Constructive Adaptive Visual Analogy

A Thesis
Presented to
The Academic Faculty

by

Jim Davies

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

College of Computing
Georgia Institute of Technology
June 2004

Constructive Adaptive Visual Analogy

Approved by:

Professor Ashok K. Goel, Committee Professor Hari Narayanan
Chair (Auburn University)
Professor Nancy J. Nersessian, Adviser Professor Richard Catrambone

Professor Ronald W. Ferguson

Date Approved: July 30, 2004

ACKNOWLEDGEMENTS

All of the friends I’ve had since I've worked on this dissertation have given me great support.
There are too many to name individually, but I thank you all. However some folks in
particular have helped me enormously and in particularly tangible ways: my committee
members Ron Ferguson and Hari Narayanan, my parents, James and Janet Davies, for
their love and support, Jennifer Rivlin Roberts, for being a great statistician and friend,
David Craig for the use of his data, Richard Catrambone, for help with the experiment, my
psychology advisor Dorrit O. Billman, and Patrick Yaner. Most of all I would like to thank
my advisors and mentors Ashok K. Goel and Nancy J. Nersessian. Through conversations
over the years they have presented me with a great deal of their wisdom. I will be forever

grateful for the little bit that has stuck.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS s iii
LIST OF TABLES e e viii
LIST OF FIGURES e e ix
SUMMARY e xii
CHAPTER I INTRODUCTION 1
1.1 Computer Implementation: Galatea 3
1.1.1 Knowledge and Representation 5)

1.1.2 Inference and Processing 11

1.1.3 Algorithm 12

1.1.4 The Fortress/Tumor Problem 14

1.2 Cognitive Modelling 17
1.2.1 The Galatea Model of L14o, 18

1.2.2 The Galatea Model of L22 23

1.2.3 What the Implementation Shows 25

1.3 Psychologial Experimentation 26
1.3.1 Method 28

1.3.2 Results 31

1.3.3 Experimental Conclusions 33

1.4 Conclusion 34
CHAPTER II COMPUTER IMPLEMENTATION: GALATEA 37
2.1 Knowledge and Representation. 38
2.1.1 Knowledge Architecture 38

2.1.2 Transformations Lo 40

2.1.3 Primitive Visual Elements 48

2.1.4 Miscellaneous Slot Values 51

2.1.5 Primitive Visual Relations 52

2.1.6 Analogy Representations 53

2.2 Inference and Processing oo 53

v

2.3 Algorithm 54
2.3.1 Adapt-arguments 65
2.3.2 Carry-over-unchanged-relationships 66
2.3.3 Creation-of-horizontal-maps-between-changed-components 67
2.3.4 Creation-of-vertical-maps-between-changed-components 69

2.4 The Fortress/Tumor Problem 70

2.5 The Cake/Pizza Problem 71

2.6 The Maxwell Example 73

2.7 SUMMATY o oL e 79

CHAPTER III COGNITIVE MODELLING: PART ONE 81

3.1 The Galatea Model of L14 o 81

3.2 The Galatea Model of L22 91

3.3 The Galatea Model of L15 94

3.4 The Galatea Model of L16 95

3.5 What the Implementation Shows 96

CHAPTER IV COGNITIVE MODELLING: PART TWO 98

4.1 Complex Elements. 98

4.2 Modelled Participants 99
4.2.1 Participant L1 (condition 3) 99
4.2.2 Participant L2 (condition 3) 101
4.2.3 Participant L11 (condition 1) 104
4.2.4 Participant L12 (condition 1) 106
4.2.5 Participant L13 (condition 1) 108
4.2.6 Participant L19 (condition 2) 109
4.2.7 Participant L20 (condition 2) 112
4.2.8 Participant L21 (condition 2) oL 113
4.2.9 Participant L24 (condition 2) 115
4.2.10 Participant L27 (condition 4) oL 117
4.2.11 Participant L28 (condition 4) 119

4.3 Differences 121

4.3.1 Added Objects. 121

4.3.2 Center. e 123
4.3.3 Doors Open, Walls Remain. 124
4.3.4 Dotted Object. 124
4.3.5 Double Line To Line. 125
4.3.6 Explicit Simulation. 125
4.3.7 Line To Double Line. 126
4.3.8 Long Vestibule. o 126
4.3.9 Mechanism Added. 127
4.3.10 Multiple Doors. L o 127
4.3.11 No Vestibule/Doors Distinction. 128
4.3.12 Numeric Dimensions Added. 128
4.3.13 Point Of View Change. 129
4.3.14 Rectangle To Line: Door. 129
4.3.15 Rotation. 130
4.3.16 Sliding Doors. oo 131
4.3.17 Zoom. e 131

4.4 TheInfluences L 132
4.4.1 Aesthetic Concerns 132
4.4.2 Demand Characteristics, 132
4.4.3 Differences in Input Structure 133
4.4.4 Engineering Bias L oo oo 134
4.4.5 Lazy Drawing e 134
4.4.6 Prior Knowledge o . 135
4.4.7 Simulative Concerns oo 135

4.5 Summary Of Models 136
CHAPTER V PSYCHOLOGIAL EXPERIMENTATION 138
51 Method 139
5.1.1 Participants. L 139
5.1.2 Design.o 139
5.1.3 Procedure. 142

vi

5.1.4 Analysis and Scoring. 142
52 Results e 143

5.3 Experimental Conclusions 145

CHAPTER VI FURTHER THEORY: VISUAL RE-REPRESENTATION 147

6.1 Resolving Ontological Mismatches 148
6.1.1 Retrieval and Mapping. o oo 149

6.1.2 Transfer and Adaptation. 151

6.1.3 Solution Evaluation. 152

6.1.4 Solution Storage.o 153

6.2 Inference and Control 153
CHAPTER VII RELATED WORK 164
7.1 Other Visual Analogy Systems 164

7.2 Other Analogical Problem Solving Systems 167

7.3 Other Analogy Systems and Theories 168

7.4 Diagrammatic Reasoning Work 171

7.5 Summary of Related Worko oo 173
CHAPTER VIICONCLUSION e 177
81 Clalms o e 177

8.2 Future Work L 179
REFERENCES e 183

vii

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20

LIST OF TABLES

Covlan’s transformations. oo
Covlan’s primitive elements.
Classifications of Miscellaneous Slot Values
Primitive visual relations. L L
Primitive elements from fortress problem s-image 1.
Experimental results by group. L.
Experimental results by condition.00
Covlan’s transformations. oo
Covlan’s primitive elements.
Classifications of Miscellaneous Slot Values.
Visual and Motion Relations. oL,
Primitive elements from fortress problem s-image 1.
Differences accounted for in Galatea’s participant modelling.
Suggested complex elements based on an analysis of the Craig data.

Differences observed in each of the participants.
Differences accounted for in pen-and-paper models.
Experimental results by group. Lo
Experimental results by condition. oo
Knowledge states, entities, and manipulations.

Comparison of analogy systems.

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Figure 26

Figure 27

LIST OF FIGURES

Galatea’s input and output in the abstract.
The relationships add-component adds.
The tumor problem’s third generated s-image.
Connection Relationships.
Connection angles and directions.
Fortress/tumor input and output.
Condition 1: Plan view of lab, with the vestibule centered.
First s-image for L14’s base.
The source data for L14. o
The implementation of L14.,
Condition 2: Plan view of lab, with no walls.
Implementation of L22.
L22 source data. L
The experimental fortress story diagram.
The experimental diagram of the tumor problem..
Galatea’s input and output in the abstract.
The relationships add-element adds.
The tumor problem’s third generated s-image.
Connection Relationships.
Connection angles and directions.
Fortress/Tumor input and output.
The cake/pizza example.
Many vortices packed together.
Cross-section of the vortices.,
Maxwell’s drawing of the wheels in the vortices ([51] p.489).

The analysis of how Maxwell transferred the idea of the dynamically smooth
connectors from the gear system model to the vortex idle wheel model
through the use of a generic abstraction.

The Maxwell Example Implemented in Galatea

X

10
11
13
18
19
19
19
23
24
24
29
30
38
41
50
51
52
56
73
74
75
75

Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58

Condition 1: Plan view of lab, with the vestibule centered. 82

First s-image for L14’s base. 83
The source data for L14. L L 83
The implementation of L14. 83
Condition 2: Plan view of lab, with nowalls. 92
Implementation of L22., 92
L22 source data. 92
The data for L15. o Lo 94
The model of L15. 95
The drawing produced by participant L16. 95
The implementation of L16 96
The drawing produced by participant L1. 100
The model of the implementation of L1. 100
Condition 3: Plan view of lab, with the vestibule on the side. 102
The drawing produced by participant L2. 102
Model of L2. o 103
The drawing produced by participant L11. 105
Condition 1: plan view with the vestibule centered. 105
The Galatea model of L11. 105
The drawing produced by participant L12. 107
The Galatea model of L12. 107
The drawing produced by participant L13. 108
The model of L13. o 109
Condition 2. L 110
The drawing produced by L19. L. 110
The model of L19. 111
The drawing produced by participant L20. 113
The model of L20. 113
The drawing produced by participant L21. 114
The model of L21. 114
The drawing produced by participant L24. 116

Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68

Figure 69
Figure 70
Figure 71
Figure 72
Figure 73

The model of L24. e 117

Condition 4: elevation view with no walls aside from the vestibule’s walls. 118

The drawing produced by participant L27. 118
The model of L27. 119
The drawing produced by participant L28. 120
The model of L28. 120
The experimental fortress story diagram. 140
The experimental diagram of the tumor problem.. 142
The role of visual reasoning in analogical problem solving. 149

a target analog problem and how it relates to the potential analogs in the

CASE METNOTY. . . .« v v v v v e e e e e e e e e e e e e e e e 150
Algorithmic start. 153
Algorithm middle. Lo 154
Second algorithm middle. oo 155
Final algorithm Figure. 155
Flow diagram demonstrating control in visual re-representation theory. . 156

x1

SUMMARY

Visual knowledge appears to be an important part of problem solving, but the role
of visual knowledge in analogical problem solving is still somewhat mysterious. In this
work I present the Constructive Adaptive Visual Analogy theory, which claims that visual
knowledge is helpful for solving problems analogically and suggests a mechanism for how it
might be accomplished.

Through evaluations using an implemented computer program, cognitive models of some
of the visual aspects of experimental participants, and a psychological experiment, I support
four claims:

First, visual knowledge alone is sufficient for transfer of some problem solving procedures.
Second, visual knowledge facilitates transfer even when non-visual knowledge might be
available. Third, the successful transfer of strongly-ordered procedures in which new objects
are created requires the reasoner to generate intermediate knowledge states and mappings
between the intermediate knowledge states of the source and target analogs. And finally,

that visual knowledge alone is insufficient for evaluation of the results of transfer.

xii

CHAPTER I

INTRODUCTION

One important way people solve problems is through analogical reasoning. Analogical
problem solving is taking a solution from a source analog and applying some version of that
solution to a target analog. Problem solving implies that some number of steps need to
be carried out to reach a solution. Procedures with the following two properties I will call
“strongly-ordered procedures:” 1) two or more steps are involved and 2) some steps cannot
be executed before some other steps have already been executed. The first hypothesis of
this work is that transfer of strongly-ordered procedures is computationally complex. This
is true even when the reasoner already has the correct analogical mapping.

Some domains are rife with visual knowledge (e.g. libraries of computer-aided design
files, photograph databases, diagrams, graphs). Scientists have found that analogical prob-
lem solving can occur with non-visual knowledge, but can analogical problem solving occur
with visual knowledge as well? This work describes Constructive Adaptive Visual Analogy,
the second hypothesis of which is that visual knowledge alone is sufficient for transfer of
some problem solving procedures in some domains.

Some domains are inherently non-visual, but might be visually represented all the same.
For example, effectively connecting a battery to some wires might be represented, among
other ways, functionally (the battery needs to be physically touching the metal of the wire to
conduct electricity) or visually (the image of the wire is adjacent to the image of the battery.)
Even though other kinds of knowledge and representations might be used to reason about
these domains, human beings appear to experience visual imagery when reasoning about
them. Experimental evidence indicates that visual knowledge often plays an important
role in human problem solving [68, 21, 7, 53]. There is also documentary evidence for
visual reasoning in scientific problem solving (e.g. [55, 56]). Further, psychological evidence

suggests that analogical problem solving is facilitated by animations [63], diagrams [4] as

well as visually evocative phrases in stimuli [33]. Why might this be? The third hypothesis
of this work is that visual knowledge facilitates transfer even when non-visual knowledge
might be available.

Following is a summary of my hypotheses:

1. Transfer of strongly-ordered procedures is computationally complex, even

given the correct mapping.

2. Visual knowledge alone is sufficient for transfer of problem solving proce-

dures in some domains.

3. Visual knowledge facilitates transfer even when non-visual knowledge might

be available.

I use the term “visual knowledge” to mean any representation that encodes visual in-
formation. Visual information consists of the visual properties of something (i.e. the
information that humans can extract by inspection from an image or the world by directing
visual attention to it [9]), and visual knowledge is visual information encoded for use by a
reasoner with some representation language. Specifically, this dissertation deals with the
following kinds of visual information: shapes, their sizes, locations, motions, and spatial
relationships between shapes (e.g. connections, overlaps).

The level of visual abstraction is a core issue in visual and diagrammatic reasoning.
This work will use symbolic descriptive representations, which are structured descriptions
of visual information. This is differentiated from depictive representations, or bitmaps. A
depictive representation “specifies the locations and values of points in space” [47]. There
is widespread agreement that visual reasoning, particularly in problem solving and analogy,
is a symbolic process. Not surprisingly, all previous computational visual analogy programs
also use symbols to represent visual information. The distinction is not simply between
depictive and descriptive, however. There is a spectrum of complexity from dots to complex
aggregations of shapes, on which every visual representation language must place itself.
For this work I have chosen a level of abstraction higher than bits, but primitive enough

such that the same primitives (both shapes and operations) could be re-used in multiple

examples. This acknowledges a trade-off: higher level symbols contain more information but
lose similarity and transfer with other represented examples. A core assumption of this work
is that this is a productive level of representation for transfer of problem-solving procedures.
This level is similar to that used in other visual reasoning theories. [70, 52, 24, 11, 36]

In this chapter I will review the three main sources of supporting evidence for these
hypotheses. First I will describe Galatea, the computer implementation that successfully
transfers strongly-ordered procedures using only visual knowledge.

Next I will discuss four models, created with Galatea, of visual aspects of transfer as
displayed by participants in a psychological experiment run by Dr. David Craig.

Finally I will describe a psychological experiment.

1.1 Computer Implementation: Galatea

Galatea is a computer implementation that successfully transfers strongly-ordered proce-
dures using only visual knowledge. It provides an existence proof for the hypothesis that
visual knowledge alone is sufficient for transfer of problem solving procedures in some do-
mains, and that visual knowledge alone facilitates transfer even when non-visual knowledge
might be available.

Galatea succesfully works with four problems. 1) four versions of the lab/weed-trimmer
problem (described in the next section) 2) the fortress/tumor problem (described in this sec-
tion), 3) the cake/pizza problem and 4) the Maxwell example (described in later chapters).
I will describe the architecture of Galatea now, along with the fortress/tumor example. In
later chapters I will describe the other models.

I will use Gick and Holyoak’s fortress/tumor problem [33, 15] as a running example
throughout this section. In this example experimental participants read a story about a
general who must overthrow a dictator in a fortress. His army is poised to attack along
one of many roads leading to the fortress when the general finds that the roads are mined
such that large groups passing will set them off. To solve the problem, the general breaks
the army into smaller groups, which take different roads simultaneously, arriving together

at the fortress. Participants are then given a tumor problem, in which a tumor must be

destroyed with a ray of radiation, but the ray will destroy healthy tissue on the way in,
killing the patient. The analogous solution is to have several weaker rays simultaneously
converging on the tumor [33, 15].

A procedure for solving a problem can be represented as a series of knowledge states
and transformations between them. A knowledge state characterizes the steps in the pro-
cedure by specifying information about the elements in the state and relationships between
them. A transformation takes in a knowledge state, changes its configuration in some way,
and produces the next knowledge state in the sequence. Two successive knowledge states
are connected by a single transformation. The first knowledge state represents the initial
description of the problem. The final knowledge state represents the state in which the
problem is solved.

In the first knowledge state of the fortress/tumor problem, the large army takes a single
road to the fortress.Starting from the first knowledge state in the fortress story, the first
transformation is to break the army up into smaller groups. This leads to the second
knowledge state containing those smaller armies. The second transformation is to move the

armies to distinct roads, and so on.

Source

< Source Simage 1 > Source Simage 2 Q®O®O® — ((sourceSimagen

Target Simage 2

Target Output by reasoner

000 -

Target Simage 1 Target Simage n

Figure 1: This Figure illustrates Galatea’s input and output in the abstract. The knowl-
edge states (s-images) in the source case are depicted as ovals along the top of the Figure.
The knowledge states are visually represented as s-images. Transformations between the
states in the Figure are depicted as arrows. The target problem is depicted as the leftmost
bottom oval. All things in the gray box are output by Galatea.

Since the knowledge states for this model contain only visual knowledge represented

symbolically, I call the states symbolic images or s-images. Figure 1 illustrates Galatea’s

Table 1: Covlan’s transformations.

Transformations
Transformation name ‘ arguments

add-element | object-type, location (optional)

add-connections | connection/connection-set

decompose | object, number-of-resultants, type

move-to-location | object, new-location
move-to-set | object, object2
put-between | object, object2, object3
replicate | object, number-of-resultants

input and output in the abstract. Galatea takes as input a source analog, an initial target
problem s-image, and an analogical mapping between the initial s-images of the source and
target. The source is a complete sequence of s-images and transformations representing the
procedure that solves the source problem. Galatea transfers the visual transformations
one at a time from the source to the target, creating new target s-images along the way,

with new analogical mappings between the corresponding target and source s-images.
1.1.1 Knowledge and Representation

It is important that the analogs are represented with a consistent symbolic visual represen-
tation language. This fact is more important than the actual ontology of the language used.
Covlan (Cognitive Visual Language)[12] provides an ontology of visual primitives. Table 1

shows Covlan’s ontology of transformations.

Add-element adds a new primitive element in the next s-image. The first argument,
object-type, must be one of the members of the primitive elements (e.g. square or
circle, described below). It determines what kind of shape appears in the next s-image.
The second argument is location, which must be one of Covlan’s locations: bottom,
top, right, left, or center. What this means is that the next s-image will have three
relationships added. All of Galatea’s memory is in propositional form. A relationship

connects two ideas with a relation. See Figure 2. 1) The s-image connected with a

has-component relation to the name identifying the new component, 2) the new com-
ponent’s name with a looks-like relation to the object-type, and 3) the component’s

name with a has-location relation to the location input as an argument.

SIMAGE-2

t

v

CIRCLE = lookslike NEW-OBJECT-412 >~ ToP

Figure 2: A graphical representation of the three relationships added by the
add-component transformation. Relations are boxed. Objects at the beginning of ar-
rows are the in the ThingX slot; the objects at the end of the arrows are in the ThingY
slot.

Add-connections is a transformation that inserts a set of connections into the next
s-image. The input is the name of the set of connections in the source. To determine the
nature of the connections in the target, Galatea uses substitution for all the symbols to find
the analogous names, so that analogous connections are placed in the next target s-image.

Decompose takes a primitive element and replaces it in the next s-image with some n
number of elements. It also reduces the thickness for each of those elements.

Move-to-location changes the location of a primitive element from one location to
another. This means that in the next s-image, the old has-location relation is removed
and a new has-location relation is added, relating the element to the input location,
which can be an absolute location or another element.

Move-to-set takes in two sets as input (we will call them set-a and set-b). The members
of set-a are moved to the locations of the members of set-b. In the tumor example, the
decomposed rays are placed on the locations of the distinct body-areas. If set-a and set-b
have the same number of element instances, then each element of set-a is placed on a distinct
element in set-b. The element instance matching is arbitrary.

If set-a has more elements, then multiple members of set-a are placed at the locations
of each member of set-b. The number of element instances in these groups is determined
by the number of elements in set-b divided by the number of elements in set- a.

If set-b has more elements, then elements of set-a are distributed evenly across the

Table 2: Covlan’s primitive elements.

Primitive Element name ‘ attributes

connection | subject, object, angle, distance
rectangle | location, size, height, width, orientation

circle | location, size, height

line | location, length, end-pointl, end-point2, thickness

set | location, orientation, front, middle

locations of the members of set-b.

Put-between takes two objects that are assumed to be touching, and places some third
object in between them. In the new s-image 1) the two objects are no longer touching and
2) the third is touching both of them.

Replicate takes in an element or set of elements and generates n new instances of that
element or elements in the next s-image. Its behavior is similar to decompose, except that
it does not change the size or thickness of elements, and can work on sets as well as single
element instances.

Covlan’s ontology of primitive visual elements (Table 5) contains: rectangle,
circle, line, and set. The elements are frame-like structures with slots that can hold val-
ues. For example, a rectangle has a location, size, height, width, and orientation.
All elements have a location, which holds a value representing an absolute location on an
s-image (e.g. top, right).

See Figure 3 for an example of how instances of these elements can be arranged in an
s—-image.

The set is a special element. A set can contain any number of instances of elements.
sets also have an orientation, the value of which is one of the primitive directions. An
element instance in the set is specified in the representation as the front, and another
as the middle. The orientation is defined as an imaginary line from the middle to the
front in the direction specified in the orientation.

Sometimes a part of an element instance must be referenced. For example, if a line

touches the middle of another line, there must be some way to describe the end of the first

tumor-s—image3

has—eleme&t

; tumor

first-ray
second-ray
—= third-ray
—= fourth-ray———— 1
has
thickness
—= top—body-area—— W
thin
L - right-body-area———
—= |eft-body-area———
—= bottom-body-area—
i looks-like
has—locatio
curve line circle

top bottom right left center

Figure 3: This Figure shows part of the third generated s-image in the tumor procedure.
FEach relationship is represented as an arrow. The start and ends of the arrows are the
ideas connected by the relation in the proposition. At the beginning of the arrow is the
ThingX of the relationship, and at the end of the arrow is the ThingY. The boxed text in
the middle of the arrow is the Relation. Each string of unboxed text is a concept.

Table 3: Classifications of Miscellaneous Slot Values

angles | perpendicular-angle, right-angle-cw,
45-angle-cw, 45-angle-ccw,
right-angle-ccw
locations | bottom, top, right, center, off-bottom
off-top, off-right, off-left
sizes | small, medium, large
thicknesses | thin, thick, very-thick
speeds | slow, medium, fast
directions | left, right, up, down
lengths | short, medium, long

line and the middle of the next. In Covlan different primitive elements have different kinds
of areas.

Lines have start and end points, as well as right and left-side mid-points. The
element instance’s names are related to the symbols naming these areas (e.g. linel-end-point
with area-relations: has-end-point, has-start-point, has-rightsidemiddle, and
has-leftsidemiddle.

Circles, squares, and rectangles have sides, which are related to element instances
with the following relations: has-sidel (the top), has-side2 (the right side), has-side3
(the bottom), and has-side4 (the left side).

These are symbols that can give a value to element attributes or transformation argu-

1

ments. They can be broken down into the following types: angles, locations', sizes,

thicknesses, numbers, speeds, directions, and lengths.

The class of primitive visual relations (shown in Table 4) describe how certain
visual elements relate to each other and miscellaneous slot values. Motion relations
(see Table 4) describe how element instances are moving in an s-image. Rotation has the

arguments speed and direction.

1Relative locations, as opposed to absolute locations, are classified under primitive visual relations.

Table 4: Primitive visual relations.

Visual Relations | touching, above-below, right-of-left-of, in-front-of-behind, off-s-image

Motion Relations | rotating, not-rotating

Many spatial relationships between primitive elements are represented with connections.
A connection is a primitive element with a name. Connections are frames with two four
slots: subject, object, angle and distance, represented with is-subject-for-connection,
is-object-for-connection, has-angle and has-distance. These relations connect the
connection name to distances and angles, which are qualitative miscellaneous slot
values. See Figure 4. The object of the connection is distance away from the subject
in the direction of angle.

squarel .
= short-distance

is-subject-for-connection

— Squarel--square2--connectior

is-object—for-connectio
square

Figure 4: A representation of the relationships involved with a connection. Square? is a
short distance to the right of squarel. Right-angle-cw means that the angle is a right
angle in the clock-wise direction.

~ right-angle-cw

The distances are touching-distance, short-distance and long-distance. The
angles are perpendicular-angle (straight ahead), right-angle-cw (a right angle in the
clockwise direction, or to the right), 45-angle-cw (a forty-five degree angle to the right),
45-angle-ccw (a forty-five degree angle in the counter-clockwise direction, or to the left),
and right-angle-ccw (a right angle to the left). Figure 5 shows the different kinds of
connections Covlan can represent. Areas of element instances, as well as element instances
themselves, can be connected.

S-images can have analogies between them. Each analogy can have any number of
analogical mappings associated with it (determining which mapping is the best is known
as the mapping problem.) Each alignment between two element instances or areas in a

given mapping is called a map.?

2A map is called a match hypothesis in the SME literature.[19]

10

perpendicular-angle

45-angle-ccw 45-angle-cw

right-angle-cc right-angle-cw

&, =
2)
g &

o
@, 3.
S,)
% %
® ®

Figure 5: Each of the fifteen black dots in the Figure represents a qualitative connection
area, with an angle and direction.

Similarly s-images next to each other in sequences have transform-connections.
These are necessary so the reasoner can track how visual elements in a previous s-image
change in the next. A difference between analogies and transform-connections are that
there can be multiple analogical mappings for an analogy, but only one mapping for a
transform-connection.

Transformations are attached, in fact, to a map between two elements in sequential
s-images. So if a rectangle changes into a circle, the agent knows which rectangle in

the previous s-image turns into which circle in the next s-image.
1.1.2 Inference and Processing

Analogy consists of several steps: retrieval is identifying a candidate source analog in mem-
ory; mapping is finding the best set of correspondences between components of the analogs;
transfer is the application of knowledge from the source analog to the target analog, which
might use various forms of adaptation; evaluation is determining if the target problem has
been solved appropriately; storage is storing the target analog in memory for potential reuse.
Galatea focuses on the transfer and adaptation stage of analogy. In particular, it adapts and
transfers each transformation in the source problem to the target. The transformations
are transferred literally and the arguments of those transformations can be adapted.
For example, the transformation decompose is used to turn a primitive element

instance into some arbitrary number of resultants, taken as an argument. An argument of

11

a transformation can be an instance of one of three cases. First, the argument can be a
literal, like the number four or the location bottom. Literals are transferred unchanged to
the target.

Second, the argument could be a element instance member of the source s-image. In
this case, the transfer procedure operates on the analogous element in the target s-image.
For example, in the first transformation in the fortress story, the decomposed source
soldier path gets adapted to the ray in the target tumor problem.

In the third case, the argument can be a function. Since this case does not occur in the
fortress/tumor problem, we will use another example to describe it. Let us suppose that a
reasoner needs to feed six people with one Sicilian slice sheet pizza. An analog in memory of
cutting a sheet cake for four people is used to generate a solution. Transfer is still difficult
because somehow the 4 in the cake analog must be adapted to the number 6 in the source
analog. Knowing how many pieces into which to cut the cake or pizza depends on the
number of people each problem. Some notion of count is needed. The use of functions
as arguments to transformations addresses this problem. The cake analog is represented
with a function that counts the number of people as its argument for the decompose
transformation. This function has an argument of its own, namely the set of cake eaters,
which during adaptation adapts into the set of pizza eaters. When the transformation is
applied to the pizza, it counts the members of the set of people in the pizza problem (which

results in six). Decompose produces six pieces of pizza in the next s-image.
1.1.3 Algorithm

I will describe Galatea’s main algorithm informally in this subsection. In a later chapter I
will describe it more formally. Throughout this subsection the reader should refer to Figure

6.

1. Identify the first s-images of the target and source cases. These are the

current source and target s-images.

2. Identify the transformations and their associated arguments in the current

s-image of the source case. This step finds out how the source case gets from its

12

s-image} s-image:
top-
roadl
mov
fortress1 | Mght= fortress2 to- fortress3
set
R roadl LI——> o~ Cj
ﬁ decompos 7 mal
may I] may
mappin mappin mappi
s-image: s-image: s-imag
top—
bodyl move)

left- right= 1508’[
body{ body1 tumor2, tumor;

decompos|
maj

ma|

Output by Galatea

Figure 6: This Figure shows Galatea’s input and output for the fortress/tumor problem.
The top series of s-images in the Figure shows the visual representation of the solved
fortress problem. The bottom series shows the target tumor problem. The bottom left
s-image is the initial state of the tumor problem. The shaded box shows the output of the
system.

current s-image to the next s-image. In the fortress/tumor example, the transforma-

tion is decompose, with four as the number-of-resultants argument (not shown).

3. Identify the objects of the transformations. The object of the transformation is
what object, if any, the transformation acts upon. For the decompose transformation,
the object is the soldier-pathl (the thick arrow in the top left s-image in Figure

6.)

4. Identify the corresponding objects in the target problem. Rayl (the thick
arrow in the bottom left s-image) is the corresponding component of the source case’s
soldier-pathl, as specified by the mapping between the current source and target
s-images (not shown). A single object can be mapped to any number of other objects.
If the object in question is mapped to more than one other object in the target, then

the same transformation is applied to all of them in the next step.

5. Apply the transformation with the arguments to the target problem com-
ponent. A new s-image is generated for the target problem (bottom middle) to
record the effects of the transformation. The decompose transformation is ap-

plied to the rayl, with the argument four. The result can be seen in the bottom

13

middle s-image in Figure 6. The new rays are created for this s-image. Adapta-
tion of the arguments can happen in three ways, as described above: If the argument
is an element of the source s-image, then its analog is found. If the argument is a
function, then the function is run (note that the function itself may have arguments
which follow the same adaptation rules as transformation arguments). Otherwise the

arguments are transferred literally.

6. Map the original objects in the target to the new objects in the target. A
transform-connection and mapping are created between the target problem s-image
and the new s-image (not shown). Maps are created between the corresponding
objects. In this example it would mean a map between ray1 in the left bottom s-image
and the four rays in the second bottom s-image. A map is also created between
the rayl to the set of thinner rays. Galatea does not solve the mapping problem,
but a mapping from the correspondences of the first s-image enables Galatea to

automatically generate the mappings for the subsequent s-images.

7. Map the new objects of the target case to the corresponding objects in the
source case. Here the rays of the second target s-image are mapped to soldier paths
in the second source s-image. This step is necessary for the later iterations (i.e. going
on to anothertransformation and s-image). Otherwise the reasoner would have no
way of knowing on which parts of the target s-image the later transformations would

operate.

8. Check to see if there are any more source s-images. If there are not, exit, and
the solution is transferred. If there are further s-images in the source case, set the

current s-image equal to the next s-image and go to step 1.
1.1.4 The Fortress/Tumor Problem

I chose the fortress/tumor example because some experimental participants have used visual
inferences in solving it [43].

Table 5 shows some of the visual elements and their attribute values for the first fortress

14

Table 5: Primitive elements from fortress problem s-image 1.

Visual Object | attributes value
Fortress looks-like: curve
location: center
Bottom-road looks-like: line
Right-road looks-like: line
Left-road looks-like: line
Top-road looks-like: line
Soldier-path looks-like: line
location: bottom-road
thickness: thick

problem s-image.

I represented the fortress story with three s-images (see Figure 6.) The first was a rep-
resentation of the original fortress problem. It had four roads, represented as thick lines, ra-
diating out from the fortress, which was a curve in the center (curves are used to represent
irregular shapes). I represented the original soldier path as a thick line on the bottom road.
This s-image was connected to the second with a decompose transformation, where the
arguments were soldier—-pathl for the object and four for the number-of-resultants.
The second s-image shows the soldier-pathl decomposed into four thin lines, all still
on the bottom road. The lines are thinner to represent smaller groups.

I represented the start state of the tumor problem as a single s-image. The tumor itself
is represented as a curve. The ray of radiation is a thick 1line that passes through the
bottom body part.

In the fortress/tumor example, after the decompose transformation generates a number
of smaller armies (by transforming a thick arrow into thinner arrows), those armies must
be dispersed to the various roads, in various locations in the image. In a previous version of
this model [12, 13] each army arrow was moved-to-location individually to each road line.

This solution was brittle because the number of roads to which the armies moved needed

15

to match exactly the number of body areas the weaker rays moved to in the target.

The model now uses sets to address this problem. By grouping the armies, roads,
rays, and body parts into their own sets, Galatea adapts the solution in the source ana-
log to accommodate differing numbers of any of these elements. Rather than using the
move-to-locationtransformation on each army, it uses move-to-set to the change the
location of the set of armies. The argument to this function is a set of roads. The
move-to-set function takes one set and distributes its members around the locations of
another set.

I have described in some detail the how the fortress/tumor example was implemented in
Galatea. This example shows the system’s robustness with respect to transfer when different
set sizes come into play. I will go into detail about the cake/pizza example (described in the
description of functional arguments above), as well as a model of James Clerk Maxwell’s
analogical reasoning associated with his work on the electromagnetic field theory in a later
chapter. In the next section I will describe the cognitive modelling of some psychological
data.

I will re-iterate the hypotheses of this work and describe how Galatea relates to them.
Hypotheses two and three are that visual knowledge alone is sufficient for transfer of some
problem solving procedures, and that visual knowledge facilitates transfer even when non-
visual knowledge might be available.

Galatea, implemented with four examples, shows that non-trivial problem-solving pro-
cedures can be represented visually and transferred successfully across domains. The
cake/pizza example shows transfer for an inherently visual domain, and the fortress/tumor
example shows cross-domain analogy where non-visual knowledge might be available to a
human reasoner.

The first hypothesis is that transfer of strongly-ordered procedures is computation-
ally complex, even given the correct mapping. 1 discovered that the successful transfer
of strongly-ordered procedures in which new objects are created requires the reasoner to

generate intermediate knowledge states and mappings between the intermediate knowledge

16

states of the source and target analogs. Galatea shows why, in detail, this is so. Compo-
nents of the problem are created by the operations, and these components are acted on by
later operations. In the tumor problem, for example, the strong ray must be turned into
weaker rays before they can be moved. When the reasoner transfers the second operation
of moving the soldier paths, how does it know that the corresponding objects in the target
are the weaker rays? It must have some mapping to make this inference. And since the
weaker rays do not exist in the start state of the tumor problem, this mapping cannot be
given as input with the initial mapping. The new knowledge state with the weaker rays
must be generated, and then a mapping must be made on the fly between it and the second

knowledge state of the source.

1.2 Cognitive Modelling

For the next source of evidence I modelled some of the visual aspects of four experimental
participants’ drawings.

Dr. David Craig ran 34 participants in an analogical transfer experiment. Participants
were shown a problem-solving solution with a laboratory, presented with text and a di-
agram. They were asked to solve an analogous problem with a weed-trimmer, presented
with text only. Of these, 17 participants (in three conditions) correctly described the anal-
ogous solution. All participants were asked to draw a diagram to illustrate their suggested
solutions.

A laboratory cleanroom strategy is transferred to adding redundant doors to a weed-
trimmer arm so that it can pass through street signs (See Figure 28.) The analogous
solution is to design an arm with two latching doors, so that while one is open to let the
sign pass, the other stays closed to support the arm and trimmer. Participants produced
diagrams describing their solutions to the problems. I modelled four of these experimental
participants in Galatea: L14, L15, L16, and L22. In this section I will describe L14 and

L22 in detail.

17

1.2.1 The Galatea Model of L14

L14 received Condition 1 of the lab problem (see Figure 7). Figure 9 shows what L14 wrote
on his or her data sheet during the experiment.

I represented the source analog as a series of s-images connected with transformations.
See the top of Figure 10 for an abstract diagram of this analog, and see Figure 8 for a dia-

gram of some of the propositions in its first s-image.

Feaee rewd the tave prodfleme Bolow, Ar dbe bollom af dhe pape, ploaie 07y ie o Prablem 2. Dnaw o
e 1o alatee WAAT i e Abinkig. The solardsn fo Problem 1 mey ke delnfid i endiing Probles 2,

Probivex [: & compuier chig menafacioes has dessgeed o special kb [of manliocng meoroseopi devioes, They
buive Lakieri s cie 5 sedl Gl e lah Froom thee surroand| 3 exsirosment i ordsr o beop the am iande e e fre
af duir and wndesinbls gases, The peobbkom, thaogh, b hal whonver lab wocken anier on leawe e npum, the meal o
sraken sl cornanimaned g is gTowad in The pompany is Fying to dedpe o deor dal wdll alrw sl o apis
il eavw 1h lab sy, wiile miremicmp the armoent ol conbiminaled abl il @ & in

Sodistiem Hove sarkers
anier & vestihole space
bedure enisring S Lak.

outside __, laboratory
{diriy al} fchaan i)

Prokfom 17 1n ender &0 e U scolds el gioe alaeg e dhle of O moad. o D2 parmresnt Gl Trasspomaion
dhesizned @ wsed wimmor el alincbos 1o e end of a bong pobs silcking off the gide ol 8 ik, As tha mak dove
deewn e Bigheeay, i timmer & exionded sbo & faai in e right, perfacily pogitned 1o wies the wonds 3i i
shie: ol ke el The prokblems &t il S8 pake o characied by dga poote el ase possiosed a1 ke cuth in
ceriam ports of e ey, The weod-irimaier pele, io S 9 enaely 2 feel 100 keng 1 clear de Bgn poan. ARhaugh
the wecdirimmres pike could be remronsd of Bied ou (ke wey 43 plaar the sign posts, ihis would (serkos wil the
wernal iiminp Aded lthvuch e pole could bassd aver die inp of tvs slgn pods, thie would he inprecscal visce i
cyme weas the sipns aoe 1% fom tall, The Deparime of Tramporiaiion w eyieg o desgs 2 pole (bsi cm pam
Arowgh the pign posis wiikoel gopmayg or chasgmg ike peesion of the rimmes

Figure 7: Condition 1: Plan view of lab, with the vestibule centered.

The model of L14 involves five transformations (See Figure 10). The first transformation
isreplicate. It takesin the door-set-114s1 as an argument, generating door-set1-114s2
and door-set2-114s2 in the next s-image.

The second transformation is add-connections which places the door sets in the
correct position in relation to the top and bottom walls.

The third and fourth transformations are add-component, which add the top and

bottom containment walls.

18

lab-basel-s-imagel

rectangle= line
looks-like ‘ looks-lik
_—

v 7 T ¥

bottom-wall door *‘ door-wall top-wall
L | -
s ‘ @ door-set
N in—front-of—

has-startpoint behind ‘ has—endpoinH has—stanpoir%t ‘ has—endpoink
bottom-wall-startpoint door-wall-endpoint door-wall-startpoint top-wall-endpoint

is—subject-fo is—object—for- is—subject-fol is—object—for

connection connection connection connection
connectionl connection2

perpendicular-angle touching-distance

Figure 8: This Figure shows part of the first s-image in L.14’s source s-image series. Each
relationship is represented as an arrow. At the beginning of the arrow is the ThingX of
the relationship, and at the end of the arrow is the ThingY. The boxed text in the middle
of the arrow is the Relation. Each string of unboxed text is a concept.

e pemre el o danpn @ wed v ks s e Beagh apm piks L o s

e T |

Figure 9: The source data for L14. The drawing above and handwritten text are what
participant 1.14 produced on the experiment sheet.

doodls e

® ® \IH\O \\I\O [I\O l”:)

LI CT1 CT1 CTT 1

Figure 10: The implementation of L14. The top series of s-images represents the source
analog (the lab problem) and the bottom series the target. There are six s-images for the
five transformations.

19

The fifth transformation, another add-connections, places these containment walls
in the correct positions in relation to the door sets and the top and bottom walls.

I will describe the first two transformations in detail. The first transformation
in the lab-basel source is a replicate, which takes two arguments: some object and
some number-of-resultants. In this case the object is door-set-bisl (represented as
door-set in Figure 8. b1s1 means “base one, s-image one.”) and the number-of-arguments
is two. The replicate is applied to the first L14 s-image, with the appropriate adapta-
tion to the arguments: The mapping between the first source and target s-images indicates
that the door-set-b1ls1 maps to the door-set-114s1, so the former is used for the target’s
object argument. The number two is a literal, so it is transferred directly.

Using a function that takes in the name of an element instance or set (in this case
door-set-114s1) and recursively returns all set names and element instances, Galatea
retrieves (from memory of the source s-image with the replications in it) all propositions
with any of those set names and element instances in the thingX or thingY slots. These
propositions are put through a function that creates the same number of new propositions
with the same relations and literals, but with new names for the element instances.
These new propositions are stored in memory. The effect of this is a replication of the
intended structure. This occurs once for each replication.

Galatea chooses an arbitrary name for the superset of door-sets (in this case
door-sets-set-114s2) and connects door-set1-114s2 and door-set2-114s2 to it with
in-set relations. It makes a map between L14’s s-imagel and s-image2, connecting
door-set-114s1 to door-sets-set-114s2. It also creates maps from door-set-114s1 to
door-set1-114s2 and another to door-set2-114s2.

The other propositions from L14’s s-imagel are put through a function that finds
analagous propositions: literals and relations are kept the same, and element instance
names are replaced with new names for the new s-image. For example, the top-door-114s1
becomes top-door-114s2.

Maps between the element instances in the target s-imagel and the target s-image2

are stored in memory as well.

20

Galatea automatically generates the mapping between lab-basel-simage2 and 114-simage?2.
Element instances that are results of source transformations are mapped to newly-generated
instances in the target. All other maps are carried over to the new s-images with their
new names.

The second transformation is add-connections. The effect of this transformation
is to place the replicated door-sets in the correct spatial relationships with the other ele-
ment instances. It takes connection-sets-set-b1s3 as the connection/connection-set
argument. This is a set containing four connections. Galatea uses a function to re-
cursively retrieve all connection and set proposition members of this set. These propo-
sitions are put through a function which creates new propositions for the target. Each
proposition’s relation and literals are kept the same. The element instance names are
changed to newly generated analogous names. For example, doori-endpoint-b1s3 turns
into doorl-endpoint-114s3.

Then, similarly to the replicate function, horizontal target maps are generated, and
the other propositions from the previous s-image are instantiated in the new s-image.

We can now examine what made L14 (Figure 9) differ from the stimulus drawing: L14
features a longer vestibule in the drawing than the vestibule pictured in the stimulus. In
fact, there is no trimmer arm (analogous to the wall in the lab problem) in the drawing at all
that is distinct from the vestibule, save a very small section, apparently to keep the spinning
trimmer blade from hitting the vestibule. The entire drawing is rotated ninety degrees from
the source. The single lines in the source are changed to double lines in the target. The
doors also slide in and out of the vestibule walls. What’s interesting about this modification
is that it does not appear that this kind of door opening is possible with the diagram given of
the lab in the source: Since the door is a rectangle that is thicker than the lines representing
the walls, the door could not fit into the walls. In contrast L14 explicitly makes the doors
and walls thick (with two lines) and makes the doors somewhat thinner. L14 adds objects
to the target not found in the source: a blade and a twisting mechanism to describe how
the doors can work. L14 also included numerical parameters to describe the design of the

trimmer, to describe length. Finally, L14 includes some mechanistic description of how the

21

trimmer would work.

In summary, these behaviors are:

1. long vestibule

2. rotation

3. line to double line

4. sliding doors

5. added objects

6. numeric dimensions added

7. mechanisms added

Of these seven differences, Galatea successfully models four of them. The rotation of
the source is modelled by a rotation in the target start s-image. In this s-image, all
spatial relationships are defined only relative to other element instances in the s-image.
Each instance is a part of a single set which has an orientation and direction. In the case
of s-image 1 of the target, it is facing right. Since all locations are relative, there is no
problem with transfer and each s-image in the model of 114 is rotated to the right.

The line to double line difference is accounted for by representing the vestibule walls
with rectangles rather than with lines, as it is in the source. Because the mapping between
the source and target correctly maps the sidel of the rectangle to the startpoint of its
analogous line, the rectangle/line difference does not adversely affect processing and transfer
works smoothly.

The long wvestibule difference is accounted for by specifying that the heights of the
vestibule wall rectangles are long. In the source the vestibule wall lines are of length
medium, but this does not interfere with transfer.

The blade added object is accounted for by adding a circle to the first s-image in the

target.

22

Unaccounted for are the two bent lines emerging from the vestibule on the left side, the
numeric dimensions and words describing the mechanism. Also, L14 shows one of the doors
retracting, and the model does not. The model also fails to capture the double line used to
connect the door sections, because the single line is transferred without adaptation from the
source. This could be fixed, perhaps, by representing the argument to the add-component
as a function referring to whatever element is used to represent another wall, rather than

as a line.

1.2.2 The Galatea Model of L22

L22 received Condition 2 (see Figure 11.) Figure 13 shows what L22 wrote on his or her
data sheet during the experiment.
I represented the source analog as a series of s-images connected with transformations.

See the top of Figure 12 for an abstract diagram of this analog.

Plrases read she o probdems befow, A e bonea of dw paps, pleare iry is solee Preblom L Oroe a
diagram ke ghow what pow e aling. The seiution ro Preédem 1 say b bolpfa’ i soeing Freblom 2

Frablee [0 & cemper chip ezl lever bas dsigeed o dpeeidl 1oy B madolasparieg micpsogic tevicer, Thay
Feive ke groes, cane in sl oY e lab from fe memousding eeseoemeed in ondet B Rédjp 152 G b 0e i 1l Fres
odl fueet gral welesiiable goses Tha peohien, @ocgh, i fix shonsces lab woroors cakr or leave ihe reeem, the acal
hrofera mmd coslarminatéd wir 18 allesssd n The aompaiy & Uying 10 decign a4 door that w1l alles wrorkers ie ool
sadd beervn (e fab ey, whibe micimong tbe sercsesl of pond S @i hal is b s

Gabetice: Hive wilien

war = vowlibole spase Lyt Ll libaratory
heeifars ermbbring the Inb ity @in) = [Eloan air)

airlock

Prabiea: 11 [n aifier oo wim the weads thal, gros slong @ side of e roosd, te Deparieent of Toaemeoristion he
dodgecd @ weed bricises T elache ot ol of a boig ks sckiog ofT s dhle of 0 wask, As tha tnuck: deives
b thi higherary, th inmeeer s coxnced a3 B e e lke ight, porfocly posllioeed 10w e wesd o e
sule al (b iue]. The prohiloen @ Tha #a S lw pele B chaoeckad by 0lge pode B oo posstiones] @ she curh
reriam piek of he sy The wsad-Ferer ok, @ Teon, 8 aesoly 3 Fes oo Bong oo claar B sgn poadn Abaugh
ke sewnc-mremer pabe ookl be rebscied or Bied ool e day b obell e S5 Bials Lhes aaih] dafon wah the
wad trimrsing. Aed sibaagh ke pole cosld bead over the iop of the ngn posds, i woukl b gl so is
swinc mives W siges are L3 e well, The Dapanese; of Thamspamicban i@ lrytng = dodgn @ e St o poo
firawph e alpo podt sl sogrpiag o chamgis g b posibon of s HmEwe

Figure 11: Condition 2: Plan view of lab, with no walls.

The model of L22 involves five transformations (See Figure 33). The first transformation
isreplicate. It takesin the door-set-122s1 as an argument, generating door-set1-122s2
and door-set2-122s2 in the next s-image. Note that the door set replicated here is differ-

ent from the door set replicated for L14. In this case, there are three connected rectangles,

23

AN YN
o o o o] oll o

I

Figure 12: The implementation of L22. The top series of s-images represents the source
analog (the lab problem) and the bottom series the target. There are six s-images for the

five transformations.

" v deaf - a1
e e e el
| LI T S P

smad #rn g cehl N
e dby Eoe D
| a o, Eal e ek o s e

=l
i o 'ﬂ'f 4 i P ke bl s b
——— » |

q iy fip plaa iy

]
T P |
| 1H .

| i e i e

Figure 13: The source data for 1.22. The drawing above and handwritten text are what

participant 122 inscribed on the experimental sheet.

24

corresponding to the top wall, door, and bottom wall. In the case of L14, the door set is
made of a single long rectangle (representing the wall) with another rectangle (representing
the door) in front of it. But because replicate can work on any set of element instances,
Galatea can accomodate the kind of doorway L.22 had in mind.

The second transformation is add-connections which places the door sets in the
correct position in relation to each other. Unlike for L14, there are no top and bottom
walls.

The third and fourth transformations are add-component, which add the top and
bottom containment walls.

The fifth transformation, another add-connections, places these containment walls in
the correct positions in relation to the door sets.

The processing and adaptation of these transformations resembles the processing done
with L14.

We can now examine what made L22 (Figure 13) differ from the stimulus drawing:
The entire drawing is rotated ninety degrees from the source. An object is added to the
target that has no analog in the source: the trimmer. L22 features a proportionately
longer vestibule than in the source, and has some explicit simulation diagrammed. Of these
differences, all but the last were modelled by changing the nature of the start s-image for
L22.

L22 shows that Galatea’s models of these participants works with different source as
well as target analogs. The modelling of L15 and L16 were modelled similarly. For all of
these models, no core processing code was changed. Only transformations were added to
code. All differences I was able to accomodate I did by changing the input representation,

rather than the code itself.
1.2.3 What the Implementation Shows

Above I described models of some of the visual aspects of four experimental participants.

Specifically, I have modelled the visual input and output for this participant data—a good

25

start to a full cognitive model. Though people likely use non-visual as well as visual knowl-
edge in analogical problem solving, this work shows how visual knowledge alone could be
used. The implementation speaks to my third hypothesis, that visual knowledge facilitates
transfer even when non-visual knowledge might be available.

L14, L15, L16, and L22 are representative of some of the more difficult experimental
participants that I could have modelled. They were given a source analog diagram and
participants produced drawings describing their solutions. My models of them show how
the analogical transfer could be done using only visual knowledge. The drawings produced
by the participants differed from the stimulus diagrams in many ways, and in all four cases
my models accounted for most of these differences, supporting the hypothesis that visual
knowledge enables transfer.

The previous section showed how the implementation of Galatea addressed the three
hypotheses of this work. Modelling these four participants shows that hypotheses are sup-

ported in the same way for the modelling of human cognition as well.

1.3 Psychologial Experimentation

As Constructive Adaptive Visual Analogy is a cognitive theory, I tested the theory with
a psychological experiment. In the previous chapters I described Galatea and the models
created with it. The focus of Galatea is on the transfer subtask of analogy. Implicit in
this formulation is the idea that there is difficulty in analogical problem solving above and
beyond the difficulty associated with mapping. I tested this idea in the experiment as well
as the third of my main hypotheses: that visual knowledge facilitates transfer even when
non-visual knowledge might be available.

In this experiment participants are given Gick and Holyoak’s classic tumor problem to
solve, using the fortress problem as an analogy. Experimental participants read a story
about a general who must overthrow a dictator in a fortress. His army is poised to attack
along one of many roads leading to the fortress when the general finds that the roads are
mined such that large groups passing will set them off. To solve the problem, the general

breaks the army into smaller groups, and they take different roads simultaneously, arriving

26

together at the fortress. Participants are then given a tumor problem, in which a tumor
must be destroyed with a ray of radiation, but the ray will destroy healthy tissue on the
way in, killing the patient. The analogous solution (which in this document I will call the
“correct” solution) is to have several weaker rays simultaneously converging on the tumor
[33, 15].

Much of the analogical problem solving research with the fortress/tumor problem as-
sumes that the difficult parts of analogy are retrieval and mapping. Studies of this sort
manipulate retrieval hints, manipulate changes in the fortress story, use completely differ-
ent source stories, manipulate the timing of the source story [33], force participants to make
comparisons, or change instructions. Analogy involves many tasks; these experiments some-
times distinguish between the retrieval stage and later ones, but not between, for example,
mapping and transfer. Novick and Holyoak [60] however found that for math word problems
only around 40% of participants (50% in one experiment, 32% in the next) were able to
find the analogous solution even when the mapping was given as a part of the stimuli. This
suggests that the mapping stage is not the only difficult analogical subtask.

This work hypothesizes that transfer of strongly-ordered procedures is computationally
complex, even given the correct mapping. To get an idea of how difficult analogical problem
solving is above and beyond and mapping, this experiment manipulated whether or not
the participants were given the mapping between the source and target. If mapping is the
only/major source of difficulty in analogical reasoning, then experimental participants given
the correct mapping in a cross-domain analogical problem-solving task should have little
difficulty successfully transferring the solution. The experiment investigates whether this is
the case for cross-domain analogical problem solving.

Diagrams have been shown to help in analogical problem solving in general (e.g. [4]),
but not specifically with analogical transfer. The main hypothesis of this experiment is that

visual knowledge facilitates transfer even when non-visual knowledge might be available.

27

1.3.1 Method
1.5.1.1 Participants.

Eighty undergraduate students received extra class credit in exchange for taking part in the

experiment. They were randomly assigned to one of the six experimental groups.
1.3.1.2 Design.

Each participant read a description of the fortress problem and how it was solved: “A small
country fell under the iron rule of a dictator. The dictator ruled the country from a strong
fortress. The fortress was situated in the middle of the country, surrounded by farms and
villages. Many roads radiated outward from the fortress like spokes on a wheel. A great
general arose who raised a large army at the border and vowed to capture the fortress. His
troops were poised at the head of one of the roads leading to the fortress, ready to attack.
However, a spy brought the general a disturbing report. The ruthless dictator had planted
mines on each of the roads. The mines were set so that small bodies of men could pass over
them safely, since the dictator would then destroy many villages in retaliation. A full-scale
direct attack on the fortress therefore appeared impossible.”

Participants in diagram conditions (groups A and D) were given a diagram (see Figure
14) with the following text: “Here is an abstract diagram that describes the problem the
general faced, and what he did to solve it. The arrows represent the groups of soldiers
marching on roads to the fortress in the center.”

Participants in the draw condition (group C) were asked to “Please draw a diagram or
diagrams that describes the problem the general faced (NOT the solution—we will ask for a
drawing of that later.) Please make it abstract. So please don’t draw realistic drawings of
the fortress, for example.”

Then all participants read the solution to the fortress problem: “The general, however,
was undaunted. He divided his army up into small groups and dispatched each group to the
head of a different road. When all was ready he gave the signal, and each group charged
down a different road. All of the small groups passed safely over the mines, and the army

then attacked the fortress in full strength. In this way, the general was able to capture the

28

fortress and overthrow the dictator.”

This text is from Gick and Holyoak [33].

Figure 14: The experimental fortress story diagram used in the diagram conditions (groups
A and D.)

Participants in the draw condition (group C) were then asked to “Please draw an abstract
diagram or diagrams that describes the general’s solution to this problem.”

All participants looked at the tumor problem: “Suppose you are a doctor faced with
a patient who has a malignant tumor in his stomach. It is impossible to operate on the
patient, but unless the tumor is destroyed the patient will die. There is a kind of ray that
can be used to destroy the tumor. If the rays reach the tumor all at once at a sufficiently
high intensity, the tumor will be destroyed. At lower intensities the rays are harmless to
healthy tissue, but they will not affect the tumor either. What type of procedure might be
used to destroy the tumor with the rays, and at the same time avoid destroying the healthy
tissue?”

Participants in the draw condition (group C) were then asked to “Please draw a diagram
that describes the above problem (NOT the solution-we will ask for a drawing of that later.)
Again, please make it abstract. So please don’t draw realistic drawings of a tumor, for
example.”

Participants in the mapping conditions (groups A, B, C, and E) read “These problems
are analogous. In these stories, the tumor is like the fortress, and the ray of radiation is like
the big army that wants to march. The expolding mines are like the patient’s body getting
hurt by radiation.”

Participants in the diagram conditions (groups A and D) were then shown a diagram

29

of the tumor problem, shown in Figure 15.

Figure 15: The experimental diagram of the tumor problem used in the diagram condition
(groups A and D.)

Participants in all groups read “How would you solve the tumor problem? What type of
procedures might be used to destroy the tumor with the rays, and at the same time avoid
destroying the healthy tissue? Use the fortress story as an analogy to help you solve the
tumor problem. Give as many possible solutions as you can think of. This is a difficult
problem that requires creativity to solve—you may need to work at it.”

Participants in the draw solution conditions (groups A, B, C, and D) were then asked
to “Please draw diagrams to accompany your written solutions.”

Table 6 shows each group (A through F) in this design. The table further shows the
number of participants in each group, whether that group gave the participants the mapping,
whether diagrams were given, whether they asked to draw diagrams, and whether they were
asked to draw solutions, as described above.

The specific hypotheses for this experiment are: First, there will be no large effect of
mapping. Second, there will be a positive effect of being in the diagram condition. Third,

there will be a positive effect of being in the draw-solution condition. The draw condition

30

Table 6: Experimental results by group.

Group ID ‘ N ‘ Mapping | Diagram | Draw ‘ Draw-Solution ‘ Correct ‘ %

A 16 X X X 15/16 | 94%
B 14 X X 14/14 | 100%
C 15 X X X 12/15 | 80%
D 12 X X 12/12 | 100%
E 10 X 7/10 | 70%
F 11 10/11 | 91%

does not have a hypothesis associated with it because participants in it tended to draw the
solution rather than the problem. This condition was discontinued halfway through the

experimentation process.
1.8.1.8 Procedure.

Participants signed a consent form, and were given a sheet of paper with the stimuli (de-
scribed in the previous section) printed on it. They were asked to take their time and to
follow the instructions on the sheet. No participant took more than 30 minutes to com-
plete the experiment. After they finished, they were asked if they had ever heard of the

fortress/tumor problems before. They were then debriefed and shown out.
1.8.1.4 Analysis and Scoring.

A given participant was classified as getting the correct answer if any of his or her descrip-
tions of the tumor solution (drawn and written) described 1) multiple rays, 2) weaker rays,
and 3) coming in from multiple directions. Those missing any one of these three criteria

were classified as having gotten an incorrect answer.
1.3.2 Results

The results are shown in tables 6 and 7. Two participants were excluded from the analysis
because they reported having encountered the fortress/tumor problem before.
It is difficult to see the pure effects the conditions by looking at the results tables

because it is not a between-subjects design. That is, most participants participated in

31

Table 7: Experimental results by condition. The only significant difference found was for
those with and without the draw solution manipulation.

Condition ‘ with ‘ without

Mapping 87% (48/55) | 96% (22/23)
Diagram 96% (27/28) | 86% (43/50)
Draw Solution | 93% (53/57) | 81% (17/21)

multiple conditions. The statistical results reported are from methods that control for co-
variation, allowing for statistical control such as an ANCOVA, or Analysis of Covariance,
and regression. These methods use statistical control of conditions when experimental
control is impossible. So, for example, when calculating the correlation between mapping
and correct, for example, it is a partial correlation that is meaningful; it is measured
controlling for the variables associated with the other factors.

The first goal of this experiment is to investigate the effect of mapping for a cross-domain
analogical problem-solving task. This experiment showed no effect of mapping. Controlling
for the diagram and draw-solution conditions, the partial correlation between mapping
and correctness is negative: -.171 The probability that there was an effect of mapping is
insignificant (p=0.144). Even if this result were significant, it is in the wrong direction.
That is, those given the mapping fared (insignificantly) worse than those without. The 95%
confidence interval for the effect of mapping on correctness is -.296 to .044.2 Because the
interval crosses zero, it is statistically indistinguishable from zero. A regression of mapping
on correctness is also shown to be insignificant: r squared (.010) F(1,61)=.625, p=.432.

The mapping groups had 87% correct; the non-mapping groups had 96% correct. Be-
cause I am relying on a null result, it is important to have enough power to detect a true
difference if there is one.

This experiment has to power to detect a medium-sized effect (.31). Thus the positive

effect of mapping cannot be more than .31. Because 50% or greater is considered a large

3This means that if you performed this experiment 100 times, the true population mean would fall
between these 95% of the time.

32

effect, we are 95% confident that there is no large effect, casting doubt on the overwhelming
importance placed on mapping.

Another hypothesis is that the diagram condition will help. Groups with diagrams (A
and D) have 96% correct (n=28) while those without diagrams have 86% correct. On the
face of it it looks like it should be significant. But the result is confounded with draw solution
(all subjects in the diagram condition also have the draw solution condition). Controlling
for draw solution and mapping leaves the partial correlation between diagram and correct
at .101, and not distinguishable from zero (p=.390). A regression of diagram on correct
is insignificant when it is the only variable in the equation F(1, 76)=2.124, p=.149 and
remains an insignificant contributor to the model after mapping is added (p=.219) and
remains insignificant after draw solution is added to the equation (p=.876). Though the
difference is insignificant, the results are in the predicted direction: Those shown diagrams
fared (insignificantly) better than those not shown diagrams.

The second hypothesis is that drawing the solution helps participants get the cor-
rect solution. Controlling for mapping and diagram, the partial correlation between draw
solution and correctness is significant (.180, p=.024); and the 95% confidence interval is
.034 to .479. 93% of the people in the draw-solution conditions got it correct. For those
not asked to draw the solution the percent correct is 81%. Even controlling for mapping
and diagram, this difference is significant. Not only does it appear that the draw solution
condition improves performance, but because the confidence intervals do not overlap, the

effect of draw solution is significantly greater than the effect of mapping.
1.3.3 Experimental Conclusions

In conclusion, this experiment has two results: the participants given the mapping did not
perform better than those who were not given it, and those asked to draw their solution to
the tumor problem outperformed those were not asked to draw it, supporting the claims that
there is difficulty in analogical problem solving above and beyond the difficulty associated
with mapping and that visual knowledge facilitates transfer even when non-visual knowledge

might be available.

33

Researchers have found other manipulations to this task that have facilitated the partic-
ipants’ finding the analogical soultion. Catrambone and Holyoak [8] facilitated transfer by
1) specifically asking participants to compare the analogs and 2) manipulating the wording
in the stimuli such that the solution-relevant information was more salient.

The hypotheses come directly from this work’s main three hypotheses. I found that
though groups given diagrams did not benefit, those asked to draw their solutions did,
partially supporting the notion that visual knowledge facilitates transfer even when non-
visual knowledge might be available.

In terms of visual stimuli, animations have been found to be helpful [63]. Gick and
Holyoak [34] used diagrams similar to the ones I used to facilitate tranfer, but did not find
an effect. A follow up study by Beveridge and Parkins [4] found an effect using diagrams with
translucent ray representations where the cumulative effect can be perceptually identified.
The similarity of my stimulus to those of Gick and Holyoak could account for why my study
did not find an effect of diagram. It may also be that perhaps it is the act of creation of
the visual representation that helps more than a given diagram because the act of creation
is more likely to be associated with the correct things in memory. Further investigation is

needed to fully understand this discrepancy.

1.4 Conclusion

In this chapter I have briefly described the three sources of evaluation for my hypotheses:

1. Transfer of strongly-ordered procedures is computationally complex, even given the

correct mapping.

2. Visual knowledge alone is sufficient for transfer of problem solving procedures in some

domains.

3. Visual knowledge facilitates transfer even when non-visual knowledge might be avail-

able.

In light of the evidence found, I can now state the claims of this work.

34

Claim One: Visual knowledge alone is sufficient for transfer of problem solv-
ing procedures in some domains.

The Galatea implementation shows that problem-solving procedures for inherently vi-
sual domains like the cake/pizza problem can be represented visually, and solutions can be
transferred successfully.

Claim Two: Visual knowledge facilitates transfer even when non-visual knowl-
edge might be available.

The fortress/tumor example is an example of a domain which need not be visually
represented. Galatea shows that visual knowledge of it can be used to transfer a non-trivial
procedure across domains.

The implemented models of 14, .15, .16, and L22 show how Galatea’s model of visual
processing can account for human participant data as well, and provides details of how
visual problem-solving transfer might work. The pen-and-paper models of the rest of the
participants in Dr. Craig’s experiment show how Galatea might model even more, using
only visual knowledge, as well as describing the limits of visual knowledge.

The experiment partially supported the claim in that those who were asked to draw the
solutions were more likely to get the analogous answer.

The third hypothesis of this work that visual knowledge facilitates transfer of strongly-
ordered procedures. It turns out that the computational details involved in transfer of
strongly-ordered procedures appear to bear no relationship with visual knowledge. How-
ever, in the course of building Galatea and the models in it, I discovered something about
analogical transfer in general:

Claim Three: The successful transfer of strongly-ordered procedures in
which new objects are created requires the reasoner to generate intermedi-
ate knowledge states and mappings between the intermediate knowledge states
of the source and target analogs.

Galatea shows why, in detail, this is hypothesis might be right. A characteristic of
strongly-ordered procedures is that components of the problem are created by the operations,

and these components are acted on by later operations.

35

The psychological modelling further supports this for human cognition: The doorway
is replicated, then moved, then sealed with containing walls. For the transfer of multi-
step, strongly-ordered procedures it was necessary for Galatea to generate intermediate
knowledge states and mappings.

Claim Four: Evaluation appears to require non-visual knowledge.

Though Galatea transfers problem-solving procedures, it still has no way of knowing if
the transferred solution was adequate for the new problem. In the tumor problem, in order
for the agent to determine if the tumor was destroyed and the patient was still alive, it
needed some causal knowledge. By causal we mean knowledge of how things in a system
change as they interact. Pre- and post-conditions are a straightforward way to represent
this, but it is difficult to imagine what “visual” pre- and post-conditions might look like.
Visual representations alone cannot enable evaluation of the solution. Other visual reasoning
work that does evaluation, such as Funt [30], must use causal knowledge about things such
as the force of gravity to make its evaluative simulations.

The rest of this document is organized as follows: Chapter 2 introduces Galatea and how
it works. It goes into the computational details of the algorithms, representation language,
and the fortress/tumor example. Chapter 3 describes the cognitive models implemented
in Galatea. Chapter 4 describes how the Constructive Adaptive Visual Analogy Theory
can account for the other participants in David Craig’s data set. Chapter 5 describes the
psychological experiment. Chapter 6 discusses in depth the re-representation theory of
which Constructive Adaptive Visual Analogy is a part. Chapter 7 describes related work.
Chapter 8 concludes. The Appendix has the input and output propositions for all of the

examples not already described in the chapters.

36

CHAPTER 11

COMPUTER IMPLEMENTATION: GALATEA

Galatea is a computer implementation of the Constructive Adaptive Visual Analogy model
that successfully transfers problem-solving procedures using only visual knowledge. It pro-
vides an existence proof for the hypothesis that representation of visual knowledge is suffi-
cient for transfer of problem solving procedures in some domains.

Galatea succesfully works with four problems. 1) four versions of the lab/weed-trimmer
problem, 2) the fortress/tumor problem, 3) the cake/pizza problem and 4) the Maxwell
example. In later chapters I will describe the lab/weed-trimmer models, and in this chapter
I will describe the others.

I will use Gick and Holyoak’s fortress/tumor problem [33, 15], described in the intro-
duction, as a running example to describe Galatea.

A procedure for solving a problem can be represented as a series of knowledge states and
transformations between them. A knowledge state characterizes the steps in the procedure
by specifying information about the elements in the state and relationships between them.
A transformation takes in a knowledge state, changes its configuration in some way, and
results in the next knowledge state in the sequence. Two successive states are connected by
a single transformation. The first knowledge state represents the initial description of the
problem. The final knowledge state represents the state in which the problem is solved.

In the first knowledge state of the fortress/tumor problem, the large army takes a single
road to the fortress. Starting from the first knowledge state in the fortress story, the first
transformation is to break the army up into the smaller armies. This leads to the second
knowledge state containing the smaller armies. The second transformation is to move the
armies to different roads. The final knowledge state shows all of the armies approaching on
different roads.

Since the knowledge states for this model contain only visual knowledge represented

37

Source

Csource simage 1) Source Simage 2 ®O®O® — ((sourceSimagen

Target Simage 2

Target Output by reasoner

Target Simage 1 . . . —> (_ Target Smagen

Figure 16: This Figure illustrates Galatea’s input and output in the abstract. The knowl-
edge states in the source case are depicted as ovals along the top of the Figure. The
knowledge states are visually represented as s-images. Transformations between the states
in the Figure are depicted as arrows. The target problem is depicted as the leftmost bottom
oval. All things in the gray box are output by Galatea.

symbolically, I call the states symbolic images or s-images. Figure 16 illustrates Galatea’s
input and output in the abstract. Galatea takes as input a source analog, an initial target
problem s-image, and an analogical mapping between the initial s-images of the source and
target. The source is a complete sequence of s-images and transformations representing the
procedure that solves the source problem. The model transfers the visual transformations
one at a time from the source to the target, creating new target s-images along the way,

with new analogical mappings between the corresponding target and source s-images.

2.1 Knowledge and Representation

At the high level, the knowledge is partitioned into the following groups: transformations,
primitive visual elements, miscellaneous slot values, primitive visual relations, and analogy
representations. First I will describe the low-level architecture, then I will describe each

category in turn.
2.1.1 Knowledge Architecture

All knowledge in Galatea is represented with two types of propositions (called chunks):
concepts and relationships. Relationships are frames with four slots: English, Name, Type,

ThingX, Relation, and ThingY. Following is an example of a relationship:

38

((ENGLISH ("The door wall in the first s-image of L14 looks like a rectangle."))
(NAME [DOOR-WALL-L14S1_LOOKS-LIKE-RELATION_RECTANGLE])
(TYPE RELATIONSHIP)
(THINGX DOOR-WALL-L14S1)
(RELATION LOOKS-LIKE-RELATION)

(THINGY RECTANGLE))

The English slot takes a string of text as a value. The value for the English slot of any
chunk is hand-written by the modeller. It is there only to make easy-to-read output and is
not used in Galatea’s internal functioning. The Name of the relationship is a symbol used as
an identifier for the chunk. The Type takes one of two values, specifying whether the chunk is
a relationship or a concept. In the case of [DOOR-WALL-L14S1_LOOKS-LIKE-RELATION RECTANGLE],
the relationship between the DOOR-WALL-L14S1 and RECTANGLE is that the DOOR-WALL-L14S1
looks like the RECTANGLE. This relationship is expressed with the ThingX, Relation, and
ThingY slots. All relationships express a relation between two things. Those things can
only be chunk names, though the chunks they are naming can be either concepts or other
relationships.

The Name slot uses a canonical form and can be automatically generated by the sys-
tem. ThingX, Relation, and ThingY values are seperated with an underscore, and chunk
names are enclosed in brackets. So, for example, a more complicated chunk name with a
relationship in the ThingX slot looks like:

[[DOOR-SET-B1S1_MAPS-T0_DOOR-SET-SET-B1S2] USES-TRANSFORMATION-RELATION_REPLICATE-TRANSFORMATION]

Concepts are simpler, with only three slots: English, Name, and Type.

((ENGLISH ("Door-Li4sl is a concept")) (NAME DOOR-L14S1) (TYPE CONCEPT))

For the remainder of this document, I will use a shorthand for these chunks for read-
ability:

((ENGLISH ("Door-L14sl is a concept")) (NAME DOOR-L14S1) (TYPE CONCEPT))

will read

(DOOR-L145S1)

39

Table 8: Covlan’s transformations.

Transformations
Transformation name ‘ arguments

add-element | object-type, location (optional)
add-connections | connection/connection-set
decompose | object, number-of-resultants, type
move-to-location | object, new-location

move-to-set | object, object2
put-between | object, object2, object3
replicate | object, number-of-resultants

and
((ENGLISH ("The door wall in the first s-image of L14 looks like a rectangle."))
(NAME [DOOR-WALL-L14S1_LOOKS-LIKE-RELATION_RECTANGLE])
(TYPE RELATIONSHIP)
(THINGX DOOR-WALL-L14S1)
(RELATION LOOKS-LIKE-RELATION)
(THINGY RECTANGLE))
will read

(DOOR-WALL-L14S1 LOOKS-LIKE-RELATION RECTANGLE).

2.1.2 Transformations

It is important that the analogs are represented with a consistent symbolic visual repre-
sentation language. This fact is more important than the actual ontology of the language
used. Covlan (Cognitive Visual Language) provides an ontology of visual primitives [12].

Table 8 shows Covlan’s ontology of transformations.
2.1.2.1 Add-element

Add-element adds a new primitive element in the next s-image. The ontology of primitive
visual elements are described in the next subsection. The first argument, object-type,

must be one of the members of the primitive elements (e.g. square or circle). It

40

determines what kind of shape appears in the next s-image. The second argument is
location, which must be one of Covlan’s locations: bottom, top, right, left, and
center. What this means is that the next s-image will have three relationships added: 1)
The s-image connected with a has-component relation to the name identifying the new
component, 2) the new component’s name with a looks-1like relation to the object-type,
and 3) the component’s name with a has-location relation to the location input as
an argument. See Figure 17. Add-element is used in the Maxwell example, and will be
described in more detail in a later section.

SIMAGE-2

| has—componert
v

CIRCLE = looks-like NEW-OBJECT-412 > TOP

Figure 17: A graphical representation of the three relationships added by the add-element
transformation. Relations are boxed. Objects at the beginning of arrows are in the ThingX
slot; the objects at the end of the arrows are in the Thingy slot.

2.1.2.2 Add-connections

Add-connections (See Algorithm 1) is a transformation that inserts a set of connections
into the next s-image. Input is the name of the set of connections in the source. To
determine the nature of the connections in the target, Galatea uses substitution for all the
symbols to find the analogous names, so that analogous connections are placed in the next
target s—-image. Add-connections is used in the cognitive modelling, and will be described

with respect to those examples in a later chapter.
2.1.2.3 Decompose

Decompose (See Algorithm 2) takes a primitive element and replaces it in the next s-image
with some n number of elements. It also reduces thickness for each of those elements.

In the fortress/tumor example, decompose takes as input 1) The object to be replicated,
RAY, 2) The number of resultants, FOUR, 3) The horizontal mapping between the current

and next s-images, TUMOR-SIMAGE2-SOLUTION-MAPPING1, and 4) the system’s memory.

41

Algorithm 1 add-connections

Inputs:
connections — set a group of connection names;
vmapping The mapping between the current source and target analogs;
current — target — s — image The current target s-image;
next — target — s — image The next target s-image;
hmapping The mapping between the current and next target analogs;
memory The system memory;
Outputs:
For each added connection, a concept representing that connection;
For each added connection, a proposition describing the is-subject-for-connection relationship between a com-

ponent and the connection concept;
For each added connection, a proposition describing the is-object-for-connection relationship between a com-

ponent and the connection concept;
For each added connection, a proposition describing the distance of the connection;
For each added connection, a proposition describing the angle of the connection;
Horizontal maps between the old elements of the current s-image and new elements of the next s-image;

Procedure:
for all connections-set do

memory < memory + analogous-relationship(connection, v-mapping)
create horizontal maps between changed components

Algorithm 2 decompose
Input:
1. the object to be decomposed: object
2. how many things to decompose the object into: number-of-resultants
3.The mapping between the current and next target analogs
4. The system memory
Output:
1. For each added component, a proposition representing the component.
2. For each added component, a concept describing that that component has a thickness
of thin.
3. For each added component, a proposition describing the looks-1ike relationship to a

primitive element.
4. Horizontal maps between the old elements of the current s-image and new elements
of the next s-image.

Procedure:

type <« get-object-type(object)

new-objects «— create-new-objects(number-of-resultants)

memory < memory + create-relationship(new-objects, has-thickness-relation, thin)
memory < memory + create-relationship(new-objects, looks-like, type)

create horizontal maps between changed components

42

Decompose input for the fortress/tumor example:

RAY
FOUR
TUMOR-PROBLEM
TUMOR-SOLUTION
TUMOR-SIMAGE2-SOLUTION-MAPPING1
MEMORY

In the fortress/tumor example, FOUR new symbols are created. These are the names of
the new objects: SRAY1, LEFT-SRAY1, RIGHT-SRAY1, and TOP-SRAY1. A new set name is
also created: SET7. The new symbols are connected in relationships to SET7 with IN-SET
relations. The type of the original object (the RAY), is retrieved from memory. There is a
fact in memory: (RAY LOOKS-LIKE-RELATION LINE) that Galatea retrieves to know that
the resultant objects will also have relationships that connect the new symbols to LINE
using the LOOKS-LIKE-RELATION relation. Also created are those relationships that connect
the symbols to the notion of THIN, connected by HAS-THICKNESS. The horizontal maps are
created as well, the process of which I will describe later. Horizontal maps are those maps
between elements in subsequent s-images in the same series.

Decompose output propositions:

(SRAY1)
(LEFT-SRAY1)
(RIGHT-SRAY1)
(TOP-SRAY1)
(SET7)
(SET7 LOOKS-LIKE-RELATION SET)
(SRAY1 IN-SET SETT7)
(LEFT-SRAY1 IN-SET SET7) (RIGHT-SRAY1 IN-SET SET7)
(TOP-SRAY1 IN-SET SET7)
(SRAY1 HAS-THICKNESS THIN)

(LEFT-SRAY1 HAS-THICKNESS THIN)

43

(RIGHT-SRAY1 HAS-THICKNESS THIN)

(TOP-SRAY1 HAS-THICKNESS THIN)

(SRAY1 LOOKS-LIKE-RELATION LINE)

(LEFT-SRAY1 LOOKS-LIKE-RELATION LINE)

(RIGHT-SRAY1 LOOKS-LIKE-RELATION LINE)

(TOP-SRAY1 LOOKS-LIKE-RELATION LINE)

(SET7 MAPS-TO RAY)

(TUMOR-SOLUTION-PROBLEM-MAPPING1 HAS-MAP [RAY MAPS-TO_SRAY1])

(RAY MAPS-TO SRAY1)

(TUMOR-SOLUTION-PROBLEM-MAPPING1 HAS-MAP [RAY MAPS-TO_LEFT-SRAY1])
(RAY MAPS-TO LEFT-SRAY1)

(TUMOR-SOLUTION-PROBLEM-MAPPING1 HAS-MAP [RAY MAPS-TO_RIGHT-SRAY1])
(RAY MAPS-TO RIGHT-SRAY1)

(TUMOR-SOLUTION-PROBLEM-MAPPING1 HAS-MAP [RAY MAPS-TO_TOP-SRAY1])
(RAY MAPS-TO TOP-SRAY1)

(TUMOR-SOLUTION-PROBLEM-MAPPING1 HAS-MAP [SET7_MAPS-TO_RAY])

2.1.2.4 Move-to-location

Move-to-location (see Algorithm 3) changes the location of a primitive element from
one location to another. This means that in the next s-image, the old has-location
relation is removed and a new has-location relation is added, relating the element to the
input location, which can be an absolute location or another element. Move-to-location
worked with an older, less robust implementation of the fortress/tumor problem, and is not

running with any examples in the current implementation.
2.1.2.5 Move-to-set

Move-to-set (see Algorithm 4) takes in two sets as input (we will call them set-a and
set-b). The members of set-a are moved to the locations of the members of set-b. In the

tumor example, the decomposed rays are placed on the locations of the distinct body-areas.

44

Algorithm 3 move-to-location
Input:
1. An object to be moved: object
2. A new location: new-location
3. new-S-image
4. The system memory
Output:
1. A proposition describing that the object is in the new location.
2. Horizontal maps between the old elements of the current s-image and new elements of
the next s-image.

Procedure:
memory < memory + create-relationship(object, new-location, new-s-image)
create horizontal maps between changed components

If set-a and set-b have the same number of element instances, then each element of set-a
is placed at the location of a distinct element in set-b. The element instance matching is
arbitrary.

If set-a has more elements, then multiple members of set-a are placed at the locations
of each member of set-b. The number of element instances in these groups is determined
by the number of elements in set-b divided by the number of elements in set-a.

If set-b has more elements, then elements of set-a are distributed evenly across the
locations of the members of set-b.

Move-to-set input:

SET7
SET9
TUMOR-SIMAGE2-SOLUTION-MAPPING1
MEMORY

The move-to-set transformation, in the fortress/tumor example, takes in 1) the set of
things to be moved, SET7, in this case the set of thin lines representing weak rays, 2) the set
of things, the locations of which to move them to, SET9, in this case the set of qualitative
body-areas, 3) the horizontal mapping TUMOR-SIMAGE2-SOLUTION-MAPPING1, and 4) the
system memory MEMORY.

In the case in which SET7 is the same size as SET9, Galatea retrieves from MEMORY the

45

Algorithm 4 move-to-set
Input:
1. A set of things to be moved:seta
2. A set of things to move the elements of seta to:setb
3. Horizontal mapping
4. The system memory
Output:
1. For each in seta, a proposition describing that that component is at the same location
of some element of setb.
2. Horizontal maps between the old elements of the current s-image and new elements of
the next s-image.

Procedure:
if size-of(seta) = size-of(setb) then
for all seta and setb do
memory < memory + make-relationship(elementa, “has-location”, location-
of(elementb)
else if size-of(seta) > size-of(setb) then
for all setb do
memory < memory + place (size-of(seta) / size-of(setb)) elements-from-a into each
element from b
else if size-of(seta) < size-of(setb) then
for all seta do
memory <« memory + place one elementa in every (size-of(setb) / size-of(seta))
elementb
create horizontal maps between changed components

46

locations of the members of SET9. This information is in the set of has-location rela-
tions. Then relationships are created connecting the members of SET7 (SRAY, LEFT-SRAY,
RIGHT-SRAY, TOP-SRAY) to those retrieved locations: (TOP, BOTTOM, LEFT, RIGHT.)
The Move-to-set output propositions follow. The maps here are horizontal. That is,
they relate objects in one s-image to objects in the next s-image in the series.
(SRAY)
(SRAY IS-LOCATED-RELATION BOTTOM)
(SRAY MAPS-TO SRAY1)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [SRAY_MAPS-TO_SRAY1])
(LEFT-SRAY)
(LEFT-SRAY IS-LOCATED-RELATION LEFT)
(LEFT-SRAY MAPS-TO LEFT-SRAY1)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [LEFT-SRAY MAPS-TO_LEFT-SRAY1])
(RIGHT-SRAY)
(RIGHT-SRAY IS-LOCATED-RELATION RIGHT)
(RIGHT-SRAY MAPS-TO RIGHT-SRAY1)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [RIGHT-SRAY_MAPS-TO_RIGHT-SRAY1])
(TOP-SRAY) (TOP-SRAY IS-LOCATED-RELATION TOP)
(TOP-SRAY MAPS-TO TOP-SRAY1)

(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [TOP-SRAY_MAPS-TO_TOP-SRAY1])

2.1.2.6 Put-between

Put-between (see Algorithm 5) takes two objects that are assumed to be touching, and
places some third object in between them. In the new s-image 1) the two objects are no
longer touching and 2) the third is touching both of them. Put-between is used in the

Maxwell example, and will be described for that example in a later section.
2.1.2.7 Replicate

Replicate (see Algorithm 6) takes in an element or set of elements and generates n new

47

Algorithm 5 put-between
Input:
1. Some object getting put between others: object
2. Another object that the object is getting put between: object2
3. A third object on the other side of object from object2: object3
4. The horizontal mapping: hmapping
5. The system memory
Output:
1. A proposition describing that object is connected to object2
2. A proposition describing that object is connected to object3
3. A proposition describing that object2 is not connected to object 3.
4. horizontal maps between the old elements of the current s-image and new elements of
the next s-image.

Procedure:

memory < memory + make-relationship(object “is-connected-to” object2)
memory < memory + make-relationship(object “is-connected-to” object3)
memory < memory + make-relationship(object2 “is-not-connected-to” object3)
create horizontal maps between changed components

Table 9: Covlan’s primitive elements.

Primitive Element name ‘ attributes

connection | subject, object, angle, distance

rectangle | location, size, height, width, orientation
circle | location, size, height
line | location, length, end-pointl, end-point2, thickness

set | location, orientation, front, middle

curve | location, start-point, mid-point, end-point, thickness

instances of that element or elements in the next s-image. Its behavior is similar to
decompose, except that it does not change the size or thicknes of elements, and can work
on sets as well as single element instances. Replicate is used in the cognitive modelling,

and will be described for those examples in a later chapter.
2.1.3 Primitive Visual Elements

Covlan’s ontology of primitive visual elements (Table 9) contains: rectangle, circle,
line, and set. Symbols are connected to an element type with a relation called looks-1like-relation.

These symbols are instances of that element. The elements are frame-like structures with

48

Algorithm 6 replicate
Input:
1. some object to be replicated: object
2. the number of resulting objects: number-of-resultants
3. the horizontal mapping: hmapping
4. the system memory
Output:
1. For each new component, a proposition representing the new component.
2. For each new component, a proposition describing what that component looks like.
3. Horizontal maps between the old elements of the current s-image and new elements of
the next s-image.

Procedure:

type <« get-object-type(object)

new-objects «— create-new-objects(number-of-resultants)

memory < memory + create-relationships(new-objects, looks-like, type)
create horizontal maps between changed components

slots that can hold values. For example, a rectangle has a location, size, height,
width, and orientation. All elements can have a location, which holds a value repre-
senting an absolute location on an s-image (e.g. top, right).

See Figure 18 for an example of how instances of these elements can be arranged in an
s-image.

The set is a special element. A set can contain any number of instances of elements.
These instances are connected with relationships to the set with the in-set relation. Sets
also have an orientation, the value of which is one of the primitive directions. An
element instance in the set is specified in the representation as the front, and another as
the middle. The orientation is defined as an imaginary line from the middle to the front
in the direction specified in the orientation.

Sometimes a part of an element instance must be referenced. For example, if a line
touches the middle of another line, there must be some way to describe the end of the first
line and the middle of the next. In Covlan different primitive elements have different kinds
of areas.

Lines have start and end points, as well as right and left-side mid-points. The

element instance’s names are related to the symbols naming these areas (e.g. linel-end-point

with area-relations: has-end-point, has-start-point, has-rightsidemiddle, and

49

tumor-s—image3

has—eleme;Jt

; tumor

first-ray
second-ray
—= third-ray
—= fourth-ray———— 1
has
thickness
—= top-body-area—— W
thin
L right-body—-area———
—= |eft-body-area——
—= bottom-body-area—
looks-like
curve line circle

top bottom right left center

Figure 18: This Figure shows part of the third generated s-image in the tumor procedure.
Fach relationship is represented as an arrow. At the beginning of the arrow is the ThingX
of the relationship, and at the end of the arrow is the ThingY. The boxed text in the middle
of the arrow is the Relation. Kach string of unboxed text is a concept.

50

has-leftsidemiddle.

Circles, squares, and rectangles have sides, which are related to element instances
with the following relations: has-sidel (the top), has-side2 (the right side), has-side3
(the bottom), and has-side4 (the left side).

Many spatial relationships between primitive elements are represented with connections.
A connection is a primitive element with a name. Connections are frames with two four
slots: subject, object, angle and distance, represented with is-subject-for-connection,
is-object-for-connection, has-angle and has-distance. These relations connect the
connection name to distances and angles, which are qualitative miscellaneous slot
values. See Figure 19. The object of the connection is distance away from the subject

in the direction of angle.

squarel
is—subject-for-connectipn

— Squarel--square2-—connectior

is—object-for-connectio
square

Figure 19: A representation of the relationships involved with a connection. Square? is
a short distance to the right of squarel. Right-angle-cw means that the angle is a right
angle in the clock-wise direction.

= short-distance

~ right-angle-cw

The distances are touching-distance, short-distance and long-distance. The
angles are perpendicular-angle (straight ahead), right-angle-cw (a right angle in the
clockwise direction, or to the right), 45-angle-cw (a forty-five degree angle to the right),
45-angle-ccw (a forty-five degree angle in the counter-clockwise direction, or to the left),
and right-angle-ccw (a right angle to the left). Figure 20 shows the different kinds of
connections Covlan can represent. Areas of element instances, as well as element instances

themselves, can be connected.
2.1.4 Miscellaneous Slot Values

Miscellaneous slot values are symbols that can give a value to element attributes or

transformation arguments. See Table 10. They can be broken down into the following types:

51

perpendicular-angle

45-angle-ccw 45-angle-cw

right-angle-cc right-angle-cw

&, =
2)
g &

o
@, 3.
S,)
% %
® ®

Figure 20: Each of the fifteen black dots in the Figure represents a qualitative connection
area, with an angle and direction.

Table 10: Classifications of Miscellaneous Slot Values.

angles | perpendicular-angle, right-angle-cw,
45-angle-cw, 45-angle-ccw,
right-angle-ccw

locations | bottom, top, right, center, off-bottom
off-top, off-right, off-left
sizes | small, medium, large
thicknesses | thin, thick, very-thick
speeds | slow, medium, fast
directions | left, right, up, down
lengths | short, medium, long

1

angles, locations", sizes, thicknesses, numbers, speeds, directions, and lengths.

2.1.5 Primitive Visual Relations

The class of primitive visual relations (shown in Table 11) describe how certain vi-
sual elements relate to each other and miscellaneous slot values. Motion relations
describe how element instances are moving in an s-image. Rotating has the arguments

speed and direction.

1Relative locations, as opposed to absolute locations, are classified under primitive visual relations.

02

Table 11: Visual and Motion Relations.

Visual Relations | touching, above-below, right-of-left-of, in-front-of-behind, off-s-image

Motion Relations | rotationing, not-rotating

2.1.6 Analogy Representations

Covlan has representations for reasoning about analogies, similar to the analogy ontology
of Forbus, Mostek and Ferguson [29]. S-images can have analogies between them. Each
analogy can have any number of analogical mappings associated with it (determining which
mapping is the best is the mapping problem.) Each alignment between two element in-
stances or areas in a given mapping is called a map.?

Similarly s-images next to each other in sequences have transform-connections.
These are necessary so the agent can track how visual elements in a previous s-image
change in the next. A difference between analogies and transform-connections are that
there can be multiple analogical mappings for an analogy, but only one mapping for a
transform-connection. Mappings between sequential s-images are called horizontal
mappings (based on the way I have made my diagrams). Analogical mappings, between
source and target s-images are vertial mappings.

Transformations are attached, in fact, to a map between two elements in sequential
s-images. So if a rectangle changes into a circle, the agent knows which rectangle in

the previous s-image turns into which circle in the next s-image.

2.2 Inference and Processing

Analogy consists of several steps: retrieval is identifying a candidate source analog in mem-
ory; mapping is finding the best set of correspondences between components of the analogs;
transfer is the application of knowledge from the source analog to the target analog, which
might use various forms of adaptation; evaluation is determining if the target problem has
been solved appropriately; storage is storing the target analog in memory for potential reuse.

Galatea focuses on the transfer and adaptation stage of analogy. In particular, it adapts and

2A map is called a match hypothesis in the SME literature.[19]

93

transfers each transformation in the source problem to the target. The transformations
are transferred literally and the arguments of those transformations can be adapted.

For example, the transformation decompose is used to turn a primitive element
instance into some arbitrary number of resultants, taken as an argument. An argument of
a transformation can be an instance of one of three cases. First, the argument can be a
literal, like the number 4 or the location bottom. Literals are transferred unchanged to the
target.

Second, the argument could be a element instance member of the source s-image. In
this case, the transfer procedure operates on the analogous element in the target s-image.
For example, in the first transformation in the fortress story, the decomposed source
soldier path gets adapted to the ray in the target tumor problem.

In the third case, the argument can be a function. Since this case does not occur in
the fortress/tumor problem, we will use another example to describe it. Let us suppose
that a reasoner needs to feed six people with one Sicilian slice sheet pizza. An analog in
memory of cutting a sheet cake for four people is used to generate a solution. Transfer is
still difficult because somehow the four in the cake analog must be adapted to the number
six in the source analog. Knowing how many pieces into which to cut the cake or pizza
depends on the number of people in each problem. Some notion of count is needed. The
use of functions as arguments to transformations addresses this problem. The cake
analog is represented with a function that counts the number of people as its argument
for the decompose transformation. This function has an argument of its own, namely the
set of cake eaters, which during adaptation adapts into the set of pizza eaters. When the
transformation is applied to the pizza, it counts the members of the set of people in the
pizza problem (which results in six). Decompose produces six pieces of pizza in the next

s-image.

2.3 Algorithm

Following is an informal description of Galatea’s main algorithm, using the fortress/tumor

problem as a running example.

o4

Algorithm 7 main-algorithm
Input:
1. Source
2. Target problem
3. Vertical mapping between source and target
Output:
1. A set of new target knowledge states
2. Vertical mappings between corresponding source and target states
3. Horizontal mappings between successive target states
4. Transformations connecting successive target states

Procedure

while more-source-states(goal-conditions, memory) do
current-s-image «— get-next-target-s-image(target problem, current-s-image)
current-source-s-image «— get-next-source-s-image(source, current-source-s-image)
current-transformation < get-transformation(current-s-image)
current-arguments «— get-arguments(current-source-s-image)
source-objects-of-transformation < get-target-object-of-trans(current-source-s-image)
current-vertical-mapping <« get-mapping(current-target-s-image, current-source-s-
image)
target-object-of-transformation — get-source-object-of-transformation(current-
vertical-mapping, source-objects-of-transformation)
target-arguments <« adapt-arguments(get-arguments(current-source-s-image, current-
source-s-image))
memory < memory + apply-transformation(current-transformation, target-object-of-
transformation, target-arguments)
memory <« memory + create-horizontal-mapping(current-target-s-image, get-next-
target-s-image)
current-target-s-image «— get-next-target-s-image
current-source-s-image «— get-next-source-s-image
memory < memory + carry-over-unchanged-relationships(applied-transformation)
memory «— memory + create-vertical-mapping(current-target-s-image, current-source-
s-image)

95

s-image} s-image:
top-
roadl
mov
fortress1 | Mght= fortress2 to- fortress3
set
R roadl LI——> o~ Cj
ﬁ decompos 7 mal
may I] may
mappin mappin mappi
s-image: s-image: s-imag
top—
bodyl move)

left- right= 1508’[
body{ body1 tumor2, tumor;

decompos|
maj

ma|

Output by Galatea

Figure 21: This Figure shows Galatea’s input and output for the fortress/tumor problem.
The top series of s-images in the Figure shows the visual representation of the solved
fortress problem. The bottom series shows the target tumor problem. The bottom left
s-image is the initial state of the tumor problem. The shaded box shows the output of the
system.

In this subsection the reader should refer to Figure 21. A more formal representation

of this algorithm can be found at Algorithm 7.

1. Identify the first s-images of the target and source cases. These are the

current source and target s-images.

2. Identify the transformations and their associated arguments in the current
s-image of the source case. This step finds out how the source case gets from its
current s-image to the next s-image. In the fortress/tumor example, the transforma-

tion is decompose, with four as the number-of-resultants argument (not shown).

3. Identify the objects of the transformations. The object of the transformation is
what object, if any, the transformation acts upon. For the decompose transformation,
the object is the soldier-pathl (the thick arrow in the top left s-image in Figure

21.)

4. Identify the corresponding objects in the target problem. Rayl (the thick
arrow in the bottom left s-image) is the corresponding component of the source case’s
soldier-pathl, as specified by the mapping between the current source and target

s-images (not shown). A single object can be mapped to any number of other objects.

56

If the object in question is mapped to more than one other object in the target, then

the same transformation is applied to all of them in the next step.

. Apply the transformation with the arguments to the target problem com-
ponent. A new s-image is generated for the target problem (bottom middle) to
record the effects of the transformation. The decomposetransformation is applied
to the rayl, with the argument four. The result can be seen in the bottom middle
s-image in Figure 21. The new rays are created for this s-image. Adaptation of
the arguments can happen in three ways, as described above: If the argument is an
element of the source s-image, then its analog is found. If the argument is a function,
then the function is run (note that the function itself may have arguments which follow
the same adaptation rules as transformation arguments). Otherwise the arguments

are transferred literally.

. Map the original objects in the target to the new objects in the target. A
transform-connection and mapping are created between the target problem s-image
and the new s-image (not shown). Maps are created between the corresponding
objects. In this example it would mean a map between ray1 in the left bottom s-image
and the four rays in the second bottom s-image. A map is also created between
the rayl to the set of thinner rays. Galatea does not solve the mapping problem,
but a mapping from the correspondences of the first s-image enables Galatea to

automatically generate the mappings for the subsequent s-images.

. Map the new objects of the target case to the corresponding objects in the
source case. Here the rays of the second target s-image are mapped to soldier paths
in the second source s-image. This step is necessary for the later iterations (i.e. going
on to anothertransformation and s-image). Otherwise the reasoner would have no
way of knowing on which parts of the target s-image the later transformations would

operate.

. Check to see if there are any more source s-images. If there are not, exit, and

the solution is transferred. If there are further s-images in the source case, set the

o7

current s-image equal to the next s-image and go to step 1.

In the fortress/tumor example, the input to the main algorithm is

tumor-problem
fortress-problem memory.

Now I will describe the output produced by Galatea.

First the new objects are created: SRAY1, LEFT-SRAY1, RIGHT-SRAY1, TOP-SRAY1, and
set7. As far as Galatea is concerned, the symbol names could be anything; they have
meaningful names only so they make sense to humans reading the input and output. “Sray”
is short for “solution ray,” to distinguish it from the ray in the problem state. The “1” is
my notation, in this example, that it is not the ray in the final state, but in the intermediate
state.

(SRAY1) (LEFT-SRAY1) (RIGHT-SRAY1) (TOP-SRAY1) (SET7)

The following chunks place the different objects in the set:
(SET7 LOOKS-LIKE-RELATION SET)

(SRAY1 IN-SET SET7)

(LEFT-SRAY1 IN-SET SET7)

(RIGHT-SRAY1 IN-SET SET7)

(TOP-SRAY1 IN-SET SET7)

The objects are now thin, not thick, and are specified as being lines:
(SRAY1 HAS-THICKNESS THIN)
(LEFT-SRAY1 HAS-THICKNESS THIN)
(RIGHT-SRAY1 HAS-THICKNESS THIN)
(TOP-SRAY1 HAS-THICKNESS THIN)
(SRAY1 LOOKS-LIKE-RELATION LINE)
(LEFT-SRAY1 LOOKS-LIKE-RELATION LINE)
(RIGHT-SRAY1 LOOKS-LIKE-RELATION LINE)

(TOP-SRAY1 LOOKS-LIKE-RELATION LINE)

o8

The s-images are connected with a transform-connection, which has a mapping.
(TUMOR-PROBLEM TRANSFORM-CONNECTION TUMOR-SIMAGE2)
([TUMOR-PROBLEM_TRANSFORM-CONNECTION TUMOR-SIMAGE2]

HAS-MAPPING TUMOR-PROBLEM-SIMAGE2-MAPPING1)

In the following propositions Galatea connects the new objects created to the object it
came from in the previous s-image (horizontal maps). All the new objects map to ray.
These maps are also connected to the horizontal mapping between the problem and the
second s-image.

(TUMOR-PROBLEM-SIMAGE2-MAPPING1
HAS-MAP [RAY MAPS-TO_SRAY1])

(RAY MAPS-TO SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1
HAS-MAP [RAY_MAPS-TO_LEFT-SRAY1])
(RAY MAPS-TO LEFT-SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1
HAS-MAP [RAY_MAPS-TO_RIGHT-SRAY1])
(RAY MAPS-TO RIGHT-SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1
HAS-MAP [RAY_MAPS-TO_TOP-SRAY1])
(RAY MAPS-TO TOP-SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1
HAS-MAP [SET7_MAPS-TO_RAY])

(SET7 MAPS-TO RAY)

The unchanged objects in the previous s-image are carried over to the new s-image,

with new symbol names.? Also, relations that describe them are also carried over. The new

3The new symbol names come from a function that returns an appropriate new symbol name. These

99

s-image, tumor-simage2, must contain the new objects.
(TUMOR-SIMAGE2)

(TUMOR-SIMAGE2 CONTAINS-0BJECT TOP-BODY-S2)

(TOP-BODY-S2)

(TOP-BODY-S2 LOOKS-LIKE-RELATION CIRCLE)

(TOP-BODY-S2 HAS-START-POINT-RELATION TOP)

(TUMOR-SIMAGE2 CONTAINS-0BJECT RIGHT-BODY-S2) (RIGHT-BODY-S2)

(RIGHT-BODY-S2 LOOKS-LIKE-RELATION CIRCLE)

(RIGHT-BODY-S2 HAS-START-POINT-RELATION RIGHT)

(TUMOR-SIMAGE2 CONTAINS-OBJECT LEFT-BODY-S2) (LEFT-BODY-S2)

(LEFT-BODY-S2 LOOKS-LIKE-RELATION CIRCLE)

(LEFT-BODY-S2 HAS-START-POINT-RELATION LEFT)

(TUMOR-SIMAGE2 CONTAINS-0BJECT BODY-S2) (BODY-S2)

(BODY-S2 LOOKS-LIKE-RELATION CIRCLE)

(BODY-S2 HAS-START-POINT-RELATION BOTTOM)

(TUMOR-SIMAGE2 CONTAINS-0BJECT SET9)

(SET9)

(BODY-S2 IN-SET SET9)

(LEFT-BODY-S2 IN-SET SET9)

(RIGHT-BODY-S2 IN-SET SET9)

(TOP-BODY-S2 IN-SET SET9)

(SET9 LOOKS-LIKE-RELATION SET)

(TUMOR-SIMAGE2 CONTAINS-0BJECT TUMOR-S2)

(TOP-SRAY1 HAS-START-POINT-RELATION BOTTOM)

(TUMOR-S2)

(TOP-SRAY1 HAS-END-POINT-RELATION TUMOR-S2)

(BODY-S2 HAS-END-POINT-RELATION TUMOR-S2)

(LEFT-BODY-S2 HAS-END-POINT-RELATION TUMOR-S2)

names are hand-coded for readability.

60

(RIGHT-BODY-S2 HAS-END-POINT-RELATION TUMOR-S2)
(TOP-BODY-S2 HAS-END-POINT-RELATION TUMOR-S2)
(TUMOR-S2 LOOKS-LIKE-RELATION CIRCLE)

(TUMOR-S2 HAS-LOCATION-RELATION CENTER)

(TUMOR-S2 HAS-SIZE-RELATION SMALL)

The new s-image contains the new objects.
(TUMOR-SIMAGE2 CONTAINS-0BJECT TOP-SRAY1)
(TUMOR-SIMAGE2 CONTAINS-0BJECT SRAY1)
(TUMOR-SIMAGE2 CONTAINS-O0BJECT RIGHT-SRAY1)

(TUMOR-SIMAGE2 CONTAINS-0BJECT LEFT-SRAY1)

Galatea also puts in the vertical maps between the second source s-image and the sec-
ond target s-image.
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [LEFT-SRAY1_MAPS-TO_LEFT-SSOLDIER1-PATH])
(LEFT-SRAY1 MAPS-TO LEFT-SSOLDIER1-PATH)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [RIGHT-SRAY1_MAPS-TO_RIGHT-SSOLDIER1-PATH])
(RIGHT-SRAY1 MAPS-TO RIGHT-SSOLDIER1-PATH)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1 HAS-MAP [SET7_MAPS-TO_SET3])
(SET7 MAPS-TO SET3)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [SRAY1 MAPS-TO_SSOLDIER1-PATH])
(SRAY1 MAPS-TO SSOLDIER1-PATH)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [TOP-SRAY1 MAPS-TO_TOP-SSOLDIER1-PATH])
(TOP-SRAY1 MAPS-TO TOP-SSOLDIER1-PATH)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [TUMOR_MAPS-TO_TUMOR-S2])

61

(TUMOR MAPS-TO TUMOR-S2)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [SET2_MAPS-TO_SET9])
(SET2 MAPS-TO SET9)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [BODY_MAPS-TO_BODY-S2])
(BODY MAPS-TO BODY-S2)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [LEFT-BODY_MAPS-TO_LEFT-BODY-S2])

(LEFT-BODY MAPS-TO LEFT-BODY-S2)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [RIGHT-BODY_MAPS-TO_RIGHT-BODY-S2])

(RIGHT-BODY MAPS-TO RIGHT-BODY-S2)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [TOP-BODY MAPS-TO_TOP-BODY-S2])

(TOP-BODY MAPS-TO TOP-BODY-S2)

Having finished completing the second s-image, Galatea produces the third s-image in
the series. It generates propositions representing the things to be moved, with their new
locations.

(SRAY)

(SRAY IS-LOCATED-RELATION BOTTOM)
(TOP-SRAY)

(TOP-SRAY IS-LOCATED-RELATION TOP)
(LEFT-SRAY)

(LEFT-SRAY IS-LOCATED-RELATION LEFT)
(RIGHT-SRAY)

(RIGHT-SRAY IS-LOCATED-RELATION RIGHT)

The horizontal maps between the previous and new s-image for the changed objects:
(SRAY MAPS-TO SRAY1)

(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [SRAY MAPS-TO_SRAY1])

62

(LEFT-SRAY MAPS-TO LEFT-SRAY1)

(TUMOR-SIMAGE2-SOLUTION-MAPPING1

HAS-MAP [LEFT-SRAY MAPS-TO_LEFT-SRAY1])

(TOP-SRAY MAPS-TO TOP-SRAY1)

(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [TOP-SRAY MAPS-TO_TOP-SRAY1])
(RIGHT-SRAY MAPS-TO RIGHT-SRAY1)

(TUMOR-SIMAGE2-SOLUTION-MAPPING1

HAS-MAP [RIGHT-SRAY MAPS-TO_RIGHT-SRAY1])

The horizontal maps for unchanged objects:
(TOP-BODY-S2 MAPS-TO TOP-BODY-S3)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1
HAS-MAP [RIGHT-BODY-S2_MAPS-TO_RIGHT-BODY-S3])
(RIGHT-BODY-S2 MAPS-TO RIGHT-BODY-S3)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1
HAS-MAP [LEFT-BODY-S2_MAPS-TO_LEFT-BODY-S3])
(LEFT-BODY-S2 MAPS-TO LEFT-BODY-S3)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [BODY-S2_MAPS-T0_BODY-S3])
(BODY-S2 MAPS-TO BODY-S3)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [SET9_MAPS-TO_SET10])
(SET9 MAPS-TO SET10)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [TOP-SRAY1_MAPS-TO_TOP-SRAY])
(TOP-SRAY1 MAPS-TO TOP-SRAY)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1 HAS-MAP [TUMOR-S2_MAPS-TO_TUMOR-S3])

(TUMOR-S2 MAPS-TO TUMOR-S3))

As well as the horizontal analogy representations:
(TUMOR-SIMAGE2 TRANSFORM-CONNECTION TUMOR-SOLUTION)

([TUMOR-SIMAGE2_TRANSFORM-CONNECTION_TUMOR-SOLUTION] HAS-MAPPING

63

TUMOR-SIMAGE2-SOLUTION-MAPPING1)

The vertical maps between the source and target s-images:
(FORTRESS-SOLUTION-TUMOR-SOLUTION-MAPPING1
HAS-MAP [SET8_MAPS-TO_LEFT-SSOLDIER-PATH])
(SET8 MAPS-TO LEFT-SSOLDIER-PATH)
(TUMOR-SIMAGE2-SOLUTION-MAPPING1

HAS-MAP [TOP-BODY-S2_MAPS-TO_TOP-BODY-S3])

The unchaged objects and relations:
(TUMOR-SOLUTION CONTAINS-OBJECT TUMOR-S3)
(TUMOR-SOLUTION)

(TUMOR-S3)

(TUMOR-S3 LOOKS-LIKE-RELATION CIRCLE)
(TUMOR-S3 HAS-LOCATION-RELATION CENTER)
(TUMOR-S3 HAS-SIZE-RELATION SMALL)
(TUMOR-SOLUTION CONTAINS-OBJECT TOP-SRAY) (TOP-SRAY IN-SET SET8)
(SET8)

(TOP-SRAY HAS-THICKNESS THIN)

(TOP-SRAY LOOKS-LIKE-RELATION LINE)
(TOP-SRAY HAS-START-POINT-RELATION BOTTOM)
(TOP-SRAY HAS-END-POINT-RELATION TUMOR-S3)
(TUMOR-SOLUTION CONTAINS-O0BJECT SET10)
(SET10)

(SET10 LOOKS-LIKE-RELATION SET)
(TUMOR-SOLUTION CONTAINS-OBJECT BODY-S3)
(BODY-S3)

(BODY-S3 LOOKS-LIKE-RELATION CIRCLE)

(BODY-S3 HAS-START-POINT-RELATION BOTTOM)

64

(BODY-S3 IN-SET SET10)

(BODY-S3 HAS-END-POINT-RELATION TUMOR-S3)
(TUMOR-SOLUTION CONTAINS-OBJECT LEFT-BODY-S3)
(LEFT-BODY-S3)

(LEFT-BODY-S3 LOOKS-LIKE-RELATION CIRCLE)
(LEFT-BODY-S3 HAS-START-POINT-RELATION LEFT)
(LEFT-BODY-S3 IN-SET SET10)

(LEFT-BODY-S3 HAS-END-POINT-RELATION TUMOR-S3)
(TUMOR-SOLUTION CONTAINS-OBJECT RIGHT-BODY-S3) (RIGHT-BODY-S3)
(RIGHT-BODY-S3 LOOKS-LIKE-RELATION CIRCLE)
(RIGHT-BODY-S3 HAS-START-POINT-RELATION RIGHT)
(RIGHT-BODY-S3 IN-SET SET10)

(RIGHT-BODY-S3 HAS-END-POINT-RELATION TUMOR-S3)
(TUMOR-SOLUTION CONTAINS-OBJECT TOP-BODY-S3)
(TOP-BODY-S3)

(TOP-BODY-S3 LOOKS-LIKE-RELATION CIRCLE)
(TOP-BODY-S3 HAS-START-POINT-RELATION TOP)
(TOP-BODY-S3 IN-SET SET10)

(TOP-BODY-S3 HAS-END-POINT-RELATION TUMOR-S3)

2.3.1 Adapt-arguments

When an argument needs to be adapted to the target analog, Galatea looks at the argument
and determines whether it is a literal, a function, or a component of an s-image.
Literals are returned verbatim. If the argument is a function (e.g. the number of people in
a group) then Galatea applies the same function to the analogous group in the target and
returns that value. If the argument is a component, then Galatea returns the analogous
object in the target.

In the fortress/tumor problem, the adapt-arguments algorithm takes in the symbols

65

Algorithm 8 adapt-arguments
Input:
1. argument
2. mapping
Output:
1. an adapted argument.

Procedure:
if literal? argument then
return argument
else if function? argument then
return calculate-function(argument)
else if component? argument then
return (get-analogous-component(argument, mapping))

FOUR and FORTRESS-PROBLEM-TUMOR-PROBLEM-MAPPING1. Since FOUR is in Galatea’s list of

literals, it executes the “literal” case and returns the symbol as is: FOUR.
2.3.2 Carry-over-unchanged-relationships

Following is a description of the carry-over-unchanged-relationships function. See
Algorithm 9. The get-analogous-chunks sub-function constructs returns chunks that are
identical to the input chunks, except that the symbols that have maps in the input mapping
are replaced with those symbols they are associated with in those maps. The vertical
map relationships are carried over as well, constituting the vertical maps for unchanged

components.

Algorithm 9 carry-over-unchanged-relationships

Input:

1. The Memory: memory

2. The horizontal mapping: h-mapping
3. Transformation

4. Previous-s-image

Output:

1. Analogous chunks.

Procedure:

new-chunks « get-chunks((run-transformation(transformation))
old-analogous-chunks « get-analogous-chunks(new-chunks, h-mapping)
old-chunks « get-all-chunks(previous-s-image)

chunks-to-transfer < old-chunks — old-analogous-chunks

memory < memory + create-analogous-chunks(chunks-to-transfer, h-mapping)

66

Algorithm 10 creation-of-horizontal-maps-between-changed-components

Input:

1. Transformation results

2. Target-objects-of-transformation

Output:

1. New horizontal maps between the current and next target s-image.

Procedure:

post-transform-components < get-chunks((run-transformation(transformation))
memory < memory -+ create-maps(post-transform-components, target-objects-of-
transformation)

2.3.3 Creation-of-horizontal-maps-between-changed-components

The creation-of-horizontal-maps-between-changed-components (see Algorithm 10)
is embedded in each of the transformations. The transformation results are obtained
from running the transformation. The target-objects-of-transformation are known
because they are the input to the transformation. The two lists are put in alphabetical
order and maps are created between each nth list object.

The output is:

(SET7 MAPS-TO RAY)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [RAY_MAPS-TO_SRAY1])
(RAY MAPS-TO SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [RAY MAPS-TO_LEFT-SRAY1])
(RAY MAPS-TO LEFT-SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [RAY_MAPS-TO_RIGHT-SRAY1])
(RAY MAPS-TO RIGHT-SRAY1)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [RAY MAPS-TO_TOP-SRAY1])
(RAY MAPS-TO TOP-SRAY1)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1 HAS-MAP [SET7_MAPS-TO_RAY])

Similarly, creation-of-horizontal-maps-between-unchanged-components (see Al-
gorithm 11) makes maps between old objects (the objects in the old-s-image and new

objects (from the current-s-image, minus the objects created by the transformation),

67

Algorithm 11 creation-of-horizontal-maps-between-unchanged-components
Input:
1. Transformation results

Old-s-image

Current-s-image

Post-transform-components

Old-components

. Current-components

Output:

1. new horizontal maps between the current and next target s-image.

SRS

Procedure:
old-components < get-all-components(old-s-image) — target-objects-of-transformation
current-components « get-all-components(current-s-image) — post-transform-
components

memory < memory + create-maps(old-components, current-components)

alphabetizes them, and creates maps between the nth item in each list.
The output follows. Set2 is the set of body areas in the first s-image, and set9 is the

set of body areas in the second s-image.
(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [TUMOR_MAPS-TO_TUMOR-S2])

(TUMOR MAPS-TO TUMOR-S2)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [RAY_MAPS-TO_TOP-SRAY1])

(RAY MAPS-TO TOP-SRAY1)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [SET2_MAPS-TO_SET9])

(SET2 MAPS-TO SET9)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [BODY_MAPS-TO_BODY-S2])

(BODY MAPS-TO BODY-S2)

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [LEFT-BODY_MAPS-TO_LEFT-BODY-S2])

(LEFT-BODY MAPS-TO LEFT-BODY-S2)

68

(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [RIGHT-BODY_MAPS-TO_RIGHT-BODY-S2])
(RIGHT-BODY MAPS-TO RIGHT-BODY-S2)
(TUMOR-PROBLEM-SIMAGE2-MAPPING1

HAS-MAP [TOP-BODY_MAPS-TO_TOP-BODY-S2])

(TOP-BODY MAPS-TO TOP-BODY-S2))

Algorithm 12 creation-of-vertical-maps-between-changed-components
Input:
1. Target transformation results
2. Source transformation results
3. New-target-components
4. New-source-components
Output:
1. new vertical maps between the current source and target s-images.

Procedure:

new-target-components « target transformation results

new-source-components «— source transformation results

memory < memory + create-maps(new-target-components, new-source-components)

2.3.4 Creation-of-vertical-maps-between-changed-components

The algorithm for creating vertical maps between changed components (see Algorithm 12)
takes as input the transformation results in the source and target, alphabetizes them, and
creates maps between the nth item in each list.

Output:

(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [LEFT-SRAY1_MAPS-TO_LEFT-SSOLDIER1-PATH])
(LEFT-SRAY1 MAPS-TO LEFT-SSOLDIER1-PATH)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [RIGHT-SRAY1_MAPS-TO_RIGHT-SSOLDIER1-PATH])
(RIGHT-SRAY1 MAPS-TO RIGHT-SSOLDIER1-PATH)

(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1

69

Table 12: Primitive elements from fortress problem s-image 1.

Visual Object ‘ attributes ‘ value

Fortress looks-like: curve

location: center

Bottom-road looks-like: line

Right-road looks-like: line

Left-road looks-like: line

Top-road looks-like: line

Soldier-path looks-like: line
location: bottom-road

thickness: thick

HAS-MAP [SET7_MAPS-TO_SET3])

(SET7 MAPS-TO SET3)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [SRAY1 MAPS-TO_SSOLDIER1-PATH])

(SRAY1 MAPS-TO SSOLDIER1-PATH)
(FORTRESS-SIMAGE2-TUMOR-SIMAGE2-MAPPING1
HAS-MAP [TOP-SRAY1 MAPS-TO_TOP-SSOLDIER1-PATH])

(TOP-SRAY1 MAPS-TO TOP-SSOLDIER1-PATH)

2.4 The Fortress/Tumor Problem

I chose the fortress/tumor example because some experimental participants have used vi-
sual inferences in solving it [43]. Table 12 shows some of the visual elements and their

attribute values for the first fortress problem s-image.

I represented the fortress story with three s-images (see Figure 21.) The first is a
representation of the original fortress problem. It has four roads, represented as thick
lines, radiating out from the fortress, which was a curve in the center (curves are

used to represent irregular shapes). I represented the original soldier path as a thick

70

line on the bottom road. This s-image was connected to the second with a decompose
transformation, where the arguments were soldier-pathl for the object and four for
the number-of-resultants. The second s-image shows the soldier-pathl decomposed
into four thin lines, all still on the bottom road. The lines are thinner to represent
smaller groups.

I represented the start state of the tumor problem as a single s-image. The tumor itself
is represented as a curve. The ray of radiation is a thick line that passes through the
bottom body part.

In the fortress/tumor example, after the decompose transformation generates a num-
ber of smaller armies (by transforming a thick line into thinner lines), those armies must be
dispersed to the various roads, in various locations in the image. In a previous version of
this model [12, 13] each army line was moved-to-location individually to each road line.
This solution was brittle because the number of roads to which the armies moved needed
to match exactly the number of body areas the weaker rays moved to in the target.

The model now uses sets to address this problem. By grouping the armies, roads,
rays, and body parts into their own sets, Galatea adapts the solution in the source ana-
log to accommodate differing numbers of any of these elements. Rather than using the
move-to-location transformation on each army, it uses move-to-set to the change the
location of the set of armies. The argument to this function is a set of roads. The
move-to-set function takes one set and distributes its members around the locations of
another set.

I have described in some detail the how the fortress/tumor example was implemented
in Galatea. This example shows the system’s robustness with respect to transfer when

different set sizes come into play.

2.5 The Cake/Pizza Problem

I chose the Cake/Pizza problem to demonstrate Galatea’s adaptation ability with respect
to the transformation arguments. For this problem Galatea is given the target problem of

feeding six people with one pizza. It is also given a source analog in which a cake is cut

71

into four pieces for four people. The two states connected at the top of Figure 22 illustrate
the source analog; the first state at the bottom series in the Figure illustrates the target
problem.

The cake analog contains only two s-images, the initial and the goal s-images, as
illustrated in Figure 22. For the cake analog, Galatea represents the initial s-image as a
rectangle of a specific size, and the goal s-image as four, smaller rectangles. For the
target pizza analog, Galatea initially knows only the initial s-image and represents the
pizza as a rectangle (see the left side of the target in Figure 22).

In the cake analog, the decompose transformation takes one shape (the rectangle)
and a number n (an argument of the transformation) and results in n smaller pieces of
the same shape.* Galatea initially does not know of any transformations for the target
pizza problem.

Note that this is all the knowledge that Galatea has about the source analog and the
target problem. That is, it does not know of any conceptual hierarchy that specifies that
cake and pizza are, for example, similar food categories. It does not even know that there
are goals in the source cake analog and the target pizza analog,, let alone that the two goals
are similar. The reason that the source cake analog may be used given the target pizza
problem is the similarity in their shapes (which is why both are represented as rectangles),
and not because of any similarity between their food categories or the goals in the source
and target problems. To introduce the latter kind of knowledge would amount to use of
non-visual knowledge, and is therefore beyond Galatea’s intended scope.

The question now becomes how Galatea can transfer knowledge of the decompose
transformation from the source cake analog to the target pizza analog. For the current
example, this is quite simple: Galatea knows that the rectangle representing the pizza in
the initial s-image of the target problem corresponds to the rectangle representing the cake

in the initial s-image in the source. Therefore, it attempts to transfer the s-images and

“The decompose transformation cannot break up one shape into n smaller different shapes, as one might
cut a round pizza into roughly triangular shapes. To do this would require changing the transformation so
that it either had a complex notion of how shapes can be sectioned, or took as an argument the resultant
shapes.

72

SOURCE CASE

cake s-image 1 cake s-image 2

cake

cake set 3

DECOMPOSE

|j object: cake
people set 1 n=size of set 1
o O O O

mapping mapping

pizza s-image 1 pizza s-image 2

people set 2

OO0 O OO0

pizza set 4
DECOMPOSE l:l l:l l:l

object: pizza
n= size of set 2

TARGET PROBLEM Output by the Galatea

Figure 22: The two s-images along the top are the representation of the cake analog. The
decompose transformation turns the rectangle representing the cake into four pieces of
cake in s-image 2. It gets the number four by evaluating the function that gets the size of
the set of people. The same thing happens in the target problem, but since the set size is
different, it results in six rather than four pieces in the second s-image.

transformations following the initial s-image in the source to the target.

One source of difficulty here is that while the number of people in the cake analog
is six, the number of people in the pizza problem is four (a different number). Galatea
uses the concepts of sets and members of a group to address this issue. It explicitly
represents the people as belonging to a set in the source and target analogs. The decompose
transformation takes, as an argument, a set which is counted for each analog: in the cake
analog, this set contains six members, in the target problem it contains four. When the
decompose transformation is transferred to the target pizza problem, it is instantiated
with the count of the set of people in that problem. When the transformation is executed,

it generates six smaller rectangles in the goal s-image of the target problem.

2.6 The Mazxzwell Example

The next example is the model of the construction process James Clerk Maxwell used
in deriving the electromagnetic field equations. The interpretation I employed is taken
from Nersessian’s cognitive-historical analysis of James Clerk Maxwell’s problem solving
[55, 56, 58, 57, 59]. I will present here only in broad terms and refer you to Nersessian’s

extensive research for the details.

73

Maxwell’s problem was the mathematization of the electromagnetic field concept. In
Maxwell’s model of electromagnetism, the ether between magnets swirl into vortices, which
are all spinning in the same direction. The spinning causes the vortices to shorten, pulling
the magnets together. Maxwell constructed this vortex-fluid model through an analogy

with continuum mechanics.

Figure 23: Many vortices packed together.

Figure 23 is drawn from Maxwell’s description of the aether and the vortices. I do not
assume his mental model had this level of detail. In thinking about how electricity relates
to magnetism he needed to consider multiple vortices and their interaction. Nersessian
hypothesizes that a generic cross section as drawn in Figure 24 approximates his mental
model at this stage of problem solving. Making topological changes of this kind to imagined
physical systems has been shown in our earlier work to be useful in problem solving [38, 39,
40].

Since Maxwell assumed the vortices were spinning in the same direction, he found a
problem in the model: friction would cause the vortices to slow or stop. Figure 25, drawn
by Maxwell, shows his solution to this problem. He introduced what he called “idle wheel
particles” spinning in the opposite direction between the vortices. He used this model in
the further derivation of the mathematical laws of the electromagnetic field. Nersessian
mounts a sustained argument for the generativity of the models in Maxwell’s derivation in

her work.

74

Figure 24: Cross-section of the vortices.

Figure 25: Maxwell’s drawing of the wheels in the vortices ([51] p.489).

75

The next issue was that of how Maxwell got the idea to put in the idle wheel particles.
Nersessian hypothesizes that Maxwell used a visual analogy drawn from another model in
memory to obtain the notion of the idle wheels and then transfer the notion to the vortex
model. Maxwell noted that in machine mechanics such problems are solved with idle wheels
[50]. But gear systems and continuum mechanical systems, such as the vortex fluid model,
are quite different. She hypothesizes that understanding the cross-sectional model of the
vortices generically as “spinning wheels” enabled Maxwell to retrieve his knowledge of gear
systems which in turn enabled him to generate the abstraction of “dynamically smooth

connectors” and instantiate it as “idle wheels” between vortices in the model.

Generic Abstraction

Abstraction Perceptual Retrieval
Spinning Wheeld
Model

Idle

Wheel
Idle Wheel
Particles

Machine Gears

Fly wheels

Dynamically Smooth
Connectors Abstraction
Specification

Generic Abstraction

Model

Figure 26: The analysis of how Maxwell transferred the idea of the dynamically smooth
connectors from the gear system model to the vortex idle wheel model through the use of
a generic abstraction.

Figure 26 summarizes Nersessian’s analysis of the process through which Maxwell cre-
ated the analogy. The vortices in the initial vortex model were abstracted into generic
spinning wheels. Then, the abstraction was used as a probe to retrieve the gear system
model, which was perceptually similar to it. This model contained the notion of fly wheels
acting between gears to keep them moving. The fly-wheel mechanism was abstracted to
the generic notion of a dynamically smooth connector. From there it was specified into the
idle wheel particles in the new vortex idle wheel model. Galatea models the transfer of the
solution from the generic abstraction to the vortex model.

There is reason to think that Maxwell used visual reasoning in this episode because

76

he used visual language, drew visual representations, and explicitly discussed the analogy
when describing the system, e.g., “We have obtained a point of view from which we may
regard the relation of an electric current to its lines of force as analogous to the relation of

a toothed wheel or rack to wheels which it drives.” [51](p472).

circle3

circle5
circlel

circle4

Spinning wheels
generic model Add—-componen
Transformation Betwee
: dynamicall
circle2){smooth Y
connector circle6

analog
vortex5
analog% vortex3 analogb_/
vortex1

Vortex

e

©
N

OO

(2O

Model
L]l__Add-component__| vortex4
vortex2 Transformation @ Betwee
’_, dle vortexo|
wheel
OEtpUt particlel
y
Galatea @

Figure 27: The source and target analogs for the Galatea implementation of the Maxwell
example. The top s-image series represents the source analog. The shaded area represents
the output of Galatea as a result of the analogical transfer.

Figure 27 is a diagram of the input to Galatea for the Maxwell case. S1, S2, and
S3 refer to s-images for each series. The circle represents the generic spinning wheels
pictured in the cross section of the vortices (Figure 27). The idle wheels are represented as
circles. In his drawing of the solution Maxwell exaggerated the deviation of the vortices
from circles, rendering them as hexagonal cross sections in order to emphasize the packing of
the idle wheel particles between them. However, in the mathematical analysis he treated the
vortices as rigid pseudo spheres and a generic cross section of these would be approximately
circular, as in Figure 24. I used the primitive element circle for this reason. There is an
analogy between the two first s-images. Mapping is enabled by the visual abstraction: Even
though spinning vortices will not always look like circles, as discussed above, generically they

approximate circles, facilitating the analogy.

7

The idle wheel particles are added with the transformation add-element. As shown in
Figure 27, the first two s-images in the spinning wheels generic model are connected with
an add-element transformation, which adds the dynamically smooth connector, which
looks like a small circle. Its exact location is unspecified, since one can have an attribution
of what something is without knowing exactly where it is (corresponding to the different
what/where pathways in the brain.)

The ouput of this instance of add-element results in the following propositions:
(VORTEX-IDLEWHEEL)

(VORTEX-IDLEWHEEL LOOKS-LIKE-RELATION CIRCLE)
(VORTEX-IDLEWHEEL MAPS-TO NOTHING)
(VP-SIMAGE1-VP-SIMAGE2-MAPPING1

HAS-MAP [VORTEX-IDLEWHEEL_MAPS-TO_NOTHING])

(VP-SIMAGE2 HAS-COMPONENT VORTEX-IDLEWHEEL)

The second transformation, put-between, places the new idle-wheel circle in between
the other spinning vortex circles, resulting in the final s-image.

The output of the second transformation is:

(VORTEX-IDLEWHEEL2)
(VORTEX-IDLEWHEEL2 LOOKS-LIKE-RELATION CIRCLE)
(MAIN-VORTEX3 IS-NOT-CONNECTED-TO 2ND-VORTEX3)
(MAIN-VORTEX3 IS-CONNECTED-TO VORTEX-IDLEWHEEL2)
(2ND-VORTEX3 IS-CONNECTED-TO VORTEX-IDLEWHEEL2)
([MAIN-VORTEX3_IS-CONNECTED-TO_VORTEX-IDLEWHEEL2]
HAS-ARGUMENT TOUCHING)
([2ND-VORTEX3_IS-CONNECTED-TO_VORTEX-IDLEWHEEL2]
HAS-ARGUMENT TOUCHING)
(VORTEX-IDLEWHEEL2 MAPS-TO VORTEX-IDLEWHEEL)
(MAIN-VORTEX3 MAPS-TO MAIN-VORTEX2)

(2ND-VORTEX3 MAPS-TO 2ND-VORTEX2)

78

(VP-SIMAGE2-VP-SIMAGE3-MAPPING1

HAS-MAP [VORTEX-IDLEWHEEL2 MAPS-TO_VORTEX-IDLEWHEEL])
(VP-SIMAGE2-VP-SIMAGE3-MAPPING1

HAS-MAP [MAIN-VORTEX3_MAPS-TO _MAIN-VORTEX2])
(VP-SIMAGE2-VP-SIMAGE3-MAPPING1

HAS-MAP [2ND-VORTEX3_MAPS-TO_2ND-VORTEX2])

2.7 Summary

I will re-iterate the hypotheses of this work and describe how Galatea relates to them. The
first hypothesis is that transfer of strongly-ordered procedures is computationally complex,
even given the correct mapping. I discovered that the successful transfer of strongly-ordered
procedures in which new objects are created is indeed complex. It requires the reasoner to
generate intermediate knowledge states and mappings between the intermediate knowledge
states of the source and target analogs. Galatea shows why, in detail, this is so. Components
of the problem are created by the operations, and these components are acted on by later
operations. In the tumor problem, for example, the strong ray must be turned into weaker
rays before they can be moved. When the reasoner transfers the second operation of moving
the soldier paths, how does it know that the corresponding objects in the target are the
weaker rays? It must have some mapping to make this inference. And since the weaker rays
do not exist in the start state of the tumor problem, this mapping cannot be given as input
with the initial mapping. The new knowledge state with the weaker rays must be generated,
and then a mapping must be made on the fly between it and the second knowledge state of
the source.

My second and third hypotheses are that visual knowledge alone is sufficient for trans-
fer of problem solving procedures in some domains, and that visual knowledge facilitates
transfer even when non-visual knowledge might be available.

Galatea, implemented with four examples, shows that non-trivial problem-solving pro-

cedures can be represented visually and transferred successfully across domains. The

79

cake/pizza example shows transfer for a domain where the visual representation is straight-
forward, and the fortress/tumor example shows cross-domain analogy where non-visual
knowledge might be available to a human reasoner.

The work on Galatea has also resulted in an unexpected discovery: That evaluation
requires non-visual knowledge. It appears that evaluation is beyond the abilities of pure
visual reasoning. Though Galatea transfers problem-solving procedures, it still has no way
of knowing if the transferred solution was adequate for the new problem. In the tumor
problem, in order for the agent to determine if the tumor was destroyed and the patient
was still alive, it needed some causal knowledge. By causal we mean knowledge of how
things in a system change as they interact. Pre- and post-conditions are a straightforward
way to represent this, but it is difficult to imagine what “visual” pre- and post-conditions

might look like. Visual representations alone cannot enable evaluation of the solution.

80

CHAPTER III

COGNITIVE MODELLING: PART ONE

Galatea is intended to be a partial cognitive model of visual analogical transfer in human
beings. To support Galatea with respect to its psychological plausibility I modelled some
of the visual aspects of four experimental participants’ drawings.

Dr. David Craig ran 34 participants in an analogical transfer experiment [10]. Partici-
pants were shown a problem-solving solution about a laboratory, presented with text and a
diagram. They were asked to solve an analogous problem with a weed-trimmer, presented
with text only. Of these, 17 participants (in three conditions) correctly described the anal-
ogous solution. All participants were asked to draw a diagram to illustrate their suggested
solutions. The given diagrams were of four slightly different kinds, as described in this
chapter and the next.

The source given was a laboratory clean room problem. A single door lets in dirty air,
so a vestibule is added, with two doors where one door stayed shut while the other was
open (see Figure 28). The target problem is a weed trimmer arm attached to a truck that
must be able to pass through street signs. The analogous solution is to design an arm with
two latching doors, so that while one is open to let the sign pass, the other stays closed to
support the arm and trimmer. Participants produced diagrams describing their solutions
to the problems. I modelled four of these experimental participants in Galatea: L14, L22,

L15, and L16.

3.1 The Galatea Model of L1}

L14 received Condition 1 of the lab problem (see Figure 28). Figure 30 shows what L14
wrote on his or her data sheet during the experiment.
I represented the source analog as a series of s-images connected with transformations.

See the top of Figure 31 for an abstract diagram of the source analog, and see Figure 29 for

81

a diagram of some of the propositions in its first s-image.

Feere romd the tave prodfleme Bolow, Ar e bollom af dhe pupe, ploaie 07y i s Prablem 2. Dnaw o
i arnt 1o Al AT Vo Fe phinlirg, The solarden ro Probdem 1 sy be belinid m spbong Probles 2,

Probivex [: & compuier chig menafacioes has dessgeed o special kb [of manliocng meoroseopi devioes, They
v likei g cine 2 sel Alf s lah From the sumoand] i eiresmen i ordsr o beop the s iande e e i
af s g wredesimbls gases. The peoblam, ihaugh, b tha, whenawor lab worken ssier o e e e, she mal o
sraken sl cornanimaned g is gTowad in The pompany is Fying to dedpe o deor dal wdll alrw sl o apis
il eavw 1h lab sarmly, wile miremicmp dhe armoent ol conbiminaied abl da & b in

Solwtisn Hove warkers
el & vedlibol spacd
bedur prisning cha Lek.

autsice PR labsarakory
{dirty air} {clean alry

Prokfom 17 1n ender &0 e U scolds el gioe alaeg e dhle of O moad. o D2 parmresnt Gl Trasspomaion
desizned @ caed wimmer el sischos (o e 2nd of & bang pobs siicking off the side of 3 imck. A&t tha ek driver
doewn e highweeay, ib immer & exiondod shoui & Boai in the righi, perfacily pogitsined 1o wies the wopds ai i
shie: ol ke el The prokblems &t il S8 pake o characied by dga poote el ase possiosed a1 ke cuth in
ceriam ports of e ey, The wosd-irimaer pele, is Sr, (9 snasly 2 feel 100 keng ¥ clear g gn poan. ARhaugh
the wood-rimmres e eoabd be reromend of Tilod ou e wey & clzar e #ign poss, 1Hs sl mierkos il the
sl i A alrhvak e pole could bagd Jver die (o of v sign pons, thie would he imprascoieal sisce iy
wime weas the sipus ave 1% fem tail, T Departmeni of Transporiation @ eyizg w desgs 2 pole (ki oo pam
Arowgh the pign posis wiikoel gopmayg or chasgmg ike peesion of the rimmes

Figure 28: Condition 1: Plan view of lab, with the vestibule centered.

The model of L14 involves five transformations (See Figure 31). The first transformation
isreplicate. It takesin the door-set-114s1 as an argument, generating door-set1-114s2
and door-set2-114s2 in the next s-image.

The second transformation is add-connections which places the door sets in the
correct position in relation to the top and bottom walls.

The third and fourth transformations are add-component, which add the top and
bottom containment walls.

The fifth transformation, another add-connections, places these containment walls
in the correct positions in relation to the door sets and the top and bottom walls.

I will describe the first two transformations in detail. The first transformation
in the lab-basel source is a replicate, which takes two arguments: some object and
some number-of-resultants. In this case the object is door-set-blsl (represented as

door-set in Figure 8. b1s1 means “base one, s-image one.”) and the number-of-arguments

82

lab-basel-s-imagel

rectangle= line
looks-like ‘ looks-lik
_—

v 7 T ¥

bottom-wall door *‘ door-wall top-wall
L | -
s ‘ @ door-set
N in—front-of—

has-startpoint behind ‘ has—endpoinH has—stanpoir%t ‘ has—endpoink
bottom-wall-startpoint door-wall-endpoint door-wall-startpoint top-wall-endpoint

is—subject-fo is—object—for- is—subject-fol is—object—for

connection connection connection connection
connectionl connection2

perpendicular-angle touching-distance

Figure 29: This Figure shows part of the first s-image in L14’s source s-image series.
Fach relationship is represented as an arrow. At the beginning of the arrow is the ThingX
of the relationship, and at the end of the arrow is the ThingY. The boxed text in the middle
of the arrow is the Relation. Each string of unboxed text is a concept.

e pemre el o danpn @ wed v ks s e Beagh apm piks L o s

e T |

Figure 30: The source data for L14. The drawing above and handwritten text are what
participant 1.14 produced on the experiment sheet.

doodls e

® ® \IH\O \\I\O [I\O l”:)

LI CT1 CT1 CTT 1

Figure 31: The implementation of L14. The top series of s-images represents the source
analog (the lab problem) and the bottom series the target. There are six s-images for the
five transformations.

83

is two. The replicate is applied to the first L14 s-image, with the appropriate adapta-
tion to the arguments: The mapping between the first source and target s-images indicates
that the door-set-b1s1 maps to the door-set-114s1, so the former is used for the target’s
object argument. The number two is a literal, so it is transferred directly.

Using a function that takes in the name of an element instance or set (in this case
door-set-114s1) and recursively returns all set names and element instances, Galatea
retrieves (from memory of the source s-image with the replications in it) all propositions
with any of those set names and element instances in the thingX or thingY slots. These
propositions are put through a function that creates the same number of new propositions
with the same relations and literals, but with new names for the element instances.
These new propositions are stored in memory. The effect of this is a replication of the
intended structure. This occurs once for each replication.

Galatea chooses an arbitrary name for the superset of door-sets (in this case
door-sets-set-114s2) and connects door-set1-114s2 and door-set2-114s2 to it with
in-set relations. It makes a map between L14’s s-imagel and s-image2, connecting
door-set-114s1 to door-sets-set-114s2. It also creates maps from door-set-114s1 to
door-set1-114s2 and another to door-set2-114s2.

The other propositions from L14’s s-imagel are put through a function that finds
analagous propositions: literals and relations are kept the same, and element instance
names are replaced with new names for the new s-image. For example, the top-door-114s1
becomes top-door-114s2.

Maps between the element instances in the target s-imagel and the target s-image2
are stored in memory as well.

The mapping between lab-basel-simage2 and 114-simage2 is automatically gener-
ated. Element instances that are results of source transformations are mapped to newly-
generated instances in the target. All other maps are carried over to the new s-images
with their new names.

The inputs to replicate are the object to be replicated DOOR-SET-L14S1, the number

of resultants 2, the current and next target s-images L14-SIMAGE1l and L14-SIMAGE2, the

84

mapping L14-SIMAGE1--L14-SIMAGE2--MAPPING1 and the memory.

The output is

(L14-SIMAGE1 TRANSFORM-CONNECTION L14-SIMAGE2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1)
([L14-SIMAGE1_TRANSFORM-CONNECTION_L14-SIMAGE2] HAS-MAPPING
L14-SIMAGE1--L14-SIMAGE2--MAPPING1)
(DOOR-SET-L14S1 MAPS-TO DOOR-SETS-SET-L14S2)
(DOOR-SET1-L14S2 IN-SET DOOR-SETS-SET-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1
has-map [DOOR-L14S1 _MAPS-TO_DOOR1-L14S2])
(DOOR-L14S1 MAPS-TO DOOR1-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1
has-map [DOOR-SET-L14S1 MAPS-TO_DOOR-SET1-L14S2])
(DOOR-SET-L14S1 MAPS-TO DOOR-SET1-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1
has-map [DOOR-WALL-L14S1 _MAPS-TO_DOOR-WALL1-L14S52])
(DOOR-WALL-L14S1 MAPS-TO DOOR-WALL1-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1
has-map [DOOR-WALL-SIDE2-L14S1_MAPS-TO_DOOR-WALL1-SIDE2-L14S2])
(DOOR-WALL-SIDE2-L14S1 MAPS-TO DOOR-WALL1-SIDE2-L14S2)
(DOOR-WALL1-L14S2 HAS-SIDE2 DOOR-WALL1-SIDE2-L14S2)
(DOOR-WALL1-L14S2 LOOKS-LIKE-RELATION RECTANGLE)
(DOOR-WALL1-L14S2 IN-SET DOOR-SET1-L14S2)
(DOOR1-L14S52 IN-FRONT-OF DOOR-WALL1-L14S2)
(L14-SIMAGE2 CONTAINS-OBJECT DOOR-WALL1-L14S2)
(DOOR1-L14S2 LOOKS-LIKE-RELATION RECTANGLE)
(DOOR1-L14S2 IN-SET DOOR-SET1-L14S2)
(L14-SIMAGE2 CONTAINS-OBJECT DOOR1-L14S2)

(DOOR-SET1-L14S2 LOOKS-LIKE-RELATION SET)

85

(L14-SIMAGE2 CONTAINS-OBJECT DOOR-SET1-L14S2)
(DOOR-SET-L14S1 LOOKS-LIKE-RELATION SET)
(DOOR-SET1-L14S2)

(DOOR1-L14S2)

(DOOR-WALL1-L14S2)

(DOOR-WALL1-SIDE2-L14S2)

(DOOR-SET2-1.14S2 IN-SET DOOR-SETS-SET-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1

has-map [DOOR-L14S1 _MAPS-TO_DOOR2-L14S2])
(DOOR-L14S1 MAPS-TO DOOR2-1.14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1

has-map [DOOR-SET-L14S1_MAPS-TO_DOOR-SET2-1.14S2])
(DOOR-SET-L14S1 MAPS-TO DOOR-SET2-114S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1

has-map [DOOR-WALL-L14S1_MAPS-TO_DOOR-WALL2-L14S2])
(DOOR-WALL-L14S1 MAPS-TO DOOR-WALL2-L14S2)
(L14-SIMAGE1--L14-SIMAGE2--MAPPING1

has-map [DOOR-WALL-SIDE2-L14S1_MAPS-TO_DOOR-WALL2-SIDE2-1.14S2])
(DOOR-WALL-SIDE2-1.14S1 MAPS-TO DOOR-WALL2-SIDE2-L14S2)
(DOOR-SET2-L14S2 LOOKS-LIKE-RELATION SET)
(DOOR-SET2-L14S2)

(DOOR-WALL2-1.14S2)

(DOOR2-1.14S2)

(DOOR-WALL2-1.14S2 LOOKS-LIKE-RELATION RECTANGLE)
(DOOR2-1.14S2 LOOKS-LIKE-RELATION RECTANGLE)
(DOOR-WALL2-1.14S2 IN-SET DOOR-SET2-L14S2)
(DOOR2-1.14S2 IN-SET DOOR-SET2-L14S2)

(DOOR2-1.14S2 IN-FRONT-OF DOOR-WALL2-L14S2)

(DOOR-WALL2-L14S2 HAS-SIDE2 DOOR-WALL2-SIDE2-114S2)

86

(DOOR-WALL2-SIDE2-114S2)
(L14-SIMAGE2 CONTAINS-0BJECT DOOR-SETS-SET-L14S2)
(DOOR-SETS-SET-L14S2)

(DOOR-SETS-SET-L14S2 LOOKS-LIKE-RELATION SET)

The second transformation is add-connections. The effect of this transformation
is to place the replicated door-sets in the correct spatial relationships with the other ele-
ment instances. It takes connection-sets-set-b1s3 as the connection/connection-set
argument. This is a set containing four connections. Galatea uses a function to recur-
sively retrieve all connection and set proposition members of this set. These proposi-
tions are put through a function which creates new propositions for the target. FEach
proposition’s relation and literals are kept the same. The element instance names are
changed to newly generated analogous names. For example, doori-endpoint-b1s3 turns
into doorl-endpoint-114s3.

Then, similarly to the replicate function, horizontal target maps are generated, and
the other propositions from the previous s-image are instantiated in the new s-image.

The inputs to this transformation are nothing (denoting that there is not any thing in
the previous s-image that is being modified), the connection set connection-sets-set-b1s3,
the source s-image lab-basel-simage2, the current and next target s-images 114-simage2
and 114-simage3, the mapping 114-simage2--114-simage3--mappingl and the memory.

The output propositions are

(DOOR-WALL2-ENDPOINT-L1483--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(DOOR-WALL2-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L1433--CONNECTION
HAS-DISTANCE SHORT-DISTANCE)
(DOOR-WALL2-ENDPOINT-L1433--BOTTOM-WALL-STARTPOINT-L1433--CONNECTION
HAS-ANGLE RIGHT-ANGLE-CW)
(DOOR-WALL2-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION

IN-NON-VISUAL-SET DOOR-SET2-L14S3-CONNECTION-SET)

87

(BOTTOM-WALL-STARTPOINT-L14S3 HAS-CONNECTION
DOOR-WALL2-ENDPOINT-L1433--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(DOOR-WALL2-ENDPOINT-L14S3 HAS-CONNECTION
DOOR-WALL2-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION)
(TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION
HAS-DISTANCE SHORT-DISTANCE)
(TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION
HAS-ANGLE RIGHT-ANGLE-CCW)
(TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION
IN-NON-VISUAL-SET DOOR-SET2-L14S3-CONNECTION-SET)

(DOOR-WALL2-STARTPOINT-L14S3 HAS-CONNECTION

TOP-WALL-ENDPOINT-L14S3--DO0R-WALL2-STARTPOINT-L14S3--CONNECTION)
(TOP-WALL-ENDPOINT-L14S3 HAS-CONNECTION
TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION)
(DOOR-WALL1-ENDPOINT-L14533--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(DOOR-WALL1-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION
HAS-DISTANCE SHORT-DISTANCE)
(DOOR-WALL1-ENDPOINT-L1433--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION
HAS-ANGLE RIGHT-ANGLE-CCW)
(DOOR-WALL1-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION
IN-NON-VISUAL-SET DOOR-SET1-L14S3-CONNECTION-SET)
(BOTTOM-WALL-STARTPOINT-L14S3 HAS-CONNECTION
DOOR-WALL1-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(DOOR-WALL1-ENDPOINT-L1483 HAS-CONNECTION
DOOR-WALL1-ENDPOINT-L1433--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)
(TOP-WALL-ENDPOINT-L14S3--DOOR-WALL1-STARTPOINT-L14S3--CONNECTION)

(TOP-WALL-ENDPOINT-L14S3--DO0R-WALL1-STARTPOINT-L14S3--CONNECTION

88

HAS-DISTANCE SHORT-DISTANCE)
(TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL1-STARTPOINT-L14S3--CONNECTION
HAS-ANGLE RIGHT-ANGLE-CCW)
(TOP-WALL-ENDPOINT-L14S3--DO0R-WALL1-STARTPOINT-L14S3--CONNECTION
IN-NON-VISUAL-SET DOOR-SET1-L14S3-CONNECTION-SET)
(DOOR-WALL1-STARTPOINT-L14S3 HAS-CONNECTION
TOP-WALL-ENDPOINT-L14S33--DO0OR-WALL1-STARTPOINT-L14S3--CONNECTION)
(TOP-WALL-ENDPOINT-L14S3 HAS-CONNECTION
TOP-WALL-ENDPOINT-L14S3--DOOR-WALL1-STARTPOINT-L14S3--CONNECTION)
(DOOR-SET2-L14S3-CONNECTION-SET)

(DOOR-SET2-L14S3-CONNECTION-SET LOOKS-LIKE-RELATION NON-VISUAL-SET)
(DOOR-SET2-L14S3-CONNECTION-SET IN-NON-VISUAL-SET
CONNECTION-SETS-SET-L14S3)

(DOOR-SET1-L14S3-CONNECTION-SET)

(DOOR-SET1-L14S3-CONNECTION-SET LOOKS-LIKE-RELATION NON-VISUAL-SET)
(DOOR-SET1-L14S3-CONNECTION-SET

IN-NON-VISUAL-SET CONNECTION-SETS-SET-L14S3)
(CONNECTION-SETS-SET-L14S3)

(CONNECTION-SETS-SET-L1433 LOOKS-LIKE-RELATION NON-VISUAL-SET)
(L14-SIMAGE3 CONTAINS-O0BJECT

CONNECTION-SETS-SET-L14S3)

(L14-SIMAGE3 CONTAINS-0BJECT

DOOR-SET1-L14S3-CONNECTION-SET)

(L14-SIMAGE3 CONTAINS-OBJECT

DOOR-SET2-L14S3-CONNECTION-SET)

(L14-SIMAGE3 CONTAINS-0BJECT
TOP-WALL-ENDPOINT-L14S3--DOOR-WALL1-STARTPOINT-L14S3--CONNECTION)
(L14-SIMAGE3 CONTAINS-OBJECT

DOOR-WALL1-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)

89

(L14-SIMAGE3 CONTAINS-0BJECT
TOP-WALL-ENDPOINT-L14S3--DO0OR-WALL2-STARTPOINT-L14S3--CONNECTION)
(L14-SIMAGE3 CONTAINS-0BJECT

DOOR-WALL2-ENDPOINT-L14S3--BOTTOM-WALL-STARTPOINT-L14S3--CONNECTION)

We can now examine what made L14 (Figure 30) differ from the stimulus drawing: L14
features a longer vestibule in the drawing than the vestibule pictured in the stimulus. In
fact, there is no trimmer arm (analogous to the wall in the lab problem) in the drawing at all
that is distinct from the vestibule, save a very small section, apparently to keep the spinning
trimmer blade from hitting the vestibule. The entire drawing is rotated ninety degrees from
the source. The single lines in the source are changed to double lines in the target. The
doors also slide in and out of the vestibule walls. What’s interesting about this modification
is that it does not appear that this kind of door opening is possible with the diagram given of
the lab in the source: Since the door is a rectangle that is thicker than the lines representing
the walls, the door could not fit into the walls. In contrast L.14 explicitly makes the doors
and walls thick (with two lines) and makes the doors somewhat thinner. .14 adds objects
to the target not found in the source: a blade and a twisting mechanism to describe how
the doors can work. L14 also included numerical parameters to describe the design of the
trimmer, to describe length. Finally, 114 includes some mechanistic description of how the
trimmer would work.

In summary, these differences are:

1. long vestibule

2. rotation

3. line to double line
4. sliding doors

5. added objects

6. numeric dimensions added

90

7. mechanisms added

Of these seven differences, Galatea successfully models four of them. The rotation of
the source is modelled by a rotation in the target start s-image. In this s-image, all
spatial relationships are defined only relative to other element instances in the s-image.
Each instance is a part of a single set which has an orientation and direction. In the case
of s-image 1 of the target, it is facing right. Since all locations are relative, there is no
problem with transfer and each s-image in the model of L14 is rotated to the right.

The line to double line difference is accounted for by representing the vestibule walls
with rectangles rather than with lines, as it is in the source. Because the mapping between
the source and target correctly maps the sidel of the rectangle to the startpoint of its
analogous line, the rectangle/line difference does not adversely affect processing and transfer
works smoothly.

The long westibule difference is accounted for by specifying that the heights of the
vestibule wall rectangles are long. In the source the vestibule wall lines are of length
medium, but this does not interfere with transfer.

The trimmer head added object is accounted for by adding a circle to the first s-image
in the target.

Unaccounted for are the two bent lines emerging from the vestibule on the left side, the
numeric dimensions and words describing the mechanism. Also, L14 shows one of the doors
retracting, and the model does not. The model also fails to capture the double line used to
connect the door sections, because the single line is transferred without adaptation from the
source. This could be fixed, perhaps, by representing the argument to the add-component
as a function referring to whatever element is used to represent another wall, rather than

as a line.

3.2 The Galatea Model of L22

L22 received Condition 2 (see Figure 32.) Figure 34 shows what L22 wrote on his or her
data sheet during the experiment. See the top of Figure 33 for an abstract diagram of the

source analog in the model.

91

Please read the fao probdems befow, L e banes gf dw paps, pleare iry b solee Preblem L. Onow 2
dimgran bk dhav whai o 'ar duaking, The seiuion ro Freédem 1 vy b belpfd i sebwing Prablom 2

Frablee [0 & compucr chip masolie lever bad digeed o dpecidl 1S B madalaspanieg miopsngic fevicer, Thay
Tive kot groe, e o el 2 e Lok froon e somousdieg eeseormeel in onder 0 keep (56 air e dee Lab Tres
of dusit ard sedeidiable gases. Tha pevhiam, @ocgh, iv S shosres lub workers sabr or leavs ihe room, e scal
brotea amd conlamiaated @i is oo i The eompany is Uying o dosegn 4 doar thal will slles sk b ook
anid kearn The fab emily, whiks mirimicng the sreanl of condisiaed af s is 1S s

Saleticn: Here wiodlien

rtar o veslibobe spate L1t Foi] L bratory
hfare ertering the bk Jdirty @ar - — {cinnn air]

[

Prabiea: 1: [n aifer o wim e weads thal, gros slong @ side of e road, te Deparieent of Tiaemeoriiion he
dorgecd @ weed Lrigisest T ellache i e ord o a Foigg pele scking olT s sikde of B weck, As tha uck deies
b the higheey, tha tnmmer s ceended abama B el e Lke right, porfocily posllioned 10 uim e waeds o e
wube al (e iued. The prohilien @ Tha #a &l polz & charickad by olge pade far o posticred ® ihe curh 18
rerian piek of the sy, The soad-wrrerr poky, o Jeon, w8 ossoly 3 Fes oo Bong oo claar e sgn pods. ARbough
ke sewc-mremer ok coubd be reescied or el ool e swy 1 obear e s pes this i) daefon wah the
gl trivereing, A aihaagh ibe pole coald Besd over the top of e mgn pods, ook b egeadicnl soo is
wniec mivas e Sigas are 15 e wll, The Dapanmsss; of Toovgamis s b irying 1s dodgn o pale et can e
rirawph Lbe ol o podb sl sogrpiag o ol g shes posdion of Psd e

Figure 32: Condition 2: Plan view of lab, with no walls.

— —
[=—

AN VNN,
[

o o o o] of

Figure 33: The implementation of L22. The top series of s-images represents the source
analog (the lab problem) and the bottom series the target. There are six s-images for the
five transformations.

b e ey Balew b b e o B e Bl e e e e . L o g
m e w e v kg

Ty bl s o oiile o
qmd w2y g ehiyE e me— Ry

S e iy m Ly ey bee
] i gy Tl g g s e
i 1 B —— PSR T e]
= g ||rTh- T g iy gl e
e _J | dprsper ddur, SR

e e e i e L e el
S ey .
Fee S gap kb
B AP
z -
..'_'_' - Liap iEe A

Figure 34: The source data for L22. The drawing above and handwritten text are what
participant L.22 inscribed on the experimental sheet.

92

The model of L22 involves five transformations (See Figure 33). The first transformation

isreplicate. It takesin the door-set-122s1 as an argument, generating door-set1-122s2
and door-set2-122s2 in the next s-image. Note that the door set replicated here is differ-
ent from the door set replicated for L14. In this case, there are three connected rectangles,
corresponding to the top wall, door, and bottom wall. In the case of L14, the door set is
made of a single long rectangle (representing the wall) with another rectangle (representing
the door) in front of it. But because replicate can work on any set of element instances,
Galatea can accomodate the kind of doorway L22 had in mind.

The second transformation is add-connections which places the door sets in the
correct position in relation to each other. Unlike for L14, there are no top and bottom
walls.

The third and fourth transformations are add-component, which add the top and
bottom containment walls.

The fifth transformation, another add-connections, places these containment walls
in the correct positions in relation to the door sets.

The processing and adaptation of these transformations resembles the processing done
with L14.

We can now examine what made L22 (Figure 34) differ from the stimulus drawing:
The entire drawing is rotated ninety degrees from the source. An object is added to the
target that has no analog in the source: the trimmer. L22 features a proportionately
longer vestibule than in the source, and has some explicit simulation diagrammed. Of these
differences, all but the last were modelled by changing the nature of the start s-image for
L22.

Observed differences:

1. rotation
2. added objects
3. long vestibule

4. explicit simulation

93

122 shows that Galatea’s models of these participants work with different source as well
as target analogs. The modelling of .15 and L16 were modelled similarly. For all of these
models, no core processing code was changed. Only transformations were added to code.
All differences I was able to accomodate I did by changing the input representation, not the

code itself.

3.3 The Galatea Model of L15

As shown in Figure 35, LL15 does not distinguish between the vestibule and the doors leading
into it. The drawing is rotated, and the lines depicting the walls are turned into double
lines. Added objects include: truck, pole, hinges, and the trimmer head.

Most interestingly, at the bottom is a set of states, like a film strip, describing a simu-
lation of how the pole could move through the trimmer.

Observed differences:
1. rotation

2. line to double line
3. added objects

4. explicit simulation

5. no vestibule/doors distinction

Figure 35: The data for L15.

94

Implementation. My model uses the same source analog as .14. As seen in Figure 36,
the rotation and added objects are accounted for by the input target. The no vestibule/doors
distinction is accounted for by what is replicated. It does not account for the simulation,
nor some of the details of the shape of the door mechanism (particularly the angle of the

doors).
e] cre{] e =] o] o | oo b

Figure 36: The model of L15.

3.4 The Galatea Model of L16

L16 (figure 37) features a rotated trimmer, and includes an arrow showing the direction of
the motion of the truck. The pole is added, the lines are thickened to double lines, and the
mechanism is described, including one door open and one shut.

Observed differences:
1. rotation

2. line to double line
3. added objects

4. mechanism added

Figure 37: The drawing produced by participant L16.

95

Table 13: Differences accounted for in Galatea’s participant modelling.

Participant ‘ Differences Accounted For
L14 4/7
L22 3/4
L15 4/5
L16 3/4

Implementation. The door mechanism, which includes doubled lines in the initial
target, gets replicated in the second s-image. As in the case of L14 and others, the results
of the connection transformations result in single line transfers. This is because the
add-component function takes the 1line literal as an argument. Thus when Galatea transfers

it, it remains a line, even though the rest of the structure in the target is rectangles.

- - EE\:Ii
| [R —] [— R —] E@:I
-

- -

Figure 38: The implementation of L.16

3.5 What the Implementation Shows

Above I described models of some of the visual aspects of four experimental participants.
Specifically, I have modelled the visual input and output for this participant data—a good
start to a full cognitive model. Though people likely use non-visual as well as visual knowl-
edge in analogical problem solving, this work shows how visual knowledge alone could be
used.

L14, L15, L16, and L22 are representative of some of the more difficult experimental
participants to be modelled. They were given a source analog diagram and produced draw-
ings describing their solutions. My models of them show how the analogical transfer could
be done using only visual knowledge. The drawings produced by the participants differed
from the stimulus diagrams in many ways, and in all four cases my models accounted for
most of these differences, as seen in Table 13.

There are, however, some important differences between the inputs that the participants

96

and Galatea received. Participants were given a diagram representing the solution state of
the lab problem, and a text description of the initial problem. Galatea, in contrast, takes
in a series of knowledge states connected with transformations, the last of which is the
diagram that participants see. Galatea also is given a mapping between the source and
target, which, I assume, successful participants had to generate.

The model predicts that people generate the previous knowledge states in the source,
generate a mapping, and then proceed to do transfer transformation-by-transformation.
Future empirical work can test these predictions.

The previous section showed how the implementation of Galatea addressed the three
hypotheses of this work. Modelling these four participants shows that the claims from the

previous chapter are supported for the modelling of human cognition as well.

97

CHAPTER IV

COGNITIVE MODELLING: PART TWO

In the previous chapter I described the four experimental participants modelled with the
computer program Galatea. This chapter offers an analysis of the drawings produced by
the other successful participants in Dr. Craig’s experiment. Though they managed to
correctly transfer the problem solving solution to the weed-trimmer problem, each drawing
was different from the source diagram in several ways. In this chapter I describe how they
were different, and suggest reasons why these differences might have arisen.

These differences are interesting, because the weed-trimmer problem can be solved ana-
logically without making any changes at all to the spatial structure of the laboratory prob-
lem’s solution.

I will describe each participant in the lab/weed-trimmer problem who got the analogous
solution, as well as the differences found between the source diagram and the drawing
produced. In a later section I provide a classification of these differences and speculate on
the psychological reasons why they might have occurred.

What am I calling a “difference?” I am assuming that the simplist diagram would be to
copy the lab source drawing, labeling it, perhaps, with elements of the weed trimmer prob-
lem. Any deviations from this are adaptations to the lab source and require explanations.

I will also describe how Galatea, as is, could account for the data.

4.1 Complex Elements.

To better account for the data, rather than just using primitive elements, I will intro-
duce the notion of complex elements. Complex elements are composed of two or more
visual elements (primitive or complex). Like primitive elements, complex elements
have attributes. Unlike primitive elements, many complex elements can be domain-

specific[27], and differ from reasoner to reasoner.

98

Table 14: Suggested complex elements based on an analysis of the Craig data.

Complex element

Multiple-pass line

Dual line arrow

Semi-circle

arrowhead-isosoles-triangle

arrow-curve

arrow-line

fringe

two-line line

curly-cue

shading
dotted line
wiggly line
circle

dotted circle
dotted curve

curved fringe

box

curly braces

zig-zag
cylinder

box door closed
box door open
line door closed

line door open

triangle
text alphabet

The following is list of what the complex elements might be, based on my analysis
of Craig’s diagram data. Together with the primitive elements they account for all the

components of these participants.

4.2 Modelled Participants
4.2.1 Participant L1 (condition 3)

Figure 39 shows L1’s drawing. The most striking thing about this drawing is that it is
rotated ninety degrees from the source.

Observed differences:

99

1. center

2. rotation

3. added objects

4. line to double line

5. mechanisms added

by chor o ¢ bl o B A e Ty ik) i Bl et dljd Bl D 6 e
o i b b i ' CaallaF

k i [N
: i ||,= | P R el b = |--;.|5.
o> [B .
¥ i I 1 —‘I.r P'JII.‘- ﬂ""?I
. L gL,) el y i I ro
L kst il == = ' - r..!', I--J LU e :'
Y 4] .| b e B PF : e : 5
bt 2 Lipipm =
or s N
T aey LLesawsk -
Ton s J'“'_c "
=+t pri=r :j'\.-
TR . T
P T " T R T
; o, M ‘J [|
_ L

Figure 39: The drawing produced by participant L1.

Participants L1 and L2 were in Condition 3 (see Figure 41), L1’s vestibule is centered on
the weed-trimmer, even though the vestibule is off to the side in the source. Furthermore,
L1 added objects: a pole, motion lines, and a zig-zag line representing, presumably, the
blades. The trimmer arm is drawn thickly, with two drawn lines representing the two sides

of it. In contrast the source depicts the analogous wall as a single line.

@) @) @) @)
Y W W
| J J !
O O O O

Figure 40: The model of the implementation of L1. Along the top are the source s-images,
along the bottom the target. In this model the transformations are all add-element.

100

Implementation. The first target s-image in the model of L1, as seen in Figure 40,
consists of a double line for the trimmer, a zig-zag line for the blade, circles for the
pole, and arrows showing its motion. The input target is in a different orientation than
the source. This change in input accounts for the rotation of the solution as drawn by L1.
Galatea could not account for the vestibule being centered in the target.

Transformations:

1. add-element:
object: square;

location: adjacent to the wall line.

2. add-element:
object: square;

location: on top of the top part of the vestibule.

3. add-element:
object: square;

location: on top of the bottom part of the vestibule.

The transformations get transferred literally, and the model accounts for two of the
five differences. Left behind are the added mechanisms (door swing arrows and the text
description), the centering of the vestibule, and one of the added objects: the pole in the
center of the vestibule. Galatea was able to account for the rotation, most of the added

objects, and the line to double line differences.
4.2.2 Participant L2 (condition 3)

L2 (Figure 42), like L1, centered the vestibule. Interestingly, participants L1 and L2 are
the only participants in Condition 3 who got the analogous solution, and both centered the
vestibule.

Also like L1, L2 added some objects: An abstract sketch of a truck, and some lines

presumably indicating weed-trimming blades.

101

Mgt el ihr b Sl bl A S eias f e e, askie by 0 Slvd Probbees L e o

dhnyram o shoa echar e 't hinbing. Phr sk o Provbbem | sty b beiafll b iy Prolbem 2

Frbieis L 8, gt T mealeoREcs S 2o el B R b e measreTy, weoreeops devce TR
kg Shar pre rer w0 F e ik T by arnndiep creeees w mka w ey e e e iR e
i wrel ke e |l probise Saap® . Pal shonere bih rorlesy s sl v Be Gcels, 5 osal b
Ichie dal Bl mana et il) dipewd lu Ths comgsp o vy © kicga b e ha =l dee swhan Ko
ol 1 P e, st ek e o ronmeerd e i

Splpion: Hyry workem
rwiss a vrskiwle e
[ETEEEL 1o S ol
ﬂ'“m_.. ﬂ_"""""'m

Frodiis 1 beodl dir o0 e vl w308 B gaos phang i e ol i roed fw Depanees o TIRG{ons o D
dergrad 0 swad piwwr U arachey 0 e ped of § g pole: picking: oF G il ol 8 e & i ok i
dvwn e Paprew che b 1 e s bl S ke o e w ghl, pefed i prsree o e B sk, w i
ik o el . Theh o b O e Eeflad pole i clemcned By dE pea e o pealdomsd W B ok
rrigdn pamy ol e iy, The sord-riwree oeie. i el b ool 2 ey o g o dowr G pigm ey d kg
B ma] i g okl o e o bRl e B wat b e i e B, el ke e ik B
i Uiy, & g o ol Tl b ovw e 1o A Ve v = J R b
e e b g Er T e all Ty Toperews) o Trepereoos p Fyeg 0 dopps @ pol e oo e
kel i g s el ey e gy Sm preinm o e b

Figure 41: Condition 3: Plan view of lab, with the vestibule on the side.

Another difference L2 exhibits is that the doors and the walls of the vestibule are
indistinguishable. In this design the walls themselves would have to move to open.

Observed differences:

1. center

2. no vestibule/doors distinction
3. added objects

4. line to double line

% B g v ko nr.h-ﬁu,n..--n}m-- e il (s il Wraag s e e [o deiprae

Figure 42: The drawing produced by participant L2.

102

Implementation. The model of L2 involves a different source than that of L1 (See
Figure 43). Rather than adding a vestibule as a whole, the door section is a complex
object that gets duplicated (L14, L15, L16, and L22 were modelled with Galatea using this
strategy). The first source s-image appears in the diagram to be a single line, but it is

actually in three sections: A top, bottom, and door section, the part that gets duplicated

i i
‘oo oo‘oo oo‘oo

in the first transformation.

Figure 43: Model of L2. The source simages are along the top, the target are along the
bottom.

Here is the justification for this method. If, as modeled in L1, a vestibule were added,
more adaptations would need to occur: the vestibule is shaped differently, and then the
“doors” (if you can say there are doors at all in the target,) look different as well. Rather
than implementing these adaptations, by having them input at the start and duplicated,
the model can account for more of the observed differences.

Transformations:

1. replicate:
object: door section;

number of resultants: 2;

2. add-connections:
connectionl: top of doorl to bottom part of top trimmer arm, angle: 90cw distance:
short;

connection2: top part of bottom trimmer arm to bottom of doorl, angle: 90ccw,

103

distance: short;

3. add-element:

type: line;

4. add-element:

type: line;

5. add-connections:
connectionl: left part of linel to top of doorl
connection2: right part of linel to top of door2
connectiond: left part of line2 to bottom of doorl

connection4: right part of line2 to bottom of door2

The second transformation only connects the first door section because the other one
is, by default, already in place. Replicated objects have the same locations as the original.
The model accounts for three out of the four observed differences. Only the centering

of the vestibule was unaccounted for.
4.2.3 Participant L11 (condition 1)

L11 is the most straightforward of the solutions to the lab/weed-trimmer problem. The
doors, represented in Condition 1 as rectangles, are simple lines in L11’s drawing (Figure
44.) The other difference is that the doors are open and the doorways are missing—that
is, the walls continue where there should be doorways. Other than that, the diagram is
remarkably like that in the stimulus (see Figure 45).

Observed differences:
1. rectangle to line: door
2. doors open, walls remain

Implementation. My model of L11 is the simplest. The source and target analogs
are identical, but still manage to account for most of the drawing that L11 did, though it

accounts for none of the differences.

104

ook gy ks 1o s ek pale ke v pan bl v mam Mees a e
e i e il

g A f el Bappandy ga,d
Femebls o dabdiag 4

[[owead Avimane b el
I_'l— Iul' 5 TR o
: | I L LLIEE PR A
wiss ALe Tival q_.nl'h‘ -'i"l':f--\,-l ||l-"__"J_ Pranbeia _j_ﬂil:l::._m*.ff

|:'r'l--:. ale dhis ol

By wendfeleper o Botd ap by |I
ST L TLERFFIP T e [

e

Figure 44: The drawing produced by participant L11.

Piruwe rrow! dhe aor prablemr hebow, Ai vhe bniam of S pegr, ek by i ilvd Frobdne 1 Dvae =

.ﬂiiuuudﬂhhluﬂhﬁJDMum1ﬂﬂIMnﬂfﬂﬂr-t

Froidar L A corgest chip masfanen e desgeed 6 periE I b parefeo wing. resresper dermes Ty
v TR oot THrE v med <1 e T P e LT srden i beprp B B e
of dm md wrdraabds guem The pankiers, fagh, oo whous e o wig e e 0 b D s B mal
wuery wel copummped pr o el The resse 0 isng b o el Bl el e i b
el it DA whbe o ey B e o ks i b dd C1LR S

(choini ak)

Pl 1+ e cader o rew e ssonfs Cha o wiche ol ey, W [it e] T s b
n—r-l---h-—-l-l-h.l-...ul-'::.m-.phu-l..l-.lﬂ'.-l.-l-:dxuu el il L v
il e ey, L e it o il el £ Bl b e A i PO poell Bl b WEE P il S B
k. il e e, Tha pocdiemn b van o G- pobe & sawacnsd by dgs poon) im wv parcssd @ e cal s
s s e iy, The wesd-whemer pae, i dee, b analy 1 e o kg ol e oigs pors. bt
S wwcd miwwer pale ol B rmesowed o Tlicd en O sap o clen b ey b, By emald syl wwh iy
seed rrewng b 0 emch dr pole could bl ceey b e o e e poe i el e eepeariedl oo -
e ape e mpes wre |3 i il The Cepariewei of Traryeviiam o byag o drape i e e s poes
e pd T g wek @y il skepyw g w claw py Om s ol B i

Figure 45: Condition 1: plan view with the vestibule centered.

Figure 46: The model of L11. This s-image sequence describes both the source and
target.

105

Transformations:

1. add-element:
object: square

location: centered on wall

2. add-element:
object: small square

location: one side of vestibule

3. add-element:
object: small square

location: other side of vestibule

The transformations are applied directly, with no adaptation. This model accounts for
the orientation of the wall, the location of the vestibule on the wall, the location of the wall
with respect to the vestibule, and the location of the doors. It fails to account for the doors

being open, and that the doors are written as lines.
4.2.4 Participant L12 (condition 1)

In L12, we have a return to the rotation. Again, the truck is moving upward on the page.
And like L11, the rectangular doors are drawn as lines. The truck, curb, blades, and road
lines are also added. See Figure 47.

Observed differences:

1. rotation

2. rectangle to line: door
3. added objects

Implementation. See Figure 48 for a digram of the implementation of L12. The
rotation and added objects can be accounted for with the input target problem.

Transformations:

106

Figure 47: The drawing produced by participant L12.

RR AR X
e e e

Figure 48: The model of L12. The top series of s-images are the source, the bottom are
the target.

1. add-element:
object: square

location: centered on wall

2. add-element:
object: small square

location: one side of vestibule

3. add-element:
object: small square

location: other side of vestibule

Two of the three differences are accounted for. The open doors, drawn as lines, are not

accounted for in the implementation.

107

4.2.5 Participant L13 (condition 1)

L13 (Figure 49) features rotation, and another instance of turning the rectangular doors
into lines. On top of that, the door lines are dotted. The added objects for this participant
are the truck, curb, road line, the trimmer, the sign, and the blades. Like L1 and L2 the
trimmer arm is turned into a double line in a zoomed part of the diagram: There are really
two diagrams, one of which is a magnified view of a piece of the broader-scoped diagram.

Observed differences:

1. rotation

2. rectangle to line: door
3. dotted object

4. added objects

5. zoom

6. line to double line

B B e b= v e 8 sl vimar el dher o0 pan e s s [iee- o dlagas
e s e o Sl

Figure 49: The drawing produced by participant L13.

Implementation. L13’s model is identical to that of L.12 except that the actual blade
is a circle rather than a rectangle with a zig-zag line under it. See Figure 50. L13’s case is
somewhat more complicated than L12’s, though, and as a result the model does not account
for as much in the participant’s drawing: The zoom in and out is ignored and treated as a

single representation, the doors are squares and not dotted lines. The added objects and

108

orientation are accounted for by the nature of the target input. The model accounts for

three out of six of the observed differences.

mis
° e e

Figure 50: The model of L13.

Transformations:

1. add-element:
object: square

location: centered on wall

2. add-element:
object: small square

location: one side of vestibule

3. add-element:
object: small square

location: other side of vestibule

4.2.6 Participant L19 (condition 2)

L19 is in condition 2 (see Figure 51). It differs from conditions 1 and 2 in that the doors
are shown to be open, the walls are double lines, and the wall in which the vestibule is
embedded is not shown. It is the same condition .22 was in.

Rather than simply having two doors, L19 drew nine (see Figure 52). Also added were
the blade, and hinges to describe the mechanism. The motion is explicitly simulated with
an additional diagram below. The moving doors in this diagram are dotted, perhaps to
show that their position is dynamic. As a reverse of what some of the earlier participants

have done, L19 makes a move from double lines in the source to single lines in the target.

109

Observed differences:

1. multiple doors

2. added objects

3. mechanism added

4. double line to line

5. dotted object

6. explicit simualtion

P rood e bew prove) by 80 S0 hores of B Rage. By 17y 8 oty Preblon 1 Les 5

ﬂmnﬁ_mpdwm“nmlﬂ A i mnring Poebbom 3
Prafiem I & reepeer uep s ke o b Sayeed gy i S They
Bk e il ol o] o e L e g (S P -

ol carn wd ahrarak b pma Tl el o el ke et ol sk o o bose sk oom, g el @
bk e o wr o e cn T sy @ e ng b e o e Bl el ales el b ik
e i D i w5, Al e I B BB] oL B v e

PR LmmeT ey o ey

Frebee & 5 S KU B e B pres gl 1 ade of ke el e Teparemae of Tromprmass s
drageerd B ered i e ke e G o o s by e sk sl B i o 5 Pk A B DR
e B Bty e R b DRl eed oo e righa pralmilp pesitiosd v v owsds @
wde o 1 g Thor e i et B el e . o i ey i il) o il H B
“l.u-ua'lu'm Thurillmr# i e g ey] fet e bomg o e iy i e Syl b
e el W i ki Bl s, i el LT i U
-hl prmny am g oy e el ﬂulll:"--lr-'-i-l'll-il- e wall
wm e B i W 1 b sl T Docerwss of Trespoasics b rpisg o dodpm o pols tiem cun puss
e B §igr RS e gy, wr chanpey e prre ol e —

Figure 51: Condition 2: plan view with no walls aside from the vestibule’s walls.

:i-ll—:.l-h‘— imadr T wpm e e Sy
e Arie
- mfrl e
s v v
it s |:I-"jr-.|'.-|-|-r|h-|lr W el
o 1 Epwiang Bu g b
_— h
&

I;nl- Breed g Har pEw e g g

B gleai my Pa Beel imaen o

Figure 52: The drawing produced by L19.

110

Implementation. The source for L19 involves replication and connection, see the
top of Figure 53, but involves some different primitives: The walls are represented with
double lines rather than lines. LL19 has a single door represented as a single line, which gets
replicated in a manner simiar to previous participants. When the connect transformation
gets transferred, though, a double-lined connector gets transferred rather than a single line,
causing the same problem that the model for .14 has, but in reverse. See Figure 53. Since
a double line is an aggregate object, it does not come built in with “ends as a line does.
To be able to connect the ends of the double lines, the model imposes ends on the complex
object.

The model does not account for are the other seven doors, the dotted lines, the simula-

tion, and the mechanism in it. In sum it accounts for two out of the six observed differences.
1} 1} 1} 1} 1} 1} 1} 1} 0 [

7 8 .9 .9 .9 4
[N L

Transformations:

1. replicate:
object: door section;

number of resultants: 2;

2. add-connections:
connectionl: top of doorl to bottom part of
top trimmer arm, angle: 90cw distance: short;
connection2: top of door2 to bottom part of

top trimmer arm, angle: 90ccw distance: short;

111

3. add-element:

type: line;

4. add-element:

type: line;

5. add-connections:
connectionl: left part of linel to top of doorl
connection2: right part of linel to top of door2
connectiond: left part of line2 to bottom of doorl

connectiond: right part of line2 to bottom of door2
4.2.7 Participant L20 (condition 2)

L20 (see Figure 54) drew four diagrams, showing a simulation of how the mechanism worked.
The truck and blade were added, and the entire apparatus was rotated. Like L.19 double
lines were turned to lines.

Observed differences:
1. rotation

2. added objects

3. double line to line
4. explicit simulation

Implementation. See Figure 55. The door mechanism is replicated, resulting in
s-image two. When the connections are made one by one, we get an inconsistency with the
data: there are double lines where single lines are in L20’s sketch. The input target state
accounts for the rotation, added objects, and double line to line. The considerable simulation
pictured in L20’s sketch, as all examples of simulation in this domain, are unexplained by

my model. In total, the model accounts for two out of four differences.

112

Figure 54: The drawing produced by participant L20.
0 b0 oo v o 5 1
/S S L

T~ [R=¢ [2 DHQ:* Dﬂﬂg:* [0 &

Figure 55: The model of L20.

4.2.8 Participant L21 (condition 2)

The truck dominates L21’s diagram (Figure 56), which shows an elevation of the system,
including the trimmer and the blade. It is difficult to show that Galatea would be able to
model data presenting an elevation view. Perhaps this is the reason L21 continued to make
a zoomed plan view, below, which looks more like the drawings of other participants. In
this diagram the pole was added, and double lines are turned into lines.

Observed differences:
1. double line to line

2. added objects

3. zoom

4. point of view change

5. explicit simulation

113

Figure 56: The drawing produced by participant L21.

Implementation. I only modelled the zoomed portion of the L21’s drawing (Figure
57). Only the door section, the pole, at different locations, and the dotted line between
the pole representations are in the target start state. The doorway is replicated, and the
double line connector is addded. The single line connector in L20’s sketch is not accounted
for, nor is the zoomout, nor point of view change. The simulation is accounted for in
that the markings on the paper are accounted for, even though the model has no sense
of any simuation going on. That is, to the model, those simualtive diagram elements are
equivalent to other diagram elements. The model is able to account for two out of five

observed differences.

AN NN NN

AN AN A AN A AN A 4

Figure 57: The model of L21.

Transformations:

1. replicate:
object: door section;

number of resultants: 2;

114

2. add-connections:
connectionl: top of doorl to top of door2, angle: 90cw distance: short;

connection2: bottom of doorl to bottom of door2, angle: 90ccw distance: short;

3. add-element:

type: line;

4. add-element:

type: line;

5. add-connections:
connectionl: left part of linel to top of doorl
connection2: right part of linel to top of door2
connectiond: left part of line2 to bottom of doorl

connectiond: right part of line2 to bottom of door2
4.2.9 Participant L24 (condition 2)

L24 shows a frame-by-frame simulation of the mechanism involved. The truck, blades, and
pole are added (see Figure 58.) Double lines are turned to lines and the system is rotated.

Observed differences:
1. explicit simulation
2. added objects

3. double line to line

Implementation. The trimmer is modelled as a double line, connected to a rectangle
representing the truck (See Figure 59). The door section is modelled as a single line, with
two horizontal lines indicating the sides of the door. A single circle off to the left represents
the pole. L24’s four-part simulation is not modelled; the model most closely approximates
part two of it. Missing is the explicit simulation, and, once again, the single line connector
present in the drawing. The model accounts for two out of the three observed differences.

Transformations:

115

fu e s bk e b iy ke e R e R R s 9 e
e L

Figure 58: The drawing produced by participant 1.24.

. replicate:
object: door section;

number of resultants: 2;

. add-connections:

connectionl: top of doorl to bottom part of top trimmer arm, angle: 90cw distance:
short;

connection2: top part of bottom trimmer arm to bottom of doorl, angle: 90ccw,

distance: short;

. add-element:

type: line;

. add-element:

type: line;

. add-connections:

connectionl: left part of linel to top of doorl
connection2: right part of linel to top of door2
connectiond: left part of line2 to bottom of doorl

connection4: right part of line2 to bottom of door2

116

AN YYWNE

_

OH OQ* Oiﬂi Oiﬂi °f 1 o
Ll T

Figure 59: The model of L24.

4.2.10 Participant L27 (condition 4)

Like L21, L27 has a point of view change from an elevation to a plan, which might make
more sense in this case because the source in this condition is also an elevation (see Figure
60.) The truck, blades, and motor are added to the rotated (see Figure 61.) This rotated
and zoomed diagram also features numeric dimensions for the length of the trimmer.

Observed differences:

1. point of view change

2. zoom

3. added objects

4. rotation

5. numeric dimensions added

Implementation. L27 is an interesting case in that there are no connections. To
account for this, the source was changed so that the walls that are connections in other
models are present (as a floor and celing) in the first source state, rather than being added.
Thus the only transformation is a single replication of the door.

This model accounts for the two doors in the drawing (Figure 62), their orientation, and
the lack of connections. However, the model fails to account for a good many things in L27’s

drawing: The change in point of view, the zoom, the many objects and numeric dimensions

117

Pirary read e reo pradire brims i der bowies o e poge. pleasr iy i oofw Proliios: 1 Do =
- e willald o . Tl rokanton o Prwiies: | e br in Prabbam 2

Pl 1 & L il Ll el n . e o, Thatr
et e iy s LM B £ P Bl o e pmonndiog] anvirneon b ke @ boo O o beble i IS
ll'l---ll-ﬁrw [= Bk, t1 e iy mme e b e o, e el @
el = i . el b T i b Wiy B g . dot i il o Sl . b i
wel b e bearly. [-g LI BT

Figure 60: Condition 4: elevation view with no walls aside from the vestibule’s walls.

et e e e e w R ke e Pkt Bty R e (s @A e
Rl b s o denduay

T R B |
Misn pak

| T M

-

By ey e e

%, (L S P

el

i | Lt ""-.-_-- L

[T, PEPSERR N L =g o wFepk e
T P ...ll e o L, - Ba "|..1.
TR, "fl"l -\._-Il.'u. iR oy

T i

Figure 61: The drawing produced by participant L27.

118

in the zoom out, and the exact shape of the doors, including the hinge and diagonal line

where the doors meet. In total two of the five differences can be accomodated.

Figure 62: The model of L27.

Transformations:

1. replicate:
object: door section;

number of resultants: 2;
4.2.11 Participant L28 (condition 4)

L28 (Figure 63) changed the point of view to a plan, and had the whole vestibule open for
the added pole. Again, there are four diagrams showing the simulation of the system.

Observed differences:

1. point of view change

2. no vestibule/doors distinction

3. added objects

4. explicit simulation

Implementation. As in the case of 127, .28 has a four part simulation sketch that I

do not model. As shown in Figure 63, the model most resembles the first diagram in L28’s

119

b e i ki, i by o et s Pl L i s i s e e
P ="

Figure 63: The drawing produced by participant L28.

sketch. The added pole object is accounted for in the first target s-image. The door is
replicated and connected at the top and bottom with a double line and a single line, as in
the source. This causes a slight inconsistency with the sketch: In the sketch all lines are
double lines, and they smoothly connect. My model does not make a distinction between
the nature of the connection. The no vestibule/door distinction behavior is accounted for
by the source analog, which has no explicit representation of a vestibule. The point of view
change is elegantly handled by the representation of the target in the input. Three of the

four differences are accomodated.

MMMMW

[1= b=
° i B °f i
H H [[!

Figure 64: The model of L28.

Transformations:

1. replicate:
object: door section;

number of resultants: 2;

2. add-connections:

120

connectionl: top of doorl to bottom part of top trimmer arm, angle: 90cw distance:
short;
connection2: top part of bottom trimmer arm to bottom of doorl, angle: 90ccw,

distance: short;

3. add-element:

type: rectangle;

4. add-element:

type: line;

5. add-connections:
connectionl: left part of rectangle to top of doorl
connection2: right part of rectangle to top of door2
connectiond: left part of line to bottom of doorl

connectiond: right part of line to bottom of door2

4.3 Dafferences

In the previous section I described how the successful participants changed their diagrams
from what a straightforward copy from the source. For each participant, I listed the dif-
ferences, with similar names for similar differences. This section explores this ontology of
differences in more detail.

Table 15 shows the observed differences and which participants produced them.

I will describe each difference in detail. For each difference, I list possible influences,
which are suggested causes for the difference. I will explore these influences in detail in the

next section.

4.3.1 Added Objects.
4.8.1.1 Participants.

[L1, L2, L12, L13, L14, L15, L16, L19, L20, L21, L22, L.24, 127, L28]

121

Differences observed in each of the participants.

g ¥] £ L [%399
S ¥ IO 0F
T SIOOp SUTPIS
G Y ¥ TIOTEGOT
M” 100p At 0} a[dmioal
S W aftmra mata Jo jurod
Fd W pappE STOETSITP 11T
M” 0TS S100[a[lg[sas ot
T Y s1oop apdignm
M H H ..fh _._...__.__.._._._ ._.._.._z..."._._”._.._.".._.._..ua.u._”._.._.
Fd K apnesaa Juo]
I V K AT Afnop 0 St
0 Y uorEnIE Jardya
e Y BT 0F S| apouop
Z b 1oalqo pajjop
T mrETar s[Em frado s1oo)
z ¥ 11180
Bl X X X X spaalqo pappe
02T | GTT | 9171 &l i s 1L |

Table 15

122

4.8.1.2 Description.

The addition of objects with no analogous elements presented in the laboratory problem
diagram, such as blades, the truck, a road, lines in road, etc. perhaps to make the solution

more realistic or embodied.
4.8.1.8 Influences.

1. demand characteristics: explication purposes

2. simulative concerns: completeness of mental model

One way this could happen is by the participant adding the objects to the source before
adaptation. This explanation is not good for objects for which there are no analogs in the
lab problem, such as the blades.

Another is that the source stays as it appears, but somehow through adaptation a
transformation to add objects gets put into the target. Currently Galatea cannot model
this.

A third way for this to happen is to simply add the objects to the target start state.

All suggested models for this difference used this method.

4.3.2 Center.
4.83.2.1 Participants.

[L1, L2]
4.8.2.2 Description.

Vestibule is moved to center of line representing the long part of the trimmer.
4.3.2.8 Influences.

1. aesthetic concerns: centered on line

2. simulative concerns: completeness of working mental model (possibly in this case

centering made it easier to imagine only one door at a time being open)

3. differences in input structure: vestibule explicit

123

All participants who got the analogous solution in the vestibule on the side condition
(condition 3) centered the vestibule. Since there is no vestibule in the start target state,
the centered-ness of the vestibule must be a result of a transformation. Either the location
of the addition of the vestibule is adapted to be centered on the trimmer, or the participant

modifies the source such that the vestibule is centered in it.

4.3.3 Doors Open, Walls Remain.
4.8.3.1 Participants.

[L11]
4.8.3.2 Description.

Participant drew open doors, yet the wall continues where the closed doors would be.
4.3.83.8 Influences.

1. Lazy drawing: object drawn whole

This difference implies that the vestibule is drawn whole, and that when the doors are

added, the part of the vestibule they replace are not erased.

4.3.4 Dotted Object.
4.8.4.1 Participants.

[L13, L19]
4.8.4.2 Description.

The lines used to draw an object are dotted or dashed.
4.3.4.8 Influences.

1. prior knowledge: diagrammatic convention

The participant might retrieve the idea of a dotted line rather than a line when drawing
it due to interference from the diagrammatic convention of drawing dotted lines for line-

shaped objects of indeterminite location.

124

4.3.5 Double Line To Line.
4.8.5.1 Participants.

[L19, L20, L21, L24]
4.8.5.2 Description.

Double lines in source are drawn as single lines in target.
4.3.5.8 Influences.

1. lazy drawing: fewer lines

2. prior knowledge: diagrammatic convention

The participant may retrieve a single line rather than a double because of interference
from diagrammatic convention. Another explanation could be that the single line is an
easier-to-draw version of a double line, and in some effort-reward calculation, the participant
finds it not worth it to draw the double line, and changes to the less energy-intensive single

line.

4.3.6 Explicit Simulation.
4.83.6.1 Participants.

[L15, L19, L20, L21, 122, L.24, 1.2§]
4.83.6.2 Description.

Shows some diagrammatic description of how mechanism would work, e.g. steps, motion

lines.
4.3.6.3 Influences.

1. demand characteristics: explication

2. engineering bias: mechanistic description

If the goal of the participant is not simply to draw the solution, but to show the exper-

imenter how the system works, then the participant could determine that simply drawing

125

the final solution does not fulfill the goal. Drawing the states is a diagrammatic convention
for showing how something works—this could be retrieved to help attain the goal. Also,

simulation makes the solution appear more “real-world” and embodied.

4.3.7 Line To Double Line.
4.83.7.1 Participants.

[L14, L15, L16]
4.83.7.2 Description.

A line represented as single in source is represented as double in target.
4.3.7.3 Influences.

1. simulative concerns: completeness of mental model

2. prior knowledge: diagrammatic convention

The participant may be experiencing the influence of the diagrammatic convention bias

as described in double line to line, but with a different diagrammatic convention.

4.3.8 Long Vestibule.
4.8.8.1 Participants.

[L14, L22]
4.83.8.2 Description.

The vestibule drawn is rectangular, and not square in shape.
4.3.8.8 Influences.

1. Simulation concerns: completeness of mental model

Upon evaluation of the transferred solution, the participant may realize that the sliding
doors (in the case of 1.14) will not work unless the vestibule is long enough to accomodate

them when open. This would cause the .14 to lengthen the vestibule.

126

In the case of L22, the vestibule needs to be longer because the trimmer needs to be

¢

long, and would fail on the evaluation phase because of that. The reason the “wall” part

cannot be longer is because it is not present in condition 3 (see Figure 51.)

4.3.9 Mechanism Added.
4.83.9.1 Participants.

[L14, L16, L19]
4.83.9.2 Description.

Detailed description of how the weed trimmer contraption will work.
4.3.9.3 Influences.

1. demand characteristics: details

2. engineering bias: mechanistic description

These mechanisms could be added in the same way the simulation described above would

be added.

4.3.10 Multiple Doors.
4.83.10.1 Participants.

[L19]
4.83.10.2 Description.

Participant draws more than two doors.
4.3.10.8 Influences.

1. simulative concerns: completeness of working mental model

Upon simulation, the participant probably didn’t think two doors would be sufficient
to hold the trimmer together. Failing on this count, L.19 went back and added more doors,

reasoning that since the existing doors gave support, more doors would mean more support.

127

4.3.11 No Vestibule/Doors Distinction.
4.8.11.1 Participants.

[L2, L15, L2§]
4.8.11.2 Description.

The walls and doors are indistinguishable, and this object is what moves to allow the pole

to enter.
4.83.11.83 Influences.

1. simulation: completeness of working mental model
2. differences in input structure: vestibule explicit

3. differences in input structure: addition of complex object

The vestibule/door solution in the source could be abstracted functionally into some
symbol representing a redundant mechanism. When adapted to the target, it could get
replaced with a different specification of that abstraction.

For this to happen the source needs to represent the vestibule explicitly, as its own

symbol, as opposed to, say, an unaggregated set of lines.

4.3.12 Numeric Dimensions Added.

4.83.12.1 Participants.

[L14, L27]
4.83.12.2 Description.

Participant draws numbers indicating count, length, weight, etc.
4.8.12.8 Influences.

1. demand characteristics: details

2. entineering bias: quantitative description

128

This would work the same way as the simulation and mechanism additions described

above.

4.3.13 Point Of View Change.
4.83.13.1 Participants.

[L21, L27, L28§]
4.83.18.2 Description.

Drawn point of view is different from that of the source’s. E.g. plan to elevation view shift.
4.8.18.8 Influences.

1. demand characteristics: explication
2. differences in input structure: target at wrong point of view

3. simulative concerns: possibly enhances imaginative simulation

For L27 and L28, the point of view change is necessary to explain, and possibly to think
about the solution. The source or the target would be changed in point of view to be able
to match the other.

For 121, the elevation is probably there for explanatory reasons. See the demand char-

acteristics explanation for simulation.

4.3.14 Rectangle To Line: Door.
4.83.14.1 Participants.

[L11, L12, L13]
4.8.14.2 Description.

Doors in source are rectangles, in target are drawn as lines.
4.3.14.3 Influences.

1. demand characteristics: horizontal space

2. simulative concerns: kinesthetic metaphors

129

This would work the same way as double line to line.

4.3.15 Rotation.
4.8.15.1 Participants.

[L1, L12, L13, L14, L15, L16, L20, L22, L27]
4.8.15.2 Description.

Entire analog is rotated to a horizontal position.
4.83.15.8 Influences.

1. demand characteristics: horizontal space

2. simulative concerns: kinesthetic metaphors

Rotation is a change of orientation for a visual object. To change orientation, the
object’s orientation must be represented.

The difficult way to do this is to represent the absolute locations of the primitive objects
that compose the complex object. The relation of the relations of these primitive objects
to each other implicity represents the orientation of the complex object. Changing the
orientation means a painstaking transformation of all the locations.

The simpler way to do this is to have an explicit representation of the primitive objects
to one another (e.g. connected perpendicularly). These relations are rotation-invariant, so
rotations will not require their updating. With this, though, an explicit notion of orientation
is needed, which requires an ontology of directions, as Covlan does. Associating a part of a
complex object to a direction gives directionality. To rotate something requies a bit more,
however. Rotation requires the amount rotated (or and end position) as well as a center of
rotation.

Thus the compact way to represent rotation is by relating the components of a complex
object with rotation-invariant predicates, specifying a center and a “front,” and noting
which direction the “front” is facing. Galatea models rotation in this way. The initial

target is rotated, and the transformation transfer works smoothly.

130

4.3.16 Sliding Doors.
4.83.16.1 Participants.

[L14]
4.83.16.2 Description.
Doors slide rather than swing.
4.3.16.3 Influences.

1. differences in input structure: sliding doors in source

2. simulative concerns: completeness of working mental model

Since, for L14, it is ambiguous in the source diagram whether the doors slide or swing,
we can assume L14 imagined they swung to account for his swinging doors in the target.

Alternatively, L14 might have thought swinging doors would not work. Under simula-
tion, L14 could have discovered this and retrieved a more fail-safe solution serving the same

function: sliding doors.

4.3.17 Zoom.
4.83.17.1 Participants.

[L13, L21, L27]
4.83.17.2 Description.

At least two drawings are presented, one of which is a close-up of a part of the other.
4.83.17.8 Influences.

1. demand characteristics: explication

2. differences in input structure: target at wrong magnification

This would work for the same reasons as the simuation and mechanistic explanation

differences.

131

4.4 The Influences

In the previous section I described the differences found in the data. With them I listed
possible influences: my conjectures of psychological reasons why these differences might
have appeared. In this section I describe the conjectured influences, which are classified

with seven categories.
4.4.1 Aesthetic Concerns

An aesthetic influence is one where the change is made because the resulting spatial layout
is preferred because it is more pleasing to the eye. Since it only accounts for a single
difference, and this difference can be accounted for by other influences, this influence will

not be further explored in this work.

4.4.1.1 centered on line

1. difference: vestibule centered on trimmer
4.4.2 Demand Characteristics

Demand characteristics are influences from the experimental setup. Some might be based
on what the experimental participant’s perception of the experimenter’s expectation, or on

the structure of the stimuli.
4.4.2.1 horizontal space

Participant thinks a horizontally-oriented picture is more appropriate for a horizontally-
oriented space, since the space given on the experiment sheet is larger horizontally than it

was vertically.

1. difference: rotation
4.4.2.2 explication purposes

Representations are not necessarily a part of problem solving, but are merely added to the

diagram drawn to explain something to the experimenter.

1. difference: Zoom

132

2. difference: Added objects

3. difference: Explicit simulation
4. difference: Point of view change
4.4.2.8 Details

Participant thinks experimenter expects to see details with respect to the mechanisms in-

volved and the dimensions, possibly because the data were taken at a technical university.
1. difference: Numeric dimensions added
2. difference: Mechanisms added

4.4.3 Differences in Input Structure

Differences in input structure group those changes that occur as a result of differences in

the representational content of the source case or target problem.

4.4.8.1 FExplicitly represented vestibule

This means that the vestibule is represented as a complex object, rather than implied by

the existence of more primitive objects (e.g. a set of unaggregated lines.)
1. difference: vestibule centered on line
2. difference: no door/vestibule distinction
4.4.8.2 Addition of Complex Object

The whole vestibule object must be a unit for it to get adapted to something different with

the same function.
1. difference: no door/vestibule distinction

4.4.8.8 Target at Wrong Magnification

Participant starts with one zoom level, similar to lab scale. But because scale is in appro-

priate for transfer, must generate zoomed in version (see L13).

1. difference: Zoom

133

4.4.8.4 Target at Wrong Point of View

The analog might be represented in a point of view in which the solution is not visible

(because, perhaps, the important mechanisms are occulded).

1. difference: Point of view change
4.4.8.5 Sliding doors in source

If the source is represented as having a sliding door, then it makes sense that the participant

would represent sliding doors in the target.

1. difference: Sliding doors

4.4.4 Engineering Bias
4.4.4.1 Quantitative Description

As opposed to the demand characteristics, things like numeric dimensions may be added

because of some internal motivation as a result of the participant’s engineering training.

1. difference: numeric dimensions added
4.4.4.2 Mechanistic Description

The participant may add simulation or mechanism descriptions because that is the parti-

pant’s idea of a proper solution, due to their training at a technical school.
1. difference: mechanisms added

2. difference: explicit simulation

4.4.5 Lazy Drawing

4.4.5.1 Object drawn whole at first needs missing parts later in drawing

This is evidence of discreteness of transformations: adding vestibule, then doors.

1. difference: doors open, walls remain

134

4.4.5.2 Fewer Lines

Due to some cost/benefit calculation, more lines may be deemed superflous.

1. difference: Double line to line

4.4.6 Prior Knowledge

4.4.6.1 Diagrammatic convention

We all make diagrams, and certain conventions exist for them in our culture. These biases

may affect how things get conceptualized or drawn in the target.
1. difference: rectangle to line: door

2. difference: dotted object. (Either because opening and closing doors looks like this

(non-visual explanation) or because moving objects look like this (visual explanation).)
3. difference: line to double line

4. difference: double line to line

4.4.7 Simulative Concerns

4.4.7.1 Visual simulation

Participant thinks lines are better for rotating on a hinge than rectangles

1. difference: rectangle to line: door
4.4.7.2 Kinesthetic Metaphors

Ten participants rotated their diagrams. It might be that the horizontally oriented space
they were given in which to draw might have been a factor. However this is questionable
because of the consistency with which the participants described the direction of the weed
trimmer. All them showed the weed trimmer as going up the page (or, similarly, the
pole going down the page, either by showing the pole explicitly or through the direction
of the door openings), save L14, who showed no direction. This means that not a single
participant who rotated made the weed trimmer going down the page. This suggests that

there is something about “going up” that is priviledged for this problem situation.

135

When watching a truck drive away, it appears to go up toward the horizon. When
moving forward, you are heading from where to are to a point higher up in your visual

plane. These kinethetic metaphors may account for this consistency [48].

1. difference: rotated (people prefer to think of weed-trimmer as moving up).
4.4.7.8 Completeness of Working Mental Model

The participant may be attempting to construct a mental model, and in doing so, might
add diagrammatic elements that reflect objects added to that model with the function of

making that model more complete, or to make it internally “run” more properly.

1. difference: adding objects (Non-visual. Airflow is represented as arrows in the source.
In the target, though, the entire apparatus moves. The truck is the causal source of

the motion. Perhaps that is why it is represented. [L12])
2. difference: Centered Vestibule
3. difference: no door /vestibule distinction
4. difference: line to double line (doors need to slide into them)
5. difference: sliding doors (better chance of actually working.)
6. difference: multiple doors
7. difference: long vestibule [L14](doors need to slide into them)

8. difference: long vestibule [L22] (since in the (plan, no walls) condition there are no

walls, the Ss need to make the vestibule longer for it to make sense.)

4.5 Summary Of Models

The preceding subsections described “pen-and-paper” models of the remaining eleven par-
ticipants who got the analogous answers in Dr. Craig’s experiment. Table 16 shows the
proportions of the differences the models accomodated. Over all, the models accounted for

about half (49%) of the differences.

136

Table 16: Differences accounted for in pen-and-paper models.

Participant ‘ Accomodated Differences ‘ Percentage
L1]2/5 40%
L2]| 3/4 75%

L11 | 0/2 0%
L12 | 2/3 67%
L13 | 3/6 50%
L19 | 2/6 33%
L20 | 2/4 50%
L21 | 2/5 40%
L24 | 2/3 67%
L27 | 2/5 40%
L28 | 3/4 75%
Total | 23/47 49%

I have every reason to think that these models could be implemented in Galatea without
changing Galatea’s core code, or, indeed, even adding any transformations. Only the
complex elements would need to be added. Though these participants were not modelled
computationally, these models suggest how Galatea could model them without significant
changes to the code. Thus these pen-and-paper models show some support for Constructive
Adaptive Visual Analogy.

The second section of this chapter described the differences that appeared in more
detail, and the third section speculated on the cognitive processes that might have gone on
to produce these differences.

This chapter as a whole contributes a detailed analysis of visual analogy in human
beings, and presents a sketch of what kinds of psychological factors might be involved in
the production of the data. I suggest that some form of these differences and infuences

should be a part of any complete cognitive model of these data.

137

CHAPTER V

PSYCHOLOGIAL EXPERIMENTATION

As Constructive Adaptive Visual Analogy is a cognitive theory, I tested the theory with
a psychological experiment. In the previous chapters I described Galatea and the models
created with it. The focus of Galatea is on the transfer subtask of analogy. Implicit in
this formulation is the idea that there is difficulty in analogical problem solving above and
beyond the difficulty associated with mapping. I tested this idea in the experiment as well
as the third of my main hypotheses: that visual knowledge facilitates transfer even when
non-visual knowledge might be available.

In this experiment, participants are given Gick and Holyoak’s classic tumor problem
to solve, using the fortress problem as an analogy. Experimental participants read a story
about a general who must overthrow a dictator in a fortress. His army is poised to attack
along one of many roads leading to the fortress when the general finds that the roads are
mined such that large groups passing will set them off. To solve the problem, the general
breaks the army into smaller groups, and they take different roads simultaneously, arriving
together at the fortress. Participants are then given a tumor problem, in which a tumor
must be destroyed with a ray of radiation, but the ray will destroy healthy tissue on the
way in, killing the patient. The analogous solution (which in this document I will call the
“correct” solution) is to have several weaker rays simultaneously converging on the tumor
[33, 15].

Much of the analogical problem solving research with the fortress/tumor problem as-
sumes that the difficult parts of analogy are retrieval and mapping. Studies of this sort
manipulate retrieval hints, manipulate changes in the fortress story, use completely differ-
ent source stories, manipulate the timing of the source story [33], force participants to make
comparisons, or change instructions. Analogy involves many tasks; these experiments some-

times distinguish between the retrieval stage and later ones, but not between, for example,

138

mapping and transfer. Novick and Holyoak [60] however found that for math word problems
only around 40% of participants (50% in one experiment, 32% in the next) were able to
find the analogous solution even when the mapping was given as a part of the stimuli. This
suggests that the mapping stage is not the only difficult analogical subtask.

This work hypothesizes that transfer of strongly-ordered procedures is computationally
complex, even given the correct mapping. To get an idea of how difficult analogical problem
solving is above and beyond and mapping, this experiment manipulated whether or not
the participants were given the mapping between the source and target. If mapping is the
only/major source of difficulty in analogical reasoning, then experimental participants given
the correct mapping in a cross-domain analogical problem-solving task should have little
difficulty successfully transferring the solution. The experiment investigates whether this is
the case for cross-domain analogical problem solving.

Diagrams have been shown to help in analogical problem solving in general (e.g. [4]),
but not specifically with analogical transfer. The main hypothesis of this experiment is that

visual knowledge facilitates transfer even when non-visual knowledge might be available.

5.1 Method
5.1.1 Participants.

Fighty undergraduate students received extra class credit in exchange for taking part in the

experiment. They were randomly assigned to one of the six experimental groups.
5.1.2 Design.

Each participant read a description of the fortress problem and how it was solved: “A small
country fell under the iron rule of a dictator. The dictator ruled the country from a strong
fortress. The fortress was situated in the middle of the country, surrounded by farms and
villages. Many roads radiated outward from the fortress like spokes on a wheel. A great
general arose who raised a large army at the border and vowed to capture the fortress. His
troops were poised at the head of one of the roads leading to the fortress, ready to attack.
However, a spy brought the general a disturbing report. The ruthless dictator had planted

mines on each of the roads. The mines were set so that small bodies of men could pass over

139

them safely, since the dictator would then destroy many villages in retaliation. A full-scale
direct attack on the fortress therefore appeared impossible.”

Participants in diagram conditions (groups A and D) were given a diagram (see Figure
65) with the following text: “Here is an abstract diagram that describes the problem the
general faced, and what he did to solve it. The arrows represent the groups of soldiers
marching on roads to the fortress in the center.”

Participants in the draw condition (group C) were asked to “Please draw a diagram or
diagrams that describes the problem the general faced (NOT the solution—we will ask for a
drawing of that later.) Please make it abstract. So please don’t draw realistic drawings of
the fortress, for example.”

Then all participants read the solution to the fortress problem: “The general, however,
was undaunted. He divided his army up into small groups and dispatched each group to the
head of a different road. When all was ready he gave the signal, and each group charged
down a different road. All of the small groups passed safely over the mines, and the army
then attacked the fortress in full strength. In this way, the general was able to capture the
fortress and overthrow the dictator.”

This text is from Gick and Holyoak [33].

Figure 65: The experimental fortress story diagram used in the diagram conditions (groups
A and D.)

Participants in the draw condition (group C) were then asked to “Please draw an abstract
diagram or diagrams that describes the general’s solution to this problem.”
All participants looked at the tumor problem: “Suppose you are a doctor faced with

a patient who has a malignant tumor in his stomach. It is impossible to operate on the

140

patient, but unless the tumor is destroyed the patient will die. There is a kind of ray that
can be used to destroy the tumor. If the rays reach the tumor all at once at a sufficiently
high intensity, the tumor will be destroyed. At lower intensities the rays are harmless to
healthy tissue, but they will not affect the tumor either. What type of procedure might be
used to destroy the tumor with the rays, and at the same time avoid destroying the healthy
tissue?”

Participants in the draw condition (group C) were then asked to “Please draw a diagram
that describes the above problem (NOT the solution—we will ask for a drawing of that later.)
Again, please make it abstract. So please don’t draw realistic drawings of a tumor, for
example.”

Participants in the mapping conditions (groups A, B, C, and E) read “These problems
are analogous. In these stories, the tumor is like the fortress, and the ray of radiation is like
the big army that wants to march. The expolding mines are like the patient’s body getting
hurt by radiation.”

Participants in the diagram conditions (groups A and D) were then shown a diagram
of the tumor problem, shown in Figure 66.

Participants in all groups read “How would you solve the tumor problem? What type of
procedures might be used to destroy the tumor with the rays, and at the same time avoid
destroying the healthy tissue? Use the fortress story as an analogy to help you solve the
tumor problem. Give as many possible solutions as you can think of. This is a difficult
problem that requires creativity to solve—you may need to work at it.”

Participants in the draw solution conditions (groups A, B, C, and D) were then asked
to “Please draw diagrams to accompany your written solutions.”

Table 17 shows each group (A through F) in this design. The table further shows
the number of participants in each group, whether that group gave the participants the
mapping, whether diagrams were given, whether they asked to draw diagrams, and whether
they were asked to draw solutions, as described above.

The specific hypotheses for this experiment are: First, there will be no large effect of

mapping. Second, there will be a positive effect of being in the diagram condition. Third,

141

Figure 66: The experimental diagram of the tumor problem used in the diagram condition
(groups A and D.)

there will be a positive effect of being in the draw-solution condition. The draw condition
does not have a hypothesis associated with it because participants in it tended to draw the
solution rather than the problem. This condition was discontinued halfway through the

experimentation process.
5.1.3 Procedure.

Participants signed a consent form, and were given a sheet of paper with the stimuli (de-
scribed in the previous section) printed on it. They were asked to take their time and to
follow the instructions on the sheet. No participant took more than 30 minutes to com-
plete the experiment. After they finished, they were asked if they had ever heard of the

fortress/tumor problems before. They were then debriefed and shown out.
5.1.4 Analysis and Scoring.

A given participant was classified as getting the correct answer if any of his or her descrip-
tions of the tumor solution (drawn and written) described 1) multiple rays, 2) weaker rays,

and 3) coming in from multiple directions. Those missing any one of these three criteria

142

Table 17: Experimental results by group.

Group ID ‘ N ‘ Mapping | Diagram | Draw ‘ Draw-Solution ‘ Correct ‘ %

A 16 X X X 15/16 | 94%
B 14 X X 14/14 | 100%
C 15 X X X 12/15 | 80%
D 12 X X 12/12 | 100%
E 10 X 7/10 | 70%
F 11 10/11 | 91%

Table 18: Experimental results by condition. The only significant difference found was for
those with and without the draw solution manipulation.

Condition ‘ with ‘ without

Mapping 87% (48/55) | 96% (22/23)
Diagram 96% (27/28) | 86% (43/50)
Draw Solution | 93% (53/57) | 81% (17/21)

were classified as having gotten an incorrect answer.

5.2 Results

The results are shown in tables 17 and 18. Two participants were excluded from the analysis
because they reported having encountered the fortress/tumor problem before.

It is difficult to see the pure effects the conditions by looking at the results tables
because it is not a between-subjects design. That is, most participants participated in
multiple conditions. The statistical results reported are from methods that control for co-
variation, allowing for statistical control such as an ANCOVA, or Analysis of Covariance,
and regression. These methods use statistical control of conditions when experimental
control is impossible. So, for example, when calculating the correlation between mapping
and correct, for example, it is a partial correlation that is meaningful; it is measured
controlling for the variables associated with the other factors.

The first goal of this experiment is to investigate the effect of mapping for a cross-domain

143

analogical problem-solving task. This experiment showed no effect of mapping. Controlling
for the diagram and draw-solution conditions, the partial correlation between mapping
and correctness is negative: -.171 The probability that there was an effect of mapping is
insignificant (p=0.144). Even if this result were significant, it is in the wrong direction.
That is, those given the mapping fared (insignificantly) worse than those without. The 95%
confidence interval for the effect of mapping on correctness is -.296 to .044.! Because the
interval crosses zero, it is statistically indistinguishable from zero. A regression of mapping
on correctness is also shown to be insignificant: r squared (.010) F(1,61)=.625, p=.432.

The mapping groups had 87% correct; the non-mapping groups had 96% correct. Be-
cause I am relying on a null result, it is important to have enough power to detect a true
difference if there is one.

This experiment has to power to detect a medium-sized effect (.31). Thus the positive
effect of mapping cannot be more than .31. Because 50% or greater is considered a large
effect, we are 95% confident that there is no large effect, casting doubt on the overwhelming
importance placed on mapping.

Another hypothesis is that the diagram condition will help. Groups with diagrams (A
and D) have 96% correct (n=28) while those without diagrams have 86% correct. On the
face of it it looks like it should be significant. But the result is confounded with draw solution
(all subjects in the diagram condition also have the draw solution condition). Controlling
for draw solution and mapping leaves the partial correlation between diagram and correct
at .101, and not distinguishable from zero (p=.390). A regression of diagram on correct
is insignificant when it is the only variable in the equation F(1, 76)=2.124, p=.149 and
remains an insignificant contributor to the model after mapping is added (p=.219) and
remains insignificant after draw solution is added to the equation (p=.876). Though the
difference is insignificant, the results are in the predicted direction: Those shown diagrams

fared (insignificantly) better than those not shown diagrams.

!This means that if you performed this experiment 100 times, the true population mean would fall
between these 95% of the time.

144

The second hypothesis is that drawing the solution helps participants get the cor-
rect solution. Controlling for mapping and diagram, the partial correlation between draw
solution and correctness is significant (.180, p=.024); and the 95% confidence interval is
.034 to .479. 93% of the people in the draw-solution conditions got it correct. For those
not asked to draw the solution the percent correct is 81%. Even controlling for mapping
and diagram, this difference is significant. Not only does it appear that the draw solution
condition improves performance, but because the confidence intervals do not overlap, the

effect of draw solution is significantly greater than the effect of mapping.

5.3 FExperimental Conclusions

In conclusion, this experiment has two results: the participants given the mapping did not
perform better than those who were not given it, and those asked to draw their solution to
the tumor problem outperformed those were not asked to draw it, supporting the claims that
there is difficulty in analogical problem solving above and beyond the difficulty associated
with mapping and that visual knowledge facilitates transfer even when non-visual knowledge
might be available.

Researchers have found other manipulations to this task that have facilitated the partic-
ipants’ finding the analogical soultion. Catrambone and Holyoak [8] facilitated transfer by
1) specifically asking participants to compare the analogs and 2) manipulating the wording
in the stimuli such that the solution-relevant information was more salient.

The hypotheses come directly from this work’s main three hypotheses. I found that
though groups given diagrams did not benefit, those asked to draw their solutions did,
partially supporting the notion that visual knowledge facilitates transfer even when non-
visual knowledge might be available.

In terms of visual stimuli, animations have been found to be helpful [63]. Gick and
Holyoak [34] used diagrams similar to the ones I used to facilitate tranfer, but did not find
an effect. A follow up study by Beveridge and Parkins [4] found an effect using diagrams with
translucent ray representations where the cumulative effect can be perceptually identified.

The similarity of my stimulus to those of Gick and Holyoak could account for why my study

145

did not find an effect of diagram. It may also be that perhaps it is the act of creation of
the visual representation that helps more than a given diagram because the act of creation
is more likely to be associated with the correct things in memory. Further investigation is

needed to fully understand this discrepancy.

146

CHAPTER VI

FURTHER THEORY: VISUAL RE-REPRESENTATION

This work has shown that visual knowledge can be useful in analogical problem solving.
This chapter provides theoretical conjectures for the Constructive Adaptive Visual Analogy
theory explaining why this might be so. As I will describe in more detail in the conclusion,
the theory in this chapter will be the subject of my future investigations.

This dissertation is based on the general idea that visual representations provide a level
of abstraction at which two otherwise dissimilar domains may appear more alike.

Galatea’s design opts for some higher-level visual abstractions when possible. I could
have, for example, used a complex hypothetical shape, say s1, to accurately describe the
shape of a fortress, and a different different shape, say s14, to accurately represent the
shape of a tumor. In that case, the tumor query might retrieve only other similar-looking
tumors, ignoring even different-looking tumors, let alone fortresses. That is, a more detailed
and more accurate visual representation would make analogical remindings, mappings and
transfer harder.

There are many theories that also resolve ontological mismatches by finding similarities
at a higher level of abstraction. For example, in conceptual dependency theory [66], verbs
are categorized into ACTs, which are abstractions of actions. Bhatta and Goel’s Generic
Teleological Mechanisms [6] cover different instantiations of mechanisms that perform the
same function. Falkenhainer’s Minimal Ascension rule[18] uses a generalization hierarchy to
determine the distance between concepts. This dissertation suggests that visual abstraction,
too, is a useful mechanism for analogical problem solving.

A major issue, then, is under what conditions are visual analogies useful? 1 conjecture
that one of the ways visual representations are useful is in resolving ontological mismatches
in analogical problem solving. For example, imagine a reasoner needs to find similarity

between a door and a television set. A functional description would not find this similarity.

147

Table 19: Knowledge states, entities, and manipulations.

‘ Knowledge State ‘ Entity ‘ Manipulation

non-visual nv-state object action

Covlan s-image element | transformation

The symbols representing the objects and their descriptions are different. However, they
have a visual similarity: they can both be seen as rectangles from one point of view.
This is a simple example of how a visual abstraction can find similarity when there is
an ontological mismatch. This is something humans routinely do in problem solving that
AT theories of analogy need to accomodate. Ontological mismatches encountered in non-
visual representations are resolved by providing a level of visual abstraction at which two
different symbols are similar.

Problems and solution procedures can be represented non-visually and visually. In the
non-visual representation, the knowledge states are called nv-states, and the manipulations
are called actions. Both actions and nv-states can be transformed into visual representa-
tions. This is done using Covlan, as described in previous chapters.!

Unsolved target problems are represented as single nv-states or s-images.

6.1 Resolving Ontological Mismatches

Analogy is one among many ways to find a problem solution. For example, if an identical
problem has been encountered before, that solution might be retrieved directly. In Figure 67,
analogy is a method for a problem solving task. Analogy consists of several steps: retrieval
of a candidate source analog in memory; mapping the components of the analogs; transfer of
knowledge from source to target; evaluation; and storage of the target in memory, perhaps

to be used as a source analog later. My proposal involves changing the representations of

” ” W

'The terms “entity,” “element,” “object,” “manipulation,” “action,” and “transformation” are used
merely to differentiate the visual, non-visual, and super-ordinate counterparts of things and operators.
Their common sense meanings in English do not have everything to do with which term gets used with
which meaning.

148

problem state
solution criteria

problem solving procedure
solution state

‘Retnevalm Mappm Transfem Evaluatlonm Storade
on—Visua Visual Non—Vlsua Vlsual on—Vlsua Vlsual
Retrieval R etriev | Mapplng Mappln Transfer Transfe

Figure 67: This Figure shows a high level description of my the CAVA theory of the
role of visual reasoning in analogical problem solving. Straight horizontal arrows represent
input (arrows entering a box) and output (arrows exiting a box.) Boxes represent complex
actions to be taken by the agent. Curved arrows represent an ordering relation. A series of
boxes connected with curved lines represent a series of ordered subtasks of the higher task,
connected with a vertical line. The order is from left to right. Boxes below a task that are
unconnected to each other are not subtasks but alternative method for achieving the task
in the box above it. Realistically, there is looping in the analogical process; this will be
detailed in the model.

the analogs, which is often a useful process to prepare the analogs for one of the above core

steps. I will describe steps of analogy and how visual knowledge ebables it.
6.1.1 Retrieval and Mapping.

Visual information can be used to retrieve memories. Since visual cueing can occur, it is
reasonable to think that some memories are encoded in terms of perceptual information. It
has even recently been hypothesized that all memories are encoded in terms of perceptual
information [2].

In analogical problem solving, a visual representation of the target could be used to
retrieve visual representations of potential sources. An analog can be represented in terms
of process, causality, uses, etc.; the visual representation is one of many possible forms of
representation. The mind will use these connected, different representations for retrieval
when relevant.

Visual representations can be generated to aid in retrieval. However, in trying to un-
derstand the situation the reasoner might generate a visual abstraction to represent it. For
example, the demands might be represented as converging red lines on a circle, representing
the reasoner, perhaps triggering other memories regarding convergence.

Mapping two analogs involves aligning their elements. Since retrieval is based on match-

ing, to some extent, it is reasonable to suppose that the processing done to retrieve an analog

149

could be used to guide mapping [44, 19].
Since I am dealing with problem solving, and the analogical transfer of problem solving
solutions, retrieval queries are based on the initial problem state and the solution con-

straints. See Figure 68.

Possible Source episodes in case memory

knowledge knowledge knowledge
state one state two state three
(initial) (final)

knowledge knowledge knowledge
state one state two state three

(initial) (final)

l— >

knowledge
TARGET PROBLEM state one
(initia)

Figure 68: This Figure shows a target analog problem and how it could relate to the
potential analogs in the memory. The items in the case memory are represented here as a
series of knowledge states (represented by boxes) connected with manipulations, which are
changes to the knowledge state (represented by straight arrows pointing right.) The last box
in a series is the solution state, and the arrows, in order, represent the solution procedure.
The target only has a single knowledge state because there is no solution procedure yet.
There is also no solution state, but rather a set of criteria that must be fulfilled. The
initial target knowledge state is compared to the initial states of the cases in memory for
similarity (shown as wiggly arrows coming from the target knowledge state). Also, the
solution criteria is compared to the solution states in memory to see if they fulfill the
criteria (shown as wiggly arrows coming from the target solution criteria). Based on these
measures cases could be retrieved.

Mapping visual analogs may differ from mapping non-visual analogs in two ways. First,
visual analogy could use visual knowledge, such as an abstraction hierarchy (e.g. a square
is a kind of rectangle). Such knowledge could be used to find matches based on similarity.
Second, the reasoner’s perceptual system could be brought to bear to inform the mapping.
Seeing a truck may have something to do with matching its parts to the parts of some
episode of truck experience in memory. Likewise, one might help guide mapping by using

perception on generated mental images [47].

150

6.1.2 Transfer and Adaptation.

As in some other theories of analogical problem solving, I hypothesize that problem solving
strategies are transferred. Other theories of visual analogy do not do this.

As shown in Figure 68, the possible source analogs are represented as solution procedures
of connected knowledge states. In analogical problem solving, transfer is applying a source
analogy’s solution strategy to a target. This could be done with both visual and non-visual
representations.

Transfer works as follows: In the mapping stage, a mapping is found between the source
and target initial problem states. The manipulation that connects the first to the next
knowledge state in the source is transferred to the target. The parts of the target that the
manipulation affects are those analogous parts of what get affected in the source.

When this is done with visual representations, transfer of manipulations can work be-
cause they are sufficiently abstract such that they can apply equally well to many different
visual primitives. For example, a manipulation that moves something can apply to
lines as well as circles. This means that the same move manipulation that worked in
the source with a circle could work with the line in the target.

This process can repeat unhindered for the entire sequence, transferring the manipula-
tion from the source and generating new knowledge states in the target. Sometimes, how-
ever, there can be problems with ontological mismatches. For example, in the fortress/tumor
example, imagine that in the reasoner’s mind the army is decomposed using a break-up
action that will not work on the ray because the ray does not have constituent parts.

Visual representations can be used as an intermediate level of abstraction to do plan
adaptation. To follow the example, imagine the advancing army gets visually instantiated
as a line, and the ray does as well. The manipulation, too, gets visually instantiated
as the decompose visual transformation, which applies fairly broadly to visual elements.
In the generated visual representation, the transfer of the manipulation occurs smoothly,
as decompose can apply equally well to both lines. I call this visual representation an
intermediate step because it must be turned back into the non-visual again, because, I

assume, “solving” the problem in the visual abstraction is really not informative of actions

151

that must be taken in the real world (more on this in the next section). When the visual
transformation is turned into a manipulation for the ray in the non-visual representation,
it becomes a different manipulation: disperse-energy. Because transformations can
specify into different actions, strategies can be adapted to new instances, and steps in the

problem solving process do not need to be transferred literally.
6.1.3 Solution Evaluation.

In my theory the target problem, at the start, has only a single knowledge state. The final
“goal state” is not represented at the start. I am dealing with insight problems, for which,
I assume, a clear picture of the goal state is often all one needs to solve the problem. Most
of the work is in finding out what the goal state is, as opposed to how to get there. Rather,
the “solution” is represented in terms of criteria that are used to determine whether the
problem is solved.

For many problems the reasoner cannot tell if the problem is solved by examining
the uninterpreted visual representation at the level of abstraction I've been discussing.
An agent needs to turn it back into a non-visual representation and run a simulation to
determine the effectiveness of the manipulations made. For example, moving the weaker
rays and pointing them toward the tumor cannot be identified as an adequate solution to
the problem unless the agent understands that the result of this would be that the tumor is
destroyed while leaving the healthy tissue unharmed but notions of “harm” are not a part
of the visual representation. Then the goal criteria can be applied. Once the knowledge
state is non-visual again, its workings need to be simulated to be able to test it against the
goal criteria. The reasoner maintains correspondences between elements of the knowledge
states throughout the transfer process, and is able to use that information to return the
final solution state back into a non-visual representation. Simulation in this sense means
predicting the behavior of a system given the knowledge of how it works.

Thus to simulate, the agent needs causal knowledge. Neither this causal knowledge nor
the goal criteria can be represented with only visual information, as causality consists of

more than visual relationships between things.

152

By causal I mean knowledge of how things in a system change as they interact. Pre-
and post-conditions are a straightforward way to represent this, but it is difficult to imagine
what “visual” pre- and post-conditions might look like. For the reasons above I suggest that

visual representations alone cannot enable evaluation of the solution.
6.1.4 Solution Storage.

Newly created knowledge state series are stored just like source analogs so they can be used

as such in the future.

6.2 Inference and Control

The theme of this chapter is that visual information will prove to be useful in resolving
ontological mismatches. In this section I will specify this theme further: Visual information
will help resolve two different kinds of ontological mismatches in analogical problem solving.
First, it can help with the generation of mappings. Take, for instance, where the reasoner
needs to find an alignment between the army and the ray of radiation. For the sake of
simplicity, let’s say that, in the non-visual representation, the army is represented with
the token army and the radiation is represented with the token ray. The tokens are not

identical, and the system cannot align them. The situation is depicted in Figure 69.

PROBLEM SOLUTION
STATES STATES

S S

SOURCE problom tate BREAK-UP
represented non-visually represented non-visually
NON-VISUAL

Target

TARGET Problem State

represented non-visual

Figure 69: The ovals along the top represent the solved problem in memory. For the sake of
simplicity, imagine that the solution to the problem involves only a single transformation.
The top left oval represents the start nv-state. The action break-up, splits the army up
into smaller groups, resulting in many smaller armies. Every oval in this figure represents a
non-visually represented knowledge state. The problem state on the bottom is the tumor
problem.

Now imagine the reasoner has knowledge that both the ray and the army share the

visual abstraction line, because a ray is shaped like a line, and the army’s motion can

153

be abstracted into a line-shaped path. The reasoner generates a visual representation of
both analogs and finds that there is a 1ine in each, and makes the alignment as a result of
this found similarity. This alignment is brought back to the non-visual representation and
the analogical problem solving process continues in the non-visual representation.

The second use I predict is in the visual abstraction of actions. Let’s say that to solve
the problem the reasoner needs to break up the army into smaller armies, and the action it
uses to do this is break—-up, which takes a set of things as an argument and outputs smaller
groups. Further, suppose break-up works by finding the constituent parts of the idea, and
dividing them into n groups. If the ray of radiation is represented such that it does not
have constituent parts, then the action break-up can not be applied to it. You can see the

state of the reasoner’s knowledge at this point in Figure 70.

PROBLEM SOLUTION
STATES STATES
S S
SOURCE Problem State BREAK-UP
represented non-visually represented non-visually
NON-VISUAL
Target
TARGET Problem State
represented non-visual
SOURCE problem State
represented visually
alignment| VISUAL
Target
TARGET Problem State

represented visually

Figure 70: The bottom two ovals are the problem states of the target and source, repre-
sented in terms of their visual information. As a result of their visual similarity, the reasoner
can find an alignment, or mapping. This allows the reasoner to hypothesize the analogous
alignment in the non-visual representation. From here, the reasoner can attempt the trans-
fer process in the non-visual representation. It will fail because the action break-up cannot
be applied to the ray of radiation.

The reasoner can visually instantiate the transformation into one that can be applied
to line. Let’s suppose it visually instantiates into the visual decompose transformation,
which will turn a line into several thinner line. This visual transformation can be

applied to both source and target s-images, because they both contain lines.

154

PROBLEM SOLUTION

STATES STATES
S S
SOURCE ot State BREAK-UP
represented non-visually represented non-visually
NON-VISUAL

Target

TARGET Problem State
represented non-visual
Source
Source
SOURCE Problem State DECOMPOSE SOl ate
represented visually represented visuall
alignment alignment VISUAL
Target Target

TARGET Problem State DECOMPOSE Solution State

represented visually represented visually

Figure 71: To resolve this transfer of strategy problem, the reasoner continues fleshing
out the visual representation, visually instantiating the break-up action into the visual
decompose transformation. Since the ray and the soldier path are abstracted as line,
the decompose function can be transferred from the source to the target in the visual. The
visual solution state can be generated. But solving the problem in a visual abstraction
does not mean solving it in the more realistic non-visual representation. But if decompose
specifies to break-up, then the visual representation does no good, because we could have
just substituted break-up in the non-visual to begin with.

PROBLEM SOLUTION
STATES STATES

Source
Solution State
represented non-visually
NON-VISUAL

alignment

Source
Problem State
represented non-visually

SOURCE BREAK-UP

Target Target

DISTRIBUTE

TARGET Problem State Solution State
represented non-visuaj epresented non-visuall
SOURCE problem Siate DECOMPOSE Solaton State
represented visually represented visuall
alignment alignment VISUAL
Target T
TARGET Problem State DECOMPOSE smut?(r)gneé[a[e
represented visually represented visually
Figure 72: The decompose function specifies to more than one non-visual

transformation. The reasoner chooses the correct specification based on the kind of object
it is modifying. In this case, it’s energy, so it chooses the more appropriate distribute
transformation. It decomposes the ray correctly. The target solution state represented
non-visually is generated and evaluated. The problem is solved.

155

Next comes specification, which is translating the transformation back into an
action in the non-visual representation, which I assume is a more realistic representation.
That is, if you can’t translate it back from the visual abstraction, then you won’t really
know what to do to the radiation, only a line representing it.?

But if you can trivially translate back and forth, then there is no need for the visual
abstraction. What makes the visual transformation useful is that it does not specify back
into break-up. The decompose transformation specifies into break-up when dealing with,
perhaps, entities with constituent parts, but when dealing with something like energy, whose
intensity might be represented by a number, it specifies into a different action. Let’s call
this new transformation distribute, which divides an intensity level by some number m
and allocates the intensity to several sources of energy. This final nv-state is depicted in
Figure 72.

In summary, according to visual re-representation theory the visual abstractions can
provide an intermediate representation through which otherwise dissimilar entities and ma-

nipulations can be aligned.

put apply specify
reirieve generatg » > trans— trans— trans—
B s —imagd S—imagg J formation) | formation] | formatior

series

Visual Analogy

evaluate =

last " | e transfer: tralnsfer_:
knowledges r(itneva ~mapping ~ put action === apply action

state

>,

v
storage]

) problem
solving solving
strateg

Figure 73: Flow diagram demonstrating control in visual re-representation theory.

Here is the main algorithm. It takes as input at least the following items: A memory of

It may well be that you cannot understand how to solve a problem in a physical system without some
perceptual representation of it. The visual representations I'm dealing with in this dissertation are more
abstract than a full-blown, pictorial image. You can imagine how to decompose a ray of radiation quite
realistically, and solve a problem with this in mind, but the visual level I'm talking about is more akin to
a sketched diagram than an instructional video. They are so abstract that they are often ambiguous as to
what they represent (e.g. a circle representing a person).

156

potential source series, success conditions, and a series consisting only of a single problem
nv-state (the target problem). Words in bold represent functions that will be described in

more detail later.

1. Evaluate. Run evaluate, where the knowledge-state argument of evaluate is the
last nv-state currently in the target problem, and the input success conditions are
the specification conditions. If the goal conditions are met, exit, and the problem is

solved. If not, set the target nv-state to current-target-knowledge-state, then go on.

2. Choose problem solving strategy. Choose a problem solving strategy from those
that have not failed for this target problem. If all have failed, exit and fail. If analogy

is chosen then go on.

3. Retrieve. This is the first step of non-visual analogical problem solving. Run re-
trieve, where the single argument is the input target nv-state. If retrieve fails, mark

analogy as having failed for this problem and return to 2 and choose another strategy.

4. Find mapping. Run find-mapping with the following arguments: the current-
target-knowledge-state and current-source-knowledge-state. There may be an input
suggestion from a visual mapping that was found. If find-mapping fails to find a
mapping, and visual knowledge state abstraction has not failed, go on. If it succeeds,
Go to 8 to try to transfer the actions. If it fails because there are no more states to
evaluate, or because visual knowledge state abstraction has failed, go to step 3 and

try another retrieval.

5. Generate new s-images. This is the first step of knowledge state visual instantia-
tion. There are multiple ways to visualize something. Each time this step is reached,
search through the space of visual instantiations for the source and target, creating
new visual instantiations by running generate-s-image where its argument is the
current target knowledge state. It will generate the current target s-image. Then

run generate-s-image where its argument is the current-source-knowledge-state. It

157

10.

11.

12.

will generate the current-source-s-image. If there are no more new visual instantia-
tions to be made, mark knowledge state visual instantiation as having failed for this

mapping and go to 4.

. Find visual mapping. Map the s-images by running find-mapping with the fol-

lowing arguments: The current target s-image and the current-source-s-image. Upon
failure, go to 5 and try to get a different visual instantiation to try. Upon success, go

on.

. Transfer mapping. Run transfer-mapping with the following arguments: the

new visual mapping and its s-images, and their corresponding nv-states. It will
generate a suggested mapping for the nv-states. Use this suggestion, going back to

4, the mapping stage. This is the last step in knowledge state visual instantiation.

. Transfer actions. Run transfer-manipulation, attempting to transfer the current

source nv-state’s action to the target. Go on to try to apply it.

. Apply action. Run the associated action on the current target nv-state. If it

works, generating a new nv-state, go to 1 and evaluate. If it does not work, go on to
try manipulation visual instantiation at 10. If visual instantiation has been marked

as failed for this mapping, go back and try another mapping at 4.

Generate s-images. Generate new s-images as in step 5, if 1) there are no s-images

for the current nv-states, or 2) the current s-images have been marked as having

failed.

Generate transformation. Run generate-transformation and find the visual
analog of the action of the current source nv-state. If this function fails, mark visual
manipulation abstraction as having failed for this source and target nv-state series

and go back to apply action at 9.

Apply-manipulation. Apply this transformation to the corresponding element in

the current source visual s-image. This makes a new s-image.

158

13.

14.

15.

Transfer manipulations. Run transfer-manipulation, attempting to transfer
the current source s-image’s transformation to the target. If the transformation
cannot be applied, go back to 5, marking this visual instantiation as failed. Else go

on.

Apply transformation. Apply this transformation to the current target s-image.

This makes a new s-image. Run apply-manipulation to do this.

Generate action. Run generate-action to specify the abstract transformation
into an action that can be taken on the current target nv-state. If no unused specifi-
cations remain, mark visual manipulation abstraction as having failed for this source
and target s-images. Go back to 10 and generate new s-images. If an action is

generated, associate that action with the nv-state and go to 9 to apply it.

Now I will describe the functions referred to above in more detail.

Name: Evaluate

Input: Success Conditions, nv-state (nv-state)
Output: [success — failure]

Process:

1. Evaluate will run a simulation of the system as it stands in the input nv-state,
and returns “success” if the simulation meets the goal criteria, else it returns

failure.

Name: Retrieve
Input: knowledge state (knowledge state)
Output: knowledge state-series (knowledge state-series)

Process:

159

1. If the input knowledge state is an s-image, then this function will return series
represented in Covlan. If the input knowledge state is a nv-state, it will return

nv-state series.

2. The function will reject any series that has been marked as failed for the input

knowledge state’s series.

3. If there is a conflict, the best matching series is returned. The details of how
retrieval happens will be fleshed out over the course of the dissertation and is

not important to my theoretical claims.

4. If all potential analogs have been marked as failed, mark analogical problem

solving has having failed for this source nv-state series and exit.

5. If it succeeds, set the retrieval problem state to current-source-knowledge-state.
Name: find-mapping
Input: knowledge statel (knowledge state), knowledge state2 (knowledge state)
Output: a mapping
Process:

1. This theory has no theoretical ties to any particular mapping mechanism; one of

the many published means are possible.

Name: generate-s-image
Input: knowledge-state (nv-state)

Output: an s-image, visual instantiation connections between the nv-state and the

s—image
Process:

1. The reasoner has knowledge of what each object looks like. This means that

each object is associated with an element or complex of elements and relations.

160

Default values (such as where something will be placed in an s-image) will
be determined by the relations of objects with other objects in the nv-state.
There is psychological data [65] showing how actions are associated with image

placement that could be used to constrain how this works.

e Name: transfer-mapping

e Input: mapping (mapping), knowledge statel (knowledge state), knowledge state2

(knowledge state)
e Output: mapping or failure
e Process:

1. Generate a new symbol for the mapping.
2. Associate with the new mapping new versions of all the maps.

3. Change the referents of all the maps to what is connected to them with the visual

instantiation connections.

e Name: transfer-manipulation

e Input: knowledge statel (knowledge state), manipulation (manipulation), knowledge

state2 (knowledge state)
e Output: The manipulation associated with knowledge state2.
e Process:

1. Take the manipulation connected to knowledge statel and connect it to knowl-
edge state 2. Specifically, connect the manipulation to the analogous entity or

entities in knowledge state2.

2. Transfer all manipulation arguments to the new manipulation. If an argument

has an analog in knowledge state2, use that. If it it does not, transfer it literally.

e Name: apply-manipulation

161

e Input: knowledge statel (knowledge state), manipulation (manipulation)
e Output: another knowledge state in knowledge statel’s series
e Process:

1. Generate a new knowledge state, connected in series to knowledge statel. This
new knowledge state is like knowledge statel except it has the manipulation

applied to it. If this cannot be done, exit and fail. Else exit with success.

e Name: generate-action

e Input: transformationl (transformation), knowledge-statel (knowledge-state)
e Output: an action associated with knowledge-statel

e Process:

1. Retrieve an unused candidate action from the specifications of transformationl.
Take into account the transformation, and what it will be applied to in knowledge-

statel.

e Name: generate-transformation

e Input: knowledge-statel (knowledge-state), actionl (action)
e Output: transformation, and possibly s-images.

e Process:

1. If there is no s-image associated with knowledge-statel, make one.

2. If there is no s-image associated with knowledge-statel’s target s-image, make

one.

3. Abstract actionl into a visual transformation appropriate to the visual ab-

straction in the s-image.

162

In conclusion CAVA is a computational theory that uses specific data structures, al-
gorithms and control architectures for visual analogical transfer. The task and method
breakdown of CAVA is in Figure 67.

CAVA also consists of the following claims:

1. A primary function of visual abstraction is for the resolution of ontological mismatches.

2. Visual abstraction can be used for the resolution of ontological mismatches at several

stages of analogy, including retrieval, mapping, transfer, and adaptation.

3. Transfer for strongly-ordered procedures in which new objects get created involve

construction of intermediate knowledge states and mappings.

4. A useful level of visual abstraction is that same level used by Covlan in Galatea

(shapes, lines, etc.)

5. Transfer of strongly-ordered procedures is computationally complex, even given the
correct mapping, because the successful transfer of strongly-ordered procedures in
which new objects are created requires the reasoner to generate intermediate knowl-
edge states and mappings between the intermediate knowledge states of the source

and target analogs.

6. Visual knowledge alone is sufficient for transfer of problem solving procedures in some

domains.

163

CHAPTER VII

RELATED WORK

In this chapter I will discuss other relevant implemented computer systems. I will descibe
systems that do some kind of visual analogy, systems that specifically do analogical problem

solving, and finally analogy systems of other kinds.

7.1 Other Visual Analogy Systems

The closest system to my own is Letter Spirit. Like my theory, LetterSpirit is a model of
analogical transfer [52, 64]. It takes a stylized seed letter as input and outputs an entire font
that has the same style. It does this by determining which letter is presented, determining
how the components are drawn, and then drawing similar components of other letters the
same way. Like Galatea, the analogies between letters are already in the system: the vertical
bar part of the letter d maps to the vertical bar in the letter b, for example. The mapping
is implicit, though, in that the parts of each letter are mapped to “roles” (e.g. crossbar).
That is, rather than mapping the crossbar of t to the crossbar of £, the system simply
knows that both parts are instances of crossbar. During transfer, for example, the seed
letter may be interpreted as an fwith the cross-bar suppressed. When the system makes a
lower-case t, by analogy, it suppresses the crossbar.

LetterSpirit transfers single transformations/attributes (e.g. crossbar-suppressed) and
therefore cannot make analogical transfer of procedures (e.g. moving something, then resiz-
ing it) which Galatea can do. In contrast, one can see how Galatea might be applied to the
font domain: The stylistic guidelines in LetterSpirit, such as “crossbar suppressed” are like
the visual transformations Galatea: it would be a transformation of removing an element
from the image, where that element was the crossbar and the image was a prototype letter
f- Then the transformation could be applied to the other letters one by one. In this way

my theory has more generality than LetterSpirit.

164

Copycat [42] shares Letter Spirit’s underlying theory, but operates on strings of letters.
For example abc : abd :: ijk : 7 Where the agent is expected to apply the same
procedure to ijk that was done to abc. Copycat searches stochastically through rules
(“codelets” in the “coderack”) to find rules that, in this example, transform abc into abd.
These rules are applied to ijk, resulting in, perhaps, ij1. Sometimes a reasoner must
find similarity between non-identical relationships. Copycat accomplishes this with the
hand-coded “slipnet.”

Like Letter Spirit, Copycat does not transfer strongly-ordered procedures during which
new elements are created, and is limited in its domain. Both share a similar underlying
theory, however, but for both strongly-ordered procedures are not transferred. There can
be several transformations tranferred, but they are order-independent because later trans-
formations do not rely on previous transformations.

ANALOGY is an early visual analogy program [16] that solves multiple choice analogy
of the kind found on intelligence tests (e.g. A:B::C:7). All analogs are represented with
semantic networks. ANALOGY chooses the best answer by describing how to turn A into B
(this transformation is also represented with a semantic network), then how C turns into all
the choices. It matches the A to B transformation semantic net to the nets of the choices.
The best match determines ANALOGY’s choice for the answer. Like CAVA, ANALOGY
had a visual language consisting of primitives (e.g. dot, circle, square, rectangle, triangle),
relations (above, left-of, inside) and transformations (rotate, reflect, expand, contract, add,
delete). Galatea’s representation language, Covlan, has considerable overlap with ANAL-
OGY’s ontology.

The PAN system [61], like ANALOGY, uses graph-like representations of abstract dia-
grams and outputs transformations that will turn one into another.

ANALOGY and PAN have many differences from CAVA. They have no sense of absolute
location in its visual representation. They describe only meaningless images, without any
tie to what they represent (indeed, the domains are intentionally non-representational).
They can only describe transformations that occur in a single step. That is, they cannot

represent strongly-ordered procedures. ANALOGY has no sense of transfer.

165

GeoRep [23] takes in line drawings and outputs the visual relations in it. First it uses
the LLRD (low-level relational describer). Its visual primitives are: line segments, circular
arcs, circles, ellipses, splines, and text strings. It finds relations of the following kinds:
grouping, proximity detection, reference frame relations, parallel lines, connection relations,
polygon and polyline detection, interval relations, and boundary descriptions. Then the
HLRD (high-level relational describer) finds higher-level, more domain-specific primitives
and relations. GeoRep’s content theory is at the low level-the higher level primitives are
left up to the modeler. Covlan has considerable overlap with GeoRep’s primitives, though
the processing goal of GeoRep is quite different: GeoRep generates visual relations from
a more primitive input. Galatea uses a given visual input representing a procedure and
transfers it to a new, visually represented problem.

MAGTI [24] takes visual representations and uses the Structure-Mapping Engine (SME,
described in a later section) to find examples of symmetry and repetition in a single image.
JUXTA [22] uses MAGI in its processing of a diagram of two parts, and a representation
of the caption. It outputs a mapping between the images, and notes distracting and im-
portant differences. It models how humans understand repetition diagrams. Both MAGI
and JUXTA use GeoRep as the visual representation. The focus of these systems is on
mapping. Something akin to JUXTA could potentially be used by a system like Galatea to
automatically generate the transformations between sequential s-images in a series in that
JUXTA can detect important differences from which transformations could be inferred.

The VAMP systems are visual analogical mappers [70] as well. VAMP.1 uses a hierar-
chically organized symbol/pixel representation. It superimposes two images, and reports
which components have overlapping pixels. VAMP.2 represents images as agents with local
knowledge. Mapping is done using ACME/ARCS [44], which is described in a later section.
The fortress/tumor problem was one of the examples to which VAMP.2 was applied. Like
my theory, MAGI, JUXTA, and the VAMPs use visual knowledge. But unlike my theory
their focus is on the creation of the mapping rather than on transfer of a solution procedure.
JUXTA’s and my theory are compatible: a JUXTA-like system might be used to create the

mappings that my theory uses to transfer knowledge. The theory behind the VAMPs is

166

incompatible because they use a different level of representation for the images.

DIVA [11] is another analogical mapper that uses visual representations. Specifically, it
uses the Java Visual Object System. Like the VAMPs, it uses the ACME architecture for
mapping. One of its examples is the fortress/tumor problem. The system does no transfer
of the problem solving procedure, however.

FABEL [31] uses diagrammatic case-based reasoning in the domain of architectural

design. It uses domain-specific heuristics to guide pattern extraction and transfer.

7.2 Other Analogical Problem Solving Systems

Derivational Analogy theory, [72, 71, 67] implemented in the Prodigy system, models trans-
fer using memories of the justifications for each step, allowing for adaptation of the trans-
ferred procedure. Traces, called derivations, are scripts of the steps of problem solving,
along with justifications for why the steps were chosen over others. One way my work
differentiates itself is that in derivational analogy, the intermediate knowledge states are
not saved in the case memory, only the record of the changes made to them. This means
that the states can be inferred, but are not explicitly present in memory. Prodigy is able
to avoid generation of intermediate mappings because the examples with which it has been
implemented do have procedures that create new objects.

CHEF [41] is a case-based reasoner that adapts cooking recipies from a source to a target.
Like Prodigy, CHEF does not create intermediate knowledge states, and, also like Prodigy,
does not transfer procedures that create new objects. Two other case-based reasoning sys-
tems are ARCHIE [62] and AskJef [1]. They have case memories of graphic representations
(buildings and user interfaces) indexed symbolically. Like FABEL they are intended for use
by people, and the analogical transfer task must be done by the human user.

The Process of Induction (PI) model [43] is the only implemented computational model,
other than my own, that solves the fortress/tumor problem analogically. It uses a production
system to solve the fortress problem, and the activation resulting guides the finding of the
solution to the tumor problem. Interestingly, PI does not even do transfer in the common

sense of the term. Rather than taking a procedure directly from one analog to another,

167

it searches for a solution, guided by the activation trace left from the activation of that
procedure by the source. After that PI generates an abstract schema that works as a single

rule that can apply to both problems in the future.

7.3 Other Analogy Systems and Theories

SME is based on the Structure-Mapping Theory [32]. It constrains the mapping problem
with the empirically validated systematicity principle, the one-to-one mapping principle,
parallel connectivity, and identicality. [19]. The systematicity principle holds that high or-
der relational similarities are preferred. SME finds many possible mappings, then evaluates
them according to the map rules. Similarity is based on analogy (described above), lit-
eral similarity (where both relational and object predicates are mapped), mere-appearance
(where primarily only the object descriptions are mapped), and abstraction mapping (where
the entities in the base domain are variables rather than objects). These correspond to dif-
ferent match rules that can be used with SME.

I-SME [28] (also known as SME 3) and the Incremental Analogy Machine (IAM) [46]
are incremental mappers. An incremental mapper generates a mapping as objects in a
given analog are introduced to the mapper one at a time. They are intended to model
experimental effects found with human participants. The focus of SME and I-SME are
on mapping, where the focus of Galatea is on transfer of problem-solving steps. However,
Galatea does incremental mapping of a different sort: It modifies a mapping as a result of
changes made to an s-image. Though they are different, both tasks are important.

The task of the PHINEAS [17] system is create an explanation for some phenomenon
using analogical reasoning. It uses Qualitative Process Theory [26] for its knowledge rep-
resentation. It evaluates using simulation, where past reasoning traces are summarized by
storing with each state in an observation the collection of theories that were used to ex-
plain it. E.g., with an example of alcohol evaporating from a flask, it may store theories
about evaporation and containment. PHINEAS can explain new behaviors based on its
knowledge of old behaviors, and it transfers knowledge from source to target. The trans-

fer problem-solving procedures is outside of the system’s domain. In its attempt to create

168

explanations, it can hypothesize that some un-represented objects might exist for a target
analog based on the existence of some object in the source analog (skolem objects). Though
the creation of skolem objects is an important part of analogical reasoning, it is different
from how Galatea creates knowledge states with new objects as a result of transformations.
PHINEAS represents changes that the system undergoes as a result of how the system
works (e.g. simulating how boiling water will evaporate). In contrast Galatea represents
the changes some agent makes to the system (e.g. placing an egg in the boiling water.)
Thus PHINEAS’s skolem objects are hypothesized objects to generate alignments with un-
mapped entities in the source analog. The new objects in Galatea are objects added to both
analogs as a result of transformations.

The Analogical Constraint Mapping Engine, or ACME [44], is a mapping engine based
on the theory that mapping is a result of structural, semantic, and pragmatic constraints.
Structure, in this sense, does not necessarily mean a physical makeup, but the nature of the
representation: elements are structurally similar if they share the same relational structure
with other elements. Semantic similarity means elements are either identical symbols or
share predicates (e.g. a common super ordinate). Pragmatic constraints involve relative
importance of some propositions in the representation given the goals of the agent. The
mapping is generated as a result of a constraint-satisfaction spreading activation network.
Transfer in ACME involves transferring relations and postulating new elements from the
source analog, but it does not have a mechanism for the transfer of a solution procedure.
That is, it is made to transfer facts, not procedures.

LISA [45] is another cognitive model of analogical mapping. Propositions are made up
of units that spread activation to each other. Arguments of propositions fire in synchrony
with the case roles to which they are bound, and out of synchrony with other case roles and
arguments. Through spreading activation, the best map is found.

In Model-Based Analogy, or MBA [6], model-based representations include information
about the structure of the domain, as well as the behaviors and functions of its component
parts. To make analogies with these kinds of representations, the reasoner takes a part of

the source domain and puts it in the target domain mechanism. For example, if a device

169

isn’t delivering enough power, the reasoner might transfer the amplifier concept from the
source device. The transfer is of structures, behaviors, and functions of the target (the SBF
language).

MBA is implemented in the IDeAL system [6, 5], which used a language of SBF, generic
physical principles and generic teleological mechanisms, which are useful units of analogical
transfer in creative device design. Generic teleological mechanisms provide a taxonomy
of functional and causal transformations to physical devices. IDeAL transfers conceptual
strategies, not procedures, and has more of a focus on adaptation than Galatea. Candidate
designs in IDeAL are evaluated with qualitative simulation.

The ToRQUE2 system [38, 40, 39] uses a taxonomy of generic structural transforma-
tions that can be applied to physical systems. Like Galatea, TORQUE2 was used to model
experimental participants. These transformations were found to be useful in modeling a
protocol of a human subject solving a problem dealing with spring systems. Structural
representations are different from visual representations: They describe a system’s physical
composition but typically include only the information directly relevant for predicting the
causal behaviors of the system. Structural knowledge, like a schematic, shows the compo-
nents of the system and the connections among them but leaves out other visual information,
such as what a component wire looks like, which side of a pump is up, etc. TORQUE2 ap-
plies changes to analogs, but the changes are not transferred from a source as they are in
Galatea. The changes are taken from an ontology of Generic Structural Transformations.

Winston [73] created an analogical mapper with a content account of its domain, in-
cluding causation. All possible mappings are generated, then scored.

REBUILDER [37] is a case-based reasoner that does analogical retrieval, mapping, and
transfer of software design class diagrams. The diagrams are represented structurally, not
visually, however. This means that, for example, what the connection is between two
nodes is more important than the length of direction of that connection. A school has a
relationship with a teacher, but it is not represented as a left-of/right-of connection, for

example.

170

FAMING [20] is a case-based reasoning system that uses cases describing physical mech-
anism parts. FAMING uses the SBF (Structure-Behavior-Function) to describe the cases.
The structure is described in terms of a metric diagram (a geometric model of vertices and
connecting edges), a place vocabulary (a complete model of all possible qualitative behav-
iors of the device), and configuration spaces (a compact representation of the constraints
on the part motions.) Shape features can involve two objects, expressing, for example,
one part’s ability to touch another part. Human desingers are necessary for FAMING’s
processing. The designer chooses which cases and functions should be used, which dimen-
sions the system should attempt to modify, and which shape features should be unified. It
uses qualitative kinematics to propose design solutions for the desired function following
the designer-suggested idea. Though not described as a visual system, the important parts
of physical mechanisms of the sort FAMING uses inevitably contain much knowledge that
could be construed as visual. The point of FAMING is to modify cases according to shape
substitution, and, unlike Galatea, makes no attempt to transfer strongly-ordered procedures

of any sort.

7.4 Diagrammatic Reasoning Work

This section describes non-analogical visual reasoning systems research. The diagrammatic
reasoning literature is large; I will only spotlight a few systems that represent the range of
schemes for visual representation.

Larkin and Simon [49] created a system that could reason about, among other things,
pulley systems. In the diagrammatic representation, objects are not represented explicitly,
only locations. When one location is attended to, all information there is attended to.
To answer a question about a pulley system, the agent uses some non-visual knowledge of
physics along with the visual representation.

Forbus’s Qualitative Spatial Reasoning [25] shows that for visual reasoning about phys-
ical systems, an agent needs both a metric diagram representation and a place vocabulary
representation. A metric diagram shows the quantitative aspects of the system, like sizes, as

expressed in numbers, etc. Perceptual processes can be applied to it. The place vocabulary

171

is a qualitative representation of where things are and their shape, as is relevent to the task
at hand. A place is a region of space where some important property (e.g. being in contact
with something) is constant. The paper puts forth the poverty conjecture: that there is no
problem-independent, purely qualitative representation of space or shape. As an example
of when a qualitative representation breaks down, you can represent that a robot can get
through a certain door, but if it is carrying something, to figure out whether it can get
through with it the robot would need to reason at the metric level. But the qualitative
is important too, and the place vocabulary can make a graph of what the robot can do—
it’s a task specific representation. Because this switching needs to happen, qualitative and
quantitative information needs to be tightly coupled. It is implemented in a system called
FROB [27].

Like FROB, the task of Narayanan, Suwa and Motoda’s model [54] is to predict the be-
havior of physical systems. Its workings are based on protocol studies of people predicting
physical behaviors based on given diagrams. The visual knowledge is represented with dia-
gram frames (representing lines and spaces and connections between them) and occupancy
array representations (representing, for each pixel, what kind of object is located there).
Though the diagram frames represent only lines, they are similar in character to and at the
same level of abstraction as the representations in Covlan.

The NIAL system [35] distinguishes between depictive and descriptive representations
(corresponding to bitmap-style and propositional style), as well as a distinction between
visual and spatial (corresponding to where something is and what something is.) The de-
scriptive representation is stored in memory, and the depictive is generated as a working
memory structure as needed. This system has been applied to molecular scene analysis.

WHISPER [30] is an Al problem solver that can request observations from and make
changes to depictive diagrams of a blocks world. It knows about stability and falling objects.
It can visualize something rotating in the diagram and determine when it will hit another
object. The system’s goal is to move all blocks until they are stable. It moves them, then
simulates how they will act (in a bitmap “retina”) for evaluation.

The retina in WHISPER has best resolution at the center. It can focus on different parts

172

of the diagram. The retina is made up of bubbles that are grouped as rings and wedges.
Bubbles also communicate with their nearest neighbors. The retinal supervisor tells the
bubbles what to process.

The perceptual primitives are: find the center of a shape, find the points of contact
between a shape of one color and the shape of another, examine curves for abrupt slope
changes, test a shape for symmetry, test the similarity of shapes, and visualize the rotation
of a shape while watching for a collision with another shape.

To rotate, all bubbles with the object in it ask the next wedge to turn on, then turn
themselves off. Collisions are detected when you ask a bubble to turn on with some object

when it’s already on with another.

7.5 Summary of Related Work

To summarize, there are a variey of systems, each aiming to understand different parts of the
analogical process (see Table 20). Though they use visual representations, MAGI, JUXTA,
VAMP.1, VAMP.2, and DIVA are all addressing the problem of analogical mapping. They
are all extensions of non-visual analogical mappers: MAGI and JUXTA are built on SME
and GeoRep (a visual language and inference engine); VAMP.1, VAMP.1, and DIVA are all
built on ACME. Other non-visual mappers are LISA and Winston’s analogy work.

Some systems are for augmenting the analogical abilities of human beings as systems to
be operated by a user. FABEL, ARCHIE, and AskJef fall into this category.

Other analogy systems, like Galatea, attempt problem solving. Galatea transfers problem-
solving solution procedures, like Prodigy, CHEF, and PI. However none address the problem
of when new objects are created that must be acted upon by later operations. Visual prob-
lem solvers, Letter Spirit and ANALOGY, as well as non-visual ones, IDeAL, ToORQUE2,
PHINEAS, and Copycat, do not attempt to transfer procedures at all.

Table 20 summarizes the systems and their features.

Many of the systems described above deal with visual and spatial reasoning. Though

173

Table 20: Comparison of analogy systems. SOP refers to the transfer of strongly ordered
procedures in which new objects are created.

System ‘ retrieval ‘ mapping ‘ transfer ‘ visual knowledge ‘ SOP
Galatea tran vis SOP
Letter Spirit | ret map tran vis
ANALOGY vis
PAN map vis
Georep vis
MAGI map vis
JUXTA map vis
VAMP.1 map vis
VAMP.2 map vis
DIVA map vis
FABEL | ret vis
Prodigy | ret map tran
CHEF | ret map tran
ARCHIE | ret
AskJef | ret
PI map
SME map
I-SME map
PHINEAS map tran
ACME map
LISA map
IDeAL map tran
ToRQUE2 map
Winston map
Copycat map tran
REBUILDER | ret map tran
FAMING | ret map tran

174

the systems represent many things, including, sometimes, non-visiospatial things, the vi-
siospatial things represented by all fall under the categories of what is there, where it is
(corresponding to the what (visual) and where (spatial) brain pathways) and finally if and
how the components of the image are related (e.g. above/below relationships).!

Where the systems differ is in their modes of representation. Some use a purely sym-
bolic or propositional representation (e.g. Galatea, GeoRep), some use a pixel or occupancy
array representation (e.g. NIAL, WHISPER, Narayanan et. al’s), some use a hybrid, such
as a symbolic array (e.g. NIAL and VAMP.2), and finally one (FROB) uses quantitative
measures, such as lengths and distances. As stated in the visual re-representation chapter
and in many other works (e.g. [35, 21, 47]), there is good reason to think that a variety of
representations schemes come into play in cognition. In terms of visual representation, Cov-
lan’s primitive visual elements resemble GeoRep’s [23] “primitive shapes.” Covlan’s
connection ontology allows orientation-independent transfer of operations in the cognitive
modelling, where many experimental participants rotated the target ninety degrees.

All of these systems use symbols at a higher level of abstraction than pixels. Even those
that use pixel representations use them in addition to higher-level symbolic representations.
However this describes a range of abstraction levels: occupancy arrays use very-high-level
symbols such as chair, as opposed to more generic shapes. What general principle can be
used to determine the correct level of abstraction? I conjecture that an agent should use
the highest level of abstraction one can which still allows component similarity to be found
between the examples your system uses. For example, if a system is reasoning about room
layout, the symbol chair might be appropriate. However if the system needs to see similari-
ties between chairs and, say, cardboard boxes, then a lower-level shape vocabulary might be
appropriate. Since Galatea is intended to transfer accross domains, it, like other systems,
uses a symbolic shape vocabulary. Higher level abstraction means more ambiguity, which
Do and Gross [14] have found to be an important aspect of diagrams in the architectural

design domain.

1t could be argued that relations are a part of the “where” class of information, but “where” information
is typically conceived as being a location relative to an image, rather than in relation to other visual objects.

175

More novel are Covlan’s transformations. Though most diagrammatic reasoning sys-
tems include ways to change visual knowledge, Covlan’s transformations are intended
to represent steps in problem-solving procedures that are reasoned about by the system.
Griffith’s Generic Structural Transformations (GSTs), [38, 40, 39] though not specifically
visual in nature, are somewhat similar in that they are transformations that are chosen by
the system to be applied to a representation in an effort to solve a problem.

This brings us beyond visual representation and into visual reasoning. Diagrammatic
reasoning systems tend to reason for one of the following four broad tasks:

First is simulation (e.g. [49, 27, 30, 54]) in which the system uses visual representations of
physical systems to predict how the represented systems will behave. Second is recognition
and visual inferencing (e.g. [23, 35]). Third is geometrical proving, which includes tasks
such as proving geometric math problems [3] and reasoning about, for example, Euler circles
[69]. Fourth is analogical reasoning, such as Galatea and Letter Spirit. Within the class
of systems, Galatea is the first and only system to use visual knowledge and reasoning to

transfer problem-solving procedures.

176

CHAPTER VIII

CONCLUSION

8.1 Claims

This work describes the Constructive Adaptive Visual Analogy theory, which deals with
visual knowledge used to transfer problem-solving procedures.

Following is a summary of my hypotheses:

1. Transfer of strongly-ordered procedures is computationally complex, even given the

correct mapping.

2. Visual knowledge alone is sufficient for transfer of problem solving procedures in some

domains.

3. Visual knowledge facilitates transfer even when non-visual knowledge might be avail-

able.

In conclusion, the evaluation supported all three of the hypotheses, and resulted in one
unexpected discovery, for a total of four claims:

Claim Omne: Visual knowledge alone is sufficient for transfer of problem-
solving procedures in some domains.

The Galatea implementation shows that problem-solving procedures for inherently vi-
sual domains like the cake/pizza problem can be represented visually, and solutions can be
transferred successfully. In light of this research I can speculate for which domains visual
knowledge might be sufficient for transfer of problem-solving procedures: those domains,
the solution procedures of which could be adequately described with descriptions of changes
to spatial properties. A way to think about this is that if the important differences between
the problem and the solution are reflected in wvisual differences, then that problem is likely

to fall within the intended class. I refer to this class of problems as “physical systems”

177

the solutions typically involve physical changes (as opposed to, changes in ownership, the
issuing of commands, etc.)

Claim Two: Visual knowledge facilitates transfer even when non-visual knowl-
edge might be available.

The fortress/tumor example is an example of a domain which need not be visually
represented. Galatea shows that visual knowledge of it can be used to transfer a non-trivial
procedure across domains.

The implemented models of L.14, L15, L16, and L22 show how Galatea’s model of visual
processing can account for human participant data as well, and provides details of how
visual problem-solving transfer might work. The pen-and-paper models of the rest of the
participants in Dr. Craig’s experiment show how Galatea might model even more, using
only visual knowledge, as well as describing the limits of visual knowledge.

The experiment partially supported the claim in that those who were asked to draw the
solutions were more likely to get the analogous answer.

The third hypothesis of this work that visual knowledge facilitates transfer of strongly-
ordered procedures. It turns out that the computational details involved in transfer of
strongly-ordered procedures appear to bear no relationship with visual knowledge. How-
ever, in the course of building Galatea and the models in it, I discovered something about
analogical transfer in general:

Claim Three: The successful transfer of strongly-ordered procedures in
which new objects are created requires the reasoner to generate intermedi-
ate knowledge states and mappings between the intermediate knowledge states
of the source and target analogs.

The first hypothesis states that transfer of strongly-ordered procedures is computation-
ally complex. Galatea shows why, in detail, the first hypothesis may be right. A character-
istic of strongly-ordered procedures is that components of the problem are created by the
operations, and these components are acted on by later operations.

The psychological modelling shows how this might work for human cognition: The

doorway is replicated, then moved, then sealed with containing walls. For the transfer of

178

multi-step, strongly-ordered procedures it was necessary for Galatea to generate intermedi-
ate knowledge states and mappings.

Claim Four: Evaluation appears to require non-visual knowledge

Though Galatea transfers problem-solving procedures, it still has no way of knowing if
the transferred solution was adequate for the new problem. In the tumor problem, in order
for the agent to determine if the tumor was destroyed and the patient was still alive, it
needed some causal knowledge. By causal we mean knowledge of how things in a system
change as they interact. Pre- and post-conditions are a straightforward way to represent
this, but it is difficult to imagine what “visual” pre- and post-conditions might look like.
Visual representations alone cannot enable evaluation of the solution. Other visual reasoning
work that does evaluation, such as Funt [30], must use causal knowledge about things such

as the force of gravity to make its evaluative simulations.

8.2 Future Work

My research theme is the study of the use of multiple representation schemes in intelligent
systems.

In this dissertation I was able to create a cognitive model of visual analogical problem
solving. The focus is on knowledge—what kinds of knowledge are needed, and the function
of visual knowledge.

Intelligent agents can change their knowledge representations when needed. Though
this is clearly a fundamental part of cognition, little attention has been paid to the details
of how and why this happens. My research addresses this problem. Specifically, I look at
how intelligent systems use visual knowledge in analogy and problem solving. This has led
to the Constructive Adaptive Visual Analogy theory.

My future work will proceed in two directions: automatically generating visual repre-
sentations from non-visual ones, and exploring the role of depictive visual representations.
I will describe each in turn.

The Visual Re-Representation Theory is that two situations that appear dissimilar

179

non-visually may appear similar when re-represented visually: that one use of visual knowl-
edge is to resolve ontological mismatches. An ontological mismatch is when two similar
ideas are not perceived by the reasoner as such because they are represented with different
symbols. In this computational theory of multi-modal analogy, visual re-representation en-
ables analogical transfer in cases where there are ontological mismatches in the non-visual
representation.

In the future, I will expand Galatea to be able to do analogical problem solving with
non-visual knowledge. Upon encountering ontological mismatches, however, it will auto-
matically change the non-visual knowledge into Covlan. Galatea will use this visual re-
representation to resolve these mismatches. Once the correct connections are made using
the visual knowledge, those inferences will be translated back into the non-visual knowledge
representation.

This work will involve several modules: 1) The non-visual representation language and
the version of Galatea that attempts transfer using it, 2) the visual instantiation module,
which will create visual knowledge, 3) the current version of Galatea, which transfers visual
knowledge, 4) the specification module, which turns visual knowledge back into non-visual,
and 5) the evaluation module, which will determine if the generated solution is adequate.

The non-visual representation language will be one of causal relationships, functions,
goals, behaviors, and structure. The non-visual transformations will be more specific to
the kinds of objects they are changing—for example, the transformation that breaks up an
army into small armies will take a group with constituent parts and break it up into some
n number of groups. A transformation that affects a laser will disperse energy into several
lasers with less energy in each. If the reasoner needs to transfer the break-up of the army to
the disperse-energy of the laser, there is an ontological mismatch for the transformation.

The visual instantiation module will use knowledge of how things are visualized to
create the visual representation. The most straightforward instantiations will be shapes
of physical objects. But recent studies are beginning to provide constraints on the visual
representations associated with more abstract concepts such as respect and argumentation.

This module, which in some sense is a model of imagination and visualization, will be my

180

future work’s first focus.

The specification module will use much of the same knowledge as the instantiation
module, as it is re-representing in the opposite direction: from visual back to non-visual.
However, the complication is that the visual primitives must at times specify into differ-
ent symbols than those that originally were used to generate the visual knowledge. For
example, the army’s break-up transformation visually instantiates into decompose, but
when specified to a be used on a laser, it specifies to disperse-energy. With this mod-
ule’s completion, the cycle of re-representation for ontological mismatch resolution will be
complete.

The second avenue of my future research is more ambitious: I will explore the role of
depictive imagery in knowledge representation and analogy. Most work on visual analogy,
including my own, uses visual knowledge represented symbolically. Though the mental
imagery debate continues, there appears to be excellent evidence of mental imagery playing
a role in problem solving. But what role does it play beyond the roles of symbolically-
represented, descriptive visual knowledge, such as the kind Galatea currently uses? My
work so far has used visual knowledge represented symbolically—for this research direction
I will work with lower-level images made of pixels, to try to discover exactly why they are
useful for intelligent systems.

One advantage that imagery could provide is a means for the reasoner to use the powerful
perceptual mechanisms at its disposal for detecting emergent properties of symbolically-
represented visual knowledge. For example, imagine how a reasoner might represent people
who start at a house and walk in different directions away from the house. Even if the
trajectories of the people are represented, the distances between them, the distances they’ve
traveled, etc., the reasoner might need to recognize that the shape the people form is that
of a growing circle—an emergent property not explicit in the symbolic representation. Using
visual perception on bitmap depictive imagery is one way to detect such properties. In
short, perceptual mechanisms can facilitate detection of patterns in bitmaps that are not
explicit in the symbolic representation that generated the bitmap. This is another kind

of visual re-representation—this time at the depictive level. Again, for certain analogical

181

problems, such re-representation could facilitate analogy.

The theme of my research is in the changing of knowledge through different modes of
representation, and the whens, whys and hows of these modes and changes between them.
Given the discoveries from the Constructive Adaptive Visual Analogy theory described in

this document, the future of this line of research is promising.

182

1]

[10]

[11]

REFERENCES

BARBER, J., JACOBSON, M., PENBERTHY, L., SIMPSON, R., BHATTA, S., GOEL, A.,
PEARCE, M., SHANKAR, M., and STROULIA, E., “Integrating artificial intelligence
and multimedia technologies for interface design advising,” NCR Journal of Research
and Development, 1992.

BarsaLou, L. W., “Perceptual symbol systems,” Behavioral and Brain Sciences,
1999.

BARWISE, J. and ETCHEMENDY, J., “Heterogeneous logic,” in Diagrammatic Reason-
ing: Cognitive and Computational Perspectives (GLASGOW, J., NARAYANAN, N. H.,
and CHANDRASEKARAN, B., eds.), pp. 211-234, Cambridge, UK: MIT Press, 1995.

BEVERIDGE, M. and PARKINS, E., “Visual representation in analogical problem solv-
ing,” Memory & Cognition, 1987.

BHATTA, S. R. and GOEL, A., “Learning generic mechanisms for innovative strategies
in adaptive design,” The Journal of the Learning Sciences, 1997.

BHATTA, S. R. and GOEL, A. K., “Design patterns: A computational theory of
analogical design,” in Proceedings of IJCAI-97, workshop on Using abstraction and
reformulation in analogy.

CAsAkIN, H. and GOLDSCHMIDT, G., “Expertise and the use of visual analogy: Im-
plications for design education,” Design Studies, 1999.

CATRAMBONE, R. and HorLvoAk, K. J., “Overcoming contextual limitations on
problem-solving transfer,” Journal of Experimental Psychology, 1989.

CHANDRASEKARAN, B., Grascow, J., and NARAYANAN, N. H., Diagrammatic Rea-
soning: Cognitive and Computational Perspectives, ch. Introduction. AAAT Press/MIT
Press, 1995.

Craic, D. L., CATRAMBONE, R., and NERSESSIAN, NANCY, J., Model-Based Rea-
soning: Science, Technology, & Values.

CROFT, D. and THAGARD, P., Model-Based Reasoning: Science, Technology, & Val-
ues, ch. Dynamic Imagery: A computational model of motion and visual analogy.
Kluwer Academic: Plenum Publishers, 2002.

Davigs, J. and GOEL, A. K., “Visual analogy in problem solving,” in Proceedings of
the International Joint Conference for Artificial Intelligence 2001.

Davies, J., NERSESSIAN, N. J., and GOEL, A. K., Foundations of Science 2002,
special issue on Model-Based Reasoning: Visual, Analogical, Simulative, ch. Visual
models in analogical problem solving. 2002.

183

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

Do, E. Y.-L. and Gross, M. D., “Thinking with diagrams in architectural design,”
Artificial Intelligence Review, 2001.

DUNCKER, K., “A qualitative (experimental and theoretical) study of productive
thinking (solving of comprehensible problems),” Journal of Genetic Psychology, 1926.

Evans, T. G., Semantic Information Processing, ch. A heuristic program to solve
geometric analogy problems. MIT Press, 1968.

FALKENHAINER, B., A unified approach to explanation and theory formation, ch. 6.
Morgan Kaufman, 1990.

FALKENHAINER, B., “Learning from physical analogies,” tech. rep., Department of
Computer Science, University of Illinois at Urbana-Champaign, 1988.

FALKENHAINER, B., FOrRBUS, K. D., and GENTNER, D., “The structure-mapping
engine: Algorithm and examples,” Artificial Intelligence, vol. 41, pp. 1-63, 1990.

FaLTINGs, B. and SuN, K., “FAMING: supporting innovative mechanism shape de-
sign,” Computer-aided Design, vol. 28, no. 3, pp. 207-216, 1996.

FAaraH, M. J., Spatial Cognition— Brain bases and development, ch. The neuropsychol-
ogy of mental imagery: Converging evidence from brain-damaged and normal subjects.
Erlbaum, 1988.

FErGUsON, R. W. and ForBuUS, K. D., Advances in Analogy Research, ch. Telling
juxtapositions: Using repetition and alignable difference in diagram understanding.
New Bulgarian University, 1998.

FeErGUsON, R. W. and ForBus, K. D., “Georep: A flexible tool for spatial repre-
sentation of line drawings,” Proceedings of the 18th National Conference on Artificial
Intelligence, 2000.

FErGUSON, R. W., “Magi: Analogy-based encoding using regularity and symmetry,”
in Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

ForBus, K. D., “Qualitative kinematics: A framework,” in Readings in Qualitative
Reasoning About Physical Systems.

ForBus, K. D., “Qualitative process theory,” Artificial Intelligenc, 1984.

ForBus, K. D., Diagrammatic Reasoning: Cognitive and Computational Perspectives,
ch. Qualitative spatial reasoning framework and frontiers. AAAI Press/MIT Press,
1995.

ForBus, K. D., FErRGUsON, R. W., and GENTNER, D., “Incremental structure-
mapping,” in Proceedings of the Sixteenth Annual Conference of the Cognitive Science
Society.

ForBus, K. D., MOSTEK, T., and FERGUSON, R., “An analogy ontology for integrat-
ing analogical processing and first-principles reasoning,” in Proceedings of American
Association for Artificial Intelligece 2002.

184

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

FunT, B. V., “Problem-solving with diagrammatic representations,” Artificial Intel-
ligence, 1980.

GEBHARDT, F., Voss, A., GRATHER, W., and SCHMIDT-BELZ, B., Reasoning with
Complex Cases. Kluwer, 1997.

GENTNER, D., “Structure-mapping: A theoretical framework for analogy,” Cognitive
Science, vol. 7, no. 2, pp. 155-170, 1983.

Gick, M. L. and HoLyoak, K. J., “Analogical problem solving,” Cognitive Psychol-
09y, 1980.

Gick, M. L. and HoLyoAK, K. J., “Schema induction and analogical transfer,” Cog-
nitive Psychology, 1980.

GLAasGcow, J. and PAPADIAS, D., Mind Readings, ch. Computational imagery. MIT
Press, 1998.

Grascow, J. 1., FORTIER, S., CONKLIN, D.; and ALLEN, F., “Knowledge represen-
tation tools for molecular scene analysis,” in Proceedings of the 28th Annual Hawaii
International Conference on System Biotechnology Computing Track.

GOMES, P., SECcO, N., PEREIRA, F. C., PAivA, P., CARREIRO, P., FERREIRA, J. L.,
and BENTO, C., “The importance of retrieval in creative design analogies,” in Creative
Systems: Approaches to Creativity in AI and Cognitive Science. Workshop program in
the Fighteenth International Joint Conference on Artificial Intelligence.

GRIFFITH, T. W., A Computational Theory of Generative Modeling in Scientific Rea-
soning. PhD thesis, College of Computing, Georgia Institute of Technology, 2000.

GRIFFITH, T. W., NERSESSIAN, N. J., and GOEL, A. K., “Function-follows-form
transformations in scientific problem solving,” in Proceedings of the Twenty-second
Annual Conference of the Cognitive Science Society.

GRIFFITH, T. W., NERSESSIAN, N. J., and GOEL, A. K., “The role of generic mod-
els in conceptual change,” in Proceedings of the Eighteenth Annual Conference of the
Cognitive Science Society.

HamMmoND, K. J., “Case-based planning: A framework for planning from experience,”
Cognitive Science, 1990.

HorsTADTER, D. R. and MITCHELL, M., Fluid Concepts and Creative Analogies,
ch. The copycat project: A model of mental fluidity and analogy-making. Basic Books,
1995.

Horvoak, K. J. and THAGARD, P., Similarity and analogical reasoning, ch. A com-
putational model of analogical problem solving. Cambridge University Press, 1989.

Horyoak, K. J. and THAGARD, P., “The analogical mind,” American Psychologist,
1997.

HuMMEL, J. and HoLyoak, K. J., “Lisa: A computational model of analogical in-
ference and schema induction,” in Proceedings of the Fighteenth Annual Conference of
the Cognitive Science Society.

185

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

KEeEANE, M. T. and BRAYSHAW, M., “The incremental analogy machine,” in Proceed-
ings of the Third European Working Session on Learning.

KossLyN, S. M., Image and Brain: The Resolution of the Imagery Debate. MIT Press,
Cambridge, MA, 1994.

LAKOFF, G. and JOHNSON, M., Metaphors We Live By. Chicago: University of
Chicago Press, 1980.

LARKIN, J. and SiMON, H., “Why a diagram is (sometimes) worth ten thousand
words,” Cognitive Science, 1987.

MAXWELL, J. C., “On faraday’s lines of force,” Scientific Papers, 1855-6.

MAXWELL, J. C., The Scientific Papers of J. C. Mazwell, ch. On physical lines of
force. Cambridge University Press, 1861-2.

McGRrAW, G. and HOFSTADTER, D. R., “Perception and creation of alphabetic style,”
tech. rep., AAAI, 1993.

MONAGHAN, J. M. and CLEMENT, J., “Use of computer simulation to develop men-
tal simulations for understanding relative motion concepts.,” International Journal of
Science Education, 1999.

NARAYANAN, H. N., SuwaA, M., and MoTobpA, H., “How things appear to work:
Predicting behaviors from device diagrams,” in Proceedings of the 12th National Con-
ference on Artificial Intelligence.

NERSESSIAN, N. J., Faraday to Einstein: Constructing Meaning in Scientific Theories.
Kluwer.

NERSESSIAN, N. J., Cognitive Models of Science, ch. How do scientists think? Cap-
turing the dynamics of conceptual change in science. University of Minnesota Press,
1992.

NERSESSIAN, N. J., Idealization and Abstraction in Science, ch. Abstraction via generic
modeling in concept formation in science. Rodopi, 1994.

NERSESSIAN, N. J., “Opening the black box: Cognitive science and the history of
science,” Constructing Knowledge in the History of Science, 1994.

NERSESSIAN, N. J., Fssays in the History and Philosophy of Science and Mathematics,
ch. Maxwell and “the Method of Physical Analogy”: Model-based reasoning, generic
abstraction, and conceptual change. Open Court, 2002.

Novick, L. R. and HoLyoak, K. J., “Mathematical problem solving by analogy,”
Journal of Fxperimental Psychology: Learning, Memory, and Cognition, 1991.

O’HARA, S. and INDURKHYA, B., “Incorporating (re)-interpretation in case-based
reasoning,” in Proceedings of the First Furopean Workshop on Case-Based Reasoning

(EWCBR-93).

186

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

PEARCE, M., GOEL, A. K., KOLODNER, J. L., ZIMRING, C., SENTOSA, L., and
BILLINGTON, R., “Case-based design support: A case study in architectural design,”
IEEE Expert: Intelligent Systems & their Applications, 1992.

PeEDONE, R., HuMMEL, J. E., and HoLyoAK, K. J., “The use of diagrams in analog-
ical problem solving,” Memory & Cognition, 2001.

REHLING, J. A., Letter Spirit (Part Two): Modeling Creativity in a Visual Domain.
PhD thesis, Indiana University, 2001.

RicHARDSON, D. C., SPIVEY, M. J., EDELMAN, S., and NAPLES, A. J., ““language
is spatial”: Experiemental evidence for image schemas of concrete and abstract verbs,”
in Proceedings of the Twenty-third Annual Meeting of the Cognitive Science Society.

ScHANK, R. C., “Conceptual dependency: A theory of natural language understand-
ing,” Cognitive Psychology, 1972.

ScuMID, U. and CARBONELL, J., “Empirical evidence for derivational analogy,” in
Proceedings of the 21st Annual Conference of the Cognitive Science Society.

SHEPARD, R. and COOPER., L., Mental Images and their Transformations. MIT Press,
1988.

STENNING, K. and INDER, R., “Applying semantic concepts to analyzing media and
modalities,” in Diagrammatic Reasoning: Cognitive and Computational Perspectives
(GLAsGcow, J., NARAYANAN, N. H., and CHANDRASEKARAN, B.; eds.), pp. 303-338,
Cambridge, UK: MIT Press, 1995.

THAGARD, P., GOCHFELD, D., and HARDY, S., “Visual analogical mapping,” in
Proceedings of the 14th Annual Conference of the Cognitive Science Society.

VELOSO, M. M., “Prodigy/analogy: Analogical reasoning in general problem solving,”
in EWCBR, pp. 33-52, 1993.

VELOsO, M. M. and CARBONELL, J. G., “Derivational analogy in prodigy: Automat-
ing case acquisition, storage, and utilization,” Machine Learning, 1993.

WinsTON, P. H., “Learning and reasoning by analogy,” Communications of the ACM,
1980.

187

