
Convex Optimization Under

Inexact First-order Information

A Thesis
Presented to

The Academic Faculty

by

Guanghui Lan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

August 2009

Convex Optimization Under

Inexact First-order Information

Approved by:

Dr. Arkadi Nemirovski, Advisor
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Alexander Shapiro, Co-advisor
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Renato D.C. Monteiro, Co-advisor
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Shabbir Ahmed
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Anatoli Jouditski
Joseph Fourier University, Grenoble,
France

Date Approved: June 18 2009

To my wife Zhaohui (Julene) Tong, my son Jesse and my forthcoming younger daughter

and

To my parents Yanxi Lan and Xuanhua Zhang

iii

ACKNOWLEDGEMENTS

There have been many people who have helped me through my study at Georgia Tech. In

the next few paragraphs, I would like to point out a few of these people to whom I am

especially in debt.

First and foremost, I would like to express my deepest appreciation to my advisors,

Arkadi Nemirovski, Alexander Shapiro and Ranato D.C. Monteiro. Professor Nemirovski

has provided me with innumerous help during my Ph.D. study at Georgia Tech. Without

his encouragement, support and guidance this thesis would not happen. Professor Shapiro

has given me invaluable support and suggestions with respect to my research and career

development during the past few years. Special thanks should go to Professor Monteiro,

who has spent countless hours over the past four years guiding me through my academic

pursuits. I would also like to thank Professors Shabbir Ahmed and Anatoli Jouditski, for

serving as my thesis committee members. Their guidance and advice are invaluable to the

completion of this thesis.

Next, I would like to thank Professor Craig Tovey, who found me from the dust during

my first-year graduate study at Georgia Tech. His encouragement, help and suggestions are

so important to me in the very begining of my academic life.

Then, I would like to thank my friends and fellow graduate students, to name a few,

Altner Doug, Ricardo Fukasawa, Yi He, Fatma Kilinc-Karzan, Wenjing Li, Andriy Shapoval,

Alejandro Toriello, Juan Pablo Vielma, Yang Zhang and Jieyun Zhou, who have made my

life at school and away from school lots of fun. I hope that they know how much I have

valued their friendships over the past few years, and I wish them all the best of luck in the

future.

Finally, I would like to thank my family. I am deeply indebted to my wife, Zhaohui

Tong, for her love, support and understanding and my lovely son, Jesse, for bringing me

the happiest time in my life. I would like to thank my parents, my sisters and brother, for

iv

their endless love, understanding and encouragement. Moreover, I would like to thank my

mother-in-law, Hexiang Long, for being very supportive to us during my graduate study at

Georgia Tech.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF ABBREVIATIONS AND SYMBOLS x

SUMMARY . xi

I INTRODUCTION . 1

1.1 Complexity theory for convex optimization 1

1.1.1 General non-smooth convex optimization 1

1.1.2 Smooth convex optimization and Nesterov’s optimal method 5

1.1.3 Recent advancement on first-order methods for convex optimization 9

1.2 Convex optimization under a stochastic first-order oracle 11

1.3 Convex optimization with approximate first-order information 14

1.4 Outline and main results of the thesis . 16

II MIRROR-DESCENT STOCHASTIC APPROXIMATION 20

2.1 Overview . 20

2.2 Stochastic Approximation: Basic Theory 21

2.2.1 Classical SA Algorithm . 21

2.2.2 Robust SA Approach . 24

2.2.3 Mirror Descent SA Method . 27

2.3 Numerical results . 35

2.3.1 Preliminaries . 36

2.3.2 A stochastic utility problem . 37

2.3.3 Stochastic max-flow problem . 38

2.3.4 A network planning problem with random demand 40

2.3.5 N-SA vs. E-SA . 41

2.4 Conclusions of this chapter . 43

vi

III VALIDATION ANALYSIS OF
MIRROR DESCENT STOCHASTIC APPROXIMATION 44

3.1 Overview . 44

3.1.1 Notation and terminology . 45

3.2 The mirror descent Stochastic Approximation Method 45

3.3 Accuracy certificates for SA solutions . 48

3.3.1 Online certificate . 48

3.3.2 Offline certificate . 52

3.4 Applications in Asset Allocation . 53

3.4.1 Minimizing the expected utility . 54

3.4.2 Minimizing the Conditional Value-at-Risk 56

3.5 Numerical results . 59

3.5.1 More implementation details . 59

3.5.2 Computational results for the EU model 60

3.5.3 Computational results for the CVaR model 64

3.6 Proof of the main results . 65

3.7 Conclusions of this chapter . 73

IV EFFICIENT METHODS FOR
STOCHASTIC COMPOSITE OPTIMIZATION 75

4.1 Overview . 75

4.1.1 Notation and terminology . 82

4.2 Modified mirror-descent stochastic approximation 82

4.3 Accelerated stochastic approximation . 87

4.3.1 The algorithm and its main convergence properties 87

4.3.2 Application to stochastic programming 93

4.4 Convergence analysis . 98

4.4.1 Convergence analysis for the mirror descent SA 98

4.4.2 Convergence analysis for the accelerated SA 103

4.4.3 Convergence analysis for quadratic penalty method 106

4.5 Conclusions of this chapter . 108

vii

V FIRST-ORDER AUGMENTED LAGRANGIAN METHODS 109

5.1 Overview . 109

5.1.1 Notation and terminology . 112

5.2 The algorithms and main results . 113

5.2.1 Termination criterion . 113

5.2.2 The augmented dual function . 115

5.2.3 The augmented Lagrangian method 117

5.2.4 The I-AL method applied to a perturbation problem 125

5.3 Basic Tools . 129

5.3.1 Projected gradient and the optimality conditions 129

5.3.2 Steepest descent method with inexact gradient 131

5.4 Convergence Analysis . 134

5.4.1 Convergence analysis for the I-AL method 135

5.4.2 Convergence analysis for the I-AL method applied to the perturbed
problem . 141

5.5 Comparision with other first-order methods 150

5.6 Conclusions of this chapter . 151

VI CONCLUSIONS AND FUTURE WORK 152

APPENDIX A — SOME TECHNICAL PROOFS 155

APPENDIX B — DETAILED NUMERICAL RESULTS FOR VALIDA-
TION ANALYSIS . 161

REFERENCES . 172

VITA . 178

viii

LIST OF TABLES

1 selecting stepsize policy . 37

2 SA vs. SAA on the stochastic utility problem 38

3 The variability for the stochastic utility problem 38

4 SA vs. SAA on the stochastic max-flow problem 39

5 The variability for the stochastic max-flow problem 40

6 SA vs. SAA on the SSN problem . 41

7 The variability for the SSN problem . 42

8 N-SA vs. E-SA . 43

9 The test instances for EU model . 60

10 The stepsize factors . 61

11 Changing u . 61

12 Changing r . 62

13 Lower bounds on optimal values and true optimal values 63

14 Variability of the lower bounds for N-SA . 63

15 Standard deviations . 64

16 The test instances for CVaR model . 65

17 Comparing SA and SAA for the CVaR model 65

18 SA vs SAA for EU-1 . 162

19 SA vs SAA for EU-2 . 163

20 SA vs SAA for EU-3 . 164

21 SA vs SAA for EU-4 . 165

22 SA vs SAA for EU-5 . 166

23 SA vs SAA for EU-6 . 167

24 SA vs SAA for EU-7 . 168

25 SA vs SAA for EU-8 . 169

26 SA vs SAA for EU-9 . 170

27 SA vs SAA for EU-10 . 171

ix

LIST OF ABBREVIATIONS AND SYMBOLS

CP convex programming or convex optimization

FO first-order oracle

SDP semidefinite programming

SA stochastic approximation

SAA sample average approximation

AL augmented Lagrangian

SCO stochastic composite optimization

VI variational inequality

SO stochastic oracle

E-SA Euclidean stochastic approximation

N-SA Non-Euclidean stochastic approximation

LHS Latin Hyperplane Sampling

EU expected utility

CVaR Conditional Value-at-Risk

AC-SA accelerated stochastic approximation

I-AL inexact augmented Lagrangian

x

SUMMARY

The research on convex optimization under the first-order oracle started in 1970, and

reached the first peak period from 1975 to 1985 that was terminated by the explosion of

interior-point methods. Since the iteration cost of Newton-based interior-point methods is

highly demanding for large-scale convex programming, first-order methods recently attract a

lot of interest for their cheap iteration cost. These methods are advantageous over interior-

point methods when the desired solution accuracy is moderate. The past few years has

witnessed the success of first-order methods in solving a diverse set of problems arising

from combinatorial optimization, machine learning, data mining, compressed sensing, etc.

In many situations the information returned by the first-order oracle is inexact. One

prominent example is given by the classic stochastic programming where the objective

function is given in the form of expectation. One can only expect to obtain an unbiased

estimator of the objective value and its subgradient due to the difficulty of computing the

expectation to high accuracy. Moreover, inexact first-order information often appears in

certain deterministic optimization techniques which operate on the (sub)gradients of the

dual problem. Sometimes, it is difficult to compute the exact (sub)gradients of the dual

problem, and as a consequence, only approximate first-order information is available in

reality for the circumstances described above. In this study we investigate the design and

complexity analysis of the algorithms to solve convex optimization problems under inexact

first-order information.

In the first part of this thesis we focus on the general non-smooth convex optimization

under a stochastic oracle. We start by introducing the Mirror-descent Stochastic Approxi-

mation (SA) algorithm due to Nemirovski et. al. (2009) for solving this class of problems.

By incorporating two important elements, namely, averaging the iterates and adapting to

the problem’s geometry, into the classic SA algorithm, this modified SA algorithm can sig-

nificantly outperform other approaches, such as, the Sample Average Approximation (SAA)

xi

for a certain class of convex programming problems. However, some issues related to the

mirror-descent SA algorithm remain to be addressed. First of all, a long-standing problem

for the SA methods is the absence of a validation procedure to estimate the accuracy of the

generated solutions. On the other hand, an important methodological property of the SAA

approach is that, with some additional effort, it can provide such estimates. To this end

we show that while running a mirror descent SA procedure one can compute, with a small

additional effort, lower and upper statistical bounds for the optimal objective value. We

demonstrate that for a certain class of convex stochastic programing problems these bounds

are comparable in quality with similar bounds computed by the SAA method, while their

computational cost is considerably smaller. Moreover, the numerical study in Nemirovski

et. al. (2009) focuses only on problems where the feasible set is a standard simplex. It is

not clear how this algorithm behaves in practice for solving other convex stochastic pro-

gramming problems. We then conduct extensive numerical experiments to understand the

performance of the mirror descent SA algorithm for solving stochastic programing problems

with a feasible set more complicated than a standard simplex.

In the second part of this thesis we consider the Stochastic Composite Optimization

(SCO), an important class of convex programming problems whose objective function is

given by the summation of a smooth and non-smooth component. Moreover, it is assumed

that the only information available for the numerical scheme to solve these problems is

the subgradients of the composite function contaminated by stochastic noise. Since SCO

covers smooth, non-smooth and stochastic convex optimization as certain special cases,

a lower bound on the rate of convergence for solving this class of problems immediately

follows from the classical complexity theory for convex optimization. Note however that

the optimization algorithms that can achieve this lower bound had never been developed.

This is partly due to the difficulty that, although either smooth or nonsmooth minimization

has been well-studied separately in the literature, a unified treatment for both of them seems

highly non-trivial. Our contribution mainly consists of the following aspects. Firstly, with a

novel analysis, it is demonstrated that the simple mirror descent SA algorithm applied to the

aforementioned problems exhibits the best known so far rate of convergence guaranteed by a

xii

more involved stochastic mirror-prox algorithm. Moreover, by properly modifying a variant

of Nesterov’s optimal method for smooth convex optimization, we propose an accelerated

SA, which can achieve the theoretically optimal rate of convergence for solving this class of

problems. Clearly, the accelerated SA algorithm is a universally optimal method for non-

smooth, smooth and stochastic convex optimization. It should be stressed that Nesterov’s

optimal method and/or its variants were designed for solving deterministic smooth convex

optimization problems. These algorithms, with very aggressive stepsizes employed, were

believed to be too sophisticated to solve non-smooth and stochastic convex optimization

problems. We, however, substantially extend the analysis of Nesterov’s optimal method to

non-smooth and stochastic convex optimization, and devise a novel (actually increasing)

stepsize policy for solving these problems. Thirdly, we investigate this accelerated SA in

more details, for example, derive the exponential bounds for the large deviations of the

resulting solution inaccuracy from the expected one, provided the noise from the stochastic

oracle is “light-tailed”. Finally, the significant advantages of the accelerated SA over the

existing algorithms are illustrated in the context of solving a class of stochastic programming

problems whose feasible region is a simple compact convex set intersected with an affine

manifold.

In the third part of this work, we investigate certain deterministic optimization tech-

nique, namely, the augmented Lagrangian method, applied to solve a special class of convex

programming problems. It is well-known that the exact augmented Lagrangian method can

be viewed as the gradient ascent method applied to the augmented dual. Moreover, to com-

pute the gradient of the augmented dual, it is necessary to solve the so-called augmented

subproblem. Since in most applications, the augmented subproblem can only be solved ap-

proximately, we are interested in analyzing the inexact version of the augmented Lagrangian

(AL) method where the subproblems are approximately solved by means of Nesterov’s opti-

mal method. We establish a bound on the total number of Nesterov’s optimal iterations, i.e.,

the inner iterations, performed throughout the entire inexact AL method to obtain a near

primal-dual optimal solution. We also present variants with better iteration-complexity

xiii

bounds than the original inexact AL method, which consist of applying the original ap-

proach directly to a perturbed problem obtained by adding a strongly convex component

to the objective function of the CP problem. We show that the iteration-complexity of the

inexact AL methods for obtaining a near primal-dual optimal solution compares favorably

with other penalty based approaches, such as the quadratic and exact penaly methods, and

another possible approach for solving variational inequalities.

xiv

CHAPTER I

INTRODUCTION

In this chapter, we introduce some background and discuss the motivation for our research.

In particular, we review the classic complexity theory for convex optimization and discuss

some recent advancement in first-order convex programming (CP) methods in Section 1.1.

In Section 1.2, we describe convex programming under the stochastic first-order oracle and

review its main solution approaches. We then extend our discussion to the situation where

the first-order information contains controllable deterministic errors in Section 1.3.

1.1 Complexity theory for convex optimization

In this section, we review a few classic complexity results for convex optimization, which

were established by Nemirovski and Yudin through their fundamental work in [44].

1.1.1 General non-smooth convex optimization

Consider the convex programming problem

f∗ := min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X,

(1.1.1)

where X is a compact convex set with a nonempty interior, the objective function f and

constraints gi, i = 1, . . . ,m, are convex continuous functions over X. Let Pm(X) denote

the family of all feasible convex programming problems given in the above form. Clearly,

due to the feasibility assumption and the compactness of X, the optimal value of (1.1.1)

must be attained at certain feasible solution, i.e., problem (1.1.1) is solvable. We identify

an instance I from the family Pm(X) by I = (f, g1, . . . , gm).

In what follows we assume that Pm(X) is represented by the first-order oracle FO

which, given the instance I and an input vector x ∈ intX, outputs the values and some

1

subgradients of the objective function and constraints at the point x. Hence, FO can be

defined as a map from intX to <(m+1)×(n+1) given by

x 7→ FO(I, x) =
(
f(x), f ′(x); g1(x), g′1(x); . . . ; gm(x), g′m(x)

)
.

A solution method, denoted by M, when applied to instance I, performs sequential

calls to FO by supplying it with certain input xi, which is called the i-th search point.

While at the very first step, search point x1 is generated by the method without knowing

any information about I, the i-th search point at step i is generated by the method based

on the accumulated information. In other words, search point xi can be defined as a

certain function of the information obtained from FO during all the previous steps. The

method should also perform the termination test from time to time and compute the output

x̄(M, I) whenever it decides to terminate. Note that both the termination test and the rule

of computing the output should depend only on the first-order information accumulated to

their corresponding moments. The total number of steps performed by the method M,

as applied to instance I, is called the complexity (or iteration-complexity) Compl (M, I)

of M at I. This quantity can be +∞ if the method does not terminate for instance I.

Accordingly, the complexity for method M on the whole family PM (X) is defined as

Compl (M) := sup
I∈PM (X)

Compl (M, I).

Moreover, given an approximate solution x ∈ X for instance I, we measure its accuracy

by

εr(I, x) := max
{

f(x)− f∗

maxx∈X f(x)− f∗
,

[g1(x)]+
maxx∈X [g1(x)]+

, . . . ,
[gm(x)]+

maxx∈X [gm(x)]+

}
, (1.1.2)

where [·]+ := max{·, 0}. We define the accuracy of methodM applied to instance I by the

accuracy of its output x̄(M, I), i.e.,

Accur (M, I) := εr(p, x̄(M, I)), (1.1.3)

and the accuracy of method M applied to the whole family PM (X) by

Accur (M) := sup
I∈PM (X)

Accur (M, I).

2

Finally, the complexity of the family PM (X) is defined as the best complexity of a method

for solving problems from this family to a given accuracy, i.e.,

Compl (ε) := min
M
{Compl (M) : Accur (M) ≤ ε}. (1.1.4)

The optimization methods that can achieve this complexity are called optimal methods for

Pm(X).

In complexity theory, we are interested in establishing the lower and upper bounds

for Compl (ε) defined in (1.1.4). A lower bound of Compl (ε) means that for whatever

algorithms solving problems in PM (X), there always exist a “bad” problem instance such

that the number of steps performed by these algorithms can not be smaller than Compl (ε).

On the other hand, an upper bound for Compl (ε) is always associated with a particular

optimization algorithm and provides a bound on the total number of steps performed by this

algorithm applied to the whole family PM (X). We first state a major complexity result by

Nemirovski and Yudin (1983) that provides the lower and upper bounds for solving general

convex programming problems.

Theorem 1.1.1 The complexity of the family Pm(X) of general convex programming prob-

lems with m-constraints over a convex compact set X ∈ <n can be bounded by

n

⌊
ln(1/ε)
6 ln 2

⌋
− 1 ≤ Compl (ε) ≤ d2.181n ln(1/ε)e , (1.1.5)

where the upper bound holds for any ε < 1 and the lower bound holds for any ε < ε̄(X) where

ε̄(X) ≥ 1/n3 for all X ⊆ <n. In particular, we have that ε̄(X) = 1 if X is a paralellope and

that ε̄(X) = 1/n if X is an ellipsoid.

We now add a few remarks about the results stated in Theorem 1.1.1. First, the upper

bound in (1.1.5) is given by the remarkable Ellipsoid method, the first linearly convergent

method invented by Nemirovski and Yudin in 1976 ([45]) for solving general convex pro-

gramming problems. By using the Ellipsoid method as a tool, Khachian ([28]) established

the polynomial solvability of linear programming in 1979. In fact, with the invention of the

Ellipsoid method, a generic convex optimization problem, under mild computability and reg-

ularity assumptions, became polynomially solvable (and thus “computationally tractable”)

3

(see [6]). The Ellipsoid method, in the worst case, is incomparably better than Dantzig’s

Simplex method ([14]) for linear programming, but in practice the Ellipsoid method works

more or less according to its theoretical efficiency bound while the Simplex method in real-

world applications usually outperforms the Ellipsoid method. In 1984, Karmarkar in his

seminal paper [27] proposed a completely new polynomial time algorithm for Linear Pro-

gramming, namely, the interior point method. Karmarkar’s algorithm turned out to be

very efficient in practice and led to the so-called era of interior point methods for convex

optimization (see, for example, [54], [77], [6] and [66]).

Second, while the upper bound of the complexity stated in (1.1.5) is valid for every

ε ∈ (0, 1), the lower bound is valid only for small enough ε, i.e., ε ≤ ε̄(X). For example, if

X is a standard Euclidean ball, then the lower bound in (1.1.5) is valid only for ε ≤ 1/n.

Clearly, in view of Theorem 1.1.1, for small enough ε, namely, for 0 < ε < ε̄(X), the Ellipsoid

method is an optimal method, up to an absolute constant factor, for solving Pm(X). Note

however that there exists an interval [ε̄(X), 1) for which the lower bound in (1.1.5) is not

valid and thus the Ellipsoid method is not optimal. Moreover, as the dimension n increases,

the value of ε̄(X) for general X decreases and hence the interval [ε̄(X), 1) tends to cover

all possible values of ε ∈ (0, 1). Below we review an important result which provides valid

lower and upper bounds on Compl (ε) for every ε ∈ (0, 1).

Before stating this result, we introduce a notion, namely, the asphericity κ of X, which

essentially tells us how the set X differs from an Euclidean ball. More specifically, the

asphericity κ is defined as the smallest ratio of radii of two concentric Euclidean balls Vin

and Vout such that Vin ⊆ X ⊆ Vout.

Theorem 1.1.2 The complexity of the family Pm(X) of general convex programming prob-

lems with m-constraints over a convex compact set X ∈ <n of asphericity κ can be bounded

by

min
{
n,

⌊
1

(2κε)2

⌋}
≤ Compl (ε) ≤

⌈
4κ2

ε2

⌉
, 0 < ε < 1. (1.1.6)

We now make a few comments about the above result. First, the upper bound on

Compl (ε) stated in (1.1.6) is achieved by the simple subgradient method. Notice that, for

4

a given κ, this upper bound is independent on the dimension n of the problem. Second,

when the dimension of the domain is large enough for given κ and ε, i.e., when

n ≥ 1
(2κε)2

, (1.1.7)

it can be easily seen that the upper bound stated in (1.1.6) is equivalent to the lower

complexity bound up to a constant factor. Therefore, the subgradient method is an opti-

mal method for solving general large-scale convex programming problems Pm(X) for which

condition (1.1.7) holds. Second, in view of Theorem 1.1.2, theoretically speaking, no algo-

rithms can perform much better than the simple subgradient method for solving general

large-scale convex programming problems. The only way to improve the performance of

the algorithms would be to develop specialized algorithms for solving certain subclasses of

problems in Pm(X). We are about to review in next subsection an important complexity

result of this type, namely, the complexity of smooth convex optimization.

1.1.2 Smooth convex optimization and Nesterov’s optimal method

Consider the minimization problem

f∗ := min
x∈X

f(x), (1.1.8)

where X ⊆ <n is a closed convex set and f is convex and continuously differentiable with

Lipschitz continuous gradient over X with respect to a given arbitrary norm ‖ ·‖ in <n, i.e.,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ <n,

where ‖ · ‖∗ denotes the conjugate norm given by ‖g‖∗ := max‖x‖≤1〈g, x〉. We assume

that the optimal value f∗ of problem (1.1.8) is finite and that its set of optimal solutions

X∗ := Argminx∈<nf(x) is nonempty. Moreover, the distance from the initial point x0 to

the set of optimal solutions is bounded by R, i.e.,

inf
x∗∈X∗

‖x0 − x∗‖ ≤ R.

Letting Sn(L,R) denote the family of convex programming problems given in this form, we

identify an instance I from Sn(L,R) by I = (f).

5

Note that, while we use the relative accuracy (cf. (1.1.2)) to measure the quality of

an approximate solution in the previous subsection, we measure the quality of a given

approximation solution x ∈ X for an instance I from SL,R by its absolute accuracy, i.e.,

εa(x, I) := f(x)− f∗.

Accordingly, we replace εr(x, I) in the definition of Accur (M, I) (cf. (1.1.3)) by εa(x, I).

Nemirovski and Yudin [44] provides the following lower bound regarding the complexity

of Sn(L,R). It is worth noting that this lower bound is obtained through the construction

of a class of unconstrained quadratic programming instances from Sn(L,R).

Theorem 1.1.3 The complexity of the family Sn(L,R) of smooth convex programming

problems can be bounded from below by

Compl (ε) ≥ min

{
n− 1

2
,

√
3LR2

32ε
− 1

}
. (1.1.9)

In [44], Nemirovski and Yudin also provide a nearly optimal method, up to a logarithmic

factor, for solving Sn(L,R). In a series of work ([47, 48]), Nesterov presented novel algo-

rithms for solving problem (1.1.8) whose iteration-complexity is bounded by O(
√
LR2/ε).

Clearly, in view of (1.1.9), Nesterov’s methods are optimal, up to a constant factor, for

solving Sn(L,R) when the dimension n is large enough, i.e.,

n ≥
√

3LR2

8ε
+ 1.

Nesterov’s method was further studied in [49], [1] and [50] using Bregman distance (see

definition below). Nesterov ([49]) also developed certain extension of his method which

exhibits nearly optimal, up to a logarithmic factor, rate of convergence for solving smooth

convex optimization problems with smooth functional constraints. In this subsection, we

will review a version of Nesterov’s method for solving (1.1.8) presented in [50], while other

variants of Nesterov’s method for solving (1.1.8) can also be found, for example, in [32] and

[73]. It is interesting to note that the construction of Nesterov’s optimal method is a very

nice example which demonstrates the importance of the complexity approach; the method

for solving Sn(L,R) with the optimal rate of convergence was found mainly because the

investigation of complexity enforced researchers to believe that such a method should exist.

6

Let ω : X → IR be a differentiable strongly convex function with modulus α > 0 with

respect to ‖ · ‖, i.e.,

ω(x) ≥ ω(x̃) + 〈∇ω(x̃), x− x̃〉+
α

2
‖x− x̃‖2, ∀x, x̃ ∈ X. (1.1.10)

The Bregman distance dω : X ×X → IR associated with ω is defined as

dω(x; x̃) ≡ ω(x)− lω(x; x̃), ∀x, x̃ ∈ X, (1.1.11)

where lω : <n ×X → IR is the “linear approximation” of ω defined as

lω(x; x̃) = ω(x̃) + 〈∇ω(x̃), x− x̃〉, ∀(x, x̃) ∈ <n ×X.

We are now ready to state Nesterov’s smooth first-order method for solving (1.1.8). We

use the superscript “sd” in the sequence obtained by taking a steepest descent step and

the superscript “ag” (which stands for “aggregated gradient”) in the sequence obtained by

using all past gradients.

Nesterov’s Algorithm:

0) Let xsd0 = xag0 ∈ X be given and set k = 0.

1) Set xk = 2
k+2x

ag
k + k

k+2x
sd
k and compute f(xk) and ∇f(xk).

2) Compute (xsdk+1, x
ag
k+1) ∈ X ×X as

xsdk+1 ∈ Argmin
{
lf (x;xk) +

L

2
‖x− xk‖2 : x ∈ X

}
, (1.1.12)

xagk+1 ≡ argmin

{
L

α
dω(x;x0) +

k∑
i=0

i+ 1
2

[lf (x;xi)] : x ∈ X

}
. (1.1.13)

3) Set k ← k + 1 and go to step 1.

end

The main convergence result established by Nesterov [50] regarding the above algorithm

is summarized in the following theorem.

7

Theorem 1.1.4 The sequence {xsdk } generated by Nesterov’s optimal method satisfies

f(xsdk)− f∗ ≤ 4Ldω(x∗;xsd0)
αk(k + 1)

, ∀k ≥ 1,

where x∗ is an optimal solution of (1.1.8). As a consequence, given any ε > 0, an iterate

xsdk ∈ X satisfying f(xsdk)− f∗ ≤ ε can be found in no more than 2

√
dω(x∗;xsd0)L

αε

 (1.1.14)

iterations.

The result stated in Theorem 1.1.4 gives us a bound on the estimated error at each

iteration k in terms of the objective value, which is usually refered to as the rate of conver-

gence or convergence rate of an optimization method. Clearly, we can derive the iteration-

complexity of an optimization method from the convergence rate results. The following

iteration-complexity result follows as an immediate special case of Theorem 1.1.4.

Corollary 1.1.1 Suppose that ‖ · ‖ is a inner product norm and h : X → < is chosen as

ω(·) = ‖ · ‖2/2 in Nesterov’s optimal method. Then, for any ε > 0, an iterate xsdk ∈ X

satisfying f(xsdk)− f∗ ≤ ε can be found in no more than⌈
‖xsd0 − x∗‖

√
2L
ε

⌉
(1.1.15)

iterations, where x∗ is an optimal solution of (1.1.8).

Proof. If ω(x) = ‖x‖2/2, then (1.1.11) implies that dω(x∗;xsd0) = ‖xsd0 − x∗‖2/2. The

corollary clearly follows from this fact and Theorem 1.1.4.

Now assume that the objective function f is strongly convex over X, i.e., for some µ > 0,

〈∇f(x)−∇f(x̃), x− x̃〉 ≥ µ‖x− x̃‖2, ∀x, x̃ ∈ X. (1.1.16)

Nesterov shows in Theorem 2.2.2 of [49] that, under the assumptions of Corollary 1.1.1, a

variant of his optimal method finds a solution xk ∈ X satisfying f(xk)− f∗ ≤ ε in no more

than ⌈ √
L

µ
log

L ‖xsd0 − x∗‖2

ε

⌉
(1.1.17)

8

iterations. The following result gives a slightly sharper iteration-complexity bound for

Nesterov’s optimal method that replaces the term log(L‖xsd0 − x∗‖2/ε) in (1.1.17) with

log(µ‖xsd0 − x∗‖2/ε). The proof of this result is given in Theorem 8 of [33].

Theorem 1.1.5 Let ε > 0 be given and suppose that the assumptions of Corollary 1.1.1

hold and that the function f is strongly convex with modulus µ. Then, the variant where we

restart Nesterov’s optimal method, with proximal function ω(·) = ‖ · ‖2/2, every

K :=

⌈√
8L
µ

⌉
(1.1.18)

iterations finds a solution x̃ ∈ X satisfying f(x̃)−f∗ ≤ ε in no more than K max{1, dlogQe}

iterations, where

Q :=
µ ‖xsd0 − x∗‖2

2ε
(1.1.19)

and x∗ := argminx∈Xf(x).

1.1.3 Recent advancement on first-order methods for convex optimization

As discussed in Subsection 1.1.2 (see Theorem 1.1.2), the iteration-complexity of any algo-

rithms solving the general large-scale non-smooth convex programming problems can not

be smaller than O(1/ε2). More recently, Nesterov in a very relevant paper [50] presented a

first-order method to solve convex programming problems of the form (1.1.8) for an impor-

tant and broad class of non-smooth convex objective functions with iteration-complexity

bounded by O(1/ε). Nesterov’s approach consists of approximating an arbitrary function

f from the class by a sufficiently close smooth one with Lipschitz continuous gradient and

applying the optimal smooth method in [47, 50] to the resulting CP problem with f re-

placed by its approximation function. In a subsequent paper, Nemirovski [42] proposed

an extra-gradient type first-order method for solving a slightly more general class of CP

problems than the one considered by Nesterov [50] and also established an O(1/ε) iteration-

complexity bound for his method.

The theoretical breakthrough due to Nesterov [50] and Nemirovski [42] certainly attract

a lot of attention and first-order methods are starting to regain the status of practically and

9

provably efficient algorithms for large-scale problems, effectively competing with interior-

point methods in cases when running even a single iteration of a higher-order method

becomes practically intractable. For example, these first-order methods due to Nesterov

[47, 50] and Nemirovski [42] have recently been applied to certain semidefinite program-

ming (SDP) problems with some special structures (see Lu et al. [39], Nesterov [53] and

d’Aspremont [15]). Peña [56] used Nesterov’s smooth method [47, 50] to successfully solve

a special class of large-scale linear programming problems. Lan et. al. [32] proposed

primal-dual convex (smooth and/or nonsmooth) minimization reformulations for general

cone programming and compared three aforementioned first-order methods, namely, Nes-

terov’s optimal method [47, 50], Nesterov’s smooth approximation scheme [50], and Ne-

mirovski’s prox-method [42], applied to these reformulations. Partly motivated by this

work, Tseng [73] developed some new variants for these methods mentioned above. In the

application side, these first-order methods have been successfully used in sparse covariance

selection, rank reduction in multivariate linear regression and compressed sensing etc. (see,

for example, [16, 37, 38, 52, 4]).

As a final note of this section, in spite of the fact that either nonsmooth or smooth con-

vex optimization has been well-studied separately in the literature and the effort that has

been recently taken to apply the smooth convex optimization techniques for solving certain

non-smooth convex optimization problems ([50, 42, 52, 73]), a unified treatment for solving

general non-smooth and smooth convex optimization seems highly non-trivial. As a result,

there does not exist an algorithm which can achieve the optimal rate of convergence for

solving both smooth and nonsmooth convex optimization problems. We will demonstrate

in Chapter 4 of this thesis that such a unified treatment is possible and then present an uni-

versally optimal method for solving both PM (X) and S(L,R) based on properly modifying

a variant of Nesterov’s method.

10

1.2 Convex optimization under a stochastic first-order or-
acle

In the previous section, we reviewed a few important results for convex optimization under

exact first-order information. In many situations the information returned by the first-order

oracle is inexact. One prominent example is given by the classic stochastic programming:

min
x∈X

{
f(x) := E[F (x, ξ)]

}
, (1.2.1)

where X ⊂ Rn is a nonempty bounded closed convex set, ξ is a random vector whose

probability distribution P is supported on set Ξ ⊂ Rd and F : X × Ξ → R. We assume

that for every ξ ∈ Ξ the function F (·, ξ) is convex on X, and that the expectation

E[F (x, ξ)] =
∫

Ξ F (x, ξ)dP (ξ) (1.2.2)

is well defined and finite valued for every x ∈ X. It follows that function f(·) is convex and

finite valued on X. Moreover, we assume that f(·) is continuous on X. Of course, continuity

of f(·) follows from convexity if f(·) is finite valued and convex on a neighborhood of X.

With these assumptions, (1.2.1) becomes a convex programming problem.

A basic difficulty of solving stochastic optimization problem (1.2.1) is that the multi-

dimensional integral (expectation) (1.2.2) cannot be computed with a high accuracy for

dimension d, say, greater than 5. There exist two competitive computational approaches

for solving (1.2.1) based on Monte Carlo sampling techniques, namely, the Stochastic Ap-

proximation (SA) and the Sample Average Approximation (SAA) methods. To this end we

make the following assumptions.

(A1) It is possible to generate an iid sample ξ1, ξ2, ..., of realizations of random vector ξ.

(A2) There is a mechanism which for every given x ∈ X and ξ ∈ Ξ returns value F (x, ξ)

and a stochastic subgradient – a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is well

defined and is a subgradient of f(·) at x, i.e., g(x) ∈ ∂f(x). This mechanism will be

referred to as the Stochastic Oracle (SO).

Recall that if F (·, ξ), ξ ∈ Ξ, is convex and f(·) is finite valued in a neighborhood of a

11

point x, then (cf., Strassen [71])

∂f(x) = E [∂xF (x, ξ)] . (1.2.3)

In that case we can employ a measurable selection G(x, ξ) ∈ ∂xF (x, ξ) as a stochastic

subgradient.

Both approaches, the SA and SAA methods, have a long history. The SA method

is going back to the pioneering paper by Robbins and Monro [61]. Since then stochastic

approximation algorithms became widely used in stochastic optimization (see, e.g., [7, 17,

18, 57, 64, 31] and references therein) and, due to especially low demand for computer

memory, in signal processing. In the classical analysis of the SA algorithm (it apparently

goes back to the works [13] and [65]) it is assumed that f is twice continuously differentiable

and strongly convex, and in the case when the minimizer of f belongs to the interior of X,

exhibits asymptotically optimal rate of convergence E[f(xt)− f∗] = O(1/t) (here xt is t-th

iterate and f∗ is the minimal value of f(x) over x ∈ X). This algorithm, however, is very

sensitive to a choice of the respective stepsizes. Since “asymptotically optimal” stepsize

policy can be very bad in the beginning, the algorithm often performs poorly in practice

(e.g., [70], Section 4.5.3.).

An important improvement of the SA method was developed by Polyak [58] and Polyak

and Juditsky [59], where longer stepsizes were suggested with consequent averaging of the

obtained iterates. Under the outlined “classical” assumptions, the resulting algorithm ex-

hibits the same optimal O(1/t) asymptotical convergence rate, while using an easy to im-

plement and “robust” stepsize policy. It should be mentioned that the main ingredients of

Polyak’s scheme – long steps and averaging – were, in a different form, proposed already in

[46] for the case of problems (1.2.1) with general type Lipschitz continuous convex objec-

tives and for convex-concave saddle point problems. The algorithms from [46] exhibit, in

a non-asymptotical fashion, the unimprovable in the general convex case O(1/
√
t)-rate of

convergence. For a summary of early results in this direction, see [44].

The SAA approach was used by many authors in various contexts under different names.

12

Its basic idea is rather simple: generate a (random) sample ξ1, ..., ξN , of size N , and ap-

proximate the “true” problem (1.2.1) by the sample average problem

min
x∈X

{
f̂N (x) := N−1

∑N
j=1 F (x, ξj)

}
. (1.2.4)

Note that the SAA method is not an algorithm, the obtained SAA problem (1.2.4) still

has to be solved by an appropriate numerical procedure. Recent theoretical studies (cf.,

[30, 68, 69]) and numerical experiments (see, e.g., [36, 40, 74]) show that the SAA method

coupled with a good (deterministic) algorithm could be reasonably efficient for solving cer-

tain classes of two stage stochastic programming problems. On the other hand classical

SA type numerical procedures typically performed poorly for such problems. Recently, Ne-

mirovski et. al [43] demonstrated that a properly modified SA approach can be competitive

and even significantly outperform the SAA method for a certain class of stochastic pro-

gramming problems. The mirror descent SA method they introduced (cf. Chapter 2) is a

direct descendant of the stochastic mirror descent method of Nemirovski and Yudin ([44]).

However, the method developed in [43] is more flexible than its “ancestor”: the iteration of

the method is exactly the prox-step for a chosen prox-function, and the choice of prox-type

function is not limited to the norm-type distance-generating functions. Close techniques,

based on subgradient averaging, have been proposed in Nesterov [51] and used in [24, 26]

to solve certain stochastic optimization problems of the form (1.2.1).

Several issues related to the mirror descent SA algorithm still remain to be addressed.

First of all, a long-standing problem for the SA methods is the absence of a validation

procedure to estimate the accuracy of the generated solutions. On the other hand, an

important methodological property of the SAA approach is that, with some additional

effort, it can provide such estimates. Moreover, the numerical study in [43] focuses only on

problems where the feasible set is a standard simplex. It is not clear how this algorithm

behaves in practice for solving other convex stochastic programming problems. Finally, the

mirror descent SA algorithm in [43] does not assume the differentiability of the objective

function f . One natural question is whether we gain anything if f is differentiable or

contains certain differentiable components. We will address all the above-mentioned issues

13

in Chapters 3 and 4 of this thesis.

1.3 Convex optimization with approximate first-order in-
formation

In the previous section, we considered convex optimization under a stochastic oracle which,

upon request, outputs an unbiased estimator for certain subgradient of the objective func-

tion. In addition to that, inexact first-order information often appears in certain deter-

ministic optimization techniques which operate on the (sub)gradients of the dual problem.

Sometimes, to compute the exact (sub)gradients of the dual can be computationally ex-

pensive, for example, requiring to solve a complicated subproblem, and as a result, only

approximate first-order information is available in reality for the circumstances described

above. In this section, we consider first-order methods for a special class of convex pro-

gramming problems based on an inexact version of the classical augmented Lagrangian (AL)

approach, where the subproblems are approximately solved by means of Nesterov’s optimal

method.

The basic problem of interest is the CP problem

f∗ := min{f(x) : A(x) = 0, x ∈ X}, (1.3.1)

where f : X → IR is a convex function with Lipschitz continuous gradient, X ⊆ <n is a

sufficiently simple compact convex set and A : <n → <m is an affine function.

For the case where the feasible region consists only of the set X, or equivalently A ≡ 0,

Nesterov ([47, 50]) developed methods which can find a point x ∈ X such that f(x)−f∗ ≤ ε

in at most O(ε−1/2) iterations (see Subsection 1.1.2). Moreover, each iteration of his method

requires one gradient evaluation of f and computation of two projections onto X. It is shown

that his method achieves, uniformly in the dimension, the lower bound on the number of

iterations for minimizing convex functions with Lipschitz continuous gradient over a closed

convex set. When A is not identically 0, Nesterov’s optimal method can still be applied

directly to problem (1.3.1) but this approach would require the computation of projections

onto the feasible region X∩{x : A(x) = 0}, which for most practical problems is as expensive

as solving the original problem itself. An alternative approach for solving (1.3.1) when A

14

is not identically 0 is to use first-order methods whose iterations require only computation

of projections onto the simple set X.

Following this line of investigation, Lan and Monteiro [33] studied two first-order meth-

ods for solving (1.3.1) based on two well-known penalization approaches, namely: the

quadratic and the exact penalization approaches. Iteration-complexity bounds for these

methods are then derived to obtain two types of near optimal solutions of (1.3.1), namely:

near primal and near primal-dual optimal solutions. Variants with possibly better iteration-

complexity bounds than the aforementioned methods are also discussed. In this work, we

still consider another first-order approach for solving (1.3.1) based on the classical aug-

mented Lagrangian approach, where the subproblems are approximately solved by means

of Nesterov’s optimal method. As a by-product, alternative first-order methods for solving

(1.3.1) involving only computation of projections onto the simple set X are obtained.

The augmented Lagrangian method, initially proposed by Hestenes [21] and Powell [60]

in 1969, is currently regarded as an effective optimization method for solving large-scale

nonlinear programming problems (see textbooks or monographs: [8], [9], [20], [55], [63]).

More recently, it has been used by the convex programming community to develop special-

ized first-order methods for solving large-scale semidefinite programming problems (see, for

example, Burer and Monteiro [11, 12], Jarre and Rendl [23], Zhao et al. [78]), due to its lower

iteration-cost compared to that of Newton-based interior-point methods. The augmented

Lagrangian method applied to problem (1.3.1) consists of solving a sequence of subproblems

of the form

dρ(λk) := min
x∈X

{
Lρ(x, λk) := f(x) + 〈λk,A(x)〉+

ρ

2
‖A(x)‖2

}
, (1.3.2)

where ρ > 0 is a given penalty parameter and ‖ · ‖ is the norm associated with a given inner

product 〈·, ·〉 in <m. The multiplier sequence {λk} is generated according to the iterations

λk+1 = λk + ρA(x∗k), (1.3.3)

where x∗k is a solution of problem (1.3.2). Since in most cases (1.3.2) can only be solved

approximately, x∗k in (1.3.3) is replaced by an ηk-approximate solution of (1.3.2), i.e., a point

xk ∈ X such that Lρ(x, λk) − dρ(λk) ≤ ηk. The inexact augmented Lagrangian method

15

obtained in this manner, where the subproblems (1.3.2) are solved by Nesterov’s method,

is the main focus of our investigation in this thesis. More specifically, we are interested in

establishing a bound on the total number of Nesterov’s optimal iterations, i.e., the inner

iterations, performed throughout the entire inexact AL method.

Several technical issues arise in the aforementioned iteration-complexity analysis of the

inexact AL method. First of all, a termination criterion need to be specified for the inexact

AL method. Second, it is well-known that A(x∗k) is exactly the gradient of the function dρ

defined in (1.3.2) at λk, and hence that (1.3.3) can be viewed as a steepest ascent iteration

with stepsize ρ applied to the function dρ. Since, in the inexact AL method, we approximate

dρ(λk) = A(x∗k) by A(xk), where xk is an approximate solution of (1.3.2), we need to bound

the error of the gradient approximation A(xk), namely ‖A(xk) − A(x∗k)‖, in terms of the

accuracy ηk of the approximate solution xk, and use this result to derive sufficient conditions

on the sequence {ηk} to guarantee the convergence of the corresponding inexact steepest

ascent method λk+1 = λk+ρA(xk). Third, as ρ increases, it is well-known that the iteration-

complexity of approximately solving each subproblem (1.3.2) increases, while the number

of dual iterations (1.3.3), i.e., the outer iterations, decreases. We intend to develop ways of

choosing the parameter ρ so as to balance these two opposing criterions. More specifically, ρ

is chosen so as to minimize the overall number of inner iterations performed by the inexact

AL method. All these issues mentioned above will be addressed in Chapter 5.

1.4 Outline and main results of the thesis

This thesis is organized as follows.

In Chapter 2, we review the classic SA algorithm and introduce the mirror-descent SA

method for solving problem (1.2.1). A basic difficulty of solving such stochastic optimization

problems is that the involved multidimensional integrals (expectations) cannot be computed

with high accuracy. The aim of this chapter is to compare two computational approaches

based on Monte Carlo sampling techniques, namely, the SA and the SAA methods. Current

opinion is that the SAA method can efficiently use a specific (say linear) structure of the

considered problem, while the SA approach is a crude subgradient method which often

16

performs poorly in practice. We demonstrate that a properly modified SA approach, i.e.,

the mirror-descent SA method, can be competitive and even significantly outperform the

SAA method for a certain class of convex stochastic problems, for example, when the set

X is a standard simplex. We also present, in our opinion, highly encouraging results of

numerical experiments.

A long-standing problem for the SA methods is the absence of a validation procedure

to estimate the accuracy of the generated solutions. The main goal of Chapter 3, is to

develop accuracy estimates for stochastic programming problems by employing SA type

algorithms. To this end we show that while running a Mirror-descent SA procedure one can

compute, with a small additional effort, lower and upper statistical bounds for the optimal

objective value. We demonstrate that for a certain class of convex stochastic programs

these bounds are comparable in quality with similar bounds computed by the SAA method,

while their computational cost is considerably smaller. Moreover, We conduct extensive

numerical experiments to understand the performance of the Mirror-descent SA algorithm

for solving stochastic programing problems with a feasible set more complicated than a

standard simplex.

In Chapter 4 we consider the Stochastic Composite Optimization (SCO), a class of con-

vex programming problems whose objective function is given by the summation of a smooth

and non-smooth component. Moreover, the numerical schemes only have access to the sub-

gradients of the composite function itself. Since SCO covers both smooth and non-smooth

minimization as certain special cases, a lower bound on the rate of convergence for solving

this class of problems immediately follows from the classical complexity theory for convex

optimization. Note however that the optimization algorithms that can achieve this lower

bound had never been developed. This is partly due to the difficulty that, although either

smooth or nonsmooth minimization has been well-studied separately in the literature, a uni-

fied treatment for both of them seems highly non-trivial. Our contribution mainly consists

of the following aspects. Firstly, with a novel analysis, it is demonstrated that a slightly

modified mirror descent SA algorithm applied to the aforementioned problems exhibits the

best known so far rate of convergence guaranteed by a more involved stochastic mirror-prox

17

algorithm. Moreover, by properly modifying a variant of Nesterov’s optimal method for

smooth convex optimization, we propose an accelerated SA, which can achieve the theoreti-

cally optimal rate of convergence for solving this class of problems. Clearly, the accelerated

SA algorithm is a universally optimal method for non-smooth, smooth and stochastic con-

vex optimization. It should be stressed that Nesterov’s optimal method and/or its variants

were designed for solving deterministic smooth convex optimization problems. These algo-

rithms, with very aggressive stepsizes employed, were believed to be too sophisticated to

solve non-smooth and stochastic convex optimization problems. We, however, substantially

extend the analysis of Nesterov’s optimal method to non-smooth and stochastic convex

optimization, and devise a novel (actually increasing) stepsize policy for solving these prob-

lems. Thirdly, we investigate this accelerated SA in more details, for example, derive the

exponential bounds for the large deviations of the resulting solution inaccuracy from the

expected one, provided the noise from the stochastic oracle is “light-tailed”. Finally, the

significant advantages of the accelerated scheme over the existing algorithms are illustrated

in the context of solving a class of stochastic programming problems whose feasible region

is a simple compact convex set intersected with an affine manifold.

In Chapter 5, we consider a special class of convex programming problems whose feasible

regions consist of a simple compact convex set intersected with an affine manifold as de-

scribed in Section 1.3. We present first-order methods for this class of problems based on an

inexact version of the classical augmented Lagrangian approach, where the subproblems are

approximately solved by means of Nesterov’s optimal method. We then establish a bound

on the total number of Nesterov’s optimal iterations, i.e., the inner iterations, performed

throughout the entire inexact AL method to obtain a near primal-dual optimal solution.

We also present variants with better iteration-complexity bounds than the original inexact

AL method, which consist of applying the original approach directly to a perturbed prob-

lem obtained by adding a strongly convex component to the objective function of the CP

problem. We show that the iteration-complexity of the inexact AL methods for obtaining a

near primal-dual optimal solution compares favorably with other penalty based approaches,

18

such as the quadratic and exact penalty method studied in [33], and another possible ap-

proach for solving variational inequalities (VI) studied in Nemirovski ([42]), and Monteiro

and Svaiter ([41]).

19

CHAPTER II

MIRROR-DESCENT STOCHASTIC APPROXIMATION

2.1 Overview

In this chapter, we review the classic SA algorithm and the mirror-descent SA method

introduced in [43] for solving problem (1.2.1). A basic difficulty of solving such stochas-

tic optimization problems is that the involved multidimensional integrals (expectations)

cannot be computed with high accuracy. The aim of this chapter is to compare two com-

putational approaches based on Monte Carlo sampling techniques, namely, the SA and the

SAA methods. Current opinion is that the SAA method can efficiently use a specific (say

linear) structure of the considered problem, while the SA approach is a crude subgradient

method which often performs poorly in practice. We demonstrate that a properly modified

SA approach, i.e., the mirror-descent SA method, can be competitive and even significantly

outperform the SAA method for a certain class of convex stochastic problems, for example,

when the set X is a standard simplex. We also present, in our opinion, highly encouraging

results of numerical experiments.

The rest of this chapter is organized as follows. In Section 2.2 we focus on the the-

ory of the SA method applied to problem (1.2.1). We start with outlining the relevant

to our goals part of the classical “O(t−1)” SA theory (Subsection 2.2.1), along with its

“O(t−1/2)” modifications (Subsection 2.2.2). Well-known and simple results presented in

these subsections pave the road to our main developments carried out in Subsection 2.2.3.

In concluding Section 2.3 we present very promising numerical results for the SA algorithm

(Subsection 2.2.3) applied to large-scale stochastic convex minimization problems. Finally,

some concluding remarks are made in Section 2.4.

20

2.2 Stochastic Approximation: Basic Theory

2.2.1 Classical SA Algorithm

The classical SA algorithm solves problem (1.2.1) by mimicking the simplest subgradient

descent method. That is, for chosen x1 ∈ X and a sequence γj > 0, j = 1, ..., of stepsizes,

it generates the iterates by the formula

xj+1 := ΠX

(
xj − γjG(xj , ξj)

)
, (2.2.1)

where ΠX denotes the metric projection operator onto the set X given by

ΠX(x) = arg min
x′∈X

‖x− x′‖2.

Note that ΠX is a contraction operator, i.e.,

‖ΠX(x′)−ΠX(x)‖2 ≤ ‖x′ − x‖2, ∀x′, x ∈ Rn. (2.2.2)

Of course, the crucial question of the classical SA approach is how to choose the stepsizes

γj . Let x∗ be an optimal solution of problem (1.2.1). Note that since the set X is compact

and f(x) is continuous, problem (1.2.1) has an optimal solution. Note also that the iterate

xj = xj(ξ[j−1]) is a function of the history ξ[j−1] := (ξ1, ..., ξj−1) of the generated random

process and hence is random.

Denote

Aj := 1
2‖xj − x̄‖

2
2 and aj := E[Aj] = 1

2E
[
‖xj − x̄‖22

]
.

By using (2.2.2) and since x∗ ∈ X and hence ΠX(x∗) = x∗, we can write

Aj+1 = 1
2

∥∥ΠX

(
xj − γjG(xj , ξj)

)
− x∗

∥∥2

2

= 1
2

∥∥ΠX

(
xj − γjG(xj , ξj)

)
−ΠX(x∗)

∥∥2

2

≤ 1
2

∥∥xj − γjG(xj , ξj)− x∗
∥∥2

2

= Aj + 1
2γ

2
j ‖G(xj , ξj)‖22 − γj(xj − x∗)TG(xj , ξj).

(2.2.3)

Since xj = xj(ξ[j−1]) is independent of ξj , we have

E
[
(xj − x∗)TG(xj , ξj)

]
= E

{
E
[
(xj − x∗)TG(xj , ξj)

∣∣ξ[j−1]]
}

= E
{

(xj − x∗)TE
[
G(xj , ξj)

∣∣ξ[j−1]]
}

= E
[
(xj − x∗)T g(xj)

]
.

(2.2.4)

21

Assume now that there is a positive number M such that

E
[
‖G(x, ξ)‖22

]
≤M2 ∀x ∈ X. (2.2.5)

Then, by taking expectation of both sides of (2.2.3) and using (2.2.5), we obtain

aj+1 ≤ aj − γjE
[
(xj − x∗)T g(xj)

]
+ 1

2γ
2
jM

2. (2.2.6)

Suppose further that the expectation function f(x) is differentiable and strongly convex

on X, i.e., there is constant c > 0 such that

f(x′) ≥ f(x) + (x′ − x)T∇f(x) + 1
2c‖x

′ − x‖22, ∀x′, x ∈ X,

or equivalently that

(x′ − x)T (∇f(x′)−∇f(x)) ≥ c‖x′ − x‖22, ∀x′, x ∈ X. (2.2.7)

Note that strong convexity of f(x) implies that the minimizer x∗ is unique. By optimality

of x∗ we have that

(x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X,

which together with (2.2.7) implies that

E
[
(xj − x∗)T∇f(xj)

]
≥ E

[
(xj − x∗)T (∇f(xj)−∇f(x∗))

]
≥ cE

[
‖xj − x∗‖22

]
= 2caj .

Therefore it follows from (2.2.6) that

aj+1 ≤ (1− 2cγj)aj + 1
2γ

2
jM

2. (2.2.8)

Let us take stepsizes γj = θ/j for some constant θ > 1/(2c). Then, by (2.2.8), we have

aj+1 ≤ (1− 2cθ/j)aj + 1
2θ

2M2/j2.

It follows by induction that

aj ≤ Q(θ)/j, (2.2.9)

where

Q(θ) := max
{

1
2θ

2M2(2cθ − 1)−1, a1

}
.

22

Suppose further that x∗ is an interior point of X and ∇f(x) is Lipschitz continuous, i.e.,

there is constant L > 0 such that

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′, x ∈ X. (2.2.10)

Then

f(x) ≤ f(x∗) + 1
2L‖x− x

∗‖22, ∀x ∈ X, (2.2.11)

and hence

E
[
f(xj)− f(x∗)

]
≤ Laj ≤ LQ(θ)/j, (2.2.12)

where Q(θ) is defined in (2.2.10).

Under the specified assumptions, it follows from (2.2.11) and (2.2.12), respectively, that

after t iterations the expected error of the current solution is of order O(t−1/2) and the

expected error of the corresponding objective value is of order O(t−1), provided that θ >

1/(2c). We have arrived at the O(t−1)-rate of convergence mentioned in Section 1.2. Note,

however, that the result is highly sensitive to our a priori information on c. What would

happen if the parameter c of strong convexity is overestimated? As a simple example

consider f(x) = x2/10, X = [−1, 1] ⊂ R and assume that there is no noise, i.e., F (x, ξ) ≡

f(x). Suppose, further, that we take θ = 1 (i.e., γj = 1/j), which will be the optimal choice

for c = 1, while actually here c = 0.2. Then the iteration process becomes

xj+1 = xj − f ′(xj)/j =
(

1− 1
5j

)
xj ,

and hence starting with x1 = 1,

xj =
∏j−1
s=1

(
1− 1

5s

)
= exp

{
−
∑j−1

s=1 ln
(

1 + 1
5s−1

)}
> exp

{
−
∑j−1

s=1
1

5s−1

}
> exp

{
−
(

0.25 +
∫ j−1

1
1

5t−1dt
)}

> exp
{
−0.25 + 0.2 ln 1.25− 1

5 ln j
}
> 0.8j−1/5.

That is, the convergence is extremely slow. For example for j = 109 the error of the

iterated solution is greater than 0.015. On the other hand for the optimal stepsize factor of

γ = 1/c = 5, the optimal solution x∗ = 0 is found in one iteration.

It could be added that the stepsizes γj = θ/j may become completely unacceptable

when f loses strong convexity. For example, when f(x) = x4, X = [−1, 1], and there is no

23

noise, these stepsizes result in a disastrously slow convergence: |xj | ≥ O([ln(j + 1)]−1/2.

The precise statement here is that with γj = θ/j and 0 < x1 ≤ 1/(6
√
θ), we have that

xj ≥
x1√

1 + 32θx2
1[1 + ln(j + 1)]

, ∀j = 1, 2,

We see that in order to make the SA “robust” - applicable to general convex objectives

rather than to strongly convex ones - one should replace the classical stepsizes γj = O(j−1),

which can be too small to ensure a reasonable rate of convergence even in the “no noise”

case, with “much larger” stepsizes. At the same time, a detailed analysis shows that “large”

stepsizes poorly suppress noise. As early as in [46] it was realized that in order to resolve

the arising difficulty, it makes sense to separate collecting information on the objective from

generating approximate solutions. Specifically, we can use large stepsizes, say, γj = O(j−1/2)

in (2.2.1), thus avoiding too slow motion at the cost of making the trajectory “more noisy”.

In order to suppress, to some extent, this noisiness, we take, as approximate solutions,

appropriate averages of the search points xj rather than these points themselves.

2.2.2 Robust SA Approach

The results of this subsection go back to [46] and [44]. Let us look again at the basic estimate

(2.2.6). By convexity of f(x) we have that for any x, f(x) ≥ f(xj) + (x − xj)T g(xj), and

hence

E
[
(xj − x∗)T g(xj)

]
≥ E

[
f(xj)− f(x∗)

]
= E

[
f(xj)

]
− f(x∗).

Together with (2.2.6), this implies (recall that aj = E
[
‖xj − x̄‖22

]
/2)

γjE
[
f(xj)− f(x∗)

]
≤ aj − aj+1 + 1

2γ
2
jM

2.

It follows that

j∑
t=1

γtE
[
f(xt)− f(x∗)

]
≤

j∑
t=1

[at − at+1] + 1
2M

2
j∑
t=1

γ2
t ≤ a1 + 1

2M
2

j∑
t=1

γ2
t , (2.2.13)

and hence, setting νt := γt/
∑j

i=1 γi,

E

[
j∑
t=1

νtf(xt)− f(x∗)

]
≤
a1 + 1

2M
2
∑j

t=1 γ
2
t∑j

t=1 γt
, (2.2.14)

24

Note that νt ≥ 0 and
∑j

t=1 νt = 1. Consider points

x̃ji :=
j∑
t=i

νtxt. (2.2.15)

and let

DX := max
x∈X
‖x− x1‖2. (2.2.16)

By convexity of X, we have x̃ji ∈ X and by convexity of f(x), we have f(x̃ji) ≤
∑j

t=i νtf(xt).

Thus, by (2.2.14) and in view of a1 ≤ D2
X and ai ≤ 4D2

X , i > 1, we get

(a) E
[
f(x̃j1)− f(x∗)

]
≤ 2D2

X+M2
∑j
t=1 γ

2
t

2
∑j
t=1 γt

∀1 ≤ j,

(b) E
[
f(x̃ji)− f(x∗)

]
≤ 8D2

X+M2
∑j
t=1 γ

2
t

2
∑j
t=1 γt

∀1 < i ≤ j.
(2.2.17)

Based on the resulting bounds on the expected inaccuracy of approximate solutions x̃ji , we

can now develop “reasonable” stepsize policies along with the associated efficiency estimates.

Constant stepsizes and basic efficiency estimate Assume that the number N of

iterations of the method is fixed in advance and that γt = γ, t = 1, . . . , N . Then it follows

by (2.2.17(a)) that

E
[
f(x̃N1)− f(x∗)

]
≤

2D2
X +M2Nγ2

2Nγ
.

Minimizing the right-hand side of the above inequality over γ > 0, we arrive at the constant

stepsize policy

γt =
√

2DX

M
√
N
, (2.2.18)

along with the associated efficiency estimate

E
[
f(x̃N1)− f(x∗)

]
≤
√

2DXM√
N

. (2.2.19)

With the constant stepsize policy (2.2.18), we also have, for 1 ≤ K ≤ N ,

E
[
f(x̃NK)− f(x∗)

]
≤
√

2DXM√
N

(
2N

N −K + 1
+

1
2

)
. (2.2.20)

When K/N ≤ 1/2, the right-hand side of (2.2.20) coincides, within an absolute constant

factor, with the right-hand side of (2.2.19). Finally, for a constant θ > 0, passing from the

stepsizes (2.2.18) to the stepsizes

γt =
θ
√

2DX

M
√
N

, (2.2.21)

25

the efficiency estimate becomes

E
[
f(x̃NK)− f(x∗)

]
≤ max{θ, θ−1}

√
2DXM√
N

(
2N

N −K + 1
+

1
2

)
. (2.2.22)

Discussion We conclude that the expected error of Robust SA algorithm (2.2.1),(2.2.15),

with constant stepsize strategy (2.2.18), after N iterations is O(N−1/2) in our setting. Of

course, this is worse than the convergence rate O(N−1) for the classical SA algorithm when

the objective function f(x) is strongly convex. However, the error bounds (2.2.19) and

(2.2.20) are guaranteed independently of any smoothness and/or strong convexity assump-

tions on f . All that matters is the convexity of f on the convex compact set X and the

validity of (2.2.5). Moreover, scaling the stepsizes by positive constant θ affect the error

bound (2.2.22) linearly in max{θ, θ−1}. This can be compared with a possibly disastrous

effect of such scaling in the classical SA algorithm discussed in Subsection 2.2.1. These ob-

servations, in particular the fact that there is no necessity in “fine tuning” the stepsizes to

the objective function f , explain the adjective ”robust” in the name of the method. Finally,

it can be shown that without additional, as compared to convexity and (2.2.5), assumptions

on f , the accuracy bound (2.2.19) within an absolute constant factor is the best one allowed

by statistics (cf. [44]).

Varying stepsizes When the number of steps is not fixed in advance, it makes sense to

replace constant stepsizes with the stepsizes

γt =
θ
√

2DX

M
√
t
, (2.2.23)

from (2.2.17(b)) it follows that

E
[
f(x̃NK)− f(x∗)

]
≤
√

2DXM√
N

(
2
θ

N

N −K + 1
+
θ

2

√
N

K

)
. (2.2.24)

Choosing K as a fixed fraction of N , i.e., setting K = rN , with a fixed r ∈ (0, 1), we get

the efficiency estimate

E
[
f(x̃NK)− f(x∗)

]
≤ C(r) max{θ, θ−1}DXM√

N
N = 1, 2, . . . , (2.2.25)

26

with an easily computable factor C(r) depending solely on r. This bound, up to a factor

depending solely on r and θ, coincides with the bound (2.2.19), with the advantage that

our new stepsize policy should not be adjusted to a fixed-in-advance number of steps N .

2.2.3 Mirror Descent SA Method

On a close inspection, the Robust SA algorithm from Subsection 2.2.2 is intrinsically linked

to the Euclidean structure of Rn. This structure plays the central role in the very con-

struction of the method (see (2.2.1)), same as in the associated efficiency estimates, like

(2.2.19) (since the quantities DX , M participating in the estimates are defined in terms

of the Euclidean norm, see (2.2.16), (2.2.5)). By these reasons, from now on we refer to

the algorithm from Section 2.2.2 as to (Robust) Euclidean SA. In this section we develop

a substantial generalization of the Euclidean SA approach allowing to adjust, to some ex-

tent, the method to the geometry, not necessary Euclidean, of the problem in question. We

shall see in the mean time that we can gain a lot, both theoretically and numerically, from

such an adjustment. A rudimentary form of the generalization to follow can be found in

Nemirovski and Yudin [44], from where the name “Mirror Descent” originates.

Let ‖ · ‖ be a (general) norm on Rn and ‖x‖∗ = sup‖y‖≤1 y
Tx be its dual norm. We say

that a function ω : X → R is a distance generating function modulus α > 0 with respect

to ‖ · ‖, if ω is convex and continuous on X, the set

Xo =
{
x ∈ X : there exists p ∈ Rn such that x ∈ arg minu∈X [pTu+ ω(u)]

}
is convex (note that Xo always contains the relative interior of X), and restricted to Xo,

ω is continuously differentiable and strongly convex with parameter α with respect to ‖ · ‖,

i.e.,

(x′ − x)T (∇ω(x′)−∇ω(x)) ≥ α‖x′ − x‖2, ∀x′, x ∈ Xo. (2.2.26)

The simplest example of a distance generating function is ω(x) = 1
2‖x‖

2
2 (modulus 1 with

respect to ‖ · ‖2, Xo = X).

Let us define function V : Xo ×X → R+ as follows

V (x, z) = ω(z)− [ω(x) +∇ω(x)T (z − x)]. (2.2.27)

27

In what follows we shall refer to V (·, ·) as prox-function associated with distance generating

function ω(x). Note that the distance generating function ω here is not necessarily differen-

tiable and strongly convex over the whole domain X and hence that prox-function V (·, ·) is

slightly more general than the Bregman’s distance dω(·; ·) given in Subsection 1.1.2, which

was studied by Bregman [10] and many others (see [1, 2, 29, 72] and references therein).

Note that V (x, ·) is nonnegative and is strongly convex modulus α with respect to the norm

‖ · ‖. Let us define prox mapping Px : Rn → Xo, associated with ω and a point x ∈ Xo,

viewed as a parameter, as follows:

Px(y) = arg min
z∈X

{
yT (z − x) + V (x, z)

}
. (2.2.28)

Observe that the minimum in the right hand side of (2.2.28) is attained since ω is continuous

on X and X is compact, and all the minimizers belong to Xo, whence the minimizer is

unique, since V (x, ·) is strongly convex on Xo. Thus, the prox-mapping is well defined.

The distance generating function ω also gives rise to the following characteristic entity

that will be used frequently in our convergence analysis:

Dω,X :=
√

max
x∈X

ω(x)−min
x∈X

ω(x), ∀x ∈ X. (2.2.29)

Let x1 be the minimizer of ω over X. Observe that x1 ∈ Xo, whence ∇w(x1) is well defined

and satisfies 〈∇ω(x1), x− x1〉 ≥ 0 for all x ∈ X, which combined with the strong convexity

of ω implies that

α

2
‖x− x1‖2 ≤ V (x1, x) ≤ ω(x)− ω(x1) ≤ D2

ω,X , ∀x ∈ X, (2.2.30)

and hence

‖x− x1‖ ≤ Ωω,X :=

√
2
α
Dω,X and ‖x− x′‖ ≤ 2Ωω,X , ∀x, x′ ∈ X. (2.2.31)

For ω(x) = 1
2‖x‖

2
2, we have Px(y) = ΠX(x− y), so that (2.2.1) is the recurrence

xj+1 = Pxj (γjG(xj , ξj)), x1 ∈ Xo. (2.2.32)

Our goal is to demonstrate that the main properties of the recurrence (2.2.1) (which from

now on we call the Euclidean SA recurrence) are inherited by (2.2.32), whatever be the

underlying distance generating function ω(x).

28

The following statement, whose proof can be found in the appendix of [43], is a simple

consequence of the optimality conditions of the right hand side of (2.2.28).

Lemma 2.2.1 For every u ∈ X,x ∈ Xo and y ∈ Rn one has

V (Px(y), u) ≤ V (x, u) + yT (u− x) +
‖y‖2∗
2α

. (2.2.33)

Using (2.2.33) with x = xj , y = γjG(xj , ξj) and u = x∗, we get

γj(xj − x∗)TG(xj , ξj) ≤ V (xj , x∗)− V (xj+1, x∗) +
γ2
j

2α
‖G(xj , ξj)‖2∗. (2.2.34)

Note that with ω(x) = 1
2‖x‖

2
2, one has V (x, z) = 1

2‖x−z‖
2
2, that is, (2.2.34) becomes nothing

but the relation (2.2.3) which played the crucial role in all the developments related to the

Euclidean SA. We are about to process, in a completely similar fashion, the relation (2.2.34)

in the case of a general distance generating function, thus arriving at the Mirror Descent

SA. Specifically, setting

∆j = G(xj , ξj)− g(xj), (2.2.35)

we can rewrite (2.2.34), with j replaced by t, as

γt(xt − x∗)T g(xt) ≤ V (xt, x∗)− V (xt+1, x∗)− γt∆T
t (xt − x∗) +

γ2
t

2α
‖G(xt, ξt)‖2∗. (2.2.36)

Summing up over t = 1, ..., j, and taking into account that V (xj+1, u) ≥ 0, u ∈ X, we get

j∑
t=1

γt(xt − x∗)T g(xt) ≤ V (x1, x∗) +
j∑
t=1

γ2
t

2α
‖G(xt, ξt)‖2∗ −

j∑
t=1

γt∆T
t (xt − x∗). (2.2.37)

Setting νt = γt∑j
i=1 γi

, t = 1, ..., j, and

x̃j1 =
j∑
t=1

νtxt (2.2.38)

and invoking convexity of f(·), we have∑j
t=1 γt(xt − x∗)T g(xt) ≥

∑j
t=1 γt [f(xt)− f(x∗)] =

(∑j
t=1 γt

) [∑j
t=1 νtf(xt)− f(x∗)

]
≥

(∑j
t=1 γt

)
[f(x̃j)− f(x∗)] ,

which combines with (2.2.37) to imply that

f(x̃j1)− f(x∗) ≤
V (x1, x∗) +

∑j
t=1

γ2
t

2α‖G(xt, ξt)‖2∗ −
∑j

t=1 γt∆
T
t (xt − x∗)∑j

t=1 γt
. (2.2.39)

29

Let us suppose, as in the previous subsection (cf., (2.2.5)), that we are given a positive

number M∗ such that

E
[
‖G(x, ξ)‖2∗

]
≤M2

∗ , ∀x ∈ X. (2.2.40)

Taking expectations of both sides of (2.2.39) and noting that: (i) xt is a deterministic

function of ξ[t−1] = (ξ1, ..., ξt−1), (ii) conditional on ξ[t−1], the expectation of ∆t is 0, and

(iii) the expectation of ‖G(xt, ξt)‖2∗ does not exceed M2
∗ , we obtain

E
[
f(x̃j1)− f(x∗)

]
≤ maxu∈X V (x1, u) + (2α)−1M2

∗
∑j

t=1 γ
2
t∑j

t=1 γt
. (2.2.41)

Assume from now on that the method starts with the minimizer of ω:

x1 = argminXω(x).

Then it follows from (2.2.30) and (2.2.41) that

E
[
f(x̃j1)− f(x∗)

]
≤
D2
ω,X + 1

αM
2
∗
∑j

t=1 γ
2
t∑j

t=1 γj
. (2.2.42)

Constant stepsize policy Assuming that the total number of steps N is given in advance

and optimizing the right hand side of (2.2.42), evaluated at j = N , in γt > 0, 1 ≤ t ≤ N ,

we arrive at the constant stepsize policy

γt =
√

2αDω,X

M∗
√
N

, t = 1, ..., N, (2.2.43)

and the associated efficiency estimate

E
[
f(x̃N1)− f(x∗)

]
≤ Dω,XM∗

√
2
αN

(2.2.44)

(cf., (2.2.18), (2.2.19)). Passing from the stepsizes (2.2.43) to the stepsizes

γt =
θ
√

2αDω,X

M∗
√
N

, t = 1, ..., N, (2.2.45)

the efficiency estimate becomes

E
[
f(x̃N1)− f(x∗)

]
≤ max

{
θ, θ−1

}
Dω,XM∗

√
2
αN

. (2.2.46)

We refer to the method (2.2.32), (2.2.38), (2.2.45) as (Robust) Mirror Descent SA algorithm

with constant stepsize policy.

30

Probabilities of large deviations So far, all our efficiency estimates were upper bounds

on the expected non-optimality, in terms of the objective, of approximate solutions gener-

ated by the algorithms. Here we complement these results with bounds on probabilities of

large deviations. Observe that by Markov inequality, (2.2.46) implies that

Prob
{
f(x̃N1)− f(x∗) > ε

}
≤
√

2 max
{
θ, θ−1

}
Dω,XM∗

ε
√
αN

, ∀ε > 0. (2.2.47)

It is possible, however, to obtain much finer bounds on deviation probabilities when im-

posing more restrictive assumptions on the distribution of G(x, ξ). Specifically, assume

that

E
[
exp

{
‖G(x, ξ)‖2∗ /M

2
∗

}]
≤ exp{1}, ∀x ∈ X. (2.2.48)

Note that condition (2.2.48) is stronger than (2.2.40). Indeed, if a random variable Y

satisfies E[exp{Y/a}] ≤ exp{1} for some a > 0, then by Jensen inequality exp{E[Y/a]} ≤

E[exp{Y/a}] ≤ exp{1}, and therefore E[Y] ≤ a. Of course, condition (2.2.48) holds if

‖G(x, ξ)‖∗ ≤ M∗ for all (x, ξ) ∈ X × Ξ. In the case of (2.2.48), for the constant stepsizes

(2.2.45), it is shown in Proposition 2.2 of [43] that for any Λ ≥ 1 the following holds

Prob
{
f(x̃N1)− f(x∗) >

√
2 max{θ,θ−1}M∗Dω,X(12+2Λ)

√
αN

}
≤ 2 exp{−Λ}. (2.2.49)

Varying stepsizes Same as in the case of Euclidean SA, we can modify the Mirror

Descent SA algorithm to allow for time-varying stepsizes and “sliding averages” of the

search points xt in the role of approximate solutions, thus getting rid of the necessity to fix

in advance the number of steps. Specifically, consider

Dω,X :=
√

2 sup
x∈Xo,z∈X

[
ω(z)− ω(x)− (z − x)T∇ω(x)

]1/2
= sup

x∈Xo,z∈X

√
2V (x, z),

(2.2.50)

and assume that Dω,X is finite. This is definitely so when ω is continuously differentiable

on the entire X. Note that for the Euclidean SA, that is, with ω(x) = 1
2‖x‖

2
2, Dω,X is the

Euclidean diameter of X.

In the case of (2.2.50), setting

x̃ji =
∑j
t=i γtxt∑j
t=i γt

, (2.2.51)

31

summing up inequalities (2.2.34) over K ≤ t ≤ N and acting exactly as when deriving

(2.2.39), we get for 1 ≤ K ≤ N ,

f(x̃NK)− f(x∗) ≤
V (xK , x∗) +

∑N
t=K

γ2
t

2α‖G(xt, ξt)‖2∗ −
∑N

t=K γt∆
T
t (xt − x∗)∑N

t=K γt
.

Noting that V (xK , x∗) ≤ 1
2D

2
ω,X and taking expectations, we arrive at

E
[
f(x̃NK)− f(x∗)

]
≤

1
2D

2
ω,X + 1

2αM
2
∗
∑N

t=K γ
2
t∑N

t=K γt
(2.2.52)

(cf., (2.2.42)). It follows that with a decreasing stepsize policy

γt =
θDω,X

√
α

M∗
√
t

, t = 1, 2, ..., (2.2.53)

one has for 1 ≤ K ≤ N ,

E
[
f(x̃NK)− f(x∗)

]
≤
Dω,XM∗√
α
√
N

[
2
θ

N

N −K + 1
+
θ

2

√
N

K

]
(2.2.54)

(cf., (2.2.17)). In particular, with K = drNe for a fixed r ∈ (0, 1), we get an efficiency

estimate

E
[
f(x̃NK)− f(x∗)

]
≤ C(r) max

{
θ, θ−1

} Dω,XM∗√
α
√
N
, (2.2.55)

completely similar to the estimate (2.2.25) for the Euclidean SA.

Discussion Comparing (2.2.19) to (2.2.44) and (2.2.25) to (2.2.55), we see that for both

the Euclidean and the Mirror Descent SA, the expected inaccuracy, in terms of the objective,

of the approximate solution built in course of N steps is O(N−1/2). A benefit of the Mirror

Descent over the Euclidean algorithm is in potential possibility to reduce the constant factor

hidden in O(·) by adjusting the norm ‖ · ‖ and the distance generating function ω(·) to the

geometry of the problem.

Example 2.2.1 Let X = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0} be a standard simplex. Consider

two setups for the Mirror Descent SA:

— Euclidean setup, where ‖ · ‖ = ‖ · ‖2 and ω(x) = 1
2‖x‖

2
2, and

— `1-setup, where ‖x‖ = ‖x‖1 :=
∑n

i=1 |xi| and ω is the entropy

ω(x) =
n∑
i=1

xi lnxi. (2.2.56)

32

The Euclidean setup leads to the Euclidean Robust SA which is easily implementable (com-

puting the prox-mapping requires O(n lnn) operations) and guarantees that

E
[
f(x̃N1)− f(x∗)

]
≤ O(1) max

{
θ, θ−1

}
MN−1/2, (2.2.57)

with M2 = supx∈X E
[
‖G(x, ξ)‖22

]
, provided that the constant M is known and the stepsizes

(2.2.21) are used (see (2.2.22), (2.2.16) and note that the Euclidean diameter of X is of

order of 1). The `1-setup corresponds to Xo = {x ∈ X : x > 0}, Dω,X =
√

lnn, x1 =

argminXω = n−1(1, ..., 1)T , α = 1 and ‖x‖∗ = ‖x‖∞ ≡ maxi |xi| (see Appendix). The

associated Mirror Descent SA is easily implementable: the prox-function here is

V (x, z) =
n∑
i=1

zi ln
zi
xi
,

and the prox mapping Px(y) = argminz∈X
[
yT (z − x) + V (x, z)

]
can be computed in O(n)

operations according to the explicit formula:

[Px(y)]i =
xie
−yi∑n

k=1 xke
−yk

, i = 1, ..., n.

The efficiency estimate guaranteed with the `1-setup is (2.2.45) is

E
[
f(x̃N1)− f(x∗)

]
≤ O(1) max

{
θ, θ−1

}√
lnnM∗N−1/2, (2.2.58)

with

M2
∗ = sup

x∈X
E
[
‖G(x, ξ)‖2∞

]
,

provided that the constant M∗ is known and the constant stepsizes (2.2.45) are used (see

(2.2.46), (2.2.40)). To compare (2.2.58) and (2.2.57), observe that M∗ ≤ M , and the ratio

M∗/M can be as small as n−1/2. Thus, the efficiency estimate for the `1-setup never is

much worse than the estimate for the Euclidean setup, and for large n can be far better

than the latter estimate:√
1

lnn
≤ M√

lnnM∗
≤
√

n

lnn
, N = 1, 2, ...,

both the upper and the lower bounds being achievable. Thus, when X is a standard simplex

of large dimension, we have strong reasons to prefer the `1-setup to the usual Euclidean

one.

33

Note that ‖·‖1-norm can be coupled with “good” distance-generating functions different

from the entropy one, e.g., with the function

ω(x) = (lnn)
n∑
i=1

|xi|1+ 1
lnn , n ≥ 3. (2.2.59)

Whenever 0 ∈ X and Diam‖·‖1(X) ≡ maxx,y∈X ‖x − y‖1 = 1 (these conditions can al-

ways be ensured by scaling and shifting X), for the just outlined setup one has Dω,X =

O(1)
√

lnn, α = O(1), so that the associated Mirror Descent SA guarantees that with

M2
∗ = supx∈X E

[
‖G(x, ξ)‖2∞

]
and N ≥ 1,

E
[
f(x̃NdrNe)− f(x∗)

]
≤ C(r)

M∗
√

lnn√
N

(2.2.60)

(see (2.2.55)), while the efficiency estimate for the Euclidean SA is

E
[
f(x̃NdrNe)− f(x∗)

]
≤ C(r)

M Diam‖·‖2(X)
√
N

, (2.2.61)

with

M2 = sup
x∈X

E
[
‖G(x, ξ)‖22

]
and Diam‖·‖2(X) = max

x,y∈X
‖x− y‖2.

Ignoring logarithmic in n factors, the second estimate (2.2.61) can be much better than the

first estimate (2.2.60) only when Diam‖·‖2(X) � 1 = Diam‖·‖1(X), as it is the case, e.g.,

when X is an Euclidean ball. On the other hand, when X is an ‖ ·‖1-ball or its nonnegative

part (which is the simplex), so that the ‖ · ‖1- and ‖ · ‖2-diameters of X are of the same

order, the first estimate (2.2.60) is much more attractive than the estimate (2.2.61) due to

potentially much smaller constant M∗.

Comparison with the SAA approach We compare now theoretical complexity es-

timates for the Mirror Descent SA and the SAA methods. Consider the case when: (i)

X ⊂ Rn is contained in the ‖ · ‖p-ball of radius R, p = 1, 2, and the SA in question is either

the Euclidean SA (p = 2), or the SA associated with ‖ · ‖1 and the distance-generating

function1(2.2.59), (ii) in SA, the constant stepsize rule (2.2.43) is used, and (iii) the “light

tail” assumption (2.2.48) takes place.

1In the second case, we apply the SA after the variables are scaled to make X the unit ‖ · ‖1-ball.

34

Given ε > 0, δ ∈ (0, 1/2), let us compare the number of steps N = NSA of SA which,

with probability ≥ 1−δ, results in an approximate solution x̃N1 such that f(x̃N1)−f(x∗) ≤ ε,

with the sample size N = NSAA for the SAA resulting in the same accuracy guarantees.

According to (2.2.49) we have that

NSA = O(1) ln(n) ln2(1/δ)(RM∗/ε)2, p = 1,

NSA = O(1) ln2(1/δ)(RM∗/ε)2, p = 2,
(2.2.62)

where M∗ is the constant from (2.2.48). This can be compared with the estimate of the

sample size (cf., [68])

NSAA = O(1)
[

ln(1/δ) + n ln (RM∗/ε)
]
(RM∗/ε)2. (2.2.63)

We see that both SA and SAA methods have logarithmic in δ and quadratic (or nearly so)

in 1/ε complexity in terms of the corresponding sample sizes. It should be noted, however,

that the SAA method requires solution of the corresponding (deterministic) problem while

the SA approach is based on simple calculations as long as stochastic subgradients could be

easily computed.

2.3 Numerical results

In this section, we report the results of our computational experiments where we compare

the performance of the Mirror Descent SA method and the SAA method applied to three

stochastic programming problems, namely: a stochastic utility problem, a stochastic max-

flow problem and network planning problem with random demand.

The algorithms we were testing are the two variants of the Mirror Descent SA. The

first variant, the Euclidean SA (E-SA), is as described in Section 2.2.2; in terms of Section

2.2.3, this is nothing but Mirror Descent SA with Euclidean setup, see Example 2.2.1. The

second variant, referred to as the Non-Euclidean SA (N-SA), is the Mirror Descent SA with

`1-setup, see Example 2.2.1.

These two variants of SA method are compared with the SAA approach in the following

way: fixing an i.i.d. sample (of size N) for the random variable ξ, we apply the three

afore-mentioned methods to obtain approximate solutions for the test problem under con-

sideration, and then the quality of the solutions yielded by these algorithms is evaluated

35

using another i.i.d. sample of size K >> N . It should be noted that SAA itself is not

an algorithm and in our experiments it was coupled with the Non-Euclidean Restricted

Memory Level (NERML) [5] – a powerful deterministic algorithm for solving the sample

average problem (1.2.4).

2.3.1 Preliminaries

Algorithmic schemes Both Euclidean and Non-Euclidean SA were implemented ac-

cording to the description in Section 2.2.3, the number of steps N being the parameter of a

particular experiment. In such an experiment, we generated ≈ log2N candidate solutions

x̃Ni with N−i+1 = min[2k, N], k = 0, 1, ..., blog2Nc. We then used an additional sample to

estimate the objective at these candidate solutions in order to choose the best of these can-

didates, specifically, as follows: we used a relatively short sample to choose the two “most

promising” of the candidate solutions, and then a large sample (of size K � N) to identify

the best of these two candidates, thus getting the “final” solution. The computational effort

required by this simple post-processing is not reflected in the tables to follow.

The stepsizes At the “pilot stage” of our experimentation, we made a decision on which

stepsize policy – (2.2.45) or (2.2.53) to choose, and how to identify the underlying parameters

M∗ and θ. In all our experiments, M∗ was estimated by taking the maxima of ‖G(·, ·)‖∗ over

a small (just 100) calls to the stochastic oracle at randomly generated feasible solutions.

As about the value of θ and type of the stepsize policy ((2.2.45) or (2.2.53)), our choice

was based on the results of experimentation with a single test problem (instance L1 of the

utility problem, see below); some results of this experimentation are presented in Table 1.

We have found that the constant stepsize policy (2.2.45) with θ = 0.1 for the Euclidean and

θ = 5 for the Non-Euclidean SA slightly outperforms other variants we have considered.

This particular policy, combined with the aforementioned scheme for estimating M∗, was

used in all subsequent experiments.

Format of test problems All our test problems are of the form minx∈X f(x), f(x) =

E[F (x, ξ)], where the domain X either is a standard simplex {x ∈ Rn : x ≥ 0,
∑

i xi = 1},

36

Table 1: selecting stepsize policy
[method: N-SA, N:2,000, K:10,000, instance: L1]

θ
policy 0.1 1 5 10

variable -7.4733 -7.8865 -7.8789 -7.8547
constant -6.9371 -7.8637 -7.9037 -7.8971

or can be converted into such a simplex by scaling of the original variables.

Notation in the tables Below,

• n is the design dimension of an instance,

• N is the sample size (i.e., the number of steps in SA, and the size of the sample used

to build the stochastic average in SAA),

• Obj is the empirical mean of the random variable F (x, ξ), x being the approximate

solution generated by the algorithm in question. The empirical mean are taken over a large

(K = 104 elements) dedicated sample,

• CPU is the CPU time in seconds,

2.3.2 A stochastic utility problem

Our first experiment was carried out with the utility model

min
x∈X

{
f(x) = E

[
φ
(∑n

i=1(i/n+ ξi)xi
)] }

, (2.3.1)

where X = {x ∈ Rn : x ≥ 0,
∑n

i=1 xi = 1}, ξi ∼ N(0, 1) are independent and φ(·) is a

piecewise linear convex function given by φ(t) = max{v1 + s1t, ..., vm + smt}, where vk and

sk are certain constants. In our experiment, we used m = 10 breakpoints, all located on

[0, 1]. The four instances L1, L2, L3, L4 we dealt with were of dimension varying from 500

to 2000, each instance – with its own randomly generated function φ. All the algorithms

were coded in ANSI C and the experiments were conducted on a Intel PIV 1.6GHz machine

with Microsoft Windows XP professional.

We run each of the three afore-mentioned methods with various sample sizes on every

one of the instances. The results are reported in Table 2.

In order to evaluate stability of the algorithms, we run each of them 100 times; the

resulting statistics as shown in Table 3. In this relatively time-consuming experiment, we

37

Table 2: SA vs. SAA on the stochastic utility problem
- L1: n = 500 L2: n = 1000 L3: n = 2000 L4: n = 5000

alg. N Obj CPU Obj CPU Obj CPU Obj CPU
N-SA 100 -7.7599 0 -5.8340 0 -7.1419 1 -5.4688 3

1,000 -7.8781 2 -5.9152 2 -7.2312 6 -5.5716 13
2,000 -7.8987 2 -5.9243 5 -7.2513 10 -5.5847 25
4,000 -7.9075 5 -5.9365 12 -7.2595 20 -5.5935 49

E-SA 100 -7.6895 0 -5.7988 1 -7.0165 1 -4.9364 4
1,000 -7.8559 2 -5.8919 4 -7.2029 7 -5.3895 20
2,000 -7.8737 3 -5.9067 7 -7.2306 15 -5.4870 39
4,000 -7.8948 7 -5.9193 13 -7.2441 29 -5.5354 77

SAA 100 -7.6571 7 -5.6346 8 -6.9748 19 -5.3360 44
1,000 -7.8821 31 -5.9221 68 -7.2393 134 -5.5656 337
2,000 -7.9100 72 -5.9313 128 -7.2583 261 -5.5878 656
4,000 -7.9087 113 -5.9384 253 -7.2664 515 -5.5967 1283

Table 3: The variability for the stochastic utility problem
- N-SA E-SA SAA

Obj CPU Obj CPU Obj CPU
inst N mean dev (avg.) mean dev (avg.) mean dev (avg.)
L2 1,000 -5.9159 0.0025 2.63 -5.8925 0.0024 4.99 -5.9219 0.0047 67.31
L2 2,000 -5.9258 0.0022 5.03 -5.9063 0.0019 7.09 -5.9328 0.0028 131.25

restrict ourselves with a single instance (L2) and just two sample sizes (N = 1000 and

2000). In Table 3, ‘MEAN’ and ‘DEV’ are, respectively, the mean and the deviation, over

100 runs, of the objective value Obj at the resulting approximate solution.

The experiments demonstrate that as far as the quality of approximate solutions is

concerned, N-SA outperforms E-SA and is almost as good as SAA. At the same time, the

solution time for N-SA is significantly smaller than the one for SAA.

2.3.3 Stochastic max-flow problem

In the second experiment, we consider a simple two-stage stochastic linear programming,

namely, a stochastic max-flow problem. The problem is to optimize the capacity expansion

of a stochastic network. Let G = (N,A) be a diagraph with a source node s and a sink

node t. Each arc (i, j) ∈ A has an existing capacity pij ≥ 0, and a random implement-

ing/operating level ξij . Moreover, there is a common random degrading factor η for all arcs

in A. The goal is to determine how much capacity to add to the arcs, subject to a budget

constraint, in order to maximize the expected maximum flow from s to t. Denoting by xij

38

Table 4: SA vs. SAA on the stochastic max-flow problem
- F1 F2 F3 F4

(m,n) (50, 500) (100, 1000) (100, 2000) (250, 5000)
alg. N Obj CPU Obj CPU Obj CPU Obj CPU
N-SA 100 0.1140 0 0.0637 0 0.1296 1 0.1278 3

1000 0.1254 1 0.0686 3 0.1305 6 0.1329 15
2000 0.1249 3 0.0697 6 0.1318 11 0.1338 29
4000 0.1246 5 0.0698 11 0.1331 21 0.1334 56

E-SA 100 0.0840 0 0.0618 1 0.1277 2 0.1153 7
1000 0.1253 3 0.0670 6 0.1281 16 0.1312 39
2000 0.1246 5 0.0695 13 0.1287 28 0.1312 72
4000 0.1247 9 0.0696 24 0.1303 53 0.1310 127

SAA 100 0.1212 5 0.0653 12 0.1310 20 0.1253 60
1000 0.1223 35 0.0694 84 0.1294 157 0.1291 466
2000 0.1223 70 0.0693 170 0.1304 311 0.1284 986
4000 0.1221 140 0.0693 323 0.1301 636 0.1293 1885

the capacity to be added to arc (i, j), the problem reads

max
x

f(x) = E[F (x; ξ, η)] :
∑

(i,j)∈A

cijxij ≤ b, xij ≥ 0, ∀(i, j) ∈ A

 , (2.3.2)

where cij is the per unit cost for the capacity to be added, b is the total available budget,

and F (x; ξ, η) denotes the maximum s− t flow in the network when the capacity of an arc

(i, j) is ηξij(pij + xij). Note that the above is a maximization rather than a minimization

problem.

We assume that the random variables ξij , θ are independent and uniformly distributed

on [0, 1] and [0.5, 1], respectively, and consider the case of pij = 0, cij = 1 for all (i, j) ∈ E,

and b = 1. We randomly generated 4 network instances (referred to as F1, F2, F3 and F4)

using the network generator GRIDGEN available on DIMACS challenge. The push-relabel

algorithm [19] was used to solve the second stage max-flow problem.

In the first test, each algorithm (N-SA, E-SA, SAA) was run once at each test instance;

the results are reported in Table 4, where m, n stand for the number of nodes, resp., arcs

in G. Similar to the stochastic utility problem, we investigate the stability of the methods

by running each of them 100 times. The resulting statistics is presented in Table 5 whose

columns have exactly the same meaning as in Table 3.

This experiment fully supports the conclusions on the methods suggested by the exper-

iments with the utility problem.

39

Table 5: The variability for the stochastic max-flow problem
- N-SA E-SA SAA

Obj avg. Obj avg. Obj avg.
inst N mean dev CPU mean dev CPU mean dev CPU
F2 1,000 0.0691 0.0004 3.11 0.0688 0.0006 4.62 0.0694 0.0003 90.15
F2 2,000 0.0694 0.0003 6.07 0.0692 0.0002 6.91 0.0695 0.0003 170.45

2.3.4 A network planning problem with random demand

In the last experiment, we consider the so-called SSN problem of Sen, Doverspike, and

Cosares [67]. This problem arises in telecommunications network design where the owner

of the network sells private-line services between pairs of nodes in the network, and the

demands are treated as random variables based on the historical demand patterns. The

optimization problem is to decide where to add capacity to the network to minimize the

expected rate of unsatisfied demands. Since this problem has been studied by several authors

(see, e.g., [36, 67]), it could be interesting to compare the results. Another purpose of this

experiment is to investigate the behavior of the SA method when one variance reduction

technique, namely, the Latin Hyperplane Sampling (LHS), is applied.

The problem has been formulated as a two-stage stochastic linear programming as fol-

lows:

min
x

{
f(x) = E[F (x, ξ)] : x ≥ 0,

∑
i

xi = b

}
, (2.3.3)

where x is the vector of capacities to be added to the arcs of the network, b (the budget)

is the total amount of capacity to be added, ξ denotes the random demand, and F (x, ξ)

represents the number of unserved requests, specifically,

F (x, ξ) = min
s,f


∑
i

si :

∑
i

∑
r∈R(i)Arfir ≤ x+ c∑

r∈R(i) fir + si = ξi, ∀i

fir ≥ 0, si ≥ 0, ∀i, r ∈ R(i)

 . (2.3.4)

Here,

• R(i) is the set of routes used for traffic i (traffic between the source-sink pair of nodes

i),

• ξi is the (random) demand for traffic i,

• Ar are the route-arc incidence vectors (so that jth component of Ar is 1 or 0 depending

40

Table 6: SA vs. SAA on the SSN problem
- Without LHS With LHS

alg. N Obj CPU Obj CPU
N-SA 100 11.0984 1 10.1024 1

1,000 10.0821 6 10.0313 7
2,000 9.9812 12 9.9936 12
4,000 9.9151 23 9.9428 22

E-SA 100 10.9027 1 10.3860 1
1,000 10.1268 6 10.0984 6
2,000 10.0304 12 10.0552 12
4,000 9.9662 23 9.9862 23

SAA 100 11.8915 24 11.0561 23
1,000 10.0939 215 10.0488 216
2,000 9.9769 431 9.9872 426
4,000 9.8773 849 9.9051 853

on whether arc j belongs to the route r),

• c is the vector of current capacities, fir is the fraction of traffic i transferred via route

r, and s is the vector of unsatisfied demands.

In the SSN instance, there are dimx = 89 arcs and dim ξ = 86 source-sink pairs, and

components of ξ are independent random variables with known discrete distributions (from

3 to 7 possible values per component), which results in ≈ 1070 possible demand scenarios.

In the first test with the SSN instance, each of our 3 algorithms was run once without,

and once – with the Latin Hyperplane Sampling (LHS) technique; the results are reported

in Table 6. We then tested the stability of algorithms by running each of them 100 times,

see statistics in Table 7. Note that experiments with the SSN problem were conducted on

a more powerful computer: Intel Xeon 1.86GHz with Red Hat Enterprise Linux.

As far as comparison of our three algorithms is concerned, the conclusions are in full

agreement with those for the utility and the max-flow problem. We also see that for our

particular example, the Latin Hyperplane sampling does not yield much of improvement,

especially when a larger sample-size is applied. This result seems to be consistent with the

observation in [36].

2.3.5 N-SA vs. E-SA

The data in Tables 3, 4, 6 demonstrate that with the same sample size N , the N-SA

somehow outperforms the E-SA in terms of both the quality of approximate solutions and

41

Table 7: The variability for the SSN problem
- N-SA E-SA SAA

Obj avg. Obj avg. Obj avg.
N LHS mean dev CPU mean dev CPU mean dev CPU

1,000 no 10.0624 0.1867 6.03 10.1730 0.1826 6.12 10.1460 0.2825 215.06
1,000 yes 10.0573 0.1830 6.16 10.1237 0.1867 6.14 10.0135 0.2579 216.10
2,000 no 9.9965 0.2058 11.61 10.0853 0.1887 11.68 9.9943 0.2038 432.93
2,000 yes 9.9978 0.2579 11.71 10.0486 0.2066 11.74 9.9830 0.1872 436.94

the running time2. The difference in solutions’ quality, at the first glance, seems slim,

and one could think that adjusting the SA algorithm to the “geometry” of the problem in

question (in our case, to minimization over a standard simplex) is of minor importance.

We, however, do believe that such a conclusion would be wrong. In order to get a better

insight, let us come back to the stochastic utility problem. This test problem has an

important advantage – we can easily compute the value of the objective f(x) at a given

candidate solution x analytically3. Moreover, it is easy to minimize f(x) over the simplex –

on a closest inspection, this problem reduces to minimizing an easy-to-compute univariate

convex function, so that we can approximate the true optimal value f∗ to high accuracy by

Bisection. Thus, in the case in question we can compare solutions x generated by various

algorithms in terms of their “true inaccuracy” f(x)−f∗, and this is the rationale behind our

“Gaussian setup”. We can now exploit this advantage of the stochastic utility problem for

comparing properly N-SA and E-SA. In Table 8, we present the true values of the objective

f(x̄) at the approximate solutions x̄ generated by N-SA and E-SA as applied to the instances

L1 and L4 of the utility problem (cf. Table 3) along with the inaccuracies f(x̄)−f∗ and the

Monte Carlo estimates f̂(x̄) of f(x̄) obtained via 50,000-element samples. We see that the

difference in the inaccuracy f(x̄)− f∗ of the solutions produced by the algorithms is much

more significant than it is suggested by the data in Table 3 (where the actual inaccuracy is

“obscured” by the estimation error and summation with f∗). Specifically, at the common for

both algorithms sample size N = 2, 000, the inaccuracy yielded by N-SA is 3 – 5 times less

2The difference in running times can be easily explained: with X being a simplex, the prox-mapping for
E-SA takes O(n lnn) operations vs. O(n) operations for N-SA.

3Indeed, (ξ1, ..., ξn) ∼ N (0, In), so that the random variable ξx =
∑
i(ai + ξi)xi is normal with easily

computable mean and variance, and since φ is piecewise linear, the expectation f(x) = E[φ(ξx)] can be
immediately expressed via the error function.

42

Table 8: N-SA vs. E-SA
Method Problem f̂(x̄), f(x̄) f(x̄)− f∗ Time

N-SA, N = 2, 000 L2: n = 1000 -5.9232/-5.9326 0.0113 5.00
E-SA, N = 2, 000 L2 -5.8796/-5.8864 0.0575 6.60
E-SA, N = 10, 000 L2 -5.9059/-5.9058 0.0381 39.80
E-SA, N = 20, 000 L2 -5.9151/-5.9158 0.0281 74.50
N-SA, N = 2, 000 L4: n = 5000 -5.5855/-5.5867 0.0199 25.00
E-SA, N = 2, 000 L4 -5.5467/-5.5469 0.0597 44.60
E-SA, N = 10, 000 L4 -5.5810/-5.5812 0.0254 165.10
E-SA, N = 20, 000 L4 -5.5901/-5.5902 0.0164 382.00

than the one for E-SA, and in order to compensate for this difference, one should increase

the sample size for E-SA (and hence the running time) by factor 5 – 10. It should be added

that in light of theoretical complexity analysis carried out in Example 2.2.1, the outlined

significant difference in performances of N-SA and E-SA is not surprising; the surprising

fact is that E-SA works at all.

2.4 Conclusions of this chapter

It is shown in this chapter that for a certain class of convex stochastic optimization prob-

lems, robust versions of the SA approach have similar theoretical estimates of computational

complexity, in terms of the required sample size, to the SAA method. Numerical exper-

iments, reported in Section 2.3, confirm this conclusion. These results demonstrate that

for considered problems, a properly implemented mirror descent SA algorithm produces

solutions of comparable accuracy to the SAA method for the same sample size of gener-

ated random points. On the other hand, the implementation (computational) time of the

SA method is significantly smaller with a factor of up to 30 − 40 for considered problems.

Thus, both theoretical and numerical results suggest that the mirror descent SA is a viable

alternative to the SAA approach, an alternative which at least deserves testing in particular

applications.

43

CHAPTER III

VALIDATION ANALYSIS OF

MIRROR DESCENT STOCHASTIC APPROXIMATION

3.1 Overview

In Chapter 2, we introduce the mirror descent SA method applied to problem (1.2.1) and

demonstrate that this approach can be competitive and even significantly outperform the

SAA method for a certain class of convex stochastic problems, for example, when the setX is

a standard simplex. Certain issues related to the mirror descent SA remains to be addressed.

One outstanding problem for the SA methods is the absence of a validation procedure

to estimate the accuracy of the generated solutions. On the other hand, an important

methodological property of the SAA approach is that, with some additional effort, it can

provide an estimate of the accuracy of an obtained solution by computing upper and lower

(confidence) bounds for the optimal value of the true problem (cf., [40, 75]). The main goal

of this chapter is to show that, for a certain class of stochastic convex problems, the mirror

descent SA method can also provide similar bounds with considerably less computational

effort. More specifically we study in this chapter the following aspects of the mirror descent

SA method.

• Investigate different ways to estimate lower and upper bounds for the objective values

by the mirror descent SA method, and thus to obtain an accuracy certificate for the

attained solutions.

• Adjust the mirror descent SA method to solve two interesting application problems

in asset allocation, namely, minimizing1 the Expected Utility (EU) and minimizing

the Conditional Value-at-Risk (CVaR). These models are widely used in practice, for

1In order to have a convex rather than concave objective function, we deal here with minimization rather
than maximization of the Expected Utility.

44

example, by investment companies, brokerage firms, mutual funds, and any business

that evaluates risks (cf., [62]).

• Understand the performance of the mirror descent SA algorithm for solving stochastic

programs with a feasible region more complicated than a simplex. For the EU model,

the feasible region is the intersection of a simplex with a box constraint and we will

compare two different variants of SA methods for solving it. For the CVaR problem,

the feasible region is a polyhedron and we will discuss some techniques to explore its

structure.

This chapter is organized as follows. In section 3.2 we give a brief summary to the

mirror descent SA method. Section 3.3 is devoted to a derivation and analysis of statistical

upper and lower bounds for the optimal value of the true problem. In section 3.4 we discuss

an application of the mirror descent SA method to the expected utility and conditional

value at risk approaches for the asset allocation problem. A discussion of numerical results

is presented in section 3.5. Proofs of the main technical results are given in Section 3.6.

Finally, some concluding remarks are made in Section 3.7.

3.1.1 Notation and terminology

For a norm ‖ · ‖ on Rn, we denote by ‖x‖∗ := sup{xT y : ‖y‖ ≤ 1} the conjugate norm. By

‖x‖p we denote the `p norm of vector x ∈ Rn. In particular, ‖x‖2 =
√
xTx is the Euclidean

norm of x ∈ Rn. By ΠX(x) := arg miny∈X ‖x − y‖2 we denote metric projection operator

onto X. For the process ξ1, ξ2, ..., we set ξt := (ξ1, ..., ξt), and denote by E|t or by E[·|ξt] the

conditional, ξt being given, expectation. For a number a ∈ R we denote [a]+ := max{a, 0}.

By ∂φ(x) we denote the subdifferential of a convex function φ(x).

3.2 The mirror descent Stochastic Approximation Method

For the readers’ convenience, in this section, we give a brief summary to the mirror descent

SA algorithm introduced in Chapter 2. We equip the embedding space Rn, of the feasible

domain X of (1.2.1), with a norm ‖ · ‖.

Throughout the chapter we assume existence of the following stochastic oracle.

45

• It is possible to generate an iid sample ξ1, ξ2, ..., of realizations of random vector ξ,

and we have access to a “black box” subroutine (a stochastic oracle): given x ∈ X and

a random realization ξ ∈ Ξ, the oracle returns the quantity F (x, ξ) and a stochastic

subgradient – a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is well defined and is a

subgradient of f(·) at x, i.e., g(x) ∈ ∂f(x).

We also make the following assumption.

(A.3.1) There are positive constants Q and M∗ such that for any x ∈ X:

E
[
(F (x, ξ)− f(x))2

]
≤ Q2, (3.2.1)

E
[
‖G(x, ξ)‖2∗

]
≤M2

∗ . (3.2.2)

It could be noted that E
[
(F (x, ξ)− f(x))2

]
in (3.2.1) is variance of the random variable

F (x, ξ).

When speaking about Stochastic Approximation as applied to minimization problem

(1.2.1), one usually does not care of how the values of f(·) are observed. All what matters is

the observations of the gradient, this is the only information used by the basic SA algorithm

(2.2.32), see also (3.2.3) below. We, however, are interested in building upper and lower

bounds on the optimal value and/or value of f(·) at a given solution, and in this respect, it

does matter how these values are observed. Conditions (3.2.1)–(3.2.2) of assumption (A.3.1)

impose restrictions on the magnitudes of noises in the unbiased observations of the values

of f(·) and the subgradients of f(·) reported by the stochastic oracle.

The description of the mirror descent SA algorithm is as follows. Starting from point

x1, the algorithm iteratively generates points xt ∈ Xo according to the recurrence

xt+1 := Pxt
(
γtG(xt, ξt)

)
, (3.2.3)

where γt > 0 are deterministic stepsizes and Pxt(·) is the prox-mapping defined in (2.2.28).

Note that for ω(x) := 1
2‖x‖

2
2, we have that Px(y) = ΠX(x− y) and hence xt+1 = ΠX

(
xt −

γtG(xt, ξt)
)
. In that case, the mirror descent SA method is referred to as the Euclidean SA.

Now let N be the total number of steps. Let us set

νt :=
γt∑N
i=1 γi

, t = 1, ..., N, and x̃N :=
N∑
t=1

νtxt. (3.2.4)

46

Note that
∑N

t=1 νt = 1, and hence x̃N is a convex combination of the iterates x1, ..., xN .

Here x̃N is considered as the approximate solution generated by the algorithm in course of

N steps. The quality of this solution can be quantified as follows (cf., (2.2.42)).

Proposition 3.2.1 Suppose that condition (3.2.2) of assumption (A.3.1) holds. Then for

the N -step of mirror descent SA algorithm we have that

E [f(x̃N)− f∗] ≤
D2
ω,X + (2α)−1M2

∗
∑N

t=1 γ
2
t∑N

t=1 γt
. (3.2.5)

In implementations of the SA algorithm different stepsize strategies can be applied to

(3.2.3) (see Section 2.2.3). We discuss now the constant stepsize policy. That is, we assume

that the number N of iterations is fixed in advance, and γt = γ, t = 1, ..., N . In that case

x̃N =
1
N

N∑
t=1

xt. (3.2.6)

By choosing the stepsizes as

γt = γ :=
θ
√

2αDω,X

M∗
√
N

, t = 1, ..., N, (3.2.7)

with a (scaling) constant θ > 0, we have in view of (3.2.5) that

E [f(x̃N)− f∗] ≤ max{θ, θ−1}Ωω,XM∗N
−1/2, (3.2.8)

with Ωω,X given by (2.2.31). This shows that scaling the stepsizes by the (positive) constant

θ results in updating the estimate (3.2.8) by the factor of max{θ, θ−1} at most. By Markov

inequality it follows from (3.2.8) that for any ε > 0,

Prob
{
f(x̃N)− f∗ > ε

}
≤
√

2 max{θ, θ−1}Dω,XM∗

ε
√
αN

. (3.2.9)

It is possible to obtain finer bounds for the probabilities in the left hand side of (3.2.9)

when imposing conditions more restrictive than conditions of assumption(A.3.1). Consider

the following conditions.

(A.3.2) There are positive constants Q and M∗ such that for any x ∈ X:

E
[
exp

{
|F (x, ξ)− f(x)|2/Q2)

}]
≤ exp{1}, (3.2.10)

E
[
exp

{
‖G(x, ξ)‖2∗/M2

∗
}]
≤ exp{1}. (3.2.11)

47

Note that conditions (3.2.10)–(3.2.11) are stronger than the respective conditions (3.2.1)–

(3.2.2). Indeed, if a random variable Y satisfies E[exp{Y/a}] ≤ exp{1} for some a > 0,

then by Jensen inequality exp{E[Y/a]} ≤ E[exp{Y/a}] ≤ exp{1}, and therefore E[Y] ≤ a.

Of course, conditions (3.2.10)–(3.2.11) hold if for all (x, ξ) ∈ X × Ξ:

|F (x, ξ)− f(x)| ≤ Q and ‖G(x, ξ)‖∗ ≤M∗.

The following result has been established in [43, Proposition 2.2].

Proposition 3.2.2 Suppose that condition (3.2.11) of assumption (A.3.2) holds. Then for

the constant stepsize policy, with the stepsize (3.2.7), the following inequality holds for any

Λ ≥ 1:

Prob
{
f(x̃N)− f∗ > max{θ, θ−1}(12 + 2Λ)Ωω,XM∗N

−1/2
}
≤ 2 exp{−Λ}. (3.2.12)

It follows from (3.2.12) that the number N of steps required by the algorithm to solve

the problem with accuracy ε > 0, and a (probabilistic) confidence 1 − β, is of order

O
(
ε−2 log2(1/β)

)
. Note also that in practice one can modify the mirror descent SA al-

gorithm so that the approximate solution x̃N is obtained by averaging over a part of the

trajectory (see Section 2.2.3 for details).

3.3 Accuracy certificates for SA solutions

In this section, we discuss several ways to estimate lower and upper bounds for the optimal

value of problem (1.2.1), which gives us an accuracy certificate for obtained solutions.

Specifically, we distinguish between two types of certificates: the online certificates that can

be computed quickly when running the SA algorithm, and the offline certificates obtained

in a more time consuming way at the dedicated validation step, after a solution has been

obtained.

3.3.1 Online certificate

Consider the numbers νt and solution x̃N , defined in (3.2.4), functions

fN (x) :=
N∑
t=1

νt
[
f(xt) + g(xt)T (x− xt)

]
and f̂N (x) :=

N∑
t=1

νt[F (xt, ξt)+G(xt, ξt)T (x−xt)],

48

and define

fN∗ := min
x∈X

fN (x) and f∗N :=
N∑
t=1

νtf(xt). (3.3.1)

Since νt > 0 and
∑N

t=1 νt = 1, it follows by convexity of f(·) that the function fN (·)

underestimates f(·) everywhere on X, and hence fN∗ ≤ f∗. Since x̃N ∈ X we also have that

f∗ ≤ f(x̃N), and by convexity of f(·) that f(x̃N) ≤ f∗N . That is, for any realization of the

random sample ξ1, ..., ξN we have that

fN∗ ≤ f∗ ≤ f(x̃N) ≤ f∗N . (3.3.2)

It follows from (3.3.2) that E[fN∗] ≤ f∗ ≤ E[f∗N] as well.

Of course, the bounds fN∗ and f∗N are unobservable since the values f(xt) are not known

exactly. Therefore we consider their computable counterparts

fN = min
x∈X

f̂N (x) and f
N =

N∑
t=1

νtF (xt, ξt). (3.3.3)

We refer to fN and f
N as online bounds. The bound f

N can be easily calculated while

running the SA procedure. The bound fN involves solving the optimization problem of

minimizing a linear in x objective function over set X. If the set X is defined by linear

constraints, this is a linear programming problem.

Since xt is a function of ξt−1 = (ξ1, ..., ξt−1), and ξt is independent of ξt−1, we have that

E
[
f
N] =

N∑
t=1

νtE
{
E[F (xt, ξt)|ξt−1]

}
=

N∑
t=1

νtE [f(xt)] = E[f∗N]

and

E
[
fN
]

= E
[
E
{

minx∈X
[∑N

t=1 νt[F (xt, ξt) + G(xt, ξt)T (x− xt)]
]∣∣ξt−1

}]
≤ E

[
minx∈X

{
E
[∑N

t=1 νt[F (xt, ξt) + G(xt, ξt)T (x− xt)]
]∣∣ξt−1

}]
= E

[
minx∈X fN (x)

]
= E

[
fN∗
]
.

It follows that

E
[
fN
]
≤ f∗ ≤ E

[
f
N]
. (3.3.4)

That is, on average fN and f
N give, respectively, a lower and an upper bound for the

optimal value of problem (1.2.1). In order to see how good are the bounds fN and f
N

49

let us estimate expectations and probabilities of the corresponding errors. Proof of the

following theorem is given in the Section 3.6.

Theorem 3.3.1 (i) Suppose that assumption (A.3.1) holds. Then

E
[
f∗N − fN∗

]
≤

2D2
ω,X + 5

2α
−1M2

∗
∑N

t=1 γ
2
t∑N

t=1 γt
, (3.3.5)

E
[∣∣fN − f∗N ∣∣] ≤ Q

√√√√ N∑
t=1

ν2
t , (3.3.6)

E
[∣∣fN − fN∗ ∣∣] ≤ D2

ω,X + 1
2α
−1M2

∗
∑N

t=1 γ
2
t∑N

t=1 γt
+
(
Q+ 8Ωω,XM∗

)√√√√ N∑
t=1

ν2
t . (3.3.7)

In particular, in the case of constant stepsize policy (3.2.7) we have

E
[
f∗N − fN∗

]
≤
[
θ−1 + 5θ/2

]
Ωω,XM∗N

−1/2,

E
[∣∣fN − f∗N ∣∣] ≤ QN−1/2,

E
[∣∣fN − fN∗ ∣∣] ≤ 1

2

[
θ−1 + θ

]
Ωω,XM∗N

−1/2 +
(
Q+ 8Ωω,XM∗

)
N−1/2,

(3.3.8)

where Ωω,X is given by (2.2.31).

(ii) Moreover, if assumption (A.3.1) is strengthened to assumption (A.3.2), then in the

case of constant2 stepsize policy (3.2.7) we have for any Λ ≥ 0:

Prob
{
f∗N − fN∗ > N−1/2Ωω,XM∗

([
5
2θ + θ−1

]
+ Λ

[
4 + 5

2θN
−1/2

])}
≤ 2 exp{−Λ2/3}+ 2 exp{−Λ2/12}+ 2 exp{−3Λ

√
N/4} ,

(3.3.9)

Prob
{∣∣fN − f∗N ∣∣ > ΛQ

√∑N
t=1 ν

2
t

}
≤ 2 exp{−Λ2/3}, (3.3.10)

Prob
{
|fN − fN∗ | > N−1/2

([
1
2θ + 2θ

]
Ωω,XM∗ + Λ

[
Q+ [8 + 2θN−1/2]Ωω,XM∗

])}
≤ 6 exp{−Λ2/3}+ exp{−Λ2/12}+ exp{−3Λ

√
N/4}.

(3.3.11)

2The bounds in the Section 3.6 cover the case of general-type stepsizes; here we restrict ourselves with the
case of constant stepsizes to avoid less transparent formulas.

50

Estimates of the above theorem show that as N grows, the observable quantities fN

and fN approach, in a probabilistic sense, their unobservable counterparts, which, in turn,

approach each other and thus the optimal value of problem (1.2.1). For the constant stepsize

policy (3.2.7), we have that all estimates given in the right hand side of (3.3.8) are of order

O(N−1/2). It follows that under assumption (A.3.1) and for the constant stepsize policy,

difference between the upper fN and lower fN bounds converges on average to zero, with

increase of the sample size N , at a rate of O(N−1/2).

Note that for the constant stepsize policy (3.2.7) and under assumption (A.3.2), the

bounds (3.3.9) – (3.3.11) combine with (3.3.2) to imply that

• Prob
{
f
N
Λ := f

N + Λσ+N
−1/2is not an upper bound on f(x̃N)

}
≤ 2ε−

Λ2

3 , with σ+ =

Q;

• Prob
{
fN

Λ
:= fN − [µ− + Λσ−]N−1/2is not a lower bound on f∗

}
≤ 6ε−

Λ2

3 + ε−
Λ2

12 +

ε−
3Λ
√
N

4 , with Ωω,X defined by (2.2.31) and

µ− :=
[

1
2θ

+ 2θ
]

Ωω,XM∗, σ− := Q+ [8 + 2θN−1/2]Ωω,XM∗;

• Prob
{
f
N
Λ − fNΛ > [µ+ Λσ]N−1/2

}
≤ 10ε−

Λ2

3 + 3ε−
Λ2

12 + 3ε−
3Λ
√
N

4 , with

µ :=
[

3
2θ

+
9θ
2

]
Ωω,XM∗, σ := 2Q+

[
12 +

9θ
2

]
Ωω,XM∗.

Theorem 3.3.1 shows that for large N the online observable random quantities fN and

fN are close to the upper bound f∗N and lower bound fN∗ , respectively. Besides this, on

average, fN indeed overestimates f∗, and f
N

indeed underestimates f∗. To save words, let

us call random estimates which on average under- or overestimate a certain quantity, on

average lower, respectively, upper bounds on this quantity. From now on, when speaking of

“true” lower and upper bounds – those which always (or almost surely) under-, respectively,

overestimate the quantity, we add the adjective “valid”. Thus, we refer to f∗N and fN∗ as

valid upper and lower bounds on f∗, respectively. Recall that f∗N is also a valid upper

bound on f(x̃N).

51

Remark 3.3.1 Recall that the SAA approach also provides a lower on average bound –

the random quantity f̂NSAA, which is the optimal value of the sample average problem (cf.,

[40, 75]). Suppose the same sample ξt, t = 1, . . . , N , is applied for both SA and SAA

methods. Besides this, assume that the constant stepsize policy is used in the SA method,

and hence νt = 1/N , t = 1, .., N . Finally, assume (as it often is the case) that G(x, ξ) is a

subgradient of F (x, ξ) in x. By convexity of F (·, ξ) and since fN = minx∈X f̂N (x), we have

f̂NSAA := min
x∈X

N−1
N∑
t=1

F (x, ξt) ≥ min
x∈X

N∑
t=1

νt
(
F (xt, ξt) + G(xt, ξt)T (x− xt)

)
= fN . (3.3.12)

That is, for the same sample the lower bound fN is smaller than the lower bound obtained

by the SAA method. However, it should be noted that the lower bound fN is computed much

faster than f̂NSAA, since computing the latter one amounts to solving the sample average

optimization problem associated with the generated sample. Moreover, we will discuss in

the next subsection how to improve the lower bound fN . From the computational results,

the improved lower bound is comparable to the one obtained by the SAA method.

Remark 3.3.2 Similar to the SAA method, in order to estimate the variability of the lower

bound fN , one can run the SA procedure M times, with independent samples, each of size N ,

and consequently compute the average and sample variance of M realizations of the random

quantity fN . Alternatively, one can run the SA procedure once but with NM iterations,

then partition the obtained trajectory into M consecutive parts, each of size N , for each

of these parts calculate the corresponding SA lower bound and consequently compute the

average and sample variance of the M obtained numbers.

3.3.2 Offline certificate

Suppose now that the mirror descent SA method is terminated after N iterations. Given

a solution x̃N obtained by this method, the objective value f(x̃N) can be estimated by

Monte Carlo sampling. That is, an iid random sample ξj , j = 1, . . . ,K, (independent

of the random sample used in computing x̃N) is generated and f(x̃N) is estimated by

f̂K(x̃N) := K−1
∑K

j=1 F (x̃N , ξj). Since this procedure does not require computing prox-

mapping and the like, one can use here a large sample size K. Of course, we can expect

52

that f̂K(x̃N) is a better upper bound on f(x̃N) than the online counterpart fN of the valid

upper bound f∗N .

We now demonstrate that the online lower bound fN can be also improved in the

validation step. Given an iid random sample ξj , j = 1, . . . , S, we can estimate the (linear

in x) form `S(x; x̃N) := f(x̃N) + g(x̃N)T (x− x̃N) by

ˆ̀
S(x; x̃N) :=

1
S

S∑
j=1

[
F (x̃N , ξj) + G(x̃N , ξj)T (x− x̃N)

]
, (3.3.13)

and hence construct the following lower bound of f∗:

lbN := min
x∈X

{
max

[
f̂N (x), ˆ̀

S(x; x̃N)
]}
. (3.3.14)

Clearly, by definition we have that lbN ≥ fN .

It is worth of noting that although E
[
f̂N (x)

]
≤ f(x) and E

[ˆ̀
S(x; x̃N)

]
≤ f(x), the

expected value of the maximum of these two quantities is not necessarily ≤ f(x). Therefore

the expected value of lbN is not necessarily ≤ f∗, i.e., we cannot claim that lbN is a lower on

average bound on f∗. However, the following result shows that lbN is “statistically close” to

a valid lower bound on f∗, provided that N and S are large. Proof of the following theorem

is given in Section 3.6.

Theorem 3.3.2 Suppose that assumption (A.3.1) holds and let the constant stepsizes (3.2.7)

be used. Then√
E
{([

lbN − f∗
]
+

)2
}
≤
√

2Q2 + 32Ω2
ω,XM

2
∗

[
1√
N

+
1√
S

]
. (3.3.15)

Moreover, under assumption (A.3.2), we have that for all Λ ≥ 0:

Prob
{
lbN − f∗ > [Q+ 4Ωω,XM∗]

[
1√
N

+
1√
S

]}
≤ 4 exp{−Λ2/3}. (3.3.16)

3.4 Applications in Asset Allocation

In this section, we discuss an application of the mirror descent SA method to solving asset

allocation problems based on the Expected Utility (EU) and the Conditional Value-at-Risk

(CVaR) models.

53

3.4.1 Minimizing the expected utility

We consider the following stochastic utility model:

min
x∈X

{
f(x) := E

[
φ
(∑n

i=1(ai + ξi)xi
)] }

. (3.4.1)

Here X := X ′ ∩X ′′, where

X ′ := {x ∈ Rn :
∑n

i=1 xi ≤ r} and X ′′ := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, ..., n} ,

r > 0, ai and 0 ≤ li < ui, i = 1, ..., n, are given numbers, ξi ∼ N (0, 1) are independent

random variables having standard normal distribution and φ(·) is a piecewise linear convex

function given by

φ(t) := max{c1 + b1t, ..., cm + bmt}, (3.4.2)

where cj and bj , j = 1, ...,m, are certain constants. Note that by varying parameters r and

li, ui we can change the feasible region from a simplex to a box, or the intersection of a

simplex with a box. Note that since the set X is compact and f(x) is continuous, the set

of optimal solution of (3.4.1) is nonempty, provided that X is nonempty. A simpler version

of problem (3.4.1), in which X is assumed to be a standard simplex, has been considered

in Chapter 2.

For solving this problem, we consider two variants of the Mirror Descent SA algorithm:

Non-Euclidean SA (N-SA) and Euclidean SA (E-SA), which differ from each other in how

the norm ‖ · ‖ and the distance generating function ω(·) are chosen.

3.4.1.1 Non-Euclidean SA

In N-SA for solving the EU model, the entropy distance generating function

ω(x) :=
n∑
i=1

xi
r

ln
xi
r
, (3.4.3)

coupled with the ‖ · ‖1 norm is employed. Note that here Xo = {x ∈ X : x > 0} and for

n ≥ 3,

D2
ω,X = max

x∈X
ω(x)−min

x∈X
ω(x) ≤ max

x∈X′
ω(x)− min

x∈X′
ω(x) ≤ lnn.

54

Also observe that for any x ∈ X ′, x > 0, and h ∈ Rn,

(
∑n

i=1 |hi|)
2 =

(∑n
i=1 x

1/2
i |hi|x

−1/2
i

)2
≤ (
∑n

i=1 xi)
(∑n

i=1 h
2
ix
−1
i

)
≤ r

(∑n
i=1 h

2
ix
−1
i

)
= r2hT∇2ω(x)h,

where the first inequality follows by Cauchy inequality. Therefore the modulus of ω, with

respect to the ‖ · ‖1 norm, satisfies α ≥ r−2. Note that here Dω,X can be overestimated

while α being underestimated since X ′ ⊆ X, therefore, the stepsizes computed according

to (3.2.7) in view of these estimates may not be optimal. Of course, the quantity Dω,X can

be estimated more accurately, for example, by computing minx∈X ω(x) explicitly. We will

also discuss a few different ways to fine-tune the stepsizes in Section 3.5.

For the entropy distance generating function (3.4.3), the prox-mapping Pv(z) (defined

in (2.2.28)) is r times the optimal solution to the optimization problem

minx
∑n

i=1

(
sixi + xi lnxi

)
,

s.t.
∑n

i=1 xi ≤ 1,

l̃i ≤ xi ≤ ũi, i = 1, ..., n,

(3.4.4)

where si = rzi − ln(vi/r)− 1, l̃i = li/r, ũi = ui/r.

In some cases problem (3.4.4) has an explicit solution, e.g., if li = 0 and ui ≥ r,

i = 1, ..., n (in that case the constraints zi ≤ ui are redundant). In general, we can solve

(3.4.4) as follows. Let λ ≥ 0 denote the Lagrange multiplier associated with the constraint∑n
i=1 xi ≤ 1 and consider the corresponding Lagrangian relaxation of (3.4.4):

minx
∑n

i=1

(
sixi + xi lnxi

)
+ λ

(∑n
i=1 xi

)
,

s.t. l̃i ≤ xi ≤ ũi, i = 1, ..., n.
(3.4.5)

This is a separable problem. Since sixi+xi lnxi+λxi is monotonically decreasing for xi less

than exp[−(si+1+λ)] and is monotonically increasing after, we have that the i-th coordinate

x̄i(λ) of the optimal solution of (3.4.5) is given by the projection of exp[−(si + 1 + λ)] onto

the interval [l̃i, ũi]. Then, to solve problem (3.4.4) is equivalent to find λ ≥ 0 such that

∑n
i=1 x̄i(λ) = 1, if λ > 0, (3.4.6)∑n
i=1 x̄i(λ) ≤ 1, if λ = 0. (3.4.7)

55

While inequality (3.4.7) can be easily checked, the root-finding problem (3.4.6) is usu-

ally solved to certain precision by using bisection, and each bisection step requires O(n)

operations.

3.4.1.2 Euclidean SA

In the E-SA approach to order to solve the EU model, the Euclidean distance generating

function ω(x) := 1
2x

Tx, coupled with the ‖ · ‖2 norm is employed. Clearly here Xo = X

and α = 1. We have

D2
ω,X = max

x∈X
ω(x)−min

x∈X
ω(x) ≤ 1

2

(
min{r2, ‖u‖22} − ‖l‖22

)
.

Moreover a procedure similar to the one given in Subsection 3.4.1.1 can be developed for

computing the prox mapping Px(y), which is given here by the metric projection ΠX(x−y).

As it was noted in Example 2.2.1, if X is a standard simplex, N-SA can be potentially

O(
√
n/ log n) times faster than E-SA. The same conclusion seems to be applicable to our

current situation, although certain caution should be taken since the error estimate (3.2.7)

now also depends on l, u and r.

3.4.2 Minimizing the Conditional Value-at-Risk

The idea of minimizing CVaR in place of Value-at-Risk (VaR) is due to Rockafellar and

Uryasev [62]. Recall that VaR and CVaR of a random variable Z are defined as

VaR1−β(Z) := inf
{
τ : Prob(Z ≤ τ) ≥ 1− β

}
, (3.4.8)

CVaR1−β(Z) := inf
τ∈R

{
τ + β−1E[Z − τ]+

}
. (3.4.9)

Note that

VaR1−β(Z) ∈ Argminτ∈R
{
τ + β−1E[Z − τ]+

}
, (3.4.10)

and hence VaR1−β(Z) ≤ CVaR1−β(Z).

The problem of interest in this subsection is:

min
y∈Y

CVaR1−β
(
− ξT y), (3.4.11)

56

where ξ is a random vector with mean ξ̄ := E[ξ] and covariance matrix Σ, and

Y :=
{
y ∈ Rn

+ :
∑n

i=1 yi = 1, ξ̄T y ≥ R
}
.

We assume that Y is nonempty and, moreover, contains a positive point. For simplicity we

assume in the remaining part of the chapter that ξ has continuous distribution, and hence

ξT y has continuous distribution for any y ∈ Y .

In view of the definition of CVaR in (3.4.9), our problem becomes:

min
x∈X

f(x) := τ +
1
β

E
{

[−ξT y − τ]+
}
, (3.4.12)

where X := Y × R and x := (y, τ). Apparently, there exists one difficulty to apply the

mirror descent SA for solving the above problem — in (3.4.12), the variables are y and τ ,

so that the feasible domain Y × R of the problem is unbounded, while our mirror descent

SA requires a bounded feasible domain. However, we will alleviate this problem by showing

that the variable τ can actually be restricted into a bounded interval and thus the mirror

descent SA method can be applied.

Noting that VaR1−β(Z) ∈ Argminτ∈R [τ + E{[Z − τ]+}], all we need is to find an interval

which covers all points VaR1−β(−ξT y), y ∈ Y . Now, let Z be a random variable with

finite mean µ and variance σ2. By Cantelli’s inequality (also called one-sided Tschebyshev

inequality) we have

Prob{Z ≥ t) ≤ σ2

(t− µ)2 + σ2
.

Assuming that Z has continuous distribution, we obtain

β = Prob{Z ≥ VaR1−β(Z)} ≤ σ2

[VaR1−β(Z)− µ]2 + σ2
,

which implies that

VaR1−β(Z) ≤ µ+

√
1− β
β

. (3.4.13)

Similarly, if VaR1−β(Z) ≤ µ, then

1− β = Prob{−Z ≥ −VaR1−β(Z)} ≤ σ2

[−VaR1−β(Z) + µ]2 + σ2
,

which implies that

VaR1−β(Z) ≥ µ−

√
β

1− β
σ. (3.4.14)

57

Combing inequality (3.4.13) and (3.4.14) we obtain

VaR1−β(Z) ∈
[
µ−

√
β

1−βσ, µ+
√

1−β
β σ

]
. (3.4.15)

Note also that if Z is symmetric and β ≤ 0.5, then the previous inclusion can be strengthened

to

VaR1−β(Z) ∈
[
µ, µ+

√
1−β
β σ

]
. (3.4.16)

From this analysis it clearly follows that we lose nothing when restricting τ in (3.4.12) to

vary in the segment

τ ∈ T :=
[
µ−

√
β

1−βσ, µ+
√

1−β
β σ

]
, (3.4.17)

where

µ := min
y∈Y
{−ξ̄T y}, µ := max

y∈Y
{−ξ̄T y}, σ2 := max

y∈Y
yTΣ y. (3.4.18)

In the case when ξ is symmetric and β ≤ 0.5, this segment can be can be further reduced

to:

τ ∈ T ′ :=
[
µ, µ+

√
1−β
β σ

]
. (3.4.19)

Note that the quantities µ and µ can be easily computed by solving the corresponding

linear programs in (3.4.18). Moreover, although σ can be difficult to compute exactly, it

can be replaced with its easily computable upper bound max
i

Σii.

It is worth noting that an alternative upper bound for τ can be obtained in some cases:

given an initial point y0 ∈ Y , we have

CVaR1−β(−ξT y0) ≥ CVaR1−β(−ξT y∗) ≥ VaR1−β(−ξT y∗),

where y∗ is an optimal solution of problem (3.4.11). Therefore, in view of (3.4.10), if the

value of CVaR1−β(−ξT y0) can be computed or estimated (e.g., by Monte-Carlo simulation),

we can restrict the variable τ in (3.4.12) to be ≤ CVaR1−β(−ξT y0).

To apply the mirror descent SA to problem (3.4.11), we set X = Y × T and define the

stochastic oracle by setting

F (x, ξ) ≡ F (y, τ, ξ) = τ + 1
β max[−ξT y − τ, 0],

G(x, ξ) ≡ [Gy(y, τ, ξ); Gτ (y, τ, ξ)] =

 [−β−1ξ; 1− β−1] ,−ξT y − τ > 0

[0; ...; 0; 1] , otherwise

58

Further, we choose Dy and Dτ from the relations

Dy ≥ max

1/2,
√

max
y∈Y

∑
i

yi ln yi −min
y∈Y

∑
i

yi ln yi

 , Dτ =
1
2

[
max
τ∈T

τ2 −min
τ∈T

τ2

]

(we always can take Dy = max[1/2,
√

ln(n)]) and equip X and its embedding space Rn
y ×

Rτ ⊃ X with the distance generating function and the norm as follows:

‖(y, τ)‖ =
√
‖y‖21/(2D2

y) + τ2/(2D2
τ)

[
⇔ ‖(z, ρ)‖∗ =

√
2D2

y‖z‖2∞ + 2D2
τρ

2
]

ω(x) ≡ ω(y, τ) = 1
2D2

y

∑n
i=1 yi ln yi + 1

2D2
τ
τ2

Note that with this setup, Xo = {(y, τ) ∈ X : y > 0}. Besides this, it is easily seen that∑n
i=1 yi ln yi, restricted on Y , is strongly convex, modulus 1, w.r.t. ‖ · ‖1, whence ω is

strongly convex, modulus α = 1, on X. An immediate computation shows that Dω,X = 1,

and therefore Ωω,X =
√

2. Finally, we set

M∗ =
√

2D2
yβ
−2E [‖ξ‖2∞] + 2D2

τ max[1, (β−1 − 1)2]. (3.4.20)

It is easy to verify that with this M∗, our stochastic oracle satisfies (3.2.2).

Indeed, from the formula for G(x, ξ) we have

E
[
‖G(x, ξ)‖2∗

]
= E

[
2D2

yβ
−2‖ξ‖2∞ + 2D2

τ max[1, β−1 − 1]2
]

= M2
∗ ,

as required in (3.2.2). Further, for x ∈ X we have |F (x, ξ)−τ−β−1 max[−τ, 0]| ≤

β−1|ξT y| ≤ β−1|ξ‖∞, whence

E[(F (x, ξ)− f(x))2] = E[(F (x, ξ)− E[F (x, ξ)])2] ≤ E[(F (x, ξ)− τ − β−1 max[−τ, 0])2]

≤ β−2E[‖ξ‖2∞] ≤ Ω2
ω,XM

2
∗ ,

where the concluding inequality is due to Dy ≥ 1/2 and Ωω,X =
√

2. We see that

assumption (A.3.1) is satisfied with M∗ given by (3.4.20) and Q = Ωω,XM∗ =
√

2M∗.

3.5 Numerical results

3.5.1 More implementation details

• Fine-tuning the stepsizes: In Section 2, we specified the constant stepsize policy for

the mirror descent SA method up to the “scaling parameter” θ. In our experiments,

59

Table 9: The test instances for EU model
name r u name r u
EU-1 100 0.05 EU-6 1 +∞
EU-2 100 0.20 EU-7 10 +∞
EU-3 100 0.40 EU-8 100 +∞
EU-4 100 10.00 EU-9 1,000 +∞
EU-5 100 50.00 EU-10 5,000 +∞

this parameter was chosen by as a result of pilot runs of the mirror descent SA

algorithm with several trial values of θ and a very small sample size N (namely,

N = 100). From these values of θ, we chose for the actual run the one resulting in

the smallest online upper bound f
N on the optimal value.

• Bundle-level method for solving SAA problem: We also compare the results

obtained by the mirror descent SA method with those obtained by the SAA coupled

with the bundle-level method (SAA-BL) [34]. Note that the SAA problem is to be

solved by the Bundle-level method; in our experiments, the SAA problems were solved

within relative accuracy 1.e-4 through 1.e-6, depending on the instance.

3.5.2 Computational results for the EU model

In our experiments, we fix li = 0 and ui = u for all 1 ≤ i ≤ n. The experiments were

conducted for ten random instances which have the same dimension n = 1000 but differ in

the parameters u and r, and the function φ(·). A detailed description of these instances is

shown in Table 9. Observe that for the first five instances, we fix r = 100 but change u

from 0.05 to 50. For the next five instances, we assume u = +∞ but change r from 1.0 to

5, 000.0.

Here we highlight some interesting findings based on our computational results. More

numerical results can be found in Appendix B.

• The effect of stepsize factor θ: Our first test is to verify that we can fine-tune

the stepsizes by using small pilot run. In this test, we chose between eight different

stepsize factors, namely, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5, 10 for both N-SA and E-SA.

First, we used short pilot runs (M = 100) to select the “most promising” value of

the stepsize factor θ, see the beginning of section 3.5.1. Second, we directly tested

60

Table 10: The stepsize factors
name Best θ Inferred θ name Best θ Inferred θ
EU-1 0.005 0.005 EU-6 5.000 5.000
EU-2 1.000 5.000 EU-7 10.000 10.000
EU-3 1.000 5.000 EU-8 10.000 10.000
EU-4 5.000 10.000 EU-9 10.000 10.000
EU-5 5.000 5.000 EU-10 5.000 5.000

Table 11: Changing u
name N-SA (f̂(x∗)/f(x∗)) E-SA (f̂(x∗)/f(x∗)) SAA (f̂(x∗)/f(x∗)) opt
EU-1 -19.3558/-19.3279 -19.1311/-19.0953 -19.2700/-19.2435 -19.3307
EU-2 -61.4004/-61.3332 -61.7670/-61.6979 -62.8794/-62.7962 -62.9636
EU-3 -81.5215/-81.4339 -80.5735/-80.4873 -83.0845/-82.9732 -83.2145
EU-4 -100.1597/-99.6734 -92.1313/-92.0161 -99.3096/-99.0400 -102.6819
EU-5 -99.5680/-99.2872 -91.2051/-91.0923 -98.5458/-98.2697 -101.9112

which one of the outlined eight values of θ results in the highest quality solution for

the sample size N = 2, 000. The results are presented in the columns “Inferred θ,”

resp., “Best θ,” of Table 10. As we can see from this table, the inferred θ’s are very

close to the best ones for all test instances and the same conclusion also holds for the

E-SA.

• The effect of changing u: In Table 11, we report the objective values of EU-1 –

EU-5 evaluated at the solutions obtained by N-SA, E-SA and SAA when the sample

size is N = 2, 000. In this table, f̂(x∗) denotes the estimated objective value (using

sample size K = 10, 000) at the obtained solution x∗. Due to the assumption that

ξ is normally distributed, the actual objective value f(x∗) can be also computed.

Moreover, a close examination reveals that the optimal value of problem (3.4.1) can

be computed efficiently (Chapter 2); it is shown in the last column of Table 11.

One interesting observation from this table is that the performance of N-SA is slightly

better than that of E-SA even for EU-1 whose feasible region is actually a box instead

of a simplex, so that there are no theoretical reasons to prefer N-SA to E-SA.

One other observation from this table is that the solution quality of N-SA significantly

outperforms that of E-SA for the two largest values of u. The possible explanation is

that the feasible region appears more like a simplex when u is big.

61

Table 12: Changing r
name N-SA(f̂(x∗)/f(x∗)) E-SA(f̂(x∗)/f(x∗)) SAA(f̂(x∗)/f(x∗)) opt
EU-6 -6.2999/-6.2864 -6.2211/-6.2186 -6.3073/ -6.3027 -6.3460
EU-7 -16.2514/-16.2294 -15.3818/-15.3717 -16.1474/-16.1226 -16.4738
EU-8 -97.3613/-97.1581 -89.2032/-89.0897 -96.5163/-96.2450 -99.8824
EU-9 -9.540e+2/-9.513e+2 -8.686e+2/-8.675e+2 -9.419e+2/-9.393e+2 -9.757e+2
EU-10 -4.730e+3/-4.717e+3 -4.322e+3/-4.316e+3 -4.689e+3/-4.675e+3 -4.857e+3

• The effect of changing r: Table 12 shows the objective values of EU-6 EU-10

evaluated at the solutions obtained by N-SA, E-SA and SAA when the sample size

is N = 2, 000. In this table, f̂(x∗) and f(x∗), respectively, denote the estimated

objective value (using sample size K = 10, 000) and the actual objective value at the

obtained solution x∗, and “opt” denotes the optimal value of problem (3.4.1).

Recall that the feasible regions for these five instances are simplexes. So, as expected,

N-SA consistently outperforms E-SA for all these instances. It is interesting to observe

that the objective values achieved by N-SA can be smaller than those by SAA for large

r. Note that the SAA problem has been solved to a relatively high accuracy by using

the Bundle-level method. For example, for EU-10, the SAA problem was solved to

accuracy 0.7e-005.

• The lower bounds: Table 13 shows the lower bounds on the objective values of

EU-1 – EU-10 obtained by N-SA, E-SA and SAA when the sample size is N =

2, 000. In Table 13, the lower bounds fN and lbN are the online and offline bounds

defined in Section 3. The lower bound for SAA is defined as the optimal value of the

corresponding SAA problem. As we can see from this table, the lower bound for SAA

is always better than the online lower bound fN for the SA methods (as it should be

in the case of constant stepsizes, see Remark 3.3.1). However, the offline lower bound

lbN can be close or even better than the lower bound obtained from SAA.

Moreover, we estimate the variability of the online lower bounds in the way discussed

in section 3.3.1 and the results are reported in Table 14. In particular, the second

and third column of this table show the mean and the standard deviation obtained

from M = 10 independent replications of N-SA, each of which has the same sample

62

Table 13: Lower bounds on optimal values and true optimal values
N-SA E-SA SAA

name fN lbN fN lbN f̂N
SAA opt

EU-1 -19.4063 -19.2994 -19.4063 -19.2994 -19.4063 -19.3307
EU-2 -62.9984 -62.8754 -62.9984 -62.8758 -62.9984 -62.9367
EU-3 -83.0039 -82.9730 -83.0039 -82.9730 -83.0039 -83.2145
EU-4 -107.5820 -104.5046 -107.2058 -104.4072 -105.0890 -102.6819
EU-5 -107.5745 -104.0644 -108.4063 -104.3577 -104.3214 -101.9112
EU-6 -6.6111 -6.5288 -6.9171 -6.5849 -6.3658 -6.3460
EU-7 -17.0130 -16.7060 -17.1800 -16.7605 -16.7027 -16.4378
EU-8 -106.7958 -102.6311 -106.5921 -102.2588 -102.2914 -99.8824
EU-9 -1029.0530 -997.7217 -1042.7008 -1000.6626 -999.9114 -9.757e2
EU-10 -5192.0409 -4967.9144 -5192.0409 -4981.8515 -4978.2333 -4.857e3

Table 14: Variability of the lower bounds for N-SA
Ind. repl. Dep. repl. Whole Traj.

name mean deviation mean deviation fNM

EU-1 -19.5681 0.0857 -19.5387 0.0842 -19.3461
EU-2 -63.3898 0.2372 -63.3786 0.3502 -63.0444
EU-3 -83.6973 0.3121 -83.7339 0.3098 -83.2649
EU-4 -112.2483 1.5616 -114.1652 2.7470 -105.5543
EU-5 -113.7526 1.5951 -115.3103 2.8232 -104.4565
EU-6 -6.7812 0.0265 -6.8969 0.1374 -6.4522
EU-7 -17.7911 0.2326 -18.3881 0.5519 -16.8022
EU-8 -113.5263 2.1348 -117.4176 4.6588 -102.3509
EU-9 -1091.2836 20.2804 -1140.23774 61.1979 -1006.1846
EU-10 -5466.1266 124.5894 -5553.80221 144.6298 -5048.5643

size N = 1000. The third and fourth column read the mean and standard deviation

computed for the lower bounds associated with the M = 10 consecutive partitions of

the trajectory of N-SA with a sample size NM = 10, 000. The last column reports

the online lower bound fNM . The results indicate that the bounds obtained from

independent replications have relatively smaller variability in general.

• The computation times: For all instances, the computation times of generating a

solution for SA were 10− 30 times smaller than that for SAA.

• The standard deviations: For the generated solution x∗, we evaluate the corre-

sponding objective value f(x∗) by generating an independent large sample ξ1, ..., ξK ,

of size K = 10, 000, and computing the estimate f̂(x∗) = K−1
∑K

j=1 F (x∗, ξj) of f(x∗).

We also computed an estimate of the standard deviation of F (x∗, ξ):

σ̂ =

√∑K
j=1

(
F (x∗, ξj)− f̂(x∗)

)2
/(K − 1).

63

Table 15: Standard deviations
N-SA SAA

name f̂(x∗) σ̂ f̂(x∗) σ̂
EU-1 -19.3558 3.1487 -19.2700 3.0019
EU-2 -61.4004 8.4178 -62.8749 8.9099
EU-3 -81.5215 11.7493 -83.0845 12.6015
EU-4 -100.1597 38.6309 -99.3096 61.1053
EU-5 -99.5680 35.1278 -98.5458 60.8440
EU-6 -6.2999 0.6798 -6.3073 0.7030
EU-7 -16.2514 3.5233 -16.1474 5.7941
EU-8 -97.3613 36.3939 -96.5163 61.0974
EU-9 -953.9882 383.8223 -941.9854 611.0414
EU-10 -4729.8534 1746.7144 -4688.9239 3053.7409

Note that the standard deviation of f̂(x∗), as an estimate of f(x∗), is estimated by

σ̂√
K

. Table 15 compares the deviations for N-SA and SAA computed in the above

way. From this table, we observe that for instances with either a larger u or larger r,

the values of σ̂ corresponding to the solutions obtained by N-SA can be significantly

smaller (up to 1/2) than those by SAA.

3.5.3 Computational results for the CVaR model

In this subsection, we report some numerical results on applying the mirror descent SA

method for the CVaR model (3.4.11). Here the return ξ is assumed to be a normal random

vector. In that case random variable −ξT y has normal distribution with mean −ξ̄T y and

variance yTΣ y, and

CVaR1−β{−ξT y} = −ξ̄T y + ρ
√
yTΣ y, (3.5.1)

where ρ :=
exp(−z2

β/2)

β
√

2π
and zβ := Φ−1(1− β) with Φ(·) being the cdf of the standard normal

distribution. Consequently the optimal solution for (3.4.11) can be easily obtained by

replacing the objective function of (3.4.11) with the right hand side of (3.5.1). Clearly, the

resulting problem can be reformulated as a conic-quadratic programming program, and its

optimal value thus gives us a benchmark to compare the SA and SAA methods.

Two instances for the CVaR model are considered in our experiments. The first instance

(CVaR-1) is obtained from [76]. This instance consists of the 95 stocks from S&P100

(excluding SBC, ATI, GS, LU, and VIA-B) and the mean ξ̄ and covariance Σξ were estimated

using historical monthly prices from 1996 to 2002. The second one (CVaR-2), which contains

64

Table 16: The test instances for CVaR model
name n β R opt

CVaR-1 95 0.05 1.0000 -0.9841
CVaR-2 1,000 0.10 1.0500 1.5272

Table 17: Comparing SA and SAA for the CVaR model
SA SAA

name N f̂(x∗) f(x∗) f
N

lbN time f̂(x∗) f(x∗) f̂N
SAA time

CVaR-1 1000 -0.9807 -0.9823 -1.0695 -1.0136 0 -0.9823 -0.9828 -0.9854 15
2000 -0.9824 -0.9832 -1.0518 -0.9877 1 -0.9832 -0.9835 -0.9852 27

CVaR-2 1000 1.6048 1.5896 1.1301 1.4590 20 1.6396 1.5795 1.3023 928
2000 1.5766 1.5633 1.3696 1.4973 39 1.5835 1.5557 1.4780 2784

1, 000 assets, was randomly generated by setting the random return ξ = ξ̄ +Qζ, where ζ is

the standard Gaussian vector, ξ̄i is uniformly distributed in [0.9, 1.2], and Qij is uniformly

distributed in [0, 0.1] for 1 ≤ i, j ≤ 1, 000. The reliability level β, the bound for expected

return R, and the optimal value for these two instances are reported in Table 16.

The computational results for the CVaR model are reported in Table 17, where f̂(x∗) and

f(x∗), respectively, denote the estimated objective value (using sample size K = 10, 000)

and the actual objective value at the obtained solution x∗. We conclude from the results in

Table 17 that the mirror descent SA method can generate good solutions much faster than

SAA. The lower bounds derived for the SA method are also comparable to those for the

SAA method.

3.6 Proof of the main results

Our goal in this section is to prove Theorems 3.3.1 and 3.3.2.

We will need the following result (cf., [43, Lemma 6.1]).

Lemma 3.6.1 Let ζt ∈ Rn, v1 ∈ Xo and vt+1 = Pvt(ζt), t = 1, ..., N . Then

N∑
t=1

ζTt (vt − u) ≤ V (v1, u) + (2α)−1
N∑
t=1

‖ζt‖2∗, ∀u ∈ X. (3.6.1)

We denote here δt := F (xt, ξt)− f(xt) and ∆t := G(xt, ξt)− g(xt). Since xt is a function

of ξt−1 and ξt is independent of ξt, we have that the conditional expectations

E|t−1 [δt] = 0 and E|t−1 [∆t] = 0, (3.6.2)

65

and hence the unconditional expectations E [δt] = 0 and E [∆t] = 0 as well.

Part (i) of Theorem 3.3.1: Proof. 1.10 If in Lemma 3.6.1 we take v1 := x1 and

ζt := γtG(xt, ξt), then the corresponding iterates vt coincide with xt. Therefore, we have by

(3.6.1) and since V (x1, u) ≤ D2
ω,X that

N∑
t=1

γt(xt − u)TG(xt, ξt) ≤ D2
ω,X + (2α)−1

N∑
t=1

γ2
t ‖G(xt, ξt)‖2∗, ∀u ∈ X. (3.6.3)

It follows that for any u ∈ X:

N∑
t=1

νt
[
− f(xt) + (xt − u)T g(xt)

]
+

N∑
t=1

νtf(xt)

≤
D2
ω,X + (2α)−1

∑N
t=1 γ

2
t ‖G(xt, ξt)‖2∗∑N

t=1 γt
+

N∑
t=1

νt∆T
t (xt − u).

Since

f∗N − fN∗ =
N∑
t=1

νtf(xt) + max
u∈X

N∑
t=1

νt
[
− f(xt) + (xt − u)T g(xt)

]
,

it follows that

f∗N − fN∗ ≤
D2
ω,X + (2α)−1

∑N
t=1 γ

2
t ‖G(xt, ξt)‖2∗∑N

t=1 γt
+ max

u∈X

N∑
t=1

νt∆T
t (xt − u). (3.6.4)

Let us estimate the second term in the right hand side of (3.6.4). Let

u1 = v1 = x1;ut+1 = Put(−γt∆t), t = 1, 2, ..., N ; vt+1 = Pvt(γt∆t), t = 1, 2, ...N. (3.6.5)

Observe that ∆t is a deterministic function of ξt, whence ut and vt are deterministic func-

tions of ξt−1. By using Lemma 3.6.1 we obtain

N∑
t=1

γt∆T
t (vt − u) ≤ D2

ω,X + (2α)−1
N∑
t=1

γ2
t ‖∆t‖2∗, ∀u ∈ X. (3.6.6)

Moreover,

∆T
t (vt − u) = ∆T

t (xt − u) + ∆T
t (vt − xt),

and hence it follows by (3.6.6) that

max
u∈X

N∑
t=1

νt∆T
t (xt − u) ≤

N∑
t=1

νt∆T
t (xt − vt) +

D2
ω,X + (2α)−1

∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
. (3.6.7)

66

Observe that by similar reasoning applied to −∆t in the role of ∆t we get

max
u∈X

[
−

N∑
t=1

νt∆T
t (xt − u)

]
≤

[
−

N∑
t=1

νt∆T
t (xt − ut)

]
+
D2
ω,X + (2α)−1

∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
.

(3.6.8)

Moreover, E|t−1 [∆t] = 0 and ut,vt and xt are functions of ξt−1, while E|t−1∆t = 0 and

hence

E|t−1

[
(xt − vt)T∆t

]
= E|t−1

[
(xt − ut)T∆t

]
= 0. (3.6.9)

We also have that E|t−1

[
‖∆t‖2∗

]
≤ 4M2

∗ , and hence in view of condition (3.2.2) it follows

from (3.6.7) and (3.6.9) that

E

[
max
u∈X

N∑
t=1

νt∆T
t (xt − u)

]
≤
D2
ω,X + 2α−1M2

∗
∑N

t=1 γ
2
t∑N

t=1 γt
. (3.6.10)

Therefore, by taking expectation of both sides of (3.6.4) and using (3.2.2) together with

(3.6.10) we obtain the estimate (3.3.5).

1.20 In order to prove (3.3.6) let us observe that fN − f∗N =
∑N

t=1 νtδt, and that for

1 ≤ s < t ≤ N ,

E[δsδt] = E{E|t−1[δsδt]} = E{δsE|t−1[δt]} = 0.

Therefore

E
[(
f
N − f∗N

)2] = E
[(∑N

t=1 νtδt

)2
]

=
∑N

t=1 ν
2
t E
[
δ2
t

]
=
∑N

t=1 ν
2
t E
{
E|t−1

[
δ2
t

]}
.

Moreover, by condition (3.2.1) of assumption (A.3.1) we have that E|t−1

[
δ2
t

]
≤ Q2, and

hence

E
[(
f
N − f∗N

)2] ≤ Q2
N∑
t=1

ν2
t . (3.6.11)

Since
√

E[Y 2] ≥ E|Y | for any random variable Y , inequality (3.3.6) follows from (3.6.11).

1.30 Let us now look at (3.3.7). We have∣∣fN − fN∗ ∣∣ =
∣∣min
x∈X

f̂N (x)−min
x∈X

fN (x)
∣∣ ≤ max

x∈X

∣∣f̂N (x)− fN (x)
∣∣

≤
∣∣∑N

t=1 νtδt
∣∣+ maxx∈X

∣∣∑N
t=1 νt∆

T
t (xt − x)

∣∣. (3.6.12)

We already showed above (see (3.6.11)) that

E
[∣∣∑N

t=1 νtδt
∣∣] ≤ Q√∑N

t=1 ν
2
t . (3.6.13)

67

Invoking (3.6.7), (3.6.8), we get

maxx∈X
∣∣∑N

t=1 νt∆
T
t (xt − x)

∣∣ ≤ ∣∣∑N
t=1 νt∆

T
t (xt − vt)

∣∣+∣∣∑N
t=1 νt∆

T
t (xt − ut)

∣∣
+
D2
ω,X+(2α)−1

∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
.

(3.6.14)

Moreover, for 1 ≤ s < t ≤ N we have that E
[(

∆T
s (xs − vs)

)(
∆T
t (xt − vt)

)]
= 0, and hence

E
[∣∣∑N

t=1 νt∆
T
t (xt − vt)

∣∣2] =
∑N

t=1 ν
2
t E
[∣∣∆T

t (xt − vt)
∣∣2] ≤ 4M2

∗
∑N

t=1 ν
2
t E
[
‖xt − vt‖2

]
≤ 32M2

∗α
−1D2

ω,X

∑N
t=1 ν

2
t ,

where the last inequality follows by (2.2.31). It follows that

E

[∣∣∣ N∑
t=1

νt∆T
t (xt − vt)

∣∣∣] ≤ 4
√

2α−1Dω,X

√√√√ N∑
t=1

ν2
t .

By similar reasons,

E

[∣∣∣ N∑
t=1

νt∆T
t (xt − ut)

∣∣∣] ≤ 4
√

2α−1Dω,X

√√√√ N∑
t=1

ν2
t .

These two inequalities combine with (3.6.13), (3.6.14) and (3.6.12) to imply (3.3.7). This

completes the proof of part (i) of Theorem 3.3.1.

Preparing to prove part (ii) of Theorem 3.3.1: To prove part (ii) of Theorem 3.3.1

we need the following known result; we give its proof for the sake of completeness.

Lemma 3.6.2 Let ξ1, ξ2, ... be a sequence of iid random variables, σt > 0, µt, t = 1, ..., be a

sequence of deterministic numbers and φt = φt(ξt) be deterministic (measurable) functions

of ξt = (ξ1, ..., ξt) such that either

Case A: E|t−1[φt] = 0 w.p.1 and E|t−1

[
exp{φ2

t /σ
2
t }
]
≤ exp{1} w.p.1 for all t, or

Case B: E|t−1 [exp{|φt|/σt}] ≤ exp{1} for all t.

Then for any Λ ≥ 0 we have the following. In the case of A:

Prob
{∑N

t=1 φt > Λ
√∑N

t=1 σ
2
t

}
≤ exp{−Λ2/3}. (3.6.15)

In the case of B, setting σN := (σ1, ..., σN):

Prob
{∑N

t=1 φt > ‖σN‖1 + Λ‖σN‖2
}
≤ exp{−Λ2/12}+ exp

{
− 3‖σN‖2

4‖σN‖∞Λ
}

≤ exp{−Λ2/12}+ exp{−3Λ/4}.
(3.6.16)

68

Proof. Let us set φ̄t := φt/σt.

Case A: By the respective assumptions about φt we have that E|t−1[φ̄t] = 0 and

E|t−1

[
exp{φ̄2

t }
]
≤ exp{1} w.p.1. By Jensen inequality it follows that for any a ∈ [0, 1]:

E|t−1

[
exp{aφ̄2

t }
]

= E|t−1

[
(exp{φ̄2

t })a
]
≤
(
E|t−1

[
exp{φ̄2

t }
])a ≤ exp{a}.

We also have that exp{x} ≤ x + exp{9x2/16} for all x (this can be verified by direct

calculations), and hence

E|t−1

[
exp{λφ̄t}

]
≤ E|t−1

[
exp{(9λ2/16)φ̄2

t }
]
≤ exp{9λ2/16}, ∀λ ∈ [0, 4/3]. (3.6.17)

Besides this, we have λx ≤ 3
8λ

2 + 2
3x

2 for any λ and x, and hence

E|t−1

[
exp{λφ̄t}

]
≤ exp{3λ2/8}E|t−1

[
exp{2φ̄2

t /3}
]
≤ exp{2/3 + 3λ2/8}.

Combining the latter inequality with (3.6.17), we get

E|t−1

[
exp{λφ̄t}

]
≤ exp{3λ2/4}, ∀λ ≥ 0.

Going back to φt, the above inequality reads

E|t−1 [exp{κφt}] ≤ exp{3κ2σ2
t /4}, ∀κ ≥ 0. (3.6.18)

Now, since φτ is a deterministic function of ξτ and using (3.6.18), we obtain for any κ ≥ 0:

E
[
exp

{
κ
∑t

τ=1 φτ
}]

= E
[
exp

{
κ
∑t−1

τ=1 φτ
}
E|t−1 exp{κφt}

]
≤ exp{3κ2σ2

t /4}E
[
exp{κ

∑t−1
τ=1 φτ}

]
,

and hence

E
[
exp

{
κ
∑N

t=1 φt

}]
≤ exp

{
3κ2

∑N
t=1 σ

2
t /4
}
. (3.6.19)

By Markov inequality, we have for κ > 0 and Λ≥ 0:

Prob
{∑N

t=1 φt > Λ
√∑N

t=1σ
2
t

}
= Prob

{
exp

[
κ
∑N

t=1 φt

]
> exp

[
κΛ
√∑N

t=1σ
2
t

]}
≤ exp

[
−κΛ

√∑N
t=1σ

2
t

]
E
{

exp
[
κ
∑N

t=1 φt

]}
.

Together with (3.6.19) this implies for Λ ≥ 0:

Prob
{∑N

t=1φt > Λ
√∑N

t=1σ
2
t

}
≤ inf

κ>0
exp

{
3
4κ

2
∑N

t=1σ
2
t − κΛ

√∑N
t=1σ

2
t

}
= exp

{
−Λ2/3

}
.

69

Case B: Observe first that if η is a random variable such that E[exp{|η|}] ≤ exp{1},

then

0 ≤ t ≤ 1
2
⇒ E[exp{tη}] ≤ exp{t+ 3t2}. (3.6.20)

Indeed, let f(t) = E[exp{tη}]. Then f(0) = 1, f ′(0) = E[η] ≤ ln(E[exp{η}]) ≤ 1. Besides

this, when 0 ≤ t ≤ 1/2, invoking the Cauchy and the Hölder inequalities we have

f ′′(t) = E[exp{tη}η2] ≤ [E[exp{2t|η|}]]1/2
[
E[η4]

]1/2 ≤ [E[exp{|η|}]]t
[
E[η4]

]1/2
≤ exp{1/2}

[
E[η4]

]1/2
.

It is immediately seen that s4 ≤ (4/ε)4 exp{|s|} for all s, whence
[
E[η4]

]1/2 ≤ (4/ε)2ε1/2 due

to E[exp{|η|}] ≤ ε. Thus, f ′′(t) ≤ 16/ε when 0 ≤ t ≤ 1/2, and thus f(t) ≤ 1 + t+ (8/ε)t2 ≤

exp{t+ (8/ε)t2} ≤ exp{t+ 3t2}, and (3.6.20) follows.

Let γ ≥ 0 be such that γσt ≤ 1/2, 1 ≤ t ≤ N . When t ≤ N , we have

E
[
exp{

∑t
τ=1 γφτ}

]
= E

[
exp{

∑t
τ=1 γστ φ̄τ}

]
= E

[
exp{

∑t−1
τ=1 γστ φ̄τ}E|t−1

[
exp{γσtφ̄t

]]
≤ exp{γσt + 3γ2σ2

t }E
[
exp{

∑t−1
τ=1 γστ φ̄τ}

]
,

where the concluding inequality is given by (3.6.20) (note that we are in the case when

E|t−1[exp{|φ̄t|}] ≤ exp{1} w.p.1). From the resulting recurrence we get

0 ≤ γ‖σN‖∞ ≤ 1/2⇒ E

[
exp{

N∑
t=1

γφt}

]
≤ exp{γ‖σN‖1 + 3γ2‖σN‖22}.

whence for every Λ ≥ 0, denoting βs = ‖σN‖s,

0 ≤ γβ∞ ≤ 1/2⇒ p := Prob{
N∑
t=1

φt > β1 + Λβ2} ≤ exp{3γ2β2
2 − γΛβ2}. (3.6.21)

When Λ ≤ Λ̄ := 3β2/β∞, γ = Λ/(6β2) satisfies the premise in (3.6.21), and this implication

then says that p ≤ exp{−Λ2/12}. When Λ > Λ̄, we can use the implication with γ =

(2β∞)−1, thus getting

p ≤ exp{ β2

2β∞

[
3β2

2β∞
− Λ

]
} ≤ exp{− 3β2

4β∞
Λ}.

Thus (3.6.16) is proved.

70

Part (ii) of Theorem 3.3.1: Proof. Recall that in part (ii) of Theorem 3.3.1 assumption

(A.3.1) is strengthened to assumption (A.3.2). Then, in addition to (3.6.2), we have that

E|t−1

[
exp{δ2

t /Q
2}
]
≤ exp{1} and E|t−1

[
exp{‖∆t‖2∗/(2M∗)2}

]
≤ exp{1}. (3.6.22)

Let us also make the following simple observation. If Y1 and Y2 are random variables and

a1, a2, a are numbers such that a1 + a2 ≥ a, then the event {Y1 + Y2 > a} is included in the

union of the events {Y1 > a1} and {Y2 > a2}, and hence Prob{Y1 + Y2 > a} ≤ Prob{Y1 >

a1}+ Prob{Y2 > a2}.

2.10 Recall that fN − f∗N =
∑N

t=1 νtδt, and hence it follows by case A of Lemma 3.6.2

together with the first equality in (3.6.2) and (3.6.22) that for any Λ ≥ 0:

Prob
{
f
N − f∗N > ΛQ

√∑N
t=1 ν

2
t

}
≤ exp{−Λ2/3}. (3.6.23)

In the same way, by considering −δt instead of δt, we have that

Prob
{
f∗N − fN > ΛQ

√∑N
t=1 ν

2
t

}
≤ exp{−Λ2/3}, (3.6.24)

The assertion (3.3.10) follows from (3.6.23) and (3.6.24).

2.20 Now by (3.6.12) and (3.6.14) we have

∣∣fN − fN∗ ∣∣ ≤ ∣∣∣∑N
t=1 νtδt

∣∣∣+
∣∣∣∑N

t=1 νt∆
T
t (xt − vt)

∣∣∣+ ∣∣∣∑N
t=1 νt∆

T
t (xt − ut)

∣∣∣
+
D2
ω,X+(2α)−1

∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
.

(3.6.25)

As it was shown above (see (3.6.23), (3.6.24)):

Prob
{∣∣∣∑N

t=1 νtδt

∣∣∣ > ΛQ
√∑N

t=1 ν
2
t

}
≤ 2 exp{−Λ2/3}. (3.6.26)

Moreover, by (2.2.31) we have that ‖xt − vt‖ ≤ ‖xt − x1‖+ ‖vt − x1‖ ≤ 2
√

2α−1Dω,X , and

hence

E|t−1

[
exp{|∆T

t (xt − vt)|2/(4
√

2α−1Dω,XM∗)2}
]
≤ exp{1}.

It follows by case A of Lemma 3.6.2 that

Prob
{∣∣∣∑N

t=1 νt∆
T
t (xt − vt)

∣∣∣ > 4Λ
√

2α−1Dω,XM∗

√∑N
t=1 ν

2
t

}
≤ 2 exp{−Λ2/3}.

(3.6.27)

71

and similarly

Prob
{∣∣∣∑N

t=1 νt∆
T
t (xt − ut)

∣∣∣ > 4Λ
√

2α−1Dω,XM∗

√∑N
t=1 ν

2
t

}
≤ 2 exp{−Λ2/3}.

(3.6.28)

Furthermore, invoking (3.6.22), the random variables φt = (2α)−1γ2
t ‖∆t‖2∗(

∑N
t=1 γt)

−1

satisfy the premise of case B in Lemma 3.6.2 with σt = 2α−1M2
∗γ

2
t (
∑N

t=1 γt)
−1. Invoking

case B of Lemma, we get

Prob
{

(2α)−1
∑N
t=1 γ

2
t ‖∆t‖2∗∑N

t=1 γt
>

2α−1M2
∗
∑N
t=1 γ

2
t∑N

t=1 γt
+ Λ2α−1M2

∗
√∑N

t=1 γ
4
t∑N

t=1 γt

}
≤ exp{−Λ2/12}+ exp{−ΓNΛ}, ΓN = 3‖(γ2

1 ,...,γ
2
N)‖2

4‖(γ2
1 ,...,γ

2
N)‖∞

(3.6.29)

Combining this bound with (3.6.27), (3.6.28) and taking into account (3.6.25), we arrive at

(3.3.11).

2.30 It remains to prove (3.3.9). To this end note by (3.6.4) and (3.6.7) we have

f∗N − fN∗ ≤
2D2

ω,X + (2α)−1
∑N

t=1 γ
2
t (‖G(xt, ξt)‖2∗ + ‖∆t‖2∗)∑N

t=1 γt
+

N∑
t=1

νt∆T
t (xt − vt), (3.6.30)

Completely similar to (3.6.29), we have

Prob
{

(2α)−1
∑N
t=1 γ

2
t ‖G(xt,ξt)t‖2∗∑N

t=1 γt
>

(2α)−1M2
∗
∑N
t=1 γ

2
t∑N

t=1 γt
+ Λ (2α)−1M2

∗
√∑N

t=1 γ
4
t∑N

t=1 γt

}
≤ exp{−Λ2/12}+ exp{−ΓNΛ}

(3.6.31)

This bound combines with (3.6.29) and (3.6.27) to imply (3.3.9).

Theorem 3.3.2: Proof. Let x1, ..., xN be the trajectory of mirror descent SA, and let

xN+t := x̃N , t = 1, ..., S. Then we can write

ˆ̀
S(x; x̃N) =

1
S

N+S∑
t=N+1

[
F (xt, ξt) + G(xt, ξt)T (x− xt)

]
.

Let x∗ be an optimal solution to (1.2.1), and let us set ηt := ∆T
t (x∗ − xt), t = 1, ..., N + S.

By (2.2.31) we have ‖xt − x∗‖ ≤ 2Ωω,X , and since xt is a deterministic function of ξt−1,

1 ≤ t ≤ N + S, and the oracle is unbiased, under assumption (A.3.1) we have for 1 ≤ t ≤

N + S,

E|t−1[δt] = 0,E|t−1

[
δ2
t

]
≤ Q2,

E|t−1[ηt] = 0,E|t−1

[
η2
t

]
≤ 4Ω2

ω,XE|t−1

[
‖∆t‖2∗

]
≤ 16Ω2

ω,XM
2
∗ .

(3.6.32)

72

Consequently

f̂N (x∗) =
1
N

N∑
t=1

[f(xt) + g(xt)T (x∗ − xt)]︸ ︷︷ ︸
≤f(x∗)=Opt

+
1
N

N∑
t=1

[δt + ηt]︸ ︷︷ ︸
ζ1

,

ˆ̀
S(x∗; x̃N) =

1
S

N+S∑
t=N+1

[f(xt) + g(xt)T (x∗ − xt)]︸ ︷︷ ︸
≤f(x∗)=Opt

+
1
S

N+S∑
t=N+1

[δt + ηt]︸ ︷︷ ︸
ζ2

.

It follows that

lbN − f∗ ≤ max
{
f̂N (x∗), ˆ̀

S(x∗; x̃N)
}
− f∗ ≤ max{ζ1, ζ2} ≤ |ζ1|+ |ζ2|. (3.6.33)

From (3.6.32) it follows that

E[ζ2
1] ≤ N−1

(
2E
[
δ2
t

]
+ 2E

[
η2
t

])
≤
(

2Q2 + 32Ω2
ω,XM

2
∗

)
N−1,

E[ζ2
2] ≤ S−1

(
2E
[
δ2
t

]
+ 2E

[
η2
t

])
≤
(

2Q2 + 32Ω2
ω,XM

2
∗

)
S−1,

which combines with (3.6.33) to imply (3.3.15).

Under assumption (A.3.2), along with (3.6.32) we also have that

E|t−1

[
exp{δ2

t /Q
2}
]
≤ exp{1}, E|t−1

[
exp{η2

t /(4Ωω,XM∗)2}
]
≤ exp{1},

and hence

E|t−1 [δt + ηt] = 0, E|t−1

[
exp{[δt + ηt]2/(Q+ 4Ωω,XM∗)2}

]
≤ exp{1}.

Invoking case A of Lemma 3.6.2, we conclude that for all Λ ≥ 0:

Prob
{
|ζ1| > Λ[Q+ 4Ωω,XM∗]N−1/2

}
≤ 2 exp{−Λ2/3},

Prob
{
|ζ2| > [Q+ 4Ωω,XM∗]S−1/2

}
≤ 2 exp{−Λ2/3},

which combines with (3.6.33) to imply (3.3.16).

3.7 Conclusions of this chapter

In this chapter, we develop accuracy estimates for stochastic programming problems by

employing SA type algorithms. We show that while running a mirror descent SA procedure

one can compute, with a small additional effort, lower and upper statistical bounds for

73

the optimal objective value. We demonstrate that for a certain class of convex stochastic

programs these bounds are comparable in quality with similar bounds computed by the

SAA method, while their computational cost is considerably smaller. Moreover, Exten-

sive numerical experiments were conducted to understand the performance of the mirror

descent SA algorithm for solving stochastic programing problems with a feasible set more

complicated than a standard simplex.

74

CHAPTER IV

EFFICIENT METHODS FOR

STOCHASTIC COMPOSITE OPTIMIZATION

4.1 Overview

The basic problem of interest in this chapter is the stochastic composite optimization (SCO)

given by

f∗ := min
x∈X
{Ψ(x) := f(x) + h(x)}, (4.1.34)

where X is a convex compact set in Euclidean space E with inner product 〈·, ·〉, f : X → <

is a convex function with Lipschitz continuous gradient, that is,

‖∇f(x)−∇f(x′)‖∗ ≤ L‖x− x′‖, ∀x, x′ ∈ X, (4.1.35)

(‖ · ‖ is a given norm in E , ‖ · ‖∗ denotes its conjugate norm, see Subsection 4.1.1), and

h : X → < is a convex Lipschitz continuous function such that

|h(x)− h(x′)| ≤ M‖x− x′‖, ∀x, x′ ∈ X. (4.1.36)

We assume that problem (4.1.34) is to be solved by iterative algorithms which acquire

the subgradients of Ψ via subsequent calls to a stochastic oracle (SO). Specifically, at

iteration t of the algorithm, xt ∈ X being the input, the SO outputs a vector G(xt, ξt),

where {ξt}t≥1 is a sequence of i.i.d. random variables which are also independent of search

points xt. The following assumptions are made for the Borel functions G(x, ξt).

A.4.1: For any x ∈ X, we have

a) E[G(x, ξt)] ≡ g(x) ∈ ∂Ψ(x) (4.1.37)

b) E
[
‖G(x, ξt)− g(x)‖2∗

]
≤ σ2, (4.1.38)

where ∂Ψ(x) denotes the subdifferential of Ψ at x (see Subsection 4.1.1).

Observe that problem (4.1.34) covers several important classes of convex programming

75

problems as certain special cases. For the sake of simplicity, let us consider the situation

where the domain X is an Euclidean ball in the following discussion.

Case I: non-smooth convex optimization. Suppose that the smooth component f in

Ψ does not exist, or equivalently f(x) = 0 for every x ∈ X, and that there is no noise in

the SO, i.e., σ = 0 in (4.1.38). Then, problem (4.1.34) becomes the generic non-smooth

convex optimization problem that has been well-studied in the Literature. According to

Nemirovski and Yudin [44], if the dimension n is sufficiently large, i.e., n ≥ O(1)N , then

the rate of convergence for any iterative algorithms to solve nonsmooth convex optimization

problems can not be better than Ψ(x̂N)−Ψ∗ ≤ O(1)(M/
√
N), where N is the number of

iterations performed by the algorithm and x̂N ∈ X denotes the solution generated by the

algorithm after N steps. Moreover, the simple subgradient descent method can achieve, up

to a constant factor, the above lower bound. Note that the subgradient descent method

is closely related to the gradient projection method of Goldstein and Levitin, Polyak (see

[9]). Nemirovski and Yudin [44] also developed the so-called mirror descent algorithm that

can be advantageous over the subgradient descent method when X is not an Euclidean ball

by using the prox-function (also called Bregman’s distance, which was studied by Bregman

[10] and many others, see for example, [1, 2, 3, 29, 72] and references therein).

Case II: smooth convex optimization. Suppose that the non-smooth component h

in Ψ does not exist, or equivalently h(x) = 0 for every x ∈ X, and that there is no noise

in the SO, i.e., σ = 0 in (4.1.38). Then, problem (4.1.34) becomes the smooth convex

optimization problem. In [44], Nemirovski and Yudin show that, if the dimension n is

sufficiently large, i.e., n ≥ O(1)N , then the rate of convergence for any iterative algorithms

to solve smooth convex optimization problems can not be better than O(1)(L/N2). They

also provide a nearly optimal method which can achieve, up to a logrithmic factor, the above

lower bound on the rate of convergence. In a series of work ([47, 48]), Nesterov presented

novel smooth convex optimization algorithms whose rate of convergence is bounded by

O(1)(L/N2). Clearly, Nesterov’s methods are optimal, up to a constant factor, for smooth

convex optimization when n ≥ O(1)N . Nesterov’s methods were further studied in [49],

76

[1] and [50] using Bregman’s distance and other variants of Nesterov’s optimal method can

also be found, for example, in [32] and [73].

Case III: Stochastic convex optimization. Suppose that the variance of the SO is

positive, i.e., σ > 0. Then, problem (4.1.34) becomes the stochastic convex optimiza-

tion problem. There exist two competitive computational approaches for solving stochastic

convex optimization based on Monte Carlo sampling techniques, namely, the Stochastic

Approximation (SA) and the Sample Average Approximation (SAA) methods. Both ap-

proaches, the SA and SAA methods, have a long history. The SAA approach was used by

many authors in various contexts under different names. Its basic idea is rather simple: gen-

erate a (random) sample ξ1, ..., ξN , of size N , and approximate the “true” problem (4.1.34)

by the so-called sample average problem. Recent theoretical studies (cf., [30, 68, 69]) and

numerical experiments (see, e.g., [36, 40, 74]) show that the SAA method coupled with a

good (deterministic) algorithm could be reasonably efficient for solving certain classes of

two stage stochastic programming problems. The classic SA method mimicks the gradient

descent method and goes back to the pioneering paper by Robbins and Monro [61]. Since

then stochastic approximation algorithms became widely used in stochastic optimization

(see, e.g., [7, 17, 18, 57, 64, 31, 70] and references therein). An important improvement of

the SA method was developed by Polyak [58] and Polyak and Juditsky [59], where longer

stepsizes were suggested with consequent averaging of the obtained iterates. In these clas-

sical SA-type algorithms, it is assumed that the objective function is twice continuously

differentiable and strongly convex. Current opinion is that the SAA method can efficiently

use a specific (say linear) structure of the considered problem, while the SA approach is a

crude subgradient method which often performs poorly in practice. Recently, Nemirovski

et. al. [43] (See Chapter 2) considered non-smooth stochastic convex optimization (i.e.,

f(x) = 0 for every x ∈ X in (4.1.34) and σ > 0). They demonstrated that a properly mod-

ified SA approach can be competitive and even significantly outperform the SAA method

for a certain class of stochastic programming problems. The mirror-descent SA presented

in [43] exhibits the following rate of convergence O(1)(M+σ)/
√
N , which is unimprovable

77

even when the dimension n = 1 (this differs from the two above-mentioned deterministic

optimization cases where the lower bounds on the rate of convergence are valid only if n is

sufficiently large [44]). Close techniques, based on subgradient averaging, have been pro-

posed in Nesterov [51] and used in [24, 26] to solve certain non-smooth stochastic convex

optimization problems. It should be noted that the study on general smooth stochastic

convex optimization (i.e., h(x) = 0 for every x ∈ X in (4.1.34) and σ > 0) without the

strong convexity assumption on f seems quite limited in the literature.

Since SCO covers these subcases described above, it easily follows that the rate of

convergence for any iterative algorithms to solve (4.1.34) can not be better than

O(1)
[
L

N2
+
M+ σ√

N

]
, (4.1.39)

where N is the number of iterations performed by the algorithm. This means that, for any

algorithms solving problem (4.1.34), one can always point out a “bad” problem instance

satisfying (4.1.35), (4.1.36), (4.1.37), and (4.1.38), such that the expected error of the

solution generated at the N -step of the algorithm will be, up to a constant factor, greater

than the lower bound stated above. However, to the best of our knowledge, none of the

existing algorithms achieved this lower bound on the convergence rate. Since the objective

function Ψ of (4.1.34) is a non-smooth function, we can directly apply the mirror-descent

SA [43] to (4.1.34) and the resulting rate of convergence (cf. (4.2.46)) can no be better than

O(1)
[
L+M+ σ√

N

]
. (4.1.40)

The best known result so far is given by Juditsky et. al. [25] with the rate of convergence

O(1)
[
L

N
+
M+ σ√

N

]
(4.1.41)

by applying an extra-gradient-type algorithm to a variational inequality (v.i.) reformulation

of (4.1.34). It is worth noting that this optimal rate of convergence has not been attained

even for the deterministic case where σ = 0. Moreover, with only access to the SO of the

composite function Ψ, it is absolutely unclear whether the lower bound (4.1.39) on the rate

of convergence for solving (4.1.34) is achievable or not.

78

We would provide some motivation to explain why we shall care about the gap between

the convergence rates (4.1.40), (4.1.41) and the lower bound (4.1.39). Imagine that we

have an algorithm for solving (4.1.34) which achieves the lower bound (4.1.39) on the con-

vergence rate. First of all, this imaginary algorithm will be a universally optimal method

for non-smooth, smooth and stochastic convex optimization. Currently different classes of

convex optimization problems are being handled by using different (sub)optimal methods.

More specifically, mirror descent SA [43] and Nesterov’s method [47, 48] are optimal for

non-smooth (deterministic or stochastic) and smooth (deterministic) convex optimization

respectively, and there does not exist an optimal algorithm for solving smooth stochastic

convex optimization problems and general SCO problems. This is partly due to the difficulty

that, although either smooth or nonsmooth optimization has been well-studied separately

in the literature, a unified treatment for both of them seems highly non-trivial. Secondly,

this imaginary optimal algorithm for SCO will allow us to have a very large Lipschitz con-

stant L for problem (4.1.34) without affecting the rate of convergence. Let us have a closer

examination of these convergence rates. The convergence rates in (4.1.40) and (4.1.41), will

not be affected (up to a constant factor 2), if L is as big asM+σ and (M+σ)N
1
2 , respec-

tively. It can also be easily seen from (4.1.39) that the convergence rate of the imaginary

algorithm will not change (up to a constant factor 2) if L ≤ (M+σ)N
3
2 . Clearly, the latter

range of L that does not affect the rate of convergence for the imaginary algorithm is much

bigger than those for the previous two methods and extends much faster as the number of

iterations N grows. This fact often has great practical significance and one such example

will be given in Section 4.3.2. Thirdly, we would mention some beauty of this algorithm:

with only access to the SO of the composite function Ψ itself, the imaginary method can

intelligently tell the difference between the smooth and non-smooth component, and treat

them separately in an optimal manner. It is not only of pure mathematical beauty, but

also physically meaningful, for example, when one does not have access to the components

f and h of the objective function of (4.1.34).

Our contribution mainly consists of the following aspects. Firstly, with a novel anal-

ysis, it is demonstrated that a slightly modified mirror descent SA algorithm applied to

79

(4.1.34) also exhibits the best known so far rate of convergence guaranteed by a more in-

volved stochastic mirror-prox algorithm [25]. Moreover, by properly modifying a variant of

Nesterov’s optimal method for smooth convex optimization, we propose an accelerated SA

(AC-SA), which can achieve the theoretically optimal rate of convergence for solving this

class of problems. Clearly, the accelerated SA algorithm is a universally optimal method for

non-smooth, smooth and stochastic convex optimization. It should be stressed that Nes-

terov’s optimal method and/or its variants were designed for solving deterministic smooth

convex optimization problems. These algorithms, with very aggressive stepsizes employed,

were believed to be too sophisticated to solve non-smooth and stochastic convex optimiza-

tion problems. We, however, substantially extend the analysis of Nesterov’s optimal method

to non-smooth and stochastic convex optimization, and devise a novel (actually increasing)

stepsize policy for solving these problems. Thirdly, we investigate this accelerated SA in

more details, for example, derive the exponential bounds for the large deviations of the

resulting solution inaccuracy from the expected one, provided the noise from the stochastic

oracle is “light-tailed”. Finally, the significant advantages of the accelerated SA over the

existing algorithms are illustrated in the context of solving a class of stochastic program-

ming problems whose feasible region is a simple compact convex set intersected with an

affine manifold. More specifically, if the accelerated SA is applied to solve the quadratic

penalization problem where the violation of the affine constraints is penalized, then, sur-

prisingly, the size of the Lagrange multiplier associated with these affine constraints has,

asymptotically, no affect on the convergence rate.

We should distinguish the results obtained in this chapter with some related but different

development in the literature for solving problems given in the form of (4.1.34). Recently,

Nesterov in a very relevant paper [50] presented a first-order method with convergence rate

bounded by O(1/N) to solve convex optimization problems of the form (4.1.34), where the

nonsmooth term h is given by

h(x) := sup{〈By, x〉 − φ(y) : y ∈ Y },

Y ⊆ <m is a compact convex set, φ : Y → < is a continuous convex function and B is a

80

linear operator from <m to <n. Nesterov’s approach consists of approximating an arbitrary

function h from the class by a sufficiently close smooth one with Lipschitz continuous gra-

dient and applying the optimal smooth method in [47, 50] to the resulting problem with h

replaced by its approximation function. In a subsequent paper, Nemirovski [42] proposed

an extra-gradient type first-order method for solving a slightly more general class of opti-

mization problems than the one considered by Nesterov [50] and also established an O(1/N)

convergence rate for his method. These first-order methods were further studied in, for ex-

ample, [1, 53, 39, 15, 56, 73, 41], and successfully used in sparse covariance selection, rank

reduction in multivariate linear regression and compressed sensing etc. (see, for example,

[16, 37, 38, 4]). Another line of investigation is also to consider problems given in the form

of (4.1.34) where the non-smooth component h of Ψ in (4.1.34) is sufficiently simple, for

example, h(x) = ‖x‖1, where ‖ · ‖1 denotes the l1 norm, so that the non-smooth component

can be kept as a part of the prox-step (or projection in the Euclidean case) (Nesterov [52],

Tseng [73], Lewis and Wright [35]). Consequently, the convergence rate for solving these

problems is the same as that of smooth convex optimization, i.e., O(1/N2). These devel-

opments clearly differ from ours in the following aspects: (i) those problems considered in

[50, 42, 52] and subsequent papers are certain special cases of (4.1.34) in the sense that the

nonsmooth term h can either be smoothed or kept in the projection. Therefore, it turned

out that stronger convergence results can be obtained for those subcases. We, on the other

hand, consider a general non-smooth term h in the objective function of (4.1.34); (ii) the

algorithms developed in [50, 52] and related references need to access the smooth and non-

smooth component of the composite function Ψ separately. In contrast, our method, in

addition to using the structure of the problem, only need to access the composite function

itself; iii) in [50, 42, 52] and other references mentioned above, only deterministic optimiza-

tion problems have been considered. We, however, also focus on the situation where the

subgradients of Ψ are contaminated by stochastic noise, i.e., σ > 0; iv) it should be noted

that the development in [50, 52] can be easily incorporated into our method for certain

cases where the nonsmooth component h in (4.1.34) consists of the aforementioned special

structures.

81

The chapter is organized as follows. In Section 4.2, we present a slightly modified

mirror descent SA algorithm applied to (4.1.34) and describe its convergence properties.

Section 4.3 discusses the accelerated stochastic approximation method. More specifically,

we present the AC-SA algorithm and its convergence properties in Subsection 4.3.1, and

outline an application to demonstrate the advantages of this algorithm in Subsection 4.3.2.

Section 4.4 is devoted to proving the main results of this chapter. Finally, some concluding

remarks are made in Section 4.5.

4.1.1 Notation and terminology

• For a convex lower semicontinuous function φ : X → <, its subdifferential ∂f(·) is

defined as follows: at a point x from the relative interior of X, ∂φ is comprised of

all subgradients g of φ at x which are in the linear span of X − X. For a point

x ∈ X\rintX, the set ∂φ(x) consists of all vectors g, if any, such that there exists

xi ∈ rintX and gi ∈ ∂φ(xi), i = 1, 2, · · · , with x = lim
i→∞

xi, g = lim
i→∞

gi. Finally,

∂φ(x) = ∅ for x /∈ X. With this definition, it is well-known (see, for example, Ben-Tal

and Nemirovksi [5]) that, if a convex function φ : X → < is Lipschitz continuous,

with constant M, with respect to a norm ‖ · ‖, then the set ∂φ(x) is nonempty for

any x ∈ X and

g ∈ ∂φ(x)⇒ |〈g, d〉| ≤ M‖d‖, ∀ d ∈ lin (X −X), (4.1.42)

in other words,

g ∈ ∂φ(x)⇒ ‖g‖∗ ≤M, (4.1.43)

where ‖ · ‖∗ denotes the conjugate norm given by ‖g‖∗ := max‖d‖≤1〈g, d〉.

• For the random process ξ1, ξ2, ..., we set ξ[t] := (ξ1, ..., ξt), and denote by E|ξ[t] the

conditional, ξ[t] being given, expectation.

4.2 Modified mirror-descent stochastic approximation

In this section, we present a slightly modified version of mirror-descent SA method in [43]

and demonstrate that it can achieve the best known so far rate of convergence for solving

problem (4.1.34).

82

The mirror descent SA algorithm, as applied to (4.1.34), works with the stochastic oracle

of Ψ that satisfies Assumption A.4.1. In some cases, Assumption A.4.1 is augmented by

the following “light-tail” assumption.

A.4.2: For any x ∈ X, we have

E
[
exp{‖G(x, ξt)− g(x)‖2∗/σ2}

]
≤ exp{1}. (4.2.44)

It can be easily seen that Assumption A.4.2 implies Assumption A.4.1(b), since by

Jensen’s inequality,

exp
(
E[‖G(x, ξt)− g(x)‖2∗/σ2]

)
≤ E

[
exp{‖G(x, ξt)− g(x)‖2∗/σ2}

]
≤ exp{1}.

We first derive the rate of convergence for a direction application of the mirror descent

SA in [43] (see also Section 2.2.3) to problem (4.1.34).

Let g(xt) = E[G(xt, ξt)] = ∇f(xt) + h′(xt) for every t ≥ 1, where h′(xt) ∈ ∂h(xt) .

Then, in view of assumptions (4.1.35), (4.1.36), (4.1.37) and (4.1.38), and relation (4.1.43),

we have

E[‖G(xt, ξt)‖2∗] = ‖E[G(xt, ξt)]‖2∗ + E[‖G(xt, ξt)− E[G(xt, ξt)]‖2∗]

= ‖g(xt)‖2∗ + E[‖G(xt, ξt)− g(xt)‖2∗] ≤ ‖∇f(xt) + h′(xt)‖2∗ + σ2

≤ 2‖∇f(xt)‖2∗ + 2M2 + σ2

≤ 2
(
‖∇f(x1) +∇f(xt)−∇f(x1)‖2∗

)
+ 2M2 + σ2

≤ 4‖∇f(x1)‖2∗ + 4‖∇f(xt)−∇f(x1)‖2∗ + 2M2 + σ2

≤ 4‖∇f(x1)‖2∗ + 4L2‖xt − x1‖2 + 2M2 + σ2

≤ 4‖∇f(x1)‖2∗ + 4L2Ω2
ω,X + 2M2 + σ2.

Now replacing the value of M∗ in (2.2.46) or (2.2.55) with

M∗ =
(
4‖∇f(x1)‖2∗ + 4L2Ω2

ω,X + 2M2 + σ2
) 1

2 , (4.2.45)

we can easily see that the rate of convergence for a direct application of the mirror descent

SA algorithm presented in Subsection 2.2.3 to problem (4.1.34) is bounded by

O(1)
[

Ωω,X(‖∇f(x1)‖∗ + LΩω,X +M+ σ)√
N

]
. (4.2.46)

83

As discussed in Section 4.1, the above rate of convergence is significantly worse than the

best known so far result obtained by using the stochastic mirror-prox algorithm [25]. We

will show in this section that a slightly modified mirror descent SA algorithm stated below

can achieve the best known so far rate of convergence for solving (4.1.34).

The modified mirror descent SA algorithm:

0) Let the initial point x1 and the step-sizes {γt}t≥1 be given. Set t = 1;

1) Call the SO for computing G(xt, ξt). Set

xt+1 := Pxt (γtG(xt, ξt)) , (4.2.47)

xavt+1 =

(
t∑

τ=1

γτ

)−1 t∑
τ=1

γτxτ+1. (4.2.48)

2) Set t← t+ 1 and go to Step 1.

end

We now make a few comments about the above algorithm. Firstly, without loss of

generality, we will assume from now on that the initial point x1 is given by the minimizer

of ω over X (see Subsection 2.2.3). Secondly, observe that the above algorithm only slightly

differs from the mirror descent SA algorithm in Chapter 2 in the way the averaging step

(4.2.48) is defined. More specifically, the sequence {xavt }t≥2 is obtained by averaging the

iterates xt, t ≥ 2 with their corresponding weights γt−1, while the one in [43] is obtained

by taking the average of the whole trajectory xt, t ≥ 1 with weights γt. Note however

that, if the constant stepsizes are used, i.e., γt = γ,∀ t ≥ 1, then the averaging step stated

above is exactly the same as the one stated in [43] up to shifting one iterate. Thirdly, as

we will see later in this section, the improvement on the convergence rate for the mirror

descent algorithm described above, as applied to (4.1.34), over the one stated in (4.2.46)

follows from a completely different convergence analysis than the one given in [43] and a

new stepsize policy which takes into account the structure of the problem.

We start with stating a general convergence result of the above mirror descent SA

algorithm without specifying the step-sizes γt. The proof of this result will be given in

84

Subsection 4.4.1.

Theorem 4.2.1 Assume that the step-sizes γt satisfy 0 < γt ≤ α/(2L), ∀ t ≥ 1. Let

{xavt+1}t≥1 be the sequence computed according to (4.2.48) by the modified mirror descent

SA algorithm. Then we have

a) under Assumption A.4.1,

E
[
Ψ(xavt+1)−Ψ∗

]
≤ K0(t), ∀ t ≥ 1, (4.2.49)

where

K0(t) :=

(
t∑

τ=1

γτ

)−1 [
D2
ω,X +

2
α

(4M2 + σ2)
t∑

τ=1

γ2
τ

]
,

M, σ and Dω,X are given in (4.1.36), (4.1.38) and (2.2.29) respectively;

b) under Assumptions A.4.1 and A.4.2,

Prob
{

Ψ(xavt+1)−Ψ∗ > K0(t) + ΛK1(t)
}
≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, t ≥ 1,

(4.2.50)

where

K1(t) :=

(
t∑

τ=1

γτ

)−1
2Ωω,Xσ

√√√√ t∑
τ=1

γ2
τ +

2
α
σ2

t∑
τ=1

γ2
τ

 ,
σ and Ωω,X are given in (4.1.38) and (2.2.29) respectively.

It is interesting to compare the results obtained in Theorem 4.2.1 with the corresponding

results obtained in [43] for the original mirror descent SA. According to Proposition 3.2.1,

for the N -step of the original Mirror Descent SA algorithm applied to (4.1.34), we have

that

E [Ψ(x̃t)−Ψ∗] ≤
D2
ω,X + (2α)−1M2

∗
∑t

τ=1 γ
2
τ∑t

τ=1 γτ
,

where M∗ is given by (4.2.45). Note that the right hand side of the above inequality differs

from K0(t) defined in Theorem 4.2.1(a) in the second term only. The former one depends

on M∗, whence ‖∇f(x1)‖+LΩω,X , while such a dependence is removed from K0(t) for the

new result obtained in Theorem 4.2.1(a).

85

We now describe the selection of the stepsizes for the modified mirror descent SA. For

the sake of simplicity, let us suppose that the number of iterations for the above algorithm

is fixed in advance, say equal to N , and that the constant step-size policy is applied, i.e.,

γt = γ, t = 1, · · · , N , for some γ < α/(2L) (note that the assumption of constant step-

sizes does not hurt the efficiency estimate). We then conclude from Theorem 4.2.1 that the

obtained solution xavN+1 = N−1
∑N

τ=1 xτ+1 satisfies

E
[
Ψ(xavN+1)−Ψ∗

]
≤
D2
ω,X

Nγ
+

2γ
α

(
4M2 + σ2

)
.

Minimizing the right-hand-side of the above inequality with respect to γ over the interval

(0, α/(2L)], we conclude that

E
[
Ψ(xavN+1)−Ψ∗

]
≤ K∗0 (N) :=

LΩ2
ω,X

N
+

2Ωω,X

√
4M2 + σ2

√
N

, (4.2.51)

by choosing γ as

γ = min

 α

2L
,

√
αD2

ω,X

2N(4M2 + σ2)

 .

Moreover, with this choice of γ, we have

K1(N) =
2Ωω,Xσ√

N
+

2γσ2

α
≤

2Ωω,Xσ√
N

+

√
2
α
Dω,X

σ2√
N(4M2 + σ2)

≤
2Ωω,Xσ√

N
+

√
2
α
Dω,X

σ√
N

=
3Ωω,Xσ√

N
,

hence, bound (4.2.50) implies that

Prob
{

Ψ(xavN+1)−Ψ∗ > K∗0 (N) + ΛK∗1 (N)
}
≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (4.2.52)

where

K∗1 (N) :=
3Ωω,Xσ√

N
.

It is interesting to compare the rate of convergence (4.2.51) obtained for the modified

mirror descent SA and the one stated in (4.2.46) for the direction application of the mirror

descent SA in [43]. Clearly, the latter one is always worse than the former one. Moreover,

in the range

L ≤
√
N(4M2 + σ2)

Ωω,X
, (4.2.53)

86

the first component in (4.2.51) (for abbreviation, the L-component) merely does not affect

the error estimate (4.2.51). Note that the range stated in (4.2.53) extends as N increases,

meaning that, if N is large, the presence of the smooth component f in the objective

function of (4.1.34) does not affect the complexity of finding good approximate solutions.

In contrast, this phenomenon does not appear in the error estimate (4.2.46) derived for

the mirror descent SA algorithm in [43] which employs certain simple step-size strategies

without taking into account the structure of the objective function Ψ.

It should be noted that the mirror descent SA is a direct descendant of the mirror

descent algorithm [44]. It is well-known that algorithms of this type are not optimal for

smooth convex optimization and hence can not be optimal for stochastic composite opti-

mization. On the other hand, Nesterov’s methods [47, 49] and its variants were designed for

solving smooth convex optimization problems. These optimal algorithms for smooth convex

optimization, with very aggressive stepsizes employed, were believed to be too sophisticated

to solve non-smooth and stochastic convex optimization problems. We will investigate a

possible extension of Nesterov’s method for solving problem (4.1.34) in the next section.

4.3 Accelerated stochastic approximation

In this section, we provide a substantial generalization of Nesterov’s methods ([47, 49]) to

solve non-smooth and stochastic convex optimization. As a result, we develop a completely

new SA-type algorithm, referred to as the accelerated SA (AC-SA) method, which can

achieve the theoretically optimal rate of convergence for solving (4.1.34). More specifically,

we will state the algorithm and its convergence results in Subsection 4.3.1 and outline an

application to illustrate its advantages over the existing SA algorithms in Subsection 4.3.2.

4.3.1 The algorithm and its main convergence properties

The AC-SA algorithm for solving problem (4.1.34) is comprised of the updating of three

sequences: {xt}t≥1, {xagt }t≥1, and {xmdt }t≥1. Here, we use the superscript “ag” (which

stands for “aggregated”) in the sequence obtained by taking a convex combination of all

the previous iterates xt, and the superscript “md” (which stands for “middle”) in the

sequence obtained by taking a convex combination of the current iterate xt with the current

87

aggregated iterate xagt . The algorithm is stated as follows.

The AC-SA algorithm:

0) Let the initial points xag1 = x1, and the step-sizes {βt}t≥1 and {γt}t≥1 be given. Set

t = 1.

1) Set xmdt = β−1
t xt + (1− β−1

t)xagt ,

2) Call the SO for computing G(xmdt , ξt). Set

xt+1 = Pxt(γtG(xmdt , ξt)), (4.3.54)

xagt+1 = β−1
t xt+1 + (1− β−1

t)xagt , (4.3.55)

3) Set t← t+ 1 and go to step 1.

end

We now make a few comments regarding the AC-SA algorithm described above. Firstly,

similar to the mirror descent SA algorithm, we assume that the initial point x1 is the min-

imizer of ω over X. Secondly, it is worth noting that the major computation cost in each

iteration of the AC-SA algorithm is exactly the same as the one of the mirror descent SA

algorithm, that is, each iteration of the above algorithm requires only one call to the SO

and one solution of the subproblem (4.3.54). Thirdly, while Nesterov’s optimal method and

its variants [47, 49, 50, 1, 32, 73] were designed for solving deterministic smooth convex op-

timization problems, the AC-SA algorithm, as a descendant of Nesterov’s optimal method,

is capable of solving non-smooth and stochastic convex optimization problems.

Tseng [73] provides a very good summary about different versions of Nesterov’s optimal

method for deterministic smooth convex optimization. Depending on how much gradient

information associated with the previous iterates is used in the prox-mapping, these methods

are classified as either 1-memory methods in which only the gradient information from the

preceding iterate is used (cf. [47, 1, 32] and [73, Section 3]), or ∞-memory methods where

the gradient information from all previous iterates is used (cf. [50, 53] and [73, Section

4]). The 1-memory methods are conceptionally simpler than the ∞-memory methods,

88

while one possible advantage of the ∞-memory methods is that they also provide a lower

estimate on the optimal value during the run of these procedures. Moreover, depending

on whether one or two prox-mapping are required in Nesterov’s methods and its variants,

these methods are classified as either 1-projection methods (cf. [47, 1, 73]) or 2-projection

methods (cf. [50, 53, 32]). Note also that Nesterov’s method in its initial form was designed

for unconstrained convex problems, and later extended to constrained optimization [49] or

certain nonsmooth and composite problems with special structures (see Section 4.1 for a

summary in this regard). Auslender and Teboulle [1] is among the first to propose, in a

deterministic setting, a Bregman regularization of Nesterov method, see also Nesterov [50].

Our AC-SA algorithm is the simplest 1-memory and 1-projection method, while it is also

possible to develop SA-type algorithms based on other versions of Nesterov’s methods. If

the non-smooth component h in the objective function Ψ(·) of (4.1.34) does not exist, or

equivalently h(x) = 0 for every x ∈ X, and there is no noise in the computed gradient,

i.e., σ = 0, then the AC-SA reduces to a variant of Nesterov’s optimal method that is

very similar to the ones state in [1, Section 5] and [73, Section 3]. Note that one unique

feature of the AC-SA algorithm is that it employs two control parameters βt and γt, which

distinguishes itself from other variants of Nesterov’s optimal method.

The following theorem states the main convergence results of the AC-SA algorithm

applied to stochastic composite optimization, which covers a significantly wider range of

problems than those in deterministic smooth convex optimization (see discussions in Sec-

tion 4.1). The proof of this result will be given in Subsection 4.4.2

Theorem 4.3.1 Assume that the stepsizes βt ∈ [1,∞) and γt ∈ <+ are chosen such that

β1 = 1 and the following conditions hold

0 < (βt+1 − 1)γt+1 ≤ βtγt and 2Lγt ≤ αβt, ∀t ≥ 1. (4.3.56)

Let {xagt+1}t≥1 be the sequence computed according to (4.3.55) by the AC-SA algorithm. Then

we have

89

a) under Assumption A.4.1,

E[Ψ(xagt+1)−Ψ∗] ≤ K̂0(t), ∀ t ≥ 1, (4.3.57)

where

K̂0(t) :=
1

(βt+1 − 1)γt+1

[
D2
ω,X +

2
α

(4M2 + σ2)
t∑

τ=1

γ2
τ

]
,

M, σ and Dω,X are given in (4.1.36), (4.1.38) and (2.2.29) respectively;

b) under Assumptions A.4.1 and A.4.2,

Prob
{

Ψ(xagt+1)−Ψ∗ > K̂0(t) + ΛK̂1(t)
}
≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, t ≥ 1,

(4.3.58)

where

K̂1(t) :=
1

(βt+1 − 1)γt+1

2Ωω,Xσ

√√√√ t∑
τ=1

γ2
τ +

2
α
σ2

t∑
τ=1

γ2
τ

 ,
σ and Ωω,X are given in (4.1.38) and (2.2.29) respectively.

It is worth noting the similarity between the results stated in Theorem 4.2.1 for the

modified mirror-descent SA and those obtained in Theorem 4.3.1 for the accelerated SA.

Comparing (4.2.49) with (4.3.57) (resp., (4.2.50) with (4.3.58)), we can easily that the only

difference exists in the factors of K0(t) and K̂0(t) (resp., K1(t) and K̂1(t)). More specifically,

the factor 1/
∑t

τ=1 γt in K0(t) and K1(t) is replaced by 1/[(βt+1 − 1)γt+1] in K̂0(t) and

K̂1(t) while all other terms are the same. This resemblance between the results stated

in Theorem 4.2.1 and Theorem 4.3.1 is the outcome of a remarkable unified convergence

analysis for both mirror-descent and accelerated SA algorithm (cf. Section 4.4).

We now discuss the determination of the stepsizes βt and γt in the accelerated SA so

as to achieve the optimal rate of convergence for solving (4.1.34). Observing that a pair of

sequences {βt}t≥1 and {γt}t≥1 satisfying condition (4.3.56) is given by:

βt =
t+ 1

2
and γt =

t+ 1
2

γ (4.3.59)

for any 0 < γ ≤ α/(2L), we obtain the following corollary of Theorem 4.3.1 by appropriately

choosing this parameter γ.

90

Corollary 4.3.1 Suppose that the stepsizes βt and γt in the AC-SA algorithm are set to

βt =
t+ 1

2
, γt =

t+ 1
2

min

{
α

2L
,

√
6αDω,X

(N + 2)
3
2 (4M2 + σ2)

1
2

}
, ∀t ≥ 1, (4.3.60)

where N is a fixed in advance number of iterations. Then, we have under Assumption A.4.1,

E[Ψ(xagN+1)−Ψ∗] ≤ K̂∗0 (N) :=
4LΩ2

ω,X

N(N + 2)
+

4Ωω,X

√
4M2 + σ2

√
N

, (4.3.61)

if in addition, Assumption A.4.2 holds, then

Prob
{

Ψ(xagN+1)−Ψ∗ > K̂∗0 (N) + ΛK̂∗1 (N)
}
≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (4.3.62)

where

K̂∗1 (N) :=
10Ωω,Xσ√

N
.

Proof. Clearly, the stepsizes {βt}t≥1 and {γt}t≥1 stated in (4.3.60) satisfy the conditions

β1 = 1, βt > 1,∀t ≥ 2, and (4.3.56). Denoting

γ∗ := min

{
α

2L
,

√
6αDω,X

(N + 2)
3
2 (4M2 + σ2)

1
2

}
,

we then conclude from Theorem 4.3.1 that, under Assumption A.4.1,

E[Ψ(xagN+1)−Ψ∗] ≤ T0 :=
4D2

ω,X

N(N + 2)γ∗
+

8γ∗(4M2 + σ2)
αN(N + 2)

N∑
τ=1

(
τ + 1

2

)2

, (4.3.63)

and that, under Assumptions A.4.1 and A.4.2,

Prob
{

Ψ(xagN+1)−Ψ∗ > T0 + ΛT1)
}
≤ exp{−Λ2/3}+ exp{−Λ}, ∀Λ > 0, (4.3.64)

where

T1 :=
8Ωω,Xσ

N(N + 2)

√√√√ N∑
τ=1

(
τ + 1

2

)2

+
8γ∗σ2

N(N + 2)α

N∑
τ=1

(
τ + 1

2

)2

.

Moreover, using the simple observations
∑N

τ=1(τ + 1)2 ≤
∫ N+1

1 (u + 1)2du ≤ (N + 2)3/3,

N + 2 ≤ 3N due to N ≥ 1, and the definition of γ∗, we obtain

T0 ≤
4D2

ω,X

N(N + 2)γ∗
+

2γ∗(4M2 + σ2)(N + 2)2

3αN
≤

8LD2
ω,X

N(N + 2)α
+

8Dω,X(4M2 + σ2)
1
2 (N + 2)

1
2

√
6αN

≤
8LD2

ω,X

N(N + 2)α
+

8Dω,X(4M2 + σ2)
1
2

√
2αN

=
4LΩ2

ω,X

N(N + 2)
+

4Ωω,X

√
4M2 + σ2

√
N

= K̂∗0 (N),

91

and

T1 ≤
8Ωω,Xσ√

3N
(N + 2)

1
2 +

2γ∗σ2

3Nα
(N + 2)2 ≤

8Ωω,Xσ√
N

+
2σ2(N + 2)

1
2

3N
√
α

√
6Dω,X√

4M2 + σ2

≤
8Ωω,Xσ√

N
+

2
√

2Dω,Xσ√
αN

=
10Ωω,Xσ√

N
= K̂∗1 (N).

Our claim immediately follows by substituting the above bounds of T0 and T1 into (4.3.63)

and (4.3.64).

We now make a few observations regarding the results obtained in Theorem 4.3.1 and

Corollary 4.3.1. Firstly, it is interesting to compare bounds (4.3.61) and (4.2.51) obtained

for the AC-SA algorithm and the mirror descent SA algorithm respectively. Clearly, the

first one is always better than the latter one up to a constant factor provided that L > 0.

Moreover, the AC-SA algorithm substantially enlarges the range of L in which the L-

component (the first component in (4.3.61)) does not affect the error estimate. Specifically,

within the range

L ≤
√

4M2 + σ2N
3
2

Ωω,X
, (4.3.65)

which extends much faster than (4.2.53) as N increases, the L-component does not change

the order of magnitude for the rate of convergence associated with the AC-SA algorithm.

Secondly, observe that the results obtained in Theorem 4.3.1 and Corollary 4.3.1 still

hold when the Lipschitz constant L = 0. More specifically, we consider the case where

f(x) = 0 for any x ∈ X. In this case, the stepsizes {βt}t≥1 and {γt}t≥1 in (4.3.60) become

βt =
t+ 1

2
, γt =

√
6αDω,X(t+ 1)

2(N + 2)
3
2 (4M2 + σ2)

1
2

, 1 ≤ t ≤ N + 1,

and the error estimate (4.3.61) reduces to

E[h(xagN+1)− h∗] ≤
4Ωω,X

√
4M2 + σ2

√
N

,

where h∗ := minx∈X h(x). Note also that one alternative characterization of xagN+1 is given

92

by

xagN+1 =
2

N + 1
xN+1 +

N − 1
N + 1

xagN =
2

N + 1
xN+1 +

2(N − 1)
N(N + 1)

xN +
(N − 2)(N − 1)
N(N + 1)

xagN−1

=
2

N + 1
xN+1 +

2(N − 1)
N(N + 1)

xN +
2(N − 2)
N(N + 1)

xN−1 + · · ·+ 2
N(N + 1)

x2

=
∑N

t=1(txt+1)∑N
t=1 t

.

Hence, in contrast to the usual constant stepsize or decreasing stepsize strategy (see [43]),

the stepsizes γt in step (4.3.54) and the weights for taking the average in step (4.3.55) are

increasing with the increment of t. To the best of our knowledge, this is the first time that

an increasing stepsize strategy is introduced in the literature of stochastic approximation

or subgradient methods. It is also one of the crucial developments that enable us to have a

unified treatment for smooth, non-smooth and stochastic convex optimization.

Finally, note that if there is no stochastic error for the computed subgradient of Ψ, i.e.,

σ = 0, then bound (4.3.61) reads

Ψ(xagN+1)−Ψ∗ ≤
4LΩ2

ω,X

N(N + 2)
+

8Ωω,XM√
N

,

which basically says that the impact of the smooth component on the efficiency estimate

vanishes very quickly as N grows. This result also seems to be new in the area of deter-

ministic convex optimization.

4.3.2 Application to stochastic programming

The goal of this subsection is to demonstrate the significant advantages of the AC-SA

algorithm over the existing algorithms, for example, the mirror descent SA algorithm, when

applied for solving certain class of stochastic programming problems.

Consider the problem of

h̃∗ := min
x

{
h̃(x) := E[H̃(x, ξ)]

}
s.t. Ax− b = 0, x ∈ X,

(4.3.66)

where X ⊂ Rn is a nonempty compact convex set, A : <n → <m is a linear operator,

b ∈ <m is given, ξ is a random vector whose probability distribution P is supported on set

93

Ξ ⊆ Rd and H : X×Ξ→ R. We assume that for every ξ ∈ Ξ the function H̃(·, ξ) is convex

on X, and that the expectation

E[H̃(x, ξ)] =
∫

Ξ H̃(x, ξ)dP (ξ) (4.3.67)

is well defined and finite valued for every x ∈ X. It follows that function h̃(·) is convex and

finite valued on X. Moreover, we assume that h̃(·) is continuous on X. Of course, continuity

of h̃(·) follows from convexity if h̃(·) is finite valued and convex on a neighborhood of X.

With these assumptions, (4.3.66) becomes a convex programming problem. We also make

the following assumptions:

A.4.3:

a) It is possible to generate an iid sample ξ1, ξ2, ..., of realizations of random vector ξ.

b) We have access to a “black box” subroutine (a stochastic oracle). At i-th call, x ∈ X

being the input, the oracle returns a stochastic subgradient – a vector G(x, ξi) such

that for every x ∈ X, the vector E[G(x, ξ)] is well defined and is a subgradient of h̃(·)

at x.

c) There is a constant M > 0 such that

∀x ∈ X : E
[
exp{‖G(x, ξ)‖2∗/M2}

]
≤ exp{1}. (4.3.68)

For the case where the feasible region consists only of the simple convex set X, or

equivalently A ≡ 0, Nemirovski et. al. demonstrated in [43] that the mirror descent SA al-

gorithm can substantially outperform the sampling averaging approximation (Shapiro [68]),

a widely used approach for stochastic programming in practice. When A is not identically

0, the mirror descent SA algorithm can still be applied directly to problem (4.3.66) but

this approach would require the computation of the prox-mapping onto the feasible region

X ∩{x : Ax− b = 0}, which can be very expensive for many practical problems. Moreover,

the selection of the norm ‖·‖ and the distance generating function ω will be problem depen-

dent. In other words, it is not clear what is the optimal way for choosing these parameter

94

settings (See Chapters 2 and 3 for more discussions about the parameter settings when the

domain is relatively simple).

One alternative approach to alleviate this difficulty is to apply the quadratic penalty

approach: instead of solving (4.3.66), we solve certain penalization problem of (4.3.66)

obtained by penalizing the violation of the constraint Ax − b = 0. In particular, given a

penalty parameter ρ > 0, we solve

Ψ̃∗ = Ψ̃∗ρ := inf
x∈X

{
Ψ̃ρ(x) := f̃ρ(x) + h̃(x)

}
, (4.3.69)

where f̃ρ(x) := ρ‖Ax− b‖2/2 and ‖ · ‖ denotes the norm induced by the inner product 〈·, ·〉

in <m. Define the operator norm ‖A‖ := max{‖Ax‖∗ : ‖x‖ ≤ 1}. It can be easily seen that

∇f̃ρ(x) = ρA∗(Ax− b) and hence that

‖∇f̃ρ(x)−∇f̃ρ(x′)‖∗ = ρ‖A∗A(x−x′)‖∗ ≤ ρ‖A∗‖‖A‖‖x−x′‖ = ρ‖A‖2‖x−x′‖, ∀x, x′ ∈ X,

(4.3.70)

where the last equality follows from the fact that ‖A‖ = ‖A∗‖. Moreover, in view of

Assumption A.4.3 and Jensen’s inequality, for any x ∈ X, there exists h̃′(x) := E[G(x, ξt)] ∈

∂h̃(x) such that E[‖G(x, ξt)‖2∗] ≤M2 and hence that ‖h̃′(x)‖∗ = ‖E[G(x, ξt)]‖∗ ≤M, which

together with the fact h̃(x) − h̃(x′) ≤ 〈h̃′(x), x − x′〉,∀x, x′ ∈ X due to the convexity of h̃,

clearly imply that

|h̃(x)− h̃(x′)| ≤ M‖x− x′‖, ∀x, x′ ∈ X. (4.3.71)

Therefore, the penalization problem (4.3.69) is given in the form of (4.1.34), and can be

approximately solved by either the mirror descent SA or the AC-SA algorithm developed

in this chapter.

It is well-known that the near-optimal solutions of the penalization problem (4.3.69)

also yield near-optimal solutions of (4.3.66) if the penalty parameter ρ is sufficiently large.

In this chapter, we are interested in obtaining one particular type of near-optimal solutions

of (4.3.66) defined in the following way. First note that x∗ is an optimal solution of (4.3.66)

if, and only if, x∗ ∈ X, Ax∗ − b = 0 and h̃(x∗) ≤ h̃∗. This observation leads us to our

definition of a near optimal solution x̃ ∈ X of (4.3.66), which essentially requires the primal

95

infeasibility measure ‖Ax̃− b‖2 and the primal optimality gap [h̃(x̃)− h̃∗]+ to be both small

(Lan and Monteiro [33]).

Definition: Let εp, εo > 0 be given, x̃ ∈ X is called an (εp, εo)-primal solution for (4.3.66)

if

‖Ax̃− b‖ ≤ εp and h̃(x̃)− h̃∗ ≤ ε0. (4.3.72)

One drawback of the above notion of near optimality of x̃ is that it says nothing about

the size of [h̃(x̃)− h̃∗]−. Assume that the set of Lagrange multiplier for (4.3.66)

Y ∗ := {y ∈ <m : h̃∗ = inf{h̃(x) + 〈Ax− b, y〉 : x ∈ X}

is nonempty. It was observed in [33] that this quantity can be bounded as [h̃(x̃) − h̃∗]− ≤

εp‖y∗‖, where y∗ ∈ Y ∗ is an arbitrary Lagrange multiplier for (4.3.66). It is worth not-

ing that some other types of near-optimal solutions of (4.3.66), for example, the primal-

dual near-optimal solutions defined in [33], can also be obtained by applying the quadratic

penalty approach.

We are now ready to state the iteration-complexity bounds for the modified mirror

descent SA and the AC-SA algorithm, applied to the penalization problem (4.3.69), to

compute an (εp, εo)-primal solution of (4.3.66).

Theorem 4.3.2 Let y∗ be an arbitrary Lagrange multiplier for (4.3.66). Also let the con-

fidence level η ∈ (0, 1) and the accuracy tolerance (εp, εo) ∈ <++ ×<++ be given. If

ρ = ρ(t) :=

(√
εo + 4εp t+

√
εo√

2εp

)2

(4.3.73)

for some t ≥ ‖y∗‖, then, with probability greater than 1− η,

a) the RM-SA algorithm applied to (4.3.69) finds an (εp, εo)-primal solution of (4.3.66)

in at most

Nmd(t) :=
⌈
max

{
2R(t)2, (8

√
2 + 12λ)2S

}⌉
(4.3.74)

iterations;

96

b) the AC-SA algorithm applied to (4.3.69) finds an (εp, εo)-primal solution of (4.3.66)

in at most

Nac(t) :=
⌈
max

{√
2R(t), (16

√
2 + 40λ)2S

}⌉
(4.3.75)

iterations,

where λ satisfies exp(−λ2/3) + exp(−λ) ≤ η (clearly λ = O(1) log 1/η),

R(t) :=

√
ρ(t)‖A‖Ω
√
εo

, S :=
(

ΩM
εo

)2

, (4.3.76)

Ω and M are given by (2.2.29) and (4.3.68) respectively.

We now make a few observations regarding Theorem 4.3.2. First, the choice of ρ given

by (4.3.73) requires that t ≥ ‖y∗‖ and that the iteration-complexity bounds Nmd(t) and

Nac(t) obtained in Theorem 4.3.2 are non-decreasing with respect to t. Second, since the

quantity ‖y∗‖ is not known a priori, it is necessary to guess the value of t. Note however that

the influence of t, whence ‖y∗‖, on the bound Nac(t) is much weaker than that on the bound

Nmd(t). For example, assume that εp = εo = ε. By some straightforward computation, it

can be easily seen that the value of Nac(t) does not change when

‖y∗‖ ≤ t ≤ 1
4

((16
√

2 + 40λ)2ΩM2

‖A‖ε
− 1

)2

− 1

 ,
while the range of t that does not affect Nmd(t) is given by

‖y∗‖ ≤ t ≤ 1
4

((8
√

2 + 12λ)M
‖A‖

− 1

)2

− 1

 .
In other words, the AC-SA algorithm allows a big range for t (or ‖y∗‖), as high as O(1/ε2),

without affecting the effort to find good approximate solutions of (4.3.66), while the corre-

sponding one for the RM-SA algorithm is much smaller, roughly in O(1). As a consequence,

when ε ↓ 0, the size of Lagrange multiplier asymptotically does not affect the rate of con-

vergence, which seems to be a very important property that has not been observed for the

penalty based approaches. Finally, even if t does affect the bounds Nac(t) or Nmd(t) (i.e., t

sits outside the ranges described above), the first bound is in O(R(t)) while the latter one

is in O(R(t)2).

97

4.4 Convergence analysis

The goal of this section is to prove the main results of this chapter, namely, Theorems 4.2.1,

4.3.1, and 4.3.2.

4.4.1 Convergence analysis for the mirror descent SA

This subsection is to devoted to the proof of Theorem 4.2.1. Before proving this result, we

establish a few technical results from which Theorem 4.2.1 immediately follows.

Let p(u) be a convex function over a convex set X ∈ E . Assume that û is an optimal

solution of the problem min{p(u) + ‖u − x̃‖2 : u ∈ X} for some x̃ ∈ X. Due to the well-

known fact that the sum of a convex and a strongly convex function is also strongly convex,

one can easily see that

p(u) + ‖u− x̃‖2 ≥ min{p(u) + ‖u− x̃‖2 : u ∈ X}+ ‖u− û‖2.

The next lemma generalizes this result to the case where the function ‖u− x̃‖2 is replaced

with the prox-function V (x̃, u) associated with a convex function ω. It is worth noting that

the result described below does not assume the strong-convexity of the function ω.

Lemma 4.4.1 Let X be a convex set in E and p, ω : X → < be differentiable convex

functions. Assume that û is an optimal solution of min{p(u) + V (x̃, u) : u ∈ X}. Then,

min{p(u) + V (x̃, u) : u ∈ X} ≤ p(u) + V (x̃, u)− V (û, u), ∀u ∈ X.

Proof. The definition of û and the fact that p(·) + V (x̃, ·) is a differentiable convex

function imply that

〈∇p(û) +∇V (x̃, û), u− û〉 ≥ 0, ∀u ∈ X,

where∇V (x̃, û) denotes the gradient of V (x̃, ·) at û. Using the definition of the prox-function

(2.2.27), it is easy to verify that

V (x̃, u) = V (x̃, û) + 〈∇V (x̃, û), u− û〉+ V (û, u), ∀u ∈ X.

98

Using the above two relations and the assumption that p is convex, we then conclude that

p(u) + V (x̃, u) = p(u) + V (x̃, û) + 〈∇V (x̃, û), u− û〉+ V (û, u)]

≥ p(û) + V (x̃, û) + 〈∇p(û) +∇V (x̃, û), u− û〉+ V (û, u)

≥ p(û) + V (x̃, û) + V (û, u),

and hence that the lemma holds.

The following lemma summarizes some properties of the objective function Ψ and f .

Lemma 4.4.2 Let the functions Ψ : X → < and f : X → < be defined in (4.1.34). We

have

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L
2 ‖y − x‖

2 (4.4.77)

0 ≤ Ψ(y)−Ψ(x)− 〈Ψ′(x), y − x〉 ≤ L
2 ‖y − x‖

2 + 2M‖y − x‖ (4.4.78)

for any x, y ∈ X, where Ψ′(x) ∈ ∂Ψ(x).

Proof. The first inequalities in both relations (4.4.77) and (4.4.78) follow immediately

from the convexity of f and Ψ respectively. The second inequality in (4.4.77) is well-known

(see Theorem 2.1.5 of [49] for a proof). This inequality, together with the fact h(y)−h(x) ≤

M‖y − x‖ due to the Lipschitz-continuity of h and the identity Ψ′(x) = ∇f(x) + h′(x) for

some h′(x) ∈ ∂h(x), then imply that

Ψ(y) = f(y) + h(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 + h(x) +M‖y − x‖

= Ψ(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 +M‖y − x‖

= Ψ(x) + 〈Ψ′(x), y − x〉+
L

2
‖y − x‖2 +M‖y − x‖ − 〈h′(x), y − x〉

≤ Ψ(x) + 〈Ψ′(x), y − x〉+
L

2
‖y − x‖2 + 2M‖y − x‖,

where the last inequality follows from (4.1.42) with g = h′(x) and d = x− y.

The following lemma establishes an important recursion for the mirror descent SA al-

gorithm. Before stating this result, we mention the following simple inequality that will be

used more than once in this section:

bu− au2

2
≤ b2

2a
, ∀a > 0. (4.4.79)

99

Lemma 4.4.3 Assume that the stepsizes γτ satisfy Lγτ < α, τ ≥ 1. Let x1, · · · , xτ ∈ X be

given and (xτ+1, x
av
τ+1) ∈ X ×X be a pair computed according (4.2.47) and (4.2.48). Also

let δτ := G(xτ , ξτ)− g(xτ), where g(xτ) = E[G(xτ , ξτ)] ∈ ∂Ψ(xτ). Then, we have

γτ [Ψ(xτ+1)−Ψ(x)] + V (xτ+1, x) ≤ V (xτ , x) + ∆τ (x), ∀x ∈ X, (4.4.80)

where

∆τ (x) := γτ 〈δτ , x− xτ 〉+
(2M+ ‖δτ‖∗)2γ2

τ

2(α− Lγτ)
. (4.4.81)

Proof. Denoting dτ := xτ+1−xτ , due to the strong-convexity of ω, we have α‖dτ‖2/2 ≤

V (xτ , xτ+1), which together with (4.4.78), then imply that

γτΨ(xτ+1) ≤ γτ [Ψ(xτ) + 〈g(xτ), dτ 〉+
L

2
‖dτ‖2 + 2M‖dτ‖]

= γτ [Ψ(xτ) + 〈g(xτ), dτ 〉] +
α

2
‖dτ‖2 −

α− Lγτ
2

‖dτ‖2 + 2Mγτ‖dτ‖

≤ γτ [Ψ(xτ) + 〈g(xτ), dτ 〉] + V (xτ , xτ+1)− α− Lγτ
2

‖dτ‖2 + 2Mγτ‖dτ‖

= γτ [Ψ(xτ) + 〈G(xτ , ξτ), dτ 〉]− γτ 〈δτ , dτ 〉+ V (xτ , xτ+1)− α− Lγτ
2

‖dτ‖2 + 2Mγτ‖dτ‖

≤ γτ [Ψ(xτ) + 〈G(xτ , ξτ), dτ 〉] + V (xτ , xτ+1)− α− Lγτ
2

‖dτ‖2 + (2M+ ‖δτ‖∗)γτ‖dτ‖

≤ γτ [Ψ(xτ) + 〈G(xτ , ξτ), dτ 〉] + V (xτ , xτ+1) +
(2M+ ‖δτ‖∗)2γ2

τ

2(α− Lγτ)
,

where the last inequality follows from (4.4.79) with u = ‖dτ‖, b = (2M + ‖δ‖∗)γτ , and

a = α− Lγτ .

Moreover, it follows from the identity (4.2.47), (2.2.28), and Lemma 4.4.1 with x̃ = xτ ,

û = xτ+1, and p(·) ≡ γτ 〈G(xτ , ξτ), · − xτ 〉 that

γτΨ(xτ) + [γτ 〈G(xτ , ξτ), xτ+1 − xτ 〉+ V (xτ , xτ+1)]

≤ γτΨ(xτ) + [γτ 〈G(xτ , ξτ), x− xτ 〉+ V (xτ , x)− V (xτ+1, x)]

= γτ [Ψ(xτ) + 〈g(xτ), x− xτ 〉] + γτ 〈δτ , x− xτ 〉+ V (xτ , x)− V (xτ+1, x)

≤ γτΨ(x) + γτ 〈δτ , x− xτ 〉+ V (xτ , x)− V (xτ+1, x),

where the last inequality follows from the convexity of Ψ(·) and the fact g(xτ) ∈ ∂Ψ(xτ).

100

Combining the above two conclusions and rearranging the terms, we obtain (4.4.80).

Now let us state the following well-known large-deviation result for the martingale se-

quence (see for example, Lemma 3.6.2 in Chapter 3 for a proof).

Lemma 4.4.4 Let ξ1, ξ2, ... be a sequence of iid random variables, and ζt = ζt(ξ[t]) be

deterministic Borel functions of ξ[t] such that E|ξ[t−1]
[ζt] = 0 a.s. and E|ξ[t−1]

[exp{ζ2
t /σ

2
t }] ≤

exp{1} a.s., where σt > 0 are deterministic. Then

∀Λ ≥ 0 : Prob


N∑
t=1

ζt > Λ

√√√√ N∑
t=1

σ2
t

 ≤ exp{−Λ2/3}.

We are now ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1: Let x̄ be an optimal solution of (4.1.34). Summing up (4.4.80)

from τ = 1 to t, we have

t∑
τ=1

[γτ (Ψ(xτ+1)−Ψ∗)] ≤ V (x1, x̄)− V (xt+1, x̄) +
t∑

τ=1

∆τ (x̄)

≤ V (x1, x̄) +
t∑

τ=1

∆τ (x̄) ≤ D2
ω,X +

t∑
τ=1

∆τ (x̄),

where the last inequality follows from (2.2.30), which, in view of the fact

Ψ(xavt+1) ≤ (
t∑

τ=1

γτ)−1
t∑

τ=1

γτΨ(xτ+1),

then implies that (
t∑

τ=1

γτ

)[
Ψ(xavt+1)−Ψ∗

]
≤ D2

ω,X +
t∑

τ=1

∆τ (x̄). (4.4.82)

Denoting ζτ := γτ 〈δτ , x̄− xτ 〉 and observing that

∆τ (x̄) = ζτ +
(2M+ ‖δτ‖∗)2γ2

τ

2(α− Lγτ)
≤ ζτ +

γ2
τ

α− Lγτ
(
4M2 + ‖δτ‖2∗

)
,

we then conclude from (4.4.82) that(
t∑

τ=1

γτ

)[
Ψ(xavt+1)−Ψ∗

]
≤ D2

ω,X +
t∑

τ=1

[
ζτ +

γ2
τ

α− Lγτ
(
4M2 + ‖δτ‖2∗

)]

≤ D2
ω,X +

t∑
τ=1

[
ζτ +

2γ2
τ

α

(
4M2 + ‖δτ‖2∗

)]
, (4.4.83)

101

where the last inequality follows from the assumption that γt ≤ α/(2L).

Note that the pair (xt, xavt) is a function of the history ξ[t−1] := (ξ1, ..., ξt−1) of the

generated random process and hence is random. Taking expectations of both sides of

(4.4.83) and noting that under assumption I, E[‖δτ‖2∗] ≤ σ2, and

E|ξ[τ−1]
[ζτ] = 0, (4.4.84)

we obtain (
t∑

τ=1

γτ

)
E
[
Ψ(xavt+1)−Ψ∗

]
≤ D2

ω,X +
2
α

(4M2 + σ2)
t∑

τ=1

γ2
τ ,

which clearly implies part a).

We now show part b) holds. Clearly, by (4.4.84), {ζτ}t≥1 is a martingale sequence.

Moreover, it follows from (2.2.31) and (4.2.44) that

E|ξ[τ−1]

[
exp{ζ2

τ /(2γτΩω,Xσ)2}
]
≤ E|ξ[τ−1]

[
exp{(2γτΩω,X‖δτ‖∗)2/(2γτΩω,Xσ)2}

]
≤ exp(1),

The previous two observations, in view of Lemma 4.4.4, then imply that

∀Λ ≥ 0 : Prob


t∑

τ=1

ζτ > 2ΛΩω,Xσ

√√√√ t∑
τ=1

γ2
τ

 ≤ exp{−Λ2/3}. (4.4.85)

Now observe that under Assumption A.4.2,

E|ξτ−1

[
exp{‖δτ‖2∗/σ2}

]
≤ exp{1}.

Setting θτ = γ2
τ/
∑t

τ=1 γ
2
τ , we have

exp

{
t∑

τ=1

θt(‖δτ‖2∗/σ2)

}
≤

t∑
τ=1

θτ exp{‖δτ‖2∗/σ2},

whence, taking expectations,

E

[
exp

{
t∑

τ=1

γ2
τ‖δτ‖2∗/

(
σ2

t∑
τ=1

γ2
τ

)}]
≤ exp{1}.

It then follows from Markov’s inequality that

∀Λ ≥ 0 : Prob

{
t∑

τ=1

γ2
τ‖δτ‖2∗ > (1 + Λ)σ2

t∑
τ=1

γ2
τ

}
≤ exp{−Λ}. (4.4.86)

Combining (4.4.83), (4.4.85), and (4.4.86), and rearranging the terms, we obtain (4.2.50).

102

4.4.2 Convergence analysis for the accelerated SA

The goal of this subsection is to prove Theorem 4.3.1.

In the sequel, with a little abuse of the notation, we use the following entity to denote

the error for the computed subgradient at each iteration t of the AC-SA algorithm:

δt := G(xmdt , ξt)− g(xmdt),

where g′(xmdt) = E[G(xmdt , ξt)] ∈ ∂Ψ(xmdt) under Assumption A.4.1.

The following lemma establishes an important recursion for the AC-SA algorithm.

Lemma 4.4.5 Assume that the stepsizes βτ and γτ satisfy βτ ≥ 1 and Lγτ < αβτ for all

τ ≥ 1. Let (xτ , x
ag
τ) ∈ X × X be given and set xmdτ ≡ β−1

τ xτ + (1 − β−1
τ)xagτ . Also let

(xτ+1, x
ag
τ+1) ∈ X × X be a pair computed according to (4.3.54) and (4.3.55). Then, for

every x ∈ X, we have

βτγτ [Ψ(xagτ+1)−Ψ(x)] + V (xτ+1, x) ≤ (βτ − 1)γτ [Ψ(xagτ)−Ψ(x)] + V (xτ , x) + ∆̂τ ,

where

∆̂τ = ∆̂τ (x) := γτ 〈δτ , x− xτ 〉+
(2M+ ‖δ‖∗)2βτγ

2
τ

2(αβτ − Lγτ)
. (4.4.87)

Proof. Denoting dτ := xτ+1 − xτ , it can be easily seen that

xagτ+1 − x
md
τ = β−1

τ xτ+1 + (1− β−1
τ)xagτ − xmdτ = β−1

τ (xτ+1 − xτ) = β−1
τ dτ .

The above observation together with (4.4.78) and the relation α‖dτ‖2/2 ≤ V (xτ , xτ+1) then

imply that

βτγτΨ(xagτ+1) ≤ βτγτ [Ψ(xmdτ) + 〈g(xmdτ), xagτ+1 − xmdτ 〉+ L
2 ‖x

ag
τ+1 − xmdτ ‖2 + 2M‖xagτ+1 − xmdτ ‖]

= βτγτ [Ψ(xmdτ) + 〈g(xmdτ), xagτ+1 − xmdτ 〉] + Lγτ
2βτ
‖dτ‖2 + 2Mγτ‖dτ‖

≤ βτγτ [Ψ(xmdτ) + 〈g(xmdτ), xagτ+1 − xmdτ 〉] + V (xτ , xτ+1)− αβτ−Lγτ
2βτ

‖dτ‖2 + 2Mγτ‖dτ‖.

103

Noting that

βτγτ [Ψ(xmdτ) + 〈g(xmdτ), xagτ+1 − xmdτ 〉] = βτγτ [Ψ(xmdτ) + 〈g(xmdτ), (1− β−1
τ)xagτ + β−1

τ xτ+1 − xmdτ 〉]

= (βτ − 1)γτ [Ψ(xmdτ) + 〈g(xmdτ), xagτ − xmdτ 〉] + γτ [Ψ(xmdτ) + 〈g(xmdτ), xτ+1 − xmdτ 〉]

≤ (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈g(xmdτ), xτ+1 − xmdτ 〉]

= (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉 − 〈δτ , xτ+1 − xmdτ 〉]

= (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉 − 〈δτ , xτ − xmdτ 〉 − 〈δτ , dτ 〉]

≤ (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉 − 〈δτ , xτ − xmdτ 〉+ ‖δτ‖∗‖dτ‖],

we conclude from the previous conclusion that

βτγτΨ(xagτ+1) ≤ (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉] + V (xτ , xτ+1)

−γτ 〈δτ , xτ − xmdτ 〉 −
αβτ−Lγτ

2βτ
‖dτ‖2 + (2M+ ‖δ‖∗)γτ‖dτ‖

≤ (βτ − 1)γτΨ(xagτ) + γτ [Ψ(xmdτ) + 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉] + V (xτ , xτ+1)

−γτ 〈δτ , xτ − xmdτ 〉+ (2M+‖δ‖∗)2βτγ2
τ

2(αβτ−Lγτ) ,

where the last inequality follows from (4.4.79) with u = ‖dτ‖, b = (2M + ‖δ‖∗)γτ , and

a = (αβτ − Lγτ)/βτ .

Moreover, it follows from the identity (4.3.54), (2.2.28), and Lemma 4.4.1 with x̃ = xτ ,

û = xτ+1, and p(·) ≡ γτ 〈G(xmdτ , ξτ), · − xmdτ 〉 that

γτΨ(xmdτ) + [γτ 〈G(xmdτ , ξτ), xτ+1 − xmdτ 〉+ V (xτ , xτ+1)]

≤ γτΨ(xmdτ) + [γτ 〈G(xmdτ , ξτ), x− xmdτ 〉+ V (xτ , x)− V (xτ+1, x)]

= γτ [Ψ(xmdτ) + 〈g(xmdτ), x− xmdτ 〉] + γτ 〈δτ , x− xmdτ 〉+ V (xτ , x)− V (xτ+1, x)

≤ γτΨ(x) + γτ 〈δτ , x− xmdτ 〉+ V (xτ , x)− V (xτ+1, x),

where the last inequality follows from the convexity of Ψ(·) and the fact g(xmdτ) ∈ ∂Ψ(xmdτ).

Combining the previous two conclusions, we obtain

βτγτΨ(xagτ+1) ≤ (βτ − 1)γτΨ(xagτ) + γτΨ(x) + V (xτ , x)− V (xτ+1, x)+

γτ 〈δτ , x− xτ 〉+ (2M+‖δ‖∗)2βτγ2
τ

2(αβτ−Lγτ)

104

Our claim immediately follows from the above inequality by subtracting βτγτΨ(x) from

both sides and rearranging the terms.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1: Let x̄ be an optimal solution of (4.1.34). It follows from the

fact that Ψ(x) ≥ Ψ(x̄) = Ψ∗, ∀x ∈ X, the fact βτ ≥ 1, (4.3.56), and Lemma 4.4.5 with

x = x̄ that, for any t ≥ 1,

(βt+1 − 1)γt+1[Ψ(xagt+1)−Ψ∗] ≤ βtγt[Ψ(xagt+1)−Ψ∗]

≤ (βt − 1)γt[Ψ(xagt)−Ψ∗] + V (xt, x̄)− V (xt+1, x̄) + ∆̂t(x̄),

from which it follows inductively that

(βt+1 − 1)γt+1[Ψ(xagt+1)−Ψ∗] ≤ (β1 − 1)γ1[Ψ(xag1)−Ψ∗] + V (x1, x̄)− V (xt+1, x̄) +
t∑

τ=1

∆̂τ (x̄)

= V (x1, x̄)− V (xt+1, x̄) +
t∑

τ=1

∆̂τ (x̄) ≤ D2
ω,X +

t∑
τ=1

∆̂τ (x̄),

where the first equality follows from the assumption β1 = 1 and the last inequality follows

from (2.2.30) and the fact V (xt+1, x̄) ≥ 0.

Denoting ζτ := γτ 〈δτ , x̄− xτ 〉 and observing that

∆̂τ (x̄) = ζτ +
(2M+ ‖δ‖∗)2βτγ

2
τ

2(αβτ − Lγτ)
≤ ζτ +

βτγ
2
τ

αβτ − Lγτ
(4M2 + ‖δτ‖2∗)

≤ ζτ +
2
α

(4M2 + ‖δτ‖2∗)γ2
τ ,

where the last inequality follows from (4.3.56), we then conclude from the previous obser-

vation that

(βt+1 − 1)γt+1[Ψ(xagt+1)−Ψ(x̄)] ≤ D2
ω,X +

t∑
τ=1

[
ζτ +

2
α

(4M2 + ‖δτ‖2∗)γ2
τ

]
. (4.4.88)

Note that the triple (xt, x
ag
t , x

md
t) is a function of the history ξ[t−1] := (ξ1, ..., ξt−1) of

the generated random process and hence is random. Taking expectations of both sides of

(4.4.88) and noting that under assumption I, E[‖δτ‖2∗] ≤ σ2 and E|ξ[τ−1]
[ζτ] = 0, we obtain

(βt+1 − 1)γt+1E[Ψ(xagt+1)−Ψ∗] ≤ D2
ω,X +

2
α

(4M2 + σ2)
t∑

τ=1

γ2
τ ,

105

which clearly implies part a).

The proof of part b) is similar to the one of Theorem 4.2.1.b), and hence the details are

skipped.

4.4.3 Convergence analysis for quadratic penalty method

The goal of this subsection is to prove Theorem 4.3.2.

Lemma 4.4.6 If x̃ ∈ X is an approximate solution of (4.3.69) satisfying

Ψ̃ρ(x̃)− Ψ̃∗ ≤ δ, (4.4.89)

then

‖Ax̃− b‖ ≤ 2
ρ
‖y∗‖+

√
2δ
ρ

(4.4.90)

h̃(x̃)− h̃∗ ≤ δ, (4.4.91)

where y∗ is an arbitrary Lagrange multiplier associated with (4.3.66).

Proof. Let v(u) := inf{h̃(x) : Ax− b = u, x ∈ X} be the value function associated with

(4.3.66). It is well-known that our assumptions imply that v is a convex function such that

−y∗ ∈ ∂v(0). Hence,

v(u)− v(0) ≥ (−y∗)T u, ∀u ∈ <m.

Letting u := Ax̃ − b, we conclude from the above observation, the facts that v(u) ≤ h̃(x̃)

and v(0) ≥ Ψ̃∗, and assumption (4.4.89), that

−‖y∗‖‖u‖+ ρ‖u‖2/2 ≤ (−y∗)Tu+ ρ‖u‖2/2

≤ v(u)− v(0) + ρ‖u‖2/2 ≤ h̃(x̃) + ρ‖u‖2/2− v(0)

≤ h̃(x̃) + ρ‖u‖2/2− φ∗ = Ψ̃ρ(x̃)− Ψ̃∗ ≤ δ,

which clearly implies (4.4.90). Moreover, the fact that h̃∗ = v(0) ≥ Ψ̃∗ implies that

h̃(x̃)− h̃∗ ≤ h̃(x̃) + ρ‖u‖2/2− Ψ̃∗ = Ψ̃ρ(x̃)− Ψ̃∗ ≤ δ.

106

We are now ready to prove Theorem 4.3.2.

Proof of Theorem 4.3.2: Let x̃ ∈ X satisfies (4.4.89) with δ = εo. Let ρ∗ := ρ(‖y∗‖)

and observe that ρ∗ ≤ ρ(t) for every t ≥ ‖y∗‖. It follows from the previous observation and

Lemma 4.4.6 that h̃(x̃)− h̃∗ ≤ εo and

‖Ax̃− b‖ ≤ 2
ρ(t)
‖y∗‖+

√
2εo
ρ(t)

≤ 2
ρ∗
‖y∗‖+

√
2εo
ρ∗

=
1
√
ρ∗

(
2
√

2εp ‖y∗‖√
εo + 4εp‖y∗‖+

√
εo

+
√

2εo

)

=
1
√
ρ∗

(√
εo + 4εp‖y∗‖ −

√
εo√

2
+
√

2εo

)
=
√
εo +

√
εo + 4εp‖y∗‖√
2ρ∗

= εp,

and hence that x̃ is an (εp, εo)-primal solution of (4.3.66).

Clearly, by (4.3.70), we have L = ρ‖A‖2. Observe that the gradient for the smooth

component f̃ρ in Ψ̃ρ (see (4.3.69)) can be computed exactly and hence that the error of

approximating the subgradient of Ψ̃ρ exists only in the non-smooth component h̃. For

any given point x ∈ X, let G(x, ξt) be the output from the stochastic oracle of h̃ and

h̃′(x) = E[G(x, ξt)]. It follows from (4.1.42), Jensen’s inequality, and Assumption III.c) that

E
[
exp

{
‖G(x, ξ)− h̃′(x)‖2∗/(4M2)

}]
≤ E

[
exp

{(
2‖G(x, ξ)‖2∗ + 2‖h̃′(x)‖2∗

)
/(4M2)

}]
≤ E

[
exp

{(
2‖G(x, ξ)‖2∗ + 2M2

)
/(4M2)

}]
≤ exp(1/2) E

[
exp

{
‖G(x, ξ)‖2∗/(2M2)

}]
≤ exp(1/2)

(
E
[
exp

{
‖G(x, ξ)‖2∗/M2

}]) 1
2 ≤ exp(1),

which then implies Assumption II holds with Q = 2M . The previous observations together

with (4.2.51) and (4.2.52) then imply that

K∗0 (Nmd) + λK∗1 (Nmd) =
ρ‖A‖2Ω2

Nmd
+

4
√

2 + 3λ√
Nmd

ΩM ≤ εo
2

+
εo
2
≤ εo.

The previous conclusion, in view of the definition of λ and (4.2.52), clearly imply the claim

in part a). Part b) follows similarly from (4.3.62) and the definition of λ, by noting that

K̂∗0 (Nac) + λK̂∗1 (Nac) =
4ρ‖A‖2Ω2

Nac(Nac + 2)
+

8
√

2 + 20λ√
Nac

ΩM ≤ 4ρ‖A‖2Ω2

N2
ac

+
8
√

2 + 20λ√
Nac

ΩM

≤ εo
2

+
εo
2
≤ εo.

107

4.5 Conclusions of this chapter

In this chapter, we consider an important class of convex programming problems whose

objective function Ψ is given by the summation of a smooth and non-smooth component.

Further, it is assumed that the only information available for the numerical scheme to solve

these problems is the subgradients of Ψ contaminated by stochastic noise. Our contribution

mainly consists of the following aspects. Firstly, with a novel analysis, it is demonstrated

that the simple robust mirror-descent stochastic approximation method applied to the afore-

mentioned problems exhibits the best known so far rate of convergence guaranteed by a more

involved stochastic mirror-prox algorithm. Moreover, by incorporating some ideas of the

optimal method for smooth minimization, we propose an accelerated scheme, which can

achieve, uniformly in dimension, the theoretically optimal rate of convergence for solving

this class of problems. Finally, the significant advantages of the accelerated scheme over

the existing algorithms are illustrated in the context of solving a class of stochastic pro-

gramming problems whose feasible region is a simple compact convex set intersected with

an affine manifold.

108

CHAPTER V

FIRST-ORDER AUGMENTED LAGRANGIAN

METHODS

5.1 Overview

In Chapters 2, 3 and 4, we focus on convex optimization under a stochastic oracle (SO).

More specifically, we study stochastic convex optimizaiton techniques which work with

stochastic subgradients of the objective functions of (1.2.1) and (4.1.34) acquired through

subsequent calls to the stochastic oracles. In this chapter, we investigate certain interesting

deterministic optimizaiton technique, namely, the augmented Lagrangina method, which

operates on first-order information of the augmented dual problem. We consider the situ-

ation where to obtain the exact first-order information of the dual is time-consuming, i.e.,

requiring to solve another complicated subproblem, and hence only approximate first-order

information is available in reality.

The basic problem of interest in this chapter is the convex programming problem (1.3.1).

For the reader’s convenience, we re-state this problem as follows.

f∗ := min{f(x) : A(x) = 0, x ∈ X}, (5.1.1)

where f : X → IR is a convex function with Lipschitz continuous gradient, X ⊆ <n is a

sufficiently simple compact convex set and A : <n → <m is an affine function.

For the case where the feasible region consists only of the set X, or equivalently A ≡ 0,

Nesterov ([47, 50]) developed methods which can find a point x ∈ X such that f(x)−f∗ ≤ ε

in at most O(ε−1/2) iterations (see Subsection 1.1.2). Moreover, each iteration of his method

requires one gradient evaluation of f and computation of two projections onto X. It is shown

that his method achieves, uniformly in the dimension, the lower bound on the number of

iterations for minimizing convex functions with Lipschitz continuous gradient over a closed

convex set. When A is not identically 0, Nesterov’s optimal method can still be applied

109

directly to problem (5.1.1) but this approach would require the computation of projections

onto the feasible region X∩{x : A(x) = 0}, which for most practical problems is as expensive

as solving the original problem itself. An alternative approach for solving (5.1.1) when A

is not identically 0 is to use first-order methods whose iterations require only computation

of projections onto the simple set X.

Following this line of investigation, Lan and Monteiro [33] studied two first-order meth-

ods for solving (5.1.1) based on two well-known penalization approaches, namely: the

quadratic and the exact penalization approaches. Iteration-complexity bounds for these

methods are then derived to obtain two types of near optimal solutions of (5.1.1), namely:

near primal and near primal-dual optimal solutions. Variants with possibly better iteration-

complexity bounds than the aforementioned methods are also discussed. In this work, we

still consider another first-order approach for solving (5.1.1) based on the classical aug-

mented Lagrangian approach, where the subproblems are approximately solved by means

of Nesterov’s optimal method. As a by-product, alternative first-order methods for solving

(5.1.1) involving only computation of projections onto the simple set X are obtained.

The augmented Lagrangian method applied to problem (5.1.1) consists of solving a

sequence of subproblems of the form

dρ(λk) := min
x∈X

{
Lρ(x, λk) := f(x) + 〈λk,A(x)〉+

ρ

2
‖A(x)‖2

}
, (5.1.2)

where ρ > 0 is a given penalty parameter and ‖ · ‖ is the norm associated with a given inner

product 〈·, ·〉 in <m. The multiplier sequence {λk} is generated according to the iterations

λk+1 = λk + ρA(x∗k), (5.1.3)

where x∗k is a solution of problem (5.1.2). Since in most cases (5.1.2) can only be solved

approximately, x∗k in (5.1.3) is replaced by an ηk-approximate solution of (5.1.2), i.e., a point

xk ∈ X such that Lρ(x, λk) − dρ(λk) ≤ ηk. The inexact augmented Lagrangian method

obtained in this manner, where the subproblems (5.1.2) are solved by Nesterov’s method,

is the main focus of our investigation in this chapter. More specifically, we are interested

in establishing a bound on the total number of Nesterov’s optimal iterations, i.e., the inner

iterations, performed throughout the entire inexact AL method.

110

Several technical issues are addressed in the aforementioned iteration-complexity anal-

ysis of the inexact AL method. First, the notion of a near primal-dual optimal solution

is introduced and used as a termination criterion by the methods proposed in this chap-

ter. Second, it is well-known that A(x∗k) is exactly the gradient of the function dρ defined

in (5.1.2) at λk, and hence that (5.1.3) can be viewed as a steepest ascent iteration with

stepsize ρ applied to the function dρ. Since, in the inexact AL method, we approximate

dρ(λk) = A(x∗k) by A(xk), where xk is an approximate solution of (5.1.2), we bound the

error of the gradient approximation A(xk), namely ‖A(xk)−A(x∗k)‖, in terms of the accu-

racy ηk of the approximate solution xk, and use this result to derive sufficient conditions on

the sequence {ηk} which guarantee that the corresponding inexact steepest ascent method

λk+1 = λk+ρA(xk) has the same rate of convergence as the exact one. Third, as ρ increases,

it is well-known that the iteration-complexity of approximately solving each subproblem

(5.1.2) increases, while the number of dual iterations (5.1.3), i.e., the outer iterations, de-

creases. Ways of choosing the parameter ρ so as to balance these two opposing criterions

are then proposed. More specifically, ρ is chosen so as to minimize the overall number of

inner iterations performed by the inexact AL method.

It turns out that proper selection of the tolerances ηk and the optimal penalty parameter

ρ requires knowledge of an upper bound t on DΛ := infλ∈Λ∗ ‖λ0−λ∗‖, where Λ∗ is the set of

Lagrange multipliers associated with the constraint A(x) = 0. Theoretically, choosing the

upper bound t so that t = O(DΛ) yields the lowest provably iteration-complexity bounds

obtained by our analysis. However, since DΛ is not known a priori, we present a “guess-and-

check” procedure which consists of guessing a sequence of estimates for DΛ and applying

the corresponding sequence of inexact AL methods (with pre-specified number of outer-

iterations) to (5.1.1) until a near primal-dual solution is eventually obtained. It is shown

that the above guess-and-check procedure has the same iteration-complexity as the (ideal)

inexact AL method for which the exact value of DΛ is known in advance. Finally, we present

variants with better iteration-complexity bounds than the original inexact AL method and

guess-and-check procedure, which consist of directly applying the original approaches to

a perturbed problem obtained by adding a strongly convex component to the objective

111

function of (5.1.1).

This chapter is organized as follows. In Section 5.2, we describe two inexact AL methods

and corresponding guess-and-check procedures for solving (5.1.1) and state without proof

their iteration-complexity results. More specifically, we discuss the primal-dual termina-

tion criterion used in the complexity analysis of the aforementioned methods in Subsection

5.2.1. Results about the augmented dual function, including a key result about how to ap-

proximate its gradient, are discussed in Subsection 5.2.2. In Subsection 5.2.3, we describe

the first inexact AL method and its corresponding guess-and-check procedure, and present

their iteration-complexity results. The second inexact AL method and its corresponding

guess-and-check procedure based on applying the above methods to a perturbed problem,

obtained by adding a strongly convex component to the objective function of the CP prob-

lem (5.1.1), are discussed in Subsection 5.2.4. All technical results of this chapter, which

can be skipped by readers interested in the main results only, are presented in Sections 5.3

and 5.4. More specifically, we present some technical results about the projected gradient

in Subsection 5.3.1 and about the convergence behavior of the sequence {λk} in Subsection

5.3.2. Subsections 5.4.1 and 5.4.1 give the proofs of the main results in Subsections 5.2.3

and 5.2.4, respectively. In Section 5.5, we compare the results obtained in this chapter for

the inexact AL methods with another possible approach for solving variational inequalities

(VI) studied in Nemirovski ([42]) for bounded sets, and Monteiro and Svaiter ([41]) for

unbounded sets. Finally, we make some concluding remarks in Section 5.6.

5.1.1 Notation and terminology

We denote the set of real numbers by IR. Also, IR+ and IR++ denote the set of nonnegative

and positive real numbers, respectively. In this chapter, we use the notation <p to denote a

p-dimensional vector space inherited with a inner product space 〈·, ·〉 and use ‖ · ‖ to denote

the inner product norm in <p, i.e., ‖ · ‖ = 〈·, ·〉1/2. Moreover, we define the projection map

onto a given closed convex set C ∈ <p by

ΠC(u) := argmin{‖u− c‖ : c ∈ C}, ∀u ∈ <p.

A function f : C ⊆ <p → IR is said to have L-Lipschitz-continuous gradient with respect

112

to ‖ · ‖ if it is differentiable and

‖∇f(ũ)−∇f(u)‖ ≤ L‖ũ− u‖, ∀u, ũ ∈ C. (5.1.4)

It is well-known (see Theorem 2.1.5 of [49]) that, for every u, ũ ∈ C, we have:

1
2L
‖∇f(ũ)−∇f(u)‖2 ≤ f(ũ)− f(u)− 〈∇f(u), (ũ− u)〉 ≤ L

2
‖ũ− u‖2, (5.1.5)

1
L
‖∇f(ũ)−∇f(u)‖2 ≤ 〈∇f(ũ)−∇f(u), ũ− u〉 ≤ L‖ũ− u‖2. (5.1.6)

5.2 The algorithms and main results

In this section, we present the augmented Lagrangian method applied to (5.1.1) and discuss

its computational complexity. Specifically, we discuss the termination criterion for this

method in Subsection 5.2.1. We review the augmented dual function and discuss some

of its properties in Subsection 5.2.2. In Subsection 5.2.3, we describe a version of the

augmented Lagrangian method and discuss its computational complexity. A variant of this

method, for which a perturbation term is added into the objective function of (5.1.1), is

discussed and analyzed in Subsection 5.2.4.

5.2.1 Termination criterion

The problem of interest in this chapter is the CP problem (5.1.1) where f : X → IR is a

convex function with Lf -Lipschitz-continuous gradient. The Lagrangian dual function and

value function associated with (5.1.1) are defined as

d(λ) := inf{f(x) + 〈λ,A(x)〉 : x ∈ X}, ∀λ ∈ <m, (5.2.1)

v(u) := inf{f(x) : A(x) = u, x ∈ X}, ∀u ∈ <m. (5.2.2)

It is well-known that d is always a concave function. Moreover, the assumption we made

earlier that f is convex, A is affine, and X is convex, implies that the function v is convex.

The Lagrangian dual of (5.1.1) is the problem

d∗ := sup
λ
d(λ). (5.2.3)

In addition to the convexity assumptions we made about the data of (5.1.1), we also

assume the following conditions throughout the chapter:

113

A.5.1 The function v(·) is closed and f∗ = v(0) is finite.

A.5.2 The set Λ∗ of optimal solutions of the dual problem (5.2.3) is nonempty.

It is well-known that d∗ = co v(0), where co v is the closed convex hull of v. Hence,

Assumption A.5.1 implies that f∗ = v(0) = co v(0) = d∗, i.e., there is no duality gap for the

pair of dual problems (5.1.1) and (5.2.3). Clearly, this implies that Λ∗ := {λ∗ : d(λ∗) = f∗},

i.e., Λ∗ is the set of Lagrange multipliers. Moreover, it is well-known that latter set is also

equal to −∂v(0). It then follows from Assumption A.5.2 that v is subdifferentiable at 0 and

hence that v is proper.

The following result gives a sufficient condition for Assumption A.5.1 and its proof can

be found in Appendix A.

Proposition 5.2.1 If the set of optimal solutions for problem (5.1.1) is nonempty and

bounded then Assumption A.5.1 holds.

As a consequence of Proposition 5.2.1, if X is nonempty and compact, then Assumption

A.5.1 holds.

In this chapter, we are interested in obtaining the near-optimal solutions of (5.1.1)

defined as follows. Note that x∗ ∈ X is an optimal solution of (5.1.1) and λ∗ ∈ <m is a

Lagrange multiplier for (5.1.1) if, and only if, (x̃, λ̃) = (x∗, λ∗) satisfies

A(x̃) = 0,

∇f(x̃) + (A0)∗ λ̃ ∈ −NX(x̃),
(5.2.4)

where NX(x̃) := {s ∈ <n : 〈s, x− x̃〉 ≤ 0, ∀x ∈ X} denotes the normal cone of X at x̃, and

A0 denotes the linear part of A defined by A0 := A−A(0). Based on this observation, we

introduce the following notion.

Definition 5.2.1 For a given pair (εp, εd) ∈ IR++ × IR++, (x̃, λ̃) ∈ X × <m is called an

(εp, εd)-primal-dual solution of (5.1.1) if

‖A(x)‖∗ ≤ εp, (5.2.5)

∇f(x̃) + (A0)∗ λ̃ ∈ −NX(x̃) + B(εd), (5.2.6)

114

where B(η) := {x ∈ <n : ‖x‖ ≤ η} for every η ≥ 0.

The main goal of this chapter is to study the iteration-complexity of the augmented

Lagrangian method for computing an (εp, εd)-primal-dual solution of (5.1.1) defined above.

5.2.2 The augmented dual function

In this subsection, we review the definition of the augmented dual function associated with

(5.1.1) and discuss some of its properties.

Given a penalty parameter ρ > 0, the augmented dual function dρ : <m → IR associated

with (5.1.1) is given by

dρ(λ) := inf
x∈X

{
Lρ(x, λ) := f(x) + 〈λ,A(x)〉+

ρ

2
‖A(x)‖2

}
, (5.2.7)

and the augmented dual with parameter ρ is defined as

sup
λ∈<m

dρ(λ). (5.2.8)

An alternative characterization for the augmented dual function is given by

dρ(λ) = inf
u

{
vρ(u, λ) := v(u) + 〈λ, u〉+

ρ

2
‖u‖2

}
, (5.2.9)

where v(·) is the value function given by (5.2.2).

Lemma 5.2.1 The following statements hold:

a) problem (5.2.9) has an unique optimal solution u∗λ;

b) the (possibly empty) set of optimal solutions of (5.2.7) X∗λ is given by

X∗λ = {x ∈ X : A(x) = u∗λ and f(x) = v(u∗λ)}; (5.2.10)

c) for any λ ∈ <m and ρ > 0, we have

vρ(u, λ)− dρ(λ) ≥ ρ

2
‖u− u∗λ‖2, ∀u ∈ <m; (5.2.11)

d) problem (5.2.8) has the same optimal value and set of optimal solutions as those of

(5.2.3).

115

Proof. We first show a). Observe that convexity of v and Assumption A.5.1 imply that

the function vρ(·, λ) in (5.2.9) is a proper lower-semicontinuous convex function for every

λ ∈ <m and ρ > 0. Moreover, vρ(·, λ) is strongly convex with modulus ρ, that is,

vρ(αu1 + (1− α)u2, λ) ≤ αvρ(u1, λ) + (1− α)vρ(u2, λ)− ρ

2
α(1− α)‖u1 − u2‖2, (5.2.12)

for all (u1, u2) ∈ <m × <m and α ∈ (0, 1). The above two observations clearly imply a).

Statement b) follows directly from a), definition (5.2.2), and the equivalence of problems

(5.2.7) and (5.2.9). To show c), we let u1 = u and u2 = u∗λ in (5.2.12) to obtain

ρ

2
‖u− u∗λ‖2 ≤

vρ(u, λ)− vρ(αu+ (1− α)u∗λ, λ)
1− α

+
vρ(u∗λ, λ)− vρ(αu+ (1− α)u∗λ, λ)

α

≤
vρ(u, λ)− vρ(αu+ (1− α)u∗λ, λ)

1− α
, ∀α ∈ (0, 1)

where the last inequality follows from the fact that u∗λ is the optimal solution for prob-

lem (5.2.9). Letting α go to zero in the above inequality, and using the lower-semicontinuity

of vρ and the fact that dρ(λ) = vρ(u∗λ, λ), we obtain (5.2.11). Statement d) is a well-known.

The following proposition summarizes some important properties of dρ.

Proposition 5.2.2 For any ρ > 0, the function dρ is concave, differentiable, and

∇dρ(λ) = u∗λ, ∀λ ∈ <m, (5.2.13)

where u∗λ is the unique optimal solution of problem (5.2.9). Moreover, dρ has 1/ρ-Lipschitz-

continuous gradient with respect to the inner product norm on <m.

Proof. Under Assumption A.5.1, the claim follows immediately from Theorem 1 of [50]

applied to the maximization version of (5.2.9), i.e., the problem max
u
{−vρ(u, λ)}.

In view of Proposition 5.2.2 and Lemma 5.2.1(b), the exact version of the augmented

Lagrangian method stated in Section 1.3 can be viewed as a version of the steepest as-

cent method applied to (5.2.8). Note that one possible drawback of the exact augmented

Lagrangian method is that each iteration of this method requires the solution of problem

(5.1.2) for computing the gradient ∇dρ(λk). Since in most applications, problem (5.1.2)

116

can only be solved approximately, in this chapter we are interested in analyzing the inexact

version of the augmented Lagrangian method where the gradient ∇dρ(λk) is approximated

by A(xk), where xk an approximate solution of problem (5.1.2).

The following simple but crucial result gives a bound on the error between ∇dρ(λk) and

its aforementioned approximation.

Proposition 5.2.3 Assume that (x, λ) ∈ X ×<m is such that Lρ(x, λ)− dρ(λ) ≤ η. Then,

we have

‖A(x)−∇dρ(λ)‖ = ‖A(x̃)− u∗λ‖ ≤
√

2η
ρ
, (5.2.14)

where u∗λ is the unique optimal solution of (5.2.9).

Proof. Letting u := A(x) and observing that f(x) ≥ v(u) due to definition (5.2.2), we

conclude that

Lρ(x, λ) = f(x) + 〈λ, u〉+
ρ

2
‖u‖2 ≥ v(u) + 〈λ, u〉+

ρ

2
‖u‖2 = vρ(u, λ). (5.2.15)

This inequality, relation (5.2.11), and the assumption that Lρ(x, λ)− dρ(λ) ≤ η then imply

that

Lρ(x, λ)− dρ(λ) ≥ vρ(u, λ)− dρ(λ) ≥ ρ

2
‖u− u∗λ‖2, (5.2.16)

and hence that (5.2.14) holds.

5.2.3 The augmented Lagrangian method

In this subsection, we present the augmented Lagrangian method applied to problem (5.1.1)

and discuss its convergence behavior.

117

We start by stating the first inexact AL method that will be studied in this chapter.

The I-AL method:

Input: Initial points λ0 ∈ <m and x−1 ∈ X, penalty parameter ρ ∈

<++, outer tolerances (εp, εd) ∈ IR++ × IR++, iteration limit N̄ ∈ N ∪

{+∞}, and inner tolerances η0, . . . , ηN̄ satisfying

0 < ηk ≤
ρε2p
128

, ∀ k = 0, . . . , K̄. (5.2.17)

0) Set k = 0;

1) Using xk−1 as starting point, apply Nesterov’s optimal method to find

an ηk-approximate solution of problem (5.1.2), i.e., a point xk ∈ X

such that

Lρ(xk, λk)− dρ(λk) ≤ ηk; (5.2.18)

2) If ‖A(xk)‖ ≤ 3εp/4, then call subroutine Postprocessing with input

(x, λ̃) = (xk, λk), report success, and terminate the algorithm;

3) Otherwise, if ‖A(xk)‖ > 3εp/4, set λk+1 = λk + ρA(xk) and increment

k by 1;

4) If k = N̄ , report failure, and terminate the algorithm; otherwise, go

to step 1.

end

118

We now describe subroutine Postprocessing.

Postprocessing(x, λ̃):

Set

ζ = ζ(ρ) := min

{
ρε2p
128

,
ε2d

8Mρ

}
. (5.2.19)

P.1) Using x ∈ X as starting point, apply Nesterov’s optimal method to

find a ζ-approximate solution x̃ of problem (5.1.2);

P.2) Output a pair (x̃+, λ̃+) given by

x̃+ := ΠX(x̃−∇Lρ(x̃, λ̃)/Mρ) (5.2.20)

λ̃+ := λ̃+ ρA(x̃+). (5.2.21)

end

We will say that an outer iteration of the I-AL method occurs whenever k is incremented

by 1 in Step 3. We will refer to an iteration of Nesterov’s optimal method to compute xk

in step 1 or x̃ inside subroutine Postprocessing as an inner iteration of the I-AL method.

We now make a few comments about the I-AL method. First, note that the I-AL method

is a generic algorithm in the sense that the parameters ρ and {ηk} have not been specified.

Concrete choices of these parameters will be discussed within the context of the convergence

results which will be presented in the remaining part of this subsection. Second, in view

of Proposition 5.2.3, an outer iteration of the I-AL method can be viewed as an iteration

of a version of the steepest ascent method with inexact gradient with respect to problem

(5.2.8). Third, Step 4 ensures that the method terminates in at most N̄ outer iterations

possibly reporting failure. Fourth, at the beginning of Step 2, the pair (xk, λk) satisfies

the primal termination condition (5.2.5), but not necessarily the dual termination criterion

(5.2.6). By calling subroutine Postprocessing, the next result, whose proof will be given

in Section 5.4.1, guarantees that the output pair (x̃+, λ̃+) of this subroutine satisfies both

(5.2.5) and (5.2.6).

Proposition 5.2.4 Let ρ > 0, (εp, εd) ∈ IR++ × IR++, and λ̃ ∈ <m be given and assume

119

that there exists an x ∈ X satisfying

‖A(x)‖ ≤ 3εp
4

and Lρ(x, λ̃)− dρ(λ̃) ≤
ρε2p
128

.

If x̃ ∈ X is a point satisfying Lρ(x̃, λ̃) − dρ(λ̃) ≤ ζ, where ζ is given by (5.2.19), then the

pair (x̃+, λ̃+) defined by (5.2.20) and (5.2.21) is an (εp, εd)-primal-dual solution of (5.1.1).

The following result follows as an immediate consequence of Proposition 5.2.4.

Corollary 5.2.1 If the I-AL method successfully terminates (i.e., at Step 2), then the

output pair of subroutine Postprocessing is an (εp, εd)-primal-dual solution of (5.1.1).

Proof. The result follows from Proposition 5.2.4, (5.2.17), and the fact that at Step 4,

conditions (5.2.18) and ‖A(xk)‖ ≤ 3εp/4 hold.

Our next result below describes conditions on the parameters ρ and {ηk} which guarantee

the successful termination of the I-AL method.

Theorem 5.2.1 Let ρ ∈ IR++ and (εp, εd) ∈ IR++×IR++ be given. Assume that the iteration

limit N̄ of the I-AL method satisfies

N̄ ≥ N :=
⌈

16D2
Λ

ρ2ε2p

⌉
, (5.2.22)

where DΛ := infλ∗∈Λ∗ ‖λ0 − λ∗‖, and the sequence {ηk}N̄−1
k=0 ⊆ IR++ satisfies

N̄−1∑
k=0

ηk ≤
ρε2p
128

. (5.2.23)

Then, the I-AL method successfully terminates in at most N outer iterations.

We now make a few observations about Theorem 5.2.1. First, we observe that Theorem

5.2.1 holds regardless of the method used to find the approximate solution xk in step 1 or x̃

in subroutine Postprocessing. Second, although the number of outer iterations of the I-AL

method does not depend on εd, the number of inner iterations will depend on it, since the

number of inner iteration inside subroutine Postprocessing clearly depends on εd in view of

(5.2.19). Third, observe that equation (5.2.22) implies that the larger ρ is, the smaller the

120

bound N on the number of outer iterations will be. On the other hand, since the Lipschitz

constant of the objective function of subproblem (5.1.2) is given by

Mρ := Lf + ρ‖A‖2, (5.2.24)

increasing ρ will increase Mρ, and as a consequence, will increase the iteration-complexity

bound of Nesterov’s optimal method for finding an approximate solution of (5.1.2).

The following result provides a bound on the total number of inner iterations, i.e., the

iterations performed by Nesterov’s optimal method, in the I-AL algorithm.

Proposition 5.2.5 Let (εp, εd) ∈ IR++× IR++, ρ > 0, N̄ ∈ N∪{+∞} and {ηk}N̄−1
k=0 ⊆ IR++

be given such that conditions (5.2.22) and (5.2.23) are satisfied. Then, the I-AL method

applied to (5.1.1) successfully terminates in N outer iterations, and computes an (εp, εd)-

primal-dual solution of (5.1.1) in at most Ip + Id inner iterations, where N is defined in

Theorem 5.2.1,

Ip :=

⌊
√

2DXM
1
2
ρ

N−1∑
k=0

η
− 1

2
k +N

⌋
, Id :=

4DX max

4M
1
2
ρ

ρ
1
2 εp

,
Mρ

εd


 (5.2.25)

and

DX := max
x1,x2∈X

‖x1 − x2‖. (5.2.26)

Proof. Clearly, in view of Corollary 1.1.1 and Theorem 5.2.1, the number of inner

iterations performed at step 1 of the I-AL method is bounded by

N−1∑
k=0

⌈
DX

√
2Mρ

ηk

⌉
≤
√

2DXM
1
2
ρ

N−1∑
k=0

η
− 1

2
k +N,

and hence by Ip. Moreover, by Corollary 1.1.1, the number of inner iterations performed

at step 2 (inside subroutine PostProcessing) is bounded by dDX

√
2Mρ/ζ e. Using the

definition of ζ in (5.2.19), it follows that the number of inner iterations performed at step 3

is bounded by Id. The claim then easily follows by combining the previous two observations.

We now present a few consequences of the results obtained in Proposition 5.2.5. The

first one stated below bounds the total number of inner iterations of the I-AL method when

a summable sequence {ηk} satisfying condition (5.2.23) is chosen.

121

Theorem 5.2.2 Let ρ > 0 be an arbitrary penalty parameter and (εp, εd) ∈ <++ × <++

be given. If, for some ξ > 0, the I-AL method is applied to problem (5.1.1) with input

N̄ = +∞ and

ηk =
ξρε2p

128(1 + ξ)(k + 1)1+ξ
, ∀ k ≥ 0, (5.2.27)

then the I-AL method successfully terminates in N outer iterations and computes an (εp, εd)-

primal-dual solution of (5.1.1) in at most

O

DXM
1
2
ρ

ρ
1
2 εp

[(
DΛ

ρεp

)3+ξ

+ 1

]
+
DXMρ

εd
+
D2

Λ

ρ2ε2p
+ 1

 (5.2.28)

inner iterations, where N is given by (5.2.22). In particular, if

ρ =
4
εp

(
(DΛ)3+ξεd
‖A‖

) 1
4+ξ

+
Lf
‖A‖2

, (5.2.29)

then the I-AL method successfully terminates in⌈
min

{(
DΛ‖A‖
εd

) 2
4+ξ

,
16D2

Λ‖A‖4

L2
f ε

2
p

}⌉
(5.2.30)

outer iterations and computes an (εp, εd)-primal-dual solution of (5.1.1) in at most

O

DX

‖A‖ 7+2ξ
4+ξ D

3+ξ
4+ξ

Λ

εpε
3+ξ
4+ξ

d

+
‖A‖
εp

+
Lf
εd

+
(
‖A‖DΛ

εd

) 2
4+ξ

+ 1

 (5.2.31)

inner iterations.

We now make a few observations about Theorem 5.2.2. First, in contrast to the quadratic

penalty method where the penalty parameter should be chosen larger than a certain thresh-

old value in order to derive provable iteration-complexity results (see Lan and Monteiro [33]),

the I-AL method has an iteration-complexity bound, namely (5.2.28), which holds regard-

less of the value of the penalty parameter ρ. Second, it is not difficult to see that the choice

of ρ in (5.2.29) gives the best iteration-complexity bound based on (5.2.28) up to a constant

factor. Third, a drawback of the above result is that the formula for ρ in (5.2.29) depends

on the unknown value DΛ. This drawback will be remedied by the next two results of this

subsection.

Instead of choosing a summable sequence {ηk}, the next result assumes N̄ is finite

and chooses η0, . . . , ηN̄−1uniformly, and instead of assuming the exact knowledge of DΛ, it

122

assumes that an upper bound t ≥ DΛ is given. The motivation for choosing η0, . . . , ηN̄−1

uniformly is that the minimum of the summation term in the definition of Ip in (5.2.25)

subject to a condition like (5.2.23) occurs exactly when η0, . . . , ηN−1 is uniformly chosen.

Theorem 5.2.3 Let (εp, εd) ∈ <++ × <++ be given. If, for some t ≥ DΛ, the I-AL is

applied to problem (5.1.1) with input

ρ = ρ(t) :=
4 t

3
4 ε

1
4
d

‖A‖
1
4 εp

+
Lf
‖A‖2

, N̄ = N̄(t) :=
⌈

16t2

ρ(t)2ε2p

⌉
, (5.2.32)

ηk = η(t) :=
ρ(t)ε2p

128N̄(t)
, ∀ k ≥ 0, (5.2.33)

then the method successfully terminates inmin

D2
Λ‖A‖

1
2

t
3
2 ε

1
2
d

,
16D2

Λ‖A‖4

L2
f ε

2
p


 ≤

min

D
1
2
Λ‖A‖

1
2

ε
1
2
d

,
16D2

Λ‖A‖4

L2
f ε

2
p


 (5.2.34)

outer iterations and computes an (εp, εd)-primal-dual solution in at most O(Ipd(t)) inner

iterations, where

Ipd(t) :=

DX

‖A‖ 7
4 t

3
4

εpε
3
4
d

+
‖A‖
εp

+
Lf
εd

+
(
t‖A‖
εd

) 1
2

 , (5.2.35)

and DX and DΛ are defined in Theorem 5.2.1 and Proposition 5.2.5, respectively.

Observe that the choice of ρ, N̄ , and {ηk} given by (5.2.32) and (5.2.33) requires t ≥

DΛ so as to guarantee conditions (5.2.22) and (5.2.23), and hence that the conclusions of

Theorem (5.2.1) hold. We now develop a guess-and-check procedure that attempts to find

such a constant t while at the same time checks for potentially early termination of the

procedure.

I-AL guess-and-check procedure:

Input: Initial points λ0 ∈ <m and x−1 ∈ X, and tolerances (εp, εd) ∈ IR++ × IR++.

0) Set t0 = min{(β0/β1)
4
3 , (β0/β2)2} and j = 0, where

β0 := 1 +
32DX‖A‖

εp
, β1 :=

32DX‖A‖
7
4

εpε
3
4
d

, β2 :=
‖A‖

1
2

ε
1
2
d

; (5.2.36)

123

1) Run the I-AL method with the above input and with ρ = ρ(tj), N̄ = N̄(tj) and

ηk = η(tj), k = 0, . . . , N̄(tj);

2) If the I-AL method successfully terminates, stop; Otherwise, if the I-AL method

reports failure, set tj+1 = 2tj , j = j + 1, and go to step 1.

end

The following result gives the iteration-complexity of the above procedure for obtaining

an (εp, εd)-primal-dual solution of (5.1.1).

Theorem 5.2.4 Let (εp, εd) ∈ IR++ × IR++ be given. The I-AL guess-and-check procedure

finds an (εp, εd)-primal-dual solution of (5.1.1) in at most O(Ipd(DΛ)) inner iterations,

where Ipd(t) is defined by (5.2.35).

It is interesting to compare the iteration-complexity bound obtained in Theorem 5.2.4

with the corresponding one obtained for the quadratic penalty method in [33] to compute

an (εp, εd)-primal-dual solution of (5.1.1), namely,

O
(
DX

(
‖A‖2DΛ

εpεd
+
‖A‖
εp

+
Lf
εd

)
+ 1
)
.

Clearly, the latter one is worse than O(Ipd(DΛ)) by a factor of O((‖A‖DΛ/εd)
1
4).

Finally, we make some observations about the possibility of exploiting the warm-start

strategy for solving the augmented Lagrangian subproblems (5.1.2). Even though we al-

ready stated the I-AL method with the warm-start strategy included, i.e., the one in which

the approximate solution of the previous subproblem is used as a starting point for the

solution of next subproblem, the proofs of the results stated in this subsection make no use

of this feature. The difficulty in exploiting this feature here is due to the fact that the ob-

jective functions of the augmented Lagrangian subproblems are convex, but not necessarily

strongly convex. But in next subsection, by adding a small strongly convex perturbation

to the objective function of problem (5.1.1), we will be able to guarantee that the objec-

tive functions of the corresponding augmented Lagrangian subproblems will be strongly

convex, and thereby exploit the warm start strategy for solving the augmented Lagrangian

subproblems, and consequently, the original problem (5.1.1).

124

5.2.4 The I-AL method applied to a perturbation problem

In this subsection, we will exploit the possibility of solving problem (5.1.1) by applying a

slightly modified version of the I-AL algorithm to a perturbed problem obtained by adding

a small strongly convex perturbation to the objective function of (5.1.1).

We start by introducing the perturbed problem, namely:

f∗γ := min{fγ(x) := f(x) +
γ

2
‖x− x0‖2 : A(x) = 0, x ∈ X}, (5.2.37)

where x0 is a fixed point in X and γ > 0 is a prespecified perturbation parameter. It is

well-known that if γ is sufficiently small, then an approximate solution of (5.2.37) will also

be an approximate solution of (5.1.1).

The following simple lemma relates the optimal values of the perturbation problem

(5.2.37) and the original problem (5.1.1).

Lemma 5.2.2 Let f∗ and f∗γ be the optimal values defined in (5.1.1) and (5.2.37), respec-

tively. Then,

0 ≤ f∗γ − f∗ ≤ γD2
X/2, (5.2.38)

where DX is defined in Proposition 5.2.5.

Proof. The first inequality in (5.2.38) follows immediately from the fact that fγ ≥ f .

Now, let x∗ and x∗γ be optimal solutions of (5.1.1) and (5.2.37), respectively. Then,

f∗γ = f(x∗γ) +
γ

2
‖x∗γ − x0‖2 ≤ f(x∗) +

γ

2
‖x∗ − x0‖2 ≤ f∗ +

γD2
X

2
,

from which the second inequality in (5.2.38) follows.

In this section, we will derive an iteration-complexity bound for obtaining an (εp, εd)-

primal-dual solution of (5.1.1) by applying the I-AL method directly to the perturbed

problem (5.2.37) for a conveniently chosen perturbation parameter γ > 0.

The augmented dual function associated with (5.2.37) is given by

dρ,γ(λ) := min
x∈X

{
Lρ,γ(x, λ) := fγ(x) + λTA(x) +

ρ

2
‖A(x)‖2

}
, (5.2.39)

125

or alternatively, by

dρ,γ(λ) = inf
u

{
vρ,γ(u, λ) := vγ(u) + 〈λ, u〉+

ρ

2
‖u‖2

}
, (5.2.40)

where vγ(·) is the value function associated with the perturbed problem (5.2.37) (see defi-

nition (5.2.2)). We denote the optimal solution of (5.2.40) by u∗λ,γ .

It can be easily seen that the function Lρ,γ(·, λ) has Mρ,γ-Lipschitz continuous gradient

where

Mρ,γ := Lf + ρ‖A‖2 + γ, (5.2.41)

and that it is strongly convex with modulus γ with respect to ‖ · ‖.

We now describe a modification of the I-AL method.

The Modified I-AL method: This method is the same as I-AL method applied to

the perturbed problem (5.2.37) (and hence with Mρ, Lρ, and dρ replaced by Mρ,γ , Lρ,γ , and

dρ,γ) except that instead of Nesterov’s method, its variant described in Theorem 1.1.5 is

used to compute the approximate solutions xk in step 1 and x̃ in subroutine Postprocessing,

and the tolerance ζ in (5.2.19) is replaced by

ζ̃ = ζ̃(ρ, γ) := min

{
ρε2p
128

,
ε2d

32Mρ,γ

}
. (5.2.42)

The next results is a corresponding version of Proposition 5.2.4, which guarantees that

the output pair (x̃+, λ̃+) of subroutine Postprocessing is an (εp, εd)-primal-dual solution of

(5.1.1).

Proposition 5.2.6 Let ρ > 0, (εp, εd) ∈ IR++ × IR++, and λ̃ ∈ <m be given, and define

γ :=
εd

2DX
. (5.2.43)

Assume that there exists an x ∈ X satisfying

‖A(x)‖ ≤ 3εp
4

and Lρ,γ(x, λ̃)− dρ,γ(λ̃) ≤
ρε2p
128

.

If x̃ ∈ X is a point satisfying Lρ,γ(x̃, λ̃) − dρ,γ(λ̃) ≤ ζ̃, where ζ̃ is given by (5.2.42), then

the pair (x̃+, λ̃+) defined by (5.2.20) and (5.2.21) with Lρ replaced by Lρ,γ is an (εp, εd)-

primal-dual solution of (5.1.1).

126

The following result follows as an immediate consequence Proposition 5.2.4.

Corollary 5.2.2 If the modified I-AL method successfully terminates (i.e., at Step 2), then

the output pair of subroutine Postprocessing is an (εp, εd)-primal-dual solution of (5.1.1).

Proof. The result follows from Proposition 5.2.6, (5.2.17), and the fact that at Step 4,

conditions (5.2.18) and ‖A(xk)‖ ≤ 3εp/4 hold.

We now state the corresponding versions of Theorems 5.2.3 and 5.2.4 with respect to

the modified I-AL method.

Theorem 5.2.5 Let (εp, εd) ∈ <++ × <++ be given, and let γ be given by (5.2.43). For

some t > 0, consider the modified I-AL method applied to the perturbed problem (5.2.37)

with input

ρ = ργ(t) :=
4t

εp(log T (t))
1
2

+
Lf + γ

‖A‖2
, (5.2.44)

N̄ = N̄γ(t) :=
⌈

16t2

ργ(t)2ε2p

⌉
, ηk = ηγ(t) :=

ργ(t)ε2p
128N̄γ(t)

, ∀ k ≥ 0, (5.2.45)

where

T (t) := S1t
1
2 + S2 + S3, (5.2.46)

S1 :=

√
DX‖A‖2
εpεd

, S2 :=

√
DXLf
εd

+ 1 and S3 :=

√
DX‖A‖
εp

+ 3. (5.2.47)

Then the following statements hold:

a) the total number of inner iterations performed by the above method is bounded by

O
{(
S1t

1
2 + S2 [log T (t)]

1
4

)
[log T (t)]

3
4 max

(
1, log

Dγ
Λ log T (t)

t

)}
; (5.2.48)

b) if t ≥ Dγ
Λ, where Dγ

Λ := infλγ∈Λ∗γ ‖λ0 − λ∗‖ and Λ∗γ denotes the set of Lagrange

multipliers associated with (5.2.37), then the above method successfully terminates in

O(log T (t)) outer iterations with an (εp, εd)-primal-dual solution of (5.1.1).

127

Observe that the choice of ρ, N̄ , and {ηk} given by (5.2.44) and (5.2.45) requires t ≥ DΛ

to guarantee the successful termination of the modified I-AL method. We now develop a

guess-and-check procedure that attempts to find such a constant t while at the same time

checks for potentially early termination of the procedure.

The modified I-AL guess-and-check procedure:

Input: Initial points λ0 ∈ <m and x−1 ∈ X, and tolerances (εp, εd) ∈ IR++ × IR++.

0) Let scalar t̂ and function ψ : <+ → < be defined as

t̂ :=

[
S2

2 + S2

√
S2

2 + 4(S2 + S3)
2S1

]2

, ψ(t) := S1t
1
2 − S2

[
log(S1t

1
2 + S2 + S3)

] 1
4
,

(5.2.49)

where S1,S2 and S3 are given by (5.2.47). Find a point t0 ∈ [0, t̂] such that 0 ≤

ψ(t0) ≤ 1.

1) Run the modified I-AL method with the above input and with ρ = ργ(tj), N̄ = N̄γ(tj),

ηk = ηγ(tj) for k ≥ 0, where γ is given by (5.2.43), and ργ(·), N̄γ(·) and ηγ(·) are

defined in (5.2.44) and (5.2.45).

2) If the modified I-AL method successfully terminates, stop; otherwise, set tj+1 = 2tj ,

j = j + 1, and go to step 1.

end

We now discuss the issue about the existence of t0 satisfying 0 ≤ ψ(t0) ≤ 1. It will be

shown in Lemma 5.4.4 that ψ(0) ≤ 0, ψ(t̂) ≥ 0, and function ψ is non-decreasing. This

clearly implies the existence of the required t0. Moreover, t0 can be computed as follows.

If ψ(t̂) ≤ 1, we can take t0 = t̂. Otherwise, a binary search procedure starting with the

interval [0, t̂], which must contain the desired scalar t0, determines such a scalar in log t̂

iterations.

The following result gives the iteration-complexity of the above procedure for obtaining

an (εp, εd)-primal-dual solution of (5.1.1).

128

Theorem 5.2.6 Let (εp, εd) ∈ IR++ × IR++ be given. The modified I-AL guess-and-check

procedure described above finds an (εp, εd) -primal-dual solution of (5.1.1) in at most

O
{
S1[Dγ

Λ]
1
2 [log T (Dγ

Λ)]
3
4 log log T (Dγ

Λ) + S2 log T (0) log log T (0)
}
, (5.2.50)

inner iterations, where S1,S2, T (·) and Dγ
Λ are defined in Theorem 5.2.5.

It is interesting to compare the iteration-complexity bound obtained in Theorem 5.2.6

with the corresponding one obtained for the quadratic penalty method in [33] to compute

an (εp, εd)-primal-dual solution of (5.1.1), namely, O
(
T (‖λ∗γ‖) log T (‖λ∗γ‖)

)
, where λ∗γ is

the minimum-norm Lagrange multiplier for the perturbed problem (5.2.37). Clearly, if the

initial multiplier λ0 = 0, then ‖λ∗γ‖ = Dγ
λ and the latter complexity bound reduces to

O
(
T (Dγ

Λ) log T (Dγ
Λ)
)
. Note that for the situation where

S2 log T (0) log log T (0) = O
{
S1[Dγ

Λ]
1
2 [log T (Dγ

Λ)]
3
4 log log T (Dγ

Λ)
}
, (5.2.51)

bound (5.2.50) is majorized by O
(
T (Dγ

Λ)[log T (Dγ
Λ)]

3
4 log log T (Dγ

Λ)
)

. Clearly, inequality

(5.2.51) holds if Lf = 0. Hence, when λ0 = 0 and (5.2.51) holds, the first complexity bound

is worse than the latter one in Theorem 5.2.6 by a factor of (log T (Dγ
Λ))

1
4 / log log T (Dγ

Λ).

It should be mentioned that if a good warm-start λ0 for problem (5.2.37) is known, i.e.,

the ratio Dγ
Λ/‖λ∗γ‖ is small, then the complexity bound in Theorem 5.2.6 is substantially

smaller than the above one.

5.3 Basic Tools

This section discusses some technical results that will be used in our analysis. It consists

of two subsections. The first one develops several technical results involving projected

gradients. The second subsection develops the convergence results for the steepest descent

method with inexact gradient, which will play a crucial role in our analysis for the augmented

Lagrangian methods.

5.3.1 Projected gradient and the optimality conditions

In this subsection, we assume that the inner product space <n is endowed with the norm

‖ · ‖ associated with its inner product and consider the CP problem (1.1.8).

129

It is well-known that x∗ ∈ X is an optimal solution of (1.1.8) if and only if ∇φ(x∗) ∈

−NX(x∗). Moreover, this optimality condition is in turn related to the projected gradient

of the function φ over X defined as follows.

Definition 5.3.1 Given a fixed constant τ > 0, we define the projected gradient of φ at

x̃ ∈ X with respect to X as (see, for example, [49])

∇φ(x̃)]τX :=
1
τ

[x̃−ΠX(x̃− τ∇φ(x̃))] , (5.3.1)

where ΠX(·) is the projection map onto X defined in terms of the inner product norm ‖ · ‖

(see Subsection 5.1.1).

The following proposition (see Proposition 4 in [33] for the proof) relates the projected

gradient to the aforementioned optimality condition.

Proposition 5.3.1 Let x̃ ∈ X be given and define x̃+ := ΠX(x̃− τ∇φ(x̃)). Then, for any

given ε ≥ 0, the following statements hold:

a) ‖∇φ(x̃)]τX‖ ≤ ε if, and only if, ∇φ(x̃) ∈ −NX(x̃+) + B(ε);

b) ‖∇φ(x̃)]τX‖ ≤ ε implies that ∇φ(x̃+) ∈ −NX(x̃+) + B ((1 + τLφ)ε).

The following result, whose proof is given in Lemma 5 of [33], states some properties of

the projected gradient.

Lemma 5.3.1 Assume that x∗ ∈ Argminx∈Xφ(x). Let x̃ ∈ X be given and define

x̃+ := ΠX(x̃− τ∇φ(x̃)).

Then, the following statements hold:

a) φ(x̃+)− φ(x̃) ≤ −τ‖∇φ(x̃)]τX‖2/2 for any τ ≤ 1/Lφ;

b) for any x ∈ X, we have

φ(x)− φ(x∗) ≥ 1
2Lφ
‖∇φ(x)]1/LφX ‖2. (5.3.2)

130

5.3.2 Steepest descent method with inexact gradient

In this subsection, we consider the unconstrained problem

p∗ := inf{p(λ) : λ ∈ <m}, (5.3.3)

where p : <m → IR is convex and has Lp-Lipschitz-continuous gradient. We assume through-

out this subsection that p∗ is finite and that the set of optimal solutions Γ∗ of (5.3.3) is

nonempty. We are interested in the situation where the gradient ∇p(λ) at any given λ ∈ <m

can only be evaluated approximately. This situation arises for example in the case where

p = −dρ, where the computation of the exact gradient requires finding the exact optimal

solution of the nonlinear optimization problem (5.2.9) (see Proposition 5.2.2). The aim

is to apply the results obtained here to the function p = −dρ in order to prove the main

convergence results of the augmented Lagrangian method discussed in Sections 5.2.3 and

5.2.4.

An iterate of the steepest descent method with inexact gradient for solving problem

(5.3.3) consists of:

λk+1 = λk −
αk
Lp

p′k (5.3.4)

where αk > 0 is the stepsize and p′k is an approximation of the gradient ∇p(λk). Define the

deviation and the relative deviation between p′k and ∇p(λk) respectively by

δk := p′k −∇p(λk), ek :=
‖δk‖
‖p′k‖

. (5.3.5)

Before stating the main result of this subsection about the convergence of the inexact

steepest descent method, we first present a few technical results.

Lemma 5.3.2 If ek ≤ 1− αk/2, then p(λk+1) ≤ p(λk).

Proof. Using the second inequality of (5.1.5) with λ = λk and λ̃ = λk+1, relations (5.3.4)

and (5.3.5), and the Cauchy-Schwartz inequality, we conclude that

p(λk+1)− p(λk) ≤ 〈∇p(λk), λk+1 − λk〉+
Lp
2
‖λk+1 − λk‖2

= −αk
Lp
〈p′k − δk, p′k〉+

α2
k

2Lp
‖p′k‖2 = −αk

Lp
‖p′k‖2

(
1− αk

2
− ‖δk‖

p′k

)
= −αk

Lp
‖p′k‖2

(
1− αk

2
− ek

)
≤ 0,

131

where the last inequality is due to the assumption that ek ≤ 1− αk/2.

Lemma 5.3.3 Assume that ek < 1. Then, for every λ∗ ∈ Λ∗, we have

αkβk〈∇p(λk), λk − λ∗〉 ≤
Lp
2
(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αk〈δk, λ∗ − λk〉, (5.3.6)

where

βk := 1− αk/[2(1− ek)2]. (5.3.7)

Proof. First note that, by (5.3.5), we have

‖∇p(λk)‖ = ‖p′k − δk‖ ≥ ‖p′k‖ − ‖δk‖ = (1− ek)‖p′k‖. (5.3.8)

This inequality, the assumption that ek < 1 and relations (5.3.4) and (5.3.5) then imply

‖λk+1 − λ∗‖2 =
∥∥∥∥λk − αk

Lp
p′k − λ∗

∥∥∥∥2

= ‖λk − λ∗‖2 −
2αk
Lp
〈p′k, λk − λ∗〉+

α2
k

L2
p

‖p′k‖2

≤ ‖λk − λ∗‖2 −
2αk
Lp
〈∇p(λk) + δk, λk − λ∗〉+

α2
k

L2
p(1− ek)2

‖∇p(λk)‖2

≤ ‖λk − λ∗‖2 +
2αk
Lp
〈δk, λ∗ − λk〉 −

2αk
Lp

(
1− αk

2(1− ek)2

)
〈∇p(λk), λk − λ∗〉,

where the last inequality follows from the first inequality in (5.1.6) and the fact that

∇p(λ∗) = 0. Rearranging the later inequality and using the definition of βk, we obtain

(5.3.6).

Lemma 5.3.4 Assume that, for some constant c1 > 0, we have

ek ≤ 1−
√
αk + c1

2
. (5.3.9)

Then, for any λ∗ ∈ Λ∗, we have

αk[p(λk)− p∗] ≤
Lp
c1

[(
1 +

2αke2
k

c1

)
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

]
. (5.3.10)

Proof. By the Cauchy-Schwartz inequality and relations (5.3.5), (5.1.5), (5.3.6) and

132

(5.3.8), we have

Lp
2
(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αkek‖p′k‖ ‖λk − λ∗‖

≥ Lp
2
(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αk〈δk, λ∗ − λk〉

≥ αkβk〈∇p(λk), λk − λ∗〉 ≥ αkβk

(
[p(λk)− p(λ∗)] +

1
2Lp
‖∇p(λk)‖2

)
≥ αkβk

(
[p(λk)− p(λ∗)] +

1
2Lp

(1− ek)2‖p′k‖2
)
.

Letting x = ‖p′k‖/(Lp‖λk − λ∗‖) and rearranging the above inequality, we conclude that

αβk[p(λk)− p(λ∗)] ≤
Lp
2
[(

1 + 2αkekx− αkβk(1− ek)2x2
)
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

]
.

Relation (5.3.10) now follows from the above inequality by noting that (5.3.7) and (5.3.9)

imply that

βk ≥ (1− ek)2βk = (1− ek)2 − αk
2
≥ c1

2
(5.3.11)

and that the quadratic function 1 + 2αkekx− αkβk(1− ek)2x2 is bounded above by

1 +
αke

2
k

βk(1− ek)2
≤ 1 +

2αke2
k

c1
.

The following theorem states the convergence properties of the inexact steepest descent

method described above.

Theorem 5.3.1 Assume that for some positive constants c1, we have

ek ≤ 1−
√
αk + c1

2
(5.3.12)

for every k ≥ 0. Then, the sequence {λk} generated by the inexact steepest descent method

(5.3.4) satisfies

p(λk)− p∗ ≤
Lp

c1
∑k

i=0 αi

[
‖λ0 − λ∗‖2 exp

(
k∑
i=0

2αie2
i

c1

)
− ‖λk+1 − λ∗‖2

]
(5.3.13)

for every λ∗ ∈ Λ∗, where p∗ is defined in (5.3.4).

133

Proof. Using Lemma 5.3.4, it is easy to see by induction that

k∑
i=0

αi[p(λi)− p∗] ≤
Lp
c1

[
‖λ0 − λ∗‖2

k∏
i=0

(
1 +

2αke2
k

c1

)
− ‖λk+1 − λ∗‖2

]
(5.3.14)

for every k ≥ 0. The above inequality, Lemmas 5.3.2 and 5.3.4, the inequality log(1+x) ≤ x

for any x > −1 and assumption (5.3.12) then imply that(
k∑
i=0

αi

)
[p(λk)− p∗] ≤

k∑
i=0

αi[p(λi)− p∗]

≤ Lp
c1

[
‖λ0 − λ∗‖2 exp

(
k∑
i=0

log(1 + 2αie2
i /c1)

)
− ‖λk+1 − λ∗‖

]

≤ Lp
c1

[
‖λ0 − λ∗‖2 exp

(
k∑
i=0

2αie2
i

c1

)
− ‖λk+1 − λ∗‖

]
for every k ≥ 0.

As a consequence of Theorem 5.3.1, we obtain the following result which gives an upper

bound on the quantities ‖∇p(λk)‖ and ‖p′(λk)‖.

Corollary 5.3.1 Assume that, for some positive constant c1, relation (5.3.12) holds for

every k ≥ 0. Then, the sequence {λk} generated by the inexact steepest descent method

(5.3.4) satisfies

αk + c1

2
‖p′k‖2 ≤ ‖∇p(λk)‖2 ≤

2L2
p‖λ0 − λ∗‖2

c1
∑k

i=0 αi
exp

(
k∑
i=0

2αie2
i

c1

)
(5.3.15)

for every λ∗ ∈ Λ∗.

Proof. Clearly by definition of ek, we have ‖∇p(λk)‖ ≥ (1 − ek)‖p′k‖, which together

with (5.3.12), imply that ‖∇p(λk)‖2 ≥ (αk + c1)‖p′k‖2/2. Moreover, using (5.1.5), (5.3.13),

and the fact that ∇p(λ∗) = 0, we conclude that

‖∇p(λk)‖2 ≤ 2Lp(p(λk)− p∗) ≤
2L2

p‖λ0 − λ∗‖2

c1
∑k

i=0 αi
exp

(
k∑
i=0

2αie2
i

c1

)
.

Our claim clearly follows from the above two observations.

5.4 Convergence Analysis

In this section, we prove the main results presented in Subsections 5.2.3 and 5.2.4.

134

5.4.1 Convergence analysis for the I-AL method

The goal of this subsection is to prove the convergence results for the I-AL method stated

in Subsection 5.2.3, namely: Proposition 5.2.4, Proposition 5.2.5 and Theorems 5.2.1, 5.2.2,

5.2.3 and 5.2.4.

We first give the proof of Proposition 5.2.4 which guarantees that subroutine PostPro-

cessing of the I-AL method outputs an (εp, εd)-primal-dual solution of (5.1.1).

Proof of Proposition 5.2.4: Clearly, by Lemma 5.3.1(b) with φ(·) = Lρ(·, λ̃) and Lφ =

Mρ, we have

‖∇Lρ(x̃, λ̃)]1/Mρ

X ‖ ≤
{

2Mρ

[
Lρ(x̃, λ̃)− dρ(λ̃)

]} 1
2 ≤

√
2Mρ ζ ≤

εd
2
,

where the second and last inequalities follow from the assumption that Lρ(x̃, λ̃)−dρ(λ̃) ≤ ζ

and relation (5.2.19), respectively. The above inequality together with (5.2.7), (5.2.21) and

Proposition 5.3.1(b) with φ(·) = Lρ(·, λ̃), Lφ = Mρ and τ = 1/Mρ then imply that

∇f(x̃+) + (A0)∗λ̃+ = ∇f(x̃+) + (A0)∗(λ̃+ ρA(x̃+)) = ∇Lρ(x̃+, λ̃) ∈ −NX(x̃+) + B(εd),

where x̃+ is defined in (5.2.20). Moreover, it follows from Lemma 5.3.1(a) with φ(·) =

Lρ(·, λ̃), Lφ = Mρ and τ = 1/Mρ that Lρ(x̃+, λ̃) ≤ Lρ(x̃, λ̃). This observation, the assump-

tion that Lρ(x̃, λ̃)− dρ(λ̃) ≤ ζ and (5.2.19) then imply that

Lρ(x̃+, λ̃)− dρ(λ̃) ≤ Lρ(x̃, λ̃)− dρ(λ̃) ≤ ζ ≤
ρε2p
128

.

Using this conclusion, the assumption that Lρ(x, λ̃) − dρ(λ̃) ≤ ρε2p/128 and Proposition

5.2.3, we then obtain

max{‖A(x̃+)− u∗λ‖, ‖A(x)− u∗λ‖} ≤
εp
8
,

which together with the assumption that ‖A(x)‖ ≤ 3εp/4 imply

‖A(x̃+)‖ ≤ ‖A(x̃+)− u∗λ‖+ ‖A(x)− u∗λ‖+ ‖A(x)‖ ≤ εp
8

+
εp
8

+
3εp
4

= εp. (5.4.1)

We have thus shown that (x̃+, λ̃+) is an (εp, εd)-primal-dual solution of (5.1.1).

Theorem 5.2.1 states certain conditions on the parameters ρ and ηk which guarantee

135

that the I-AL method will successfully terminate in at most N outer iterations. We now

give a proof of this result.

Proof of Theorem 5.2.1: Since N̄ ≥ N by assumption, the I-AL method does not

terminate with failure within the first N outer iterations. Assume for contradiction that

the I-AL method does not successfully terminate within the first N outer iterations. This

implies that ‖A(xk)‖ > 3εp/4 for all 0 ≤ k ≤ N − 1. Letting δk := ‖A(xk) − u∗λk‖

and ek := δk/‖A(xk)‖ for all k ≥ 0, we conclude from the previous observation, (5.2.18),

Proposition 5.2.3 and assumptions (5.2.22) and (5.2.23) that

N−1∑
k=0

e2
k =

N−1∑
k=0

δ2
k

‖A(xk)‖2
≤ 16

9ε2p

N−1∑
k=0

‖A(xk)− u∗λk‖
2 ≤ 32

9ρε2p

N−1∑
k=0

ηk ≤
32

9ρε2p

N̄−1∑
k=0

ηk ≤
1
36
.

(5.4.2)

Noting that (5.4.2) implies ek ≤ 1/6, and hence that condition (5.3.12) holds with αk = 1

and c1 = 7/18, it follows from (5.4.2) and Corollary 5.3.1 with p(·) = −dρ(·), Lp = 1/ρ,

p′k = A(xk), c1 = 7/18 and αk = 1 that

‖A(xk)‖2 ≤
4D2

Λ

c1(1 + c1) ρ2(k + 1)
exp

 2
c1

k∑
j=0

e2
j

 ≤ 1296D2
Λ

175ρ2(k + 1)
exp

(
1
7

)
≤

9D2
Λ

ρ2(k + 1)
,

(5.4.3)

for every 0 ≤ k ≤ N − 1. The above inequality with k = N − 1 together with (5.2.22) then

imply that

‖A(xN−1)‖2 ≤
9D2

Λ

ρ2N
≤

9ε2p
16
,

which clearly contradicts the fact ‖A(xN−1)‖ > 3εp/4.

Theorem 5.2.2 bounds the total number of inner iterations of the I-AL method when a

summable sequence {ηk} satisfying (5.2.23) is used. Before proving this theorem, we first

state the following two technical results.

The proof of the following result is given in Appendix A.

Proposition 5.4.1 For some positive integer L, let positive scalars p1, p2, · · · , pL be given.

Then, there exists a constant C = C(p1, · · · , pL) such that for any nonnegative scalars

136

β0, β1, · · · , βL, ν, and t̄, we have

K∑
k=0

⌈
β0 +

L∑
l=1

(
βl t

pl
k

)⌉
max

{
1,
⌈

log
ν

tk

⌉}
≤ C

⌈
β0 +

L∑
l=1

(βl t̄pl)

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
,

(5.4.4)

where

K := max
{

0,
⌈

log
(
t̄

t0

)⌉}
, t0 := min

1≤l≤L

(
max(β0, 1)

βl

)1/pl

, tk = t02k, ∀k = 1, . . . ,K.

(5.4.5)

In particular, if ν = t̄, then (5.4.4) implies that

K∑
k=0

⌈
β0 +

L∑
l=1

(
βl t

pl
k

)⌉
≤ C

⌈
β0 +

L∑
l=1

(βl t̄pl)

⌉
. (5.4.6)

Lemma 5.4.1 The following statements hold:

a) for every t ≥ 1 and a, b ≥ 0, we have (a+ b)t ≤ [(2a)t + (2b)t]/2;

b) for any K ≥ 1 and ξ > 0, we have

+∞∑
k=0

(k + 1)−(1+ξ) ≤ 1 +
∫ +∞

0
(t+ 1)−(1+ξ)dt ≤ (ξ + 1)/ξ, (5.4.7)

K−1∑
k=0

(k + 1)ξ ≤
∫ K

0
(t+ 1)ξdt ≤ 1

1 + ξ
(K + 1)1+ξ. (5.4.8)

Proof. Statement a) follows directly from the convexity of xt for any x ≥ 0 and b) is

obvious.

We are now ready to prove Theorem 5.2.2.

Proof of Theorem 5.2.2: We first show that condition (5.2.23) holds. Indeed, by (5.2.27),

(5.4.7) and the assumption that N̄ = +∞, we have

N̄−1∑
k=0

ηk =
ξρε2p

128(ξ + 1)

∞∑
k=0

1
(k + 1)1+ξ

≤
ρε2p
128

.

It then follows from Proposition 5.2.5 that the method will successfully terminate in N

outer iterations and the total number of inner iterations is bounded by Ip + Id, where N ,

137

Ip and Id are defined in (5.2.22) and (5.2.25). Observe that by (5.2.27), (5.4.8), (5.2.22)

and Lemma 5.4.1(a) with a = 16D2
Λ/(ρ

2ε2p), b = 2 and t = (3 + ξ)/2, we have

N−1∑
k=0

η
− 1

2
k =

8
√

2(1 + ξ)
1
2

ξ
1
2 ρ

1
2 εp

N−1∑
k=0

(k + 1)
1+ξ

2 ≤ 16
√

2(1 + ξ)
1
2

(3 + ξ)ξ
1
2 ρ

1
2 εp

(N + 1)
3+ξ

2

≤ 16
√

2(1 + ξ)
1
2

(3 + ξ)ξ
1
2 ρ

1
2 εp

(
16D2

Λ

ρ2ε2p
+ 2
) 3+ξ

2

=
64C(ξ)

ρ
1
2 εp

(
8D2

Λ

ρ2ε2p
+ 1
) 3+ξ

2

≤ 32C(ξ)

ρ
1
2 εp

[(
4DΛ

ρεp

)3+ξ

+ 2
3+ξ

2

]
,

where C(ξ) := (1+ξ)
1
2 2

ξ
2 /[(3+ξ)ξ

1
2]. This relation together with (5.2.22) and (5.2.25) then

imply that

Ip ≤
√

2DXM
1
2
ρ

N−1∑
k=0

η
− 1

2
k +N

≤ 32
√

2C(ξ)DXM
1
2
ρ

ρ
1
2 εp

[(
4DΛ

ρεp

)3+ξ

+ 2
3+ξ

2

]
+

16D2
Λ

ρ2ε2p
+ 1.

Moreover, it can be easily seen from (5.2.25) that

Id ≤ 4DX

4M
1
2
ρ

ρ
1
2 εp

+
Mρ

εd

+ 1.

Combining the previous two inequalities, we immediately see that the the total number of

inner iterations performed by the I-AL method is bounded by (5.2.28).

Assume now that ρ is chosen as in (5.2.29). Then, bound (5.2.30) follows by combining

the definition of N in (5.2.22) with the fact that by (5.2.29),

ρ ≥ max

{
1
εp

(
(DΛ)3+ξεd
‖A‖

) 1
4+ξ

,
Lf
‖A‖2

}
. (5.4.9)

Also, (5.4.9) implies that ρ ≥ Lf/‖A‖2, and hence that

Mρ = Lf+ρ‖A‖2 ≤ 2ρ‖A‖2 =
2‖A‖2

εp

(
(DΛ)3+ξεd
‖A‖

) 1
4+ξ

+2Lf = 2εd

‖A‖ 7+2ξ
4+ξ D

3+ξ
4+ξ

Λ

εpε
3+ξ
4+ξ

d

+
Lf
εd

 .

(5.4.10)

Hence, bound (5.2.28) is majorized by

O

DX‖A‖
εp

[(
DΛ

ρεp

)3+ξ

+ 1

]
+DX

‖A‖ 7+2ξ
4+ξ D

3+ξ
4+ξ

Λ

εpε
3+ξ
4+ξ

d

+
Lf
εd

+
D2

Λ

ρ2ε2p
+ 1

 . (5.4.11)

138

Also, by (5.4.9), we have

DΛ

ρεp
≤ DΛ

(
‖A‖

D3+ξ
Λ εd

) 1
4+ξ

=
(
DΛ‖A‖
εd

) 1
4+ξ

.

Substituting the above inequality into (5.4.11), we obtain bound (5.2.31).

Theorem 5.2.3 provides a bound on the total number inner iterations of the I-AL method

when a uniform sequence {ηk} is used, under the assumption that an upper bound t on DΛ,

is known. We will now provide a proof of Theorem 5.2.3.

Proof of Theorem 5.2.3 Using (5.2.32) and the assumption that t ≥ DΛ, we obtain

N̄(t) ≥
⌈

16D2
Λ

ρ2ε2p

⌉
= N. (5.4.12)

Also note that (5.2.32) and (5.2.33) imply that

N̄−1∑
k=0

ηk = N̄η(t) = N̄(t)η(t) =
ρε2p
128

.

We have thus shown that conditions (5.2.22) and (5.2.23) hold. It then follows from Propo-

sition 5.2.5 that the total number of outer iterations is bounded by N , where N is defined

by (5.2.22). Bound (5.2.34) now follows by combining the definition of N in (5.2.22) with

the fact that

ρ = ρ(t) ≥ max

{
4t

3
4

‖A‖
1
4 εp

,
Lf
‖A‖2

}
≥ max

 4D
3
4
Λ

‖A‖
1
4 εp

,
Lf
‖A‖2

 . (5.4.13)

It also follows from Proposition 5.2.5 that the total number of inner iterations is bounded

by Ip + Id, where Ip and Id are given by (5.2.25). Noting that by (5.2.32), (5.2.33) and

Lemma 5.4.1(a) with a = 16t2/(ρ2ε2p), b = 1 and t = 3/2, we have

N̄(t)−1∑
k=0

η
− 1

2
k =

8
√

2

ρ(t)
1
2 εp

N̄(t)
3
2 ≤ 8

√
2

ρ(t)
1
2 εp

(
16t2

ρ(t)2ε2p
+ 1
) 3

2

≤ 16

ρ(t)
1
2 εp

(
64t3

ρ(t)3ε3p
+ 1
)
,

we then conclude from (5.2.25), (5.2.32) and (5.4.12) that

Ip ≤
√

2DXM
1
2
ρ

N̄(t)−1∑
k=0

η
− 1

2
k + N̄(t) ≤ 16

√
2DXM

1
2
ρ

ρ(t)
1
2 εp

(
64t3

ρ(t)3ε3p
+ 1
)

+
16t2

ρ(t)2ε2p
+ 1. (5.4.14)

Now, by using the first relation in (5.2.32), we have that ρ(t) ≥ Lf/‖A‖2, and hence that

Mρ = Lf + ρ(t)‖A‖2 ≤ 2ρ(t)‖A‖2. (5.4.15)

139

This conclusion together with (5.4.13) and (5.4.14) then imply that

Ip ≤
32DX‖A‖

εp

(
64t3

ρ(t)3ε3p
+ 1
)

+
16t2

ρ(t)2ε2p
+ 1

≤ 32DX‖A‖
εp

‖A‖ 3
4 t

3
4

ε
3
4
d

+ 1

+
‖A‖

1
2 t

1
2

ε
1
2
d

+ 1. (5.4.16)

Moreover, it easily follows from (5.2.25), (5.4.15) and (5.2.32) that

Id ≤ 4DX

 4M
1
2
ρ

ρ(t)
1
2 εp

+
Mρ

εd

+ 1 ≤ 4DX

(
4
√

2‖A‖
εp

+
2ρ(t)‖A‖2

εd

)
+ 1

=
16
√

2DX‖A‖
εp

+ 8DX

4t
3
4 ‖A‖

7
4

εpε
3
4
d

+
Lf
εd

+ 1. (5.4.17)

Combining (5.4.16) and (5.4.17), we easily see that the I-AL method computes an (εp, εd)-

primal-dual solution of (5.1.1) in at most O(Ipd(t)) inner iterations, where Ipd(t) is defined

by (5.2.35).

We now give the proof of Theorem 5.2.4, which establishes the iteration-complexity of

the I-AL guess-and-check procedure.

Proof of Theorem 5.2.4 Suppose that the I-AL guess-and-check procedure terminates

when the iteration count j is equal to J . Letting

J̄ := max{0, dlog(DΛ/t0)e} (5.4.18)

and noting that tJ̄ = t02J̄ ≥ DΛ, we conclude from Theorem 5.2.3 that J ≤ J̄ . Let Ip,j ,

j = 1, . . . , J , denote the number of inner iterations performed at step 1) of the I-AL method

during loop j of the I-AL guess-and-check procedure, and let Id,J denote the number of

inner iterations performed by subroutine Postprocessing during loop J of the I-AL guess-

and-check procedure. Then, the overall number of inner iterations performed by the I-AL

guess-and-check procedure is bounded by

J∑
j=0

Ip,j + Id,J ≤
J̄∑
j=0

Ip,j + Id,J . (5.4.19)

Since the total number of outer iterations at the jth loop is bounded by N(tj), it follows

140

from Corollary 1.1.1 that

Ip,j ≤
N̄(tj)−1∑
k=0

⌈
DX

√
2Mρ

ηk

⌉
≤
√

2DXM
1
2
ρ

N̄(tj)−1∑
k=0

η
− 1

2
k + N̄(tj).

Hence, similar to the proof of (5.4.14), (5.4.15) and (5.4.16), we can show that for j =

0, . . . , J , we have

Ip,j ≤ 32DX

 t 3
4
j ‖A‖

7
4

εpε
3
4
d

+
‖A‖
εp

+
t

1
2
j ‖A‖

1
2

ε
1
2
d

+ 1 ≤
⌈
β0 + β1t

3
4
j + β2t

1
2
j

⌉
,

where β0, β1, and β2 are given by (5.2.36). Noting that tj = t02j for every j and the

definition of t0 in step 0) of the I-AL guess-and-check procedure, it follows from the previous

inequality and relation (5.4.6) with L = 2, p1 = 3/4, p2 = 1/2, t̄ = DΛ, J = J̄ , and β0, β1,

and β2 as above that
J̄∑
j=0

Ip,j = O(1)
⌈
β0 + β1D

3
4
Λ + β2D

1
2
Λ

⌉
. (5.4.20)

Now, using (5.4.18), it is easy to see that tJ ≤ tJ̄ ≤ max{t0, 2DΛ} and hence that

t
3
4
J ≤ max

{
t

3
4
0 , (2DΛ)

3
4

}
≤ max

{
β0

β1
, (2DΛ)

3
4

}
≤ β0

β1
+ (2DΛ)

3
4 , (5.4.21)

where the last inequality is due to the definition of t0 in Step 0 of the I-AL guess-and-check

procedure. Using this inequality, the definition of β0 and β1 in (5.2.36), and an argument

similar to the proof of (5.4.17), we have

Id,J ≤ 16
√

2DX‖A‖
εp

+ 8DX

4t
3
4
J ‖A‖

7
4

εpε
3
4
d

+
Lf
εd

+ 1

≤ β0 + β1t
3
4
J +

8DXLf
εd

≤ 2β0 + β1(2DΛ)
3
4 +

8DXLf
εd

. (5.4.22)

Now, using (5.4.20) and (5.4.22), it is easy to see that the right-high-side of (5.4.19) is

bounded by O(Ipd(DΛ)), where Ipd(·) is defined in (5.2.35).

5.4.2 Convergence analysis for the I-AL method applied to the perturbed
problem

The goal of this subsection is to prove the convergence results stated in Subsection 5.2.4,

namely, Proposition 5.2.6 and Theorems 5.2.5 and 5.2.6.

We first prove Proposition 5.2.6 which guarantees that subroutine Postprocessing of the

141

modified I-AL method outputs an (εp, εd)-primal-dual solution of (5.1.1).

Proof of Proposition 5.2.6: As in the proof of Proposition 5.2.4 with ζ replaced by ζ̃,

we can show that

∇fγ(x̃+) + (A0)∗λ̃+ ∈ −NX(x̃+) + B
(εd

2

)
,

where x̃+ is defined in (5.2.20) with Lρ replaced by Lρ,γ . Noting that

∇fγ(x̃+) = ∇f(x̃+) + γ(x̃+ − x0)

and that (5.2.26) and (5.2.43) imply that

γ‖x̃+ − x0‖ ≤ γDX =
εd
2
,

we then conclude that

∇f(x̃+) + (A0)∗λ̃+ ∈ −NX(x̃+) + B(εd).

Moreover, similar to the proof of Proposition 5.2.4, we can show that ‖A(x̃+)‖ ≤ εp. Thus,

(x̃+, λ+
k) is an (εp, εd)-primal-dual solution for (5.1.1).

Theorems 5.2.5 provides a bound on the total number of inner iterations performed

by the modified I-AL method. Before proving this result, we first present two technical

lemmas. The first one stated below establishes an important technical result that allows

us to take the advantage of the “warm-start” strategy described in the end of Subsection

5.2.3.

Lemma 5.4.2 Let (xk, λk) ∈ X×<m be given and let λk+1 = λk+ρA(xk). If Lρ,γ(xk, λk)−

dρ,γ(λk) ≤ ηk, then

γ

2
‖xk − x∗k+1‖2 ≤ Lρ,γ(xk, λk+1)− dρ,γ(λk+1) ≤

(
√
ηk +

√
ρ

2
‖A(xk)‖

)2

, (5.4.23)

where x∗k+1 is the unique solution of minx∈X Lρ,γ(x, λk+1).

Proof. The first inequality in (5.4.23) follows immediately from the strong convexity

of Lρ,γ(·, λk+1). Hence, it suffices to show the second inequality in (5.4.23). Clearly, by

definition (5.2.39) and the fact that λk+1 = λk + ρA(xk), we have

Lρ,γ(xk, λk+1)− Lρ,γ(xk, λk) = ρ‖A(xk)‖2.

142

The above observation together with the assumption Lρ,γ(xk, λk)−dρ,γ(λk) ≤ ηk then imply

that

Lρ,γ(xk, λk+1)− dρ,γ(λk+1)

= [Lρ,γ(xk, λk+1)− Lρ,γ(xk, λk)] + [Lρ,γ(xk, λk)− dρ,γ(λk+1)]

= ρ‖A(xk)‖2 + [Lρ,γ(xk, λk)− dρ,γ(λk)] + [dρ,γ(λk)− dρ,γ(λk+1)]

≤ ρ‖A(xk)‖2 + ηk + [dρ,γ(λk)− dρ,γ(λk+1)]. (5.4.24)

Moreover, in view of Proposition 5.2.2 applied to the perturbed problem (5.2.37), the func-

tion dρ,γ(·) is concave and has 1/ρ-Lipschitz-continuous gradient and ∇dρ,γ(λ) = u∗λ,γ . It

then follows from (5.1.5) that

−dρ,γ(λk+1) + dρ,γ(λk) ≤ 〈−u∗λk,γ , λk+1 − λk〉+
1
2ρ
‖λk+1 − λk‖2

= −ρ〈u∗λk,γ ,A(xk)〉+
ρ

2
‖A(xk)‖2, (5.4.25)

where the last equality follows from the fact that λk+1 − λk = ρA(xk). Combining (5.4.24)

and (5.4.25), we obtain

Lρ,γ(xk, λk+1)− dρ,γ(λk+1) ≤ ηk + ρ〈A(xk)− u∗λk,γ ,A(xk)〉+
ρ

2
‖A(xk)‖2

≤ ηk + ρ‖A(xk)− u∗λk,γ‖‖A(xk)‖+
ρ

2
‖A(xk)‖2

≤ ηk +
√

2ρ ηk ‖A(xk)‖+
ρ

2
‖A(xk)‖2 =

(
√
ηk +

√
ρ

2
‖A(xk)‖

)2

,

where the last inequality follows from Proposition 5.2.3 with Lρ = Lρ,γ , dρ = dρ,γ , and

u∗λk = u∗λk,γ .

The following technical result states a bound on the number of inner iterations performed

by the modified I-AL method applied to (5.2.37) when a constant sequence {ηk} is applied.

Lemma 5.4.3 Let ρ > 0, (εp, εd) ∈ <++ ×<++ and N̄ ∈ N be given, and let γ be given by

(5.2.43). Consider the modified I-AL method applied to the perturbed problem (5.2.37) with

penalty parameter ρ, iteration limit N̄ and inner tolerances η0, . . . , ηN̄ given by

ηk = ηγ :=
ρε2p

128N̄
, k = 0, . . . , N̄ − 1. (5.4.26)

Then the following statements hold:

143

a) the total number of inner iterations performed by the above method is bounded by⌈√
8Mρ,γ

γ

⌉{
2 max

(
1,
⌈
log 64γN̄D2

X
ρε2p

⌉)
+ min(N̄ ,Nγ)

⌈
2 log

(
1 + 24N̄

1
2DγΛ

ρεp

)⌉
+ max

(
1,
⌈
log 16γMρ,γD2

X

ε2d

⌉)}
,

(5.4.27)

where

Nγ :=
⌈

16[Dγ
Λ]2

ρ2ε2p

⌉
; (5.4.28)

b) if N̄ ≥ Nγ, then the above method successfully terminates in Nγ outer iterations with

an (εp, εd)-primal-dual solution of (5.1.1).

Proof. Statement b) immediately follows from the assumption N̄ ≥ Nγ and Theorem

5.2.1 applied to the perturbed problem (5.2.37). We now show part a). Note that by State-

ment b), the number of outer iterations of the above method is bounded by min{N̄ ,Nγ}.

Assume that the method terminates at the K-th outer iteration for some

0 ≤ K ≤ min{N̄ ,Nγ} − 1. (5.4.29)

Clearly, ‖A(xk)‖ > 3εp/4 for all 0 ≤ k ≤ K − 1. Hence, by using an argument similar to

the one preceding (5.4.3), we can show that

‖A(xk)‖2 ≤
9[Dγ

Λ]2

ρ2(k + 1)
, k = 1, . . . ,K − 1. (5.4.30)

For k = 0, . . . ,K, let x∗k := argminx∈XLρ,γ(x, λk), and lk denote the number of inner

iterations performed at step 1 of the modified I-AL method. By Theorem 1.1.5 with φ(·) =

Lρ,γ(·, λ0), Lφ = Mρ,γ , µ = γ and ε = ηγ , (5.2.26) and (5.4.26), we have

l0 ≤

⌈√
8Mρ,γ

γ

⌉
max

{
1,
⌈

log
γ‖x−1 − x∗0‖2

2ηγ

⌉}
≤

⌈√
8Mρ,γ

γ

⌉
max

{
1,
⌈

log
γD2

X

2ηγ

⌉}

=

⌈√
8Mρ,γ

γ

⌉
max

{
1,
⌈

log
64γN̄D2

X

ρε2p

⌉}
. (5.4.31)

It also follows from Theorem 1.1.5 that

lk ≤

⌈√
8Mρ,γ

γ

⌉
max

{
1,
⌈

log
γ‖xk−1 − x∗k‖2

2ηγ

⌉}
, ∀ k = 1, . . . ,K.

144

Now by using (5.4.23) and (5.4.30), we have

γ‖xk−1 − x∗k‖2

2
≤
(
√
ηγ +

√
ρ

2
‖A(xk−1)‖

)2

≤
(
√
ηγ +

3Dγ
Λ√

2ρk

)2

.

We then conclude from the previous two observations and (5.4.26) that

lk ≤

⌈√
8Mρ,γ

γ

⌉
max

{
1,

⌈
2 log

(
1 +

3Dγ
Λ√

2ρkηγ

)⌉}

=

⌈√
8Mρ,γ

γ

⌉⌈
2 log

(
1 +

3Dγ
Λ√

2ρkηγ

)⌉
≤

⌈√
8Mρ,γ

γ

⌉⌈
2 log

(
1 +

3Dγ
Λ√

2ρηγ

)⌉

=

⌈√
8Mρ,γ

γ

⌉⌈
2 log

(
1 +

24N̄
1
2Dγ

Λ

ρεp

)⌉
, ∀ k = 1, . . . ,K.

The above conclusion together with (5.4.27) and (5.4.31) then clearly imply that the total

number of inner iterations performed at step 1) of the modified I-AL method is bounded by

l0 +
∑K

k=1 lk ≤ l0 +K
⌈√

8Mρ,γ

γ

⌉⌈
2 log

(
1 + 24N̄

1
2DγΛ

ρεp

)⌉
≤

⌈√
8Mρ,γ

γ

⌉{
2 max

(
1,
⌈
log 64γN̄D2

X
ρε2p

⌉)
+K

⌈
log
(

1 + 24N̄
1
2DγΛ

ρεp

)⌉}
.

(5.4.32)

Moreover, let l̃K denote the number of inner iterations performed by subroutine PostPro-

cessing. By using Theorem 1.1.5 with φ(·) = Lρ,γ(·, λK), Lφ = Mρ,γ , µ = γ and ε = ζ̃ and

(5.2.42), we have

l̃K ≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,
⌈
log γD2

X

2ζ̃

⌉}
≤

⌈√
8Mρ,γ

γ

⌉ [
max

{
1,
⌈
log 64γD2

X
ρε2p

⌉}
+ max

{
1,
⌈
log 16γMρ,γD2

X

ε2d

⌉}]
.

(5.4.33)

Combining inequalities (5.4.29), (5.4.32) and (5.4.33), we can easily see that the total num-

ber of inner iterations performed by the modified I-AL method is bounded by (5.4.27).

We are now ready to prove Theorem 5.2.5.

Proof of Theorem 5.2.5: We first show part a). It immediately follows from Lemma

5.4.3(a) that the total number of inner iterations performed by the modified I-AL method

is bounded by (5.4.27) with N̄ = N̄γ(t) and ρ = ργ(t). Note that by (5.2.44), (5.2.45),

(5.4.40) and the fact that, by (5.2.46) and (5.2.47), log T (t) ≥ 2, we have

N̄γ(t) ≤ 16t2

ργ(t)2ε2p
+ 1 ≤ log T (t) + 1 ≤ 2 log T (t). (5.4.34)

145

Also, using definitions (5.2.41) and (5.2.44), we have that

γ ≤Mρ,γ = Lf + γ + ρ‖A‖2 ≤ 2ρ‖A‖2. (5.4.35)

This observation together with (5.2.43) and (5.2.44) then imply that⌈√
8Mρ,γ

γ

⌉
≤

⌈
4

√
ρ‖A‖2
γ

⌉
=

4

(
4t‖A‖2

γεp(log T (t))
1
2

+
Lf
γ

+ 1

) 1
2


≤ 4

(
4DXt‖A‖2

εpεd(log T (t))
1
2

+
DXLf
εd

+ 1

) 1
2

+ 1

≤ 8

√
DXt‖A‖2
εpεd

(log T (t))−
1
4 + 4

√
DXLf
εd

+ 5. (5.4.36)

Observe that, by (5.4.34), (5.4.35), (5.2.46) and (5.2.47),

log
64γD2

XN̄γ(t)
ργ(t)ε2p

≤ log
128γD2

X log T (t)
ργ(t)ε2p

≤ log
256‖A‖2D2

X log T (t)
ε2p

= 8 + 4 log
(
‖A‖DX

εp

) 1
2

+ log log T (t) = O (log T (t)) , (5.4.37)

and that, by (5.2.45), the fact that log x ≤ x, and (5.4.34),

min(N̄γ(t), Nγ)

⌈
2 log

(
1 +

24Dγ
Λ [N̄γ(t)]

1
2

ργ(t)εp

)⌉

≤ N̄γ(t)
⌈

2 log
(

1 +
6Dγ

Λ

t

[
log N̄γ(t)

] 1
2 [N̄γ(t)]

1
2

)⌉
≤ N̄γ(t)

⌈
2 log

(
1 +

6Dγ
Λ

t
N̄γ(t)

)⌉
≤ N̄γ(t)

⌈
2 log

(
1 +

12Dγ
Λ

t
log T (t)

)⌉
= O

{
log T (t) max

(
1, log

Dγ
Λ log T (t)

t

)}
. (5.4.38)

It also follows from (5.4.35), (5.2.43), (5.2.44), (5.2.45), (5.2.46) and (5.2.47) that

log
16γMρ,γD

2
X

ε2d
≤ log

16M2
ρ,γD

2
X

ε2d
≤ log

(
8ρ‖A‖2DX

εd

)2

≤ 2 log

[
8‖A‖2DX

εd

(
4t

εp(log T (t))
1
2

+
Lf + γ

‖A‖2

)]

= 2 log

[
8‖A‖2DX

εd

(
4t

εp(log T (t))
1
2

+
Lf
‖A‖2

+
εd

2DX‖A‖2

)]

≤ 2 log
[
8DX

(
4t‖A‖2

εpεd
+
Lf
εd

)
+ 4
]

= O(log T (t)). (5.4.39)

146

Now substituting bounds (5.4.36), (5.4.37), (5.4.38), and (5.4.39) into bound (5.4.27), we

obtain bound (5.2.48). Statement b) follows immediately from Lemma 5.4.3(b) and the fact

that, by (5.2.45), the assumption t ≥ Dγ
Λ and (5.4.34),

Nγ =
⌈

16[Dγ
Λ]2

ργ(t)2ε2p

⌉
≤
⌈

16t2

ργ(t)2ε2p

⌉
= N̄γ(t) ≤ 2 log T (t). (5.4.40)

Before proving Theorem 5.2.6, we first state two technical results that summarize some

properties of the function ψ defined in (5.2.49).

Lemma 5.4.4 Let ψ(t) and t̂ be defined in (5.2.49). Then, the following statements hold:

a) ψ(t) is continuous and non-decreasing for t ≥ 0;

b) ψ(0) ≤ 0 and ψ(t̂) ≥ 0.

Proof. Statement a) immediately following from the fact that, by (5.2.49),

ψ′(t) = S1

{
1− S2

4(S1t
1
2 + S2 + S3)

[
log(S1t

1
2 + S2 + S3)

]− 3
4

}
1

2
√
t

≥ S1(1− 1/4)
1

2
√
t
≥ 3S1

8
√
t
≥ 0, ∀ t > 0,

where in the first inequality we use the fact that log(S1t
1
2 +S2 +S3) ≥ 2 in view of (5.2.47).

It can be easily seen from (5.2.49) that ψ(0) ≤ 0. Noting that, by the definition of t̂ in

(5.2.49),

S2
1 t̂− S2

2 (S1t̂
1
2 + S2 + S3) = S2

1 t̂− S1S2
2 t̂

1
2 − S2

2 (S2 + S3) = 0,

we conclude from (5.2.49) and the fact that log τ ≤ τ ≤ τ2 for τ ≥ 1 that

ψ(t̂) = S1t̂
1
2 − S2

[
log(S1t̂

1
2 + S2 + S3)

] 1
4 ≥ S1t̂

1
2 − S2(S1t̂

1
2 + S2 + S3)

1
2 = 0.

We have thus shown that b) holds.

147

Lemma 5.4.5 Let ψ(t) and t̂ be defined in (5.2.49). Then, there exists t0 ∈ [0, t̂] such that

0 ≤ ψ(t0) ≤ 1. Moreover, we have

S1t
1
2
0 ≤ S2 [log T (t0)]

1
4 + 1, (5.4.41)

S1t
1
2 ≥ S2[log T (t)]

1
4 , ∀ t ≥ t0, (5.4.42)

log T (t0) = O (log T (0)) , (5.4.43)

where T (·), S1 and S2 are defined in (5.2.46) and (5.2.47).

Proof. The existence of t0 ∈ [0, t̂] satisfying 0 ≤ ψ(t0) ≤ 1 follows immediately from

Lemma 5.4.4. Inequality (5.4.41) follows from (5.2.46), (5.2.49) and the fact ψ(t0) ≤ 1.

Moreover, we conclude from (5.2.46), (5.2.49), the assumption ψ(t0) ≥ 0 and Lemma

5.4.4(a) that

S1t
1
2 − S2 [log T (t)]

1
4 = S1t

1
2 − S2

[
log(S1t

1
2 + S2 + S3)

] 1
4 = ψ(t) ≥ ψ(t0) ≥ 0

for any t ≥ t0, and hence that (5.4.42) holds. Also note that by (5.2.46), (5.2.49) and the

fact that t0 ≤ t̂, we have

log T (t0) = log(S1t
1
2
0 + S2 + S3) ≤ log(S1t̂

1
2 + S2 + S3) = O (log(S2 + S3)) = O (log T (0)) .

We are now ready to prove Theorem 5.2.6.

Proof of Theorem 5.2.6: Consider parameter t0 computed in step 0 of the modified I-AL

guess-and-check procedure. Assume first that t0 ≥ Dγ
Λ. Using this assumption, Theorem

5.2.5, relations (5.4.41) and (5.4.43), and the fact that, by (5.2.46) and (5.2.47), T (t) ≥ 4 for

every t ≥ 0, we conclude that the modified I-AL guess-and-check procedure will successfully

terminate after the first loop and that the total number of inner iterations is bounded by

O
{(
S1t

1
2
0 + S2 [log T (t0)]

1
4

)
[log T (t0)]

3
4 max

(
1, log

Dγ
Λ log T (t0)

t0

)}
= O

{(
S1t

1
2
0 + S2 [log T (t0)]

1
4

)
[log T (t0)]

3
4 log log T (t0)

}
= O{S2 log T (t0) log log T (t0)} = O{S2 log T (0) log log T (0)} ,

148

which is clearly bounded by (5.2.50).

Now assume that t0 < Dγ
Λ. Suppose that the modified I-AL guess-and-check procedure

terminates when the iteration count j is equal to J . Let

J̄ := max{0, dlog(Dγ
Λ/t0)e} (5.4.44)

and note that

2Dγ
Λ ≥ tJ̄ := t02J̄ ≥ Dγ

Λ. (5.4.45)

Theorem 5.2.5(b) and the second inequality in (5.4.45) then imply that J ≤ J̄ . Also observe

that, by relation (5.4.4) with L = 1, p1 = 1/2, t̄ = Dγ
Λ, K = J̄ , ν = Dγ

Λ log T (tJ̄), β0 = 0

and β1 = 1/
√
t0, we have

J̄∑
j=0

t
1
2
j max

(
1, log

Dγ
Λ log T (2Dγ

Λ)
tj

)

≤
√
t0

J̄∑
j=0

⌈
1√
t0
t

1
2
j

⌉
max

(
1,
⌈

log
Dγ

Λ log T (2Dγ
Λ)

tj

⌉)

= O
{√

t0

⌈
1√
t0

[Dγ
Λ]

1
2

⌉
max

(
1,
⌈

log
Dγ

Λ log T (2Dγ
Λ)

Dγ
Λ

⌉)}
= O

{(
[Dγ

Λ]
1
2 +
√
t0

)
max

(
1,
⌈
log log T (2Dγ

Λ)
⌉)}

= O
(

[Dγ
Λ]

1
2 log log T (Dγ

Λ)
)
, (5.4.46)

where the last identity follows from the facts that t0 ≤ Dγ
Λ and log T (Dγ

Λ) ≥ 2. Using

the facts that J ≤ J̄ and the function T given by (5.2.46) is non-decreasing, Theorem

5.2.5(a), relations (5.4.42) and (5.4.46), and the simple observation that by (5.4.45), we

have t0 ≤ tj ≤ 2Dγ
Λ for every j = 1, . . . , J̄ , we conclude that the total number of inner

iterations performed by the modified I-AL guess-and-check procedure is bounded by

O


J̄∑
j=0

[(
S1t

1
2
j + S2 [log T (tj)]

1
4

)
[log T (tj)]

3
4 max

(
1, log

Dγ
Λ log T (tj)

tj

)]
= O


J̄∑
j=0

[
S1t

1
2
j [log T (tj)]

3
4 max

(
1, log

Dγ
Λ log T (tj)

tj

)]
= O

[log T (2Dγ
Λ)]

3
4S1

J̄∑
j=0

[
t

1
2
j max

(
1, log

Dγ
Λ log T (2Dγ

Λ)
tj

)]
= O

{
[log T (Dγ

Λ)]
3
4S1[Dγ

Λ]
1
2 log log T (Dγ

Λ)
}
,

149

which is clearly bounded by (5.2.50).

5.5 Comparision with other first-order methods

In this section, we compare the results obtained in this chapter for the inexact AL meth-

ods with another possible approach for solving variational inequalities (VI) studied in Ne-

mirovski ([42]) for bounded sets, and Monteiro and Svaiter ([41]) for unbounded sets.

Given a closed convex set Ω ∈ <p and a monotone continuous function F : Ω→ <p. The

(monotone) VI problem with respect to the pair (F,X), denoted by V IP (F,Ω), consists of

finding w∗ such that

w∗ ∈ Ω, 〈w − w∗, F (w∗)〉 ≥ 0, ∀w ∈ Ω. (5.5.1)

It is well-known that, under the assumption that F is monotone and continuous, (5.5.1) is

equivalent to

w∗ ∈ Ω, 〈w − w∗, F (w)〉 ≥ 0, ∀w ∈ Ω.

Relaxing the above two conditions, we obtain the following two notions of approximate

solutions of V IP (F,Ω).

Definition 5.5.1 A point w̄ ∈ Ω is a (%, ε)-strong (resp., (%, ε)-weak) solution of V IP (F,Ω)

if there exists r ∈ <n such that ‖r‖ ≤ % and, for every w ∈ Ω, 〈w − w̄, F (w̄) − r〉 ≥ −ε

(resp., 〈w − w̄, F (w)− r〉 ≥ −ε).

It is well-known that the CP problem (5.1.1) is equivalent to solving the V IP (F,Ω),

where Ω := X ×<m and

F (w) = F (x, λ) :=

 ∇f(x) +A∗0λ

−A(x)

 .

Moreover, defining the norm on <n ×<m as ‖w‖ := (‖x‖2 + ‖λ‖2)1/2, then it is easy to see

that an (εp, εd)-primal-dual solution (x̄, λ̄) is a (%, 0)-strong solution, where % = max{εp, εd}.

Disregarding Lf , ‖A‖, DX , DΛ and Dγ
Λ, it has been shown in Monteiro and Svaiter ([41])

that, given (%, ε) ∈ <++ × <++, a variant of the Korpelevich’s method can find an (%, ε)-

strong solution for V IP (F,Ω) in O(%−2 + ε−1). On the other hand, we show in this chapter

150

that a (%, 0)-strong solution, and hence an approximate solution as above, can be found in

O
(

1
%

(log %−1)3/4 log log %−1

)
by applying the modified guess-and-check procedure in Subsection 3.2 with εp = εd = %/

√
2.

Hence, the complexity in this chapter is better than the one in [41] by at least a factor of

%(log %−1)3/4 log log %−1.

It should be noted that [41] also shows that an (%, ε)-weak solution for V IP (F,Ω) can

be found in

O(%−1 + ε−1). (5.5.2)

It would be interesting to see whether our analysis in this chapter can be modified to the

context of finding a weak solution of V IP (F,Ω) so as to obtain a better iteration-complexity

bound than (5.5.2).

5.6 Conclusions of this chapter

In this chapter, we present first-order methods for solving problem (5.1.1) based on an

inexact version of the classical augmented Lagrangian approach, where the subproblems

are approximately solved by means of Nesterov’s optimal method. We establish a bound

on the total number of Nesterov’s optimal iterations, i.e., the inner iterations, performed

throughout the entire inexact AL method to obtain a near primal-dual optimal solution.

We also present variants with better iteration-complexity bounds than the original inexact

AL method, which consist of applying the original approach directly to a perturbed problem

obtained by adding a strongly convex component to the objective function of the CP prob-

lem. We show that the iteration-complexity of the inexact AL methods for obtaining a near

primal-dual optimal solution compares favorably with other penalty based approaches, such

as the quadratic and exact penaly method studied in [33], and another possible approach

for solving variational inequalities studied in Nemirovski ([42]), and Monteiro and Svaiter

([41]).

151

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis we investigate the design and complexity analysis of the algorithms to solve

convex optimization problems under inexact first-order information. The main goal is to

design efficient algorithms for solving convex programming problems under a stochastic

oracle. To this end, we have

• introduced the mirror descent stochastic approximation algorithm and present highly

encouraging numerical results for this method applied to a certain class of convex

programming problems;

• developed accuracy estimates for stochastic programming problems by employing SA

type algorithms. We show that while running a mirror descent SA procedure one can

compute, with a small additional effort, lower and upper statistical bounds for the

optimal objective value. We demonstrate that for a certain class of convex stochastic

programs these bounds are comparable in quality with similar bounds computed by

the SAA method, while their computational cost is considerably smaller;

• conducted extensive numerical experiments to understand the performance of the

mirror descent SA algorithm for solving stochastic programing problems with a feasible

set more complicated than a standard simplex;

• demonstrated that a slightly modified mirror descent SA algorithm exhibits the best

known so far rate of convergence for solving stochastic composite optimization which

is guaranteed by a more involved stochastic mirror-prox algorithm;

• closed the theoretical gap between the upper and lower bounds on the rate of con-

vergence for solving stochastic composite optimization by developing the accelerated

152

stochastic approximation algorithm. Notice that the accelerated SA is the first uni-

versally optimal method for smooth, non-smooth and stochastic convex optimization;

• suggested viable ways to extend the application of efficient SA algorithms to a certain

class of equality constrained stochastic convex programming problems. More specif-

ically, if the accelerated SA is applied to solve the quadratic penalization problem

where the violation of the affine constraints is penalized, then the size of the Lagrange

multiplier associated with these affine constraints has, asymptotically, no affect on the

convergence rate.

We have also investigated certain interesting deterministic optimization technique, namely,

the augmented Lagrangian method, which operates on first-order information of the aug-

mented dual problem. We consider the situation where to obtain the exact first-order

information of the augmented dual is time-consuming and hence only approximate first-

order information is available in reality. Our main contribution consists of the following

aspects.

• We establish a bound on the total number of Nesterov’s optimal iterations, i.e., the

inner iterations, performed throughout the entire inexact AL method to obtain a

near primal-dual optimal solution. We also present variants with better iteration-

complexity bounds than the original inexact AL method;

• We show that the iteration-complexity of the inexact AL methods for obtaining a

near primal-dual optimal solution compares favorably with other penalty based ap-

proaches, such as the quadratic and exact penalty method studied, and another pos-

sible approach for solving variational inequalities;

• Some theoretical guidelines and guess-and-check procedures to specify certain param-

eters for the I-AL methods are provided.

A few topics are worth mentioning for future studies:

• to extend the accelerated SA algorithm for solving strongly convex programming prob-

lems and investigate its application in stochastic dynamic programming and statistical

153

learning;

• to conduct more computational studies for first-order methods for convex program-

ming. It will be very rewarding to propose first-order methods with both superb

practical performance and optimal rate of convergence;

• to explore the structure of the problems and the employed termination criterions, and

to improve convergence results for certain important convex programming problems,

such as, the equality constrained CP problems studied in the last two chapters;

• to solve problems arising from real applications such as engineering design, healthcare

and energy industry.

154

APPENDIX A

SOME TECHNICAL PROOFS

Our goal in this chpater is to prove Propositions 5.2.1 and 5.4.1.

Proof of Proposition 5.2.1: Let {(bk, rk)} be a sequence of epif converging to (b, r) for

k → +∞. It suffices to show that v(b) ≤ r. First notice that the fact that v(bk) ≤ rk

implies that there exists xk ∈ F(bk) such that f(xk) = v(bk) ≤ rk. Now we claim that the

sequence {xk} is bounded. Hence, by using this claim, there exists an accumulation point

x of the sequence {xk} such that x ∈ F(b), f(x) ≤ r as k → +∞, which clearly implies

that v(b) ≤ r. Now it remains to show that the sequence{xk} is bounded. Indeed, let f ′∞(·)

denote the recession function of f , and F(b)∞ denote the recession cone of the set F(b).

Also let φb(·) := f(·) + IF(b)(·), using the assumption that the set of optimal solutions for

(5.1.1) is nonempty and bounded, we have

{φ0}′∞(d) = f ′∞(d) + IF(0)∞
> 0

for all d 6= 0 (see Definitions 2.2.2 and 3.2.3, Remark 3.2.8 and Proposition 3.2.9 in [22]).

It can also be easily seen that the recession cone F(bk)∞ ≡ F(0)∞. It then follows from

the above two relations that {φbk}′∞(d) > 0 for all d 6= 0, which, by Remark 3.2.8 in [22],

implies that xk ∈ Argminxφbk(x) is bounded.

Our goal in the remaining part of this section is to prove Proposition 5.4.1. We first

start with an easy case of the result. Before stating this easy case, we mention a simple

inequality.

Lemma A.0.1 For any scalars τ ≥ 0, x > 0, and α ≥ 0, we have τx+ α ≤ (τ + α)dxe.

Lemma A.0.2 For some positive integer L, let positive scalars p1, p2, · · · , pL be given and

define

C0 := 2 + max
{

2, max
1≤l≤L

(
2
pl

+
4pl

2pl − 1

)}
.

155

Then, for any positive scalars β0, β1, · · · , βL, and t̄ > t0, we have

K∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉
≤ C0

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
, (A.0.1)

where K and t0, . . . , tK are defined in (5.4.5).

Proof. Without loss of generality, assume that t0 = (max(β0, 1)/β1)1/p1 . Clearly, due to

the definition of K in (5.4.5) and the assumption t̄ > t0, we have K < log(t̄/t0) + 1, and

hence that t02K+1 < 4t̄. Using these relations and the inequality log x = (log xp)/p ≤ xp/p

for any x > 0, p > 0, we obtain

K∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉
≤

K∑
k=0

(
1 + β0 +

L∑
l=1

βlt
pl
0 2plk

)
≤ (1 + β0)(1 +K) +

L∑
l=1

βlt
pl
0

2(K+1)pl

2pl − 1

≤ (1 + β0)
[
2 + log

(
t̄

t0

)]
+

L∑
l=1

βl
(4t̄)pl

2pl − 1

≤ (1 + β0)
[
2 +

1
p1

(
t̄

t0

)p1
]

+
L∑
l=1

4pl

2pl − 1
βl t̄

pl

≤ (1 + β0)
[
2 +

1
p1

(
β2t̄

p1

max(β1, 1)

)]
+

L∑
l=1

4pl

2pl − 1
βl t̄

pl

≤ 2(1 + β0) +
2
p1
β1t̄

p1 +
L∑
l=1

4pl

2pl − 1
βl t̄

pl

≤ 2 + max
{

2,
2
p1

+
4p1

2p1 − 1
, max

2≤l≤L

4pl

2pl − 1

}
(β0 +

L∑
l=1

βl t̄
pl).

Inequality (A.0.1) now clearly follows from the above conclusion, Lemma A.0.1, and some

trivial majorization.

The following technical lemma provides an useful inequality to prove a more difficult

case of our result.

Lemma A.0.3 Let the positive scalars a and p be given. For any 0 ≤ K ≤ a−1/(p ln 2)−1,

we have
K∑
k=0

2pk(a− k) ≤ 2p(K+1)

p ln 2

[
a− (K + 1) +

1
p ln 2

]
.

Proof. Noting that the function ψ(s) := 2ps(a − s) is non-decreasing for any s ≤

156

a− 1/(p ln 2), we obtain

K∑
k=0

2pk (a− k) ≤
∫ K+1

0
2ps (a− s) ds =

2ps

p ln 2

(
a− s+

1
pl ln 2

) ∣∣∣∣K+1

0

≤ 2p(K+1)

p ln 2

[
a− (K + 1) +

1
pl ln 2

]
.

We now prove a more difficult case of the result.

Lemma A.0.4 For some positive integer L, let positive scalars p1, p2, · · · , pL be given and

define

C1 := 1 +
1

(ln 2) min1≤l≤L pl
, (A.0.2)

C2 := 5 + max
{

5, max
1≤l≤L

(
4
p2
l

+
7
pl

+ 2C14pl
)}

. (A.0.3)

Then, for any positive scalars β0, β1, · · · , βL, and ν, we have

K∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉
max

{
1,
⌈

log
ν

tk

⌉}
≤ C2

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
(A.0.4)

for every t̄ ∈ (t0, t̃], where t̃ := 2−C1ν and the scalars K and t0, . . . , tK are defined in

(5.4.5).

Proof. Without loss of generality, assume that t0 = (max(β0, 1)/β1)1/p1 . Clearly, due

to the definition of K in (5.4.5) and the assumption t̄ > t0, we have log(t̄/t0) ≤ K ≤

log(t̄/t0) + 1. Using these relations, the inequalities log x = (log xp)/p ≤ xp/p for any

x > 0, p > 0, and (log x)2 = (2 log xp/2)/p)2 ≤ 4xp/p2 for any x ≥ 1, p > 0, and the facts

157

log(ν/t̄) ≥ C1 ≥ 1 and t̄/t0 ≥ 1 due to the assumption t0 < t̄ ≤ 2−C1ν, we obtain

K∑
k=0

(
log

ν

tk
+ 1
)

=
K∑
k=0

(
log

ν

t0
+ 1− k

)
= (K + 1)

(
log

ν

t0
+ 1− K

2

)
= (K + 1)

(
log

ν

t0
−K + 1 +

K

2

)
≤ (K + 1)

(
log

ν

t̄
+ 1 +

K

2

)
=

1
2

[
2(K + 1) log

ν

t̄
+K2 + 3K + 2

]
≤ 1

2
(K2 + 5K + 4)

⌈
log

ν

t̄

⌉
≤ 1

2

(
log2 t̄

t0
+ 7 log

t̄

t0
+ 10

)⌈
log

ν

t̄

⌉
≤ 1

2

[(
4
p2

1

+
7
p1

)(
t̄

t0

)p1

+ 10
] ⌈

log
ν

t̄

⌉
=

1
2

[(
4
p2

1

+
7
p1

)
β1t̄

p1

max{1, β0}
+ 10

] ⌈
log

ν

t̄

⌉
≤

[(
4
p2

1

+
7
p1

)
β1t̄

p1

1 + β0
+ 5
] ⌈

log
ν

t̄

⌉
. (A.0.5)

Moreover, it follows from the fact K ≤ log(t̄/t0) + 1 and the assumption t0 < t̄ ≤ 2−C1ν

that

K + 1 ≤ log
t̄

t0
+ 2 = log

2ν
t0

+ log
t̄

2ν
+ 2 ≤ log

2ν
t0
− C1 + 1

= log
2ν
t0
− 1

(ln 2) min1≤l≤L pl
≤ log

2ν
t0
− 1

(ln 2) pl
, ∀ 1 ≤ l ≤ L,

which, together with Lemma A.0.3 (with a = log(2ν/t0) and p = pl) and the fact that

K ≥ log(t̄/t0), then imply that

K∑
k=0

2plk
(

log
2ν
t0
− k
)
≤ 2pl(K+1)

pl ln 2

(
log

2ν
t0
− (K + 1) +

1
pl ln 2

)

≤ 2pl(K+1)

pl ln 2

(
log

2ν
t0
− (log

t̄

t0
+ 1) +

1
pl ln 2

)
=

2pl(K+1)

pl ln 2

(
log

ν

t̄
+

1
pl ln 2

)
≤ 2

pl ln 2
2pl(K+1)

⌈
log

ν

t̄

⌉
≤ 2C12pl(K+1)

⌈
log

ν

t̄

⌉
, (A.0.6)

where the last two inequalities follow from the relation log(ν/t̄) ≥ log(ν/t̃) = C1 ≥

1/(pl ln 2).

By the definitions of K and tk, ∀k = 1, · · · ,K in (5.4.5) and the assumption t̄ ≤ 2−C0ν,

we have tk = t02k ≤ t02log(t̄/t0)+1 = 2t̄ ≤ 2−C0+1ν, which implies that log(ν/tk) ≥ C0−1 > 0

and hence that max{1, dlog(ν/tk)e} = dlog(ν/tk)e ≤ log(ν/tk) + 1. Using these relations,

158

(A.0.5), (A.0.6), the relation t02K+1 < 4t̄ due to K < log(t̄/t0) + 1, we obtain

K∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉
max

{
1,
⌈

log
ν

tk

⌉}
≤

K∑
k=0

(
1 + β0 +

L∑
l=1

βlt
pl
k

)(
log

ν

tk
+ 1
)

= (1 + β0)
K∑
k=0

(
log

ν

tk
+ 1
)

+
L∑
l=1

K∑
k=0

βlt
pl
0 2kpl

(
log

ν

tk
+ 1
)

= (1 + β0)
K∑
k=0

(
log

ν

tk
+ 1
)

+
L∑
l=1

K∑
k=0

βlt
pl
0 2kpl

(
log

2ν
t0
− k
)

≤

{
5(1 + β0) +

(
4
p2

1

+
7
p1

)
β1t̄

p1 + 2C0

L∑
l=1

βlt
pl
0 2pl(K+1)

}⌈
log

ν

t̄

⌉
≤

[
5(1 + β0) +

(
4
p2

1

+
7
p1

)
β1t̄

p1 + 2C0

L∑
l=1

4plβl t̄pl
] ⌈

log
ν

t̄

⌉
≤

[
5 + max

{
5,

4
p2

1

+
7
p1

+ 2C04p1 , 2C0 max
2≤l≤L

4pl
} (

β0 +
L∑
l=1

βl t̄
pl

)]⌈
log

ν

t̄

⌉
.

Inequality (A.0.4) now immediately follows from the above conclusion, Lemma A.0.1, the

fact that

max{1, dlog(ν/t̄)e} = dlog(ν/t̄)e due to the assumption t̄ ≤ ν2−C1 , and some trivial ma-

jorization.

We are now ready to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. Assume first that t̄ ≤ t0. Due to the definition of K in (5.4.5),

we have K = 0 in this case, which, in view of the definition of t0 in (5.4.5) and Lemma

A.0.1, then imply that

K∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉
max

{
1,
⌈

log
ν

tk

⌉}
=

⌈
β0 +

L∑
l=1

βlt
pl
0

⌉
max

{
1,
⌈

log
ν

t0

⌉}

≤

⌈
β0 +

L∑
l=1

βlt
pl
0

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
≤ dβ0 + Lmax{β0, 1}emax

{
1,
⌈
log

ν

t̄

⌉}
≤ d(L+ 1)β0 + Lemax

{
1,
⌈
log

ν

t̄

⌉}
≤ (2L+ 1) dβ0emax

{
1,
⌈
log

ν

t̄

⌉}
≤ (2L+ 1)

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
.

Hence, in the case where t̄ ≤ t0, inequality (5.4.4) holds with C = 2L+ 1.

Assume now that t̄ > t0. Denoting t̃ := 2−C1ν, where C1 is given in (A.0.2), we further

consider two subcases: a) t̃ ≥ t̄; b) t̃ ≤ t̄. In subcase a), we have t̃ ≥ t̄ > t0, which, in view

159

of Lemma A.0.4, clearly implies that inequality (5.4.4) holds with C = C2.

We now consider the remaining subcase b) where t̃ ≤ t̄. Denoting K̃ := max{0, dlog(t̃/t0)e},

we have tk ≥ t̃ for any k ≥ K̃ and hence that,

max
{

1,
⌈

log
ν

tk

⌉}
≤ max

{
1,
⌈
log

ν

t̃

⌉}
= max {1, dC1e} ≤ C1 + 1, ∀k ≥ K̃,

which together with Lemma A.0.2, then imply that

K∑
k=K̃

⌈
β0 +

L∑
l=1

(
βl t

pl
k

)⌉
max

{
1,
⌈

log
ν

tk

⌉}

≤ (C1 + 1)
K∑

k=K̃

⌈
β0 +

L∑
l=1

(
βl t

pl
k

)⌉
≤ (C1 + 1)

K∑
k=0

⌈
β0 +

L∑
l=1

(
βl t

pl
k

)⌉

≤ C0(C1 + 1)

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
.

Moreover, if K̃ ≥ 1, i.e., t̃ > t0, it then follows from Lemma A.0.4 with t̄ = t̃ that

K̃−1∑
k=0

⌈
β0 +

L∑
l=1

βlt
pl
k

⌉ ⌈
log

ν

tk

⌉
≤ C2

⌈
β0 +

L∑
l=1

βl t̃
pl

⌉ ⌈
log

ν

t̃

⌉
= C2

⌈
β0 +

L∑
l=1

βl t̃
pl

⌉
dC1e

≤ C2

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
dC1e

≤ (C1 + 1)C2

⌈
β0 +

L∑
l=1

βl t̄
pl

⌉
max

{
1,
⌈
log

ν

t̄

⌉}
,

where the second inequality follows from the assumption t̃ ≤ t̄. Combining the previous

two conclusions, we conclude that (5.4.4) holds with C = (C1 + 1)(C0 + C2).

160

APPENDIX B

DETAILED NUMERICAL RESULTS FOR VALIDATION

ANALYSIS

161

Table 18: SA vs SAA for EU-1
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -19.3503 3.1475 -18.9132 -18.9132 -20.6156 -19.2006 0
0.010 -19.3420 3.1445 -18.9131 -18.9131 -20.6156 -19.1929 1
0.050 -19.2762 3.1205 -18.9127 -18.9127 -20.6156 -19.1315 0

N-SA 0.100 -19.1952 3.0915 -18.9124 -18.9124 -20.6156 -19.0559 0
(N=100) 0.500 -18.5939 2.8906 -18.9112 -18.9112 -20.6156 -18.4886 1

1.000 -17.9408 2.6962 -18.9115 -18.9115 -20.6156 -17.8641 0
5.000 -14.8128 1.9667 -18.9265 -18.9265 -20.6156 -14.8226 0
10.000 -13.0173 1.6291 -18.9382 -18.9382 -20.6156 -13.0614 1
0.005 -19.3549 3.1484 -19.2891 -19.2863 -19.4403 -19.1874 2
0.010 -19.3512 3.1463 -19.2891 -19.2863 -19.4403 -19.1838 2
0.050 -19.3219 3.1293 -19.2891 -19.2862 -19.4403 -19.1552 2

N-SA 0.100 -19.2856 3.1088 -19.2891 -19.2862 -19.4403 -19.1197 2
(N=1000) 0.500 -19.0087 2.9659 -19.2891 -19.2861 -19.4403 -18.8495 2

1.000 -18.6918 2.8258 -19.2892 -19.2862 -19.4403 -18.5398 2
5.000 -16.8467 2.2564 -19.2909 -19.2876 -19.4403 -16.7191 2
10.000 -15.3926 1.9396 -19.2923 -19.2888 -19.4403 -15.2802 2
0.005 -19.3558 3.1487 -19.2998 -19.2994 -19.4063 -19.2671 3
0.010 -19.3530 3.1468 -19.2998 -19.2994 -19.4063 -19.2643 3
0.050 -19.3310 3.1319 -19.2998 -19.2994 -19.4063 -19.2426 3

N-SA 0.100 -19.3038 3.1139 -19.2998 -19.2994 -19.4063 -19.2156 3
(N=2000) 0.500 -19.0948 2.9879 -19.2998 -19.2994 -19.4063 -19.0088 3

1.000 -18.8530 2.8640 -19.2999 -19.2995 -19.4063 -18.7693 4
5.000 -17.4311 2.3983 -19.3011 -19.3007 -19.4063 -17.3062 3
10.000 -16.2469 2.1547 -19.3021 -19.3016 -19.4063 -16.0626 3

0.005 -18.6749 2.9086 -18.9113 -18.9113 -20.6156 -18.5716 0
0.010 -17.9962 2.6935 -18.9123 -18.9123 -20.6156 -17.9301 0
0.050 -15.1313 2.0948 -18.9150 -18.9150 -20.6156 -15.1044 0

E-SA 0.100 -14.1627 1.9553 -18.9134 -18.9134 -20.6156 -14.1330 0
(N=100) 0.500 -13.2785 1.8369 -18.9124 -18.9124 -20.6156 -13.3260 1

1.000 -13.1712 1.8221 -18.9122 -18.9122 -20.6156 -13.2404 0
5.000 -13.0722 1.8108 -18.9122 -18.9122 -20.6156 -13.1487 1
10.000 -13.0589 1.8091 -18.9122 -18.9122 -20.6156 -13.1320 0
0.005 -19.0549 2.9808 -19.2891 -19.2861 -19.4403 -18.8944 1
0.010 -18.7532 2.8325 -19.2893 -19.2862 -19.4403 -18.6035 1
0.050 -16.9969 2.3496 -19.2898 -19.2867 -19.4403 -16.8469 1

E-SA 0.100 -15.7783 2.3432 -19.2896 -19.2866 -19.4403 -15.6116 2
(N=1000) 0.500 -13.6786 1.8912 -19.2893 -19.2864 -19.4403 -13.5487 1

1.000 -13.3306 1.8349 -19.2892 -19.2863 -19.4403 -13.2329 1
5.000 -13.0408 1.8000 -19.2892 -19.2863 -19.4403 -12.9527 1
10.000 -13.0024 1.7957 -19.2892 -19.2863 -19.4403 -12.9122 1
0.005 -19.1311 3.0016 -19.2998 -19.2994 -19.4063 -19.0447 2
0.010 -18.9050 2.8701 -19.3000 -19.2995 -19.4063 -18.8221 1
0.050 -17.5945 2.5185 -19.3003 -19.2999 -19.4063 -17.4574 2

E-SA 0.100 -16.5355 2.3273 -19.3003 -19.2999 -19.4063 -16.3353 2
(N=2000) 0.500 -14.4868 2.3222 -19.3000 -19.2996 -19.4063 -13.8779 2

1.000 -14.1098 2.3486 -19.2999 -19.2996 -19.4063 -13.4123 2
5.000 -13.5949 2.3780 -19.2999 -19.2995 -19.4063 -13.0214 2
10.000 -13.4814 2.3808 -19.2999 -19.2995 -19.4063 -12.9633 2

SAA N=100 -18.5799 2.8127 - - -20.6156 -20.6156 2
SAA N=1000 -19.2104 2.9673 - - -19.4403 -19.4403 14
SAA N=2000 -19.2700 3.0019 - - -19.4063 -19.4063 27

162

Table 19: SA vs SAA for EU-2
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -38.1358 6.3013 -62.0678 -62.0679 -67.3351 -37.7797 1
0.010 -38.2777 6.3016 -62.0637 -62.0637 -67.3351 -37.8657 1
0.050 -39.5633 6.3170 -62.0320 -62.0320 -67.3351 -38.5604 1

N-SA 0.100 -41.3122 6.3623 -61.9965 -61.9965 -67.3351 -39.4440 1
(N=100) 0.500 -51.5592 7.1720 -61.8789 -61.8789 -67.3351 -45.6782 1

1.000 -53.7202 7.5889 -61.8677 -61.8677 -67.3351 -48.6930 0
5.000 -50.1970 7.2056 -61.8935 -61.8935 -67.3351 -48.9589 0
10.000 -44.3844 6.2152 -61.8906 -61.8906 -67.3351 -44.6652 0
0.005 -38.5134 6.3022 -62.8773 -62.8591 -63.0584 -37.9218 3
0.010 -39.0381 6.3052 -62.8761 -62.8583 -63.0584 -38.1864 3
0.050 -43.4184 6.4096 -62.8675 -62.8524 -63.0584 -40.3681 3

N-SA 0.100 -49.1950 6.7643 -62.8607 -62.8477 -63.0584 -43.2200 3
(N=1000) 0.500 -59.5124 7.9965 -62.8492 -62.8396 -63.0584 -53.4417 3

1.000 -60.5022 8.2671 -62.8475 -62.8383 -63.0584 -56.0828 3
5.000 -57.4415 8.0493 -62.8512 -62.8410 -63.0584 -55.6279 3
10.000 -54.4349 7.6609 -62.8532 -62.8425 -63.0584 -53.1233 3
0.005 -38.7364 6.3032 -62.8993 -62.8945 -62.9984 -38.1877 6
0.010 -39.4895 6.3093 -62.8981 -62.8935 -62.9984 -38.5625 5
0.050 -45.8521 6.5226 -62.8898 -62.8866 -62.9984 -41.6791 5

N-SA 0.100 -52.7069 7.0492 -62.8850 -62.8825 -62.9984 -45.5742 6
(N=2000) 0.500 -60.8674 8.2380 -62.8776 -62.8762 -62.9984 -55.6583 5

1.000 -61.4004 8.4178 -62.8768 -62.8754 -62.9984 -57.9291 6
5.000 -58.9613 8.1694 -62.8790 -62.8775 -62.9984 -57.5192 5
10.000 -56.5552 8.1115 -62.8805 -62.8788 -62.9984 -55.3438 5

0.005 -44.7298 6.5411 -61.9388 -61.9387 -67.3351 -41.2221 0
0.010 -50.8755 7.1191 -61.8813 -61.8813 -67.3351 -44.6372 0
0.050 -52.9844 7.7711 -61.8799 -61.8799 -67.3351 -50.4057 1

E-SA 0.100 -48.9209 7.0075 -61.9036 -61.9036 -67.3351 -48.3108 1
(N=100) 0.500 -43.1763 6.4523 -61.9653 -61.9653 -67.3351 -43.2668 0

1.000 -42.4103 6.4126 -61.9776 -61.9776 -67.3351 -42.6107 0
5.000 -41.7427 6.3835 -61.9889 -61.9889 -67.3351 -42.1865 1
10.000 -41.6408 6.3801 -61.9907 -61.9907 -67.3351 -42.0068 1
0.005 -56.4912 7.5038 -62.8524 -62.8419 -63.0584 -47.9520 2
0.010 -60.6441 8.1788 -62.8485 -62.8390 -63.0584 -53.2857 1
0.050 -59.4372 8.1330 -62.8483 -62.8389 -63.0584 -57.1628 2

E-SA 0.100 -56.4664 7.8226 -62.8509 -62.8408 -63.0584 -55.1036 1
(N=1000) 0.500 -47.1630 6.9548 -62.8617 -62.8485 -63.0584 -46.1799 2

1.000 -44.2730 6.6700 -62.8657 -62.8512 -63.0584 -43.7097 1
5.000 -42.1794 6.4795 -62.8697 -62.8539 -63.0584 -41.8224 2
10.000 -41.9037 6.4625 -62.8702 -62.8543 -63.0584 -41.5539 1
0.005 -59.5578 7.9151 -62.8792 -62.8776 -62.9984 -51.0444 3
0.010 -61.7670 8.4029 -62.8772 -62.8758 -62.9984 -55.8117 4
0.050 -60.3580 8.2543 -62.8773 -62.8759 -62.9984 -58.7962 3

E-SA 0.100 -58.0879 7.9671 -62.8788 -62.8773 -62.9984 -57.1121 3
(N=2000) 0.500 -48.9764 7.1088 -62.8862 -62.8836 -62.9984 -48.2204 3

1.000 -45.8957 7.8486 -62.8898 -62.8865 -62.9984 -45.0630 4
5.000 -43.3615 8.5239 -62.8937 -62.8898 -62.9984 -42.0979 3
10.000 -43.1312 8.7238 -62.8943 -62.8903 -62.9984 -41.7328 3

SAA N=100 -58.9225 8.9102 - - -67.3351 -67.3350 2
SAA N=1000 -62.6459 8.9095 - - -63.0584 -63.0584 19
SAA N=2000 -62.8749 8.9099 - - -62.9984 -62.9983 38

163

Table 20: SA vs SAA for EU-3
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -39.6117 6.3013 -82.3157 -82.3157 -88.4304 -39.2556 1
0.010 -39.7537 6.3016 -82.3084 -82.3084 -88.4304 -39.3416 1
0.050 -41.0393 6.3170 -82.2505 -82.2505 -88.4304 -40.0363 0

N-SA 0.100 -42.7881 6.3623 -82.1798 -82.1798 -88.4304 -40.9200 0
(N=100) 0.500 -57.4667 7.8849 -81.8238 -81.8239 -88.4304 -48.3655 0

1.000 -67.3666 9.5826 -81.7461 -81.7461 -88.4304 -55.4946 0
5.000 -68.6110 10.8605 -81.7913 -81.7913 -88.4304 -63.1347 1
10.000 -65.6632 11.2328 -81.8150 -81.8150 -88.4304 -62.5604 1
0.005 -39.9893 6.3022 -83.1274 -82.9784 -83.1184 -39.3977 3
0.010 -40.5141 6.3052 -83.1252 -82.9773 -83.1184 -39.6624 2
0.050 -44.8943 6.4096 -83.1080 -82.9691 -83.1184 -41.8440 3

N-SA 0.100 -50.7953 6.7777 -83.0894 -82.9602 -83.1184 -44.7043 3
(N=1000) 0.500 -77.0042 10.6584 -83.0562 -82.9434 -83.1184 -63.0870 3

1.000 -80.2141 11.4031 -83.0530 -82.9415 -83.1184 -70.4144 2
5.000 -77.8238 11.1152 -83.0589 -82.9448 -83.1184 -74.4543 3
10.000 -75.5959 11.1703 -83.0627 -82.9468 -83.1184 -72.6843 3
0.005 -40.2123 6.3032 -83.1493 -82.9893 -83.0039 -39.6637 5
0.010 -40.9655 6.3093 -83.1470 -82.9888 -83.0039 -40.0384 5
0.050 -47.3281 6.5226 -83.1294 -82.9845 -83.0039 -43.1550 6

N-SA 0.100 -55.7484 7.2340 -83.1132 -82.9798 -83.0039 -47.2583 5
(N=2000) 0.500 -80.1848 11.3168 -83.0944 -82.9737 -83.0039 -67.8061 6

1.000 -81.5215 11.7493 -83.0932 -82.9730 -83.0039 -73.7930 5
5.000 -79.2787 11.3618 -83.0972 -82.9747 -83.0039 -76.7361 5
10.000 -77.1648 10.9266 -83.0998 -82.9755 -83.0039 -75.1356 5

0.005 -46.2058 6.5411 -82.0663 -82.0663 -88.4304 -42.6980 0
0.010 -52.9706 7.1919 -81.9096 -81.9096 -88.4304 -46.2106 0
0.050 -69.0513 10.0283 -81.7446 -81.7446 -88.4304 -59.6579 1

E-SA 0.100 -64.4670 9.7883 -81.8014 -81.8014 -88.4304 -60.0157 1
(N=100) 0.500 -51.4511 10.2614 -81.9668 -81.9668 -88.4304 -49.8357 0

1.000 -49.3325 11.0861 -82.0287 -82.0287 -88.4304 -46.8866 0
5.000 -45.5870 6.5358 -82.0956 -82.0956 -88.4304 -43.3252 1
10.000 -45.3499 6.5216 -82.1024 -82.1024 -88.4304 -43.1719 1
0.005 -60.9010 7.8322 -83.0739 -82.9526 -83.1184 -49.9017 2
0.010 -74.4544 9.9248 -83.0616 -82.9463 -83.1184 -59.1547 2
0.050 -79.1243 11.3623 -83.0530 -82.9414 -83.1184 -73.2204 2

E-SA 0.100 -75.8435 10.8148 -83.0551 -82.9428 -83.1184 -72.6632 2
(N=1000) 0.500 -60.2684 9.7266 -83.0720 -82.9515 -83.1184 -58.7534 1

1.000 -53.4428 9.7788 -83.0846 -82.9579 -83.1184 -52.3161 2
5.000 -46.7625 6.4998 -83.1021 -82.9663 -83.1184 -46.4668 2
10.000 -45.9571 6.4594 -83.1048 -83.1048 -83.9029 -45.5528 2
0.005 -68.6529 8.8532 -83.1047 -82.9771 -83.0039 -54.3649 3
0.010 -78.6518 10.7185 -83.0975 -82.9748 -83.0039 -64.4228 3
0.050 -80.5735 11.6903 -83.0931 -82.9730 -83.0039 -75.9516 3

E-SA 0.100 -78.2839 11.2592 -83.0945 -82.9736 -83.0039 -75.4904 3
(N=2000) 0.500 -64.3056 9.2455 -83.1041 -82.9769 -83.0039 -62.9399 3

1.000 -56.8833 9.8019 -83.1131 -82.9798 -83.0039 -55.4457 4
5.000 -48.9097 11.1414 -83.1294 -82.9845 -83.0039 -47.0649 3
10.000 -47.8454 11.8443 -83.1323 -83.1322 -83.3646 -45.8304 3

SAA N=100 -77.8239 12.5917 - - -88.4304 -88.4304 3
SAA N=1000 -82.8458 12.6014 - - -83.1184 -83.1183 20
SAA N=2000 -83.0845 12.6015 - - -83.0039 -83.0039 38

164

Table 21: SA vs SAA for EU-4
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -39.1382 6.3012 -103.8668 -103.8668 -135.1012 -38.8100 1
0.010 -39.2088 6.3013 -103.8612 -103.8612 -135.1012 -38.8528 0
0.050 -39.7787 6.3059 -103.8158 -103.8156 -135.1012 -39.1969 0

N-SA 0.100 -40.6311 6.3169 -103.7576 -103.7575 -135.1012 -39.6309 0
(N=100) 0.500 -47.8499 6.6972 -103.2766 -103.2703 -135.1012 -43.2413 0

1.000 -57.3197 8.0030 -102.8337 -102.7924 -135.1012 -47.9764 1
5.000 -86.1072 51.7058 -103.4591 -103.4589 -156.8338 -70.8437 1
10.000 -90.2683 34.5832 -103.7156 -103.7169 -156.8338 -82.7600 1
0.005 -39.3257 6.3014 -104.6774 -104.5178 -110.8567 -38.8632 3
0.010 -39.5851 6.3022 -104.6757 -104.5164 -110.8567 -38.9944 3
0.050 -41.7089 6.3270 -104.6621 -104.5034 -110.8567 -40.0605 3

N-SA 0.100 -44.4731 6.4088 -104.6440 -104.4866 -110.8567 -41.4323 3
(N=1000) 0.500 -67.7814 9.2616 -104.5130 -104.3583 -110.8567 -53.1137 3

1.000 -86.1106 15.0456 -104.4343 -104.2763 -110.8567 -65.5627 3
5.000 -99.5512 38.4448 -104.4886 -104.4763 -112.8418 -89.6211 3
10.000 -98.4015 41.0811 -104.4814 -104.4814 -126.7905 -90.2347 3
0.005 -39.4361 6.3017 -104.6990 -104.5673 -107.2058 -39.0746 5
0.010 -39.8073 6.3032 -104.6976 -104.5658 -107.2058 -39.2600 5
0.050 -42.8712 6.3533 -104.6831 -104.5530 -107.2058 -40.7748 5

N-SA 0.100 -46.8982 6.5210 -104.6635 -104.5357 -107.2058 -42.7393 5
(N=2000) 0.500 -76.9801 11.2353 -104.5415 -104.4233 -107.2058 -58.7447 6

1.000 -92.4109 18.0166 -104.4804 -104.3618 -107.2058 -72.2851 6
5.000 -100.1597 38.6309 -104.6123 -104.5046 -107.5820 -92.0804 6
10.000 -98.7639 33.4377 -104.7341 -104.7341 -115.3887 -92.4497 5

0.005 -42.3324 6.3614 -103.6555 -103.6555 -135.1012 -40.5109 0
0.010 -45.7234 6.5356 -103.4658 -103.4658 -135.1012 -42.2545 0
0.050 -65.4026 9.1650 -102.8399 -102.8251 -135.1012 -54.0087 0

E-SA 0.100 -71.9510 11.0358 -102.5784 -102.5595 -135.1012 -60.2342 0
(N=100) 0.500 -64.6265 11.8169 -103.0449 -102.6408 -135.1012 -61.9645 1

1.000 -58.5949 13.5084 -102.9164 -102.5881 -135.1012 -57.2348 1
5.000 -51.8700 7.5180 -103.0982 -103.0799 -135.1012 -51.9177 1
10.000 -51.4719 8.1276 -103.3523 -103.3523 -244.1578 -46.3071 1
0.005 -49.6303 6.7088 -104.6225 -104.4666 -110.8567 -44.0540 2
0.010 -60.2552 7.8013 -104.5894 -104.4354 -110.8567 -49.3742 2
0.050 -84.8213 12.8601 -104.5060 -104.3555 -110.8567 -71.1002 2

E-SA 0.100 -89.1139 15.4349 -104.4634 -104.3129 -110.8567 -78.0858 2
(N=1000) 0.500 -84.9472 18.8111 -104.3991 -104.2318 -110.8567 -80.3334 1

1.000 -75.0741 14.9765 -104.4396 -104.2645 -110.8567 -73.2758 2
5.000 -55.2427 7.3760 -104.5551 -104.4008 -110.8567 -54.8496 2
10.000 -52.8571 7.0963 -104.5760 -104.5760 -126.2563 -51.0361 2
0.005 -54.0474 7.0659 -104.6468 -104.5213 -107.2058 -46.3947 3
0.010 -68.0061 8.8163 -104.6229 -104.5002 -107.2058 -53.7987 3
0.050 -88.4424 14.1327 -104.5570 -104.4399 -107.2058 -75.8246 3

E-SA 0.100 -92.1313 16.8344 -104.5233 -104.4072 -107.2058 -82.1191 4
(N=2000) 0.500 -89.9439 21.9351 -104.4546 -104.3297 -107.2058 -84.7472 3

1.000 -81.7297 19.6360 -104.4727 -104.3299 -106.7333 -77.5126 3
5.000 -57.7183 8.8114 -104.5973 -104.4756 -107.2058 -56.7866 3
10.000 -55.4649 15.4939 -104.6239 -104.5875 -109.0572 -52.8853 3

SAA N=100 -72.3744 143.0249 - - -134.5648 -134.5647 3
SAA N=1000 -96.2697 72.8944 - - -108.3190 -108.3142 93
SAA N=2000 -99.3096 61.1053 - - -105.0890 -105.0881 163

165

Table 22: SA vs SAA for EU-5
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -38.3300 6.3012 -103.8925 -103.8925 -146.7304 -38.0152 1
0.010 -38.3669 6.3012 -103.8890 -103.8890 -146.7304 -38.0375 1
0.050 -38.6626 6.3019 -103.8610 -103.8610 -146.7304 -38.2167 1

N-SA 0.100 -39.0423 6.3062 -103.8250 -103.8250 -146.7304 -38.4418 0
(N=100) 0.500 -42.6895 6.4052 -103.5194 -103.5183 -146.7304 -40.2841 0

1.000 -47.4963 6.7351 -103.2526 -103.2406 -146.7304 -42.6755 0
5.000 -79.9383 18.7838 -103.1278 -102.9631 -146.7304 -61.4136 0
10.000 -82.0792 34.7555 -104.2617 -104.2619 -279.7724 -52.0580 0
0.005 -38.4278 6.3012 -104.7014 -104.5825 -112.9030 -38.0263 3
0.010 -38.5629 6.3014 -104.7006 -104.5813 -112.9030 -38.0947 3
0.050 -39.6565 6.3081 -104.6938 -104.5749 -112.9030 -38.6461 3

N-SA 0.100 -41.0560 6.3294 -104.6840 -104.5659 -112.9030 -39.3467 3
(N=1000) 0.500 -53.2736 7.1266 -104.6034 -104.4865 -112.9030 -45.3025 3

1.000 -68.1682 9.5052 -104.5172 -104.3987 -112.9030 -52.9831 3
5.000 -97.9097 33.0506 -104.5134 -104.1638 -112.9030 -82.6433 3
10.000 -97.3159 38.5009 -104.4859 -104.4859 -123.3988 -85.8145 3
0.005 -38.4854 6.3013 -104.7198 -104.5355 -108.4063 -38.2120 5
0.010 -38.6783 6.3017 -104.7228 -104.5320 -108.4063 -38.3085 5
0.050 -40.2483 6.3150 -104.7155 -104.5281 -108.4063 -39.0894 5

N-SA 0.100 -42.2733 6.3583 -104.7058 -104.5187 -108.4063 -40.0870 5
(N=2000) 0.500 -59.6215 7.8891 -104.6267 -104.4384 -108.4063 -48.5978 6

1.000 -77.4046 11.5699 -104.5631 -104.3676 -108.4063 -58.7659 5
5.000 -99.5680 35.1278 -104.5241 -104.0644 -107.5745 -86.5396 6
10.000 -98.9885 34.4152 -104.9583 -104.9291 -109.5558 -90.8342 5

0.005 -41.4236 6.3568 -103.6469 -103.6468 -146.7304 -39.6674 1
0.010 -44.6804 6.5178 -103.4361 -103.4354 -146.7304 -41.3419 1
0.050 -64.1034 9.0602 -102.8722 -102.8181 -146.7304 -52.8315 0

E-SA 0.100 -70.9505 10.9285 -102.7239 -102.5757 -146.7304 -59.1516 0
(N=100) 0.500 -64.2812 11.8766 -103.3224 -102.7288 -146.7304 -61.4639 1

1.000 -58.1064 13.4753 -103.5058 -102.7123 -146.7304 -56.6712 1
5.000 -51.1580 7.5291 -103.4436 -103.4436 -146.7304 -51.2048 0
10.000 -51.2166 13.0679 -103.8111 -103.8111 -261.9004 -45.2895 0
0.005 -48.4335 6.6780 -104.6471 -104.5295 -112.9030 -43.0687 2
0.010 -58.6551 7.6979 -104.6129 -104.4961 -112.9030 -48.1791 2
0.050 -83.6780 12.7125 -104.5254 -104.4092 -112.9030 -69.8393 1

E-SA 0.100 -88.1730 15.2741 -104.4785 -104.3620 -112.9030 -76.9825 2
(N=1000) 0.500 -84.5810 18.8582 -104.4300 -104.2320 -112.9030 -79.8171 1

1.000 -74.9702 15.3083 -104.4912 -104.2363 -112.9030 -73.0591 2
5.000 -54.6844 7.4084 -104.5690 -104.4563 -112.9030 -54.2912 1
10.000 -52.2596 7.1116 -104.4963 -104.4963 -127.0456 -50.5816 2
0.005 -52.6794 7.0095 -104.6720 -104.4858 -108.4063 -45.3230 3
0.010 -66.3654 8.6960 -104.6477 -104.4615 -108.4063 -52.4664 3
0.050 -87.3763 13.9872 -104.5820 -104.3943 -108.4063 -74.6040 3

E-SA 0.100 -91.2051 16.6639 -104.5481 -104.3577 -108.4063 -81.0510 4
(N=2000) 0.500 -89.4774 21.9242 -104.4849 -104.2575 -108.4063 -84.1870 3

1.000 -81.5608 19.8583 -104.4922 -104.2144 -107.5745 -77.2696 3
5.000 -57.3049 8.9504 -104.5317 -104.4206 -108.4811 -56.3306 3
10.000 -54.7480 15.3229 -104.6310 -104.5285 -111.2797 -52.2968 4

SAA N=100 16.3822 352.8689 - - -139.9952 -139.9946 7
SAA N=1000 -95.5139 72.8589 - - -107.5509 -107.5479 94
SAA N=2000 -98.5458 60.8440 - - -104.3214 -104.3189 123

166

Table 23: SA vs SAA for EU-6
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -3.2692 0.5659 -9.1974 -9.1929 -13.1477 -3.2371 0
0.010 -3.2854 0.5654 -9.1828 -9.1782 -13.1154 -3.2470 0
0.050 -3.4342 0.5608 -9.1341 -9.1268 -13.0708 -3.3265 1

N-SA 0.100 -3.6279 0.5575 -9.0201 -9.0084 -12.9881 -3.4259 1
(N=100) 0.500 -4.8157 0.5394 -7.7299 -7.7046 -11.6856 -4.1219 0

1.000 -5.5010 0.6512 -7.3008 -7.2726 -10.4938 -4.6646 0
5.000 -5.8002 1.2173 -7.3728 -7.3052 -8.9175 -5.5545 1
10.000 -5.5984 1.4642 -7.5619 -7.5619 -9.5508 -4.2212 1
0.005 -3.3121 0.5647 -9.2181 -9.2067 -9.9742 -3.2526 3
0.010 -3.3715 0.5632 -9.1979 -9.1864 -9.9567 -3.2827 3
0.050 -3.8487 0.5479 -8.8674 -8.8565 -9.8440 -3.5257 3

N-SA 0.100 -4.3741 0.5163 -8.1960 -8.1924 -9.5077 -3.8138 2
(N=1000) 0.500 -5.9203 0.5450 -6.9083 -6.9083 -8.0532 -5.0557 3

1.000 -6.1874 0.5714 -6.7434 -6.7118 -7.3578 -5.5638 3
5.000 -6.2676 0.7185 -6.7578 -6.6102 -6.7471 -6.0365 3
10.000 -6.2267 0.8552 -6.8889 -6.7390 -6.8616 -5.9295 2
0.005 -3.3373 0.5641 -9.2038 -9.1858 -9.5292 -3.2789 5
0.010 -3.4221 0.5620 -9.1728 -9.1555 -9.5017 -3.3212 5
0.050 -4.0807 0.5371 -8.5959 -8.5939 -9.2867 -3.6586 5

N-SA 0.100 -4.6990 0.4988 -7.8122 -7.8122 -8.8931 -4.0284 5
(N=2000) 0.500 -6.0973 0.5415 -6.7822 -6.7568 -7.5327 -5.3268 6

1.000 -6.2570 0.5726 -6.7112 -6.6218 -7.0512 -5.7515 6
5.000 -6.2999 0.6798 -6.7664 -6.5228 -6.6111 -6.1190 6
10.000 -6.2680 0.7645 -6.8086 -6.5796 -6.6414 -6.0729 6

0.005 -4.0352 0.5470 -8.6247 -8.6115 -12.7305 -3.6504 0
0.010 -4.5783 0.5240 -7.9275 -7.9102 -11.8871 -3.9938 1
0.050 -5.4874 0.5718 -7.2348 -7.1953 -10.2022 -4.8879 0

E-SA 0.100 -5.4693 0.6366 -7.3451 -7.2166 -9.9064 -5.0562 0
(N=100) 0.500 -4.6187 0.6189 -7.9389 -7.8735 -10.8348 -4.5629 1

1.000 -4.4133 0.5711 -8.1226 -8.0784 -11.1633 -4.3515 0
5.000 -4.2599 0.5936 -8.3883 -8.3823 -11.4331 -3.9670 0
10.000 -4.2737 0.6287 -8.3853 -8.3853 -11.2202 -3.9810 1
0.005 -5.0592 0.4849 -7.5206 -7.5206 -8.9054 -4.2862 1
0.010 -5.6208 0.4926 -7.1603 -7.1603 -8.3405 -4.8291 2
0.050 -6.1205 0.5189 -6.7480 -6.7248 -7.3575 -5.6980 2

E-SA 0.100 -6.1459 0.5583 -6.7191 -6.6559 -7.1219 -5.8464 2
(N=1000) 0.500 -5.6174 0.6491 -7.1390 -7.0398 -7.2743 -5.4976 1

1.000 -4.9747 0.5283 -7.5679 -7.5189 -8.1052 -4.8908 1
5.000 -4.3580 0.5235 -8.2042 -8.1930 -8.8407 -4.1480 2
10.000 -4.3034 0.5275 -8.3010 -8.2835 -8.9120 -3.9828 2
0.005 -5.3939 0.4874 -7.3006 -7.3006 -8.2738 -4.5691 3
0.010 -5.8117 0.4944 -7.0176 -7.0176 -7.8526 -5.0944 3
0.050 -6.1948 0.5143 -6.6925 -6.6485 -7.1033 -5.8463 3

E-SA 0.100 -6.2211 0.5543 -6.6867 -6.5849 -6.9171 -5.9714 3
(N=2000) 0.500 -5.8539 0.7090 -7.0041 -6.7430 -6.9879 -5.7299 3

1.000 -5.2905 0.7075 -7.3551 -7.2946 -7.5212 -5.1628 3
5.000 -4.4801 1.1354 -8.1429 -8.1410 -8.5007 -4.2242 3
10.000 -4.3277 0.5561 -8.2469 -8.2469 -8.6401 -4.0363 3

SAA N=100 -5.5376 2.1216 - - -6.8526 -6.8525 26
SAA N=1000 -6.2782 0.7413 - - -6.4036 -6.4036 102
SAA N=2000 -6.3073 0.7030 - - -6.3658 -6.3657 171

167

Table 24: SA vs SAA for EU-7
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -10.1487 0.6301 -16.7163 -16.7119 -21.0028 -10.1177 0
0.010 -10.1512 0.6301 -16.7162 -16.7117 -21.0028 -10.1192 0
0.050 -10.1711 0.6302 -16.7150 -16.7102 -21.0028 -10.1313 0

N-SA 0.100 -10.1961 0.6303 -16.7134 -16.7083 -21.0028 -10.1464 1
(N=100) 0.500 -10.4349 0.6348 -16.7012 -16.6925 -21.0028 -10.2695 1

1.000 -10.7510 0.6493 -16.6868 -16.6719 -21.0028 -10.4278 1
5.000 -13.2835 1.1899 -16.6515 -16.5916 -21.0028 -11.7522 0
10.000 -14.8802 3.0185 -16.6923 -16.6556 -21.0028 -13.0563 0
0.005 -10.1553 0.6301 -16.7971 -16.7844 -17.6115 -10.1173 2
0.010 -10.1644 0.6301 -16.7971 -16.7844 -17.6115 -10.1219 2
0.050 -10.2378 0.6304 -16.7966 -16.7839 -17.6115 -10.1590 2

N-SA 0.100 -10.3310 0.6314 -16.7961 -16.7833 -17.6115 -10.2058 3
(N=1000) 0.500 -11.1321 0.6664 -16.7917 -16.7778 -17.6115 -10.5988 3

1.000 -12.1903 0.7818 -16.7871 -16.7707 -17.6115 -11.1174 2
5.000 -15.7924 2.3172 -16.7884 -16.7433 -17.6115 -13.9232 3
10.000 -16.0895 3.9575 -16.7985 -16.7517 -17.6916 -14.8794 3
0.005 -10.1592 0.6301 -16.7993 -16.7752 -17.1800 -10.1350 5
0.010 -10.1722 0.6301 -16.7993 -16.7752 -17.1800 -10.1415 5
0.050 -10.2773 0.6307 -16.7988 -16.7748 -17.1800 -10.1939 5

N-SA 0.100 -10.4117 0.6327 -16.7982 -16.7743 -17.1800 -10.2604 5
(N=2000) 0.500 -11.5675 0.7016 -16.7931 -16.7699 -17.1800 -10.8237 5

1.000 -12.9902 0.9087 -16.7882 -16.7649 -17.1800 -11.5501 5
5.000 -16.0889 2.6801 -16.7911 -16.7272 -17.1800 -14.4612 5
10.000 -16.2514 3.5233 -16.8289 -16.7060 -17.0130 -15.2442 5

0.005 -10.4177 0.6344 -16.7022 -16.6946 -21.0028 -10.2623 1
0.010 -10.7019 0.6467 -16.6896 -16.6790 -21.0028 -10.4084 0
0.050 -12.5437 0.8717 -16.6406 -16.6173 -21.0028 -11.4639 0

E-SA 0.100 -13.3191 1.0560 -16.6219 -16.5900 -21.0028 -12.1220 1
(N=100) 0.500 -12.8743 1.2036 -16.6803 -16.6111 -21.0028 -12.5344 0

1.000 -12.2309 1.3391 -16.7054 -16.6083 -21.0028 -12.0632 0
5.000 -11.4557 0.7573 -16.7121 -16.6892 -21.0028 -11.4739 1
10.000 -11.3683 0.8805 -16.7440 -16.7440 -38.9462 -9.4234 0
0.005 -11.0297 0.6590 -16.7928 -16.7794 -17.6115 -10.5586 1
0.010 -11.9230 0.7390 -16.7899 -16.7761 -17.6115 -11.0045 1
0.050 -14.5576 1.2241 -16.7834 -16.7671 -17.6115 -13.1309 2

E-SA 0.100 -15.0710 1.4747 -16.7808 -16.7621 -17.6115 -13.8965 2
(N=1000) 0.500 -14.9006 1.8922 -16.7831 -16.7486 -17.6115 -14.3748 1

1.000 -14.0335 1.7091 -16.7764 -16.7400 -17.6115 -13.7961 2
5.000 -11.8605 0.7532 -16.7853 -16.7631 -17.7664 -11.8199 2
10.000 -11.5749 0.7139 -16.7770 -16.7745 -19.4777 -11.3529 2
0.005 -11.4013 0.6847 -16.7948 -16.7716 -17.1800 -10.7573 3
0.010 -12.6465 0.8260 -16.7925 -16.7696 -17.1800 -11.3853 3
0.050 -14.9456 1.3482 -16.7868 -16.7642 -17.1800 -13.6209 3

E-SA 0.100 -15.3818 1.6120 -16.7841 -16.7605 -17.1800 -14.3156 3
(N=2000) 0.500 -15.3547 2.1793 -16.7834 -16.7375 -17.1800 -14.7953 3

1.000 -14.6640 2.0545 -16.7838 -16.7280 -17.0917 -14.2104 3
5.000 -12.2430 1.0414 -16.7730 -16.7523 -17.2239 -12.0750 3
10.000 -11.8296 1.5142 -16.7796 -16.7683 -17.4557 -11.5982 3

SAA N=100 -3.3040 37.2588 - - -20.2507 -20.2507 8
SAA N=1000 -15.8481 6.9923 - - -17.0154 -17.0154 92
SAA N=2000 -16.1474 5.7941 - - -16.7027 -16.7027 162

168

Table 25: SA vs SAA for EU-8
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -36.2835 6.3012 -101.9556 -101.9114 -144.8201 -35.9718 0
0.010 -36.3124 6.3012 -101.9538 -101.9092 -144.8201 -35.9893 1
0.050 -36.5442 6.3016 -101.9395 -101.8916 -144.8201 -36.1298 1

N-SA 0.100 -36.8355 6.3030 -101.9215 -101.8694 -144.8201 -36.3061 0
(N=100) 0.500 -39.6483 6.3649 -101.7797 -101.6844 -144.8201 -37.7425 0

1.000 -43.3600 6.5633 -101.6175 -101.4440 -144.8201 -39.5960 1
5.000 -71.6724 13.9475 -101.3197 -100.7563 -144.8201 -54.8455 1
10.000 -84.9435 40.5205 -101.8959 -101.5494 -144.8201 -68.2916 0
0.005 -36.3602 6.3012 -102.7634 -102.6365 -110.9079 -35.9730 2
0.010 -36.4661 6.3013 -102.7628 -102.6358 -110.9079 -36.0266 3
0.050 -37.3210 6.3054 -102.7580 -102.6303 -110.9079 -36.4582 3

N-SA 0.100 -38.4101 6.3184 -102.7518 -102.6230 -110.9079 -37.0048 3
(N=1000) 0.500 -47.8370 6.7992 -102.7009 -102.5581 -110.9079 -41.6132 2

1.000 -60.0317 8.3413 -102.6522 -102.4779 -110.9079 -47.6696 3
5.000 -94.2198 26.2742 -102.7009 -102.2027 -110.9079 -76.7166 3
10.000 -96.0841 35.6518 -102.7998 -102.7069 -113.2295 -84.5569 3
0.005 -36.4053 6.3013 -102.7854 -102.5447 -106.5921 -36.1526 5
0.010 -36.5565 6.3015 -102.7847 -102.5441 -106.5921 -36.2283 5
0.050 -37.7823 6.3096 -102.7793 -102.5397 -106.5921 -36.8390 5

N-SA 0.100 -39.3542 6.3358 -102.7722 -102.5338 -106.5921 -37.6158 5
(N=2000) 0.500 -52.8930 7.2748 -102.7137 -102.4821 -106.5921 -44.2204 5

1.000 -68.7131 9.9199 -102.6639 -102.4285 -106.5921 -52.5656 5
5.000 -96.6775 30.0392 -102.7187 -102.0942 -106.5921 -81.6017 5
10.000 -97.3613 36.3939 -103.1348 -102.6311 -106.7958 -88.4846 6

0.005 -39.4169 6.3579 -101.7935 -101.7127 -144.8201 -37.6452 0
0.010 -42.7055 6.5220 -101.6526 -101.5378 -144.8201 -39.3361 1
0.050 -62.1922 9.0853 -101.1522 -100.9075 -144.8201 -50.8899 0

E-SA 0.100 -68.9682 10.9544 -100.9908 -100.6405 -144.8201 -57.1876 0
(N=100) 0.500 -62.1416 11.8625 -101.6391 -100.8601 -144.8201 -59.3630 1

1.000 -55.9963 13.4815 -101.8781 -100.9130 -144.8201 -54.5801 0
5.000 -49.1046 7.5264 -101.9411 -101.7109 -144.8201 -49.1509 0
10.000 -49.1742 13.0490 -102.2136 -102.2136 -264.0121 -43.3696 1
0.005 -46.4951 6.6852 -102.7147 -102.5803 -110.9079 -41.0802 2
0.010 -56.8137 7.7224 -102.6853 -102.5454 -110.9079 -46.2404 2
0.050 -81.7285 12.7478 -102.6202 -102.4536 -110.9079 -67.9185 2

E-SA 0.100 -86.1748 15.3124 -102.5958 -102.4023 -110.9079 -75.0241 1
(N=1000) 0.500 -82.4456 18.8482 -102.6128 -102.2557 -110.9079 -77.7174 2

1.000 -72.7705 15.2295 -102.5510 -102.2047 -110.9079 -70.8866 2
5.000 -52.5930 7.4005 -102.6446 -102.5023 -110.9079 -52.1998 2
10.000 -50.1320 7.1088 -102.4849 -102.4849 -129.2836 -48.5130 1
0.005 -50.7816 7.0227 -102.7354 -102.5038 -106.5921 -43.3549 3
0.010 -64.5382 8.7273 -102.7125 -102.4846 -106.5921 -50.5611 3
0.050 -85.4090 14.0222 -102.6544 -102.4285 -106.5921 -72.6737 3

E-SA 0.100 -89.2032 16.7044 -102.6282 -102.3879 -106.5921 -79.0840 3
(N=2000) 0.500 -87.3661 21.9272 -102.6191 -102.2588 -106.5921 -82.0989 3

1.000 -79.3765 19.8054 -102.5945 -102.1901 -105.7417 -75.1063 3
5.000 -55.1786 8.9174 -102.5391 -102.4659 -106.5921 -54.2121 3
10.000 -52.6952 15.3574 -102.5993 -102.5416 -109.3439 -50.2180 3

SAA N=100 17.9771 352.1680 - - -137.9611 -137.9610 6
SAA N=1000 -93.4177 73.2566 - - -105.5243 -105.5203 87
SAA N=2000 -96.5163 61.0974 - - -102.2914 -102.2906 160

169

Table 26: SA vs SAA for EU-9
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -339.6061 63.0118 -996.3371 -995.8950 -1424.9808 -336.4921 1
0.010 -339.8855 63.0119 -996.3197 -995.8738 -1424.9808 -336.6617 1
0.050 -342.1271 63.0159 -996.1800 -995.7035 -1424.9808 -338.0205 0

N-SA 0.100 -344.9437 63.0286 -996.0070 -995.4879 -1424.9808 -339.7255 0
(N=100) 0.500 -372.0744 63.6080 -994.6335 -993.7017 -1424.9808 -353.6077 1

1.000 -407.8978 65.4583 -993.0530 -991.3779 -1424.9808 -371.5070 1
5.000 -684.5668 134.4153 -989.9175 -984.1916 -1424.9808 -519.4333 0
10.000 -825.7714 371.5833 -995.3352 -991.8104 -1424.9808 -653.3679 0
0.005 -340.3479 63.0121 -1004.4143 -1003.1457 -1085.8590 -336.4929 2
0.010 -341.3713 63.0133 -1004.4085 -1003.1391 -1085.8590 -337.0111 2
0.050 -349.6371 63.0511 -1004.3618 -1003.0844 -1085.8590 -341.1842 2

N-SA 0.100 -360.1603 63.1723 -1004.3020 -1003.0151 -1085.8590 -346.4668 3
(N=1000) 0.500 -451.1080 67.6560 -1003.8092 -1002.3886 -1085.8590 -390.9568 3

1.000 -569.4040 82.1386 -1003.3266 -1001.6071 -1085.8590 -449.5039 2
5.000 -915.9993 255.1959 -1003.7318 -998.8554 -1085.8590 -738.1731 3
10.000 -939.0872 363.5217 -1004.6796 -1001.2663 -1110.0806 -824.2031 3
0.005 -340.7840 63.0125 -1004.6342 -1002.2271 -1042.7008 -338.2817 5
0.010 -342.2456 63.0148 -1004.6273 -1002.2205 -1042.7008 -339.0132 4
0.050 -354.0951 63.0906 -1004.5751 -1002.1788 -1042.7008 -344.9174 5

N-SA 0.100 -369.2778 63.3355 -1004.5067 -1002.1223 -1042.7008 -352.4237 5
(N=2000) 0.500 -500.0473 72.1099 -1003.9385 -1001.6221 -1042.7008 -416.1931 5

1.000 -654.8810 97.2201 -1003.4420 -1001.0944 -1042.7008 -497.1990 6
5.000 -941.6887 291.9360 -1003.9342 -997.7147 -1042.7008 -788.1257 5
10.000 -953.9882 383.8223 -1008.5464 -997.7217 -1029.0530 -858.7257 5

0.005 -370.7854 63.5736 -994.7223 -993.9163 -1424.9808 -353.1477 0
0.010 -403.5081 65.1983 -993.3187 -992.1737 -1424.9808 -369.9728 0
0.050 -598.0518 90.7247 -988.3173 -985.8744 -1424.9808 -485.1822 1

E-SA 0.100 -666.1747 109.4112 -986.6931 -983.2019 -1424.9808 -548.2724 0
(N=100) 0.500 -598.7146 118.6970 -993.1622 -985.3957 -1424.9808 -570.7319 0

1.000 -537.1122 134.7827 -995.5442 -985.8843 -1424.9808 -522.8490 1
5.000 -467.9027 75.2778 -996.1817 -993.8806 -1424.9808 -468.3696 0
10.000 -468.5466 130.5814 -998.9136 -998.9137 -2618.0620 -411.5473 0
0.005 -441.2167 66.8149 -1003.9286 -1002.5858 -1085.8590 -387.3251 2
0.010 -543.9050 77.0978 -1003.6355 -1002.2361 -1085.8590 -438.6718 1
0.050 -793.6082 127.2962 -1002.9834 -1001.3190 -1085.8590 -655.3626 2

E-SA 0.100 -838.3218 152.9272 -1002.7401 -1000.8066 -1085.8590 -726.6114 2
(N=1000) 0.500 -801.7337 188.5334 -1002.9137 -999.3462 -1085.8590 -754.2690 2

1.000 -705.3121 152.7011 -1002.2903 -998.8188 -1085.8590 -686.3337 1
5.000 -502.9805 74.0455 -1003.2255 -1001.8013 -1085.8590 -499.0478 1
10.000 -480.5189 126.7385 -1001.5706 -1001.5706 -1202.6516 -462.7362 2
0.005 -483.8734 70.1595 -1004.1355 -1001.8192 -1042.7008 -409.9674 3
0.010 -621.0829 87.1127 -1003.9064 -1001.6274 -1042.7008 -481.7079 3
0.050 -830.5069 140.0433 -1003.3258 -1001.0670 -1042.7008 -702.9633 3

E-SA 0.100 -868.6242 166.8363 -1003.0636 -1000.6626 -1042.7008 -767.2545 3
(N=2000) 0.500 -850.8188 219.2586 -1002.9677 -999.3737 -1042.7008 -798.0241 3

1.000 -771.2904 198.3226 -1002.7299 -998.6815 -1034.2088 -728.4992 3
5.000 -529.0234 89.3518 -1002.1681 -1001.4363 -1042.7008 -519.2999 4
10.000 -503.8182 153.3248 -1002.7689 -1002.1950 -1070.2659 -479.2331 3

SAA N=100 201.2264 3521.2462 - - -1356.8687 -1356.8677 7
SAA N=1000 -910.8297 734.8461 - - -1032.3006 -1032.2738 91
SAA N=2000 -941.9854 611.0414 - - -999.9114 -999.8982 161

170

Table 27: SA vs SAA for EU-10
- verification construction

alg. step obj dev l̃b
N

lbN f
N

ub time
0.005 -1676.8591 315.0591 -4960.2040 -4957.9885 -7103.4410 -1661.1747 0
0.010 -1678.5487 315.0600 -4960.0990 -4957.8610 -7103.4410 -1662.1996 0
0.050 -1692.1085 315.0894 -4959.2590 -4956.8288 -7103.4410 -1670.4180 1

N-SA 0.100 -1709.1651 315.1817 -4958.2084 -4955.5264 -7103.4410 -1680.7371 1
(N=100) 0.500 -1875.6770 319.4277 -4949.9686 -4944.6357 -7103.4410 -1765.0413 0

1.000 -2094.9050 333.1882 -4940.8992 -4930.5815 -7103.4410 -1874.2415 0
5.000 -3650.9872 840.3725 -4931.2576 -4905.6257 -7103.4410 -2747.9567 0
10.000 -3800.7619 1630.9513 -4977.4536 -4977.4725 -13023.9623 -2090.9446 1
0.005 -1681.3447 315.0616 -5000.6024 -4994.2585 -5407.8319 -1661.5425 3
0.010 -1687.5350 315.0701 -5000.5675 -4994.2185 -5407.8319 -1664.6766 3
0.050 -1737.6309 315.3476 -5000.2840 -4993.8904 -5407.8319 -1689.9472 3

N-SA 0.100 -1801.6284 316.2411 -4999.9201 -4993.4581 -5407.8319 -1722.0148 2
(N=1000) 0.500 -2358.9495 349.5722 -4996.9862 -4989.6317 -5407.8319 -1993.8515 3

1.000 -3055.9686 452.0546 -4994.5041 -4985.1447 -5407.8319 -2347.5158 3
5.000 -4632.4882 1521.6509 -4998.8894 -4971.5507 -5407.8319 -3826.7989 2
10.000 -4647.9744 1923.8632 -5001.4221 -4999.3838 -5761.7873 -4164.6643 3
0.005 -1683.9821 315.0644 -5001.7014 -4989.6669 -5192.0409 -1670.7092 5
0.010 -1692.8258 315.0813 -5001.6535 -4989.6352 -5192.0409 -1675.1336 5
0.050 -1764.7102 315.6381 -5001.3410 -4989.3671 -5192.0409 -1710.9096 5

N-SA 0.100 -1857.2203 317.4494 -5000.9237 -4989.0187 -5192.0409 -1756.5379 5
(N=2000) 0.500 -2652.4518 382.0028 -4997.5860 -4986.0201 -5192.0409 -2145.5733 5

1.000 -3512.5867 546.2880 -4995.1150 -4982.9658 -5192.0409 -2621.5074 6
5.000 -4729.8534 1746.7144 -4999.2312 -4967.9144 -5192.0409 -4045.2517 5
10.000 -4713.8299 1666.9798 -5015.0647 -5015.0645 -5282.8438 -4313.8041 5

0.005 -1832.4637 317.8680 -4952.1495 -4948.1207 -7103.4410 -1744.2755 0
0.010 -1996.0775 325.9916 -4945.1242 -4939.4039 -7103.4410 -1828.4007 0
0.050 -2968.7958 453.6234 -4920.1242 -4907.9057 -7103.4410 -2404.4480 1

E-SA 0.100 -3309.4105 547.0562 -4912.0031 -4894.5463 -7103.4410 -2719.8988 0
(N=100) 0.500 -2972.1098 593.4851 -4944.3479 -4905.5160 -7103.4410 -2832.1963 0

1.000 -2664.0980 673.9133 -4956.2551 -4907.9598 -7103.4410 -2592.7819 1
5.000 -2318.0505 376.3888 -4959.4452 -4947.9391 -7103.4410 -2320.3848 0
10.000 -2321.2721 652.8988 -4973.0991 -4973.1006 -13069.9200 -2037.3464 0
0.005 -2184.6204 334.0744 -4998.1803 -4991.4658 -5407.8319 -1915.1624 2
0.010 -2698.0620 385.4891 -4996.7147 -4989.7212 -5407.8319 -2171.8957 2
0.050 -3946.5778 636.4811 -4993.4538 -4985.1330 -5407.8319 -3255.3498 1

E-SA 0.100 -4170.1457 764.6360 -4992.2371 -4982.5620 -5407.8319 -3611.5939 2
(N=1000) 0.500 -3987.2053 942.6669 -4993.1057 -4975.2666 -5407.8319 -3749.8819 2

1.000 -3505.0974 763.5056 -4989.9914 -4972.6317 -5407.8319 -3410.2052 1
5.000 -2493.4395 370.2274 -4994.6645 -4987.5433 -5407.8319 -2473.7761 2
10.000 -2381.1315 633.6926 -4984.7356 -4984.7356 -6029.5468 -2289.8039 2
0.005 -2397.9041 350.7973 -4999.2141 -4987.6338 -5192.0409 -2028.3740 4
0.010 -3083.9515 435.5634 -4998.0716 -4986.6741 -5192.0409 -2387.0764 3
0.050 -4131.0714 700.2164 -4995.1679 -4983.8716 -5192.0409 -3493.3532 3

E-SA 0.100 -4321.6580 834.1813 -4993.8571 -4981.8515 -5192.0409 -3814.8095 3
(N=2000) 0.500 -4232.6307 1096.2932 -4993.3757 -4975.4059 -5192.0409 -3968.6575 4

1.000 -3834.9890 991.6129 -4992.1858 -4971.9463 -5149.5918 -3621.0437 3
5.000 -2623.6539 446.7588 -4989.3751 -4985.7188 -5192.0409 -2575.0362 3
10.000 -2497.6344 766.5842 -4992.3817 -4989.5130 -5329.9094 -2374.7451 3

SAA N=100 1039.0135 17631.6927 - - -6763.1581 -6763.1456 7
SAA N=1000 -4530.8206 3687.4747 - - -5140.1782 -5140.1360 89
SAA N=2000 -4688.9239 3053.7409 - - -4978.2333 -4978.1967 161

171

REFERENCES

[1] Auslender, A. and Teboulle, M., “Interior gradient and proximal methods for
convex and conic optimization,” SIAM Journal on Optimization, vol. 16, pp. 697–725,
2006.

[2] Bauschke, H., Borwein, J., and Combettes, P., “Bregman monotone optimization
algorithms,” SIAM Journal on Controal and Optimization, vol. 42, pp. 596–636, 2003.

[3] Beck, A. and Teboulle, M., “Mirror-descent and nonlinear projected subgradient
methods for convex optimization,” Operations Research Letters, vol. 31, pp. 167–175,
2003.

[4] Becker, S., Bobin, J., and Candes, E., “Nesta: A fast and accurate first-order
method for sparse recovery,” manuscript, California Institute of Technology, 2009.

[5] Ben-Tal, A. and A.Nemirovski, “Non-euclidean restricted memory level method for
large-scale convex optimization,” Mathematical Programming, vol. 102, pp. 407–456,
2005.

[6] Ben-Tal, A. and Nemirovski, A., Lectures on Modern Convex Optimization: Anal-
ysis, Algorithms, Engineering Applications. MPS-SIAM Series on Optimization,
Philadelphia: SIAM, 2000.

[7] Benveniste, A., Métivier, M., and Priouret, P., Algorithmes adaptatifs et ap-
proximations stochastiques. Masson, 1987. English translation: Adaptive Algorithms
and Stochastic Approximations, Springer Verlag (1993).

[8] Bertsekas, D., Constrained Optimization and Lagrange Multiplier Methods. New
York: Academic Press, first ed., 1982.

[9] Bertsekas, D., Nonlinear Programming. New York: Athena Scientific, second ed.,
1999.

[10] Bregman, L., “The relaxation method of finding the common point convex sets and
its application to the solution of problems in convex programming,” USSR Comput.
Math. Phys., vol. 7, pp. 200–217, 1967.

[11] Burer, S. and Monteiro, R. D. C., “A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization,” Mathematical Programming, Series
B, vol. 95, pp. 329–357, 2003.

[12] Burer, S. and Monteiro, R. D. C., “Local minima and convergence in low-rank
semidefinite programming,” Mathematical Programming, vol. 103, pp. 427–444, 2005.

[13] Chung, K., “On a stochastic approximation method,” Annals of Mathematical Statis-
tics, pp. 463–483, 1954.

172

[14] Dantzig, G. B., Linear Programming and Extensions. Princeton, NJ: Princeton
University Press, 1963.

[15] d’Aspremont, A., “Smooth optimization with approximate gradient,” SIAM Journal
on Optimization, vol. 19, pp. 1171–1183, 2008.

[16] d’Aspremont, A., Banerjee, O., and Ghaoue, L. E., “First-order methods for
sparse covariance selection,” SIAM Journal on Matrix Analysis and its Applications,
vol. 30, pp. 56–66, 2008.

[17] Ermoliev, Y., “Stochastic quasigradient methods and their application to system
optimization,” Stochastics, vol. 9, pp. 1–36, 1983.

[18] Gaivoronski, A., “Nonstationary stochastic programming problems,” Kybernetika,
vol. 4, pp. 89–92, 1978.

[19] Goldberg, A. and Tarjan, R.

[20] Golshtein, E. and Tretyakov, N., Modified Lagrangians and monotone maps in
optimization. New York, USA: Springer-Verlag, 1996.

[21] Hestenes, M. R., “Multiplier and gradient methods,” Journal of Optimization and
Application, vol. 4, pp. 303–320, 1969.

[22] Hiriart-Urruty, J.-B. and Lemaréchal, C., Convex Analysis and Minimization
algorithms I, vol. 305 of Comprehensive Study in Mathematics. New York: Springer-
Verlag, 1993.

[23] Jarre, F. and Rendl, F., “An augmented primal-dual method for linear conic pro-
grams,” manuscript, Institut fur Mathematik, Universit at Dusseldorf, Germany, Aus-
tria, April 2007.

[24] Juditsky, A., Nazin, A., Tsybakov, A. B., and Vayatis, N., “Recursive ag-
gregation of estimators via the mirror descent algorithm with average,” Problems of
Information Transmission, vol. 41, p. n.4, 2005.

[25] Juditsky, A., Nemirovski, A., and Tauvel, C., “Solving variational inequalities
with stochastic mirror-prox algorithm,” manuscript, Georgia Institute of Technology,
Atlanta, GA, 2008. submitted to SIAM Journal on Control and Optimization.

[26] Juditsky, A., Rigollet, P., and Tsybakov., A. B., “Learning by mirror averag-
ing,” Annals of Statistics, vol. 36, pp. 2183–2206, 2008.

[27] Karmarkar, N. K., “A new polynomial–time algorithm for linear programming,”
Combinatorica, vol. 4, pp. 373–395, 1984.

[28] Khachian, L. G., “A polynomial algorithm in linear programming,” Doklady
Akademiia Nauk SSSR, vol. 224, pp. 1093–1096, 1979. English translation: Soviet
Mathematics Loklady 20, 191-194.

[29] Kiwiel, K., “Proximal minimization methods with generalized bregman functions,”
SIAM Journal on Controal and Optimization, vol. 35, pp. 1142–1168, 1997.

173

[30] Kleywegt, A. J., Shapiro, A., and de Mello, T. H., “The sample average approx-
imation method for stochastic discrete optimization,” SIAM Journal on Optimization,
vol. 12, pp. 479–502, 2001.

[31] Kushner, H. J. and Yin, G., Stochastic Approximation and Recursive Algorithms
and Applications, vol. 35 of Applications of Mathematics. New York: Springer-Verlag,
2003.

[32] Lan, G., Lu, Z., and Monteiro, R. D. C., “Primal-dual first-order methods with
O(1/ε) iteration-complexity for cone programming,” Mathematical Programming, 2009.
to appear.

[33] Lan, G. and Monteiro, R. D. C., “Iteration-complexity of first-order penalty meth-
ods for convex programming,” manuscript, School of Industrial Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA, June 2008.

[34] Lemarechal, C., Nemirovski, A., and Nesterov, Y., “New variants of bundle
methods,” Mathematical Programming, vol. 69, pp. 111–148, 1995.

[35] Lewis, A. and Wright, S., “A proximal method for composite minimization,”
manuscript, Cornell University, Ithaca, NY, 2009.

[36] Linderoth, J., Shapiro, A., and Wright, S., “The empirical behavior of sam-
pling methods for stochastic programming,” Annals of Operations Research, vol. 142,
pp. 215–241, 2006.

[37] Lu, Z., “Smooth optimization approach for sparse covariance selection,” SIAM Journal
on Optimization, vol. 19, pp. 1807–1827, 2009.

[38] Lu, Z., Monteiro, R., and Yuan, M., “Convex optimization methods for dimen-
sion reduction and coefficient estimation in multivariate linear regression,” manuscript,
School of ISyE, Georgia Tech, Atlanta, GA, 30332, USA, January 2008.

[39] Lu, Z., Nemirovski, A., and Monteiro, R. D. C., “Large-scale semidefinite
programming via saddle point mirror-prox algorithm,” Mathematical programming,
vol. 109, pp. 211–237, 2007.

[40] Mak, W. K., Morton, D., and Wood, R., “Monte carlo bounding techniques for
determining solution quality in stochastic programs,” Operations Research Letters,
vol. 24, pp. 47–56, 1999.

[41] Monteiro, R. and Svaiter, B., “On the complexity of the hybrid proximal extra-
gradient method for the iterates and the ergodic mean,” manuscript, School of ISyE,
Georgia Tech, Atlanta, GA, 30332, USA, March 2009.

[42] Nemirovski, A., “Prox-method with rate of convergence o(1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems,” SIAM Journal on Optimization, vol. 15, pp. 229–251, 2004.

[43] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A., “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on Optimization,
vol. 19, pp. 1574–1609, 2009.

174

[44] Nemirovski, A. and Yudin, D., Problem complexity and method efficiency in opti-
mization. Wiley-Interscience Series in Discrete Mathematics, John Wiley, XV, 1983.

[45] Nemirovski, A. S. and Yudin, D. B., “Informational complexity and efficient meth-
ods for the solution of convex extremal problems (in Russian),” Ékonomika i Mathe-
maticheskie Metody, vol. 12, pp. 357–369, 1976. English translation: Maketon 13(2),
3-25.

[46] Nemirovskii, A. and Yudin, D., “On cezari’s convergence of the steepest de-
scent method for approximating saddle point of convex-concave functions,” Doklady
Akademiia Nauk SSSR, vol. 239, p. No. 5, 1978. English translation: Soviet Mathe-
matics Loklady 19, No. 2.

[47] Nesterov, Y. E., “A method for unconstrained convex minimization problem with
the rate of convergence O(1/k2),” Doklady AN SSSR, vol. 269, pp. 543–547, 1983.
translated as Soviet Math. Docl.

[48] Nesterov, Y. E., “On an approach to the construction of optimal methods of mini-
mization of smooth convex functions,” Ekonomo. i. Mat. Metody, vol. 24, pp. 509–517,
1988.

[49] Nesterov, Y. E., Introductory Lectures on Convex Optimization: a basic course.
Massachusetts: Kluwer Academic Publishers, 2004.

[50] Nesterov, Y. E., “Smooth minimization of nonsmooth functions,” Mathematical
Programming, vol. 103, pp. 127–152, 2005.

[51] Nesterov, Y. E., “Primal-dual subgradient methods for convex problems,” Mathe-
matical Programming, vol. 120, pp. 221–259, 2006.

[52] Nesterov, Y. E., “Gradient methods for minimizing composite objective functions,”
tech. rep., Center for Operations Research and Econometrics (CORE), Catholic Uni-
versity of Louvain, September 2007.

[53] Nesterov, Y. E., “Smoothing technique and its applications in semidefinite opti-
mization,” Mathematical Programming, vol. 110, pp. 245–259, 2007.

[54] Nesterov, Y. E. and Nemirovski, A. S., Interior point Polynomial algorithms in
Convex Programming: Theory and Applications. Philadelphia: Society for Industrial
and Applied Mathematics, 1994.

[55] Nocedal, J. and Wright, S. J., Numerical optimization. New York, USA: Springer-
Verlag, 1999.

[56] Peña, J., “Nash equilibria computation via smoothing techniques,” Optima, vol. 78,
pp. 12–13, 2008.

[57] Pflug, G., “Optimization of stochastic models,” in The Interface Between Simulation
and Optimization, Boston: Kluwer, 1996.

[58] Polyak, B., “New stochastic approximation type procedures,” Automat. i Telemekh.,
vol. 7, pp. 98–107, 1990.

175

[59] Polyak, B. and Juditsky, A., “Acceleration of stochastic approximation by averag-
ing,” SIAM J. Control and Optimization, vol. 30, pp. 838–855, 1992.

[60] Powell, M., “An efficient method for nonlinear constraints in minimization prob-
lems,” in Optimization (R. Fletcher, e., ed.), pp. 283–298, Academic Press, 1969.

[61] Robbins, H. and Monro, S., “A stochastic approximation method,” Annals of Math-
ematical Statistics, vol. 22, pp. 400–407, 1951.

[62] Rockafellar, R. and Uryasev, S., “Optimization of conditional value-at-risk,” The
Journal of Risk, vol. 2, pp. 21–41, 2000.

[63] Ruszczyński, Nonlinear Optimization. Princeton University Press, first ed., 2006.

[64] Ruszczyński, A. and Sysk, W., “A method of aggregate stochastic subgradients
with on-line stepsize rules for convex stochastic programming problems,” Mathematical
Programming Study, vol. 28, pp. 113–131, 1986.

[65] Sacks, J., “Asymptotic distribution of stochastic approximation,” Annals of Mathe-
matical Statistics, vol. 29, pp. 373–409, 1958.

[66] Saigal, R., Vandenberghe, L., and Wolkowicz, H., Handbook of Semidefinite
Programming. Boston-Dordrecht-London: Kluwer Academic Publishers, 2000.

[67] Sen, S., R.D. Doverspike, R., and Cosares, S., “Network planning with random
demand,” Telecommunication Systems, vol. 3, pp. 11–30, 1994.

[68] Shapiro, A., “Monte carlo sampling methods,” in Stochastic Programming
(Ruszczyński, A. and Shapiro, A., eds.), Amsterdam: North-Holland Publishing
Company, 2003.

[69] Shapiro, A. and Nemirovski, A., “On complexity of stochastic programming prob-
lems,” in Continuous Optimization: Current Trends and Applications (Jeyakumar,
V. and Rubinov, A., eds.), pp. 111–144, Springer, 2005.

[70] Spall, J., Introduction to Stochastic Search and Optimization: Estimation, Simula-
tion, and Control. Hoboken, NJ: John Wiley, 2003.

[71] Strassen, V., “The existence of probability measures with given marginals,” Annals
of Mathematical Statistics, vol. 30, pp. 423–439, 1965.

[72] Teboulle, M., “Convergence of proximal-like algorithms,” SIAM Journal on Opti-
mization, vol. 7, pp. 1069–1083, 1997.

[73] Tseng, P., “On accelerated proximal gradient methods for convex-concave optimiza-
tion,” manuscript, University of Washington, Seattle, May 2008.

[74] Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., and Shapiro, A.,
“The sample average approximation method applied to stochastic routing problems: a
computational study,” Computational Optimization and Applications, vol. 24, pp. 289–
333, 2003.

[75] V.I.Norkin, Pflug, G., and Ruszczyński, A., “A branch and bound method for
stochastic global optimization,” Mathematical Programming, vol. 83, pp. 425–450, 1998.

176

[76] Wang, W. and Ahmed, S., “Sample average approximation of expected value con-
strained stochastic programs,” Operations Research Letters, vol. 36, pp. 515–519, 2008.

[77] Ye, Y., Interior Point Algorithms: Theory and Analysis. Hoboken, NJ: John Wiley,
1997.

[78] Zhao, X., Sun, D., and Toh, K., “A newton-cg augmented lagrangian method for
semidefinite programming,” manuscript, National University of Singapore, Singapore,
March 2008.

177

VITA

Guanghui (George) Lan was born on August 9, 1976 in Pingjiang County, Hunan, China.

He obtained his B.S. and M.S. degree in Mechanical Engineering from Xiangtan University

and Shanghai Jiao Tong University in 1996 and 1999, respectively. He then worked as a

software engineer in industry for about three years in China. In August 2002, he enrolled

at the University of Louisville and earned a M.S. degree in Industrial Engineering in June

2004. In August 2004, he enrolled at Georgia Institute of Technology and completed a

Ph.D. degree in the School of Industrial and Systems Engineering in early August 2009. He

became an assistant professor in the Department of Industrial and Systems Engineering at

the University of Florida since August 2009.

178

