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SUMMARY

This thesis provides contributions to research in Bayesian modeling and shrink-

age in the wavelet domain. Wavelets are a powerful tool to describe phenomena

rapidly changing in time, and wavelet-based modeling has become a standard tech-

nique in many areas of statistics, and more broadly, in sciences and engineering.

Bayesian modeling and estimation in the wavelet domain have found useful applica-

tions in nonparametric regression, image denoising, and many other areas. In this

thesis, we build on the existing techniques and propose new methods for applications

in nonparametric regression, image denoising, and partially linear models.

The thesis consists of an overview chapter and four main topics. In Chapter 1, we

provide an overview of recent developments and the current status of Bayesian wavelet

shrinkage research. The chapter contains an extensive literature review consisting of

almost 100 references. The main focus of the overview chapter is on nonparametric

regression, where the observations come from an unknown function contaminated

with Gaussian noise. We present many methods which employ model-based and

adaptive shrinkage of the wavelet coefficients through Bayes rules. These includes

new developments such as dependence models, complex wavelets, and Markov chain

Monte Carlo (MCMC) strategies. Some applications of Bayesian wavelet shrinkage,

such as curve classification, are discussed.

In Chapter 2, we propose the Gibbs Sampling Wavelet Smoother (GSWS ), an

adaptive wavelet denoising methodology. We use the traditional mixture prior on

the wavelet coefficients, but also formulate a fully Bayesian hierarchical model in the

wavelet domain accounting for the uncertainty of the prior parameters by placing

hyperpriors on them. Since a closed-form solution to the Bayes estimator does not

xi



exist, the procedure is computational, in which the posterior mean is computed via

MCMC simulations. We show how to efficiently develop a Gibbs sampling algorithm

for the proposed model. The developed procedure is fully Bayesian, is adaptive to

the underlying signal, and provides good denoising performance compared to state-

of-the-art methods. Application of the method is illustrated on a real data set arising

from the analysis of metabolic pathways, where an iterative shrinkage procedure is

developed to preserve the mass balance of the metabolites in the system. We also

show how the methodology can be extended to complex wavelet bases.

In Chapter 3, we propose a wavelet-based denoising methodology based on a

Bayesian hierarchical model using a double Weibull prior. The interesting feature

is that in contrast to the mixture priors traditionally used by some state-of-the-art

methods, the wavelet coefficients are modeled by a single density. Two estimators are

developed, one based on the posterior mean and the other based on the larger posterior

mode; and we show how to calculate these estimators efficiently. The methodology

provides good denoising performance, comparable even to state-of-the-art methods

that use a mixture prior and an empirical Bayes setting of hyperparameters; this is

demonstrated by simulations on standard test functions. An application to a real-

word data set is also considered.

In Chapter 4, we propose a wavelet shrinkage method based on a neighborhood of

wavelet coefficients, which includes two neighboring coefficients and a parental coeffi-

cient. The methodology is called Λ-neighborhood wavelet shrinkage, motivated by the

shape of the considered neighborhood. We propose a Bayesian hierarchical model us-

ing a contaminated exponential prior on the total mean energy in the Λ-neighborhood.

The hyperparameters in the model are estimated by the empirical Bayes method, and

the posterior mean, median, and Bayes factor are obtained and used in the estimation

of the total mean energy. Shrinkage of the neighboring coefficients is based on the

xii



ratio of the estimated and observed energy. The proposed methodology is compara-

ble and often superior to several established wavelet denoising methods that utilize

neighboring information, which is demonstrated by extensive simulations. An appli-

cation to a real-world data set from inductance plethysmography is considered, and

an extension to image denoising is discussed.

In Chapter 5, we propose a wavelet-based methodology for estimation and variable

selection in partially linear models. The inference is conducted in the wavelet domain,

which provides a sparse and localized decomposition appropriate for nonparametric

components with various degrees of smoothness. A hierarchical Bayes model is for-

mulated on the parameters of this representation, where the estimation and variable

selection is performed by a Gibbs sampling procedure. For both the parametric and

nonparametric part of the model we are using point-mass-at-zero contamination pri-

ors with a double exponential spread distribution. In this sense we extend the model

of Chapter 2 to partially linear models. Only a few papers in the area of partially

linear wavelet models exist, and we show that the proposed methodology is often

superior to the existing methods with respect to the task of estimating model pa-

rameters. Moreover, the method is able to perform Bayesian variable selection by a

stochastic search for the parametric part of the model.

The thesis is concluded by an Appendix and References.

xiii



CHAPTER I

INTRODUCTION - BAYESIAN WAVELET SHRINKAGE

STRATEGIES

In this chapter we overview recent developments and current status of use of Bayesian

paradigm in wavelet shrinkage. The paradigmatic problem where wavelet shrinkage is

employed is that of nonparametric regression where data are modeled as observations

from an unknown signal contaminated with a Gaussian noise. Bayes rules as general

shrinkers provide a formal mechanism to implement shrinkage in the wavelet domain

that is model based and adaptive. New developments including dependence models,

complex wavelets and MCMC strategies are described. Applications include induc-

tance plethysmography data and curve classification procedure applied in botany.

The chapter features an extensive set of references consisting of almost 100 entries.

1.1 Introduction

Wavelet-based tools became standard methodology in many areas of modern statis-

tics, for example in regression, density and function estimation, factor analysis, mod-

eling and forecasting of time series, functional data analysis, data mining and clas-

sification, with ranges of application areas in science and engineering. Wavelets owe

their initial popularity in statistics to shrinkage, a simple and yet powerful procedure

in nonparametric statistical modeling. Wavelet shrinkage is a three-step procedure:

(i) data are transformed into a set of wavelet coefficients; (ii) a shrinkage of the coef-

ficients is performed; and (iii) the processed wavelet coefficients are transformed back

to the domain of the original data.
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Wavelet domains are desirable modeling environments; several supporting argu-

ments are listed below.

Discrete wavelet transforms tend to “disbalance” the data. Even though the

orthogonal transforms preserve the `2 norm of the data (the square root of sum of

squares of observations, or the “energy” as engineers like to say), most of the `2

norm in the transformed data is concentrated in only a few wavelet coefficients. This

concentration narrows the class of plausible models and facilitates the thresholding.

The disbalancing property also yields a variety of criteria for the selection of best

basis.

Wavelets, as modeling building blocks, are well localized in both time and scale

(frequency). Signals with rapid local changes (signals with discontinuities, cusps,

sharp spikes, etc.) can be represented with only a few wavelet coefficients. This

parsimony does not, in general, hold for other standard orthonormal bases which

may require many “compensating” coefficients to describe discontinuity artifacts or

local bursts.

Heisenberg’s principle states that time-frequency models cannot be arbitrarily

precise in the time and frequency domains simultaneously, rather this precision is

bounded from the below by a universal constant. Wavelets adaptively distribute the

time-frequency precision by their innate nature. The economy of wavelet transforms

can be attributed to their ability to confront the limitations of Heisenberg’s principle

in a data-dependent manner.

An important feature of wavelet transforms is their whitening property. There

is ample theoretical and empirical evidence that wavelet transforms simplify the de-

pendence structure in the original data. For example, it is possible, for any given

stationary dependence in the input signal, to construct a biorthogonal wavelet basis

such that the corresponding in the transform are uncorrelated (a wavelet counterpart

of Karhunen-Loève transform). For a discussion and examples see Walter and Shen

2



(2001).

We conclude this incomplete list of features of wavelet transforms by pointing

out their sensitivity to self-similar data. The scaling laws are distinctive features of

self-similar data. Such laws are clearly visible in the wavelet domain in the so-called

wavelet spectra, wavelet counterparts of the Fourier spectra.

More arguments can be given: computational speed of the wavelet transform, easy

incorporation of prior information about some features of the signal (smoothness,

distribution of energy across scales), etc.

Prior to describing a formal setup for Bayesian wavelet shrinkage, we provide a

brief review of discrete wavelet transforms and traditional wavelet shrinkage.

Basics on wavelets can be found in many texts, monographs, and papers at many

different levels of exposition. The interested reader should consult monographs by

Daubechies (1992), Ogden (1997), Vidakovic (1999), Walter and Shen (2001), among

others. An introductory article is Vidakovic and Müller (1999).

1.1.1 Discrete Wavelet Transformations and Wavelet Shrinkage

Let y be a data vector of dimension (size) n. For the simplicity we choose n to

be a power of 2, say 2J . We assume that measurements y belong to an interval

and consider periodized wavelet bases. Generalizations to different sample sizes and

general wavelet and wavelet-like transforms are straightforward.

Suppose that the vector y is wavelet transformed to a vector d. This linear

and orthogonal transform can be fully described by an n × n orthogonal matrix

W . The use of the matrix W is possible when n is not large (of order of a few

thousand, at most), but for large n, fast filtering algorithms are employed. The

filtering procedures are based on so-called quadrature mirror filters which are uniquely

determined by the choice of wavelet and fast Mallat’s algorithm (Mallat, 1989). The

3



wavelet decomposition of the vector y can be written as

d = (H`y, GH`−1y, . . . , GH2y, GHy, Gy). (1)

Note that in (1), d has the same length as y and ` is any fixed number between

1 and J = log2 n. The operators G and H acting on data sequences are defined

coordinate-wise via

(Ha)k =
∑
m∈Z

hm−2kam, and (Ga)k =
∑
m∈Z

gm−2kam, k ∈ Z

where g and h are high- and low-pass wavelet filters. Components of g and h are

connected via the quadrature mirror relationship, gn = (−1)nh1−n. For all commonly

used wavelet bases, the taps of filters g and h are readily available in the literature

or in standard software packages.

The elements of d are called “wavelet coefficients.” The subvectors described in

(1) correspond to detail levels. For instance, the vector Gy contains n/2 = 2J−1

coefficients representing the level of the finest detail. When ` = J , the vectors

GHJ−1y = {d00} and HJy = {c00} contain a single coefficient each and represent

the coarsest possible level of detail and the smooth part in wavelet decomposition,

respectively.

In general, jth detail level in the wavelet decomposition (1) contains 2j elements,

and can be written as

GHJ−j−1y = (dj,0, dj,1, . . . , dj,2j−1). (2)

Wavelet shrinkage methodology consists of shrinking the magnitudes of wavelet

coefficients. The simplest wavelet shrinkage technique is thresholding. The compo-

nents of d are replaced by 0 if their absolute value does not exceed a fixed threshold

λ.

The two most common thresholding policies are hard and soft thresholding with

4



corresponding rules given by:

θh(d, λ) = d 1(|d| > λ),

θs(d, λ) = (d− sign(d)λ) 1(|d| > λ),

where 1(A) is the indicator of relation A, i.e., 1(A) = 1 if A is true and 1(A) = 0 if

A is false.

In the next section we describe how the Bayes rules, resulting from the models on

wavelet coefficient can act as shrinkage/thresholding rules.

1.2 Wavelets and Bayes

Bayesian paradigm has become very popular in wavelet data processing since Bayes

rules are shrinkers. This is true in general, although examples of Bayes rules that

expand can be found, see Vidakovic and Ruggeri (1999). The Bayes rules can be

constructed to mimic the thresholding rules: to slightly shrink the large coefficients

and heavily shrink the small coefficients. In addition, Bayes rules result from realistic

statistical models on wavelet coefficients and such models allow for incorporation

of prior information about the true signal. Furthermore, most Bayes rules can be

easily either computed by simulation or expressed in a closed form. Reviews of early

Bayesian approaches can be found in Abramovich et al. (2000), in Vidakovic (1998b,

1999) and in Ruggeri and Vidakovic (2005). An edited volume on Bayesian modeling

in the wavelet domain appeared 12 years ago (Müller and Vidakovic, 1999).

A paradigmatic task in which the wavelets are typically applied is recovery of an

unknown signal f observed with noise e. In statistical terms this would be a task of

nonparametric regression. Wavelet transforms W are applied to noisy measurements

yi = fi + ei, i = 1, . . . , n, or, in vector notation, y = f + e. The linearity of W

implies that the transformed vector d = W (y) is the sum of the transformed signal

θ = W (f) and the transformed noise ε = W (e). Furthermore, the orthogonality of

W and Gaussianity of e implies Gaussianity of ε as well.
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Bayesian methods are applied in the wavelet domain, that is, after the data have

been transformed. The wavelet coefficients can be modeled in totality, as a single

vector, or one by one, due to decorrelating property of wavelet transforms. Block-

modeling approaches are also possible.

When the model is on individual wavelet (detail) coefficients di ∼ N(θi, σ
2), i =

1, . . . , n, the interest relies in the estimation of the θi. Usually we concentrate on

typical wavelet coefficient and model: d = θ+ ε. Bayesian methods are applied to es-

timate the location parameter θ, which will be, in the sequel, argument in the inverse

wavelet transform. A prior on θ, and possibly on other parameters of the distribu-

tion of ε, is elicited, and the corresponding Bayes estimators are back-transformed.

Various choices of Bayesian models have been motivated by different, often contrast-

ing, interests. Some models were driven by empirical justifications, others by pure

mathematical considerations; some models lead to simple closed-form rules, the other

require extensive Markov Chain Monte Carlo simulations to produce the estimate.

Bayes rules with respect to absolute or 0-1 loss functions are capable of producing

bona fide thresholding rules.

1.2.1 An Illustrative Example

As an illustration of the Bayesian approach we present BAMS (Bayesian Adaptive

Multiresolution Shrinkage). The method, due to Vidakovic and Ruggeri (2001), is

motivated by empirical considerations on the coefficients and leads to easily imple-

mentable Bayes estimates, available in closed form.

The BAMS originates from the observation that a realistic Bayes model should

produce prior predictive distributions of the observations which “agree” with the ob-

servations. Other authors were previously interested in the empirical distribution of

the wavelet coefficients; see, for example, Leporini and Pesquet (1998, 2001), Mallat

(1989), Ruggeri (1999), Simoncelli (1999), and Vidakovic (1998b). Their common
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argument can be summarized by the following statement:

“For most of the signals and images encountered in practice, the empirical distribution

of a typical detail wavelet coefficient is notably centered about zero and peaked at it.”

In accordance with the spirit of this statement, Mallat (1989) suggested to fit empir-

ical distributions of wavelet coefficients by the exponential power model

f(d) = C · e−(|d|/α)β , α, β > 0,

where C = β
2αΓ(1/β)

.

Following the Bayesian paradigm, prior distributions should be elicited on the pa-

rameters of the model d|θ, σ2 ∼ N(θ, σ2) and Bayesian estimators (namely, posterior

means under squared loss) computed. In BAMS, priors on θ and σ2 are set such

that the marginal (prior predictive) distribution of the wavelet coefficients is a double

exponential distribution DE, that is, an exponential power one with β = 1. The

double exponential distribution can be obtained by marginalizing the normal likeli-

hood by adopting exponential prior on its variance σ2. The choice of an exponential

prior can be justified by its maxent property, that is, exponential distribution is the

entropy maximizer in the class of all distributions supported on (0,∞) with a fixed

first moment, and in that sense is noninformative.

Thus, BAMS uses the exponential prior σ2 ∼ E(µ), µ > 0, which leads to the

marginal likelihood

d|θ ∼ DE

(
θ,

1√
2µ

)
, with density f(d|θ) =

1

2

√
2µe−

√
2µ|d−θ|.

Vidakovic (1998b) considered the previous marginal likelihood but with a t distri-

bution as the prior on θ. The Bayes rules with respect to the squared error loss under

general but symmetric priors π(θ) can be expressed using the Laplace transforms of

π(θ).
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In personal communication with the second author, Jim Berger and Peter Müller

suggested in 1993 the use of ε-contamination priors in the wavelet context point-

ing out that such priors would lead to rules which are smooth approximations to a

thresholding.

The choice

π(θ) = εδ(0) + (1− ε)ξ(θ) (3)

also reflects prior belief that some locations (corresponding to the signal or function

to be estimated) are 0 and that there is a nonzero spread component ξ describing

“large” locations. In addition to this prior sparsity of the signal part, this prior leads

to desirable shapes of the resulting Bayes rules. Note that here 0 ≤ ε ≤ 1 denotes the

mixing weight, not the random error component, and will be used throughout this

chapter in contamination priors.

In BAMS, the spread part ξ is chosen as θ ∼ DE(0, τ). The Bayes rule under the

squared error loss is

δπ(d) =
(1− ε) mξ(d) δξ(d)

(1− ε) mξ(d) + ε DE
(

0, 1√
2µ

) , (4)

where

mξ(d) =
τe−|d|/τ − 1√

2µ
e−
√

2µ|d|

2τ 2 − 1/µ

and

δξ(d) =
τ(τ 2 − 1/(2µ))de−|d|/τ + τ 2(e−|d|

√
2µ − e−|d|/τ )/µ

(τ 2 − 1/(2µ))(τe−|d|/τ − (1/
√

2µ)e−|d|
√

2µ)

are the prior predictive distribution and the Bayes rule for the spread part of the

prior, ξ. Rule (4) is the BAMS rule, which falls between comparable hard and soft

thresholding rules.

Bayes rules under the squared error loss and regular models are never thresholding

rules. To extend this motivating example, we consider the posterior median as an
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estimator for θ. It is well known that under the absolute error loss L(θ, d) = |θ − d|,

the posterior risk is minimized by the posterior median. The posterior median was

first considered by Abramovich et al. (1998) in the context of wavelet shrinkage. It

could be a thresholding rule, which is preferable to smooth shrinkage rules in many

applications, like model selection, data compression, dimension reduction, and related

statistical tasks in which it is desirable to replace by zero a majority of the processed

coefficients.

For the model above the posterior distribution is π?(θ|d) = f(d|θ)π(θ)/mπ(d),

where

mπ(d) = (1− ε) mξ(d) + ε DE

(
0,

1√
2µ

)
.

In order to find the median of the posterior distribution, the solution of the following

equation, with respect to u, is needed:∫ u

−∞
π?(θ|d)dθ =

1

2
. (5)

It is easy to show with simple calculus that if d ≥ 0,

max

∫ 0−

−∞
π?(θ|d)dθ =

1

2
, (6)

and in case d < 0,

min

∫ 0

−∞
π?(θ|d)dθ =

1

2
. (7)

Because π?(θ|d) is a probability density, the integral in equation (5) is non-decreasing

in u. Therefore, by using results (6) and (7), the posterior median is always greater

than equal to zero, when d ≥ 0, and less than equal to zero, when d < 0.

To find the posterior median, first consider the case d ≥ 0. We know that the

solution u satisfies u ≥ 0. The equation in (5) becomes

ε
√

2µ
2
e−
√

2µd + (1− ε)
√

2µ
4τ
e−
√

2µd
{

1√
2µ+1/τ

+ 1√
2µ−1/τ

[
e(
√

2µ−1/τ)u − 1
]}

mπ(d)
=

1

2
.
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Next, assume d < 0. Then the solution satisfies u ≤ 0 and equation (5) becomes:

(1− ε)
√

2µ
4τ

{
1√

2µ+1/τ
ed/τ + 1√

2µ−1/τ
ed/τ − 1√

2µ−1/τ
e−(
√

2µ−1/τ)u
}

mπ(x)
=

1

2
.

From the above, the algorithm for finding the posterior median δM(d) is:

For d > 0,

if
ε
√

2µ
2
e−
√

2µd + (1− ε)
√

2µ
4τ
e−
√

2µd 1√
2µ+1/τ

mπ(d)
>

1

2
, δM(d) = 0

else δM(d) =
1√

2µ− 1/τ
log

{[
mπ(d)/2− ε

√
2µ
2
e−
√

2µd

(1− ε)
√

2µ
4τ
e−
√

2µd
+

+
2/τ

2µ− 1/τ 2

]
(
√

2µ− 1/τ)

}
For d < 0,

if
(1− ε)

√
2µ

4τ

[
1√

2µ+1/τ
ed/τ + 1√

2µ−1/τ
ed/τ − 1√

2µ−1/τ
e(
√

2µ−1/τ)d
]

mπ(d)
<

1

2
,

δM(d) = 0

else δM(d) = − 1√
2µ− 1/τ

log

−
 mπ(d)/2

(1−ε)
√
2µ
4τ

− 1√
2µ+1/τ

ed/τ

1√
2µ−1/τ

e
√

2µd
−

−e−(
√

2µ−1/τ)d
]}

For d = 0,

δM(d) = 0. (8)

The rule δM(d) based on algorithm (8) is the BAMS-MED rule. As evident from

Figure 1, the BAMS-MED rule is a thresholding rule.
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Figure 1: BAMS-MED rule (8) for ε = 0.9, µ = 1 and τ = 2.

1.3 Bayesian Wavelet Regression

1.3.1 Term-by-Term Shrinkage

As we indicated in the introduction, the most popular application of wavelets is the

nonparametric regression problem

yi = f(xi) + ei, i = 1, . . . , n.

The usual assumptions are that xi, i = 1, . . . , n are equispaced (e.g., time points),

and the random errors ei are i.i.d. normal, with zero mean and variance σ2. The

interest is to estimate the function f using the observations y. After applying a linear

and orthogonal wavelet transform, the problem becomes

djk = θjk + εjk,

where djk, θjk, and εjk are the wavelet coefficients (at resolution j and position k)

corresponding to y, f , and e, respectively.

Due to the the whitening property of wavelet transforms (Flandrin, 1992), many

existing methods assume independence of the wavelet coefficients and model the
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wavelet coefficients one by one using notation for a generic wavelet coefficient, d =

θ+ε. Shrinkage is performed term by term, which is sometimes referred to as diagonal

shrinkage.

An early example of the diagonal Bayesian approach to wavelet regression is the

Adaptive Bayesian Wavelet Shrinkage (ABWS) proposed by Chipman et al. (1997).

Their approach is based on the stochastic search variable selection (SSVS) proposed

by George and McCulloch (1997), with the assumption that σ is known.

Chipman et al. (1997) start with the model

d|θ, σ2 ∼ N(θ, σ2).

The prior on θ is defined as a mixture of two normals

θ|γj ∼ γjN(0, (cjτj)
2) + (1− γj)N(0, τ 2

j ),

where

γj ∼ Ber(pj).

Because the hyperparameters pj, cj, and τj depend on the level j to which the corre-

sponding θ (or d) belongs, and can be level-wise different, the method is adaptive.

The Bayes rule under squared error loss for θ (from the level j) has an explicit

form,

δ(d) =

[
P (γj = 1|d)

(cjτj)
2

σ2 + (cjτj)2
+ P (γj = 0|d)

τ 2
j

σ2 + τ 2
j

]
d, (9)

where

P (γj = 1|d) =
pjπ(d|γj = 1)

(1− pj)π(d|γj = 0)

and

π(d|γj = 1) ∼ N(0, σ2 + (cjτj)
2) and π(d|γj = 0) ∼ N(0, σ2 + τ 2

j ).
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For other early examples of the Bayesian approach to wavelet regression see papers,

for example, by Abramovich et al. (1998), Clyde et al. (1998), Clyde and George

(1998) and Vidakovic (1998a).

A more recent paper by Johnstone and Silverman (2005b) presents a class of

empirical Bayes methods for wavelet shrinkage. The hyperparameters of the model

are estimated by marginal maximum likelihood; therefore, the threshold is estimated

from the data. The authors consider different level-dependent priors, all of which are

a mixture of point mass at zero and a heavy-tailed density. One of the choices for the

heavy-tailed density is the double exponential (Laplace) prior, for which we present

the posterior mean to exemplify their methodology.

At level j of the wavelet decomposition, define the sequence zk = djk/σj, where

σj is the standard deviation of the noise at level j, which is estimated from the data.

Therefore zk = µk + εk, where the εk are i.i.d. N(0, 1) random variables. The authors

model parameters µk with independent mixture prior distributions

π(µ) = (1− w)δ0(µ) + wγ(µ),

where δ0(µ) denotes a point mass at zero. Using the double exponential distribution

γa(µ) = 1
2

exp{−a|µ|}, with scale parameter a > 0, the marginal distribution of z

becomes

m(z) = (1− w)ϕ(z) + wg(z),

where ϕ denotes the standard normal density and

g(z) = 1
2
a exp

{
1
2
a2
} [
e−azΦ(z − a) + eazΦ̃(z + a)

]
.

In the above equation Φ denotes the cumulative distribution of the standard normal

and Φ̃ = 1− Φ. The posterior distribution of µ becomes

π?(µ|z) = (1− wpost)δ0(µ) + wpostf1(µ|z),
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where the posterior probability wpost is

wpost(z) = wg(z)
/

[wg(z) + (1− w)ϕ(z)]

and

f1(µ|z) =


eazϕ(µ− z − a)

/ [
e−azΦ(z − a) + eazΦ̃(z + a)

]
, µ ≤ 0

e−azϕ(µ− z + a)
/ [
e−azΦ(z − a) + eazΦ̃(z + a)

]
, µ > 0,

which is a weighted sum of truncated normal distributions. Detailed derivations of

g(z) and f1(µ|z) are provided by Pericchi and Smith (1992). It can be shown that

the posterior mean is

E(µ|z) = wpost(z)

z − a
[
e−azΦ(z − a)− eazΦ̃(z + a)

]
e−azΦ(z − a) + eazΦ̃(z + a)

 . (10)

A schematic picture of the posterior mean (10) is presented in Figure 2 for w = 0.1

and a = 0.5. It exhibits a desirable shrinkage pattern slightly shrinking large and

heavily shrinking small coefficients in magnitude.
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Figure 2: Posterior mean rule (10) for w = 0.1 and a = 0.5.
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The mixing weight w and scale parameter a are estimated by marginal maximum

likelihood for each dyadic level j. The authors also provide the posterior median for

the above model, and closed-form equations for the posterior mean and median in case

γ(µ) is a quasi-Cauchy distribution. For more details and related theoretical results

the reader is referred to Johnstone and Silverman (2005b), and for more examples

using the method, see Johnstone and Silverman (2005a).

Several more recent papers have considered term-by-term Bayesian wavelet shrink-

age. Angelini and Sapatinas (2004) consider an empirical Bayes approach to wavelet

regression by eliciting the ε-contamination class of prior distributions and using type

II maximum likelihood approach to prior selection. Angelini and Vidakovic (2004)

show that Γ-minimax shrinkage rules are Bayes with respect to a least favorable

contamination prior with a uniform spread distribution. Their method allows for

incorporation of information about the energy in the signal of interest. Cutillo et al.

(2008) consider thresholding rules induced by a variation of the Bayesian MAP prin-

ciple in a properly set Bayesian model. The rule proposed is called larger posterior

mode (LPM) because it always picks the mode of the posterior larger in absolute

value. ter Braak (2006) extends the normal Bayesian linear model by specifying a

flat prior on the δth power of the variance components of the regression coefficients.

In the orthonormal case, easy-to-compute analytic expressions are derived, and the

procedure is applied in a simulation study of wavelet denoising.

1.3.2 Bayesian Block Shrinkage

Methods considered above are called diagonal, since the wavelet coefficients are as-

sumed independent. In reality the wavelet coefficients are dependent, but this depen-

dence is weak and decreases with increasing the separation distance between them

and the number of vanishing moments of the decomposing wavelet. Many authors ar-

gued that shrinkage performance can be improved by considering the neighborhoods

15



of wavelet coefficients (blocks, parent-child relations, cones of influence, etc.) and

report improvements over the diagonal methods. Examples include classical block

thresholding methods by Hall et al. (1997, 1998, 1999), Cai (1999, 2002), Cai and

Silverman (2001) where wavelet coefficients are thresholded based on block sums of

squares.

Abramovich et al. (2002) considered an empirical Bayes approach to incorporating

information on neighboring wavelet coefficients into function estimation. The authors

group wavelet coefficients djk into mj nonoverlapping blocks bjK (K = 1, . . . ,mj) of

length lj at each resolution level j. The block of observed wavelet coefficients will be

denoted as b̂jK . They consider the following prior model for blocks bjK :

bjK |γjK ∼ N(0, γjKVj),

γjK ∼ Ber(πj).

Independence of blocks across different resolution levels is assumed. This prior

model allows for a covariance structure between neighboring coefficients in the same

block, supporting the fact that wavelet coefficients are more likely to contain signal if

this is true for their neighbors as well. The covariance matrix Vj is specified at each

level j by two hyperparameters τj and ρj, where the correlation between the coef-

ficients, ρj, decreases as the distance between the coefficients increases. Combining

the prior model with the likelihood b̂jK ∼ N(bjK , σ
2I) leads to the posterior mean of

bjK as

E(bjK |b̂jK) =
1

1 +OjK

Aj b̂jK , (11)

where

OjK =
1− πj
πj

(
det(Vj)

σ2lj det(Aj)

)1/2

exp

{
−
b̂
′
jKAj b̂jK

2σ2

}
,

Aj = (σ2V −1
j + I)−1.
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Rule (11) is a nonlinear block shrinkage rule, by which the observed wavelet coeffi-

cients in block jK are shrunk by the same factor determined by all the coefficients

within the block. The authors also provide details for the posterior median and the

Bayes factor procedure, which are individual and block thresholding rules, respec-

tively.

Hyperparameters πj, τj, and ρj are estimated by marginal maximum likelihood

method for each level j, and hyperparameter σ is estimated by the standard me-

dian absolute deviation suggested by Donoho and Johnstone (1994). After plugging

in the estimate σ̂ and some reparametrization, the negative log-likelihood function

−lj(πj, τj, ρj, σ̂) was minimized by the Nelder-Mead simplex search method.

The authors present detailed simulation study of the method and an application

to inductance plethysmography data. For details the reader is referred to Abramovich

et al. (2002).

A paper by De Candiitis and Vidakovic (2004) proposed the BBS (Bayesian block

shrinkage) method, which also allows for dependence between the wavelet coefficients.

The modeling is accomplished by using a mixture of two normal-inverse-gamma (NIG)

distributions as a joint prior on wavelet coefficients and noise variance within each

block. In this sense it is a generalization of the ABWS method by Chipman et al.

(1997). The authors group the wavelet coefficients into nonoverlapping, mutually

independent blocks djH of size lj. Assuming a normal likelihood djH ∼ N(θjH , σ
2I),

the prior model is specified as

θjH , σ
2|γj ∼ γjNIG(α, δ,0,Σj) + (1− γj)NIG(α, δ,0,∆j),

γj ∼ Ber(pj),

where the covariance matrices are specified as Σ[s, t] = c2
jρ
|s−t| and ∆[s, t] = τ 2

j ρ
|s−t|,

which is in the same fashion as in Abramovich et al. (2002). The first part of the

above mixture prior models wavelet coefficients with large magnitude (cj � 1) and the
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second part captures small coefficients (τj is small), similarly to the ABWS method.

The posterior distribution for the model above remains a mixture of normal-inverse

gamma distribution with mixing weights updated by the observed wavelet coefficients.

The posterior and marginal distributions are derived in the paper. The posterior mean

of θjH becomes

E(θjH |djH) = AjH(djH)m?
jH + (1− AjH(djH))m??

jH , (12)

where

AjH(djH) =
pj
|Σ?j |1/2

|Σj |1/2

pj
|Σ?j |1/2

|Σj |1/2
+ (1− pj)

|∆??
j |1/2

|∆j |1/2
+
[
α+dTjH(I−∆??

j )djH

α+dTjH(I−Σ?j )djH

]−(δ+lj)/2

and

Σ?
j = (Σ−1

j + I)−1,

∆??
j = (∆−1

j + I)−1,

m?
jH = Σ?

jdjH ,

m??
jH = ∆??

j djH .

The posterior mean (12) is a linear combination of two affine shrinkage estimators

m?
jH and m??

jH , which preserve the smooth part and remove the noise, respectively.

The weight AjH(djH) depends on the observed wavelet coefficients in a nonlinear

fashion. For more details on hyperparameter selection, simulations, and performance

the reader is referred to De Candiitis and Vidakovic (2004).

Huerta (2005) proposed a multivariate Bayes wavelet shrinkage method which

allows for correlations between wavelet coefficients corresponding to the same level of

detail. The paper assumes the multivariate normal likelihood for the observed wavelet

coefficients, that is,

d|θ, σ2 ∼ N(θ, σ2In).
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Note that the wavelet coefficients are not grouped into blocks, as opposed to the

methods discussed before. The prior structure is specified as

θ|τ 2 ∼ N(0, τ 2Σ),

σ2 ∼ IG(α1, δ1),

τ 2 ∼ IG(α2, δ2),

where Σ is an n × n matrix defining the prior correlation structure among wavelet

coefficients. The matrix is specified as a block diagonal matrix, where each block de-

fines the correlation structure for different wavelet decomposition level. The building

blocks of matrix Σ are defined in the same way as in the methods discussed above.

Since there is no closed-form expression for the marginal posterior π?(θ|d), a stan-

dard Gibbs sampling procedure is adopted to obtain posterior inferences on the vector

of wavelet coefficients d. For further details and applications of the method the reader

is referred to Huerta (2005).

Wang and Wood (2006) considered a different approach for Bayesian block shrink-

age, based directly on the block sum of squares. The sum of squares of the coefficients

in the block forms a noncentral chi-square random variable, on which the Bayesian

model is formulated. Let ĉB denote the block of empirical wavelet coefficients, B

representing the labels and n(B) the number of labels, in general. Then the assumed

likelihood function is ĉB ∼ Nn(B)(cB, σ
2In(B)). Define z = ‖ĉB‖2 =

∑
i∈B ĉ

2
i , the sum

of squares of the coefficients in the block. It follows that z ∼ χ2
m(z|ρ, σ2), that is,

z has noncentral χ2 distribution with m = n(B) degrees of freedom, noncentrality

parameter ρ = ‖cB‖2, and scale parameter σ2. The authors formulate the prior model

on the noncentrality parameter as

ρ|β ∼ χ2
m(ρ|0, β−1),

β|σ2, θ ∼ F (β|σ2, θ).

In other words this specifies a central χ2 density with m degrees of freedom and scale
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parameter β−1 as a prior for ρ and specifies a prior for β with cumulative distribution

function F (β|σ2, θ). Their article focuses on a mixture structure

F (β|σ2, θ) = pF (β|σ2, λ, J = 1) + (1− p)F (β|σ2, λ, J = 0),

where

F (β|σ2, λ, J = 1) = I{β=∞}(β).

Here J is a Bernoulli random variable, with J = 0 corresponding to a distribution

on the right side of the mixture, and J = 1 referring to a point mass at infinity

distribution. Using an identity satisfied by the noncentral χ2 density the authors

provide closed-form equations for the marginal distribution and the posterior mean

of ρ for the model setup above. The equations are the function of F (β|σ2, λ, J = 0),

which is to be specified. The authors consider four particular cases of this prior, the

point mass prior, the power prior, the exponential prior, and general discrete prior.

For the power prior - on which the paper focuses on - the marginal distribution and

posterior mean of ρ is derived as

f(z|σ2, θ) = pχ2
m(ρ|0, σ2) + (1− p)(λ+ 1)(2σ2)λ+1

Γ(1
2
m)zλ+2

γ
(
η,

z

2σ2

)
,

E(ρ|z, σ2, θ) = (1− π)

{
mσ2 + z − mσ2 + 2z

z/(2σ2)
Cη,1

( z

2σ2

)
+

4σ4

z
Cη,2

( z

2σ2

)}
,

where

π =
pχ2

m(ρ|0, σ2)

f(z|σ2, θ)
,

Cη,j(x) = γ(η + j, x)/γ(η, x),

η = 1 + λ+
1

2
m,

γ(a, x) =

∫ x

0

ta−1e−tdt.

Hyperparameter σ2 is estimated analogously to the median absolute deviation esti-

mator suggested by Donoho and Johnstone (1994), hyperparameter λ is estimated by
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a “quick-and-dirty” heuristics, and finally hyperparameter p is estimated by marginal

maximum likelihood. Given values of hyperparameters σ2 and θ = (p, λ), the authors

propose to estimate wavelet coefficients cB by the shrinkage procedure

cB = ĉB{Bσ2,θ(z)/z}
1
2 , (13)

where Bσ2,θ(z) denotes the posterior mean or posterior median of ρ. The authors

report good MSE results based on simulations on well-known test functions. For

more details the reader is referred to Wang and Wood (2006).

There is a wide range of other articles considering Bayesian modeling of neighbor-

ing wavelet coefficients. To name a few, Romberg et al. (2001) use a Bayesian hidden

Markov tree (HMT) to model the structure of wavelet coefficients in images. Jansen

and A. (2001) introduce a geometrical prior model for configurations of wavelet coef-

ficients and combine this with local characterization of a classical thresholding into a

Bayesian framework. Sendur and Selesnick (2002) use parent-child neighboring rela-

tion and Laplacian bivariate prior to derive MAP estimators for wavelet coefficients.

Pižurica et al. (2002) use a Markov random field (MRF) prior model to incorporate

inter- and intrascale dependencies of wavelet coefficients. Portilla et al. (2003) mod-

els neighborhoods of image wavelet coefficients at adjacent positions and scales using

scale mixture of Gaussians.

A recent non-Bayesian development was proposed by Fryzlewicz (2007) in a form

of fast, hard-thresholding algorithm based on coupling parents and children in the

wavelet coefficient tree.

1.3.3 Complex Wavelet Shrinkage

Wavelet shrinkage methods using complex-valued wavelets provide additional in-

sights to shrinkage process. Lina and Mayrand (1995) describes the complex-valued

Daubechies’ wavelets in detail. Both complex- and real-valued Daubechies’ wavelets

are indexed by the number of vanishing moments, N . For a given N , there are 2N−1
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solutions to the defining equations of Daubechies’ wavelets, of which not all are dis-

tinct. For example in case N = 3, there are 4 possible solutions to the defining

equations, but only 2 are distinct. Two solutions give the real-valued extremal-phase

wavelet and the other two are a complex-valued conjugate pair, giving equivalent

complex-valued wavelets. This complex wavelet was also derived by Lawton (1993)

through “zero-flipping”; he notes that apart from the Haar wavelet, complex wavelets

with an odd number of vanishing moments are the only compactly supported wavelets

which are symmetric. The complex-valued wavelet transform can also be represented

by a complex-valued matrix W , which is unitary; therefore, W̄ TW = WW̄ T = I.

Here W̄ denotes the complex conjugate of W .

After taking complex wavelet transform of a real-valued signal, our model becomes

djk = θjk + εjk,

where the observed wavelet coefficients djk are complex numbers at resolution j and

location k.

Several papers considering Bayesian wavelet shrinkage with complex wavelets are

available. For example, Lina and Macgibbon (1997), Lina (1997), and Lina et al.

(1999) focus on image denoising, in which the phase of the observed wavelet coeffi-

cients is preserved, but the modulus of the coefficients is shrunk by the Bayes rule.

Here we summarize the complex empirical Bayes (CEB) procedure proposed by

Barber and Nason (2004), which modifies both the phase and modulus of wavelet

coefficients by a bivariate shrinkage rule. The authors assume a common i.i.d. normal

noise model e ∼ Nn(0, σ2In); however, after taking complex wavelet transform, the

real and imaginary parts of the transformed noise ε = We become correlated. The
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authors demonstrate that

cov{Re(ε), Im(ε)} = −σ2Im(WW T )/2,

cov{Re(ε),Re(ε)} = σ2{In + Re(WW T )}/2,

cov{Im(ε), Im(ε)} = σ2{In − Re(WW T )}/2. (14)

Representing the complex-valued wavelet coefficients as a bivariate real-valued ran-

dom variables, the model for the observed wavelet coefficients becomes

djk|θjk ∼ N2(θjk,Σj),

where Σj is determined by (14) for each dyadic level j. Noise variance σ2 is estimated

by the usual median absolute deviation by Donoho and Johnstone (1994).

The authors consider a bivariate mixture prior of the form

θjk ∼ pjN2(0, Vj) + (1− pj)δ0,

where δ0 is the usual point mass probability at (0, 0)T . This prior is the bivariate

extension of the prior considered by Abramovich et al. (1998). Conjugacy of the

normal distribution results in the posterior distribution

θjk|djk ∼ p̃jkN2(µjk, Ṽj) + (1− p̃jk)δ0,

where

p̃jk =
pjf(djk|pj = 1)

pjf(djk|pj = 1) + (1− pj)f(djk|pj = 0)
,

f(djk|pj = 1) =
1

2π
√
|Vj + Σj|

exp

{
−1

2
dTjk(Vj + Σj)

−1djk

}
,

f(djk|pj = 0) =
1

2π
√
|Σj|

exp

{
−1

2
dTjkΣ

−1
j djk

}
,

Ṽj =
(
V −1
j + Σ−1

j

)−1
and µjk = ṼjΣ

−1
j djk.

The posterior mean of θjk becomes

E(θjk) = p̃jkµjk, (15)
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which is denoted as “CEB-Posterior mean.” The authors consider two additional

estimation rules, the phase-preserving “CEB-Keep or kill” and the hybrid “CEB-

MeanKill” procedure.

Estimation of the prior parameters pj and Vj is employed by the data-driven em-

pirical Bayes approach maximizing the logarithm of the marginal likelihood. However,

optimizing the bivariate likelihood is more involved because we have more parameters

compared to the real-valued case.

Barber and Nason (2004) present an extensive simulation study of the CEB

method alongside with the phase-preserving CMWS hard-thresholding method also

developed in their paper. Simulations show that complex-valued denoising is very

effective and dominates existing real-valued wavelet shrinkage methods.

1.3.4 Complex Wavelet Shrinkage via Gibbs Sampling

In this section we describe a new adaptive wavelet denoising methodology using com-

plex wavelets. The method is based on a fully Bayesian hierarchical model that uses

a bivariate mixture prior. The crux of the procedure is computational in which the

posterior mean is computed through Markov chain Monte Carlo (MCMC) simula-

tions.

We build on the results of Barber and Nason (2004) and formulate a bivariate

model in the complex wavelet domain, representing the wavelet coefficients as bi-

variate real-valued random variables. As standardly done in Bayesian modeling, we

formulate a hierarchical model which accounts for the uncertainty of the prior pa-

rameters by adopting hyperpriors on them. Since a closed-form solution to the Bayes

estimator does not exist, MCMC methodology is applied and an approximate estima-

tor (posterior mean) from the output of simulational runs is computed. Although the

simplicity of a closed-form solution is lost, the procedure is fully Bayesian, adaptive to

the underlying signal and the estimation of the hyperparameters is automatic via the
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MCMC sampling algorithm. The estimation is governed by the data and hyperprior

distributions on the parameters.

We start with the following hierarchical bivariate Bayesian model on the observed

complex-valued wavelet coefficients djk:

djk|θjk, σ2 ∼ N2(θjk, σ
2Σj)

θjk|εj, Cj ∼ (1− εj)δ0 + εjEP2(µ,Cj, β), (16)

where EP2 denotes the bivariate exponential power distribution. The multivariate

exponential power distribution is an extension of the class of normal distributions in

which the heaviness of tails can be controlled. Its definition and properties can be

found in Gomez et al. (1998). The prior on the location θjk is a bivariate extension

of the standard mixture prior in the Bayesian wavelet shrinkage literature, consisting

of a point mass at zero and a heavy-tailed distribution. As a prior, Barber and

Nason (2004) considered a mixture of point mass and bivariate normal distribution.

A heavy-tailed mixture prior can probably better capture the sparsity of wavelet

coefficients; however, in the bivariate case, a closed-form solution is infeasible, and

we rely on MCMC simulation.

To specify the general case exponential power prior in (16), we use µ = 0, because

the wavelet coefficients are centered around zero by their definition. We also fix

β = 1/2, which gives our prior the following form:

π(θ|C) =
1

8π|C|1/2
exp

{
−1

2

(
θ′C−1θ

)1/2
}
. (17)

The prior in (17) is equivalent to the bivariate double exponential distribution. The

univariate double exponential prior was extensively used in the real-valued wavelet

context, hence it is natural to extend it to the bivariate case.

From model (16) it is apparent that the mixture prior on θjk is set level-wise,

for each dyadic level j, which ensures the adaptivity of the method. Quantity σ2Σj

represents the scaled covariance matrix of the noise for each decomposition level
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and Cj represents the level-wise scale matrix in the exponential power prior. Explicit

expression for the covariance (Σj) induced by white noise in complex wavelet shrinkage

can be found in Barber and Nason (2004) and mentioned above in (14). We adopt

the approach described in their paper to model the covariance structure of the noise.

Instead of estimating hyperparameters σ2, εj, and Cj, we specify hyperprior distri-

butions on them in a fully Bayesian manner. We specify a conjugate inverse gamma

prior on the noise variance σ2 and an inverse Wishart prior on the matrix Cj describ-

ing the covariance structure of the spread prior of θjk. Mixing weight εj regulates the

strength of shrinkage of a wavelet coefficient to zero. We specify a “noninformative”

uniform prior on this parameter, allowing the estimation to be fully governed by the

data.

For computational purposes, we represent our exponential power prior as a scale

mixture of multivariate normal distributions, which is an essential step for efficient

Monte Carlo simulation. From Gomez et al. (2008), the bivariate exponential power

distribution with µ = 0 and β = 1/2 can be represented as

EP2(µ = 0, Cj, β = 1/2) =

∫ ∞
0

N2(0, vCj)
1

Γ(3/2)83/2
v1/2e−v/8dv,

which is a scale mixture of bivariate normal distributions with mixing distribution

gamma. Using the specified hyperpriors and the mixture representation, the model

in (16) extends to

djk|θjk, σ2 ∼ N2(θjk, σ
2Σj)

σ2 ∼ IG(a, b)

θjk|zjk, vjk, Cj ∼ (1− zjk)δ0 + zjkN2(0, vjkCj)

zjk|εj ∼ Ber(εj)

εj ∼ U(0, 1)

vjk ∼ Ga(3/2, 8)

Cj ∼ IW (Aj, w). (18)
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Note that, for computational purposes, we also introduced a latent variable zjk in the

above model. Variable zjk is a Bernoulli variable indicating whether our parameter

θjk comes from a point mass at zero (zjk = 0) or from a bivariate normal distribu-

tion (zjk = 1). By representing the exponential power prior as a scale mixture of

normals, the hierarchical model in (18) becomes tractable, because the full condi-

tional distributions of all the parameters become explicit. Therefore, we can develop

a Gibbs sampling algorithm to update all the necessary parameters. We used the

sample average θ̂jk =
∑

i θ
(i)
jk /N of the simulational runs, as the standard estimator

for the posterior mean. To apply the Gibbs sampling algorithm we only need to spec-

ify hyperparameters a, b, Aj, and w, which influence lower level of the hierarchical

model. The rest of the parameters are updated via the Gibbs sampling procedure.

The method is called Complex Gibbs Sampling Wavelet Smoother (CGSWS ). For

more details about the implementation, contact the authors.

Application to Inductance Plethysmography Data For illustration we ap-

ply the described CGSWS method to a real-world data set from anesthesiology col-

lected by inductance plethysmography. The recordings were made by the Department

of Anaesthesia at the Bristol Royal Infirmary and represent measure of flow of air

during breathing. The data set was analyzed by several authors, for example Nason

(1996) and Abramovich et al. (1998, 2002). For more information about the data,

refer to these papers.

The top part of Figure 3 shows a section of plethysmograph recording lasting

approximately 80 s (n = 4096 observations), while the bottom part shows the recon-

struction of the signal with the CGSWS method. In the reconstruction process we

applied N = 5000 iterations of the Gibbs sampler of which the first 2000 was burn-in.

The aim of smoothing is to preserve features such as peak heights while eliminating

spurious rapid variation. The result provided by the proposed method satisfies these
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requirements providing a very smooth result. Abramovich et al. (2002) report the

heights of the first peak while analyzing this data set. In our case the height is 0.8389,

which is quite close to the result 0.8433, obtained by Abramovich et al. (2002), and

better compared to the results obtained by other established methods analyzed in

their paper.
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Inductance plethysmography data
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Figure 3: Reconstruction of the inductance plethysmography data (IPD) by CGSWS.

1.3.5 Bayesian Wavelet Shrinkage in Curve Classification

We consider the paper by Wang et al. (2007) to give an application of Bayesian

wavelet shrinkage in curve classification. The authors consider Bayesian wavelet-

based classification models for binary and multicategory data where the predictor is

a random function.

Functional data analysis deals with the analysis of data sets where the units

are curves that are ordered measurements on a regular grid. Functional data is
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frequently encountered in scientific research. Classification of functional data is a

relatively new problem and there are several approaches, from using simple summary

quantiles to nonparametric methods using splines. Wang et al. (2007) propose a

Bayesian wavelet-based classification method, because wavelets are known to have

nice properties for representing a wide range of functional spaces including functions

with sharp-localized changes. The proposed method unifies wavelet-based regression

with logistic classification models, representing functional data using wavelet basis

functions and using the wavelet coefficients for classification within a logistic model.

Consider data set {Yi, zi}, i = 1, . . . , n, where Yi is a vector of m measurements

and zi is a binary classification variable. We represent the vector of measurements as

Yi = fi + εi, where fi is an underlying nonparametric function and εi ∼ N(0, σ2I).

Representing functions fi in wavelet basis we get Yi = Xβi + εi, where X is the

discrete wavelet transform matrix and βi is the vector of wavelet coefficients. The au-

thors consider the following unified hierarchical Bayesian model for wavelet regression

and classification:

Random function Yi ∼ N(Xβi, σ
2I),

βi, σ
2|ηi, g ∼ NIG(0, diag(ηi)diag(g), aσ, bσ),

gj ∼ IG(uj, vj),

ηijk ∼ Ber(ρj).

Binary outcome zi ∼ Ber(pi),

Ti ∼ N(βtiθ, τ
2), where Ti = logit(pi),

θ, τ 2|γ,h ∼ NIG(0, diag(γ)diag(h), aτ , bτ ),

hj ∼ IG(cj, dj),

γjk ∼ Ber(πj) (19)

for i = 1, . . . , n, j = 1, . . . , log2m, and k = 0, . . . , 2j − 1.

The first part in (19) is a model for the observed random functions Yi, where
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variable selection priors for the wavelet coefficients are adopted from the Bayesian

wavelet modeling literature similar to De Candiitis and Vidakovic (2004). Parameter

gj is a scaling parameter, and parameter ηijk is the usual latent indicator variable

to model the sparsity of the wavelet representation. The second part in (19) is a

classification model for variable zi ∈ {0, 1} taking unit value with unknown probability

pi. The logistic classification model relates the wavelet coefficients βi to the latent

variable Ti = logit(pi) through a linear model Ti = βtiθ+ δi, where δi ∼ N(0, τ 2) and

where θ is a vector of regression coefficients. Similar variable selection prior for θ is

assumed as for βi to reduce the dimensionality of the problem.

For functional data with binary outcomes the model in (19) is an extension of a

standard classification model with an additional layer of functional regression model.

Because the posterior distribution of the parameters is not available in a standard

form, posterior inference has to rely on Markov chain Monte Carlo methods. Wang

et al. (2007) derive the full conditional distributions for the parameters, which allow

for implementation of a Gibbs sampling algorithm. The model in (19) is also extended

to multicategory classification by the authors.

Application to Leaf Data Wang et al. (2007) analyzed a data set from Keogh

et al. (2011) that contains leaf images of six different species. The data was converted

into a pseudo-time series by measuring local angle and trace of the leaf images. For

a purpose of binary classification analysis one maple (Circinatum) and one oak (Gar-

ryana) species were selected with 150 instances. Example curves adopted from Wang

et al. (2007) can be seen in Figure 4.

The classification was carried out by randomly selecting 140 curves from the train-

ing and 10 curves from the testing set. This was repeated 20 times, and the correct

classification rate (CCR) was reported. The proposed wavelet-based classification

method had CCR=94% and outperformed all other methods considered, including
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Figure 4: Adopted from Wang et al. (2007): “Pseudo-time series curves from leaf
images. (a) and (b) Every other curve in two species in the data set, 33 of Circinatum
and 42 of Garryana. (c) and (d) Example of single curve from two species, Circinatum
and Garryana.”
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empirical Bayes thresholding plugged into a support vector machine (SVM) classifier.

The authors carried out analysis for other existing and simulated data sets, including

nonequispaced and multicategory data, and reported good performance. For more

details the reader is referred to Wang et al. (2007).

1.3.6 Related Work

There are numerous papers related to wavelet shrinkage and wavelet regression. Here

we list some additional references related to the topics discussed in this chapter, as a

repository for researchers interested in the area.

For related overview summaries about wavelet methods see Abramovich et al.

(2000), Antoniadis (2007) and Nason (2008), for example. An excellent critical

overview and simulation study comparing different wavelet shrinkage methods can

be found in Antoniadis et al. (2001). Articles focusing only on Bayesian wavelet-

based modeling include Vidakovic (1998b), Müller and Vidakovic (1999) and Ruggeri

and Vidakovic (2005).

Some recent results about theoretical properties and optimality of Bayesian wavelet

estimators can be found in Abramovich et al. (2004, 2007), Bochkina and Sapatinas

(2006, 2009), Johnstone and Silverman (2005b), Pensky (2006) and Pensky and Sap-

atinas (2007).

There are several papers on Bayesian wavelet estimation in the signal and image

processing community. These papers usually specify a single, nonmixture prior on

the wavelet coefficients and compute a Bayes estimator. Posterior mode is a popular

choice, which is used for example by Figueiredo and Nowak (2001) and Moulin and

Liu (1999), who use generalized Gaussian and complexity priors to model wavelet

coefficients. Other articles in this group include Boubchir and Fadili (2006) using ap-

proximate α-stable prior, Chang et al. (2000) using generalized Gaussian distribution
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(GCD) as a prior, Fadili and Boubchir (2005) using Bessel K forms (BKF) densi-

ties, and Leporini and Pesquet (2001) using Besov norm priors for modeling wavelet

coefficients. Achim and Kuruoğlu (2005) develop a bivariate maximum a posteriori

estimator using a bivariate α-stable distribution to model wavelet coefficients in the

complex wavelet domain.

Some non-Bayesian improvements related to block thresholding include Cai (2002),

Cai and Zhou (2009), Chicken (2003, 2005, 2007) and Efromovich (2004), to name a

few. More general theoretical results about block empirical Bayes estimation appear

in Zhang (2005).

All Bayesian estimators depend on hyperparameters that have to be specified.

Purely subjective elicitation is only possible when considerable knowledge about the

underlying signal is available. The empirical Bayes method is an efficient, completely

data-driven procedure to estimate the hyperparameters based on marginal maximum

likelihood method. Several papers in the literature used this method to estimate

hyperparameters of the model. For more information about the method see, for

example, papers by Clyde and George (1999, 2000) and Johnstone and Silverman

(1998, 2005b).

The usual assumptions for wavelet regression are equispaced sampling points with

a sample size being a power of two, i.i.d. normal random errors with zero mean and

constant variance. Extension of these assumptions has been considered in several

articles. To name a few non-Bayesian procedures, Johnstone and Silverman (1997)

consider wavelet thresholding with stationary correlated noise, and Kovac and Silver-

man (2000) extend wavelet thresholding to irregularly spaced data, to equally spaced

data sets of arbitrary size, to heteroscedastic and correlated data, and to data which

contains outliers. An early example of a Bayesian wavelet shrinkage method incor-

porating theoretical results on the covariance structure of wavelet coefficients is by

Vannucci and Corradi (1999). Ambler and Silverman (2004) allow for the possibility
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that the wavelet coefficients are locally correlated in both location (time) and scale

(frequency). This leads to an analytically intractable prior structure; however, they

show that it is possible to draw independent samples from a close approximation

to the posterior distribution by an approach based on coupling from the past, mak-

ing it possible to take a simulation-based approach to wavelet shrinkage. Wang and

Wood (2010) consider a Bayesian wavelet shrinkage method which includes both time

and wavelet domain methods to estimate the correlation structure of the noise and

a Bayesian block shrinkage procedure based on Wang and Wood (2006). Ray and

Mallick (2003) develop a Bayesian wavelet shrinkage method to accommodate broad

class of noise models for image processing applications. The method is based on the

Box-Cox family of power transformations.

Kohn et al. (2000) develop a wavelet shrinkage method which incorporates a

Bayesian approach for automatically choosing among wavelet bases and averaging

of the regression function estimates over different bases.

Barber et al. (2002) and Semadeni et al. (2004) derive Bayesian credible inter-

vals for Bayesian wavelet regression estimates based on cumulants and saddlepoint

approximation, respectively.

Olhede and Walden (2004) discuss an ’analytic’ wavelet thresholding which in-

corporates information from the discrete Hilbert transform of the signal, creating a

complex-valued ’analytic’ vector. A recent paper describing a data-adaptive thresh-

olding by controlling the false discovery rate (FDR) is by Abramovich et al. (2006). A

Bayesian interpretation of the FDR procedure and application to wavelet thresholding

can be found in Tadesse et al. (2005).

Application of the Bayesian maximum a posteriori multiple testing (testimation)

procedure to wavelet thresholding can be found in Abramovich et al. (2010).

34



CHAPTER II

ADAPTIVE WAVELET SHRINKAGE BY GIBBS

SAMPLING

In this chapter we propose the Gibbs Sampling Wavelet Smoother (GSWS ), an adap-

tive wavelet denoising methodology. The method is based on a fully Bayesian hier-

archical model using a mixture prior on the wavelet coefficients. The heart of the

procedure is computational, where the posterior mean is computed through Markov

chain Monte Carlo (MCMC) simulations. We show that GSWS has good perfor-

mance, as demonstrated by simulations on well-known test functions and by compar-

isons with other commonly used denoising methods. The method is illustrated on a

real data set arising from the analysis of metabolic pathways, and we also show how

the methodology can be extended to complex wavelet bases.

2.1 Introduction

In the present chapter we consider a novel Bayesian model as a solution to the classical

nonparametric regression problem

yi = f(xi) + εi, i = 1, . . . , n, (20)

where xi, i = 1, . . . , n, are equispaced sampling points, and the errors εi are i.i.d.

normal random variables, with zero mean and variance σ2. Our interest is to estimate

the function f using the observations yi. After applying a linear and orthogonal

wavelet transform, the equation in (20) becomes

djk = θjk + εjk,
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where djk, θjk, and εjk are the wavelet coefficients (at resolution j and position k) cor-

responding to y, f , and ε, respectively. Note that εi and εjk are equal in distribution

due to the orthogonality of wavelet transforms. Due to the whitening property of the

wavelet transforms (Flandrin, 1992), many existing methods assume independence

of the coefficients, and omit the double indices jk to work with a generic wavelet

coefficient model

d = θ + ε, ε ∼ N (0, σ2). (21)

When indices are needed for the clarity of exposition, they will be used.

To estimate θ in model (21), Bayesian shrinkage rules have been proposed in the

literature by many authors. By a shrinkage rule, we mean that the observed wavelet

coefficients d are replaced with their shrunken version θ̂ = δ(d). Then f is estimated

as the inverse wavelet transform of θ̂. Empirical distributions of detail wavelet coef-

ficients for signals encountered in practical applications are (at each resolution level)

centered around and peaked at zero (Mallat, 1989). A range of models, for which

the unconditional distributions of wavelet coefficients mimic these properties, have

been considered in the literature. The traditional Bayesian models consider the prior

distribution on the wavelet coefficient θ as

π(θ) = εδ0 + (1− ε)ξ(θ), (22)

where δ0 is a point mass at zero, ξ is a symmetric and unimodal distribution, and

ε is a fixed parameter in [0,1], usually level dependent, that controls the amount of

shrinkage for values of d close to 0. This type of model was considered by Abramovich

et al. (1998), Vidakovic (1998a), Vidakovic and Ruggeri (2001), and Johnstone and

Silverman (2005b), among others.

In this chapter, we consider ξ to be the double exponential distribution. As

commonly done in Bayesian modeling, we formulate a hierarchical model which ac-

counts for the uncertainty of the prior parameters by placing hyperpriors on them.
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Since a closed-form solution to the Bayes estimator does not exist, we apply MCMC

methodology and compute an approximate estimator (posterior mean) from the out-

put of simulational runs. Although the simplicity of a closed-form solution is lost,

the procedure is fully Bayesian, adaptive to the underlying signal, and provides good

performance in comparison to some existing state-of-the-art methods.

The chapter is organized as follows. Section 2.2 formalizes the model and presents

some results related to it. Section 2.3 explains in detail the Gibbs sampling scheme

developed for the hierarchical model. Section 2.4 discusses the selection of hyperpa-

rameters and contains simulations and comparisons to existing methods. In Section

2.5 we apply the method to a real data set related to Dynamic Flux Estimation

(DFE). Section 2.6 briefly extends the methodology to complex wavelet bases, and in

Section 2.7 we discuss some more extensions of the model. Conclusions and discussion

are provided in Section 2.8.

2.2 Hierarchical Model

In this chapter we consider the following hierarchical Bayesian model in the wavelet

domain,

djk|θjk, σ2 ∼ N (θjk, σ
2)

σ2 ∼ IG(a1, b1)

θjk|εj, τ ∼ (1− εj)δ0 + εjDE(τ)

εj ∼ U(0, 1)

τ ∼ Ga(a2, b2) (23)

where j pertains to the resolution level of djk and N , IG, DE , U , Ga stand for

the normal, inverse gamma, double exponential, uniform, and gamma distributions,

respectively. Note that the model in (23) uses the well-established mixture prior

with a point mass at zero, which accounts for the sparsity of the signal part in
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the wavelet domain. Wavelet coefficients with large energies are captured by the

spread part of the mixture prior, for which we propose the double exponential or

Laplace distribution with variance 2/τ 2. The double exponential distribution is a

popular choice for the spread part. It models wavelet coefficients with large energies

and was used by several authors, for example, Vidakovic and Ruggeri (2001) and

Johnstone and Silverman (2005b). The mixture prior on θ is specified levelwise, for

each dyadic level j; however, the scale parameter τ is global. This serves the purpose

of parsimony and contributes to ease of estimation. Specifying τ levelwise is possible,

but this induces “double shrinkage” (Clyde et al., 1998) together with parameter εj,

which did not improve the performance of the estimator. Parameter σ2 represents

the common noise variance for each resolution level.

For easier implementation purposes, we introduce the latent variable zjk into the

model. We rewrite the hierarchical model in (23) using variable zjk as the following:

djk|θjk, σ2 ∼ N (θjk, σ
2)

σ2 ∼ IG(a1, b1)

θjk|zjk, τ ∼ (1− zjk)δ0 + zjkDE(τ)

zjk|εj ∼ Ber(εj)

εj ∼ U(0, 1)

τ ∼ Ga(a2, b2) (24)

where Ber stands for the Bernoulli distribution. Here zjk is a latent variable indicating

whether our parameter θjk is coming from a point mass at zero (zjk = 0) or from a

double exponential part (zjk = 1), with prior probability of 1− εj or εj, respectively.

The uniform U(0,1) prior on εj is equivalent to a beta Be(1, 1) distribution, which is

a conjugate prior for the Bernoulli distribution. Integrating out z from model (24)

gives back the original model in (23).
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The hierarchical model in (24) is not conjugate; however, with additional deriva-

tions and computational techniques it is possible to develop a fast Gibbs sampling

algorithm for updating its parameters. In this context, estimators for θjk can be

obtained from the simulation runs of the Gibbs sampling algorithm. We used the

sample average as the standard MCMC estimator for the posterior mean.

Next we discuss results related to the model in (23) which are instrumental in

developing the Gibbs sampler. In the following, d corresponds to an arbitrary djk,

and the mean θ stands for the corresponding θjk. If we consider a N (θ, σ2) likelihood

f(d|θ, σ2) and elicit a DE(τ) prior p1(θ|τ) on the θ, the marginal distribution becomes

m(d|σ2, τ) =
τ

2
e
σ2τ2

2

{
e−dτΦ

(
d

σ
− τσ

)
+ edτΦ

(
−d
σ
− τσ

)}
, (25)

and the posterior distribution becomes

h(θ|d, σ2, τ) =

=


e−dτ

e−dτΦ
(
d
σ
− τσ

)
+ edτΦ

(
− d
σ
− τσ

) 1

σ
φ

(
θ − (d− σ2τ)

σ

)
, θ ≥ 0

edτ

e−dτΦ
(
d
σ
− τσ

)
+ edτΦ

(
− d
σ
− τσ

) 1

σ
φ

(
θ − (d+ σ2τ)

σ

)
, θ < 0

(26)

where φ and Φ denote the pdf and cdf of the standard normal distribution, respec-

tively. For derivations of these results, see Appendix. From the representation in (26)

we can see that the posterior distribution is a mixture of truncated normals, which

will be utilized in our Gibbs sampling algorithm. Now if we consider the mixture

prior p(θ|τ) = (1− εj)δ0 + εjp1(θ|τ) on θ in (23), we get the posterior distribution as

π(θ|d, σ2, τ) =
f(d|θ, σ2)p(θ|τ)∫∞

−∞ f(d|θ, σ2)p(θ|τ)dθ

=
(1− εj)f(d|θ, σ2)δ0 + εjf(d|θ, σ2)p(θ|τ)

(1− εj)f(d|0, σ2) + εjm(d|σ2, τ)

=
(1− εj)f(d|0, σ2)δ0 + εjm(d|σ2, τ)h(θ|d, σ2, τ)

(1− εj)f(d|0, σ2) + εjm(d|σ2, τ)

= (1− pj)δ0 + pjh(θ|d, σ2, τ), (27)
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where f(d|0, σ2) is the normal distribution with mean θ = 0 and variance σ2, and

pj =
εjm(d|σ2, τ)

(1− εj)f(d|0, σ2) + εjm(d|σ2, τ)
(28)

is the mixing weight for the posterior distribution. Thus, the posterior distribution of

θ is a mixture of a point mass at zero and a mixture of truncated normal distributions

h(θ|d, σ2, τ) with mixing weight pj.

2.3 Gibbs Sampling Scheme

To obtain posterior inferences on the wavelet coefficients θ, we adopt a standard

Gibbs sampling procedure. In this section we provide details of how to develop a

Gibbs sampler for the model in (24). Gibbs sampling is an iterative algorithm that

simulates from a joint posterior distribution through iterative simulation over the full

conditional distributions. For more details on Gibbs sampling, see Casella and George

(1992) or Robert and Casella (1999). For the model in (24), the full conditionals for

all parameters can be determined exactly. We build on results given by (25)–(28).

Derivations of some results in this section are deferred to Appendix.

Next, we will describe the full conditional distributions and updating schemes

for parameters σ2, zjk, εj, θjk, and τ , which are necessary for the Gibbs sampler.

Specification of the hyperparameters a1, b1, a2, and b2 will be done in Section 2.4.1.

2.3.1 Updating σ2

Using a conjugate IG(a1, b1) prior on σ2 results in an inverse gamma full conditional.

Therefore, update σ2 as

σ2(i) ∼ IG

a1 + n/2,

[
1/b1 + 1/2

∑
j,k

(
djk − θ(i−1)

jk

)2
]−1
 , (29)

where n = 2J−2J0 denotes the sample size of detail wavelet coefficients, and i denotes

the ith simulation run. J−1 and J0 refer to the finest and coarsest levels in the wavelet
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decomposition, respectively.

2.3.2 Updating zjk

In model (24) we saw that latent variable zjk has a Bernoulli prior with parameter

εj. Its full conditional distribution remains Bernoulli with parameter pj as in (28).

Therefore, the latent variable zjk is updated as follows:

z
(i)
jk =



0, wp.

(
1− ε(i−1)

j

)
f
(
djk
∣∣0, σ2(i)

)
(

1− ε(i−1)
j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), τ (i−1)

)
1, wp.

ε
(i−1)
j m

(
djk
∣∣σ2(i)

, τ (i−1)
)

(
1− ε(i−1)

j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), τ (i−1)

)
(30)

2.3.3 Updating εj

Parameter εj is given a conjugate Be(1, 1) prior. This results in a full conditional

distributed as beta. Therefore, we update εj as

ε
(i)
j ∼ Be

(
1 +

∑
k

z
(i)
jk , 1 +

∑
k

(
1− z(i)

jk

))
. (31)

Note that other choices from the Be(α, β) family are possible for the prior of εj.

However, we used the noninformative choice α = 1 and β = 1 to facilitate data-driven

estimation of εj.

2.3.4 Updating θjk

We approach updating θjk with a method different than what is commonly done. A

standard approach for handling the double exponential prior in MCMC computations

of hierarchical models is to represent the double exponential distribution as a scale

mixture of normals (Andrews and Mallows, 1974). This approach is used, for example,

in Bayesian LASSO variable selection, where the double exponential prior is used on

the regression parameters (Park and Casella, 2008; Yuan and Lin, 2005). However,

this approach introduces an additional parameter corresponding to each θjk, which
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needs to be updated. This adds 2J − 2J0 new parameters. A faster and more direct

method to update θjk is possible by using results in (26) and (27). From the definition

of the latent variable zjk we can easily see that θjk = 0 if zjk = 0, because for such

zjk, θjk is distributed as δ0 (point mass at zero). In the case zjk = 1, θjk follows a

mixture of truncated normal distributions. Therefore, the update for θjk is as follows:

θ
(i)
jk ∼


δ0(θjk), if z

(i)
jk = 0

h
(
θjk
∣∣djk, σ2(i)

, τ (i−1)
)
, if z

(i)
jk = 1

(32)

where δ0(θ) is a point mass distribution at zero, and h(θ|d, σ2, τ) is a mixture of

truncated normal distributions with the density provided in (26). Simulating random

variables from h(θ|d, σ2, τ) is nonstandard, and regular built-in methods fail, because

we need to simulate random variables from tails of the normal distribution having

extremely low probability. The implementation of the updating algorithm is based

on a fast algorithm proposed by Robert (1995).

2.3.5 Updating τ

The Gibbs updating scheme is completed with the discussion of how to update τ . In

the hierarchical model (24), we impose a gamma prior on the scale parameter of the

double exponential distribution. This turns out to be a conjugate problem; therefore,

we update τ by

τ (i) ∼ Ga

a2 +
∑
j,k

z
(i)
jk ,

[
1/b2 +

∑
j,k

(
z

(i)
jk |θ

(i)
jk |
)]−1

 . (33)

Note that the gamma distribution above is parameterized by its scale parameter.

Now the derivation of the updating algorithm is complete. The implementation of

the described Gibbs sampler requires simulation routines for standard distribution

such as the gamma, Bernoulli, beta, and also a specialized routine to simulate from
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the truncated normal. The procedure was implemented in MATLAB c© and is available

from the author.

In the following section, we apply the proposed Gibbs sampling algorithm to

denoise simulated test functions.

2.4 Simulations

In this section, we apply the proposed Gibbs sampling algorithm and simulate pos-

terior realizations for the model in (24). We call our method the Gibbs Sampling

Wavelet Smoother (GSWS ). Within each replication of our simulations we performed

10,000 Gibbs sampling iterations, of which the first 5,000 were used for burn-in. We

used the sample average θ̂jk =
∑

i θ
(i)
jk /N as the usual estimator for the posterior

mean. In our set-up, N = 5, 000.

First we discuss the selection of the hyperparameters, then present and compare

the shrinkage performance results with other established methods on a standard bat-

tery of test functions (Donoho and Johnstone, 1994).

2.4.1 Selection of Hyperparameters

In any Bayesian modeling task, the selection of hyperparameters is critical for good

performance of the model. It is also desirable to have a default way of selecting the

hyperparameters which makes the shrinkage procedure automatic.

In order to apply the GSWS method, we only need to specify hyperparameters

a1, b1, a2, and b2 in the hyperprior distributions. The advantage of the fully Bayesian

approach is that once the hyperpriors are set, the estimation of parameters σ2, εj,

θjk, and τ is automatic via the Gibbs sampling algorithm. The selection is governed

by the data and hyperprior distributions on the parameters. Another advantage is

that the method is robust to the choice of hyperparameters since they influence the

model at a higher level of hierarchy.

The most critical parameter with respect to the performance of the shrinkage

43



is εj, which regulates the strength of shrinkage of a wavelet coefficient to zero. In

model (24), we placed a noninformative uniform prior on this parameter; therefore,

the estimation will be governed mostly by the data, which provides adaptiveness to

the proposed method. In Abramovich et al. (1998), parameter εj is estimated by

a theoretically justified but somewhat cumbersome method, and in Vidakovic and

Ruggeri (2001), the estimation of this parameter depends on another hyperparameter

γ, which is elicited based on empirical evidence. As the results will show, our method

provides somewhat better performance because of the automatic adaptiveness to the

underlying test signals.

An efficient way to elicit the hyperparameters of the model is through the em-

pirical Bayes method performing maximization of the marginal likelihood. However,

the likelihood function is nonconcave is most cases; therefore, clever optimization

algorithms and carefully set starting values are crucial for the good performance of

these methods. This method of estimating hyperparameters was used by Clyde and

George (1999) and Johnstone and Silverman (2005b), among others. The empirical

Bayes approach usually provides good average mean squared error (AMSE) perfor-

mance, comparable to the proposed method of this chapter. Note that in order to use

the empirical Bayes paradigm efficiently, one needs to have marginal distributions in

a closed form.

Specification of the hyperparameters a1, b1, a2, and b2 in model (23) is given by

the following:

• We set a1 = 2 and a2 = 1.

• Next we set b1 = 1/σ̂2, so that the mean of the inverse gamma prior is σ̂2.

We use σ̂2 = MAD/0.6745, which is the usual robust estimator of the noise

variation in the wavelet shrinkage literature (Donoho and Johnstone, 1994).

Here MAD stands for the median absolute deviation of the wavelet coefficients

djk at the finest level of detail, and the constant 0.6745 calibrates the estimator
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to be comparable with the sample standard deviation.

• Finally, we set 1/b2 = τ̂ =
√

max{(σ2
d − σ̂2), 0}, which sets the mean of the

gamma prior on τ equal to an estimator of τ . This estimator is adopted from

Vidakovic and Ruggeri (2001).

Note that this specification of the hyperparameters is appropriate in the wavelet

shrinkage context, but the results are robust to changes of this specification.

2.4.2 Simulations and Comparisons with Various Methods

In this section, we discuss the performance of the proposed GSWS estimator and

compare it to established and state-of-the-art wavelet-based estimators. In the sim-

ulations, four standard test functions (Blocks, Bumps, Doppler, Heavisine) were

considered (Donoho and Johnstone, 1994). The functions were rescaled so that the

added noise with σ = 1 produced a preassigned signal-to-noise ratio (SNR). The test

functions were simulated at n = 256, 512, and 1024 points equally spaced in the

unit interval. Four common SNR’s were selected, SNR = 3, 5, 7, and 10. Wavelet

bases used were: Symmlet 8 for Heavisine and Doppler, Daubechies 6 for Bumps,

and Haar for Blocks. These pairings of bases and signals are standard in the wavelet

literature. The coarsest decomposition level was J0 = 3, which matches the suggested

J0 = blog2(log(n)) + 1c from Antoniadis et al. (2001).

Reconstruction of the theoretical signal was assessed by the average mean squared

error (AMSE), calculated as

1

Mn

M∑
k=1

n∑
i=1

(
f̂k(ti)− f(ti)

)2

,

where M is the number of simulation runs, f(ti), i = 1, . . . , n, are known values of

the test functions considered, and f̂k is the estimator from the kth simulation run. In

each of these simulation runs we perform 10,000 Gibbs iterations to get the estimators

θ̂jk.
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Performance of the proposed GSWS estimator will be compared to: the

EbayesThresh (EBAYES) method of Johnstone and Silverman (2005b), the BAMS

method of Vidakovic and Ruggeri (2001), the Singlemean (SMEAN) method of

Clyde and George (1999) implemented by Antoniadis et al. (2001), the Γ−minimax

(GAMMA) estimator of Angelini and Vidakovic (2004), the classical VisuShrink

(VISU) of Donoho and Johnstone (1994), Hybrid-SureShrink (SURE) of Donoho

and Johnstone (1995), the scale invariant term-by-term Bayesian ABE method of

Figueiredo and Nowak (2001), the term-by-term False Discovery Rate (FDR) method

of Abramovich and Benjamini (1995), and finally the NeighCoeff (NC) method of Cai

and Silverman (2001).

Results are summarized in Tables 1 and 2, where boldface numbers indicate the

smallest AMSE result for each test scenario. From the results, we can see that the

proposed estimator is comparable to the established and state-of-the-art methods,

and is superior for some combinations of signals, SNRs, and sample sizes. Out of the

48 test scenarios considered, the GSWS method gives the lowest AMSE in 16 cases,

which is the best among the methods considered. As evident from Tables 1 and 2, for

test functions Blocks and Bumps, the proposed GSWS method provides excellent

results; and it also performs consistently well for Doppler and Heavisine. Figure

5 presents the boxplots of the MSE from M = 1, 000 simulations for the above 10

methods based on n = 512 points and SNR = 5.

2.5 Application to Dynamic Flux Estimation

In this section, we apply the proposed GSWS method to the real-life problem of

analysis of metabolic pathways. Dynamic Flux Estimation (DFE) is a methodolog-

ical framework for estimating parameters for models of metabolic systems circum-

venting the costly integration of differential equations. The DFE method consists

of two distinct phases: (a) a model- or assumption-free phase which includes data
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Table 1: AMSE of the proposed GSWS estimator compared to other methods for
test signals Blocks and Doppler.

Signal N Method SNR=3 SNR=5 SNR=7 SNR=10 Signal N Method SNR=3 SNR=5 SNR=7 SNR=10

Blocks 256 GSWS 0.3135 0.2663 0.2242 0.2012 Doppler 256 GSWS 0.3545 0.3691 0.3668 0.3889
EBAYES 0.3285 0.2750 0.2278 0.2031 EBAYES 0.3572 0.3776 0.3775 0.3967
BAMS 0.3343 0.2835 0.2412 0.2080 BAMS 0.3378 0.3821 0.3887 0.4114

SMEAN 0.3247 0.2688 0.2197 0.1919 SMEAN 0.3651 0.3832 0.3876 0.4132
GAMMA 0.3215 0.2775 0.2296 0.1995 GAMMA 0.3630 0.4067 0.4186 0.4587

VISU 0.4606 0.3744 0.2467 0.1854 VISU 0.4960 0.5563 0.5456 0.5904
SURE 0.5542 0.4904 0.4083 0.4077 SURE 0.5105 0.6642 0.6681 0.5509
ABE 0.3356 0.2945 0.2591 0.2383 ABE 0.3520 0.3863 0.4039 0.4256
FDR 0.4041 0.3225 0.2527 0.2477 FDR 0.4594 0.4796 0.4770 0.5101
NC 0.6225 0.5716 0.4894 0.4122 NC 0.3142 0.3321 0.3528 0.3764

512 GSWS 0.2060 0.1841 0.1613 0.1431 512 GSWS 0.1928 0.2234 0.2317 0.2367
EBAYES 0.2122 0.1886 0.1670 0.1478 EBAYES 0.1962 0.2155 0.2211 0.2280
BAMS 0.2101 0.1943 0.1763 0.1567 BAMS 0.1954 0.2131 0.2264 0.2391

SMEAN 0.2136 0.1863 0.1640 0.1456 SMEAN 0.1989 0.2183 0.2227 0.2318
GAMMA 0.1988 0.1915 0.1760 0.1596 GAMMA 0.1949 0.2146 0.2250 0.2415

VISU 0.2769 0.2344 0.1945 0.1693 VISU 0.2578 0.2779 0.2862 0.2992
SURE 0.3517 0.3653 0.3530 0.2939 SURE 0.2743 0.3797 0.4132 0.4680
ABE 0.2221 0.2072 0.1967 0.1864 ABE 0.2108 0.2240 0.2325 0.2419
FDR 0.2442 0.2095 0.1872 0.1712 FDR 0.2370 0.2523 0.2582 0.2675
NC 0.4103 0.4031 0.3679 0.3199 NC 0.1684 0.1784 0.1846 0.2046

1024 GSWS 0.1513 0.1161 0.0990 0.0861 1024 GSWS 0.1157 0.1397 0.1553 0.1650
EBAYES 0.1510 0.1207 0.1038 0.0899 EBAYES 0.1168 0.1363 0.1473 0.1554
BAMS 0.1583 0.1311 0.1107 0.0942 BAMS 0.1180 0.1350 0.1482 0.1590

SMEAN 0.1489 0.1176 0.1015 0.0881 SMEAN 0.1183 0.1382 0.1503 0.1618
GAMMA 0.1486 0.1241 0.1090 0.0950 GAMMA 0.1177 0.1400 0.1587 0.1690

VISU 0.2161 0.1510 0.1231 0.1014 VISU 0.1552 0.1855 0.2085 0.2106
SURE 0.3108 0.2926 0.2274 0.2128 SURE 0.1655 0.1964 0.2363 0.2712
ABE 0.1695 0.1558 0.1472 0.1393 ABE 0.1554 0.1709 0.1786 0.1838
FDR 0.1770 0.1358 0.1209 0.1077 FDR 0.1479 0.1738 0.1851 0.1879
NC 0.3253 0.3088 0.2680 0.2250 NC 0.0945 0.1160 0.1241 0.1302

Table 2: AMSE of the proposed GSWS estimator compared to other methods for
test signals Bumps and Heavisine.

Signal N Method SNR=3 SNR=5 SNR=7 SNR=10 Signal N Method SNR=3 SNR=5 SNR=7 SNR=10

Bumps 256 GSWS 0.5255 0.5551 0.5880 0.6632 Heavisine 256 GSWS 0.1366 0.1793 0.2069 0.2315
EBAYES 0.5521 0.5874 0.6247 0.7100 EBAYES 0.1262 0.1799 0.2174 0.2497
BAMS 0.6419 0.6996 0.7554 0.8607 BAMS 0.1462 0.1754 0.1985 0.2245

SMEAN 0.5615 0.6073 0.6523 0.7492 SMEAN 0.1271 0.1827 0.2230 0.2589
GAMMA 0.7348 0.8357 0.9217 1.0626 GAMMA 0.1211 0.1661 0.1992 0.2291

VISU 1.0861 1.0817 1.1575 1.2612 VISU 0.1421 0.2563 0.3236 0.3497
SURE 0.8599 0.7450 0.8533 0.9906 SURE 0.1174 0.2030 0.2454 0.3150
ABE 0.6556 0.7147 0.7713 0.8520 ABE 0.1682 0.2214 0.2497 0.2704
FDR 0.8181 0.8012 0.8473 0.9223 FDR 0.1426 0.2662 0.3284 0.3427
NC 0.7965 0.7650 0.7722 0.7612 NC 0.1198 0.2146 0.2713 0.3105

512 GSWS 0.4067 0.4374 0.4610 0.4696 512 GSWS 0.0940 0.1183 0.1413 0.1626
EBAYES 0.4110 0.4417 0.4680 0.4830 EBAYES 0.0842 0.1205 0.1502 0.1742
BAMS 0.4834 0.5132 0.5573 0.6093 BAMS 0.0957 0.1185 0.1374 0.1584

SMEAN 0.4130 0.4511 0.4853 0.5074 SMEAN 0.0850 0.1241 0.1565 0.1824
GAMMA 0.5182 0.5887 0.6604 0.7282 GAMMA 0.0838 0.1163 0.1395 0.1599

VISU 0.7354 0.7630 0.8146 0.8789 VISU 0.0996 0.1583 0.2028 0.2548
SURE 0.7052 0.5953 0.6497 0.7071 SURE 0.0826 0.1300 0.1751 0.2453
ABE 0.4601 0.4983 0.5235 0.5396 ABE 0.1315 0.1614 0.1845 0.2065
FDR 0.5496 0.5704 0.5985 0.5918 FDR 0.1037 0.1677 0.2057 0.2476
NC 0.5828 0.5273 0.4779 0.4385 NC 0.0898 0.1438 0.1759 0.2067

1024 GSWS 0.2787 0.3005 0.3018 0.3083 1024 GSWS 0.0586 0.0668 0.0817 0.0977
EBAYES 0.2713 0.2921 0.2956 0.3042 EBAYES 0.0536 0.0693 0.0866 0.1038
BAMS 0.2969 0.3263 0.3404 0.3508 BAMS 0.0607 0.0707 0.0815 0.0958

SMEAN 0.2763 0.2980 0.3034 0.3129 SMEAN 0.0535 0.0704 0.0894 0.1083
GAMMA 0.3282 0.3747 0.3953 0.3976 GAMMA 0.0529 0.0680 0.0840 0.0992

VISU 0.4496 0.4808 0.4884 0.4532 VISU 0.0683 0.0937 0.1223 0.1619
SURE 0.3840 0.4676 0.4907 0.4523 SURE 0.0534 0.0747 0.0955 0.1355
ABE 0.3004 0.3193 0.3240 0.3320 ABE 0.1075 0.1233 0.1360 0.1455
FDR 0.3566 0.3681 0.3590 0.3627 FDR 0.0734 0.0962 0.1237 0.1498
NC 0.3217 0.3008 0.2878 0.2923 NC 0.0667 0.0894 0.0989 0.1127
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Figure 5: Boxplots of MSE for various denoising procedures based on n = 512 points
and SNR = 5. (1) GSWS, (2) EbayesThresh, (3) BAMS, (4) Singlemean, (5) Γ-
minimax, (6) VisuShrink, (7) Hybrid-SureShrink, (8) ABE, (9) FDR, (10) NeighCoeff
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preprocessing, smoothing, slope estimation, and also uses slope estimators to obtain

dynamic time series profiles of all fluxes in the system, and (b) a model-based phase

consisting of mathematical characterization of process representations.

In the model-free phase of DFE, we need to smooth and balance the data in

the sense that there is no gain or loss of material over time. The balance is checked

against the stoichiometry of the system. Existing methods to do this include combined

nonlinear programming and a moving-average algorithm to remove noise, and finite-

difference approximations, cubic splines, etc. to fulfill smoothing and slope estimation.

However, this unconstrained smoothing can be expected to lead to unbalanced time

courses, which was actually observed. For more information about Dynamic Flux

Estimation, the reader is referred to Goel et al. (2008).

In this section, we apply the GSWS method to smooth time series profiles of

metabolites while at the same time satisfying the mass balance criteria. We satisfy

this requirement by using the smoother iteratively with a constraint on the mass

balance, because unconstrained smoothing leads to unbalanced time courses. More

precisely, we smooth the time series fi(t), i = 1, . . . ,M , under the condition such that

their sum remains constant in time, that is,
∑

i fi(t) = C. We propose an iterative

smoothing method, in which after each smoothing step the smoothed functions f̂i(t)

are rescaled to balance the total mass of the metabolites. Rescaling simply means

that we multiply each f̂i(t) by the constant C/
∑

i f̂i(t). This operation is done

point-by-point and necessarily “unsmooths” the f̂is. Then we repeat the process of

smoothing and rescaling until convergence is reached. Convergence is achieved when

the signal-to-noise ratios of all the f̂i(t)’s become larger than a preassigned threshold

T . The procedure will be called the Constrained Iterative GSWS (CI-GSWS ).

A step-by-step description of the CI-GSWS procedure is the following:

• STEP 1. Perform a discrete wavelet transform (DWT) of each metabolic time

series fi(t).
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• STEP 2. Using the GSWS method, shrink the detail wavelet coefficients dijk, j =

J0, . . . , log2(n), for each time series i whose SNR is smaller than T . This results

in θ̂ijk.

• STEP 3. Obtain f̂i(t) by performing an inverse discrete wavelet transform

(IDWT) on θ̂ijk.

• STEP 4. Rescale each smoothed function f̂i(t) to recover the mass balance

equation,
∑

i f̂i(t) = C. If the SNR of each rescaled f̂i(t) is larger than T ,

STOP. Otherwise, set each fi(t) = f̂i(t), and return to Step 1.

The data set presented here was provided by the collaborators of Dr. Eberhard

Voit’s Laboratory for Biological Systems Analysis at the Georgia Institute of Tech-

nology, the group of Dr. Helena Santos of the Institute for Biotechnology (ITQB)

at the New University of Lisbon (Portugal). The metabolomics data of the glycol-

ysis in the bacterium Lactococcus lactis is in the form of time series concentration

profiles of intermediate metabolites and end products, and were produced using non-

invasive in vivo Nuclear Magnetic Resonance (NMR) techniques. Lactococcus lactis

is an industrially important organism that plays an essential role in the manufacture

of a wide range of fermented dairy products, such as cheeses and buttermilk. The

schematic picture of this system is presented in Figure 6. For more information about

the experiment, the reader is referred to Voit et al. (2006).

The data set contains 7 time series of different metabolites with 95 equally spaced

observations. The observations were collected at the rate of 2 Hz, and this frequency

was limited by the experimental set-up. The names of the measured metabolites

were glucose, lactate, fructose-1,6-bisphosphate (FBP), ethanol, 2,3-butanediol, 3-

phosphoglycerate (3-PGA) and uridine diphosphate glucose (UDP-glucose). Since

the number of measurements was not a power of 2, each time series was extended to

128 observations by repeating the last 33 observations in a “mirror” fashion.
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Figure 6: Simplified representation of glycolysis and lactate production in Lactococcus
lactis.
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Due to its superior smoothing performance and the small number of observations

in the data set, we used the translation invariant wavelet transform (Coifman and

Donoho, 1995; Nason and Silverman, 1995) in Steps 1 and 3. The translation invari-

ant wavelet transform produces less artifacts in the reconstructed signal compared

to the traditional (orthogonal) wavelet transform. It suppresses the artifacts by av-

eraging the results of denoising over all circulant shifts of the signal. For our data

set it produced smoother results, which can describe a biological phenomena more

accurately; therefore, we chose to use it in the denoising procedure.

In Step 4, T = 50 was used; therefore, smoothing was only performed on the indi-

vidual time series in each of the iterations if the SNR was less than 50. Convergence

was reached after 3 iterations. Plots of the original and smoothed time series are

shown in Figures 7 and 8.
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Figure 7: Plots of smoothed time series of concentration of metabolites for Glucose,
Lactate, and FBP.
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Figure 8: Plots of smoothed time series of concentration of metabolites for Ethanol,
2,3-Butanediol, 3-PGA, and UDP-Glucose.

2.6 Extension to complex wavelets

In Chapter 1, we discussed that wavelet shrinkage methods using complex-valued

wavelets provide better denoising performance and additional insights into the shrink-

age process. It was explained how the proposed model (23) can be extended to com-

plex wavelets. The model and estimation procedure was briefly outlined in Chapter

1, but here we provide additional details and simulation results.

2.6.1 Model

After applying the complex wavelet transform to a real-valued signal, the observed

wavelet coefficients djk at resolution j and location k become complex numbers. By

representing the complex-valued wavelet coefficients as a bivariate real-valued random

variables (Barber and Nason, 2004), we need to extend the model in (23) to the bi-

variate case. In Chapter 1 we introduced the following bivariate Bayesian hierarchical
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model on the observed wavelet coefficients djk:

djk|θjk, σ2 ∼ N2(θjk, σ
2Σj)

σ2 ∼ IG(a, b)

θjk|zjk, vjk, Cj ∼ (1− zjk)δ0 + zjkN2(0, vjkCj)

zjk|εj ∼ Ber(εj)

εj ∼ U(0, 1)

vjk ∼ Ga(3/2, 8)

Cj ∼ IW(Aj, w), (34)

which is the extension of model (24) to the bivariate case. As it was argued, this

model implicitly specifies a mixture of point mass at zero and a bivariate double

exponential distribution as a prior on θjk. We used the term implicitly, because

the bivariate double exponential distribution was represented as a scale mixture of

bivariate normal distributions. Note again, that variable zjk is indicating whether θjk

comes from a point mass at zero (zjk = 0) or from a bivariate normal distribution

(zjk = 1). Since the model is bivariate, we specify an inverse Wishart prior on the

matrix Cj modeling the covariance structure of the spread prior of θjk. Similarly

to model (24), we specify a “noninformative” uniform prior on mixing weight εj.

Model (34) is tractable in this form because the full conditional distributions of all

parameters become explicit, hence a Gibbs sampling algorithm can be developed to

update the model parameters.

2.6.2 Gibbs sampling scheme

In this section we provide the details of the Gibbs sampler for model (34). This

includes full conditional distributions and updating schemes for parameters σ2, zjk,

εj, θjk, vjk and Cj. Specification of hyperparameters a, b, Aj and w will be explained

in Section 2.6.3.1. Derivations of results in this section are deferred to Appendix.
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2.6.2.1 Updating σ2

Using a conjugate IG(a, b) prior on σ2 results in a full conditional which is inverse

gamma. Therefore, update σ2 as

σ2(i) ∼ IG

a+ n,

[
1/b+ 1/2

∑
j,k

(
djk − θ(i−1)

jk

)′
Σ−1
j

(
djk − θ(i−1)

jk

)]−1
 , (35)

where n = 2J − 2J0 denotes the sample size, and i denotes the ith simulation run.

2.6.2.2 Updating zjk and εj

As for the real-valued case, the full conditional of zjk is Bernoulli and is updated as

follows:

z
(i)
jk =



0, wp.

(
1− ε(i−1)

j

)
f
(
djk
∣∣0, σ2(i)

)
(

1− ε(i−1)
j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), v

(i−1)
jk , C

(i−1)
j

)
1, wp.

ε
(i−1)
j m

(
djk
∣∣σ2(i)

)
(

1− ε(i−1)
j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), v

(i−1)
jk , C

(i−1)
j

)
,

(36)

where

f(djk|0, σ2) =
1

2π|σ2Σj|1/2
exp

{
− 1

2σ2
d′jkΣ

−1
j djk

}
,

m(djk|σ2, vjk, Cj) =
1

2π|σ2Σj + vjkCj|1/2
exp

{
−1

2
d′jk
(
σ2Σj + vjkCj

)−1
djk

}
.

Similarly, the full conditional distribution of parameter εj is beta, and the updating

scheme is

ε
(i)
j ∼ Be

(
1 +

∑
k

z
(i)
jk , 1 +

∑
k

(
1− z(i)

jk

))
. (37)

2.6.2.3 Updating θjk

From the conjugate setup of model (34) and using the latent variable zjk, it follows

that the full conditional distribution of θjk is either a point mass at zero (zjk = 0),
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or a bivariate normal distribution (zjk = 1). Therefore, we will update θjk as follows:

θ
(i)
jk ∼


δ0(θjk), if z

(i)
jk = 0

f
(
θjk
∣∣djk, σ2(i)

, v
(i−1)
jk , C

(i−1)
j

)
, if z

(i)
jk = 1

, (38)

where

f(θjk|djk, σ2, vjk, Cj) =
1

2π|Σ̃jk|1/2
exp

{
−1

2
µ̃′jkΣ̃

−1
jk µ̃jk

}
,

µ̃jk = Σ̃jk

Σ−1
j

σ2
djk,

Σ̃jk =
(
Σ−1
j /σ2 + C−1

j /vjk
)−1

.

2.6.2.4 Updating vjk

In model (34) we placed a gamma prior on vjk for the scale mixture of normals

representation. The full conditional distribution of vjk depends on the value of zjk,

and the updating scheme is:

v
(i)
jk ∼


Ga(3/2, 8), if z

(i)
jk = 0

GIG
(

1/4, θ
(i)
jk

′ {
C

(i−1)
j

}−1

θ
(i)
jk , 1/2

)
, if z

(i)
jk = 1

. (39)

Here GIG(a, b, p) denotes the generalized inverse Gaussian distribution (Johnson

et al., 1994, p.284) with probability density function

f(x|a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−(ax+b/x)/2, x > 0; a, b > 0,

where Kp denotes the modified Bessel function of the third kind. Simulation of GIG

random variates is available through a MATLAB implementation “randraw” based

on Dagpunar (1989).

2.6.2.5 Updating Cj

Placing a conjugate inverse Wishart prior on covariance matrix Cj results in a full

conditional distribution which is inverse Wishart. Therefore, update Cj as:

C
(i)
j ∼ IW

Aj +
∑
k

z
(i)
jk

θ
(i)
jk θ

(i)
jk

′

v
(i)
jk

, w +
∑
k

z
(i)
jk

 . (40)
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The implementation of the described Gibbs sampler requires simulation routines for

standard distribution such as inverse gamma, Bernoulli, beta, normal and also a

specialized routine to simulate from generalized inverse Gaussian. In the following

section we apply this extended Gibbs sampling algorithm to denoise simulated test

functions.

2.6.3 Simulations

Similarly as before, in this section we apply the proposed Gibbs sampling algorithm

for the model in (34). The complex extension of GSWS will be called Complex Gibbs

Sampling Wavelet Smoother (CGSWS ). The setup remains the same, within each

replication of simulations we performed 10,000 Gibbs sampling iterations, of which

the first 5,000 was burn-in. We used the sample average θ̂jk =
∑

i θ
(i)
jk /N as the usual

estimator for the posterior mean. In our set-up N = 5, 000. After discussing the

selection of hyperparameters, we compare the denoising performance of the method

to the methods proposed by Barber and Nason (2004).

2.6.3.1 Selection of Hyperparameters

To implement model (34) we need to specify hyperparameters a, b, Aj and w. For

simplicity we set a = 2 and b = 1/σ̂2, where

σ̂2 =
(
MAD(drejk/0.6745)

)2
+
(
MAD(dimjk /0.6745)

)2
, j = log2(n)− 1.

This ensures that the mean of the inverse gamma prior on σ2 is the standard robust

estimator of the noise variation (Donoho and Johnstone, 1994). Here MAD stands

for the median absolute deviation of the wavelet coefficients, which we calculate at

the finest level of detail from both the real and imaginary parts of wavelet coefficients

(Barber and Nason, 2004).

Hyperparameters Aj and w play an important role in the prior of the covariance

matrix Cj. Since in the Gibbs updates
∑

k z
(i)
jk and therefore

∑
k z

(i)
jk θ

(i)
jk θ

(i)
jk

′
/v

(i)
jk can
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possibly be zero, a noninformative Jeffreys prior on Cj is not computationally feasible.

Also note that the mean of the inverse Wishart prior is Aj/(w − p − 1), where p is

the dimension of Aj, being 2 in our case. Therefore, we set Aj = (w − 2 − 1)Ĉj,

which forces the mean of the prior to be a pre-specified estimate of Cj. In the case

of the mixture bivariate double exponential prior, the covariance of the signal part is

Cov(θjk) = ε2j 12Cj, where 12Cj is the covariance of a bivariate double exponential

random variable (Gomez et al., 1998). Since the model assumes independence of

signal and error parts, we have that Cov(djk) = ε2j 12Cj + σ2Σj, where Cov(djk) is

the covariance of the observations djk at jth dyadic level. We choose εj = 1/
√

12 as

a reasonable estimate, which additionally simplifies the equation in hand. Therefore,

a reasonable estimator for Cj is

Ĉj = Cov(dj)− σ̂2Σj, J0 ≤ j ≤ log2 n− 1, (41)

where Cov(dj) is the sample covariance estimator using observations djk at jth dyadic

level. Note that Σj is known, and σ̂2 is the usual robust estimator of the variance

of wavelet coefficients introduced before. Note that when Ĉj is not positive definite,

we regularize it by adding a multiple of the identity matrix. Finally, we set w = 10.

Note, that w = 4 is the least informative choice in our case, however, we found that

a slightly higher w worked better in practice.

2.6.3.2 Comparison with Barber and Nason (2004)

Here we perform a simulation study using the CGSWS method and compare its

performance to two of the complex wavelet-based denoising methods introduced by

Barber and Nason (2004). The first one (CMWS-Hard) is a phase preserving estima-

tor based on hard thresholding of a “thresholding statistic” d′jkΣ
−1
j djk. The second

one (CEB-Posterior mean) is a bivariate posterior mean estimator based on an em-

pirical Bayes procedure. The simulation setup is the same as before for the real case,

except that we used the symmetric complex-valued Daubechies wavelet base with 3
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vanishing moments for all the test functions.

Reconstruction of the theoretical signal was measured by the average mean squared

error (AMSE) over 100 simulation runs. The results are summarized in Table 3, where

boldface numbers indicate the smallest AMSE result for each test scenario. The re-

sults convey that the proposed CGSWS method outperforms both estimators in more

than 50% of the cases, and in most cases it is very close in performance to the superior

method. The improvement is most pronounced at small sample sizes (n = 256) and

for the test function Heavisine. This result verifies the adaptiveness of the method

and the advantage of using a heavy-tailed prior as prior distribution on the location

of wavelet coefficients.

Table 3: AMSE of CGSWS method compared to estimators CMWS-Hard and CEB-
Posterior mean.

Signal N Method SNR=3 SNR=5 SNR=7 SNR=10 Signal N Method SNR=3 SNR=5 SNR=7 SNR=10

Blocks 256 CGSWS 0.4293 0.4533 0.4610 0.4499 Doppler 256 CGSWS 0.3093 0.3119 0.3251 0.3619
CMWS-H 0.4929 0.5476 0.5490 0.5021 CMWS-H 0.3332 0.3351 0.3644 0.4000
CEB-PM 0.4343 0.4675 0.4715 0.4547 CEB-PM 0.3137 0.3158 0.3351 0.3723

512 CGSWS 0.2954 0.3180 0.3138 0.3051 512 CGSWS 0.1854 0.2073 0.2052 0.2095
CMWS-H 0.3481 0.3627 0.3457 0.3166 CMWS-H 0.2048 0.2217 0.2192 0.2289
CEB-PM 0.3028 0.3202 0.3126 0.2995 CEB-PM 0.1845 0.2007 0.2035 0.2132

1024 CGSWS 0.1991 0.2013 0.1991 0.1924 1024 CGSWS 0.1034 0.1209 0.1310 0.1467
CMWS-H 0.2372 0.2230 0.2098 0.1944 CMWS-H 0.1160 0.1329 0.1432 0.1601
CEB-PM 0.1980 0.1988 0.1947 0.1879 CEB-PM 0.1087 0.1225 0.1302 0.1419

Bumps 256 CGSWS 0.4631 0.4825 0.4946 0.5181 Heavisine 256 CGSWS 0.1198 0.1640 0.1900 0.2030
CMWS-H 0.5972 0.5946 0.5853 0.5809 CMWS-H 0.1547 0.2075 0.2144 0.2198
CEB-PM 0.4855 0.4996 0.5120 0.5390 CEB-PM 0.1338 0.1838 0.2098 0.2188

512 CGSWS 0.3273 0.3274 0.3235 0.3203 512 CGSWS 0.0799 0.1050 0.1258 0.1429
CMWS-H 0.3983 0.3760 0.3538 0.3317 CMWS-H 0.0959 0.1202 0.1357 0.1371
CEB-PM 0.3295 0.3315 0.3287 0.3228 CEB-PM 0.0881 0.1167 0.1340 0.1427

1024 CGSWS 0.1965 0.1970 0.2009 0.2090 1024 CGSWS 0.0487 0.0650 0.0747 0.0843
CMWS-H 0.2137 0.2151 0.2134 0.2223 CMWS-H 0.0557 0.0746 0.0793 0.0791
CEB-PM 0.1919 0.1986 0.2034 0.2122 CEB-PM 0.0564 0.0730 0.0794 0.0835

2.7 Extensions

It is worth to mention here that the introduced model can be flexible in the choice

of prior distributions on the wavelet coefficients. Another reasonable choice is to

use Student’s t-distribution instead of the double exponential as the spread part in

the hierarchical model (23). In general, any distribution which is a scale mixture or

normals can be used in the model in a similar way. The model in case of Student’s
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t-distribution becomes

djk|θjk, σ2 ∼ N (θjk, σ
2)

σ2 ∼ IG(a1, b1)

θjk|εj, τ ∼ (1− εj)δ0 + εjT (v, τ 2)

εj ∼ U(0, 1)

τ 2 ∼ IG(a2, b2) (42)

where T (v, τ 2) denotes the 3-parameter Student’s t-distribution with mean zero, de-

grees of freedom v, and scale parameter τ 2. Introducing the additional degrees of

freedom parameter v in the prior might give us more flexibility in modeling, but it

complicates the MCMC scheme. For sampling purposes, we can represent the Stu-

dent’s t-distribution as a scale mixture of normal distributions (Andrews and Mallows,

1974). After introducing a latent variable z, representing the Student’s t-distribution

as a scale mixture of normals and inducing a prior on the degrees of freedom v, the

model in (42) becomes

djk|θjk, σ2 ∼ N (θjk, σ
2)

σ2 ∼ IG(a1, b1)

θjk|zjk, τ, λjk ∼ (1− zjk)δ0 + zjkN (0, τ 2/λjk)

zjk|εj ∼ Ber(εj)

εj ∼ U(0, 1)

τ 2 ∼ IG(a2, b2)

λjk|v ∼ Ga(v/2, 2/v)

v ∼ LT Exp(1, 1), (43)

where LT Exp(λ, a) denotes the left-truncated exponential distribution with rate λ

and truncation point a. Therefore, in the above model, we induced a left-truncated
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exponential prior on the degrees of freedom (v), which restricts the degrees of freedom

parameter to the interval [1,∞). In practice this means that the spread prior can

have tails between a Cauchy (v = 1) and a normal (v → ∞) distribution. With the

exponential prior, we favor heavy-tailed distributions (v is small), which is appropriate

for modeling wavelet coefficients. Since the full conditional distribution for parameter

v is not available in a known form, we will use a Metropolis-within-Gibbs algorithm

for inferential purposes. The algorithm for updating the parameters is the following:

Step 1.

σ2(i) ∼ IG

a1 + n/2,

[
1/b1 + 1/2

∑
j,k

(
djk − θ(i−1)

jk

)2
]−1


Step 2.

z
(i)
jk =



0, wp.

(
1− ε(i−1)

j

)
f
(
djk
∣∣0, σ2(i)

)
(

1− ε(i−1)
j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), τ 2(i−1), λ

(i−1)
jk

)
1, wp.

ε
(i−1)
j m

(
djk
∣∣σ2(i)

, τ 2(i−1)
, λ

(i−1)
jk

)
(

1− ε(i−1)
j

)
f
(
djk
∣∣0, σ2(i)

)
+ ε

(i−1)
j m

(
djk
∣∣σ2(i), τ 2(i−1), λ

(i−1)
jk

)

Step 3.

ε
(i)
j ∼ Be

(
1 +

∑
k

z
(i)
jk , 1 +

∑
k

(
1− z(i)

jk

))

Step 4.

θ
(i)
jk ∼


δ0(θjk), if z

(i)
jk = 0

f
(
θjk
∣∣djk, σ2(i)

, τ 2(i−1)
, λ

(i−1)
jk

)
, if z

(i)
jk = 1
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Step 5.

τ 2(i) ∼ IG

a2 +
∑
j,k

z
(i)
jk /2,

[
1/b2 + 1/2

∑
j,k

(
z

(i)
jk θ

2
jk

(i)
λ

(i−1)
jk

)]−1


Step 6.

λ
(i)
jk ∼


Ga
(
v(i−1)/2, 2/v(i−1)

)
, if z

(i)
jk = 0

Ga
((
v(i−1) + 1

)
/2,
[
1/2

(
v(i−1) + θ2

jk
(i)
/τ 2(i)

)]−1
)
, if z

(i)
jk = 1

Step 7. (Metropolis in Gibbs)

Let vold = v(i−1) and sample vnew ∼ LT N (vold, ψ, 1)

Let u ∼ U(0, 1)

Let r =

∏
j,k

{
fGa

(
λ

(i)
jk

∣∣vnew/2, 2/vnew)} fExp(vnew − 1|1)Φ(v≥1)(v
old|vnew, ψ)∏

j,k

{
fGa

(
λ

(i)
jk

∣∣vold/2, 2/vold)} fExp(vold − 1|1)Φ(v≥1)(vnew|vold, ψ)

Set v(i) = vnew if u ≤ min(r, 1), otherwise v(i) = vold

(44)

In the above sampling scheme f(djk|0, σ2), m(djk|σ2, τ 2, λjk) and f(θjk|djk, σ2, τ 2, λjk)

are normal distributions, because we represented the Student’s t prior as scale mixture

of normals. The distributions are given as

f(djk|0, σ2) =
1√

2πσ2
e−d

2
jk/2σ

2

m(djk|σ2, τ 2, λjk) =
1√

2π(σ2 + τ 2/λjk)
e−d

2
jk/2(σ2+τ2/λjk)

f(θjk|djk, σ2, τ 2, λjk) =
1√

2πσ̃2
jk

e−(θjk−µ̃jk)2/2σ̃2
jk

where µ̃jk =
τ 2/λjk

σ2 + τ 2/λjk
djk,

and σ̃2
jk =

τ 2/λjk
σ2 + τ 2/λjk

σ2.
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In the Metropolis step of the sampling scheme LT N (µ, σ2, a) denotes the left-truncated

normal distribution with truncation point a. Furthermore, fGa, fExp and Φ(v≥1) de-

note the probability density functions of gamma, exponential and left-truncated nor-

mal distributions, respectively. Note that we sampled v from a truncated normal

proposal distribution. Parameter ψ is the scale parameter of the truncated normal

proposal distribution, which was tuned in the burn-in period to achieve acceptance

rate of 25− 50% for parameter v (Müller, 1993). Simulations of the above algorithm

provides results in AMSE sense similar to the GSWS method, which uses the double

exponential as the spread prior. Detailed explanations of some of the results can be

found in Appendix.

2.8 Conclusions

In this chapter we proposed Gibbs Sampling Wavelet Smoother (GSWS ), a wavelet-

based method for nonparametric regression. A fully Bayesian approach was taken,

in which a hierarchical model was formulated accounting for the uncertainty of the

prior parameters by placing hyperpriors on them. A mixture prior was specified

on the wavelet coefficients with a double exponential spread distribution accounting

for the large wavelet coefficients. Since all the full conditional distributions were

available in an explicit distributional form, an efficient Gibbs sampling procedure was

developed to estimate the parameters of the model. The GSWS provided excellent

denoising performance, which was demonstrated by simulations on well-known test

functions and by comparisons with other standardly used methods. The method was

illustrated on a real-world data set from analysis of metabolic pathways, for which we

applied the denoising procedure iteratively to preserve the mass balance of the system.

We also extended the method to complex wavelet bases, which involved a bivariate

hierarchical model. We showed how the Gibbs sampling procedure was applied in this

case and compared its denoising performance to a state-of-the-art denoising method
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that uses complex wavelet bases. Finally we demonstrated that the model is flexible

and different distributions, for example Student’s t, can be used as a spread part of

a mixture prior on the wavelet coefficients.
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CHAPTER III

WAVELET SHRINKAGE WITH DOUBLE WEIBULL

PRIOR

In this chapter we propose a denoising methodology in the wavelet domain based on a

Bayesian hierarchical model using double Weibull prior. We propose two estimators,

one based on posterior mean (DWWS ) and the other based on larger posterior mode

(DWWS-LPM ), and show how to calculate them efficiently. Traditionally, mixture

priors have been used for modeling sparse wavelet coefficients. The interesting feature

of this chapter is the use of non-mixture prior. We show that the methodology pro-

vides good denoising performance, comparable even to state-of-the-art methods that

use mixture priors and empirical Bayes setting of hyperparameters, which is demon-

strated by extensive simulations on standardly used test functions. An application to

real-word data set is also considered.

3.1 Introduction

In the present chapter we consider a novel Bayesian model in the wavelet domain as

a solution to the classical nonparametric regression problem

yi = f(xi) + εi, i = 1, . . . , n, (45)

where xi, i = 1, . . . , n, are equispaced sampling points, and the errors εi are i.i.d.

normal random variables, with zero mean and variance σ2. The interest is to estimate

the function f from the observations yi. After applying a linear and orthogonal

wavelet transform, the equation in (45) becomes

djk = θjk + εjk,
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where djk, θjk and εjk are the wavelet coefficients (at resolution j and position k)

corresponding to y, f and ε respectively. Note that εi and εjk are equal in distribu-

tion due to orthogonality of wavelet transforms. Due to the whitening property of

the wavelet transforms (Flandrin, 1992) many of the existing methods assume inde-

pendence of the coefficients, and omit the double indices jk to work with a generic

wavelet coefficient model

d = θ + ε, ε ∼ N (0, σ2). (46)

The indices will be used when needed for clarity of the exposition.

To estimate θ in model (46) Bayesian shrinkage rules have been proposed in the

literature by many authors. By a shrinkage rule the observed wavelet coefficients

d are replaced with their shrunk version θ̂ = δ(d). Then f is estimated as the

inverse wavelet transform of θ̂. Empirical distributions of detail wavelet coefficients

for signals encountered in practical applications are (at each resolution level) centered

around and peaked at zero (Mallat, 1989). A range of models, for which unconditional

distribution of wavelet coefficients mimic this observation, have been considered in

the literature. The traditional Bayesian models consider prior distribution on the

wavelet coefficient θ as

π(θ) = εδ0 + (1− ε)ξ(θ), (47)

where δ0 is a point mass at zero, ξ is symmetric about 0, unimodal distribution, and

ε is a fixed parameter in [0,1], usually level dependent, that controls the amount of

shrinkage for values of d close to 0. This type of model was considered by Abramovich

et al. (1998), Vidakovic (1998a), Clyde and George (1999, 2000), Vidakovic and Rug-

geri (2001) and Johnstone and Silverman (2005b), among others.

The above models provide good denoising performance because of their adaptiv-

ity provided by the point mass at zero. However, parameter ε, which controls the

extent of shrinkage, needs to be specified. One of the contributions of this chapter is
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simplification of the traditional mixture prior. We demonstrate that, in the wavelet

context, a single prior can match the performance of more complex contamination

priors from (47).

The chapter is organized as follows. Section 3.2 introduces the model and discusses

the advantage of using the double Weibull prior. Section 3.3 explains the computation

of two Bayes’ estimators for our model, the posterior mean and the larger posterior

mode. Section 3.4 contains simulations and comparisons to selected existing methods.

Section 3.5 includes application of the method to inductance plethysmography data.

Some remarks and discussion are provided in Sections 3.6 and 3.7.

3.2 Model

In our chapter we consider the following Bayesian model

d|θ ∼ N (θ, σ2)

θ ∼ DW(b, c), (48)

where N (θ, σ2) denotes the normal distribution and DW(b, c) denotes the double

Weibull distribution with probability density function

π(θ|b, c) =
c

2b
|θ|c−1 exp

{
−|θ|

c

b

}
,

where b and c are the scale and shape parameters, respectively. The standard Weibull

distribution is popular for analyzing lifetime data. However, its symmetric rela-

tive, the double Weibull distribution, introduced by Balakrishnan and Kocherlakota

(1985), is not extensively used in the literature, and have not been used in the wavelet

shrinkage context previously. Balakrishnan and Kocherlakota (1985) considered a 3-

parameter version of this distribution with location parameter a, but in our case

a = 0 since the prior on the wavelet coefficient θ is always centered at zero, due to

the definition of detail wavelet coefficients.
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Figure 9: Double Weibull distribution for different values of c.

The double Weibull is a flexible family, which includes the double exponential

distribution as its special case (c = 1). Figure 9 shows the double Weibull density for

b = 1 and c = 1/3, 1/2, 1. In case of c < 1, the double Weibull density approaches

infinity as |θ| approaches zero. This property of the prior will be crucial for the

performance of the induced Bayes estimators. The singularity at zero mimics the

effect of a point mass at zero in the mixture priors mentioned above. A prior with

similar property was considered implicitly by Cutillo et al. (2008), and explicitly by

Carvalho et al. (2010). Carvalho et al. (2010) consider the “Horseshoe” prior in form

of a scale mixture of normal densities and use it in a context of sparse estimation.

The Horseshoe prior, however, does not exist in a closed form.

The shrinkage estimator for the wavelet coefficient corresponding to the signal

part θ, derived from (48) is fully specified by eliciting the hyperparameters σ2, b and

c. In this chapter, we consider two such estimators and evaluate their performance.

The first is the posterior mean, which is a traditional choice in Bayesian estimation

problems and the second is the “larger posterior mode”, denoted as LPM in the

sequel. The shrinkage procedure based on the posterior mean will be referred as
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Double Weibull Wavelet Shrinker (DWWS ), while the one based on the LPM will have

the acronym DWWS-LPM. The existence of the LPM is an intrinsic characteristic of

the considered Bayesian model (likelihood-prior). For more information on the LPM

approach the reader is referred to Cutillo et al. (2008).

3.3 The Bayes Estimator

In this section we provide details of how to find the posterior mean and LPM as the

proposed shrinkage estimators.

3.3.1 Posterior Mean

It is well known that the posterior mean, as an estimator of θ, has the following form

δ(d) =

∫
θg(d, θ)dθ

m(d)
=

∫
θf(d|θ)π(θ)dθ∫
f(d|θ)π(θ)dθ

, (49)

where g is the joint distribution, f is the likelihood, π is the prior, and m is the

marginal distribution. From the marginal distribution

m(d) ∝
∫
e−

(d−θ)2

2σ2 |θ|c−1e−
|θ|c
b dθ, (50)

it can be seen that the integral does not exist in a closed form for fixed c < 1.

However, the integral in (50) is finite, the posterior distribution is proper, and the

posterior mean exists, as well. This is true because we are convolving the normal

with the double Weibull distribution, which is integrable and all of its moments exist

(Balakrishnan and Kocherlakota, 1985).

It is possible to evaluate this integral as a convolution using the characteristic

functions of the likelihood and the prior, but the characteristic function of the dou-

ble Weibull distribution does not have a simple form and involves special functions

(Nadarajah, 2008). Therefore the posterior mean will be computed by numerical inte-

gration using adaptive Gauss-Kronrod quadrature, for which we utilized the function
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script quadgk(fun,a,b) in MATLAB c©. It is apparent in equation (50) that the

integral has a singularity at θ = 0 for c < 1. One can significantly increase the speed

and accuracy of integration by removing this singularity, which can be done with a

change of variable. After a change of variable y = {sign(θ)θ}c the posterior mean

becomes

δ(d) =

∫ ∞
0

y1/ce−y/be−
(d−y1/c)

2

2σ2 dy −
∫ ∞

0

y1/ce−y/be−
(d+y1/c)

2

2σ2 dy∫ ∞
0

e−y/be−
(d−y1/c)

2

2σ2 dy +

∫ ∞
0

e−y/be−
(d+y1/c)

2

2σ2 dy

. (51)

If c has a form of 1/n, n odd, the posterior mean simplifies to

δ(d) =

∫ ∞
−∞

y1/ce−|y|/be−
(d−y1/c)

2

2σ2 dy∫ ∞
−∞

e−|y|/be−
(d−y1/c)

2

2σ2 dy

. (52)

Note that for any c ∈ (0, 1) the posterior mean can be efficiently computed using 51.

Figure 10 shows the posterior mean for c = 1/3, b = 0.4 and σ2 = 1.

Figure 11 shows the marginal distribution m(d), computed numerically for c =

1/3, b = 1 and σ2 = 1. The marginal distribution is compared to a normal dis-

tribution with mean zero and standard deviation 2.6, which arises from matching

the interquartile range of the two distributions. It is a desirable property in Bayesian

wavelet shrinkage to produce a marginal that matches the observed empirical distribu-

tion of wavelet coefficients. We can see from Figure 11 that the marginal distribution

corresponding to model (48) exhibits heavier tails, and it is more peaked than the nor-

mal density. This is in agreement with the observations of Mallat (1989) concerning

the shape of empirical distributions of wavelet coefficients.
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Figure 10: Posterior mean for c = 1/3.
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Figure 11: Marginal distribution of the wavelet coefficients.
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Setting of the hyperparameters for the DWWS rule (49) is discussed in Section

3.4.1.

3.3.2 Larger Posterior Mode (LPM)

The LPM estimator was first introduced in the wavelet shrinkage context by Cutillo

et al. (2008), and it is based on the Bayesian MAP (Maximum a Posteriori) principle.

The LPM rule relates to the mode of the posterior distribution larger in absolute

value. The MAP estimator of the wavelet coefficient θ is a rule maximizing the

posterior π(θ|d), which is proportional to the joint distribution of d and θ, g(d, θ).

Hence, the MAP estimator for θ also maximizes g(d, θ). For the model in (48) the

joint distribution is

g(d, θ) =
1√

2πσ2
e−

(d−θ)2

2σ2
c

2b
|θ|c−1e−

|θ|c
b .

This leads to the posterior proportional to

π(θ|d) ∝ g(d, θ) ∝ e−
(d−θ)2

2σ2 |θ|c−1e−
|θ|c
b .

Figure 12 shows the posterior distribution for c = 1/3, b = 1, σ2 = 1 and d =

−3,−2,−1, 1, 2, 3. Note that the shape of posterior depends on the absolute magni-

tude of the observed wavelet coefficient d. If |d| is small, the posterior mode is unique

and equals to 0. For large values of |d| there are two posterior modes and the one

larger in magnitude is chosen.

The logarithm of the posterior is proportional to

l = log π(θ|d) ∝ −(d− θ)2

2σ2
+ (c− 1) log |θ| − |θ|

c

b
,

and has extrema at the solutions of the equation

d− θ
σ2

+ (c− 1)sign(θ)
1

|θ|
− c

b
sign(θ)|θ|c−1 = 0,

which is equivalent to the equation

− 1

σ2
θ2 +

d

σ2
θ − c

b
|θ|c + c− 1 = 0. (53)
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Figure 12: Posterior distribution of the wavelet coefficients.

For fixed c < 1 and by substituting y = |θ|c, equation (53) can be modified so that

the solution is equivalent to a solution of a polynomial equation of order 2/c. We will

use the following numerical algorithm to find the LPM estimator from equation (53):

(1) Find the roots of the equation − 1
σ2y

2/c + sign(d) d
σ2y

1/c− c
b
y+ c− 1 = 0. Denote

the roots by y? and the real roots by y?r .

(2) If all the roots are complex (y?r is empty), δLPM(d) = 0.

(3) If reals roots exist, δLPM(d) = sign(d)[max(y?r)]
1/c.

Therefore, the LPM estimator for the model in (48) is

δLPM(d) = sign(d)[max(y?r)]
1/c,

where max(y?r) is the maximum real root of the equation − 1
σ2y

2/c + sign(d) d
σ2y

1/c −
c
b
y + c − 1 = 0. If no real root of this equation exist, δLPM(d) = 0. In general, the

roots can be computed by a nonlinear equation solver for any real c ∈ (0, 1), but for

a rational c = m/n the roots can be found by a polynomial root solver, which was

utilized in the implementation. Figure 13 shows the LPM rule for c = 1/3, b = 0.4

and σ2 = 1. It is apparent from the figure that the rule is thresholding.
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Figure 13: LPM rule for c = 1/3.

3.4 Simulations

In this section we apply the proposed shrinkage estimators and compare their perfor-

mance to several existing and established wavelet denoising methods. For the DWWS

and DWWS-LPM estimators we first discuss the selection of hyperparameters, then

we present and compare the simulation results.

3.4.1 Selection of Hyperparameters

In any Bayesian modeling task the selection of hyperparameters is critical for good

performance of the model. It is also desirable to have a default selection of the

hyperparameters which makes the shrinkage procedure automatic. In the model (48)

we need to specify parameters σ2, b and c.

Parameter σ2. Parameter σ2 represents the variance of the random error ε. In the

wavelet shrinkage literature σ2 is frequently estimated by a robust estimator of the

variance of wavelet coefficients at the finest level of detail (Donoho and Johnstone,

1994). We will adopt this practice and use the robust MAD estimator to estimate σ

as σ̂ = MAD/0.6745. Here MAD stands for the median absolute deviation from the
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median of the wavelet coefficients at finest level of detail, and the constant 0.6745

calibrates the estimator to be comparable with sample standard deviation.

Parameter b. Scale parameter b accounts for the spread of the double Weibull prior

distribution. We propose a moment matching parameter specification, which was

used for example by Cutillo et al. (2008) and Vidakovic and Ruggeri (2001). We

propose to estimate bj levelwise for all dyadic levels J0 ≤ j ≤ log2 n− 1. Because of

the linearity of wavelet transform, the i.i.d. normal noise with variance σ2 transforms

stochastically unchanged to each dyadic level. In the case of the double Weibull

prior, the variance of the signal part is c

√
b2
jΓ(1 + 2/c). Since the model assumes

independence of signal and error parts, we have σ2
dj

= c

√
b2
jΓ(1 + 2/c) + σ2, where

σ2
dj

is the variance of the observations djk at jth dyadic level. Therefore a reasonable

estimator for bj is

b̂j =

{
(σ2

dj
− σ̂2)+

Γ(1 + 2/c)

}c/2

, J0 ≤ j ≤ log2 n− 1, (54)

where a+ = max(a, 0). In case σ̂2 > σ2
dj

, we set b̂j = 0. Having b̂j = 0 is equiva-

lent to a degenerate/point-mass-at-zero prior distribution on the wavelet coefficients.

Therefore, if b̂j = 0, we set all the wavelet coefficients at level j to zero, similarly to

Vidakovic and Ruggeri (2001).

Parameter c. Parameter c accounts for the shape of the prior distribution on the

wavelet coefficients. When smaller than 1, parameter c controls the “strength of

infinity” at zero. In this sense the role of c is similar to that of the point mass in the

mixture prior models, and should be elicited depending on the signal regularity. In

addition to this, parameter c also controls the tails of the prior distribution. We used

c = 1/3 in our simulations, which empirically was the superior universal choice. Of

course, c can be adaptively set depending on the input signal under consideration, as

we will do in Section 3.5.

Figure 14 shows the exact risks of the posterior mean estimator for different values
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Figure 14: Exact risk plot for posterior mean, for σ2 = 1 and σ2
dj

= 100.

of c. We set σ2 = 1, σ2
dj

= 100 and specified b by equation (54) depending on different

c’s. From the plot we can see that the choice c = 1/3 is a good compromise in terms

of risk. For |θ| close to zero c = 1/3 provides smaller risk than c = 1/2 or c = 2/3,

and for larger |θ| the choice c = 1/3 has smaller risk than c = 1/4 or c = 1/5. Note

that the pattern and shape of the plot depends on the quantity σ2
dj
− σ2, but c = 1/3

was an empirically superior choice.

For c = 1/3, equation (53) becomes

− 1

σ2
θ2 +

d

σ2
θ − 1

3b
|θ|1/3 − 2/3 = 0,

and the algorithm to find the LPM estimator becomes equivalent to solving the equa-

tion

− 1

σ2
y6 + sign(d)

d

σ2
y3 − 1

3b
y − 2/3 = 0. (55)

Note that it is possible to specify parameter c levelwise similar to specifying the weight

parameter in the Bayesian mixture prior models. Therefore, if elicited levelwise, c

could be set up to increase from the finest to the coarsest dyadic levels of wavelet

coefficients. However, because of simplicity and the good performance provided, c
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was held fixed through the dyadic levels and the levelwise elicitation of parameter b

provided the adaptiveness of the shrinkage rule.

3.4.2 Simulations and Comparisons with Various Methods

In this section we discuss the performance of the proposed DWWS and DWWS-LPM

estimators and compare them to some established wavelet-based methods for recon-

structing noisy signals. Four standard test functions (Blocks, Bumps, Doppler,

Heavisine) were considered (Donoho and Johnstone, 1994) in the simulation study.

The functions were rescaled such that the added noise (σ2 = 1) produced the preas-

signed signal-to-noise ratio (SNR). The test functions were simulated at n = 512, 1024,

and 2048 points equally spaced in the unit interval. Three common SNRs were se-

lected, SNR = 3, 5, and 7. The standard wavelet bases were used: Symmlet 8 for

Heavisine and Doppler, Daubechies 6 for Bumps and Haar for Blocks. The coarsest

decomposition level was J0 = 3, which matches the suggested J0 = blog2(log(n)) + 1c

by Antoniadis et al. (2001). Note, that for computing the DWWS estimator, MAT-

LAB’s built-in Gauss-Kronrod quadrature method was used, and the DWWS-LPM

estimator is the solution of equation (55), for which MATLAB’s built-in polynomial

root-solver was used.

Reconstruction of the theoretical signal was evaluated by the average mean squared

error (AMSE), calculated as

1

Mn

M∑
k=1

n∑
i=1

(
f̂k(ti)− f(ti)

)2

,

where M is the number of simulation runs and f(ti), i = 1, . . . , n are known values

of the test functions considered. We denote by f̂k(ti), i = 1, . . . , n the estimator from

the kth simulation run.

The proposed estimators were compared to the EbayesThresh method of Johnstone

and Silverman (2005b) using the posterior mean, the BAMS method of Vidakovic and

Ruggeri (2001), the LPM method from Model 1 of Cutillo et al. (2008), the classical
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VisuShrink and Hybrid-SureShrink of Donoho and Johnstone (1994, 1995), the scale

invariant term-by-term ABE method of Figueiredo and Nowak (2001), and finally the

NeighCoeff method of Cai and Silverman (2001). Note that methods EbayesThresh,

BAMS, LPM and ABE are Bayesian.

Results are summarized in Tables 4 and 5, where boldface numbers indicate the

smallest AMSE result for each test scenario. The number of simulations performed

was M = 1000. From the results we can see that the proposed estimators are compa-

rable to the established shrinkage methods. In some scenarios involving Heavisine

signal the DWWS is superior. Simulations further indicate that the DWWS estimator

outperforms the BAMS estimator in 64% of the cases, and the EbayesThresh method

in 28% of the cases. This is remarkable considering that these Bayesian methods

are based on a more complicated mixture model with a point mass, and the latter

one uses an empirical Bayes procedure to estimate the hyperparameters. It is also

evident from Tables 4 and 5, that the DWWS-LPM estimator outperforms the LPM

estimator in 67% of the cases. Note that for the model in Cutillo et al. (2008) the

posterior distribution is not proper for all values of the hyperparameter k, hence the

posterior mean does not exist. For the proposed model in (48) the posterior mean

always exists and the resulting DWWS estimator uniformly outperforms the DWWS-

LPM estimator. However, DWWS-LPM is computationally more robust and faster

to compute. Also note, that the authors of LPM select hypermarameter k separately

for each simulated test function, so the results are optimal. In our simulation study

we kept hyperparameter c default for each test function. It can also be seen from

the results that the DWWS-LPM estimator outperforms the ABE method in 81%

of the cases. The difference in AMSE was the most pronounced for signals Doppler

and Heavisine. The ABE is also using a single prior model and the MAP approach.

Finally, the proposed methods outperform the non-Bayesian methods VisuShrink,

Hybrid-SureShrink and NeighCoeff under most test scenarios.
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Graphical summary of the results is presented in Figure 15 where the boxplots of

the MSE are given for n = 1024 and SNR = 5.

Table 4: AMSE of the proposed DWWS and DWWS-LPM estimators compared to
other methods for test signals Blocks and Doppler.

Signal N Method SNR=3 SNR=5 SNR=7 Signal N Method SNR=3 SNR=5 SNR=7

Blocks 512 DWWS 0.2174 0.1917 0.1790 Doppler 512 DWWS 0.2002 0.2244 0.2296
DWWS-LPM 0.2223 0.1940 0.1826 DWWS-LPM 0.2061 0.2315 0.2389

EBAYES 0.2122 0.1886 0.1670 EBAYES 0.1962 0.2155 0.2211
BAMS 0.2101 0.1943 0.1763 BAMS 0.1954 0.2131 0.2264
LPM 0.2217 0.1949 0.1756 LPM 0.2110 0.2258 0.2353
VISU 0.2769 0.2344 0.1945 VISU 0.2578 0.2779 0.2862
SURE 0.3517 0.3653 0.3530 SURE 0.2743 0.3797 0.4132
ABE 0.2221 0.2072 0.1967 ABE 0.2108 0.2240 0.2325
NC 0.4103 0.4031 0.3679 NC 0.1684 0.1784 0.1846

1024 DWWS 0.1563 0.1289 0.1241 1024 DWWS 0.1141 0.1348 0.1469
DWWS-LPM 0.1567 0.1329 0.1281 DWWS-LPM 0.1241 0.1456 0.1561

EBAYES 0.1510 0.1207 0.1038 EBAYES 0.1168 0.1363 0.1473
BAMS 0.1583 0.1311 0.1107 BAMS 0.1180 0.1350 0.1482
LPM 0.1596 0.1284 0.1130 LPM 0.1349 0.1584 0.1681
VISU 0.2161 0.1510 0.1231 VISU 0.1552 0.1855 0.2085
SURE 0.3108 0.2926 0.2274 SURE 0.1655 0.1964 0.2363
ABE 0.1695 0.1558 0.1472 ABE 0.1554 0.1709 0.1786
NC 0.3253 0.3088 0.2680 NC 0.0945 0.1160 0.1241

2048 DWWS 0.0919 0.0816 0.0795 2048 DWWS 0.0624 0.0771 0.0884
DWWS-LPM 0.0944 0.0852 0.0835 DWWS-LPM 0.0685 0.0846 0.0953

EBAYES 0.0865 0.0730 0.0603 EBAYES 0.0642 0.0773 0.0860
BAMS 0.0921 0.0788 0.0665 BAMS 0.0687 0.0783 0.0868
LPM 0.0914 0.0774 0.0643 LPM 0.0755 0.0887 0.0978
VISU 0.1172 0.0919 0.0712 VISU 0.0835 0.1003 0.1121
SURE 0.1740 0.1815 0.1629 SURE 0.0845 0.1184 0.1514
ABE 0.1227 0.1161 0.1108 ABE 0.1158 0.1242 0.1297
NC 0.1938 0.1798 0.1587 NC 0.0511 0.0636 0.0714

3.5 Application to Inductance Plethysmography Data

In this section we apply the proposed wavelet estimators to a real-world data set

from anaesthesiology collected by inductance plethysmography. The recordings were

made by the Department of Anaesthesia at the Bristol Royal Infirmary and represent

measure of flow of air during breathing. This was analysed by several authors, for

example Nason (1996) and Abramovich et al. (1998, 2002). For more information

about the data set, we refer the reader to these two papers.

Figure 16 shows a section of plethysmograph recording lasting approximately 80

s (n = 4096 observations). Figure 17 shows the reconstructions of the signal with

the DWWS and DWWS-LPM methods. In our reconstruction we set c = 1/5,
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Figure 15: Boxplots of MSE for various shrinking procedures based on n = 1024
points and SNR = 5. (1) DWWS, (2) DWWS-LPM, (3) EbayesThresh, (4) BAMS,
(5) LPM, (6) VisuShrink, (7) Hybrid-SureShrink, (8) ABE, (9) NeighCoeff
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Table 5: AMSE of the proposed DWWS and DWWS-LPM estimators compared to
other methods for test signals Bumps and Heavisine.

Signal N Method SNR=3 SNR=5 SNR=7 Signal N Method SNR=3 SNR=5 SNR=7

Bumps 512 DWWS 0.4659 0.4733 0.4875 Heavisine 512 DWWS 0.0793 0.1199 0.1534
DWWS-LPM 0.4908 0.5128 0.5270 DWWS-LPM 0.0912 0.1337 0.1696

EBAYES 0.4110 0.4417 0.4680 EBAYES 0.0842 0.1205 0.1502
BAMS 0.4834 0.5132 0.5573 BAMS 0.0957 0.1185 0.1374
LPM 0.4606 0.4885 0.5052 LPM 0.0932 0.1445 0.1800
VISU 0.7354 0.7630 0.8146 VISU 0.0996 0.1583 0.2028
SURE 0.7052 0.5953 0.6497 SURE 0.0826 0.1300 0.1751
ABE 0.4601 0.4983 0.5235 ABE 0.1315 0.1614 0.1845
NC 0.5828 0.5273 0.4779 NC 0.0898 0.1438 0.1759

1024 DWWS 0.2855 0.2986 0.3004 1024 DWWS 0.0504 0.0683 0.0890
DWWS-LPM 0.3057 0.3174 0.3156 DWWS-LPM 0.0583 0.0783 0.1008

EBAYES 0.2713 0.2921 0.2956 EBAYES 0.0536 0.0693 0.0866
BAMS 0.2969 0.3263 0.3404 BAMS 0.0607 0.0707 0.0815
LPM 0.3168 0.3318 0.3308 LPM 0.0635 0.0867 0.1121
VISU 0.4496 0.4808 0.4884 VISU 0.0683 0.0937 0.1223
SURE 0.3840 0.4676 0.4907 SURE 0.0534 0.0747 0.0955
ABE 0.3004 0.3193 0.3240 ABE 0.1075 0.1233 0.1360
NC 0.3217 0.3008 0.2878 NC 0.0667 0.0894 0.0989

2048 DWWS 0.1717 0.1871 0.1905 2048 DWWS 0.0313 0.0457 0.0560
DWWS-LPM 0.1836 0.1965 0.2007 DWWS-LPM 0.0376 0.0534 0.0630

EBAYES 0.1668 0.1816 0.1866 EBAYES 0.0339 0.0456 0.0543
BAMS 0.1823 0.1978 0.2049 BAMS 0.0402 0.0471 0.0531
LPM 0.2033 0.2110 0.2120 LPM 0.0395 0.0609 0.0760
VISU 0.2766 0.2948 0.2863 VISU 0.0416 0.0653 0.0887
SURE 0.2438 0.2907 0.3071 SURE 0.0344 0.0506 0.0709
ABE 0.2039 0.2132 0.2167 ABE 0.0925 0.1037 0.1103
NC 0.1824 0.1840 0.1877 NC 0.0435 0.0543 0.0599

which provided a smoother, visually more pleasing result, although this choice is

not necessarily AMSE superior. Both methods remove the noise well, however, the

DWWS estimator based on the posterior mean provides a slightly smoother result.

Abramovich et al. (2002) report the height of the maximum peak while analysing this

data set. In our case the height is 0.8410 for the DWWS method and 0.8421 for the

DWWS-LPM. These are quite close to the result 0.8433, obtained by Abramovich

et al. (2002), and better compared to some established methods reported in their

paper.

3.6 Remarks

It is worth mentioning here that a slight modification of the double Weibull prior can

lead to a Bayes rule which can be expressed as a closed form using special functions.
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Figure 16: A section of inductance plethysmography data with n = 4096.
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Figure 17: Reconstruction of inductance plethysmography data obtained by the
DWWS and DWWS-LPM methods.
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Consider the following prior distribution on the wavelet coefficient θ:

π(θ|b, c) =
1

2Γ(c)bc
|θ|c−1 exp

{
−|θ|
b

}
,

which is the one dimensional special case of the more general Kotz distribution

(Nadarajah, 2003) with p = 1, µ = 0, Σ = 1, N = (c + 1)/2, s = 1/2 and r = 1/b.

Using an integral identity (Gradshteyn and Ryzhik, 1980, p.337), the marginal dis-

tribution and the posterior mean can be expressed as

m(d) =
σce−d

2/2σ2

√
2πσ22bc

{
e(σ/2b−d/2σ)2D−c−1(σ/b− d/σ)− e(σ/2b+d/2σ)2D−c−1(σ/b+ d/σ)

}
,

δ(d) = cσ
e−d/2bD−c−1(σ/b− d/σ)− ed/2bD−c−1(σ/b+ d/σ)

e−d/2bD−c(σ/b− d/σ)− ed/2bD−c(σ/b+ d/σ)
,

where Dv(x) is the parabolic cylinder function (Abramowitz and Stegun, 1964).

Because the marginal distribution is available in a closed form, the empirical Bayes

procedure is a possibility for eliciting the hyperparameters of the prior. However, in

practice, this estimator is computationally more expensive than DWWS, DWWS-

LPM, and the performance in terms of AMSE is somewhat inferior.

3.7 Conclusions

In this chapter we have proposed a methodology for Bayesian wavelet denoising. A

hierarchical model was specified in which the double Weibull distribution was uti-

lized as the prior on the locations of wavelet coefficients. In contrast to mixture

priors used by some state-of-the-art methods, the wavelet coefficients were modeled

by a density with single expression. The flexibility of the double Weibull distribution

was able to mimic the characteristics of mixture priors consisting of a point mass at

zero and a heavy-tailed spread part. Two Bayesian estimators were proposed, one as

the posterior mean (DWWS ) and the other as the larger posterior mode (DWWS-

LPM ). We also showed how to compute them efficiently. Simulations on standard

test functions and comparisons with numerous existing methods demonstrated that
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the methodology provides good and comparable denoising performance, even com-

pared to state-of-the-art methods that use mixture priors and empirical Bayes setting

of hyperparameters. Once again, we emphasize that the aim was the simplicity of

the model, and demonstration that a carefully selected single prior could match the

performance of more complex mixture priors. An application to real-word data set

(inductance plethysmography) was also considered. The methodology performed well

in both denoising and preserving the important features of the real data.

Future improvements of the method are possible by specifying hyperparameter c

based on dyadic levels and signal regularity. Another avenue for future improvement

can be the approximation of integral in (49) to evaluate the posterior mean. However,

if approximations are asymptotic, this would work satisfactorily only in the case of

shrinkage of multiple related signals (Chang and Vidakovic, 2002).

In the spirit of reproducible research we made MATLAB scripts used in simulation

for DWWS and DWWS-LPM available at http://gtwavelet.bme.gatech.edu/.
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CHAPTER IV

Λ-NEIGHBORHOOD WAVELET SHRINKAGE

We propose a wavelet-based denoising methodology based on total energy of a neigh-

boring pair of coefficients plus their “parental” coefficient. The model is based on

a Bayesian hierarchical model using a contaminated exponential prior on the total

mean energy in a neighborhood of wavelet coefficients. The hyperparameters in the

model are estimated by the empirical Bayes method, and the posterior mean, median

and Bayes factor are obtained and used in the estimation of the total mean energy.

Shrinkage of the neighboring coefficients are based on the ratio of the estimated and

observed energy. It is shown that the methodology is comparable and often superior

to several existing and established wavelet denoising methods that utilize neighboring

information, which is demonstrated by extensive simulations on a standard battery of

test functions. An application to real-word data set from inductance plethysmography

is also considered and an extension to image denoising is discussed.

4.1 Introduction

In the present chapter we consider a new Bayesian model as a solution to the classical

nonparametric regression problem

Yi = f(xi) + εi, i = 1, . . . , n, (56)

where xi, i = 1, . . . , n, are equispaced sampling points, and the random errors εi

are i.i.d. normal, with zero mean and variance σ2. The interest is to estimate the

function f using the observations Yi. After applying a linear and orthogonal wavelet

transform, the equation in (56) becomes

dj,k = θj,k + εj,k,
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where dj,k, θj,k and εj,k are the wavelet coefficients (at resolution j and position k)

corresponding to Y , f and ε, respectively. Due to the the whitening property of

wavelet transforms (Flandrin, 1992) many existing methods assume independence of

the coefficients, and omit the double indices j, k to work with a generic model

d = θ + ε, ε ∼ N (0, σ2). (57)

To estimate θ in model (57) Bayesian shrinkage rules have been proposed in the

literature by many authors. The observed wavelet coefficients d are replaced with

their shrunk version θ̂ = δ(d) representing a Bayes estimator of θ. Most of the

signals encountered in practical applications have (at each resolution level) empirical

distributions of detail wavelet coefficients centered around and peaked at zero (Mallat,

1989). A range of models complying with Mallat’s observation have been considered

in the literature. The traditional Bayesian models consider prior distribution on the

wavelet coefficient θ as

π(θ) = εδ0 + (1− ε)ξ(θ), (58)

where δ0 is a point mass at zero, ξ is a unimodal distribution symmetric about 0, and

ε is a fixed parameter in [0,1], usually level dependent, that controls the amount of

shrinkage for values of d close to 0. This type of model was considered by Abramovich

et al. (1998), Vidakovic (1998b), Vidakovic and Ruggeri (2001), and Johnstone and

Silverman (2005b), among others.

On the other hand, many authors argued that shrinkage performance can be

improved by considering the neighborhoods of wavelet coefficients (blocks, parent-

child relations, cones of influence, etc.). These authors report improvement over

the coefficient-by-coefficient or diagonal methods. Examples include block threshold-

ing methods by Hall et al. (1997, 1998, 1999), Cai (1999, 2002), Cai and Silverman

(2001) where wavelet coefficients are thresholded based on block sums of squares.

Abramovich et al. (2002) and De Candiitis and Vidakovic (2004) consider Bayesian
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block shrinkage methods allowing for dependence between the wavelet coefficients.

Wang and Wood (2006) considered a Bayesian block shrinkage approach based di-

rectly on the block sum of squares. Sendur and Selesnick (2002) and Fryzlewicz

(2007), among others, use parent-child neighboring relation to improve on shrinkage

performance. In Fryzlewicz (2007), the coupling of wavelet coefficients from different

levels leads to a bivariate model in which the energy, under appropriate assumptions,

is χ2-distributed.

In this chapter the neighboring structure is enhanced by looking simultaneously

at two neighboring coefficients at the same level j and their common parental co-

efficient from the level j − 1 in the wavelet ordering given by the parametrization

2j/2φ(2jx− k), j, k ∈ Z. This leads to a joint “energy” distributed as noncentral χ2,

in which the Bayesian model accounts for the noncentrality parameter and leads to

simple and fast shrinkage rules. The idea of considering neighboring and parental

coefficients in the denoising procedure has been used in signal and particularly in

image denoising algorithms to improve the performance and visual appearance of the

procedures. One example is the tree-based wavelet thresholding estimator, see for

example Autin (2008) and Autin et al. (2011). Another popular method that in-

corporates neighboring structure is the Hidden Markov Tree (HMT ) model which is

explored for example by Crouse et al. (1998) and Romberg et al. (2001).

The chapter is organized as follows. Section 4.2 introduces the model, then derives

and discusses the properties of the shrinkage rule. Section 4.3 explains the elicitation

of hyperparameters via the empirical Bayes method. Section 4.4 contains simulations

and comparisons to existing methods in terms of average mean squared error and

Section 4.5 contains an application of the method to real-world data. Extension to

image denoising is discussed in Section 4.6, and finally, conclusions and discussion are

provided in Section 4.7.
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4.2 Model and Estimation

The idea of our method is to estimate wavelet coefficients θj,k by forming a χ2
3 variable

composed of two neighboring and their parental wavelet coefficient. Our model is

based on the sum of the energy of this “family” or “clique”. We will call it Λ-

neighborhood motivated by the geometric shape of the neighborhood. This also

motivates the name of the induced shrinkage methodology: Λ-neighborhood wavelet

shrinkage (LNWS ). The idea of using a χ2
p variable as a “thresholding statistics”

was considered in different contexts by several authors, for example by Downie and

Silverman (1998), Barber and Nason (2004), Wang and Wood (2006) and Fryzlewicz

(2007), among others. Wang and Wood (2006) considered forming a model based

on blocks of m neighboring wavelet coefficients, while Fryzlewicz (2007) considered

two bivariate thresholding methods, one using basis averaging and the other using

parental coefficients. Here we build on these ideas and form a block wavelet shrinkage

estimator supervised by their parent coefficient. We form the “thresholding statistics”

as

xj,l =
(
dj,k, dj,k+1, dj−1,dk/2e

)
Σ−1
j

(
dj,k, dj,k+1, dj−1,dk/2e

)′
, (59)

where l is short for dk/2e. Σj is the covariance matrix of the Λ-neighborhood, for

which a schematic picture is provided in Figure 18. Note that the location index of

the parental coefficient is dk/2e for locations k and k + 1 of the children coefficients.

It is important to emphasize that shrinkage induced by statistic (59) will be applied

only to a pair of coefficients in the same level and not on their parent. Since the

discrete wavelet transform (DWT) is orthonormal and decorrelating, we model the

wavelet coefficients as independent. Hence, we can take Σj = σ2I3. Using this

assumption, the “thresholding statistics” becomes

xj,l =
(
d2
j,k + d2

j,k+1 + d2
j−1,dk/2e

)
/σ2. (60)

In (60) the sum of the energy of the wavelet coefficients is normalized by the noise

88



kjd , 1, +kjd

⎡ ⎤2,1 kjd −

1 −jlevel

jlevel 

Figure 18: Λ-neighborhood of wavelet coefficients.

variance. We use the notion of “parent” in the same sense as it was used by Fryzlewicz

(2007), where the parental coefficient dj−1,dk/2e is located directly above dj,k and

dj,k+1 in the binary tree of wavelet coefficients (Figure 18). When the signal part is

energetic, i.e., significant, the magnitudes of all three coefficients in (60) are expected

to be connected because the coefficients are local in their representation of the signal.

Speaking in the jargon of wavelet shrinkage, the whole Λ-neighborhood will fall into

the energetic “cone of influence”.

Let n be the size of signal f and J0, 0 ≤ J0 < log2(n) be the coarsest level of

detail in the wavelet decomposition of f . Given dj,k, j = J0, . . . , log2(n) − 1, k =

0, 1, . . . , 2j−1, our method forms the thresholding statistics xj,l, j = J0, . . . , log2(n)−

1, l = 0, 1, . . . , 2j−1 − 1. The number of xj,ls is equal to half of the number of detail

wavelet coefficients dj,k, because we form nonoverlapping blocks of size 2 at each

dyadic level j. With each of these blocks, we also consider the parental coefficient

dj−1,dk/2e.
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Because the wavelet coefficients dj,k are distributed as normal with mean θj,k and

variance σ2, xj,l will have noncentral χ2 distribution with 3 degrees of freedom and

noncentrality parameter λj,l = θ2
j,k + θ2

j,k+1 + θ2
j−1,dk/2e. Now, omitting the indices j, l

in xj,l we propose the following Bayesian model on the thresholding statistic:

x|λ ∼ χ2
3(λ)

λ ∼ εjδ0 + (1− εj)π(λ), (61)

where χ2
3(λ) denotes the noncentral chi-square distribution with 3 degrees of freedom,

noncentrality parameter λ, and probability density function

f(x|λ) =
1

2
e−(x+λ)/2

(x
λ

)1/4

I1/2(
√
λx).

In the above equation Ip denotes the modified Bessel function of the first kind

(Abramowitz and Stegun, 1964; Gradshteyn and Ryzhik, 1980).

Note that the model in (61) is using the well established mixture prior with point

mass at zero, which accounts for the sparsity of the wavelet coefficients, however,

the prior is not on the coefficients but on their energies. In our prior formulation the

large energies of the family of wavelet coefficients are captured by a spread distribution

π(λ), for which we propose the exponential distribution with mean 1/b. For estimating

the noncentrality parameter in a Bayesian fashion, Berger et al. (1998) proposed the

noninformative prior distribution π(λ) = λ−c for the case of independent observations,

and showed that choice of c = 1/2 has certain optimality properties. A closed-form

Bayes rule for this prior was derived, but since both the prior and the associated

marginal are improper, they can not be used for empirical Bayes (marginal maximum

likelihood) hyperparameter estimation. Fourdrinier et al. (2000) consider π(λ) = λ−c

and the related family of gamma priors π(λ) ∝ exp{−bλ}λ−c and prove that under

Stein’s loss functions L1(λ, x) = x
λ
− log

(
x
λ

)
− 1 and L−1(λ, x) = λ

x
− log

(
λ
x

)
− 1 the

Bayes estimator corresponding to prior π(λ) = λ−c is admissible. Using gamma prior

as a spread distribution in model (61) leads to computationally unstable marginals
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and Bayes rules. In addition, the exponential distribution is maximizing the entropy

among all distributions supported on [0,∞) with fixed mean. In that sense, the choice

of exponential distribution is noninformative. Furthermore, in case b ≈ 0 our prior

approximates the noninformative prior π(λ) = λ−c with c = 0, which is optimal for

large λ in case of a weighted loss (Berger et al., 1998).

For these reasons, we propose the exponential distribution as our spread prior.

This formulation leads to a simple and computationally tractable Bayes rule. There-

fore, the model in (61) becomes:

x|λ ∼ χ2
3(λ)

λ ∼ εjδ0 + (1− εj)E(b). (62)

Note that in our model the weight of point mass εj is specified adaptively at each

dyadic level j, but the scale parameter b for the spread distribution is specified glob-

ally. This serves the purpose of parsimony and ease of estimation. Specifying bj

levelwise did not improve the performance of the estimator. We also found that spec-

ifying a global E(b) will result in b small, to accommodate for Λ-neighborhoods with

large energies. In such a case the prior will approximate a mixture prior with point

mass and a noninformative spread distribution. At the same time, an increase of

εj towards the finest scales will decrease the variance of the mixture prior in (62),

accounting for the sparsity of wavelet decomposition.

For model (62) the marginal distribution becomes

m(x) = εj

√
2

π
x1/2e−x/2 + (1− εj)

b√
1 + 2b

e−
bx

1+2bErf

[√
x

2 + 4b

]
= εjm0(x) + (1− εj)m1(x), (63)

which is a mixture of a central chi-square distributionm0(x) with 3 degrees of freedom,

and another distribution arising from E(b) part in the prior on λ in (62). The details

are provided in Appendix.
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Our goal for model in (62) is to estimate λ, the noncentrality parameter repre-

senting the mean energy of the Λ-neighborhood. An analytically tractable estimator

is the posterior mean, which in this context becomes

δ(x) = (1− pj)
1 + 2b+ x+

√
2x(1+2b)

π
e−

x
2+4b

/
Erf
[√

x
2+4b

]
(1 + 2b)2

, (64)

with

pj = εj
m0(x)

m(x)
. (65)

The derivation is deferred to Appendix. Other types of Bayes location estimators that

are based on simple algorithmic forms, such as the posterior median, are considered

later. The posterior mean δ(x) is fully specified by eliciting the hyperparameters εj

and b. Figure 19 shows the shape of δ(x) for b = 0.01 and ε = 0.9.
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Figure 19: Bayes rule (64) for b = 0.01 and ε = 0.9.

Note that the shape is desirable, as the rule heavily shrinks small and slightly shrinks

large energy Λ-neighborhoods, which is a smooth approximation to hard thresholding.

It is interesting to examine the behavior of the Bayes rule (64) in terms of b when

x gets large. For b > 0 the Bayes rule becomes non-robust for large values of x
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and slightly levels off from the 45◦ line. This can be seen in Figure 19. We can

analytically show this by examining the behavior of δ(x) when x gets larger. Because

limx→∞ pj = 0 (see Appendix) and Erf
[√

x
2+4b

]
is bounded

δ(x)− x ≈ 1

1 + 2b
− x

[
1− 1

(1 + 2b)2

]
,

as x gets large. Therefore for any b > 0 the rule levels off from the 45◦ line in a linear

fashion with slope− (1− 1/(1 + 2b)2). As b gets larger, the rule levels off faster. Note,

that this behavior of the Bayes rule is not unseen in the wavelet shrinkage literature.

For instance, Angelini and Vidakovic (2004) consider a model, which incorporates

prior belief on the boundedness of the energy of the signal, and the Bayes rule levels

off from the 45◦ line for large wavelet coefficients.

In order to recover unknown signal f in (56) we need to estimate a pair of wavelet

coefficients θj,k and θj,k+1 from each Λ-neighborhood. Above, we derived an estimator

δ(x) for the energy of the family of wavelet coefficients, which is

λ̂j,l = θ̂2
j,k + θ̂2

j,k+1 + θ̂2
j−1,dk/2e = δ(xj,l). (66)

Shrinkage Rule. A natural way to estimate the wavelet coefficients θj,k and

θj,k+1 is to take  θ̂j,k

θ̂j,k+1

 =

{
λ̂j,l
xj,l

}1/2
 dj,k

dj,k+1

 , (67)

where λ̂j,l is a Bayes estimator of λj,l, given for example by rule (64) as in (66). In

practice this means that we shrink wavelet coefficients dj,k and dj,k+1 in the block by

the same factor, which is the square root of the ratio of the estimated and the observed

energy of the block. The energy of the block contains the energy of the parental

wavelet coefficient, which only contributes to the shrinkage procedure, but it is not

shrunk at this stage. The shrinkage of dj−1,dk/2e is done when level j−1 is considered.

Note that similar procedure for estimating the individual wavelet coefficients from

the energy of the blocks was applied by Wang and Wood (2006).
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Bayes rules under the squared error loss and regular models are never thresh-

olding rules. A thresholding rule is preferable to smooth shrinkage rules in many

applications, like model selection, data compression, dimension reduction, and re-

lated statistical tasks in which it is beneficial to replace by zero a majority of the

processed wavelet coefficients. If thresholding rule is desirable, we can use the pos-

terior median or the Bayes factor procedure to replace the posterior mean in (66) to

get λ̂j,l for shrinkage rule (67).

The posterior median of λ is

λ̂ = δM(x) = u 1

(
pj <

1

2

)
, (68)

where u is the solution of the equation

1− (1− εj)
1

m(x)

b√
1 + 2b

e−
bx

1+2b

(
Erf

[
(1 + 2b)

√
u+
√
x√

2 + 4b

]
−

Erf

[
(1 + 2b)

√
u−
√
x√

2 + 4b

])
= 0. (69)

Equation (69) is transcendental, but can be efficiently solved with a built-in root

finder algorithm available in standard computing packages. It can also be formulated

and solved as an optimization problem. Derivation of the rule is deferred to Appendix.

The Bayes factor procedure to estimate λ is

λ̂ = δBF (x) = x 1

(
pj <

1

2

)
. (70)

The derivation can be found in Appendix and for more details, see Vidakovic (1998a).

Figure 20 shows rules δ(x) (64), δBF (x) (70) and δM(x) (68) for b = 0.01 and

ε = 0.9.

4.3 Eliciting the hyperparameters

The described model and hence the Bayes estimators depend on hyperparameters

that have to be specified. Purely subjective elicitation is only possible when consid-

erable knowledge about the underlying signal is available. We followed the empirical
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Figure 20: Comparison of Bayes rules (64), (70) and (68) for b = 0.01 and ε = 0.9.

Bayes paradigm in this chapter: Johnstone and Silverman (2005b), Clyde and George

(1999, 2000), and Abramovich et al. (2002) estimate the hyperparameters by marginal

maximum likelihood (MLII) method in the wavelet denoising context. We also used

this completely data-driven procedure to estimate the hyperparameters.

More specifically, we are interested in maximum likelihood estimates of hyperpa-

rameters εj and b. Parameter εj is specified at each resolution level j while parameter

b is a global scale parameter in the exponential spread part of the prior (62). The

marginal log-likelihood function ` is

`(εj, b) =

∑
j≥J0

2j−1−1∑
l=0

log

εj
√

2

π
x

1/2
j,l e

−xj,l/2 + (1− εj)
be−

bxj,l
1+2bErf

[√
xj,l

2+4b

]
√

1 + 2b

 .

(71)

Since a closed-form solution for the maximum of the log-likelihood is not available,

we rely on numerical techniques to find estimates of εj and b. There are various

approaches suggested in Clyde and George (2000), including direct maximization and

the EM algorithm. We used the direct maximization approach for all the parameters,
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which was also followed by Johnstone and Silverman (2005b) and Abramovich et al.

(2002). We used MATLAB c©’s built-in fmincon function with the “interior-point”

option to minimize −` with respect to εj and b. We carried out the optimization in

one step for all levels j, since parameter b is global for all detail coefficients, which

differs from the level-by-level optimization approach taken in the references above.

The procedure is not sensitive to starting values of εj, but it is important to specify

a proper starting value for b in order for the marginal log-likelihood ` to be finite.

Starting values ε0j = 0.5 and b0 = 1/x̄j,l worked well.

Note, that in order to fully specify the thresholding statistics xj,l in (60), we

also need to estimate parameter σ2, which represents the variance of the random

error ε. In the wavelet shrinkage literature σ2 is frequently estimated by a robust

estimator of the variance of wavelet coefficients at the finest level of detail (Donoho

and Johnstone, 1994). We adopted this practice to estimate σ as σ̂ = MAD/0.6745.

Here MAD stands for the median absolute deviation from the median of wavelet

coefficients at the finest level of detail and constant 0.6745 calibrates the estimator

to be comparable to sample standard deviation.

4.4 Simulations and Comparisons

In this section we discuss the performance of the proposed estimator (67) and compare

it to established methods from the literature considering block-type wavelet denoising.

In our simulations four standard test functions (Blocks, Bumps, Doppler, Heavisine)

were considered (Donoho and Johnstone, 1994). The functions were rescaled such that

the added noise produced preassigned signal-to-noise ratio (SNR), as standardly done.

The test functions were simulated at n = 256, 512, and 1024 equally spaced points

in the interval [0, 1]. Five commonly considered SNR’s were selected, SNR = 1, 3, 5, 7

and 10. The standard wavelet bases were also used: Symmlet 8 for Heavisine and

Doppler, Daubechies 6 for Bumps and Haar for Blocks. The coarsest decomposition
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level was J0 = 3 which matches J0 = blog2(log(n))+1c suggested by Antoniadis et al.

(2001). Note here, that in practice we carried out the discrete wavelet decomposition

to level J0 − 1 so that the parental detail coefficients were available for level J0.

Reconstruction of the theoretical signal was measured by the average mean squared

error (AMSE), calculated as

1

Mn

M∑
k=1

n∑
i=1

(
f̂k(ti)− f(ti)

)2

,

where M is the number of simulation runs and f(ti), i = 1, . . . , n are known values

of the test functions considered. We denote by f̂k(ti), i = 1, . . . , n the estimator from

the k-th simulation run.

For comparison with other methods the posterior mean (64) is used to estimate λj,l,

as in (66), because it gives better performance than the posterior median (68) and the

Bayes factor procedure (70). It can be seen in Table 6 that the LNWS method based

on the posterior mean gives better AMSE results in most test scenarios. However, for

test function Bumps and for very high level of noise (SNR = 1) the posterior median

results in better performance. Note that boldface numbers indicate the smallest

AMSE result for each test scenario.

Table 6: AMSE comparison of the LNWS method based on posterior mean, median
and Bayes factor.

Signal N Method SNR=1 SNR=3 SNR=5 SNR=7 SNR=10 Signal N Method SNR=1 SNR=3 SNR=5 SNR=7 SNR=10

Blocks 256 Mean 0.3186 0.3643 0.3240 0.3050 0.2962 Doppler 256 Mean 0.2378 0.3367 0.3482 0.3604 0.3742
Med 0.2888 0.3537 0.3060 0.2883 0.2864 Med 0.2162 0.3687 0.3833 0.3954 0.4099
BF 0.3531 0.3703 0.3121 0.2912 0.2881 BF 0.2519 0.3818 0.3906 0.4017 0.4135

512 Mean 0.2006 0.2261 0.2190 0.2072 0.1974 512 Mean 0.1412 0.1978 0.2239 0.2316 0.2400
Med 0.1877 0.2276 0.2324 0.2148 0.2004 Med 0.1313 0.1989 0.2449 0.2561 0.2634
BF 0.2152 0.2343 0.2352 0.2162 0.2012 BF 0.1445 0.2041 0.2487 0.2581 0.2648

1024 Mean 0.1228 0.1509 0.1394 0.1314 0.1245 1024 Mean 0.0738 0.1080 0.1198 0.1251 0.1368
Med 0.1174 0.1627 0.1451 0.1341 0.1242 Med 0.0688 0.1139 0.1273 0.1288 0.1405
BF 0.1270 0.1660 0.1464 0.1347 0.1244 BF 0.0742 0.1161 0.1287 0.1302 0.1419

Bumps 256 Mean 0.4264 0.4896 0.5024 0.5052 0.5049 Heavisine 256 Mean 0.0928 0.1297 0.1930 0.2104 0.2190
Med 0.3946 0.4938 0.5221 0.5315 0.5119 Med 0.0843 0.1299 0.2039 0.2255 0.2359
BF 0.5026 0.5196 0.5342 0.5381 0.5160 BF 0.0944 0.1318 0.2063 0.2272 0.2380

512 Mean 0.3242 0.3542 0.3531 0.3562 0.3753 512 Mean 0.0426 0.0808 0.1130 0.1355 0.1379
Med 0.2939 0.3428 0.3456 0.3461 0.3702 Med 0.0410 0.0835 0.1218 0.1444 0.1539
BF 0.3538 0.3579 0.3530 0.3516 0.3756 BF 0.0427 0.0842 0.1225 0.1453 0.1547

1024 Mean 0.1996 0.2204 0.2325 0.2465 0.2638 1024 Mean 0.0230 0.0449 0.0577 0.0797 0.0953
Med 0.1802 0.2049 0.2220 0.2397 0.2610 Med 0.0227 0.0479 0.0592 0.0836 0.1065
BF 0.2057 0.2126 0.2276 0.2440 0.2643 BF 0.0232 0.0483 0.0596 0.0843 0.1073

The mean-square performance of our method is compared to the NCPmn-2 method
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of Wang and Wood (2006), the BITUP method of Fryzlewicz (2007), the Neigh-

Coeff method of Cai and Silverman (2001), the BlockPostMean (PMN) method of

Abramovich et al. (2002), the BBS method of De Candiitis and Vidakovic (2004)

and the TSW method of Autin et al. (2011). Results are summarized in Table 7,

where boldface numbers indicate the best performance in each test scenario. From

the results we can see that the proposed estimator is comparable to the established

block shrinkage methods and superior for some combinations of signals, SNRs and

sample sizes. As evident from Table 7, for test function Bumps the LNWS estimator

has the lowest AMSE, except for the case SNR = 1, and this is also true in many cases

of the Heavisine signal. For test signals Blocks and Doppler our method performs

comparable to the existing methods. Note that TSW is the only other method which

considers both neighboring and parental relations. It is apparent that the LNWS

estimator performs better in most test scenarios than TSW, because it is based on a

more sophisticated shrinkage rule instead of simple thresholding. Graphical summary

of the results is presented in Figure 21 where the boxplots of the MSE are shown for

n = 1024 and SNR = 3. The number of simulations performed was M = 1000.

4.5 Application to Inductance Plethysmography Data

In this section we apply the proposed LNWS method to a real-world data set from

anaesthesiology generated by inductance plethysmography. The recordings were made

by the Department of Anaesthesia at the Bristol Royal Infirmary and represent mea-

sure of flow of air during breathing. The measurements are the output voltage of

the inductance plethysmograph over time. The data set is popular in the wavelet de-

noising literature and was used as an example by several authors, for example Nason

(1996), Abramovich et al. (1998, 2002) and Johnstone and Silverman (2005b). For

more information about the data set, please refer to Nason (1996).

Figure 22 shows a section of plethysmograph recording lasting approximately 80
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Table 7: AMSE of the proposed LNWS estimator compared to other methods.
Signal N Method SNR=1 SNR=3 SNR=5 SNR=7 SNR=10 Signal N Method SNR=1 SNR=3 SNR=5 SNR=7 SNR=10

Blocks 256 LNWS 0.3136 0.3643 0.3240 0.3050 0.2962 Doppler 256 LNWS 0.2378 0.3367 0.3482 0.3604 0.3742
NCP 0.2798 0.3709 0.3407 0.3226 0.3146 NCP 0.2160 0.3218 0.3090 0.3245 0.3433

BITUP 0.3768 0.4100 0.3287 0.3040 0.3036 BITUP 0.2724 0.4608 0.4773 0.4598 0.4435
NC 0.3503 0.6227 0.5716 0.4895 0.4122 NC 0.2121 0.3168 0.3332 0.3529 0.3740

PMN 0.3203 0.5197 0.5056 0.5021 0.4898 PMN 0.2685 0.3414 0.3538 0.4049 0.4618
BBS 0.2510 0.3258 0.2792 0.2310 0.1956 BBS 0.1951 0.3018 0.3256 0.3631 0.4334
TSW 0.3433 0.2784 0.2140 0.1791 0.1734 TSW 0.2689 0.4583 0.4862 0.4681 0.5065

512 LNWS 0.2006 0.2261 0.2190 0.2072 0.1974 512 LNWS 0.1412 0.1978 0.2239 0.2316 0.2400
NCP 0.1975 0.2573 0.2468 0.2328 0.2233 NCP 0.1254 0.1798 0.1909 0.1928 0.2103

BITUP 0.2390 0.2338 0.2167 0.2055 0.2011 BITUP 0.1660 0.2374 0.2700 0.2860 0.2889
NC 0.2629 0.4104 0.4032 0.3679 0.3199 NC 0.1158 0.1696 0.1803 0.1867 0.2069

PMN 0.2303 0.3846 0.3567 0.3531 0.3389 PMN 0.1635 0.1983 0.1748 0.2060 0.2704
BBS 0.1745 0.1992 0.1907 0.1756 0.1591 BBS 0.1173 0.1576 0.1632 0.1822 0.2318
TSW 0.2250 0.1898 0.1583 0.1176 0.1111 TSW 0.1681 0.2450 0.2765 0.2700 0.2625

1024 LNWS 0.1228 0.1509 0.1394 0.1314 0.1245 1024 LNWS 0.0738 0.1080 0.1198 0.1251 0.1368
NCP 0.1287 0.1904 0.1714 0.1610 0.1537 NCP 0.0614 0.1032 0.1205 0.1258 0.1312

BITUP 0.1496 0.1502 0.1375 0.1319 0.1265 BITUP 0.0898 0.1368 0.1447 0.1559 0.1728
NC 0.1867 0.3253 0.3088 0.2680 0.2250 NC 0.0608 0.0954 0.1162 0.1239 0.1301

PMN 0.1746 0.3576 0.2915 0.2800 0.2743 PMN 0.1094 0.1466 0.1379 0.1444 0.1838
BBS 0.1222 0.1489 0.1240 0.1084 0.0939 BBS 0.0605 0.0980 0.1181 0.1314 0.1352
TSW 0.1527 0.1378 0.0810 0.0706 0.0703 TSW 0.0943 0.1483 0.1735 0.1961 0.1938

Bumps 256 LNWS 0.4264 0.4896 0.5024 0.5052 0.5049 Heavisine 256 LNWS 0.0928 0.1297 0.1930 0.2104 0.2190
NCP 0.4383 0.5036 0.5393 0.5627 0.5784 NCP 0.0555 0.1289 0.2113 0.2467 0.2832

BITUP 0.5356 0.6875 0.6075 0.5883 0.5645 BITUP 0.1207 0.1651 0.2070 0.2127 0.2194
NC 0.5667 0.8026 0.7694 0.7771 0.7669 NC 0.0627 0.1217 0.2139 0.2682 0.3069

PMN 0.4706 0.5853 0.7215 0.8302 0.9178 PMN 0.1307 0.1844 0.2425 0.2917 0.3664
BBS 0.3927 0.7232 0.8462 0.9516 1.1201 BBS 0.0932 0.1332 0.1810 0.2174 0.2479
TSW 0.5685 0.8765 0.8910 0.9985 1.1621 TSW 0.0659 0.1447 0.2354 0.2724 0.3008

512 LNWS 0.3242 0.3542 0.3531 0.3562 0.3753 512 LNWS 0.0426 0.0808 0.1130 0.1355 0.1379
NCP 0.3084 0.3986 0.4005 0.4041 0.4105 NCP 0.0303 0.0836 0.1195 0.1596 0.1800

BITUP 0.4100 0.3997 0.3863 0.3860 0.4006 BITUP 0.0572 0.1014 0.1395 0.1432 0.1402
NC 0.4542 0.5851 0.5300 0.4803 0.4384 NC 0.0372 0.0903 0.1422 0.1719 0.1999

PMN 0.3522 0.4750 0.5224 0.5399 0.5697 PMN 0.0825 0.1243 0.1585 0.1956 0.2435
BBS 0.3127 0.5124 0.5847 0.6593 0.7429 BBS 0.0499 0.0820 0.1114 0.1369 0.1601
TSW 0.4468 0.6001 0.6499 0.7260 0.7851 TSW 0.0359 0.0980 0.1501 0.1855 0.2240

1024 LNWS 0.1996 0.2204 0.2325 0.2465 0.2638 1024 LNWS 0.0230 0.0449 0.0577 0.0797 0.0953
NCP 0.1886 0.2480 0.2666 0.2741 0.2849 NCP 0.0199 0.0507 0.0636 0.0847 0.1033

BITUP 0.2451 0.2291 0.2401 0.2519 0.2700 BITUP 0.0322 0.0543 0.0680 0.0866 0.0999
NC 0.2759 0.3228 0.3022 0.2881 0.2892 NC 0.0203 0.0667 0.0878 0.0951 0.1070

PMN 0.2404 0.3430 0.3521 0.3851 0.4208 PMN 0.0649 0.0915 0.1022 0.1189 0.1517
BBS 0.2058 0.3203 0.3691 0.3941 0.4015 BBS 0.0288 0.0492 0.0629 0.0768 0.0940
TSW 0.2845 0.3862 0.4464 0.4582 0.4351 TSW 0.0236 0.0632 0.0824 0.1174 0.1515
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Figure 21: Boxplots of MSE for various block-shrinkage procedures based on n =
1024 points and SNR = 3.
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s (n = 4096 observations). Figure 23 shows the reconstruction of the signal with

the LNWS method using posterior mean. Using posterior median or Bayes factor as

an estimator lead to essentially identical results. It is apparent that the proposed

method removes the noise well while preserving the important features of the signal.

Abramovich et al. (2002) report the heights of the first peak while analysing this

data set. For the LNWS method the heights are 0.8433, 0.8431 and 0.8433 using

the posterior mean, median and Bayes factor, respectively. These numbers are the

same as the result obtained by Abramovich et al. (2002), and better compared to

some established methods reported in their paper. The empirical Bayes method by

Johnstone and Silverman (2005b) reports 0.842 as a result.
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Figure 22: A section of inductance plethysmography data with n = 4096.

4.6 Extension to Image Denoising

In this section we show briefly how the proposed methodology can easily be extended

to two-dimensional signals/images. For images, the neighboring structures comprise 1

parent and 4 children coefficients, as it was used by Crouse et al. (1998) and Romberg
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Figure 23: Reconstruction of inductance plethysmography data obtained by the
LNWS method.

et al. (2001), among others. Therefore, the “thresholding statistics” (60) becomes

xj,l =
(
d2
j,{k1,k2} + d2

j,{k1+1,k2} + d2
j,{k1,k2+1} + d2

j,{k1+1,k2+1} + d2
j−1,{dk1/2e,dk2/2e}

)
/σ2.

In the above j = J0, . . . , log2(n) denotes the scale or subband in the 2D wavelet

decomposition, and {k1, k2} ∈ {0, . . . , 2j − 1} × {0, . . . , 2j − 1} denotes the location

of wavelet coefficients. The Bayesian model on the “thresholding statistics” becomes

x|λ ∼ χ2
5(λ)

λ ∼ εjδ0 + (1− εj)π(λ), (72)

where χ2
5(λ) denotes the noncentral chi-square distribution with 5 degrees of freedom.

For model (72) the marginal distribution becomes

m(x) = εj
1

Γ(5/2)25/2
x3/2e−x/2 +

(1− εj)
{
b
√

1 + 2be−
bx

1+2bErf

[√
x

2 + 4b

]
− b
√

2x/πe−x/2
}

= εjm0(x) + (1− εj)m1(x), (73)
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while the posterior mean becomes

δ(x) = (1− pj)

√
2x(1+2b)

π
e−

x
2+4b + (x− 1− 2b)Erf

[√
x

2+4b

]
−(1 + 2b)3/2

√
2x/πe−

x
2+4b + (1 + 2b)2Erf

[√
x

2+4b

] , (74)

with

pj = εj
m0(x)

m(x)
. (75)

The derivations are analogous to the one-dimensional case and explained in the Ap-

pendix. Equations for the posterior median and the Bayes factor procedure are omit-

ted here, but can be derived similarly, as before. Naturally, the shrinkage rule to

estimate θj,{k1,k2}, θj,{k1+1,k2}, θj,{k1,k2+1} and θj,{k1+1,k2+1} modifies to

θ̂j,{k1,k2}

θ̂j,{k1+1,k2}

θ̂j,{k1,k2+1}

θ̂j,{k1+1,k2+1}


=

{
λ̂j,l
xj,l

}1/2



dj,{k1,k2}

dj,{k1+1,k2}

dj,{k1,k2+1}

dj,{k1+1,k2+1}


, (76)

where λ̂j,l is a Bayes estimator of λj,l; in this case the posterior mean given by rule (74).

Again, we shrink wavelet coefficients dj,{k1,k2}, dj,{k1+1,k2}, dj,{k1,k2+1} and dj,{k1+1,k2+1}

in the block by the same factor, which is the square root of the ratio of the estimated

and the observed energy of the block. The energy of the block contains the energy of

the parental wavelet coefficient dj−1,{dk1/2e,dk2/2e}, which contributes to the shrinkage

procedure. We refer to the procedure as LNWS-2D in the future.

As before, estimation of the hyperparameters εj and b are done by numerically

maximizing the marginal log-likelihood function, and we estimate parameter σ2 by a

robust estimator of the variance of wavelet coefficients at the finest level of detail.

To demonstrate the method, we compared the AMSE performance of LNWS-

2D to the Hidden Markov Tree (HMT ) model of Romberg et al. (2001). In the

simulations three standard test images (Lena, Peppers, Barbara) of size 512 × 512
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were considered. We added i.i.d. normal noise to the test images. Three different

noise levels were considered, σ = 10, σ = 25 and σ = 50. The coarsest decomposition

level was set J0 = 3. Reconstruction of the image was evaluated by the average mean

squared error (AMSE), calculated as

1

M

M∑
k=1

(
‖Ŷk − Y ‖2

2

n2

)
,

where M is the number of simulation runs and Y is the n × n known values of the

test image considered. We denote by Ŷk the estimator from the kth simulation run.

Note, that for method HMT the pixel values were normalized to [0,1] as suggested by

the authors. We used the Daubechies 4 wavelet filter and the number of simulation

runs was M = 50. Results are summarized in Table 8.

Table 8: AMSE of the LNWS-2D method compared to HMT.

Picture Method σ = 10 σ = 25 σ = 50

Lena LNWS-2D 28.95 78.41 156.11
HMT 27.25 76.66 157.09

Peppers LNWS-2D 30.69 78.23 165.25
HMT 30.37 86.88 174.69

Barbara LNWS-2D 46.79 160.23 324.44
HMT 47.37 148.64 321.12

It is evident that the proposed method LNWS-2D performs very similar compared

to the established HMT procedure. Note, that the computational requirements of the

two procedures are virtually the same. To visually illustrate the results, Figure 24 is

provided. It shows a Peppers image with σ = 25 denoised by the two procedures.

4.7 Conclusions

In this chapter we proposed a wavelet shrinkage method based on a neighborhood of

wavelet coefficients, which includes two neighboring and a parental coefficient. We

called the methodology Λ-neighborhood wavelet shrinkage, motivated by the shape of

the considered neighborhood. A Bayesian model was formulated on the total energy
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Figure 24: Denoised Peppers with σ = 25.

of the coefficients in the neighborhood, and different Bayes estimators of the mean

energy were derived and explored. Shrinkage of the neighboring wavelet coefficients

were based on the ratio of the estimated and observed energy. Extensive simulations

on standard test functions showed that the method performs comparable and often

superior to several existing block-shrinkage methods. Possible explanation for the

noted improvement is that the Λ-neighborhood mimics a “cone of influence” in which

the local energy spreads from a parent to children coefficients. An application to

inductance plethysmography data set was also considered. The proposed method

performed well in both denoising and preserving the important features of the real

data. Finally, we showed how the method can be extended to image denoising.

In the model we used a global scale parameter b for the spread distribution. Pos-

sible future work may include models with scale parameter bj set levelwise as well as

the elicitation of these parameters. Other future improvement can be to explore the

possibility and performance of using neighborhoods of different size, for example 4

neighboring and 2 parental wavelet coefficients. Size of the neighborhoods could be

specified depending on the dyadic level and nature of the signal.

In the spirit of reproducible research we made MATLAB scripts used in simulation
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for LNWS available at http://gtwavelet.bme.gatech.edu/.
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CHAPTER V

FULLY BAYESIAN ESTIMATION AND VARIABLE

SELECTION IN PARTIALLY LINEAR WAVELET

MODELS

In this chapter we propose a wavelet-based methodology for estimation and variable

selection in partially linear models. The inference is conducted in the wavelet domain,

which provides a sparse and localized decomposition appropriate for nonparametric

components with various degrees of smoothness. A hierarchical Bayes model is for-

mulated on the parameters of this representation, where the estimation and variable

selection is performed by a Gibbs sampling procedure. For both the parametric and

nonparametric part of the model we are using point-mass-at-zero contamination pri-

ors with a double exponential spread distribution. In this sense we extend the model

of Chapter 2 to partially linear models. Only a few papers in the area of partially

linear wavelet models exist, and we show that the proposed methodology is often

superior to the existing methods with respect to the task of estimating model pa-

rameters. Moreover, the method is able to perform Bayesian variable selection by a

stochastic search for the parametric part of the model.

5.1 Introduction

In the present chapter we consider a novel Bayesian approach for solving the following

regression problem

Yi = xTi β + f(ti) + εi, i = 1, . . . , n, (77)

where ti, i = 1, . . . , n, are equispaced sampling points, xi, i = 1, . . . , n, are known

p-dimensional design points, β is an unknown p-dimensional parameter vector, f is
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an unknown and potentially non-smooth function, and the random errors εi are i.i.d.

normal, with zero mean and variance σ2. The model can be written in matrix-vector

form as

Y = Xβ + f + ε. (78)

Our interest is to simultaneously estimate the unknown parameter vector β and

nonparametric function f using the observations Y . Another task is to identify

important (non-zero) components of β, that is to perform dimension reduction via

variable selection on β.

The model in (77) is called a partially linear model (PLM) in the literature.

Engle et al. (1986) were among the first to use PLM to analyze electricity sales data.

The model is semiparametric in nature because it combines parametric (linear) and

nonparametric parts. In this chapter we consider a model with one nonparametric

part in it. The monograph by Härdle et al. (2000) discusses the general PLM model

extensively.

Several approaches are proposed in the literature to represent the nonparamet-

ric component f of the model in (78). These all build on existing nonparametric

regression techniques, such as the kernel method, the local linear method (local poly-

nomial or trigonometric polynomial techniques), or splines. In the most recent papers,

wavelets are used (Chang and Qu, 2004; Fadili and Bullmore, 2005; Qu, 2006; Gannaz,

2007; Ding et al., 2011), which allows the nonparametric component to be parsimo-

niously represented by a limited number of coefficients. The wavelet representation

can include a wide variety of nonparametric parts, including non-smooth signals, and

reduces the bias in estimating the parametric component.

In this chapter we consider the latter approach and use the wavelet decomposition

to represent f . We use the Bayesian approach to formulate a hierarchical model in

the wavelet domain and estimate its parameters. Only a few papers used wavelets in

the partially linear model context, and besides Qu (2006), all used a penalized least
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squares estimation procedure. Therefore, using a fully Bayesian approach can be of

interest.

After applying a linear and orthogonal wavelet transform, the model in (77) be-

comes

djk = uTjkβ + θjk + ε̃jk, (79)

where djk, θjk and ε̃jk are the wavelet coefficients (at resolution j and location k)

corresponding to Y , f and ε, and U = WX, where W is an orthogonal matrix

implementing the wavelet transform. In a matrix-vector form,

WY = WXβ +Wf +Wε,

which becomes

d = Uβ + θ + ε̃. (80)

Note that because of the orthogonality of W , ε̃ ∼ N (0, σ2I). Due to the whitening

property of wavelet transforms (Flandrin, 1992), we can assume independence of the

coefficients djk. To estimate βi and θjk in model (79) in a Bayesian fashion, we build

on results from the Bayesian linear models and wavelet regression literature.

To estimate θjk in a simple nonparametric regression model Yi = f(ti) + εi,

Bayesian shrinkage rules have been proposed in the literature by many authors. By

a shrinkage rule, we mean that the observed wavelet coefficients d are replaced with

their shrunken version θ̂ = δ(d). The traditional Bayesian models consider a prior

distribution on a generic wavelet coefficient θ as

π(θ) = εδ0 + (1− ε)ξ(θ), (81)

where δ0 is a point mass at zero, ξ is a symmetric about 0 and unimodal distribution,

and ε is a fixed parameter in [0,1], usually level dependent, that controls the amount of

shrinkage for values of d close to 0. This type of model was considered by Abramovich
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et al. (1998), Vidakovic (1998a), Vidakovic and Ruggeri (2001), and Johnstone and

Silverman (2005b), among others. We also considered this type of model as a part of

a fully Bayesian approach in Chapter 2.

The mixture prior approach was also utilized in Bayesian estimation and vari-

able selection of linear models, Y = Xβ + ε, where a mixture prior is specified on

parameters βi. This type of model was considered for example by George and Mc-

Culloch (1993, 1997), and Yuan and Lin (2004, 2005). It is natural to combine these

approaches; therefore, we build on these modeling ideas to formulate a fully Bayesian

model in the partially linear model context.

The chapter is organized as follows. Section 5.2 formalizes the Bayesian model and

presents some results related to it. In Section 5.3 we explain the estimation through a

Gibbs sampling procedure developed for the hierarchical model. Section 5.4 discusses

the selection of hyperparameters, contains simulations and comparisons to existing

methods, and discusses how variable selection can be performed. Conclusions and

discussion are provided in Section 5.5.

5.2 Hierarchical Model

In this section we propose a hierarchical model in which we use a mixture prior ap-

proach for both the parametric and the nonparametric components of the partially

linear model. The model on the nonparametric part is the same as the model in-

troduced in Chapter 2; therefore, the proposed model is an extension of that. As a

consequence, a number of details and results related to the following model are the

same, but for completeness, we present all the details here.

Let us consider the following hierarchical Bayesian model for a partially linear
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model in the wavelet domain (80):

d|β,γ,θ, σ2 ∼ N (Uγβγ + θ, σ2I)

σ2 ∼ IG(a1, b1)

βi|γi, τβ ∼ (1− γi)δ0 + γiDE(τβ), i = 1, . . . , p

θjk|zjk, τθ ∼ (1− zjk)δ0 + zjkDE(τθ)

γi|q ∼ Ber(q), i = 1, . . . , p

zjk|εj ∼ Ber(εj)

q ∼ U(0, 1)

εj ∼ U(0, 1), (82)

where j pertains to the resolution level of djk and N , IG, DE , Ber, and U stand for

the normal, inverse gamma, double exponential, Bernoulli, and uniform distributions,

respectively. Index i refers to the regression coefficients in β. Note that γ is an

indicator vector of binary elements; therefore, subscript γ indicates that only those

columns or elements of U and β with the corresponding γ element of 1 are included.

Note that the model in (82) uses the well-established mixture prior on θjk with

a point mass at zero, which accounts for the sparsity of the nonparametric part in

the wavelet domain. Wavelet coefficients with large magnitudes are captured by the

spread part of the mixture prior, for which we propose the double exponential or

Laplace distribution with variance 2/τ 2
θ . The double exponential distribution is a

popular choice for the spread part. It models wavelet coefficients with large energies

and was used by several authors, for example Vidakovic and Ruggeri (2001), and

Johnstone and Silverman (2005b). The mixture prior on θjk is specified levelwise,

for each dyadic level j; however, the scale parameter τθ is global. This serves the

purpose of parsimony and contributes to the ease of estimation. Here zjk is a latent

variable indicating whether our parameter θjk is coming from a point mass at zero

(zjk = 0) or from a double exponential part (zjk = 1), with prior probability of 1− εj
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or εj, respectively. For the prior probability εj we assume a “noninformative” uniform

prior. The uniform U(0,1) prior is equivalent to a beta Be(1, 1) distribution, which

is a conjugate prior for the Bernoulli distribution. Note that this specification of the

nonparametric part of the model is the same as in Chapter 2.

In our model we naturally propose the same mixture prior to model the regression

parameters βi, i = 1, . . . , p. Yuan and Lin (2004, 2005) used this prior in the Bayesian

variable selection context for linear models. In case γi = 0 the model forces βi = 0

and if γi = 1 then βi is modeled with a double exponential prior accommodating large

regression coefficients. For the elements of binary vector γ we use the Bernoulli prior

with common parameter q. This prior assumes that each predictor enters the model

independently with prior probability q. Although it does not take into account the

possible correlation between the predictors, this type of prior works well in practice,

and it was used by George and McCulloch (1993) and George and Foster (2000), to

name a few. Unlike George and McCulloch (1993), who prespecified q, we introduce

another level of hierarchy by assuming a uniform “noninformative” prior on q. Since it

is not clear, in general, how to specify q, it makes sense to put a prior distribution on

the parameter, instead of using q = 1/2, which is a common suggestion in practice. As

opposed to the fully Bayesian approach, George and Foster (2000) used the empirical

Bayes approach to estimate q.

Parameter σ2 represents the common noise variance for each resolution level on

which we specified a conjugate inverse gamma prior. Spread parameters τθ and τβ

will be given priors after a reformulated version of the model (82) is discussed.

The hierarchical model in (82) is not conjugate; however, with additional trans-

formations, derivations and computational techniques, it is possible to develop a fast

Gibbs sampling algorithm for updating of its parameters. Note that a standard

approach for handling the double exponential prior in Markov chain Monte Carlo
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(MCMC) computations of hierarchical models is to represent the double exponen-

tial distribution as a scale mixture of normal distributions (Andrews and Mallows,

1974). This approach is used for example in Bayesian LASSO variable selection,

where the double exponential prior (without point mass) is used on the regression pa-

rameters (Park and Casella, 2008). Here we will only use the scale mixture approach

for the double exponential prior on βi. This introduces an additional parameter vi

corresponding to each βi, which needs to be updated. Using the scale mixture repre-

sentation, the model in (82) becomes

d|β,γ,θ, σ2 ∼ N (Uγβγ + θ, σ2I)

σ2 ∼ IG(a1, b1)

βi|γi, vi, η2 ∼ (1− γi)δ0 + γiN (0, viη
2), i = 1, . . . , p

vi ∼ Exp(1), i = 1, . . . , p

θjk|zjk, τθ ∼ (1− zjk)δ0 + zjkDE(τθ)

γi|q ∼ Ber(q), i = 1, . . . , p

zjk|εj ∼ Ber(εj)

q ∼ U(0, 1)

εj ∼ U(0, 1)

η2 ∼ IG(a2, b2)

τθ ∼ Ga(a3, b3) (83)

In the model above η =
√

2/τβ. If we integrate out vis from (83), we get back

the model in (82), which follows from the scale mixture representation of the double

exponential distribution. For the spread parameters η2 and τθ, inverse gamma and

gamma priors are specified in the model, which turn out to be conjugate.

For parameters θjk it is possible to derive the full conditional distributions without

resorting to the scale mixture representation. This improves the speed of the Gibbs
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sampling algorithm. In order to do this, we first discuss some results related to model

(83), which are instrumental in developing the Gibbs sampler.

First let d?jk = djk − (Uγβγ)jk from which it follows that d?jk ∼ N (θjk, σ
2). In

the following notation d? refers to an arbitrary d?jk and the mean θ stands for the

corresponding θjk. If we consider a N (θ, σ2) likelihood f(d?|θ, σ2) and elicit a double

exponential DE(τ) prior p1(θ|τ) on the θ, the marginal distribution becomes

m(d?|σ2, τ) =
τ

2
e
σ2τ2

2

{
e−d

?τΦ

(
d?

σ
− τσ

)
+ ed

?τΦ

(
−d

?

σ
− τσ

)}
, (84)

and the posterior distribution of θ becomes

h(θ|d?, σ2, τ) =

=


e−d

?τ

e−d?τΦ
(
d?

σ
− τσ

)
+ ed?τΦ(−d?/σ − τσ)

1

σ
φ

(
θ − (d? − σ2τ)

σ

)
, θ ≥ 0

ed
?τ

e−d?τΦ
(
d?

σ
− τσ

)
+ ed?τΦ

(
−d?

σ
− τσ

) 1

σ
φ

(
θ − (d? + σ2τ)

σ

)
, θ < 0

,

(85)

where φ and Φ respectively denote the pdf and cdf of the standard normal distribution.

For derivations of these results, see Appendix. From the representation in (85) we

can see that the posterior distribution is a mixture of truncated normals, which

will be utilized in the Gibbs sampling algorithm. If we consider the mixture prior

p(θ|τ) = (1− εj)δ0 + εjp1(θ|τ) on θ in (82), we obtain the posterior distribution as

π(θ|d?, σ2, τ) =
f(d?|θ, σ2)p(θ|τ)∫∞

−∞ f(d?|θ, σ2)p(θ|τ)dθ

=
(1− εj)f(d?|θ, σ2)δ0 + εjf(d?|θ, σ2)p1(θ|τ)

(1− εj)f(d?|0, σ2) + εjm(d?|σ2, τ)

=
(1− εj)f(d?|0, σ2)δ0 + εjm(d?|σ2, τ)h(θ|d?, σ2, τ)

(1− εj)f(d?|0, σ2) + εjm(d?|σ2, τ)

= (1− pj)δ0 + pjh(θ|d?, σ2, τ), (86)

where f(d?|0, σ2) is the normal distribution with mean θ = 0 and variance σ2, and

pj =
εjm(d?|σ2, τ)

(1− εj)f(d?|0, σ2) + εjm(d?|σ2, τ)
(87)
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is the mixing weight. Thus, the posterior distribution of θ is a mixture of point mass

at zero and a mixture of truncated normal distributions h(θ|d?, σ2, τ) with mixing

weight pj.

5.3 Gibbs sampling scheme

To conduct posterior inference on the parameters θjk and βi, we adopt a standard

Gibbs sampling procedure. Gibbs sampling is an iterative algorithm that simulates

from a joint posterior distribution through iterative simulation of the full conditional

distributions. For more details on Gibbs sampling see Casella and George (1992) or

Robert and Casella (1999). For the model in (83), full conditionals for all parameters

can be determined exactly. We build on results given as (85), (86) and results derived

by Yuan and Lin (2004). Derivations of the results in this section are deferred to

Appendix.

Next we will find full conditional distributions and updating schemes for param-

eters γi, βi, vi, η
2, q, σ2, zjk, εj, θjk, and τθ, which are necessary to run the Gibbs

sampler. Specification of the hyperparameters a1, b1, a2, b2, a3 and b3 will be done in

Section 5.4.1.

5.3.1 Updating γi, βi and vi

In each Gibbs sampling iteration we first update the block (γi, βi) by updating γi and

βi for i = 1, . . . , p, and then we generate vi for i = 1, . . . , p.

5.3.1.1 Updating γi and βi as a block

Here we follow the results of Yuan and Lin (2004) and we get

P (γi = 1|d,θ, σ2, η2,β[−i], vi,γ
[−i]) =

1

1 + f(d|θ,σ2,η2,β[−i],v,γ[−i],γi=0)P (γ[−i],γi=0)

f(d|θ,σ2,η2,β[−i],v,γ[−i],γi=1)P (γ[−i],γi=1)

,

where

f(d|θ, σ2, η2,β[−i], v,γ [−i], γi = 0) =

(
1√

2πσ2

)n
exp

{
−Z

′Z

2σ2

}
,
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and

f(d|θ, σ2, η2,β[−i], v,γ [−i], γi = 1) =(
1√

2πσ2

)n
exp

{
−Z

′Z

2σ2

}√
σ2

viη2U ′iUi + σ2
exp

{
viη

2(Z ′Ui)
2

2σ2(viη2U ′iUi + σ2)

}
.

Note that

Z = d−Uγ[−i],γi=0βγ[−i],γi=0 − θ,

and

P (γ [−i], γi = 0)

P (γ [−i], γi = 1)
=

1− q(l−1)

q(l−1)
.

Here the notation γ [−i] and β[−i] refers to vectors γ and β without the ith element

and Ui indicates the ith column of matrix U . Therefore, in the lth iteration of the

Gibbs sampling, update γi as a Bernoulli random variable with probabilities given

γ
(l)
i =


0, wp. 1− P

(
γi = 1

∣∣d,θ(l−1), σ2(l−1)
, η2(l−1)

,β[−i](l), v
(l−1)
i ,γ [−i](l)

)
1, wp. P

(
γi = 1

∣∣d,θ(l−1), σ2(l−1)
, η2(l−1)

,β[−i](l), v
(l−1)
i ,γ [−i](l)

) .

(88)

Then it is straightforward to update βi as

β
(l)
i ∼


δ0(βi), if γ

(l)
i = 0

N
(

v
(l−1)
i η2

(l−1)
(Z′Ui)2

v
(l−1)
i η2(l−1)U ′iUi+σ

2(l−1) ,
v
(l−1)
i η2

(l−1)
σ2(l−1)

v
(l−1)
i η2(l−1)U ′iUi+σ

2(l−1)

)
, if γ

(l)
i = 1

.

(89)

Note that in the above equationZ = d−Uγ[−i],γi=0βγ[−i],γi=0−θ in which we substitute

γ [−i](l), β(l) and θ(l−1). Also, δ0(βi) is a point mass distribution at zero, which is

equivalent to βi = 0.

5.3.1.2 Updating vi

For the scale mixture of normals representation of the double exponential distribution,

we placed an exponential prior on vi in model (83). We update vi depending on the
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value of the latent variable γi, whether βi comes from a point mass or a normal prior.

The updating scheme for vi is

v
(l)
i ∼


Exp(1), if γ

(l)
i = 0

GIG
(

2, β2
i

(l)
/η2(l−1)

, 1/2
)
, if γ

(l)
i = 1

, (90)

where GIG(a, b, p) denotes the generalized inverse Gaussian distribution (Johnson

et al., 1994, p.284) with probability density function

f(x|a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−(ax+b/x)/2, x > 0; a, b > 0.

Here Kp denotes the modified Bessel function of the third kind. Simulation of GIG

random variates is available through a MATLAB c© implementation “randraw” based

on Dagpunar (1989).

5.3.2 Updating η2, q, εj and σ2

Using a conjugate IG(a2, b2) prior on η2 results in an inverse gamma full conditional

distribution. Therefore, update η2 as

η2(l) ∼ IG

a2 + 1/2
∑
i

γi
(l),

[
1/b2 + 1/2

∑
i

(
γi

(l)β2
i

(l)
/v

(l)
i

)]−1
 . (91)

Parameter q has a conjugate Be(1, 1) prior. This results in a full conditional

distributed as beta,

q(l) ∼ Be

(
1 +

∑
i

γi
(l), 1 +

∑
i

(
1− γi(l)

))
. (92)

Similarly, parameter εj is given a conjugate Be(1, 1) prior, and the update is

ε
(l)
j ∼ Be

(
1 +

∑
k

z
(l)
jk , 1 +

∑
k

(
1− z(l)

jk

))
. (93)

Note that other choices from the Be(α, β) family are possible for the prior of εj and q,

similarly. However, we used the noninformative choice α = 1 and β = 1 to facilitate

data-driven estimation of εj and q.
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Using a conjugate IG(a1, b1) prior on σ2 also results in an inverse gamma full

conditional distribution. This leads to an update for σ2 as

σ2(l) ∼ IG
(
a1 + n/2, [1/b1 +Z ′Z/2]

−1
)
, (94)

where Z = d−Uγ(l)β
(l)

γ(l)−θ(l−1) and n = 2J −2J0 denotes the sample size. J−1 and

J0 refer to the finest and coarsest levels in the wavelet decomposition, respectively.

5.3.3 Updating zjk

We saw in model (83) that latent variable zjk has a Bernoulli prior with parameter

εj. Its full conditional distribution remains Bernoulli with parameter pj as in (87).

Thus, the latent variable zjk is updated as follows:

z
(l)
jk =



0, wp.

(
1− ε(l−1)

j

)
f
(
d?jk
∣∣0, σ2(l)

)
(

1− ε(l−1)
j

)
f
(
d?jk
∣∣0, σ2(l)

)
+ ε

(l−1)
j m

(
d?jk
∣∣σ2(l), τ

(l−1)
θ

)
1, wp.

ε
(l−1)
j m

(
d?jk
∣∣σ2(l)

, τ
(l−1)
θ

)
(

1− ε(l−1)
j

)
f
(
d?jk
∣∣0, σ2(l)

)
+ ε

(l−1)
j m

(
d?jk
∣∣σ2(l), τ

(l−1)
θ

)
(95)

where d?jk = djk −
(
Uγ(l)β

(l)

γ(l)

)
jk

.

5.3.4 Updating θjk

We approach updating θjk in a novel way. As we mentioned before, the common

approach for handling the double exponential prior in hierarchical models is the scale

mixture representation. This approach, however, introduces an additional parameter

corresponding to each θjk, which needs to be updated. This adds 2J − 2J0 new

parameters. A faster and more direct method to update θjk is possible by using

results in (85) and (86). From the definition of latent variable zjk we can easily see

that θjk = 0 if zjk = 0, because for such zjk, θjk is distributed as point mass at zero.

In case zjk = 1, θjk follows a mixture of truncated normal distributions a posteriori.
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Therefore, the update for θjk is as follows:

θ
(l)
jk ∼


δ0(θjk), if z

(l)
jk = 0

h
(
θjk
∣∣d?jk, σ2(l)

, τ
(l−1)
θ

)
, if z

(l)
jk = 1

, (96)

where d?jk = djk −
(
Uγ(l)β

(l)

γ(l)

)
jk

, δ0(θ) is a point mass distribution at zero, and

h(θ|d?, σ2, τθ) is a mixture of truncated normal distributions with the density pro-

vided in (85). Simulating random variables from h(θ|d?, σ2, τθ) is nonstandard, and

regular built-in methods fail, because we need to simulate random variables from

tails of normal distributions having extremely low probability. The implementation

of the updating algorithm is based on vectorizing a fast algorithm proposed by Robert

(1995).

5.3.5 Updating τθ

The Gibbs updating scheme is completed with the discussion of how to update τθ. In

the hierarchical model (83), we impose a gamma prior on the scale parameter of the

double exponential distribution. This turns out to be a conjugate problem; therefore,

we update τθ by

τ
(l)
θ ∼ Ga

a3 +
∑
j,k

z
(l)
jk ,

[
1/b3 +

∑
j,k

(
z

(l)
jk |θ

(l)
jk |
)]−1

 . (97)

Note that the gamma distribution above is parameterized by its scale parameter.

Now the derivation of the updating algorithm is complete. Implementation of the

described Gibbs sampler requires simulation routines for standard distributions such

as the gamma, inverse gamma, Bernoulli, beta, exponential, normal, and also special-

ized routines to simulate from truncated normal, and generalized inverse Gaussian.

The procedure was implemented in MATLAB and available from the author.

The Gibbs sampling procedure can be summarized as

(i) Choose initial values for parameters
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(ii) Repeat steps (iii) - (xi) for l = 1, . . . ,M

(iii) Update the block (γi, βi) for i = 1, . . . , p

(iv) Update vi for i = 1, . . . , p

(v) Update η2

(vi) Update q

(vii) Update σ2

(viii) Update zjk for j = J0, . . . , log2(n)− 1, k = 0, . . . , 2j − 1

(ix) Update εj for j = J0, . . . , log2(n)− 1

(x) Update θjk for j = J0, . . . , log2(n)− 1, k = 0, . . . , 2j − 1

(xi) Update τθ.

Note that the updating steps of vectors v, z, ε, and θ are vectorized in the implemen-

tation, which considerably speeds up the computation.

5.4 Simulations

In this section, we apply the proposed Gibbs sampling algorithm and simulate pos-

terior realizations for the model in (83). We will name our method GS-WaPaLiM,

which is an acronym for Gibbs Sampling Wavelet-based Partially Linear Model (GS-

WaPaLiM ) method. Within each simulation step 20,000 Gibbs sampling iterations

were performed, of which the first 5,000 were used for burn-in. We used the sample

averages θ̂jk =
∑

l θ
(l)
jk/L and β̂i =

∑
l β

(l)
i /L as the usual estimator for the posterior

mean. In our set-up, L = 15, 000.

In what follows, we first discuss the selection of the hyperparameters, then com-

pare the estimation performance with other methods on two simulated examples.

Finally, variable selection will be demonstrated on an example.
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5.4.1 Selection of Hyperparameters

In any Bayesian modeling task, the selection of hyperparameters is critical for good

performance of the model. It is also desirable to have a default choice of the hyper-

parameters which makes the procedure automatic.

In order to apply the GS-WaPaLiM method, we only need to specify hyperpa-

rameters a1, b1, a2, b2, a3, and b3 in the hyperprior distributions. The advantage of

the fully Bayesian approach is that once the hyperpriors are set, the estimation of

parameters γi, βi, vi, η
2, q, σ2, zjk, εj, θjk, and τθ is automatic via the Gibbs sampling

algorithm. The selection is governed by the data and hyperprior distributions on the

parameters. Another advantage is that the method is relatively robust to the choice

of hyperparameters since they influence the model at a higher level of hierarchy.

Critical parameters with respect to the performance of the shrinkage are εj and

q, which control the strength of shrinkage of θjk and βi to zero. In model (83), we

placed a uniform prior on these parameters; therefore, the estimation will be governed

mostly by the data, which provides a degree of adaptiveness. Parameter q represents

the probability that a predictor enters the model a priori. When a priori information

is available, it can be incorporated into the model, however, this is rarely the case. In

the wavelet regression context, Abramovich et al. (1998) estimated parameter εj by a

theoretically justified but somewhat involved method, and in Vidakovic and Ruggeri

(2001), the estimation of this parameter depends on another hyperparameter γ, which

is elicited based on empirical evidence. The proposed method provides a better

alternative because of its automatic adaptiveness to the underlying nonparametric

part of the model.

Another efficient way to elicit the hyperparameters of the model is through the

empirical Bayes method performing maximization of the marginal likelihood. This

approach was followed by Qu (2006) in the context of estimating partially linear
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wavelet models. However, the likelihood function is nonconcave; therefore, clever op-

timization algorithm and carefully set starting values are crucial for the performance

of this method. The same method of estimating hyperparameters was used for exam-

ple by Clyde and George (1999) and Johnstone and Silverman (2005b) in the wavelet

regression context, and by George and Foster (2000) in the linear regression context.

Note that for the mixture priors specified on the parametric and nonparametric parts

in model (83) the empirical Bayes approach might not be computationally tractable;

therefore, the fully Bayesian approach provides a good alternative.

Default specification of hyperparameters a1, b1, a2, b2, a3, and b3 in model (83) is

given by the following:

• We set a1 = 2, a2 = 2 and a3 = 1.

• Then we compute naive estimators from the data

β̂OLS = (X ′X)−1X ′Y ,

Yf = Y −Xβ̂OLS,

where Yf is an estimator of the nonparametric part of model (78), and β̂OLS

is the ordinary least squares estimator for β, although computed from the raw

partially linear data.

• Then we set b1 = 1/σ̂2, so that the mean of the inverse gamma prior becomes

σ̂2. We use σ̂2 = MAD/0.6745, which is the usual robust estimator of the noise

variation in the wavelet shrinkage literature (Donoho and Johnstone, 1994).

Here MAD stands for the median absolute deviation of the wavelet coefficients

dfjk at the finest level of detail and the constant 0.6745 calibrates the estimator

to be comparable with the sample standard deviation. Note that coefficients

dfjk correspond to Yf , therefore, dfjk = djk − (Uβ̂OLS)jk.
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• After this we set b3 = τ̂θ =
(√

max{(σ2
f − σ̂2), 0}

)−1

, which sets the mean of

the gamma prior on τθ equal to an estimator of τθ. This estimator is adopted

from Vidakovic and Ruggeri (2001), where σ2
f = Var(Yf ).

• Finally we set b2 = 1/η̂2, so that the mean of the inverse gamma prior is a pre-

specified value, η̂2. Results in the estimation of βis turned out to be somewhat

sensitive to η̂2 for small sample size and small number of linear predictors. We

used η̂2 =
(

3 maxi{|β̂OLSi |}
)2

, which specified a prior on βi with large enough

variance to work well in practice.

5.4.2 Simulations and Comparisons with Various Methods

In this section, we discuss the estimation performance of the proposed GS-WaPaLiM

method and compare it to three methods from the partially linear wavelet model

literature. The first one is the wavelet Backfitting algorithm (BF ) proposed by Chang

and Qu (2004), the second one is the LEGEND algorithm proposed by Gannaz (2007)

and the last one is the double penalized PLM wavelet estimator (DPPLM ) by Ding

et al. (2011). A Bayesian wavelet-based algorithm for the same problem was proposed

by Qu (2006). However, we found that the implementation of that algorithm is

not robust to different simulated examples and initial values of the empirical Bayes

procedure, therefore, we omitted it from our discussion.

The coarsest wavelet decomposition level was J0 = blog2(log(n))+1c, as suggested

from Antoniadis et al. (2001). Reconstruction of the theoretical signal was measured

by the average mean squared error (AMSE), calculated as

AMSE =
1

Mn

M∑
m=1

n∑
i=1

(
Ŷ

(m)
i − Yi

)2

,

where M is the number of simulation runs, and Yi, i = 1, . . . , n are known values of

the simulated functions considered. We denote by Ŷ
(m)
i , i = 1, . . . , n the estimator

from the mth simulation run. Note again, that in each of these simulation runs we
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perform 20,000 Gibbs sampling iterations in order to get the estimators θ̂jk and β̂i.

Also note that Ŷ = W ′d̂, where d̂ = Uβ̂ + θ̂. We also assess the performance in

estimating the parametric part of the model by AMSEβ, calculated as

AMSEβ =
1

M

M∑
m=1

p∑
i=1

(
β̂

(m)
i − βi

)2

.

In the following simulation study we also used a modification of the wavelet Back-

fitting algorithm proposed by Chang and Qu (2004). The original algorithm, denoted

as BF, uses σ̂
√

2 log(n) as a soft threshold value in each iteration. In the modified

algorithm we run the iterative algorithm a second time using the generalized cross-

validation threshold as in Jansen et al. (1997). This simple modification significantly

improves the performance of the original algorithm. The method will be denoted as

BFM in the sequel.

The procedure based on Gannaz (2007), denoted as LEGEND, is a wavelet thresh-

olding based estimation procedure solved by the proposed LEGEND algorithm. The

formulation of the problem is similar to the one in Chang and Qu (2004) and Fadili and

Bullmore (2005), penalizing only the wavelet coefficients of the nonparametric part,

but the solution is faster by recognizing the connection with Huber’s M-estimation of

a standard linear model with outliers.

The algorithm by Ding et al. (2011) will be denoted as DPPLM in the simula-

tions. The authors discuss several simulation results based on how the Lasso penalty

parameter λ2 was chosen and whether the adaptive Lasso algorithm was used or not

in the estimation procedure. It was reported that the GCV criteria with adaptive

Lasso provided the smallest AMSE results, therefore, that version of the algorithm is

used in the present simulations. We will refer to the method as DPPLM-GCV in the

future.

For comparison purposes we use two simulation examples, one from Qu (2006),

and another one from Ding et al. (2011).
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Example 1

The first example is based on an example in Qu (2006). The simulated data are

generated from

Yi = xTi β + f(ti) + εi, i = 1, . . . , n,

where εi ∼ N(0, 1) and β = (0.5, 1)′ with p = 2. The nonparametric test functions are

f(t) = cjfj(t), j = 1, . . . , 4, where f1(t) = Blocks, f2(t) = Bumps, f3(t) = Doppler

and f4(t) = Heavisine. These are four standard test functions considered by Donoho

and Johnstone (1994). We chose c1 = 3, c2 = 7, c3 = 18 and c4 = 2 to have reasonable

signal-to-noise ratios (SNR). The test functions were simulated at n = 64, 128, 256

and 512 points, and the nonparametric components were equally spaced in the unit

interval. The standard wavelet bases were used: Symmlet 8 for Heavisine and

Doppler, Daubechies 6 for Bumps and Haar for Blocks. The two columns of the

design matrix were generated as independent N(0, 1) random variables.

Results of the simulation are presented in Table 9. It can be seen that the proposed

GS-WaPaLiM method gives better AMSE and AMSEβ results in most test scenarios.

It is apparent that the modified version of the Backfitting algorithm (BFM ) provides

better results than the original backfitting algorithm (BF ). Note that an additional

uncertainty results from estimating the noise variance σ2, which was assumed to be

known in the simulations by Chang and Qu (2004). LEGEND provides comparable

results to the BF algorithm, since both are using the same least squares formulation

penalizing only the wavelet coefficients of the nonparametric part of the model. The

solution algorithm and estimation of the noise is different in these methods. Note

that boldface numbers indicate the smallest AMSE result for each test scenario.

Example 2

The second example is based on a simulation example from Ding et al. (2011). The
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Table 9: AMSE comparison of the GS-WaPaLiM method to other methods for
Example 1.

Signal N Method AMSE AMSEβ Signal N Method AMSE AMSEβ

Blocks 64 GS-WaPaLiM 0.6104 0.1119 Doppler 64 GS-WaPaLiM 1.0189 0.1552
BF 8.4895 0.6351 BF 3.6740 0.2322

BFM 1.0921 0.1773 BFM 1.1392 0.1274
LEGEND 7.4006 0.5465 LEGEND 4.7976 0.3049

DPPLM-GCV 0.9103 0.1497 DPPLM-GCV 1.0281 0.1295
128 GS-WaPaLiM 0.3904 0.0285 128 GS-WaPaLiM 0.4839 0.0365

BF 4.6501 0.1660 BF 2.4664 0.0777
BFM 0.6247 0.0435 BFM 0.6709 0.0402

LEGEND 3.5357 0.1372 LEGEND 2.8148 0.0827
DPPLM-GCV 0.6120 0.0418 DPPLM-GCV 0.6570 0.0421

256 GS-WaPaLiM 0.2513 0.0108 256 GS-WaPaLiM 0.3785 0.0137
BF 2.3339 0.0427 BF 1.7548 0.0270

BFM 0.4546 0.0161 BFM 0.4909 0.0152
LEGEND 1.9722 0.0368 LEGEND 1.8112 0.0271

DPPLM-GCV 0.4579 0.0163 DPPLM-GCV 0.4873 0.0150
512 GS-WaPaLiM 0.1737 0.0040 512 GS-WaPaLiM 0.2266 0.0044

BF 1.3563 0.0111 BF 0.9508 0.0078
BFM 0.3377 0.0056 BFM 0.3081 0.0048

LEGEND 1.2783 0.0105 LEGEND 1.0479 0.0079
DPPLM-GCV 0.3345 0.0056 DPPLM-GCV 0.3071 0.0047

Bumps 64 GS-WaPaLiM 0.7876 0.1732 Heavisine 64 GS-WaPaLiM 0.4273 0.0657
BF 8.0091 0.6035 BF 0.5362 0.0515

BFM 1.3190 0.2130 BFM 0.4584 0.0485
LEGEND 9.4988 0.5074 LEGEND 1.5180 0.1042

DPPLM-GCV 1.1293 0.2015 DPPLM-GCV 0.4501 0.0508
128 GS-WaPaLiM 0.7320 0.0782 128 GS-WaPaLiM 0.2836 0.0208

BF 7.3514 0.2355 BF 0.4733 0.0228
BFM 1.1271 0.0789 BFM 0.3490 0.0202

LEGEND 7.8628 0.2150 LEGEND 0.9679 0.0317
DPPLM-GCV 1.0199 0.0764 DPPLM-GCV 0.3543 0.0208

256 GS-WaPaLiM 0.5555 0.0198 256 GS-WaPaLiM 0.1993 0.0100
BF 3.9389 0.0501 BF 0.3631 0.0119

BFM 0.7420 0.0226 BFM 0.2654 0.0108
LEGEND 3.9856 0.0482 LEGEND 0.6548 0.0133

DPPLM-GCV 0.7366 0.0225 DPPLM-GCV 0.2676 0.0107
512 GS-WaPaLiM 0.4339 0.0066 512 GS-WaPaLiM 0.1278 0.0039

BF 2.8462 0.0200 BF 0.2546 0.0044
BFM 0.5914 0.0090 BFM 0.1669 0.0041

LEGEND 2.8794 0.0206 LEGEND 0.4198 0.0049
DPPLM-GCV 0.5903 0.0090 DPPLM-GCV 0.1677 0.0041
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simulated data are generated from

Yi = xTi β + f(ti) + εi, i = 1, . . . , n,

where εi ∼ N(0, 1) and β = (1.5, 2, 2.5, 3, 0, . . . , 0)′ with p = 20. The parametric part

of the model is sparse, where only the first 4 regression variables are significant. The

nonparametric test functions are f(t) = cjfj(t), j = 1, 2, where f1(t) = PiecePoly

given in Nason (1996) and f2(t) = Bumps. We chose c1 = 9 and c2 = 3 to have

reasonable signal-to-noise ratios (SNR). The test functions were simulated at n =

128, 256 and 512 points, and Daubechies 8 wavelet base were used in both cases of the

test functions. Rows of the design matrix xT1 , . . . ,x
T
n were independently generated

from 20-dimensional multivariate normal distribution with zero mean vector, variance

1 and pairwise correlation coefficient between consecutive elements of the rows ρ =

0.4.

Results of the simulation are presented in Table 10. Note that boldface num-

bers indicate the smallest AMSE results for each test scenario. It can be seen that

the proposed GS-WaPaLiM method gives better AMSE and AMSEβ results in all

test scenarios. In this example the parametric part of the model is sparse, there-

fore, the double penalized wavelet estimator is superior to the wavelet backfitting

and LEGEND algorithms, especially in estimating βis. Since the true β is a sparse

vector, penalized estimation of the coefficients provides superior results as opposed to

the BF , BFM and LEGEND methods, which only penalize the wavelet coefficients

corresponding to the nonparametric part in the estimation procedure. Similarly to

Example 1, LEGEND provides comparable results to the BF algorithm. The pro-

posed GS-WaPaLiM method provides superior performance both in estimating the

overall signal and the linear regression coefficients compared to the non-Bayesian

methods considered.
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Table 10: AMSE comparison of the GS-WaPaLiM method to other methods for
Example 2.

Signal N Method AMSE AMSEβ Signal N Method AMSE AMSEβ

PiecePoly 128 GS-WaPaLiM 0.2786 0.0618 Bumps 128 GS-WaPaLiM 0.6700 0.1359
BF 0.4520 0.4067 BF 2.5257 1.3275

BFM 0.4101 0.3985 BFM 1.1061 0.9452
LEGEND 0.4379 0.4027 LEGEND 2.8525 1.4145

DPPLM-GCV 0.3613 0.1790 DPPLM-GCV 0.8800 0.6331
256 GS-WaPaLiM 0.1799 0.0267 256 GS-WaPaLiM 0.4847 0.0398

BF 0.3366 0.1752 BF 1.8561 0.4884
BFM 0.2585 0.1639 BFM 0.6999 0.3254

LEGEND 0.2985 0.1688 LEGEND 1.9165 0.4954
DPPLM-GCV 0.2289 0.0732 DPPLM-GCV 0.6378 0.2121

512 GS-WaPaLiM 0.1160 0.0137 512 GS-WaPaLiM 0.3900 0.0173
BF 0.2440 0.0831 BF 1.5642 0.2001

BFM 0.1672 0.0772 BFM 0.5188 0.1287
LEGEND 0.2133 0.0805 LEGEND 1.4924 0.1935

DPPLM-GCV 0.1524 0.0325 DPPLM-GCV 0.5072 0.0819

5.4.3 Variable selection

A distinguishing feature of the proposed algorithm is that it can be used for variable

selection. The method proposed by Ding et al. (2011) was developed for variable

selection, but in the Bayesian framework, the method proposed by Qu (2006) is not

able to perform this important task.

The proposed methodology can simply mimic the machinery of SSVS (stochas-

tic search variable selection) by George and McCulloch (1993). Recall, that latent

variable γi indicates whether predictor i should be included in the model or not. We

can select the best subset of linear predictors by using Gibbs sampling to identify

models with higher posterior probability f(γ|d). In the Gibbs sampling procedure

we generate the sequence γ(1),γ(2), . . . ,γ(l) which converges to the posterior distribu-

tion f(γ|d). Simple calculation of the empirical frequency of γ or different strategies

mentioned in George and McCulloch (1993) can be used to identify the best subsets

of predictors.

To illustrate this, we show how variable selection works on Example 2 from the

previous section, using Bumps for the nonparametric component and n = 128. Re-

member that p = 20, therefore, there are 220 candidate models. Table 11 shows 10
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models with the highest estimated posterior probability based on 20,000 runs (5,000

was burn-in) of the Gibbs sampling algorithm. We can see that the method identifies

the true model with distinctively highest posterior probability, even for n = 128. In

case n = 256, the estimated posterior probability of the true model is 0.8128.

Table 11: Subset models with highest estimated posterior probabilities.

Variables Posterior probability

x1, x2, x3, x4 0.2885
x1, x2, x3, x4, x19 0.1020
x1, x2, x3, x4, x9 0.0646
x1, x2, x3, x4, x6 0.0321
x1, x2, x3, x4, x16 0.0304
x1, x2, x3, x4, x15 0.0271

x1, x2, x3, x4, x9, x15 0.0236
x1, x2, x3, x4, x20 0.0197

x1, x2, x3, x4, x16, x19 0.0167
x1, x2, x3, x4, x15, x19 0.0164

5.5 Conclusions

In this chapter we proposed a wavelet-based method for estimation and variable

selection in partially linear models. Because wavelets provide efficient representation

for wide ranges of functions, the inference was conducted in the wavelet domain.

A fully Bayesian approach was taken, in which a mixture prior was specified on

both the parametric and nonparametric components of the model, unifying modeling

approaches from both the Bayesian linear models and the wavelet shrinkage literature.

Estimation and variable selection was performed by a Gibbs sampling procedure.

It was shown through simulated examples that the methodology provides superior

performance compared to the penalized least squares approach, most common in the

existing literature.

The developed algorithm is efficient; however, the computational time consider-

ably increases when the number of covariates in the linear part of the model grows.

Another limitation is the usual assumptions of wavelet regression, that is, we assumed
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equally spaced sampling points without replicates for the nonparametric component,

and the number of observations was assumed to be a power of two. This can be a

limitation for analyzing real-world data sets, however, wavelet transforms extending

these assumptions can be found in the literature, see for example Kovac and Silverman

(2000).
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APPENDIX A

DERIVATIONS OF SOME RESULTS

A.1 Derivations for Chapter 2

First we provide derivation of results (25) and (26). The joint distribution f(d, θ|σ2, τ)

using prior p1(θ|τ) is

f(d, θ|σ2, τ) = f(d|θ, σ2)p1(θ|τ) =
1√

2πσ2
e−

(d−θ)2

2σ2
τ

2
e−τ |θ|

=
τ

2
√

2πσ2
e−

1
2σ2
{θ2−2θ(−sign(θ)σ2τ+d)+d2}

=
τ

2
√

2πσ2
e−

1
2σ2
{θ−(d−sign(θ)σ2τ)2} − e−

1
2σ2
{−(d−sign(θ)σ2τ)2+d2}

=
τe

σ2τ2

2 e−sign(θ)dτ

2
√

2πσ2
e−

1
2σ2
{θ−(d−sign(θ)σ2τ)}2

=



τe
σ2τ2

2 e−dτ

2
√

2πσ2
e−

1
2σ2

[θ−(d−σ2τ)]2 , θ ≥ 0

τe
σ2τ2

2 edτ

2
√

2πσ2
e−

1
2σ2

[θ−(d+σ2τ)]2 , θ < 0

.

The marginal distribution becomes

m(d|σ2, τ) =

∫ ∞
−∞

f(d, θ|σ2, τ)dθ

=
τ

2
e
σ2τ2

2

{
edτ
∫ 0

−∞

1√
2πσ2

e−
1

2σ2
[θ−(d+σ2τ)]2dθ +

e−dτ
∫ ∞

0

1√
2πσ2

e−
1

2σ2
[θ−(d−σ2τ)]2dθ

}
=

τ

2
e
σ2τ2

2

{
edτΦ

(
−d− σ2τ

σ

)
+ e−dτΦ

(
d− σ2τ

σ

)}
.
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Combining the two equations above, we get the posterior as

h(θ|d, σ2, τ) =
f(d, θ|σ2, τ)

m(d|σ2, τ)
=

e−dτ

e−dτΦ
(
d
σ
− τσ

)
+ edτΦ

(
− d
σ
− τσ

) 1√
2πσ2

e−
1

2σ2
[θ−(d−σ2τ)]2 , θ ≥ 0

edτ

e−dτΦ
(
d
σ
− τσ

)
+ edτΦ

(
− d
σ
− τσ

) 1√
2πσ2

e−
1

2σ2
[θ−(d+σ2τ)]2 , θ < 0

.

These results were also derived by Pericchi and Smith (1992) and used by Johnstone

and Silverman (2005b).

Now we derive the results used for the Gibbs sampling algorithm of model (24). To

derive the full conditional distribution for a parameter of interest we look at the joint

distribution of all the parameters and collect the terms which contain the desired

parameter. Let us denote d = {djk : j = J0, . . . , log2(n) − 1, k = 0, . . . , 2j − 1},

θ = {θjk : j = J0, . . . , log2(n)− 1, k = 0, . . . , 2j − 1}, z = {zjk : j = J0, . . . , log2(n)−

1, k = 0, . . . , 2j − 1} and ε = {εj : j = J0, . . . , log2(n)− 1}. The joint distribution of

the data and parameters for model in (24) becomes

f(d,θ, z, ε, σ2, τ) =

[∏
j,k

1√
2πσ2

e−
1

2σ2
(djk−θjk)2

]
1

Γ(a1)b1
a1

(σ2)−a1−1e
− 1
σ2

1
b1 ·[∏

j,k

{
(1− zjk)δ0 + zjk

τ

2
e−τ |θjk|

}]
·[∏

j,k

ε
zjk
j (1− εj)(1−zjk)

]
·[∏

j

1{0 ≤ εj ≤ 1}

]
1

Γ(a2)b2
a2
τa2−1e−τ/b2 .
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From the joint distribution, the full conditional distribution of σ2 is

p(σ2|θ,d) ∝ (σ2)−n/2e−
1

2σ2

∑
j,k(djk−θjk)2(σ2)−a1−1e

− 1
σ2

1
b1

= (σ2)−a1−n/2−1 exp

{
− 1

σ2

(
1/b1 + 1/2

∑
j,k

(djk − θjk)2

)}

= IG

a1 + n/2,

[
1/b1 + 1/2

∑
j,k

(djk − θjk)2

]−1
 .

The conditional distribution of zjk remains Bernoulli with posterior probability de-

rived by

P (zjk = 1|djk, σ2, τ, εj) =
P (zjk = 1|εj)f(djk|σ2, τ, zjk = 1)∑

i∈{0,1} P (zjk = i|εj)f(djk|σ2, τ, zjk = i)
=

P (zjk = 1|εj)
∫∞
−∞ f(djk|θjk, σ2)p(θjk|τ, zjk = 1)dθjk∑

i∈{0,1} P (zjk = i|εj)
∫∞
−∞ f(djk|θjk, σ2)p(θjk|τ, zjk = i)dθjk

=

εjm (djk|σ2, τ)

(1− εj) f (djk|0, σ2) + εjm (djk|σ2, τ)
.

Here p(θjk|τ, zjk = i), i ∈ {0, 1} denote the two parts of the mixture prior in model

(24), depending on the value of latent variable zjk. Similar result was used by Yuan

and Lin (2005).

The full conditional distribution of εj is

p(εj|z) ∝

[∏
k

ε
zjk
j (1− εj)(1−zjk)

]
1{0 ≤ εj ≤ 1}

= ε
∑
k zjk

j (1− εj)
∑
k(1−zjk)

= Be

(
1 +

∑
k

zjk, 1 +
∑
k

(1− zjk)

)
.
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Similarly, the full conditional distribution of θjk is

p(θjk|djk, zjk, σ2, τ) ∝ exp

{
− 1

2σ2
(djk − θjk)2

}{
(1− zjk)δ0 + zjk

τ

2
e−τ |θjk|

}

=


δ0(θjk), if zjk = 0

h(θjk|djk, σ2, τ), if zjk = 1

,

where the distribution h(θjk|djk, σ2, τ) comes from the result in (26) and was derived

above.

Finally, the full conditional distribution of τ is

p(τ |θ, z) ∝

[∏
j,k

{
(1− zjk)δ0 + zjk

τ

2
e−τ |θjk|

}] 1

Γ(a2)b2
a2
τa2−1e−τ/b2

∝ τa2+
∑
j,k zjk−1 exp

{
−τ

(∑
j,k

(zjk|θjk|) + 1/b2

)}

= Ga

a2 +
∑
j,k

zjk,

[
1/b2 +

∑
j,k

(zjk|θjk|)

]−1
 .

Next we present some results used for the Gibbs sampling algorithm of the bivari-

ate model (34). The notation is the same as before, but d and θ represent vectors

with bivariate components djk and θjk, respectively. Let us denote v = {vjk : j =

J0, . . . , log2(n) − 1, k = 0, . . . , 2j − 1} and C = {Cj : j = J0, . . . , log2(n) − 1} the

vector containing matrices Cj for resolution levels j. The joint distribution of the
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data and parameters is

f(d,θ, z, ε,v, σ2,C) =

[∏
j,k

1√
2π|σ2Σj|1/2

·
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From the joint distribution, the full conditional distribution of σ2 is

p(σ2|θ,d) ∝
(

1

σ2

)n
exp
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− 1
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 .

Similarly as before, the conditional distribution of zjk is Bernoulli with success prob-

ability

P (zjk = 1|djk, σ2, εj, vjk, Cj) =
εjm (djk|σ2, vjk, Cj)

(1− εj) f (djk|0, σ2) + εjm (djk|σ2, vjk, Cj)
,
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where

f(djk|0, σ2) =
1

2π|σ2Σj|1/2
exp

{
− 1

2σ2
d′jkΣ

−1
j djk

}
,

m(djk|σ2, vjk, Cj) =
1

2π|σ2Σj + vjkCj|1/2
exp
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−1

2
d′jk
(
σ2Σj + vjkCj

)−1
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}
.

The marginal distribution m(djk|σ2, vjk, Cj) is a bivariate normal distribution with

zero mean and covariance matrix σ2Σj + vjkCj. The derivation is a standard result

of having a multivariate normal prior on the mean of the multivariate normal distri-

bution. The result in a general form can be found for example in Lindley and Smith

(1972).

The full conditional distribution of εj remains the same as for the real-valued

model. The full conditional distribution of θjk is

p(θjk|djk, zjk, σ2, vjk, Cj) ∝ exp

{
− 1

2σ2
(djk − θjk)′Σ−1

j (djk − θjk)
}
·

[(1− zjk)δ0+

zjk
1√

2π|vjkCj|1/2
exp

{
− 1

2vjk
θ′jkC

−1
j θjk

}]

=


δ0(θjk), if zjk = 0

f (θjk|djk, σ2, vjk, Cj) , if zjk = 1

,

where

f(θjk|djk, σ2, vjk, Cj) =
1

2π|Σ̃jk|1/2
exp

{
−1

2
µ̃′jkΣ̃

−1
jk µ̃jk

}
,

µ̃jk = Σ̃jk

Σ−1
j

σ2
djk,

Σ̃jk =
(
Σ−1
j /σ2 + C−1

j /vjk
)−1

.

Derivation of f(θjk|djk, σ2, vjk, Cj) is also a standard result contained for example in

Lindley and Smith (1972) and was used in the wavelet shrinkage context by Barber

and Nason (2004).
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The full conditional distribution of vjk is proportional to

p(vjk|θjk, zjk, Cj) ∝
[
(1− zjk)δ0 + zjk

1√
2π|vjkCj|1/2

exp

{
− 1

2vjk
θ′jkC

−1
j θjk

}]
·

v
3/2−1
jk exp

{
−vjk

8

}
.

In case zjk = 0, this becomes

p(vjk|θjk, zjk = 0, Cj) ∝ v
3/2−1
jk exp

{
−vjk

8

}
= Ga(3/2, 8),

and when zjk = 1, it becomes

p(vjk|θjk, zjk = 1, Cj) ∝
1

vjk
exp

{
− 1

2vjk
θ′jkC

−1
j θjk

}
v

3/2−1
jk exp

{
−vjk

8

}
= v

1/2−1
jk exp

{
−1

2

(
1

4
vjk + θ′jkC

−1
j θjk

1

vjk

)}
= GIG

(
1/4, θ′jkC

−1
j θjk, 1/2

)
.

Here GIG(a, b, p) denotes the generalized inverse Gaussian distribution (Johnson

et al., 1994, p.284) with probability density function

f(x|a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−(ax+b/x)/2, x > 0; a, b > 0,

where Kp denotes the modified Bessel function of the third kind.

Finally, the full conditional distribution of Cj is given as

p(Cj|θj , zj ,vj) ∝
∏
k

[
(1− zjk)δ0 + zjk

1√
2π|vjkCj|1/2

exp

{
− 1

2vjk
θ′jkC

−1
j θjk

}]
·

|Cj|−(w+d+1)/2 exp

{
−1

2
tr
(
AjC

−1
j

)}
=

∏
k

[
(1− zjk)δ0 + zjk

1√
2π|vjkCj|1/2

·

exp

{
−1

2
tr

(
θjkθ

′
jk

vjk
C−1
j

)}]
|Cj|−(w+d+1)/2 exp

{
−1

2
tr
(
AjC

−1
j

)}
∝ |Cj|−(

∑
k zjk+w+d+1)/2 exp

{
−1

2
tr

([
Aj +

∑
k

zjk
θjkθ

′
jk

vjk

]
C−1
j

)}

= IW

(
Aj +

∑
k

zjk
θjkθ

′
jk

vjk
, w +

∑
k

zjk

)
,
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where IW denotes the inverse Wishart distribution.

Finally, we briefly present the results used for the Gibbs sampling algorithm (44)

of model (43). Some of the results are the same or similar to the ones presented

before, therefore, we will not discuss them in detail.

The full conditional distributions of σ2 and εj are the same as for model (24), and

they were explained before. The full conditional distribution of zjk can be derived

in the same way as it was done for model (24), but in the case of model (43) the

marginal distribution m becomes a normal distribution with pdf

m(djk|σ2, τ 2, λjk) =
1√

2π(σ2 + τ 2/λjk)
e−d

2
jk/2(σ2+τ2/λjk),

since we represented the Student’s t prior as scale mixture of normals. This is a

standard result for a marginal distribution arising from a model involving aN (θjk, σ
2)

likelihood and a N (0, τ 2/λjk) prior on θjk. See, for example Carlin and Louis (2000).

The full conditional distribution of θjk can be found by similar considerations as

before. In case zjk = 1, it becomes

f(θjk|djk, σ2, τ 2, λjk) =
1√

2πσ̃2
jk

e−(θjk−µ̃jk)2/2σ̃2
jk

where µ̃jk =
τ 2/λjk

σ2 + τ 2/λjk
djk,

and σ̃2
jk =

τ 2/λjk
σ2 + τ 2/λjk

σ2,

which is also a standard result for a posterior distribution arising from a N (θjk, σ
2)

likelihood and a N (0, τ 2/λjk) prior on θjk. See, for example Carlin and Louis (2000).
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The full conditional distribution of τ is

p(τ |θ, z,λ) ∝

[∏
j,k

{
(1− zjk)δ0 + zjk

1√
2πτ 2/λjk

exp

{
− 1

2τ 2/λjk
θ2
jk

}}]
·

(
τ 2
)−a2−1

e
− 1
τ2

1
b2

∝ τa2+
∑
j,k zjk/2−1 exp

{
−τ

(
1/2

∑
j,k

(
zjkθ

2
jkλjk

)
+ 1/b2

)}

= IG

a2 +
∑
j,k

zjk/2,

[
1/b2 + 1/2

∑
j,k

(
zjkθ

2
jkλjk

)]−1
 .

The full conditional distribution of λjk is proportional to

p(λjk|θjk, zjk, τ, v) ∝

[
(1− zjk)δ0 + zjk

1√
2πτ 2/λjk

exp

{
− 1

2τ 2/λjk
θ2
jk

}]
·

λ
v/2−1
jk exp

{
− λjk

2/v

}
.

In case zjk = 0, this becomes

p(λjk|θjk, zjk = 0, τ, v) ∝ λ
v/2−1
jk exp

{
− λjk

2/v

}
= Ga(v/2, 2/v),

and when zjk = 1, it becomes

p(λjk|θjk, zjk = 1, τ, v) ∝ λ
1/2
jk exp

{
− 1

2τ 2/λjk
θ2
jk

}
λ
v/2−1
jk exp

{
− λjk

2/v

}
= λ

(v+1)/2−1
jk exp

{
−λjk

(
v + θ2

jk/τ
2
)
/2
)

= Ga
(

(v + 1)/2,
[(
v + θ2

jk/τ
2
)
/2
]−1
)
.

To update parameter v we use a Metropolis step in the Gibbs sampling algo-

rithm, because the full conditional distribution of v is not available in an explicit

distributional form:

p(v|λ) ∝
∏
j,k

[
λ
v/2−1
jk exp

{
− λjk

2/v

}]
exp{−(v − 1)}I(v ≥ 1).
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In general, the Metropolis algorithm to update parameter v can be described as

follows (Robert, 1994). Given density p(v) known up to a normalizing factor and

a conditional density (proposal distribution) q(v|v′), the algorithm updates v(i−1) to

v(i) by

• Generate ξ ∼ q
(
ξ|v(i−1)

)
• Define r =

p(ξ)q(v(i−1)|ξ)
p(v(i−1))q(ξ|v(i−1))

• Take v(i) =


ξ, with probability min(1, r)

v(i−1), otherwise

.

Choosing the proposal distribution q as a left-truncated normal with truncation point

1 and scale parameter ψ, the algorithm in Step 7 of (44) easily follows.

A.2 Derivations for Chapter 4

In this part of the Appendix we present derivation of the marginal distributions

(63), shrinkage rules (64), (68), (70) and show that limx→∞ pj = 0. At the end we

briefly explain how to extend the results to the image denoising case and get marginal

distribution (73) and shrinkage rule (74).

Marginal distribution For the derivation of the marginal distribution (63) and

the posterior mean (64) we use Lemma A from Fourdrinier et al. (2000), which states

that ∫ ∞
0

λa
1

2

(x
λ

)(p−2)/4

e−(x+λ)/2I(p−2)/2(
√
λx)e−bλλ−cdλ =

e−x/2x(p−2)/2
Γ(1 + a− c)1F1

(
1 + a− c; p/2; x

2(2b+1)

)
(1 + 2b)1+a−c2p/2−1−a+cΓ(p/2)

. (98)
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Substituting p = 3, c = 0 and a = 0 into result (98) and multiplying with b we get∫ ∞
0

f(x|λ)be−bλdλ =

∫ ∞
0

1

2
e−(x+λ)/2

(x
λ

)1/4

I1/2(
√
λx)be−bλdλ

=

√
2

π

b

1 + 2b

√
xe−x/21F1

(
1; 3/2;

x

2(2b+ 1)

)
=

b√
1 + 2b

e−
bx

1+2bErf

[√
x

2 + 4b

]
. (99)

The last equality follows from the identity (http://functions.wolfram.com/07.

20.03.0051.01)

1F1 (1; 3/2; z) =
ez
√
π

2
√
z

Erf
[√
z
]
.

Using result (99) the marginal distribution becomes

m(x) =

∫ ∞
0

1

2
e−(x+λ)/2

(x
λ

)1/4

I1/2(
√
λx)

{
εjδ0(λ) + (1− εj)be−bλ

}
dλ

= εj

√
2

π
x1/2e−x/2 + (1− εj)

b√
1 + 2b

e−
bx

1+2bErf

[√
x

2 + 4b

]
= εjm0(x) + (1− εj)m1(x),

where m0(x) is the pdf of the central χ2
p distribution with p = 3. This is true because

the noncentral χ2
p(λ) distribution with λ = 0 reduces to a central χ2

p distribution,

which can be easily seen from the infinite sum representation of the noncentral chi-

square pdf:

χ2
p(x;λ) =

1

2

(x
λ

)(p−2)/4

e−(x+λ)/2I(p−2)/2(
√
λx) =

∞∑
i=0

e−λ/2(λ/2)i

i!
χ2
p+2i(x).
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Posterior mean To derive Bayes shrinkage rule (64), first substitute p = 3, c = 0

and a = 1 into (98) and then multiply with b. We get that∫ ∞
0

λf(x|λ)be−bλdλ =∫ ∞
0

λ
1

2
e−(x+λ)/2

(x
λ

)1/4

I1/2(
√
λx)be−bλdλ =

23/2

√
π

b

(1 + 2b)2

√
xe−x/21F1

(
2; 3/2;

x

2(2b+ 1)

)
=

be−x/2
(

2
√
x+ 2bx+ e

x
2+4b

√
2π(1 + 2b+ x)Erf

[√
x

2+4b

])
(1 + 2b)5/2

√
2π

, (100)

where last equality follows from the identity (http://functions.wolfram.com/07.

20.03.0069.01)

1F1 (2; 3/2; z) =
ez
√
π(2z + 1)Erf [

√
z] + 2

√
z

4
√
z

.

For the model in (62) the posterior mean can be derived as

δ(x) =

∫∞
0
λf(x|λ)

{
εjδ0 + (1− εj)be−bλ

}
dλ∫∞

0
f(x|λ) {εjδ0 + (1− εj)be−bλ} dλ

=
(1− εj)

∫∞
0
λf(x|λ)be−bλdλ

εjm0(x) + (1− εj)m1(x)

=

(
1− εjm0(x)

εjm0(x) + (1− εj)m1(x)

) ∫∞
0
λf(x|λ)be−bλdλ

m1(x)

= (1− pj) δE(x).

Here δE(x) is the posterior mean induced by an exponential prior on a noncentral

chi-square likelihood, which, by (99) and (100), can be expressed as

δE(x) =

∫∞
0
λf(x|λ)be−bλdλ∫∞

0
f(x|λ)be−bλdλ

=
be−x/2

(
2
√
x+ 2bx+ e

x
2+4b

√
2π(1 + 2b+ x)Erf

[√
x

2+4b

])
b√

1+2b
e−

bx
1+2bErf

[√
x

2+4b

]
(1 + 2b)5/2

√
2π

=

1 + 2b+ x+
√

2x(1+2b)
π

e−
x

2+4b

/
Erf
[√

x
2+4b

]
(1 + 2b)2

.
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Therefore, shrinkage rule (64) becomes

δ(x) = (1− pj)
1 + 2b+ x+

√
2x(1+2b)

π
e−

x
2+4b

/
Erf
[√

x
2+4b

]
(1 + 2b)2

,

where

pj = εj
m0(x)

m(x)
.

Posterior median Since the posterior distribution is absolutely continuous, the

median is the solution u to equation

ϕ(u) =

∫ u

0

f(λ|x)dλ =

∫ u

0

f(x|λ)
{
εjδ0(λ) + (1− εj)be−bλ

}
m(x)

dλ =
1

2
.

Using identities (http://functions.wolfram.com/03.02.03.0004.01) and (http:

//functions.wolfram.com/01.03.21.0266.01) it follows that

I1/2(z) =
ez − e−z√

2πz
,

and

∫
edz+cz

2

dz =

√
πe−

d2

4c Erfi
[
d+2cz
2
√
c

]
2
√
c

.

By a change of variable y =
√
λ and the fact that Erfi[z] = −iErf[iz] = iErf[−iz], we

get ∫ u

0

e−λ/2
(x
λ

)1/4

I1/2(
√
λx)e−bλdλ =

1√
2π

{∫ u

0

λ−1/2e−λ(b+1/2)+
√
λ
√
xdλ−

∫ u

0

λ−1/2e−λ(b+1/2)−
√
λ
√
xdλ

}
=

√
2√
π

{∫ √u
0

e−y
2(b+1/2)+y

√
xdy −

∫ √u
0

e−y
2(b+1/2)−y

√
xdy

}
=

1√
b+ 1/2

e
x

2+4b

{
Erf

[
−
√
x− (1 + 2b)

√
u√

2 + 4b

]
− Erf

[√
x− (1 + 2b)

√
u√

2 + 4b

]
+

2Erf

[ √
x√

2 + 4b

]}
.
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Using the above result, the integral ϕ(u) becomes

ϕ(u) =

1

m(x)

∫ u

0

1

2
e−(x+λ)/2

(x
λ

)1/4

I1/2(
√
λx)

{
εjδ0(λ) + (1− εj)be−bλ

}
dλ =

1

m(x)

(
εj

√
2

π
x1/2e−x/2 + (1− εj)

b√
1 + 2b

e−
bx

1+2b

{
Erf

[√
x

2 + 4b

]
+

1

2
Erf

[
(1 + 2b)

√
u−
√
x√

2 + 4b

]
− 1

2
Erf

[
(1 + 2b)

√
u+
√
x√

2 + 4b

]})
.

Because ϕ(0) = pj, the algorithm to find the posterior median becomes

δM(x) = u 1

(
pj <

1

2

)
,

where u is the solution of the equation

1− (1− εj)
1

m(x)

b√
1 + 2b

e−
bx

1+2b

(
Erf

[
(1 + 2b)

√
u+
√
x√

2 + 4b

]
−

Erf

[
(1 + 2b)

√
u−
√
x√

2 + 4b

])
= 0,

in case pj <
1
2
.

Bayes factor Testing the hypothesis H0 : λ = 0, versus H1 : λ 6= 0 in the Bayesian

framework is possible with the Bayes factor procedure, which results in a thresholding

rule. In general, the Bayes factor procedure with a prior that has a point mass

component (Vidakovic, 1998a) is

λ̂ = x 1

(
P (H0|x) <

1

2

)
,

where

P (H0|x) =

(
1 +

1− εj
εj

1

B

)−1

is the posterior probability of the H0 hypothesis and

B =
m0(x)

m1(x)
.
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Therefore, the Bayes factor procedure becomes

δBF (x) = x 1

(
pj <

1

2

)
,

where

pj = εj
m0(x)

m(x)
.

Limit of pj Lastly, we show that limx→∞ pj = 0. Assume 0 < εj < 1. Since

pj =
εjm0(x)

εjm0(x) + (1− εj)m1(x)
,

it follows that

1

pj
= 1 +

1− εj
εj

m1(x)

m0(x)
.

Now, for b > 0

m1(x)

m0(x)
=

be−
bx

1+2bErf
[√

x
2+4b

]
√

1 + 2b
√

2
π
x1/2e−x/2

= K Erf

[√
x

2 + 4b

]
x−1/2e

x
2(1+2b) ,

where K is a constant. Since Erf is a bounded function,

lim
x→∞

m1(x)

m0(x)
=∞,

therefore

lim
x→∞

pj = 0.

Extension to image denoising To derive marginal distribution (73) substitute

p = 5, c = 0 and a = 0 into result (98) and multiply with b. We get that∫ ∞
0

f(x|λ)be−bλdλ =

∫ ∞
0

1

2
e−(x+λ)/2

(x
λ

)3/4

I3/2(
√
λx)be−bλdλ

=

{
b
√

1 + 2be−
bx

1+2bErf

[√
x

2 + 4b

]
− b
√

2x/πe−x/2
}
.

(101)
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Above we used the identity (http://functions.wolfram.com/07.20.03.0053.01)

1F1 (1; 5/2; z) =
3ez
√
πErf [

√
z]

4z3/2
− 3

2z
.

Using result (101) the marginal distribution becomes

m(x) =

∫ ∞
0

1

2
e−(x+λ)/2

(x
λ

)3/4

I3/2(
√
λx)

{
εjδ0(λ) + (1− εj)be−bλ

}
dλ

= εj
1

Γ(5/2)25/2
x3/2e−x/2 +

(1− εj)
{
b
√

1 + 2be−
bx

1+2bErf

[√
x

2 + 4b

]
− b
√

2x/πe−x/2
}

= εjm0(x) + (1− εj)m1(x),

where m0(x) is the pdf of the central χ2
p distribution with p = 5, and m1(x) is result

(101).

To derive the posterior mean in (74), substitute p = 5, c = 0 and a = 1 into (98)

and then multiply with b. We get that∫ ∞
0

λf(x|λ)be−bλdλ =∫ ∞
0

λ
1

2
e−(x+λ)/2

(x
λ

)3/4

I3/2(
√
λx)be−bλdλ =

b

(1 + 2b)3/2

(
e−x/2

√
2x√
π

√
1 + 2b+ e−

bx
1+2b (x− 1− 2b)Erf

[√
x

2 + 4b

])
,

(102)

where we used the identity (http://functions.wolfram.com/07.20.03.0070.01)

1F1 (2; 5/2; z) =
3ez
√
π(2z − 1)Erf [

√
z] + 6

√
z

8z3/2
.

Similarly as before, using results (101) and (102) we get that

δE(x) =

√
2x(1+2b)

π
e−

x
2+4b + (x− 1− 2b)Erf

[√
x

2+4b

]
−(1 + 2b)3/2

√
2x/πe−

x
2+4b + (1 + 2b)2Erf

[√
x

2+4b

] ,
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from which the posterior mean in (74) simply follows as before:

δ(x) = (1− pj)

√
2x(1+2b)

π
e−

x
2+4b + (x− 1− 2b)Erf

[√
x

2+4b

]
−(1 + 2b)3/2

√
2x/πe−

x
2+4b + (1 + 2b)2Erf

[√
x

2+4b

] ,
where

pj = εj
m0(x)

m(x)
.

A.3 Derivations for Chapter 5

Some of the following results are equivalent to the results of Section A.1 of the Ap-

pendix, since the model in Chapter 5 builds on the model of Chapter 2. However, for

completeness, we present all the results here. First we provide derivation of results

(84) and (85). The joint distribution f(d?, θ|σ2) using prior p1(θ|τ) is

f(d?, θ|σ2, τ) = f(d?|θ, σ2)p1(θ|τ) =
1√

2πσ2
e−

(d?−θ)2

2σ2
τ

2
e−τ |θ|

=
τ

2
√

2πσ2
e−

1
2σ2
{θ2−2θ(−sign(θ)σ2τ+d?)+d?2}

=
τ

2
√

2πσ2
e−

1
2σ2
{θ−(d?−sign(θ)σ2τ)2} − e−

1
2σ2
{−(d?−sign(θ)σ2τ)2+d?2}

=
τe

σ2τ2

2 e−sign(θ)d?τ

2
√

2πσ2
e−

1
2σ2
{θ−(d?−sign(θ)σ2τ)}2

=



τe
σ2τ2

2 e−d
?τ

2
√

2πσ2
e−

1
2σ2

[θ−(d?−σ2τ)]2 , θ ≥ 0

τe
σ2τ2

2 ed
?τ

2
√

2πσ2
e−

1
2σ2

[θ−(d?+σ2τ)]2 , θ < 0

.

The marginal distribution becomes

m(d?|σ2, τ) =

∫ ∞
−∞

f(d?, θ|σ2, τ)dθ

=
τ

2
e
σ2τ2

2

{
ed
?τ

∫ 0

−∞

1√
2πσ2

e−
1

2σ2
[θ−(d?+σ2τ)]2dθ +

e−d
?τ

∫ ∞
0

1√
2πσ2

e−
1

2σ2
[θ−(d?−σ2τ)]2dθ

}
=

τ

2
e
σ2τ2

2

{
ed
?τΦ

(
−d? − σ2τ

σ

)
+ e−d

?τΦ

(
d? − σ2τ

σ

)}
.
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Combining the two equations above, we get the posterior as

h(θ|d?, σ2, τ) =
f(d?, θ|σ2, τ)

m(d?|σ2, τ)
=

e−d
?τ

e−d?τΦ
(
d?

σ
− τσ

)
+ ed?τΦ

(
−d?

σ
− τσ

) 1√
2πσ2

e−
1

2σ2
[θ−(d?−σ2τ)]2 , θ ≥ 0

ed
?τ

e−d?τΦ
(
d?

σ
− τσ

)
+ ed?τΦ

(
−d?

σ
− τσ

) 1√
2πσ2

e−
1

2σ2
[θ−(d?+σ2τ)]2 , θ < 0

.

These results were also derived by Pericchi and Smith (1992) and used by Johnstone

and Silverman (2005b).

Now we derive the results used for the Gibbs sampling algorithm of model (83). To

derive the full conditional distribution for a parameter of interest we look at the joint

distribution of all the parameters and collect the terms which contain the desired

parameter. Let us denote d = {djk : j = J0, . . . , log2(n) − 1, k = 0, . . . , 2j − 1},

β = {βi : i = 1, . . . , p}, θ = {θjk : j = J0, . . . , log2(n) − 1, k = 0, . . . , 2j − 1},

γ = {γi : i = 1, . . . , p}, z = {zjk : j = J0, . . . , log2(n) − 1, k = 0, . . . , 2j − 1},

ε = {εj : j = J0, . . . , log2(n) − 1} and v = {vi : i = 1, . . . , p}. The joint distribution

of the data and parameters for model in (83) becomes

f(d,β,θ,γ, z, q, ε,v, σ2, τθ, η
2) =

[∏
j,k

1√
2πσ2

e−
1

2σ2
(djk−(Uγβγ)jk−θjk)2

]
·

1

Γ(a1)b1
a1

(σ2)−a1−1e
− 1
σ2

1
b1

[∏
i

{
(1− γi)δ0 + γi

1√
2πviη2

e
− 1

2viη
2 β

2
i

}]
·[∏

j,k

{
(1− zjk)δ0 + zjk

τθ
2
e−τθ|θjk|

}][∏
i

qγi(1− q)(1−γi)

]
·[∏

j,k

ε
zjk
j (1− εj)(1−zjk)

]
1{0 ≤ q ≤ 1}

[∏
j

1{0 ≤ εj ≤ 1}

][∏
i

e−vi

]
·

1

Γ(a2)b2
a2

(η2)−a2−1e
− 1
η2

1
b2

1

Γ(a3)b3
a3
τa3−1
θ e−τθ/b3 .
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The full conditional distribution of parameters βi and γi simply follows from Yuan

and Lin (2004) with using Z = d−Uγ[−i],γi=0βγ[−i],γi=0 − θ.

The full conditional distribution of vi is

p(vi|βi, γi, η2) ∝

{
(1− γi)δ0 + γi

1√
2πviη2

e
− 1

2viη
2 β

2
i

}
e−vi

=


Exp(1), if γi = 0

GIG (2, β2
i /η

2, 1/2) , if γi = 1

,

where GIG(a, b, p) denotes the generalized inverse Gaussian distribution (Johnson

et al., 1994, p.284) with probability density function

f(x|a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1e−(ax+b/x)/2, x > 0; a, b > 0,

where Kp denotes the modified Bessel function of the third kind.

The full conditional distribution of η2 is

p(η2|β,γ,v) ∝

[∏
i

{
(1− γi)δ0 + γi

1√
2πviη2

e
− 1

2viη
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2
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}]
·
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− 1
η2

1
b2

∝ (η2)−a2−1/2
∑
i γi−1 exp
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− 1
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i
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γiβ

2
i /vi
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= IG
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∑
i

γi,

[
1/b2 + 1/2
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i

(
γiβ

2
i /vi

)]−1
 .

The full conditional distribution of q can be derived as

p(q|γ) =

[∏
i

qγi(1− q)(1−γi)

]
1{0 ≤ q ≤ 1}

∝ q
∑
i γi(1− q)p−

∑
i γi1{0 ≤ q ≤ 1}

= Be

(
1 +

∑
i

γi, 1 +
∑
i

(1− γi)

)
.
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The full conditional distribution of σ2 is

p(σ2|β,θ,γ,d) ∝ (σ2)−n/2e−
1

2σ2

∑
j,k(djk−(Uγβγ)jk−θjk)2(σ2)−a1−1e

− 1
σ2

1
b1 =

(σ2)−a1−n/2−1 exp

{
− 1
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(
1/b1 + 1/2
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a1 + n/2,

[
1/b1 + 1/2
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(djk − (Uγβγ)jk − θjk)2

]−1
 .

In the following, we denote d?jk = djk − (Uγβγ)jk. The conditional distribution of zjk

remains Bernoulli with posterior probability derived by

P (zjk = 1|d?jk, σ2, τ, εj) =
P (zjk = 1|εj)f(d?jk|σ2, τ, zjk = 1)∑

i∈{0,1} P (zjk = i|εj)f(d?jk|σ2, τ, zjk = i)
=

P (zjk = 1|εj)
∫∞
−∞ f(d?jk|θjk, σ2)p(θjk|τ, zjk = 1)dθjk∑

i∈{0,1} P (zjk = i|εj)
∫∞
−∞ f(d?jk|θjk, σ2)p(θjk|τ, zjk = i)dθjk

=

εjm
(
d?jk|σ2, τ

)
(1− εj) f

(
d?jk|0, σ2

)
+ εjm

(
d?jk|σ2, τ

) .

Here p(θjk|τ, zjk = i), i ∈ {0, 1} denote the two parts of the mixture prior in model

(83), depending on the value of latent variable zjk. Similar result for the full condi-

tional of γi was used by Yuan and Lin (2005).

The full conditional distribution of εj is

p(εj|z) ∝

[∏
k

ε
zjk
j (1− εj)(1−zjk)

]
1{0 ≤ εj ≤ 1}

= ε
∑
k zjk

j (1− εj)
∑
k(1−zjk)

= Be

(
1 +

∑
k
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∑
k

(1− zjk)

)
.
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Similarly, the full conditional distribution of θjk is

p(θjk|djk,β,γ, zjk, σ2, τθ) ∝ exp

{
− 1

2σ2
(djk − (Uγβγ)jk − θjk)2

}
·{

(1− zjk)δ0 + zjk
τθ
2
e−τθ|θjk|

}

=


δ0(θjk), if zjk = 0

h(θjk|d?jk, σ2, τθ), if zjk = 1

,

where the distribution h(θjk|d?jk, σ2, τθ) comes from the result in (85) and was derived

above.

Finally, the full conditional distribution of τθ is

p(τθ|θ, z) ∝
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Indian Journal of Statistics, Series B 63 (2001) 234–249.

E.O. Voit, J. Almeida, S. Marino, R. Lall, G. Goel, A.R. Neves, H. Santos, Regulation
of glycolysis in Lactococcus lactis: an unfinished systems biological case study, IEE
Proceedings - Systems Biology 153 (2006) 286–298.

G.G. Walter, X. Shen, Wavelets and other orthogonal systems, Studies in advanced
mathematics, Chapman & Hall/CRC, Boca Raton, Second edition, 2001.

X. Wang, S. Ray, B.K. Mallick, Bayesian curve classification using wavelets, Journal
of the American Statistical Association 102 (2007) 962–973.

160



X. Wang, A.T.A. Wood, Empirical Bayes block shrinkage of wavelet coefficients via
the noncentral χ2 distribution, Biometrika 93 (2006) 705–722.

X. Wang, A.T.A. Wood, Wavelet estimation of an unknown function observed with
correlated noise, Communications in Statistics - Simulation and Computation 39
(2010) 287–304.

M. Yuan, Y. Lin, Efficient empirical Bayes variable selection and estimation in linear
models, Technical Report 1092, Department of Statistics, University of Wisconsin,
Madison, http://www.stat.wisc.edu/public/ftp/yilin/tr1092.pdf, 2004.

M. Yuan, Y. Lin, Efficient empirical Bayes variable selection and estimation in linear
models, Journal of the American Statistical Association 100 (2005) 1215–1225.

C.H. Zhang, General empirical Bayes wavelet methods and exactly adaptive minimax
estimation, Annals of Statistics 33 (2005) 54–100.

161



VITA
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