D†ij(t)

)]
.

Inequality (5.30) is due to Lemma 5.2.3, and equality (5.31) is due to (5.26).

Therefore, we have, in steady state,

E[‖Q̄‖1] ≤ 1

2(1− 2ρ)

∑

i,j

(
σ2
ij−λijΛ†ij+λij

)
.

Since, as explained in the proof of Lemma 5.2.2, {Q(t)}∞t=0 is an irreducible Markov

chain under i.i.d. arrivals when the maximum load factor ρ < 1/2, Theorem 5.2.2 applies

to QPS-1. Hence we obtain,

Corollary 5.2.1. The bound on E[‖Q̄‖1] as stated in (5.28) holds under QPS-1 scheduling,

whenever the arrival process is i.i.d. and the maximum load factor ρ < 1/2.

It is not hard to check (by applying Little’s Law) that the average delay (experienced

by packets) is bounded by a constant independent of N (i.e., order-optimal) for a given

maximum load factor ρ < 1/2, since the variance σ2
ij = E[a2

ij(0)]− λ2
ij for any i, j is finite

(as we have assumed in §5.2.1 that the second moment E[a2
ij(0)] is finite). For the special

case of i.i.d. Bernoulli arrivals (when σ2
ij = λij − λ2

ij), this bound (the RHS) can be further

tightened to
∑
i,j λij

1−2ρ
. This implies, by Little’s Law, the following “clean” bound: ω̄ ≤ 1

1−2ρ

where ω̄ is the expected delay averaged over all packets transmitting through the switch.

5.3 Performance Evaluation

In this section, we evaluate, through simulations, the performance of QPS-r under various

load conditions and traffic patterns. We compare its performance with that of iSLIP [5],

a refined and optimized representative parallel maximal matching algorithm (adapted for

83

switching). The performance of the MWM (Maximum Weighted Matching) is also in-

cluded in the comparison as a benchmark. Our simulations show conclusively that QPS-1

performs very well inside the provable stability region (more precisely, with no more than

50% offered load), and that QPS-3 has comparable throughput and delay performances as

iSLIP, which has much more expensive computationally.

5.3.1 Simulation Setup

In our simulations, we first fix the number of input/output ports, N to 64. Later, in sec-

tion 5.3.3 we investigate how the mean delay performances of these algorithms scale with

respect to N . To measure throughput and delay accurately, we assume each VOQ has an

infinite buffer size and hence there is no packet drop at any input port. Each simulation run

is guided by the following stopping rule [72, 73]: The number of time slots simulated is

the larger between 500N2 and that is needed for the difference between the estimated and

the actual average delays to be within 0.01 time slots with probability at least 0.98.

We assume in our simulations that each traffic arrival matrix A(t) is i.i.d. Bernoulli

with its traffic rate matrix Λ being equal to the product of the offered load and a traffic

pattern matrix (defined in §1.2.6). Similar Bernoulli arrivals were studied in [4, 5]. Later,

we will also look at bursty arrivals in §5.3.4. Note that only synthetic traffic (instead of that

derived from packet traces) is used in our simulations because, to the best of our knowledge,

there is no meaningful way to combine packet traces into switch-wide traffic workloads.

As mentioned earlier in §1.2.6, the four standard types of normalized (with each row or

column sum equal to 1) traffic patterns are used.

5.3.2 Throughput and Delay Performances

We first compare the throughput and delay performances of QPS-1 (1 iteration), QPS-3

(3 iterations), iSLIP (log2 64 = 6 iterations), and MWM (length of VOQ as the weight

measure). Figure 5.2 shows their mean delays (in number of time slots) under the afore-

84

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

M
e
a
n
 D

e
la

y

Uniform
QPS-1 QPS-3 iSLIP MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Diagonal

Figure 5.2: Mean delays of QPS-1, QPS-3, iSLIP, and MWM under the 4 traffic patterns.

mentioned four traffic patterns respectively. Each subfigure shows how the mean delay (on

a log scale along the y-axis) varies with the offered load (along the x-axis). We make three

observations from Figure 5.2. First, Figure 5.2 clearly shows that, when the offered load is

no larger than 0.5, QPS-1 has low average delays (i.e., more than just being stable) that are

close to those of iSLIP and MWM, under all four traffic patterns. Second, the maximum

sustainable throughputs (where the delays start to “go through the roof” in the subfigures)

of QPS-1 are roughly 0.634, 0.645, 0.681, and 0.751 respectively, under the four traffic

patterns respectively; they are all comfortably larger than the 50% provable lower bound.

Third, the throughput and delay performances of QPS-3 and iSLIP are comparable: The

former has slightly better delay performances than the latter under all four traffic patterns

except the uniform.

5.3.3 How Mean Delay Scales with N

Figure 5.3 shows how the mean delays of QPS-3, iSLIP (running log2N iterations given

any N), and MWM scale with the number of input/output ports N , under the four different

traffic patterns. With one exception, we have simulated the following different values ofN :

N = 8, 16, 32, 64, 128, 256, 512, 1,024. The exception is that we did not obtain the delay

values for MWM (not a “main character” in our story) for N = 1, 024, as it proved to be

prohibitively expensive computationally to do so. In all these plots, the offered load is 0.75,

which is quite high compared to the maximum sustainable throughputs of QPS-3 and iSLIP

85

(shown in Figure 5.2) under these four traffic patterns. Figure 5.3 shows that the mean

delays of QPS-3 are slightly lower (i.e., better) than those of iSLIP under all traffic patterns

except the uniform. In addition, the mean delay curves of QPS-3 remain almost flat (i.e.,

constant) under log-diagonal and diagonal traffic patterns. Although they increase with N

under uniform and quasi-diagonal traffic patterns, they eventually almost flatten out when

N gets larger (say when N ≥ 128). These delay curves show that QPS-3, which runs only

3 iterations, deliver slightly better delay performances, under all 4 traffic patterns except

the uniform, than iSLIP (a refined and optimized parallel maximal matching algorithm

adapted for switching), which runs log2N iterations with each iteration has O(log2N)

time complexity.

8 16 64 256 1024

Port Number

1

2

3

4

5

6

7

8

M
e
a
n
 D

e
la

y

Uniform
QPS-3 iSLIP MWM

8 16 64 256 1024

Port Number

1

2

3

4

5

6

7

8
Quasi-diagonal

8 16 64 256 1024

Port Number

1

2

3

4

5

6

7

8
Log-diagonal

8 16 64 256 1024

Port Number

1

2

3

4

5

6

7

8
Diagonal

Figure 5.3: Mean delays scaling with number of ports N for QPS-3, iSLIP, and MWM.

5.3.4 Bursty Arrivals

In real networks, packet arrivals are likely to be bursty. In this section, we evaluate the

performances of QPS-3, iSLIP and MWM under bursty traffic arrivals, generated by a two-

state ON-OFF arrival process that we have described in §4.4.3.2.

We evaluate their mean delay performances with the average burst size ranging from

16 to 1,024 packets. We have simulated various offered loads, but here we only present the

results, shown in Figure 5.4, under an offered load of 0.49 (Figure 5.4a) and that of 0.75

(Figure 5.4b). Figure 5.4 clearly shows that QPS-3 outperforms iSLIP (under all traffic

86

patterns except the uniform), by an increasingly wider margin in both absolute and relative

terms as the average burst size becomes larger, under both offered loads.

16 64 256 1024

Average Burst Size

1

3

9

27

81

M
e

a
n

 D
e

la
y

Uniform
QPS-3 iSLIP MWM

16 64 256 1024

Average Burst Size

2

8

32

128
Quasi-diagonal

16 64 256 1024

Average Burst Size

1

10

100
Log-diagonal

16 64 256 1024

Average Burst Size

1

10

100
Diagonal

(a) Offered load: 0.49

16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

M
e

a
n

 D
e

la
y

Uniform
QPS-3 iSLIP MWM

16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Quasi-diagonal

16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Log-diagonal

16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Diagonal

(b) Offered load: 0.75

Figure 5.4: Mean delays under bursty traffic arrivals with the 4 traffic patterns.

5.4 Conclusion

In this chapter, we propose QPS-r, a parallel iterative crossbar scheduling algorithm with

O(1) time complexity per port. We prove, through Lyapunov stability analysis, that it

achieves the same throughput and delay guarantees in theory, and demonstrate through sim-

ulations that it has comparable performances in practice as the family of maximal matching

algorithms (adapted for switching); maximal matching algorithms are much more expen-

sive computationally (at least O(logN) iterations and a total of O(log2N) per-port time

87

complexity). These salient properties make QPS-r an excellent candidate algorithm that is

fast enough computationally and can deliver acceptable throughput and delay performances

for high-link-rate high-radix switches.

88

CHAPTER 6

SB-QPS

6.1 Batch Scheduling Algorithms

O1 O2 · · · ON

1 I3 I7 · · · I1

2 I5 – · · · I3

...
T – I5 · · · I2

Figure 6.1: A joint calendar. “–” means unmatched.

Since Small-Batch QPS (SB-

QPS) is a batch scheduling

algorithm [22, 23, 24], we first

provide some background on

batch scheduling. In a batch

scheduling algorithm, the T

matchings for a batch of T future

time slots are batch-computed.

These T matchings form a joint calendar (schedule) of the N output ports that can

be encoded as a T ×N table with TN cells in it, as illustrated by an example shown

in Figure 6.1. Each column corresponds to the calendar of an output port and each row

a time slot. The content of the cell at the intersection of the tth row and the jth column

is the input port that Oj is to pair with during the tth time slot in this batch. Hence, each

cell also corresponds to an edge (between the input and the output port pair) and each row

also corresponds to a matching (under computation for the corresponding time slot). In the

example shown in Figure 6.1, output port O1 is to pair with I3 during the 1st time slot (in

this batch), I5 during the 2nd time slot, and is unmatched during the T th time slot.

At each input port, all packets that were in queue before a cutoff time (for the current

batch), including those that belong to either the current batch, or previous batches but could

not be served then, are waiting to be inserted into the respective calendars (i.e., columns

of cells) of the corresponding output ports. The design objective of a batch scheduling

89

algorithm is to pack as many such packets across the N input ports as possible into the TN

cells in this joint calendar. After the computation of the current joint calendar is completed,

the T matchings in it will be used as the crossbar configurations for a batch of T future

time slots. In the meantime, the switch is switching packets according to the T matchings

specified in a past joint calendar that was computed earlier.

6.2 The SB-QPS Algorithm

In this section, we describe in detail SB-QPS, a batch scheduling algorithm that uses a small

constant batch size T that is independent of N . SB-QPS is a parallel iterative algorithm:

The input and output ports run T QPS-like iterations (request-accept message exchanges)

to collaboratively pack the joint calendar. The operation of each iteration is extremely

simple: Input ports request for cells in the joint calendar, and output ports accept or reject

the requests. More precisely, each iteration of SB-QPS, like that of QPS (see Chapter 4),

consists of two phases: a proposing phase and an accepting phase.

Proposing Phase. We adopt the same proposing strategy as in QPS: In this phase, each

input port, unless it has no packet to transmit, proposes to exactly one output port that is

decided by the QPS strategy. Here, we will only describe the operations at input port 1;

those at any other input port are identical. Like in §4.1, we denote by m1,m2, · · · ,mN

the respective queue lengths of the N VOQs at input port 1, and by m their sum (i.e., m,
∑N

k=1mk). At first, input port 1 simply samples an output port j with probability mj/m,

i.e., proportional to mj , the length of the corresponding VOQ; it then sends a proposal

to output port j. The content of the proposal in SB-QPS is slightly different than that in

QPS. In QPS, the proposal contains only the VOQ length information (i.e., the value mj),

whereas in SB-QPS, it contains also the following availability information (of input port

1): Out of the T time slots in the batch, what (time slots) are still available for input port 1

to pair with an output port? The time complexity of this QPS operation, carried out using

the data structure described in §4.2, is O(1) per input port.

90

Accepting Phase. The accepting phase (in SB-QPS) at an output port is quite different

than that in QPS. Whereas the latter allows at most one proposal to be accepted at any

output port (as QPS is a part of a regular crossbar scheduling algorithm that is concerned

with only a single time slot at a time), the former allows an output port to accept multiple

(up to T) proposals (as each output port has up to T cells in its calendar to be filled).

Here, we describe the accepting phase at output port 1; that at any other output port is

identical. The operations at output port 1 depend on the number of proposals it receives. If

output port 1 receives exactly one proposal from an input port (say input port i), it tries to

accommodate this proposal using an accepting strategy we call First Fit Accepting (FFA).

The FFA strategy is to match in this case input port i and output port 1 at the earliest time

slot (in the batch of T time slots) during which both are still available (for pairing); if they

have “schedule conflicts” over all T time slots, this proposal is rejected. If output port 1

receives proposals from multiple input ports, then it first sorts (with ties broken arbitrarily)

these proposals in a descending order according to their corresponding VOQ lengths, and

then tries to accept each of them using the FFA strategy.

In SB-QPS, opportunities – in the form of proposals from input ports – can arise,

throughout the time window (up to T time slots long) for computing the join calendar,

to fill any of its TN cells. As explained earlier, this “capturing every opportunity” to fill

the joint calendar allows a batch scheduling algorithm to produce matchings of much higher

qualities than a regular crossbar scheduling algorithm that is based on the same underly-

ing bipartite matching algorithm can. Indeed, SB-QPS, the batch scheduling algorithm

that is based on the QPS bipartite matching primitive, significantly outperforms QPS-1, the

regular crossbar scheduling algorithm that is based on QPS, as we will show in §6.3.

Time Complexity. The time complexity for the accepting phase at an output port is O(1)

on average, although in theory it can be as high as O(N logN) since an output port can

receive up toN proposals and have to sort them based on their corresponding VOQ lengths.

Like in §4.1, this time complexity can be made O(1) even in the worst case by letting the

91

output port drop (“knock out”) all proposals except the earliest few (say 3) to arrive. In this

work, we indeed set this threshold to 3 and find that it has a negligible effect on the quality

of resulting matchings.

We now explain how to carry out an FFA operation in O(1) time. In SB-QPS, we

encode the availability information of an input port i as a T -bit-long bitmapBi[1..T], where

Bi[t] = 1 if input port i is available (i.e., not already matched with an output port) at time

slot t and Bi[t] = 0 otherwise. The availability information of an output port o is similarly

encoded into a T -bit-long bitmap Bo[1..T]. When input port i sends a proposal, which

contains the availability information Bi[1..T], to output port o, the corresponding FFA

operation is for the output port o to find the first bit in the bitmap (Bi&Bo)[1..T] that

has value 1, where & denotes bitwise-AND. Since the batch size T in SB-QPS is a small

constant (say T=32), both bitmaps can fit into a single CPU word and “finding the first 1”

is an instruction on most modern CPUs.

To summarize, the worst-case time complexity of SB-QPS is O(T) per input or output

port for the joint calendar consisting of T matchings, since SB-QPS runs T iterations and

each iteration has O(1) worst-case time complexity per input or output port. Hence the

worst-case time complexity for computing each matching is O(1) per input or output port.

Message Complexity. The message complexity of each “propose-accept” iteration is O(1)

messages per input or output port, because each input port sends at most one proposing

message per iteration and each output port sends out at most 3 acceptance messages (where

3 is the “knockout” threshold explained above). Each proposing message is T+dlog2W e

bits long (T bits for encoding the availability information and dlog2W e bits for encoding

the corresponding VOQ length), whereW is the longest possible VOQ length. Each accep-

tance message is dlog2T e bits long (for encoding the time slot the pairing is to be made).

To summarize, the worst-case message complexity of SB-QPS for computing each of the

T matchings is O(1) per port.

We have considered and experimented with two other accepting strategies. One is to

92

accept as many as possible proposals, which we refer to as Maximum Fit Accepting (MFA).

The other is to maximize the total weight of accepted proposals that is defined as the to-

tal length of the VOQs between the input and output pairs corresponding to the accepted

proposals, which we refer to as Maximum Weight Fit Accepting (MWFA). Unlike FFA that

tries to accommodate proposals one after another, MFA and MWFA consider all propos-

als jointly and maximizes the number of or the weight of proposals that can be accepted.

Intuitively, MFA and MWFA should produce higher-quality matchings (measured by the

resulting throughput performances) than FFA. However, as we will show in §C.1.3, that

FFA generally has better (throughput and delay) performances. Therefore, we prefer FFA.

6.3 Performance Evaluation

In this section, we evaluate, through simulations, the throughput and delay performances

of SB-QPS under various load conditions and traffic patterns. SB-QPS is compared against

Fair-Frame [23]. The batch size T of Fair-Frame is configured following the guidance

provided in [23]. More precisely, T = dlog(2N/δmin)/ log(1/γ)e, where δmin was chosen

to minimize the delay bound, γ , ρe1−ρ, and ρ is the maximum load factor. Since ρ is

usually not known in practice, we set ρ=0.9 in our simulations so that Fair-Frame is stable

whenever the maximum load factor is no more than 0.9, i.e., the maximum sustainable

throughput of Fair-Frame is at least 0.9. This is fair because, as we will show later, the

maximum sustainable throughputs of our SB-QPS are around 0.9 under all simulated traffic

patterns. SB-QPS is also compared against QPS-1 (QPS-r with r=1 iteration). This is a fair

comparison because QPS-1, like our SB-QPS, runs only a single iteration to compute a

matching. The MWM algorithm (with the VOQ length as the weight measure), which, as

mentioned in Chapter 2, delivers near-optimal delay performance, is also compared against

as a benchmark.

93

6.3.1 Simulation Setup

In our simulations, we fix the number of input and output ports N to 64. Later, in §C.1.1,

we investigate how the mean delay performances of these algorithms scale with respect to

N . To accurately measure throughput and delay, we assume that each VOQ has an infinite

buffer size, so no packet is dropped at any input port. Each simulation run is guided by the

following stopping rule [72, 73]: The number of time slots simulated is the larger between

500N2 and that is needed for the difference between the estimated and the actual average

delays to be within 0.01 with probability at least 0.98.

We assume in our simulations that each traffic arrival matrix is i.i.d. Bernoulli with

its traffic rate matrix equal to the product of the offered load and a traffic pattern matrix.

Similar Bernoulli arrivals were studied in [4, 5]. Later in §C.1.2, we will look at bursty

traffic arrivals. Note that only synthetic traffic (instead of that derived from packet traces)

is used in our simulations because, to the best of our knowledge, there is no meaningful

way to combine packet traces into switch-wide traffic workloads. The four standard types

of normalized (with each row or column sum equal to 1) traffic patterns, described earlier

in §1.2.6, are used.

0 0.2 0.4 0.6 0.8 1

Normalized Load

4

8

16

32

64

128

256

512

M
e

a
n

 D
e

la
y

Uniform
8 16 24 32 40 48

0 0.2 0.4 0.6 0.8 1

Normalized Load

4

8

16

32

64

128

256

512
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

4

8

16

32

64

128
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

4

8

16

32

64

128
Diagonal

Figure 6.2: Mean delays of SB-QPS with different batch sizes under the 4 traffic patterns.

94

6.3.2 How Large Should Batch Size T Be?

When implementing SB-QPS, we have to first decide on the value of batch size T . As

explained earlier in §1.3.4, for SB-QPS, a larger batch size T generally results in matchings

of higher qualities and hence leads to better throughput performances. However, a larger T

results in longer batching delays and hence can lead to worse overall delay performances

for SB-QPS. In addition, since the availability information in a proposal message is T bits

long, a larger T leads to a higher message complexity for SB-QPS.

We use simulations to decide the value of T . In these simulations, we have investigated

different values of T varying between 8 and 64. Here, to avoid too many curves in a single

figure making it hard to read, we only present the simulation results with six different batch

sizes: 8, 16, 24, 32, 40 and 48. Figure 6.2 presents the mean delays, more precisely, the

average queueing delays in number of time slots, of SB-QPS with the six different batch

sizes under the aforementioned four different traffic patterns. Each subfigure shows how

the mean delay (on a log scale along the y-axis) varies with the offered load (along the x-

axis). Figure 6.2 clearly shows that the larger the batch size T is, the better the throughput

performance is. Figure 6.2 also shows that T=32 appears to be a nice performance-cost

tradeoff: The throughput gain when increasing T beyond 32 (say to 40) are marginal.

Hence, we set the batch size T to 32 in the rest of §6.3. SB-QPS clearly deserves its name

(small-batch) since this tiny batch size of 32 is much smaller than that of most other batch

scheduling algorithm.

6.3.3 Throughput and Delay Performances

Figure 6.3a presents the mean delays of SB-QPS, QPS-1, and MWM under the aforemen-

tioned 4 standard traffic patterns. We make three observations from Figure 6.3a. First,

Figure 6.3a clearly shows that the mean delays of SB-QPS increase much slower with re-

spect to the offered load than those of QPS-1 and MWM when the offered load is not

very high (say < 0.8). Second, when the offered load is low to moderate (say< 0.6),

95

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform
SB-QPS QPS-1 MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

(a) Comparison against QPS-1 and MWM.

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform
SB-QPS Fair-Frame MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

(b) Comparison against Fair-Frame and MWM.

Figure 6.3: Mean delays under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns.

because of the batching delays, the mean delays of SB-QPS are much higher than those

of QPS-1 and MWM under all four traffic patterns. Third, SB-QPS significantly im-

proves the maximum sustainable throughputs (where the delays start to “go through the

roof” in each subfigure in Figure 6.3a) of QPS-1. More precisely, the maximum sustain-

able throughputs of SB-QPS are roughly 0.910, 0.905, 0.901, and 0.874 under the uniform,

quasi-diagonal, log-diagonal, and diagonal traffic patterns respectively; those of QPS-1

are only 0.634, 0.645, 0.681, and 0.751. Hence, SB-QPS increases the throughputs by an

additive term of around 0.276, 0.26, 0.22 and 0.123 for the uniform, quasi-diagonal, log-

diagonal, and diagonal traffic patterns respectively.

Figure 6.3b presents the mean delays of SB-QPS, Fair-Frame, and MWM under the

4 standard traffic patterns. We can see that, due to the much smaller batch size of SB-

QPS (T =32) relative to that of Fair-Frame (T=3,279), SB-QPS outperforms Fair-Frame

96

significantly under all traffic patterns for all load factors except those close to the maximum

sustainable throughputs of SB-QPS.

6.4 Conclusion

In this chapter, we propose a batch scheduling algorithm called SB-QPS that significantly

reduces the batch size without sacrificing the throughput performance much, and achieves a

time complexity of O(1) per matching computation per port via parallelization. We show,

through simulations, that the throughput performances of SB-QPS are much better than

those of QPS-1, the state-of-the-art regular crossbar scheduling algorithm based on the

same underlying bipartite matching algorithm.

97

Appendices

98

APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Parallelized Population

As explained in §3.1, the new random matching A′(t) derived from the arrival graph,

which is in general a partial matching, has to be populated into a full matching R(t) before

it can be merged with S(t − 1), the matching used in the previous time slot. SERENADE

parallelizes this POPULATE procedure, i.e., the round-robin pairing of unmatched input

ports in A′(t) with unmatched output ports in A′(t), so that the time complexity for each

input port is O(logN), as follows.

Suppose that each unmatched port (input port or output port) knows its own ranking,

i.e., the number of unmatched ports up to itself (including itself) from the first one (we will

show later how each unmatched port can obtain its own ranking). Then, each unmatched

input port needs to obtain the identity of the unmatched output port with the same rank-

ing. This can be done via 3 message exchanges as follows. Each pair of unmatched input

and output ports “exchange” their identities through a “broker”. More precisely, the jth

unmatched input port (i.e., unmatched input port with ranking j) first sends its identity to

input port j (i.e., the broker). Then, the jth unmatched output port also sends its identity

to input port j (i.e., the broker). Finally, input port j (i.e., the broker) sends the identity of

the output port with ranking j to the input port (with ranking j). Thus, the input port learns

the identity of the corresponding output port. Note that, since every pair of unmatched

input port and output port has its unique ranking, thus they would have different “brokers”.

Therefore, all pairs can simultaneously exchange their messages without causing any con-

gestion (i.e., a port sending or receiving too many messages).

It remains to parallelize the computation of ranking each port (input port or output port).

99

This problem can be reduced to the parallel prefix sum problem [74] as follows. Here, we

will only show how to compute the rankings of input ports in parallel; that for output ports

is identical. LetB[1..N] be a bitmap that indicates whether input port i is unmatched (when

B[i] = 1) or not (when B[i] = 0). Note that, this bitmap is distributed, that is, each input

port i only has a single bit B[i]. For i= 1, 2, · · · , N , denote as ri the ranking of input port

i. It is clear that ri=
∑i

k=1 B[k], for any 1≤ i≤N . In other words, the N terms r1, r2, · · · ,

rN are the prefix sums of the N terms B[1], B[2], · · · , B[N]. Using the Ladner-Fischer

parallel prefix-sum algorithm [64], we can obtain these N prefix sums r1, r2, · · · , rN in

O(logN) time (per port) using 2N processors (one at each input or output port).

A.2 Proof of Lemma 3.2.1

We need only to consider the following two cases.

(1) The two walks are in the same “rotational” direction. Without loss of generality,

we assume the two walks are i;σβ(i) and i;σγ(i) respectively, where 0≤β<γ,

and σβ(i) = σγ(i) = j. By applying the operator σ−β to both sides of the equation

σβ(i)=σγ(i), we have i=σγ−β(i). Hence, ` divides (γ−β), where ` is the length of

the cycle to which vertices i, j belong. Suppose κ`=γ−β, where κ>0 is an integer.

Then, we have the (γ−β)-edge-long walk σβ(i); σγ(i) coils around the cycle (of

length `) exactly κ times, and so the green weight wg
(
σβ(i);σγ(i)

)
(or red weight)

is κ times of that of the cycle. Since vertex i can obtain the green weight (or the red

weight) of the walk σβ(i);σγ(i) via subtracting wg(i;σβ(i)) from wg(i;σγ(i)),

i.e., 



wg
(
σβ(i);σγ(i)

)
← wg

(
i;σγ(i)

)
− wg

(
i;σβ(i)

)

wr
(
σβ(i);σγ(i)

)
← wr

(
i;σγ(i)

)
− wr

(
i;σβ(i)

) (A.1)

it knows whether wg(i;σ`(i)) (the green weight of the cycle) or wr(i;σ`(i)) (the

red weight of the cycle) is larger.

100

(2) The two walks are in opposite directions. Without loss of generality, we assume

the two walks are σ−β(i); i and i;σγ(i) respectively where β, γ>0, and σ−β(i)=

σγ(i) = j. By applying the operator σβ to both sides of the equation σ−β(i) =σγ(i),

we have i=σγ+β(i). So ` divides (γ+β), the rest reasoning is the same as before.

A.3 Proof of Lemma 3.3.1

Suppose that vertex i discovers vertex j after the kth1 and kth2 iteration respectively. Then

we have σm1(i) = σm2(i) = j where m1 = 2k1 if i discovers j through Line 14 during the

kth1 iteration, otherwise m1 =−2k1 . Similarly, m2 =±2k2 . Thus, we have i= σm2−m1(i).

Therefore, there exists some positive integer κ such that |m2 − m1| = κ`, where ` is the

length of the cycle.

For any other vertex x on the same cycle, we have x = σm2−m1(x). Thus, σm2(x) =

σm1(x) , y. Therefore, x also discovers y twice.

A.4 Proof of Lemma 3.3.2

i j

i σ2(α−1)

(i)

σ(−2(α−1))(i) i

(I)

i

j

i σ2γ (i)

i σ2β (i)

(II)

i

j

i σ2γ (i)

σ(−2β)(i) i

(III)

Figure A.1: Illustration of three cases corresponding to cycle lengths belonging to the three
forms of the ouroboros numbers.

Here we only show the proof sketch for brevity. It is not hard to show that if the cycle,

101

to which vertex i belongs, has a length of an ouroboros number, i.e., a divisor of numbers

in the three forms defined in Definition 3.3.1, then vertex i will discover a vertex j on

the same cycle twice via one of the three cases illustrated in Figure A.1. For example,

if the cycle length ` is a divisor of form (I) defined in Definition 3.3.1, then it has to be

a power of 2. Without loss of generality, we assume ` = 2α, where nonnegative integer

α ≤ log2N . In the cases of α ≥ 1, it is clear that, in the (α−1)th iteration, vertex i

discovers σ2α−1(i) and σ(−2α−1)(i), which turn out to be the same vertex. The case of α= 0

is slightly different: After the 0th iteration, vertex i discovers σ(i) and σ−1(i), which are

both equal to i. Therefore, (I) shown in Figure A.1 happens. Similarly, we can show that if

the cycle length ` is a divisor of a number in form (II) (or (III)), then (II) (or (III)) shown

in Figure A.1 happens.

Note that for (II) and (III) in Figure A.1, both the two walks can coil around the cycle

for one or more times, and the directions of the two walks can be reversed. For example,

for (III) in Figure A.1, the two walks could also be σ−2γ (i); i and i;σ2β(i), and both of

them could coil around the cycle for one or more times, i.e., they are longer than the cycle.

A.5 Why Not Use More Than 1 + log2N Iterations?

Fix a vertex i. Note that in the knowledge-discovery procedure, each iteration results in

two new vertices being discovered by vertex i and hence increases the chance of a ver-

tex being discovered twice by i. Hence, if we run more than 1+log2N iterations, then

vertex i may discover a vertex twice even if it is on a non-ouroboros cycle (as defined

in Definition 3.3.1). In other words, with additional iterations, some non-ouroboros num-

bers may become “effective ouroboros numbers”. Readers may wonder if we can do away

with the distributed binary search simply by running a little more iterations (say 0.5 log2N

more iterations). Unfortunately, as shown in Table A.1, there exists some numbers (cy-

cle lengths) that are “hardcore non-ouroboros” in the sense a vertex i on a cycle of such

a length ` needs to run exactly d`/2e iterations to discover a vertex twice. In fact, it is a

102

long-standing open problem in mathematics whether there exists infinite number of what

we call “hardcore non-ouroboros” numbers here. More precisely, it is a special case of the

Artin’s Conjecture [75], which, if put into our context, asks whether there are infinitely

many prime numbers p such that, it takes a vertex i on a cycle of length p exactly dp/2e

iterations to discover a vertex on the same cycle twice.

Table A.1: Examples of “hardcore non-ouroboros” numbers.

` 61 131 239 509 1019
Iterations 31 66 120 255 510

A.6 SERENADE vs. MIX

In this section, we describe the three variants of MIX [54] in detail. The first variant, which

is centralized and idealized, computes the total green and red weights of each cycle or

path by “linearly” traversing the cycle or path. Hence it has a time complexity of O(N),

where N is the number of nodes in a wireless network. This idealized variant is however

impractical because it requires the complete knowledge of the connectivity topology of the

wireless network.

The second variant removes this infeasible requirement and hence is practical. It esti-

mates and compares the average green and red weights of each cycle or path (equivalent to

comparing the total green and red weights) using a synchronous iterative gossip algorithm

proposed in [63]. In this gossip algorithm, each node (say X) is assigned a green (or red)

weight that is equal to the weight of the edge that uses X as an endpoint and belongs to the

matching used in the previous time slot (or in the new random matching); in each iteration,

each node attempts to pair with a random neighbor and, if this attempt is successful, both

nodes will be assigned the same red (or green) weight equal to the average of their cur-

rent red (or green) weights. The time complexity of each MERGE is O(l2N logN), since

this gossip algorithm requires O(l2N logN) iterations [54] for the average red (or green)

103

weight estimate to be close to the actual average with high probability. Here l is the length

of the longest path or cycle.

The third (practical) variant, also a gossip-based algorithm, employs the aforemen-

tioned “idempotent trick” (see §A.7) to estimate and compare the total green and red

weights of each cycle or path. This idempotent trick reduces the convergence time (to-

wards the actual total weights) to O(l) iterations, but as mentioned earlier requires each

pair of neighbors to exchange a large number (O(N logN) to be exact) of exponential ran-

dom variables during each message exchange. Since l is usually O(N) in a random graph,

the time complexity of this algorithm can be considered O(N).

A.7 An Idempotent Trick

As mentioned in §A.6, there is an alternative solution to the consistency problem that

does not require leader election, using a standard “idempotent trick” that was used in [54]

to solve a similar problem. To motivate this trick, we zoom in on the example shown

in Figure 3.2. Both the consistency problem and the absolute correctness problem above

can be attributed to the fact that the (green or red) weights of some edges are accounted

for (i.e., added to the total) κ times, while those of others κ − 1 times. For example, in

3 ; σ16(3), the (green or red) weights of edges (3, 4), (4, 14), and etc are accounted for

2 times, while those of edges (2, 8), (8, 5), and etc 1 times. Since the “+” operator is not

idempotent (so adding a number to a counter κ times is not the same as adding it κ−1

times), the total (green or red) weight of the walk obtained this way does not perfectly

track that of the cycle.

The “idempotent trick” is to use, instead of the “+” operator, a different and idempotent

operator MIN to arrive at an estimation of the total green (or red) weight; the MIN is

idempotent in the sense the minimum of a multi-set (of real numbers)M is the same as that

of the set of distinct values in M . The idempotent trick works, in this O-SERENADE con-

text, for a set of edges e1, e2, ..., eZ that comprise a non-ouroboros cycle with green weights

104

w1, w2, ..., wZ respectively, as follows; the trick works in the same way for the red weights.

Each edge eζ “modulates” its green weight wζ onto an exponential random variable Xζ

with distribution F (x)=1− e−x/wζ (for x>0) so that E[Xζ]=wζ . Then the green weight

of every walk W on this non-ouroboros cycle can be encoded as MIN{Xζ |eζ ∈ W}. It

is not hard to show that we can compute this MIN encoding of every 2d-edge-long walk

i;σ2d(i) by O-SERENADE in the same inductive way we compute the “+” encoding. For

example, under the MIN encoding, Line 10 in Algorithm 1 becomes “Send to iU the value

MIN{Xζ |eζ ∈ i ; σ2k−1
(i)}”. However, unlike the “+” encoding, which requires the

inclusion of only 1 “codeword” in each message, the MIN encoding requires the inclusion

of O(N logN) i.i.d. “codewords” in each message in order to ensure sufficient estimation

accuracy [54].

A.8 More Performance Evaluations

Table A.2: Average per-port message complexities of SERENADE (bytes).

Traffic patterns Uniform Quasi-diagonal Log-diagonal Diagonal
N 64 128 256 64 128 256 64 128 256 64 128 256
light (ρ = 0.1) 29.79 40.04 51.29 25.86 36.2 47.7 12.47 14.32 16.23 8.14 9.03 9.98
moderate (ρ = 0.6) 34.79 44.84 55.73 31.08 40.55 50.82 21.61 25.69 29.86 14.51 16.82 19.37
high (ρ = 0.95) 35.21 45.26 56.13 28.65 37.19 46.50 20.07 23.66 27.47 15.70 18.38 21.50

A.8.1 Message Complexities

In this section, we investigate the empirical message complexities of SERENADE. Those

of O-SERENADE are not presented here, as they are similar.

Per-Port Message Complexities. Table A.2 shows the numerical results of the average

per-port message complexities (in bytes) of SERENADE forN=64, 128, and 256 for the 4

traffic patterns described above under low, moderate, and high offered loads. As explained

in §3.3.3, it suffices to only include wr(·)−wg(·), the difference between the red and green

weights, in each message. This difference can be encoded in 15 bits (with a single “sign”

105

0 2 4 6 8
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

F
re

qu
en

cy

Uniform

0 2 4 6 8
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Log-diagonal

0 1 2 3 4 5 6
Number of Non-Ouroboros Cycles

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Quasi-diagonal

0 1 2 3
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Diagonal

Figure A.2: Histogram for number of non-ouroboros cycles in SERENADE (N = 256,
ρ=0.6).

bit), as we assume that each weight can fit in 14 bits (i.e., no more than 16,384 packets).

The worst-cast message complexities of SERENADE, described in §3.3.3 and §3.5.2, are

44.25, 53.25, 63 bytes per port for N = 64, 128, and 256 respectively. Comparing them

against those values in Table A.2, we can see that the average message complexities (per

port), under all load factors or traffic patterns, are lower than the worst cases.

Number of Non-Ouroboros Cycles. We also measure the number of non-ouroboros cycles

in each time slot in SERENADE, of which the histograms (on a log scale along the y-axis)

forN=256, and an offered load of ρ=0.6 under the four different traffic patterns are shown

in Figure A.2. The average numbers of non-ouroboros cycles are 1.69, 1.61, 0.57, 0.31

under the uniform, quasi-diagonal, log-diagonal, and diagonal traffic patterns respectively.

It is not hard to check that under any of the four different traffic patterns, in more than 99%

of instances, there are no more than 4 non-ouroboros cycles per time slot.

A.8.2 How Mean Delay Scales with N

In this section, we investigate how the mean delay of O-SERENADE scales with the num-

ber of input/output ports N under i.i.d. Bernoulli traffic. We have simulated the following

different N values: N = 8, 16, 32, 64, 128, 256. Figure A.3 compares the mean delays for

O-SERENADE against those for SERENA under the 4 different traffic patterns with a mod-

erate offered load of 0.6 and a heavy offered load of 0.95. As a benchmark, we also show

106

8 16 32 64 128256

Port Number

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
e
a
n
 D

e
la

y

Uniform
O-SERENADE SERENA MWM

8 16 32 64 128256

Port Number

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

8 16 32 64 128256

Port Number

10
-1

10
0

10
1

Log-diagonal

8 16 32 64 128256

Port Number

10
-1

10
0

10
1

Diagonal

(a) Offered load: 0.6

8 16 32 64 128256

Port Number

10
0

10
1

10
2

10
3

10
4

10
5

M
e
a
n
 D

e
la

y

Uniform
O-SERENADE SERENA MWM

8 16 32 64 128256

Port Number

10
0

10
1

10
2

10
3

10
4

10
5

Quasi-diagonal

8 16 32 64 128256

Port Number

10
0

10
1

10
2

Log-diagonal

8 16 32 64 128256

Port Number

10
0

10
1

10
2

10
3

Diagonal

(b) Offered load: 0.95

Figure A.3: Mean delays scaling with number of ports N for O-SERENADE, SERENA,
and MWM under the 4 traffic patterns.

those of MWM. It shows that the scaling behaviors of O-SERENADE are almost the same

as that of SERENA in terms of mean delays, for all values of N . More precisely, under the

log-diagonal and the diagonal traffic patterns, O-SERENADE achieves near-optimal scal-

ing (i.e., nearly constant independent of N) of mean delay, whereas under the uniform and

quasi-diagonal traffic patterns, the mean delay grows roughly quadratically with N (i.e.,

O(N2) scaling).

107

APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 QPS Variants

The success we have with QPS leads us to wonder if we can obtain better switching per-

formance by using other proportional sampling strategies. For example, instead of setting

sampling probabilities proportional to the lengths of the VOQs, we may set them propor-

tional to the squares of the lengths of the VOQs. More generally, we can set the sampling

probabilities proportional to any arbitrary function f(·) of the lengths of the VOQs. We re-

fer to this family of strategies as FQPS, where QPS is a special case (using a linear weight

function f(x) = x).

To some readers, FQPS may sound similar to MWM-α [29]. They are, however, fun-

damentally different. The MWM-α work studies the performances of MWM when the

weight of a VOQ queue of length x is set to xα; it does not care how a MWM is computed.

FQPS, on the other hand, is about how to better generate a starter matching that can result

in a final matching that is as close to the MWM as possible, after a reasonable amount of

further computation (e.g., O(N)).

We have evaluated the performance of several FQPS variants through simulations. Sim-

ulation results (see §B.5.1) show that the delay performance of QPS can be slightly im-

proved with certain nonlinear weight functions (e.g., with f(x) = x2). However, whereas

the time complexity of QPS is O(1) per packet, other FQPS variants all have a higher time

complexity of O(logN) per packet. Hence we conclude that QPS overall remains the best

practical solution.

108

B.2 Space Complexity of QPS

Each node (packet) in the main data structure contains 3 pointers (2 pointers encoded as

“〈letter〉” plus 1 for the linked list) and the index of the VOQ (the value j in every node

in Figure 4.1), which needs log2N bits to store (typically less than 2 bytes). Each array

entry (packet) in the auxiliary data structure is also a pointer. Note that, in the main data

structure, we need an array entry (record) for each VOQ, not for each packet; since the

maximum number of packets at an input port is typically much larger than N , the number

of VOQs, the memory overhead of these array entries (record), is no more than 2 bytes per

packet. Therefore, the memory overhead of the data structures is no more than 4 pointers

(4 bytes each) plus 4 bytes, or 20 bytes, per packet.

B.3 Proof of Theorem 4.3.2

We have explained in §4.3 that, given any crossbar scheduling algorithm π ∈ Π̃, its joint

queueing and scheduling process
{(
Q(t), S(t)

)}∞
t=0

, under any i.i.d. arrival processes A(t)

(not necessarily admissible), is a Markov chain. We claim this Markov chain is irreducible

and aperiodic, when π is furthermore (ε, δ)-MWM and A(t) is furthermore admissible.

Here we provide only a sketchy justification. To justify the irreducibility, we show that

Q(t), starting from any state (i.e., queue lengths) it is currently in, will with a nonzero

probability return to the “all-queues-empty” state in a finite number of time slots. To show

this property, we claim that, for any integer τ > 0, the switch could, with a nonzero

probability, have no packet arrivals to any of its VOQs during [t, t + τ]. This claim is true

because, the arrival process A(t) is i.i.d., and for any 1 ≤ i ≤ N and 1 ≤ j ≤ N , we have

βij , P [aij(t) = 0] > 0 (otherwise the process aij(t) is not admissible). Hence, when

there are no packet arrivals during [t, t + τ], which happens with a nonzero probability,

a “reasonably good” crossbar scheduling algorithm (being non-degenerative and (ε, δ)-

MWM) can clear all the queues during [t, t + τ], with a sufficiently large τ , and return the

109

Q(t) part of the Markov chain to the “all-queues-empty” state. As to the S(t) part of the

Markov chain, the algorithm resets (i.e., returns) S(t) to the default random schedule R(t)

when all queues are empty, as explained earlier. Therefore, the Markov chain is irreducible.

To justify the aperiodicity of the Markov chain, we note that there is a nonzero probability

for the Markov chain to stay at “all-queues-empty” for at least two consecutive time slots.

Now that the Markov chain is irreducible and aperiodic, to prove Theorem 4.3.2, it

remains to show that (1) the Markov chain is positive recurrent and hence converges to a

stationary distribution, and (2) the stationary distribution has a finite first moment. We ac-

complish both by analyzing the following Lyapunov function V (·) of Y (t)=
(
Q(t), S(t)

)
:

V (Y) = V1(Y) + V2(Y) (B.1)

where V1(Y) = ‖Q‖2
2, V2(Y) =

(
[〈ρ∗SQ − S,Q〉]+

)2. Here, ‖ · ‖2 is the 2-norm, SQ is a

schedule/matching achieving maximum weight w.r.t. Q, and ρ∗ = 1
2
(1 + ρ), where ρ < 1

is the maximum normalized load imposed on any input or output port as defined in (1.1).

It is clear that ρ∗ < 1.

Note that, in [11], V1(Y) is defined in the same way as in this work, whereas V2(Y) is

defined as V2(Y) ,
(
〈SQ − S,Q〉

)2, which is quite different than in this work. We must

define V2(Y) differently here because if its definition in [11] were used instead, there would

be an additional positive drift term c4V1(Y (t)) on the RHS of (B.4) (in Lemma B.3.3)

which is asymptotically larger than the negative drift term −ε1
√
V1(Y (t)) on the RHS

of (B.3) (in Lemma B.3.2), resulting in an overall positive drift on the RHS of (B.2) when

Lemma B.3.2 and Lemma B.3.3 are combined to prove Lemma B.3.1.

The proof of Theorem 4.3.2 relies on the following drift condition of V (Y).

Lemma B.3.1. If the arrivals are admissible i.i.d., then there exists B, ε > 0 such that, if

V
(
Y (t)

)
> B, we have,

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]
< −ε‖Q(t)‖2 (B.2)

110

The proof of Lemma B.3.1 in turn relies on the following two lemmas.

Lemma B.3.2. If the arrivals are admissible i.i.d., then the drift of the function V1 satisfies

the following inequality

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]
≤ −ε1

√
V1

(
Y (t)

)
+ 2
√
V2

(
Y (t)

)
+ c1 (B.3)

Here, ε1 = 1−ρ
N

, c1 = E
[
‖A(t) + 1‖2

2] and 1 is the vector with all its elements equal to 1.

Lemma B.3.3. If the arrivals are admissible i.i.d., then the drift of the function V2 satisfies

the following inequality

E
[
V2

(
Y (t+ 1)

)
− V2

(
Y (t)

)
| Y (t)

]
≤ −ε2V2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (B.4)

Here, ε2 > 0 is a constant, c2 = 4(ρ+ 2)N , c3 = 4E
[(
〈1, A(t)〉+ 2N

)2].

B.3.1 Proof of Lemma B.3.2

By simple calculations and using (4.1), we have

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]

=E
[
‖Q(t+ 1)‖2

2 − ‖Q(t)‖2
2 | Y (t)

]

≤E
[
〈A(t)− S(t), 2Q(t)〉 | Y (t)

]
+ E

[
‖A(t)− S(t)‖2

2 | Y (t)
]

(B.5)

Here, we use the fact that ‖Q(t+1)‖2
2 = ‖[Q(t)+A(t)−S(t)]+‖2

2 ≤ ‖Q(t)+A(t)−S(t)‖2
2.

Focusing on the first term E
[
〈A(t)− S(t), 2Q(t)〉 | Y (t)

]
above, we have

E
[
〈A(t)− S(t), 2Q(t)〉 | Y (t)

]

= 〈Λ− S(t), 2Q(t)〉

= 2〈Λ− ρ∗SQ(t), Q(t)〉+ 2〈ρ∗SQ(t) − S(t), Q(t)〉 (B.6)

According to Fact 1.2.1 (see (1.2)), we can decompose Λ as follows: Λ =
K∑
n=1

αnMn,

where K ≤ N2 − 2N + 2, αn > 0 for n = 1, 2, ..., K, and
K∑
n=1

αn ≤ ρ.

111

Hence, we have

〈Λ− ρ∗SQ(t), Q(t)〉

= 〈
K∑

n=1

αnMn − ρ∗SQ(t), Q(t)〉

= 〈
K∑

n=1

αnMn − ρ∗SQ(t), Q(t)〉 −
K∑

n=1

αnWQ(t) +
K∑

n=1

αnWQ(t)

=
K∑

n=1

αn
(
〈Mn, Q(t)〉 −WQ(t)

)
+ (

K∑

n=1

αn − ρ∗)WQ(t)

≤ (
K∑

n=1

αn − ρ∗)WQ(t) (B.7)

≤
(
ρ− 1

2
(1 + ρ)

)
WQ(t) (B.8)

≤ − (1− ρ)WQ(t)

2
(B.9)

Inequality (B.7) holds because ∀1 ≤ n ≤ K we have αn > 0 and 〈Mn, Q(t)〉 −WQ(t) ≤ 0

(the weight of Mn is no more than WQ(t), the weight of the MWM w.r.t. Q(t)) and (B.8) is

due to
K∑
n=1

αn ≤ ρ.

Since,

WQ(t) ≥ max
n=1,··· ,N2

qn(t)

≥
√
‖Q(t)‖2

2

N2

=
1

N

√
V1

(
Y (t)

)
(B.10)

From (B.5), (B.6), (B.9) and (B.10), we have

E
[
V1

(
Y (t+ 1)

)
− V1

(
Y (t)

)
| Y (t)

]

≤ − (1− ρ)
1

N

√
V1

(
Y (t)

)
+ 2〈ρ∗SQ(t) − S(t), Q(t)〉+ E

[
‖A(t)− S(t)‖2

2 | Y (t)
]

≤ − ε1
√
V1

(
Y (t)

)
+ 2
√
V2

(
Y (t)

)
+ c1 (B.11)

Here ε1 = 1−ρ
N

, c1 = E
[
‖A(t) +1‖2

2] and 1 is the vector with all its elements equal to 1.

112

B.3.2 Proof of Lemma B.3.3

By simple calculations, we have

E[V2

(
Y (t+ 1)

)
| Y (t)] = P[E] · 0 + P[Ec] · E[V2

(
Y (t+ 1)

)
| Y (t), Ec] (B.12)

Here, E is the event
{
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉 ≤ 0

}
, and Ec is the complementary

event of E .

Since algorithm π is (ε, δ)-MWM (see Definition 4.3.3), for ε3 = 1 − ρ∗ > 0, there

exists δ > 0, such that,

P[Ec] = 1− P
[
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉 ≤ 0

]

= 1− P
[
ρ∗WQ(t+1) −W (t+ 1) ≤ 0

]

= 1− P
[
W (t+ 1) ≥

(
1− (1− ρ∗)

)
WQ(t+1)

]

= 1− P
[
W (t+ 1) ≥

(
1− ε3

)
WQ(t+1)

]

≤ 1− δ (B.13)

Focusing on the second term in the RHS of (B.12), we have

E
[
V2

(
Y (t+ 1)

)
| Y (t), Ec

]

=E
[(

[〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉]+
)2 | Y (t), Ec

]

=E
[(
〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉

)2 | Y (t), Ec
]

≤E
[(
〈ρ∗SQ(t+1) − S(t+ 1), Q(t) + A(t)− S(t)〉+N

)2 | Y (t), Ec
]

(B.14)

=E
[(
〈ρ∗SQ(t+1), Q(t)〉 − 〈S(t+ 1), Q(t)〉+N

+ 〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉
)2 | Y (t), Ec

]
(B.15)

113

Here, the term N in (B.14) is because

〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉

= 〈ρ∗SQ(t+1) − S(t+ 1), [Q(t) + A(t)− S(t)]+〉

= 〈ρ∗SQ(t+1)−S(t+ 1), Q(t)+A(t)−S(t)〉+ 〈ρ∗SQ(t+1)−S(t+ 1), χ{
Q(t)+A(t)−S(t)<0

}〉

≤〈ρ∗SQ(t+1) − S(t+ 1), Q(t) + A(t)− S(t)〉+ 〈SQ(t+1), χ{
Q(t)+A(t)−S(t)<0

}〉

≤ 〈ρ∗SQ(t+1) − S(t+ 1), Q(t) + A(t)− S(t)〉+N

Here, χ{
Q(t)+A(t)−S(t)<0

} is a vector whose nth element/scalar takes value 1 if qn(t) +

an(t) − sn(t) < 0, which happens only when qn(t) = 0, an(t) = 0, sn(t) = 1 and value 0

otherwise. The last inequality is because 〈SQ(t+1),1〉 ≤ N , where 1 is the vector with all

its elements equal to 1. In the following proof steps, we will use similar tricks to remove

[·]+, which we may not elaborate again.

We now derive the following three inequalities that will be needed to complete our

proof.

First, we have

〈S(t+ 1), Q(t)〉

≥ 〈S(t+ 1), Q(t+ 1)− A(t) + S(t)〉 −N (B.16)

≥〈S(t), Q(t+ 1)〉 − 〈S(t+ 1), A(t)− S(t)〉 −N (B.17)

= 〈S(t), Q(t)+A(t)−S(t)〉+〈S(t), χ{
Q(t)+A(t)−S(t)<0

}〉−〈S(t+ 1), A(t)−S(t)〉−N

≥〈S(t), Q(t)+A(t)−S(t)〉−〈S(t+ 1), A(t)−S(t)〉−N

= 〈S(t), Q(t)〉−〈S(t+ 1)−S(t), A(t)−S(t)〉−N

= 〈S(t), Q(t)〉 − 〈S(t+ 1)− S(t), A(t)〉+ 〈S(t+ 1)− S(t), S(t)〉 −N

≥〈S(t), Q(t)〉 − 〈1, A(t)〉 − 2N (B.18)

Here, the constant term N in (B.16) is due to the removal of [·]+, and (B.17) is due to

the fact that π is non-degenerative, i.e., 〈S(t + 1), Q(t + 1)〉 ≥ 〈S(t), Q(t + 1)〉. The

derivation of (B.18) uses the following two simple facts: 0 ≤ 〈S(t + 1), S(t)〉 ≤ N and

114

0 ≤ 〈S(t), S(t)〉 ≤ N .

Second, we have

〈SQ(t+1), Q(t)〉 ≤ WQ(t) = 〈SQ(t), Q(t)〉 (B.19)

Third, we have

〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉

= 〈ρ∗SQ(t+1) − S(t+ 1), A(t)〉 − 〈ρ∗SQ(t+1) − S(t+ 1), S(t)〉

≤ 〈SQ(t+1), A(t)〉+ 〈S(t+ 1), S(t)〉

≤ 〈1, A(t)〉+N (B.20)

Now, according to (B.18), (B.19) and (B.20), we have, conditioned upon the event Ec,

0 < 〈ρ∗SQ(t+1) − S(t+ 1), Q(t+ 1)〉

≤ 〈ρ∗SQ(t+1), Q(t)〉 − 〈S(t+ 1), Q(t)〉+N + 〈ρ∗SQ(t+1) − S(t+ 1), A(t)− S(t)〉

≤ 〈ρ∗SQ(t), Q(t)〉 −
(
〈S(t), Q(t)〉 − 〈1, A(t)〉 − 2N

)
+N +

(
〈1, A(t)〉+N

)

≤〈ρ∗SQ(t) − S(t), Q(t)〉+ 2〈1, A(t)〉+ 4N

≤
√
V2

(
Y (t)

)
+ 2
(
〈1, A(t)〉+ 2N

)
(B.21)

Therefore, we have

E
[
V2

(
Y (t+ 1)

)
| Y (t), Ec

]

≤V2

(
Y (t)

)
+ 4
(
E
[
〈1, A(t)〉 | Ec

]
+ 2N

)√
V2

(
Y (t)

)
+ 4E

[(
〈1, A(t)〉+ 2N

)2 | Ec
]

(B.22)
Since 〈1, A(t)〉 ≥ 0, we have,

E
[
〈1, A(t)〉 | Ec

]
P[Ec]

≤E
[
〈1, A(t)〉 | Ec

]
P[Ec] + E

[
〈1, A(t)〉 | E

]
P[E]

=E
[
〈1, A(t)〉

]

≤ ρN (B.23)

Here, ρ < 1 is the maximum normalized load imposed on any input or output port as

defined in (1.1).

115

Similarly, we have

E
[(
〈1, A(t)〉+ 2N

)2 | Ec
]
P[Ec] ≤ E

[(
〈1, A(t)〉+ 2N

)2] (B.24)

Substituting (B.13), (B.22), (B.23) and (B.24) into (B.12), we have

E[V2

(
Y (t+ 1)

)
| Y (t)] ≤ (1− δ)V2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (B.25)

where c2 = 4(ρ+ 2)N , c3 = 4E
[(
〈1, A(t)〉+ 2N

)2].

Therefore, we have

E
[
V2

(
Y (t+ 1)

)
− V2

(
Y (t)

)
| Y (t)

]
≤ −δV2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (B.26)

Hence, Lemma B.3.3 holds with ε2 = δ.

B.3.3 Proof of Lemma B.3.1

We now proceed to prove Lemma B.3.1. Note that, the proof is the same as the proof of

Lemma 1 in [11]. We reproduce it with some minor revisions for this thesis to be self-

contained.

By Lemma B.3.2 (concerning the drift of V1(Y)) and Lemma B.3.3 (concerning the

drift of V2(Y)), the drift of V (Y) satisfies

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]

≤ − ε1
√
V1

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+ c1 + c3 (B.27)

When V
(
Y (t)

)
≥ B, we have V1

(
Y (t)

)
≥ B − V2

(
Y (t)

)
, and hence

−ε1
√
V1

(
Y (t)

)
≤ −ε1

2

√
V1

(
Y (t)

)
− ε1

2

√
B − V2

(
Y (t)

)
(B.28)

Substituting the first term in the RHS of (B.27) by the RHS of (B.28), we obtain

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]

≤ − ε1
2

√
V1

(
Y (t)

)
− ε1

2

√
B − V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+c1+c3

It is clear that when B is large enough, we have,

−ε1
2

√
B − V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ε2V2

(
Y (t)

)
+ c1 + c3 < 0

116

Hence,

E
[
V
(
Y (t+ 1)

)
− V

(
Y (t)

)
| Y (t)

]

< − ε1
2

√
V1

(
Y (t)

)

= − ε1
2
‖Q(t)‖2 (B.29)

Hence Lemma B.3.1 holds with ε = ε1
2

. Here ε1 = 1−ρ
N

as specified in Lemma B.3.2

(see (B.3)).

B.3.4 Proof of Theorem 4.3.2

To prove Theorem 4.3.2, we need a theorem due to Tweedie [76], stated as follows.

Theorem B.3.1 (Tweedie [76]). Suppose that {Yn}∞n=0 is an aperiodic and irreducible

Markov chain with countable state space Y . Let f(Y), g(Y) be real nonnegative functions

such that g(Y) ≥ f(Y), Y ∈ Dc, where D is a finite subset of Y . If

E
[
g(Y1) | Y0 = Y

]
<∞, Y ∈ D (B.30)

and

E
[
g(Y1) | Y0 = Y

]
< g(Y)− f(Y), Y ∈ Dc (B.31)

then the Markov chain is ergodic and

E
[
f(Ŷ)

]
<∞

where the random variable Ŷ has the steady state distribution of the Markov chain {Yn}∞n=0.

Remarks. In the above theorem, Y0, Y1 can be replaced by Yn, Yn+1, respectively, for any

integer n ≥ 0, since {Yn}∞n=0 is a Markov chain.

Now, we can proceed to prove Theorem 4.3.2. Note that, the proof of Theorem 4.3.2

here, using Lemma B.3.1 and Theorem B.3.1, is mostly the same as in [11].

Let Yt = Y (t) =
(
Q(t), S(t)

)
. Then Yt is an irreducible and aperiodic Markov chain

(explained in §B.3). Define f, g : Y → R+ be such that

g(Y) = V (Y), f(Y) =
ε1
2
‖Q‖2

117

where Y = (Q,S) and ε1 = 1−ρ
N

which is the same as in (B.29). Let Dc =
{
Y : V (Y) >

B
}

, for B specified in the proof of Lemma B.3.1. It is clear that (B.30) holds from the

definition of Dc. By Lemma B.3.1 (note ε = ε1
2

in Lemma B.3.1), Inequality (B.31) also

holds (by replacing Yt and Yt+1 in (B.2) by Y0 and Y1 respectively). By Theorem B.3.1, we

have that the Markov chain Y (t) =
(
Q(t), S(t)

)
converges in distribution to Ŷ = (Q̂, Ŝ),

and that E
[
f(Ŷ)

]
<∞. Therefore, E

[
‖Q̂‖2

]
= 2

ε1
E
[
f(Ŷ)

]
<∞.

Given any outcome ω, the (deterministic) N2-dimensional vector satisfies

‖Q̂(ω)‖1 ≤ N‖Q̂(ω)‖2

by the Cauchy-Schwarz inequality.

Therefore,

E
[
‖Q̂‖1

]
≤ NE

[
‖Q̂‖2

]
<∞

This completes the proof of Theorem 4.3.2.

B.4 Proof of Lemma 4.3.1

Let Q be the VOQ length vector at the current time t; we do not use the notation Q(t) here

because the proof does not involve the term t. Let SQ be a maximum weighted matching

w.r.t. Q, and let WQ denote its weight. Given any ε > 0, we derive another matching

S ′ ⊆ SQ from SQ as follows: remove every edge (i.e., VOQ) from SQ whose weight (i.e.,

VOQ length) is less than ε
N
WQ. Since there can be at most N edges in any matching, the

weight of S ′ satisfies 〈S ′, Q〉 ≥ WQ −N · εNWQ > (1− ε)WQ.

Recall that in the proposing phase, QPS samples a set of edges (not necessarily a match-

ing), which we denote as U . Next, we prove that, U contains all edges in S ′ (i.e., S ′ ⊆ U)

with at least a constant (i.e., not as a function of Q) probability δ =
(
ε
N2

)N . Given any

edge e = (i, j) ∈ S ′ (i.e., jth VOQ at input port i), its weight is at least ε
N
WQ since all

edges lighter than that would have been removed earlier. Since the weight of any edge can

be at most WQ, the total weight of all edges (VOQs) incident on vertex (input port) i is at

118

most NWQ. Hence the probability that this edge e = (i, j) (i.e., output port j) is sampled

by input port i in the QPS proposing phase is at least (ε
N
WQ)/(NWQ) = ε

N2 . Since every

input port makes the sampling decision independently, the probability that all edges in S ′

are sampled during the QPS proposing phase is at least
(
ε
N2

)|S′| ≥
(
ε
N2

)N , where |S ′| is

the number of edges in S ′.

Now suppose the event S ′ ⊆ U happens during the QPS proposing phase. We show

that the final matching accepted by the output ports, during the QPS accepting phase, is at

least as heavy as S ′. This is however clear from the following two facts. First, given any

edge e = (i, j) ∈ S ′, it is either accepted by output port j or beaten by another edge (i.e.,

proposal) e′ to output port j that has a heavier (or equal) weight (VOQ length). Second,

when the latter happens, since S ′ is a matching, e′ will not compete with (and beat) any

edge in S ′ other than e.

Remarks. Lemma 4.3.1 continues to hold if the “longest VOQ first” accepting strategy is

replaced by the aforementioned proportional accepting (PA) strategy (see §4.1.1). Let E be

the event that S ′ is contained in the final matching. To prove this remark, it suffices to show

that there is a constant (i.e., not as a function ofQ) probability for E to happen, conditioned

upon the happening of the event S ′ ⊆ U . Using the same argument as above for proving

that the event S ′ ⊆ U happens with a probability that is at least
(
ε
N2

)N , we can prove that

E happens conditionally with a probability that is at least
(
ε
N2

)N .

B.5 More Performance Evaluations

B.5.1 Mean Delay Performance for FQPS

Here, we consider several alternative functions f(·) of the queue lengths for FQPS, besides

the VOQ lengths (i.e., f(x) = x) used in QPS, to see if they can deliver better mean delay

performance than QPS. We present the simulation results for two types of functions:

(1) f(x) = xα for α = 2, 3, 4,∞: inspired by the functions considered in MWM-α [29],

and

119

(2) f(x) = log(x+ 1): inspired by the log-weights used in MWM-0+ [30].

The case α = ∞ is an extreme case in which each input port samples the longest VOQ

(with ties broken uniformly randomly) and proposes to the corresponding output port.

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

Figure B.1: Mean delays for different FQPS-iSLIP and FQPS-SERENA under the 4 traffic
patterns.

Figure B.1 presents the mean delays of FQPS-augmented scheduling algorithms under

the 4 traffic patterns and a range of normalized loads. By selecting a proper α, we can in-

deed achieve marginal improvements (e.g., when α = 2, 3, 4). However, when α→∞, the

mean delay increases dramatically when the load is high. This is not surprising because at

high loads, a high α strategy severely penalizes short VOQs by blocking them from being

serviced until they themselves become long enough, resulting in poor delay performance.

Furthermore, the mean delays of the scheduling algorithms are similar when the load is

light, but as the load increases, the performance gaps between the FQPS-augmented algo-

rithms with different α values increase (though the differences remain small). Surprisingly,

120

unlike MWM-α where mean the delay increases as α increases [29], for FQPS, the rela-

tionship between the mean delay and α is not so straightforward. On one hand, the mean

delay performance is generally slightly better in cases α = 2, 3, 4 than that in QPS (i.e.,

α = 1). On the other hand, in the case α =∞, the mean delay performance becomes much

worse than that in QPS.

We also see that, unlike in MWM-0+ [30], using f(x) = log(x+ 1) for FQPS actually

increases the mean delay, as compared to QPS. The reason for this is that the use of the

log(·) weight function results in the probabilities of sampling the longer VOQs being very

close to those of sampling the shorter queues. Such an almost weight-oblivious way of

sampling intuitively does not yield good performance.

While there is slight improvement in mean delay for properly selected α under all traffic

patterns, from Figure B.1, we see that the difference between QPS-SERENA (QPS-iSLIP)

and the FQPS-SERENA (FQPS-iSLIP) is, at best, marginal. Implementing FQPS, how-

ever, requires more complex data structures (and more space), such as a binary search tree.

Such an implementation requires O(logN) (per packet) time complexity for the opera-

tions (insertion, deletion, etc.). In contrast, the O(1) complexity of QPS makes it a far

more attractive and practical solution. To summarize, all factors considered, QPS offers

the best tradeoff between performance and time/implementation complexities within the

FQPS family.

B.5.2 How Mean Delay Scales with N

In the section, we investigate how the mean delays for QPS-augmented scheduling algo-

rithms scale with the number of input/output ports N . We have simulated four different N

values: N = 16, 32, 64, 128.

Figure B.2 (the 1st row) shows the mean delays for QPS-iSLIP, iSLIP, iSLIP-ShakeUp,

iLQF, and MWM under the normalized load of 0.75 (some algorithms are not stable under

load factor 0.8) and the 4 different traffic patterns. From Figure B.2, we can see that all

121

16 32 64 128

Number of Ports

1

2

4

M
e

a
n

 D
e

la
y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

16 32 64 128

Number of Ports

1

2

4

8
Quasi-diagonal

16 32 64 128

Number of Ports

1

2

4
Log-diagonal

16 32 64 128

Number of Ports

0.5

1

2
Diagonal

16 32 64 128

Number of Ports

10
0

10
1

10
2

10
3

10
4

10
5

M
e

a
n

 D
e

la
y

Uniform
SERENA QPS-SERENA MWM

16 32 64 128

Number of Ports

10
0

10
1

10
2

10
3

10
4

10
5

Quasi-diagonal

16 32 64 128

Number of Ports

10
0

10
1

10
2

Log-diagonal

16 32 64 128

Number of Ports

10
0

10
1

10
2

10
3

Diagonal

Figure B.2: Mean delays scaling with number of ports N for different scheduling algo-
rithms under the 4 traffic patterns.

four scheduling algorithms scale quite well under all 4 traffic patterns: In every case, the

mean delay nearly remains constant when N increases.

In Figure B.2 (both rows), the mean delay of MWM (under 0.75 load in the 1st row

and 0.95 load in the 2nd row) is nearly a constant w.r.t. N . This scaling behavior of MWM

to a certain degree confirms a theoretical result proven in [77]. It states that the average

total queue length (across allN input ports) under an optimal algorithm scales linearly with

N as N
1−ρ , where ρ ∈ (0, 1) is the load factor. Suppose this total average queue length is

furthermore nearly evenly distributed across the N input ports by an optimal algorithm,

the mean delay (proportional to the average per-port queue length in the steady state) is

expected to be nearly constant when N increases.

Figure B.2 (the 2nd row) shows the mean delays for QPS-SERENA against SERENA

and MWM under the normalized load of 0.95 and the 4 different traffic patterns. As we can

see, QPS-SERENA outperforms SERENA and the gap increases when N increases, under

122

all traffic patterns except the quasi-diagonal. In addition, under the log-diagonal and the

diagonal traffic patterns, both QPS-SERENA and SERENA achieve near-optimal scaling

(i.e., nearly constant as a function of N) of mean delay, whereas under the uniform and the

quasi-diagonal traffic patterns, the mean delay grows roughly quadratically with N (i.e.,

O(N2) scaling).

B.5.3 “Longest VOQ First” vs. Proportional Accepting

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

M
e
a
n
 D

e
la

y

Uniform
QPS-SERENA (with "longest VOQ first") QPS-SERENA (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

Diagonal

Figure B.3: Mean delays for QPS-iSLIP and QPS-SERENA with the 2 different accepting
strategies under i.i.d. Bernoulli traffic arrivals with the 4 traffic patterns.

In this section, we compare the performance between the two different accepting strate-

gies we proposed in §4.1.1: “longest VOQ first” and proportional accepting (PA). Fig-

ure B.3 compares QPS-iSLIP with the 2 different accepting strategies (the 1st row) and

QPS-SERENA with the 2 different accepting strategies (the 2nd row), in terms of mean

delay, under i.i.d. Bernoulli traffic arrivals with the 4 different traffic patterns. Similarly,

123

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

M
e

a
n

 D
e

la
y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

10
4

Diagonal

8 16 64 256 1024

Average Burst Size

10
2

10
3

10
4

10
5

M
e

a
n

 D
e

la
y

Uniform
QPS-SERENA (with "longest VOQ first") QPS-SERENA (with proportional accepting)

8 16 64 256 1024

Average Burst Size

10
2

10
3

10
4

10
5

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
1

10
2

10
3

10
4

10
5

Diagonal

Figure B.4: Mean delays for QPS-iSLIP (offered load: 0.75) and QPS-SERENA (offered
load: 0.95) with the 2 different accepting strategies under bursty traffic arrivals with the 4
traffic patterns.

in Figure B.4, the 1st row compares QPS-iSLIP with the 2 different accepting strategies

under bursty traffic arrivals with an offered load of 0.75, and the 2nd row compares QPS-

SERENA with the 2 different accepting strategies under bursty traffic with an offered load

of 0.95. Figure B.3 and Figure B.4 show that PA results in either slightly worse or similar

mean delay performances than “longest VOQ first” in all these scenarios.

B.5.4 QPS vs. O(1) Algorithm in [37]

Figure B.5 compares QPS-iSLIP and QPS-SERENA against theO(1) scheduling algorithm

in [37], in terms of mean delay, under i.i.d. Bernoulli traffic arrivals with the 4 different traf-

fic patterns. Figure B.5 clearly shows that the mean delays of theO(1) algorithm in [37] are

between 3 and 4 orders of magnitudes larger than those of QPS-iSLIP and QPS-SERENA

under all workload conditions. Note that in Figure B.5, only mean delays under offered

124

0 0.2 0.4 0.6 0.8

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP QPS-SERENA O(1)

0 0.2 0.4 0.6 0.8

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Quasi-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Log-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Diagonal

Figure B.5: Mean delays for QPS-iSLIP/QPS-SERENA against O(1) algorithm in [37]
under the 4 traffic patterns.

loads ≤ 0.8 (and ≤ 0.6 for quasi-diagonal load matrices) are reported for the O(1) algo-

rithm in [37], because its simulation could not reach the steady state within a reasonable

amount of time, when the offered load is higher than that. As explained earlier, this phe-

nomenon is expected, because such Glauber Dynamics based scheduling algorithms con-

verge to the steady state very slowly when the number of ports (or wireless nodes) N is

large and the traffic load is high [39]. Indeed, for the O(1) algorithm to converge under

an offered load of just 0.8, we had to increase the number of time slots in the simulation

to at least 20,000 × N2, which is more than three times that was necessary for any other

simulation run.

125

APPENDIX C

APPENDIX FOR CHAPTER 6

C.1 More Performance Evaluations

C.1.1 How Mean Delay Scales with N

8 16 64 256

Port Number

0.4

1.6

6.4

25.6

M
e

a
n

 D
e

la
y

Uniform
SB-QPS QPS-1 MWM

8 16 64 256

Port Number

0.4

1.6

6.4

25.6

Quasi-diagonal

8 16 64 256

Port Number

0.4

1.6

6.4

25.6

Log-diagonal

8 16 64 256

Port Number

0.4

1.6

6.4

25.6

Diagonal

(a) Comparison against QPS-1 and MWM (offered load: 0.6).

8 16 64 256

Port Number

10
0

10
1

10
2

10
3

10
4

M
e

a
n

 D
e

la
y

Uniform
SB-QPS Fair-Frame MWM

8 16 64 256

Port Number

10
0

10
1

10
2

10
3

10
4

Quasi-diagonal

8 16 64 256

Port Number

10
0

10
1

10
2

10
3

10
4

Log-diagonal

8 16 64 256

Port Number

10
0

10
1

10
2

10
3

10
4

Diagonal

(b) Comparison against Fair-Frame and MWM (offered load: 0.8).

Figure C.1: Mean delays scaling with number of ports N under the 4 traffic patterns.

In this section, we investigate how mean delays of SB-QPS, QPS-1, Fair-Frame, and

MWM scale with the number of input/output ports N under i.i.d. Bernoulli traffic arrivals.

We have simulated seven different N values: N = 8, 16, 32, 64, 128, 256, 512. We have

126

simulated different offered loads, here we only present the results under an offered load

of 0.6 (when comparing with QPS-1) and that of 0.8 (when comparing with Fair-Frame);

other offered loads lead to similar conclusions. The results are shown in Figure C.1a and

Figure C.1b.

Figure C.1a compares mean delays of SB-QPS, QPS-1, and MWM under the 4 different

traffic patterns with an offered load of 0.6; Figure C.1b compares the mean delays of SB-

QPS, Fair-Frame, and MWM under the 4 different traffic patterns with an offered load of

0.8. Both of them clearly show that mean delays of SW-QPS, like those of MWM, are

almost independent of N , whereas those of Fair-Frame grow logarithmically with N (i.e.,

O(logN) scaling) as shown in Figure C.1b.

C.1.2 Bursty Arrivals

In real networks, packet arrivals are likely to be bursty. In this section, we evaluate the

performances of SB-QPS, QPS-1, Fair-Frame and MWM under bursty traffic arrivals, gen-

erated by a two-state ON-OFF arrival process that we have described in §4.4.3.2.

We evaluate the mean delay performances of these four algorithms, with the average

burst size ranging from 8 to 1,024 packets, under a moderate offered load of 0.6 and a

relatively heavy offered load of 0.8, respectively. The simulation results for the former are

shown in Figure C.2a; those for the later are shown in Figure C.2b. One point for QPS-1

is missing in the leftmost sub-figure in Figure C.2a, because QPS-1 is not stable when the

burst size becomes 1,024 under the uniform traffic pattern and an offered load of 0.6.

Figure C.2a clearly show that when the average burst size is small, SB-QPS has higher

mean delays than QPS-1. However, when the average burst size is large enough (say > 16

under the uniform traffic), SB-QPS starts to outperform QPS-1 by an increasingly wider

margin, in both absolute and relative terms, as the burst size becomes larger. Figure C.2b

clearly shows that SB-QPS significantly outperforms Fair-Frame under all burst sizes and

all different traffic patterns, though the performance gaps get smaller, as the burst size

127

becomes larger.

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

M
e

a
n

 D
e

la
y

Uniform
SB-QPS QPS-1 MWM

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Diagonal

(a) Comparison against QPS-1 and MWM (offered load: 0.6).

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

M
e

a
n

 D
e

la
y

Uniform
SB-QPS Fair-Frame MWM

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Quasi-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Log-diagonal

8 16 64 256 1024

Average Burst Size

10
0

10
1

10
2

10
3

Diagonal

(b) Comparison against Fair-Frame and MWM (offered load: 0.8).

Figure C.2: Mean delays under bursty traffic arrivals with the 4 traffic patterns.

0 0.2 0.4 0.6 0.8 1

Normalized Load

16

32

64

128

M
e
a
n
 D

e
la

y

Uniform
FFA MFA MWFA

0 0.2 0.4 0.6 0.8 1

Normalized Load

16

32

64

128

256
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

16

32

64

128

256

512

1024
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

16

32

64

128

256

512
Diagonal

Figure C.3: Mean delays of SB-QPS with the 3 different accepting strategies under the 4
traffic patterns.

128

C.1.3 FFA vs. MFA vs. MWFA

In this section, we compare the performances of SB-QPS using the three different accepting

strategies we described in §6.2: First Fit Accepting (FFA), Maximum Fit Accepting (MFA),

and Maximum Weighted Fit Accepting (MWFA).

Figure C.3 presents the mean delays of SB-QPS with the 3 different accepting strategies

under i.i.d. Bernoulli traffic arrivals with the 4 different traffic patterns. Figure C.3 clearly

shows that MFA and MWFA result in either slightly worse or similar mean delay and

maximum sustainable throughput performances than FFA in all these scenarios.

129

REFERENCES

[1] Y. Dai, K. Wang, G. Qu, L. Xiao, D. Dong, and X. Qi, “A scalable and resilient
microarchitecture based on multiport binding for high-radix router design,” in Pro-
ceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2017, pp. 429–438.

[2] C. Cakir, R. Ho, J. Lexau, and K. Mai, “Scalable high-radix modular crossbar
switches,” in Proceedings of the IEEE Symposium on High-Performance Intercon-
nects (HOTI), Aug. 2016, pp. 37–44.

[3] N. Chrysos, C. Minkenberg, M. Rudquist, C. Basso, and B. Vanderpool, “SCOC:
High-radix switches made of bufferless clos networks,” in Proceedings of the IEEE
International Symposium on High Performance Computer Architecture (HPCA),
Feb. 2015, pp. 402–414.

[4] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling algorithms for
high-aggregate bandwidth switches,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, no. 4, pp. 546–559, May 2003.

[5] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,”
IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp. 188–201, Apr. 1999.

[6] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for VLSI com-
munications switches,” ACM SIGARCH Computer Architecture News, vol. 16, no. 2,
pp. 343–354, May 1988.

[7] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” IEEE Transactions on Communications,
vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

[8] A. S. Asratian, T. M. J. Denley, and R. Häggkvist, Bipartite Graphs and Their Ap-
plications. USA: Cambridge University Press, 1998, ISBN: 052159345X.

[9] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve
100% throughput in input-queued switches,” in Proceedings of the IEEE Interna-
tional Conference on Computer Communications (INFOCOM), Mar. 1998, 792–799
vol.2.

[10] D. Shah, P. Giaccone, and B. Prabhakar, “Efficient randomized algorithms for input-
queued switch scheduling,” IEEE Micro, vol. 22, no. 1, pp. 10–18, Jan. 2002.

130

[11] L. Tassiulas, “Linear complexity algorithms for maximum throughput in radio net-
works and input queued switches,” in Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM), San Francisco, CA, USA, Mar.
1998, pp. 533–539.

[12] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev.
Ser. A, vol. 5, pp. 147–151, 1946.

[13] J. v. Neumann, “A certain zero-sum two-person game equivalent to the optimal as-
signment problem,” Contributions to the Theory of Games, vol. 2, pp. 5–12, 1953.

[14] I. Olkin and A. W. Marshall, Inequalities: Theory of Majorization and Its Applica-
tions. Academic press, 2016.

[15] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Springer
Science & Business Media, 2012.

[16] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-speed switch
scheduling for local-area networks,” ACM Transactions on Computer Systems,
vol. 11, no. 4, pp. 319–352, Nov. 1993.

[17] B. Hu, K. L. Yeung, Q. Zhou, and C. He, “On iterative scheduling for input-queued
switches with a speedup of 2 − 1/N ,” IEEE/ACM Transactions on Networking,
vol. 24, no. 6, pp. 3565–3577, Dec. 2016.

[18] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Throughput-optimal scheduling for
broadcast channels,” in Proceedings of the ITCom (Modeling and Design of Wireless
Networks), Denver, CO, Aug. 2001.

[19] M. J. Neely, “Delay analysis for maximal scheduling in wireless networks with
bursty traffic,” in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), Apr. 2008.

[20] ——, “Delay analysis for maximal scheduling with flow control in wireless net-
works with bursty traffic,” IEEE/ACM Transactions on Networking, vol. 17, no. 4,
pp. 1146–1159, Aug. 2009.

[21] J. Dai and B. Prabhakar, “The throughput of data switches with and without
speedup,” in Proceedings of the IEEE International Conference on Computer Com-
munications (INFOCOM), Tel Aviv, Israel, Mar. 2000, pp. 556–564.

[22] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu, “Switch scheduling via randomized
edge coloring,” in Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), Oct. 2003, pp. 502–512.

131

[23] M. J. Neely, E. Modiano, and Y. S. Cheng, “Logarithmic delay for N × N packet
switches under the crossbar constraint,” IEEE/ACM Transactions on Networking,
vol. 15, no. 3, pp. 657–668, Jun. 2007.

[24] L. Wang, T. Lee, and W. Hu, “A parallel complex coloring algorithm for scheduling
of input-queued switches,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 7, pp. 1456–1468, 2018.

[25] L. Gong, L. Liu, S. Yang, J. J. Xu, Y. Xie, and X. Wang, “SERENADE: A parallel it-
erative algorithm for crossbar scheduling in input-queued switches,” in Proceedings
of the IEEE International Conference on High Performance Switching and Routing
(HPSR), May 2020.

[26] L. Gong, P. Tune, L. Liu, S. Yang, and J. J. Xu, “Queue-proportional sampling:
A better approach to crossbar scheduling for input-queued switches,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems - SIGMETRICS,
vol. 1, no. 1, 3:1–3:33, Jun. 2017.

[27] L. Gong, J. J. Xu, L. Liu, and S. T. Maguluri, “QPS-r: A cost-effective iterative
switching algorithm for input-queued switches,” in Proceedings of the EAI Inter-
national Conference on Performance Evaluation Methodologies and Tools (Value-
Tools), Tsukuba, Japan: Association for Computing Machinery, 2020, 19–26, ISBN:
9781450376464.

[28] R. Duan and H.-H. Su, “A scaling algorithm for maximum weight matching in bipar-
tite graphs,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), Kyoto, Japan, 2012, pp. 1413–1424.

[29] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that provide 100%
throughput in input-queued switches,” in Proceedings of the Allerton Conference on
Communication, Control and Computing, Oct. 2001.

[30] D. Shah and D. Wischik, “Optimal scheduling algorithms for input-queued
switches,” in Proceedings of the IEEE International Conference on Computer Com-
munications (INFOCOM), Barcelona, Spain, Apr. 2006, pp. 1–11.

[31] M. Fayyazi, D. Kaeli, and W. Meleis, “Parallel maximum weight bipartite matching
algorithms for scheduling in input-queued switches,” in Proceedings of the IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), New Mexico,
USA, Apr. 2004, pp. 4–11.

[32] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma, “Iterative scheduling algorithms,”
in Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), Anchorage, AK, USA, May 2007, pp. 445–453.

132

[33] M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum weight match-
ing: Convergence, correctness, and lp duality,” IEEE Transactions on Information
Theory, vol. 54, no. 3, pp. 1241–1251, Mar. 2008.

[34] G. R. Gupta, S. Sanghavi, and N. B. Shroff, “Node weighted scheduling,” in Pro-
ceedings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, Seattle, WA, USA, Jun. 2009, pp. 97–108.

[35] S. Atalla, D. Cuda, P. Giaccone, and M. Pretti, “Belief-propagation-assisted schedul-
ing in input-queued switches,” IEEE Transactions on Computers, vol. 62, no. 10,
pp. 2101–2107, Oct. 2013.

[36] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. disser-
tation, University of California at Berkeley, May 1995.

[37] S. Ye, T. Shen, and S. Panwar, “An O(1) scheduling algorithm for variable-size
packet switching systems,” in Proceedings of the Allerton Conference on Communi-
cation, Control and Computing, Illinois, USA, Sep. 2010, pp. 1683–1690.

[38] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem: An efficient ran-
domized protocol for contention resolution,” in Proceedings of the ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and Mod-
eling of Computer Systems, Seattle, WA, USA: ACM, 2009, pp. 133–144, ISBN:
978-1-60558-511-6.

[39] J. Ghaderi and R. Srikant, “On the design of efficient csma algorithms for wireless
networks,” in Proceedings of the IEEE Conference on Decision and Control (CDC),
Dec. 2010, pp. 954–959.

[40] D. Shah and J. Shin, “Randomized scheduling algorithm for queueing networks,”
The Annals of Applied Probability, vol. 22, no. 1, pp. 128–171, 2012.

[41] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based CSMA/CA algorithms
for achieving maximum throughput and low delay in wireless networks,” IEEE/ACM
Transactions on Networking, vol. 20, no. 3, pp. 825–836, Jun. 2012.

[42] E. Vigoda, “A note on the glauber dynamics for sampling independent sets,” Elec-
tronic Journal of Combinatorics, vol. 8, no. 1, pp. 1–8, 2001.

[43] B. Hu, F. Fan, K. L. Yeung, and S. Jamin, “Highest rank first: A new class of single-
iteration scheduling algorithms for input-queued switches,” IEEE Access, vol. 6,
pp. 11 046–11 062, 2018.

133

[44] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a dual round-robin switch,”
in Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), Anchorage, AK, USA, Apr. 2001, 1688–1697 vol. 3.

[45] A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, and E. Schiattarella, “Dis-
tributed scheduling in input queued switches,” in Proceedings of the IEEE Interna-
tional Conference on Communications (ICC), Jun. 2007, pp. 6330–6335.

[46] D. Lin, Y. Jiang, and M. Hamdi, “Selective-request round-robin scheduling for VOQ
packet switch architecture,” in Proceedings of the IEEE International Conference on
Communications (ICC), Jun. 2011, pp. 1–5.

[47] X. Li and I. Elhanany, “Stability of a frame-based oldest-cell-first maximal weight
matching algorithm,” IEEE Transactions on Communications, vol. 56, no. 1, pp. 21–
26, Jan. 2008.

[48] R. Rojas-Cessa and C. Lin, “Captured-frame matching schemes for scalable input-
queued packet switches,” Computer communications, vol. 30, no. 10, pp. 2149–
2161, 2007.

[49] T. Lee, Y. Wan, and H. Guan, “Randomized ∆-edge colouring via exchanges of
complex colours,” International Journal of Computer Mathematics, vol. 90, pp. 228–
245, Feb. 2013.

[50] K. Seong, R. Narasimhan, and J. M. Cioffi, “Queue proportional scheduling in gaus-
sian broadcast channels,” in Proceedings of the IEEE International Conference on
Communications (ICC), vol. 4, Jun. 2006, pp. 1647–1652.

[51] K. Seong, R. Narasimhan, and J. M. Cioffi, “Queue proportional scheduling via geo-
metric programming in fading broadcast channels,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 8, pp. 1593–1602, Aug. 2006.

[52] B. Li and R. Srikant, “Queue-proportional rate allocation with per-link information
in multihop networks,” in Proceedings of the ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, Portland, OR, USA,
Jun. 2015, pp. 97–108, ISBN: 978-1-4503-3486-0.

[53] N. Walton, “Concave switching in single and multihop networks,” in Proceedings of
the ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, Austin, Texas, USA, Jun. 2014, pp. 139–151, ISBN: 978-1-4503-
2789-3.

[54] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in wireless net-
works via gossiping,” in Proceedings of the ACM SIGMETRICS/PERFORMANCE

134

Joint International Conference on Measurement and Modeling of Computer Systems,
Saint Malo, France: ACM, 2006, pp. 27–38, ISBN: 1-59593-319-0.

[55] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-layer rate
control in wireless networks,” in Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), vol. 3, Mar. 2005, 1804–1814 vol. 3.

[56] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion control,
routing and scheduling design in ad hoc wireless networks,” in Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM), Apr.
2006, pp. 1–13.

[57] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, “Throughput and fairness guarantees
through maximal scheduling in wireless networks,” IEEE Transactions on Informa-
tion Theory, vol. 54, no. 2, pp. 572–594, Feb. 2008.

[58] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed scheduling algo-
rithms for wireless networks,” IEEE/ACM Transactions on Networking, vol. 17,
no. 6, pp. 1846–1859, Dec. 2009.

[59] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure scheduling in multi-
hop wireless networks,” IEEE/ACM Transactions on Networking, vol. 21, no. 5,
pp. 1539–1552, Oct. 2013.

[60] A. Israel and A. Itai, “A fast and simple randomized parallel algorithm for maximal
matching,” Information Processing Letters, vol. 22, no. 2, pp. 77–80, Feb. 1986.

[61] J.-H. Hoepman, “Simple distributed weighted matchings,” ArXiv e-prints, Oct. 2004.
eprint: cs/0410047.

[62] R. Preis, “Linear time 1/2-approximation algorithm for maximum weighted match-
ing in general graphs,” in Proceedings of the International Symposium on Theo-
retical Aspects of Computer Science (STACS), Trier, Germany, 1999, pp. 259–269,
ISBN: 3-540-65691-X.

[63] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms: Design, analy-
sis and applications,” in Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), vol. 3, Mar. 2005, 1653–1664 vol. 3.

[64] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the ACM,
vol. 27, no. 4, pp. 831–838, Oct. 1980.

[65] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1996, ISBN: 1558603484.

135

cs/0410047

[66] R. Perlman, Interconnections (2nd Ed.): Bridges, Routers, Switches, and Internet-
working Protocols. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2000, ISBN: 0-201-63448-1.

[67] M. W. Goudreau, S. G. Kolliopoulos, and S. B. Rao, “Scheduling algorithms for
input-queued switches: Randomized techniques and experimental evaluation,” in
Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), Mar. 2000, 1634–1643 vol.3.

[68] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing sys-
tems and scheduling policies for maximum throughput in multihop radio networks,”
IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

[69] D. Shah and M. Kopikare, “Delay bounds for approximate maximum weight match-
ing algorithms for input queued switches,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), vol. 2, 2002, 1024–1031
vol.2.

[70] HdrHistogram: A high dynamic range (HDR) histogram, https://github.
com/HdrHistogram/HdrHistogram.

[71] B. Hajek, Notes for ECE 467 communication network analysis, https://bit.
ly/1JtPGu0, 2006.

[72] J. M. Flegal, G. L. Jones, et al., “Batch means and spectral variance estimators in
markov chain monte carlo,” The Annals of Statistics, vol. 38, no. 2, pp. 1034–1070,
2010.

[73] P. W. Glynn, W. Whitt, et al., “The asymptotic validity of sequential stopping rules
for stochastic simulations,” Annals of Applied Probability, vol. 2, no. 1, pp. 180–198,
1992.

[74] A. Edelman, Parallel prefix, http://courses.csail.mit.edu/18.337/
2004/book/Lecture_03-Parallel_Prefix.pdf, 2004.

[75] W. Stein, Elementary Number Theory: Primes, Congruences, and Secrets: A Com-
putational Approach. Springer Science & Business Media, 2008.

[76] R. Tweedie, “The existence of moments for stationary markov chains,” Journal of
Applied Probability, pp. 191–196, 1983.

[77] D. Shah, N. Walton, and Y. Zhong, “Optimal queue-size scaling in switched net-
works,” in Proceedings of the ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, London, England, UK: ACM, 2012,
pp. 17–28, ISBN: 978-1-4503-1097-0.

136

https://github.com/HdrHistogram/HdrHistogram
https://github.com/HdrHistogram/HdrHistogram
https://bit.ly/1JtPGu0
https://bit.ly/1JtPGu0
http://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf
http://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf

VITA

Long Gong received his B.Eng. degree in Electronic Information Engineering and M.Eng.

in Communication and Information Systems from the University of Science and Technol-

ogy of China (USTC) in 2012 and 2015, respectively. Long joined the School of Computer

Science, Georgia Institute of Technology, as a Ph.D. student in August 2015. Hi finished

his Ph.D. thesis work on crossbar scheduling algorithms under the guidance of Dr. Jun

(Jim) Xu.

137

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Background
	Input-Queued Crossbar Architecture
	System Models
	Three Types of Matchings
	Performance Metrics
	Admissible Traffic Patterns
	The Four Standard Traffic Patterns

	Summary of Contributions
	SERENADE (Chapter 3)
	QPS (Chapter 4)
	QPS-r (Chapter 5)
	SB-QPS (Chapter 6)

	Bibliographic Note

	Literature Review
	Crossbar Scheduling Algorithms
	Parallel/Distributed MWM Algorithms
	MVM and LHPF
	BP-Assisted Algorithms
	Lower-Complexity Randomized Algorithms
	Parallel Iterative Algorithms
	Batch Scheduling Algorithms

	Queue-Proportional Resource Allocation
	Wireless Transmission Scheduling

	SERENADE
	SERENA
	Overview of The MERGE Procedure
	A Combinatorial View of MERGE
	Walks on Cycles

	Overview of SERENADE
	Core Idea of SERENADE
	High-Level Description of SERENADE

	Knowledge-Discovery Stage
	Knowledge Sets
	Knowledge-Discovery Procedure
	Complexity Analysis
	Early Halt: The Ouroboros Cycles

	Leader Election
	Leader Election
	Distribute Leaders' Decisions

	Distributed Binary Search Stage
	Distributed Binary Search
	Complexity Analysis

	Early Stop: O-SERENADE
	Performance Evaluation
	Simulation Setup
	Throughput Performance
	Delay Performance

	Conclusion

	QPS
	Queue-Proportional Sampling (QPS)
	The QPS Proposing Strategy
	Augmenting iSLIP and SERENA
	QPS vs. ShakeUp

	QPS Implementation
	Overview of The Sampling Algorithm
	The Detailed Data Structure

	Stability Proof of QPS-SERENA
	Background and Notations
	TASS, SERENA, and Their Stability
	Stability of QPS-SERENA

	Performance Evaluation
	Simulation Setup
	Throughput Performance
	Delay Performance

	Conclusion

	QPS-r
	The QPS-r Algorithm
	Throughput and Delay Analysis
	Preliminaries
	Why QPS-1 Is Just as Good?
	Proof of Lemma 5.2.1
	Throughput Analysis
	Delay Analysis

	Performance Evaluation
	Simulation Setup
	Throughput and Delay Performances
	How Mean Delay Scales with N
	Bursty Arrivals

	Conclusion

	SB-QPS
	Batch Scheduling Algorithms
	The SB-QPS Algorithm
	Performance Evaluation
	Simulation Setup
	How Large Should Batch Size T Be?
	Throughput and Delay Performances

	Conclusion

	Appendix for Chapter 3
	Parallelized Population
	Proof of Lemma 3.2.1
	Proof of Lemma 3.3.1
	Proof of Lemma 3.3.2
	Why Not Use More Than 1+logN Iterations?
	SERENADE vs. MIX
	An Idempotent Trick
	More Performance Evaluations
	Message Complexities
	How Mean Delay Scales with N

	Appendix for Chapter 4
	QPS Variants
	Space Complexity of QPS
	Proof of Theorem 4.3.2
	Proof of Lemma B.3.2
	Proof of Lemma B.3.3
	Proof of Lemma B.3.1
	Proof of Theorem 4.3.2

	Proof of Lemma 4.3.1
	More Performance Evaluations
	Mean Delay Performance for FQPS
	How Mean Delay Scales with N
	``Longest VOQ First'' vs. Proportional Accepting
	QPS vs. O(1) Algorithm

	Appendix for Chapter 6
	More Performance Evaluations
	How Mean Delay Scales with N
	Bursty Arrivals
	FFA vs. MFA vs. MWFA

	References
	Vita

