Computing with Polynomials over Composites

A Thesis
Presented to
The Academic Faculty

by

Parikshit Gopalan

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Algorithms, Combinatorics and Optimization
Georgia Institute of Technology
August 2006



Computing with Polynomials over Composites

Approved by:

Professor Richard J. Lipton,
College of Computing,
Georgia Institute of Technology., Advisor

Professor Subhash Khot,
College of Computing,
Georgia Institute of Technology.

Professor Dana Randall,
College of Computing,
Georgia Institute of Technology.

Professor Robin Thomas,
School of Mathematics,
Georgia Institute of Technology.

Professor Saugata Basu,
School of Mathematics,
Georgia Institute of Technology.

Professor Prasad Tetali,
School of Mathematics,
Georgia Institute of Technology.

Date Approved: 26" June 2006



To my parents.

iii



ACKNOWLEDGEMENTS

I would like to thank my advisor Dick Lipton for all his encouragement and support over the
years. Dick was a tremendous source of new problems and ideas. His extensive knowledge
of several areas of computer science was a great asset. He always encouraged me to work
on any topic I found interesting, and I think this has made me a better researcher.

I was fortunate to have the chance to work with Subhash Khot. Subhash has a deep
understanding of several areas, a great taste in problems, and the amazing ability to make
everything look crystal clear. He is an inspiring person to work with and has helped me
broaden my reserach horizons.

In the course of my stay at Georgia Tech, I have had the chance to interact with almost
all the faculty in the theory group, and I would like to thank them all. I would especially
like to thank Dana Randall and Eric Vigoda, for their advice on matters outside theory and
their help during the application process. A special thank you to Dana for sitting through
endless practice talks. I benifitted greatly from interacting with people from the School of
Mathematics and the ACO program. I would especially like to thank Saugata Basu and
Ernie Croot, who were always ready to help me with all things mathematical.

I would like to thank all my friends at Georgia Tech for making this a memorable stay,
especially Aranyak, Vangelis, Amin and Nikhil. T also thank my friends and collaborators
at IBM Almaden where I spent a very enjoyable summer: T.S. Jayram, Phokion Kolaitis,
Ravi Kumar, Robi Krauthgamer and Elitza Maneva. As an undergraduate at IIT Bombay,
I was fortunate to have many truly inspirational teachers who were an important factor in
my deciding to take up a research career. I would especially like to thank Milind Sohoni
and Sundar Vishwanathan.

I would like to thank my parents for encouraging me to continue the family business.
It is no surpise to me that they are the people who are most excited about my becoming

a Doctor. I cannot adequately express my gratitude to them for their unwavering support

v



and confidence in me over the years. I also thank my sister Preeti, who encouragement and
advice, especially the latter, were always abundantly available.

Finally, I want to thank Nayantara for our five memorable years together in Atlanta, for
all the fun times we had and the great theorems that we have proved. This is undoubtedly

the part I will treasure most about my Ph.D experience.



TABLE OF CONTENTS

DEDICATION . . . . . . e e e

ACKNOWLEDGEMENTS . . . . . . ... . ettt

LIST OF FIGURES . . . . . . . . . e e

SUMMARY . . . . e e

I

11

111

v

INTRODUCTION . . . . .. e e e e et e
1.1 Prime versus Composite Problems . . . . . . .. ... ... ...
1.2 Polynomials over Composites . . . . .. . ... ... ... ... ...

1.3 Our Contributions. . . . . . . . . . . i e e e e e e e e

AN ALGEBRAIC VIEW OF BOOLEAN FUNCTIONS. . .. ... ..
2.1 Computing Boolean functions by Polynomials . . . . .. ... .. ... ..
2.2 Symmetric Boolean Functions . . . . .. .. ... 0 0oL
2.3 The Fourier Representation . . ... ... ... ... ............
2.4 Application to Learning Juntas . . . . . .. .. ... ..o

2.5 Application to Circuit Lower Bounds . . . . ... ... ... ........

POLYNOMIAL REPRESENTATIONS OVER COMPOSITES

3.1 Beyond Exact Representations . . . . . . . . ... ... ...
3.2 OurResults . .. .. . . e
3.3 Symmetric Polynomials and Simultaneous Protocols . . . . . . ... . ...
3.4 Strong Representations . . . . . .. . ... Lo oL o oo
3.0 Weak Representations. . . . . . ... .. .. oo
3.6 Threshold Functions and Diophantine Equations . . . . . . ... ... ...
3.7 Lower Bounds for Threshold Functions . . . . . ... .. ... ... ...
ALGORITHMS FOR INTERPOLATION OVER COMPOSITES . . .
4.1 Polynomial Interpolation modulo Composites . . . . .. .. ... .. ...
4.2 OQOurResults . .. . . . . . . . e
4.3 Preliminaries about Polynomial Interpolation . . . . .. ... .. ... ..
4.4 Interpolating Sets . . . . . . . . ... L

4.5 Algorithms for the Generalized Interpolation Problem . . . . . . ... ...

vi

@ ~N A e

13
15
24
30
35
38

43
43
46
51
53
58
64
72



4.6
4.7
4.8

Learning Algorithms . . . . . . ... ... ... ... ... .. 101
Algebraic Structure of Interpolating Sets modulo Prime Powers . . . . . . 103

Some Combinatorial Properties of Ultrametric Spaces . . . . . . .. .. .. 110

V RAMSEY GRAPHS FROM POLYNOMIAL REPRESENTATIONS . 114

5.1 OurResults . . . . . . . . o e 115
5.2 Constructing Ramsey graphs using OR Polynomials . . . . ... ... ... 123
5.3 Ramsey Graphs based on Set Intersections . . . . .. ... ... ...... 127
5.4 Lower Bounds for Prime-Power Representations . . . . . ... ... .. .. 131
5.5 Lower Bounds for Prime Representations . . . . . .. .. ... ... .... 140
VI CONCLUSIONS AND FUTURE DIRECTIONS ... .......... 147
6.1 Resolving the Symmetry versus Asymmetry Question . . . . . . .. .. .. 147
6.2 Towards Better Degree Lower bounds . . . . . . . .. .. ... .. ..... 148
6.3 Limitations to Distance-based Ramsey Constructions . . . . . ... .. .. 149
6.4 Tight Bounds for MOD functions . . . . . ... ... .. ... ...... 150
6.5 Set-Systems with Restricted Intersections . . . . . .. .. ... ... .. .. 150
APPENDIX A — EXTENSIONS TO PRIME POWERS ... ... ... 152
REFERENCES . . . . . . . e 156

vii



1

3

LIST OF FIGURES

The Degree of Threshold-k functionsmod 6 . . . . . . .. ... .. ... ..

Lower bound for p? — 1 and the Frankl-Wilson construction . . . .. .. ..

Proof of the Partition Lemma

viii



SUMMARY

In the last twenty years, algebraic techniques have been applied with great success
to several areas in theoretical computer science. However, for many problems involving
modular counting, there is a huge gap in our understanding depending on whether the
modulus is prime or composite. A prime example is the problem of showing lower bounds
for circuits with Mod gates in circuit complexity. Proof techniques that work well for primes
break down over composites. Moreover, in some cases, the problem for composites turns
out to be very different from the prime case. Making progress on these problems seems to
require a better understanding of polynomials over composites. In this thesis, we address
some such prime versus composite problems from computational complexity, algorithms and
combinatorics, and the surprising connections between them.

We consider the complexity-theoretic problem of computing Boolean functions using
polynomials modulo composites. We show that symmetric polynomials can viewed as si-
multaneous communication protocols. This equivalence allows us to use techniques from
communication complexity and number theory to prove degree bounds. We use these tech-
niques to give the first tight degree bounds for a number of Boolean functions.

We consider the combinatorial problem of explicit construction of Ramsey graphs. We
present a simple construction of such graphs using polynomials modulo composites. This
approach gives a unifying view of many known constructions, and explains why they all
achieve the same bound. We show that certain approaches to this problem cannot give
better bounds.

Finally, we consider the algorithmic problem of interpolation for polynomials modulo
composites. We present the first query-efficient algorithms for interpolation and learning
under a distribution. These results rely on some new structural results about such polyno-

mials.
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CHAPTER 1

INTRODUCTION

The problem of distinguishing prime numbers from composite numbers and
of resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic ...

C.F. Gauss.

Disquisitiones Arithmeticae (1801)

Computational problems regarding prime and composite numbers are among the oldest
and most well-studied problems in mathematics and computer science. In addition to being
fundamental in nature, primality-testing and factoring have assumed even greater signif-
icance in the light of modern cryptography, where several commonly used cryptosystems
rely on assumptions about the complexity of the latter problem. However, the importance
of these problems was understood long before the notion of efficient computation was even
formalized as the above quotation by Gauss illustrates. Gauss was perhaps the first to point
out that one might be able to identify composites without explicitly factoring them, or in
the language of computer science, to point out that primality and factoring might have
different computational complexity.

One of the great algorithmic advancements of the 1970s was the discovery of random-
ized algorithms for primality-testing due to Solovay-Strassen [72] and Rabin [67], which
ushered in the systematic use of randomization in computer science. More recently, a ma-
jor algorithmic milestone of this decade was the deterministic primality testing algorithm
of Agrawal, Kayal and Saxena that proved that primality-testing is in fact in P [2]. Thus,
while the search for more efficient algorithms continues, one can regard primality-testing as
a solved problem from a complexity-theoretic viewpoint.

The complexity of factoring however, is far from resolved. The fastest known algorithm



for factoring numbers, the Number-Field-Sieve runs in time 20(108% ") [28]. Many modern-
day public-key cryptosystems including the RSA and Rabin cryptosystems rely on the
assumption that factoring is intractable. Given our current knowledge of lower bounds
however, proving this statement seems to be out of our reach.

In addition to these fundamental questions, the differences between primes and compos-
ites have surfaced in several areas of computer science and discrete mathematics, sometimes
in rather unexpected contexts. We begin with a couple of simple examples of such problems.

The first is from Boolean function complexity.

Problem 1.1 A polynomial P(Xq,...,X,) over Z,, represents the OR function on n vari-

ables modulo m if for (z1,...,z,) € {0,1}", it satisfies

P(0,...,0) =0modm

P(z1,...,2n) #0modm if (z1,...,2,) # (0,...,0)
What is the minimum degree polynomial representing the OR function modulo m?

For this problem, we regard m as a constant and are interested in the minimum degree
as a function of n. It is fairly easy to show by using linear algebra that when m is a prime,
any polynomial satisfying these conditions must have degree Q(n). With some additional
effort, one can prove a similar bound when m is a prime power. A natural question is what
happens for m composite. There was a conjecture due to Barrington that an Q(n) lower
bound should hold in this case too [14]. Surprisingly, however this conjecture was disproved
by Barrington, Beigel and Rudich who showed that the OR function can be represented by
polynomials having degree O(n%) where ¢ is the number of prime divisors of m [15].

Their construction gives a symmetric polynomial representing the OR function. They
show a matching Q(n%) lower bound for representations by symmetric polynomials. This
raises a natural question: can asymmetric polynomials help us represent the OR function
with low degree? This question is wide open, the best lower bound till date is Q(logn) due
to Barrington and Tardos [74].

Our second example is a problem from combinatorics.



Problem 1.2 OddTown is a town of n people. The residents of OddTown like to form
clubs (which are subsets of [n] for our purposes). But the laws of OddTown state that the
size of each club must be odd, whereas the intersection of any two clubs must be even. How

many such clubs exist in OddTown?

An easy bound of n follows by observing that each resident can form a club of one, and
this collection is consistent with the laws of the town. A more surprising result is that this
is the best that they can do. This is indeed surprising since if the law were changed to
restrict both the club sizes and their intersections to be even, then the number of possible
clubs jumps to 23,

A natural question is what happens if we insist that all club sizes are 0 mod m but their
intersections are non-zero mod m. We will refer to such families of clubs as set systems with
restricted intersections mod m. When m = p is prime, a classical result of Deza, Frankl
and Singhi, referred to as the modular RCW theorem (RCW stands for Ray-Chaudhuri and
Wilson) implies that there can be no more than O(n?) clubs [10]. For fixed p, this gives
a polynomial upper bound in terms of n. This is non-trivial given that in all, there are
2" possible clubs in OddTown. We will show that a similar bound holds for prime powers.
A polynomial upper bound was conjectured for composite m and this problem was open
for a while [10]. Surprisingly, Grolmusz disproved the conjecture by constructing a super-
polynomial sized set system with restricted intersection modulo m, for all m having at
least two prime divisors [43]. The main ingredients in his construction were the low-degree
polynomials representing the OR, function modulo m discovered by Barrington et al. [15].

Let us point out some common features shared by the two problems above. The tech-
niques that work in the prime case, which rely on linear algebra and dimension arguments
no longer work over composites. Moreover in both problems, the composite case is very
different from the prime case. Thus it is not merely a failure of proof techniques that is
keeping us from making progress; it is not clear what the right answer is modulo composites.

In this thesis we address a variety of such prime versus composite questions from com-
putational complexity, algorithms and combinatorics and explore the connections between

them. We begin our study of these problems by framing them in the right context.



1.1 Prime versus Composite Problems

One of the major successes in the last two decades has been the successful application of
algebraic techniques to a variety of different areas across computer science and discrete
mathematics. Major breakthroughs in areas such as circuit complexity [68, 70], algorithmic
coding theory [45, 46], algorithmic derandomization [2] and probabilistic proof checking
[8, 9] were achieved via extensive use of algebra and polynomial based methods. Similarly
in combinatorics, the linear-algebra method and the polynomial method have been applied
with great success to several problems [4, 10].

At a high level, many of these results utilize properties of low degree polynomials over
fields (usually Z,) and dimension based arguments. As an illustration, we consider the
OddTown problem discussed earlier. We view the incidence vector for each club as a vector
in n dimensions over Zs. A moment’s thought reveals that the vectors for various clubs
must be linearly independent, which implies the desired bound.

This hints at some of the problems one faces in trying to prove such a bound for compos-
ites, the machinery of finite fields and linear algebra is no longer at our disposal. Similarly,
arguments that involve properties of low-degree polynomials typically use the fact that over
a field, such a polynomial cannot have too many zeroes. This is again something that fails
over composites (take X* = 0 mod 2 for example). This difference often results in a huge
gap in our understanding of problems that in some way involve modular counting, where
we wish to solve some problem for general moduli m, but are typically not able to progress
beyond the prime or prime-power case.

Perhaps the central problem of this kind, which suggests limitations to our understand-
ing of modular counting is proving lower bounds for circuits with AND, OR and MOD
gates. When all the MOD gates involved are MOD-p gates for a fixed prime p, we have
excellent lower bounds via the algebraic techniques of Razborov and Smolensky [68, 70].
The simplest class of circuits that we our lower-bound techniques fail, is when all the gates
involved are MOD-6 gates. Indeed, we do not know how to show a super-linear lower bound
on the circuit size, even for NP-complete problems. This is one of the frontier open problems

in the circuit lower bounds approach to the P # NP problem.



The circuit lower bounds of Razborov and Smolensky are obtained by considering a sim-
ple algebraic computational model: computing Boolean functions by multivariate polynomi-
als over Z;,. They show an upper bound proving that any function which can be computed
using small circuits with MOD-p gates can be computed with low-degree polynomials over
Zp. They then find functions that cannot be computed by low-degree polynomials. This
suggests a natural step towards circuit lower bounds: prove degree lower bounds for com-
puting functions using polynomials over Z,,. While we do not know if every circuit can be
computed by a low-degree polynomial, it is definitely true that low-degree polynomials are
small circuits. Even this problem is still wide open. Surprisingly, a stumbling block appears
to be the fact that low-degree polynomials over Z,, are more powerful than their counter-
parts over Z,. We now know non-trivial upper bounds for many functions which one might
have believed are hard (meaning that they require high degree) based on the prime power
case. Indeed, while one certainly expects NP-complete problems to require large circuit-size
with MOD-6 gates, it is entirely possible that the simple candidate functions which work
for the prime case are no longer hard.

The OddTown theorem and its extensions to general moduli are well studied problems
in extremal set theory [10]. They have connections to many other combinatorial problems,
one of which is the construction of low-rank co-diagonal matrices. Here the question is,
given an n X n matrix where all the diagonal entries are 0 modulo m but the off-diagonal
entries are non-zero modulo m, how low can its rank be? Again we think of m as a fixed
constant and wish to show bounds as a function of n. One can obtain a large matrix with
low rank from a set system with restricted intersection modulo m.

Both these problems are closely linked to a problem of Erdds from 1947, that of explicit
Ramsey graph construction. Here the problem is to construct a large graph with no clique
or independent set of size k. In his seminal paper introducing the probabilistic method
in combinatorics, Erd6s showed that there exist such graphs with as many as 25 vertices
[29]. Indeed, he shows that a random graph has this property. He posed the problem
of explicitly constructing a graph i.e giving a polynomial time algorithm to compute its

adjacency matrix. Known constructions fall well short of the probabilistic bound. This is



one of the central open problems in the area of explicit combinatorial constructions. It is not
clear at first sight, what constructing Ramsey graphs has to do with primes and composites.
However, it is known that set systems with restricted intersections and low rank co-diagonal
matrices modulo composites can be used to construct Ramsey graphs [10, 42]. Further, we
will see in this thesis that many of the known Ramsey constructions can be unified under
the umbrella of polynomials over Z,, computing Boolean functions.

There are several well-studied algorithmic prime versus composite problems in algebra
and number theory, where the goal is to understand the computational complexity of a
certain task for various moduli. These include fundamental questions in algorithmic algebra
such as root-finding, polynomial factorization and interpolation over Z,,. The complexity
of root-finding and polynomial factorization is well understood for general moduli m. Both
problems are tractable for prime powers using the famous Hensel lifting algorithm [28],
and as hard as integer-factoring for general m [66, 69]. The fact that finding square-roots
modulo m is as hard as factoring underlies the security of the Rabin cryptosystem [66].

The problem of polynomial interpolation is to reconstruct a polynomial based on its
evaluations. The problem of interpolation over Z,, is implicit in many of the complexity-
theoretic and combinatorial problems discussed above , which are concerned with the lowest
degree polynomial that satisfies certain conditions. We will address the problem of inter-
polation modulo m for general m, with goal of designing algorithms that require only a few
evaluations to reconstruct the polynomial correctly. This problem is thoroughly understood
over Zj for p prime, going back to the work of Newton and Lagrange. Not much is known
about the composite case. The main difference between primes and composites in this set-
ting is that for composites, one can hope to reconstruct the polynomial correctly without
knowing its evaluations at every point in Z,,, unlike the prime case. Thus, it seems that
polynomial interpolation should be easier for composite m, in contrast to the problems of

root-finding and polynomial factorization.



1.2 Polynomaals over Composites

For many of the prime versus composite problems discussed in the last section, the rea-
son why proof techniques from the prime case do not carry over to the composite case is
that polynomials over composites behave differently. Familiar properties like a degree d
polynomial can have only d roots cease to hold. Further, the machinery of finite fields and
dimension-based arguments is no longer at our disposal. However, the goal of this thesis is
to show that polynomials over composites are rich in structure, and that this structure can
be exploited to gain new insight into many of these problems. This structure however is
very different from the prime case and exploiting it requires techniques from several diverse
areas including algebra, number theory, combinatorics and communication complexity.
Further, polynomials over composites serve as a bridge between the various prime versus
composite problems arising in computational complexity, algorithms and combinatorics and
reveal some surprising connections between them. As an example, let us take the problem of
explicit construction of Ramsey graphs. Grolmusz’s construction of a super-polynomial size
set system with restricted intersections modulo m uses low degree polynomials over Z,, for
computing the OR function. These polynomials were discovered by Barrington, Beigel and
Rudich in the context of computing Boolean functions using polynomials [15]. Grolmusz’s
construction in turn immediately gives a Ramsey graph construction with parameters that
were the best known at the time of discovery. In this thesis, we will build on this connection
and show that many of the known Ramsey constructions can be viewed as coming from
polynomials over composites. This view allows us to take insights from complexity theory
and use them to shed light on problems in combinatorics and vice versa. We will show that
Ramsey graphs based on symmetric polynomials cannot improve on already known bounds.
This lower-bound result is suggested by similar results that are known in computational
complexity. The techniques used in proving this however are very different, and they build
on the structural properties of polynomials modulo prime powers. These properties were in
turn discovered in the context of designing efficient algorithms for polynomial interpolation
modulo prime powers. Also, by viewing the well-known Ramsey construction of Frankl and

Wilson [31] in this framework, we discover new low-degree polynomials computing the OR



function.

1.3 Our Contributions

In this thesis, we explore some prime versus composite questions arising from computational

complexity, combinatorics and algorithmic algebra and the connections between them.
1.3.1 Computational Complexity

We study the problem of computing or representing Boolean functions using polynomials
over Zn,. We focus on representing symmetric Boolean functions by symmetric polynomials
over Zm,. Our main conceptual contribution is an equivalence between computing Boolean
functions by symmetric polynomials modulo m and computing the functions by certain
one-round simultaneous communication protocols.

For polynomials over Zg, these protocols involve two players and a referee who are trying
to compute a certain Boolean-valued function f of some number w € {0,...,n} (for instance
is w > 2 7). The first player is given a few low-order digits of the w in base 2 and the other
is given a few low-order digits of the weight in base 3. Each player sends a message to the
referee: the first player sends a number in Zo, and the second sends a number in Zs. The
referee tries to compute f based on these messages. The number of bits that the players
each have to read for the protocol to succeed corresponds to the minimum degree symmetric
polynomial that represents a Boolean function on {0,1}" derived from f.

This equivalence allows us to show degree lower bounds by using techniques from com-
munication complexity. We show lower bounds of Q(n) on symmetric polynomials weakly
representing classes of Mod and Threshold functions. Previously the best known lower
bound for such representations of any function modulo m when m has ¢ prime factors was
Q(n%) [15]. The equivalence also allows us to use results from number theory to prove
degree bounds. We show that proving bounds on the degree of symmetric polynomials
strongly representing the Threshold functions is equivalent to counting the number of solu-
tions to certain Diophantine equations. We use this to show an upper bound of O(nk)%“
for the Threshold-k function assuming the abc conjecture from number theory. We show the

same bound unconditionally for k& constant. Prior to this, non-trivial upper bounds were



known only for the OR function and its shifts [15]. We show an almost tight lower bound
of Q(nk)%, improving the previously known bound of Q(max(k,+/n)) [76].

Based on these results and subsequent work on this problem by Hansen [47], we now have
a good understanding of representations by symmetric polynomials and fairly tight degree
bounds for such representations of most natural Boolean functions. The outstanding open
problem in this area is whether asymmetric polynomials can give better (i.e lower degree)
representations of symmetric Boolean functions than symmetric polynomials. While there
are no known examples of symmetric Boolean functions where asymmetry does help, there

are no degree lower bounds better than Q(logn) known for any Boolean function.

1.3.2 Algorithms

The problem of polynomial interpolation is to reconstruct a polynomial based on its valu-
ations on a set of inputs I. We consider the problem over Z,, when m is composite. We
ask the question: Given I C Z.,, how many evaluations of a polynomial at points in I
are required to compute its value at every point in I? Surprisingly for composite m, this
number can vary exponentially between log |I| and |I| in contrast to the prime case where
|I| evaluations are necessary. While this minimization problem is NP-hard, we give an
efficient algorithm of query complexity within a factor ¢ of the optimum where ¢ is the
number of prime factors of m. In fact the guarantee is slightly stronger. When the algo-
rithm terminates, it produces a factorization of m into #' < ¢ relatively prime factors. The
approximation factor is in fact bounded by #'. Thus input sets I which force the algorithm
to make several queries must also reveal the factorization of m. We use our interpolation
algorithm to design algorithms for zero-testing and distributional learning of polynomials
over Zy,. In some cases, we get an exponential improvement over known algorithms in query
complexity and running time.

Our main technical contribution is the notion of an interpolating set for I which is a
subset S of I such that a polynomial which is 0 over S must be 0 at every point in I.
Any interpolation algorithm needs to query an interpolating set for I. Our query-efficient

algorithms are obtained by constructing interpolating sets whose size is close to optimal.



Interpolating sets modulo prime powers have rich algebraic and combinatorial structure
which we study in detail, these properties are also useful in analyzing our algorithm. In
proving these properties, we make crucial use of the fact that the underlying space is
in fact an ultrametric space (metrics where the following strengthening of the triangle
inequality holds: d(z,y) < max(d(z, z),d(y,z)). We show that many algebraic properties
of polynomials can be reinterpreted as geometric properties of ultrametric spaces. Further,
the proof of these properties for general ultrametric spaces follows directly from the proof

for polynomials modulo prime powers.
1.3.3 Combinatorics

We consider the problem of explicit construction of Ramsey graphs or graphs with no
large clique or independent set. Constructing Ramsey graphs was known to be related
to polynomial representations of Boolean functions; Grolmusz showed that a low degree
representation for the OR function modulo m can be used to construct set systems with
restricted intersections modulo m, from which one can construct explicit Ramsey graphs
[43].

We generalize the above relation by proposing a new framework. We propose a new
definition of OR representations: a pair of polynomials represent the OR function if the
union of their zero sets contains all points in {0,1}" except the origin. We give a simple
construction of a Ramsey graph using such polynomials. Furthermore, we show that all the
known algebraic constructions, ones to due to Frankl-Wilson [31], Grolmusz [43] and Alon
[5] are captured by this framework; they can all be derived from various OR representations
of degree O(y/n) based on symmetric polynomials. This gives a simple explanation for why
all these constructions achieve the same bound. It simplifies the construction of Grolmusz,
and relates it to those of Frankl-Wilson and Alon, which look very different at first. It places
the constructions of Alon and Frankl-Wilson, which were originally derived using different
techniques, in the context of Boolean function representations, and raises the possibility of
getting better constructions from low degree representations.

By our view, all the constructions naturally extend to the problem of constructing

10



multicolor Ramsey graphs, where the goal is to t-color the edges of the complete graph so
that there are no large monochromatic cliques. Such an extension was not known previously
for the Frankl-Wilson construction. Another consequence of our construction is improved
bounds for set systems with restricted intersections modulo prime powers.

Thus the barrier to better Ramsey constructions through such algebraic methods ap-
pears to be the construction of lower degree representations. We show that the question of
symmetry versus asymmetry from Boolean function complexity applies to Ramsey graph
constructions as well. We show that better Ramsey graphs cannot be obtained using sym-
metric polynomials. Thus to obtain better graphs using such algebraic techniques, one has
to use asymmetric polynomials. Proving this bound for our new definition of OR repre-
sentations calls for some new algebraic techniques, which build on structural properties of

interpolating sets that were discovered in the context of polynomial interpolation.

Organization of This Thesis

The results in this thesis on polynomials representations of Boolean functions are based
on joint work with Nayantara Bhatnagar and Richard J. Lipton. Extended abstracts of
this work appeared as Symmetric Polynomials over Z.,, and Simultaneous Communication
Protocols in FOCS’03 [20], and The Degree of Threshold Mod 6 and Diophantine Equations
which appeared as a technical report on ECCC in 2004 [21]. A combined full version of both
these papers appeared in JCSS [22]. An extended abstract of the work on polynomial inter-
polation appeared in SODA’06 under the title Query-Efficient Algorithms for Polynomial
Interpolation over Composites [36], the full version of this paper is currently under review.
An extended abstract of the work on Ramsey graph constructions will appear in CCC’06
under the title Constructing Ramsey Graphs from Boolean Function Representations [35].

This thesis is organized as follows. We begin with the problem of computing Boolean
functions by polynomials from computational complexity. In Chapter 2, we re-cap some
basic results about polynomials computing Boolean functions, and present applications to
Computational Learning and Circuit Complexity. Most of these results are well known,

except Section 2.2. We consider representations over Z,, in Chapter 3. We prove the

11



equivalence between polynomials over Z,, and communication protocols. We then consider
Threshold functions and prove tight degree bounds using techniques from number theory.
We turn to the Algorithmic problem of polynomial interpolation over Z,, in Chapter 4, We
consider the Combinatorial problem of explicit Ramsey graph construction in Chapter 5.

We have attempted to keep each chapter fairly self-contained.

12



CHAPTER 11

AN ALGEBRAIC VIEW OF BOOLEAN FUNCTIONS

Representations of Boolean functions as polynomials over various rings such as R,Z, and
Z.y, have been well studied in computer science starting with the work of Minsky and Papert
[60]. Polynomials provide a simple and natural algebraic model of computation, with the
degree serving as a natural complexity measure. In addition, this study has proved useful
for applications in computational complexity, computational learning and combinatorics.

Representations of Boolean functions as polynomials over Z;, were used by Razborov
and Smolensky [68, 70] in proving lower bounds for constant-depth circuits with MOD-
p gates. Such representations are also useful in learning-theoretic scenarios, an example
which we will discuss later in this chapter is an algorithm due to Mossel, O’Donnell and
Servedio for learning a class of Boolean functions known as Juntas [61]. Representations
of polynomials over Z,, for m composite are studied as a first step towards showing lower
bounds for circuits with MOD-m gates, this study was initiated by the work of Barrington,
Beigel and Rudich [15]. Such representations have surprising applications to problems in
combinatorics [35, 42, 43] which we will explore further in chapter 5. Our main focus in
this thesis will be on such representations.

The Fourier representation of Boolean functions is essentially a representation of Boolean
functions by real polynomials. Fourier analysis has proved to be a very powerful tool for
several applications in computer science, including hardness of approximation and compu-
tational learning. Two examples of important breakthroughs in these areas that rely on
Fourier analytic methods are Hastad’s optimal inapproximability result for Max-3-SAT [49],
and the low-degree algorithm of Linial, Mansour and Nisan for learning constant depth cir-
cuits under the uniform distribution in quasi-polynomial time [59]. We will cover the basic
facts about Fourier analysis in this chapter, for a comprehensive study of Fourier analytic

methods and their applications, we refer the reader to O’Donnell’s thesis [65].
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Another kind of representation of Boolean functions by real polynomials, which were first
studied by Minsky and Papert [60] are sign-representations, which are also called Polynomial
Threshold Functions (PTFs) or Perceptrons. Here the value of the Boolean function at
a point is decided by the sign of the representing polynomial evaluated at that point.
Such representations are widely used in learning theory, and the best known algorithms
for learning several classes of Boolean functions including DNFs use such representations
[54, 55]. However, we will not focus on such representations in this thesis.

In this chapter, we will survey the basic concepts about exact representations of Boolean
functions as polynomials. Most of these results were known previously, unless otherwise in-
dicated. Throughout, we will try to present results in the most general setting possible,
such as a general commutative ring R or a field F. We first introduce polynomial repre-
sentations and prove their existence and uniqueness. We then consider symmetric Boolean
functions, which are the focus of much of this thesis. We develop tools for proving degree
lower bounds for such functions over Z,, using Lucas’ Theorem about binomial coefficients
modulo p. Our treatment follows that of Bhatnagar et al. [20]. We then introduce the
Fourier representations of Boolean functions. We prove a basic result due to Nisan and
Szegedy which gives a lower bound on the degree of arbitrary Boolean functions over R
using Fourier analysis.

We then present a couple of sample applications of polynomial representations from
computational learning and circuit complexity. We consider the problem of learning k-
juntas (functions that depend on only k& out of their n input variables) under the uniform
distribution. We present an algorithm due to Mossel et al. [61] which is the best algo-
rithm known for this problem. The analysis presented here is somewhat simpler than the
original analysis. We consider the problem of proving lower bounds for AC°[3], the class
of polynomial-size, constant-depth circuits with AND, OR and MOD-3 gates. We prove a
result due to Smolensky showing that the PARITY function cannot be computed by such

circuits.
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2.1 Computing Boolean functions by Polynomaials

We use X = (X1,...,X,) to denote a vector of variables and x = (z1,...,z,) denote a
vector of constants. Let F be a field (containing 0,1). We will study polynomials in F[X]
and the functions that they compute on {0,1}". Given a monomial []; X%, we define its

total degree to be ), d; and its degree in the variable X; to be d;. We define the degree of

the 0 polynomial to be oo.

Definition 2.1 A polynomial P(X) € F[X1,...,X,] is a multilinear polynomial if the

degree of each variable in every monomial is at most 1.

One can equivalently define multilinear polynomials as all polynomials of the form

PX)= > cs[[ X cs € F.

SC[n] €S
Fact 2.1 The space of a multilinear polynomials in X forms a vector space of dimension 2"

over F. A basis for this vector space is given by the monomials [ [, ¢ X; for all sets S C [n].

Over the Boolean hypercube, we can restrict our attention to multilinear functions

without loss of generality.

Proposition 2.2 Given a polynomial Q(X) € F[X], there is a multilinear polynomial P(X)

so that P(x) = Q(x) for every point x € {0,1}".

PROOF: We are interested in the values taken by the polynomial Q(X) at points in {0,1}"
where the relation de = X; holds for d > 2. Hence, we can replace de by X; for d > 2
without changing the value of the polynomial over {0,1}". This replacement results in a

multilinear polynomial P(X) that agrees with Q(X) at every point in {0,1}". O

The above replacement procedure is sometimes referred to as multilinearization [10].
Let f : {0,1}" — {0,1} be a Boolean function defined on the n-dimensional Boolean
hypercube. There is a natural way to associate a multilinear polynomial over F(X) to every

Boolean function f.

Definition 2.2 A multilinear polynomial P(X) exactly represents the Boolean function f

if for all x € {0,1}", P(x) = f(x).
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We also say that the polynomial P(X) computes the function f(X). We will show that
such a polynomial representing the function f exists and it is unique. In fact, this holds

not just for Boolean functions but more generally for functions taking values in the field F.

Theorem 2.3 For every function f : {0,1}" — F, there is a unique multilinear polynomial

in F[X] such that for all x € {0,1}", P(x) = f(x).

ProOOF: We will first prove the existence part. Consider a Boolean vector x € {0,1}". We
define the Boolean indicator function I as
1 if x=y

I(y) =
0 if x#£y

It is easy to see that this function is computed by the polynomial
P(X)= [[ a-x) [[ X
ilz;=0 i|z=1
Further the polynomial Px(X) is multilinear. The indicator functions form a basis for the
space of all functions f : {0,1}" — F. Hence we can write every such function as a suitable
linear combination. More precisely, given a function f, the polynomial
P(X)= Y Jfx [[a-x) ] x (1)
x€{0,1}» i@ =0 ilzi=1

computes the function f exactly.

An alternate proof of existence is via the Moebius inversion formula. For the purposes
of this proof, it will be convenient to identify the subset S C [n] with its incidence vector
s =(81,.-.,8p) in {0,1}" where

lifzeS

§; =

0 otherwise

Given a function f : {0,1}" — F, we claim that it is computed by the polynomial

PX)= > es[[Xi

SCln] i€S
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where cg is given by the Moebius inversion formula:

es = Y (-1 Tf(y) @

TCS

The prove the correctness, we check that

_Z S (—)S-Tlp(h)

SCR TCS

= Z ) Z (—1)/SI=IT] By Equation (2)

TCR S: TCSCR
= f(r)
The last equality holds since

1ifT=R
(_1)|S|—|T\ =

S: TCSCR 0 otherwise

To prove the uniqueness of the multilinear polynomial computing the function f, note
that if two distinct multilinear polynomials P(X) and P'(X) compute the same function
on {0, 1}", then their difference is a non-zero polynomial computing the 0 function. Hence
it suffices to show that a non-zero multilinear polynomial Q(X) cannot be 0 at every point
in {0,1}". We prove this by induction on n.

The base case when n = 1 is simple, since a univariate polynomial of degree 1 cannot have
two roots. For the inductive case, assume that the variable X, appears in some monomial
of @, since if not, we are done by induction on n. Grouping together the monomials where
X,, appears,

Q(X) = XpnR(X1,..., Xp-1) + 5(X1,..., Xpn-1)

where R and S are also multilinear polynomials in n—1 variables. Further R(Xq, -+, X;,_1)
is not the 0 polynomial, since X,, appears in some monomial of ). Hence, by the induction

hypothesis, we can find z1,...,2,_1 so that

Q(xla"' axn—l) =a 7& 0.
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Setting S(z1,...,Zn—1) = b, we get
Q(xl,...,xn_an) :G,Xn-i-b G,7é0

Using the base case, this polynomial is non-zero at for X,, = 0 or X,, = 1. O

A shorter proof of uniqueness would be to note that the map f — P; given by Equation
(1) is a linear map that gives an injection from the space of functions f : {0,1}" — F
to the space of multilinear polynomials in F[X7,...,X,]. Since both are vector spaces of
dimension 2" over I, the map must be invertible.

However, an advantage of our proofs is that, somewhat surprisingly, they do not use
the field structure of F, they work over any commutative ring. This generalization will be
helpful to us when we consider Boolean function representations by polynomials over Z,,.
Let R be a commutative ring containing the additive identity O such that for all a« € R,

a + 0 = a and the multiplicative identity 1 so that a-1 = a and 0 # 1.

Corollary 2.4 For every function f : {0,1}" — R, there is a unique multilinear polynomial

in R[X] such that for all x € {0,1}", P(x) = f(x).

PROOF: Both our proofs of existence in Theorem 2.3 hold for any ring. In particular, given
a function f, the polynomial
pX)= > fx J[a-x) ] x
x€{0,1}n i|x;=0 ilwi=1
computes the function f exactly.
For the uniqueness part, it suffices to show that a linear polynomial in one variable of
the form

Q(X1)=aX,+b  abeR

cannot satisfy Q(0) = Q(1) = 0 unless a = 0 and b = 0. Plugging in X; =0,



One can now repeat the same inductive argument. O

We have defined a notion of computing a Boolean function using a polynomial. This

gives rise to a natural complexity measure for a function, namely its degree.

Definition 2.3 The F-degree of a Boolean function f : {0,1}" — {0,1} is the degree of the

unique multilinear polynomial in F[X] computing the function f and is denoted by degp(f).

Of particular interest to us are the cases when F = R and F = Z,. We denote these
degrees by deg(f) and deg,(f) respectively. In fact, this suffices to cover all possible fields
IF.

Lemma 2.5 For any field F of characteristic 0,

degp(f) = deg(f).

For any field F of characteristic p,

degp(f) = deg,(f).

PrOOF: By the Moebius inversion formula, the coefficients of the polynomial computing f

are given by the equation

es = (=) Tp).

TCS

From this it follows that the values of ¢g, and hence degpr(f) depends only on the charac-

teristic of the field F. O

A natural question is to ask how these various degrees are related.

Lemma 2.6 [61] For any prime p:

deg,(f) < deg(f)

PRrROOF: Let P;(X) be the unique multilinear polynomial computing f over Q. Note that

by the Moebius inversion formula, the coefficients of Py are all integers. Hence if

Pi(X) = es [ X
S

1€S
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then we can define the polynomial P'(X) € Z,[X] as
A
P}(X):ZCQHXi ¢, =c;mod p
S 1€S

It is easy to see that for any x € {0,1}",
P}(x) = P(x) mod p.

It follows that P'(X) computes the function f over Z,. Also it’s degree can only be less

than the degree of P(X). O

One cannot hope for a non-trivial inequality in the other direction, since for instance
PARITY can be represented by > X; over Zs, hence deg,(PARITY) = 1. However over R,

it is represented by the polynomial

- S JJ(—2xy)

i

N | =
N | =

hence deg(PARITY) = n.

Note that we have identified the Boolean values {0,1} with the elements 0 and 1 of the
field F. This choice is arbitrary, we can associate them with any two distinct field elements
ag and a1. In fact, over Q, it is often convenient to associate the Boolean hypercube with
{£1}". A natural question is whether the choice of field elements changes the degree of a
function. We will show that this does not matter.

We need to introduce some notation for this. We will refer to the pair {ag,a1} as the

input basis. Let us define the map A : {0,1} — {ag,a1} as
A(0) = ap, A(l) =as.
Similarly, for a Boolean vector x, let
A(x) = (A(z1),- .., A(zn)).

Definition 2.4 A polynomial P(X) computes a function f : {0,1}" — {0,1} over the

input basis (ag, a1) if for x € {0,1}",
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In this definition, we could ask that the polynomial output f(z) rather than A(f(z)). Once
can show that such a polynomial exists and is unique. The proof is similar to that of

Theorem 2.3, and is omitted.

Theorem 2.7 [61] The degree of the polynomial computing a function f : {0,1}" — {0,1}

is independent of the choice of input basis.

PROOF: Assume that the polynomial P(X) of degree d computes the function f over the

input basis {0,1}. The linear transformation

X—a()

a1 — ao

T(x) =

maps {ap,a1} to {0,1}. Hence the polynomial

>

P'(X) = P(T(X1),--+ , T(zn))

compute the function f over the input basis (ag, a1). More precisely, it satfifies the condition

that for x € {0,1}",

Thus P’ is the unique polynomial computing f over the {ag, a1} basis.

To show that it must have degree d, assume that the monomial X --- X, occurs in
P(X). Then we claim that it must also occur in P'(X). When we apply the transformation
to the variables X1,..., X4, we get

d X; —ag

On expanding this term, we get the monomial X;---Xy4. This term cannot cancel out
with terms coming from the expansion of any other monomial, since deg(P) = d. Hence
deg(P') = d.

Finally, if we want the polynomial to output A(f(x)) rather than f(z), we take the
polynomial

Q(X) = (a1 — ag)P'(X) + ag.

It is easy to see that deg(Q) = deg(P') =d. O
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Finally, we show an analogue of the Schwartz-Zippel lemma for low degree multilinear

polynomials, saying that low degree polynomials cannot have too many zeroes.

Lemma 2.8 Given a polynomial P[X] € F[X] of degree d,

Pr [P 0] > 2
xe{o,rl}n[ (x) #0] >

PRrROOF: The proof is by induction on the number of variables n. The base case is trivial.
For the inductive case, assume that X,, occurs in some monomial (else we are done by

induction). We can write
P(X) = XnQ(Xla ... ,Xn—l) + R(Xl, ... aXn—l)
where deg(Q) < d—1. By the induction hypothesis, over the random choice of z1,...,z,_1,

P R 0] > 2 (@-1) 3
(zl,...,zn_l)re{(),l}n—1[Q(xl z 1) 7é ] =z ( )

Conditioning on this event, we are left with

P($1,...,$n_1,Xn):aXn+b a;éO

It is easy to see that

1
Pr [P(zi,...,2p) #0 | Q(z1,...,2n-1) #0] > —. (4)
zn€{0,1} 2
Hence by Equations 3 and 4,
1
Pr [P > —
x{o’{}n[ (x) # 0] 2 5
Hence, the probability hat P(x) # 0 is at least 279. O

An immediate consequence of this Lemma is a bound on the number of zeroes of a low

degree polynomial.

Corollary 2.9 A degree d multilinear polynomial in F[X] is non-zero at at least 2" ¢

points.

This Corollary is a strengthening of the statement (see Theorem 2.3) that a non-zero

multilinear polynomial cannot be 0 everywhere in {0,1}". Since d < n, it follows that the
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polynomial is non-zero at some point. The bound of 27~¢ is tight, as can be seen from the

polynomial

2.1.1 Degree bounds for Threshold functions

Definition 2.5 The Threshold-k function Ty : {0,1}" — {0,1} is defined to be 1 if the

weight of the input is at least k.

Note that 77 is the OR function whereas T, is the AND function. Our goal is to show

tight degree bounds on all threshold functions.

Corollary 2.10 The OR and AND functions have degree n.

PROOF: We present two proofs of this fact.
One can write down the polynomials computing the OR and AND functions explicitly,

and observe that they have degree n.

n

AND(X) =[] X
i=1

OR(X) =1- ][] - X3)

=1
The AND function is non-zero at exactly 1 point: (1,...,1). Hence by Corollary 2.9,
the polynomial computing it has degree n. Similarly, assume that P(X) computes the OR
function. Then

A
Q(X) =1-P(X)
is non-zero at a single point:(0,...,0). Hence deg(Q) = deg(P) = n. O
Theorem 2.11 For the Threshold-k function:
deg(Ty) > max(k,n—k+1)

PrOOF: Let P(X) be the polynomial computing the Threshold-k function. Set the last

k — 1 variables of P(X) to 1. Denote the resulting polynomial by Q(X1,..., X, —x+1). It is
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easy to see that () computes the OR function on k£ — 1 variables. Hence
deg(P) > deg(Q) = n—k+1.

Set the last n — k variables of P(X) to 0. Call the resulting polynomial R(X7,--- , Xj).

It is easy to see that R computes the AND function on k variables. Hence
deg(P) > deg(R) = k.

Hence we have

deg(Ty) > max(k,n—k+1) >

|3

O

We point out that this bound holds over any field, irrespective of the characteristic. For
other symmetric functions like the Mod function whose degree depends on the characteristic

of the field, we need stronger tools which are developed in the next Section.

2.2 Symmetric Boolean Functions

Given a permutation o € S,, and a vector x of length n, let

O'(X) (xa(l)a .- awa(n))'

Definition 2.6 A function f : {0,1}" — F is symmetric if for every x € {0,1}" and every
0 €Sy, f(x) = flo(x)).

For x € {0,1}" let the weight be w(x) = >_ z;. It is clear that the value of a Boolean
function only depends on the weight of its input. Thus one can equivelently think of a
symmetric Boolean function on n Boolean variables as a function defined on the integers
[0,...,n], taking values in F. We will use these two views of symmetric functions inter-

changeably.

Definition 2.7 A polynomial P(X) € F[Xy,...,X,] is symmetric if for every o € Sy,
P(Xla v aXn) = P(Xa(l)a v 7Xa'(n))'
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When f is symmetric, it follows from the Moebius inversion formula that the polyno-

mial P(X) computing f is also symmetric. Define the elementary symmetric polynomials

So, ...,y as
So(X) =1

SeX) = Y Xy X, X,

i1<ig<ig
It is well-known [58] that the elementry symmetric polynomials generate the ring of
symmetric polynomials over F. We show that the elementry symmetric polynomials in
fact generate symmetric multilinear polynomials as a wvector space over F. In other words,
we do not need to multiply elementry symmetric polynomial together in order to generate

symmetric multilinear polynomials.

Proposition 2.12 A symmetric multilinear polynomial can be written as a linear combi-

nation of the elementry symmetric polynomials over F.

PROOF: The proof is by induction on the degree d of the symmetric multilinear polynomial
P(X). The base case is simple.

Since deg(P) = d, we can assume that the monomial Hle X1 occurs in P(X). Assume
that its coefficient is ¢. By symmetry, every monomial of degree d must occur with exactly
the same coeffecient, if not then the polynomial is not symmetric. Hence

PX)= QX)+c- Y XiXi... X,

11<42...<tg

= Q(X) +c- Sq¢(X)

where deg(Q) = d — 1. By induction, Q(X) is a linear combination of elementry symmetric

polynomials, which implies the same for P(X). O

Note that on an input x € {0,1}" of weight w,

Sk(x) = (2) :

P(X) =) o Si(X)

k

Thus the symmetric polynomial
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computes the same function f : w — F as the polynomial

aw =Y a(})

k

Note that this does not imply that symmetric polynomials can be treated as univariate
polybomials over F. For instance, if F = Z,, then the co-efficients of the polynomial Q(w)
do not lie in Z,. We will treat the Z, case spearately in section 2.2.1. For the case F = R
however, one can think of the polynomial Q(w) as a univariate polynomial in R. This gives

the following easy bound on the degree of any symmetric function.

Proposition 2.13 Let f : {0,1}" — {0,1} be a non-constant symmetric function. Then

deg(f) > 5.

PROOF: Let Q(w) be the univariate polynomial described above such that Q(w(x)) = f(x).
Note that @ maps {0,...,n} — {0,1}. Thus either the polynomial Q(w) or Q(w) — 1 has

at least % ZEroes. O

Von zur Gathen and Roche improve this to show that for symmetric functions f,

deg(f) > n — n%5% [77]. They conjecture that in fact deg(f) >n — O(1).
2.2.1 Symmetric Polynomials over Z,

In thi section, we focus on symmetric functions and polynomials over Z,. As observed
earlier, these results hold for all fields of characteristic p.

Since elementry symmetric polynomials compute binomial coefficients, it is natural to
ask what functions are computed by binomial coefficients mod p. For this we turn to a

classical result about binomial coefficients modulo p called Lucas’ Theorem [37].

Theorem 2.14 Lucas’ Theorem. Let

wzzwz‘pia 0<w;<p
i>0

k=Y kp', 0 <k <p.
i>0

(1) =TT (3) moas
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Proor: We use the fact that over Z,, for all 1,
(1+ X)Pi = 1+ X7

We have

But since w = ), w;p’,

(1+x" = J[a+x""

:Hu+Xﬁw
-1 ()

Setting k = ", kip*, we get

14 Xx)¥ Zxk H (“’1) (6)

Comparing Equations 5 and 6, over Z, we have the identity

(0)-11(:)

2

O

Theorem 2.15 The function f : {0,1}" — {0,1} can be computed by a symmetric poly-
nomial P(X) over Z, where deg(P) < p® iff f is a function of only the ¢ least significant

digits wy, - - - ,wy_1 of the weight w(x) in base p.

PROOF: Assume that P(X) is a symmetric polynomial and that deg(P) < pf. We can write
P(X) as a linear combination of Sy(X) for 1 < k < p’. We show that S(x) depends only
on wp,- -+ ,wy—1, which will imply that P(x) depends only on wy,--- ,ws_1.

By Lucas’ Theorem, on an input x € {0,1}" of weight w,
w o w;
Si(x) = (k) = 1:[ (kz) mod p
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However k < p', so k; = 0 for i > [. Hence

(1) = TG () = T () o

For the other direction, we need to write every function f which depends only on
wo, . - ., Wy—1 as a polynomial of degree less than pf. We first show that on input x € {0,1}"
of weight w, S¢(x) = wp mod p. By Lucas’ theorem,

Spe(x) = (;) = (Ui£> H (U(;z) = wy mod p.
AL

Now consider any function f which depends only on wy, - -- ,ws_1, the £ least significant
digits of the weight. Using the fact that every function from Zf, — Zy is computed by some
polynomial, f can be written as a polynomial Q(wg, -+ ,w,_1) over Z, with the degree of

each w; < p— 1. But Spi(a) = w; mod p. Hence the polynomial
P(X) = Q(5:1(X),..., 5p-1(X))

computes the function f on 0-1 inputs. It is a symmetric polynomial whose degree is

bounded by by "3 pi(p — 1) = p* — 1. -

Saying that f depends only on wy,...,wp_1 is equivalent to saying that f is a function

of w mod p?. Hence, we can restate Theorem 2.15 as follows:

Theorem 2.16 The symmetric functions f : {0,1}" — 7Z, that can be computed by poly-

nomials of degree k < pt are exactly the functions which depend only on w mod p.

These theorems give us tools for showing lower bounds on deg,(f) for symmetric func-
tions f. If we can prove that f must depend on the digit wg, then Theorem 2.15 implies
that deg,(f) > p¥. Such arguments will give us bounds that are tight to within a factor of
p. While this is good enough for all our complexity-theoretic applications where p will be a
fixed constant, the combinatorial applications in Chapter 5 require sharper degree bounds.
A refined bound that gives an exact characterization of the degree is given by Theorem 5.14
in Chapter 5. One can extend the above results to the prime power case, we defer this to

Appendix A.
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It is known that the polynomials S;(X) for 1 < j < n generate the symmetric poly-
nomials in Z,[X] and further they are algebraically independent. We can think of sym-
metric multilinear polynomials as symmetric polynomials in the quotient ring Z,[X]/(X? —
X1,...,X2 — X,). We have just proved that the symmetric polynomials in this quotient

n

ring are generated by S,(X),...,S,(X) where £ = [log, n].
2.2.2 Degree Bounds for Mod functions

Definition 2.8 The Mod-k function My : {0,1}" — {0,1} is 1 if the weight of the input

is divisible by k and 0 otherwise.

Unlike the Threshold-£ function, where we proved a lower bound of n/2 irrespective of
the field, the degree of the Mod-k function depends crucuially on k and the characteristsic
of the field F. Proposition 2.13 implies that over R, deg(f) > n/2. Thus we can focus on
the Z, case. In what follows, we will think of £ and p as constants, and we are interested

in the asymptotic behaviour of deg(f) in terms of the number of variables n.

Theorem 2.17 For the Mod-k function over Z,, if k = p®, then deg,(M}) = O(1). Else

PRrROOF: Let k = p*. The Mod-k function is 1 iff w mod k = 0. This happens iff wy =
wiy -+ = wg—1 = 0. Hence the Mod-k function depends only on the first a digits of the
weight. So deg,(Mj) < p® = k by Theorem 2.15.

Assume that & is not a power of p. We will show that the Mod-k function depends on
the most significant digit of the weight w, ; where £ = [log, n|. Set w,...,wy 3 = 0. Now
if wy—g, then

w=0 = w=0modk = My(w)=1.

On the other hand, if wy_1 = 1, then since k is not a power of p,
w=p" = w#0 modk = M(w)=0.

By Theorem 2.15, this implies that deg,(Mj) = (n). O
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2.3 The Fourier Representation

For this section, we assume that we are working over a field F whose characteristic does not
equal 2.

In the Fourier representation, we regard Boolean functions as functions f : {£1}" —
{%1}, where —1 is associated with True and +1 with False. Note that this does not make
sense over charcteristic 2, since we would have —1 = +1. One can check that in this basis,

OR and AND are represented as:

[LQA+X;)

OR(X) = —1+ =05

(1-X;
anog -1 - LA=X)

The parity functions or characters are defined for every S C [n] as
xs(X) = [[ Xi-
1€S

In the {0, 1} basis, these functions can be written as
xs(X) = @ies Xi

where @ denotes addition modulo 2, hence the name parity functions. Also, these are
the characters of the Abelian group Z% [58]. We use x ® y to denote coordinate-wise

multiplication. The linearity of the characters implies that:

Xxs(x®y) = xs(x) - xs(¥)

We will show that the characters give a natural basis for the space of functions f :
{£1}" — F i.e. F-valued functions on the Boolean hypercube. To do so, we define the

following inner-product on such functions.

2

(f.9) E [fe)g)] = 27" Y f(x)g(x)

xe{£1}n e {21}

Observe that for any Boolean function,

(Ffy =27 3 fx*=2" 3 1=1

xe{£1}n xe{£1}n
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Lemma 2.18 Given S,T C [n],

0ifS#T
<XS¢XT> =
1 otherwise

PRrROOF: We denote the empty set by ¢. We observe that if S # 0, then
> xs(x) =0
xe{£1}”

whereas if S = ¢, then

S onk = X 1-

x€{£1}n x€{E1}n

Let SAT denote the symmetric difference of S and T'.
xs(x) - xr(x) = [Jai [] =
€S jeT

= H z; since 27 = 1
1€ESAT

= xsar(x)

Hence,

(xs,xr) = 27" Y xsar(x).
xe{x1}n
If S =T hence SAT = ¢, this sum is 1, else it is 0. O

An immediate consequence of this Lemma, is the following Corollary:

Corollary 2.19 The characters xg for S C [n] form an orthonormal basis for the space of

all functions f : {+1}" — F.

PrOOF: By Lemma 2.18, the characters are set of orthonormal vectors. To see that they
give a basis, note that the dimension of the space of functions f : {+1}" — F is 2", and

there are 2" characters. O

The function f can be written in this basis in terms of its Fourier representation:

F=> FOxs  £(9)={fxs)-
S€n]
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The coeffecients f(S) are called the Fourier coeffecients of the function f, each coeffecient

measures the correlation between f and the character yg. Finally, we note that

(f,9) = <Zf(S)Xs,Z§(T)xT>
S T
= f(9)a() since (xs,x7) =0
S

In the case of Boolean functions, we know that (f, f) = 1. So we derive the following

identity known as Parseval’s identity:

() =D 9 = 1
S

In the Fourier representation, we have

degg(f) = max{|S| | § C [n], f(S) # 0}.

Note that by Theorem 2.7, the degree of a function is independent of the choice of basis.
It is easy to show the analogue of the Schwarz-Zippel lemma, for low degree multilinear
polynomials, saying that low degree polynomials cannot have too many zeroes on {£1}".

The proof of this Lemma, is idetical to the proof of Lemma 2.8 and is omitted.
Lemma 2.20 Given a function f : {£1}" — F of degree d,

Pr [P 0] > 27
xe{:l:rl}"[ (x) #0] >

2.3.1 Degree Lower Bounds via Influence of Variables

In this section, we consider representing Boolean functions as polynomial over R. Our goal
is to prove a result of Nisan and Szegedy, saying that any function that depends on all n
variables must have degree Q(logn). The condition that f depends on all n variables is
necessary, consider for instance the function X; which depends only on 1 variable and has
degree 1. In contrast, over Z, there are functions depending on all n variables that have
degree O(1), the Parity functions over Zj being an example.

The proof of this theorem uses the notion of sensitivity of a Boolean function. We use

e; to denote the vector which is — in the i coordinate and +1 elsewhere. Note that

X©e = (T1,...,—Tjy...Tp)
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Definition 2.9 The influence of the variable X; on the Boolean function f is defined as

Infi(f) = Pr [f(x)# f(x©e)]

xe{£1}n
The influence measures the probability that the value of f changes on flipping the i
bit for a random point x € {£1}". One can derive a closed from for Inf;(f) in terms of the

Fourier spectrum of f.

Lemma 2.21 [50] Let f =) ¢ f(S)xs. Then

Iy (f) = 37 2(S).

NEY)
PRrOOF: Note that

1-f(x) fxoe) JLEfX)#f(x0e)

2
0 otherwise.

So we can write

N e @

xe{£1}n 2
Note that
fxoe) =) f(Sxsxoe)
S
= Z F(S)xs(x) - xs(es) By linearity of characters
S

Plugging this into Equation 7,

ni(f) = E !;;<Zf<s>><s<x))-(Zf(S)xScc) .f(S)XS(X))]

1 1 "2 1 ’\2 .
=3 + 3 Z f2(8) — 5 F2(S) By orthogonality of characters (8)
$3i S%i

By Parseval’s identity, 3¢ 2(S) = 1. Plugging this into Equation 8,
1 A 1 A 1 -
Infi(f) = 5 > F(8) + 5 7(8) = 5 )_F*(S)
5

EEY S
=> " F49)

S31
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We can also relate the Influence of a variable to deg(f).
Lemma 2.22 Let deg(f) = d. Then Inf;(f) > 279.

PRrOOF: We prove the theorem for ¢ = n. Let us define th polynomial

Q(X1,....Xpn1) = f(X1,.- -, Xp) — f( X1, ..., = X))

Since deg(f) = d, it follows that deg(Q) < d. It is easy to see that

Inf, (f) = zl,...,zn_fl)é{il}”‘l[Q(m’ ey Tp1) # 0]

This quantity is at least 27¢ by Lemma 2.20. O

We can now prove the theorem of Nisan and Szegedy.

Theorem 2.23 [64] Let f(X) be a function that depends on all n variables X1,...,X,.
Then

deg(f) > logn — O(loglogn)

PROOF: Let deg(f) = d. Consider the quantity ) . Inf;(f). This is also called the average

sensitivity of f. From Lemma 2.21, we have

Somii(f) = 33 6)
i=1 i S>¢
= > ISIF%(s)
SCn]
< max{|S| | f¥ # 0} Since »_ f*(S) =1
S

=d.

On the other hand, by Lemma 2.22, we get that

Thus we get



From this it follows that

d > logn — O(loglogn).

This bound is in fact tight [64].

2.4 Application to Learning Juntas

We consider the problem of learning a k-junta under the uniform distribution on {0,1}".
This problem was proposed by Blum and Langley [24], as a clean formulation of the problem

of efficient learning in the presence of irrelevant information.

Problem 2.1 Learning Juntas: Let f be an unknown function on n bits which actually
depends only on a subset of the input of size k. Given random examples (z, f(z)) where x

is chosen uniformly at random from {0,1}", learn the function f.

Such a Boolean function which depends only on k inputs is called a k-junta. For this
problem, we assume that & < logn, so that the truth table of the function is polynomial in
n.

For k <logn, a k-junta can be expressed as a decision tree or a DNF of size n. Hence, a
polynomial time algorithm for DNF's or decision trees under the uniform distribution would
imply an algorithm for the k-junta problem. Thus, learning juntas is a first step towards
learning polynomial size decision trees and DNFs under the uniform distribution. A brute
force approach would be to take O(klogn) samples, and then run through all n* subsets of
possible relevant variables. The first non-trivial algorithm was given only recently by Mossel

n%7k). However, even the question of whether one

et al. [61], and runs in time roughly O(
can learn k-juntas in polynomial time for £ = w(1) still remains open.

We present a slight simplification of the algorithm dues to Mossel et al.. The crux of
both algorithms is structural results that relate the representations of a Boolean function

over Zs and R. We first present these structural results (Lemmas 2.24 and 2.25). The first

is from Mossel et al., the second is new.
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Lemma 2.24 [61] Let f be a Boolean function on k variables such that f(S) = 0 for all

S C [k] such that |S| < t. Then degy(f) < k —t.
PRrROOF: We consider the function g where
A
9(X1,..., Xi) = f(Xn, ..o, X)) - xpey (X1, -5 X)

If we denote the complement of the set S by S, then §(S) = f(S') Hence if |S| > k — ¢,

then |5| < ¢ so §(S) = f(S) = 0. Thus deg(g) < k — . Hence
degy(g) < deg(g) < k—t.

But over Z,

9( X1, .., Xg) = f(Xq,..., Xk) ® X1 & X
hence deg,(f) = degy(g) <k —¢. -

For the second Lemma, we only assume that f (S) = 0 for all small sets S # ¢. In this

case, while deg(g) = k, we will still show that degy(g) is small.

Lemma 2.25 Let f be a Boolean function on k variables such that f(S) = 0 for all S C [k]

such that 1 < |S| <t. Then degy(f) < k —t.

PROOF: Define the function g(Xi,..., X)) as before. Once again §(S) = f(S), hence
Z 5’ )xs(x
5

F(@)xm (%) + F(8)xs(x)

We now write g(x) in the {0, 1} basis. This is done be replacing X; with (1 — 2X;).

k

g(X)=f(¢)H1—2X S A [[a-2x;)

|S|<k—t €S
Note that the coefficients of the monomials of degree k—t+d are of the form f(¢)-(—2)F—*+4
for 0 < d < t. But since all the coefficients have to be integers, we know that f(¢)- (—2)*—*
is an integer. Hence for d > 1,

~

f(d) - (—2)F ¢ = 0 mod 2
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Note that the Zo representation of g is obtained from the representation over R in the
{0,1} input basis by taking every coefficient modulo 2. Hence all coefficients of degree

k —t+ 1 and higher vanish modulo 2. Thus

degy(f) = degy(g) < k —t.

O

We are now ready to state the algorithm for learning k-juntas. We will need some facts
from Mossel et al. The first states that being able to find a single relevant variable efficiently

suffices to solve the junta problem. This is proved used a divide and conquer argument.

Fact 2.26 Suppose A is an algorithm running in time n®poly(2¥,n) that identifies a single

variable relevant to f. Then there is an algorithm to learn f that runs in time n®poly(2¥,n).

One approach to finding relevant variables is to compute f (S) for all sets S where
1 < |S| <t If we find a set S # ¢ such that f(S) # 0, then all the variables in S
are relevant. Note that f (¢) being non-zero does not allow us to identify any relevant
variables. A simple Chernoff-bound argument shows that we can in fact compute any

Fourier coefficient exactly.

Fact 2.27 There is an algorithm to calculate any Fourier coefficient f (S) exactly, that

succeeds with probability 1 — § and runs in time poly(2*, n, log %)

Finally, we need the fact that one can learn low-degree polynomials over Zs efficiently
via Gaussian elimination. This is proved via a standard Occam’s razor argument. Let
w < 2.376 be the exponent of matrix-multiplication. Note that if we learn the polynomial

exactly, we have also identified all its relevant variables.

Fact 2.28 There is an algorithm that can learn degree d polynomials in n variables over

7 exactly, that succeeds with probability 1 — § and runs in time n“%poly(2¥,n,log %)
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Algorithm 2.1 Identifying a Set of Relevant Variables

Compute f(S) for 1< |S| < otk
If f(S)#0 for some set S, output S.
Else

Compute f as a Zo polynomial of degree ML_H

Output all its relevant variables.

Theorem 2.29 Algorithm 2.1 runs in time nﬁlkpoly(Qk,n,log %) and outputs a set of

relevant variables with probability 1 — §.

PROOF: Assume that f(S) is non-zero for some § where 1 < [S| < oa7k- Then the

algorithm will correctly identify this set with probability 1—4. Since this requires computing

k

no more than na+i coefficients, this step runs in time nw%lkpoly(?“, n, log %)

On the other hand, if all these coefficients are 0, then by Lemma 2.25

w k

d <k — ko= .
ega(f) < wt1 w+1

In this case, the Zq algorithm will learn the function exactly with probability 1 — ¢ and run

.. vk
in time n @+ "poly(2*,n, log %) O

Our analysis is different from that of Mossel et al. They use Lemma 2.24 to handle the
case when f(S) for 1 < |S| < o7k and f(¢) = 0. To deal with the case when f(¢) # 0,
they show that in this case, f has a non-zero Fourier coefficient of size at most % Our

analysis does not improve the running time, but it gives a more unified approach.

2.5 Application to Circuit Lower Bounds

Definition 2.10 The class AC°[m] denotes the class of polynomial size, bounded depth

circuits on n inputs with AND, OR, NOT and MOD-m gates.

The depth of the circuit will be denoted by d and the size by s. Note that d = O(1)

while s = n°(). We have strong lower bounds for such circuits in the case when m = p is a
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prime. These results are primarily due to Razborov [68] and Smolensky [70] and crucially
use polynomial representations of Boolean functions. A frontier open problem in circuit
complexity is to show similar lower bounds for the case when m is composite.

We will prove the following result due to Smolensky: that PARITY ¢ AC?[3].

This proof is in two stages: we first show that every function in AC°[3] can be approzi-
mated in some sense by a low degree polynomial over Z3. We then show that PARITY cannot
have such a low degree approximation.

We start by defining the notion of computing a function by a randomized polynomial.

Definition 2.11 [75] A Boolean function f is computed by a randomized polynomial over
F with degree d and error probability ¢, if there is a sample space P of degree d polynomials

in F[X] such that for every x € {0,1}",

pBL IPe) = f(x)] 214,

Note that we require that for every x, f(x) be computed with good probability.
Lemma 2.30 The AND and OR functions can be computed by a randomized polynomial

over Zs with degree 2k and error probability 37*.

PrOOF: We prove the result for the OR function, a similar argument holds for the AND

function. Pick ¢ € Z% at random. For any x € {0,1}", such that x # 0,
P 0] > 2
CT[C x#£0] > 3
whereas if x = 0 = (0,...,0) then ¢ -0 = 0. We pick c!,...,c* at random, and define

P(x) = OR((c! - x)2,. .., (cF - x)?)
k

—1-J[0- @02

=1

Taking (¢’ - x)? maps non-zero values of ¢’ - x to 1 by Fermat’s theorem. It is easy to see

that P(X) has degree 2k and it computes the OR function with error probability 37%. O

It is easy to see that the NOT and MOD-p functions can be computed exactly using

polynomials of degree 1 and p — 1 respectively.

NOT(X;) =1 - X;
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p—1
MOD(X) =1 — (Z X,-)
i
Putting these together, we can show the following upper bound on AC?[3].

Theorem 2.31 Every function f € AC°[3] can be computed by a randomized polynomial

over Z3 with degree O((logn)?) and error probability n=¢ for any constant c.

PrOOF: By taking k¥ = C'logs in Lemma 2.30 for some constant C', we can replace every
gate of the circuit by a polynomial of degree O(log s) whose error probability for every input

C/2. By composing these polynomials, we get a randomized polynomial

to the gate is s~
P(X) of degree (Clogs)? that computes the function f. Using the union bound, we can
bound the error probability of P(X) by s~C/2+1 Since s = n®1), an appropriate choice
of C gives error probability n~¢. The degree of the polynomial is (C'logs)? = O((logn)?)

since log s = O(logn). O
A easy consequence is that there is a polynomial P(X) that agrees with the function f

on a large subset S of the hypercube.

Corollary 2.32 Given function f € AC°[3], for any ¢ > 0, there exists a polynomial P(X)

of degree O((logn)?) and a set S C {0,1}" such that

o [S]>2"(1-1).

nC

e For every x € S, P(x) = f(x).
PRrROOF: It is clear from Theorem 2.31 that a randomly chosen polynomial from P satisfies

WPr (PG £ f()] <

We simply choose P(X) to be the polynomial in P that has maximum agreement with f.
We define S to be the set of points where P(x) = f(x). It is clear by an averaging argument

that | S| satisfies the desired condition. O

Thus we have showed that functions in AC°[3] are can be approximated by low degree

polynomials. So the task of proving lower bounds reduces to finding explicit functions that
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cannot have such approximations. We show that PARITY is such a function. For this
part of the proof it is more convenient to work with the {£1} basis. We map S C {0,1}"
to T C {£1}" by replacing 0 with 1 and 1 with —1. If the polynomial P(X) computes

PARITY over S, then the polynomial @Q(X) computes PARITY over T where

1- X, 1-X,

X)=1-2-P .

Qx) (S5
It is easy to see that deg(P) = deg(Q).

Lemma 2.33 Assume that there is a degree k polynomial computing PARITY over T.

Then every function f : T — Zs3 can be computed by a polynomial of degree #

PROOF: Note that on {£+1}", the parity function is computed over by x[,(X). Thus over

the set T, we have the identity:

X (X) = Q(X) (10)

The monomials xs form a basis for all functions f : T — {£1}. Thus it suffices to write

each xs as a polynomial of degree at most # over T. If |S] < ”Zﬂ, we are done. So
assume |S| > 2FE 50 that |S] < 25E.
xs(X) = xm(X) - x5(X)
= Q(X) - x5(X) By Equation 10 (11)
Thus we can write xs as a polynomial of degree ”2;k + k= "TM O

Theorem 2.34 PARITY cannot be computed over a set T of size 2" (1 — %) by a poly-

n

nomial of degree k = o(+/n).

PROOF: Assume for contradiction that k¥ = o(y/n). By Lemma 2.33 function f : T — {£1}
can be written as a polynomial of degree at most "T‘"k Thus the space of all such functions

is spanned by monomials of degree at most # Hence the dimension of this space is

bounded by



By the law of large numbers, since k = o(y/n), this sum is bounded by 2" (% +0(1)). On
the other hand, the dimension must be at least [T'| > 2" (1 — %), which is a contradicton.

g

By putting Theorems 2.31 and 2.34 together, we conclude that PARITY ¢ AC?[3].

Theorem 2.35 [70] PARITY ¢ ACP[3]

We note that there is some considerable slack in this proof. Our approximating polyno-
mials had degree O((logn)?) whereas we only require the degree to be o(y/n) for a contra-
diction. One can use this observation to improve the lower bound and show that circuits of
depth d computing PARITY must have size 2"0(%). Further, once can prove the following

general lower bound using these techniques.

Theorem 2.36 [70] If m is not a power of p, then MOD-m & AC?[p]

Thus for instance, MOD-6 ¢ AC°[2]. For these improvements, we refer the reader to

Smolensky’s original paper [70].
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CHAPTER III

POLYNOMIAL REPRESENTATIONS OVER
COMPOSITES

3.1 Beyond Ezxact Representations

In this chapter, we study two weaker notions of computing a Boolean function using a
polynomial, namely strong and weak representations. These definitions are motivated by
the failure of current techniques to prove lower bounds for ACP[6].

To begin with, let us examine why the proof techniques that work modulo p do not work
for composite m. Let us consider the case when m = 6. The problem lies in showing an
upper bound for circuits in AC?[6] using low-degree polynomials. Lemma 2.30 saying that
OR and AND can be approximated by low-degree polynomials still holds. The problem
however is that the MOD-6 function can no longer be computed, even approximately by
low degree polynomials over Zg. Our construction modulo p uses Fermat’s theorem stating
2P~! = z mod p. This no longer works modulo 6. In fact, if we could approximate the
MOD-6 function by a low-degree polynomial over Zg, by the Chinese Remainder Theorem,
we would also get low-degree approximations for MOD-6 over Zy and Zs. But Smolensky
shows that this is not possible [70].

However, this appears to be more of a problem with our definition of polynomial repre-

sentations. It is natural to say that the polynomial

P(X) =YX,

computes the MOD-6 function over Zg. This motivates the following definitions due to

Barrington [14] and Barrington, Beigel and Rudich [15].

Definition 3.1 Polynomial P(X) € Z.,[X] strongly represents function f : {0,1}" —
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{0,1} if for x € {0,1}",

f(x)=0 = P(x)=0modm

f(x)=1 = P(x) # 0 mod m.

It is clear that the MOD-6 function is strongly represented by the polynomial ). X;
over Zg. An even more general definition is weak representations, where we only require

that the polynomial should be able to distinguish a 0-input from a 1-input.

Definition 3.2 Polynomial P(X) € Z.,[X] weakly represents function f : {0,1}" — {0,1}

if for x,y € {0,1}",
f(x) # f(y) = P(x) # P(y) mod m.

An alternative view of weak representations is that there exists a set A C Z,, such that

fx)=0 =P(x)ec A

fx)=1 = P(x) ¢ A

It is clear that strong representations are a special case of weak representations where
A = {0}.

Let us begin by analyzing strong and weak representations in the prime case. Note that
strong and weak representations of a function are no longer unique, unlike for exact rep-
resentations. However if P(X) strongly represents f(X) mod p, then by Fermat’s theorem
P(X)P~! exactly represents f(X) mod p. Similarly, one can convert a weak representation
to an exact representation with at most a factor p increase in the degree. Since we think of
p as constant, this implies that degree lower bounds for exact representations also hold for
strong and weak representations, within a factor of p.

The situation is very different over composites. We have seen that the MOD-6 function
is strongly represented by the polynomial ), X; over Zg. In contrast by Theorem 2.17,
the MOD-6 function requires degree Q(n) for exact representation over Zg. In fact it turns
out that strong and weak representations are deceptively powerful modulo composites, any

many surprising upper bounds are now known for a variety of symmetric Boolean functions.
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The task of proving degree lower bounds is now fairly challenging: the best lower bound
known to date for weak representations of any Boolean function is Q(logn) [74, 41].

One weakness of strong and weak representations is that once cannot compose several
such representations together, unlike in exact representations. This means that it is not
clear if we can show an upper bound for every function in AC°[m], even though we have
upper bounds for all the component gates over Z,,. But it is easy to see that strong and
weak representations of degree d correspond to depth-2 and depth-3 circuits in ACO[m]
respcetively of size n? for computing a function. Thus, proving strong size lower bounds for
even depth-2 circuits in AC°[m)] implies degree lower bounds for polynomial representations.
Hence it is plausible to suggest that as long as we are unable to show degree lower bounds
for simple computational models such as polynomials, the task of proving circuit bounds is

beyond our grasp.
3.1.1 Previous Work

The systematic study of polynomial representations modulo composites was initiated by
Barrington, Beigel and Rudich [15]. Barrington [14] conjectured that the OR function
requires degree 2(n) for weak representations over Z,, just like in the prime case. This
conjecture was disproved by Barrington et al.[15], who proved an O(y/n) upper bound
for strong representations. They proved their upper bound by constructing a symmetric
polynomial, and they also showed a matching lower bound for symmetric polynomials. The
question of whether this lower bound holds for general polynomials is still open. The best
lower bound is ©2(logn) due to Tardos and Barrington, who also conjecture that the right
bound is Q(y/n) [74]. An important open problem in this area is whether asymmetric
polynomials can give lower degree representations of symmetric Boolean functions than
symmetric polynomials. While there are no known examples of symmetric Boolean functions
where asymmetry does help, known lower bounds on the degree are often far from optimal.
Following the work of Barrington et al., a number of researchers have worked on this problem
[74, 6, 76, 40, 43, 44, 20, 21, 35, 47].

Proving lower bounds is considerably easier for strong representations. Lower bounds of
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Q(n) are known in the strong representation for functions including the MOD — m function
for suitable values of m [15, 76, 40]. Tsai shows a lower bound of Q(k) on the degree of
T} for general polynomials using Moebius inversion [76]. As pointed out by Barrington
and Tardos [74] the task of proving lower bounds for strong representations is simplified
by the fact that P(x) must equal 0 whenever f(x) is 0. The weak representation seems
a more natural definition. Here non-trivial upper bounds are known for many functions,
including some functions that are hard for strong representations. Far less is known with
regard to lower bounds. The best lower bound known in this case for general polynomials
is Q(logn) [41, 74]. Grolmusz [41] proves a Q(logn) lower bound for general polynomials
weakly representing a certain function called GIP using a connection to the number on the
forehead model from communication complexity.

These polynomials have found surprising combinatorial applications. Grolmusz [43, 42]
uses this upper bound to construct a super-polynomial size set system where the size of each
set is 0 mod 6 but all pairwise intersections are nonzero mod 6. He uses this to construct
explicit Ramsey graphs whose parameters almost match the best known construction. In
Chapter 5, we will extend this connection and show that in fact several known Ramsey

graph constructions are implicitly based on polynomial representations of the OR function.

3.2 Our Results

In this chapter, we will focus on representations by symmetric polynomials. Since sym-
metric polynomials can only represent symmetric functions, we must also limit ourselves
to symmetric Boolean functions. Henceforth, we will let f denote a symmetric Boolean
function on {0, 1}". We will also think of f as a function defined on the integers {0,...,n}.
Let §(f) denote the the smallest degree of a symmetric polynomial that strongly represents
f over Z,,. Define A(f) similarly for weak representations of f . We are interested in
bounds on §(f) and A(f) for a fixed modulus m as an asymptotic function of the number

of variables n.
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3.2.1 Symmetric Polynomials and Simultaneous Communication Protocols

The new insight in this chapter is an equivalence between computing Boolean functions
by symmetric polynomials modulo m and computing the functions by certain one-round
simultaneous communication protocols.

A one-round simultaneous communication protocol [78, 56] involves two players Alice
and Bob and a referee. Alice receives an input x, Bob receives an input y and they wish
to compute f(x,y) € {0,1}. They cannot directly communicate with each other. They
simultaneously write messages on a blackboard. A referee reads the messages and decides
the value of f. The players and the referee can agree an a strategy beforehand.

We now introduce two kinds of simultaneous protocols called strong and weak protocols
for computing a symmetric Boolean function f : w € {0,...,n} — {0,1}. We will show

that they are equivalent to strong and weak representations respectively.

Definition 3.3 A strong protocol for computing f mod 6 with parameters (ko,k3) is a

simultaneous protocol involving two players P, and Ps.

e P, isgiven j = w mod 2*? as input and outputs P»(j) in Zy. Pj is given i = w mod 3%

as input and outputs Ps(i) in Zs.

e If f(w) = 0, then both players must output 0. If f(w) = 1, at least one player must

output a non-zero value.

e The cost of the protocol is max(2F2,3k3).

Definition 3.4 A weak protocol for computing f mod 6 with parameters (ko,k3) is a

simultaneous protocol involving two players Py and Ps.

e P, isgiven j = w mod 22 as input and outputs P,(j) in Zy. Pj is given i = w mod 3%

as input and outputs Ps(i) in Zs.
o If f(w) # f(w') then at least one of the players outputs different values on w and w'.

e The cost of the protocol is max(2¥2, 3k3).
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For m with ¢ distinct prime factors p1,--- , ps, we define protocols with ¢ players where
player! P; reads the input in base p;. We can think of a strong protocol as one where the
referee’s strategy is fixed: he outputs 0 iff both players say 0. In a weak protocol, the
referee can choose any strategy. The reason for defining the cost as above is that it equals
the degree of the polynomial mod 6 that the players are computing, this is explained below.

We now make the connection between symmetric polynomials and simultaneous proto-
cols. Recall that in Theorem 2.15, we showed that the symmetric functions f : {0,1}" — Z,
that can be computed by a symmetric polynomial P(X) € Z,[X] of degree d < pt are ex-
actly those functions that can be computed from the [ least significant digits of w in base
p or equivalently, from w mod p'. By the Chinese Remainder Theorem (CRT), a degree d
symmetric polynomial P(X) over Zg corresponds to symmetric polynomials P»(X) € Zg[X]
and P3(X) € Z3[X] respectively, each of whose degrees are at most d. By Theorem 2.15,
the functions computed by P, and P3; can be computed from w mod 2¥2 and w mod 33
respectively, where these are the smallest powers of 2 and 3 which exceed d. Thus there is
a protocol of cost ©(d).

Conversely assume there exists a protocol for f. Using Theorem 2.15, the function
computed by players P, and P3 can be computed by symmetric polynomials P»(X) € Zg[X]
and P3(X) € Z3[X] having degree no more than 2¥? and 3*3 respectively. We now use the
CRT to combine these polynomials and get a polynomial P(X) € Zg[X] of degree bounded
by max(2¥2,3%3). The value of P(X) tells us the messages sent by both players to the
referee. So we can now recover the value of f by applying the referee’s strategy. Thus for
fixed m, the minimum cost of a protocol for f equals the minimum degree of a symmetric

polynomial representing f up to a constant factor depending only on m.
3.2.2 Lower Bounds using Communication Complexity

Techniques from communication complexity have been successfully applied to show lower
bounds in many areas like circuit complexity, VLSI and data structures [56]. We show how

to adapt tools from communication complexity to prove lower bounds on the degree. These

!For notational convenience, we use P; as opposed to P,
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tools are especially useful for weak representations. In general, proving deterministic lower
bounds for simultaneous communication protocols is easy. There is a simple characterization
of the deterministic communication complexity in terms of the number of distinct rows and
columns of the input matrix. However, in our setting, proving lower bounds is a non-trivial
task because we do not have a very explicit description of the input matrix Af.

For parameters (ko, k3) of the protocol, we define an input matrix Af of size 2¥2 x 3k3
where the (i,7)th entry is f(w) where w = i mod 2¥2 and w = j mod 3*3. Thus, the entries
of Af are defined through the CRT. Thus the value of the (i,j)th entry depends on the
parameters (kg,k3). Further, we are primarily interested in proving linear lower bounds,
which correspond to setting 2¥2, 3% = Q(n). The matrix A7 now has roughly n? entries,
but only n of these correspond to valid inputs w < n. To prove lower bounds, we need to
carefully choose a submatrix of A/ whose entries are known explicitly and show that it has
sufficiently many distinct rows or columns.

We show that any symmetric polynomial that weakly represents Mod-k over Z,, has
degree Q(n) where k > p and k is relatively prime to pg. We obtain a linear lower bound for
the Mod-k function when m has ¢t > 2 distinct prime factors for sufficiently large k. This is
proved by a reduction to computing the function Exactly-k in the number on the forehead
model and using a lower bound by Chandra, Furst and Lipton [27]. We give a necessary and
sufficient condition for the existence of a strong protocol for a function f. We use this to
give simple proofs of known bounds on strong representations for symmetric polynomials.
We show a separation between strong and weak representations by constructing a function
f which can be weakly represented by polynomials of degree O(y/n) but both f and f need

degree Q(n) for strong representation.
3.2.3 Threshold Functions and Diophantine Equations

The Threshold-k function T} is defined to be 1 if the weight of the input is at least k. We
study the degree of the Threshold-k function (7}) for various values of k. T is the OR
function and §(T1) = A(Th) = ©(y/n). T, is the AND function. It is easy to show that

3(Tn) = Q(n), but A(T,) = O(y/n). This raises the question: What is the (strong/weak)
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degree of T, isfor 1 < k<mn?

We show that proving bounds on the degree is equivalent to showing that certain Dio-
phantine equations have only finitely many solutions. More precisely, we show that there
exists a strong protocol for T} on n variables with parameters ko, k3 iff there are no non-

trivial solutions to the equation
a2k — b3ks| = ¢ a2k <n, b3 <n, L<k

When £ is a fixed constant, we show that §(7) = O(n%“) for any € > 0. The proof uses
a result of Filaseta [30] on factors of numbers of the form n(n+d). We show §(T}) = O(n%+5)
when m has ¢ distinct prime factors using a theorem due to Granville [38] which is proved
assuming the abc conjecture from number theory [39]. We also show that when m has only
two prime divisors, the abc conjecture implies that 6(T}) = O(nk)éﬁ for all values of k.

The O(y/n) upper bound for the OR function can be interpreted as follows: For suitably
chosen parameters (ko,k3) if w mod 2¥2 and w mod 3¥* are both zero, then in fact the
number w must equal 0. Our bounds for T give a similar result about the size of w: For
suitably chosen parameters (ko, k3) if the residues w mod 22 and w mod 3*3 are both less
than k, then in fact they are both equal to w itself and w < k. Conversely, if w > k, then
one of the residues must be large.

We show a lower bound of Q(n%k%) for §(Ty) over Z,,. This improves the previous
bound of Q(max(k,+/n)) [76]. When ¢t = 2, the lower bound nearly matches the upper bound
of (7Ll§)%+‘E for all values of k. These lower bounds are proved by constructing solutions to

the equation above via a pigeonhole argument. Further, when ¢ = 2, we also show an

Q(vnk) lower bound for A(Ty).
3.2.4 Organization of This Chapter

We prove the equivalence between polynomials and protocols in Section 3.3. We prove
degree bounds for strong representations in Section 3.4 and weak representations in Section

3.5. We study Threshold functions in detail in Sections 3.6 and 3.7 respectively.
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3.3 Symmetric Polynomials and Simultaneous Protocols

In this section, we prove our main theorem equating polynomial representations with si-

multaneous communication protocols.

Theorem 3.1 There exists a symmetric polynomial over Z,, of degree d that strongly
(weakly) represents f iff there exists a strong (weak) protocol of cost ©(d) over Z,, for

computing f.

PROOF: The constant implicit in that ©(d) depends only on m, and can be taken to be
max;p;. We prove the theorem assuming m = 6. We prove the equivalence for the strong

case, the weak case is similar. Let

be a symmetric polynomial of degree d over Zg that strongly represents f. We will construct
a strong protocol for computing f with cost at most 3d. Let b; = a; mod 2, ¢; = a; mod 3.

Define polynomials P»(X) over Zy and P3(X) over Zjg respectively as

d

P(X) £ Y biSi(X)
=0
d

P(X) 2 ZciSZ(X)

Both P»(X) and P3(X) are symmetric polynomials of degree at most d. Choose ko, k3 so
that d < 2¥2 < 2d,d < 3% < 3d. By Theorem 2.15, value of P»(x) on a 0-1 input x depends
on just the first ko bits of the weight w in base 2. This function is computed by player Ps.
The function computed by P3(x) on a 0-1 input x depends on just the first k3 digits of w in
base 3. This is computed by player P;. We show that this indeed gives a strong protocol.

Let x € {0,1}". Since P(X) strongly represents f,

f(x)=0 = P(x)=0mod6
= Py(x)=0mod2 and P3(x)=0mod3 by the CRT
fx)=1 = P(x)#0mod6

= Py(x)Z0mod2 or Ps(x)#0mod3 by the CRT
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Hence we have a strong protocol of cost max(22,3%3) < 3d.

Conversely assume there exists a protocol for f with parameters (k2, k3). The function
computed by P, depends on only the first ko bits of the weight w. So it can be computed by
a symmetric polynomial Py(X) in Z3[X] of degree less than 2¥2 by Theorem 2.15. Similarly
the function computed by P3 can be computed by a symmetric polynomial P3(X) in Z3[X]

of degree less than 3%3. Let
d
d
=0
By the CRT, we can pick a; € Zg such that
a; = b; mod 2, a; =c¢; mod 3

Now set
d
= Z CLZ‘SZ' (X
i=0
We will show that P(X) strongly represents f mod 6. If f(w) = 0, then both players P,
and P3 output 0 on w. Hence if x € {0,1}" has weight w, then by the CRT

Py(x) =0mod 2 and P3(x) =0mod3 = P(x)=0mod6

If f(w) = 1, then at least one of P, and P3 outputs a non-zero value on w. Hence if

x € {0,1}" has weight w, then by the CRT
Py(x) #0mod 2 or P3(x)#0mod3 = P(x)# 0mod6

P(X) is a symmetric polynomial of degree d < max(2*2,3%3). O

Using this theorem, we will prove both upper and lower bounds on the degrees of polyno-
mials for both representations by viewing them as simultaneous communication protocols.
We first need some notation. Recall that player P, receives i = w mod 2¥2 and player P3
receives j = w mod 3% and they wish to compute f(w). If 2¥23¥ < n there might be

multiple values of w between 0 and n satisfying w = i mod 2¥? and w = j mod 3*3. If f(w)
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is not the same for all these values, then clearly no protocol with parameters ks, k3 exists.
Hence assume that the value of f is well defined for every pair (4,j) of possible residues of

w. We can define a 2% x 32 input matrix 4 = (a;;) as follows.

0< a; <2k3ks 1
a;; = i mod 2%2, 0<i<2k

aij; = jmod 3k 0<j< 3k

We use a;; in place of w since some values a;; could be greater than n. P, receives the same
input ¢ for all inputs in the same row of A and hence outputs the same value. Similarly
inputs in a column are indistinguishable to P3. Where convenient, we will refer to P, and
P3 as the row and column player respectively. For a function f, we then define the 2¥2 x 33

matrix A7 as below.

f(ais) 0<a;<n
X ajj >N
The symbol ‘x’ indicates that the function is not defined for this value of weight.

In the usual communication complexity setting, there is a fixed function f and a cor-
responding matrix A/ and we wish to know its communication complexity. In our setting
however, the matrix A/ and hence the communication complexity of f depends on ks and
k3. There are restrictions on the values that the players can output since P»(i) € Zo and
Ps(j) € Z3. As ko and k3 increase, the amount of communication needed can only decrease.
For instance, if one player reads all the bits of the input, she could compute f(w) herself
and write it on the board. Our goal is now to determine the smallest values of ko and ks

so that the players can compute f with the restrictions on output size.

3.4 Strong Representations

In this section, we present some simple upper and lower bounds for strong representations.
A weak representation for f is also a representation for f and so A(f) = A(f), but this
need not be true for §(f). A strong representation is a special case of a weak representation

hence A(f) < min(8(f),d(f)).
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3.4.1 Lower Bounds

We begin with a proof of the theorem by Barrington et al.. We use the following convention
throughout this section, the results are stated for general m = [[,, p; with ¢ prime divisors.

We present the proof only for m = 6 when the extension to general m is obvious.

o=

Theorem 3.2 [15] Over Z,, 6(OR) = O(n?).

PROOF: We give a strong protocol for OR over Zg of cost < 3y/n.

Protocol 3.3 Protocol for OR mod 6
e Choose ky and k3 s.t. \/n < 2%2 < 2\/n and /n < 3%3 < 3 /n.
o Ifi =0 then P,(i) =0 else Py(i) = 1.

e If j =0 then P3(j) = 0 else P3(j) = 1.

To prove correctness, we need to show that if both players output 0, w = 0.
w=0mod 2", w=0mod3" = w=0mod23% (by CRT)

By our choice of (ka, k3), 2¥23% > n but w < n. Hence w = 0. O
Proposition 3.4 [15] Over Z,, A(OR) = Q(n%)

PROOF: We show that any weak protocol for OR has cost Q(y/n). If 2¥23¥3 < n then
i = j = 0 for inputs of weight 0 and 2¥23%3. Hence any protocol will output the same
value on these inputs. However, f(0) # f(2¥23%3). So 2*23k2 > n which implies that

max(2k2,3%3) > \/n. O

To prove lower bounds better than 1/n for other functions, we need stronger techniques.
The output of a strong protocol on input a;; is zero iff P>(i) = P3(j) = 0. Hence there
exists a protocol for f with parameters (ko,k3) iff there exist I C {0,---,3% — 1} and

J c {0,---,2%¥2 — 1} such that

. Iff(aij) =0theniel,jeJ.
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o If f(a;;) =1theni¢ I orjé¢J.

In other words, all the 0s in A/ must be contained in a single rectangle with no 1s in it. This
gives the following necessary and sufficient condition for the existence of a strong protocol.
This is essentially a translation of the fooling-set argument from communication complexity

[56].

Lemma 3.5 There is a strong protocol for f with parameters (ko, k3) iff V 4, j such that

f(ai;j) = 1, either there are no Os in row i or there are no 0’s in column j of AJ.

PROOF: Assume there exist ¢, j such that f(a;;) = 1 but there are 0s in both row 7 and
column j of Af. The row player must answer 0 on row i since it contains a 0. Similarly
the column player must answer 0 on column j. Hence they both answer 0 on a;; so the
protocol is incorrect. Conversely, if row ¢ does not have any 0s, the row player can answer

1 on input ¢ and similarly for the column player. This gives a strong protocol for f. O

Lemma 3.5 gives a condition to test whether a protocol with parameters ko, k3 exists.
Moreover, it follows from the proof that if the condition is satisfied, Protocol 3.6 given
below works correctly. Conversely, if §(f) > max(2%2,3%3), then there must be an input w

on which Protocol 3.6 with parameters ko, k3 is incorrect.

Protocol 3.6 Strong Protocol for general function f

e If 3w < n such that w = i mod 2¥2 and f(w) = 0 then P,(i) = 0. Else
Py(i) =1.

e If 3w < n such that w = j mod 3% and f(w) = 0 then P3(j) = 0. Else

P3(j) = 1.

Let m have t prime factors pi,--- ,p;. To extend Lemma 3.5 to t player protocols, we
use the notion of a star. Our notion of a star is different from the notion used in multi-party

protocols [56].
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Definition 3.5 Fix parameters ki,--- ,k;. A star in the input matrix A is a set of t + 1
distinct inputs wy,- -+ ,w; < n such that wy = w, mod p;* for 1 < u < t. The input wy is

called the center of the star and wq, - - - wy are called the endpoints.

Unlike in the multi-party protocol setting, we require the endpoints of the star to agree
with the center only on a single co-ordinate. Since we are interested in proving lower bounds
of the form €2(n), distinct inputs can agree modulo at most one prime power (by the CRT).
We prove a condition for the existence of a strong protocol over Z,, which generalizes Lemma,

3.5.

Lemma 3.7 There exists a strong protocol for computing f over Z,, with parameters
ky,--- ,k; iff there does not exist a star wq,- -+ ,w; such that f(wy) =1 and f(w,) =0 for

1<u<t

PROOF: Assume that such a star exists. Then player P, must answer 0 on input w,, mod p;*
since f(w,) = 0. This implies that every player outputs 0 on input wq since wy = w, mod
pku. But f(wg) =1 and so the protocol is incorrect.

Conversely, assume that a star satisfying these conditions does not exist. Then for every

wyg such that f(wp) = 1, there exists an index u such that
Yy, s.t. wy = wo mod pFe,  f(w,) =1 (12)

Now consider the following extension of Protocol 3.6 to ¢ players.

On input j € [0,--- ,p*« — 1], if 3w < n such that w = j mod p*« and f(w) = 0 then
player P, outputs 0. Else P, outputs 1.

If f(w) = 0, then every player outputs 0 on input w mod p;*. If f(w) = 1, by Equation
12 there exists u such that Yw, = w mod pF«, f(w,) = 1. Hence P, outputs 1 on input

w mod pﬁ“ and the protocol is correct.

O

We can use the above Lemmas to prove degree bounds for various functions. Define

the Weight-k function Wy, on {0,1}" as Wi(x) = 1 if w(x) = k and 0 otherwise. Using
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an argument similar to the one used for the OR function, one can show that over Z,,,

S(Wy) = @(n% We now show bounds on §(Wy).

Corollary 3.8 Over Z,,, 6(Wy) = Q(n).
PROOF: Let 2F2 < %,3’“3 < 5. Assume k > 5. Set
b=k-2" c=k-3"

Observe that b lies in the same column as k while ¢ lies in the same row. But now

Hence by Theorem 3.5 such a protocol does not exist. Hence max(2¥2,3%) > 2. When

k < %, repeat the same argument with b =k + 252 and ¢ = k + 3ks. O

Next we prove a simple lower bound for the Threshold-% function. In the next section,

we will improve this lower bound to Q(n%k%) using more sophisticated techniques.

1
[

Corollary 3.9 Over Z,, 6(T;) = Q(max(k,n

).

PROOF: We first show a lower bound of Q(y/n) over Zg. Suppose 2¥23% < n. We can
choose a w so that w < k < w + 2¥23%3_ Both players receive the same inputs for weights
w and w + 2¥23%3 but Ty (w) = 0 while Ty (w + 2¥23%3) = 1. Hence the protocol is incorrect.
This proves a lower bound of /7.

Now suppose max(2¥2,3%) < k. Consider any w > k. Since i = w mod 2*? and

2k2 < ki < k. Similarly 5 < k. The entry i lies in the same row as w while j lies in the

same column.
Tp(w) =1, Ti(i) =0, Ti(j)=0

Now apply Theorem 3.5. Hence max(2*2,3%3) > k. O

Corollary 3.10 Over Zy, 6(Tj) = Q(n) for k < 2.
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PROOF: Assume that 2F2, 3k < - There exist multiples a2 b3ks so that

k< < a2k, B3k < g

|3

Now observe that a2*? and b3** are in the same row and column respectively as 0, and
Tr(0) =1, Ti(a2%?) =0, Tj(b3*) =0

Hence by Theorem 3.5, max(2F2, 3%2) > 2. O

Recall that we defined the Mod-k function My, on {0,1}" as My(x) =1 if w(x =0 mod k
and 0 otherwise. We can show that if k # 223° both M}, and its complement have § = ©(n).

If k = 293" then M, has degree O(1) while M) has degree ©(n). We skip the proof.

3.5 Weak Representations

In this section we will show lower bounds of (n) for weak representations of various func-
tions using tools from communication complexity. The lower bounds of Q(n%) do not make
use of the simultaneous nature of the protocol, the same bounds would hold even if the play-
ers were allowed to send their inputs to each other. To prove bounds of ©(n), we exploit the

fact that the players cannot communicate and there are restrictions on their output size.
3.5.1 Lower Bounds for Two Player Protocols

Using a classical result about deterministic simultaneous communication protocols, we give
a necessary and sufficient condition for the existence of a weak protocol in terms of the

number of distinct rows and columns in A7.

Definition 3.6 Two rows 1,4 in the matrix A are distinct, if there exists a column index
Jj such that a;j,ay; <n and f(a;j) # f(ay;). Rows i1,...,i are said to be distinct if they

are pairwise distinct.

Lemma 3.11 For a weak protocol for f over Z,, with parameters (kp,kq) to exist, the

matrix AT must have at most p distinct rows and q distinct columns.

PrOOF: We will show that over Zg, A/ can have at most 2 distinct rows and 3 distinct

columns. Assume that there are at least 3 distinct rows. Since P, must output a value in
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Zo, she outputs the same value for some two distinct rows 7,4’. Since the rows are distinct,
there is a column index j such that a;;,ay ; < n and f(a;;) # f(ay;). Player P3 will also
output the same value for inputs a;; and ay; since they lie in the same column. This violates

the definition of a weak protocol. O

Recall that we define the function M on {0,1}" as My(a) = 1 if a = 0 mod k and 0

otherwise.

Theorem 3.12 Let (k,p) = (k,q) = 1 and k > min(p,q). Over Z,q, A(My) = Q(n).

PROOF: We consider the case k = 5,p = 2,q = 3. The general case is similar. The values
of ks and ks will be determined later. We exhibit a 3 x 3 submatrix V of A such that V/

is the identity matrix.

0 a12k2 ag2k?
V= b13k3 a12k2 + b13k3 a22k2 + b13k3

b23k3 a12k2 + b23k3 a22k2 + b23k3

Elements in the same row of V have the same residue modulo 2¥2 and elements in a column
have the same residue modulo 3%3. So V is a submatrix of A. Since 2¥2,3%3 £ 0 mod 5, we

can find a1, a9,b1,by < 5 s.t.

a12k2 = 1mod5 a22k2 = 2mod 5

b13’C3 = —1mod>5 b23k3 = —2modb

Hence

This implies that Af has at least 3 different rows and a weak protocol cannot exist by

Lemma 3.11. To ensure that all entries are at most n, we pick ko, k3 such that

4(2%2 4 3ks) < .
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To satisfy this, we can take

n n n n n
— <2k < — — <3k < — 0 = min(2k2,3F) > —
6<% Sg ps sy 7 omn@nI) zg
For T}, over Zpq the lower bound obtained is Q(z). O

The same proof works for the Mod-¢ function where £ = p2¢°k provided (k,p) = (k,q) =
1 and k > min(p, g). The condition & > min(p, g) implies that we cannot for instance show
that Mod-2 is hard over Zjs. This was left as an open problem in [20]. This was resolved
recently by Hansen [47] who showed that Mod-2 is indeed hard over Z5, but not over Zo;.
In general, he shows that some assumptions about the size of k are required in order to
prove a lower bound.

We now show a lower bound for Threshold functions in the two player case.

Theorem 3.13 Over Z,q, A(Ty) = Q(max(k,/n)) for k < pﬂq.

PROOF: A lower bound of /7 is easy to show for all £ as in the proof of Corollary 3.9. So
we assume that k& > /n. We consider the case of Zg. Let 2¥2, 3% < k and let 3%3+1 > k.

We define

= 3kt mod 2%

S]]

2¢ = 2.3kt mod 2k2

Since 2*? < k, @ < k and 2a < k. Now set

0 X X

S]]
X

92.3ks+1l o + gks+l 9,

0 x X
=Vl = |1 0 x
1 1 0

Clearly V7 has at least three distinct rows for all settings of the x’s. To ensure that the
entries of V are at most n we need 2 - 3¥3%! < n. This is possible provided k < §- In the

case of Zpg, we can construct a similar matrix of size (p +1) x (p + 1) provided k < &. O

In Section 5, we will improve this bound to Q(vkn) for k < 7.
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3.5.2 Maulti-player Protocols for Mod-k

We now consider the case when m has t > 2 distinct prime factors and the protocols involve
t players. We show a lower bound for the ¢ player case by a reduction to the function
Exactly-k in the number on the forehead model. There is a lower bound of w(1) on the

deterministic complexity of Exactly-k due to Chandra, Furst and Lipton [27]. We first need

some results from the number on the forehead model. There are t players Pi,..., P; and t
inputs z1,...,z;. Player P; receives inputs x; for all i # j. They wish to compute some
function f(x1,...,2¢). D(f) denotes the deterministic complexity of the function f. For

further definitions about the model as well as an exposition of the result of Chandra et al.,

see [56].

Definition 3.7 For z1,--- ,z; € {0,--- ,k — 1}, the Exactly-k function E}(z1, -+ ,3) = 1

i =k
Theorem 3.14 [27] D(E} (21, ,11)) = w(l).

Here w(1) means that for ¢ fixed, the value of D(E}(z1,--- ,2:)) goes to infinity as k tends
to infinity. We now define the function M}é in the number on the forehead model which

should not be confused with the Mod-k function on Boolean inputs.
Definition 3.8 For z1,--- ,z; € {0,--- ,k— 1}, M}(z1, - ,24) =1 iﬁ”ZfZl z; = 0 mod k.
Lemma 3.15 D(M}(z1,--- , 7)) = w(1).

PRrROOF: We prove the lower bound by reducing computing E}; to computing M }é Let § =
Zle x;. Assume the players have a protocol for M, ,’é If they run this protocol and find that
M} (21, ,2) = 0, then S # 0 mod k. Hence S # k, which implies E}(z1,--- ,z¢) = 0.

If Mi(z1,--+ ,2¢) = 1, then S € {0,k,2k,---,(t — 1)k}. However player P; (or any
other player) can distinguish between these outcomes. In particular if S = k, then 1 <
S—xz; <k If S=CEk where C' # 1 then S — z; cannot take values between 1 and k .
But §—z; = 25:2 z; and this can be computed by P;. P; writes one additional bit on the
blackboard which tells the referee whether 1 < S — 2y < k. Hence D(E}) < D(M}) + 1.

But now by Theorem 3.14, D(M}) = w(1). O
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We now prove a lower bound for Mod-k in the ¢ player case.

Theorem 3.16 Over Z,,, for k sufficiently large as a function of m and (k,m) = 1,

A(My) = Q(n).

PROOF: We consider the case of Zs. The protocols now have three players P», P3 and P;
who receive y, = w mod 2¥2,y3 = w mod 3¥* and y5 = w mod 55 respectively.

We identify a fooling set comprising of a subset of the inputs. We will show that on this
subset, the problem can be reduced to computing M, ,’é in the number on the forehead model.
The fooling set consists of inputs a2*2 +b3*3 4-c5*5 where a,b,c € {0,--- ,k—1}. The values

of k9, k3 and ks will be set later. The inputs received by P, P3 and P;5 respectively are

u = b3 + 5 mod 2+
v = a2® + 5% mod 33

w = a2*2 + 3% mod 5%

We can give b3%3 and 5% as inputs to P, since the value of u can be computed from this.
Since (3%3,k) =1 and b € {0,--- ,k — 1}, there is a one-to-one correspondence between the

numbers b3%3 and {0,--- ,k — 1}. Hence it is sufficient to give P, the inputs

z3 = b3* modk

z5 = 5% modk

The values of b3 and ¢5*5 can be recovered from z3 and x5 respectively. Similarly set
zo = a2¥? mod k. Observe that now 0 < z; < k — 1, player P; has inputs zj for all ¢ # j
and they wish to know if the sum of the z;’s is 0 mod k. Thus we have a reduction to the
problem of computing M ,‘:‘ (9,3, 5) in the number in the forehead model.

In any weak protocol over Zsp, the number of bits of communication available to the
players is bounded by a fixed constant (log, 30). Lemma 3.15 implies that for & sufficiently
large, this is insufficient, hence a weak protocol cannot exist. We now set ko, k3 and ks so
that the entries in our fooling set are no larger than n. The largest entry is bounded by
k(2k2 + 3Fs 4 5%). So we set each of 2¥2, 3% 5ks < % This gives a lower bound on the

degree of Q(%).
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In general over Z,, where m has t distinct prime factors, we choose k large enough so
that D(M}) > logym. We then choose a fooling set of inputs of the form ), , aipf”;. To

ensure that these numbers are less than n, take p;* < %. This gives a degree bound of

t
Qzipr)-

3.5.3 Separating Strong and Weak Representations

In a strong protocol, w.l.o.g. the players output either 0 or 1. The referee’s strategy is fixed.
On the other hand, in a weak protocol, a player can output a value from Z,. The referee is
allowed to choose any strategy. A natural question therefore is whether weak protocols are
actually more powerful than strong protocols. Recall that A(f) < min(5(f),d(f)). We will
show a gap between these quantities by constructing a function f such that A(f) = O(y/n)
but min(§(f),d(f)) = Q(n).

Choose Iy, 13 such that \/n < 2!2 < 2y/n and /n < 3% < 3,/n. Define f : {0,--- ,n} —
{0,1} by

1 exactly one of 22,33 divides w
flw) =

0 otherwise

Since 223/ > n, if both 2% and 3% divide w, then w = 0.
Lemma 3.17 Over Zg, min(6(f),5(f)) = Q(n).
PROOF: Let 2¥2 + 3%¥3 < . Set my = max(ko,l2) and m3 = max(ks,[3). Observe that
2™ = (Qmod 22, 2™ # 0 mod 3"
3™ £ (Omod 22, 3™ = (mod 3k
2M2 4 3M3 £ ()mod 22,  2™2 4 3™ % (mod 3"

We now consider the matrix

(0 3ms
vV = =

\ 2m2 M2 4 3ms

vio— |01 v/ =

10 01
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Hence by Lemma 3.5, both f and f have strong degree Q(n). O

Lemma 3.18 Over Zg, A(f) = O(v/n).

Protocol 3.19 Weak Protocol for function f
o Set kg =1y and k3 = I3.
e Ifi =0 then P»(i) =0 else Py(i) = 1.
e Ifj =0 then P5(j) =0 else P3(j) = 1.

e The output of the protocol is 1 if Py(i) = Ps(j) and 0 if Py(i) # Ps(j).

It is easy to see that the above protocol computes f with cost O(y/n). The referee’s

strategy is to take the XOR of the players outputs which cannot be done in a strong protocol.

Theorem 3.20 There exists a function f for which A(f) = O(y/n) whereas §(f) and §(f)
are ©(n).

3.6 Threshold Functions and Diophantine Equations

We now begin a detailed study of the degree of the Threshold-k function for values of &
between 1 and n. We prove a theorem that equates showing degree bounds on threshold to
the number of solutions to certain families of equations. Note that we already have a lower
bound of max(k,n%) by Corollary 3.9. Since we wish to minimize the cost of the protocol
which is defined as max(pfi), we will assume that pi-”s are nearly equal and that they are

greater than max(k, ni )-

Theorem 3.21 There exists a strong protocol for Ty, over Z,, with parameters k; for 1 <

1 < t iff the following equation has no non-trivial solutions

Vi, apft < n (13)

. . ks k;
Vi # 7, |Clipi _ajpj” < k
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PrOOF: Clearly a; = 0 for all 7 is a solution and we call this a trivial solution. We show that
a protocol over Zg exists iff the following equation does not have solutions. The extension

to general m is easy.
la2k2 — b3k3| = ¢ a2kr <n, b3k <n, L<k (14)

As a first step, we show that it suffices to analyze the following strong protocol. This is
essentially the argument for the correctness of Protocol 3.6 specialized to the Threshold-k

function.

Protocol 3.22 Strong Protocol for Threshold-%

o Ifi >k, P, outputs 1, else P, outputs 0.

o If j > k, P; outputs 1, else P; outputs 0.

In a strong protocol, if f(w) = 0 both players must output 0. Hence when i < k, P
must output 0 since the input could be ¢. If 1 > k, then clearly w > k, hence P» can w.l.o.g.
output 1. Similarly, this is also the best strategy for Pj.

We analyze inputs on which the protocol fails. Let w > k,% < k,j < k. On such inputs,
both players output 0 whereas the value of the function is 1, and so the protocol is incorrect.
Note that 7 # j since if 1 = j, by the CRT w = 4. This contradicts the fact that w > k.

But now
w=a2% +i=0b3k 1 j
Assume that ¢ > j and let 1 — j = £ where 0 < £ < k. Then, we have

b3ks — a2k = ¢

a2k2,b3k3§ w < n

Hence any such input gives a solution to Equation (14).
Conversely, we will show that any solution to Equation (14) for fixed n gives an input

w so that the protocol is incorrect. Assume that we have

a2k —b3%3| =0 st a2 <, b3k <n, L<k
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Assume 5353 > a2k2. Set w = b3%3 = a2%2 4 ¢. From this setting, we obtain
i =wmod 2F2 =
j =wmod 3k =0
Hence we have w > 2¥2 > k whereas 4, j < k and hence the protocol is incorrect. O

As an example, suppose we were trying to show a bound of ni on Ty. We set 2k2, 3ks >

ni. This implies that a,b < ni = (2’“2)%. We are looking for solutions to

la2*2 — b3ks| = 1 a< (3%)5 b< (2)5
If we relax the constraints on a,b to a < 3% and b < 2*2, since (2¥2,3%3) = 1, by the
GCD equation, we will have a solution for every value of ks, k3. We are asking how many

solutions exist with the constraint that a,b < (2’“2)%. We will show that the answer is only

finitely many.
3.6.1 Constant Threshold with Two Players

We now prove an upper bound for constant threshold when m has two prime factors. We

set m = 6 for convenience. We will use the following result of Filaseta [30].

Proposition 3.23 Let £ be a fixed non-zero integer. Let M be a fixed positive integer.
Let € > 0. Let D be the largest divisor of N(N — £) which is relatively prime to M. If N

is sufficiently large (depending on ¢, M and ), then D > N'7¢,
Theorem 3.24 Let ¢ > 1 be any fixed constant. Over Zy,, 6(T,) = O(n%“) for all ¢ > 0.

PROOF: We prove the theorem over Zg.
Set 2F2 . 3%3 > nlte We will show with this setting of parameters, Protocol 3.22 works

for sufficiently large n. By Theorem 3.21, the protocol for n fails iff there is a solution to
la2F2 — b3ks| = 4 a2k <, b3k <n, L <c (15)

We first show that for each £ < ¢, this equation has only finitely many solutions. Set M = 6.

Take
N = a2 = b3k 14

= N(N —¢) = ab2F23ks
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Let D be largest divisor of N(N — /) relatively prime to 6. It follows that D < ab. By our

setting of parameters,

2k23k3 > nl—l—s > N1—|—5
ab2k23ks = N(N —¢) < N?

= D <ab< N1z

By Proposition 3.23, this is possible for only finitely many N. Hence, with fixed ¢, there are
only finitely many solutions. There are only finitely many possibilities for £ since 1 < £ < c.
Hence Equation 15 has only finitely many solutions in a2*2,53%3. This implies an upper

bound on 7 since
ok2 . gk > plte < ghok2ghs

Hence there are only finitely many solutions in n. Hence Protocol 3.22 works for all suf-
ficiently large n. We can take 2¥2 and 3*3 approximately equal to give the desired degree

bound. 0

By the CRT, we know that if 2¥23%2 > n_ and if w = 0 modulo 2¥2 and 3%% then in
fact w = 0. The above theorem states that if 2¥23%3 > !¢ for any positive ¢, and if the
residues of w modulo 2¥2 and 3%3 are both less than ¢ then in fact w < ¢ for sufficiently large
n. Also we have established an equivalence between proving bounds on the strong degree
and showing that certain equations have only finitely many solutions. This equivalence
allows us to use number theoretic results to show bounds on degree. On the other hand, it
implies than an alternative proof of the degree bound for symmetric polynomials will have

interesting number theoretic implications.
3.6.2 Constant Threshold with Multiple Players

In this section we consider the case when m has t distinct prime divisors p1, p2, - ps. For
T, with ¢ constant, it is easy to show a lower bound of Q(n%) We will show an upper bound
of O(n%“) for all € > 0. We will use a result due to Granville which generalizes Filaseta’s

result. But this result holds only under the assumption of the abc—conjecture. This is a
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very powerful conjecture which has many important implications, including an asymptotic

version of Fermat’s Last Theorem [39].

Definition 3.9 The Radical of M denoted by R(M) is the product of distinct primes

dividing M.

Conjecture 3.25 (The abc-conjecture) Fixe > 0. Ifa,b,c are coprime positive integers

satisfying a + b = ¢, then
¢ < D - R(abc)t*¢
where D is a constant that depends only on €.

Theorem 3.26 [38] Assume the abc-conjecture is true. Suppose that g(X) € Z[X] has no

repeated roots. Fix € > 0. Then for w sufficiently large,
Rlg(w)) > fw|tes(® 1<

Using this result, we analyze the following protocol which is the natural generalization

of Protocol 3.22.

Protocol 3.27 Threshold-c with multiple players
e Take plflplQ62 ---pft > plte,

e Set w; = w mod p;*. If w; < ¢, Player i outputs 0 else player 1 outputs 1.
(2

Theorem 3.28 Let ¢ > 1 be any fixed constant. Assuming the abc conjecture, over Zy,,

8(T.) = O(ni*e).

PRrOOF: Fix a value of n. If Protocol 3.27 is incorrect, by Theorem 3.21 there must be a

non-trivial solution to the following system of equations.

aipl <n Vie{l, -t} (16)

|a,~pfl - ajpjj| <c Vi<jy
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We now set
gX) = XX-1)---(X—c+1)

Clearly g(X) has no repeated roots and we can apply Theorem 3.26. Hence, Ve > 0, for all

but finitely many n,
R(g(w)) > w17* (17)

We will show that if Protocol 3.27 is incorrect on w, then g(w) is divisible by high prime

powers, and so R(g(w)) is small, which contradicts Equation (17).
glw) =ww-1)---(w—c+1)

We know that w — aipf”; = w; where 0 < w; < ¢. Hence for all 7,

w —w; | g(w)

w—w; = aipfi

= pflg(w)
By the CRT, for a suitable constant C,
g(w) = C ][ p¥
i

We now bound the size of C.

[Irf > n'*c > wite
i

gw) = ww—-1)---(w—c+1) < v

= C — g(w) < ,wcflfs

18
i

This gives an upper bound on R(g(w)).

R(g(w)) < Cpipa--p



The last equality holds since [ [ p; < m is a constant. This gives a contradiction to Equation

17. Hence w must be one of only finitely many exceptions. This bounds the value of n since
ki ki
w 2 aip;t 2 p;
g
= wt > nH—s
b
=>n < wlite

Hence there are only finitely many solutions in n and the protocol works correctly for n

sufficiently large. The degree bound follows by taking nearly equal powers of p;. O

3.6.3 Upper Bounds for General Threshold Functions

We now return to the case when m has two prime divisors and show that the abc—conjecture

14e
2

implies an upper bound of O(nk) on Ty, for all values of k in the strong representation.

We begin with the following technical lemma.

Lemma 3.29 Assume the abc conjecture holds for some ¢ > 0. For n > ng(e), the

equation
la2%2 — b3ks| = ¢ a2k? <n, b3k <n, 2k23ks > (neo)lte
has no solutions with a2¥2 b3%3. ¢ relatively prime.

PROOF: Assume that we have a solution where a2¥> > b3%3. Applying the abc conjecture

to the equation a2*? = b3%3 + £, we must have
D - R(a2"2b3k30)1F¢ > q2k2 > (a2k2p3ks)2 (18)

where the last inequality holds since a2*? > b3%3. We can bound R(a2*2,b3%3,¢) by 6abe.
Plugging this bound into (18), for a suitable constant D' depending only on ¢, we get

1+e¢
2

D' - (abl)'*¢ > (ab2F23%3)3 > (ab)2 (nl)

The last inequality uses the fact that 2¥23%3 > (n#)!*¢. Rearranging terms,

14e

D' - (ab)zteeMte > (no) s (19)
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We now upper bound the size of ab.
1—¢

a2k2p3ks < 2 2k2gks > (nf)lte = ab < Zl?

A calculation now gives the following bound on the LHS of (19).

l1—e_ 2
3 3

D' - (ab)3Te0 e < D'n 55"y (20)

Plugging this bound into (19), we have

14e€
2

D'n 5= =" > (nf)

For all n > ng(e), this gives a contradiction. Hence for sufficiently large n, the equation has

no solutions. O

There is an easy extension to the case of general p and ¢. Using this, we can show the
following degree bound for T} over Z,, assuming the abc-conjecture.

Theorem 3.30 If the abc—conjecture is true for some € > 0, over Zpq, §(T}) = O((nk) I;E)

for any k < n.

PrOOF: Note that for a non-trivial bound, we need £ < 1, else (nk)HTE = Q(n) for all
k. Take n > ng(e) as in Lemma 3.29. Set 2¥23%3 > (nk)!*¢. We claim that there are no

solutions to
la2k2 — b33 = ¢ a2k <n, b3k <n, L<k (21)

Assume that a solution exists. Note that a2*2,b3%3, £ need not be coprime. Their GCD
can be written as 2/23'3g where g is relatively prime to 2 and 3. Dividing throughout we
get

k
2123t

|al2k)2—t2 o bl3k3—t3| — El al2k:2—t2 < n, bl3k3 < n, el <

Further, we now have that a'2%2—%2 1/3k3=%3_¢' are relatively prime. To apply Lemma 3.29,
we need to check that 2k2—%23ks—t3 > (ng/)1+¢ Tt is easy to see that this condition does

hold.

1+e
ka—taoks—t (nk)H—E nk N1+
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However, by Lemma 3.29, our choice of n guarantees that such a solution cannot exist.
Hence in fact Equation (21) has no solutions. The degree bound then follows by taking 2%

and 3*3 nearly equal and applying Theorem 3.21. O

We are unable to extend the above bound to the ¢-player case for ¢ > 3.

3.7 Lower Bounds for Threshold Functions
3.7.1 Strong Representations

In this section, we will show a (v kn) lower bound on the strong degree of the T} function

over Zpg. For small €, this matches the upper bound of the previous section. Over Z,,,

when m has ¢ distinct prime factors, we show a lower bound of Q(n%kl_%) on the strong

degree of Tj.

Theorem 3.31 Over Z,q, 6(T}) = Q(Vnk).

PROOF: We prove the theorem over Zg. Set 2k2 3k3 < @ We will construct solutions to

the following equation for all n.
a2k — b3k = ¢ a2k b3k <m0 < k (22)

By Theorem 3.21 this implies 6(T;) = Q(v/nk).

We construct the solutions by a pigeonhole argument. By Lemma 3.9 we may assume
22 3k3 > max(k,/n). Consider all pairs (u,v) such that u2*2 < n, v3%* < n. We map the
pair (u,v) to the point Py, = u2*? —v3k3 so that P,, € [-n,n]. Each pair u,v is mapped

to a distinct point, since if

Pyy = Py, (u,v) # (s,1)
= (u—2s)2" —(v—1t)3ks =0
= 2k23k3|(y — 5)2k2

= |(u—s)2F|>n

However, |(u — s)2¥2| < n by our choice of u and s.
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We can now count the total number of points P, ,. We can take 0 < u,v < 2\/%. Hence

there are 4% points lying in the interval [—n,n], and hence by the pigeonhole principle,

there are two points within a distance of W < k. Call them P,, and Pj;. Hence

|(u—s)2F2 — (v —t)3k2| = ¢ L<k

Set a =u—s, and b = v — t. Assume that @ > 0. This implies that b > 0, since 2¥> >
k,3% > k so we cannot add multiples of 2¥> and 3%2 to get ¢ < k. Also, a2k < u2F> < n

and similarly 53% < v3%3 < n. Hence a, b, £ give the desired solution to Equation 22. [

Note that the lower bound of v/nk almost matches the upper bound of (nk)%“ implied
by the abc—conjecture. In [16], Beigel shows unconditionally that the bound of O(vnk)
holds for infinitely many n for k < ¢y/n for some constant c.

We now generalize this proof to get a lower bound for the ¢- player case. This result can
also be derived from Dirichlet’s theorem on simultaneous Diophantine approximation [48].

t—=1

Theorem 3.32 Over Zy,, 6(Tx) = Q(n%kT)
PROOF: Let p;* < %n%kl_% Vi. We will construct solutions to the equation
Vi, aipf" < n (23)
C k; k;
Vi#j, lap;' —ajp| < k
By Theorem 3.21, this will imply the desired lower bound.
By Lemma 3.9 we may assume that pfi >k, nt Vi. We define ¢ vectors v, g int—1
dimensions.
U1 = (p]flapllcla"' ’p]fl)
vy = ]262105"',0)
vy = (Oa 0, pz'i ,0)

vy = (07()’ 7pft)
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For i =1,---t, consider b; such that bipfi < n. We map every such t-tuple b = (by, bo,- -+ ,b)

to a point P, in t — 1 dimensional space.

Pb = b1’1)1 - b2’l)2 e — bt’l)t
k k k k k k
= (bipi' — bopy®, bipy' — baps®, -+ byt — bupy)
We can use the fact that p]fl]oIQ€2 . -pft > n to show that if b # ¢, then P, # P,.. For each ¢ we

can take 0 < b; < 3(%)1_%. This gives a total of 3*(%)'~! points. Since each co-ordinate of

Py lies between [—n, n], every point lies in [—n,n]*~! which is a cube of volume (2n +1)~1.

2n+1'|t—1 < (3n)t—1

We can partition this cube into [ 25 s smaller cubes with each side of length

k — 1. However there are 3*(%)" ! distinct points. By the pigeonhole principle, two points
lie in the same cube of side k£ — 1. Call these points P, and P.. This implies for 2 <7 <t

we have
(b1 — c1)pft — (b — ei)pl| <k —1

Assume that by — ¢; > 0. Since pfi > k for every 4, this implies b; — ¢; > 0 for every i. We

set a; = b; — ¢;. This gives
Vi, aip;® < bip;’
Vi#j, lapl —ap¥| <k
Hence we get a solution to Equation 23. g
3.7.2 Weak Representations

In Theorem 3.13, we show a lower bound of Q(max(k,+/n)) for A(T}) over Zp, We can

improve this to Q(vnk) using the results obtained above on the strong degree of T.

Theorem 3.33 Over Zy,, for k < 7, 0(Ty) = QVnk).

PROOF: We prove the bound over Zg. We apply the construction in the proof of Theorem
3.31 with § and % Set 2k2, 3ks < @. There exist a,b and ¢ satisfying the following

equation.

|a2k? — b3ks| = ¢ a2*2 b3ks < g,z <

N |

(24)
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We show that there does not exist a weak protocol for Ty of cost max (22, 3%3). By Lemma
3.11 it suffices to show that AT+ has a submatrix with 3 distinct rows. We use solutions to
Equation (24) to construct this submatrix. Assume a2¥? > b3¥2. By Lemma 3.9 we may

assume 22, 3%3 > max(k, /n) and hence a2¥? > k. We choose the submatrix V of A

0 a2k 2 - q2k2

Vv = x a2k2 —b3ks 2.q2k2 — p3hs
X X 2(a2k2 — b3ks)
0 a2k 2.2k

= x 4 L+a2k

X X 2/

0 1 1

= V=] x 0 1
x x 0

We need to ensure that all entries in the fooling set are valid. The largest entry in the
fooling set is 2 - a2¥2. From Equation (24), we have 2 - a2*? < n. By Lemma 3.11 a weak
protocol cannot exist since V7% has at least 3 distinct columns. Hence max(2F2, 3k3) > @.

Note that 2a2¥? < n, on the other hand, a2*? > k. Combining the inequalities, we obtain

k<. 0

We believe that this bound holds for k < % It is natural to ask if one can show linear
bounds for all & > . The next theorem shows that the answer is no (see Figure 2). Tt

explains the remark in the introduction that the weak degree of the AND function is ©(y/n).

Theorem 3.34 A(Ty) = A(n—k+1).

PROOF: Assume that there is a weak protocol for T}, where the players read ko and k3 digits
respectively. On an input w, let i = w mod 2¥2, j = w mod 3%3. Since both players know

the value of n, they can compute

' = (n —14) mod 2¥? = (n — w) mod 22

j' = (n — j) mod 3% = (n — w) mod 32
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Figure 1: The Degree of Threshold-k functions mod 6

Now if the players use the protocol for Ty with the values 7' and j' instead, they can
differentiate the values w such that n —w < k and n —w > k. This is then a weak protocol
differentiating values of w > n—k+1 and w < n—k+1 of cost max(2¥2,3%3). A symmetric

argument shows that a weak protocol for T;,_x.1 gives a weak protocol for Tj. O

This shows that for k > 7, there is a gap between the strong and weak degree.

We have shown that resolving the degree of Threshold functions for symmetric polyno-
mials is equivalent to questions regarding Diophantine equations. These are rather hard
questions and it does not seem that tight upper bounds can be shown unconditionally. Is
showing upper bounds for threshold functions using general polynomials any easier? Per-
haps we run into hard number theoretic questions because we are restricted to symmetric
polynomials and proving upper bounds with general polynomials is easier. Proving lower
bounds on the other hand can only be harder for general polynomials. The fact that the
best known lower bound for OR is Q(logn) suggests that indeed lower bounds are much

harder for general polynomials.
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CHAPTER IV

ALGORITHMS FOR INTERPOLATION OVER
COMPOSITES

Our goal in this chapter is to understand the structure of polynomials modulo compos-
ites; we do so through the lens of polynomial interpolation. Polynomial representations of
Boolean functions, which we studied in Chapter 3, as well as combinatorial applications
of polynomials modulo composites which we will study in Chapter 5, are concerned with
the lowest degree polynomial that satisfies certain constraints on its evaluations. Hence,
the problem they address is closely related to polynomial interpolation, and the structural

insights gained from this problem are useful for those applications.

4.1 Polynomaal Interpolation modulo Composites

The problem of polynomial interpolation is to reconstruct a polynomial from its evaluations.
This is a fundamental algorithmic question in algebra with numerous applications. The
problem is especially well studied when the polynomial is over a field such as R or Z, dating
back to Newton and Lagrange. Relatively less is known about interpolation over rings which
contain zero divisors, in particular over Z,, with m composite. The zero-testing problem
is a special case of the interpolation problem where we want to know if the polynomial is
0 everywhere. In this chapter we study the problem of learning a univariate polynomial in
Zpy|X] based on its evaluations at a set I C Z,,. We ask the question: Given I C Z,,, how
many evaluations of a polynomial at points in I are required to compute its value at every
point in I?

Throughout, we will consider a polynomial as a function rather than a formal sum
and our aim will be to correctly predict its values at every point in I. The polynomial
interpolation problem over Zi, is very different from Z, since it is no longer true that a

degree d polynomial has at most d zeroes. For instance X* = 0 mod 2* has 2¢—! roots. This
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implies that even two polynomials of small degree can agree on a large fraction of points
in Z,. Hence, unlike over Z, one cannot interpolate even low degree polynomials from
their evaluations at a few arbitrarily chosen points. On the other hand, not every function
f i Zuyy — Zy, is a polynomial. One restriction on functions defined by polynomials is that
they need to satisfy certain congruences. For instance let m = pg and z,y € Z,, such that
z = ymod p. Then P(z) = P(y) mod p for any polynomial P(X) € Z,,[X]. Thus the
values of a polynomial at a point give some information about its values at other points.
This raises the possibility of learning a polynomial by looking at its evaluations at only a
few carefully chosen points. This problem has been considered in mathematics. Dueball
[63] shows that when I = Z,,, there is a subset S whose size can lie between logm and m
such that the evaluations at S are sufficient for interpolation. However, this result does not

answer the more general question stated above.
4.1.1 Problem History

Given a commutative ring R, a function f : R — R which can be computed by a polynomial
in R[X] is called a polynomial function. Polynomial functions over various commutative
rings are well studied in algebra [26, 63, 32]. The problem of characterizing polynomial
functions over Z,,, was first studied by Carlitz and Spira [73] (see also the book by Narkeiwicz
and references therein [63]). Kempner gave a canonical polynomial for every polynomial
function over Z, [53]. Dueball studied the problem of interpolation over Z,, [63]. He proved
that one can solve the interpolation problem over Z,, with as few as O(logm) queries for
some composites m. More precisely, he showed the following result: Let k(m) be the smallest
integer such that k(m)! = 0 mod m. Every polynomial function over Z, can be learnt from
its values at {0,--- ,k(m) — 1}.

Interpolation and zero-testing for polynomials over Z, have been studied extensively in
computer science, motivated by applications in coding theory, proof checking and several
other areas (see for instance [34]). The problem of zero-testing for polynomials over Z,
was studied by Agrawal and Biswas [1], motivated by primality testing. They give a non-

black-box randomized algorithm for this problem. However, they view polynomials as
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formal sums rather than as functions and this is important for their application. Karpinski,
van der Poorten and Shparlinski [51] give a black-box algorithm for zero-testing over Z,.
However they require that all non-zero coefficients of the polynomial are relatively prime to
m. Bshouty, Tamon and Wilson give a randomized algorithm for interpolation over Z, [25].
However if the smallest prime dividing m is p, they require the degree to be at most £. The
results of [25, 51] hold for multivariate polynomials, but in the univariate case Dueball’s

result is stronger.

4.2 Our Results
4.2.1 The Generalized Interpolation Problem

Our main result is an efficient algorithm to solve the following generalized interpolation

problem.

Problem 4.1 GENERALIZED POLYNOMIAL INTERPOLATION: Given m, a set I C Z,, and
black-box access to the values of a polynomial P(X) € Zn[X] at points in I. Compute

P(X) and minimize the number of black-box queries.

Minimizing the number of queries is NP-hard, but our algorithm has query complexity

close to optimal.

Theorem 4.1 Let t be the number of distinct prime factors of m. There is an algorithm
to solve the general interpolation problem over Z,,, with query complexity within a factor

t of the optimum.

In fact the guarantee is slightly stronger. When the algorithm terminates, it produces
a factorization of m into #' < ¢ relatively prime factors. The approximation factor is in fact
bounded by #. Thus input sets I which force the algorithm to make several queries must
also reveal the factorization of m. The algorithm first computes a set S of queries to ask
based on the input set I. Thus the set of queries is chosen non-adaptively. The size of S
is within a factor # of the optimal query complexity. This step takes time proportional to
|S| - |I|. Once the set S is found, the polynomial can be computed with |S| queries in time

poly(logm, |S]).
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While Dueball’s result gives an efficient algorithm for the case when I = Z,,, it does
imply anything for the general interpolation problem. The naive approach for this problem
would be to write a linear equation for each point in I. We can replace each equation
Zj a;; X;; = b; mod m with Zj a;; X;; = b; + y;m where the y;s are integer variables, and
find integer solutions to the resulting system of equations. This has query complexity |1,
which can be exponentially larger than the complexity of our algorithm.

The generalized zero-testing problem is a special case of the interpolation problem,
where we wish to know if some identity holds for every point in I. Theorem 4.1 implies a
query-efficient algorithm for this problem. It improves on the algorithms of [25, 51] since
there are no restrictions on the degree or coefficients of the polynomial. Our results are

incomparable with those of Agrawal and Biswas [1], since they view polynomials as formal

sums.
4.2.2 Learning under a Distribution

We give the first efficient algorithms for learning polynomials over Z,, under a distribution.
Here we are given evaluations of the polynomial at points which are drawn from some
distribution and we are asked to learn the polynomial. See Section 5 for precise problem

definitions.

Theorem 4.2 Polynomials in Z,,[X] are exactly learnable under the uniform distribution

and PAC-learnable under an arbitrary distribution in polynomial time.

The algorithm for the uniform distribution learns the polynomial exactly, but its running
time is a random variable. These algorithms use the algorithm for the general interpolation
problem as a subroutine. For distributional learning it is essential that our algorithm solves
the general interpolation problem, where inputs come from some subset I C Z,, rather than

all of Z,,.
4.2.3 Interpolating Sets

The crux of our algorithm is the notion of an interpolating set which we introduce and study

here. A set S C I is an interpolating set for I if knowing the values of any polynomial at
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S fixes its value at every point in I. We show that the set of queries of an interpolation
algorithm must correspond to an interpolating set for I, thus the problem of designing
query-efficient algorithms reduces to finding small interpolating sets.

Let k(I) denote the size of the smallest interpolating set for I. In general k(I) can lie
between log |I| and |I|. However the problem of computing a minimum interpolating set
for I is NP-hard. We define a related quantity &(I), which is the smallest integer such that
there is a degree k(I) monic polynomial M (X) € Z,,[X] which is 0 over I. This quantity
can be computed in polynomial time by solving a system of linear equations. We show that

for I C Z,,, where m has t prime divisors, the following relation holds:
k(I) < k(I) < t-k(I)

Thus k(1) is a factor ¢ approximation to k(I) where ¢ is the number of prime divisors of m.
This is where the approximation factor of ¢ in the query complexity of our algorithm comes
from.

We sketch the idea behind the algorithm for computing an interpolating set. For the
prime-power case, we use a greedy algorithm. There is a natural metric on the points
I C Zpe, namely p-adic distance. Our algorithm finds a set of points so that the sum of
pairwise distances is maximized, this is done by picking a new point in a natural greedy
manner. We show that this in fact gives an interpolating set. For the composite case,
we essentially try and repeat this greedy approach. However, this approach might fail:
firstly, we do not know the factorization of m, and secondly distinct prime divisors p and
q give different metrics on the set I. However, we show that when it fails, one can get a
factorization m = my - my where (mq, mg) = 1. This allows us to use divide and conquer:
we find interpolating sets modulo m; and ms independently and combine the result using
the Chinese Remainder Theorem (CRT).

Interpolating sets over Zp. have rich algebraic and combinatorial structure which we
study in detail, these properties are also useful in analyzing our algorithm. In proving
these properties, we make crucial use of the fact that the underlying space is in fact an

ultrametric space (metrics where the following strengthening of the triangle inequality holds:
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d(z,y) < max(d(z, z),d(y,z)). We show that many algebraic properties of polynomials can
be reinterpreted as geometric properties of ultrametric spaces. Further, the proof of these
properties for general ultrametric spaces follows directly from the proof for polynomials
over Zya. We also note that our notion of interpolating sets over Zp. is closely related to
Very Well Distributed and Well Ordered (V.W.D.W.0O) sequences that have been studied

in mathematics [26].
4.2.4 Organization of this Chapter

In the next section, we give some basic definitions and results about interpolation over Zg,.
We study interpolating sets in Section 4.4. We present our algorithms for interpolation
in Section 4.5 and learning algorithms in Section 4.6. We present other algebraic and
combinatorial characterizations of interpolating sets in Section 4.7. In Section 4.8, we use

these characterizations to prove some combinatorial theorems about ultrametric spaces.

4.3 Preliminaries about Polynomaial Interpolation

We will use X to denote a variable, and z for a constant. Let (a,b) denote the GCD of a
and b.
Given = € Zpa, x # 0, let its p-adic valuation val,(z) be the highest power of p which

divides z. Set val,(0) = co. We have the so-called ultrametric inequality which states:
val,(z +y) > min(val,(z), valy(y))
The p-adic norm of z is defined as
2], = p Y@,
The p-adic norm satisfies the condition:

|z + ylp < max(|zp, |ylp)-

This induces a metric (the p-adic metric) on Z,e given by d(z,y) = |z — y|p. This metric

satisfies the following strong form of the triangle inequality:

d(x, z) < max(d(z,y), d(y, 2))- (25)
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Metrics which satisfy Equation 25 are known as ultrametrics.
We will also define valuations over Z,, where m is not a prime power. Assume that p

divides m and let p® be the highest power of p dividing m. For z € Z,,, we define
val,(z) = valy(z mod p°).

All our results can be stated either in terms of p-adic valuations or norms. For our
algorithmic results, it is more natural to work with valuations. For our combinatorial
results, we will use p-adic norms, since it is easier to translate these results to general
ultrametric spaces.

We start by proving some basic algebraic facts that will be useful to us.
Proposition 4.3 Let a,b € Z,, and a # 0. The equation
aX = bmodm

has a solution in Zy, iff (a,m)|b. If this condition holds, there is a unique solution in the

interval [0,..., m) — 1].

(aym

PROOF: Let g = (a,m). It is easy to check that the claim holds when g = 1.

So assume that g # 1. The condition g|b is necessary since for any z € Z,,, glaz, which
is the LHS of the equation. Assume that the condition is satisfied. Then it is easy to see
that the solutions are given by x € Z,, such that
T = 9 mod ﬂ.

Y g
The solution to this equation is unique modulo % since % and % are relatively prime, it is

given by

@3
[
it
O

So there is a unique solution in [O, ey

Proposition 4.4 Let M(X) be a monic polynomial in Zny[z] of degree k. Given P(X) €

Zm[X], we can divide it by M (X) and get a remainder of degree at most k — 1.
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PROOF: This is just Euclidean division. Let P(X) = >, ,¢; X" where d > k. Since M(X)
is monic, P(X) — cq X4 *M(X) has degree d — 1. Now repeat the same procedure till we

are left with a polynomial of degree < k — 1. O

Proposition 4.5 Let No(X),...,Ny(X) be polynomials in Z,[X| where N;(X) is a monic

polynomial of degree i. Every polynomial P(X) of degree at most k can be written as

Further if P(X) is a monic polynomial of degree k, then ¢ = 1.

PROOF: The proof is by induction on k. When k& = 0, No(X) = 1 so there is nothing to
prove. Assume the claim holds for k — 1. Let P(X) = _, a; X*. Since Ni(X) is monic,
P(X) — apNg(X) has degree k — 1, so we can apply induction to it. Note that the leading
coefficient in the monomial basis and the {N;(X)} basis is the same. This shows the second

part of the claim. O

We can use this to give a canonical form for polynomial functions over Z,, due to
Kempner [53]. Let No(X) =1 and for j > 1, let

N;(x) = []x - )

1=0

Let k(m) be the smallest integer such that k(m)! = 0 mod m.

Lemma 4.6 [53] Every polynomial function over Z,, is computed by a unique polynomial

of the form

(m, 51)

PRrOOF: For any z € Z,

Nj(z) = ﬁ(w—i) = (j)]‘

1=0
Hence Nj(z) is divisible by j!. Hence the polynomial (":nT!)Nj(X ) is zero over Z,. In

particular, Ny, (X) is a degree k(m) monic polynomial which is 0 over Z,.
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Given an arbitrary polynomial Q(X), we first divide by Nj(,)(X) to get a polynomial
Q'(X) of degree k(m) — 1. Since the polynomials N;(X) is monic and of degree j for

j €{0,--- ,k(m) — 1}, we can write Q(X) as

We can reduce this to the form of Equation 26 by subtracting an appropriate multiple of
(W:”T!)Nj(X ) for j < k(m). Since, we are only subtracting polynomials that are 0, over
Zp, the resulting polynomial computes the same function as the polynomial Q(X) that we

started with.

To show that this representations is unique, take two polynomials

k(m)—1 m

P(X) = ¢;iN; (X 0<ci < -
( ) = J J( ) ] (m,j')

k(m)—1 m

Q(X) = d;N;(X 0<dj < —
( ) J;) J ]( ) J (m,j!)

Pick the smallest index j so that ¢; # dj, and assume that ¢; > d;. We claim that

P(j) # Q(j) mod m. Since N;(j) =0 for ¢ > j and ¢; = d; for i < j, we have
P(j) —QU) = (¢ —d;)N;(j) = (¢ —d;)j! # 0modm

since

0 <c¢—d; < .
T (mygh)
An easy consequence is the following result (attributed to Dueball in[63]).

Corollary 4.7 [63] Every polynomial function over Z., can be interpolated from its eval-

uations at {0,--- ,k(m) — 1}.

PROOF: Let
P(X) =Y Nj(X)  0<e¢j< — .
j (m7 .7')
We let g = P(0). Assuming we know cg, - -- ,cj—1, we solve for ¢; from the equation

cjjl = P(j) — ZciNi(j) mod m
1<j
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The coefficients of P(X) in the canonical form are a solution to this equation. Further, the

solution must be unique, since the canonical form is unique. O

The following estimates for k(m) show that the number of queries can be significantly

smaller than m if m is smooth.

Lemma 4.8 For prime powers,
pla—1)+1 < k(*) < pa.

If m = ij?j, then

k(m) = max k(p;l’)

PROOF: Since (pa)! = 0 mod p?, k(p®) < pa. Let k = >, k;p* be the base-p expansion of k.

Using a formula due to Legendre,

val, (k) = 3 [EJ _ko2k (27)

P p—1
Hence if k! = 0 mod p®, then
L L >a
p—1 =
Hence k> (p—l)a-l—Zki > (p—1a+1
i
For m =[] p?j, by Chinese Remaindering,
Kl'=0modm <= k! EOmodp;j

Hence k(m) = max; k(p?]) O

Next we show that the problem of computing k(m) from m is as hard as factoring m.

Lemma 4.9 The problem of computing k(m) given m as input is equivalent to factoring

m.

PROOF: One can check in polynomial time if m is a prime power [18], so assume it is not.

We will show that (k(m),m) gives a non-trivial factor of m. Note k(m) = max; k(p?J)

Assume this maximum is attained for the prime p;. Note that k(p®) = 0 mod p, else
valp(k(p)!) = valp((k(p") — 1)})
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which contradicts the Definition of k(p®). Then k(m) = k(p]*) is divisible by p;. Further
k(pi) < pia; < pi" < m
since m is not a prime power. Hence
pi < (k(m),m) < m.

Thus we get a non-trivial factor of m. If (k(m),m) is not a prime power, we can repeat this

procedure till we get a prime power divisor of m. O

4.4 Interpolating Sets

We say that a polynomial P(X) is 0 over set S if it evaluates to 0 at every point in S.

Definition 4.1 Given I C Z,,, S C I is an interpolating set for I if every polynomial
which is 0 over S is 0 over I. Let k(I) denote the size of the smallest interpolating set for

1.

Note that I itself is trivially an interpolating set. However in general there can be
interpolating sets which are significantly smaller than I. Note that two polynomials P(X)
and Q(X) that agree at S must in fact agree at every point in I, by considering P(X)—Q(X).
Thus the values of a polynomial over I are uniquely determined by the values at points in an
interpolating set. The next lemma shows that the minimum number of queries to interpolate

a polynomial over I is k(I).

Lemma 4.10 The set of black-box queries of any interpolation algorithm is an interpolating

set for I.

PROOF: Assume that the set S of queries to the black-box is not an interpolating set. Then
there exists polynomial Q(X) € Z,,[X] such that Q(z) is 0 at all z € S but non-zero at
some point y € I. Hence the algorithm cannot distinguish between polynomials P(X) and

P(X) 4+ Q(X) which agree on S but are different at y € I. O

Note that this bound holds even if the algorithm chooses its queries adaptively.
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Definition 4.2 Let k(I) be the smallest integer such that there is a degree k(I) monic

polynomial M(X) € Zp,[X] which is 0 over I.

If S is an interpolating set of size k(I), then the polynomial [, 4(X — «) is a monic

polynomial of degree k(I). It is zero over S and hence over I. Hence

E(I) < k(I) (28)

This lets us prove lower bounds on k(I) by showing that any polynomial that is 0 over I

must have certain degree.

EXAMPLE 1 For I C Z,, k(I) = k(I) = |I|. Since Z, is a field, the smallest degree monic

polynomial which is 0 over I is M(X) = [],e;(X — @), hence k(I) = |I|.

EXAMPLE 2 For I = Z,,, k(I) = k(I) = k(m). By Corollary 4.7, S = {0,--- ,k(m) — 1}
is an interpolating set so k(I) < k(m). To show k(I) > k(m), assume that M(X) is a
monic polynomial of degree d < k(m). Writing it in the canonical form, we get M(X) =

Y i<a CiNi(X) where cq = 1. So M (X)) cannot be zero over Z,, by Lemma 4.6.

One can use the CRT to relate the problem of computing k(I) and k(I) for I C Zy,

for composite m to the prime power case . First we need to introduce some notation. Let

a;

m = H;:l p;'- Given a set L C Z,, we define the projection L; of L mod p;j as
Li={y€Zys|3z€ L,z Eymodp?j}

For a polynomial P(X) € Zy[X], we define P;(X) € Z,,;[X] to be its projection modulo
p;j obtained by taking each coefficient of P(X) modulo p?j . Conversely, given polynomials
P;(X) € ijaj [X] we can combine the coefficients using the CRT to get a unique polynomial
P(X) € Zn[X] whose projections are the polynomials Pj(X). We call P(X) the lift of the
Pj(X)s.

Lemma 4.11 Let I C Z,,. Then

R(I) = max K(I)) (20)

88



PROOF: It is easy to show using the CRT that a polynomial P(X) is zero over I iff Pj(X)
is zero over I; for all j. Let M (X) be a monic polynomial which is zero over I C Zy,. Then
by the CRT, M;(X) is a monic polynomial which is 0 over I; C Z,, «;. Hence k(I) > k(I;)
for every j.

Conversely let max; k(I;) = d. For each j, there is a monic polynomial M;(X) of degree

d; < d which is zero over I;. The polynomial

Mj(X) = XT% M;(X)

is a degree d monic polynomial which is zero over I;. Let M'(X) € Zy,[X] be the lift of the

M;j(X)s. It follows that M'(X) is a monic polynomial of degree d and it is zero over I. O

Lemma 4.12 Let I C Z,. The set S is an interpolating set for I iff S; is an interpolating

set for I;.

PROOF: Assume that S; is an interpolating set for I; for every j, but S is not an inter-
polating set for I. Then there is a polynomial Q(X) € Z,,[X] such that at every point
z € S,Q(z) = 0 mod m, but for some y € I, Q(y) # 0 mod m. But then Q(y) #Z 0 mod p;j
for some j. Consider the polynomial ;(X). Since Q(X) is zero over S, Q;(X) is zero
over S;. However there exists ' = y mod p?j in I; such that Q;(y") #Z 0 mod p?j . This
contradicts the assumption that S is an interpolating set for I;.

In the other direction, assume that S is an interpolating set for I but S; is not an
interpolating set for I;. Then there is a polynomial Q;(X) € ijaj [X] such that for every
z € 8;,Q(z) = 0mod p;j, but there exists y € I; such that Q(y) # 0 mod p;j. Take
Qi(X) =0 for i # j and set Q(X) € Zy[X] to be the lift of the Q;(X)s. Then Q(X) is
zero over S since it is zero over every S;. But it is not zero at some point in I since @); is

not zero over I;. This contradicts the assumption that S is an interpolating set. O

Corollary 4.13 Let I C Z,,- Then

max k(lj) < k(I) < > k() (30)
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PROOF: The bound k(I) > k(I;) follows trivially since |S| > [S;| > k(I;). To prove the
other direction, let S; be a minimum interpolating set for I;. For y € S;, there exists a
preimage x € I such that x = y mod p?j . Define S;- C I by choosing one preimage for each
y. Set T' = UjS;-. T is an interpolating set for I since S; C T is an interpolating set for I;.

Also |T| < 37, k(I;). O

EXAMPLE 3 We give an example where k(I) < k(I) and the upper bound in Equation 30

is (near) tight. Let m = p1py, and let
I={api[l1 <a<py—1} U{bpso|l <b<p —1}

It is easy to see that k(I1) = k(I1) = p1, k(I2) = k(I3) = py hence k(I) = max(p1,p2). On
the other hand, the only interpolating set for I is I itself. Each point of the form ap; must
be included since it is the only point in its congruence class modulo ps. Similarly, every

point bps must be included. Hence k(I) = p; + p2 — 2.

The following extension of the above lemmas can be proved similarly using the CRT.

Corollary 4.14 Let m = H;'I:1 m; and (m;,m;) = 1. Let I; denote the projection of I

modulo m;.

mjaxk(Ij) < k() < Zk(Ij)
J

Theorem 4.15 The problem of computing k(I) given I and m as input is NP-hard.

ProOOF: Consider the following decision problem:
Problem 4.2 MIN-INTERPOLATING-SET: Given m and I C Z,, is k(I) < n?
We prove this problem is NP-hard by reduction from 3D-matching [33].

Problem 4.3 3-DIMENSIONAL MATCHING: Given sets U, V,W of size n and a set of edges

E CU XV x W, is there a subset of E of size n that covers all the vertices?
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Take p1,p2,ps to be 3 distinct primes greater than n. Let m = p1pops. For each triple
(ui,vj, wy) € E with 4,5,k < n, we add a number z € Z, to I where z = imod p;, = =
j mod po, x = k mod p3. We claim that there is a matching of size n iff the set I has an
interpolating set of size n. We may assume w.l.o.g that every vertex occurs in some edge,
hence |I1| = |I2| = |I3]| = n. Thus S is an interpolating set for I iff §; = I for 1 < j < 3.
Thus an interpolating set corresponds to a set of edges that cover every vertex. If there is
an interpolating set of size n, then there is a cover of size n and vice versa.

In fact, it is possible to show that the MIN-INTERPOLATING-SET problem is NP-complete,

we skip the proof. O

In Theorem 4.17, we will show that for I C Zya, k(I) = k(I). Combining this with
Equations 29 and 30

k(1) < k(I) < tk() (31)

Thus k(I) is a factor ¢ approximation to k(I) where ¢ is the number of prime divisors of m.

4.5 Algorithms for the Generalized Interpolation Problem
4.5.1 The Prime Power Case

We give an algorithm to solve the generalized polynomial interpolation problem over Zya us-
ing exactly k(I) queries. We first give a (greedy) algorithm to find a minimum interpolating
set.

We start by picking an arbitrary element in I. Suppose we have chosen {ag, -, -1}

so far. If the polynomial N7(X) = [[,_,(X — a;) is 0 over I we stop. Else we choose the

jeil

next element o; € I so that val,(N;(c;)) is minimized.
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Algorithm 4.1 IntSet(7,p®)
Input: Set I C Za.

Output: Interpolating set S for I.

Pick o9 € I arbitrarily. Set S ={ap},i=1.
Repeat
Let NJ(X) = [1;«;(X — ).
If NP(x) is zero for all z €1,
Output S = {ag, - ,®—1}. Stop.
Else
Find z € I that minimizes val,(N/(z)).

Set a; =z, 1 =1+ 1.

Assume that the algorithm outputs a set S = {ap,--- ,ag_1} of size k and let e; =
valp(NZ-S(ai).
Lemma 4.16 Every polynomial function over I is computed by a unique polynomial of

the form

k—1
P(X)=> ¢N/(X) 0<c¢<p*® (32)
=0

PROOF: The Proof is similar to that of Lemma 4.6. Given any polynomial Q(X), we give
an algorithmic procedure to construct P(X) with the above form that agrees with Q(X)
on I. By the termination condition, the polynomial N (X) = [1; <1 (X — @) is identically
zero over I. Dividing Q(X) by N7 (X) and taking the remainder, we get Q'(X) of degree
k — 1 that computes the same function on I. Let us set Nj'(X) = 1. Since the polynomials
NJ-S (X) is monic and of degree j for j € {0,--- ,k — 1}, we can write any polynomial of

degree at most k — 1 as a linear combination of these polynomials. Hence we have

Q'(X) = 3 NS (X)
i<k

Note that by our choice of o,

ej = valp(NJS(aj)) < Vale]*s(x) forz € 1.
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So the polynomials p®~¢ N, JS (X) are 0 over I. Hence, by subtracting appropriate multiples
of these polynomials from Q'(X) we can get a polynomial P(X) where 0 < ¢; < p® % that
computes the same function as Q(X).
To show uniqueness of this representation, consider two polynomials
k-1
P(X)=) ¢N7(X) 0<c;<p*
j=0

QX)=)> d;iN/(X) 0<dj<p* ¥

with different canonical forms. Pick the smallest j such that ¢; # d;. We claim that

P(o ) # Q(a;). Note that

P(oj) = Q(ay) = > (e — di) N (ev)).

i

Since N7 (a;) = 0 for i > j and ¢; = d; for i < j, we have
P(o5) = Q(ag) = (¢ — dj) N} (e
Since valp(NJS(aj)) = e;j and val(c; — dj) < a — e; hence

P(a;) — Q(aj) # 0 mod p°.

Theorem 4.17 The set S is a minimum interpolating set. In fact k(I) = k(I) = |S]|.

PROOF: Since § is an interpolating set of size k, k(I) < k. Tt suffices to show that k(1) > k.
Let M(X) be a monic polynomial of degree d < k — 1. We can put M (X) in the canonical
form using the procedure above to get
M(X)=> ¢;NJ(X) 0<cj<p 9.
j<d
Since M (X) is monic, it follows that ¢4 = 1. Hence M (X) does not compute the 0 function

by Lemma 4.16. So k(I) > k. O

Note that Algorithm 4.1 for picking a minimum interpolating set is essentially a greedy

algorithm: at each stage it picks a new element z that minimizes ) j<i val,(z — a;). One
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can ask what objective function is being optimized by this greedy algorithm. In Theorem
4.30 (proved in Section 4.7), we prove that this algorithm minimizes the power of p that
divides the Vandermonde determinant of []; (¢ — «;). In other words, the minimum
interpolating sets of I are all subsets S = {3;} of size k(I) that minimize
> valy(Bi - B)-
i<j<k(I)

This gives a simple algorithm to check if a set 7' = {f3;} is a minimum interpolating set for
I. We first compute an interpolating set S = {«;} using Algorithm 4.1 and then check that
|T| = |S| and that ) val,(8; — B;) = Y valp(a; — ).

We now give an algorithm for Polynomial Interpolation over Zy. whose query complexity
is optimal. One can show that this Algorithm computes the canonical form of P(X) using

an argument similar to Corollary 4.7.

Algorithm 4.2 Interpolate(7,7Z,.)
Input: Set I C Zp., an black-box for P(X) evaluated at /.

Output:The polynomial P(X).

Compute S = {ap,- - ,ap_1} using IntSet(l,p?).
For i =0,--- k1,
Query P(wy).
Compute c¢; so that 0 <¢; <p* % and
P(oy;) = chN]‘s(ai) mod p®
J<i

Output P(X) =3, , NP (X).

4.5.2 The General Interpolation Problem

We first give an algorithm to find interpolating sets over Z,,. The algorithm is given I
as input, it does not have the factorization of m. It computes an interpolating set for I.

We sketch the idea of the algorithm for m = pg. The algorithm tries to add elements to
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S greedily like in the prime power case. Assume we have picked {ag,---,a;—1} and let
N (X) = [1;<;(X — ai). We compute g(z) = (N (z), m) for every z € I. This quantity

plays the role of val,(N7(X) in Algorithm 4.1.

1. If there is an z such that val,(N°(X)) and val,(N° (X)) are both minimized at ,

then g(z)|g(y) for all y € I. We add z to S and proceed.

2. If val,(N7 (X)) and valy(N°(X)) are minimized at distinct points z and y, then
g(z) fg(y) and vice versa. Here the greedy approach fails. But in this case we can

efficiently factor m = pq using g(z) and g(y). We then use divide and conquer.

For general m, in case 2 we compute a factorization m = mymg where (mq, my) = 1 using

the subroutine Factor and then use divide and conquer.
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Algorithm 4.3 IntSet(I, m)
Input: Set I CZ,.
Output: An factorization m = H;I:1 m; where (m;,m;) = 1 and a

minimum interpolating set S; for I; = I mod mj.
Pick o € I arbitrarily. Set S ={ag}, i=1.
Repeat

Let N5(X) =]],..(X — o).

Jj<i
If NP(z) is zero for all z €1,
Output S = {ag, - ,@i_1},m. Stop.
Else
For each z € I, set g(x) = (N7 (z),m)
If some g(z) divides g¢(y) for all y eI,
Set a; =z, 1 =1+ 1.
Else
Find ¢(z),g(y) that do not divide each other.
Factor(m,g(x),g(y)) = my-mo

Return IntSet(li,m1), IntSet(ly,mo). Stop.

We first analyze the Algorithm when Factor is not called. We then present the factoring
subroutine. In particular, Lemmas 4.18, 4.19, 4.20 all assume that Factor was not called.
In this case, the behavior of the algorithm is similar to the prime power case.

Let m = H;-:l p;j. Let S = {a;} be the set output. Let I; and S; be the projections
of I and S modulo p?j . We show that if Factor is not called, then the Algorithm finds
a minimum interpolating set by showing k(I) = k(I) = |S|. This is done by simulating
Algorithm 4.1 on I; and showing that it would produce the same outcome.

Fix a prime p;. Let o = a; mod p;j. We take T' to be the projection of the first k(I;)

elements of I. In other words, let T' = {of, ..., a;c(lj)}. Note that 7' C §;.

Lemma 4.18 The set T is a minimum interpolating set for I;.
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PROOF: We will show that val,, (N (z)) is minimized over I; at o). Hence the set T is a
possible output when we run Algorithm 4.1 on the set I;.

Assume that there is a y' € I; such that

valy; (N () < val,, (N}’ (o).

7

Choose y € I so that y =y’ mod p?-j. Note that
valy, (N7 (y')) = valy,; (9(y)), val;(NT (o)) = valy,; (9(ci))

Hence valy, (g(y)) < valp, (g9(c)).

So g(a;) cannot divide g(y). But since Factor is not used, «; satisfies g(;)|g(y) for all

y € I, which is a contradiction. O

Lemma 4.19 The set S is a minimum interpolating set for I. In fact, k(I) = k(I) = |S|.

PROOF: By Lemma 4.18, the set S; is an interpolating set for I; so S is an interpolating
set for I. We will show that k(I) = k(I) = |S]|.

For each j, the polynomial Hi<k(1j)(X — ;) is 0 mod p?j over I; because the first k(1)
elements are an interpolation set for I;. Take k¥ = max; k(I;). The polynomial ], . (X — ;)
is 0 mod m over I. Since this is the termination condition for Algorithm 4.3, it will stop

after k steps and output S of size k = max; k(I;). By Equation 30, we have

m]ax k(I;) < k(I).

Hence the set S is a minimum interpolating set. Further by Equation 29,

B(T) = max (T
J
But for prime powers, k(I;) = k(I;). Hence we conclude that
k(I) = maxk(l;) = maxk(l;) = k(I).

J J

P(X) can be computed by a procedure similar to Algorithm 4.2.
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Lemma 4.20 The polynomial P(X) can be computed from the values at points in S.

PROOF: The proof of correctness is similar to Corollary 4.7. Note that

m
NP (;) =0 mod m
(m, N7 () ()

and for every z € I,

NP (z) =y - NP (og) mod m for some y € Zy,.

2

Hence for ¢ < k, the polynomials

o N )

are 0 over 1.
Hence every polynomial function over I can be canonically represented as
k—1 . m
P(X) = Zz_:oc,-Ni (X) 0<¢ < N @)
To compute the canonical form of P(X), we query the value of P(X) at every point in

S. For i < k — 1 we solve the equation

m

CZ'N,L-S(OAZ') = P(az) — ZCJNJS(OAZ) mod m 0 < c < m

j<i
The unique solution to this system is the canonical from of P(X). O

We now turn to the subroutine for factoring. The idea is to use g(z) and g(y) to get

m1, mo which divide m and are relatively prime. Their product mimo might be less than

m
mi1ma2

m. At each step, we take a non-trivial divisor of and multiply either m; or mg by it.

We do this in such a way that they stay relatively prime.
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Algorithm 4.4 Factor(m,g(x),g(y))
Input: A number m and ¢g(z),¢(y) that divide m but do not divide
each other.

Output: m;-mgo=m and (mi,mz) = 1.

Let g = (9(2),9(y). Let my = %3, my = 9
Repeat
Set ¢c= "2

mi-mso °

If (c,m1) =1, Set mo =my-c.
Else, Set mj =mq - (¢c,mq).

If m;-mg =m, Output mj,mg. Stop.

Lemma 4.21 Factor(m,g(z), g(y)) returns my, mo such that my-mo = m and (m1,mg) =

1.

PROOF: At the start of the algorithm,

my — 9 my — —9W)

(9(2),9(y))’ (9(z),9(y))

so (m1,mg) = 1. Also m, mo are non-trivial divisors of m since g(x) and g(y) do not divide

each other.

Let ¢ = . If (m1,c) = 1, since (m1,m2) = 1, we have (m1,cmz) = 1. So we set
mg = cmo and we are done. If (¢, m1) = d > 1, then since d divides m1, we have (d, mo) = 1.
So we set m1 = dm1. In either case, the product mime increases by a factor of 2, hence

the algorithm terminates in O(logm) iterations. O

The subroutine above is somewhat inefficient. The running time can be considerably
improved by running the factor refinement algorithm of Bernstein [19] on g(z), g(y) and m.
This algorithm gives a factorization into co-primes in near linear time.

If we find factors mi,my which are relatively prime, then we run IntSet(l;,m1) and

IntSet(I2,m2). In doing so we could find further factors of m; and me, but these will be
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relatively prime, since m; and mo are relatively prime. Hence finally, the algorithm returns
a factorization m = ], ., m} where the m]s are relatively prime. If m has ¢ distinct prime
factors then clearly ¢’ < t. We now solve the interpolation problem modulo m; using Lemma,

4.20 and combine the results using the CRT.

Algorithm 4.5 Interpolate(l,Z,,)
Input: Set I C Z,,, an black-box for P(X) evaluated at I.

Output: The polynomial P(X).

Using IntSet(l,m), compute m = H?:l mg and interpolating sets S;
for I;.
For each j€1,--- ¢t

For each y € S;,
Query P(X) at z€1 s.t. z=ymodm;.
Use these to compute P;(X) mod mj.

Lift the polynomials Pj(X) to a polynomial P(X) € Zg[X] using the

CRT.

Lemma 4.22 Algorithm 4.5 solves the interpolation problem over Z,[X]. The number of

queries is within a factor t' of the optimal.

PROOF: The proof that the polynomial P(X) is correct follows by the CRT. The number
of queries is at most ;. [S;|. By Lemma 4.19 since each m; is not factored further, the

set S; is a minimum interpolating set for I;. Hence |S;| = k(I;). Hence by Corollary 4.14,

max |S;| < k(I) < D[S < t'R(I).
J .
<t

Also by Corollary 4.14,
k(I) = maxk(I;) = max|S,|.
J j
Hence Algorithm 4.3 can be used to compute k(I) exactly. (Note that this can also be done

by solving a system of linear equations).
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4.6 Learning Algorithms

One can use the algorithms in the previous section to design efficient algorithms for inter-
polation over Z,, in various learning theoretic settings. We consider the problem of learning
under the uniform distribution and PAC-learning under an arbitrary distribution. In the
uniform distribution problem, we are given evaluations of a polynomial P(X) at points z
chosen at random from Z,,. In the PAC-learning problem, the samples are drawn from an
unknown distribution D over Z,,. We are required to output a polynomial that computes
P(X) correctly with good probability on points chosen from the same distribution. In this
setting, it is necessary to allow some error probability. Consider a distribution D which is
concentrated on a set I which does not contain an interpolating set for Z,,. A polynomial
time algorithm cannot distinguish between the 0 function and a function which is 0 on I
but non-zero elsewhere.

For learning algorithms, the notion of polynomial running time needs to be defined
carefully. Let F(m) denote the number of polynomial functions over Z,,. The algorithm
is required to output some polynomial function which requires at least log F'(m) bits to
represent. Hence we say the algorithm runs in polynomial time if the running time is
poly (log F'(m)).

From Theorem 4.6, we get

F(m) = o (33)
ong(m) (m, 3!

Note that log F'(m) can vary between logm and m depending on the prime factorization of
m. We compute a rough lower bound on log F/(m) in terms of its factorization. Note that

if m = p®, it follows from Theorem 4.6 that

Hence if m = [],,p;’, then

F(m) > [[py" = logF(m) > ajp;logp;.
J Jj<t
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4.6.1 Learning under the Uniform Distribution

Problem 4.4 LEARNING UNDER THE UNIFORM DISTRIBUTION: Given samples (z, f(z)),
where z is drawn uniformly from Z,, and f is a polynomial function, find a polynomial P(X)

that computes f.

Algorithm 4.6 Interpolation under the Uniform Distribution
Input: Black-box for evaluations of P(X) under the uniform
distribution.

Output: The polynomial P(X).

. . t Qa;
Compute the factorization m = szl p;’ -
Draw samples till we have an interpolating set S; for ijaj.
Compute P;(X) for each j.

Let P(X) be the lift of the P;(X)s.

We compute the factorization using brute force which takes time O(3_; pja;) = O(F(m)).
We now bound the number of samples needed till we have an interpolating set modulo p®.
Let p® be the smallest power of p such that p® > k(p?). By Lemma 4.8, p* < p%a. Let

S ={ap,++ ,appaey_1} where a; =i mod p°.
Lemma 4.23 The set S is an interpolating set for Zya.

Proor: By Corollary 4.7, T = {0,--- ,k(p®) — 1} is an interpolating set for Z,.. By the
choice of a;, a;

o - = i — j + cp® mod p®

Since 0 < i # j < p°, val,(a; — ;) = val,(i — 7). Hence

Y, (ei—a)= > (i)
i<j<k(p®) i<j<k(p®)
So by Theorem 4.30, S is an interpolating set. O

Lemma 4.24 Algorithm 4.6 requires O(log? F(m)) samples with high probability.
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PROOF: The uniform distribution over Z,, induces the uniform distribution over congruence

b .
classes modulo pj”

since b; < a;j. By the coupon collector’s problem, in time O(p;)-j log(p;)-j))
we will see a sample from each congruence class with high probability. By Lemma 4.23,
this gives an interpolating set modulo p;j . Overall the number of samples needed can be

bounded by O(log? F(m)) w.h.p. O

Theorem 4.25 Algorithm 4.6 learns the polynomial P(X) exactly under the uniform dis-

tribution. Tt runs in time O(log? F(m)) with high probability.

We needed to factor m to check whether the set of points seen so far is an interpolating
set for Z,,. Is there an algorithm to check if S is an interpolating set for Z,, that does not

need to factor m?

4.6.2 PAC Learning

Problem 4.5 PAC LEARNING: Given samples (z, f(z)), where = is drawn from an un-
known distribution D and f is a polynomial function, find a polynomial P(X) that computes

f over D with probability 1 — €.

Polynomial functions are PAC learnable under an arbitrary distribution in polynomial
time. Once we have drawn the set of samples, the problem reduces to one of general
interpolation. The number of samples to be drawn can be determined from F(m) using
Occam’s Razor [52]. We first compute F(m) using Equation 33. This can be done in
time O(log F/(m)). We then draw %log % samples from D and solve the interpolation
problem on these inputs using Algorithm 4.5. The proof that this suffices for PAC-learning
is standard [52].

Theorem 4.26 Polynomial over Z,, are PAC learnable in polynomial time using % log @

queries.

4.7 Algebraic Structure of Interpolating Sets modulo Prime
Powers

In this section we study the algebraic properties of interpolating sets modulo prime powers.

We give alternate algebraic characterizations of such sets (Theorems 4.29, 4.30 and 4.34).

103



In this section and the next, we use p-adic distance as opposed to valuations.
Recall that by the definition of Interpolating sets, every polynomial which is non-zero
over I is in fact non-zero over some point in S. The next Lemma generalizes this to show

that in fact, the norm of every polynomial is maximized over I at some point in S.

Lemma 4.27 A set S is an interpolating set iff for any polynomial P(X), there exists
«a € S such that

[P(a)l, > [P(z)l, Vzel (34)

PROOF:(=) Assume there exists P(X) € Z,e such that |P(z)|, > |P(a)|, Yo € S. But
then for an appropriately chosen e, p® P(X) is non-zero at z, but 0 everywhere in S. Hence
S cannot be an interpolating set.

(<) Assume that S satisfies equation 34. There cannot exist a polynomial P(X) which
is 0 on S, but P(z) # 0 for some x € Zpa, since this implies that |P(z)[, > |P(a)|, Yo € S.

Hence S is an interpolating set. O

This property of interpolating sets allows us to order its elements in a natural manner.

Given an ordered set S = {ag, a1, -+ }, let NJS(X) = [lic;(X — ).

Algorithm 4.7 Ordering an Interpolating Set
Input: An interpolating set T of I.

Output: An ordered set S C7T which is a (minimal) interpolating set.

Pick ap € T arbitrarily, put it in S.
Given S = {ap, -+ ,j_1}.
If NJS(X) is 0 over T, stop and output S = {ag, --,aj_1}.

Else pick «; € T which maximizes |NJ5(aj)|p and add it to S.

Assume that the above procedure outputs an ordered set S = {«ag,--- ,ax_1} of size k.
Let ej = valp(NJS(ozj)) for i < j <k —1. Observe that 0 < e; < a. Using the argument of

Theorem 4.16, we can show that every polynomial function over I is computed by a unique
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polynomial of the form
t
P(X)=> ¢NJ(X) 0<¢ <p"™“
§=0

Using the canonical form above, one can show that all minimal interpolating sets over Zye

have the same size. The proof is similar to that of Theorem 4.17.

Corollary 4.28 Theset S = {ap, - ,ap_1} Is an interpolating set iH|N]$(aj)|p > |N]$(x)|p

for all x € I.

PrOOF: Clearly an interpolating set with the canonical ordering has this property. To
prove the other direction, simply take T' = I in Algorithm 4.7. Since |N, 5_9 (z)|p is maximized

at a;, we can add «; to S at step j, giving the interpolating set S = {ag,-++ ,04_1}. O

Henceforth we will assume that interpolating sets are canonically ordered and that
polynomials are in the canonical form. Lemma 4.27 states that for any polynomial function
P(X), |P(z)|, is maximized at some point o € S. We strengthen this to show that if the

degree of P(X) is d, such an « can be found among the first d + 1 elements in S.

Theorem 4.29 The set S = {ap,--- , a1} is an interpolating set iff for every polynomial

P(X) of degree d, there exists a € {a, -+ ,q} such that |P(a)|, > |P(z)|, Vz € 1.

PrOOF: Clearly a set with this property is an interpolating set by Lemma 4.27. We prove
the other direction. The proof is by induction on d. The base case when d = 0 is trivial.

Assume the claim holds for d — 1. Let P(X) = Q(X) + c4Nj (X) where deg(Q) < d — 1.
|P(z)], < max(|Q(z)|p, |caN3 (z)p) (Ultrametric inequality) (35)

We bound |Q(z)|, using the inductive hypothesis. Since Q(X') has degree d — 1,

|Q(z)|, < max(|Q(ao)lp,---,[Q(ca-1)lp) (36)
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By our choice of oy,

caN7 (z)|p < |caNg ()|
= |P(aq) — Q(aa)lp
< max(|Q(aq)|p, | P(aa)lp)

< max(|Q(ao)lp, -+ » |Q(a—1)lp: [Pca)lp) (Induction on Q(X)) (37)

Hence from Equations 35, 36 and 37 we get

|P(z)]p < max(|Q(ao)lp, -+ » [Q(aa-1)lp, P(ed)lp)
Since NJ(a;) = 0 for j < d, we have Q(a;) = P(«;) for j < d. Hence

|P(z)]p < max(|P(ao)lp, -+ » |P(aa-1)lp, [P(@a)lp) (38)

We use this to show that interpolating sets are greedy solutions for the problem of
maximizing the p-adic norm of the Vandermonde determinant. Since the determinant could
vanish mod p®, we define the norm of the Vandermonde determinant as follows

k—1
g
Let  |V(ao,-- 1)l = [ Nei—a)ly = JTIN? ()l
0<i<j<k—1 j=1

This is equivalent to regarding the determinant as an integer and taking its norm.

Theorem 4.30 The set S = {ay, -, 01} is an interpolating set for I iff for all subsets
{zg, "+ ,x[_1} of I,
V(ao, -+ ag-1)lp 2 [V(zo,- -, Zk-1)lp (39)
PrOOF:(=). We will show a stronger statement: for 1 < j < k — 1, for any subset
{zo,-++ ,x;} of I,
Vo, a5)lp 2 [V(zo, ==, 2)lp (40)
Consider the polynomial Q(X) = [[;;(X — ;). By Theorem 4.29, there exists a; €

{a0, -+, ;} such that |Q(e)|p, > |Q(z;)|p- Hence one can replace z; by a; without de-

creasing the norm of the Vandermonde determinant. Now repeat the same argument for
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the set {zo,-+,2;_1,;} and the element z;_; and so on. We get

V(o, - a5)lp > -+ > [V(zo, -+ ,zj-1,04)|p > |[V(zo, -+ ,35)lp

(«<). Assume we have a set S satisfying Equation 39. Assume that the a;s are ordered
canonically. We will show that |N]$ (o)|p > |N]$ (z)|p for all z € I. This implies S is an
interpolating set by Corollary 4.28.

Assume that there exists § such that |NJ$(aj)|p < |NJ$(,B)\p. Pick o; € {aj, -+ , 51}
such that |8 — ;|p is minimized. We will show that replacing ¢; by 8 will increase the norm

of the Vandermonde determinant. Observe that for any £ # ¢ and £ > 7,

oy — O‘i|p < max(|8 - Oze\p, 1B — O‘i|p)

But |y —Blp > |B—ailp by choice of «;
Hence |o;—aylp, < |B— aulp
= H li — alp < H 1B — aulp (41)
0> 5,04 0> 04

We also have

INF(ea)lp < INJ(ag)l, < INF(B)lp

The first inequality is because S is ordered canonically, the second is by the definition of S.
Hence from the definition of N, ]S (X),
I = el < [T](B- o)y (42)
£<j £<j

Combining Equations 41 and 42, we get

(i = an)ly < T8 - o)l (43)
04i 04i

Hence replacing «; with § increases the norm of the Vandermonde determinant, which

contradicts the assumption that the norm is maximized at S. O
Corollary 4.31 The parameters e1,--+ ,ep_1 are independent of choice of interpolating
set.
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PRrRoOF: Note that
INF ()| = p~%
and

|V(Oéo,--- aaj)|p = H'NZS(QZ”]J = p_ZiSjei

i<y
This quantity is maximized over subsets of I at every interpolating set. So ), ;€ and
hence ¢; is the same for every interpolating set of I. O

Finally we show that an interpolating set S for I is a union of interpolating sets for I
restricted to each congruence class modulo p. This is interesting because a similar statement
is not true for congruence classes mod p?. Also, this generalizes the fact that the values of
a polynomial at different points in Z, are independent. The proof involves the construc-
tion of indicator polynomials for congruence classes mod p, using the modulus amplifying

polynomials of Beigel and Tarui [17].

Lemma 4.32 [17] Let

M(X) = %—:1 (QG a 1) Xi(1— X))

i
Then for any x € Z,
z=0modp = M(z)=0modp” (44)

z=1modp = M(z)=1modp*
PROOF: We have

2a—1
M(X) - X Z 20 — 1 Xi—a(l o X)Za—l—i
i=a ¢

= 0 mod X*°

Observe that one can also write

M(X)=1- i (2“ - 1) Xi(1 X%
1

- 2
=0

= 1-(1-X)" 3 <2a N 1) Xi(1 — x)e- 1
=0

I
—_

B

Qo
[oW
_

|

s
S
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Equation 44 follows from these observations. O

Lemma 4.33 There exist polynomials Ay(X) over Zp.[X] for 0 < £ < p such that

z=fmodp = Ay(zr)=1modp®
z#Lmodp = Ay(z)=0modp*
PROOF: When a = 1, we can take
So(X)=1— xP~1
6¢(X) = do(X —¥£)
For a > 1, we construct Ay(X) by applying M (X) to the above polynomials i.e.
Ad(X) = M(5,(X))
The correctness of this construction follows from Lemma 4.32. O
Given 0 </ < p—1 let us define I(¢) = {z € I,z = £ (mod p)}. Define S(¢) similarly.
Theorem 4.34 S is an interpolating set for I iff S(£) is an interpolating set for I(£) for
0<t<p-1.

PROOF: Assume that each S(¢) is an interpolating set for I(£). If P(X) is zero over
UeS(£) = S, then it is zero over each I(£), and hence over Upl(£) = I. Hence S is an
interpolating set for I.

In the other direction, let us assume that for some fixed £, S(£) is not an interpolating
set for I(£). Then there exists a polynomial Q(X) which is zero at S(¢) but non-zero for
some point y € I(£). We claim that the polynomial Q(X)A,(X) is zero over S but not zero
at y and hence S is not an interpolating set for I.

Since Q(y) Z 0 and Ay(y) = 1, it follows that Q(y)As(y) # 0. On the other hand, given

z €S,
zZ/lmodp = Ay(z)=0
z={fmodp = Q(z)=0 Since z € S(¥)
Hence Q(X)Ay(X) is zero at every point in S. O
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4.8 Some Combinatorial Properties of Ultrametric Spaces

We show that many of our results for interpolating sets can be translated into properties
of general ultrametric spaces. Further, the proof of these properties for general ultrametric

spaces follows directly from the proof for polynomials over Za.

Definition 4.3 Let T be a tree rooted at a vertex r, such that the distances of all leaves
from the root r are equal. The metric space whose points are the leaves of the tree and

distance is the shortest path in the tree is called an equidistant tree and denoted by (T, d).

It is easy to show that (7', d) is an ultrametric . In fact, the converse is also true.
Fact 4.35 Every finite ultrametric space embeds isometrically into an equidistant tree.

Every equidistant tree can in turn be associated with I C Zjy. for appropriate choices

of p,a and I.

Lemma 4.36 There is a mapping from any equidistant tree T to I C Zpa for some p,a

such that

d(z,y)

lz—ylp=p 2

forxz # vy

PROOF: There is a natural way to associate Z,« with an equidistant tree of degree p and
depth a [11]. The root is at depth 0. The edges from each vertex to its descendants are
labeled {0,--- ,p —1}. Given a point z =), z;p* € Zpa, we associate it with a leaf of the
tree as follows: Start from the root. At depth i, follow the edge labeled z;. Thus the leaf

nodes correspond to points in Zpa, while nodes at depth d correspond to congruence classes

d(zj,zj) —a

modulo p?. If d(z,y) is the tree distance between the points, then |z — y|, =p~ 2

Given an equidistant tree T', we take p to be a prime larger than the maximum degree
of T', and a to be the depth of the tree. For any node, we arbitrarily label the edges to its
descendants with {0,--- ,p — 1}. This can be done since there are at most p of them. This
will map the leaves of T' to I C Z,e and it is easy to verify that the distance satisfies the

desired condition. O

Based on this correspondence, we can translate properties of interpolating sets to prop-

erties of ultrametric spaces. We consider the following NP-hard optimization problem.
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Problem 4.6 MAX-DisT-K: Given a metric space (X, d), pick a subset S of k points such

that the sum of pairwise distances is maximized.

For ultrametrics, the problem can be solved greedily.

Algorithm 4.8 Greedy Algorithm for Max-Dist-k
Input: An n point ultrametric space (7,d).
Output:A subset S of size k maximizing the sum of pairwise

distances.

Pick ap € T arbitrarily.
For j<k-1,
Pick a; so that ), . d(ej,;) is minimized.

Output S = {ag, -+ ,0k-1}-

Lemma 4.37 The greedy algorithm solves Max-Dist-k over Ultrametric Spaces.

PROOF: Associate T' with I C Zpa. For any subset (zg,:-- ,z5_1) of size k,

d( iy )
H |z; — xj]p = pzi’j 5 (5)a
1<J

Hence MAX-DIST-K on an ultrametric reduces to choosing k points in I such that |V (zg, -+ ,zx_1)|p

is maximized, by Theorem 4.30 this can be done by choosing the points greedily. 0

Next we consider the problem of finding a point in a metric space that is farthest from

a given set of points.

Problem 4.7 FARTHEST-POINT: Given a metric space (X,d), and a set {y1,...,yx_1} of

size k — 1, find the point x € X that maximizes ) ; . d(z,v;).

This problem is easy to solve for arbitrary metric spaces, we can just try every point in
X and pick the best. However, ultrametric spaces admit a more efficient solution with some
pre-processing. In the pre-processing step, we find a solution S to MAX-DIST-K using the

greedy algorithm. This step is oblivious of the y;s. We then return the point £ € S that
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maximizes ) ;. d(z,y;). The running time of this step depends only on , it is independent

of the number of points n.

Lemma 4.38 Let y1,--- ,y;x_1 be any subset of size k —1 inT. Let S = {ag, -+, 1}
be a greedy solution to Max-Dist-k. The quantity ), , d(x,y;) is maximized over T at a

point a € S.

ProoF: Associate T' with I C Zpe. Given points y;, consider the polynomial
P(X) = [[(X =)
i<k
Note that

d(z,y;)

[Pa)ly =p= "3 el

Hence, maximizing the distance is equivalent to maximizing |P(z)|,. Since P(X) is of degree

k — 1, by Theorem 4.29 its norm over I is maximized at some point in {ag, -+, 1}. O

The case k = 2 of this Lemma is a direct consequence of the ultrametric inequality. We
are unaware of a direct combinatorial proof of Lemma 4.38 for £ > 3 and higher.

Korte and Lovasz introduced to notion of a greedoid to explain the optimality of some
greedy algorithms like Prim’s algorithm which are not explained by matroids but where
there is a natural ordering of elements in a set [23]. Lemma 4.38 allows us to show that

ultrametric spaces have a greedoid structure.
Definition 4.4 [23] A greedoid is a pair (T, G), where G C 27 is a set system satisfying
1. For every S € G, there is an a € S such that S\ {a} is in G.

2. For R,S € G with |R| < |S| there is an « € S such that RU{a} € G.

Given an ultrametric space (T, d), we take G to be all possible sets output by the greedy
algorithm for MAX-D1sT-K for various values of k. We refer to sets in G as greedy sequences

(since there is a natural ordering on them).

Lemma 4.39 The pair (T, G) is a greedoid.
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PROOF: The first condition is easy, since given a greedy sequence {ay,--- ,q} removing
ay, leaves us with a greedy sequence.

For the second condition, let S = {ag, - ,ax} while R = {fy,---,Bx—1}. To extend
R, we need to add z € T that maximizes ), . d(z,3;). But applying Lemma 4.38 with

y; = B;, we can always find a point o € S that satisfies this condition. O
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CHAPTER V

RAMSEY GRAPHS FROM POLYNOMIAL
REPRESENTATIONS

This chapter studies a problem at the intersection of combinatorics and computational
complexity.

The combinatorial problem is that of explicitly constructing Ramsey graphs. Ramsey’s
theorem shows that every graph on 2" vertices has either a clique or an independent set
of size n/2. In his seminal 1947 paper introducing the probabilistic method, Erdés showed
that there exist graphs with 2" vertices where a(G),w(G) < (2 + o(1))n [29]. He posed
the question of constructing such Ramsey graphs explicitly and offered a prize of $100 for
it. This is a central open problem in explicit combinatorial constructions; the best known
constructions to date are far from the probabilistic bound. The first breakthrough on this
problem was due to Frankl and Wilson in 1981 [31]; their construction gives a(G),w(G) <
cVnlogn  For over two decades, there was no improvement on this bound despite much
effort. However there were other constructions known due to Grolmusz and Alon [43, 5]
that achieved exactly the same bound, and also extended to the problem of constructing
multi-color Ramsey graphs, which is to t-color the edges of the complete graph so that
there is not large monochromatic clique. At first sight, the construction of Grolmusz is quite
different from that of Alon and Frankl-Wilson, yet it gives exactly the same bound. All three
constructions use algebraic techniques, though in different ways. Very recently in 2006, the
Frankl-Wilson bound was beaten by a new construction due to Barak, Rao, Shaltiel and
Wigderson [13] which relies on machinery from extractors and pseudorandomness.

The complexity-theoretic problem which we have encountered in Chapter 3 is to show
degree bounds for polynomial representations of Boolean functions modulo m. Theorem
3.2 due to Barrington, Beigel and Rudich [15] shows that over Zg, the OR function can be

strongly represented by polynomials of degree n. We will refer to this construction as the
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BBR polynomial. Proposition 3.4 shows that this bound is tight for symmetric polynomials.
The question of whether better representations exist using asymmetric polynomials is still
open. Tardos and Barrington proved a lower bound of Q(logn) [74]. A more general
open question is whether asymmetric polynomials can give lower degree representations of
symmetric functions than symmetric polynomials.

A surprising connection between these two problems was discovered by Grolmusz, who
used the BBR polynomials to construct Ramsey graphs [43, 44]. As an intermediate step,
he constructed a set system of size n“(!) on n elements where all set sizes are 0 mod 6
but all intersections are non-zero mod 6, settling an open problem in extremal set theory.
He constructed Ramsey graphs from this set system and showed that lower degree OR

representations mod 6 would give better Ramsey graphs.

5.1 Our Results

Our work generalizes and extends the connection between OR polynomials and Ramsey
graphs. We propose a new definition of an OR representation: a pair of polynomials rep-
resent the OR function on n variables if the union of their zero sets contains all points in
{0,1}" except the origin. We give a simple construction of a Ramsey graph from such rep-
resentations. This viewpoint based on OR polynomials unifies the constructions of Frankl-
Wilson, Alon and Grolmusz: they can all be derived from various OR representations
of degree O(y/n) based on symmetric polynomials. Thus the barrier to better Ramsey
constructions through algebraic techniques appears to be the construction of lower degree
representations. On one hand, since the best lower bound for any of these representations
is only Q(logn) there is the possibility of better constructions. On the other hand, we show
that further improvements cannot come from representations using symmetric polynomials;

we prove an Q(y/n) lower bound for such representations.
5.1.1 Ramsey Graphs from OR Representations:

We recall the definition of weak representations due to Barrington et al.[15].

Definition 5.1 Polynomial P(X) € Z,[X] weakly represents the function f mod m if for
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x,y € {0,1}", if f(x) # f(y) then P(x) # P(y) mod m.

We note that for the OR function strong and weak representations are equivalent, since
if P(X) is a weak representation of the OR function, then P(X) — P(0,...,0) strongly
represents the OR function mod m.

We propose the following definition of an OR representation.

Definition 5.2 Polynomials P(X) € Zpy[X] and Q(X) € Zy[X] represent the OR function

on n variables if
P(0,...,0) =1modp and Q(0,...,0) =1 modgq
and for x € {0,1}"\ (0,...,0)
P(x)=0modp or Q(x)=0modq
where p,q are primes. The degree of the representation is d = max(deg(P),deg(Q)).

One can combine the two polynomials using the Chinese Remainder Theorem (CRT) to
get a single polynomial that weakly represents OR mod pq. However the specific choice of
values output by the weak representation is important for our application. The construction
of Barrington et al.gives a degree O(y/n) OR representation using polynomials over Zs and
Z3. A simple representation of degree O(y/n) with n = pg — 1 using polynomials over Z,
and Z, can be derived from Alon’s construction. This highlights another difference about
our definition and weak representations: for Ramsey constructions, we are not restricted to
any fixed moduli p and ¢, we are free to choose them in any way, (possibly as functions of
n) so that the degree is minimized as a function of n.

We give a simple Ramsey construction based on OR representations: the vertex set is
{0,1}™ and we add edge (x,y) to G if x @y is in the zero set of P(X), where x @ y denotes
the symmetric difference of x and y. In order to bound «a(G) and w(G), we use the notion
of representations of graphs over spaces of polynomials introduced by Alon [5]. The idea is
to assign polynomials to the vertices of G so that the polynomials assigned to vertices in a

clique are linearly independent.
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Definition 5.3 Let G(V, E) be a graph and F be a set polynomials in n variables over field
F. A polynomial representation of G over F is an assignment of a polynomial P,(X) € F

and a point x, € " to v € V where:

1) For each v € V, P,(x,) # 0.

2) If (u,v) € E then P,(x,) = 0.

It is easy to see that w(G) < dim(F) which is the dimension of the F vector space
spanned by polynomials in F. We use the polynomial P(X) to construct a representation
of G over Z, and Q(X) to construct a representation of G over Z,. The Frankl-Wilson
construction can also be viewed in this framework, where we represent G' over Z, and G
over Q. However, quoting Alon ‘It seems that this construction does not extend to the case
of more than 2 colors’ [5]. We propose a definition of OR representation which leads to

such an extension.

Definition 5.4 Polynomials P(X) € Zye[X] and Q(X) € Z,»[X] represent the OR, function

on n variables if
P(0,...,0) £ 0modp® and Q(0,...,0) % 0 mod p°
and for x € {0,1}" \ (0,...,0)
P(x) =0mod p® or Q(x)=0mod p®
where p is prime and a,b > 1.The degree of the representation is d = max(deg(P), deg(Q)).

To differentiate the representations of Definitions 5.2 and 5.4, we refer to them as prime
representations and prime-power representations respectively. The Frankl-Wilson construc-
tion can be used to show that for n = p? — 1, there exist OR representations of degree
O(4/n). The interesting feature of this representation is that it does not use the Chinese
Remainder Theorem (CRT). The construction of Ramsey graphs from prime-power repre-
sentations stays the same; the difference is in the analysis. For this, we introduce polynomial

representations of G' over Zpa.
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Definition 5.5 Let G(V, E) be a graph and F a set of polynomials in n variables over Z.
A polynomial representation of G over Zy is an assignment of a polynomial P,(X) € F

and a point x, € Z" tov € V s.t.:

1) For each v € V, P,(x,) # 0 mod p°.

2) If (u,v) € E then P,(x,) = 0 mod p®.

We show that the polynomials assigned to a clique are linearly independent over QQ so
w(G) is bounded by the dimension of the Q-vector space spanned by F. Like polynomial
representations of graphs over QQ, representations over Z,« assign linearly independent poly-
nomials over QQ to vertices in a clique. A crucial difference is that representations over Q
tensor, those over Zpa do not. This means that if we have sets of polynomials F; and Fo
that represent G; and G5 over QQ, then F; ® F» represents GG1 - Gy over QQ for an appropriate
definition of graph product (see [5] for definitions and proofs). This is important for the
original application of these representations, which was to bound the Shannon capacity of
the graph. However, this property implies that one cannot get low dimensional representa-
tions of both G and G over Q, since G - G always has a large clique. But since Zye has zero
divisors, we lose this tensor product property, so we can simultaneously get low dimensional
representations of G and G over L.

We could restate this argument from the viewpoint of OR representations. We cannot
get low degree prime representations by taking p = ¢ since then P(X)Q(X) € Z,[X] is 0 at
every point in {0, 1}" except the origin, and such a polynomial requires degree n. But this
argument does not extend to prime-power representations because of zero-divisors.

All the OR representations above achieve a bound of O(y/n) using symmetric polyno-

mials. Plugging them into the simple construction above gives a(G),w(G) < ci/ﬁlogn

as
opposed to the best bound of ¢V"*1°8™ However, by massaging the polynomials and work-
ing with set intersections as opposed to distances, we can get exactly the constructions of

Frankl-Wilson, Grolmusz and Alon. Here are some advantages of our unified view of these

constructions:
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e It places the constructions of Alon and Frankl-Wilson in the context of OR poly-
nomials, and raises the possibility of getting better constructions from low degree
representations. The notions of prime-power representations of graphs and Boolean

functions arising from the Frankl-Wilson construction are of independent interest.

e It relates the construction of Grolmusz to those of Frankl-Wilson and Alon, which
look very different at first. Our Ramsey graph construction from the OR polynomial
of Barrington et al.is simple and direct. In fact it takes some work to show that we get
the same graph as Grolmusz. Viewing this construction in terms of set intersections,
we derive improved bounds for set systems with restricted intersections modulo prime

powers.

o In this view, all the constructions naturally extend to multicolor Ramsey graphs. To
construct t-color Ramsey graphs, we define OR representations involving ¢ polynomials
over Zg,,...,%Lq, where qi ..., q; are prime powers. Taking powers of the same prime

p extends the Frankl-Wilson construction.
5.1.2 Limitations to Symmetric Constructions

A natural question is to show tight degree bounds for OR representations. A better up-
per bound would lead to better Ramsey graphs. Lower bounds are interesting from the
complexity-theory viewpoint of understanding polynomial representations over composites.
For the OR function, we believe Definition 5.2 is the right one to use, since it seems to
eliminate dependence of the degree on the modulus pq. Also it places the problem in the
context of understanding the zero-sets of low degree polynomials over Z,. This question
has been studied in various other contexts including low degree testing, zero-testing and
derandomization. Prime-power representations are interesting since they do not rely on the
CRT. Interestingly, the Q(logn) lower bound [74] also does not use the CRT, so it applies
to prime-power representations too. It is possible that proving bounds for prime-power
representations is easier than the prime case.

Degree lower bounds extend a line of work in combinatorics aimed at understanding why

explicit Ramsey graphs are hard to construct, by showing limitations to various natural
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techniques. A conjecture of Babai states that one cannot construct good Ramsey graphs
based on the sign of a set of real polynomials. There has been considerable progress towards
proving this conjecture by Alon et al.[3, 7]. Degree lower bounds are weaker since they
say the known technique for bounding «(G) and w(G) does not yield good bounds, as
opposed to showing either «(G) or w(G) is large. But on the other hand, there are no good
Ramsey constructions using signs of real polynomials, while OR representations are the
best technique known for this problem. Further, the Ramsey graph constructions based on
symmetric polynomials result in graphs where the vertex set is {0,1}" and where edges are
added between vertices based on the Hamming distance between them. Such graphs possess
a high degree of symmetry which is unlikely in a random graph. Our degree lower bound
suggests that perhaps such Ramsey graph constructions cannot give better parameters (see
Chapter 6).

We show a degree Q(1/n) lower bound for OR representations by symmetric polynomials.
Thus better representations if they exist must use asymmetric polynomials. Proposition [15]
gives a lower bound of Q(y/n) for symmetric polynomials that weakly represent OR mod
6 [15]. One might guess that similar arguments should work even for our new definition
of OR representations, but this is incorrect. In fact those arguments will not suffice even
for prime representations. The precise bound they prove, and which holds for all weak
representations is deg(P) - deg(Q) > n/(pq). This is good enough when p, g are small, but
if n < pg as in Alon’s construction, this gives a bound of 1. One cannot hope for a stronger
result since the polynomial ), X; of degree 1 weakly represents OR on n < pq variables
over Zpq. Our definition restricts the values output by the weak representation, making it
possible to show bounds independent of the modulus m. But exploiting this difference calls
for new techniques, beyond the periodicity based arguments used for weak representations

that were used in Chapter 3.
5.1.3 Owur Lower-Bound Techniques

While lower bounds for the prime and prime-power cases are very different, they have similar

high-level structure: an algebraic part where we show that if the zero-set of the polynomial
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has certain structure, then the polynomial must have high degree, and a combinatorial part
where we argue that there is no good partition of hypercube, that any partition results in
one of the polynomials having high degree.

For the prime-power case, we translate the problem to one about univariate polynomials
modulo Zg,.. However over Zy. it is no longer true that a degree d polynomial can have
only d roots (take X for instance); so we need new tools for degree lower bounds. Building
on Algorithm 4.2 for interpolation over Z,. from Chapter 4, we define a greedy sequence,
which roughly is a sequence that is distributed uniformly among various congruence classes
modulo powers of p. We show that the longest greedy sequence in the zero-set gives a lower
bound on the degree of a polynomial. Then a combinatorial argument shows that in any
partition of integers {1,...,n} into A and B, one of them contains a long greedy sequence.

For the prime case, we view a symmetric polynomial P acting on a 0-1 vector x as a
polynomial P acting on in the digits of the base p expansion of the weight wt(x) following
Bhatnagar et al.[20]. There it was shown that P can be used to bound deg(P) within a
factor of p; we introduce a notion of weighted degree of P that exactly captures the degree
of P. The combinatorial part of the proof uses a number theoretic lemma which seems of
independent interest. It says that if p,q are primes, n < pq and A C Z; and B C Zj are
subsets so that every number in [1,...,n] lies in A mod p or in B mod ¢, then one of A or

B has to be large.
5.1.4 Organization of this Chapter

We analyze our simple Ramsey graph construction based on OR polynomials in Section 5.2.
In Section 5.3, we give a construction based on set intersections, and show how to derive
the constructions of Frankl-Wilson, Grolmusz and Alon from it. We prove Iwoer bounds for

prime-power representations in Section 5.4 and for prime representations in Section 5.5.
5.1.5 Preliminaries

Let 0 = (0,...,0). Given x € {0,1}" let wt(x) denote its Hamming weight. Given x,y €

{0,1}", x @y denotes symmetric difference, x Ny denotes the bitwise AND and d(x,y)
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denotes Hamming distance. For ¢ < d, let

(<022 ()

For z € Z, let the valuation of z denoted val,[z] be the highest power of p that divides

z. Let val,[0] = co. Th valuations have the following properties:
1. valp[z + y] > min(valy[z], valy[y]). (Ultrametric inequality)
2. val,[zy] = valp[z] + valp[y].

We use the notation val,y[ ] to distinguish valuations for integers from valuations for Zpe
which we encountered in Chapter 4 which we denoted by val,( ). Note that for those
valuations, Property 2 was replaced by the inequality val,(zy) > val,(z) + val,(y).

We will also consider the problem of constructing t-color Ramsey graphs which is defined

as follows:

Problem 5.1 MULTI-COLOR RAMSEY GRAPHS: Give a t-coloring of the edges of the

complete graph so that the size of the largest monochromatic clique is minimized.

We say a Ramsey graph G(V, E) is explicit if there is a deterministic poly(|V|) time
algorithm to compute the adjacency matrix and very explicit if there is a deterministic
poly(log|V]) algorithm that computes the adjacency relation. We briefly describe the known
explicit constructions of Ramsey graphs in chronological order.

— Frankl-Wilson [31]: Take p prime and m = p3. The vertex set consists of all subsets of
[m] of size p? — 1. Two vertices S and T are adjacent if |SNT| #Z —1 mod p. One can bound
the size of a(G) and w(G) using well-known results from extremal set theory [31, 10].

— Grolmusz [43, 44] : The main step is to construct a set system F on [n] of size n®()
so that |S| = 0 mod 6 but |[SNT| # 0 mod 6. The vertices of the graph G are sets of F
and S, T are adjacent if |S N T| is odd. One can bound a(G) and w(G) using results from
extremal set theory.

— Alon [5]: Take p < ¢ to be nearly equal primes and m = p3. The vertex set consists of
all subsets of [m] of size pg — 1. Two vertices S and T are adjacent if |SNT| # —1 mod p.

To bound a(G) and w(G), we construct representations of G over Z, and G over Z,.
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— Barak [12]: Barak gives a product based construction (discovered independently by
Pudlak and Rodl) where we first explicitly search for a good Ramsey graph in a small
sample space and then use the Abbot product to get a larger graph. This gives |V| = 2"
and a(Q),w(@) < 2¢V718™ for any € > 0. A similar product based construction, but with
worse parameters is given by Naor [62].
— Barak-Rao-Shaltiel-Wigderson [13]: In a recent breakthrough, Barak et al.give a
construction that achieves a(G), w(G) < 27°“ In fact they solve a more general problem,
which is to construct bipartite Ramsey graphs. Their construction is rather intricate and
makes significant use of machinery developed for extracting randomness from weak random
sources.

Except for Barak’s product-based construction, all the constructions mentioned above

are highly explicit.

5.2 Constructing Ramsey graphs using OR Polynomaials

In this section, we prove the correctness of the construction described in the introduction.
While the graphs obtained are not quite optimal, the construction is simple and best explains
the close connections between OR representations and Ramsey graphs.

If graph G has a representation over a field F as in Definition 5.3, it is easy to show that
w(G) < dim(F) where dim(F) is the dimension of the F-vector space spanned by F [5].
For representations over Zpa, we show that w(G) < dim(F) where dim(F) is the dimension
of the Q-vector space spanned by F. The proof is by a valuation based argument similar

to one used by Babai et al.[11].

Lemma 5.1 If G(V, E) has a polynomial representation over Zpa, then w(G) < dim(F).

PrOOF: Let K C V be a clique. We claim that the polynomials P,(X) for v € K are

linearly independent over Q. Assume for contradiction that

> AMPy(X) =0

veK

By clearing denominators, w.m.a that A\, € Z, and by removing common factors w.m.a that

123



p does not divide A, for some u € K. Rearranging terms, we have

MPX) = = ) AP(X)
vEK v#£u
Substituting X = x,,
AuPu(xu) = - Z )\UPU(X’U,)
veEK v#£u

Since P, (xu) #Z 0 mod p* and valy[A,] = 0, we have valp[\,Py(x,)] < a—1. But v € K
and v # u, then (v,u) is an edge, hence P,(x,) = 0 mod p®. So the RHS is divisible by p%,

which is a contradiction. O

Construction 5.1 Graph G(V,E) from OR polynomials.
— Let V(G)=1{0,1}".

— If P(x®y)=0, add an edge (x,y).

Theorem 5.2 Given a degree d OR representation, graph G has 2" vertices and o(G),w(G) <
(£)-

PROOF: Assume that we have a prime representation. We give a polynomial representation

of G over Zj,. For each vertex v € {0,1}", let

1-X; if vy =1
Y; =
Define Py (X1,...,X,) to be the polynomial obtained by multi-linearizing P(Y7,...,Y,) (i.e
setting X¢ = X;). Note that for u € {0,1}", Py(u) = P(v ® u). Hence
P, (v) = P(0) # 0 mod p.
On the other hand, from our construction, if (u,v) € E then P(v @ u) # 0 mod p. Hence

Py(u) = P(v®u) Z 0 mod p.

Thus we get a polynomial representation of G over Zj,. Since the P, (X)s are all mul-
tilinear polynomials of degree at most d in n variables, they lie in a vector space of di-

mension (,). This shows that w(G) < (2,). Similarly, if (u,v) is not an edge then
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P(v ®u) #Z 0 mod p, hence Q(v & u) = 0 mod ¢g. Using this we construct a representation
of G over Z, and bound «(G).
For prime-power representations of OR we can represent G and G over Zye by the same

argument. O

One can construct explicit Ramsey graphs by plugging in various OR representations
described below; all of which give d = O(y/n) using symmetric polynomials. This gives a

}/ﬁlog" for some constant ¢; on the clique size. In fact the constructions below

bound of ¢
are very explicit, since given vertices x,y € {0,1}", the color of the edge (x,y) can be
computed in time O(n).

1) Alon [5]: Let p < ¢ be primes and let n = pg — 1. Define P(X) € Z,[X] and
Q(X) € Z¢[X] as

P(X) = 1—(2&)’7_1
QX) = 1—(2)@)"_1 (45)

For x # 0, since 1 < ). w(x) < pg — 1, by the CRT w(x) # 0 mod p or w(x) # 0 mod gq.
By Fermat’s Theorem, in the former case P(x) = 0 mod p, in the latter Q(x) = 0 mod gq.

Taking p, ¢ nearly equal gives degree d = (1 + o(1))+/n.

2) BBR [15]: Let n = 2¢3¢ — 1. Define P(X) € Z,[X] and Q(X) € Z3[X] as

PX) = (ZiXi + 2k — 1)’

2k —1
. £ _
ax) = (270 (46)

Since (E;sz) = Si(x) for x € {0,1}", P(X) and Q(X) in fact have coefficients from Zy and
Zs. For x #£0,1 < 3, w(x) < 253 — 1. Lucas’ theorem implies that if w(x) # 0 mod 2*
then P(x) = 0 mod 2, and if w(x) # 0 mod 3¢ then Q(x) = 0 mod 3. We can choose k, /

s.t. d = (14 ¢)y/n for any € > 0 [57].

Both representations above are prime representations, we now construct prime power
representations. For ease of exposition, we restate Definition 5.4 of prime-power represen-

tations in terms of rational polynomials; we omit the simple proof of equivalence.
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Definition 5.6 Polynomials P(X),Q(X) € Q[X] represent the OR function on {0,1}" if
P(0,...,0) =1mod p and Q(0,...,0) =1modp
and for x € {0,1}"\ (0,...,0)
P(x) =0modp or Q(x) =0mod p
for a prime p. The degree of the representation is d = max(deg(P),deg(Q)).

Note that in general P(x) could be rational. When we say P(x) = 0/1 mod p, we mean
P(x) is an integer satisfying the condition. However, if x # 0 and Q(x) = 0 mod p, then

P(x) need not be an integer and vice versa.

3) Frankl-Wilson [31]: Take p prime and n = p? — 1. Define P(X), Q(X) € Q[X] as

p—1
P(X) = (E&-—j)
j=1 \ i
p—1
uXio .
ox) = JI(==- (47)
(%)

For a non-zero vector x € {0,1}" we have 1 < w(x) < p? — 1. If w(x) Z 0 mod p then
P(x) = 0 mod p. If w(x) = 0 mod p, then 1 < % < p—1 hence Q(x) = 0 mod p. The
degree isd =p—1 < +/n.

4)  We construct representations with the prime fixed and n varying, analogous to [15].

Let n = 22¢ — 1. Define P(X),Q(X) € Q[X] as

P(X) = (ZiXin_l)

2k —1
2 Xi k
LiXi g ok _q
o) = (7,707 (49

The proof of correctness is through Lucas’ theorem. If w(x) # 0 mod 2* then P(x) = 0. If

x # 0 but w(x) = 0 mod 2* then Q(x) = 0.
Plugging any of these polynomials into construction 5.1 gives the following type of graph

: Add (x,y) to E if d(x,y) # 0 mod £ where £ is either a prime or a prime power close to

NG
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For the problem of constructing t-color Ramsey graphs, we define OR representations
with ¢ polynomials P;(X), ..., P;(X) such that the union of their zero sets if {0,1}" \ {0}.
We can extend constructions in Equations 45, 46 by taking ¢ distinct primes. To extend

the construction of Equation 47, let n = p* — 1. For 1 < £ < t define

R = 1 (= -1) (49)

=1\ P
We can similarly extend Equation 48, we omit the details.
5.3 Ramsey Graphs based on Set Intersections

The constructions of Frankl-Wilson, Alon and Grolmusz use a coloring scheme based on the
size of set intersections. In this section we show that these can be constructed from certain
polynomials that are closely related to OR polynomials. These polynomials are also used
by Grolmusz [44] and Kutin [57] to give simple constructions of set systems with restricted

intersections mod 6.

Definition 5.7 The weight-n function W), is a partial function defined on {0,1}" form > n

as follows
Wh(x)=0 if wx)=n  Wy(x)=1 if w(x)<n
The function is undefined for w(x) € [n + 1,...,m].

Note that W,, on n variables is simply the NAND function. We now define polynomial
representations of W,,,. We give an extension of Definition 5.2, a similar extension holds for

Definition 5.4

Definition 5.8 Polynomials P(X) € Z,[X] and Q(X) € Z4[X] represent the W,, function

on m variables if

P(x) #0modp and Q(x)# 0modgq ifw(x) =n

P(x)=0modp or Q(x)=0modg ifw(x) <n
The degree of the representation is d = max(deg(P), deg(Q)).-
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Assume that P(Xy,...,X,,) and Q(X1,...,X,) represent W,, with degree d for some
m > n. Define P(X1,...,X,) and Q(X1,...,X,) to be polynomial by substituting 1 — X;
for X; when ¢ < n and setting X; = 0 for ¢ > n. It is easy to verify that P and Q
represent OR on n variables with degree at most d. Further if P and ) were symmetric
polynomials, then so are P and Q Thus lower bounds for OR representations imply lower
bounds for W,, representations. In particular our lower bounds for OR representations rule
out representations of W,, with symmetric polynomials of degree o(/n).

Conversely one can construct degree d representations of W), from degree d symmetric

polynomials representing OR on n variables. We do not know if a similar statement is true

for asymmetric polynomials.

Lemma 5.3 A degree d representation of OR on n variables using symmetric polynomials

gives a degree d representation of Wy, on n variables for all m > n,

Proor: Let P(X),Q(X) be symmetric polynomials of degree at most d on m variables
that represent ORReplace each X; by 1 — X; and multi-linearize. It is easy to show that
the resulting polynomials P'(X),Q'(X) represent W,, on n variables. Further, they are
symmetric multilinear polynomials of degree d, hence we can write them as

Pl(Xla"'aXn) = ZazSZ(XlaaXn)
i<d

Q(Xy,...,X,) = ZbiSi(Xla ey Xp)

i<d

We obtain new polynomials P” and Q" by replacing S;(X71,...,X,) by Si(X1,..., Xm).
P”(Xla s aXm) = Z aiSi(Xla s aXm)

Q" (X1, s Xm) = Y biSi(X1,.., Xin)

Since the value of a symmetric function on a 0, 1-vector depends only on the weight of the

vector, one can show that P” and Q" represent W, on m variables. O

We can use the O(y/n) OR representations to construct representations of W,,. We give

a construction of explicit Ramsey graphs from representations of W,,.
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Construction 5.2 Ramsey Graph G(V,E) from representations of W,.
— V(G) consists of vectors x € {0,1}™ of weight n.

— If P(xNy) =0, add (x,y) to E(G).

Theorem 5.4 Given a degree d representation of the weight-n function on {0,1}™, the

graph G has (') vertices and o(G),w(G) < (Z1).

PROOF: Assume we have prime representation of W,. We associate a polynomial Py (X)
with each vertex v so that Py(u) = P(vNu). Given v = (v1,...,0), let Y; =0 if v; =0
and Y; = X if v; = 1. Set Py(X) = P(Y1,...,Y,,;) and multi-linearize. Using an argument
like in Theorem 5.2, we can show that this gives a polynomial representation of G over Z,,.
Since the Py (X)s are multilinear polynomials of degree d, we get w(G) < (gfi) Similarly
we bound «(G) by representing (G) over Z,.

For prime-power representations of OR we can represent G and G over Z, and get a

similar bound. O

The OR representation of Equation 45 gives the following construction due to Alon [5].
Let n = pqg — 1,m = n?. The vertices are all subsets of [m] of size n. Add (x,y) to E(G) if
|x Ny| # —1 mod p.

The OR representation of Equation 47 gives the Frankl-Wilson construction: Let n =
p? — 1,m = n?. The vertices are all subsets of [m] of size n. Add edge (x,y) to E(G) if
|xNy| # —1 mod p. This construction can be extended to ¢ > 2 colors using the polynomials

constructed in Equation 49.

Construction 5.3 Extending the Frankl-Wilson construction to ¢
colors.

— Take n = p’ — 1,m:pt+1. Vertices are all n subsets of m.

— Edges are colored {0,...,t - 1}. Edge (x,y) is given color

val,(1+ [xNyl).

The OR representation of Equation 46 gives the following graph G(V,E). Let n =

283t — 1,m = n2. The vertices are all subsets of [m] of size n. Add (x,y) to E(G) if
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|xNy| # —1 mod 2*. In fact the graph obtained is the same as Grolmusz. To show this, we
first present his construction, following the simplified exposition of Grolmusz himself [44]
and Kutin [57].

1) Let n = 2¥3¢ — 1. The BBR polynomials give the following representation of W,,.

P = (575 e = (2

2k —1 3¢—1
Define R(X) € Zg[X] to be the polynomial obtained by combining these polynomials using
the CRT. It follows that R(x) = 1 mod 6 when w(x) = n and R(x is divisible by 2 or 3
when w(x) < n.
2) We can view R(X) as an integer polynomial with coefficients in {0, ...,5}. By repeating
each monomial sufficiently many times, we can write

R(X) = Z H Xi

a €a

The elements of the universe are the monomials. If « is repeated ¢ times in R(X), then
there are c elements in the universe, one for each occurance of a. For each x € {0,1}™ of
weight n, the set S(x) consists of monomials that evaluate to 1 on x. One can verify that
this system has restricted intersections mod 6 since |S(x) N S(y)| = R(xNYy).
3) The vertices of the graph H are the sets S(x). We add edge (S(x), S(y)) if |S(x)NS(y)| =
0 mod 2.

We wish to show that this graph H is the same as the graph G constructed above. We
identify x € V(G) with S(x) € V(H). In H, we add an edge between S(x) and S(y) if
R(xNy) = 0 mod 2. By the CRT, this implies that P(xNy) = 0 mod 2. By Lucas’ theorem,
this happens if w(x Ny) # —1 mod 2¥. But this is precisely when (x,y) is an edge of G.

This equivalence can also be seen from Kutin’s construction [57]. While Grolmusz’s set
system construction is an important result, our approach seems to be simpler for the purpose
of Ramsey graph construction. One can interpret the bounds on clique and independent set
size as coming from an extension of the modular Ray-Chaudhuri-Wilson theorem to prime

powers, which we prove in Appendix A (Theorem A.5).
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5.4 Lower Bounds for Prime-Power Representations

In this section we prove a lower bound for prime-power representations by symmetric poly-

nomials.

Theorem 5.5 Let P(X) € Zy[X] and Q(X) € Z,[X] be symmetric polynomials that

represent the OR function on n variables. Then (deg(P) + 1) - (deg(Q) +1) > 3.

Since a symmetric polynomial on a 0-1 vector is essentially a polynomial in the weight
of the vector, we can restate Theorem 5.5 in terms of integer polynomials. The formal proof
is easy and is omitted. While we could also work with polynomials in Z,.[X], the presence

of zero divisors would make it messier to use valuations.

Proposition 5.6 Let P(X),Q(X) € Z[X] be univariate polynomials such that for = €

{1,...,n},
val,[P(0)] < val,[P(z)] or valy,[Q(0)] < valy[Q(z)] (50)
Then (deg(P) + 1) - (deg(Q) + 1) > 7.

The next two Lemmas (5.7 and 5.8) develop tools to show degree bounds for such

polynomials.

Definition 5.9 A sequence S = (au,...,aq) of integers is called a greedy sequence if for
all 7,
Z valya; —a;] < Zvalp[ozk —q; for k#j

1<j 1<j

Let us define Ni(X) = 1 and Nj(X) = [[,..,(X — ;) for j > 1. The definition of a

1<j
greedy sequence can be restated as val,[N;(c;)] < valp[Nj(ayg)] for & # j. Given any
set S, we can order it elements greedily as follows to get a greedy sequence: we choose oy
arbitrarily; having chosen (o, ..., a;j_1) we choose a; € S to be the element that minimizes
valy[Nj(a;)]-

The definition of greedy sequences is reminiscent of interpolating sets modulo prime-

powers; indeed they are analogues of interpolating sets over the integers. An example of
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a greedy sequence is when (aq,...,qq) are consecutive integers. The intuition for next
Lemma is from Algorithm 4.2 from Chapter 4 for polynomial interpolation over Zy.. Given
a set S C Zpe, and evaluations of some polynomial in Zy.[X], Algorithm 4.2 will output
the smallest degree polynomial P(X) that fits the data, provided it sees the elements of
S in the above greedy order. If the polynomial is 0 on every element but the last, then
the algorithm is forced to output a polynomial of degree d — 1. Greedy sequences are an

analogue of this over the integers.

Lemma 5.7 Let S = (a1,...,aq) be a greedy sequence. Let P(X) € Z[X] be such that
valy[P(aq)] < valp[P(ay)] fori<d-—1
Then deg(P) > d — 1.

PRrROOF: The proof is by induction on d. We will show the converse, namely that if deg(P) <
d—2.

val[P(aq)] > min val,[P(a;)]

The base case d = 2 is trivial, in this case P is constant so it is clear that val,[P(ag)] =
valy[P(a1)]. Assume the property holds for greedy sequences of length d — 1. Given a
polynomial P(X) of degree d — 2, since Ny_1(X) is a monic polynomial of degree d — 2,
we write P(X) = Q(X) + ¢4_1N4_1(X), where Q(X) is a polynomial of degree d — 3.
Substituting X = ayq,

Plag) = Q(aq) + ca—1Ng-1(ca)
hence by the ultrametric inequality
val,[P(aq)] > min{val,[Q(aq)], valplci—1 Ng—1(aq)]} (51)

To lower bound val,[Q(ag)], note that the sequence (o, ..., a4 2,aq) of length d — 1
obtained by deleting a4 is also greedy. Hence applying the inductive hypothesis to Q(ay),

we get

val,[Q(aq)] > Z'Isriiigvalp[Q(ozi)] = iISIbiEIQVEﬂp[P(Oéi)] (52)
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The last equality follows since Ny 1(a;) = 0 for i < d — 2, hence Q(«o;) = P(e;). We now

lower bound valy[cg—1Ng—1(g)]- Using the greedy property of the sequence (a,...,aq),
valy[cg—1Ng—1(aq)] > valp[ca—1Ng—1(g—1)]

ca—1Ng—1(ag—1) = Plag_1) — Q(ag—1)

Hence we have

valy[cg_1Ng_1(agq—1)] > min{val,[P(aq_1)], valy[Q(cg—1)]} (53)
Since (aq,...,aq-1) is a greedy sequence and ) has degree d — 3, we get by induction that
vl Q(ag1)) > min, val[Q(g)] = i val,[P(as) (54)
Combining Equations 51, 52, 53, 54 gives the desired result. O

Next we define the notion of a greedy array which we use to construct long greedy
sequences. Given a t-dimensional matrix A of dimension dy X ... X d;_1, we use A[i] to

denote Alig, ..., 1]

Definition 5.10 A t-dimensional matrix of distinct integers A is called a greedy array if
valp[A[i] — A[j] | = min{alis # ja} (55)

We define an ordering of the array indices, which is essentially the reverse lexicographic

(revlex) ordering.

Definition 5.11 Given a t-dimensional integer vectors i and j, let £ = max{ali, # j.}-

Theni < j if i < jo.

Note that for a greedy array, the valuation should equal the smallest index where i
and j differ. However to order elements, we look at the largest index where they differ.

L and

For example, consider the p x --- x p array where Alig,...,i;_1] = io +i1p ... iz_1p""
0 <4; < p— 1. Thus the array contains i € {0,...,p" — 1} with numbers indexed by their
base-p expansion. Since valy[i — j] depends on the smallest digit where ¢ and j, this is a

greedy array. The ordering defined above is the usual ordering of integers, it depends on

the largest digit where the expansions differ.
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Lemma 5.8 Ordering elements of a greedy array gives a greedy sequence.

PrROOF: We want to show that for k # j
> val[A[f] — Al ] < > valy[Alk] — A[i] | (56)
i<j i<j

For 0 < a <t -1, we define the set

Sa = {i‘ia < jaa ia—}—l = ja—}—la ey 'L.tfl = jtfl}

The indices g, .. .,%,—1 are unrestricted. Note that the S,s are disjoint and they partition

the set {i|li < j}. We show that for every a, and for k # j

Y oval[Aff] - Al ] < ) val,[A[k] - Ali] ] (57)

i€ S, ieS,
Equation 56 will follow by summing over all a. Hence consider a fixed a. Note that ifi € S,
then 0 < val,[A[j] — A[i] | < a. Accordingly we partition S, into J(0),...,J(a) as follows:

for0</4<a-1,
J(e) = {i € Sali() :j()a"'aie—l :jé—laié 7&]@}
= {i € Safval[A[j] — Ali] | = ¢}

J(a) = {i € Sa|‘i0 = 0y---,%g—1 = ja—l}

For i € J(a) we have val,[A[j] — Ali] | = a since for all i € S,, 14 < jq 50 i # jo- Now given

k # i let us define the sets K(0),..., K (a) as follows. For 0 < /¢ <a — 1,

K(f) = {i € Sa|’i0 =ko,..., 001 = ko_1,1%¢ 7& ke}
= {i € Sy|val,[A[k] — A[i] ] = ¢}

K(G,) = {l c Sal’io = ko,. .. ,'ia—l = ka—l}

Unlike for J(a), for i € K(a) it could be that i, = k,, so we have val,[A[k] — A[i] ] > a.

Since the indices i, ...,%,_1 are unrestricted in S,, we have |J(£)| = |K(¢)| for 0 < ¢ < a.
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We now prove Equation 57.

S oval[A[fl - Af] = ) > valy[A[f] - Afi] ]

i€S, 0<t<aic(f)
= Y 1)
0<t<a
S vaLAK -4l ] = Y val[AK] - Afi ]
i€S, 0<l<aieK (L)
> Y L-|K(0)]
0<¢<a
> Y -]J()
0<¢<a
Hence the claim follows. [l

A two-dimensional greedy array is a matrix G of integers such that elements in the same
row are congruent mod p, while elements in distinct rows are not congruent mod p. Lemma
5.8 says that ordering the elements of G column-wise gives a greedy sequence.

This concludes the algebraic step of the proof. Let us sketch the rest of the proof when
n = p? — 1, which corresponds to the Frankl-Wilson construction (see Figure 2). Define the

sets

A={0}yu{z e {1,...,p* — 1} | val,[P(0)] < val,[P(z)]}
B={0}U{z € {1,...,p* — 1} | val,[P(0)] > val,[P(z)]}

Note that val,[Q(0)] < val,[Q(z)] for every z # 0 in B. Further A and B partition the
set {1,...,p? — 1} and they intersect only at 0. We will show that A and B contain large

greedy arrays.

1. Arrange {0,...p? — 1} in p x p grid, each row corresponding to a congruence class

mod p.

2. Within each row, place elements lying in A before those in B. Since 0 lies in A N B,

place all other elements in A which are 0 mod p before 0.

3. Sort the rows according to how many elements from A they contain.
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B H B H
£y
A
0
ko G
A=G 0
ky

Figure 2: Lower bound for p? — 1 and the Frankl-Wilson construction

This reordering is illustrated in Figure 2, the dark line separates A and B. It is clear
that A and B contain greedy arrays G of size kg X k1 and H of size £y x ¢1 respectively
(indicated by shaded regions) so that ko + £y = k1 + ¢ = p + 1. From this it follows that
|G||H| > p®. Also, we can ensure that 0 is the last element of these arrays in the column-
wise ordering. So val,[P(z)] is minimized at the last element in G, hence by Lemma 5.8
deg(P) > |G| —1. Similarly deg(Q) > |H|—1, which proves the desired bound. Also, |G||H]|
is minimized when A = {z|z = 0 mod p}, and B = 0U {z|z # 0 mod p} (or vice versa), the
corresponding polynomials give exactly the Frankl-Wilson construction.

The proof for general n is a high dimensional extension of this argument. The next
lemma (Lemma 5.9) says that any disjoint partition of {0,...,n—1} into A, B will result in
one of the partitions having a greedy array of size y/n. In fact we prove something stronger,
we can choose the dimensions of the array to be any solution to Equation 58. We also

assume that n is of the form n/p'~! which makes it easier to use induction.

Lemma 5.9 Let 1 < n’ < p. Let A, B be disjoint sets of integers such that AU B =

{0,...,n'p""t —1}. Given any positive integers ko, ..., ki_1,%o,. .., 1 satisfying

Fori<t—2 ki+l = p+1 (58)

ki1 4+ 41 = n'+1

either A contains a greedy array of size kg X --- X k;—1 or B contains a greedy array of size
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lo X v X Uy

PROOF: The proof is by induction on ¢ (the dimension of the greedy arrays).

When ¢ = 1, we have disjoint sets A, B so that AUB = {0,...,n'—1} hence |A|+|B| = n'.
Since n' —1 < p any ordering of A and B gives greedy arrays of size |A| and | B| respectively.
Given kg, £y such that kg + o =n' + 1, if |A| < kg — 1, then |B| > n' + 1 — ko = 4.

Assume that the claim is true up to £ —1. For 0 < i < p— 1, we define the following sets

A7) = {z € A|lz =i mod p}
A() = {(z — i) /p | = € A(5)}

We define sets B(i) and B(i) similarly. Note that for each i, A(:) and B(3) are disjoint,
further A(i) U B(i) = {0,...,n/p""2 —1}. So the induction hypothesis applied to A(7)
and B(i) with ki,...,ki_1,%1,...,%—1 implies that either A contains a greedy array of size
k1 X -+- X ki_1 or B contains a greedy array of size £1 X --- X £;_1. We define the following

sets

S = {i|A(i) has a greedy array G; of size ky X --- X k; 1}

T = {i|B(i) has a greedy array H; of size 1 x -+ x £;_1}

Since S,T are disjoint and |S| + |T'| = p we have either |S| > ko or |T'| > £y. Assume
|S| > ko. We define a greedy array G of size ko X - - - X k;—1 as follows. Choose S’ C S of size
ko. For each i € S, the i** row of G contains the pre-image G; of G; in A(%) of dimension
ki X - X k1.

We need to verify that G satisfies val,(G[i] — G[j]) = min{ali, # j.}. Given i and j, if
i0 # jo, then G[i] # G[j] mod p so the condition holds. Now assume that iy = jo, so that

i = (ig,1'),j = (49,]j')- Since G[i] and G[j] are in the same row, G[i] = G[j] = ¢ mod p for
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0<c<p—-1. So

Gli] - Gfj] = G [i'] - G[j']
= (pGli'] +¢) — (G.i'] + ¢)
= p(G.[i'] - G.[i'])
= valp[G[i] - G[j] | = 1+ val[Gc[i'] — Gc[j'] ]

— 1+ minfali, # .}

Note that min{ali, # is} = 1 + min{alé, # 4, }. Hence G is a greedy array of the right

dimension. 0

The next Lemma is the key step in the combinatorial argument. Now we consider sets
A and B which intersect only at 0, and we want to produce greedy arrays that end at 0 by

our ordering. We show that such arrays exist whose dimensions satisfy Equation 58.

Lemma 5.10 Partition Lemma: Let 1 < n’ < p. Let A, B be sets of integers such that
AUB=/{0,...,n'p" ' =1}, AnB={0}

Then there exist positive integers kg, -+ ,ki—1,%g,- -+ ,€—1 satisfying Equation 58, so that
A contains a greedy array G of size kg X - -+ X k;_1 and B contains a greedy array H of size

lo X -+ X €1, and both G and H contain 0 as the last element.

PROOF: The proof is by induction on ¢.

When ¢ = 1, we have sets A, B so that AUB = {0,...,n' —1} and AN B = {0} so
|A| + |B| = n' + 1. We take ko = |A|,4y = |B|. Define G to be an ordering of A where 0
comes last, similarly for H.

Assume that the claim holds up to ¢t — 1. For 0 < ¢ < p — 1, we define the sets

A(i), A(i), B(i), B(i) as before. Note that
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By induction, there exist ki,...,k;—1 and £1,...,¢;—1 as above so that A(O) contains a
greedy array of size k; X +-+ X k;—1 and E(O) contains a greedy array of size £1 X -+ X £y_1.

For 1 <i <p—1 we have

Hence applying Lemma 5.9, either A(7) contains an array of size ky X --- x ky_1 or B(0)

contains a greedy array of size 1 X - -+ X £;_1. Again we define the sets

S = {i|A(¢) has a greedy array G; of size ky X --- X ki1 }

T = {i|B(i) has a greedy array H; of size f; X -+ x £;_1}

Let ko = |S|, 40 = |T|. Since SNT = {0} and SUT = {0,...,p—1} we have ko+ 4y = p+1.
Order S and T so that 0 is the last element. We define a greedy array G of size kg X - - - X ky—1
as follows. For each i € S, the i*? row of G contains the pre-image G; of G; in A(i) of
dimension k; X --- X k;_1. Similarly we define H where the i** row contains the pre-image
H; of H; in B(7). The proof that these are greedy arrays follows Lemma 5.9. They both

contain 0 as the last element by induction. O

We now complete the proof of Theorem 5.5.
PROOF OF THEOREM 5.5:
Assume that p'~! < n < p'. We can choose n/ so that 1 <n’ < pandn/2 < n/p=! —1< n.

Define the sets

A={0}U{z | 1<z <np"™! —1, val,[P(0)] < val,[P(z)]}
B={0}u{z|1<z<np"™" —1, val,[P(0)] > val,[P(z)]}
Applying Lemma, 5.10 implies that A and B contain greedy arrays G and H of size kg X - - - X
ki—1 and £gx- - - x £;_1 respectively where k; and ¢; satisfy Equation 58. Applying Lemma 5.8,

by ordering G we get a greedy sequence {a,...,a4-1,0} in A of length d =[], k;. By the
definition of set A4, val,[P(0)] < valy[P(«;)] for ¢ < d. So by Lemma 5.7 deg(P) > [[, k; — 1.
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Similarly we get a greedy sequence of length [] ;¢ in B ending in 0. Note that by
Equation 50, z € B and z # 0 implies val,[Q(0)] < val,[Q(z)]. So by Lemma 5.7, deg(Q) >

Hj ¢; — 1. By Equation 58, k;¢; > p for j <t—2 and k;_14;_1 > n'. Hence

(deg(P) +1)(deg(@Q) +1) > [] k545
J
> n'pt! > nj2

For the Frankl-Wilson construction where n = p? — 1, we get (deg(P) +1)(deg(Q) +1) > p?

which is tight.

5.5 Lower Bounds for Prime Representations

In this section we prove a lower bound for prime representations using symmetric polyno-

mials.

Theorem 5.11 Let P(X) € Zy[X] and Q(X) € Z4X] be symmetric polynomials that

represent the OR function on n variables. Then deg(P).deg(Q) > n/10.

Note that this requires deg(P),deg(Q) > 1 but if deg(P) = 0, then it is easy to show
that deg(Q) = n, so this case is not interesting. The hard case of this theorem is when p
and q are fast-growing functions of n, as in Alon’s construction. To handle this case, we

prove a partition lemma (Lemma 5.12) which says that taking p and ¢ large does not help.

Definition 5.12 Let p < g be distinct primes, let n < pq. Let A C Z; and B C Z;. We
say that z is covered by A if z mod p € A. We say A and B cover [n] ifevery z € {1,...,n}

is covered by A or B.

If n < pg, we can cover [n] by taking A = Z; and B = Zj. Given A C Z; and B C Z,
the number of elements in {1,...,pq} that are covered by A or B is |A|q + |B|p — |A||B|
which can be much larger than |A||B|. The partition lemma states that to cover the first n

integers however, |A||B| needs to be Q(n).

Lemma 5.12 Partition Lemma: IfA C Z; and B C Zj cover [n], then (|A[+1) - (|B|+

1) >

NS
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7,q=11,n=44
(0) = {11, 22, 33,44}
(1) ={1,12,23,34}

n n's

0 4 1 5 2 6 3
W (11) (22) (33) (44) (55) (66)

S(0) S(0)

Figure 3: Proof of the Partition Lemma

Using |A| + 1 rather than |A| in the product lets us ignore the case when [A| = 0. Let
us sketch the idea behind the proof of the Partition Lemma. Let n = nyq. Assume that
to begin with, we have B = Z; and A = {q,2q,...,nqq}. It is clear that A and B cover
n, however (|A| + 1)(|B| + 1) > n. One could try and reduce |B| by removing elements
from it. We want to show that this results in an increase in |A|. Removing i € Zj from B
results in the numbers {i,i 4+ ¢,...,¢ + (ny — 1)q} being uncovered. Call this set S(i). The
various elements of S(i) are less than pg and they are congruent mod ¢, hence the CRT
implies they cannot also be congruent mod p. But the problem is for i # j,there could be
considerable overlap between the residues of S(7) and S(j) mod p. Hence it is not clear that
removing many elements from B does actually cause |A| to increase. However, by suitably
reordering the elements of Z,, we show that every element removed from B causes the size
of A to increase by at least 1. In fact Figure 3 shows that |A| could increase by just 1. This
is sufficient to prove the Partition Lemma.

Set n, = [%J and ng = [%J Given set S of integers, define S mod p C Z, to be the set

{z mod p|z € S}.

Proposition 5.13 Let n > q. If A and B cover [n] and |B| = ¢ — £ then |A| > [%J +/—1.

PROOF: Note that since n > g, n, > 1. Let B denote the complement of B in Z,, so 0 € B.

For each i € B, take S(i) to be the first n, numbers in {1,...,n} congruent to i mod p. In
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other words, S(0) = {q,2q...,n4q} and for i #0,S(i) = {i,i+¢,...,i+ (ng — 1)g}. Let
S=J s
i€B

If x € S, then z is not covered by B so it must be covered by A. We want to lower bound
the size of S mod p.

Let us reorder the set Z, as {0,¢,2q,...,(p — 1)g} (this is a reordering since (g,p) =
1). It sends j mod p to ¢(j)q such that ¢(j)¢g = j mod p. This map sends S(0) mod p to
{q,-...,nqq} and the set S(i) mod p to the interval {c(i)q, (c(i) +1)g, ..., (c(i) +ng—1)q} of
length ng for ¢ # 0. None of these intervals contain 0, since that would give z € {1,...,n}
such that £ =4 mod ¢ and £ = 0 mod p. Such an z is not covered by A or B. Each interval
S(2) mod p begins at a distinct point ¢(¢). Sorting the intervals by their starting points, it
follows that the union of £ such intervals of length n, contains at least n, +£ — 1 elements

of Z;‘;. O

Figure 3 illustrates this argument for p = 7,q = 11,n = 44. Here B = Z1; \ {0, 1}.
PROOF OF LEMMA 5.12:

We consider the cases n < p, p < n < g and g < n separately. The non-trivial case is when

qg<mn.
1. Let n < p < g. Numbers {1,...,n} lie in distinct congruence classes mod p and g.
Hence
A+ |B|>n = (JA|+1)-(|B|+1) >n
2. Let p < n < ¢. The numbers {1,...,p} lie in distinct congruence classes modulo p

and g. Hence |A| + |B| > p and (|A| +1) - (|B| +1) > p. This proves the claim if

n < 2p so let n > 2p.

Let |[A] = p —k for 1 < k < p. There are n, numbers < n in each congruence class
mod p. Thus n,k numbers are not covered by A and have to be covered by B. Since
n < g, they lie in distinct congruence classes mod g. Hence |B| > nyk. Using the

fact that n > 2p hence pn, > n/2 we get

(JA|+1)-(|IB|+1) > (p—k+1)knp, > pnp > n/2
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3. Let n > ¢. By Prop. 5.13, if |B| = ¢ — £, then |A| > ny,+ £ — 1. Since |A] < p—1, we

get 1 </ <p—mny Hence for 1 </ <p—n, we have
(Al +1)(IB|+1) > (g=£+1)(ng+¥)

We will show that this is lower bounded by n/2. By differentiating, this bound is
minimized at one of the extreme values of £, so it suffices to check the bound is at

least & for those values. When £ =1,

() = o((z1) -

esn((5)- ore)
> (q—p+§)p

np
= (q—p)p+7

When £ =p — [%J

One of (¢ — p)p and (np)/q is at least n/2: If ¢ < 2p, (np)/q > n/2. If ¢ > 2p, then

(g —p)p > n/2.

We now proceed to the algebraic step of the proof. Every symmetric polynomial P(X) €
Z,|X] computes a symmetric function w(x) — Z, where w(x) € {0,...,n}. Let w(x) =
> <t w;p'. Every polynomial P(wy, ..., wp) also computes a function w(X) — Z,. Theorem
2.15 tells us that functions which can be computed by symmetric polynomials P(X) € Z,[X)
of degree less than p/™! are the functions which depend only on wy,...,w;. In other
words, they are computed by some polynomial P(wy, ... ,wj). For each variable w;, let
deg(w;) denote the degree of w; in P. If j is the largest index so that deg(w;) > 0 then
p) < deg(P) < p’. Thus Theorem 2.15 gives a bound with an error factor of p. By defining
an appropriate weighted degree of P, we will make the correspondence exact (Theorem

5.14).
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Definition 5.13 Given P(wy, ..., wg) € Zy[wy, ..., wg], the degree of a monomial [, wf"
with d; < p —1 is defined as deg(]]; wfi) =Y, d;p'. The degree of P denoted deg(P) is the

maximum degree over all monomials.

Note that if j is the largest index such that deg(w;) > 0 then deg(P)/2 < deg(w;)p’ <
deg(P).

Theorem 5.14 For every symmetric polynomial P(X) € Z,(X) there is a unique poly-
nomial P(wy,...,w,) that computes the same function w(X) — Z, and vice versa. This

correspondence preserves the degree.

PROOF: Given a symmetric multilinear polynomial P(X) € Z,[X] of degree d, write it as

P(X) = > <4 ckSk(X). On at 0-1 vector x, Sg(x) = (w;x)). By Lucas’ Theorem

(") = T v

Further the polynomial [];, (7,‘6’:) has degree >, kip' = k. Thus P(X) computes the same

function as

d .
P(wy,...,w) = chH (’L;:> mod p

k=0  i<f
and they have the same degree.

To prove the other direction, observe that the monomials [[;, (7,‘6’;) with k; < p—1 form a
basis for polynomials in Zy|wy, . .., w] with degree at most p—1 in each w;. Further writing
a polynomial in this basis does not change the degree as defined above. Let k = )", kip*
be the degree of the monomial [, (7,‘6’;) Hence given P(wy, ..., w;) with degree d, one can

write

P(wy, ..., wp_1) = zd:CkH (::)

k=0 i<t
By Lucas’ theorem, this computes the same function as the polynomial P(X) = >, ., xSk (X).

O

For w € {0,...,n}, let w = Zf:o uipt = Z?:o v;¢’ denote the base p and base ¢
expansions of w. For P(ug,...,us) € Zylug,--.,us let P(w) denote the polynomial P
applied to the base p expansion of w. As consequence of Theorem 5.14, to prove Theorem

5.11 it suffices to prove the following Proposition.
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Proposition 5.15 Let P(w) € Zy[uo, ..., us and Q(w) € Zgylvo,...,vg] be polynomials
such that

P(0) =1modp and Q(0) =1modgq

For 1 < w < n,

P(w)=0modp or Q(w)=0mod q

Further deg(P) - deg(Q) > 75.

PROOF: Let a denote the largest index such that deg(u,) > 1 in P. This implies deg(P) >
p® and P(w) = P(ug,---,u,). Similarly let b be the largest index so that deg(vp) > 1. Then
deg(Q) > ¢° and Q(w) = Q(vo,...,v). Hence deg(P) - deg(Q) > p®¢®. This proves the
desired bound for n < 10p®g®. So we may assume that n > 10p%gP.

Also n < p*tlgbtl since if w = p®tlgbt! < n, then ug,...,uq =0 and vg, ..., v =0 so
P(p®tgth) = P(0,...,0) = 1 mod p

Q" '¢"™") = Q(0,...,0) = 1 mod p

which contradicts the hypothesis. Let 7 = [panbJ < pg.

Let us consider weights of the form w = yp®g® where 0 < y < 7. Observe that this
implies ug, ..., uq—1 = 0 and u, = yq® mod p. Similarly vy,...,vy_1 = 0 and v = yp® mod
g. Define polynomials R(Y) € Z,[Y] as R(Y) = P(0,...,0,Y¢’), and S(Y) € Z,Y] as
S(Y) = Q(0,...,0,Yp*). This implies deg(R) = deg(u,) < p — 1 and deg(S) = deg(vp) <

g — 1. Note that

R(0O)=1modp and S(0)=1modgq (59)

R(yy)=0modp or S(y)y=0modgq 1<y<n

We define A C Z; and B C Z to be the 0 sets of R(Y') and S(Y') respectively. By equation

59 A and B cover [7]. So by Lemma 5.12,

(deg(ua) + 1)(deg(vy) +1) > 7/2
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Since deg(ug),deg(vy) > 1, this implies that deg(u,) - deg(vy) > #/8. Since deg(P) >

p* deg(u,) and deg(Q) > ¢” deg(vs),

_ _ 7l 19n n
deg(P) - d > —pig® —— > —
eg(P)-deg(Q) > ¢p'd" > ¢35 > 35
The second inequality uses the fact that n > 10p®¢® hence p®q¢® [pfqu > %. O

Following the breakthrough of Barak et al. [13], the algebraic construction described
here are no longer the best constructions known. However, the appeal of these constructions
is their simplicity and elegance. So we believe that it is important to resolve the question of
whether this approach can beat the Frankl-Wilson bound. As we have seen, this problem
is intimately linked to well-studied questions in complexity theory. We will discuss some

approaches to this problem in the Chapter 6.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have studied a number of prime versus composite problems and explored
some connections between them. We have also discovered some new structural properties
of polynomials that might be of independent interest. The outstanding open problems in
this area are proving lower bounds for AC%[m], and constructing explicit Ramsey graphs
meeting the probabilistic bound. Both these are well-studied questions that have been open
for the last twenty years, and are presumably hard problems. Below we present a list of
problems that we think are more tractable, but at the same time might lead to some new

insights regarding the harder problems above.

6.1 Resolving the Symmetry versus Asymmetry Question

The outstanding open problem regarding Boolean function representations modulo m is
whether asymmetric polynomials can give better (i.e lower degree) representations of sym-
metric Boolean functions than symmetric polynomials. There are no known examples of
symmetric Boolean functions where asymmetry does help, but there are no degree lower
bounds better than Q(logn) known for any Boolean function. The question of whether
there are lower degree weak representations of the OR function mod 6 has been open for
a while. Our work on Ramsey constructions raises the question of whether low degree OR
representations exist for our definition.

Better upper bounds would give better Ramsey graphs. Lower bounds for Prime rep-
resentations will imply lower bounds for weak representations mod 6. Prime-power repre-
sentations are exciting from the lower bound viewpoint since they have not been studied
previously and might turn out to be easier to work with. It is interesting that prime-power
representations do not invoke the Chinese Remainder Theorem. Interestingly, the Q(logn)

lower bound of Barrington and Tardos [74] also does not invoke the CRT, hence it applies
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to prime-power representations as well.

A conjecture attributed to Barrington, Beigel and Rudich in [74] is that Q(y/n) is the
right bound for weak representations modulo 6. We do not have a strong bias for or
against this conjecture. It seems quite possible that much like explicit Ramsey constructions,
the problem of constructing low degree asymmetric OR representations is a hard explicit
construction problem. It is interesting to note that for the Ramsey graph problem, it is
easy to construct a graph on 2" vertices with a(G),w(G) < 2%. There was a conjecture due
to Turan that this was in fact optimal, which was disproved by Erdés in 1947. However it
was not until 1972 that a better explicit construction was found [10].

One possible reason for believing Q(y/n) is the right lower bound is that it comes from
Chinese remaindering. However, as we have seen prime-power representations do not use
the CRT, similarly, there might be other low-degree asymmetric constructions that do not
use Chinese remaindering. It is also tempting to think that symmetric polynomials ought to
give the best representations of symmetric Boolean functions. However, our new definition
of OR representations frames the problem as a covering problem for points on the hypercube.
In this setting, choosing symmetric polynomials does not seem as natural.

The question of symmetry versus asymmetry is especially interesting for Threshold-k
functions where 2 < k < n — 1, since here we have seen that resolving the degree for
symmetric polynomials is equivalent to questions regarding Diophantine equations. These
are rather hard questions in number theory regarding Diophantine equations and uncondi-
tional results seem out of the reach of current techniques. There is the tantalizing possibility
that we run into hard number theoretic questions because we are restricted to symmetric

polynomials and one can prove unconditional upper bounds with asymmetric polynomials.

6.2 Towards Better Degree Lower bounds

It is rather embarrassing that the best lower bounds for weak representations of any function
is Q(logn). We believe that our lower bounds for symmetric polynomials representing the
OR function suggest some algebraic problems that need to be solved in order to make

progress on this front. Both our lower bounds for symmetric polynomials follow a similar
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scheme: we characterize the zero-sets of low-degree symmetric polynomials and then show
that there is no good partition of the hypercube. A natural question is whether such a
scheme could extend to the general case. The first step would be to give a of characterization

of zero-sets of low degree polynomials. Motivated by this we pose the following problems:

1. Given S C {0,1}"\0, let deg,(S) denote the smallest degree of a polynomial in Z,[X]

which is 0 at every point in S but not at the origin. Give a lower bound on deg,(S).

2. Given S C {0,1}", let deg,(S) denote the smallest degree of a polynomial in Z,[X]

which is 0 over S but not at every point in {0,1}". Give a lower bound on deg,(S).

Note that both these quantities are easy to compute, since they involve checking whether
a system of equations is feasible. We are looking for a combinatorial lower bound, perhaps
analogous to Lemma 5.7. The latter quantity deg’s(S) is closely related to the notion of the
degree of a subset studied by Smolensky with a view towards proving circuit lower bounds

[71]. The main difference is that he requires the zero-set to be exactly the set S.

6.3 Limaitations to Distance-based Ramsey Constructions

We have shown that using symmetric polynomials in out construction, current techniques
cannot give better bounds on «(G),w(G). Note that for the constructions of Alon, Frankl-
Wilson and Grolmusz, this technique gives tight bounds.This raises the question: do con-
structions based on symmetric polynomials contain either a large clique or independent set?

Using a symmetric polynomial in our construction gives a graph where edges are added
between vertices based on the Hamming distance between them. More formally, let D C
{1,--- ,n}. The graph G(D) is defined as follows: The vertex set is {0,1}". We add (x,y)
to E if d(x,y) € D. Is it true that for every choice of D, G(D) contains a large clique or
independent set?

Similarly in Construction 5.2, symmetric polynomials give graphs where the vertices are
sets and edges are added based on intersection sizes. Do such graphs always contain large

cliques or independent sets?
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6.4 Tight Bounds for MOD functions

Our Q(n) lower bounds for weak protocols for Mod-k in both the two player and multi-
player cases (Theorems 3.12 and 3.16) required r to be sufficiently large. For instance we
are unable to prove a lower bound for Mod-2 over Zj5. In [20], we had suggested that since
the only cases for which upper bounds are known were k = p{* - - - p{"* one should expect a
lower bound of Q(n) for all other k. Surprisingly, recent work due to Hansen shows that
this is not the case [47]. He shows that Mod-2 requires degree Q(n) over Zi5, but he proves
an upper bound of O(y/n) for Zs;. He obtains a fairly right characterization of the degree
of the Mod-k function over Z,,, which roughly shows that non-trivial upper bounds are
possible if p and q are sufficiently large compared to k. Obtaining tight bounds for the case
when m has more than two prime factors is open.

The reason why this problem is interesting is that it sheds light on why obtaining lower
bounds on AC°[mn] is hard. We know that for any odd number m, computing the Mod-m
function for AC°[2] requires circuits of size 2%a). One might expect the Mod-2 function to
be as hard for AC°[m] where m is odd. However Hansen’s results imply that for any € > 0,
by taking sufficiently large m, one can compute the Mod-2 function by AC°[m] circuits of
size 2" and depth 3. This suggests that simple functions like Mod-2 might be insufficient

for the task of proving strong lower bounds on AC[m].

6.5 Set-Systems with Restricted Intersections

There are huge gaps in the known upper and lower bounds for set systems with restricted
intersections modulo composites. For set systems with restricted intersections mod 6, Grolu-
musz constructs a systems of size nﬁlgog_n on n elements. The only non-trivial upper bound
known, due to Sgall is 23 [67]. It would be interesting to close this gap. Grolmusz has
shown that lower-degree weak representations modulo 6 would give larger set-systems. Is
there a converse to this?

Similarly, in the prime-power case, there are gaps between upper and lower bounds on
the size of set-systems with restricted intersections, as a function of the size s of the set

of intersections modulo p®. The upper bound due to Babai et al. [11] is O(n2" ') while
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the best known construction due to Kutin is bounded by n2* [57]. The upper bound of
Babai et al. proceeds by constructing certain separating polynomials modulo prime powers;
it is possible that one might be able to use facts about interpolating sets to improve their

construction.
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APPENDIX A

EXTENSIONS TO PRIME POWERS

A.1 Symmetric Polynomials over Prime Powers

We first show that low degree polynomials depend on only a few bits of the base p repre-
sentation of the weight. The proof uses Kummer’s Theorem, a proof of which can be found
in [37].

Theorem A.1 (Kummer’s Theorem) The largest power of p that divides (Z) equals

the number of carries when k and n — k are added in base p.

Corollary A.2 Ifk < p!, (1;;) mod p® depends only on the first | +a — 1 digits of w in base

p.
PRrROOF: This is equivalent to proving

w\ _ [w+ptte? dpo
k) = k modp

Let 1 < j < k. Then j < p which implies j; = 0 for i > £. When we add j and (p‘to~1 —5)

we get at least a carries. By Kummer’s theorem,

plf—i—a—l _ . ) ¢
j = Omodp® 1<j<p (60)
<w+pl+a1> B z’“j( w )(pl+a1)
k = k—j J
= (Z) mod p* By Equation 60
[l

Corollary A.3 Let k < p*. Let f : {0,1}" — Z,e be computed by a symmetric polynomial
P(X) of degree k. Then f is a function of only the £ + a — 1 least significant digits of w in

base p.
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We next show that a function depending on few lower order digits of the weight can
be computed by a low degree polynomial. Recall that in Lemma 4.33, we constructed
univariate polynomials A.(X) for 0 < ¢ < p—1 with deg(A,) = (2a — 1)(p — 1) that satisfy

the following condition

z=cmodp = A.(z)=1modp®
zx#Zcmodp = A.(zr)=0modp®

Theorem A.4 Let f:{0,1}" — Zp« be a symmetric function which depends only on the

first ¢ digits of w in base p. Then f is computed by P(X) € Zy[X] where deg(P) < 2p‘a.

PROOF: Let x € {0,1}" have weight w. By Lucas’ Theorem, we have

S

i (x) = wj mod p

Hence

1 mod p® if wj =cmodp

A(Spi(x)) = Ac(wy) =

0 mod p* otherwise

Similarly the polynomial

-1
1T 28, (X))
j=0
is 1 mod p“ only if w; = ¢; for j < L.
Let f(cg,---c¢—1) denote the value of f when the first £ digits are set to cp, -+ ,c—1 in
base p. The desired polynomial is
-1
PX)= Y | fleor-cm1)- []Aq(Sp (X))
coy o1 j=0
The degree of this polynomial is bounded by
-1 .
Srp-D2a-1) = < (20-1)@' 1)
j=0
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A.2 Set Systems with restricted Intersections modulo Prime
Powers

Definition A.1 A set system F = {S;} on [n] is said to have restricted intersections mod

q if there exists L C Z4 so that |S;| mod ¢ ¢ L but |S; NSj| mod g € L.

For a fixed modulus ¢, we study the problem of how large |F| can be as a function of n.

When ¢ = p is a prime, the non-uniform modular Ray-Chaudhuri Wilson theorem proved

by Deza, Frankl and Singhi [10] gives a bound of

7l < (STH) : (Szﬁ—1>

When ¢ is not a prime power, Grolmusz shows a lower bound of n*() [43]. We give a

n

near-tight bound of ( <po 1

) for the prime power case. This improves the bound of (_,Z 1)
due to Babai et al.[11]. Previously stronger bounds than ours were known for the special
case when |L| = p® — 1 i.e. when all set sizes are congruent to k& mod p® for some k (see

theorems 5.30 and 7.18 in the book by Babai and Frankl [10]). To prove our result, we use

the fact that every function from Zp. to Z, can be written as a polynomial.

Theorem A.5 Let F be a set system with restricted intersections modulo p®. Then |F| <

(<pe1)-

PROOF: We construct a univariate integer-valued polynomial P(X) € Q[X] of degree p® —1

such that
lmodp zmodp® €L
P(z) =
Omodp zmodp®¢ L
By Lucas’ theorem,
)
T 3 lmodp z=p®*—1modp®
p*—1 =
Omodp =z #p®— 1mod p*
\
(
z—0+pi—1\ <lmodp z = £ mod p*
pe—1 B
0Omodp =z # /¢ mod p®
\
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Set P(X):Z(X_“_pa_l)

ecL pr=1
By Lemma 3.1, of [11] this implies the desired bound. We sketch the argument below.
We will use S; to denote the incidence vector of set S;. Let P;(X1,- -+, Xp) = P(3_,cq, Xj)
and multi-linearize. It is easy to show that

lmodp 1=
Pi(8y) = P(ISin Sj]) =

Omodp i#j

Using this one can show that the polynomials P;(X) are linearly independent over Q. Since

they are multilinear polynomials in n variables of degree p® — 1, the bound follows. O
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