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SUMMARY 

 

 The mechanical environment influences vascular smooth muscle cell (VSMC) 

functions related to the vascular remodeling. However, the relationships are not 

appropriately addressed by most mechanical models of arteries assuming homogeneity. 

Accounting for the effects of heterogeneity is expected to be important to our 

understanding of VSMC functions. We hypothesized that local stresses computed using a 

heterogeneous mechanical model of arteries positively correlate to the levels of matrix 

metalloproteinase (MMP)-2 and -9 in situ. We developed a mathematical model of an 

arterial wall accounting for nonlinearity, residual strain, anisotropy, and structural 

heterogeneity. The distributions of elastin and collagen fibers, quantified using their 

optical properties, showed significant structural heterogeneity. Anisotropy was 

represented by the direction of collagen fibers, which was measured by the helical angle 

of VSMC nuclei. The recruiting points of collagen fibers were computed assuming a 

uniform strain of collagen fibers under physiological loading conditions; an assumption 

motivated by the morphology. This was supported by observed uniform length and 

orientation of VSMC nuclei under physiological loading. The distributions of 

circumferential stresses computed using both heterogeneous and corresponding 

homogeneous models were correlated to the distributions of expression and activation of 

MMP-2 and -9 in porcine common carotid arteries, which were incubated in an ex vivo 

perfusion organ culture system under either normotensive or hypertensive conditions for 

48 hours. While strains computed using incompressibility were identical in both models, 

the heterogeneous model, unlike the homogeneous model, predicted higher 

 xx



circumferential stresses in the outer layer. The tissue levels of MMP-2 and -9 were 

positively correlated to circumferential stresses computed using the heterogeneous model, 

which implies that areas of high stress are expected to be sites of localized remodeling 

and agrees with results from cell culture studies. The results support the role of 

mechanical stress in vascular remodeling and suggest the importance of structural 

heterogeneity in studying mechanobiological responses. 
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CHAPTER 1 

INTRODUCTION 

 

 Vascular smooth muscle cells (VSMCs) respond to their mechanical environment. 

Understanding the relationships between functions of VSMCs and mechanical stimuli is 

important in studying the adaptive and maladaptive changes in the structure and function 

of arteries. The histology of arterial tissue provides information on how VSMCs respond 

to mechanical stimuli as well as the structure of arterial tissue. 

Structure of Arteries 

 Arteries have heterogeneous structure and are composed of three distinctive 

layers: the intima, media, and adventitia. The intima is the innermost layer of the artery 

and contains a monolayer of endothelial cells. The media consists of various connective 

tissue components, especially elastin and collagen fibers, and VSMCs. The adventitia 

contains collagen fibers, ground substance, and some fibroblasts. The intima and media 

are divided by the internal elastic lamina (IEL), and the media and adventitia are divided 

by the external elastic lamina (EEL).   

 Among the three layers, the arterial media is the most responsible for the 

mechanical characteristics of arterial tissue. The components of the media form a 

functional and structural unit, a “lamellar unit” (Wolinsky and Glagov 1967). The 

microstructure of lamellar units was observed to be the repetition of VSMC layers bound 

by elastin lamellae with collagen fibers in between. Regardless of species, the average 

tension per lamellar unit of an aortic media was remarkably constant. The repeating unit 

of VSMCs and extracellular matrix (ECM) proteins, the organizational and functional 

structural unit of the arterial media, is referred as a “musculo-elastic fascicle (MEF)” 
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(Clark and Glagov 1985). MEFs are more prominent in aortas than in muscular arteries 

and aligned in the direction of presumed resultant tensile stress.   

Extracellular Matrix 

 The ECM network formed by elastin and collagen fibers is responsible for most 

of the mechanical strength of arteries (Torrance and Shwatz 1961; Conklin et al. 2002). 

The distributions of elastin and collagen fibers, major components of the ECM network, 

are known to be heterogeneous through the arterial media. In many types of arteries, the 

concentration of collagen increases while that of elastin decreases from the intima to the 

adventitia. In bovine carotid arteries, it was observed that the area fraction of collagen 

increased from 0.183 ± 0.22 to 0.852 ± 0.12 toward the outer layer in the media while 

that of elastin decreased from 0.336 ± 0.05 to 0.046 ± 0.03 in the same direction (Hasan 

and Greenwald 1995). In the aortas of children, it was observed that medial elastin 

decreased while collagen increased from the intima to the adventitia (Feldman and 

Glagov 1971). In addition, the size of collagen fibrils progressively increases from the 

intima to the adventitia. Merrilees et al. (1987) reported that the mean diameters of 

collagen fibrils were 30-40 nm in the intima and inner media and 50-100 nm in the outer 

media of arteries from human, pig, and rat.  

The distributions of elastin and collagen fibers in the media change with aging, 

indicating lifelong remodeling activities. Feldman and Glagov (1971) observed that 

transmural gradients of elastin and collagen in the human aortic media were reversed 

with aging. Avolio et al. (1998) investigated the effect of aging on the fraction of elastin 

in arteries. Due to the different heart rate among species, they used the number of cardiac 

cycles as the measure of age. The volume fraction of elastin in the aortic media was 

lower in the group with the high number of cardiac cycles. This suggested that such 

changes in medial elastin are associated with cumulative effects of repeated pulsation.  
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Structure of VSMCs 

 The mechanical coupling between the elements of cellular structure provides a 

pathway for mechanical signal transfer and facilitates coordinated changes in cellular and 

nuclear shapes. The structural framework of cells consists of a cytoskeleton and a 

membrane skeleton. The cytoskeleton, comprised of actin filaments and intermediate 

filaments, is anchored to the dense bodies of the membrane skeleton, which is coupled to 

the ECM (Pienta and Coffey 1992; Davis 1993; Small and Gimona 1998). Cell nuclei 

also contain a structural framework called the nuclear matrix, which is interconnected 

with intermediate filaments in the cytoskeleton. Thus, the structural continuity from the 

nuclear matrix to the ECM exists and enables coordinated control of cell shape (Fey et al. 

1984; Pienta and Coffey 1992; Kuo and Seow 2004). The structural integrity of the 

cellular matrix is well represented by the hypothetical nucleated tensegrity model of a 

cell (Ingber 1993). The mechanical relevance of the structural integrity among ECM 

receptors, cytoskeleton, and the nuclear matrix was shown by observing the deformations 

of cell nuclei in response to mechanical stimuli applied to the cell boundary (Maniotis et 

al. 1997). 

 VSMCs are highly elongated spindle-shaped cells each with one nucleus. In 

addition to the structural lattice of cells, a smooth muscle cell has a contractile apparatus 

comprised of myosin and actin filaments that is interconnected with the cytoskeleton via 

cytoplasmic dense bodies and is anchored to the dense plaques of the membrane skeleton 

(Cooke and Fay 1972; Small and Gimona 1998). Unlike skeletal and cardiac muscles, 

smooth muscle does not show striations because the contractile elements are not arranged 

in an orderly fashion. The intracellular organization of the contractile filaments in smooth 

muscle cells is still poorly understood due to the lack of comprehensive microscopic data 

(Alberts et al. 1994). Some ultrastructural observations suggest that the contractile 

apparatus in smooth muscle may be arranged along the plasma membrane (Fay and 

Delise 1973; Work and Warshaw 1988). In a recent study, Kuo and Seow (2004) 
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observed that cytoplasmic contractile filaments lie parallel to the longitudinal axis of the 

cell bundle in the electron microscopic images of swine airway smooth muscle. They also 

observed the attachment of actin filaments to the nuclear envelope. The mechanical 

coupling between contractile filaments and nuclear matrix was shown by observing the 

stretch of the nuclear envelope in response to the isometric contraction of the smooth 

muscle cells (Kuo and Seow 2004). Although VSMCs account for a small portion of the 

passive mechanical strength of arteries, they play an active role in the arterial remodeling 

process in response to changes in mechanical environment. VSMCs are connected to 

neighboring VSMCs and the ECM network (Kuo and Seow 2004). The mechanical and 

structural coupling between receptors such as integrins and ECM components provides a 

pathway for mechanotransduction (Wilson et al. 1995; Williams 1998; Li and Xu 2000). 

 The morphological characteristics of VSMCs have been quantified to study 

structural and mechanical properties of cells and arterial tissue. Various visualization 

methods have been used to capture two- or three-dimensional morphology of VSMCs. 

Light microscopy with haematoxylin and eosin staining (Walmsley and Canham 1979; 

Peters et al. 1983; Holzapfel et al. 2002) and fluorescent microscopy with Hoechst 

staining (Liu 1998) were used to capture two-dimensional orientation of VSMCs in the 

medial layer. Electron microscopy (Canham et al. 1982; Todd et al. 1983) and confocal 

microscopy (Arribas et al. 1997; Dickhout and Lee 2000) were used to quantify three-

dimensional characteristics such as the orientation and size of VSMCs. Confocal 

microscopy is a reliable method to study three-dimensional morphology of VSMCs in 

situ without the need for fine sectioning and the alignment of image stacks. The most 

widely measured characteristics of VSMCs are their orientation (Walmsley and Canham 

1979; Canham et al. 1982; Liu 1998; Holzapfel et al. 2002) and length along the long axis 

of a cell (Todd et al. 1983; Dickhout and Lee 2000). 

 It has been shown that the orientation of VSMC nuclei is in good agreement with 

VSMC alignment (Canham et al. 1982) and aligned with collagen fibers in the arterial 
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media (Canham et al. 1986; Finlay et al. 1991). VSMC nuclei are also coaligned with 

contractile filaments (Canham et al. 1986; Kuo and Seow 2004). The orientation of 

collagen fibers, measured by the orientation of VSMC nuclei in arteries at zero stress 

state, was included in some mechanical models of arteries (Holzapfel et al. 2002; Zulliger 

et al. 2004; Zulliger et al. 2004). The changes in cell length may be correlated to local 

strains in intact arteries. Fung (1984) measured the changes in VSMC length using the 

dense bodies of VSMCs as structural markers. The spacing between dense bodies 

increased as luminal pressure increased. The distribution of the spacing between dense 

bodies was statistically uniform throughout the vessel wall at pressures above 20 mmHg. 

Takamizawa and Hayashi (1987) proposed the ‘uniform strain hypothesis’ which 

assumes a constant circumferential strain over the cross-section in the physiological 

loading state. However, they did not provide histological evidence for such a state. 

Functions of VSMCs 

Vascular Remodeling 

 VSMCs change the geometry of arteries in response to changes in mechanical 

stimuli such as wall shear stress (Kamiya and Togawa 1980; Brownlee and Langille 

1991; Fischer et al. 2002), luminal pressure (Liu and Fung 1989; Matsumoto and Hayashi 

1996; Fridez et al. 2003), and axial stretch (Jackson et al. 2002; Davis et al. 2005). It is 

generally accepted that the geometric changes of blood vessels in response to changes in 

mechanical stimuli tend to restore both circumferential wall stress and intimal shear stress 

to normal levels. Matsumoto and Hayashi (1994) reported that rat aortic wall thickness 

increased rapidly in response to hypertension and wall stress developed by in situ blood 

pressure was kept at a normal level. The elastic modulus of the aorta of hypertensive rats 

at in situ blood pressure returned to the normal value in 16 weeks after hypertension was 

induced. In response to altered blood pressure, geometric changes appear to precede 
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changes in material properties. Fridez et al. (2003) observed that vascular smooth muscle 

tone in rat carotid arteries increased rapidly in the acute phase of remodeling (0-8 days) 

induced by hypertension and returned to near normal levels at long term (56 days). These 

observations suggest that initial changes in the geometry of arteries are due to the 

contraction of VSMCs and long-term changes in mechanical properties are attributable to 

structural remodeling. 

 Structural remodeling is associated with the production and reorganization of the 

ECM components by VSMCs. However, mechanical stimuli differentially affect the 

production of elastin and collagen, two major ECM proteins in arteries. While collagen 

content in the media of rat carotid arteries increases rapidly in the acute hypertension 

phase (0-8 days), increases in elastin content are slight (Fridez et al. 2003). This may be 

due to the differences between the turnover rates of elastin and collagen fibers.  

 Mature elastin is extremely stable and its turnover is very slow (Debelle and 

Tamburro 1999). Lefevre and Rucker (1980) estimated the turnover and degradation of 

mature elastin from the aortas of Japanese quail by measuring the variation in 

radioactivity of L-[14C] lysine-labeled desmosines in elastin. They concluded that the best 

estimates of mature elastin turnover are only quantifiable in years. Using light and 

electron microscopic radioautography, Davis (1993) observed that no new growth or 

turnover of elastin occurred in the mouse aorta between 28 days and 8 months of age 

while synthesis of new elastin was observed between 4 to 21 days of age. The author 

emphasized that initial deposition of elastin and proper assembly of elastic laminas is a 

critical event in vessel development. The low turnover rate of elastin may be responsible 

for the decrease of medial elastin over time. 

  The turnover of collagen fibers in various soft tissues is many times faster than 

that of elastin and is quantifiable in days (Nissen et al. 1978; McAnulty and Laurent 

1987; Sodek and Ferrier 1988). Also, the turnover of collagen fibers in arteries increases 

many fold in response to an increase in blood pressure. Nissen et al. (1978) reported that 
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the half-life of collagen fibers in mesenteric arteries and aortas from normotensive rats is 

70 days while for hypertensive rats this is reduced to 17 days. 

 Vascular remodeling activities induced by mechanical stimuli are not uniform 

through the arterial media. In response to induced hypertension, non-uniform thickening 

of lamella units through the arterial media was observed in different types of arteries. 

Matsumoto and Hayashi (1994) observed that the layers near the inner wall thickened 

more than those near the outer wall in rat aortas in induced Goldblatt hypertension at 8 

weeks. However, Fridez et al. (2003) reported a different observation using rat carotid 

arteries. In response to induced hypertension, the inner layers of rat carotid arteries 

thickened more in the acute phase (0-8 days), whereas outer layers were thicker at the end 

of the adaptation phase (56 days post-surgery). 

Role of MMP-2 and MMP-9 

 Matrix metalloproteinases (MMPs) are involved in vascular remodeling activities, 

either adaptive or maladaptive. MMPs, when activated, degrade ECM proteins in both 

normal physiological and pathological states (Matrisian 1992; Dollery et al. 1995). 

MMP-2 and MMP-9, also known as gelatinase A and B, are thought to have similar 

functions due to their ability to degrade similar substrates, including elastin and gelatin. 

Johnson and Galis (2004) showed that both MMP-2 and MMP-9 are involved in VSMC 

migration and the formation of intimal hyperplasia in vivo and in vitro. They also showed 

that MMP-9, but not MMP-2, genetic deficiency impaired the ability of VSMCs to attach 

to gelatin, suggesting that VSMCs bind MMP-9 and use it for assembly of fibrillar 

collagen. Later, Defawe et al. (2005) showed that MMP-9 has a biphasic effect on 

VSMC-mediated collagen gel contraction. While endogenous levels of MMP-9 promoted 

collagen gel contraction, either depletion or overexpression of MMP-9 inhibited gel 

contraction. 
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Mechanosensitive Regulation of MMP-2 and MMP-9 

 Using cell culture experiments, mechanical stimuli have been shown to positively 

correlate to the expression and activation of MMP-2 and MMP-9. Cyclically stretching 

cultured human VSMCs from 10% to 16% of their original lengths increased MMP-2 

activity (O'Callaghan and Williams 2000). Stationary mechanical strain of 5% also 

increased the production of MMP-2 and MMP-9 by human VSMCs, although cyclic 

mechanical strain from 0 to 10% at 1 Hz in the same study did not (Asanuma et al. 2003). 

The controversial results from these studies may be due to the differences in the 

magnitude of cyclic stretching. The threshold of stationary strain of VSMCs to produce 

MMP-2 and MMP-9 was lower than that of cyclic strain in these studies. 

 The influence of mechanical stimuli on the expression and activation of MMP-2 

and MMP-9 has been also studied at the tissue level. Lehoux et al. (2004) observed that 

MMP-2 activity increased in mouse carotid arteries cultured at both low (10 mmHg) and 

high pressures (150 mmHg) compared with arteries kept at 80 mmHg, while MMP-9 

activity increased only in arteries maintained at high pressure. A change in the pressure-

diameter curve was observed in arteries at high pressure, while no change was seen in 

vessels at both normal and low pressures. The shift in the pressure-diameter curve toward 

greater distensibility at high pressure was dependent on MMP-9, but not MMP-2, 

activity. This suggests that changes in the mechanical properties of arteries at high 

pressure may be related to the nonproteolytic function of MMP-9, modulating VSMC-

mediated collagen gel compaction.  

The expression and activation of MMP-2 and MMP-9 are distributed 

heterogeneously through the vessel wall. Arteries and veins investigated in an ex vivo 

organ culture system showed differential distributions of MMP-2 and MMP-9 through 

the vessel wall in response to altered hemodynamics. It was observed that the expression 

and activation of MMP-2 is highest in the region of the outer media of porcine carotid 

arteries perfused ex vivo with steady flow at 200 mmHg (Chesler et al. 1999). In human 
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saphenous veins arterially perfused ex vivo, the levels of immunostaining for MMP-2 and 

MMP-9 and gelatinolytic activity were also more intense in the outer media and the 

adventitia where the number of proliferating cells was the highest (Mavromatis et al. 

2000). Similar patterns of MMP-2 and MMP-9 distributions in porcine coronary arteries 

were also observed in vivo (Wilson et al. 2002). These results suggest that the outer 

media may be more sensitive to mechanical stimuli than the inner media. Thus, VSMCs 

in the outer media are expected to sense higher mechanical strain and/or stress resulting 

in increased production of MMP-2 and MMP-9 by VSMCs. However, it is impossible to 

measure mechanical stress and strain in situ at the microstructural level. Therefore, 

mechanical models are necessary to predict the mechanical environment of cells and 

interpret their biological responses.  

Mechanics of Arteries 

 Arterial tissue shows complex mechanical behavior and has nonlinear, 

viscoelastic, and anisotropic material properties. Arterial tissue is also normally accepted 

as an incompressible material (Carew et al. 1968). The existence of vascular smooth 

muscle tone and dynamic properties of arteries make their mechanical properties more 

complex (Armentano et al. 1995). Various functional forms for the constitutive relation 

have been proposed to describe the passive mechanical behavior of arteries with a variety 

of assumptions to describe nonlinearity, anisotropy, zero-stress state, and material 

homogeneity. 

Phenomenological Models 

 Fung (1965) originally proposed a pseudoelastic model, in which arterial tissue is 

assumed to be a hyperelastic material. Hyperelastic materials are nonlinear elastic 

materials under large deformations with very little change in volume. Due to the 

viscoelastic property of arteries, pseudoelasticity is applicable only to preconditioned 
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tissues and different strain energy functions (SEFs) are generally needed for loading and 

unloading processes. Although many mathematical expressions have been proposed for 

SEFs, they can be categorized into three types: polynomial type (Vaishnav et al. 1972), 

exponential type (Doyle and Dobrin 1971; Demiray 1972; Fung 1973), and logarithmic 

type (Takamizawa and Hayashi 1987). 

 Most pseudoelastic models of arteries assume a homogeneous structure through 

the arterial wall and are phenomenological in that they are based on fitting experimental 

data (Chuong and Fung 1983; von Maltzahn et al. 1984; Takamizawa and Hayashi 1987; 

Vito and Dixon 2003). Thus, the vascular wall microstructure including structural 

differences between wall layers is not explicitly taken into account. Pseudoelastic 

constitutive models of arteries assuming homogeneous mechanical properties of the 

arterial wall and excluding the effects of residual stress show a non-uniform distribution 

of wall stress with the largest circumferential stress at the intimal surface (Vito and 

Hickey 1980; Chuong and Fung 1983; Humphrey 1995; Vorp et al. 1995). Including the 

effects of residual strain significantly reduces the circumferential stress gradient (Chuong 

and Fung 1986; Matsumoto and Hayashi 1996; Rachev et al. 1996; Chaudhry et al. 

1997). However, the distribution of circumferential stress is still not uniform with larger 

circumferential stress generally located at the luminal surface.  

Structural Models 

 Multi-layered models were introduced to account for differences in the 

mechanical properties of distinct layers in the arterial wall. von Maltzhan et al. (1981) 

proposed a nonlinear two-layer cylindrical model for an arterial wall accounting for the 

structural difference between the medial and adventitial layers, and a different 

polynomial SEFs were used for each layer. Based on the result of the range of validity 

analysis, an exponential form for the SEF of the media was proposed (von Maltzahn 

1983). The elastic properties of the adventitial and medial layers of bovine carotid 
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arteries were experimentally measured and analyzed using exponential type SEFs for 

both of layers (von Maltzahn et al. 1984). Residual strain was not included in this 

analysis and circumferential and axial stresses were very high at the intimal surface. 

Rachev (1997) considered an artery to be a thick-walled two-layer tube made of 

nonlinear elastic incompressible material in studying the remodeling of arterial geometry 

under hypertensive conditions. Residual strains were included in this model using the 

opening angle for each layer. Although multi-layered models include the structural 

differences between the media and adventitia, they do not explicitly account for 

differences in the mechanical properties of vascular constituents. 

 Composite models of arteries have been proposed to account for the distinctive 

mechanical properties of structural components. These models assume that the 

mechanical property of an arterial wall can be expressed as the combination of 

mechanical properties of vascular constituents. Holzapfel and Weizsäcker (1998) 

proposed a two-term SEF: the first term represents the isotropic contribution from elastin; 

and the second term represents the anisotropic contribution from collagen fibers. 

Holzapfel et al. (2002) included the structural differences between the media and 

adventitia as well as the distinctive mechanical property of each structural component. 

They used the same form of SEF but different sets of material parameters for the media 

and adventitia. They also introduced the anisotropy of each wall represented by the 

orientation of collagen fibers, which was measured using VSMC nuclei in the media and 

the intra-spatial voids between collagen fiber bundles in the adventitia.  

In addition to the features of the composite models, constrained mixture models 

include not only the wavy nature of collagen fibers but also the fraction of both elastin 

and collagen fibers contained in the media. Zulliger et al. (2004) proposed a SEF 

composed of the SEFs of elastin and collagen fibers weighted by the area fraction of each 

component. They also included the gradual recruitment of initially wavy collagen fibers 

using the log-logistic distribution function. Using a single function for the recruitment of 
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collagen fibers implies that collagen fibers through the arterial wall are straightened up in 

the same fashion in terms of tissue level strain. Zulliger et al. (2004) proposed a pseudo-

SEF which includes vascular smooth muscle tone. This model can describe the 

mechanical behavior of arteries not only under passive conditions, but also under 

conditions with varying levels of vascular smooth muscle tone. Wuyts et al. (1995) also 

proposed a model which accounts for the mechanically important constituents, collagen 

fibers, elastin, and VSMCs, and includes the gradual stretching of collagen fibers. 

However, they assumed all components obey Hooke’s law, which is not applicable when 

strain is large. They also expressed the gradual recruitment of collagen fibers by a 

function of strain. Although variables in the recruitment function of collagen fibers are 

often said to have physical meaning, the functions are usually phenomenological and 

evaluated by the degree of overall fit to pressure-diameter relations. 

Zero Stress State 

The unloaded state of arteries was often considered to be the zero-stress state. 

However, arteries do have residual stress and strain. When arterial ring segments are cut 

and allowed to freely expand radially, they open up indicating the existence of residual 

stress in the unloaded state. The so called “opening angle” is often used as an indicator of 

residual strain (Chuong and Fung 1986; Rachev and Greenwald 2003). Currently, most 

mechanical models of arteries use the “opened-up” segment of arterial tissue as zero-

stress reference state. The stress concentration at the inner surface resulting from pressure 

loading decreases as the opening angle increases. Peterson and Okamoto (2000) 

investigated the sensitivity of circumferential stress to variations in the opening angle. 

They used a SEF and pressure-diameter data of rabbit carotid arteries published by 

Chuong and Fung (1983) and showed that the distribution of circumferential stress 

becomes mostly uniform at the opening angle of 130°. However, a mean opening angle 
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of rabbit carotid arteries reported by Li and Hayashi (1996) is 95°, which still makes the 

circumferential stress highest at the innermost surface.  

The opening angle of arteries changes due to the growth and remodeling of 

arterial tissue. It has been shown that opening angle changes with age. The opening angle 

of human aorta from subjects aged between 3 months and 87 years increased with age 

(Saini et al. 1995). The opening angle of rat aorta was also observed to increase from the 

age of 6 weeks to 56 weeks (Badreck-Amoudi et al. 1996). Opening angle was also 

observed to increase in response to hypertension. The opening angle of rat’s aorta 

increased rapidly in response to induced hypertension, then decreased gradually (Liu and 

Fung 1989).  

Many studies showed that additional residual strains and stresses exist in the 

opened-up configuration (Greenwald et al. 1997; Stergiopulos et al. 2001; Matsumoto et 

al. 2002). Greenwald et al. (1997) reported that removing material from the outer surface 

caused the opening angle of the remaining inner layers to increase, while removing 

material from the inner surface caused the opening angle to decrease. This implies that 

additional residual strains and stresses at the microstructural level exist in the opened-up 

state. Stergiopulos et al. (2001) showed that the inner half of a porcine aorta has 

significantly larger opening angle than the outer half. 

The zero stress states of each component in arteries are expected to differ from 

each other. Greenwald et al. (1997) showed that removing elastin caused the opening 

angle to decrease while removing collagen or VSMC had no effect. Thus, each 

microstructural component of the arterial wall supports a different level of residual stress. 

This suggests the reference configuration of collagen fibers and VSMCs are not readily 

available. Thus, the tissue-level strain at the recruitment of collagen fibers may not be 

uniform as proposed in many models of arteries. Matsumoto et al. (2002) also showed 

that residual stress depends on the components of tissue at the microscopic level using 

scanning micro indentation test on porcine thoracic aortas.  
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Homogeneous or Heterogeneous Media 

Although arteries show distinctive structural heterogeneity in the media, most 

studies of arterial mechanics assume homogeneous mechanical properties across the 

media. Although some mechanical models of arteries include layered features and 

microstructural information, such as fiber orientations, these models typically assume 

homogeneous material properties in the medial layer.  

 The justification for assuming homogeneity is quite controversial. Based on 

measurements of the deformations of elastic lamellae in normal and inverted arterial 

segments of canine carotid arteries, Dobrin (1999) suggested that the media acts 

mechanically like a homogeneous material. However, the strain distribution in arteries is 

mostly constrained by their tubular structure and incompressibility. Thus, the distribution 

of material properties across the arterial wall cannot be accounted for by the strain 

measures alone. Stergiopulos et al. (2001) also supported a single-layered model of the 

media with homogeneous mechanical properties by comparing the elastic properties and 

the compositions of the inner and outer halves of the porcine aortic media. However, they 

also observed significantly more collagen in the outer half of porcine aortic media and 

said that the uniformity of elastic properties may not be applicable to other types of 

arteries. 

 There are also studies suggesting that the arterial wall is mechanically 

heterogeneous. Vito et al. (1991) measured the distribution of strains in cross sections of 

the canine thoracic aorta and showed an increased stiffness near the outer wall. Also, 

residual stresses depend on tissue components at the microscopic level (Matsumoto et al. 

2002). The distribution of mechanical stress through the arterial wall is affected by both 

opening angle and the composition of arterial layers (Peterson and Okamoto 2000). Thus, 

the mechanical heterogeneity of the arterial media is presumably due to the 

microstructural heterogeneity. Some theoretical studies also suggested heterogeneous 

mechanical properties in the media. Using a simple phenomenological model for vascular 
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growth, Taber and Humphrey (2001) suggested two things: (1) the material properties of 

bovine carotid arteries are heterogeneous across the wall with stiffer outer layers; (2) 

growth in arteries correlates better with stress than with strain.  

 In conclusion, a mechanical model of an artery representing the heterogeneous 

nature of the medial structure is needed to better understand the physiology and 

pathophysiology of arterial tissue. To our knowledge, currently available mechanical 

models of arteries do not account for the structural heterogeneity across the arterial 

media. The lack of explicit description of the arterial microstructure (i.e. zero stress 

configurations of collagen fibers) necessitates further exploration of various assumptions 

and histological techniques for quantification. Filling this gap of knowledge is important 

to improve the ability of mechanical models to predict responses of vascular cells. 
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CHAPTER 2 

RESEARCH OBJECTIVES 

 

Knowledge on the distributions of mechanical stress and strain through the 

arterial wall is essential in understanding the physiology and pathophysiology of arterial 

tissue. The mechanosensitive functions of vascular cells are in part responsible for 

activities related to vascular remodeling (Langille 1996). The relationships between 

mechanical factors and vascular cell functions have been studied experimentally utilizing 

cultured cells or tissue segments (Williams 1998). Although cell culture experiments 

offer better control of the mechanical stimuli applied to the cells than do experimental 

approaches utilizing tissue samples, they do not provide a natural environment for cells. 

Tissue level experimental approaches, either in vivo or ex vivo, provide the distribution of 

biological responses of cells in their natural environment. However, the mechanical 

environment of cells in situ is not well understood. Since mechanical stress cannot be 

measured in situ, mathematical models are necessary to interpret results from tissue level 

studies using relationships established in cell culture studies. 

A mechanical model is a useful tool not only for bridging results from cell culture 

and tissue level studies but also for utilizing these results for engineering a functional 

tissue engineered vascular graft (TEVG). The potential of mechanical models of native or 

engineered biological tissues lies in their ability to predict the directions of cellular 

activities in response to their mechanical environment. However, the link between the 

local mechanical environment of VSMCs and their functions in situ is, for many reasons, 

still not addressed properly by existing mechanical models of arteries. Among the 

characteristics of arterial tissue, the structural heterogeneity of the arterial media has long 

been ignored in mechanical modeling. Currently, most mechanical models of blood 

vessels assume homogeneous material properties in the arterial media, yet accounting for 
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the effects of heterogeneity may be important to the understanding of VSMC functions. 

Moreover, understanding these effects may reveal important clues regarding the 

pathogenesis of vascular disease and the design of a functional TEVG. 

Higher levels of MMP-2 and MMP-9 expression and activation were observed in 

the outer media of arteries in both in vivo and ex vivo studies. Results from experiments 

using cultured VSMCs show that mechanical stretching positively correlates to the 

production of MMP-2 and MMP-9 by VSMCs. Interpreting these results in terms of the 

stress and strain distributions across the arterial wall is problematic when using a 

mechanical model assuming homogeneous properties in the medial layer, which 

generally predicts lower stress and strain in the outer media. Strain distribution in the 

arterial wall is readily determined from the tubular structure of arteries and 

incompressibility. Thus, stress distribution may correlate to the distribution of the 

expression and activation of MMP-2 and MMP-9. Since arteries exhibit known structural 

heterogeneity and varying stiffness across the arterial wall, it is worth examining the 

effect of heterogeneity on the distribution of local stress and cell functions. Therefore, a 

mechanical model of an arterial wall, including microstructural heterogeneity, was 

developed and used to determine the correlation between circumferential stresses and the 

expression and activation of MMP-2 and MMP-9 by VSMCs. 

This study serves as the foundation for our long-term goal, which is to promote 

the understanding of the mechanobiology of vascular cells and the physiology and 

pathophysiology of arterial tissue. Further, we expect the established knowledge on the 

relationship between mechanical stress/strain and the mechanosensitive response of 

vascular cells will contribute to the design of methods for the prevention and treatment of 

various diseases.  
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Hypothesis 

 Local stresses computed using a heterogeneous mechanical model of arteries 

positively correlate to the levels of MMP-2 and MMP-9 expression and activation by 

VSMCs in situ. 

Specific Aims 

Specific Aim 1: Quantify the distributions of ECM components and VSMC nuclear 

geometry in porcine common carotid artery subjected to physiologic mechanical 

loading conditions. 

Information on the structure of arteries is essential for the development of the 

structure-based mechanical of arteries. Using the optical properties of elastin and 

collagen fibers, the distributions of elastin and collagen fibers through the media can be 

quantified. The deformation of collagen fibers can be indirectly quantified from the 

geometry of VSMC nuclei. Thus, a methodology for quantifying the three-dimensional 

geometry of VSMC nuclei in intact arteries was developed and used to quantify the 

distributions of length and orientation of VSMC nuclei in the arterial wall fixed at in vivo 

length and either 0 mmHg or 100 mmHg  

 

Specific Aim 2: Develop the heterogeneous mechanical model of an artery to 

account for nonlinear elasticity, anisotropy, residual stress, and structural 

heterogeneity. 

The distributions of stresses are influenced by both material composition and 

residual strain. The residual strains of porcine common carotid arteries can be quantified 

by measuring opening angle. Considering the arterial tissue as a constrained mixture, a 

heterogeneous mechanical model of an artery can be developed assuming the area 
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fractions of elastin and collagen fibers vary through the wall thickness. With structural 

information obtained in Specific Aim 1 and opening angle, the distributions of 

circumferential stress through the arterial wall can be computed.  

 

Specific Aim 3: Determine the correlation between the distribution of 

circumferential stress and the distributions of the expression and activation of 

MMP-2 and MMP-9. 

The distributions of the expression and activation of MMP-2 and MMP-9 under 

normotensive and hypertensive conditions quantified using an ex vivo organ culture 

experiment and histology can be correlated to the distribution of circumferential stress 

computed in Specific Aim 2. By comparing this to the result using a homogeneous 

model, the effects of structural heterogeneity on the distribution of local stress and cell 

functions are examined. 
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CHAPTER 3 

METHODS 

 

Experimental Study 

Organ Culture Experiment 

 Fresh porcine common carotid arteries were harvested from six to seven-month-

old pigs at a local abattoir. Immediately after the arteries were excised, they were washed 

with ice-cold PBS (Dulbecco’s phosphate buffered saline, Sigma, St. Louis, MO) 

supplemented with 1% antibiotic-antimycotic solution (Sigma) in the lumen and were 

transported to the laboratory in PBS at 4°C. After testing the intact arteries for leaks, 

segments of 50 to 70 mm were prepared from locations between 10 mm and 100 mm 

upstream of the carotid bifurcation. 

 The arteries were cultured 48 hours in the ex vivo perfusion organ culture system, 

shown in Figure 4.1, described previously (Han and Ku 2001) and modified to include bi-

axial control of the mechanical environment (Davis et al. 2005). Briefly, the arteries were 

mounted in physiological orientation between two cannulae in the organ culture chamber 

for perfusion in their in vivo flow direction. Then, the flow loop was filled with preheated 

(37°C) prefusion medium. The chamber was filled with bath medium and sealed to 

maintain sterility. Both the perfusion and bath medium were composed of Dulbecco’s 

modified Eagle’s medium (DMEM, Sigma) supplemented with sodium bicarbonate (3.7 

g/L, Sigma), L-glutamine (2 mmol/L, Sigma), antibiotic-antimycotic solution (10 ml/L, 

Sigma), and calf serum (10% by volume, HyClone, Logan, UT). Dextran (6.3% by 

weight, average molecular weight 170,000; Sigma) was added to the perfusion media to 

acquire a fluid viscosity of blood (4×10-3 Pa⋅s). The viscosity was measured with a  
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Figure 4.1: Schematic of the ex vivo artery organ culture system. The arterial segment is 
mounted on stainless steel cannulae in the chamber and perfused with the culture 
medium. The perfusion flow, pressure, and pulsatility are controlled by adjusting pump 
speed, clamp resistance, and the T-end tubing length, respectively. 
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Canon-Fenske viscometer (Cannon Instrument Co., State College, PA). The system was 

placed in an incubator in a 5% CO2 + 95% air mixture maintained at 37°C. 

 Experiments were conducted in pairs using right and left carotid arteries from 

same animal. In each pair of arteries, one was cultured under a normotensive condition 

and the other under a hypertensive condition. Upon any sign of contamination during the 

organ culture, the specimen was discarded and excluded form the analysis. To mimic the 

physiological loading condition, the arteries were stretched to in vivo length (axial stretch 

ratio, λz = 1.5) and perfused with a pulsatile flow at a transmural pressure of 100 ± 20 

mmHg. Initially, the arteries were unstretched and subjected to a minimal flow to prevent 

possible damage to the tissue by abrupt changes in the mechanical environment. The 

stretch ratio of the arteries, the flow rate of the perfusion medium and mean luminal 

pressure were gradually increased to in vivo levels over three hours. The flow rate was 

controlled to maintain a mean shear stress (τ) of 1.5 Pa according to the Poiseuille 

relationship, 

 

3
32

D
Q

π
µ

=τ ,             (4.1) 

 

where D is the lumen diameter of the vessel, µ is the viscosity of the medium, and Q is 

the flow rate (Ku 1997). For the normotensive group (n = 5), the conditions equivalent to 

the in vivo mechanical environment, once reached, were maintained for 48 hours. For the 

hypertensive group (n = 4), a transmural pressure was further increased to 200 ± 20 

mmHg and maintained for 48 hours. 

 At the end of the organ culture, the contractile response of VSMCs was disabled 

by adding 10-4 mol/L of sodium nitroprusside (Sigma) into the flow loop 30 minutes 

before the flow was stopped. This served to prevent a reflex response during tissue 

processing. After removal, each artery was divided into three segments. Two short 
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segments (~5 mm) were embedded in Tissue-Tek® optimum cutting temperature (OCT) 

compound (Sakura Finetek, Torrance, CA) and frozen in liquid nitrogen for 

immunohistochemistry and in situ zymography. The remaining segments (one from each 

artery) were reattached to cannulae and fixed in 10% formalin at pressure and in vivo 

length to preserve the microstructure at the mean incubating pressure, 100 mmHg for the 

normotensive group and 200 mmHg for the hypertensive group. 

Quantification of Expression and Activation of MMP-2 and MMP-9 

Immunohistochemistry 

 Immunostaining for MMP-2 and MMP-9 was performed on 7 µm frozen sections 

and used to investigate the localization of the expression of MMP-2 and MMP-9. 

Sections were thawed for 10-30 minutes immediately before use at room temperature. 

The sections were first fixed in acetone for 5 minutes. After preincubation with 0.3% 

hydrogen peroxide in methanol to block endogenous peroxidase activity, tissue sections 

were blocked with 10% normal horse serum (Vector Laboratories, Burlingame, CA) in 

PBS (Sigma) for 20 minutes at room temperature. Specimens were then incubated for 60 

minutes at room temperature in a humid chamber with primary antibodies for MMP-2 or 

MMP-9 (EMD Biosciences, San Diego, CA) diluted to 5 mg/L in PBS. After being 

washed in PBS, sections were incubated for 30 minutes in a humid chamber with 

biotinylated secondary antibodies in PBS plus 2% horse serum, followed by incubation 

for 1 hour with VECTASTAIN® Elite ABC reagent (avidin and biotinylated horseradish 

peroxidase complex, Vector Laboratories). Gray-black stain was developed using DAB 

(3,3’-diaminobenzidine) substrate kit (Vector Laboratories). Because the slides were used 

for the quantification of the expression of MMP-2 or MMP-9, nuclei were not 

counterstained. 
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 A series of monochrome images were taken using a conventional brightfield 

microscope. From the images, the intramural distribution of the area fraction of MMP-2 

or MMP-9 expression was quantified semi-automatically using MATLAB® code. First, 

the intima and the outer boundary of the external elastic lamina (EEL) were traced 

manually by picking control points of a cubic spline curve in each image. The cross-

section of an artery is generally close to but not a circular ring. Thus, the arterial wall, 

bound by two curves, was mapped to a circular ring. Then, the circular ring was divided 

into 51 layers, which is the number of layers used for the quantification of elastin and 

collagen fibers in the arterial wall. The thickness of each layer in the circular ring was set 

to be uniform at the mean incubating pressure and in vivo length. Since the arterial 

segments used for immunohistochemistry were fixed at zero pressure without axial 

stretch, the thickness of each layer in the immunostained sections was determined using 

incompressibility to match the corresponding layer in pressure-fixed sections. To 

quantify the area fraction of MMP-2 or MMP-9 expression, a threshold mask was defined 

by sampling pixel intensities in the visually identified positive stains (Lee et al. 1996). 

The threshold was applied to each image and the area fraction of MMP-2 or MMP-9 

positive pixels in each layer was calculated and recorded. 

In Situ Zymography 

 The localization of the activities of MMP-2 and MMP-9, gelatinolytic activity, in 

arterial cross-sections was detected using in situ zymography as described by Galis et al. 

(1995). Briefly, fluorescent substrate, gelatin from pig skin conjugated to Oregon Green® 

488 dye, was purchased from Molecular Probes (Eugene, OR). Low gelling temperature 

agarose (1% by weight, Sigma-Aldrich, St. Louis, MO) was melted in a reaction buffer 

(50 mmol/L Tris-HCl, pH 7.4, containing 10 mmol/L CaCl2, and 0.05% Brij 35), then 

mixed (1:1) with fluorescent substrate (1 g/L in PBS) at 50°C. The substrate solution (10 

µl) was spread on prewarmed (∼50°C) glass slides, and then allowed to gel at room 
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temperature. Seven-micron frozen sections of specimens were mounted on top of the 

substrate film and incubated in a humid and dark chamber at 37°C up to 4 days. 

 A series of images were taken from each slide using a fluorescent microscope 

with an FITC filter cube (Chroma Technology, Rockingham, VT). The distribution of 

substrate lysis, shown as dark areas, represents the localized activities of MMP-2 and 

MMP-9. A threshold for each image was determined independently to detect localized 

gelatinolytic activities. Each image was converted to a binary image using the threshold. 

The intima and the outer boundary of the EEL were traced, and the area between 

boundaries was divided into the same number of layers as in the quantification of MMP-2 

and MMP-9 expressions. The area fraction of dark area in each layer was calculated 

automatically and recorded. 

Statistical Analysis 

 The transmural distributions of the expression and activation of MMP-2 and 

MMP-9 in normotensive arteries and hypertensive arteries were analyzed visually and by 

computing the Spearman rank correlation coefficients (rs) between the area fractions of 

MMP-2 positive staining, MMP-9 positive staining, or substrate lysis and the normalized 

thickness. Groups of correlation coefficients were tested for zero mean using the single-

sample Student’s t-test. Because the correlation coefficients are not normally distributed, 

they were transformed with the Fisher transformation and considered as samples from a 

normal distribution with unknown mean and variance. A p-value of 0.05 was considered 

as statistically significant in all cases. 
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Quantification of Arterial Structure 

Visualization and Quantification of ECM Components 

Elastin 

 Elastin was visualized using its autofluorescence (Blomfield and Farrar 1967). 

Elastin exhibits more intense autofluorescence than other ECM proteins when visualized 

at fluorophore excitation/emission maxima of 480/535 nm (Fitzmaurice et al. 1989). 

Images of elastin autofluorescence were taken directly from 7 µm paraffin sections using 

an FITC filter cube and ×10 objective lens on a Nikon fluorescent microscope. The 

spatial resolution of the image was 0.46 µm/pixel. Exposure time and offset value were 

manually controlled to enhance contrast and reduce weak fluorescent signal from other 

matrix proteins. Twenty to thirty images were taken along the circumference of each 

arterial histologic cross-section covering the entire area of the arterial wall. 

 The area fraction of elastin in each layer was assumed, using the rationale 

provided by Baraga et al. (1990), to be linearly proportional to the mean intensity of 

elastin autofluorescence in that layer. From the elastin images, the intramural distribution 

of autofluorescence intensity, measured by 8-bit gray level, was quantified automatically. 

The intima and the outer boundary of the EEL were traced, and the area between traced 

boundaries was divided into 51 layers using the method used for the quantification of 

MMP-2 and MMP-9 expression. Since the arterial segments used for the quantification of 

elastin were fixed at the mean incubating pressure and in vivo length, the thickness of 

each layer in the circular ring was set to be uniform. The average intensity of pixels in the 

ith layer (Iei, i = 1, 2,…, 51), where the 1st layer is the inner-most layer and 51st layer is 

the outer-most layer, was calculated and recorded automatically. 
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Collagen 

 Collagen fibers are birefringent and were visualized using polarized microscopy 

and staining to enhance the birefringence. Picrosirius red staining is known to be specific 

to collagen (Junqueira et al. 1979) and increases birefringence in a concentration and 

staining time-dependent manner (Canham et al. 1999). Collagen fibers were imaged from 

the same sections used for the elastin imaging. After the elastin images were taken, the 

sections were deparaffinized and stained for 75 minutes with 0.1% Sirius red F3B (Direct 

Red 80, Sigma-Aldrich) in saturated picric acid (Sigma) solution. Then the sections were 

washed in 0.5% acetic acid in dH2O for 5 minutes. After washing in dH2O for 5 minutes, 

the sections were dehydrated in ascending grade alcohols followed by xylene. A drop of 

Permount® (Fisher Scientific, Pittsburgh, PA) was applied on top of the tissue section and 

the cover glass was placed. As in elastin imaging, twenty to thirty images of collagen 

fibers were taken with a ×10 objective lens and two linear polarizers along the 

circumference of each arterial histologic cross-section covering the entire area of the 

arterial wall. An image taken with the slide located between two crossed polarizers (i.e. 

the polarization directions of two polarizers are crossed) provides a partial image of 

collagen fibers. Thus, two images were taken at each location. The second image was 

taken with the crossed polarizers rotated 45° from the setup used for the first image. 

Superimposing two sets of collagen images generated the final images of collagen fibers 

aligned to the imaging plane. 

 The area fraction of mechanically significant collagen fibers in superimposed 

images was assumed to be linearly proportional to the mean intensity of pixels. The level 

of collagen birefringence depends on various factors including the thickness (Junqueira et 

al. 1979; Junqueira et al. 1982; Canham et al. 1999), the orientation (Ehlers 1987; 

Whittaker et al. 1994), the maturity (Szendroi et al. 1984; Whittaker et al. 1994), and the 

type of collagen fibers (Wolman and Kasten 1986). These factors affect the collagen 
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birefringence but the net result is that more intense birefringence represents higher 

mechanical strength. However, it is a difficult task to formulate an explicit mathematical 

relationship between collagen birefringence and the area fraction of straightened collagen 

fibers due to the lack of a comprehensive understanding of its relationship to some of 

these factors. Hence, as a first approximation, the average intensity of pixels in the ith 

layer (Ici, i = 1, 2,…, 51) was quantified using the same method used for the 

quantification of elastin. 

Statistical Analysis 

 The transmural distributions of elastin and collagen fibers in normotensive 

arteries and hypertensive arteries were analyzed visually and by computing the Spearman 

rank correlation coefficients (rs) between the area fractions of elastin or collagen fibers 

and the normalized thickness. Groups of correlation coefficients were tested for zero 

mean using the single-sample Student’s t-test. Because the correlation coefficients are not 

normally distributed, they were transformed with the Fisher transformation and 

considered as samples from a normal distribution with unknown mean and variance. A p-

value of 0.05 was considered as statistically significant in all cases. 

Quantification of Three-Dimensional Geometry of VSMC Nuclei 

Specimen Preparation 

 Fresh common carotid arteries from six to seven-month-old pigs were harvested 

at a local abattoir. Arteries were washed and kept in ice-cold PBS supplemented with 1% 

antibiotic-antimycotic solution during transportation. After testing for leaks, arterial 

segments were washed and kept in PBS preheated to 37°C for an hour. To preserve the 

geometry of the passive VSMC nuclei, the contractile response of VSMCs was disabled 

by the addition of sodium nitroprusside to a final concentration of 10-4 mol/L. After 30 

minutes, arteries were mounted between two cannulae and stretched to in vivo length 
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(axial stretch ratio, λz = 1.5). The arterial lumens were filled with 10% formalin either at 

no pressure or at 100 mmHg (Table 4.1). Then, the chamber was filled with 10% 

formalin. After overnight fixation, arteries were cut into segments, processed, and 

embedded in paraffin for sectioning. 

 
 
 
Table 4.1: Specimens used for the quantification of VSMC nuclear geometry. Each pair 
was composed of left and right common carotid arteries from the same pig. All arteries 
were fixed at in vivo length. 
 

Fixed pressure Specimen Pair # # of VSMC nuclei counted 
1 291 0 mmHg 
2 372 
1 525 100 mmHg 2 485 

 
 
 
 
 Paraffin-embedded arterial segments were cut into 25 µm sections. Paraffin 

sections were deparaffinized, and rehydrated in descending grades of alcohol. After 

washing in dH2O for 5 minutes, sections were stained for 20 minutes under dark 

conditions with Hoechst 33258 (Molecular Probes, Eugene, OR) diluted to 1 µg/ml in 

PBS. Sections were washed twice in PBS for 5 minutes each, then cover slipped using 

fluorescent mount medium (Fluoromount-G, Southern Biotechnology Associates, 

Birmingham, AL). Stained sections were stored in a dark box at 4°C. 

Three-Dimensional Visualization of VSMC Nuclei 

 The morphology of VSMC nuclei were visualized using LSM 510 UV confocal 

microscope (Carl Zeiss, Thornwood, NY) equipped with a water-cooled argon laser with 

excitation lines in the range of 351-364 nm. The pinhole size was set to 76 µm (1.5 Airy 

units) with a ×40 objective lens to make the thickness of an optical section 1 µm. The 
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cross-section of arterial segments was aligned to the imaging plane, which is the XY-

plane with respect to the imaging coordinate system (X, Y, Z), shown in Figure 4.2. 

Optical sections, consisting of two-dimensional images on the XY-plane, were acquired 

and stacked to form a Z-stack. The scanning interval, the distance between neighboring 

optical sections in the Z direction, of each Z-stack was controlled to be about 1 µm. 

Although a ×40 objective lens provides enough resolving power to reconstruct VSMC 

nuclei, the size of the imaging window (230.4 µm (X) × 230.4 µm (Y) with a spatial 

resolution of 0.45 µm/pixel) was not large enough to cover the thickness of an arterial 

wall. Thus, three or four Z-stacks were acquired with a small overlap between 

neighboring Z-stacks along each transmural path from the intima to the EEL. VSMC 

nuclei in the overlapped region were used to align Z-stacks. 

 
 
 

 
 
Figure 4.2: The imaging plane of each optical section is the XY-plane with respect to the 
imaging coordinate system (X, Y, Z).  
 
 
 

 Two-dimensional images of each Z-stack were smoothed to reduce noise by using 

a 3×3 kernel in the XY, YZ, and XZ planes, respectively. Optical sections from a smoothed 

Z-stack were converted to binary (black or white) images using a preset threshold value, 

and then reassembled into a binary (0 or 1) three-dimensional matrix, in which each entry 
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represents a voxel. A three-dimensional object consists of interconnected voxels with 

assigned value of 1. From each matrix, three-dimensional objects were identified and 

labeled using a 26-connected neighborhood scheme, in which voxels are connected if 

their faces, edges, or corners touch. The objects identified include VSMC nuclei as well 

as unwanted noise factors such as endothelial cell nuclei and fragments of elastin 

autofluorescence. The set of objects that consist of less than 500 voxels was first filtered 

to remove unwanted small fragments. Then, VSMC nuclei were identified manually 

using two- and three-dimensional visual representations of each object. Two-dimensional 

visual representation showed the projection of a selected object onto the XY-plane in 

white, while other objects and voids were gray and black, respectively (Figure 4.3). The 

three-dimensional visual representation provides an isosurface view of a selected object 

with respect to a coordinate system, where each voxel represents a cube. However, a 

voxel is not a cube in physical dimensions. Thus, the aspect ratio of each axis was 

adjusted according to the physical dimensions of a voxel (0.45 µm (X) × 0.45 µm (Y) × 

scanning interval (Z)) to show each object in the imaging coordinate system (Figure 4.4).  

Quantification of VSMC Nuclear Geometry 

 The orientation and lengths of each VSMC nucleus was automatically calculated 

using MATLAB® code. First, the centroid (Xc, Yc, Zc) of a VSMC nucleus composed of n 

voxels, which are located at (Xi, Yi, Zi) for i = 1…n, was computed using 
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Z-stacks along each transmural path were joined by aligning the centroids of VSMC 

nuclear objects in the overlapped region. The intramural location of the centroid of each  
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Figure 4.3: Two-dimensional visual representation of a Z-stack showing the projection of 
three-dimensional objects onto the imaging plane. A selected object is highlighted in 
white. 
 
 
 
 

 
 
Figure 4.4: Three-dimensional visual representation of a selected object. The isosurface 
view of a selected object was plotted in voxel space with physical aspect ratio.  
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VSMC nucleus was computed in terms of normalized thickness, which is 0 at the intima 

and 1 at the outer boundary of the media. 

Given the centroid of each VSMC nuclear object, the second-order moment of the 

voxels around the centroid forms a covariance tensor, 

 

∑
= ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−
−−−−−
−−−−−

=
n

i
cicicicici

cicicicici

cicicicici

ZZZZYYZZXX
ZZYYYYYYXX
ZZXXYYXXXX

n
COV

1 2

2

2

)())(())((
))(()())((
))(())(()(

1 . (4.3) 

  

The eigenvalue problem for the covariance tensor was solved to get eigenvectors which 

define the principal axes of the VSMC nucleus: 

 

( ) 0=λ− vICOV ,            (4.4) 

 

where λ is the eigenvalue, and v is the eigenvector of the covariance matrix, and I is the 

identity matrix. The major axis of a VSMC nucleus was collinear with the eigenvector 

associated with the largest eigenvalue. The major axis length of a VSMC nucleus was 

measured as the length of a VSMC nucleus along the major axis. 

 The orientation of a VSMC nucleus was measured using a local coordinate 

system, where the θ-axis and r-axis on the transverse plane are aligned to the 

circumferential and radial directions of an arterial cross-section, respectively (Figure 4.5). 

Because each transmural path covers a small portion of an arterial cross-section, the 

intima appears to be linear. A vector tangential to the intima, and pointing 

counterclockwise, was computed by fitting a line to the centroids of endothelial cell 

nuclei. This approximates the circumferential direction and was normalized to define the 
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unit vector of the θ-axis ( ). The major axis of each VSMC nucleus was transformed to 

local coordinates (r, θ, z) using an affine transformation matrix as 

θ̂
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where (rX, rY, 0), (θX, θY, 0), and (0, 0, -1) are the unit vectors of the r-, θ-, and z-axis with 

respect to the imaging coordinate system (X, Y, Z), respectively, and (er, eθ, ez) and (eX, 

eY, eZ) are the unit vectors of the major axis of a VSMC nucleus in terms of the local 

coordinate system and the imaging coordinate system, respectively. The unit vector of the 

major axis of a VSMC nucleus was conditioned to point in the circumferential direction 

as 
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Figure 4.5: The imaging coordinate system (X, Y, Z) and the local coordinate system (r, θ, 
z) for VSMC nuclear objects. The local coordinate system is shown by unit vectors in the 
radial, circumferential, and axial directions. 
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 Helical deviation, the angle between the unit vector of the θ-axis and the 

projection of the unit vector of the major axis onto θz-plane, was computed using 
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where θh is the helical deviation (0° ≤ θh ≤ 90°), and r̂  is the unit vector of the r-axis. 

Radial deviation, the angle between the unit vector along the r-axis and the projection of 

the unit vector of the major axis onto rθ-plane, was computed using 
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where θr is the radial deviation (0° ≤ θh ≤ 90°), and z  is the unit vector of the z-axis. 

Helical and radial deviations do not provide information about the orientation of helices. 

The helical angle of a VSMC nucleus was defined as +θ

ˆ

h for a right-handed helix and −θh 

for a left-handed helix. Also, the radial angle of a nucleus was defined as +θr for an 

outward spiral and −θr for an inward spiral (Figure 4.6). 

 The circumferential length (lθ), defined as the projection of the major axis length 

of a VSMC nucleus onto the θ-axis, is given as 

 

( )ell M ˆˆ ⋅θ=θ ,             (4.9) 

 

where lM is the major axis length of a VSMC nucleus.  
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Figure 4.6: The sign convention for helical angle (+θh or -θh) and radial angle (+θr or -θr). 
 
 
 
 

The stretch ratios of VSMC nuclei and arterial tissue in the circumferential 

direction were compared. Based on the observation by Fung (1984), the circumferential 

length of VSMC nuclei was assumed to be uniform through the wall thickness. The 

normalized circumferential stretch ratio of VSMC nuclei at 0 mmHg was determined by 

dividing the circumferential length at 100 mmHg by the circumferential length at 0 

mmHg. For comparison purposes, the tissue level normalized circumferential stretch ratio 

at 0 mmHg with respect to the configuration at 100 mmHg was computed from 

previously conducted pressure-diameter experiments by Davis (2002). 

Statistical Analysis 

 The transmural distributions of the major axis lengths, circumferential lengths, 

helical and radial deviations, and helical and radial angles for the 0 mmHg and 100 

mmHg groups were analyzed visually and by computing the Spearman rank correlation 

coefficients, rs. The means of each variable for the 0 mmHg and 100 mmHg groups were 

tested for the same means using the Wilcoxon rank sum test or the two-sample t test. The 

Wilcoxon rank sum test applied if sampled data for variables were not governed by a 

normal probability distribution. If both data sets being compared followed a normal 

distribution, the two-sample t test was used to compare the means. The probability 

distribution of each variable was tested for normality by performing the Lilliefors test and 

 36



visually checked using a histogram prior to the analysis. A p-value of 0.05 was 

considered as statistically significant in all cases. 

Mechanical Model 

 A heterogeneous mechanical model of an arterial wall was developed based on 

the optical measurements of the two major ECM components, elastin and collagen. The 

heterogeneous model was used to compute local stresses in normal common carotid 

arteries from young pigs. An artery was considered as a thick-walled circular tube 

composed of two elastic incompressible materials, elastin and collagen, with residual 

strain at the no load state. Elastin and collagen were assumed to be responsible for the 

strength of the artery based on the previous observations (Torrance and Shwatz 1961; 

Conklin et al. 2002). The distributions of elastin and collagen, measured optically, were 

non-uniform across the arterial wall. Thus, the local mechanical property of an arterial 

wall was assumed to vary in proportion to the area fractions of elastin and collagen fibers.  

Finite Deformation of Arteries 

Opening Angle 

 The reference geometry for strains is the cross-section of a radially cut and 

opened arterial ring often referred to as the zero stress state (Chuong and Fung 1986). 

Due to the destructive nature of the method used to determine this state, residual strains 

could not be measured using the same arteries used in the organ culture. Hence, residual 

stretch ratios were measured from the same type of arteries (n = 13) as those used in the 

organ culture. The average opening angle computed using residual stretch ratios at the 

inner and outer boundaries of the arterial media was used to calculate strains through the 

arterial wall. 

 Digital images of porcine carotid arterial rings were taken before and after they 

were radially cut to relieve the residual stresses. The lengths of the inner and outer 
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boundaries of the media were digitally measured from the images. Assuming the 

geometries of unloaded and zero stress configurations to be a circular ring and a partial 

circular ring defined by an opening angle, respectively (Figure 4.7), the following 

relations are established. 
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where ρi and ρo are the inner and outer radii of the media at the unloaded state, si and so 

are the lengths of the inner and outer boundaries of the media at the unloaded state, Ri 

and Ro are the inner and outer radii of the media at the zero stress state, Si and So are the 

lengths of the inner and outer boundaries of the media at the zero stress state, and Φ is the 

opening angle (Figure 4.7). 

 

 
 
 

 
 
Figure 4.7: The cross-sectional configurations of unloaded state (left) and zero stress state 
(right). 
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 Assuming incompressibility and no axial stretch, the cross-sectional areas at both 

states are the same as 

 

 ( ) ( )( )2222
ioiom RRA −Φ−π=ρ−ρπ= ,        (4.12) 

 

where Am is the cross-sectional area of the media. Substituting equations 4.10 and 4.11 

into equation 4.12 gives the opening angle, 
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Strains of Elastin and Collagen 

 A point (R, Θ, Z) in the zero stress configuration is mapped to a point (r, θ, z) in 

the pressurized and axially stretched configuration (Figure 4.8) according to 

 

( )Rrr = , Θ
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π
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The deformation gradient, say F, that maps a point (R, Θ, Z) into a point (r, θ, z) 

in cylindrical coordinates is 
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Figure 4.8: The cross-sections of arteries at zero stress configuration (left) and loaded 
configuration (right). 
 
 
 

Hence, stretch ratios in the radial, circumferential, and axial directions are, respectively, 

 

R
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The material is assumed to be incompressible (det F = 1), hence 
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Integrating equation 4.17 yields 

 

( 2222
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z
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where  is the inner radius of the deformed configuration. ir
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 Elastin provides structural support at all strains. Thus, the strain of elastin is equal 

to the strain of arterial tissue, which is defined by the principal components of the Green 

strain, 

 

( )1
2
1 2 −λ= jjE , where j = r, θ, z.       (4.19) 

 

 Based on the histological observations, the structure of collagen fibers was 

modeled as left- and right-handed helices aligned at an angle of helical deviation (θh) 

with respect to the circumferential direction (Figure 4.9). Initially undulated collagen 

fibers become straightened once a strain along the helix reaches a ‘recruiting point’, 

which was assumed to vary through the arterial wall. Once straightened, collagen fibers 

become load-bearing and a stretch ratio along the helix (λh) is given as 
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00

,            (4.20) 

 

where l0 is an undeformed length of a helix, l is a deformed length of a helix, lRP is the 

length of a helix at a recruiting point, λRP is the stretch ratio along the helix at a recruiting 

point, and λc is the stretch ratio of collagen fibers. Since collagen fibers do not affect the 

opening angle (Greenwald et al. 1997), they are not straightened at the zero stress 

configuration. Thus, λRP is larger than one at any location in arterial tissue. With the 

assumption of variable recruiting points in the radial direction, λRP is a function of r and 

should be determined using additional assumptions. Hence, the stretch ratio and the strain 

of the stretched collagen fiber in the loaded state are 
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(A) 

 

 
(B) 

 
Figure 4.9: Balanced left- and right-helices of collagen fibers at r (A) and the 
configuration of a collagen fiber at zero stress state, recruiting point, and loaded state (B).  
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RP

h
c λ

λ
=λ , for RPh λ>λ , and        (4.21) 

( 1
2
1 2 −λ= ccE ),          (4.22) 

 

where Ec is the strain of collagen fibers in the fiber direction. The square of a stretch ratio 

along the helix is 

 

0
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0
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where θh0 is a helical deviation at the zero stress configuration (Figure 4.9). Substituting 

equation 4.23 into equation 4.21 yields 
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Substituting equations 4.19 and 4.24 into equation 4.22 yields the Green strain of 

collagen fibers in terms of the tissue-level strains as 
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 To determine the recruiting points across the wall thickness, unlike previous 

studies, collagen fibers were assumed to experience identical strain at physiological 

pressure and axial stretch. It is expected that strain in VSMCs are closely associated with 

strains in collagen fibers. Therefore, the introduced assumption implies that VSMCs are 

at uniform strain under physiological loading conditions, which is in agreement with the 
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experimental observations (Fung 1984). Also, the helical deviation of collagen fibers was 

assumed to be uniform through the arterial wall at physiological pressure and axial 

stretch. The assumption was validated by observing the orientation of VSMC nuclei fixed 

at physiological loading condition. Thus, helical deviation at zero stress configuration 

generally varies through the arterial wall. The cosine and sine of the helical deviation of 

loaded collagen fibers are 
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Strain Energy Functions 

 Elastin was assumed to be a neo-Hookean material (Holzapfel et al. 2002), for 

which the SEF is 
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ce is the material constant and I1 is the first invariant of the Green strain tensor. Rewriting 

equation 4.28 in terms of the Green strain yields 

 

( zree EEEcW ++= θ .         (4.29) 

 

 Undulated collagen fibers are not load-bearing and hence are assumed to store no 

strain energy. Once straightened, collagen fibers gradually stiffen the arterial wall and 

were modeled by an exponential SEF: 
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where cc1 and cc2 are material constants for collagen fibers. Note that if cc2 is much 

smaller than 1, 

 

( ) 2
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2
2 1exp cccc EcEc ≈−          (4.31) 

 

and Wc is a quadratic function of Green strain with coefficient cc1. 

 Considering the arterial tissue as a constrained mixture, the SEF of an arterial wall 

is the sum of the SEFs of elastin and collagen fibers weighted by area fractions of each 

component: 

 

ccee WfWfW += ,          (4.32) 

 

where fe and fc are the area fractions of elastin and collagen fibers, respectively. The 

distributions of elastin and collagen fibers were observed to be heterogeneous through the 

arterial wall. With the axisymmetric assumption, the area fractions of elastin and collagen 

fibers vary solely along the radial direction. 

Stress Response 

 The Cauchy stresses in the matrix of elastin and collagen fibers are calculated by 

 

j
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and p is a Lagrange multiplier enforcing the incompressibility constraint. Substituting 

equation 4.32 into equation 4.33 yields 
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Substituting equations 4.25, 4.29, and 4.30 into equation 4.34 yields the normal stresses 

in the arterial tissue:  
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Equations 4.35 – 4.37 can be rewritten with stretch ratios and the sine and cosine of the 

helical deviation at the deformed configuration. Substituting equations 4.22, 4.26, and 

4.27 into equations 4.35 – 4.37 yields 
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 Noting that stretch ratios and the fractions of elastin and collagen fibers vary only 

with r, the equations of equilibrium read as 
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Thus, the Lagrange multiplier, p, is a function of r. Integrating equation 4.41 yields 
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where Prir −=σ )( , the luminal pressure measured as a gauge pressure. Rearranging 

equation 4.42 gives the transmural variation of the Lagrange multiplier, p, as a function 

of r: 
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The outer pressure measured as a gauge pressure is typically taken to be zero. Thus, 

 yields 0)( =σ or r
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where ro is the outer radius of the deformed configuration. Equation 4.44 includes four 

unknown variables, ce, cc1, cc2, and λc at Pi = 100 mmHg and λz = 1.5. 
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Implementation of Heterogeneous Model 

 The transverse cross-section of arterial tissue, including the internal elastic lamina 

(IEL), the media, and the EEL, was modeled as a multi-layered tube composed of 51 

concentric layers. The thickness of each layer was about 11 µm representing 

approximately half of the width of a VSMC (Todd et al. 1983). The average pixel 

intensities of elastin and collagen fibers in each layer were assumed to be proportional to 

the area fraction of each component: 

 

kikki If α= ,           (4.45) 

 

where k is e for elastin or c for collagen fibers, fki is the area fraction of elastin or collagen 

fibers in the ith layer, and αk is the constant of proportionality for elastin or collagen 

fibers. 

 The area-weighted average of the area fraction of elastin (or collagen fibers) in 

each layer yields the area fraction of elastin (or collagen fibers) in the arterial wall: 
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where Ai is the area of the ith layer, and Fk is the area fraction of elastin or collagen fibers 

in the arterial wall. Likewise, the area-weighted average of the pixel intensity of elastin 

(or collagen fibers) in each layer yields the average pixel intensity of elastin (or collagen 

fibers) at the tissue level: 
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where kI  is the average pixel intensity of elastin or collagen fibers in the arterial wall. 

Substituting equations 4.45 and 4.47 into equation 4.46 gives 

 

 kkk IF α= .           (4.48) 

 

Then, substituting equation 4.48 into equation 4.45 yields 
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The pixel intensities of elastin and collagen fibers were normalized using 

 

 
k

ki
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II =′ ,           (4.50) 

 

where  is the normalized pixel intensity of elastin (or collagen fibers) in the ikiI ′ th layer, 

and the area-weighted average of kiI ′  yields one. Thus, the area fraction of each 

component in the ith layer is decoupled into tissue-level area fraction and normalized 

distribution of each component.  

The proportionality constant, αk, varies from section to section depending on the 

conditions for staining and imaging. For elastin imaging, this is attributable to the opacity 

of the embedding medium and photo bleaching of the sections. For the images of 
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collagen fibers, this is due to the variability of sectioning and staining conditions. The 

setting of a microscope such as exposure time also affects pixel intensity. Thus the area 

fractions of elastin and collagen fibers cannot be measured precisely using methods used 

in this study. The area fractions are coupled with material constants in the constitutive 

equation. Thus, they can not be optimized unless material constants are given. Hence, 

area fractions and material constants were optimized together as area fraction-weighted 

material constants: 

 

eee cFc =′ ,           (4.51) 

11 ccc cFc =′ .           (4.52) 

 

where  and  are the area fraction-weighted material constants for elastin and 

collagen fibers, respectively. 

ec′ 1cc′

 Rewriting equation 4.44 in a discrete form gives 
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where  and  are circumferential and radial stretch ratios in the iiθλ riλ th layer, ciλ  is the 

stretch ratio of collagen fibers in the ith layer, hiθ  is the helical deviation in the ith layer,  

is the thickness of the i

it

th layer, and ir  is the mean radius of the ith layer.  

 The average of previously reported pressure-diameter relations (n = 9) of healthy 

porcine carotid arteries prior to the organ culture (Davis 2002) was used to determine 

stretch ratios at various pressures assuming incompressibility. The pressure-diameter 
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relationship was measured using arteries stretched to in vivo length (λz = 1.5) at ten 

pressure points between 0 mmHg and 120 mmHg. The error at each data point associated 

with regression analysis was defined as the difference between experimentally measured 

pressure and computed pressure at measured diameter using the model: 

 

theoryPPe −= exp ,          (4.54) 

 

where Pexp is the luminal pressure measured experimentally at each data point, and Ptheory 

is the luminal pressure computed using the model at each data point. Thus, force 

equilibrium at each of ten pressure-diameter data points gives 
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Equation 4.55 forms a mathematical model for multivariate nonlinear regression 

with ten pairs of pressure-diameter data points. Using both numerical and analytical 

methods, four unknown parameters, a material constant for elastin ( ), material 

constants for collagen fibers (

ec′

1cc′  and ), and uniform stretch ratio of collagen fibers 

(λ

2cc

c) at Pi = 100 mmHg and λz = 1.5 were optimized by minimizing the error function (Ω) 

defined as 
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 With optimized parameters for each artery, the transmural distributions of stresses 

were calculated for static luminal pressure equal to the mean pressure of each artery 

during organ culture. First, the Lagrange multiplier of the ith layer was computed: 
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where pi is the Lagrange multiplier of the ith layer. Then, the normal stresses in the ith 

layer are 
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where σri, σθi, and σzi are normal stresses of the ith layer in the radial, circumferential, and 

axial directions, respectively. 

Homogeneous Model 

 A comparable model assuming homogeneous structure across the arterial wall 

was also formulated and analyzed. The distributions of elastin and collagen fibers were 

assumed to be uniform across the arterial wall for the homogeneous model: 

 

1=′eI ,            (4.61) 

1=′cI .            (4.62) 
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In contrast to the heterogeneous model, previously developed structure-based models 

utilized a single collagen recruiting function to model the recruitment of collagen fibers. 

In other words, they assumed that a ‘recruiting point’ does not vary through the thickness 

(Wuyts et al. 1995; Zulliger et al. 2004). Thus, unknown parameters for the homogeneous 

model are a material constant for elastin ( ec′ ), material constants for collagen fibers ( 1cc′  

and ), and the constant recruiting point of collagen fibers (λ2cc RP). These parameters 

were optimized by minimizing the error function, equation 4.55. The distributions of 

stresses were calculated for static luminal pressure equal to the mean pressure of each 

artery during organ culture using equations 4.57 – 4.60. 

Statistical Analysis 

 The hypothesis that local stress distribution correlates to the distributions of the 

expression and activation of MMP-2 and MMP-9 was tested by calculating the Spearman 

rank correlation coefficients (rs) between the computed circumferential stress using the 

heterogeneous or the homogeneous model and MMP-2 positive stained area fraction, 

MMP-9 positive stained area fraction, or substrate (gelatin) lysis area fraction for each 

specimen. Groups of correlation coefficients were tested for zero mean using the single-

sample Student’s t-test. Because the correlation coefficients are not normally distributed, 

they were transformed with the Fisher transformation and considered as samples from 

normal distribution with unknown mean and variance. A p-value of 0.05 was considered 

as statistically significant in all cases.  
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CHAPTER 4 

RESULTS 

 

Distributions of Expression and Activation of MMP-2 and MMP-9 

The expressions of MMP-2 and MMP-9 were mostly localized near the IEL, the 

outer media, and the EEL (Figure 5.1A and B, respectively). The activities of MMP-2 

and MMP-9 were mostly localized in the outer media and the EEL (Figure 5.1C). In the 

IEL and the inner media, the gelatinolytic activities were weak. The area fractions of 

pixels positively stained for MMP-2 or MMP-9 and substrate lysis in each layer were 

plotted against the normalized thickness for the normotensive group (Figure 5.2 – 5.6) 

and the hypertensive group (Figure 5.7 – 5.10). The expression of MMP-2 increased 

toward the outer layer in both normotensive arteries (rs = 0.79; p < 0.01; n = 5) and 

hypertensive arteries (rs = 0.84; p < 0.01; n = 4). The expression of MMP-9 also 

increased toward the outer layer in both normotensive arteries (rs = 0.56; p = 0.01; n = 5) 

and hypertensive arteries (rs = 0.69; p < 0.01; n = 4). The gelatinolytic activities increased 

toward the outer layer in all arteries incubated at either 100 mmHg (rs = 0.86; p < 0.01; n 

= 5) or 200 mmHg (rs = 0.83; p < 0.01; n = 4). Spearman rank correlation coefficients for 

each artery are listed in Table 5.1.  
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(A) 

 
(B) 

 
(C) 

 
Figure 5.1: Representative images of the immunostaining for MMP-2 (A) and MMP-9 
(B), where areas positively stained for MMP-2 and MMP-9 appear to be dark gray-black. 
A representative image of in situ zymography (C) showing localized gelatinolytic 
activities that are dark regions in the image. Arrows indicate one normalized thickness, 
which is from the IEL to the EEL. Bars = 100µm. 
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Figure 5.2: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 14) (A) and MMP-9 (n = 8) (B) and substrate lysis due to gelatinolytic activities (n = 8) 
(C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) for 
sample #1001 (normotensive). 
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Figure 5.3: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 15) (A) and MMP-9 (n = 18) (B) and substrate lysis due to gelatinolytic activities (n = 
12) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1002 (normotensive). 
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Figure 5.4: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 17) (A) and MMP-9 (n = 22) (B) and substrate lysis due to gelatinolytic activities (n = 
11) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1003 (normotensive). 
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Figure 5.5: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 14) (A) and MMP-9 (n = 8) (B) and substrate lysis due to gelatinolytic activities (n = 
11) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1004 (normotensive). 
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Figure 5.6: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 15) (A) and MMP-9 (n = 10) (B) and substrate lysis due to gelatinolytic activities (n = 
12) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1005 (normotensive). 
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Figure 5.7: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 13) (A) and MMP-9 (n = 12) (B) and substrate lysis due to gelatinolytic activities (n = 
10) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2001 (hypertensive). 
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Figure 5.8: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 13) (A) and MMP-9 (n = 12) (B) and substrate lysis due to gelatinolytic activities (n = 
11) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2002 (hypertensive). 
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Figure 5.9: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 13) (A) and MMP-9 (n = 12) (B) and substrate lysis due to gelatinolytic activities (n = 
11) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2003 (hypertensive). 
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Figure 5.10: The average area fractions of pixels positively immunostained for MMP-2 (n 
= 13) (A) and MMP-9 (n = 12) (B) and substrate lysis due to gelatinolytic activities (n = 
11) (C) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2004 (hypertensive). 
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Table 5.1: Spearman rank correlation coefficients (rs) between normalized thickness and 
the expression and activation of MMP-2 and MMP-9 in normotensive arteries (#1001 – 
#1005) and hypertensive arteries (#2001 – #2004). All correlations were statistically 
significant except *one case. 
 

Specimen 

MMP-2 expression 
vs. 

normalized thickness 
(rs) 

MMP-9 expression  
vs. 

normalized thickness 
(rs)  

Gelatinolytic activity 
vs. 

normalized thickness 
(rs)  

#1001 0.8586 (p < 0.01) 0.4767 (p < 0.01) 0.9001 (p < 0.01) 
#1002 0.8757 (p < 0.01) 0.6173 (p < 0.01) 0.8828 (p < 0.01) 
#1003 0.6219 (p < 0.01) 0.8170 (p < 0.01) 0.8734 (p < 0.01) 
#1004 0.8907 (p < 0.01) 0.2179 (p = 0.06)* 0.9119 (p < 0.01) 
#1005 0.7079 (p < 0.01) 0.6545 (p < 0.01) 0.7070 (p < 0.01) 
#2001 0.8658 (p < 0.01) 0.6896 (p < 0.01) 0.9285 (p < 0.01) 
#2002 0.7805 (p < 0.01) 0.6895 (p < 0.01) 0.7255 (p < 0.01) 
#2003 0.8293 (p < 0.01) 0.6420 (p < 0.01) 0.9309 (p < 0.01) 
#2004 0.8646 (p < 0.01) 0.7319 (p < 0.01) 0.7304 (p < 0.01) 

 
 
 
 

Distributions of Elastin and Collagen Fibers 

 The transmural distributions of elastin and collagen fibers in the arteries fixed at 

in vivo length (λz = 1.5) and mean incubating pressure, 100 mmHg for the normotensive 

group and 200 mmHg for the hypertensive group, were acquired from the images of each 

component. 

 A representative image of elastin shows the IEL with strong autofluorescence 

along with thin elastin lamellae between VSMC layers (Figure 5.11A). The EEL was 

thick and composed of rather discontinuous elastin fragments. Elastin was not observed 

in the adventitia. Although elastin lamellae were discretely distributed through the media, 

they were continuously branching and merging through the circumference of the artery. 

The average pixel intensity, which is proportional to the area fraction, of elastin in each 

layer was mostly uniform in the media with a small increase near the outer boundary of 

the media and high in the IEL and the EEL in normotensive arteries (Figure 5.12A – 
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5.16A) and hypertensive arteries (Figure 5.17A – 5.20A). Although the pixel intensity of 

elastin in each layer peaked at the IEL, it generally increased toward the outer layer in 

arteries fixed at either 100 mmHg (rs = 0.48; p = 0.03; n = 5) or 200 mmHg (rs = 0.38; p 

= 0.01; n = 4). The distributions of elastin were similar between specimens fixed at 100 

mmHg and those fixed at 200 mmHg. Though the pattern of the distribution was 

consistent among the specimens, the overall luminance of elastin autofluorescence varied 

among sections due to the varying opacity of the embedding medium. 

 A representative image of collagen fibers shows that the strongest birefringence is 

detected in the adventitia mainly due to its high content of structural collagen type I 

fibers, which were mostly observed as thick and long fiber bundles (Figure 5.11B). 

Although the birefringence of collagen fibers was high in the EEL, they were 

discontinuous and fragmented unlike in the adventitia. In the media, most of collagen 

fibers were located near elastin lamellae, but they were, unlike the elastin lamellae, 

mostly discontinuous. The average pixel intensity, which is proportional to the area 

fraction, of collagen fibers in each layer was greatest near the EEL with a small peak in 

the IEL in normotensive arteries (Figure 5.12B – 5.16B) and hypertensive arteries (Figure 

5.16B – 5.20B). The distribution of collagen fibers was relatively uniform in the inner 

media and gradually increased toward the outer layer. The pixel intensity of collagen 

fibers in each layer increased toward the outer layer in arteries fixed at either 100 mmHg 

(rs = 0.69; p = 0.02; n = 5) or 200 mmHg (rs = 0.87; p < 0.01; n = 4). Spearman rank 

correlation coefficients for each artery are listed in Table 5.2. 
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(A) 

 
(B) 

 
Figure 5.11: Representative images of elastin (A) and collagen fibers (B) taken from the 
arteries stretched to in vivo length (λz = 1.5) and fixed at 100 mmHg (normotensive). 
Arrows indicate one normalized thickness, which is from the IEL to the EEL. Bars = 50 
µm. 
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Figure 5.12: The average pixel intensities of elastin (n = 20) (A) and collagen fibers (n = 
20) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1001 (normotensive). 
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Figure 5.13: The average pixel intensities of elastin (n = 19) (A) and collagen fibers (n = 
16) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1002 (normotensive). 
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Figure 5.14: The average pixel intensities of elastin (n = 21) (A) and collagen fibers (n = 
15) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1003 (normotensive). 
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Figure 5.15: The average pixel intensities of elastin (n = 27) (A) and collagen fibers (n = 
15) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1004 (normotensive). 
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Figure 5.16: The average pixel intensities of elastin (n = 23) (A) and collagen fibers (n = 
23) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #1005 (normotensive). 
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Figure 5.17: The average pixel intensities of elastin (n = 18) (A) and collagen fibers (n = 
18) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2001 (hypertensive). 
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Figure 5.18: The average pixel intensities of elastin (n = 18) (A) and collagen fibers (n = 
18) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2002 (hypertensive). 
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Figure 5.19: The average pixel intensities of elastin (n = 18) (A) and collagen fibers (n = 
18) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2003 (hypertensive). 
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Figure 5.20: The average pixel intensities of elastin (n = 18) (A) and collagen fibers (n = 
18) (B) in each layer were plotted against the normalized thickness as mean (•) ± S.D. (+) 
for sample #2004 (hypertensive). 
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Table 5.2: Spearman rank correlation coefficients (rs) between normalized thickness and 
the concentrations of elastin and collagen fibers in normotensive arteries (#1001 – #1005) 
and hypertensive arteries (#2001 – #2004). All correlations were statistically significant 
except *two cases. 
 

Specimen Elastin concentration 
vs. normalized thickness (rs) 

Collagen fiber concentration 
vs. normalized thickness (rs) 

#1001 0.6149 (p < 0.01) 0.4720 (p < 0.01) 
#1002 0.4414 (p < 0.01) 0.9109 (p < 0.01) 
#1003 0.5828 (p < 0.01) 0.8480 (p < 0.01) 
#1004 0.7778 (p < 0.01) 0.9371 (p < 0.01) 
#1005 -0.0153 (p = 0.46)* 0.2687 (p < 0.05) 
#2001 0.4240 (p < 0.01) 0.9378 (p < 0.01) 
#2002   0.1859 (p = 0.09)* 0.8170 (p < 0.01) 
#2003 0.5027 (p < 0.01) 0.7766 (p < 0.01) 
#2004 0.4064 (p < 0.01) 0.9348 (p < 0.01) 

 
 
 

Distributions of VSMC Nuclear Geometry 

 The length and orientation of VSMC nuclei were quantified using two pairs of 

common carotid arteries from young pigs. Each pair was composed of left and right 

common carotid arteries from same pig. In each pair, both arteries were stretched to in 

vivo length (λz = 1.5), and then one was fixed at 0 mmHg and the other at 100 mmHg. 

VSMC Nuclear Length 

  The major axis lengths of VSMC nuclei at 0 mmHg were 18.02 ± 3.63 µm (n = 

291) for pair 1 and 18.46 ± 3.96 µm (n = 372) for pair 2. The major axis lengths of 

VSMC nuclei at 100 mmHg were 23.09 ± 4.75 (n = 525) for pair 1 and 23.95 ± 5.03 (n = 

485) for pair 2. The probability distribution of each data set of major axis lengths was not 

governed by a normal probability distribution (Table 5.3) and visualized using a 

histogram (Figure 5.21). In both pairs of data, the major axis length of VSMC nuclei was 

significantly shorter at 0 mmHg than at 100 mmHg (p < 0.01 for both pairs). The 

transmural distribution of major axis lengths showed a positive trend at 0 mmHg and no 
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significant trend at 100 mmHg (Table 5.4). However, major axis lengths at 0 mmHg 

peaked between 0.6 and 0.7 normalized thickness and decreased toward the outer 

boundary (Figure 5.22). The distributions of major axis lengths at 0 mmHg showed 

significant positive trends (rs = 0.30, p < 0.01 for pair 1; rs = 0.24, p < 0.01 for pair 2) in 

the inner 70% of the wall thickness and either no significant (rs = -0.14, p = 0.08 for pair 

1) or significant negative trend (rs = -0.21, p < 0.01 for pair 2) in the outer 40% of the 

wall thickness. The major axis lengths of VSMC nuclei were uniformly distributed 

through the wall at 100 mmHg (Figure 5.22). 

 The circumferential lengths of VSMC nuclei at 0 mmHg were 16.72 ± 4.09 µm (n 

= 291) for pair 1 and 17.20 ± 4.26 µm (n = 372) for pair 2. The circumferential lengths of 

VSMC nuclei at 100 mmHg were 22.54 ± 4.97 (n = 525) for pair 1 and 23.41 ± 5.31 (n = 

485) for pair 2. The probability distribution of each data set of circumferential lengths 

was not governed by a normal probability distribution (Table 5.3) and visualized using a 

histogram (Figure 5.23). In both pairs of data, the circumferential length of VSMC nuclei 

was significantly shorter at 0 mmHg than at 100 mmHg (p < 0.01 for both pairs). The 

transmural distribution of circumferential lengths showed a positive trend at 0 mmHg and 

no significant trend at 100 mmHg (Table 5.4). However, circumferential lengths at 0 

mmHg peaked between 0.6 and 0.7 normalized thickness and decreased toward the outer 

boundary (Figure 5.24). The distributions of circumferential lengths at 0 mmHg showed 

significant positive trends (rs = 0.35, p < 0.01 for pair 1; rs = 0.34, p < 0.01 for pair 2) in 

the inner 70% of the wall thickness and either no significant (rs = -0.16, p = 0.05 for pair 

1) or significant negative trend (rs = -0.28, p < 0.01 for pair 2) in the outer 40% of the 

wall thickness. The circumferential lengths of VSMC nuclei were uniformly distributed 

through the wall at 100 mmHg (Figure 5.24). 

 Based on the observation, the distribution of the circumferential lengths of VSMC 

nuclei at 100 mmHg was assumed to be uniform. The circumferential stretch ratios of 

VSMC nuclei at 0 mmHg with respect to the circumferential lengths of VSMC nuclei at 
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100 mmHg were higher than the stretch ratios of arterial tissue in the circumferential 

direction with respect to the configuration at 100 mmHg (Figure 5.25). Upon 

depressurization, the VSMC nuclei deformed about half of the deformation of arterial 

tissue at the same intramural location in the circumferential direction. 

 
 
 
Table 5.3: The hypothesis that each data set for the measurements of VSMC nuclear 
geometry has a normal distribution was evaluated using the Lilliefors test. The hypothesis 
is rejected if the test is significant at the 5% level (i.e. a p-value is below 0.05). *Four 
data sets followed a normal distribution. 
 

Specimen Pair 1 Specimen Pair 2 VSMC nuclear geometry 0 mmHg 100 mmHg 0 mmHg 100 mmHg 
Major axis length p < 0.01 p = 0.0145 p < 0.01 p < 0.01 

Circumferential length p < 0.01 p = 0.0251 p < 0.01 p < 0.01 
Helical deviation p < 0.01 p < 0.01 p < 0.01 p < 0.01 

Helical angle p = 0.1819* p < 0.01 p = 0.0151 p < 0.01 
Radial deviation p < 0.01 p < 0.01 p < 0.01 p < 0.01 

Radial angle p = 0.0953* p = 0.1908* p < 0.01 p = 0.1491* 
 
 
 
 
Table 5.4: Spearman rank correlation coefficients (rs) between normalized thickness and 
the major axis lengths, circumferential lengths, helical and radial deviation, and helical 
and radial angles. 
 

Specimen Pair 1 Specimen Pair 2  
0 mmHg 100 mmHg 0 mmHg 100 mmHg 

Major axis length vs. 
normalized thickness (rs) 

0.2195 
(p < 0.01) 

-0.0262  
(p = 0.27) 

0.1382 
(p < 0.01) 

-0.0722 
(p = 0.06) 

Circumferential length vs. 
normalized thickness (rs) 

0.2102 
(p < 0.01) 

-0.0270 
(p = 0.27) 

0.1674 
(p < 0.01) 

-0.0667 
(p = 0.07) 

Helical deviation vs. 
normalized thickness (rs) 

-0.0182 
(p = 0.38) 

0.0050 
(p = 0.45) 

-0.0216 
(p = 0.34) 

-0.0091 
(p = 0.42) 

Helical angle vs. 
normalized thickness (rs) 

0.0020 
(p = 0.49) 

-0.0867 
(p = 0.02) 

 0.0725 
(p = 0.08) 

-0.0136 
(p = 0.38) 

Radial deviation vs. 
normalized thickness (rs) 

0.0205 
(p = 0.36) 

-0.0120 
(p = 0.39) 

-0.1113 
(p = 0.02) 

0.0153 
(p = 0.37) 

Radial angle vs. 
normalized thickness (rs) 

-0.0386 
(p = 0.26) 

-0.0094 
(p = 0.41) 

-0.0542 
(p = 0.15) 

-0.0588 
(p = 0.10) 
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Figure 5.21: Histograms of VSMC nuclear major axis lengths at 0 mmHg (●) and 100 
mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC nuclei were 
counted in 20 evenly distributed bins between 0 µm and 40 µm. The means of the major 
axis lengths of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg (solid line) were 
also plotted. 
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Figure 5.22: The transmural distributions of major axis lengths in pair 1 (A) and pair 2 
(B) were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; × 
for 100 mmHg) of local measurements in 10 bins between 0 and 1 normalized thickness. 
The means of the major axis lengths of VSMC nuclei at 0 mmHg (dashed line) and 100 
mmHg (solid line) were also plotted. 
  
 

 81



 
 
 
 
 

0

5

10

15

20

25

0 10 20 30
Circumferential length (micron)

Fr
eq

ue
nc

y 
(%

)

40

Pair 1
● 0 mmHg
■ 100 mmHg

 
(A) 

0

5

10

15

20

25

0 10 20 30
Circumferential length (micron)

Fr
eq

ue
nc

y 
(%

)

40

Pair 2
● 0 mmHg
■ 100 mmHg

 
(B) 

 
Figure 5.23: Histograms of the circumferential lengths of VSMC nuclei at 0 mmHg (●) 
and 100 mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC 
nuclei were counted in 20 evenly distributed bins between 0 µm and 40 µm. The means 
of the circumferential lengths of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg 
(solid line) were also plotted. 
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Figure 5.24: The transmural distributions of circumferential lengths in pair 1 (A) and pair 
2 (B) were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; 
× for 100 mmHg) of local measurements in 10 bins between 0 and 1 normalized 
thickness. The means of the circumferential lengths of VSMC nuclei at 0 mmHg (dashed 
line) and 100 mmHg (solid line) were also plotted. 
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Figure 5.25: The distributions of the normalized circumferential stretch ratios of VSMC 
nuclei at 100 mmHg (■) and 0 mmHg (○ for pair 1; ● for pair 2) with respect to the 
circumferential length of VSMC nuclei at 100 mmHg. For comparison, the normalized 
circumferential stretch ratio of arterial tissue at 0 mmHg computed from available 
pressure-diameter experiments (Davis, 2002; n = 9) with respect to the configuration of 
arterial tissue at 100 mmHg was plotted (dashed line). 
 
 
 
 

VSMC Nuclear Orientation 

 The helical angles of VSMC nuclei at 0 mmHg were 5.14 ± 19.41° (n = 291) for 

pair 1 and -0.71 ± 20.24° (n = 372) for pair 2. The helical angles of VSMC nuclei at 100 

mmHg were 2.61 ± 11.57° (n = 525) for pair 1 and -2.50 ± 11.21° (n = 485) for pair 2. 

The probability distribution of each data set of helical angles was not governed by a 

normal probability distribution except the helical angles of pair 1 at 0 mmHg (Table 5.3) 

and visualized using a histogram (Figure 5.26). In pair 1, the helical angle of VSMC 

nuclei was significantly larger at 0 mmHg than at 100 mmHg (p = 0.04). The difference 

between the average helical angles in pair 1 was small (2.53°) and may caused by error 
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due to the alignment. In pair 2, there was no significant difference between the average 

helical angles of VSMC nuclei at 0 mmHg and at 100 mmHg (p = 0.32). The transmural 

distribution of helical angles showed no trend (Table 5.4) and was uniform either at 0 

mmHg or at 100 mmHg (Figure 5.27). Although both of average helical angles at 0 

mmHg and 100 mmHg were close to zero, the standard deviation of helical angles was 

larger at 0 mmHg than at 100 mmHg. 

 The helical deviations of VSMC nuclei at 0 mmHg were 15.27 ± 13.01° (n = 291) 

for pair 1 and 14.89 ± 13.41° (n = 372) for pair 2. The helical deviations of VSMC nuclei 

at 100 mmHg were 8.79 ± 7.95° (n = 525) for pair 1 and 8.04 ± 8.20° (n = 485) for pair 2. 

The probability distribution of each data set of helical deviations was not governed by a 

normal probability distribution (Table 5.3) and visualized using a histogram (Figure 

5.28). In both pairs of data, the helical deviation of VSMC nuclei was significantly larger 

at 0 mmHg than at 100 mmHg (p < 0.01 for both pairs). The transmural distribution of 

helical deviations showed no significant trend either at 0 mmHg or at 100 mmHg (Table 

5.4). However, helical deviations at 0 mmHg were small in the middle of an arterial wall 

and increased toward the inner and the outer boundaries (Figure 5.29). The distributions 

of helical deviations at 0 mmHg showed significant negative trends (rs = -0.22, p < 0.01 

for pair 1; rs = -0.18, p < 0.01 for pair 2) in the inner half of the wall thickness and 

significant positive trends (rs = 0.17, p = 0.03 for pair 1; rs = 0.16, p = 0.02 for pair 2) in 

the outer half of the wall thickness. The helical deviations of VSMC nuclei were 

uniformly distributed through the arterial wall at 100 mmHg (Figure 5.29). 
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Figure 5.26: Histograms of the helical angles of VSMC nuclei at 0 mmHg (●) and 100 
mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC nuclei were 
counted in 36 evenly distributed bins between -90° and 90°. The means of the helical 
angles of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg (solid line) were also 
plotted. 
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Figure 5.27: The transmural distributions of helical angles in pair 1 (A) and pair 2 (B) 
were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; × for 
100 mmHg) of local measurements in 10 bins between 0 and 1 normalized thickness. The 
means of the helical angles of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg 
(solid line) were also plotted. 
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Figure 5.28: Histograms of the helical deviations of VSMC nuclei at 0 mmHg (●) and 
100 mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC nuclei 
were counted in 18 evenly distributed bins between 0° and 90°. The means of the helical 
deviations of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg (solid line) were 
also plotted. 
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Figure 5.29: The transmural distributions of helical deviations in pair 1 (A) and pair 2 (B) 
were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; × for 
100 mmHg) of local measurements in 10 bins between 0 and 1 normalized thickness. The 
means of the helical deviations of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg 
(solid line) were also plotted. 
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 The radial angles of VSMC nuclei at 0 mmHg were -0.10 ± 11.78° (n = 291) for 

pair 1 and 0.76 ± 10.10° (n = 372) for pair 2. The radial angles of VSMC nuclei at 100 

mmHg were 0.27 ± 6.36° (n = 525) for pair 1 and 0.36 ± 6.94° (n = 485) for pair 2. The 

probability distribution of each data set of radial angles was generally governed by a 

normal probability distribution except the radial angles of pair 2 at 0 mmHg (Table 5.3) 

and visualized using a histogram (Figure 5.30). There was no significant difference 

between the average radial angles of VSMC nuclei at 0 mmHg and at 100 mmHg (p = 

0.63 for pair 1; p = 0.83 for pair 2). The transmural distribution of radial angles showed 

no significant trend (Table 5.4) and was uniform either at 0 mmHg or at 100 mmHg 

(Figure 5.31). Although both of average radial angles at 0 mmHg and 100 mmHg were 

close to zero, the standard deviation of radial angles was larger at 0 mmHg than at 100 

mmHg. 

 The radial deviations of VSMC nuclei at 0 mmHg were 8.89 ± 7.71° (n = 291) for 

pair 1 and 7.25 ± 7.07° (n = 372) for pair 2. The radial deviations of VSMC at 100 

mmHg were 4.85 ± 4.11° (n = 525) for pair 1 and 5.36 ± 4.43° (n = 485) for pair 2. The 

probability distribution of each data set of radial deviations was not governed by a normal 

probability distribution (Table 5.3) and visualized using a histogram (Figure 5.32). In 

both pairs of data, the radial deviation of VSMC nuclei was significantly larger at 0 

mmHg than at 100 mmHg (p < 0.01 for both pairs). The transmural distribution of radial 

deviations at 0 mmHg showed no significant trend for pair 1 and a significant but weak 

negative trend for pair 2. There was no significant trend in the transmural distribution of 

radial deviations at 100 mmHg (Table 5.4). However, radial deviations at 0 mmHg were 

smallest between 0.6 and 0.7 normalized thickness and increased toward the inner and the 

outer boundaries (Figure 5.33). The distributions of radial deviations at 0 mmHg showed 

significant negative trends (rs = -0.14, p = 0.02 for pair 1; rs = -0.25, p < 0.01 for pair 2) 

in the inner 70% of the wall thickness and significant positive trends (rs = 0.18, p = 0.04 
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for pair 1; rs = 0.25, p < 0.01 for pair 2) in the outer 40% of the wall thickness. The radial 

deviations of VSMC nuclei were uniformly distributed through the arterial wall at 100 

mmHg (Figure 5.33). 

Distributions of Circumferential Stresses 

 The average opening angle and helical deviation, 41.87° and 8.43°, respectively, 

were used in the heterogeneous and homogeneous models. The opening angle of porcine 

common carotid arteries was 41.87 ± 21.22° (n = 13) and ranged from 0.64° to 75.21°. 

For each artery, the average area fractions of elastin and collagen fibers in each layer 

were used in the model. 

 Table 5.5 shows estimated parameters for the heterogeneous and homogeneous 

model. Since λRP is a function of r in the heterogeneous model, it is shown as the range of 

stretch ratio in the direction of the collagen fibers. Assuming a uniform strain of collagen 

fibers at physiological pressure (100 mmHg) and axial stretch (λz = 1.5), a recruiting 

point was highest at the inner surface (Figure 5.34).   

 In both normotensive and hypertensive arteries, the intramural distribution of 

circumferential stresses computed using the heterogeneous model was skewed “U”-

shaped with the highest stress at the outer boundary (Figure 5.35 – 5.43). The gradient of 

circumferential stress was the highest near the intima. The circumferential stress 

decreased sharply at the boundary between the IEL and the media, and gradually 

increased toward the outer layer. The circumferential stress was lowest and generally 

uniform in the inner media. 

 The circumferential stress, computed using the homogeneous model, was highest 

at the intimal layer and gradually decreased toward the outer layer (Figure 5.44). The 

intramural distributions of circumferential stresses computed using the heterogeneous 

model were more uniform compared to the one computed using the homogeneous model 

(Figure 5.45). 
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Figure 5.30: Histograms of the radial angles of VSMC nuclei at 0 mmHg (●) and 100 
mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC nuclei were 
counted in 36 evenly distributed bins between -90° and 90°. The means of the radial 
angles of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg (solid line) were also 
plotted. 
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Figure 5.31: The transmural distributions of radial angles in pair 1 (A) and pair 2 (B) 
were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; × for 
100 mmHg) of local measurements in 10 bins between 0 and 1 normalized thickness. The 
means of the radial angles of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg 
(solid line) were also plotted. 
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Figure 5.32: Histograms of the radial deviations of VSMC nuclei at 0 mmHg (●) and 100 
mmHg (■) in pair 1 (A) and pair 2 (B) were shown. The numbers of VSMC nuclei were 
counted in 18 evenly distributed bins between 0° and 90°. The means of the radial 
deviations of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg (solid line) were 
also plotted. 
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Figure 5.33: The transmural distributions of radial deviations in pair 1 (A) and pair 2 (B) 
were shown as the mean (● for 0 mmHg; ■ for 100 mmHg) ± S.D. (+ for 0 mmHg; × for 
100 mmHg) of local measurements in 10 bins between 0 and 1 normalized thickness. The 
means of the radial deviations of VSMC nuclei at 0 mmHg (dashed line) and 100 mmHg 
(solid line) were also plotted. 
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Table 5.5: Material constants for elastin and collagen fibers, the range of recruiting points 
for the heterogeneous model, and the recruiting point for the homogeneous model 
estimated by minimizing the error function (Ω) are shown for normotensive arteries 
(#1001 – #1005) and hypertensive arteries (#2001 – #2004). 
 

 ec′ 1cc′  2cc  λRP R2

#1001 4.28 6.04 3.74 1.00 – 1.49 0.9949 
#1002 3.92 6.02 3.80 1.00 – 1.49 0.9949 
#1003 3.97 6.04 3.72 1.00 – 1.49 0.9949 
#1004 4.18 6.03 3.74 1.00 – 1.49 0.9948 
#1005 3.74 6.11 3.67 1.00 – 1.49 0.9949 
#2001 4.01 6.05 3.73 1.00 – 1.49 0.9949 
#2002 3.88 6.06 3.71 1.00 – 1.49 0.9949 
#2003 4.06 6.05 3.72 1.00 – 1.49 0.9949 
#2004 3.95 6.03 3.76 1.00 – 1.49 0.9949 

Homogeneous 3.25 2.57 0.78 1.04 0.9960 
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Figure 5.34: The distribution of recruiting points in the heterogeneous model (black solid 
line) is plotted along with the stretch ratio of the artery along the helix at 100 mmHg and 
λz = 1.5 (red solid line) and the recruiting point in the homogeneous model (dotted line), 
which is a constant through the thickness. 
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Figure 5.35: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #1001 (normotensive). 
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Figure 5.36: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #1002 (normotensive). 
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Figure 5.37: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #1003 (normotensive). 
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Figure 5.38: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #1004 (normotensive). 
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Figure 5.39: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #1005 (normotensive). 
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Figure 5.40: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #2001 (hypertensive). 
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Figure 5.41: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #2002 (hypertensive). 
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Figure 5.42: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #2003 (hypertensive). 
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Figure 5.43: The intramural distribution of circumferential stresses (•) in 51 layers 
computed using the heterogeneous model for sample #2004 (hypertensive). 
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Figure 5.44: The intramural distributions of circumferential stresses at 100 mmHg (solid 
line) and at 200 mmHg (dashed line) computed using the homogeneous model. 
 
 

 101



 
 
 
 
 

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1
Normalized thickness

C
irc

um
fe

re
nt

ia
l s

tr
es

s 
(k

Pa
)

 
(A) 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.2 0.4 0.6 0.8 1
Normalized thickness

C
irc

um
fe

re
nt

ia
l s

tr
es

s 
(k

Pa
)

 
(B) 

 
Figure 5.45: The intramural distributions of circumferential stresses computed using the 
homogeneous model (black solid line) and the heterogeneous model shown as mean (red 
solid line) ± S.D. (red dashed line) at 100 mmHg (A) and 200 mmHg (B) were plotted 
together. 
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Correlation between Circumferential Stress and the Expression and Activation of 

MMP-2 and MMP-9 

 Table 5.6 shows the Spearman rank correlation coefficients between the 

computed circumferential stress and the expression and activation of MMP-2 and MMP-9 

for individual specimens. In normotensive arteries, circumferential stresses computed 

using the heterogeneous model positively correlated to the expression of MMP-2 (mean 

rs = 0.72; p = 0.01; n = 5), the expression of MMP-9 (mean rs = 0.70; p < 0.01; n = 5), 

and the activation of MMP-2 and MMP-9 (mean rs = 0.80; p < 0.01; n = 5). In 

hypertensive arteries, circumferential stresses computed using the heterogeneous model 

also positively correlated to the expression of MMP-2 (mean rs = 0.82; p = 0.01; n = 4), 

the expression of MMP-9 (mean rs = 0.83; p < 0.01; n = 4), and the activation of MMP-2 

and MMP-9 (mean rs = 0.81; p < 0.01; n = 4). 

 In normotensive arteries, circumferential stresses computed using the 

homogeneous model negatively correlated to the expression of MMP-2 (mean rs = -0.79; 

p < 0.01; n = 5), the expression of MMP-9 (mean rs = -0.56; p = 0.01; n = 5), and the 

activation of MMP-2 and MMP-9 (mean rs = -0.86; p < 0.01; n = 5). In hypertensive 

arteries, circumferential stresses computed using the homogeneous model also negatively 

correlated to the expression of MMP-2 (mean rs = -0.84; p < 0.01; n = 4), the expression 

of MMP-9 (mean rs = -0.69; p < 0.01; n = 4), and the activation of MMP-2 and MMP-9 

(mean rs = -0.83; p < 0.01; n = 4). 

 Circumferential strains computed using incompressibility negatively correlated to 

the expression and activation of MMP-2 and MMP-9, which is inconsistent with the 

positive correlation between MMP-2 and MMP-9 and mechanical stretch established in 

cell culture studies. Both of computed circumferential stresses using the heterogeneous 

and the homogeneous models significantly correlated to the expression and activation of 

MMP-2 and MMP-9. However, the heterogeneous model predicted that higher 
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circumferential stress in the ECM scaffold correlates to higher expression and activation 

of MMP-2 and MMP-9, while the homogeneous model predicted the opposite 

relationships. 

 
 
 
 
 
Table 5.6: Spearman rank correlation coefficients (rs) between the predicted local 
circumferential stress (σθ) and the expression and activation of MMP-2 and MMP-9 for 
normotensive arteries (#1001 – #1005) and hypertensive arteries (#2001 – #2004). All 
correlations were statistically significant (p < 0.01; *p < 0.05) except one case (†p = 
0.06). 
 
 

Model 
MMP-2 

expression vs. σθ  
(rs) 

MMP-9 
expression vs. σθ 

(rs) 

Gelatinolytic 
activity vs. σθ  

(rs) 
heterogeneous   0.7054   0.8613 0.6709 #1001 
homogeneous -0.8586 -0.4767 -0.9001 
heterogeneous 0.9233 0.8172 0.9360 #1002 homogeneous -0.8757 -0.6173 -0.8828 
heterogeneous 0.4017 0.7442 0.7788 #1003 homogeneous -0.6219 -0.8170 -0.8734 
heterogeneous 0.9383 0.3231* 0.9543 #1004 homogeneous -0.8907 -0.2179† -0.9119 
heterogeneous 0.6506 0.7300 0.6434 #1005 homogeneous -0.7079 -0.6545 -0.7070 
heterogeneous 0.9386 0.8302 0.9227 #2001 
homogeneous -0.8658 -0.6896 -0.9285 
heterogeneous 0.6611 0.6919 0.6893 #2002 homogeneous -0.7805 -0.6895 -0.7255 
heterogeneous 0.7455 0.8558 0.7277 #2003 homogeneous -0.8293 -0.6420 -0.9309 
heterogeneous 0.9260 0.9262 0.9115 #2004 homogeneous -0.8646 -0.7319 -0.7374 
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CHAPTER 5 

DISCUSSION 

 

Distributions of Elastin and Collagen 

 The area fraction of elastin was greatest at the IEL and was generally uniform 

through most of the medial layer with a moderate increase in the EEL. Based on the 

Spearman rank correlation coefficients, the distribution of elastin showed a positive trend 

toward the outer layer. However, the distribution of elastin showed a negative trend 

toward the outer boundary of the media when the thick EEL was excluded. Although the 

distribution of elastin may be specific to the types and species of arteries, similar trends 

were observed in other studies. In bovine carotid arteries, the area fraction of elastin 

decreased toward the outer media (Hasan and Greenwald 1995). The concentration of 

medial elastin decreased from the intima to the adventitia in the human aortas of children 

aged between 8 days and 12 years (Feldman and Glagov 1971).  

  The area fraction of collagen fibers in the media was small and relatively uniform 

in the inner media and gradually increased toward the outer boundary of the media. The 

area fraction of collagen fibers was the largest at the medial-adventitial border including 

the EEL. In the inner half of the wall, collagen fibers were denser at the IEL compared to 

the inner media. Spearman rank correlation coefficients for the distribution of collagen 

fibers indicated a strong positive trend toward the outer layer. The result is qualitatively 

in agreement with observations from previous studies which showed relatively high 

amounts of collagen fibers near the outer media (Feldman and Glagov 1971; Merrilees et 

al. 1987; Hasan and Greenwald 1995; Stergiopulos et al. 2001).  

 The distributions of elastin and collagen fibers are expected to be the product of 

cell activities and influence the mechanical behavior of arterial tissue. The layer of dense 
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collagen fibers at the outer boundary of the media was also observed in human cerebral 

arteries (Finlay et al. 1995; Rowe et al. 2003). Although the origin of collagen fibers in 

this layer is unclear, the coalignment of collagen fibers and VSMCs suggests that these 

collagen fibers are produced and organized by VSMCs. Collagen fibers in the inner 

adventitia were also aligned more circumferentially than those in the outer adventitia, 

where collagen fibers were more obliquely aligned (Canham et al. 1992). The structural 

redundancy of collagen fibers in the medial-adventitial border may be needed to maintain 

structural stability between layers with different microstructures. This suggests that the 

outer layer of the arterial media may provide more mechanical strength compared to the 

inner layer. The IEL showed a small peak in the area fraction of collagen fibers 

suggesting its role in providing mechanical strength at the inner boundary of the media. 

The higher content of matrix proteins at both sides of the media suggests the importance 

of passive mechanical support in these regions. The uniform distribution of elastin in the 

media suggests that the network of elastin lamellae, interconnected by branching and 

merger, facilitate relatively uniform load transfer through the media. 

 The distribution of collagen fibers are expected to contribute to the reduction of 

stress gradients through the arterial wall. Considering the differences in stiffness between 

elastin and collagen fibers, the intramural distribution of stress is more sensitive to the 

distribution of collagen fibers than elastin distribution. The larger area fraction of 

collagen fibers in the outer media implies that structural stiffness is higher in the outer 

media than the inner media. Due to the cylindrical geometry and incompressibility, the 

increase of strain in response to the increase of pressure is always higher at the inner 

layer. Under physiologic conditions, the pulsatility of blood flow also causes higher strain 

fluctuation at the inner layer than the outer layer. Thus, higher structural stiffness in the 

outer layer compensates for low strain in the outer layer and makes the distribution of 

stress more uniform. The distribution of collagen fibers may indicate that VSMCs work 

to maintain the optimum mechanical environment for their functionality. In addition to 
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the residual stress, the distribution of collagen seems to contribute to a more uniform 

distribution of stress. 

 The heterogeneity of the ECM may contribute to localized cell activities in 

response to the mechanical stimuli. The distributions of elastin and collagen fibers may 

influence the variation in coupling between matrix proteins and cells through an arterial 

wall and affect the mechanical environment sensed by VSMCs. Many studies suggest the 

role of specific types of ECM proteins in transmitting mechanical signals to anchored 

cells. Wilson et al. (1995) suggest that specific matrix-cell interactions may be involved 

in mechanotransduction, which may differ from those involved in adhesion. Koyama et 

al. (1996) showed that the structure of cytoskeleton and the formation of focal adhesions 

depends on the type of ECM protein cells are anchored to. Many studies suggest that 

ECM-cytoskeleton interactions are involved in mechanotransduction, which appears to be 

mediated by transmembrane ECM receptors such as integrin (Carey 1991; Wilson et al. 

1995).   

 The distribution of elastin and collagen fibers may play a role in regulating 

VSMC functions. Peyton and Putnam (2005) showed that the motility and cytoskeletal 

assembly of VSMCs depend on the stiffness of the underlying substrate and the 

concentration of ECM protein covalently attached to the substrate. Thus, the mechanical 

properties of the ECM may regulate the contractility and migration of VSMCs. Elastin is 

known to modulate VSMC phenotype. It was shown that elastin inhibits proliferation and 

regulates migration of VSMCs by modulating the contractile organization of VSMCs 

(Karnik et al. 2003a; Karnik et al. 2003b). Thus, elastin induces a quiescent contractile 

state in VSMCs and stabilizes the arterial structure. High concentrations of elastin at the 

IEL and the EEL may act as barriers for preventing VSMC migration across these 

borders. 

 In this study, the distributions of elastin and collagen fibers through the wall of 

young porcine common carotid arteries were measured using their optical properties. The 
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optical measures are influenced by many factors such as conditions for staining and 

imaging. The opacity of the embedding medium and photo bleaching of the sections can 

cause variations in the overall intensity of elastin images. Conditions for staining to 

enhance collagen birefringence can cause variations in the overall intensity of collagen 

images. Thus, the method for optimal measurement is only semi-quantitative. It was 

assumed that the average intensity of pixels is linearly proportional to the concentration 

of matrix protein in the area of interest. With this assumption, the normalized 

distributions of elastin and collagen fibers are maintained regardless of their estimated 

concentrations. 

VSMC Nuclear Geometry 

 The lengthening of VSMC nuclei in response to an increase of luminal pressure 

affirms the structural continuity among the ECM, cytoskeleton, and nuclear matrix. The 

deformation of cell nuclei in response to the external force was also observed in other 

types of tissue. Arnoczky et al. (2002) observed the lengthening of cell nuclei in tendons 

from adult Spraque-Dawley rats under tensile load. Tensions in the ECM and 

cytoskeleton are likely responsible for the mechanical strain of VSMC nuclei at 100 

mmHg. Our results suggest that VSMC nuclei have potential for acting as local strain 

gauges in the arterial tissue. 

 The distributions of both major and circumferential lengths of VSMC nuclei were 

uniform at 100 mmHg. These results suggest that the strain of VSMC nuclei under 

physiologic loading is uniform through the arterial media in agreement with previous 

observations made by Fung (1984). Assuming incompressibility and the uniform 

distribution of circumferential strain through arterial wall at 100 mmHg, it is expected 

that the length of VSMC nuclei is shortest in the innermost layer and monotonically 

increases toward the outer layer at 0 mmHg. However, this was only true for the inner 

70% of the media. Although the Spearman rank correlation coefficients showed a 
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positive trend in the distributions of the major and circumferential lengths of VSMC 

nuclei at 0 mmHg, the trend in the outer 40% of the media was either not significant or 

significantly negative. This could imply that the coupling between ECM and VSMC is 

different in the outer media from the rest of the media. Another possibility is that the 

phenotype of VSMCs in the outer media may be different from that in the rest of the 

media. Synthetic phenotype VSMCs express less amounts of contractile and adhesion 

proteins compared to contractile phenotype VSMCs. The organization of cytoskeleton 

and contractile elements is also different between two phenotypes of VSMCs (Worth et 

al. 2001). Since cytoskeleton and contractile elements acts as a force transmitter between 

focal adhesions and the nuclear envelope, the quantitative change and reorganization of 

cytoskeleton and contractile elements may change the coupling between ECM and 

VSMCs and the mechanical behavior of VSMC nuclei. More detailed microscopic data 

are necessary to verify these possibilities.  

The stretch of VSMC nuclei in the circumferential direction was smaller 

compared to the circumferential stretch of arterial tissue. This suggests that the modulus 

of VSMC nuclear matrix may be higher than the modulus of cytoskeleton and 

surrounding tissue. However, the modulus of the nuclear envelope is thought to be close 

to the modulus of elastin, which is ∼0.6 MPa (Fung 1993). Kuo and Seow (2004) 

estimated a modulus of 685 ± 116 kPa for the nuclear envelope of a porcine tracheal 

smooth muscle cell. Thus, the difference in the stretch ratios between VSMC nuclei and 

arterial tissue is not likely due to the modulus difference. Rather, the difference may due 

to the mechanism for the transmission of mechanical load from cell boundaries to a 

nuclear envelope. The nuclear envelope of VSMC is connected to the cell membrane via 

actin filaments, which transmit tensional forces. Once actin filaments lose their tension 

during depressurization, the deformations of VSMC nuclei may depends on compressive 

body forces and involve interactions with tissue components which bear compression 

rather than tension. Another possibility is that the reference configuration of VSMC 
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strain is not the cut-opened configuration of an arterial sector. It was shown that the 

removal of VSMCs has no effect on the opening angle of arteries (Greenwald et al. 

1997). This suggests that VSMCs may not have residual strain at no load conditions, thus 

the reference configuration of VSMC strain may be different from the zero stress 

configuration of arteries. A detailed microstructural study of VSMC under various 

loading conditions is necessary to investigate possibilities mentioned above.     

 The uniform distribution of VSMC nuclear strain at 100 mmHg implies the 

uniform strain of collagen fibers through the media. VSMCs are responsible for the 

remodeling of collagen fibers in the media. The coalignment of VSMCs and collagen 

fibers was observed in mechanically conditioned tissue-engineered blood vessel 

constructs (Seliktar et al. 2000) and in the media of arteries in situ (Canham et al. 1986; 

Finlay et al. 1991). The reorganization of collagen fibers mediated by VSMCs was 

observed in vitro. When cyclic circumferential stretch was applied to the tissue-

engineered blood vessel constructs composed of VSMC-seeded collagen-gel scaffold, 

VSMC-mediated reorganization of surrounding collagen matrix resulted in the 

circumferential alignment of collagen fibers as well as VSMCs in vitro (Seliktar et al. 

2000). VSMC nuclei, cytoskeleton, and collagen fibers can be considered as a continuous 

mechanical structure, where the length of a VSMC nucleus depends on the deformation 

of cytoskeleton and collagen fibers to which the cell is anchored.  

 The helical and radial angles of VSMCs at both pressures were symmetric. Such 

symmetry was also observed in the helical angles of smooth muscle and collagen fibers in 

the media of human brain arteries in situ (Finlay et al. 1991) and in the stained patch of 

human aortic media (Holzapfel et al. 2002). Assuming the symmetry between left-handed 

and right-handed helices, the average of helical angles should be zero. Although the 

average of helical angles was significantly different from 0° in three groups, the 

differences were small and thought to be due to the alignment error. Porcine common 

carotid arteries are generally straight in the axial direction. However, the curvature of 
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arteries does exist and changes in vivo depending on the posture of a host animal. Since 

the error was small, the helical angles were considered to be symmetric in the analysis. 

The average of radial angles was not significantly different from 0° indicating that 

inward- and outward-spiral orientations of VSMC nuclei are symmetric.  

Although the orientation of VSMC nuclei was symmetric at both pressures, the 

orientation of VSMC nuclei were more uniform and coherent at 100 mmHg as shown by 

insignificant Spearman rank correlation coefficients and decreased standard deviations 

compared to those at 0 mmHg, respectively. Such a trend was also seen for collagen 

fibers in the subendothelium, the media, and the adventitia of human cerebral arteries as 

they were more aligned at higher pressures (Canham et al. 1992; Finlay et al. 1995). 

While the helical and radial deviations of VSMC nuclei were uniformly distributed at 100 

mmHg, they were higher near both boundaries of the media at 0 mmHg, especially near 

the intima. The wavy nature of inner layers at 0 mmHg due to compressive forces in the 

circumferential direction is thought to be responsible for the increased variability in the 

helical and radial angles. With the incompressibility assumption, it is expected that the 

variability of VSMC orientation increases more toward inner layers as pressure 

decreases. Considering that the arteries were kept axially stretched at 0 mmHg, stretched 

collagen fibers in the intima and the adventitia may also be responsible for the 

distribution of helical and radial deviations. Collagen fibers are known to be aligned more 

longitudinally (i.e. larger helical deviation) at the subendothelium and the adventitia than 

at the media. The changes in collagen orientation are more gradual at the medial-

adventitial border than at the intimal-medial border (Canham et al. 1992; Finlay et al. 

1995). It was shown that the degree of anisotropy changes in response to the deformation 

in the axial and/or circumferential direction (Dobrin 1986). The changes in the helical 

and radial deviation in response to pressure change suggest that the orientation of 

collagen fibers changes in response to the tissue deformation. Such change may be 

partially responsible for the change of arterial anisotropy and was included in some SEFs 
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(Holzapfel et al. 2002; Zulliger et al. 2004). More experimental data are in need to 

characterize the interaction and coupling between VSMCs and ECM in situ. 

Distribution of Circumferential Stress 

In this study, a heterogeneous mechanical model of arterial tissue including the 

distributions of elastin and collagen fibers was developed. This model is a novel 

extension of the constrained-mixture models and represents the heterogeneous structure 

of the arterial media. Using the heterogeneous model, we investigated potential effects of 

the heterogeneity of ECM proteins on the transmural distributions of stress and strain and 

its implications for the physiological response of VSMCs. For comparison, stresses were 

also computed using a homogeneous model with uniform area fractions of elastin and 

collagen fibers and a fixed collagen recruiting point through the arterial wall. To improve 

the utility of models for studying cellular behaviors, it is necessary to introduce 

microstructural information into mechanical modeling.  

The opening angle of common carotid arteries from six to seven-month-old pigs 

was a highly variable measure ranging from 0.64° to 75.21°. In this study, the cross-

section of a radially cut and opened arterial ring was used as the reference geometry for 

the computation of strain. Hence residual strain was included in both the heterogeneous 

and the homogeneous models. In previous studies, homogeneous models accounting for 

residual strain showed that including residual strain significantly reduces the stress 

gradient near the intima (Chuong and Fung 1986; Matsumoto and Hayashi 1996; Rachev 

et al. 1996; Chaudhry et al. 1997). In this study, residual strain reduced the stress gradient 

near the intima but was not enough to make the circumferential stress uniform through 

the arterial wall using the homogeneous model. This is mainly due to the smaller opening 

angle of young porcine carotid arteries (∼42°) compared to those reported for other 

arteries. For example, a mean opening angle of rabbit carotid arteries reported by Li and 

Hayashi (1996) is 95°, which was also not enough to make the circumferential stress 
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uniform. In addition, it was shown that the opening angle is dependent on elastin but not 

on collagen fibers and VSMCs (Greenwald et al. 1997). Thus, the increase of opening 

angle with age may relate to the decrease of elastin with age. Considering the low 

turnover rate of elastin, such a change may be due to the plastic deformation of elastin 

rather than growth or remodeling activity. Thus, residual strain computed from the 

opening angle is generally not enough to make the stress distribution reasonably uniform 

through the arterial wall. 

The transmural distributions of local circumferential stress were computed using 

models assuming homogeneous and heterogeneous material properties. In the 

homogeneous model, circumferential stress peaked at the intima and decreased toward 

the outer layer. The distribution of circumferential stress in the media computed using the 

homogeneous model is qualitatively in agreement with the results from previously 

introduced models assuming a homogeneous media, e.g. (Holzapfel and Gasser 2000). It 

is necessary, although not sufficient, to verify the methodology. The transmural 

distribution of circumferential stress in the heterogeneous model was significantly 

different from the homogeneous model and skewed “U”-shaped with the higher stresses 

at the IEL and the EEL. The result of the heterogeneous model suggests, as noted, that 

both boundaries of the media, especially the outer media, may provide more mechanical 

support of luminal pressure. The distribution of circumferential stress computed using the 

heterogeneous model was closer to a uniform distribution when compared to the 

circumferential stress distribution computed using the homogeneous model. Such a 

distribution is mainly due to the distribution of collagen fibers and the assumption 

introduced about collagen recruiting. This implies that the heterogeneity of ECM proteins 

is critical for the uniform distribution of external forces in addition to residual stress. 

 A limitation of the methodology is the use of average pressure-diameter relations. 

Using measurements taken with each specimen may enhance the correlation between 

cellular activities and model predictions. However, the previously measured pressure-
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diameter relations of the same type of arteries were used in this study to avoid possible 

cellular responses to the change of mechanical environment during the measurements. 

With this limitation, actual values for stresses may be different from computed stresses, 

but the distributions still hold under proposed assumptions. Other limitations are from the 

assumptions used in the modeling. The reference configurations of collagen fibers were 

computed assuming a uniform strain distribution under physiologic conditions. Although, 

it is a reasonable assumption based on the histological observations of VSMC nuclei, the 

microstructural information on collagen fibers under various loading conditions is still 

necessary to verify the reference configurations of collagen fibers. The SEFs for elastin 

and collagen fibers used in the model are in widely accepted forms. However, these SEFs 

are theoretical and need to be supported by experiments using the corresponding 

components.  

Distributions of Expression and Activation of MMP-2 and MMP-9 

 The expressions of MMP-2 and MMP-9 and their gelatinolytic activities in young 

poncine common carotid arteries cultured ex vivo were generally higher in the outer 

media. The results qualitatively agreed with previous observations, which reported higher 

expression and activation of MMP-2 and MMP-9 in the outer media of arteries ex vivo 

(Chesler et al. 1999; Mavromatis et al. 2000) or in vivo (Wilson et al. 2002). Results from 

experiments using cultured VSMCs showed that mechanical stretch positively correlates 

to the production of MMP-2 and MMP-9 by VSMCs (O'Callaghan and Williams 2000; 

Asanuma et al. 2003). Thus, VSMCs in the outer media may sense higher mechanical 

strain resulting in higher expression and activation of MMP-2 and MMP-9. However, 

circumferential strains in arteries computed assuming incompressibility are generally low 

in the outer media at physiologic loading conditions. This is inconsistent with results 

from experiments using cultured VSMCs. This contradiction raised a question whether 

mechanical strain is the stimulus for the production of MMP-2 and MMP-9 by VSMCs or 
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not. In addition, since it is the matrix proteins that transmit loads to VSMCs, the stress 

and strain computed using a phenomenological model, especially assuming homogeneity, 

may not represent what is sensed by VSMCs. 

 The high levels of MMP-2 and MMP-9 in the outer media suggests localized 

remodeling activities in this region of arterial tissue. MMP-2 and MMP-9 are known to 

be involved in the VSMC migration (Johnson and Galis 2004). MMP-9 was also shown 

to be involved in the VSMC-mediated fibrillar collagen assembly (Johnson and Galis 

2004; Defawe et al. 2005). Xu et al. (2000) observed localized gene expression for 

collagen type I in the outer media and adventitia of rabbit aortas in response to an acute 

increase in blood pressure. They suggested that mechanical stress associated with 

increase in pressure is responsible for the distribution of collagen gene expression. Thus, 

the localization of MMP-2 and MMP-9 seems to be associated with the mechanical role 

of the outer media in response to the alteration in blood pressure. Considering arteries are 

from six to seven-month-old pigs, the expression and activation of MMP-2 and MMP-9 

may also be related to the normal outward growth of these arteries under physiologic 

conditions. 

 In this study, the expression and activation of MMP-2 and MMP-9 were 

correlated to circumferential stresses in normotensive and hypertensive arteries, 

separately. The intensities of immunostaining for MMP-2 and MMP-9 in porcine carotid 

arteries were slightly lower in hypertensive arteries than normotensive arteries. Similarly, 

arteries and veins investigated in an ex vivo organ culture system have been reported to 

show lower tissue levels of MMP-2 and MMP-9 at higher luminal pressures. The tissue 

levels of MMP-2 was lower in porcine carotid arteries perfused ex vivo with steady flow 

at 200 mmHg than those perfused at 100 mmHg (Chesler et al. 1999). The tissue levels of 

MMP-2 and MMP-9 were also reduced in human saphenous veins at higher pressure 

(Mavromatis et al. 2000). However, the difference in the detected amount of MMP-2 and 

MMP-9 does not mean the difference in the production of MMP-2 and MMP-9 between 
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normotensive and hypertensive arteries. Various cell functions affect the levels of the 

expression and activation of MMP-2 and MMP-9 detected in arterial tissue. Compared to 

in vivo experiments, ex vivo organ culture experiments provides better control over the 

biochemical and mechanical environment of arterial tissue. However, changes in 

mechanical environment triggers a biological chain reaction, which ultimately affects the 

balance of biological products in arterial tissue. Thus, further analysis by Mavromatis et 

al. (2000) revealed that actual production of MMP-2 and MMP-9 by VSMCs increased at 

higher pressure. They found that the increased extracellular superoxide due to decreased 

tissue levels of extracellular superoxide dismutase increased post-translational processing 

leading to MMP protein degradation. Also increased levels of MMP-9 in the culture 

media suggested rapid secretion and low tissue retention of MMP-9 (Mavromatis et al. 

2000). On the contrary, the tissue levels of MMP-2 and MMP-9 in mouse carotid arteries 

were observed to increase at higher pressure (Lehoux et al. 2004). This suggests that the 

ratios of MMP-2 and MMP-9 retained in tissue may be species-dependent. Thus, the 

correlation between pressures and the tissue levels of MMP-2 and MMP-9 was not 

shown, and extensive biochemical analysis was beyond the scope of this study. 

 MMP-2 and MMP-9 are also expressed and activated by other types of cells, 

especially macrophages and fibroblasts in the media and adventitia. Once released, 

MMP-9 can diffuse in the interstitial space due to its low tissue retention (Mavromatis et 

al. 2000), which may affect the distribution of the expression and activation of MMP-9 

shown in this study. However, the EEL forms a barrier, which is expected to block the 

diffusion of such molecules between the media and the adventitia. Since the distributions 

of MMP-2 and MMP-9 levels were quantified in the range between the IEL and the EEL, 

the effect of fibroblasts in the adventitia and the diffusion of MMP-9 on our result were 

considered to be minimal. Also, the effects of inflammatory cells on the expression and 

activation of MMP-2 and MMP-9 were considered to be small, since an ex vivo organ 

culture study utilizes excised arteries and lacks additional recruitment of inflammatory 
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cells such as macrophages. Major limitations in ex vivo organ culture experiments are the 

lack of interactions between arteries and surrounding tissue and the inability to induce 

inflammatory responses seen in in vivo experiments (Capers et al. 1997).    

Correlation between Circumferential Stress and the Expression and Activation of 

MMP-2 and MMP-9 

The localized expression and activation of MMP-2 and MMP-9 were compared to 

the distributions of circumferential stress and strain computed using the heterogeneous 

and homogeneous models. In both models, the circumferential strain is highest at the 

inner boundary and gradually decreased toward the outer layer. The distribution of 

circumferential strain in both models and the distribution of circumferential stress in the 

homogeneous model negatively correlated to the distributions of the expression and 

activation of MMP-2 and MMP-9.  

However, the stress distribution determined from the heterogeneous model 

positively correlated to the expression and activation of MMP-2 and MMP-9. This makes 

conforming connections between results from experimental studies using cultured 

VSMCs and arterial tissues. Assuming that the cells are uniformly coupled to substrates 

in cell culture experiments, it is reasonable to expect that mechanical stress as well as 

strain positively correlates to the observed cellular response. As noted earlier, strains at 

the tissue level may not be the strain sensed by VSMCs. Thus, the collocation and 

correlation of stress in the heterogeneous model with tissue levels of MMP-2 and MMP-9 

is in agreement with results from cell culture studies. We interpret this agreement with 

the expected biological response to stress as support for the validity of the model and the 

likely importance of mechanical stress in arterial remodeling. 

The result suggests that the remodeling activities of VSMCs may correlate better 

with stresses rather than strains. It is well accepted that the arterial wall remodels by 

thickening in response to increased wall stress in order to decrease it back to normal 
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levels (Liu and Fung 1989; Matsumoto and Hayashi 1994). This implies that areas of 

high stress may be sites of localized remodeling. Fridez et al. (2003) observed that, in 

response to induced hypertension, the outermost layer of rat carotid artery thickens more 

as compared to the inner layers. This suggests that circumferential stress in the outermost 

layer may be higher than that in the inner layer, which is consistent with the stress 

distribution computed using the heterogeneous model developed in this study. Xu et al. 

(2000) showed that induced hypertension also initiates rapid gene expression for collagen 

type I predominantly in the outer media and adventitia of rabbit aortas. Increased 

collagen support, as the authors note, suggests that these zones of the aortic wall may 

provide an increase in tensile support. The heterogeneous model developed in this study 

shows the importance of mechanical stress in understanding these results. In contrast to 

these results, Matsumoto and Hayashi (1994) observed a higher thickening of the 

innermost layer in the adaptation of rat aorta to Goldblatt hypertension at 8 weeks. The 

difference between results may due to experimental methods, the type of arteries, and/or 

the host animal of arteries. 

The distributions of stresses and responses of cells observed in this study may not 

be applicable to other types of arteries, but the methodology developed will be applicable 

in general. It is important to note that microstructure varies along the arterial tree. Thus, 

we need to take a more complex view of arterial remodeling processes, both adaptive and 

maladaptive, and recognize that they may be specific to each arterial type. We conclude 

that the heterogeneity of the tissue microstructure, whether in the arterial wall or tissue 

engineered construct, should be considered explicitly when using mechanical models to 

better understand cellular functions in situ. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

Conclusions 

 In this study, we proposed a novel mathematical model of arterial tissue 

representing the heterogeneous nature of the arterial media. The heterogeneous model 

accounts for nonlinearity, residual strain, anisotropy, and structural heterogeneity. To our 

knowledge, this is the first mechanical model of arterial tissue that includes the 

heterogeneous distributions of ECM components through the arterial media. Major 

matrix proteins, elastin and collagen fibers, were assumed to be hyperelastic materials 

and described using SEFs. Residual strains were included considering the zero stress 

configuration as a circular sector with the opening angle. Anisotropy was represented by 

the direction of collagen fibers, which was measured as the helical angle of VSMC 

nuclei. Structural heterogeneity was represented by the distributions of elastin and 

collagen fibers, which were quantified using their optical properties. The reference 

configuration of elastin was assumed to be the zero stress configuration of arterial tissue. 

The recruiting points of collagen fibers were computed assuming uniform strain of 

collagen fibers under physiological loading conditions. 

 The distributions of circumferential stresses computed using the heterogeneous 

model and homogeneous model were compared to investigate the effect of structural 

heterogeneity. Also, the heterogeneous model was indirectly validated by correlating 

circumferential stresses with the expression and activation of MMP-2 and MMP-9 using 

porcine common carotid arteries. From this study, following conclusions were drawn: 

• Common carotid arteries from young pigs show significant heterogeneity in the 

medial structure. 
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• The length of VSMC nuclei in porcine common carotid arteries increases in 

response to the tension in the circumferential direction. 

• The orientations of VSMC nuclei in porcine common carotid arteries are 

symmetric. 

• The length and orientation of VSMC nuclei in porcine common carotid arteries at 

physiologic loading are uniform across the arterial wall. 

• The opening angle of porcine common carotid arteries reduces the gradient of 

circumferential stress, but it is not sufficient to make a uniform stress distribution. 

• The structural heterogeneity of the media makes circumferential stress even more 

uniform than only accounting for the residual strain. 

• The material properties of porcine common carotid arteries are heterogeneous 

with stiffer outer layers.  

• The expression and activations of MMP-2 and MMP-9 in porcine common 

carotid arteries positively correlate with circumferential stresses computed using 

the heterogeneous model. 

Future Works 

 Our long term goal is to promote the understanding of the mechanobiology of 

VSMCs and the physiology and pathophysiology of arteries. This study contributed to the 

long term goal by providing insights into the effect of structural heterogeneity on the 

mechanical environment and responses of VSMCs. The limitations and problems 

revealed in this study provide recommendations for further improvements: 

• Explore quantitative measures of the structural elements of arterial tissue 

 Quantitative descriptions of structural components are essential for the 

proper representation of the mechanical environment of cells. In this study, the 

heterogeneous distributions of area fractions of elastin and collagen fibers were 

measured. In addition to the amounts of matrix proteins, characterizing their local 
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structure and the coupling between matrix and cells are important to understand 

the mechanical environment of cells. Histology-based measures are often semi-

quantitative. Thus, techniques for the quantification of microstructural elements 

also need to be developed. 

 Our result suggests that the types of VSMCs may vary across the arterial 

wall. In other words, the internal structures, especially those related to 

intracellular mechanotransduction, of VSMCs may change across the thickness. 

The different organization of cytoskeleton and contractile elements may 

differentiate the coupling between ECM and VSMCs and the mechanical behavior 

of VSMC nuclei. This needs to be verified using more detailed microscopic data. 

• Improve a mathematical model for better representation of mechanics of 

vascular tissue 

 The limitations of the heterogeneous model, proposed in this study, lies in 

assumptions made. Stretch ratios of collagen fibers were computed assuming 

uniform strain under physiologic loading conditions. As shown by the dependence 

of the opening angle on elastin, each component of arterial tissue has its own 

reference configuration, which is critical for accurate computation of stresses and 

strains. Currently, the reference configuration of each element is generally not 

available. Comparison between model predictions and recorded mechanical 

responses of arteries can provide insights into the reference configurations of 

constituents of arterial tissue. 

 In composite models including the heterogeneous model, proposed in this 

study, the SEF of arterial tissue was decoupled into the SEFs of elastin and 

collagen fibers. More experimental data are needed to refine the SEF of each 

vascular component. Also, the development of new experimental methods will 

help better understanding of vascular mechanics.  
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 Although the distributions of stresses and structural components observed 

in this study may not be applicable to other types of arteries, the methodology 

developed will be applicable in general. It is known that the composition of 

structural proteins vary along the arterial tree. The heterogeneity of microstructure 

is also expected to change in different types of arteries. Applying the methods 

developed to various types of arteries will improve the understanding of 

physiology and pathophysiology of particular type of arteries.    

• Explore biological makers for the measures of mechanosensitive responses of 

cells  

 Many functions of cells, including the production of matrix proteins, have 

been shown to be mechanosensitive. The expression and activation of MMP-2 and 

MMP-9 is one of such functions related to vascular remodeling. To gain more 

insights into the vascular remodeling, it is important to understand the 

relationships between different functions of cells. Changes in mechanical 

environment often trigger a biological chain reaction, which ultimately affects the 

balance of biological products in arterial tissue. Thus, to isolate the effect of 

mechanical stimuli on the particular function of cells, experiments need to be 

carefully designed.  
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APPENDIX A 

PROTOCOLS FOR EXPERIMENT AND HISTOLOGY 

 

Solutions for Organ Culture Study 

Phosphate Buffered Saline (PBS) 

To make 1 L PBS: 

1. 500 ml of deionized-distilled water 

2. Add a bottle of Dulbecco’s PBS (Sigma D-5773) 

3. Add 10 ml Antibiotic-Antimycotic (Sigma P-0906) 

4. Add deionized-distilled water to make 1 L 

5. Sterilize by microfiltering (pore size: 0.2 µm) 

Perfusion Medium 

Solution A 

1. Warm 400 ml deionized-distilled water 

2. Add 63 g Dextran powder (Sigma, average molecular weight 170,000) 

3. Add stir bar and mix 

Solution B 

1. 400 ml deionized-distilled water 

2. Add 17.4 g Dulbecco’s modified Eagle’s medium (DMEM, Sigma D-1152) 

3. Add 3.7 g sodium bicarbonate (NaHCO3) 

4. Add 10 ml Antibiotic-Antimycotic (Sigma P-0906) 

5. Add 10 ml 200 mmol L-glutamine (Sigma) 

6. Bring total volume to 500 ml with deionized-distilled water 

To make 1 L perfusion medium 
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1. Mix solutions A and B 

2. Adjust pH to 7.4 

3. Sterilize by microfiltering (pore size: 0.2 µm) 

4. Store 450 ml in each 500 ml bottle 

5. Note: add 50 ml of calf serum (HyClone) before use 

Bath Medium 

To make 1 L bath medium 

1. 700 ml deionized-distilled water 

2. Add 17.4 g DMEM (Sigma D-1152) 

3. Add 3.7 g sodium bicarbonate (NaHCO3) 

4. Add 10 ml Antibiotic-Antimycotic (Sigma D-0906) 

5. Add 10 ml 200 mmol L-glutamine (Sigma) 

6. Bring total volume to 900 ml with deionized-distilled water 

7. Adjust pH to 7.4 

8. Sterilize by microfiltering (pore size: 0.2 µm) 

9. Store 450 ml in each 500 ml bottle 

10. Note: add 50 ml of calf serum (HyClone) before use 

Protocols for Histology 

Immunohistochemistry for MMP-2 or MMP-9 

Note: All antibodies and related reagents are temperature sensitive. Please keep at 4°C 

or on ice at all times. This will maintain the longevity of the reagent and limit antibody or 

reagent related problems with experiments. 

1. Frozen sections are thawed immediately before use at room temperature, between 

10 – 30 minutes prior to start of the procedure. The frozen sections are fixed in 

acetone 5 min. and air dried 5 min. 
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2. Sections are washed in 1X PBS 5 min. 

3. Block endogenous peroxidase using 0.3% H2O2 in methanol (or PBS) for 30 min. 

at room temperature. (dilute 2.0 ∼ 2.5 ml of 30% H2O2 in 200 ∼ 250 ml methanol 

or PBS) OR 0.3% H2O2 in 0.3% Normal Sera in PBS for 5 minutes. (2.0 ml of 

30% H2O2 and 600 µl of Normal Sera in 200 ml PBS) 

4. Rehydrate in 1X PBS twice for 5 min. each, room temp. 

5. Block tissue using 10% normal serum in PBS for 20 min at room temperature. 

6. Prepare the working dilution of primary antibody in PBS (50 µl 1st antibody + 950 

µl PBS). Refer to previous work done with the antibody to determine working 

dilution or refer to spec. sheet of antibody for starting dilution (if using antibody 

for the first time you will need to run a series of dilutions to determine the optimal 

working concentration). Blot off blocking agent and apply primary antibody 

(∼130 µl for each 7 sections). Incubate sections in a humid chamber for 1 h at 

room temperature. 

7. Blot off excess antibody and wash slides in 1X PBS twice for 5 minutes each at 

room temperature. Prepare working dilution of the biotinylated secondary 

antibody in 1X PBS, and add 2% of normal serum from the source animal of the 

secondary antibody. (For 1000 µl, add 2.5 µl of 2nd antibody and 20 µl of normal 

serum to 1000-22.5 µl of PBS) Prepare secondary antibody at a 1/400 dilution. 

Apply and incubate 30 min, at room temperature in a humid chamber. 

8. Prepare the working dilution of ABS-peroxidase complex from the Vector ABC-

Peroxidase Elite Kit (#PK-6100) after application of secondary antibody. Mix 2.5 

ml of 1X PBS, one drop of reagent A, and one drop of reagent B and allow to sit 

at 4 °C 30 minutes prior to use. 

9. Blot off excess antibody and wash slides in 1X PBS twice for 5 min. each at room 

temperature. 
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10. Apply prepared ABC mixture to each slide. Incubate in a humid chamber for 1 h 

at room temperature. 

11. Blot off excess solution and wash slides in 1X PBS twice for 5 minutes each. 

12. Immediately before use, prepare the substrate solution as follows. To 5 ml of 

dH2O, add 2 drops of Buffer Stock Solution and mix well. Add 4 drops of DAB 

Stock Solution and mix well. Add 2 drops of the Hydrogen Peroxidase Solution 

and mix well. If a gray-black stain is desired, add 2 drops of the Nickel Solution 

and mix well. Incubate tissue sections with the substrate at room temperature until 

suitable staining develops Development times should be determined by the 

investigator but generally 2-10 minutes provides good staining intensity. Wash 

the sections for 5 minutes in water 

13. If needed, lightly counterstain sections with haematoxylin. 

In Situ Zymography 

Materials 

• Fluorescent substrate (1 mg/ml): Solutions can be made by dissolving the 

lyophilized gelatin from pig skin, Oregon Green® 488 conjugate (G-13198, 

Molecular Probe) in 5 ml dH2O to give 1 mg/ml solutions in PBS. The gelatin 

substrates may require sonication and heating to 50°C to aid dissolution. Store 

solution at 4°C with the addition of sodium azide at a final concentration of 2 

mM. For long-term storage, divide solutions into aliquots and freeze at -20°C. 

(500 µl aliquot) 

• Tris buffer (100 ml): Tris-HCl (50 mM, pH 7.4, 0.788 g) containing 10 mM Ca 

chloride (0.111 g) and 0.05% Brij 35 (167 µl). 

• 1% agarose melted in Tris buffer: Dissolve 0.05 g of agarose (Sigma, A-0701: 

Type VII-A: Low Gelling Temperature) in 5 ml Tris buffer at 65°C. 
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Procedure 

1. Lower temperature to 50°C. 

2. Mix (1:1, 500 µl: 500 µl) Fluorescent substrate (1 mg/ml) with 1% agarose melted 

in Tris buffer. 

3. Spread the liquid mixture (about 10 µl) on prewarmed (max heat on slide heater) 

glass slides by a maneuver similar to that used to produce blood smears. 

4. Allow the film to gel at room temperature and inspect with microscope. 

5. Discard slides with nonhomogeneous-appearing substrate layers. 

6. Cut frozen sections (6 – 10 µm) of unfixed tissue and apply them on top of the 

substrate film. 

7. Add a drop of the Tris buffer over each tissue section and place a coverslip on 

top. 

8. Incubate slides in a horizontal position, light-protected, in humidified chambers at 

37°C for various length of time. 

9. Examine lysis of the substrate under fluorescent microscope with an FITC filter. 

Direct Red (picrosirius red) Detection of Collagen in Vascular Tissue 

1. Deparaffinize and rehydrate paraffin embedded sections 

2. Sections are then stained for 75 minutes in a solution of 0.1% Direct Red (Sirius 

red F3B, Sigma-Aldrich) in saturated picric acid solution. 

3. Wash slide in 0.5% acetic acid in dH2O for 5 minutes 

4. Wash slide in dH2O for 5 minutes. 

5. Dehydrate slides in ascending grade alcohol, and xylene. 

6. Apply a drop of Permount and coverslip. 

 

 

 127



Hoechst Nucleus Staining 

1. Fixed paraffin embedded tissue is deparaffinized, and rehydrated in descending 

grades of alcohol (using regular protocol). Sections are washed in dH2O for 5 

minutes. 

2. Stain with Hoechst 33258 (bis-benzamide, Molecular Probe) 1 µg/ml (Stock 

solution is 10 µg/ml) for 30 minutes under dark condition. 

3. Wash twice in PBS for 5 min each. 

4. Coverslip using fluorescent mount medium (Fluoromount) 

5. Store in dark box at 4°C. 

 128



APPENDIX B 

MATLAB CODE 

 

Quantification of MMP-2, MMP-9, Elastin, and Collagen 

Trace the Inner and Outer Boundaries of the Media (trace_boundary.m) 

% trace_boundary.m 
% This program reads an image file 
%   Masked image of MMP-2 immunostaining 
%   Masked image of MMP-9 immunostaining 
%   Masked image of in situ zymography 
%   image of elastin 
%   superimposed image of collagen fibers 
% and traces the inner and outer boundaries of arterial sector 
% according to control point selection by user 
 
% Slide ID of image origin 
slidenum='(YK7-1-1b)';  
% Image ID indicating it is a part of arterial ring 
datanum='19'; 
% File Name of the image 
filename=[slidenum ' FITC' datanum '.jpg']; 
 
% This program is currently set for elastin 
elastin=imread(filename); 
% Display original image 
figure(3); 
imagesc(elastin); 
colormap(gray); 
 
hold on 
 
% IEL tracing 
 
% Initially, the list of points is empty. 
xy = [];  
% Interpolation spacing vector 
ts = [];    
% IEL boundary point cloud matrix 
IEL = [];   
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n = 0; 
% Loop, picking up the points. 
disp('Pick points on IEL'); 
disp('Left mouse button picks points.'); 
disp('Right mouse button picks last point.'); 
but = 1; 
while but == 1 
    [xi,yi,but] = ginput(1); 
    plot(xi,yi,'bo') 
    n = n+1; 
    xy(:,n) = [xi;yi]; 
     
    if (n>1) 
        % Interpolate with a spline curve and finer spacing. 
        d = round(sqrt((xy(1,n)-xy(1,n-1))^2+(xy(2,n)-xy(2,n-1))^2)); 
        ts=[ts,n-1:(1/d):n]; 
    end 
end 
 
t = 1:n; 
IEL = spline(t,xy,ts); 
% Plot the interpolated curve. 
plot(IEL(1,:),IEL(2,:),'b.'); 
 
% EEL tracing 
 
% Initially, the list of points is empty. 
xy = [];    
% Interpolation spacing vector 
ts = [];  
% IEL boundary point cloud matrix 
EEL = [];   
n = 0; 
% Loop, picking up the points. 
disp('Pick points on EEL'); 
disp('Left mouse button picks points.'); 
disp('Right mouse button picks last point.'); 
but = 1; 
while but == 1 
    [xi,yi,but] = ginput(1); 
    plot(xi,yi,'ro') 
    n = n+1; 
    xy(:,n) = [xi;yi]; 
     
    if (n>1) 
        % Interpolate with a spline curve and finer spacing. 
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        d = round(sqrt((xy(1,n)-xy(1,n-1))^2+(xy(2,n)-xy(2,n-1))^2)); 
        ts=[ts,n-1:(1/d):n]; 
    end 
end 
 
t = 1:n; 
EEL = spline(t,xy,ts); 
% Plot the interpolated curve. 
plot(EEL(1,:),EEL(2,:),'r.'); 
hold off 
 
% Store boundary tracing points 
tracefile=[slidenum ' Boundary tracing ' datanum '.mat']; 
save(tracefile,'IEL','EEL'); 
 

Quantify the Distribution of Measurement (e.g. elastin_distribution.m) 

% elastin_distribution.m 
% This program reads Elastin image and Boundary points cloud 
% Generate elastin distribution between IEL and EEL 
 
% clear memory 
clear 
 
% Slide ID 
slidenum='(YK7-1-1b)';  
% Images constitutes whole arterial ring 
series_datanum=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]; 
temp=size(series_datanum); 
series_size=temp(2); 
 
for i=1:series_size 
datanum=num2str(series_datanum(i),'%02u'); 
filename=[slidenum ' FITC' datanum '.jpg']; 
% Name of output file 
distfile=[slidenum ' Elastin Distribution ' datanum '.mat']; 
% variable for average pixel intensity of each layer 
% total 51 layer 
eldist=zeros(51,2); 
% read the image of a sector 
elastin=imread(filename); 
 
% display elastin image 
figure(4); 
imagesc(elastin); 
colormap(gray); 
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% Read Boundary Tracing Pts Cloud 
tracefile=[slidenum ' Boundary tracing ' datanum '.mat']; 
load(tracefile,'IEL','EEL');    
 
% hold on 
[maxy, maxx]=size(elastin); 
 
h = waitbar(0,'DATA is on its way...'); 
 
% each pixel is mapped onto circular ring 
% by computing shortest distances to the inner and outer boundaries 
% by computing the transmural location, the layer number is determined 
% update the average pixel intensity of the layer 
 
for xx=1:1:maxx 
    for yy=1:1:maxy 
        % shortest distance between current point and IEL 
        dist1=sqrt((IEL(1,:)-xx).^2+(IEL(2,:)-yy).^2); 
        [d1,ii]=min(dist1); 
        % The line through (x1,y1) and (x2,y2) is given by the two point 
        % form y-y1=(y2-y1)/(x2-x1)*(x-x1) 
        % current point (xx,yy), IEL point (xi,yi) 
        xi=IEL(1,ii); 
        yi=IEL(2,ii); 
        if (round(d1)>0)  % if current point is NOT on IEL 
            dist2=abs((xx-xi)*(yi-EEL(2,:))-(xi-EEL(1,:))*(yy-yi))/d1; 
            [dd,ee]=min(dist2); 
            if (round(dd)==0) 
                xo=EEL(1,ee); 
                yo=EEL(2,ee); 
                d2=sqrt((xo-xx)^2+(yo-yy)^2); 
                thickness=sqrt((xo-xi)^2+(yo-yi)^2); 
                if (round(thickness)==round(d1+d2)) 
                    % plot(xx,yy,'y.'); 
                    layer=ceil(d1/thickness*50); 
                    eldist(layer,1)=eldist(layer,1)+1; 
                    eldist(layer,2)=eldist(layer,2)*(eldist(layer,1)-
1)/eldist(layer,1)+(double(elastin(yy,xx))+1)/eldist(layer,1); 
                end 
            end 
        end 
    end 
    waitbar(xx/maxx); 
end 
xx 
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close(h); 
save(distfile,'eldist'); 
distfile 
% hold off 
end 
 

Quantification of VSMC Nuclear Geometry 

Projection of Three-Dimensional Data on the Imaging Plane (SMC2DProj.m) 

% SMC2DProj.m 
% Generate 2D projection of 3D z-stack onto the xy plane 
 
%% User NEEDS to assign following variables 
 
% Slide ID 
slidenum='(YK7-3-19) 40x 02-1';     
% the number of optical sections 
zstack_num=29;                       
% Threshold value for binary image 
threshold=0.60;     
h=ones(5,5)/25; 
 
% Threshold, Smoothen and Restack optical sections 
 
for i=1:zstack_num 
    imagenum=num2str(i-1,'%03d'); 
    filename=[slidenum imagenum '.jpg']; 
    % Read original image 
    optical_section=imread(filename);      
    % smoothing 
    I2 = imfilter(optical_section,h,'replicate');     
    % Covert to binary image 
    bw_image=im2bw(I2, threshold);      
             
  % Stack the processed images of optical sections 
    zstack(:,:,i)=bw_image(:,:);          
end 
% the size of z stack in Y-direction 
yy=size(zstack,1);   
% the size of z stack in X-direction 
xx=size(zstack,2);     
all_projection=zeros(yy,xx); 
for j=1:zstack_num 
    all_projection=all_projection|zstack(:,:,j); 
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end 
 
imshow(all_projection); 
savefilename=[slidenum ' 2D.jpg']; 
imwrite(all_projection,savefilename,'jpg'); 
 

Identify VSMC Nuclei (smc_select.m) 

% smc_select.m 
% This program visualize confocal microscopy data in 2D and 3D spaces 
% and help user to select smooth muscle cell nuclei 
%  
% Created on 2003-11-07 by Yu Shin Kim 
% last revised on 09/05/2006 
 
clear 
 
%% User NEEDS to assign following variables 
 
% Slide ID 
slidenum='(YK7-3-19) 40x 02-1';   
% the number of optical sections 
zstack_num=29;      
% Conversion factor for x and y dimension 
xy_dim=0.45;      
% Conversion factor for z dimension 
z_spacing=0.79;          
%% END of user input 
 
% Threshold value for binary image 
threshold=0.45;     
h=ones(3,3)/9; 
 
% Threshold, Smoothen and Restack optical sections 
for i=1:zstack_num 
    imagenum=num2str(i-1,'%03d'); 
    filename=[slidenum imagenum '.jpg']; 
    % Read original image 
    optical_section=imread(filename);                
         
    % smoothing 
    I2 = imfilter(optical_section,h,'replicate');     
    zstack1(:,:,i)=I2; 
               
end 
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% Basic variables for visualization 
 
% the size of z stack in Y-direction 
yy=size(zstack1,1);    
% the size of z stack in X-direction 
xx=size(zstack1,2);     
% The aspect ratio of z-direction with respect to x and y pixel dimension 
aspect_ratio_z=xy_dim/z_spacing;   
 
% smoothing on YZ plane 
for i=1:xx 
    opt_sec(:,:)=zstack1(i,:,:); 
    I4 = imfilter(opt_sec,h,'replicate'); 
    zstack2(i,:,:)=I4; 
end    
% smoothing on XZ plane 
for i=1:yy 
    opt_sec(:,:)=zstack2(:,i,:); 
    I3 = imfilter(opt_sec,h,'replicate'); 
    zstack3(:,i,:)=I3; 
end 
% thresholding 
for i=1:zstack_num 
    opt_sec1(:,:)=zstack3(:,:,i); 
    bw2=im2bw(opt_sec1, threshold); 
    zstack4(:,:,i)=bw2(:,:); 
end 
 
% erode 
se=[1 1 1 1 1]; 
for i=1:xx 
    opt_sec2(:,:)=zstack4(i,:,:); 
    I4 = imerode(opt_sec2,se); 
    zstack(i,:,:)=I4; 
end    
 
 
% Label connected components in 3D binary image 
% L, a label matrix, contains labels for the connected components 
% 26-connected neighborhood is used for connectivity test in 3D  
[L,objectnum]=bwlabeln(zstack,26);   
 
objectnum 
 
% Acquire the number of voxels in each object 
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stats=regionprops(L,'Area'); 
% Filter objects with less than 500 voxels 
for i=1:1:objectnum 
    if stats(i).Area<500 
        zstack=zstack-ismember(L,i); 
    end 
end 
 
% Label connected components in filtered z-stack 
[L,objectnum]=bwlabeln(zstack,26);   
objectnum 
 
% The 2D projection of z-stack to imaging plane 
all_projection=zeros(yy,xx); 
for j=1:zstack_num 
    all_projection=all_projection|zstack(:,:,j); 
end 
% Set the color of objects gray (0.5) 
all_projection=all_projection/2; 
 
% the number of selected SMC nuclei 
smc_count=0; 
smc_list=[]; 
% Counter 
i=1; 
 
while (i<=objectnum)  
     
  % Select ith object 
    ith_object=ismember(L,i); 
     
  % Show a projection of the object on 2D surface 
    projection=zeros(yy,xx); 
    for j=1:zstack_num 
        projection=projection|ith_object(:,:,j); 
    end 
    projection=projection/2; 
  % Selected object will appear as white, otherwise gray.    
    projection=projection+all_projection; 
     
    figure(1); 
    clf; 
    % Cartesian coordinate 
    axis xy;    
    hold on; 
    imshow(projection); 
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  % 3D visualization of selected object.   
    figure(2); 
    clf; 
    p=patch(isosurface(ith_object,0.5),'FaceColor','blue','EdgeColor','none'); 
    view(60,35); 
  % the data aspect ratio in the current axes  
    daspect([1 1 aspect_ratio_z]); 
    xlabel('x'); 
    ylabel('y'); 
    zlabel('z'); 
    camlight; 
    lighting gouraud; 
     
  % Identify object type 
    i  % counter display 
    selection=input('SMC Nuclei (1) Noise (2) Go back (3):'); 
    if selection==1 
        disp('included')    
        smc_count=smc_count+1;     
        smc_list(smc_count)=i; 
    end     
    i=i+1; 
    if ((selection==3) & (i>2)) 
        i=i-2; 
        if smc_list(smc_count)==i 
            smc_count=smc_count-1; 
        end 
    end 
end 
disp('The number of SMC nuclei selected') 
smc_count 
 
datafile=[slidenum '.mat']; 
save(datafile,'L','objectnum','smc_count','smc_list'); 
 

Quantify VSMC Nuclear Geometry in Terms of the Imaging Coordinate System 

(smc_measure.m) 

% smcmeasure.m 
% Measure the dimensional characteristics of selected objects (SMC nuclei) 
% Created on 11/13/2003 by Yu Shin Kim 
% Last revised on 11/19/2003 
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% conversion (1 x 3) 
%   The conversion factors from one voxel unit to micrometer 
% voxel_list (n x 3) 
%   The location (x,y,z) of n voxels in voxel unit (1) 
% voxel_num (scalar) 
%   The number of voxels in each object 
% voxel_coordinate (n x 3) 
%   The physical location (x,y,z) of n voxels in micrometer 
% centroid_obj (1 x 3) 
%   The centroid of each object in voxel space 
% centroid_coordinate (1 x 3) 
%   The physical location (x,y,z) of centroid 
% centroid_to_voxel (n x 1) 
%   The vectors from the centroid and n voxels in micrometer 
% eigen_vector (3 x 3) 
%   Three column vectors from minor axis to major axis. 
% length (3 x 2) 
%   The length of object along principal axes from minor to major one. 
%   ith row corresponds to ith eigen vector 
%   1st column is in the positive direction, 2nd is in the negative direction. 
% 
%  
 
clear 
 
%% User NEEDS to assign following variables 
 
% Slide ID 
slidenum='(YK7-3-19) 40x 02-1';      
% Conversion factor for x and y dimension 
xy_dim=0.45;             
% Conversion factor for z dimension 
z_spacing=0.79;          
 
%% END of user input 
 
% Conversion vector 
conversion=[xy_dim xy_dim z_spacing]; 
% The aspect ratio of z-direction with respect to x and y pixel dimension 
% for 3D visualization in voxel space 
aspect_ratio_z=xy_dim/z_spacing;   
 
% retrieve data from selection process 
datafile=[slidenum '.mat']; 
load(datafile,'L','objectnum','smc_count','smc_list'); 
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% define new variables 
smc_count_measured=0; 
smc_list_measured=[]; 
 
% Get basic object properties 
% Centroid of each object, The list of voxels in each object 
stats=regionprops(L,'Centroid','PixelList'); 
 
% counter: sequential number of selected SMC nuclei 
i=1;   
while (i<=smc_count) 
     
    % The label of selected object in the label matrix L 
    object_id=smc_list(i); 
 
    % List of the locations of the voxels in the object 
    voxel_list=stats(object_id).PixelList; 
    % The number of voxels in the object 
    voxel_num=size(voxel_list,1); 
    % Calculate physical locations of each voxel 
    voxel_coordinate=voxel_list.*(ones(voxel_num,1)*conversion); 
 
    centroid_obj=stats(object_id).Centroid; 
    % Calculate physical location of the centroid (physical coord) 
    centroid_coordinate=centroid_obj.*conversion; 
 
    % The vectors from the centroid and each voxel (physical coord) 
    centroid_to_voxel=voxel_coordinate-ones(voxel_num,1)*centroid_coordinate; 
 
    % Covariance matrix S 
    S=cov(voxel_coordinate); 
 
    % Find eigenvalues (D) and eigenvectors (eigen_vector) 
    % Matrix eigen_vector is the modal matrix - its columns are the eigenvectors of S. 
    [eigen_vector,D]=eig(S); 
 
    % Find two points with max distance from centroid in (+) and (-) directions 
    % Max length matrix ixj - ith eigenvector x (+)(-) direction 
    length=zeros(3,2); 
    x1=zeros(3,2); 
    y1=zeros(3,2); 
    z1=zeros(3,2); 
 
    for ii=1:3 
      % maximum length in the positive direction of principal vector   
        length(ii,1)=max(centroid_to_voxel*eigen_vector(:,ii)); 
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      % maximum length in the negative direction of principal vector 
        length(ii,2)=min(centroid_to_voxel*eigen_vector(:,ii)); 
      % coordinates for principal axes visualization   
        x1(ii,:)=eigen_vector(1,ii)*2*length(ii,:)+centroid_coordinate(1); 
        y1(ii,:)=eigen_vector(2,ii)*2*length(ii,:)+centroid_coordinate(2); 
        z1(ii,:)=eigen_vector(3,ii)*2*length(ii,:)+centroid_coordinate(3); 
    end 
 
    % 3D visualization of the principal axes in real coordinate system     
 
    figure(3); 
    clf; 
    hold on 
    plot3(x1(1,:),y1(1,:),z1(1,:),'-om','LineWidth',2,'MarkerSize',10); 
    plot3(x1(2,:),y1(2,:),z1(2,:),'-or','LineWidth',2,'MarkerSize',10); 
    plot3(x1(3,:),y1(3,:),z1(3,:),'-og','LineWidth',2,'MarkerSize',10); 
    view(60,35); 
    % the data aspect ratio in the current axes  
    daspect([1 1 1]); 
    xlabel('X'); 
    ylabel('Y'); 
    zlabel('Z'); 
         
    % 3D visualization of selected object and principal axes in voxel space. 
    % conversion back to voxel unit 
    inv_conv=1./conversion; 
 
    eigen_vector2=eigen_vector.*(inv_conv'*ones(1,3)); 
    magnitude=sqrt(sum(eigen_vector2.^2)); 
  
    % Normalize V2 
    eigen_vector2=eigen_vector2(:,:)./(ones(3,1)*magnitude); 
    % Convert length from micrometer to voxel unit 
    length2=length.*(magnitude'*ones(1,2)); 
 
    for ii=1:3 
        x1(ii,:)=eigen_vector2(1,ii)*2*length2(ii,:)+centroid_obj(1); 
        y1(ii,:)=eigen_vector2(2,ii)*2*length2(ii,:)+centroid_obj(2); 
        z1(ii,:)=eigen_vector2(3,ii)*2*length2(ii,:)+centroid_obj(3); 
    end 
         
    object3D=ismember(L,object_id); 
    figure(4); 
    clf; 
    hold on 
    p=patch(isosurface(object3D,0.5),'FaceColor','blue','EdgeColor','none'); 
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    plot3(x1(1,:),y1(1,:),z1(1,:),'-om','LineWidth',2,'MarkerSize',10); 
    plot3(x1(2,:),y1(2,:),z1(2,:),'-or','LineWidth',2,'MarkerSize',10); 
    plot3(x1(3,:),y1(3,:),z1(3,:),'-og','LineWidth',2,'MarkerSize',10); 
    view(60,35); 
    % the data aspect ratio in the current axes  
    daspect([1 1 aspect_ratio_z]); 
    xlabel('x'); 
    ylabel('y'); 
    zlabel('z'); 
    camlight; 
    lighting gouraud; 
 
% Check normality 
sqrt(sum(eigen_vector.^2)) 
    % Decide the final acceptance of the object 
    smc_list(i) 
    selection=input('Accept (1) Decline (2) Quit(3):'); 
    if selection==1 
        disp('included')  
        smc_count_measured=smc_count_measured+1; 
        smc_list_measured(smc_count_measured)=smc_list(i); 
               
        principal_direction(:,:,smc_count_measured)=eigen_vector; 
                   
        principal_length(:,:,smc_count_measured)=length; 
        centroid(smc_count_measured,:)=centroid_coordinate; 
      % volume (converted to micrometer^3) 
        volume(smc_count_measured)=voxel_num*(xy_dim^2)*z_spacing; 
    end     
 
    if selection==3 
        i=smc_count; 
    end 
i=i+1 
end 
% angle between major axis and xy-plane 
angle=90-rad2deg(acos(principal_direction(3,3,:))); 
% length along major axis 
ll=principal_length(3,1,:)-principal_length(3,2,:); 
 
datafile=[slidenum 'measure.mat']; 
% physical dimensions 
save(datafile,'L','smc_count_measured','smc_list_measured','principal_direction','principa
l_length','centroid','volume'); 
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Trace the Inner and Outer Boundaries of the Media (boundary_trace.m) 

% boundary_trace.m 
% 
% Due to the small window of view (512 x 512 pixel, 0.45 micron/pxl) 
% Three or Four images were taken to cover the thickness of arterial sector 
% Since the angle is small, boundaries can be approximated as lines 
% Boundary line equation (first-order approximation) 
% IEL and Media-EEL boundary line equation 
 
clear 
 
% load lumen-side 2D projected image 
image1=imread('(YK7-3-19) 40x 02-1 2D.jpg'); 
% load outer layer-side 2D projected image 
image3=imread('(YK7-3-19) 40x 02-3 2D.jpg'); 
 
% display lumen-side image 
bw1=im2bw(image1,0.5); 
bw3=im2bw(image3,0.5); 
 
figure(1); 
imagesc(bw1); 
colormap(gray); 
hold on 
 
xy_dimension=0.45; 
n=0; 
A=[]; 
b=[]; 
 
% Label objects and retrieve object property 
[L1,Num1]=bwlabeln(bw1,8); 
stats1=regionprops(L1,'Centroid'); 
 
% Plot Centroid locations 
for i=1:Num1 
    temp=stats1(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
 
but=1; 
while but == 1 
    [xi,yi,but]=ginput(1); 
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    xx=round(xi); 
    yy=round(yi); 
    obj=L1(yy,xx); 
     
    if obj ~= 0 
        xy=stats1(obj).Centroid; 
        n=n+1; 
        plot(xy(1),xy(2),'bo') 
        % Physical Coordinate 
        A(n,:)=xy*xy_dimension;   
        b(n,1)=-1; 
    end 
end 
 
% c1 X + c2 Y + 1 = 0: c=[c1 c2] 
c=A\b 
% normalization: Ci(1)X+Ci(2)Y+Ci(3)=0 in physical coordinate 
Ci = [c(1)/norm(c) c(2)/norm(c) 1/norm(c)] 
 
hold off 
 
load('2D_alignment.mat','uxy12','uxy23'); 
 
% display outer-side image 
figure(2); 
imagesc(bw3); 
colormap(gray); 
hold on 
 
xy_dimension=0.45; 
n=0; 
A3=[]; 
b3=[]; 
 
% Label objects and retrieve object property 
[L3,Num3]=bwlabeln(bw3,8); 
stats3=regionprops(L3,'Centroid'); 
 
% Plot Centroid locations 
for i=1:Num3 
    temp=stats3(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
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but=1; 
while but == 1 
    [xi,yi,but]=ginput(1); 
    xx=round(xi); 
    yy=round(yi); 
    obj=L3(yy,xx); 
     
    if obj ~= 0 
        xy=stats3(obj).Centroid; 
        n=n+1; 
        plot(xy(1),xy(2),'bo') 
        A3(n,1)=xy(1)*xy_dimension+uxy12(1)+uxy23(1);  % Physical Coordinate 
        A3(n,2)=xy(2)*xy_dimension+uxy12(2)+uxy23(2);  % Physical Coordinate 
        b3(n,1)=-1; 
    end 
end 
 
% c1 X + c2 Y + 1 = 0: c=[c1 c2] 
c=A3\b3 
% normalization: Ci(1)X+Ci(2)Y+Ci(3)=0 in physical coordinate 
Co = [c(1)/norm(c) c(2)/norm(c) 1/norm(c)] 
 
hold off 
 
% Check plot 
figure(3); 
hold on 
% Plot Centroid locations 
for i=1:Num1 
    temp=stats1(i).Centroid; 
    x=temp(1)*xy_dimension; 
    y=temp(2)*xy_dimension; 
    plot(x,y,'ro') 
end 
for i=1:Num3 
    temp=stats3(i).Centroid; 
    x=temp(1)*xy_dimension+uxy12(1)+uxy23(1); 
    y=temp(2)*xy_dimension+uxy12(2)+uxy23(2); 
    plot(x,y,'go') 
end 
 
p(1)=-Ci(1)/Ci(2); 
p(2)=-Ci(3)/Ci(2); 
f=polyval(p,A(:,1)); 
plot(A(:,1),f,'r-') 
 

 144



p(1)=-Co(1)/Co(2); 
p(2)=-Co(3)/Co(2); 
f=polyval(p,A3(:,1)); 
plot(A3(:,1),f,'g-') 
 
hold off 
 
save('boundaries.mat','Ci','Co','A','A3'); 
 

Align Z-Stacks through the Thickness (image_alignment.m) 

% image_alignment.m 
%  
% To compute the intramural location of each VSMC nucleus 
% Images of inner, middle, and outer media need to be aligned 
% This program 
% determines relative locations of images 1, 2, and 3 
% 1-lumen to inner media, 2-mid region, 3-outer media to EEL 
 
clear 
 
image1=imread('(YK7-3-19) 40x 02-1 2D.jpg'); 
image2=imread('(YK7-3-19) 40x 02-2 2D.jpg'); 
image3=imread('(YK7-3-19) 40x 02-3 2D.jpg'); 
 
xy_dimension=0.45; 
 
bw1=im2bw(image1,0.5); 
bw2=im2bw(image2,0.5); 
bw3=im2bw(image3,0.5); 
 
figure(1); 
imagesc(bw1); 
colormap(gray); 
figure(2); 
imagesc(bw2); 
colormap(gray); 
figure(3); 
imagesc(bw3); 
colormap(gray); 
 
% retrive center location of objects in each image 
[L1,Num1]=bwlabel(bw1,8); 
[L2,Num2]=bwlabel(bw2,8); 
[L3,Num3]=bwlabel(bw3,8); 
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stats1=regionprops(L1,'Centroid'); 
stats2=regionprops(L2,'Centroid'); 
stats3=regionprops(L3,'Centroid'); 
 
% Plot SMC centroids 
 
figure(1) 
hold on 
for i=1:Num1 
    temp=stats1(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
hold off 
figure(2) 
hold on 
for i=1:Num2 
    temp=stats2(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
hold off 
figure(3) 
hold on 
for i=1:Num3 
    temp=stats3(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
hold off 
 
% alignment matrix 
totaltemp=zeros(1,2); 
% alignment between image 1 and 2 (compare 3 object pairs) 
for i=1:3 
    disp('pick the object on figure 1 which will aligned to object on figure 2'); 
    figure(1) 
    hold on 
    [xi,yi]=ginput(1); 
    x=round(xi); 
    y=round(yi); 
    obj=L1(y,x) 
    temp1=stats1(obj).Centroid; 
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    plot(temp1(1),temp1(2),'bo') 
    hold off 
     
    disp('pick the object on figure 2 which will aligned to object on figure 1'); 
    figure(2) 
    hold on 
    [xi,yi]=ginput(1); 
    x=round(xi); 
    y=round(yi); 
    obj=L2(y,x) 
    temp2=stats2(obj).Centroid; 
    plot(temp2(1),temp2(2),'bo') 
    hold off 
     
    uxytemp=temp1-temp2 
    totaltemp=totaltemp+uxytemp 
end 
uxy12=totaltemp/3*xy_dimension 
 
totaltemp=zeros(1,2); 
% alignment between image 2 and 3 (compare 3 object pairs) 
for i=1:3 
    disp('pick the object on figure 2 which will aligned to object on figure 3'); 
    figure(2) 
    hold on 
    [xi,yi]=ginput(1); 
    x=round(xi); 
    y=round(yi); 
    obj=L2(y,x) 
    temp2=stats2(obj).Centroid; 
    plot(temp2(1),temp2(2),'bo') 
    hold off 
     
    disp('pick the object on figure 3 which will aligned to object on figure 2'); 
    figure(3) 
    hold on 
    [xi,yi]=ginput(1); 
    x=round(xi); 
    y=round(yi); 
    obj=L3(y,x) 
    temp3=stats3(obj).Centroid; 
    plot(temp3(1),temp3(2),'bo') 
    hold off 
     
    uxytemp=temp2-temp3 
    totaltemp=totaltemp+uxytemp 
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end 
uxy23=totaltemp/3*xy_dimension 
 
% Check plot 
figure(4); 
clf 
hold on 
for i=1:Num1 
    temp=stats1(i).Centroid; 
    x=temp(1); 
    y=temp(2); 
    plot(x,y,'ro') 
end 
for i=1:Num2 
    temp=stats2(i).Centroid; 
    x=temp(1)+uxy12(1)/xy_dimension; 
    y=temp(2)+uxy12(2)/xy_dimension; 
    plot(x,y,'bo') 
end 
for i=1:Num3 
    temp=stats3(i).Centroid; 
    x=temp(1)+uxy12(1)/xy_dimension+uxy23(1)/xy_dimension; 
    y=temp(2)+uxy12(2)/xy_dimension+uxy23(2)/xy_dimension; 
    plot(x,y,'go') 
end 
hold off 
 
save('2D_alignment.mat','uxy12','uxy23'); 
 

Quantify the Distribution of VSMC Nuclear Geometry in Terms of the Local 

Coordinate System (distribution.m) 

% distribution.m 
% this program quantifies distributions of VSMC geometry 
% 
% Measure intramural location of each SMC nuclei 
% Measure relative orientation of SMC in reference to lumen 
 
clear 
slidenum='(YK7-3-19) 40x 02'; 
 
datafile=[slidenum '-1measure.mat']; 
load(datafile); 
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load('2D_alignment.mat','uxy12','uxy23'); 
load('boundaries.mat','Ci','Co','A','A3'); 
 
center_x=[]; 
center_y=[]; 
 
major_length=[]; 
major_2D_length=[]; 
% Using projection angle onto r-theta 
major_2D_length2=[];     
% Using projection angle onto theta-z 
major_2D_length3=[];  
 % Projection angle onto r-theta plane 
proj_angle_rt=[];     
% Projection angle onto theta-z plane 
proj_angle_tz=[];        
relative_angle=[]; 
intramural_loc=[]; 
helical_angle=[]; 
counter=0 
 
figure(1); 
hold on 
 
p(1)=-Ci(1)/Ci(2); 
p(2)=-Ci(3)/Ci(2); 
f=polyval(p,A(:,1)); 
plot(A(:,1),f,'r-') 
 
p(1)=-Co(1)/Co(2); 
p(2)=-Co(3)/Co(2); 
f=polyval(p,A3(:,1)); 
plot(A3(:,1),f,'g-') 
 
lumen_o=[Ci(2) -Ci(1)]; 
direction=lumen_o/norm(lumen_o); 
% Orient Ref direction CCW: positive 
if direction(1)<0 
    direction = -direction; 
end 
% Radial outward vector: positive 
direction_r = [-direction(2) direction(1)]; 
 
% unit vector r in xyz-coordinate sys 
tr=[direction_r 0];      
% unit vector theta in xyz-coordinate sys 
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tt=[direction 0];    
% unit vector z in xyz-coordinate sys 
tz=[0 0 -1];             
 
% transformation matrix from xyz to r-theta-z sys. 
trans=[tr;tt;tz];        
 
stats=regionprops(L,'Centroid','PixelList'); 
 
for i=1:smc_count_measured 
    counter=counter+1 
     
    center=centroid(i,:); 
    x0=center(1); 
    y0=center(2); 
     
    center_x(counter)=x0; 
    center_y(counter)=y0; 
     
    % intersection on inner boundary 
    c3=Ci(1)*y0-Ci(2)*x0; 
    Ai=[Ci(1) Ci(2); Ci(2) -Ci(1)]; 
    bi=[-Ci(3); -c3]; 
    xy1=Ai\bi; 
    % intersection on outer boundary 
    Ao=[Co(1) Co(2); Ci(2) -Ci(1)]; 
    bo=[-Co(3); -c3]; 
    xy2=Ao\bo; 
    % Intramural location 
    d1=sqrt((x0-xy1(1))^2+(y0-xy1(2))^2); 
    d2=sqrt((x0-xy2(1))^2+(y0-xy2(2))^2); 
    intramural_loc(counter)=d1/(d1+d2); 
     
    plot(x0,y0,'ro') 
    plot([xy1(1) xy2(1)],[xy1(2) xy2(2)],'r-') 
     
    % relative orientation & helical orientation 
     
    % Coordinate Transformation 
    smc_xyz=[principal_direction(:,3,i)]; 
    % long axis orientation in rtz coord 
    smc_rtz=trans*smc_xyz;       
norm(smc_rtz)  
 
    % set orientation on positive theta direction 
    if smc_rtz(2)<0              
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        smc_rtz = -smc_rtz; 
    end 
    % projection onto r-theta plane 
    smc_rt=[smc_rtz(1);smc_rtz(2)];  
    % projection angle onto r-theta plane 
    proj_angle_rt(counter) = acos(norm(smc_rt));   
    % normalize projected vector 
    smc_rt_n=smc_rt/norm(smc_rt);    
     
    % projection onto theta-z plane 
    smc_tz=[smc_rtz(2);smc_rtz(3)];  
    % projection angle onto theta-z plane 
    proj_angle_tz(counter) = acos(norm(smc_tz));   
    % normalize projected vector 
    smc_tz_n=smc_tz/norm(smc_tz);    
         
    % relative angle 
    relative_angle(counter)=90-(acos(smc_rt_n(1)))*180/pi; 
     
    % helical angle (REF: z-vector out of screen is positive) 
    helical_angle(counter)=90-(acos(smc_tz_n(2)))*180/pi; 
         
    % length of major axis 
    major_length(counter)=principal_length(3,1,i)-principal_length(3,2,i); 
     
    % length of 2D projected major axis 
    centroid_obj=stats(smc_list_measured(i)).Centroid; 
    voxel_list=stats(smc_list_measured(i)).PixelList; 
    center_2D=centroid(1:2); 
    pixel_list=voxel_list(:,1:2); 
     
    pixel_num=size(pixel_list,1); 
    ctr_to_pxl=pixel_list-ones(pixel_num,1)*center_2D; 
         
    major_2D_length(counter)=0.45*(max(ctr_to_pxl*direction')-
min(ctr_to_pxl*direction')); 
    
major_2D_length2(counter)=major_length(counter)*cos(relative_angle(counter)/180*pi)
*cos(proj_angle_rt(counter)); 
    
major_2D_length3(counter)=major_length(counter)*cos(helical_angle(counter)/180*pi)*
cos(proj_angle_tz(counter)); 
end 
 
datafile=[slidenum '-2measure.mat']; 
load(datafile); 
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stats=regionprops(L,'Centroid','PixelList'); 
for i=1:smc_count_measured 
    counter=counter+1 
     
    center=centroid(i,:); 
    x0=center(1)+uxy12(1); 
    y0=center(2)+uxy12(2); 
     
    center_x(counter)=x0; 
    center_y(counter)=y0; 
     
    % intersection on inner boundary 
    c3=Ci(1)*y0-Ci(2)*x0; 
    Ai=[Ci(1) Ci(2); Ci(2) -Ci(1)]; 
    bi=[-Ci(3); -c3]; 
    xy1=Ai\bi; 
    % intersection on outer boundary 
    Ao=[Co(1) Co(2); Ci(2) -Ci(1)]; 
    bo=[-Co(3); -c3]; 
    xy2=Ao\bo; 
    % Intramural location 
    d1=sqrt((x0-xy1(1))^2+(y0-xy1(2))^2); 
    d2=sqrt((x0-xy2(1))^2+(y0-xy2(2))^2); 
    intramural_loc(counter)=d1/(d1+d2); 
     
    plot(x0,y0,'bo') 
    plot([xy1(1) xy2(1)],[xy1(2) xy2(2)],'b-') 
     
    % relative orientation & helical orientation 
     
    % Coordinate Transformation 
    smc_xyz=[principal_direction(:,3,i)]; 
     % long axis orientation in rtz coord 
    smc_rtz=trans*smc_xyz;      
norm(smc_rtz)  
    % set orientation on positive theta direction 
    if smc_rtz(2)<0              
        smc_rtz = -smc_rtz; 
    end 
    % projection onto r-theta plane 
    smc_rt=[smc_rtz(1);smc_rtz(2)];  
    % projection angle onto r-theta plane 
    proj_angle_rt(counter) = acos(norm(smc_rt));     
    % normalize projected vector 
    smc_rt_n=smc_rt/norm(smc_rt);    
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    % projection onto theta-z plane 
    smc_tz=[smc_rtz(2);smc_rtz(3)];  
    % projection angle onto theta-z plane 
    proj_angle_tz(counter) = acos(norm(smc_tz));     
    % normalize projected vector 
    smc_tz_n=smc_tz/norm(smc_tz);    
         
    % relative angle 
    relative_angle(counter)=90-(acos(smc_rt_n(1)))*180/pi; 
     
    % helical angle (REF: z-vector out of screen is positive) 
    helical_angle(counter)=90-(acos(smc_tz_n(2)))*180/pi; 
         
    % length of major axis 
    major_length(counter)=principal_length(3,1,i)-principal_length(3,2,i); 
     
    % length of 2D projected major axis 
    centroid_obj=stats(smc_list_measured(i)).Centroid; 
    voxel_list=stats(smc_list_measured(i)).PixelList; 
    center_2D=centroid(1:2); 
    pixel_list=voxel_list(:,1:2); 
     
    pixel_num=size(pixel_list,1); 
    ctr_to_pxl=pixel_list-ones(pixel_num,1)*center_2D; 
         
    major_2D_length(counter)=0.45*(max(ctr_to_pxl*direction')-
min(ctr_to_pxl*direction')); 
    
major_2D_length2(counter)=major_length(counter)*cos(relative_angle(counter)/180*pi)
*cos(proj_angle_rt(counter)); 
    
major_2D_length3(counter)=major_length(counter)*cos(helical_angle(counter)/180*pi)*
cos(proj_angle_tz(counter)); 
end 
 
datafile=[slidenum '-3measure.mat']; 
load(datafile); 
stats=regionprops(L,'Centroid','PixelList'); 
for i=1:smc_count_measured 
    counter=counter+1 
     
    center=centroid(i,:); 
    x0=center(1)+uxy12(1)+uxy23(1); 
    y0=center(2)+uxy12(2)+uxy23(2); 
     
    center_x(counter)=x0; 
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    center_y(counter)=y0; 
     
    % intersection on inner boundary 
    c3=Ci(1)*y0-Ci(2)*x0; 
    Ai=[Ci(1) Ci(2); Ci(2) -Ci(1)]; 
    bi=[-Ci(3); -c3]; 
    xy1=Ai\bi; 
    % intersection on outer boundary 
    Ao=[Co(1) Co(2); Ci(2) -Ci(1)]; 
    bo=[-Co(3); -c3]; 
    xy2=Ao\bo; 
    % Intramural location 
    d1=sqrt((x0-xy1(1))^2+(y0-xy1(2))^2); 
    d2=sqrt((x0-xy2(1))^2+(y0-xy2(2))^2); 
    intramural_loc(counter)=d1/(d1+d2); 
     
    plot(x0,y0,'go') 
    plot([xy1(1) xy2(1)],[xy1(2) xy2(2)],'g-') 
     
    % relative orientation & helical orientation 
     
    % Coordinate Transformation 
    smc_xyz=[principal_direction(:,3,i)]; 
    % long axis orientation in rtz coord 
    smc_rtz=trans*smc_xyz;       
norm(smc_rtz)  
    % set orientation on positive theta direction 
    if smc_rtz(2)<0              
        smc_rtz = -smc_rtz; 
    end 
 
    % projection onto r-theta plane 
    smc_rt=[smc_rtz(1);smc_rtz(2)];  
    % projection angle onto r-theta plane 
    proj_angle_rt(counter) = acos(norm(smc_rt));     
    % normalize projected vector 
    smc_rt_n=smc_rt/norm(smc_rt);    
     
    % projection onto theta-z plane 
    smc_tz=[smc_rtz(2);smc_rtz(3)];  
    % projection angle onto theta-z plane 
    proj_angle_tz(counter) = acos(norm(smc_tz));     
    % normalize projected vector 
    smc_tz_n=smc_tz/norm(smc_tz);    
         
    % relative angle 
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    relative_angle(counter)=90-(acos(smc_rt_n(1)))*180/pi; 
     
    % helical angle (REF: z-vector out of screen is positive) 
    helical_angle(counter)=90-(acos(smc_tz_n(2)))*180/pi; 
         
    % length of major axis 
    major_length(counter)=principal_length(3,1,i)-principal_length(3,2,i); 
     
    % length of 2D projected major axis 
    centroid_obj=stats(smc_list_measured(i)).Centroid; 
    voxel_list=stats(smc_list_measured(i)).PixelList; 
    center_2D=centroid(1:2); 
    pixel_list=voxel_list(:,1:2); 
     
    pixel_num=size(pixel_list,1); 
    ctr_to_pxl=pixel_list-ones(pixel_num,1)*center_2D; 
         
    major_2D_length(counter)=0.45*(max(ctr_to_pxl*direction')-
min(ctr_to_pxl*direction')); 
    
major_2D_length2(counter)=major_length(counter)*cos(relative_angle(counter)/180*pi)
*cos(proj_angle_rt(counter)); 
    
major_2D_length3(counter)=major_length(counter)*cos(helical_angle(counter)/180*pi)*
cos(proj_angle_tz(counter)); 
end 
 
hold off 
 
proj_angle_rt=(proj_angle_rt*180/pi)'; 
proj_angle_tz=(proj_angle_tz*180/pi)'; 
 
center_x=center_x'; 
center_y=center_y'; 
 
major_length=major_length'; 
major_2D_length=major_2D_length'; 
major_2D_length2=major_2D_length2'; 
major_2D_length3=major_2D_length3'; 
relative_angle=relative_angle'; 
intramural_loc=intramural_loc'; 
helical_angle=helical_angle'; 
 
savefile=[slidenum ' distribution.mat']; 
save(savefile,'major_length','relative_angle','intramural_loc','helical_angle'); 
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Implementation of the Heterogeneous Model 

Optimize Parameters by Minimizing the Error Function (optima.m) 

% optima.m 
% Optimization - Uniform collagen strain at 100 mmHg assumption 
% This program optimizes model variables by minimizing error from 
% experimental data 
 
% INPUT DATA 
% lambda_theta          51x10 
% lambda_theta2         51x12 
% lambda_r              51x10 
% lambda_r2             51x12 
% t                     51x10 
% t2                    51x12 
% rmean                 51x10 
% rmean2                51x12 
% Ie                    51x1 
% Ic                    51x1 
% P_exp                 1x10 
 
% lc                    51x10 
% lc2                   51x12 
% hd0                   51x1 
% hd                    51x10 
% hd2                   51x12 
% h0                    51x1 
 
% To be determined 
% l0                    51x1 
% lambda_c              51x10 
% lambda_c2             51x12 
% FeCe, FcCc1, Cc2 
 
 
P_exp_kPa = P_exp * 0.1333224; 
 
lambda_h = 
sqrt(1.5^2*(sin(hd0).^2*ones(1,10))+lambda_theta.^2.*(cos(hd0).^2*ones(1,10))); 
lambda_h2 = 
sqrt(1.5^2*(sin(hd0).^2*ones(1,12))+lambda_theta2.^2.*(cos(hd0).^2*ones(1,12))); 
 
% Guess 
guess_Cc2 = 3.01:0.01:4.00; 
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c100 = zeros(1,100); 
r_sq2 = zeros(1,100); 
 
for ki=1:100 
 
Cc2 = guess_Cc2(ki); 
 
% Guess Collagen stretch at 100 mmHg 
guess_pool = 1.350:0.0001:1.550; 
% r-square 
R_sq = zeros(1,2001);                
 
for i=1:1:2001 
 
    % collagen stretch at 100mmHg 
    lambda_c100 = guess_pool(i);       
    % collagen recruiting points 
    lambda_rp = lambda_h(:,9)/lambda_c100;  
    % collagen stretch ratio 
    lambda_c = lambda_h./(lambda_rp*ones(1,10));   
     
    % unit-step matrix 
    unitstep = lambda_c>1;    
    unitstepr = unitstep==0; 
    lambda_c = lambda_c.*unitstep + unitstepr; 
     
    %Substitute2:  
    S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
    % coefficient of FcCc1 
    coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
    % multiple regression 
    X = [coeff_e' coeff_c']; 
    y = P_exp_kPa'; 
    a = X\y; 
 
    % result based on guessed collagen stretch at 100 mmHg 
    FeCe = a(1); 
    FcCc1 = a(2); 
 
    % estimate P 
    P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
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    % error function 
    avg_P_exp = mean(P_exp_kPa); 
    SSE = sum((P_exp_kPa - P_est_kPa).^2); 
    SSR = sum((P_exp_kPa - avg_P_exp).^2); 
    r_square = 1 - SSE/SSR; 
 
    R_sq(i) = r_square; 
 
end 
 
% find local maxima 
% plot(guess_pool,R_sq); 
[C,I]=max(R_sq); 
 
% OPTIMAL collagen stretch at 100mmHg 
lambda_c100 = guess_pool(I);       
% collagen recruiting points 
lambda_rp = lambda_h(:,9)/lambda_c100;     
% collagen stretch ratio 
lambda_c = lambda_h./(lambda_rp*ones(1,10));    
 
% unit-step matrix 
unitstep = lambda_c>1;   
unitstepr = unitstep==0; 
lambda_c = lambda_c.*unitstep + unitstepr; 
     
%Substitute2:  
S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
 
% coefficient of FeCe 
coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
% coefficient of FcCc1 
coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
% multiple regression 
X = [coeff_e' coeff_c']; 
y = P_exp_kPa'; 
a = X\y; 
 
% result based on guessed collagen stretch at 100 mmHg 
FeCe = a(1); 
FcCc1 = a(2); 
 
% estimate P 
P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
P_est = P_est_kPa / 0.1333224; 
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% error function 
avg_P_exp = mean(P_exp_kPa); 
SSE = sum((P_exp_kPa - P_est_kPa).^2); 
SSR = sum((P_exp_kPa - avg_P_exp).^2); 
r_square = 1 - SSE/SSR; 
 
if lambda_rp(51) < 1 
    r_square = 0; 
end 
 
r_sq2(ki) = r_square; 
c100(ki) = lambda_c100; 
end 
 
plot(guess_Cc2,r_sq2); 
max(c100) 
min(c100) 
 
[C,I]=max(r_sq2); 
% Optimal Cc2 
Cc2 = guess_Cc2(I);          
% OPTIMAL collagen stretch at 100mmHg 
lambda_c100 = c100(I);       
% collagen recruiting points 
lambda_rp = lambda_h(:,9)/lambda_c100;     
% collagen stretch ratio 
lambda_c = lambda_h./(lambda_rp*ones(1,10));    
 
% unit-step matrix 
unitstep = lambda_c>1;    
unitstepr = unitstep==0; 
lambda_c = lambda_c.*unitstep + unitstepr; 
 
%Substitute2:  
S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
 
% coefficient of FeCe 
coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
% coefficient of FcCc1 
coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
% multiple regression 
X = [coeff_e' coeff_c']; 
y = P_exp_kPa'; 
a = X\y; 
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% result based on guessed collagen stretch at 100 mmHg 
FeCe = a(1); 
FcCc1 = a(2); 
 
% estimate P 
P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
P_est = P_est_kPa / 0.1333224; 
 
% error function 
avg_P_exp = mean(P_exp_kPa); 
SSE = sum((P_exp_kPa - P_est_kPa).^2); 
SSR = sum((P_exp_kPa - avg_P_exp).^2); 
r_square = 1 - SSE/SSR; 
 
% END OF OPTIMIZATION 
 
% collagen stretch ratio 
lambda_c2 = lambda_h2./(lambda_rp*ones(1,12));    
% unit-step matrix 
unitstep2 = lambda_c2>1;    
unitstepr2 = unitstep2==0; 
lambda_c2 = lambda_c2.*unitstep2 + unitstepr2; 
 
%Substitute2:  
S22=exp(Cc2*(0.5*(lambda_c2.^2-1)).^2).*(lambda_c2.^2-1).*lambda_c2.^2; 
 
% coefficient of FeCe 
coeff_e2=sum((Ie*ones(1,12)).*(lambda_theta2.^2-lambda_r2.^2).*t2./rmean2); 
% coefficient of FcCc1 
coeff_c2=sum((Ic*ones(1,12)).*(S22.*cos(hd2).^2).*t2./rmean2); 
 
% estimate P 
P_est_kPa2 = coeff_e2*FeCe + coeff_c2*FcCc1; 
P_est2 = P_est_kPa2 / 0.1333224; 
 
% Lagrange multiplier 
p_e=(Ie*ones(1,12)).*(lambda_theta2.^2-lambda_r2.^2).*t2./rmean2; 
p_c=(Ic*ones(1,12)).*(S22.*cos(hd2).^2).*t2./rmean2; 
 
for k=1:50 
    p_e(k+1,:)=p_e(k,:)+p_e(k+1,:); 
    p_c(k+1,:)=p_c(k,:)+p_c(k+1,:); 
end 
 
p=(ones(51,1)*P_est_kPa2)+FeCe*((Ie*ones(1,12)).*lambda_r2.^2-p_e)-FcCc1*p_c; 
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% True stress estimation 
sigma_theta=-
p+FeCe*((Ie*ones(1,12)).*lambda_theta2.^2)+FcCc1*((Ic*ones(1,12)).*S22.*cos(hd2).^
2); 
 
sigma_r = -p + FeCe*((Ie*ones(1,12)).*lambda_r2.^2); 
sigma_z = -p + 
FeCe*1.5^2*(Ie*ones(1,12))+FcCc1*((Ic*ones(1,12)).*S22.*sin(hd2).^2);; 
 

Compute Stress Distributions Using the Heterogeneous Model (Stress100.m for 

normotensive arteries) 

% Stress100.m 
% This program computes 
% Stress Distribution at 100 mmHg using the heterogeneous model  
% with aquired parameters 
 
% INPUT DATA 
% r100exp   52x1 
 
% target lumen pressure 
P_target_kPa = 100 * 0.1333224;  
r100 = zeros(52,1); 
r100(1) = 3.2320; 
 
% pseudo cumulative area of each layer 
a100exp = zeros(51,1); 
for i=1:51 
    a100exp(i) = r100exp(i+1)^2 - r100exp(1)^2; 
end 
 
% layer boundary at 100 
for i=1:51 
    r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
end 
 
% rmean at 100 
rm100 = zeros(51,1); 
for i=1:51; 
    rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
end 
 
lambda_theta100 = lambda_theta2(:,9); 
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lambda_r100 = lambda_r2(:,9); 
hd100 = hd2(:,9); 
t100 = zeros(51,1); 
 
% pseudo rm0 
rm0 = rm100./lambda_theta100; 
 
flag = 0; 
err_prev = (P_target_kPa - P_est_kPa2(9))^2; 
 
while (flag == 0) 
    % Update Radius Data 
    r100(1) = r100(1) - 0.0001; 
    for i=1:51 
        r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
    end 
    for i=1:51; 
        rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
    end 
     
    % Update thickness 
    for i=1:51 
        t100(i) = r100(i+1)-r100(i); 
    end 
     
    % Update lambda_theta 
    lambda_theta100 = rm100./rm0; 
     
    % Update lambda_r 
    lambda_r100 = 1/1.5./lambda_theta100; 
     
    % Update helical angle 
    hd100 = atan(1.5/2/pi*h0./rm100); 
     
    % Update lambda h 
    lambda_h100 = sqrt(1.5^2*sin(hd0).^2+lambda_theta100.^2.*cos(hd0).^2); 
         
    % Update collagen stretch 
    lambda_c_100 = lambda_h100./lambda_rp; 
    % unit-step matrix 
    unitstep = lambda_c_100 > 1;    
    unitstepr = unitstep==0; 
    lambda_c_100 = lambda_c_100.*unitstep + unitstepr; 
     
    %Substitute2: 
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    S2=exp(Cc2*(0.5*(lambda_c_100.^2-1)).^2).*(lambda_c_100.^2-
1).*lambda_c_100.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum(Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100); 
    % coefficient of FcCc1 
    coeff_c=sum(Ic.*(S2.*cos(hd100).^2).*t100./rm100); 
    % estimate P 
    P100_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
    P100_est = P100_est_kPa / 0.1333224 
     
    % error function 
    err = (P_target_kPa - P100_est_kPa)^2 
    if (err > err_prev) 
        flag = 1; 
    end 
    err_prev = err; 
end 
 
    % Update Radius Data 
    r100(1) = r100(1) + 0.0001; 
    for i=1:51 
        r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
    end 
    for i=1:51; 
        rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
    end 
     
    % Update thickness 
    for i=1:51 
        t100(i) = r100(i+1)-r100(i); 
    end 
     
    % Update lambda_theta 
    lambda_theta100 = rm100./rm0; 
     
    % Update lambda_r 
    lambda_r100 = 1/1.5./lambda_theta100; 
     
    % Update helical angle 
    hd100 = atan(1.5/2/pi*h0./rm100); 
     
    % Update lambda h 
    lambda_h100 = sqrt(1.5^2*sin(hd0).^2+lambda_theta100.^2.*cos(hd0).^2); 
         
    % Update collagen stretch 
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    lambda_c_100 = lambda_h100./lambda_rp; 
    % unit-step matrix 
    unitstep = lambda_c_100 > 1;    
    unitstepr = unitstep==0; 
    lambda_c_100 = lambda_c_100.*unitstep + unitstepr; 
     
    %Substitute2: 
    S2=exp(Cc2*(0.5*(lambda_c_100.^2-1)).^2).*(lambda_c_100.^2-
1).*lambda_c_100.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum(Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100); 
    % coefficient of FcCc1 
    coeff_c=sum(Ic.*(S2.*cos(hd100).^2).*t100./rm100); 
    % estimate P 
    P100_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
    P100_est = P100_est_kPa / 0.1333224 
     
    % error function 
    err = (P_target_kPa - P100_est_kPa)^2; 
 
% Stress Distribution 
 
% Lagrange multiplier 
p_e=Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100; 
p_c=Ic.*(S2.*cos(hd100).^2).*t100./rm100; 
 
for k=1:50 
    p_e(k+1,:)=p_e(k,:)+p_e(k+1,:); 
    p_c(k+1,:)=p_c(k,:)+p_c(k+1,:); 
end 
 
p=(ones(51,1)*P100_est_kPa)+FeCe*(Ie.*lambda_r100.^2-p_e)-FcCc1*p_c; 
 
% True stress estimation 
s100_theta=-p+FeCe*(Ie.*lambda_theta100.^2)+FcCc1*(Ic.*S2.*cos(hd100).^2); 
 
s100_r = -p + FeCe*(Ie.*lambda_r100.^2); 
s100_z = -p + FeCe*1.5^2*Ie+FcCc1*(Ic.*S2.*sin(hd100).^2);; 
 

Implementation of the Homogeneous Model 

Optimize Parameters by Minimizing the Error Function (optima_homo.m) 

 164



% optima_homo.m 
% This program uses the homogeneous model  
% Optimization -  
% Uniform collagen recruiting assumption 
% Homogeneous Media Assumed 
 
% INPUT DATA 
% lambda_theta          51x10 
% lambda_theta2         51x12 
% lambda_r              51x10 
% lambda_r2             51x12 
% t                     51x10 
% t2                    51x12 
% rmean                 51x10 
% rmean2                51x12 
% Ie                    51x1 
% Ic                    51x1 
% P_exp                 1x10 
 
% lc                    51x10 
% lc2                   51x12 
% hd                    51x10 
% hd2                   51x12 
% h0                    51x1 
 
% To be determined 
% l0                    51x1 
% lambda_c              51x10 
% lambda_c2             51x12 
% FeCe, FcCc1, Cc2 
 
% New INPUT data 
% hd0                   51x1 
 
P_exp_kPa = P_exp * 0.1333224; 
 
lambda_h = 
sqrt(1.5^2*(sin(hd0).^2*ones(1,10))+lambda_theta.^2.*(cos(hd0).^2*ones(1,10))); 
lambda_h2 = 
sqrt(1.5^2*(sin(hd0).^2*ones(1,12))+lambda_theta2.^2.*(cos(hd0).^2*ones(1,12))); 
 
% Guess 
guess_Cc2 = 0.01:0.01:1.00; 
 
c100 = zeros(1,100); 
r_sq2 = zeros(1,100); 
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for ki=1:100 
 
Cc2 = guess_Cc2(ki); 
 
% Guess Collagen recruiting point 
guess_pool = 1.0000:0.0001:1.3000; 
% r-square 
R_sq = zeros(1,3001);                
 
for i=1:1:3001 
 
    % collagen recruitment point 
    lambda_rp = guess_pool(i);        
    % collagen stretch ratio 
    lambda_c = lambda_h/lambda_rp;    
     
    % unit-step matrix 
    unitstep = lambda_c>1;    
    unitstepr = unitstep==0; 
    lambda_c = lambda_c.*unitstep + unitstepr; 
     
    %Substitute2: 
    S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
    % coefficient of FcCc1 
    coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
    % multiple regression 
    X = [coeff_e' coeff_c']; 
    y = P_exp_kPa'; 
    a = X\y; 
 
    % result based on guessed collagen stretch at 100 mmHg 
    FeCe = a(1); 
    FcCc1 = a(2); 
 
    % estimate P 
    P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
 
    % error function 
    avg_P_exp = mean(P_exp_kPa); 
    SSE = sum((P_exp_kPa - P_est_kPa).^2); 
    SSR = sum((P_exp_kPa - avg_P_exp).^2); 
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    r_square = 1 - SSE/SSR; 
 
    R_sq(i) = r_square; 
 
end 
 
% find local maxima 
%plot(guess_pool,R_sq); 
[C,I]=max(R_sq); 
 
% OPTIMAL collagen recruiting point 
lambda_rp = guess_pool(I);       
% collagen stretch ratio 
lambda_c = lambda_h/lambda_rp;    
 
% unit-step matrix 
unitstep = lambda_c>1;    
unitstepr = unitstep==0; 
lambda_c = lambda_c.*unitstep + unitstepr; 
     
%Substitute2:  
S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
     
% coefficient of FeCe 
coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
% coefficient of FcCc1 
coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
% multiple regression 
X = [coeff_e' coeff_c']; 
y = P_exp_kPa'; 
a = X\y; 
 
% result based on guessed collagen stretch at 100 mmHg 
FeCe = a(1); 
FcCc1 = a(2); 
 
% estimate P 
P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
P_est = P_est_kPa / 0.1333224; 
 
% error function 
avg_P_exp = mean(P_exp_kPa); 
SSE = sum((P_exp_kPa - P_est_kPa).^2); 
SSR = sum((P_exp_kPa - avg_P_exp).^2); 
r_square = 1 - SSE/SSR; 
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r_sq2(ki) = r_square; 
c100(ki) = lambda_rp; 
end 
 
plot(guess_Cc2,r_sq2); 
max(c100) 
min(c100) 
 
[C,I]=max(r_sq2); 
 
% Optimal Cc2 
Cc2 = guess_Cc2(I);          
 
% OPTIMAL collagen stretch at 100mmHg 
lambda_rp = c100(I);       
% collagen stretch ratio 
lambda_c = lambda_h/lambda_rp;    
 
% unit-step matrix 
unitstep = lambda_c>1;    
unitstepr = unitstep==0; 
lambda_c = lambda_c.*unitstep + unitstepr; 
 
%Substitute2: 
S2=exp(Cc2*(0.5*(lambda_c.^2-1)).^2).*(lambda_c.^2-1).*lambda_c.^2; 
     
% coefficient of FeCe 
coeff_e=sum((Ie*ones(1,10)).*(lambda_theta.^2-lambda_r.^2).*t./rmean); 
% coefficient of FcCc1 
coeff_c=sum((Ic*ones(1,10)).*(S2.*cos(hd).^2).*t./rmean); 
 
% multiple regression 
X = [coeff_e' coeff_c']; 
y = P_exp_kPa'; 
a = X\y; 
 
% result based on guessed collagen stretch at 100 mmHg 
FeCe = a(1); 
FcCc1 = a(2); 
 
% estimate P 
P_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
P_est = P_est_kPa / 0.1333224; 
 
% error function 
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avg_P_exp = mean(P_exp_kPa); 
SSE = sum((P_exp_kPa - P_est_kPa).^2); 
SSR = sum((P_exp_kPa - avg_P_exp).^2); 
r_square = 1 - SSE/SSR; 
 
% END OF OPTIMIZATION 
 
% collagen stretch ratio 
lambda_c2 = lambda_h2/lambda_rp;    
% unit-step matrix 
unitstep2 = lambda_c2>1;    
unitstepr2 = unitstep2==0; 
lambda_c2 = lambda_c2.*unitstep2 + unitstepr2; 
 
%Substitute2: 
S22=exp(Cc2*(0.5*(lambda_c2.^2-1)).^2).*(lambda_c2.^2-1).*lambda_c2.^2; 
 
% coefficient of FeCe 
coeff_e2=sum((Ie*ones(1,12)).*(lambda_theta2.^2-lambda_r2.^2).*t2./rmean2); 
% coefficient of FcCc1 
coeff_c2=sum((Ic*ones(1,12)).*(S22.*cos(hd2).^2).*t2./rmean2); 
 
% estimate P 
P_est_kPa2 = coeff_e2*FeCe + coeff_c2*FcCc1; 
P_est2 = P_est_kPa2 / 0.1333224; 
 
% Lagrange multiplier 
p_e=(Ie*ones(1,12)).*(lambda_theta2.^2-lambda_r2.^2).*t2./rmean2; 
p_c=(Ic*ones(1,12)).*(S22.*cos(hd2).^2).*t2./rmean2; 
 
for k=1:50 
    p_e(k+1,:)=p_e(k,:)+p_e(k+1,:); 
    p_c(k+1,:)=p_c(k,:)+p_c(k+1,:); 
end 
 
p=(ones(51,1)*P_est_kPa2)+FeCe*((Ie*ones(1,12)).*lambda_r2.^2-p_e)-FcCc1*p_c; 
 
% True stress estimation 
sigma_theta=-
p+FeCe*((Ie*ones(1,12)).*lambda_theta2.^2)+FcCc1*((Ic*ones(1,12)).*S22.*cos(hd2).^
2); 
 
sigma_r = -p + FeCe*((Ie*ones(1,12)).*lambda_r2.^2); 
sigma_z = -p + 
FeCe*1.5^2*(Ie*ones(1,12))+FcCc1*((Ic*ones(1,12)).*S22.*sin(hd2).^2);; 
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Compute Stress Distributions Using the Homogeous Model (Stress100h.m for 

normotensive arteries) 

% Stress100h.m 
% This model computes distribution of stress at 100 mmHg 
% Using the homogeneous model 
 
% INPUT DATA 
% r100exp   52x1 
 
% target lumen pressure 
P_target_kPa = 100 * 0.1333224;  
r100 = zeros(52,1); 
r100(1) = 3.2320; 
 
% pseudo cumulative area of each layer 
a100exp = zeros(51,1); 
for i=1:51 
    a100exp(i) = r100exp(i+1)^2 - r100exp(1)^2; 
end 
 
% layer boundary at 100 
for i=1:51 
    r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
end 
 
% rmean at 100 
rm100 = zeros(51,1); 
for i=1:51; 
    rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
end 
 
lambda_theta100 = lambda_theta2(:,9); 
lambda_r100 = lambda_r2(:,9); 
hd100 = hd2(:,9); 
t100 = zeros(51,1); 
 
% pseudo rm0 
rm0 = rm100./lambda_theta100; 
 
flag = 0; 
err_prev = (P_target_kPa - P_est_kPa2(9))^2; 
 
while (flag == 0) 
    % Update Radius Data 
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    r100(1) = r100(1) - 0.0001; 
    for i=1:51 
        r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
    end 
    for i=1:51; 
        rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
    end 
     
    % Update thickness 
    for i=1:51 
        t100(i) = r100(i+1)-r100(i); 
    end 
     
    % Update lambda_theta 
    lambda_theta100 = rm100./rm0; 
     
    % Update lambda_r 
    lambda_r100 = 1/1.5./lambda_theta100; 
     
    % Update helical angle 
    hd100 = atan(1.5/2/pi*h0./rm100); 
     
    % Update lambda h 
    lambda_h100 = sqrt(1.5^2*sin(hd0).^2+lambda_theta100.^2.*cos(hd0).^2); 
         
    % Update collagen stretch 
    lambda_c_100 = lambda_h100/lambda_rp; 
    unitstep = lambda_c_100 > 1;   % unit-step matrix 
    unitstepr = unitstep==0; 
    lambda_c_100 = lambda_c_100.*unitstep + unitstepr; 
     
    %Substitute2:  
    S2=exp(Cc2*(0.5*(lambda_c_100.^2-1)).^2).*(lambda_c_100.^2-
1).*lambda_c_100.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum(Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100); 
    % coefficient of FcCc1 
    coeff_c=sum(Ic.*(S2.*cos(hd100).^2).*t100./rm100); 
    % estimate P 
    P100_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
    P100_est = P100_est_kPa / 0.1333224 
     
    % error function 
    err = (P_target_kPa - P100_est_kPa)^2 
    if (err > err_prev) 
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        flag = 1; 
    end 
    err_prev = err; 
end 
 
    % Update Radius Data 
    r100(1) = r100(1) + 0.0001; 
    for i=1:51 
        r100(i+1) = sqrt(a100exp(i) + r100(1)^2); 
    end 
    for i=1:51; 
        rm100(i) = sqrt((r100(i+1)^2+r100(i)^2)/2); 
    end 
     
    % Update thickness 
    for i=1:51 
        t100(i) = r100(i+1)-r100(i); 
    end 
     
    % Update lambda_theta 
    lambda_theta100 = rm100./rm0; 
     
    % Update lambda_r 
    lambda_r100 = 1/1.5./lambda_theta100; 
     
    % Update helical angle 
    hd100 = atan(1.5/2/pi*h0./rm100); 
     
    % Update lambda h 
    lambda_h100 = sqrt(1.5^2*sin(hd0).^2+lambda_theta100.^2.*cos(hd0).^2); 
         
    % Update collagen stretch 
    lambda_c_100 = lambda_h100/lambda_rp; 
    % unit-step matrix 
    unitstep = lambda_c_100 > 1;    
    unitstepr = unitstep==0; 
    lambda_c_100 = lambda_c_100.*unitstep + unitstepr; 
     
    %Substitute2: 
    S2=exp(Cc2*(0.5*(lambda_c_100.^2-1)).^2).*(lambda_c_100.^2-
1).*lambda_c_100.^2; 
     
    % coefficient of FeCe 
    coeff_e=sum(Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100); 
    % coefficient of FcCc1 
    coeff_c=sum(Ic.*(S2.*cos(hd100).^2).*t100./rm100); 
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    % estimate P 
    P100_est_kPa = coeff_e*FeCe + coeff_c*FcCc1; 
    P100_est = P100_est_kPa / 0.1333224 
     
    % error function 
    err = (P_target_kPa - P100_est_kPa)^2; 
 
% Stress Distribution 
 
% Lagrange multiplier 
p_e=Ie.*(lambda_theta100.^2-lambda_r100.^2).*t100./rm100; 
p_c=Ic.*(S2.*cos(hd100).^2).*t100./rm100; 
 
for k=1:50 
    p_e(k+1,:)=p_e(k,:)+p_e(k+1,:); 
    p_c(k+1,:)=p_c(k,:)+p_c(k+1,:); 
end 
 
p=(ones(51,1)*P100_est_kPa)+FeCe*(Ie.*lambda_r100.^2-p_e)-FcCc1*p_c; 
 
% True stress estimation 
s100_theta=-p+FeCe*(Ie.*lambda_theta100.^2)+FcCc1*(Ic.*S2.*cos(hd100).^2); 
 
s100_r = -p + FeCe*(Ie.*lambda_r100.^2); 
s100_z = -p + FeCe*1.5^2*Ie+FcCc1*(Ic.*S2.*sin(hd100).^2);; 
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