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SUMMARY

In recent years computer experiments have become popular in engineering and scientific

applications. The rapidly increasing use of computer models poses great challenges in de-

sign, modeling and analysis of computer experiments. This thesis focuses on developing new

methodologies that would meet some of the challenges in the field of computer experiments.

It consists of four chapters. Descriptions of these chapters are given below.

Chapter 1 is concerned with building surrogate models based on detailed and approxi-

mate simulations. Preliminary design of a complex system often involves exploring a broad

design space. This may require repeated use of computationally expensive simulations. To

ease the computational burden, surrogate models are built to provide rapid approximations

to more expensive models. However, the surrogate models themselves are often expensive to

build because they are based on experiments with computationally expensive simulations.

An alternative approach is to replace the detailed simulations with simplified approximate

simulations, thereby sacrificing accuracy for reduced computational time. Naturally, sur-

rogate models built from these approximate simulations are also imprecise. A strategy is

needed for improving and assessing the precision of surrogate models based on approximate

simulations without significantly increasing computation. In this work, a new approach

is taken to integrate data from approximate and detailed simulations to build a surrogate

model that describes the relationship between output and input parameters. Experimental

results from approximate simulations form the bulk of the data, and they are used to build a

model based on a Gaussian process. The fitted model is then “adjusted” by incorporating a

small amount of data from detailed simulations to obtain a more accurate prediction model.

The effectiveness of this approach is demonstrated with an example involving the design of

cellular materials for an electronics cooling application.

In Chapter 2, a new Bayesian procedure for integrating low-accuracy and high-accuracy
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experiments is proposed. Standard practice in analyzing data from different types of exper-

iments is to treat data from each type separately. By borrowing strength across multiple

sources, an integrated analysis can produce better results. Careful adjustments need to

be made to incorporate the systematic differences among various experiments. To this

end, some Bayesian hierarchical Gaussian process models are proposed. The heterogeneity

among different sources is accounted for by performing flexible location and scale adjust-

ments. The approach tends to produce prediction closer to that from the high-accuracy

experiment. The Bayesian computations are aided by the use of Markov chain Monte Carlo

and Sample Average Approximation algorithms. The proposed method is illustrated with

two examples: one with detailed and approximate finite elements simulations for mechanical

material design and the other with physical and computer experiments for a fluidized bed

process in the food industry to coat certain food products with additives.

Chapter 3 is devoted to the development of a structural equation method for the tem-

perature modeling in data center computer experiment. Temperature modeling is a key in

designing and running a reliable data center with many computer components operating

constantly and generating heat. How different configurations affect the data center thermal

distribution is largely unknown. This is because the physical thermal process is complex,

depending on many factors, and detailed temperature measurements are not monitored in

actual data centers. It is possible to build physics-based mathematical models, implemented

in computer code, to study the air movement and temperature distribution mechanisms.

Each run in this type of computer experiment takes several days to complete, requiring the

stabilization of the algorithm with a large number of reference points. Hence, the use of

an efficient and informative experimental design is necessary. A statistical method based

on latent variables is introduced for analyzing the multivariate temperature readings pro-

duced by the computer experiment. A two-stage estimation procedure is developed for the

proposed latent variable model by making use of sufficient statistics and pseud-likelihood

method. Also discussed is a method using the fitted statistical model for determining prac-

tical configurations of a data center to meet some physical and usage requirements.

Construction of designs for multiple experiments with different levels of accuracy is a

x



new issue in design of experiments because traditional methods deal almost exclusively with

a single experiment. In Chapter 4, a method is proposed for constructing nested space-filling

designs for this type of multiple experiments. The construction is aided by the use of Galois

field and orthogonal arrays. Multiple design sets generated by the proposed method are

guaranteed to have some space-filling property.

xi



CHAPTER I

BUILDING SURROGATE MODELS BASED ON

DETAILED AND APPROXIMATE SIMULATIONS

1.1 Introduction

Preliminary design of a complex system often involves exploring a broad design space or

region of design variable values. Many detailed analysis programs are available for use in

the latter stages of design, but they can be extremely expensive for exploring broad regions.

One solution has been to simplify the simulations and obtain data from more approximate

simulations. For these approximate simulations, accuracy is sacrificed to reduce compu-

tational time. However, when it is desirable to explore a large design space that includes

broad ranges of design variables, repeated approximate simulations still generate substantial

computational loads.

Another approach is to create surrogate models to replace individual simulations. These

surrogate models have been used widely in design. Computer experiments in which the

design variables cover a carefully chosen range of values are used to create the surrogate

models. Values of the design variables are chosen in specific patterns called experimental

designs (Wu and Hamada 2000; Montgomery 1997) and performance is simulated at these

points. The responses and input values are combined statistically to create functional

relationships between input variables and performance; these functional relationships are

the surrogate models. The surrogate models can be used for robust design (Chen et al.

1996) or linked to optimization routines, or they can serve as a bridge for integration across

multiple functions (Seepersad et al. 2004) or across different levels of abstraction (Michelena,

Park and Papalambors 2002).

Familiar methods for creating surrogate models include response surface modeling (My-

ers and Montgomery 1995) and kriging (Matheron 1963; Cressie 1988; Laslett 1994), and

1



an example of their use in design is presented by Chen et al. (1996). However a wide variety

of techniques are available (Simpson et al. 2001). In addition to the choice of the metamod-

eling method, the accuracy of a surrogate model is determined by the experimental design

used to select data points, the size of the design space or range of explored values of design

variables, the accuracy of the simulation at each data point and the numbers of data points

available to compute the surrogate model (Simpson et al. 2001).

In the last decade, methods for improving the accuracy and computational efficiency of

metamodeling procedures have been actively studied. One approach has been to successively

reduce the design space, thus simultaneously reducing the extent of the approximation of the

metamodels. There are several ways to accomplish this, including the use of trust regions

(Wujek and Renaud 1988ab; Rodriguez et al. 2001; Akexandrov et al. 1998), heuristics

(Chen et al. 1997), move limits (Toropov et al. 1996), and an adaptive response surface

method in which the design space is systematically reduced by discarding regions with

large objective function values at each modeling-optimization iteration (Wang, Dong and

Atchison 2001; Wang 2003). Entropy maximization has also been studied (Farhang-Mehr

and Azarm 2001). Wang and Simpson (2004) proposes an intuitive metamodeling method

based on hierarchical fuzzy clustering which helps a designer reduce metamodels to regions

of interest to a designer.

Another way of reducing the design space is by reducing its dimensionality (Box and

Draper 1969). Typically, the design space is screened to identify and remove design vari-

ables that are less important. However, it can be difficult to obtain substantial reductions of

dimensionality for large-scale problems (Koch et al. 1999). Super-efficient screening meth-

ods for removing less important design variables are also available. Both group-screening

(Watson 1961) and sequential bifurcation (Bettonvil 1990; Bettonvil and Kleijnen 1996)

must be applied cautiously for designs in which multiple responses are considered; screen-

ing using supersaturated statistical experimental designs is preferable for situations with

multiple responses (Wu 1993; Holcomb, Montgomery and Carlyle 2003).

We believe that the choice of metamodeling method must take into consideration both

computational time and metamodel accuracy because different aspects of metamodeling

2



may be important in different circumstances. Our method involves creating metamodels

based on both approximate and detailed (accurate) simulations and thus using information

that is developed necessarily when creating the simulations; a preliminary report of our

approach has appeared in Qian et al. (2004). Osio and Amon (1996) and Pacheco, Amon

and Finger (2003) also propose a multistage kriging method to sequentially update and

improve model accuracy. This method is compared with our approach in greater detail

in Section 1.2.4. Further, our approach is consistent with space mapping and provides an

alternative method for aligning and enhancing a coarse model with a fine model (Bandler

et al. 2004; Bakr et al. 2000).

In general there is a trade-off between the accuracy of a surrogate model and the re-

sources needed to build it. If surrogate models are built with a reduced number of data

points, they are generally less accurate than models built with a larger number of data

points. If detailed, computationally expensive simulations are replaced with approximate

simulations, many more data points can be obtained. However, a surrogate model built

with approximate information may produce biased results. A practical, alternative strat-

egy is to run a large number of approximate simulations and a smaller number of detailed

simulations and then combine the two sets of results to produce a final surrogate model.

In this chapter, we develop a framework in which we can combine results from both

detailed simulations and approximate simulations to create surrogate that are as accurate

as possible, given the resources available. Since the approximate simulations form the bulk

of the data, they are used to build a model based on a Gaussian process that assumes

a simple mean part with a flexible residual part. The fitted model is then adjusted by

incorporating information from the detailed simulations.

In Section 1.2, we briefly review our approach along with the procedure of Gaussian

process modeling that is foundational to it. As an illustration, we apply this approach for

designing linear cellular alloys in Section 1.3. Discussions and possible extensions of our

approach are presented in Section 1.4.
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1.2 Building a surrogate model based on detailed and ap-
proximate simulations

Integration of results from detailed simulations (DS) and approximate simulations (AS)

is not a straightforward task because the two sets of results have significantly different

distributional assumptions. One possible way to combine the AS and DS data is to link

them by a simple structure and then build a prediction model for DS directly. This one-step

approach has one major disadvantage. Due to the paucity of the DS runs, the resulting

surrogate model can be very imprecise and can lead to inaccurate predictions. To overcome

this problem and create an accurate surrogate model, we propose a novel two-step approach

based on Gaussian process modeling. In this work, we assume that the DS produces results

that are in agreement with the results from the true process. Thus, we neglect the error

in the DS results compared to the true process. This is a reasonable assumption in many

computer experiments including the example in Section 1.3. Thus, the objective is to create

a surrogate model that can produce predictions close to the DS results.

A generic diagram is presented for the new two-stage approach in Fig. 1. Stage 1 involves

designing and generating computer experiments for detailed and approximate simulations.

Key to the approach is Stage 2—a novel two-step modeling strategy. This sets our method

apart from existing surrogate model building techniques. The basic idea is to use AS

results to provide a base surrogate model and adjust the model by DS results. The detailed

description of these two steps will be given in Sections 1.2.3 and 1.2.4, respectively. Stage 3

consists of the application part of the procedure. When a final surrogate model is available,

various further investigations, such as optimization, sensitivity analysis, and calibration can

be performed.

The modeling part of the procedure consists of the following two steps:

(1) Fit a Gaussian process model using only AS data.

(2) Adjust the fitted model in step 1 with DS data.

Since AS results form the bulk of the data, AS results can be used to fit a smooth

response surface in the first step. In the second step, this fitted surface is adjusted by DS

4



Figure 1: Diagram of the proposed approach for combining detailed and approximate data
into a surrogate model.

data, so that the resulting model is close to DS data. The detailed description of these two

steps is given in Sections 1.2.2 through 1.2.4.

1.2.1 Gaussian process modeling

Gaussian process modeling (also referred to as a kriging model in spatial statistics and other

fields) is widely used in computer experiments because of its many desirable properties

(Santner, Williams and Notz 2003). A brief introduction is given here. Suppose that

the data consist of n vectors of input variable values denoted by X = (xt
1, . . . ,x

t
n) for d

covariates and the corresponding response values y = (y1, . . . , yn)t. The Gaussian process
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model assumes the following structure:

y(xi) = βtf(xi) + ε(xi), i = 1, . . . , n, (1)

where f(x) = (f(x1), . . . , f(xm))t is a set of pre-specified functions and β = (β1, . . . , βm)t

is a set of unknown coefficients. The ε(x) is assumed to be a realization of a stationary

Gaussian process with covariance

cov(ε(xi), ε(xj)) = σ2R(xi,xj) = σ2 exp[−d(xi,xj)]. (2)

The correlation function R(xi,xj) in (2) is a function of the “distance” between xi and

xj . If the “distance” is measured as a Euclidean distance, there will be a tendency to

give the same weight to all variables and therefore the Euclidean distance cannot be used

to distinguish different factor effects. To overcome this, the following flexible “weighted”

distance function is adopted:

d(xi,xj) =
d∑

h=1

θh|xih − xjh|ph , (3)

where θ = (θ1, . . . , θd) and p = (p1, . . . , pd) in (3) are scale and power parameters, re-

spectively. The Gaussian correlation is for the case ph = 2, h = 1 . . . , d, and its associated

processes are infinitely differentiable in the mean square sense (Santner, Williams and Notz

2003). As a result, the Gaussian correlation is often adopted in the modeling (Simpson

et al. 2001; Welch et al. 2002). In the example given in Section 1.3, we will follow this

convention.

In the general case, we observe y = (y1, . . . , yn)t and are interested in predicting y at

a new point x∗. The empirical best linear unbiased predictor (BLUP) (Santner, Williams

and Notz 2003) is adopted to predict the value at an untried x∗

ŷ(x∗) = f t
∗β̂ + rR−1(y − Fβ̂), (4)

where r = (R(x∗,x1), . . . , R(x∗,xn))t, f∗ = f(x∗), β̂ = (FtR−1F)−1FtR−1y, R is the

(n× n) matrix with entries R(xi,xj) for i, j = 1, . . . , n and F = (f(x1)t, . . . , f(xn)t)t is the

regression matrix of (1). It can be shown that ŷ(xi) equals yi. Thus, the BLUP smoothly
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interpolates all the observed data points. The predictor in (4) involves unknown correlation

parameters θ that can be estimated by maximizing

−1
2
(n ln(σ̂2)) + ln |R|), (5)

where σ̂2 = (y−Fβ̂)tR−1(y−Fβ̂)
n . In the example in Section 3, a version of quasi-Newton

algorithm (Byrd et al. 1995), implemented in the optim function in R (R Development

Core Team 2004), is used to solve the optimization problem in (5). The estimated r and R

will be denoted as r̂ and R̂.

1.2.2 Modeling the approximate simulation data

Using the Gaussian process modeling described in Section 1.2.1, we now develop an approach

for building a surrogate model. We first build a surrogate model based on the approximate

simulations only. This model is further refined later. Usually only a constant term (i.e.,

βtf(xi) = β0 in (1)) is used in the mean part of the Gaussian process model (Welch et al.

1992). However, in some circumstances it is reasonable to assume that the factors considered

in the experiment have linear effects on the output (Handcock and Stein 1993; Handcock

and Wallis 1994). By following this convention, we choose the model below for the output

of the approximate simulation ya,

ya(x) = βa0 +
d∑

h=1

βahxh + εa(x), (6)

where βa0 +
∑d

h=1 βahxh is the linear mean part and εa(x) is the residual part that is

assumed to be a stationary Gaussian process with mean zero, variance σ2
a and correlation

parameters θa. Because a large number of AS runs are available, (βa, σ2
a, θa) can usually

be estimated accurately. The BLUP for ya(x∗) at an untried x∗is

ŷa(x∗) = f t
aβ̂a + r̂aR̂−1

a (ya − F̂aβ̂a), (7)

where fa, r̂a, R̂a and F̂a are defined as in Section 1.2.1. Throughout the remaining part of

this chapter, we shall refer to the model in (7) as the base surrogate model.
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1.2.3 Adjustment based on detailed simulation data

Because approximate and detailed models typically differ by modeling assumptions, numer-

ical solution methods, mesh resolutions, and other factors, the associated data values can

be moderately or significantly different. For the example analyzed in Section 1.3, when the

same input values are used for the AS and DS, the worst-case difference between AS and

DS results is on the order of 16% with respect to the DS value. Therefore the DS data can

be used to adjust the base surrogate model. The accuracy of the adjusted model depends

on the degree of difference between AS and DS results and the parametric relationship be-

tween the AS and DS results. Because these are all computer experiments, the results are

deterministic, and there is no experimental error to consider. In this case, we simplify the

adjustment procedure by modeling the adjustment terms conditioned on the value of ya. If

nd AS runs share the same input values as nd DS runs, a very simple adjustment can be

done by using a location-scale adjustment, i.e.,

yd(xi) = ρya(xi) + δ, i = 1, . . . , nd, (8)

However, some cases may also exhibit a non-linear discrepancy between AS and DS.

As an extension of the above procedure, a more sophisticated adjustment can be obtained

by making the following two changes in (8): (a) substitute the constant ρ with a linear

regression function ρ(x), and (b) replace the constant δ by a Gaussian process δ(x). These

modifications lead to the following model:

yd(xi) = ρ(xi)ya(xi) + δ(xi), i = 1, . . . , nd, (9)

where

ρ(xi) = ρ0 +
d∑

j=1

ρjxij (10)

is the linear regression function. Conditioning on ya, δ(x) is assumed to be a stationary

Gaussian process with mean δ0, variance σ2
δ and correlation parameters θδ. Thus, condi-

tioning on (ya(xi), . . . , ya(xnd
)), the distribution of yd = (yd(xi), . . . , yd(xnd

))t is normal

and the log likelihood of yd, up to an additive constant, can be written as

−1
2
[nd lnσ2

δ + ln |Rδ| −
(yd − Fdα)tR−1

δ (yd − Fdα)
2σ2

δ

], (11)

8



where Fd is the regression matrix
1, ya(x1), ya(x1)x11, · · · , ya(x1)x1d

· · · · · · · · · · · ·

1, ya(xnd
), ya(xnd

)xnd1, · · · , ya(xnd
)xndd


and α = (δ0, ρ0, ρ1, · · · , ρd)t is the collection of unknown parameters associated with the

mean part in (9). The estimates α̂ and θ̂δ can be obtained by maximizing the function in

(11). The optimization procedure is very similar to the one described in Section 1.2.1, so

its details are omitted.

For given values of ρ̂i’s (i = 0, . . . , d), we can compute the values of δ = (δ(x1), . . . , δ(xnd
))

by using

δ(xi) = yd(xi)− ρ̂(xi)ya(xi), i = 1, . . . , nd, (12)

where

ρ̂(xi) = ρ̂0 +
d∑

j=1

ρ̂jxij (13)

is the fitted regression function for the scale adjustment.

At an untried point x∗, a BLUP predictor can be constructed as

δ̂(x∗) = δ̂0 + r̂δR̂−1
δ (δ − Fδ δ̂0), (14)

where r̂δ and R̂δ are defined in Section 1.2.1, and δ̂0 is obtained previously as part of α̂.

The predictor δ̂(x∗) in (14) is used as a building block to establish the final surrogate model.

1.2.4 Building and evaluating the final surrogate model

From the base surrogate model in (7) and the adjustments results in (13) and (14), a simple

plug-in method is used to establish the final surrogate model for an untried x∗,

ŷd(x∗) = ρ̂(x∗)ŷa(x∗) + δ̂(x∗), (15)

where ρ̂(x∗) is the fitted scale adjustment term in (13), ŷa(x∗) is the predicted value from

the base surrogate model in (7), and δ̂(x∗) is the fitted location adjustment term in (14).

As mentioned in Section 1.2.1, the prediction from the base surrogate model is not very

9



accurate. Because we have adjusted this model using detailed simulation data, the predic-

tion from (15) will be closer to the output from the detailed simulations than the prediction

from the base surrogate model (7). In addition, it can be shown that the final surrogate

model, ŷd(·) in (15), smoothly interpolates all the detailed simulation data. This is another

benefit of our two-step procedure. If we are interested in making accurate predictions based

on detailed simulations in some regions of specific interest, we can select a few more points

in these regions and conduct the appropriate detailed simulations.

In some situations, the multistage Bayesian approach proposed by Osio and Amon

(1996) and Pacheco, Amon and Finger (2003) can be adapted to deal with approximate

and detailed simulations data. In their approach, a kriging model is fit to the AS data.

Then this model is used as the prior mean for modeling DS data. In comparison with our

approach, the first stage modeling with AS data is exactly the same. The difference is in

the second stage. It is well known that a kriging predictor is pulled towards the prior mean

in regions where data are scarce. Thus in their approach, the final surrogate model will

pass through the DS data due to the interpolating property, but it will be pulled towards

the base surrogate model in regions where DS data are not available. This feature can lead

to a rough final surrogate model, particularly when the DS is very different from the AS. In

contrast, we only do a location and scale adjustment and therefore, the profile of the base

surrogate model is approximately preserved. Our approach is more suitable when there are

very few DS data points compared with AS data, a characteristic of our example.

To illustrate our approach in the next section, we consider the design of a linear cellular

material, which is used to dissipate heat from a microprocessor.

1.3 Designing linear cellular materials with the surrogate
model building approach

Consider the design of a heat exchanger for a representative electronic cooling application.

As illustrated in Fig. 2, the device is used to dissipate heat generated by a heat source

such as a microprocessor. The mechanism for heat dissipation is forced convection via air

with entry temperature, Tin, in degrees Kelvin and total mass flow rate, ṁ, measured in
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kilograms per second. Steady state, incompressible laminar flow is assumed. The device

is assumed to have fixed overall width (W ), depth (D), and height (H) of 9, 25, and 17.4

millimeters, respectively. It is insulated on the left, right, and bottom sides and is subjected

to a heat source at constant temperature, Twall, in degrees Kelvin on the top face.

W

H

D

Heat
Source
Tsource

Air Flow, Tin,

x

y

z

W

H

D

Heat
Source
Tsource

Air  

Figure 2: Compact, forced convection heat exchanger with graded rectangular linear cellular
alloys.

The device is comprised of linear cellular material—ordered, metallic cellular material

with extended prismatic cells. These materials can be produced with nearly arbitrary

two-dimensional topologies, metallic base materials, and wall thicknesses as small as 50

microns via a thermo-chemical extrusion fabrication process developed at Georgia Tech

(Cochran et al. 2000). Prismatic cellular materials have a combination of properties that

make them especially suitable for many multifunctional applications, including actively

cooled, lightweight structures (Seepersad et al. 2004; Gibson and Ashby 1997; Hayes et

al. 2001; Evans et al. 2004). Although cell topology and dimensions can be varied, the
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prismatic cellular material is composed exclusively of rectangular cells for this example.

There are four columns of cells with interior cell widths of 2 mm, and three rows of cells

with interior cell heights of 10, 5, and 2 mm for the uppermost, middle, and lower rows

of cells, respectively. The solid material in the walls of the prismatic cellular material is

assumed to have thermal conductivity, k, in Watts per meter-Kelvin.

The design objective is to maximize the total rate of steady state heat transfer achieved

by the device. Some of the factors affecting this objective include the topology and di-

mensions of the cells and cell walls, the flow rate and temperature of the incoming air, the

temperature of the heat source, and the thermal conductivity of the solid material in the

walls of the device. In other design activities, we have adjusted the dimensions of the device

(Seepersad et al. 2004); here, we intend to explore the heat transfer rate as a function of

the mass flow rate of entry air, ṁ, the temperature of entry air, Tin, the temperature of the

heat source, Twall, and the solid material thermal conductivity, k.

To analyze the impact of these factors on heat transfer rates, we use two types of

simulations—computationally expensive FLUENT (Fluent 1998) finite element simulations

and relatively fast but more approximate finite difference simulations. Details of the two

approaches are available in the literature, but it is important to highlight their differences

and their relative costs and benefits in terms of accuracy and computational time. First,

the models are based on different methods. The finite difference approach, used here for

approximate simulations (AS), is a numerical technique for solving two- or three-dimensional

heat transfer problems (Incropera and DeWitt 1996). Finite difference models are based on

difference equations that approximate continuous variables as quantities at discrete points

or nodes on a grid (Incropera and DeWitt 1996). FLUENT is a commercial software package

for analyzing fluid flow and heat transfer problems with a computational fluid dynamics

(CFD) solver (Fluent 1998). FLUENT models, used here as detailed simulations, are based

on finite volume methods that approximate governing partial differential equations over a

control volume and are more flexible than finite difference methods that require a structured

mesh (Fluent 1998). FLUENT models also account for details such as entry effects that are

not modeled explicitly in the finite difference models. Secondly, as described for the present
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example by Seepersad et al. (2004), the FLUENT grid is approximately four times denser

than the finite difference grid for this example. Finally, for examples similar to the present

one, each FLUENT simulation requires two to three orders of magnitude more computing

time than the corresponding finite difference simulation. For example, on a 2.0 GHz Pentium

4 PC with 1 GB of RAM, the first data point in Table 2 requires approximately 1.75 hours

of computing time for a FLUENT (DS) simulation versus approximately 2 seconds for the

finite difference simulation, However, the FLUENT simulations are generally more accurate

than the finite difference simulations by 10 to 15% or more.

Our objective is to build a surrogate model that can be used in the design process and

represents the functional relationship between design factors and the total rate of steady

state heat transfer. To build the surrogate model, we utilize results from both FLUENT

and finite difference simulations. A large number of data points are generated using the

finite difference simulation with fewer data points obtained from the FLUENT simulation.

We show that even a limited amount of data from FLUENT simulations can be used to

improve the accuracy of surrogate models based on approximate finite difference models

alone.

1.3.1 Generating design points for detailed and approximated simulations

An orthogonal array-based Latin hypercube design (Santner, Williams and Notz 2003) with

a run size of 64 data points is used to determine the appropriate set of approximate (finite

difference) simulations. The assumed ranges of design variables are shown in Table 1. The

Latin Hypercube design has good space-filling properties. This can be seen in Fig. 3 in

which the four-variable design is projected onto spaces of two variables. For each pair of

variables the data points are uniformly distributed in each of the 64 reference square bins.

Also, if we divide each bin in Fig. 3 into 8 equally spaced new bins with smaller size (64

new bins in each dimension), we find that each individual variable in each dimension has

a nearly uniform distribution in these 64 bins. Among these 64 approximate simulation

experiments, results for detailed simulations are generated for 22 of them. Sixteen of the

twenty-two experiments are identified using a simulated annealing algorithm and a minimax
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Table 1: Assumed ranges for design variables values

Design Variables
ṁ(kg/s) Tin(K) k(W/mK) Twall(K)

Lower bound 0.00055 270.00 202.4 330
Upper Bound 0.001 303.15 360.0 400

distance criterion (Santner, Williams and Notz 2003). The remaining six detailed simulation

experiments are chosen with a roughly uniform distribution in the portion of the design

space in which the value of air flow rate, ṁ, of entry air is small. Background information

suggests that there may be a special relationship between the detailed (FLUENT) results,

yd, and the approximate (finite difference) results, ya, in this subregion. The six additional

points are added to explore this relationship. The sample data and corresponding response

values are listed in Table 2. In this table, the results for the 64 approximate experiments

are shown in the ya column, and the 22 detailed simulation experiments are listed in the

yd column. It is clear from Table 1 that the four input variables have very different scales.

These variables are standardized (subtracting their means and multiplying by the reciprocal

of their standard deviations) before the analysis.

1.3.2 Building a base surrogate model

The first step is to build a surrogate model using the approximate simulation results only.

Based on background knowledge of the physics of this problem, we know that there should

be a significant linear component in the relationship between the response and the four

factors. As a result, a linear structure is included when modeling the mean part of the

Gaussian process in (9). As described in Section 1.2, the maximum likelihood method is

used for estimation. Table 3 lists the linear main effects β̂ai for i = 1, . . . , 4 (corresponding

to ṁ, Tin, k, and Twall, respectively) with their p-values for the t-test for i = 1, . . . , 4 and σ̂2
a.

The linear main effects for Tin and Twall are relatively large, -2.77 and 5.450, respectively

and their p-values are quite small, 1.59e-08 and 1.543e-22, respectively; therefore Tin and

Twall are the two most significant factors. The values of β̂a2 and β̂a4 have different signs,

implying that Tin and Twall have opposite effects on the response. This agrees with the

14



6   e−04 7   e−04 8   e−04 9   e−04 1   e−03

2
7

0
2

8
0

2
9

0
3

0
0

Tin vs. m

m

T
in

6   e−04 7   e−04 8   e−04 9   e−04 1   e−03

2
0

0
2

5
0

3
0

0
3

5
0

k vs. m

m

k

6   e−04 7   e−04 8   e−04 9   e−04 1   e−03

3
3

0
3

5
0

3
7

0
3

9
0

Twall vs. m

m

T
w

a
ll

270 275 280 285 290 295 300

2
0

0
2

5
0

3
0

0
3

5
0

k vs. Tin

Tin

k

270 275 280 285 290 295 300

3
3

0
3

5
0

3
7

0
3

9
0

Twall vs. Tin

Tin

T
w

a
ll

200 250 300 350

3
3

0
3

5
0

3
7

0
3

9
0

Twall vs. k

k

T
w

a
ll

Figure 3: 64 points of an orthogonal array-based Latin hypercube sample. In each plot,
there is one point in each of the square bins bounded by dashed lines.
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Table 2: Sample data for approximate and detailed simulations

Design variables Responses
1 2 3 4 5 6

Run ṁ(kg/s) Tin(K) k(W/mK) Twall(K) ya yd
1 0.000552 293.53 318.63 388.29 25.61 23.54
2 0.000557 290.18 298.27 377.49 23.24
3 0.000566 285.77 266.71 367.27 21.23 20.15
4 0.000578 302.17 358.13 343.72 11.44 10.17
5 0.000580 272.26 211.71 333.65 15.03 15.29
6 0.000589 278.16 225.78 351.83 18.55 18.39
7 0.000594 279.54 258.51 360.13 20.74 20.52
8 0.000603 296.75 323.15 399.45 28.40
9 0.000612 280.83 291.53 394.72 30.22 30.12
10 0.000615 300.28 270.74 335.79 9.53
11 0.000626 284.89 350.46 352.29 18.13 18.17
12 0.000627 287.60 243.96 382.54 25.02 24.68
13 0.000639 270.45 241.21 341.81 17.92 19.05
14 0.000643 276.17 216.99 371.60 24.20 24.96
15 0.000652 298.04 303.96 361.58 17.47 16.95
16 0.000657 294.24 330.63 375.53 22.48 22.3
17 0.000669 296.33 343.16 385.81 25.07
18 0.000670 303.07 321.41 370.48 18.93
19 0.000683 287.05 227.31 358.24 18.61
20 0.000689 272.70 260.91 355.37 21.31
21 0.000694 278.35 212.79 376.24 25.11
22 0.000698 277.52 299.39 338.40 16.02
23 0.000711 292.26 273.31 392.54 27.47
24 0.000714 283.08 306.69 344.34 16.43
25 0.000722 276.53 353.75 374.41 26.50
26 0.000730 285.51 217.74 383.92 25.88
27 0.000738 295.01 295.02 347.22 14.37
28 0.000741 270.95 275.19 356.87 22.36
29 0.000751 287.99 326.02 354.08 18.17 19.57
30 0.000757 300.64 235.03 391.68 14.37
31 0.000763 292.82 254.84 373.38 21.96 23.33
32 0.000772 278.93 301.75 331.55 14.02
33 0.000782 299.86 317.84 348.41 13.68
34 0.000786 275.51 247.29 340.19 16.82
35 0.000791 271.64 284.88 365.09 25.06
36 0.000800 291.42 341.48 358.59 18.83
37 0.000803 281.47 232.64 389.46 28.69
38 0.000814 286.39 339.92 332.40 12.68 14.36
39 0.000823 288.53 207.55 393.49 27.96
40 0.000828 297.33 280.13 379.86 23.17
41 0.000836 289.62 347.65 335.44 12.79
42 0.000842 294.39 203.45 346.05 13.75 15.12
43 0.000851 273.71 315.27 381.14 29.08 34.8
44 0.000857 282.12 262.30 350.10 18.25 21.31
45 0.000865 274.35 335.16 362.30 23.89
46 0.000870 295.76 237.65 366.25 19.36
47 0.000874 282.50 253.25 396.36 30.90 36.11
48 0.000882 299.22 288.45 385.07 24.45 27.36
49 0.000891 273.43 336.04 386.95 31.05
50 0.000901 302.02 249.57 382.33 22.64
51 0.000903 284.25 290.90 364.99 22.22 25.37
52 0.000911 280.17 355.34 370.03 25.03
53 0.000920 276.89 310.73 397.78 33.27
54 0.000929 298.65 205.40 349.02 13.67
55 0.000934 288.86 265.53 339.54 13.89
56 0.000943 292.77 231.01 330.19 10.16
57 0.000947 283.62 222.95 378.66 25.48
58 0.000956 290.33 312.97 368.96 22.22
59 0.000964 271.23 348.00 398.52 35.05
60 0.000968 297.80 244.50 337.41 10.99
61 0.000979 291.21 283.10 353.60 17.45
62 0.000985 301.50 220.37 363.20 17.14
63 0.000987 281.11 329.45 342.32 16.95
64 0.000996 275.01 278.27 390.35 31.35
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Table 3: Results of estimation

β̂a0 β̂a1 β̂a0 β̂a0 β̂a0 σ̂2
a

Values 20.606 0.409 -2.77 0.673 5.450 3.352
P-values 0.449 1.59e-08 0.106 1.543e-22

known physics of the problem, i.e., a decrease in Tin or an increase in Twall causes an

increase in the total rate of steady state heat transfer. As shown in Table 3, the p-values for

β̂a1 and β̂a3 are quite large. Therefore, ṁ and k do not have significant linear main effects

on the response in this region of the design space.

The maximum likelihood estimators for the correlation parameters θ̂a are (1.1780, 0.904,

0.300, and 0.01). These values are quite different from each other; therefore different factors

affect the correlation of two close points in different scales. Among them, the correlation

parameters for ṁ and Tin are relatively high. The responses of two points, even if there is a

small distance between them in the ṁ-dimension or the Tin-dimension, may still have a low

correlation. Note that ṁ does not have a significant linear main effect but has a large value

for its correlation parameter. This implies that the relationship between ṁ and the response

is nonlinear. This observation may aid our understanding of its physical relationship.

The data used to build the base surrogate model cannot be used to assess the fit of

the model, because the Gaussian process model interpolates the training data. Therefore,

we generate a testing set of 14 AS runs and compare the prediction results using the base

surrogate model and the observed values of these 14 runs. The data is also used to validate

the final surrogate model, so a detailed description of these runs is deferred to Section 3.5.

Columns ŷa and ŷa in Table 4 of Section 3.5 give the values of predictions and the responses

from the approximate simulations. The root-mean-square-errors (RMSE) for these 14 runs

are only 2.588. This is relatively small, since the mean of the values of ya is 21.499 and the

range (max-min) is 29.54. Thus, the base surrogate we constructed for ya is a decent proxy.

The basic surrogate model is consistent with our background knowledge of the physics

of the problem. In general, one would expect the mass flowrate, ṁ, the temperature of

the heat source, Twall, and the thermal conductivity of the material, k, to have positive
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linear main effects on the total rate of steady state heat transfer; on the other hand, Tin

should have a negative linear main effect. The signs of the linear main effects in Table 3

correspond to our expectations. Also, one would expect the temperatures, Tin and Twall, to

have more significant linear main effects on the response than the mass flowrate, ṁ, or the

thermal conductivity, k—two factors that have much more complex relationships with the

response via the Reynold’s number and the temperature gradients throughout the structure,

respectively. Their linear main effects are dominated in this region of the design space by

the strong linear relationship between the temperatures and the response. However, we

might expect them to have significant nonlinear relationships with the response, and we

observe this for the mass flowrate, ṁ.

1.3.3 Using detailed simulation data to adjust the base surrogate model

Both yd and ya are generated for 22 factor level combinations. Fig. 4 presents a plot

of yd vs. ya for these 44 experiments. It is clear that the detailed simulation and the

approximate simulation values are quite different. Some detailed simulation values are

higher than approximate simulation values, while some are lower. This demonstrates the

need for modeling ρ(x) as a function of x in (13).

Next we use the more accurate detailed simulation output, yd(xi), to adjust the fitted

model of ya(xi), as described in Section 1.2.4. Overall, we have a good fit for the ad-

justed model as σ̂2
δ has a small value of 0.00515. For the scale adjustment term ρ(x) the

parameter estimates are (ρ̂0, ρ̂1, ρ̂2, ρ̂3, ρ̂4) = (1.130, 0.090,−0.032, 0.004,−0.012). Among

these estimates, the coefficients for ṁ and Tin are relatively large with significant p-values of

2.165e-23 and 3.839e-13. For the location adjustment term δ(x), the results are δ̂0 = −0.690

with the p-value 0.0102 and θ̂δ = (0.173, 0.176, 0.01, 3.66). In Fig. 5, plots of δ̂ vs. different

pairs of variables are plotted. In each plot, a 40 by 40 equally spaced grid is chosen for the

two variables used for plotting and the values of the other two remaining variables are fixed

at their mean values.
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Figure 5: δ̂ for different pairs of factors.
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Table 4: Additional simulations for validation

Run ṁ(kg/s) Tin(K) k(W/mK) Twall(K) yd ŷ1
d ŷ2

d ŷa ya

1 0.00050 293.15 362.73 393.15 25.82 23.85 24.09 26.96 27.24
2 0.00055 315 310 365 7.48 10.31 11.19 12.44 7.02
3 0.00056 277.01 354.98 374 19.77 26.02 24.99 26.38 25.53
4 0.00062 275 225 340 18.78 16.64 16.72 16.14 16.40
5 0.00068 313.28 259.12 350 4.55 6.44 9.04 7.32 10.23
6 0.00070 288.15 300 400 34.45 31.93 31.83 30.97 30.90
7 0.00078 292.73 267.84 369 21.97 23.70 22.49 22.01 20.92
8 0.00080 303.15 250 350 14.83 6.34 13.42 6.45 13.08
9 0.00085 270 325 385 32.85 37.88 37.32 31.34 31.14
10 0.00085 301.31 317.85 341 11.92 12.99 12.64 11.94 11.30
11 0.00091 248.87 206.74 398 47.05 51.77 47.04 39.63 36.56
12 0.00094 271.32 362.73 400 42.93 44.97 43.51 35.63 35.53
13 0.00095 280 270 330 17.41 16.82 17.54 13.51 13.54
14 0.00100 293.15 202.4 373.15 22.89 25.74 26.88 21.1 21.60

Finally, for a new input x∗ we can create the final surrogate model:

ŷd(x∗) = ρ̂(x∗)ŷa(x∗) + δ̂(x∗), (16)

where ρ̂(x∗) = 1.130 + 0.090x∗1− 0.032x∗2 + 0.004x∗3− 0.012x∗4. ŷa(·) is the BLUP of ya(·) as

described in (7) and δ̂(·) is the BLUP of δ(·) in (14).

1.3.4 Validation of the final surrogate model

In order to test and validate the method, 14 additional experiments are performed. These

14 runs are chosen at random in a space slightly larger than the original design space. For

each experimental point, both detailed and approximate simulations are performed. Table

4 lists the factor levels for these experiments, the ya and yd values, the predicted obtained

using (16) and the predicted obtained using (7) and the results presented in Section 3.3.

Root-mean-square-errors (RMSE) are computed to assess prediction performance. Here

we present three different comparisons. The first is a comparison between predictions with

the final surrogate model in (15) and detailed simulation data. The second is a comparison

between predictions using the base surrogate model in (7) and the detailed simulation data,
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and the third is a comparison between approximate and detailed simulation data.

RMSE1 =

√∑14
j=1(ŷd(xj)− yd(xj))2

14
= 3.795,

RMSE2 =

√∑14
j=1(ŷa(xj)− yd(xj))2

14
= 4.595,

and

RMSE3 =

√∑14
j=1(ya(xj)− yd(xj))2

14
= 4.431.

The proposed method provides a significant improvement in terms of prediction ac-

curacy. The RMSE between and is 3.795, which is 14% smaller than the RMSE (4.430)

between ya and yd, and 17% smaller than the RMSE (4.595) between ŷa and yd given in

Table 2. The difference between these RMSE’s is statistically significant. Fig. 5 shows the

nonlinear nature of the location adjustment in our procedure. The flexible scale-location

adjustment is capable of refining the base surrogate model and obtaining a more accurate

surrogate model. To get a sense of the relative size of the RMSE between ŷd and yd (3.795),

we calculated the mean of 14 DS runs (23.05) and their range (42.5). The RMSE is only

16% of the mean value and 8.9% of the range and thus is small for this case.

At this point, it is important to determine whether the improvement in prediction accu-

racy realized with the proposed method justifies the computational expense of building the

final surrogate model. Whereas the RMSE of the base surrogate model, ŷa, is 17% larger

than the RMSE of the final surrogate model, ŷd, the cost of building the base surrogate

model is essentially negligible compared with the cost of building the final surrogate model,

requiring minutes versus days of computing time to obtain the approximate and detailed

experimental data reported in Table 2. Based on this comparison, a designer may con-

clude that the improvement in prediction accuracy is not sufficient to justify the increased

computational expense of the proposed method. However, the comparison is misleading.

In typical engineering applications, a designer would not rely exclusively on data from an

un-calibrated approximate model. Because the accuracy of an approximate model is not

known a priori in an engineering application, data from detailed simulations or physical
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experiments are typically conducted throughout the region of interest for validation and cal-

ibration. If a number of detailed experiments are conducted anyway, the proposed method

is both effective and efficient. By gathering only a few additional detailed simulation data

points (beyond the number typically required for validating the approximate model) and by

strategically choosing their locations, it is possible to assess the accuracy of an approximate

model and reduce its predication error using the proposed method.

1.3.5 Maximize the total rate of steady state heat transfer

Note that one of the design objectives is to maximize the total heat transfer rate. The

ranges of design variables are listed in Table 1. Table 5 contains the maximization results

of ŷd(x) over the ranges. All the optimal values of four design variables are attained at

the boundaries of the ranges. These results are not surprising. For this problem we know

that as ṁ increases, Tin decreases, k increases, or Twall increases, the heat transfer rate

increases. The maximum value of ŷd(x), 46.93, is larger than the values given in Tables

2 and 4, except for run 11 in Table 4. This outcome can be explained by noting that the

design variable values in Table 5 that maximize heat transfer are not identical to any of the

experiments in Tables 2 and 4.

Table 5: Maximizing ŷd(x) over the acceptable ranges

ṁ(kg/s) Tin(K) k(W/mK) Twall(K) ŷd(x)
0.001 270.00 360.0 400 46.93

1.4 Closure

In summary, we have presented an approach for building surrogate models based on data

from both detailed and approximate simulations. From a design perspective, surrogate

models reduce the computational cost of exploring large regions of the design space by re-

placing repeated detailed simulations. However, there can be a substantial computational

cost involved in using data from detailed simulations to build surrogate models. Using the
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approach presented in this chapter, it is possible to improve the accuracy of surrogate mod-

els obtained from approximate simulations by supplementing the data from the approximate

simulations with relatively few data points from more computationally expensive detailed

simulations. Thus, it is possible to explore a design space with improved or enhanced sur-

rogate models that are more accurate that surrogate models based entirely on approximate

simulations but less computationally expensive than surrogate models based exclusively on

detailed simulations.

An advantage of our method is that surrogate models can be modified adaptively when

new simulation results are available. Updating surrogate models requires negligible com-

putational cost because it only involves refitting the model with both old and new data.

Therefore it is relatively convenient to improve an existing surrogate model to a desired

level of accuracy, if more accurate predictions are required.

The approach is broadly applicable to examples and phenomena from structural, electri-

cal, financial, and other domains. The models usually correspond to different physics-based

models or approximations of a problem (e.g., Euler Equations vs. Navier-Stokes, etc.). The

primary assumptions are that multiple models or data sources are available and that one

model or data source is generally more accurate than the other(s). The method is presented

currently to integrate simulation models at only two levels, namely, detailed and approxi-

mate. Work is in progress to extend the method for more than two levels of models or data

sources.
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CHAPTER II

BAYESIAN HIERARCHICAL MODELING FOR

INTEGRATING LOW-ACCURACY AND

HIGH-ACCURACY EXPERIMENTS

2.1 Introduction

A challenging and fascinating problem in design and analysis of experiments is the synthesis

of data from different types of experiments. With the advances in computing and experi-

mentation, scientists can quickly access data from different sources. Complex mathematical

models, implemented in large computer codes, are widely used to study real systems. Doing

the corresponding physical experimentation would be more time-consuming and costly. For

example, each physical run of the fluidized bed process (to be discussed in Section 2.4) can

take days or even weeks to finish while running the associated computer code only takes

minutes per run. Furthermore, a large computer program can often be run at different

levels of sophistication with vastly varying computational times. Consider, for example,

two codes that simulate linear cellular alloys for electronic cooling systems (to be discussed

in Section 2.3). One code uses finite element analysis while the other is based on finite

difference method. The two codes differ in the numerical method and the resolution of the

grid, resulting in an accurate but slow version and a crude but fast approximation. In this

chapter, we consider a generic situation in which two sources (or experiments) are avail-

able and one source is generally more accurate than the other but also more expensive to

run. The two experiments considered are called low-accuracy experiment and high-accuracy

experiment and referred to as LE and HE respectively. The pair can be physical vs. com-

puter experiments or detailed vs. approximate computer experiments. Experimenters are

often faced with the problem of how to integrate these multiple data sources efficiently.

There is a recent surge of interests in this problem. For example, Kennedy and O’Hagan
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(2000) and Qian et al. (2006) consider integrating data from detailed and approximate com-

puter experiments, and Reese et al. (2004) deals with integrating physical and computer

experiments.

The purpose of this chapter is to introduce Bayesian hierarchical Gaussian process

(BHGP) models to integrate multiple data sources. The heterogeneity among different

sources is accounted for by performing flexible location and scale adjustments. The chap-

ter is organized as follows. The BHGP models are developed in Section 2.2. Sections 2.3

and 2.4 illustrate the method with two real examples: one with detailed and approximate

computer experiments and the other with physical and computer experiments. Concluding

remarks and extensions are given in Section 2.5. Some computational details are included

in the Appendix.

2.2 Bayesian hierarchical Gaussian process models

Standard approaches to the synthesis of low-accuracy and high-accuracy experiments an-

alyze data from each type separately. By borrowing strength across multiple sources, an

integrated analysis can produce better results. Qian et al. (2006) introduces a two-step ap-

proach to integrate results from detailed and approximate computer experiments. It starts

with fitting a Gaussian process model for the approximate experiment data. In the second

step, the fitted model is adjusted by incorporating the more accurate data from the detailed

experiment. The present work can be viewed as an extension of theirs. The essential dif-

ferences between the two approaches are two-fold. First, new hierarchical Gaussian process

models are introduced to carry out location and scale adjustments more flexibly. Second, the

present approach adopts the Bayesian formulation and can absorb uncertainty in the model

parameters in the prediction. Reese et al. (2004) proposes another hierarchical method by

using linear models to integrate data from physical and computer experiments. Although

this approach has advantages such as the ease of computation and interpretation, the linear

models cannot serve as interpolators whereas the Gaussian process models have this fea-

ture when modeling deterministic computer experiments. Also the linear models are not as

flexible as the Gaussian process models in representing complex nonlinear relationships.
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Suppose that the LE and HE involve the same k factors x = (x1, . . . , xk). Denote by

Dl = {x1, · · · ,xn} the design set for the LE with n runs, and yl = (yl(x1), . . . , yl(xn))t the

corresponding LE data. Because an HE run requires more computational effort to generate

than an LE run, usually there are fewer HE runs available. Without loss of generality, we

assume that Dh the design set of the HE consists of the first n1 (n1 < n) runs of Dl. The

outputs from the HE are denoted by yh = (yh(x1), . . . , yh(xn1))
t. Note that the subscripts

h and l denote “high” and “low”. The main goal of the proposed method is to predict yh

at some untried points (i.e., these points outside Dh). Central to the method are Bayesian

hierarchical Gaussian process (BHGP) models, which consist of the following two parts:

1. Fit a smooth model for the LE data.

2. Fit a flexible model to “link” the LE and the HE data.

Detailed descriptions of these two models are given in Sections 2.2.2 and 2.2.3.

2.2.1 Bayesian Gaussian process model

In this section, we present the basics of Bayesian analysis of a Gaussian process model

as the basis for later development. A good reference for Gaussian process models is

Santner, Williams and Notz (2003) (hereafter abbreviated as SWN 2003). For simplic-

ity, throughout the chapter a Gaussian process with mean µ and variance σ2 is denoted by

GP (µ, σ2,φ), where φ will be defined below. Suppose y(x) is a real-valued stationary Gaus-

sian process on the real line with mean E{y(x)} = f(x)tβ, where x = (x1, . . . , xk), f(x) =

{f1(x), . . . , fq(x)}t is a known vector-valued function and β is a vector of unknown regres-

sion coefficients. Furthermore, the covariance function is represented by cov(y(x1), y(x2)) =

σ2Kφ(x1,x2), where σ2 is the variance and Kφ(·, ·) is the correlation function and depends

on the unknown correlation parameters φ. Although the proposed method works for general

correlation functions, we specifically apply it to the following Gaussian correlation function

(SWN 2003)

Kφ(x1,x2) =
k∏

i=1

exp{−φi1(x1i − x2i)2}. (17)
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Here, the scale correlation parameters φi1 are positive. The power correlation parameters

are fixed at 2 (SWN 2003), thus reducing the complication of estimating the correlation

parameters. In addition, the sample path of the Gaussian process is infinitely differentiable,

which is a reasonable assumption for many applications including the examples in Sections

2.3 and 2.4. As a result, this correlation is often adopted in the computer experiments

literature (Welch et al. 1992, SWN 2003). In general, we observe y = {y(x1), . . . , y(xn)}

and are interested in predicting y at a given point x0.

The priors for the model parameters β, σ2,φ take the following structure

p(β, σ2,φ) = p(β, σ2)p(φ) = p(β|σ2)p(σ2)p(φ). (18)

The choice of priors requires some care. As pointed out in Berger et al. (2001), improper

priors chosen for φ may lead to improper posteriors as well. To avoid this problem, proper

priors are adopted as follows:

p(σ2) ∼ IG(α, γ),

p(β|σ2) ∼ N(u, vIq×qσ
2),

and

φi ∼ G(a, b), for i = 1, . . . , k, (19)

where IG(α, γ) denotes the inverse gamma distribution with density function

p(z) ∼ z−(α+1) exp{−γ

z
}, z > 0,

G(a, b) is the gamma distribution with density function

p(z) =
ba

Γ(a)
za−1e−bz, z > 0,

N(µ,Σ) is the multivariate normal distribution with mean µ and variance Σ and Iq×q is

the q × q identity matrix.

It can be shown (SWN 2003) that the conditional distribution of y at x0, giving the

observed y, is the non-central t distribution

T1(n + ν0, µ1, σ
2
1), (20)

33



where

µ1 = f t
0µβ|n + rt

0R
−1(y − Fµβ|n),

µβ|n = (FtR−1F + v−1Iq×q)−1(FtR−1y + uv−1Iq×q),

β̂ = (FtR−1F)−1(FtR−1y),

σ2
1 =

Q2
1

ν1
{1− (f t

0, r
t
0)[

−v−1Iq×q Ft

Ft R
]−1(

f0

r0

)},

Q2
1 = c0 + yt[R−1 −R−1F(FtR−1F)−1FtR−1]y

+(u− β̂)t[vIq×q + (FtR−1F)−1]−1(u− β̂),

ν0 = 2a, ν1 = n + 2a, c0 =
√

b
a , f0 = f(x0), r0 = (R(x0,x1), . . . , R(x0,xn))t, R is the

correlation matrix with entry R(xi,xj) for i, j = 1, . . . , n, F = (f(x1)t, . . . , f(xn)t)t is the

regressor matrix and the density of T1(n + ν0, µ1, σ
2
1) is

p(z) =
Γ((n + ν0 + 1)/2)

σ1[(n + ν0)π]1/2Γ((n + ν0)/2)
[1 +

1
n + ν0

(z − µ1)2

σ2
1

]−(n+ν0+1)/2.

2.2.2 Low-accuracy experiment data

We assume that yl(xi) can be described by

yl(xi) = f t
l (xi)βl + εl(xi), i = 1, . . . , n, (21)

where fl(xi) = (1, xi1, . . . , xik)t, βl = (βl0, βl1, . . . , βlk)t and εl(·) is assumed to be GP (0, σ2
l ,φl).

Here, the mean function includes linear effects, because in many circumstances (including

the two examples given later) it is reasonable to assume the factors considered in the ex-

periments have linear effects on the outputs. In addition, inclusion of “weak” main effects

in the mean of a Gaussian process can bring additional numerical benefits for estimating

the correlation parameters. Suppose, instead, the mean in (21) includes only a constant µ,

the likelihood of yl will be

∝ 1

|Σ|
1
2

exp{−(yl − µ1n)tΣ−1(yl − µ1n)}, (22)

where the covariance matrix Σ depends on the unknown correlation parameters φl and

1n represents the n-unity column vector. For a large number of observations, (22) can

34



be extremely small regardless of the values of φl. As a result, φl cannot be accurately

estimated. The inclusion of some weak main effects in the mean can partially mitigate this

problem by “dampening” the Mahalabonis distance between µ1n and yl.

If LE were the only source considered, then this model would be fitted using the Bayesian

Gaussian process model discussed in Section 2.2.1. Because the LE data are not very

accurate, the HE data need to be incorporated to improve the quality of the fitted model.

2.2.3 High-accuracy experiment data

Because LE and HE are conducted by using different mechanisms (physical or computa-

tional) or distinct numerical methods with different mesh sizes, orders of elements, or other

important aspects, their outputs can be different. In general we can classify the relationship

between yl and yh into three broad categories:

1. LE produces outputs almost as good as HE;

2. No similarities can be found (or defined) between yl and yh;

3. LE and HE give different outputs but share similar trends.

For category (1), the differences between yl and yh can be largely ignored, and using a single

model for both data sources will suffice. Furthermore, the HE runs can be replaced by the

LE runs, resulting in huge computational savings. However, these scenarios do not occur

often in practice. The second category consists of cases, where LE and HE are “oranges”

and “apples”. No sensible methods can be used to adjust the LE results and to integrate the

LE and HE data. In such situations, the experimenters need to scrutinize the underlying

assumptions or the set-ups of the LE and try to make improvements by better understanding

the differences between LE and HE. Most problems in practice fall in category (3), which

is the focus of the chapter.

In order to “link” the HE data with the LE data, we consider the following adjustment

model

yh(xi) = ρ(xi)yl(xi) + δ(xi) + ε(xi), i = 1, . . . , n1. (23)
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Here ρ(·), assumed to be GP (ρ0, σ
2
ρ,φρ), accounts from scale change from LE to HE. We

assume δ(·) to be GP (δ0, σ
2
δ ,φδ) and represent location adjustment. The measurement

error ε(·) is assumed to be N(0, σ2
ε ). Furthermore, yl(·), δ(·), ρ(·) and ε(·) are assumed to

be independent.

The unknown parameters θ involved in models (21) and (23) can be collected into three

groups: mean parameters θ1 = (βl, ρ0, δ0), variance parameters θ2 = (σ2
l , σ

2
ρ, σ

2
δ , σ

2
ε ) and

correlation parameters θ3 = (φl,φρ,φδ). The description of the hierarchical models in (21)

and (23) is complete with the specification of priors. It is similar to that of the Bayesian

Gaussian process model in Section 2.2.1. The chosen priors take the following form

p(θ) = p(θ1,θ2)p(θ3) = p(θ1|θ2)p(θ2)p(θ3), (24)

where

p(σ2
l ) ∼ IG(αl, γl),

p(σ2
ρ) ∼ IG(αρ, γρ),

p(σ2
δ ) ∼ IG(αδ, γδ),

p(σ2
ε ) ∼ IG(αε, γε),

p(βl|σ2
l ) ∼ N(ul, vlI(k+1)×(k+1)σ

2
l ),

p(ρ0|σ2
ρ) ∼ N(uρ, vρσ

2
ρ),

p(δ0|σ2
δ ) ∼ N(uδ, vδσ

2
δ ),

φli ∼ G(al, bl), φρi ∼ G(aρ, bρ), φδi
∼ G(aδ, bδ), for i = 1, . . . , k. (25)

2.2.4 Bayesian prediction

Recall that we are interested in predicting yh at an untried point x0. For the ease of

methodological development, we first assume that the untried point x0 belongs to Dl but is

not a point in Dh (otherwise yh(x0) is readily available). This assumption shall be relaxed

later. Assume for the moment that the value of θ3 is given. In Section 2.2.5, we shall discuss

the fitting of θ3. The prediction is based on the Bayesian predictive density function

p(yh(x0)|yh,yl) =
∫

θ1,θ2

p(yh(x0)|yl,yh,θ1,θ2,θ3)p(θ1,θ2|yl,yh,θ3)dθ1dθ2. (26)
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In this approach, uncertainty in the model parameters θ1 and θ2 is naturally absorbed in

the prediction.

The integration of θ1 and θ2 in (26) needs to be done numerically. A Markov Chain

Monte Carlo (MCMC) (Liu 2001) algorithm to approximate p(yh(x0)|yh,yl) is given as

follows:

1. Generate (θ(1)
1 ,θ

(1)
2 ), . . . , (θ(m)

1 ,θ
(m)
2 ) from p(θ1,θ2|yl,yh,θ3).

2. Approximate p(yh(x0)|yh,yl) by

p̂m(yh(x0)|yl,yh,θ3) =
1
m

m∑
i=1

p(yh(x0)|yl,yh,θ
(i)
1 ,θ

(i)
2 ,θ3). (27)

For the ease of posterior sampling in step 1, we introduce new parameters τ1 = σ2
δ

σ2
ρ

and τ2 = σ2
ε

σ2
ρ

and use (σ2
ρ, τ1, τ2) instead of (σ2

ρ, σ
2
δ , σ

2
ε ) in the model. With some abuse of

notation, we shall still use θ2 to denote (σ2
l , σ

2
ρ, τ1, τ2). From (25), the prior for σ2

ρ, τ1 and

τ2 is easily shown to be

p(σ2
ρ, τ1, τ2) =

γ
αρ
ρ

Γ(αρ)
(σ2

ρ)
−(αρ+1) exp{−γρ/σ2

ρ}

·(γδ)αδ

Γ(αδ)
(σ2

ρτ1)−(αδ+1) exp{−γδ/(σ2
ρτ1)}

·(γε)αε

Γ(αε)
(σ2

ρτ2)−(αε+1) exp{−γε/(σ2
ρτ2)}(σ2

ρ)
2. (28)

The key for deriving the full conditional distributions of (βl, δ0, ρ0, σ
2
l , σ

2
ρ, τ1, τ2) that is

used in the MCMC is to note that by conditioning on θ3, these parameters can be viewed

as coming from some general linear models. Given θ3, the full conditional distributions for
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(βl, δ0, ρ0, σ
2
l , σ

2
ρ, τ1, τ2) can be shown to be

p(βl|yl,yh,βl) ∼ N((
ul

vlσ
2
l

I(k+1)×(k+1) + yt
lR

−1
l Fl)(

1
vlσ

2
l

I(k+1)×(k+1) +
Ft

lR
−1
l Fl

σ2
l

)−1,

(
1
vl

I(k+1)×(k+1) + Ft
lR

−1
l Fl)−1σ2

l ),

p(ρ0|yl,yh, ρ0) ∼ N

( uρ

vρ
+ yt

l1
M−1(yh − δ01n1)

1
vρ

+ yt
l1
M−1yl1

,
σ2

ρ
1
vρ

+ yt
l1
M−1yl1

)
,

p(δ0|yl,yh, δ0) ∼ N

(
uδ

vδτ1
+ 1t

n1
M−1(yh − ρ0yl1)

1
vδτ1

+ 1t
n1

M−11n1

,
σ2

δ
1

vδτ1
+ 1t

n1
M−11n1

)
,

p(σ2
l |yl,yh, σ2

l ) ∼ IG(
n

2
+

k + 1
2

+ αl,

1
2

(βl − ul)t(βl − ul)
vl

+
1
2
(yl − Flβl)

tR−1
l (yl − Flβl) + γl),

p(σ2
ρ|yl,yh, σ2

ρ) ∼ IG(
n1

2
+

1
2

+ αρ + αδ + αε,
(ρ0 − uρ)2

2vρ
+ γρ +

γδ

τ1
+

γε

2

+
(yh − ρ0yl1 − δ01n1)

tM−1(yh − ρ0yl1 − δ01n1)
2

),

p(τ1, τ2|yl,yh, τ1, τ2) ∝ 1

τ
αδ+ 3

2
1

1
τ

αε+1

2

exp{− 1
τ1

(
γδ

σ2
ρ

+
(δ0 − uδ)2

2vδσ2
ρ

)− γε

τ2σ2
ρ

} 1

|M|
1
2

· exp{−(yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

}, (29)

where ω represents all the components of θ1,θ2 except for ω, M = Wρ + τ1Rδ + τ2In1×n1

and depends on φρ, φδ, τ1 and τ2, yl1 = (yl(x1), . . . , yl(xn1))
t,Wρ = A1RρA1, A1 =

diag{yl (x1), . . . , yl(xn1)} and Rρ and Rδ are the correlation matrices of ρ = (ρ(x1), . . . , ρ(xn1))
t

and δ = (δ(x1), . . . , δ(xn1))
t respectively.

The Gibbs sampler cannot be directly applied here, because the full conditional distri-

bution for τ1 and τ2 in (29) is non-standard. To circumvent this problem, the Metropolis-

within-Gibbs algorithm (Liu 2001) is used, where a Metropolis draw is added to sample τ1

and τ2 within the usual Gibbs loop.

The second step of the approximation in (27) is straightforward. The analytic form of

p(yh(x0)|yl,yh,θ1,θ2,θ3) can be obtained by rewriting it as

p(yh(x0),yh|yl,θ1,θ2,θ3)
p(yh|yl,θ1,θ2,θ3)

. (30)

From the assumption that ρ(·), δ(·) and ε(·) are independent of yl in (23), the distributions

38



of the numerator and the denominator in (30) are as follows:

p(yh(x0),yh|yl,θ1,θ2,θ3) ∼ N(ρ0y∗l1 + δ01n1+1, σ
2
ρW

∗
ρ + σ2

δR
∗
δ + σ2

ε I(n1+1)×(n1+1)),

p(yh|yl,θ1,θ2,θ3) ∼ N(ρ0yl1 + δ01n1 , σ
2
ρWρ + σ2

δRδ + σ2
ε In1×n1), (31)

where

y∗l1 = (yl(x0), yl(x1), . . . , yl(xn1))
t,

W∗
ρ = A∗

1R
∗
ρA

∗
1,

A∗
1 = diag{yl(x0), yl (x1), . . . , yl(xn1)} ,

and R∗
ρ and R∗

δ are the correlation matrices of ρ∗ = (ρ(x0), ρ(x1), . . . , ρ(xn1))
t and δ∗ =

(δ(x0), δ(x1), . . . , δ(xn1))
t respectively.

Once the predictive density has been computed, we can use

ŷh(x0) = E(yh(x0)|yl,yh) (32)

as the predictor for yh(x0) and Var(yh(x0)|yl,yh) as the prediction variance.

Next, we relax the assumption x0 ∈ Dl/Dh and consider the prediction when x0 does

not belong to Dl. The additional difficulty is that the value of yl(x0) is not observed. In the

Bayesian framework, we can fit the Bayesian Gaussian process model as described in Section

2.1 and impute yl(x0) by ŷl = E(yl(x0)|yl) (the mean of a non-central t distribution). Then

we can add ŷl to the set of yl so that x0 belongs to the expanded set Dl ∪ {x0}.

2.2.5 Estimation of correlation parameters

Next, we discuss the fitting of the correlation parameters θ3.

Note that

p(θ3|yh,yl) ∝ p(θ3)
∫

θ1,θ2

p(θ1,θ2)p(yl,yh|θ1,θ2,θ3)dθ1dθ2, (33)

which can be shown (see Appendix) to be proportional to

L1 = p(θ3)
∫

τ1,τ2

τ
−(αδ+ 3

2
)

1 τ
−(αε+1)
2 |a1|−

1
2 |Rl|−

1
2 |M|−

1
2 (a2a3)−

1
2 (γl +

4c1 − bt
1a

−1
1 b1

8
)−(αl+

n
2
)

·(γρ +
γδ

τ1
+

γε

τ2
+

4a3c3 − b2
3

8a3
)−(αρ+αδ+αε+

n1
2

)dτ1dτ2. (34)
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The posterior mode estimator θ̂3 is given by an optimal solution to the optimization

problem

max
φl,φρ,φδ

L1, (35)

which is equivalent to solving the following two separable problems

max
φl

p(φl)|Rl|−
1
2 |a1|−

1
2 (γl +

4c1 − bt
1a

−1
1 b1

8
)−(αl+

n
2
) (36)

and

max
φρ,φδ

∫
τ1,τ2

p(φρ)p(φδ)τ
−(αδ+ 3

2
)

1 τ
−(αε+1)
2 |M|−

1
2 (a2a3)−

1
2

·(γρ +
γδ

τ1
+

γε

τ2
+

4a3c3 − b2
3

8a3
)−(αρ+αδ+αε+

n1
2

)dτ1dτ2. (37)

The optimization problem in (36) can be solved by using standard non-linear optimiza-

tion algorithms like the quasi-Newton method. Solving the optimization problem in (37)

is more elaborate because its objective function involves integration. The problem in (37)

can be recast as

max
φρ,φδ

{L2 = Eτ1,τ2f(τ1, τ2)}, (38)

where

f(τ1, τ2) =
p(φρ)p(φδ) exp( 2

τ1
) exp( 2

τ2
)

|M|
1
2 (a2a3)

1
2 (γρ + γδ

τ1
+ γε

τ2
+ 4a3c3−b23

8a3
)αρ+αδ+αε+

n1
2

, (39)

p(τ1) ∼ IG(αδ + 1
2 , 2), p(τ2) ∼ IG(αε, 2), and p(τ1) and p(τ2) are independent.

The problem in (39) can be viewed as a stochastic programming problem and solved

by using the Sample Average Approximation method (Ruszczynski and Shapiro 2003).

Generate Monte Carlo samples (τ s
1 , τ s

2 ) from p(τ1, τ2), s = 1, · · · , S, and estimate L2 by

L̂2 =
1
S

S∑
s=1

f(τ s
1 , τ s

2 ). (40)

We refer to an optimal solution φ̃ρ and φ̃δ of the problem

max
φρ,φδ

L̂2 (41)

as the simulated posterior mode. When S is large, the simulated posterior mode will be

close to the true posterior mode (Ruszczynski and Shapiro 2003).
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2.2.6 Simplifications when yh is deterministic

Suppose yh is deterministic (i.e., ε(·) = 0 in (23)), which is the case for the problem of de-

tailed vs. approximate computer experiments. Some parts of the aforementioned procedure

can be simplified as follows.

1. Sampling from p(θ1,θ2|yl,yh,θ3).

Because τ2 = 0 in the model, p(σ2
ρ, τ1, τ2) in (28) is simplified by dropping its parts in-

volving αε,γε and τ2; similarly, p(τ1, τ2|yl,yh, τ1, τ2) and M are simplified by removing

the parts involving αε,γε and τ2.

2. Bayesian prediction.

The simplification gives another desirable property of the proposed method.

Theorem 2.1. If yh is deterministic, the predictor E(yh(xi)|yl,yh) = yh(xi) and the

prediction variance V ar(yh(xi)|yl,yh) = 0 for xi ∈ Dh.

Proof. It is clear from (30) that for xi ∈ Dh the posterior density pyh(xi)(t|yl,yh,θ1,θ2,θ3) =

I{t = yh(xi)}. Therefore, E(yh(xi)|yl,yh) = yh(xi) and V ar(yh(xi)|yl,yh) = 0.

This property implies that the predictor from the integrated analysis smoothly inter-

polates all the HE data points.

3. Estimation of correlation parameters.

Because τ2 = 0 in the model, L1 in (34) is simplified by dropping its parts involving

αε,γε and τ2, and becomes a one-dimensional integral; similarly, L2 in (38) is simplified

by removing the part involving αε,γε and τ2, and becomes a stochastic program with

one random variable.

2.2.7 Comparison with existing methods

There are major differences between the proposed method and those in Kennedy and

O’Hagan (2000) and Qian et al. (2006). The latter two consider integrating data from

two deterministic experiments, while ours is applicable to experiments with or without

41



measurement errors. Ours is also more flexible in the modeling strategy. Kennedy and

O’Hagan uses an autoregressive model as an adjustment model with a constant chosen for

scale adjustment, which cannot handle complex scale change from LE to HE. Qian et al.

uses a regression model, which captures linear part, for the scale change. By utilizing a

Gaussian process model, the scale adjustment in (23) can account for non-linear and com-

plex changes as evidenced in the analysis of two examples given later. Qian et al. adopts a

frequentist formulation and thus cannot account for uncertainties in the model parameters.

In the Bayesian approach of Kennedy and O’Hagan, non-informative priors for the model

parameters are assumed. They also use a plug-in estimate ρ̂ in the prediction, which can-

not account for the variation in ρ̂. Our approach uses informative priors for the adjustment

parameters. The prediction in our approach is based on the Bayesian predictive density

function in (26) so that the uncertainties in the model parameters are reflected.

2.3 Example 1: designing linear cellular alloys

We consider part of the data used in Qian et al. (2006), which consists of the outputs from

computer simulations for a heat exchanger used in an electronic cooling application. As

illustrated in Figure 6, the device is used to dissipate heat generated by a heat source such

as a microprocessor. The response y of interest is the total rate of steady state heat transfer

of the device, which depends on the mass flow rate of entry air ṁ, the temperature of entry

air Tin, the temperature of the heat source Twall and the solid material thermal conductivity

k. The device is assumed to have fixed overall width (W ), depth (D), and height (H) of 9,

25, and 17.4 millimeters, respectively. Two types of simulations are used in this study: a

detailed but slow simulation based on FLUENT finite element analysis and an approximate

but fast simulation using finite difference method. These two simulations are referred to as

detailed simulation (DS) with response yd and approximate simulation (AS) with response

ya respectively. Each DS run requires two to three orders of magnitude more computing

time than the corresponding AS run. For example, the first run in Table 1 requires 1.75

hours and 2 seconds for DS and AS respectively on a 2.0 GHz Pentium 4 PC with 1 GB of

RAM. Details on the engineering background can be found in Qian et al. (2006).
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Figure 6: A generic example of linear alloy array.
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Table 6 gives the data consisting of 32 AS runs and 32 DS runs. The values of design

variables are given in columns 1-4 of the table and the responses from the two experiments

are given in columns 5 and 6. The data is divided into a training set and a testing set. We

fit BHGP models using a training set consisting of 24 randomly selected DS runs and all

32 AS runs. The remaining 8 DS runs (i.e., run no. 1, 4, 9, 11, 13, 23, 25 and 27 as in the

table) are left to form the testing set for model validation. Column 7 in the table gives the

status of each DS run as training or testing.

Table 6 shows that the four design variables have different scales and are thus standard-

ized.

The values of hyper-parameters used in this example are given in Table 7. They are

chosen to reflect our understanding of the model parameters. The “vague” prior IG(2, 1)

is chosen for σ2
l ,σ

2
ρ and σ2

δ . The “location-flat” priors N(0, I7×7σ
2
l ) and N(0, σ2

δ ) are chosen

for βl and δ0, and the “scale-flat” prior N(1, σ2
ρ) for ρ0. The prior for each correlation

parameters in θ3 is G(2, 0.1), having high variance of 200.

Posterior modes of the correlation parameters are given in Table 8. Because calculat-

ing φ̂ρ and φ̂δ needs solving a stochastic programming problem in (38) with one random

variable, the Monte Carlo sample size S in (40) is fixed at 20 to achieve good approxima-

tion to the one-dimensional expectation. The optim function in R is used for non-linear

optimization.

The intensive Bayesian computation is implemented in WinBugs, a general-purpose

Bayesian computing environment. It is found that convergence of Markov Chain is achieved

after the first 5000 burn-in iterations. Additional 5000 runs are then generated for posterior

calculations.

The posterior mean (255) of σ2
l is large, indicating high uncertainty about AS. The

posterior mean of β0 is 22.29. The posteriors of the linear coefficients βli, i = 1, . . . , 4 are

given in Figures 7(a)-(d). Table 9 gives the posterior means and 95% credible HPD intervals.

It is clear from the table that βl4 and βl1 are more significant than βl2 and βl3. The latter’s

intervals are relatively large and contain zero.

Figures 8(a)-(d) show the posteriors of the adjustment parameters ρ0, σ2
ρ, δ0 and σ2

δ .
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Table 6: Data from linear cellular alloy experiment

Run # ṁ(kg/s) Tin(K) k(W/mk) Twall(K) ya yd Status
1 0.0005 293.15 362.73 393.15 25.61 23.54 Test
2 0.00055 315 310 365 21.23 20.15 Train
3 0.000552 293.53 318.63 388.29 11.44 10.17 Train
4 0.000557 290.18 298.27 377.49 15.03 15.29 Test
5 0.00056 277.01 354.98 374 18.55 18.39 Train
6 0.000566 285.77 266.71 367.27 20.74 20.52 Train
7 0.000578 302.17 358.13 343.72 30.23 30.12 Train
8 0.00058 272.26 211.71 333.65 18.13 18.18 Train
9 0.000589 278.16 225.78 351.83 25.02 24.68 Test
10 0.000594 279.54 258.51 360.13 17.92 19.05 Train
11 0.000603 296.75 323.15 399.45 24.20 24.96 Test
12 0.000612 280.83 291.53 394.72 17.47 16.95 Train
13 0.000615 300.28 270.74 335.79 22.48 22.30 Test
14 0.00062 275 225 340 25.07 19.57 Train
15 0.000626 284.89 350.46 352.29 18.93 23.33 Train
16 0.000627 287.6 243.96 382.54 18.17 14.36 Train
17 0.000652 298.04 303.96 361.58 13.75 21.31 Train
18 0.000657 294.24 330.63 375.53 29.08 36.11 Train
19 0.00067 303.07 321.41 370.48 22.21 25.37 Train
20 0.00068 313.28 259.12 350 21.6 22.89 Train
21 0.000683 287.05 227.31 358.24 30.9 34.45 Train
22 0.000689 272.7 260.91 355.37 13.08 14.83 Train
23 0.000694 278.35 212.79 376.24 16.4 18.78 Test
24 0.000698 277.52 299.39 338.4 31.14 32.85 Train
25 0.0007 288.15 300 400 13.54 17.41 Test
26 0.000711 292.26 273.31 392.54 7.02 7.48 Train
27 0.000714 283.08 306.69 344.34 35.53 42.93 Test
28 0.00073 285.51 217.74 383.92 20.92 21.97 Train
29 0.000738 295.01 295.02 347.22 25.53 19.77 Train
30 0.000741 270.95 275.19 356.87 10.23 4.55 Train
31 0.000751 287.99 326.02 354.08 36.56 47.05 Train
32 0.000757 300.64 235.03 391.68 27.24 25.82 Train
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Table 7: Prior hyper-parameters for linear cellular alloy experiment

Hyper-parameter Value
αl 2
γl 1
αρ 2
γρ 1
αδ 2
γδ 1
ul (0, 0, 0, 0, 0)t

vl 1
uρ 1
vρ 1
uδ 0
vδ 1
al 2
bl 0.1
aρ 2
bρ 0.1
aδ 2
bδ 0.1

Table 8: Posterior modes of correlation parameters for linear cellular alloy experiment

Correlation parameter Posterior mode
φl1 2.83
φl2 2.13
φl3 22.65
φl4 12.87
φρ1 3.22
φρ2 7.23
φρ3 1.26
φρ4 1.38
φδ1 2.26
φδ2 0.74
φδ3 6.92
φδ4 7.24
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Figure 7: Posteriors of βl for linear cellular alloy experiment.

47



Table 9: Posterior means and 95% percent credible intervals for βl in linear cellular alloy
experiment

Posterior mean Lower Bound Upper Bound
βl1 -5.334 -7.141 -3.504
βl2 2.379 -1.171 5.78
βl3 0.09424 -1.128 1.255
βl4 5.896 3.639 8.373

Their means and 95% credible HPD intervals are given in Table 10. Several interesting

observations have emerged. First, the plot for ρ0 is multi-modal, indicating complex scale

change from AS to DS. Second, σ2
ρ and σ2

δ are relatively small, indicating a good fit of

the adjustment model. Third, the average response 21.89 for 24 DS runs is close to 21.13,

the average for the corresponding 24 AS runs. Table 5 shows no consistent pattern in

comparing the DS and AS values. This is different from the example in Section 2.4, where

one experiment consistently gives higher values than the other. For the current example, a

simple mean comparison analysis will yield little information, whereas the proposed method

can unveil complex relationships between AS and DS.

Table 10: Posterior means and 95% credible HPD intervals for ρ0, σ2
ρ, δ0 and σ2

δ in linear
cellular alloy experiment

Parameter Posterior mean Lower Bound Upper Bound
ρ0 1.05 0.94 1.13
σ2

ρ 0.29 0.16 0.49
δ0 0.14 −1.24 1.93
σ2

δ 0.78 0.18 2.70

Finally, we compare predictions on eight untried runs using BGHP models with those

from the separate analysis as well as those using the methods of Kennedy and O’Hagan

(2000) and Qian et al. (2006). The separate analysis builds a Bayesian Gaussian process

model using 24 DS runs, while the other three methods fit both the AS and DS data.

The predictions of the eight runs are given in Table 11. In the table, column 1 gives the

corresponding run numbers in Table 5; columns 2-5 give the values of ŷd of the integrated
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analysis, the separate analysis, the Kennedy-O’Hagan method and the Qian et al. method,

respectively, and column 6 gives the yd values from DS. The RMSEs (root-mean-square-

errors) for the four methods (in the same order) are 7.83, 9.48, 9.29 and 8.77, respectively.

The three methods that fit both AS and DS runs give better prediction results than the

separate analysis. Among these three, the proposed method outperforms the other two by

16% and 11% respectively.

Table 11: Prediction results on eight untried points for linear cellular alloy experiment

Run # ŷ1
d ŷ2

d ŷ3
d ŷ4

d yd

1 26.41 23.35 21.77 21.35 23.54
4 16.23 23.74 14.33 14.76 15.29
9 23.66 22.57 22.76 23.83 24.68
11 25.51 18.22 15.87 15.44 24.96
13 22.07 29.55 21.32 22.79 22.30
23 16.74 20.04 17.58 18.21 18.78
25 16.99 27.56 15.46 15.56 17.41
27 21.11 21.95 20.16 18.62 42.93
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2.4 Example 2: fluidized bed processes

Dewettinck et al. (1999) reported a physical experiment and several associated computer

models for predicting the steady-state thermodynamic operation point of a GlattGPC-1

fluidized-bed unit. The base of the unit consists of a screen and an air jump, with coating

sprayers at the side of the unit. Reese et al. (2004) proposed a linear model approach to

analyze a sample example in Dewettinck et al. The same data will be analyzed using the

proposed BHGP models.

Several variables that can potentially affect the steady-state thermodynamic operating

point are: fluid velocity of the fluidization air (Vf ), temperature of the air from the pump

(Ta), flow rate of the coating solution (Rf ), temperature of the coating solution (Ts), coating

solution dry matter content (Md), pressure of atomized air (Pa), temperature (Tr) and

humidity (Hr).

Dewettinck et al. (1999) considered 28 different process conditions with coating solution

used for distilled water (i.e., Md = 0) and the room temperature set at 20oC. As a result,

six factors (Hr, Tr, Ta, Rf , Pa, Vf ) with different values are considered in the analysis. These

values are given in Table 12.

For each factor combination, one physical run (T2,exp) and three computer runs (T2,1,T2,2

and T2,3) were conducted. The results are given in Table 13.

There are major differences among the three computational models (see Dewettinck et

al. 1999 for details). In summary, T2,3, which includes adjustments for heat losses and inlet

airflow, is the most accurate (i.e., producing the closest response to T2,exp). The computer

model T2,2 includes only the adjustment for heat losses. The model T2,1 does not adjust for

heat losses or inlet airflow and is thus the least accurate.

For illustration, we only synthesize data from the physical experiment and the second

computer model T2,2, which has medium accuracy. The responses from T2,exp and T2,2 are

denoted by y2,exp and y2,2 respectively.

It is clear from Table 12 that the six process variables have different scales and should

be standardized. The data set is divided into a training set and a testing set. The training

set, used to build BHGP models, consists of 20 randomly sampled T2,exp runs and all 28
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Table 12: Six process variables for fluidized bed process experiment

Run # Hr(%) Tr(C) Ta(C) Rf (g/min) Pa(bar) Vf (m/s)
1 51.00 20.70 50.00 5.52 2.50 3.00
2 46.40 21.30 60.00 5.53 2.50 3.00
3 46.60 19.20 70.00 5.53 2.50 3.00
4 53.10 21.10 80.00 5.51 2.50 3.00
5 52.00 20.40 90.00 5.21 2.50 3.00
6 45.60 21.40 60.00 7.25 2.50 3.00
7 47.30 19.50 70.00 7.23 2.50 3.00
8 53.30 21.40 80.00 7.23 2.50 3.00
9 44.00 20.10 70.00 8.93 2.50 3.00
10 52.30 21.60 80.00 8.91 2.50 3.00
11 55.00 20.20 80.00 7.57 1.00 3.00
12 54.00 20.60 80.00 7.58 1.50 3.00
13 50.80 21.10 80.00 7.40 2.00 3.00
14 48.00 21.20 80.00 7.43 2.50 3.00
15 42.80 22.40 80.00 7.51 3.00 3.00
16 55.70 20.80 50.00 3.17 1.00 3.00
17 55.20 20.70 50.00 3.18 1.50 3.00
18 54.40 20.70 50.00 3.19 2.00 3.00
19 55.40 19.80 50.00 3.20 2.50 3.00
20 52.90 20.00 50.00 3.19 3.00 3.00
21 28.50 18.30 80.00 7.66 2.50 3.00
22 26.10 19.00 80.00 7.69 2.50 4.00
23 24.20 18.90 80.00 7.69 2.50 4.50
24 25.40 18.50 80.00 7.70 2.50 5.00
25 45.10 19.60 50.00 3.20 2.50 3.00
26 43.10 20.30 50.00 3.23 2.50 4.00
27 42.70 20.40 50.00 3.20 2.50 4.50
28 38.70 21.60 50.00 3.22 2.50 5.00
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Table 13: Results from fluidized bed process experiment

Run# T2,exp T2,1 T2,2 T2,3

1 30.40 32.40 31.50 30.20
2 37.60 39.50 38.50 37.00
3 45.10 46.80 45.50 43.70
4 50.20 53.80 52.60 51.00
5 57.90 61.70 59.90 58.20
6 32.90 35.20 34.60 32.60
7 39.50 42.40 41.00 39.10
8 45.60 49.50 48.50 46.40
9 34.20 37.50 36.60 34.80
10 41.10 45.50 44.30 42.00
11 45.70 50.50 49.00 47.00
12 44.60 49.80 48.40 46.30
13 44.70 49.80 48.40 46.30
14 44.00 49.20 48.00 45.70
15 43.30 48.60 47.50 45.40
16 37.00 39.50 38.00 37.70
17 37.20 39.50 38.50 37.10
18 37.10 39.50 37.50 36.70
19 36.90 39.50 38.50 36.10
20 36.80 37.70 37.20 36.20
21 46.00 48.70 47.30 45.10
22 54.70 57.70 56.20 54.20
23 57.00 60.10 58.70 57.00
24 58.90 62.00 60.50 58.70
25 35.90 37.90 37.10 36.10
26 40.30 41.70 40.80 40.10
27 41.90 43.00 42.30 41.40
28 43.10 43.90 43.30 42.60
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T2,2 runs. The remaining eight T2,exp runs (i.e., run no. 4, 15, 17, 21, 23, 25, 26 and 28 as

in Table 12) are left to form the testing set for model validation.

First, we fit a model for T2,2. As reported in Reese et al. (2004), some of the covariates are

highly correlated (as high as 0.82), indicating possible collinearity. Although the problem

of collinearity poses difficulty for a linear model approach, it is not as severe for a Gaussian

process model, in which a correlation function instead of linear correlations plays a key role

in model building.

As stated in Reese et al., a full second-order linear model is saturated for this example,

given its relatively small run size. As a solution, they implemented a Bayesian variable se-

lection procedure (Wu and Hamada 2000) to find several “most likely” sub-models. Instead

of relying on linear models, the proposed method fits a Gaussian process model including

all model parameters (mean and correlation parameters) at once, thus avoiding the complex

sub-model selection procedure.

Table 14 gives the values of the hyper-parameters used in this example. Because lit-

tle knowledge about model parameters is known beforehand, “vague” priors are chosen.

The priors for σ2
l , σ

2
ρ, σ

2
δ and σ2

ε are IG(2, 1). The “location-flat” priors N(0, I7×7σ
2
l ) and

N(0, σ2
δ ) are chosen for βl and δ0, and “scale-flat” prior N(1, σ2

ρ) for ρ0. The prior for each

correlation parameter is G(2, 0.1), having variance as high as 200.

The posterior modes for the correlation parameters are given in Table 15. Because

calculating φ̂ρ and φ̂δ needs solving a stochastic programming problem in (38) with two

random variables, the Monte Carlo sample size S in (40) is fixed at 50 to achieve good

approximation for the two-dimensional expectation. The optim function in R is used for

non-linear optimization.

The intensive Bayesian computation is implemented in WinBugs. Convergence of Markov

Chain is achieved after the first 5000 burn-in iterations. Additional 5000 runs are then gen-

erated for posterior calculations.

The posterior mean of β0 is 35.52. Figures 9(a)-(f) plot the posteriors for the linear

coefficients βli, i = 1, . . . , 6. The means and 95% credible HPD intervals are shown in Table

16. These intervals are relatively large and contain zero. If these results were obtained
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Table 14: Prior hyper-parameters for fluidized bed process experiment

Hyper-parameter Value
αl 2
γl 1
αρ 2
γρ 1
αδ 2
γδ 1
αε 2
γε 1
ul (0, 0, 0, 0, 0, 0, 0)t

vl 1
uρ 1
vρ 1
uρ 0
vρ 1
al 2
bl 0.1
aρ 2
bρ 0.1
aδ 2
bδ 0.1
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Table 15: Posterior modes of correlation parameters in fluidized bed process experiment

Correlation Parameter Posterior Mode
φl1 3.43
φl2 6.36
φl3 3.79
φl4 5.74
φl5 4.57
φl6 5.49
φρ1 3.13
φρ2 3.95
φρ3 3.23
φρ4 11.41
φρ5 13.17
φρ6 9.19
φδ1 11.16
φδ2 5.34
φδ3 8.97
φδ4 6.98
φδ5 6.72
φδ6 21.88

from a linear model, we would suspect that some of these effects may not be statistically

significant and further analysis is needed to remove insignificant ones from the model.

Because a Gaussian process model has a simple mean structure (i.e., including linear effects

only), any further simplification of the mean part will yield little benefit. Furthermore, for

a Gaussian process model the complex relationship between the inputs and the response is

primarily explained by the correlation structure rather than the mean structure. Therefore,

all the linear coefficients are retained in the model. The posterior mean (137) for σ2
l is large,

indicating high uncertainty about T2,2. The posterior mean 0.2623 of the measurement error

σ2
ε is relatively small with standard deviation 0.1823. Therefore the model uncertainty (σ2

l )

is much more pronounced than the observation uncertainty (σ2
ε ).

The posteriors of ρ0, σ2
ρ, δ0 and σ2

δ , associated with the adjustments are shown in Figures

10. The means and 95% credible HPD intervals are given in Table 17. The results indicate

several important and appealing aspects of the integrated analysis. First, the density plot

of ρ0 has three modes, implying intricate scale change from y2,2 to y2,exp. Any attempt
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Figure 9: Posteriors of βl for fluidized bed process experiment.
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Table 16: Posterior means and 95% percent credible intervals for βl in fluidized bed process
experiment

Posterior mean Lower Bound Upper Bound
βl1 0.095 -0.362 0.553
βl2 0.284 -0.100 0.651
βl3 -0.080 -0.401 0.247
βl4 -0.137 -0.618 0.346
βl5 -0.024 -0.691 0.695
βl6 0.155 -0.318 0.617

to simplify the scale term to a constant will fail to model this change adequately. The

capability of modeling complex scale change comes as a benefit of the Bayesian formulation.

A frequentist’s analysis can only produce a point estimate for ρ0 unless a complicated

mixture model is correctly employed and asymptotic distributions are obtained. Second,

from Table 12 σ2
ρ and σ2

δ are relatively small in relation to σ2
l (137). Although we cannot

make a conclusive statement about the utility of the adjustment model for the current

example, these small values do indicate that the two data sources are well integrated in

the analysis. Third, the average response 42.33 for 20 T2,exp runs is lower than 44.22, the

average for the corresponding 20 T2,2 runs. This observation comes as no surprise, as for

each run in Table 16, T2,exp consistently produces a lower response than T2,2. On average,

the difference is −1.89. However, the posterior mean for δ0 is -0.01, which is much smaller

than -1.89 in magnitude. This is due to the inclusion of scale adjustment in the model.

The scale change may be of significant interest to the experimenters and this treasured

information is uncovered by the proposed analysis.

Table 17: Posterior means and 95% credible hpd intervals for ρ0, σ2
ρ, δ0 and σ2

δ in fluidized
bed process experiment

Parameter Posterior Mean Lower Bound Upper Bound
ρ0 0.89 0.73 1.10
σ2

ρ 0.12 0.06 0.22
δ0 −0.01 −1.76 1.82
σ2

δ 2.15 0.36 5.92
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Finally, we assess the prediction accuracy of the proposed method by comparing it with

that of a separate analysis. For the latter, 20 Texp runs are used to fit a Bayesian Gaussian

process model. Table 18 lists the prediction results on eight untried points with column 1

giving the run no’s of the testing runs and columns 2, 3, 4 giving the values of ŷ2,exp from

the integrated analysis, ŷ2,exp from the separate analysis, the values of y2,exp, respectively.

In general, the integrated analysis produces better results. The RMSE (root-mean-square-

error) of the integrated analysis is 8.40, which is 10% smaller than the RMSE (9.33) of the

separate analysis. The two RMSEs are relatively large. This is not unexpected since the

numbers of runs used for model building and validation are both limited. Nevertheless,

even for such small run sizes, the integrated analysis significantly improves prediction over

the separate analysis.

Table 18: Prediction results on eight untried points for fluidized bed process experiment

Run # ŷh from integrated analysis ŷh from separate analysis yh

4 48.06 38.34 50.20
15 31.34 26.42 43.30
17 48.27 30.00 37.20
21 39.66 48.41 46.00
23 48.54 50.24 57.00
25 28.47 34.65 35.90
26 40.00 34.26 40.30
28 31.81 31.72 43.10

2.5 Concluding remarks and extensions

This chapter has developed some hierarchical Gaussian process models for modeling and

integrating LE and HE data. Use of the adjustment model in (23) allows a flexible location

and scale adjustment of the more abundant but less accurate LE data to be closer to the HE

data. Use of MCMC and Sample Average Approximation algorithms makes it feasible to

carry out the Bayesian computation. By using the Bayesian predictive density in (26), the

prediction can incorporate uncertainties in the model parameters. As demonstrated by the

results in Sections 4 and 5, the proposed method can better account for the heterogeneity

between the LE and HE data and increase the prediction accuracy.
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Extensions of the present work can be made in several directions. First, the Bayesian

prediction in (26) uses a point estimate of the correlation parameters θ3, which is developed

in Section 2.5. A strictly Bayesian approach would also compute the posterior of θ3 for the

prediction. While this may produce better results, it would greatly increase the computa-

tional work because the formulas in (33) and (34) have no tractable form to render the use

of MCMC. This extension would be feasible only if a computational shortcut can be found.

Second, the proposed method can be extended to more than two sources like low-, medium-

and high-accuracy experiments in a relatively straightforward way.
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CHAPTER III

A STRUCTURAL EQUATION METHOD FOR

TEMPERATURE MODELING IN DATA CENTER

COMPUTER EXPERIMENT

3.1 Introduction

In recent years there has been an increasing need in storing, manipulating, accessing to

and managing data sets for a wide community of users in public and private sectors of the

economy. As an integrated facility housing multiple-unit servers, a data center provides

application services or management for various data processing, e.g., web hosting internet,

intranet, telecommunication and information technology. Figure 11 shows a schematic

layout of an Internet data center using Sun Microsystems (Lawrence Berkeley National

Laboratory 2002). Driven by advances in hardware and data storage techniques, data

centers now sprawl over thousands of square feet, whose size and capacity are limited only

by cost, adequate electricity and the ability to cool the systems.

In designing and running a reliable data center, maintaining the system operating at a

temperature within a functional range is essential. Data center facilities are extremely en-

ergy intensive. Computer equipments housed within a data center are electrically operated,

constantly generating heat. Currently, heat loads of data processing equipment continues

to increase at a rapid rate. For example, a recent study (Schmidt 2001a) reports that a

rack dissipates 28,500 watts and generates a heat flux based on the footprint of the rack

of 20,900 watt/m2. Therefore it is necessary to install cooling system to maintain a data

center at a temperature that meets the user’s requirements. Failure to cool the racks will

lead to a temperature rise and the system collapses subsequently. Recently, there is a surge

of interest in tackling the problem of data center cooling in engineering (Patel et al. 2002;

Schmidt 2001ab). There are two primary enclosure cooling options: water cooled and air
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Figure 11: Schematic layout of an internet data center (Sun Microsystems) (Lawrence
Berkeley National Laboratory 2002).

cooled cabinets. While the former is an efficient means for mitigating heat loads for some

special infrastructure, e.g., a fully loaded, high-density rack, the latter is more general with

typically low infrastructure requirements. To achieve efficient cooling and reduce energy

consumption, cable racks and cooling systems need to be carefully arranged in a data cen-

ter. Two widely used layouts are raised floor layout and non-raised floor layout (Schmidt

2001a). The former includes a raised floor, under which rack cables are connected to main-

tain a neat structure, while in the latter, chilled cooling air is supplied from the ceiling and

warm air exits through exhausts installed on the walls.

Monitoring and studying the temperature of a data center is no easy task. How differ-

ent configurations affect the thermal distribution is largely unknown. The physical thermal

process is complex, depending on many factors, e.g., diffusor angle and ceiling height, and
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detailed temperature at different locations cannot be actually measured. The physical ex-

perimentation becomes especially difficult when many possible configurations need to be

considered. Computer experiment, built on computational fluid dynamics (CFD) models,

implemented in professional software packages like Flotherm (Flometrics 2005) and FLU-

ENT (Fluent 1998), is widely used as a proxy to study the air movement and thermal

distribution of a data center. In addition to savings in experimental cost and time, this

type of computer experiment has other advantages. For example, it is possible to use this

experiment to simultaneously produce temperature responses over a continuous region or

at many locations of a data center.

Two new defining features of data center computer experiment set it apart from other

computer experiments. First, it tends to produce high-dimensional responses instead of

a univariate response. The temperature measurements of this experiment are taken over

a large region. Many monitor points can be chosen because the average computational

cost per measurement point tends to decrease rapidly as the number of points increases. In

particular, it is relatively cheap to produce temperature values at multiple points within the

same rack simultaneously. Monitor points are often placed at various heights on different

positions of cable rows, resulting in high-dimensional temperature readings. Second, the

air movement and thermal dynamics of a data center modeled in this experiment depend

on high-dimensional configuration variables such as rack temperature rise, rack power and

diffuser flow rate. The high-dimensional responses and configuration variables must be

addressed in building a data center temperature model. Classical kriging or co-kriging

models, which are popular in computer experiments (Santer, Williams and Notz 2003; Fang,

Li and Sudijanto 2005), cannot handle the high-dimensional responses and configuration

variables. New methods are thus needed. With exceptions like (Rolander et al. 2006),

surprisingly little has been done on modeling high-dimensional responses from computer

experiments with high-dimensional covariates. A systematic approach will be taken in this

chapter by utilizing multivariate statistical analysis methods. The two distinctive features

of the current application makes traditional multivariate analysis methods, in particular

principal component analysis (PCA) and factor analysis (Basilevsky 1994; Johnson and
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Wichern 1998), inapplicable and inappropriate because they lack the abilities to handle high-

dimensional responses and configuration variables simultaneously. The approach introduced

here, incorporating physical structure and various sources of variability based on a structural

equation system (Bentler 1995; Bollen 1989; Jöreskog and Sörbom 1996; Wall and Amemiya

2000), leads to the first sound statistical method for the temperature modeling in data

center computer experiment. Although the proposed method is motivated and developed

for the data center application, similar scenarios exist in many other engineering and science

applications, e.g., auto-body assembly processes (Apley and Shi 2001; Apley and Shi 1998;

Ceglarek and Shi 1996; Ding, Ceglarek and Shi 2002), to which the method is also applicable.

The primary assumptions are that a system produces multivariate responses and the system

performance is dependent on many configuration or design variables.

3.2 Design of experiments for configuration variables and
placement of monitor points

In this section we will address two important data collection issues related to running a

data center computer experiment: design of experiments for configuration variables and

placement of monitor points. Factors that determine the thermal mechanisms and air

movement of a data center are called configuration variables (Schmidt 2003), denoted

by x = (xcon,xcat), where xcon and xcat are continuous and categorical variables respec-

tively. Throughout this chapter, we focus on modeling air-cooling data centers because they

have lower infrastructure requirements and recently become dominant in the IT industry

(Schmidt 2001a). Key configuration variables of this type of cabinet are briefly addressed

below. The interested readers are referred to (Schmidt 2001b2003) for details.

System layout :

System layout affects the air flow and heat distribution of a data center. There are two

major layouts: non-raised floor and raised floor layouts as discussed in Section 3.1.

Rack air temperature rise:

Rack air temperature rise, measured in Celsius (C), determines temperature and humidity

of the computer equipments housed in a data center. It is related to rack flow rate. A larger
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rack air temperature rise requires a smaller blower while a lower rack air temperature rise

needs a larger blower. It takes continuous values chosen within a user-specified bound.

Rack power :

Rack power, measured in kilowatts (KJ/s), interacts with rack air inlet temperature. Racks

of higher power tend to lower rack air inlet temperature. It takes continuous values chosen

within a user-specified bound.

Diffuser height :

Diffuser height determines the height of diffusers. It affects the overall air flow and thermal

distribution of a data center. Diffusers are often placed at evenly spaced heights to efficiently

control the air flow in the system. The ceiling height of the system needs to be considered

in setting the heights of the diffusors.

Diffuser location/configuration:

Multiple diffusers are needed to cool a typical data center with many cable racks. The

diffusers in a data center are often placed at the same height but on different horizontal po-

sitions to dissipate cool fluid uniformly. Diffuser location/configuration determines relative

locations of the diffusers with respect to the cable rows in a data center.

Diffuser angle:

Diffuser angle determines the orientation of diffusers. Diffuser angle can affect the air flow

and cooling efficiency.

Diffuser flow rate:

Diffuser flow rate specifies the flow rate of the diffusers in a data center. It is related to

rack flow rate, which is determined by rack power, air density and air specific heat. For a

given rack flow rate, diffusor flow rate can be chosen at appropriate fractions of this rate.

Ceiling height :

Ceiling height specifies the height of the ceiling of a data center, which takes categorical or

continuous values. It can potentially affect the mal-distribution of existing air flows.

Hot air return vent location:

Chilled air enters an air-cooled data center to cool the system and heats up when it removes
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heat from the equipments. After the cooling, warm air exits through return vents. The

return vents can be placed either towards the ceiling or close to the floor, and either on

the perpendicular wall or on the parallel wall. Hence, this variable has four levels: (1)

perpendicular - bottom (per-bot), (2) perpendicular - top (per-top), (3) parallel - bottom

(par-bot) and (4) parallel - top (par-top).

Remove/mixed power :

Remove/mixed power specifies the distribution of heat loads in cable rows and takes discrete

values.

One major challenge in designing a reliable data center stems from the fact that data

center thermal dynamics may vary dramatically in relation to different values of configu-

ration variables. To get a sense of the overall thermal properties of a data center, it is

necessary to study the thermal distribution over a large design space of configuration vari-

ables. The computational cost for running a data center physical experiment dwarfs that of

a computer experiment based on computational fluid dynamics (CFD). However, the latter

may still be relatively expensive because it entails solving complex mathematical equations

with a large number of reference points (Flometrics 2005). Hence, it is necessary to use an

informative and efficient experimental design to carefully choose the values of configuration

variables in the experiment. A model-based design scheme is used in this chapter. Let

x1, . . . ,xN denote N runs of a design of size N , denoted by D. Although other models

can be equivalently used, for convenience a second-order model is imposed to represent the

input-and-output relationship in the computer experiment. This model assumption has

been supported by many real examples including the one in Section 3.6. Recall that config-

uration variables x consists of continuous variables xcon and categorical variables xcat. So

the second-order model (Wu and Hamada 2000) includes the main effects of xcon and xcat,

the interactions among xcat, the cross-products and quadratic terms of xcon, and the cross-

interactions between xcon and xcat. Other terms can also be added to the model, depending

on specific scenarios. For example, if some continuous variable has more than two levels, its

cubic or higher order terms can be added. The design D can be generated in SAS/QC (SAS
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2005b) by using an optimal design based on some criteria like D-optimality. Owing to the

complex nature of this experiment, care needs to be taken in the design construction. The

computer experiment under consideration requires convergence of sophisticated algorithms

at many reference points for solving complex mathematical equations. Even implemented

in professional software packages, this type of experiment sometimes encounters instability

problems, only producing erratic temperature responses. Part of the experimental results

may be unreliable, differing significantly from the rest and deviating considerably from

the underlying data center physics. Which configurations lead to the erratic responses is

largely unknown before actually running the experiment. Hence, it is impossible to extract

“ill-fated” runs preemptively. A robust approach is taken in the design construction by

including some “safety net” runs in addition to those required by the estimability consid-

eration, which will ensure that enough reliable observations are available even in case of

partial experimental failure.

Recent advances in CFD make it possible to simulate temperature measurements at

many monitor points in a data center computer experiment. To best explore the thermal

properties of a data center, the monitor points are uniformly placed at various heights

and horizontal positions of different rack rows. Suppose a data center consists of I rack

rows, denoted by Ri, i = 1, . . . , I, and Ri has Ji horizontal rack positions, denoted by

Pij , j = 1, . . . , Ji. Throughout this work, the monitor points are assumed to be located at

Kij equally spaced heights within rack position Pij , denoted by hk, k = 1, . . . ,Kij . Further

assume common heights h1, . . . , hK are used for every position of Pij . Figure 12 presents

a data center housing three computer racks with 150 monitor points. Throughout, let

z(x) = [zijh(x), i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,K]t denote the temperature readings

taken at the monitor points of all the rack rows under configuration x, where zijh is the

temperature reading at height h and rack position Pij . Similarly, let z1, . . . , zN denote the

temperature readings under configurations x1, . . . ,xN of the design D respectively.

In summary, data center computer experiment is often run under many different con-

figuration scenarios, and, for each configuration scenario, temperature responses are taken

at a large number of monitor points. The resultant high-dimensional temperature readings
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Figure 12: An air-cooling data center system housing three computer racks with 150 mon-
itor points (marked in red).

pose great challenges in building a temperature modeling of a data center. In the next

section, a novel three-fold temperature model will be developed.
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3.3 Model and motivation

Temperature modeling plays a key role in the data center thermal management. It en-

ables the prediction of the temperature responses at untried locations or under new “what

if” configuration scenarios. In this section we present a model structure that is assumed

throughout the chapter, and the motivation of this research. To accommodate the high-

dimensional responses and configuration variables, an efficient and informative model needs

to tackle two major issues:

1. How to summarize the temperature responses by utilizing the underlying data center

physics?

2. How to represent various sources of variation in the resultant lower-dimensional phys-

ical parameters, and relate them to configuration variables?

To address these issues, we propose a three-fold modeling technique:

Step 1: Obtain a physical summary of temperature responses.

Step 2: Use a measurement model to fit the resultant physical parameters from step 1.

Step 3: Fit a structural model to relate the factors in step 2 to configuration variables.

Details of these steps are discussed below.

Step 1 deals with summarizing the temperature readings based on data center physics.

First, the physics suggests that colder air in a data center stays on the bottom while

warmer air on the top. Moreover, the air temperature is expected to rise consistently as

height increases. As a result, zn is assumed to obey the following model

zijhn = mij(h;θijn) + εijhn, n = 1, . . . , N,

where mij represents a non-decreasing deterministic temperature trend that depends on

parameters θijn, and εijhn represents a random temperature fluctuation whose distribution

depends on parameters φijn. The nature of heat distribution in a data center renders

possible simplifications of the above model. Within each computer rack of a data center,
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heat is known to distribute uniformly. Moveover, for every rack row, monitor points, where

temperature readings are taken, are evenly placed at equally spaced rack positions. Hence,

there is no considerable temperature variation from one position to another within the

same rack row, and temperature differences in rack positions can be thereby ignored. These

observations lead to the following simplified row-wise model

zijhn = mi(h;θin) + εijhn, n = 1, . . . , N, (42)

where a common temperature trend mi is shared between all positions within rack row

Ri. Although the proposed method works for general form of mi, mi is assumed to be

linear for the convenience of presentation. Indeed, this assumption is supported by many

applications including the example analyzed in Section 3.6. This assumption leads to the

following model

zijhn = αin + βinh + εijhn, n = 1, . . . , N, (43)

where αin and βin are the intercept and slope of a linear temperature trend and εijhn is as-

sumed to follow a normal distribution N(0, σ2
in). By using this model, temperature measure-

ment zn is summarized by physical parameter yn = (α1n, β1n, log σ1n, . . . , αIn, βIn, log σIn),

where the elements αin, βin, σ1n are associated with the rack row Ri. The dimension of yn

is much lower than that of zn, significantly simplifying the subsequent modeling.

Next physical parameters y1, . . . ,yN are modeled by using a structural equation system

(steps 2 and 3). Whereas the structural-equation method (SEM) has been developed and

widely used in social and behaviorial sciences (Bentler 1995; Bollen 1989; Jöreskog and

Sörbom 1996; Wall and Amemiya 2000), the use of this method in physical science and

engineering is less frequent. The method is applicable to the present application because it

involves multivariate physical parameters and configuration variables. By using a structural

equation system, the physical parameters are represented by some common unobserved

factors (latent variables) in a measurement (factor) model (to be discussed in step 2), and

then the factors are in turn related to the observed configuration variables x in a structural

(path) model (to be discussed in step 3). Various sources of variations in physical parameters

are then captured in the coefficients of the measurement and structural models. Hence,
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inference about the multivariate physical parameters, for different cable racks, can be made

using the models involving only the common factors and configuration variables.

Step 2 concerns the fitting of a measurement (factor) model to relate the physical pa-

rameter yn to a q× 1 factor (latent variable) vector fn. A general measurement model with

an additive measurement error can be written as

yn = H0(fn) + un, n = 1, . . . , N, (44)

where H0(·) represents an equation mean in a general form, and un represents a measure-

ment error. Without loss of generality, H0 is assumed to be linear throughout this chapter.

This assumption is valid for many practical examples including the one in Section 3.6. Model

(44) is not identifiable in the sense that the factor vector fn can be transformed without

altering the form of the model. Although the model identification issue is not trivial, the

errors-in-variables (EV) parametrization (Amemiya and Yalcin 1997; Carrol, Ruppert and

Stefanski 1995; Fuller 1987) provides a relatively simple way to represent an identifiable

measurement model. Using the EV parametrization, we can write a linear measurement

model for yn as  y1n

y2n

 =

 B0

0

+

 B

I

 fn + un, n = 1, . . . , N. (45)

Here y2n and y1n are the first q elements of yn and their complement respectively, B is a

(k−q)×q matrix, k is the dimension of yn, B0 is a (k−q)×1 vector and un is a zero-mean

measurement error vector independent of fn. Elements of fn are assumed to be correlated

to model their interdependencies.

Steps 3 uses a structural (path) model to specify relationships among elements of fn and

to relate them to the p-dimensional configuration variables x. For a structural model, write

fn = g(xn) + en, n = 1, . . . , N,

where g(·) is a mean function in a general form, and en is an equation error. Although

the proposed method applies to general structural models, for convenience g is assumed

as a second-order function in this chapter. This assumption is found to work well for the
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example in Section 3.6. As discussed in Section 3.2, the configuration variables x consist

of continuous variables xcon and categorical variables xcat. Hence, the second-order model

includes: 1. main effects and two-way interactions of xcat; 2. linear, quadratic and cross-

products of xcon; 3. cross-product terms between xcat and xcon. Let w denote a l×1 vector

listing all these terms. The factors fn can then be expressed as

fn = a0 + Awn + en, n = 1, . . . , N, (46)

where a0 is a q × 1 vector, and A is a q × l matrix.

Collectively, models (43)(45)(46) assumed in steps 1-3 form the following hierarchical

model:

zijhn = mi(h;θin) + εijhn, i = 1, . . . , I, j = 1, . . . , J, h = h1, . . . , hK , y1n

y2n

 =

 B0

0

+

 B

I

 fn + un,

fn = a0 + Awn + en, n = 1, . . . , N. (47)

As often used in SEM (Bentler 1995; Bollen 1989; Jöreskog and Sörbom 1996; Wall and

Amemiya 2000), en is assumed to be independent of un. And un’s are assumed to be

mutually independent, so are en’s. For parameter estimation in (47), we assume that

un ∼ N(0,Σuu),

en ∼ N(0,Σee). (48)

The normality of un and en are considered reasonable for the present application. Elements

of un are often assumed to be independent, while elements of en dependent.

The likelihood function of the observations z1, . . . , zN is expressed as a high-dimensional

integral, which complicates the estimation in (47). Standard maximum likelihood methods

cannot be used and alternative procedures are needed. The estimation procedure in Section

3.4 is motivated by one elementary yet important observation: given y1, . . . ,yN , z1, . . . , zN

follows a linear model. By exploiting this fact, a sufficient statistic for model (47) can be

found. This sufficient statistic acts as a building block in the estimation procedure.
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3.4 Estimation procedure

In this section we develop a two-stage estimation procedure for model (47). For notational

simplicity, let zin = {zijkn, j = 1, . . . , Ji, k = 1, . . . ,K} denote the part of the temperature

measurements zn that are taken at the monitor points within rack row Ri and let

z̄in =

∑Ji
j=1

∑K
k=1 zijkn

JiK
.

The first stage is concerned with estimating the physical parameters y1, . . . ,yN by their

ordinary least square (OLS) estimators ŷ1, . . . , ŷN , given as

ŷn = (ŷ1n, . . . , ŷIn)t,

ŷin = (α̂in, β̂in, log σ̂in)t, α̂in

β̂in

 = (Ht
iHi)−1Ht

izin,

σ̂2
in =

∑Ji
j=1

∑K
k=1(zijkn − z̄in)2

JiK − 1
, (49)

where Hi, the JiK × 2 regression matrix for the rack-wise model (42), is

Hi =



1 h1

...
...

1 hK

...
...

1 h1

...
...

1 hK


JiK×2

.

For ŷ1, . . . , ŷN , we have the following result.

Proposition 3.1. The OLS estimator ŷ1, . . . , ŷN is a sufficient statistics for model (47).

Proof. By the independence of zn, L(z1, . . . , zN ) =
∏N

n=1 L(zn). Then write L(zn) as∫
L(zn|yn)p(yn)dyn. Note that given yn, zn follows a linear model with ŷn as its suffi-

cient statistic. Then, the Factorization theorem implies that L(zn|yn) = t(ŷn; zn)c(zn),
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where c(zn) only depends on zn not ŷn. Hence, L(zn) =
∫

t(ŷn; zn)c(zn)p(yn)dyn and

L(z1, . . . , zN ) ∝
∏N

n=1

∫
t(ŷn; zn)c(zn)p(yn)dyn. Then, by the Factorization theorem again

it follows that ŷ1, . . . , ŷN is a sufficient statistics for model (47).

The second stage deals with fitting a model to ŷ1, . . . , ŷN . Let ηn = (ηn1, . . . ,ηnI)t

denote the OLS error of ŷn. From the fact ŷn = yn + ηn, ŷn can be envisioned to obey the

following model:  ŷ1n

ŷ2n

 =

 B0

0

+

 B

I

 fn + un + ηn,

fn = a0 + Awn + en, n = 1, . . . , N. (50)

Here un ∼ N(0,Σuu) and en ∼ N(0,Σee) as assumed in (48). The description of the above

model is complete with the specification of the distribution of ηn and the relationship

between (en,un) and ηn. Throughout, for ηn we assume the following:

Assumption 1. ηn follows a normal distribution N(µη,Σηη) with mean µη and covari-

ance Σηη.

This assumption is considered reasonable for the current application with some justifications

to be given in the sequel. Furthermore, the assumption is found to work well for the example

in Section 3.6. Note that given un and en, ŷn is an unbiased estimator of yn as discussed

previously, i.e., E[ηn|un, en] = 0. Hence, by smoothing

µη = E[ηn] = 0.

The relationship between (en, un) and ηn is established in the following proposition.

Proposition 3.2. ηn is independent of en and un, i.e, Cov(ηn, en) = 0 and Cov(ηn,un) =

0.

This can be shown as follows. Note that given un and en, ŷn is an unbiased estimator

for yn, i.e., E[ηn|un, en] = 0. Hence, E[ηne
t
n] = E[E[ηne

t
n|en]] = 0 and E[ηnu

t
n] =

E[E[ηnu
t
n|un]] = 0.

Since µη = 0, the unknown parameters in (50) that need to be estimated are (Ω,Σηη),

where Ω denote (B0,B,a0,A,Σuu,Σee), i.e., all the parameters except Σηη. Estimation in
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(50) seems daunting because (50) is a complicated covariance model involving a large number

of unknown parameters and three random disturbances en, un and ηn. It is infeasible to

use any available SEM software to compute maximum likelihood estimators (MLEs) of Ω

and Σηη. For procedural simplicity and computational convenience, a pseudo-likelihood

estimation procedure following (Gong and Samaniego 1981) is developed in this chapter. In

this procedure, we estimate Σηη by a moment method; then replace Σηη by the moment

estimator in the likelihood function of ŷ1, . . . , ŷN ; and finally compute an estimator of Ω

by maximizing the resultant “imputed” likelihood function. Details of this procedure are

given below.

We define a moment estimator of Σηη to be∑N
n=1 Cov[ηn|yn]

N
, (51)

where Cov[η1|y1], . . . ,Cov[ηN |yN ] are i.i.d. samples from Cov[η|y]. To calculate Cov[ηn|yn],

note that  α̂in

β̂in

 |yn ∼ N


 αin

βin

 , (Ht
iHi)−1σ2

in

 ,

dfiσ̂
2
in

σ2
in

|yn ∼ χ2(dfi), (52)

where dfi = JiK − 2, and α̂in and β̂in are independent of σ̂2
in. To derive the distribution of

log σ̂in, use the Taylor expansion

log σ̂in =
1
2

log σ̂2
in =

1
2

log σ2
in +

1
2σ2

in

(σ̂2
in − σ2

in) + o(σ̂2
in − σ2

in). (53)

It implies, by ignoring the expansion error, that Var(log σ̂in|σ2
in) = 2σ4

in
dfi

. Further assume

log σ̂in|yn ∼ N(0,
2σ4

in

dfi
). (54)

The conditional normality of log σ̂in can be justified by the central limit theorem because

JiK, the number of monitor points placed within row Ri, is typically large in data center

computer experiment. Combining (52) and (54), the conditional distribution ηn|yn follows

a normal distribution as

ηin|yn ∼ N

0,

 (Ht
iHi)−1σ2

ni 0

0 2σ4
ni

dfi


 , for i = 1, . . . , I. (55)
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Following a similar argument, the distribution of yn can be shown to be approximately

normal. Therefore, ηn in (50) is approximately normally distributed as well, supporting

Assumption 1. From (55),

Cov[ηn|yn] =



(Ht
1H1)−1σ2

n1 0

0 2σ4
1

df1

. . . . . .

. . . . . .

(Ht
IHI)−1σ2

nI 0

0 2σ4
nI

dfI


. (56)

A complication in using (56) to compute the estimator in (51) is that σ2
in’s are not observed.

To mitigate this difficulty, we estimate σ2
ni by the OLS estimator σ̂2

ni defined in (49). Let

Ĉov[ηn|yn] denote the resultant estimator of Cov[ηn|yn] in (56). Then, the moment esti-

mator in (51) is modified to be

Σ̂ηη =
∑N

n=1 Ĉov[ηn|yn]
N

. (57)

We now turn to estimating Ω. In l(ŷ1, . . . , ŷN ,Σηη,Ω), which is the likelihood function

of ŷ1, . . . , ŷN , we replace Σηη by Σ̂ηη given in (57) and then estimate Ω by maximizing the

function l(ŷ1, . . . , ŷN , Σ̂ηη,Ω) after the replacement. Let Ω̂ denote the resultant estimator

for Ω. Calculation of Ω̂ is made possible through an important observation discussed below.

The problem of computing Ω̂ is equivalent to estimating Ω in a modified version of model

(50) with the value of Σηη fixed at Σ̂ηη. The model under this consideration has only two

random errors en and un and is a well-studied standard structural equation model (Bollen

B1989). Recent advances in software development for SEM have made it possible to fast

compute the MLEs for this type of model. For the example in Section 3.6, SAS/CALIS

(SAS 2005a) is used. The achieved computational convenience of the proposed estimation

procedure is significant. It is well known that fitting a non-linear structural equation model

in general is no easy task (Wall and Amemiya 2000). By making use of sufficient statistic and

pseudo-likelihood method, we have successfully demonstrated a convenient way to estimate a

rather complicated hierarchical structural equation model (47). The normality assumptions
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of en, un, and ηn imply that once B̂, Â, Σ̂uu are given, â0 and B̂0 are readily available as

â0 = ȳ2 − Âw̄,

B̂0 = ȳ1 − B̂â0 − B̂Âw̄, (58)

where ȳ1 = 1
N

∑N
n=1 y1n, ȳ2 = 1

N

∑N
n=1 y2n, and w̄ = 1

N

∑N
n=1 wn. Hence, in the actual

implementation, only B̂, Â, Σ̂uu need to be obtained from a chosen software package.

Next we discuss some large sample properties of (Ω̂, Σ̂ηη). Throughout, the limit is

taken as the number of monitor points JiK →∞ for each i and the number of observations

N →∞. Note that given σ2
in, σ̂2

in → σ2
in in probability as JiK →∞ for each i. Hence, given

σ2
in, in (53) log σ̂in → log σin in probability as JiK →∞. Therefore, for each n, conditional

on yn, Ĉov[ηn|yn] → Cov[ηn|yn] in probability as JiK → ∞ for each i. Furthermore, by

the law of large numbers, N−1
∑N

n=1 Cov[ηn|yn] in (51) is a consistent estimator of Σηη as

N →∞. Thus, Σ̂ηη in (57) is a consistent estimator of Σηη as N →∞ and JiK →∞ for

each i. Then, following (Gong and Samaniego 1981), it is straightforward to establish the

consistency of (Ω̂, Σ̂ηη). Similarly, it is relatively easy to show that the limiting distribution

of (Ω̂, Σ̂ηη) is normal.

The fit of a structural equation model can be accessed by using various methods such

as the goodness-of-fit chi-square test. Choosing between two nested competing models can

be guided by Chi-square difference tests (Amemiya and Anderson 1990). Since a structural

equation system is comprised of two parts, a measurement model and a structural model,

selecting an appropriate structural equation model can proceed as follows. First, keeping a

full structural model, select a measurement model. Second, using the chosen measurement

model, simplify the structural model. This procedure is used in analyzing the example in

Section 3.6.

3.5 Prediction, detecting hot spots and determining practi-
cal values of configuration variables

Once the model (47) is fitted and associated inferences are made, it can be used as a sur-

rogate model to study the data center thermal distribution in lieu of expensive CFD based

computer experiment. Use of the surrogate model is essential in the present application.

79



It is well known that there is huge variation in the thermal properties of a data center in

relation to different values of configuration variables. Hence, it is necessary to model a

data center under a large variety of configuration scenarios. Use of the expensive computer

experiment to explore over such a broad design space of the configuration variables is prac-

tically infeasible. The built surrogate model can act as a proxy in the exploration without

significantly increasing the computational time. Since the surrogate model is built by using

the data from the computer experiment (which is more accurate but time-consuming), it

should also have reasonable precision. In this section the surrogate model will be used for

predicting the data center thermal distribution at untried locations and “what-if” configura-

tion conditions, for detecting hot spots and for determining practical values of configuration

variables to meet some physical and usage requirements.

After model (47) is fitted, it is straightforward to predict the temperature at an untired

location in the data center under any configuration, either untried or used in the experi-

ment. Under a given configuration scenario x0, physical parameters y = (y2,y1) can be

constructed as  y1(x0)

y2(x0)

 =

 B̂0

0

+

 B̂

I

 f(x0) + u,

f(x0) = â0 + Âw(x0) + e. (59)

Note that the OLS error η is absent, unlike in (50), because our interest is in predicting

the true value of y not its estimator. Let zih denote the temperature at height h and row

Ri. From (42) and (59), zih is given by

zih(x0) = αi(x0) + hβi(x0) + εi(x0), i = 1, . . . , I, h ∈ [hL, hU ], (60)

where εi(x0) ∼ N(0, σ2
i (x0)), hL and hU are the lower and upper limits of a data center,

αi(x0), βi(x0) and σ2
i (x0) are part of y(x0) given in (59). The slope βi is nonnegative

because of the increasing temperature trend discussed in Section 3.3.

Locations in a data center where temperatures are extremely high are called hot spots

(Schmidt 2003). Detecting hot spots is essential in data center temperature management.

Data centers are particularly vulnerable at hot spots because of their extreme high heat
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density. The systems can easily malfunction at these hot spots. Furthermore, data centers

are intricate inter-connected systems. The malfunctions at hot spots may lead to a system-

wide collapse. Finding hot spots via physical or computer experiment is rather difficult

because it entails modeling the entire temperature profile of a data center system, whereas

the surrogate model approach provides a convenient means. Let Mi denote the maximum

temperature in rack row Ri. Since βi ≥ 0, Mi(x0) is given by

Mi(x0) = αi(x0) + hUβi(x0). (61)

Note that this model does not consider the temperature fluctuation ε(·) in (43). To take

into account both the temperature trend and fluctuation, we introduce a 95% upper bound

on Mi, denoted by Li. It is defined as P (Mi ≤ Li) = 95%. Under the normality assumption

of Mi,

Li(x0) = αi(x0) + hUβi(x0) + 1.67σi(x0). (62)

This bound has an intuitive explanation: if Li is controled below a specified level, the

maximum temperature in row Ri, with probability more than 95%, will stay below this

level. Unfortunately, Li(x0) cannot be used for prediction because of uncertainties in αi(x0),

βi(x0) and σi(x0). To mitigate this difficulty, we consider the 95% upper limit on Li, denoted

by ULi. Assuming normality for Li, ULi is given by

E(Li) + 1.67
√

var(Li).

The normality of Li can be justified by the central limit theorem because JiK is typically

large. Owing to the complex error structure in (59), it is difficult to derive the analytical

form of ULi. To expedite computation, we use the following approximation

ÛLi = Ê(Li) + 1.67
√

v̂ar(Li). (63)

The value of Ê(Li) is given by

Ê(Li) = α̇i + β̇i + 1.67, (64)

81



where

ẏ1 = (α̇2, β̇2, log σ̇2, . . . , α̇I , β̇I , log σ̇I)t,

ẏ2 = (α̇1, β̇1, log σ̇1)t, ẏ1(x0)

ẏ2(x0)

 =

 B̂0

0

+

 B̂

I

 ḟ(x0),

ḟ(x0) = â0 + Âw(x0). (65)

Using a Taylor expansion

elog σi ≈ elog σ̇i + elog σ̇i(log σi − log σ̇i), (66)

v̂ar(Li) is given as

(1, hU , 1.67elog σ̇i)Σi(1, hU , 1.67elog σ̇i)t,

where Σi is the covariance of (αi, βi, log σi) in (59). Locations of hot spots in a data center

can be found by comparing the values of ÛL for different rows.

An important objective in designing a reliable data center is to avoid potential hot

spots in the system. The proposed surrogate model approach makes it easy to achieve this

objective. Let ĤU denote the temperature upper bound at the hot spots of the system.

Under configuration x0, ĤU(x0) can be predicted by

ĤU(x0) = max
i=1,...,I

ÛLi(x0). (67)

In data center design, physical and usage requirements, denoted by C, also need to be

considered. Hence, practical values of the configuration variables x that can optimize the

thermal performance of a data center and meet some physical and usage requirements C

can be determined by

x∗ = argminx∈CĤU(x). (68)

3.6 A non-raised floor example

In this section the proposed method is illustrated with a non-raised floor example. It models

an air-cooled cabinet, implemented in the thermal analysis software Flotherm (Flometrics

82



2005), for predicting the airflow and heat transfer in the electronic equipments. Each run in

this experiment takes several days to complete because the computation in Flotherm entails

solving complex thermal dynamic equations. The data center modeled in this experiment

has four cable rows RA, RB, RC , and RD with six rack positions for the first two rows and

four for the last two. The rack positions are denoted by A0, . . . , A5, B0, . . . , B5, C2, . . . , C5,

and D2, . . . , D5 for the four racks respectively. In the experiment, monitor points are placed

at five evenly spaced heights for each of the 20 rack positions, resulting in 100-dimensional

temperature readings for each configuration run. Table 19 lists nine configuration variables

and their levels used in the experiment. In the table, x1, x2, x6, x7 are continuous variables

and x3, x4, x5, x8 are categorical variables. These variables are among the key factors of the

air-cooled cabinets discussed in Section 3.2. More details on the engineering background of

this type of data center can be found in (Schmidt 2001a).

Table 19: Configure variables for the non-raised floor example
x1: Rack temperature rise (C) 10 15 20
x2: Rack power (KW) 4 12 22 28 36
x3: Diffuser height 10 ft Ceiling
x4: Diffuser location/config. Alt1 Alt2
x5: Diffuser angle 0 30
x6: Diffuser flow rate (%) 100 80 60
x7: Ceiling height (ft) 12 17 22
x8: Hot air return vent loc. Bot-Per Top-Per Bot-Par Top-Par
x9: Remove/mixed power Uniform Alt-Zero Alt-Half

A 148-run design is generated by using the model-based scheme in Section 3.2, imple-

mented in SAS/QC (SAS 2005b). Since the continuous variable x2 has five levels, added

to the second-order model are: 1. cubic term x3
2; 2. cross-interactions between x3

2 and x3,

x4, x5, and x8; 3. higher order cross-products x1x
2
2, x2

2x6, x2
2x7, x2

1x2, x2x
2
6, x2x

2
7, x1x2x6,

x1x2x7, x2x6x7, x1x
2
2x6, x1x

2
2x7 and x2

2x6x7; 4. cross-interactions between x2
1, x2

2, x2
6, and

x2
7 and x3, x4,x5, x8, and x9. Among the 148 runs, 132 runs are required to estimate all

model parameters and the 16 runs are included for estimating the error variance and to

accommodate potential experimental failure.

Preliminary analysis is conducted to screen out “ill-fated” runs. For each of the 144
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runs, the average value of the 100-dimensional temperature readings is computed. Figure

13 presents the boxplot of the resulting 148 temperature means. Four outliers (i.e., run no.

137, 139, 142 and 146) are identified with means larger than 100 and far above the rest.

These four runs are removed before the subsequent analysis.

●
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●
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50
10

0
15

0

Figure 13: Boxplot of averaged temperatures for the 148 configuration runs, where runs
137, 139, 142 and 146 have temperature above 100.

We now estimate the physical parameters, following stage 1 in the estimation procedure

of Section 3.4. Some exploratory analysis is used to aid the selection of an appropriate phys-

ical model. Figure 14 presents four 5-dimensional temperature readings taken at randomly

selected rack positions A0, A1, B0, and C5 respectively vs. five different heights attached

with fitted linear regression lines. Aimed at exploring temperature trends under different

configurations, the temperature readings are selected from four configurations (i.e., run no.

2, 3, 13, 15). It is clear from the figure that this example has a linear temperature trend,

which is used for mi in (42) to produce the physical parameters ŷn, n = 1, . . . , 144. The

parameter ŷin for the rack row Ri is a 12-dimensional vector α̂i, β̂i, log σ̂i, i = 1, . . . , 4.
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Figure 14: Temperature measurements at five different heights of rack positions A1, A0, B1,
and C4 for runs 2, 3, 13, 15 respectively. Attached straight lines are fitted linear regression
functions.
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Next we fit a structural equation system to ŷn, following stage 2 in the estimation

procedure. A three-factor model is chosen on the ground that three factors may be adequate

for capturing the relationship among the 12-dimensional physical parameters ŷn. The fitted

measurement model is given as

α̂2

β̂2

log σ̂2

α̂3

β̂3

log σ̂3

α̂4

β̂4

log σ̂4

α̂1

β̂1

log σ̂1



=



b01

b02

b03

b04

b05

b06

b07

b08

b09

0

0

0



+



b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

b51 b52 b53

b61 b62 b63

b71 b72 b73

b81 b82 b83

b91 b92 b93

1 0 0

0 1 0

0 0 1




f1

f2

f3

+



u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12



+



η1

η2

η3

η4

η5

η6

η7

η8

η9

η10

η11

η12



,

where

Σ̂η =



1.638 −0.447 0 0 0 0 0 0 0 0 0

−0.447 0.149 0 0 0 0 0 0 0 0 0

0 0 0.018 0 0 0 0 0 0 0 0

0 0 0 7.056 −1.924 0 0 0 0 0 0

0 0 0 −1.924 0.641 0 0 0 0 0 0

0 0 0 0 0 0.018 0 0 0 0 0

0 0 0 0 0 0 5.629 −1.535 0 0 0

0 0 0 0 0 0 −1.535 0.512 0 0 0

0 0 0 0 0 0 0 0 0.028 0 0

0 0 0 0 0 0 0 0 0 3.166 −0.863

0 0 0 0 0 0 0 0 0 −0.863 0.288

0 0 0 0 0 0 0 0 0 0 0.028



is provided by (57).

The three factors have some intuitive explanations: factors f1 and f2 are the intercept

and the slope of the temperature trend (mA) respectively and factor f3 is the logarithm of

the standard deviation of the temperature fluctuation (εA) in RA. The current structural

equation system has a full structure model, consisting of the linear effects of x1, x2, x6 and
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x7, the main effects and interactions of x3, x4, x5, x8 and x9, and the cross interactions

between x1, x2, x6 and x7 and x3, x4, x5, x8 and x9. The p value associated with the

chi-squared goodness-of-fit test obtained by fitting this three-factor system to the 144 ob-

servations is 0, suggesting that this model needs to be improved. The χ2 value is 2526.18

with 740 the degrees of freedom. The factor loading estimates, standard errors, and p values

based on the asymptotic normality (suppressing the intercepts) are as follows:

α̂A ≈ f1

β̂A ≈ f2

log σ̂A ≈ f3

α̂B ≈ 0.93f1 − 0.41f2 + 0.81f3

SE 0.05 0.23 0.47

p value 0.00 0.08 0.09

β̂B ≈ 0.01f1 + 1.06f2 − 0.20f3

SE 0.01 0.07 0.15

p value 0.40 0.00 0.15

log σ̂B ≈ −0.01f1 − 0.09f2 + 1.08f3

SE 0.01 0.02 0.05

p value 0.01 0.00 0.00

α̂C ≈ 1.02f1 − 0.46f2 + 1.27f3

SE 0.04 0.22 0.453

p value 0.00 0.04 0.01

β̂C ≈ −0.01f1 + 1.23f2 − 0.34f3

SE 0.01 0.07 0.14

p value 0.33 0.00 0.02

log σ̂C ≈ −0.02f1 − 0.03f2 + 0.93f3

SE 0.01 0.03 0.06

p value 0.00 0.20 0.00

α̂D ≈ 1.04f1 − 0.15f2 + 0.24f3

SE 0.04 0.18 0.37

p value 0.00 0.29 0.33

β̂D ≈ −0.00f1 + 1.12f2 − 0.06f3

SE 0.01 0.06 0.11

p value 0.40 0.00 0.35

log σ̂D ≈ −0.01f1 + 0.02f2 + 0.97f3

SE 0.01 0.03 0.05

p value 0.01 0.33 0.00. (69)

This model has a clear block-diagonal structure: f1 in the equations for α̂B, α̂C , α̂D and f2

in the equations for β̂B, β̂C , β̂D and f3 for the equations of σ̂B, σ̂C , σ̂D are significant with

coefficient close to one. Note that f1 appears to be insignificant in the three equations for

87



the slopes β̂B, β̂C , β̂D. Therefore, the three f1 terms are dropped and the system is refitted

using the same procedure, to obtain a simplified model (by suppressing the intercepts)

α̂A ≈ f1,

β̂A ≈ f2,

log σ̂A ≈ f3,

α̂B ≈ 0.97f1 − 0.54f2 + 1.06f3,

β̂B ≈ 1.11f2 − 0.28f3,

log σ̂B ≈ −0.01f1 − 0.10f2 + 1.08f3,

α̂C ≈ 1.01f1 − 0.71f2 + 1.71f3,

β̂C ≈ 1.33f2 − 0.50f3,

log σ̂C ≈ −0.02f1 − 0.04f2 + 0.93f3,

α̂D ≈ 1.05f1 − 0.33f2 + 0.58f3,

β̂D ≈ 1.19f2 − 0.17f3,

log σ̂D ≈ −0.02f1 + 0.02f2 + 0.95f3. (70)

Fitting this model produces the χ2 value 2323.64 with 743 degrees of freedom. Comparing

with χ2 value 2526.18 with 740 degrees of freedom for model (69), model (70) is more

desirable because it has a better fit (i.e., lower χ2 value) and simpler structure (i.e., larger

degrees of the freedom).

To further simplifying the measurement model, a two-factor measurement model is fitted

using the same procedure, which gives the χ2 value 3311.26 with 828 degrees of freedom.

The p value associated with the χ2 test for choosing between the fitted two-factor model

and the three-factor model (70) is zero, leading to rejecting the test; that is, the three-factor

model (70) cannot be reduced to a two-factor model.

After a measurement model is selected, we now attempt to simplify the full structural

model. We consider the requirements mentioned in Section 3.3 plus additional ones stated

as below:

1. The same group of covariates should be chosen for equations for f1 and f2 because these
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two factors are used in modeling the temperature trend.

2. The equation for f3 should have more terms than the other two because the temperature

fluctuation is known to be more complex than the temperature trend.

The full structural model is simplified by using the cutoff value 1.67 to drop insignificant

terms. Terms in the reduced model are listed in Table 20.

Table 20: Terms in the reduced structure model
quadratic x2, x6

cross product (x1, x2), (x1, x6), (x6, x7)
cross interaction (x3, x2), (x3, x6),(x3, x7), (x4, x1),

(x4, x2),(x4, x6),(x4, x7), (x5, x1),
(x5, x2),(x5, x6) ,(x5, x7),(x8, x2),
(x8, x7),(x9, x1),(x9, x2),(x9, x7)

interaction (x3, x4), (x3, x5),(x4, x8), (x4, x9), (x5, x9)

A structural equation system is refitted with the reduced structural model, giving the

χ2 value 1979.62 with 635 degrees of freedom and the measurement model:

α̂A ≈ f1,

β̂A ≈ f2,

log σ̂A ≈ f3,

α̂B ≈ 0.70 + 0.97f1 − 0.47f2 + 0.78f3,

β̂B ≈ 0.00 + 1.08f2 − 0.21f3,

log σ̂B ≈ 0.32− 0.01f1 − 0.10f2 + 1.07f3,

α̂C ≈ 1.17 + 1.01f1 − 0.64f2 + 1.50f3,

β̂C ≈ 0.03 + 1.31f2 − 0.45f3,

log σ̂C ≈ 0.53− 0.02f1 − 0.04f2 + 0.94f3,

α̂D ≈ 0.05 + 1.05f1 − 0.30f2 + 0.45f3,

β̂D ≈ 0.16 + 1.18f2 − 0.14f3,

log σ̂D ≈ 0.24− 0.02f1 + 0.02f2 + 0.96f3. (71)
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To assess the fit of this updated model, it is used to predict physical parameters for

the observed 144 configuration runs. Figure 15 plots the physical parameters computed

by using OLS vs. their counterparts from the prediction. The points in the figure follow

straight lines approximately with no obvious outliers, suggesting a decent model fit. This

model will be used as a surrogate for prediction.
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Figure 15: Observed vs. fitted physical parameters for the 144 runs

Finally we predict the temperature of the data center under some untried configuration

scenarios. Considering the physical and usage requirements for this example, we choose

x2 = 28, x4 = 10ft, x7 = 17 and x9 = “Uniform”. Levels for x1, x3, x5, x6 and x8 need

to be determined. The values of ÛLi in (63) and ĤU in (67) are computed for every level

combination of the five variables. Table 21 lists the scenarios that are associated with the

ten lowest values of ĤU . Some interesting observations emerge from this table. First, the

row differences in ÛL are small. Second, the inside rows RB and RC tend to have higher

UL values than the outside rows RA and RD. Third, the values of x1, x3 and x5 for the

ten scenarios are, consistently, 10 ft, 30 degree and “Bot-Per”. Finally, the effect of x6 is

found to be non-linear with x6 = 0.8 giving the best configuration.
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Table 21: The scenarios with ten lowest ĤU values

x1 x3 x5 x6 x8 ÛLA ÛLB ÛLC ÛLD ĤU
C ft degree %
10 10 30 0.80 Bot-Per 12.50 12.85 12.04 11.43 12.85
10 10 30 0.60 Bot-Per 13.74 14.30 13.23 12.51 14.30
10 10 30 1.00 Bot-Per 14.06 14.45 13.79 13.16 14.45
10 ceiling 30 0.80 Bot-Per 14.05 14.51 13.65 12.96 14.51
10 ceiling 30 1.00 Bot-Per 14.45 14.95 14.26 13.62 14.95
10 10ft 30 0.80 Top-Per 15.46 15.91 15.16 14.45 15.91
10 10ft 30 0.80 Bot-Par 15.53 16.15 15.00 14.19 16.15
10 ceiling 30 0.60 Bot-Per 16.52 17.17 16.03 15.20 17.17
10 10ft 30 0.60 Top-Per 16.73 17.39 16.38 15.58 17.39
10 10ft 30 0.80 Top-Par 16.77 17.49 16.08 15.19 17.49

3.7 Summary

Computer experiment is widely used for studying data center thermal distribution. The

high-dimensional responses and configuration variables put forward great challenges in the

design and modeling of this type of experiment. In this chapter we have proposed an effi-

cient and informative experimental design for selecting values for the configuration variables,

guaranteeing estimability and accommodating potential experimental failure. A three-fold

latent variable model is proposed for modeling multivariate temperature responses, incor-

porating physical structure and various sources of variability. Use of the sufficient statistics

makes it feasible to carry out a pseudo-likelihood estimation. A surrogate model has been

built to predict practically relevant quantities under a variety of “what-if” conditions in lieu

of actually conducting the corresponding expensive experimentation. The surrogate model

has been used for determining practical values of the configuration variables of a data center

to meet some physical and usage requirements.

Although the proposed method is motivated and developed for the data center appli-

cation, it is general and can be used in other applications with similar features where the

systems produce multivariate measurements and their performance depends on many con-

figuration or design variables.
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Extensions of the present work can be made in several directions. First, a latent Gaus-

sian process model (Christensen and Amemiya 2002) can be incorporated into model (47)

to better account for the spatial dependence among the temperature responses. Second,

instead of using the likelihood-based method proposed here some moment methods similar

to those in (Wall and Amemiya 2000) can be developed for the estimation in model (47),

which will be more robust to the normality assumptions on en and un.
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CHAPTER IV

NESTED SPACE-FILLING DESIGNS FOR MULTIPLE

EXPERIMENTS WITH DIFFERENT LEVELS OF

ACCURACY

4.1 Introduction

Experimentation to study complex real world systems in engineering and sciences can be

conducted at different levels of accuracy or sophistication. Complex mathematical models,

implemented in large computer codes, are widely used as a proxy to study the real sys-

tems. Doing the corresponding physical experiments would be costly. For example, each

physical run of the fluidized bed process in the food industry to coat certain food products

with additives discussed in Reese et al. 2004 can take days or even weeks to finish while

running the associated computer code only takes minutes per run. Furthermore, a large

computer program can often be run at different levels of sophistication with vastly varying

computational times. As a result, multiple experiments with various levels of accuracy or

fidelity have become popular in practice. These experiments can be physical vs. computer

experiments or detailed vs. approximate computer experiments.

Study of such multiple experiments involves two aspects: experimental planning, and

analysis and modeling of experimental data. While some headway, e.g., Kennedy and

O’Hagan 2000; Qian et al. 2006; Qian and Wu 2005; Reese et al. 2004, has been made to

tackle the modeling issue, with exceptions like Qian et al. 2006 little has been done so far to

address the planning issue. This problem must be tackled because it is a key to efficiently

allocating resources and acquiring information from multiple data sources. It is a new issue

in design of experiment because traditional methods (Box, Hunter and Hunter 2005; Wu

and Hamada 2000) deal almost exclusively with a single experiment. Hence new methods

need to be developed along with new principles.
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The purpose of this chapter is to propose a method for constructing nested space-filling

designs for multiple experiments with different levels of accuracy. This construction makes

use of Galois fields and orthogonal arrays. Multiple design sets generated by the method

are guaranteed to have some space-filling property, i.e., each of them is either an orthogonal

array-based Latin hypercube design or a randomized orthogonal array. The motivation of

this study and construction in a special case are given in Section 4.2. Results for the general

case are presented in Section 4.3. Extensions of the proposed procedure to more than two

experiments are given in Section 4.4.

4.2 Motivation and construction in a special case

In this section we present the motivation for this study and construction of nested space-

filling designs in a special case. Discussed here is a generic situation, where two experiments

are available, and one is more accurate but more expensive than the other. The two exper-

iments considered are called low-accuracy experiment (LE) and high-accuracy experiment

(HE). The pair can be physical vs. computer experiments or detailed vs. approximate com-

puter experiments. For the ease of presentation, denote by Dl and Dh the design sets for

LE and HE respectively. Without loss of generality, we restrict the design spaces of Dl and

Dh to be the unit hypercubes. Construction of Dl and Dh put forward new challenges to

design of experiments because conventional methods usually consider a single information

source. In the rest of this section we shall discuss new design principles, review an existing

method, and propose a new design scheme. Throughout, the construction of Dl and Dh is

guided by three new principles:

Principle of economy: The number of points of Dh, denoted by nh, is smaller than the

number of points of Dl, denoted by nl.

Principle of nested relationship: There is a nested relationship between Dl and Dh,

i.e., Dh ⊂ Dl.

Principle of uniformity: The points in Dl and Dh are uniformly distributed over the

entire design space.
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The principle of economy is concerned with the difference in the computation time of

HE and LE. LE is cheaper than HE, so more LE runs can be afforded. The principle of

nested relationship makes it easier to model data from HE and LE. This principle implies

that, for every point in Dh, results from both LE and HE are available. This part of data

can thus be used for modeling the differences between these two experiments, defined as the

adjustment step in Qian et al. 2006; Qian and Wu 2005, or calibrating the values of unknown

parameters in the model of HE (Kennedy and O’Hagan 2001). The principle of uniformity

is based on the belief that interesting features of the true models are as likely to be in one

part of the design space as the other. Hence, it is desirable to spread the points in Dl and

Dh uniformly in the design space, which is a reasonable assumption in the absence of any

prior idea regarding the models. Such an allocation will be robust to the assumptions on the

complex input-and-output relationships HE and LE may exhibit. Throughout this chapter,

we refer to the designs that spread the points in a design space uniformly as space-filling

designs. There are several ways to define the uniformity of the distribution of the points

throughout a design space such as distance measures or low-dimensional balances (Santner,

Williams and Notz 2003).

These three principles were actually behind a construction method used in (Qian et al.

2006) but the terminology and definitions were not formally given therein. Taking into

account of these principles, an immediate approach one may suggest is to optimize some

objective function with a total cost constraint. The problem is more complicated than

it appears. What objective function should be chosen? It is almost impossible to find a

meaningful function to encompass the three principles because of their distinctive natures.

Below we shall give a review of orthogonal array (OA) and related space-filling designs,

serving as a basis for later development. An OA of strength λ, denoted by OA(m, p, q, λ),

is an m× p matrix, where each column has q symbols and, for any λ columns, all possible

combinations appear equally often in the matrix. Throughout, the q symbols are taken as

1, 2, . . . , q unless otherwise stated. Since OAs with strength 3 or larger tend to have very

large run sizes, in this chapter we confine our attention to OAs with strength 2, denoted by

the compact notation OA(m, p, q). By definition m ∝ q2 for such OAs.
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Two space-filling designs (Owen 1992; Tang 1993) using the idea of OAs have been

proposed to achieve better uniformity over regular Latin hypercube designs (LHDs) (McKay,

Beckman and Conover 1979). Tang (1993) proposes OA-based Latin hypercube designs (OA-

lhds). His construction starts with an OA(q2, p, q), and then replaces the q positions with

symbol t by a random permutation of (t − 1)q + 1, . . . , tq, for all t = 1, . . . , q. After the

replacement procedure is done for all the p columns, denote by A = (aij), i = 1, . . . , q2, j =

1, . . . , p, the resulting matrix. Suppose that Xj
i ∼ Unif(0, 1] or = 1/2. The matrix(

aij −Xj
i

q2

)
ij

, i = 1, . . . , q2, j = 1, . . . , p,

forms a q2×p OA-lhd with q2 levels. Owen (1992) introduces randomized orthogonal arrays

(ROAs). His method can be described as follows. Suppose that A = (aij) is an OA(q2, p, q)

with its symbols randomized and that Xj
i ∼ Unif(0, 1] or = 1/2, i = 1, . . . , q2, j = 1, . . . , p.

An ROA is the matrix (
aij −Xj

i

q

)
ij

, i = 1, . . . , q, j = 1, . . . , p.

We now turn to reviewing a two-step procedure used in (Qian et al. 2006) as a motivation

for the new method. It proceeds as follows:

Step 1: Construct an OA-lhd for Dl with size nl;

Step 2: Choose a subset of Dl with size nh as Dh based on the maximin distance criterion,

i.e.,

Dh = argmaxD[ min
x1,x2∈D

d(x1,x2)], (72)

where D is any subset of Dl with size nh.

OA-lhd seems to be a good choice for Dl in this procedure because it can accommodate

larger run sizes and enjoys one- and two-dimensional balances (Tang 1993). Guided by

the principle of uniformity, step 2 produces a maximin distance design (mdd) (Santner,

Williams and Notz 2003) for Dh, where no two points are too close to each other.

As an illustration, consider an example with five variables x = (x1, x2, x3, x4, x5)t taking

values in the unit hypercube (0, 1]5. This example will be used through the end of this

98



section. In step 1, OA(64, 5, 8), obtained from Sloane 1994, is used to generate a 64-run

OA-lhs for Dl. Figure 16 presents the bivariate projection of the points in Dl. For better

exposition, only the projections of the first three variables are plotted. In the figure if we

divide domain of each dimension into eight equally spaced intervals (forming 64 reference

square bins), for each pair of variables, the 64 points are uniformly distributed in each

of the 64 reference square bins. Also, if we divide each of these bins in the figure into 8

equally spaced new bins with smaller size (64 new bins in each dimension), we find that

each individual variable in each dimension has a nearly uniform distribution in the 64 bins.

In step 2, a 16-run mdd is chosen for Dh. Computing an mdd in general is a difficult

combinational optimization problem. For this example, Dh of size 16 is computed by using

a simulated annealing algorithm (Belisle 1992) with 2000 iterations. Figure 17 presents

the bivariate projection of Dh for the first three variables, suggesting that Dh is far from

being space-filling. If the domain of each dimension is equally divided into four components

(thereby forming 16 reference square bins), in each of the six plots in the figure there are

more than one point in some square bins while no point in others. This example indicates

two major drawbacks of the two-step method. First, search for an mdd in step 2 entails

intensive computation, especially for problems with many variables. Second, the resulting

mdd from step 2 may not be space-filling.

To mitigate these drawbacks, we propose a new construction method that can generate

nested space-filling designs for Dh and Dl and requires limited computation. In this section

the procedure is illustrated with the aforementioned five-dimensional example with the

general results deferred to the next section. Recall that, for this example the two-step

procedure (72) generates a 64-run OA-lhd for Dl and a 16-run mdd for Dh. By contrast,

we now aim at generating

Dl : a 64-run OA-lhd and Dh : a 16-run design with two-dimensional balance with Dh ⊂ Dl.

(73)
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Figure 16: Bivariate projections for x1, x2, x3 of Dl as a 64-run OA-lhs.

Here Dl is chosen the same as before while Dh is different from the previous method. Dh

to be generated is space-filling: in its bivariate projections, if the domain of each dimension

is equally divided into four components (thereby forming 16 reference square bins) there

will be exactly one point of Dh in each of the 16 square bins. Note that Dh and Dl under

consideration have different levels of uniformity in terms of the lengths of the reference bins

in their bivariate projections. This difference is considered reasonable because Dh and Dl

have different run sizes.

Two questions associated with (73) need to be answered:

1. Does such a nested structure exist?

2. How to construct?

One possible approach to tackling these questions is through a modified version of the two-

step procedure in (72) in which the maximin distance criterion in step 2 is replaced by

some criterion aimed at quantifying the two-dimension stratification required for Dh. This

approach has several potential problems. First, it is incapable of addressing the existence

issue unless an exhaustive search is conducted. Second, finding a criterion to quantify the

two-dimension stratification is no easy task. Third, search in the second step often involves
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Figure 17: Bivariate projections for x1, x2, x3 of Dh as a 16-run maximin distance design.

intensive computation.

In view of these difficulties, we now discuss a method to better address the existence

and construction issues of the designs in (73) by utilizing some algebraical techniques. Note

that by definition the existence and construction of Dl and Dh in (73) is mathematically

equivalent to that of two underlying OAs,

OA(64, 5, 8) and OA(16, 5, 4). (74)

Hence we shall give a constructive proof to show the existence of these two OAs first, and

then use them to construct the required space-filling designs. Construction of the two OAs is

complicated by their nested structure, different sizes and numbers of levels. In this chapter

we propose an efficient method based on the use of Galois fields. Throughout consider

the Galois field GF (pw), where p is a prime number and w is a positive integer. The

elements of the field can be expressed as polynomials of degree w − 1 with coefficient from

GF (p) = {0, . . . , p− 1}. In the example under consideration the levels of OA(64, 9, 8) and

OA(16, 4, 5) are denoted by the elements in GF (8) = {0, 1, x, 1+x, x2, 1+x2, x+x2, 1+x+x2}

and GF (4) = {0, 1, u, 1 + u} respectively. As a key to achieving the nested structure

Dh ⊂ Dl, we establish a correspondence between the elements of GF (8) and GF (4) in the
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following manner:

0, x2 → 0,

1, 1 + x2 → 1,

x, x + x2 → u,

1 + x, 1 + x + x2 → 1 + u. (75)

We start with a larger OA(64, 9, 8), rendering flexibility in choosing appropriate columns

in the later construction. It is generated by using the Rao-Hamming construction (Hedayat,

Sloane and Stufken 1999) as follows.

1. Create a 2× 9 generator matrix 0 1 1 1 1 1 1 1 1

1 0 1 x 1 + x x2 1 + x2 x + x2 1 + x + x2

 ,

where the columns are all nonzero 2-tuples (z1, z2)t from GF (8) in which the first nonzero

zi is 1.

2. Take all 64 linear combinations of the two rows of this matrix to form an OA(64, 9, 8).

To generate OA(64, 5, 8) and OA(16, 5, 4) based on the constructed OA(64, 9, 8), two

issues need to be addressed:

1. How to select columns of OA(64, 9, 8)?

2. How to select rows of OA(64, 9, 8)?

First, we select columns 1 -5 of OA(64, 9, 8) to form a new matrix. By the definition of OA,

the resulting matrix is OA(64, 5, 8) as required. Then, select rows 1 -4, 9 -12, 17 -20, 25 -28

of OA(64, 8, 5) to form matrix Bh. For Bh, we have the following result.

Lemma 4.1. With the levels of Bh replaced by the elements of GF (4) according to (75),

Bh becomes an OA(16, 5, 4).

No proof is given here. This lemma is a special case of Lemma 4.3 in Section 4.3, where

a complete proof is provided.
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Based on the constructed OA(64, 5, 8) and OA(16, 5, 4), it is straightforward to generate

the nested designs in (73). First, replace the elements of OA(64, 5, 8) by symbols 1,. . . ,8

according to the following rule between the elements of GF (8) and 1,. . . ,8:

0 → 1,

1 → 3,

x → 5,

1 + x → 7,

x2 → 2,

1 + x2 → 4,

x + x2 → 6,

1 + x + x2 → 8. (76)

Then, replace the eight positions with symbol t of the resultant OA(64, 5, 8) by a ran-

dom permutation of (t − 1)8 + 1, . . . , 8t, for all t = 1, . . . , 8. Denote by A = (aij), i =

1, . . . , 64, j = 1, . . . , 5, the resulting matrix. Suppose that Xj
i ∼ Unif(0, 1]. Let Dl be the

matrix
(

aij−Xj
i

64

)
ij

, i = 1, . . . , 64, j = 1, . . . , 5. Finally, select rows 1 -4, 9 -12, 17 -20, 25 -28

of Dl to form Dh. It is evident from the construction that Dh ⊂ Dl and Dl is a 64-run

OA-lhd with 64 levels. For Dh, we have the following result, which follows immediately

from Lemma 4.1.

Theorem 4.1. Dh is a 16-run design with 16 levels and two-dimensional balance.

Figure 18 depicts the pairwise projections for the first three variables of the points in

Dh. It is clear that Dh has the required two-dimensional balance. If the domain of each

dimension is equally divided into four components (thereby forming 16 reference square

bins), there will be exactly one point of Dh in each of these 16 square bins. Note that

this construction can only generate a Dh with two-dimensional balance, not necessarily an

OA-lhd with one- and two-dimensional balances. One potential drawback of using an ROA
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Figure 18: Bivariate projections for x1, x2, x3 of Dh as a 16-run ROA.

is that some of its projected points in one dimension may be identical. This is not the case

for the Dh generated by our procedure. As shown in Figure 18, projected points of Dh in

one dimension take distinct values.

4.3 General results

In this section we discuss the proposed method for the general case. Without loss of gener-

ality, our construction is confined to the class of designs

Dl : an s2k × (sk−l + 1) OA-lhd,

Dh : an s2(k−l) × (sk−l + 1) design with two-dimensional balance (77)

where Dh ⊂ Dl and k ≥ 2, s is a prime power and l = 1, 2, 3, . . . , (k − 1). Here Dl

and Dh have the same number of columns following the assumption that HE and LE use

the same group of factors. Dl has more runs than Dh due to the principle of economy.

Mathematically, the existence and construction of these nested designs is equivalent to that
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of the following two OAs:

OA(s2k, sk−l + 1, sk) and OA(s2(k−l), sk−l + 1, sk−l). (78)

In the rest of this section, we shall first discuss constructing these two OAs and then describe

how to use them to generate the designs in (77).

Throughout let s = pm, where p is a prime number and m is a positive integer. The

levels of OA(s2k, s(k−l)+1, sk) and OA(s2(k−l), s(k−l)+1, s(k−l)) are denoted by the elements

of two Galois fields, GF (pkm) consisting of

a0 + a1x + . . . + akm−1x
km−1, ai ∈ GF (p), i = 0, . . . , km− 1,

and GF (p(k−l)m) consisting of

a0 + a1u + . . . , a(k−l)m−1u
(k−l)m−1, ai ∈ GF (p), i = 0, . . . , (k − l)m− 1.

Note that distinct symbols x and u are used for the polynomials in the two fields because

they are associated with two different OAs. Assume that the elements of the two fields are

arranged in lexicographical order. Let αi, i = 1, . . . , pkm, denote the elements of GF (pkm)

and βj , j = 1, . . . , p(k−l)m, denote the elements of GF (p(k−l)m) in this order. For example if

k = 2, p = 3, l = 1, m = 1 we consider the Galois fields GF (32) and GF (31). The elements

of GF (32) may be exhibited as

α0 = 0,

α1 = 1,

α2 = 2,

α3 = x,

α4 = 1 + x,

α5 = 2 + x,

α6 = 2x,

α7 = 1 + 2x,

α8 = 2 + 2x, (79)
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and the elements of GF (31) as

β0 = 0,

β1 = 1,

β2 = 2. (80)

As a key to achieving the nested structure Dh ⊂ Dl, we now establish a correspondence

between the elements of GF (pkm) and GF (p(k−l)m) in the following manner. The element

αi of GF (pkm) corresponds to the element

βj = a0 + a1u + · · ·+ a(k−l)m−1u
(k−l)m−1 (81)

of GF (p(k−l)m), where the coefficients of u(k−l)m−1 and lower powers of u are the same as

the coefficients of the corresponding powers of x in αi. A similar correspondence is used in

Bose and Bush 1952 for constructing completely resolvable arrays. In this correspondence

βj is uniquely determined by αi as

j = i (mod p(k−l)m), 0 ≤ j < p(k−l)m. (82)

Suppose βj is given. For αi, each of the coefficients a(k−l)m, . . . , akm−1 can take p possible

values. Hence each βj of GF (p(k−l)m) is associated with plm elements of GF (pkm). In the

example with k = 2, p = 3, l = 1, m = 1 the correspondence between the elements of

GF (32) and GF (31) is given by

α0, α3, α6 → β0,

α1, α4, α7 → β1,

α2, α5, α8 → β2. (83)

The construction of OA(s2k, s(k−l) +1, sk) and OA(s2(k−l), s(k−l) +1, s(k−l)) proceeds in

four steps:

Step 1: Create a 2× (sk + 1) generator matrix 0 1 1 1 · · · 1

1 0 1 x · · · 1 + (p− 1)x + · · ·+ (p− 1)xkm−1

 ,
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whose columns are all nonzero 2-tuples (z1, z2)t from GF (pkm) in which the first nonzero

zi is 1.

Step 2: Take all s2k linear combinations of the two rows of this matrix to form an

OA(s2k, sk + 1, sk).

Step 3: Select the first s(k−l)+1 columns of the OA(s2k, sk+1, sk) to form an OA(s2k, s(k−l)+

1, sk).

Step 4: Select rows (i−1)sk +1, . . . , (i−1)sk +sk−l, i = 1, . . . , sk−l, of the OA(s2k, s(k−l) +

1, sk), and replace the entries in these rows by using the elements of GF (p(k−l)m) according

to (81) to form an OA(s2(k−l), s(k−l) + 1, s(k−l)).

For the ease of verification, denote by Bl and Bh the resulting matrices generated from

steps 3 and 4 respectively. The following lemma, taken from Section 3.4 of Hedayat, Sloane

and Stufken 1999, is used throughout.

Lemma 4.2. For prime q, an OA(qn, (qn − 1)/(q − 1), q) exists whenever n ≥ 2.

A proof of this lemma is given in (Hedayat, Sloane and Stufken) through the Rao-Hamming

constructions. For Bl and Bh, we have the following result.

Lemma 4.3. (i) Bl is an OA(s2k, s(k−l) + 1, sk).

(ii) Bh is an OA(s2(k−l), s(k−l) + 1, s(k−l)).

Proof. (i). Let q = sk and n = 2. Then the design parameters of OA(s2k, s(k−l) + 1, sk)

satisfy the condition of Lemma 4.2. Furthermore, steps 1 and 2 comprise exactly the third

Rao-Hamming construction used in (Hedayat, Sloane and Stufken) to prove Lemma 4.2.

Therefore, the resultant matrix from Step 2 is an OA(s2k, sk + 1, sk). Hence Bl is an

OA(s2k, s(k−l) + 1, sk) by the definition of OA.

(ii). Note that the first s(k−l) + 1 columns of the generator for OA(s2k, sk + 1, sk) are 0 1 1 1 · · · 1

1 0 1 x · · · 1 + (p− 1)x + · · ·+ (p− 1)x(k−l)m−1

 ,

and the selected s2(k−l) rows in step 4 are linear combinations of the two rows of this

matrix with coefficients taking values 0, 1, x, x + 1, · · · , 1 + (p− 1)x + · · ·+ (p− 1)x(k−l)m−1

107



of GF (pkm). Thus, according to the correspondence in (81), the construction of Bh is

equivalent to the following two steps:

1. Create a 2× s(k−l) + 1 generator matrix 0 1 1 1 · · · 1

1 0 1 u · · · 1 + (p− 1)u + · · ·+ (p− 1)u(k−l)m−1

 ,

whose columns are all nonzero 2-tuples (z1, z2)t from GF (p(k−l)m) in which the first nonzero

zi is 1.

2. Take all linear combinations of the rows of this matrix with respect to GF (p(k−l)m) to

form Bh.

Let q = sk−l and n = 2. Then the design parameters of OA(s2(k−l), s(k−l) +1, s(k−l)) satisfy

the condition of Lemma 4.2. Moreover, this construction is exactly the third Rao-Hamming

construction. It then follows that Bh is an OA(s2(k−l), s(k−l) + 1, s(k−l)).

Based on the constructed OA(s2k, s(k−l)+1, sk) and OA(s2(k−l), s(k−l)+1, s(k−l)), we now

proceed to generate the required designs in (77). For i = 1, . . . , sk, let τi = (i− 1)(mod sl)

and γi = [(i − 1) − τi]/sl. Then arrange i = 1, . . . , sk according to the dictionary order of

(γi, τi). Let c1, . . . , csk denote the i’s in this order. For the example with s = 3, k = 2,

sk = 9 and symbols 1,. . . ,9, c1, . . . , c9 are given by

c1 = 1 with (γ1, τ1) = (0, 0),

c2 = 4 with (γ2, τ2) = (0, 1),

c3 = 7 with (γ3, τ3) = (0, 2),

c4 = 2 with (γ4, τ4) = (1, 0),

c5 = 5 with (γ5, τ5) = (1, 1),

c6 = 8 with (γ6, τ6) = (1, 2),

c7 = 3 with (γ7, τ7) = (2, 0),

c8 = 6 with (γ8, τ8) = (2, 1),

c9 = 9 with (γ9, τ9) = (2, 2). (84)
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Next replace the entry αi of OA(s2k, s(k−l) + 1, sk) according to the following rule

αi = ci+1, i = 0, . . . , sk − 1. (85)

After the above replacement is done, further replace the sk positions with symbol t in

OA(s2k, s(k−l)+1, sk) by a random permutation of (t−1)sk +1, . . . , skt, for all t = 1, . . . , sk.

Denote by A = (aij), i = 1, . . . , sk, j = 1, . . . , sk−l + 1, the resultant matrix. Suppose that

Xj
i ∼ Unif(0, 1]. Let Dl be the matrix

(
aij−Xj

i

s2k

)
, i = 1, . . . , sk, j = 1, . . . , sk−l + 1. Finally

select rows (i − 1)sk + 1, . . . , (i − 1)sk + sk−l, i = 1, . . . , sk−l, of Dl as suggested by step 4

to form Dh. For the resultant Dh and Dl, we have the following theorem.

Theorem 4.2. For k ≥ 2, a prime power s and l = 1, 2, 3, . . . , (k − 1),

(i) Dh ⊂ Dl;

(ii) Dl is an s2k × (sk−l + 1) OA-lhd with s2k levels;

(iii) Dh is an s2(k−l) × (sk−l + 1) design with s2(k−l) levels and two-dimensional balance.

Proof. (i) and (ii) are evident from the construction. (iii) follows from Lemma 4.3.

4.4 Extensions to nested space-filling designs for more-than-
two experiments

In this section the proposed method is extended to the case of more than two experiments.

These experiments can be a combination of physical experiment, detailed computer ex-

periment and approximate computer experiment or Finite Element Analysis (FEA) based

computer experiments with different mesh sizes. Suppose that there are u + 1 such exper-

iments Tl, Th1 . . . , Thu , arranged in the order of increasing accuracy (i.e., Thu is the most

accurate and expensive). Assume that these experiments use the same group of factors.

Let Dl, Dh1 , . . . , Dhu denote the design sets for Tl, Th1 . . . , Thu , respectively. Denote by

nl, nh1 , . . . , nhu the sizes of Dl, Dh1 , . . . , Dhu , respectively.

The construction of Dl, Dh1 , . . . , Dlu is guided by the following modified version of the

three principles in Section 4.2.

Principle of economy: nhu < nhu−1 < · · · < nl.

109



Principle of nested principle: Dhu ⊂ Dhu−1 · · · ⊂ Dh1 ⊂ Dl.

Principle of uniformity: The points in Dhu , Dhu−1 , . . . , Dh1 , Dl are uniformly distributed

over the entire design space.

Without loss of generality, the construction in this section is confined to the following

class of designs:

Dl : an s2k-run OA-lhd with sk−lu + 1 columns,

Dh1 : an s2(k−l1)-run design with sk−lu + 1 columns and two-dimensional balance,

Dh2 : an s2(k−l2)-run design with sk−lu + 1 columns and two-dimensional balance,

...
...

Dhu : an s2(k−lu)-run design with sk−lu + 1 columns and two-dimensional balance, (86)

where k ≥ 2, s = pm with prime p and positive integer m, 0 < l1 < l2 · · · lu < k and Dhu ⊂

Dhu−1 · · · ⊂ Dh1 ⊂ Dl. Note that the same number of columns are used for all the designs

based on the assumption that the same group of factors are chosen for Tl, Th1 . . . , Thu . The

construction of the designs in (86) consists of two stages:

Stage 1: Construct a set of OAs.

Stage 2: Use the constructed OAs to generate the required designs.

Details of these two stages are given below.

By definition, the underlying OAs of the designs in (86) are

OA(s2(k−l0), sk−lu + 1, sk−l0),

OA(s2(k−l1), sk−lu + 1, sk−l1),

OA(s2(k−l2), sk−lu + 1, sk−l2),

...

OA(s2(k−lu), sk−lu + 1, sk−lu), (87)

where l0 = 0. For j = 0, 1, . . . , u, the levels of OA(s2(k−lj), sk−lu + 1, sk−lj ) are denoted by

the elements of the Galois field GF (p(k−lj)m), which consists of

a0 + a1x + . . . , a(k−lj)m−1x
(k−lj)m−1, ai ∈ GF (p), i = 0, . . . , (k − lj)m− 1.
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Further assume that the elements of the field are arranged in lexicographical order. Denote

by αj+1,i, . . . , αj+1,p(k−lj)m the elements of GF (p(k−lj)m) in this order.

For example if k = 3, p = 2, m = 1, l1 = 1, l2 = 2 we consider the Galois fields GF (26),

GF (22) and GF (21). The elements of GF (26) may be exhibited as

α1,0 = 0, α1,1 = 1,

α1,2 = x, α1,3 = x + 1,

α1,4 = x
2
, α1,5 = x2 + 1,

α1,6 = x
2

+ x, α1,7 = x2 + x + 1,

α1,8 = x
3
, α1,9 = x3 + 1,

α1,10 = x
3

+ x, α1,11 = x3 + x + 1,

α1,12 = x
3

+ x
2
, α1,13 = x3 + x2 + 1,

α1,14 = x
3

+ x
2

+ x, α1,15 = x3 + x2 + x + 1,

α1,16 = x
4
, α1,17 = x4 + 1,

α1,18 = x
4

+ x, α1,19 = x4 + x + 1,

α1,20 = x
4

+ x
2
, α1,21 = x4 + x2 + 1,

α1,22 = x
4

+ x
2

+ x, α1,23 = x4 + x2 + x + 1,

α1,24 = x
4

+ x
3
, α1,25 = x4 + x3 + 1,

α1,26 = x
4

+ x
3

+ x, α1,27 = x4 + x3 + x + 1,

α1,28 = x
4

+ x
3

+ x
2
, α1,29 = x4 + x3 + x2 + 1,

α1,30 = x
4

+ x
3

+ x
2

+ x, α1,31 = x4 + x3 + x2 + x + 1,

α1,32 = x
5
, α1,33 = x5 + 1,

α1,34 = x
5

+ x, α1,35 = x5 + x + 1,

α1,36 = x
5

+ x
2
, α1,37 = x5 + x2 + 1,

α1,38 = x
5

+ x
2

+ x, α1,39 = x5 + x2 + x + 1,

α1,40 = x
5

+ x
3
, α1,41 = x5 + x3 + 1,

α1,42 = x
5

+ x
3

+ x, α1,43 = x5 + x3 + x + 1,

α1,44 = x
5

+ x
3

+ x
2
, α1,45 = x5 + x3 + x2 + 1,

α1,46 = x
5

+ x
3

+ x
2

+ x, α1,47 = x5 + x3 + x2 + x + 1,

α1,48 = x
5

+ x
4
, α1,49 = x5 + x4 + 1,

α1,50 = x
5

+ x
4

+ x, α1,51 = x5 + x4 + x + 1,

α1,52 = x
5

+ x
4

+ x
2
, α1,53 = x5 + x4 + x2 + 1,

α1,54 = x
5

+ x
4

+ x
2

+ x, α1,55 = x5 + x4 + x2 + x + 1,

α1,56 = x
5

+ x
4

+ x
3
, α1,57 = x5 + x4 + x3 + 1,

α1,58 = x
5

+ x
4

+ x
3

+ x, α1,59 = x5 + x4 + x3 + x + 1,

α1,60 = x
5

+ x
4

+ x
3

+ x
2
, α1,61 = x5 + x4 + x3 + x2 + 1,

α1,62 = x
5

+ x
4

+ x
3

+ x
2

+ x, α1,63 = x5 + x4 + x3 + x2 + x + 1, (88)
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the elements of GF (24) as

α2,0 = 0, α2,1 = 1,

α2,2 = x, α2,3 = x + 1,

α2,4 = x2, α2,5 = x2 + 1,

α2,6 = x2 + x, α2,7 = x2 + x + 1,

α2,8 = x3, α2,9 = x3 + 1,

α2,10 = x3 + x, α2,11 = x3 + x + 1,

α2,12 = x3 + x2, α2,13 = x3 + x2 + 1,

α2,14 = x3 + x2 + x, α2,15 = x3 + x2 + x + 1, (89)

and the elements of GF (22) as

α3,0 = 0,

α3,1 = 1,

α3,2 = x,

α3,3 = x + 1. (90)

To achieve the nested structure Dhu ⊂ Dhu−1 · · · ⊂ Dh1 ⊂ Dl, for j = 0, 1 . . . , u − 1, a

correspondence between the elements of GF (p(k−lj+1)m) and GF (p(k−lj)m) is established in

the following manner. The element αj,i1 of GF (p(k−lj)m) corresponds to the element

αj+1,i2 = a0 + a1x + · · ·+ a(k−lj+1)m−1x
(k−lj+1)m−1 (91)

of GF (p(k−lj+1)m), where the coefficients of x(k−lj+1)m and lower powers of x are the same

as the coefficients of the corresponding powers of x in αj,i1 . In this correspondence αj+1,i2

is uniquely determined by αj,i1 as

i2 = i1 (mod p(k−lj+1)m), 0 ≤ i2 < p(k−lj+1)m. (92)

This relationship implies that each αj,i2 of GF (p(k−lj+1)m) is associated with p(lj+1−lj)m

elements of GF (p(k−lj)m). In the example with k = 3, p = 2, m = 1, l1 = 1, l2 = 2 the
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correspondence among the elements of GF (26), GF (24) and GF (22) is given by

α1,0, α1,16, α1,32, α1,48 → α2,0 → α3,0,

α1,1, α1,17, α1,33, α1,49 → α2,1 → α3,1,

α1,2, α1,18, α1,34, α1,50 → α2,2 → α3,2,

α1,3, α1,19, α1,35, α1,51 → α2,3 → α3,3,

α1,4, α1,20, α1,36, α1,52 → α2,4 → α3,0,

α1,5, α1,21, α1,37, α1,53 → α2,5 → α3,1,

α1,6, α1,22, α1,38, α1,54 → α2,6 → α3,2,

α1,7, α1,23, α1,39, α1,55 → α2,7 → α3,3,

α1,8, α1,24, α1,40, α1,56 → α2,8 → α3,0,

α1,9, α1,25, α1,41, α1,57 → α2,9 → α3,1,

α1,10, α1,26, α1,42, α1,58 → α2,10 → α3,2,

α1,11, α1,27, α1,43, α1,59 → α2,11 → α3,3,

α1,12, α1,28, α1,44, α1,60 → α2,12 → α3,0,

α1,13, α1,29, α1,45, α1,61 → α2,13 → α3,1,

α1,14, α1,30, α1,46, α1,62 → α2,14 → α3,2,

α1,15, α1,31, α1,47, α1,63 → α2,15 → α3,3, (93)

The construction of OA(s2(k−lj), sk−lm + 1, sk−lj ), j = 0, 1, . . . , u, consists of four steps:

Step 1: Create a 2× (sk + 1) generator matrix 0 1 1 1 · · · 1

1 0 1 x · · · 1 + (p− 1)x + · · ·+ (p− 1)xkm−1

 ,

whose columns are all nonzero 2-tuples (z1, z2)t from GF (pkm) in which the first nonzero

zi is 1.

Step 2: Take all s2k linear combinations of the two rows of this matrix to form an

OA(s2k, sk + 1, sk).
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Step 3: Select the first sk−lu +1 columns of OA(s2k, sk +1, sk) to form an OA(s2k, sk−lu +

1, sk).

Step 4: For j = 1, . . . , u, (i) select rows (i − 1)sk−lj−1 + 1, . . . , (i − 1)sk−lj−1 + sk−lj , i =

1, . . . , sk−lj , of the OA(s2(k−lj−1), sk−lu +1, sk−lj−1); (ii) replace the entries in these rows by

using the elements of GF (p(k−lj)m) according to (91) to form an OA(s2(k−lj), sk−lu+1, sk−lj ).

For the ease of verification, denote by Bj the resulting matrix generated from the jth

iteration of step 4. Applying similar arguments used in establishing Lemma 4.3, we have

the following result for Bj .

Lemma 4.4. For j = 1, . . . , u, Bj is an OA(s2(k−lj), sk−lu + 1, sk−lj ).

With the constructed OA(s2(k−lj), sk−lu + 1, sk−lj ), j = 0, 1, . . . , u, we now proceed to

generate the designs in (86). It is infeasible to use a simple scheme like (84) for the present

case because of its hierarchical nested structure Dhu ⊂ Dhu−1 · · · ⊂ Dh1 ⊂ Dl. Below is a

more sophisticated procedure used for replacing the elements α1,i’s of GF (sk) by 1, . . . , sk.

For the ease of presentation, denote by sub(α1,i) the second subscript of α1,i, i.e., sub(α1,i) =

i.

Step 1: Assign α1,i’s into sk−lu groups g1, . . . , gsk−lu in the following manner. The elements

α1,i’s in group gj satisfy the condition that

sub(α1,i)(mod sk−lu) = j − 1, j = 1, . . . , sk−lu . (94)

Table 22 lists the elements in the sk−lu groups.

Step 2: For group gj , assign its elements into slu−lu−1 subgroups gj,1, . . . , gj,slu−lu−1 ac-

cording to slu−lu−1 distinct values of sub(α1,i)(mod sk−lu−1).

Steps 3 to (u-1): Applying similar procedures as in step 2 to further generate subgroups.

Step u: For each group generated in step u-1, assign the elements α1,i’s into sl1−l0 sub-

groups according to sl1−l0 distinct values of sub(α1,i)(mod sk−l1). In this step, sk−l1

subgroups are generated.

Table 23 lists the subgroups generated in steps 1 to u.
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Step u+1: Arrange α1,i’s in each subgroup generated in step u in increasing order of

sub(α1,i). Let c1, . . . , csk denote the resultant α1,i’s. Then, replace the entry α1,i of

OA(s2k, sk−l + 1, sk) according to the following rule

ci = i + 1, i = 0, . . . , sk − 1. (95)

Table 22: αi’s of GF (sk) in groups g1, . . . , gsk−lu

α1,0

α1,sk−lu

g1 α1,2sk−lu

...
α1,(slu−1)sk−lu

α1,1

α1,sk−lu+1

g2 α1,2sk−lu+1
...

α1,(slu−1)sk−lu+1
...

...
...

...
...

...
α1,sk−lu−1

α1,sk−lu+sk−lu−1

gsk−lu α1,2sk−lu+sk−lu−1
...

α1,(slu−1)sk−lu+sk−lu−1.

As an illustration, consider an example with k = 3, p = 2, m = 1, l1 = 1, l2 = 2 and

Galois field GF (26). Table 24 lists the replacement of the elements GF (26) by 1, . . . , 64.
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Table 23: The groups generated in steps 1 to u

Step 1 Step 2 Step 3
... Step u

g1,1,1,...,1

g1,1,1
...

...
g1,1,1,...,sl1−l0

g1,1
...

...
...

g1,1,slu−1−lu−2 ,...,1

g1,1,slu−1−lu−2

...
...

g1,1,slu−1−lu−2 ,...,sl1−l0

g1
...

...
...

...
g1,slu−lu−1 ,1,...,1

g1,slu−lu−1 ,1

...
...

g1,slu−lu−1 ,1,...,sl1−l0

g1,slu−lu−1

...
...

...
g1,slu−lu−1 ,slu−1−lu−2 ,...,1

g1,slu−lu−1 ,slu−1−lu−2

...
...

g1,slu−lu−1 ,slu−1−lu−2 ,...,sl1−l0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
gsk−lu ,1,1,...,1

gsk−lu ,1,1

...
...

gsk−lu ,1,1,...,sl1−l0

gsk−lu ,1

...
...

...
gsk−lu ,1,slu−1−lu−2 ,...,1

gsk−lu ,1,slu−1−lu−2

...
...

gsk−lu ,1,slu−1−lu−2 ,...,sl1−l0

gsk−lu

...
...

...
...

gsk−lu ,slu−lu−1 ,1,...,1

gsk−lu ,slu−lu−1 ,1

...
...

gsk−lu ,slu−lu−1 ,1,...,sl1−l0

gsk−lu ,slu−lu−1

...
...

...
gsk−lu ,slu−lu−1 ,slu−1−lu−2 ,...,1

gsk−lu ,slu−lu−1 ,slu−1−lu−2

...
...

gsk−lu ,slu−lu−1 ,slu−1−lu−2 ,...,sl1−l0

116



Table 24: The replacement of the elements α1,i’s in GF (26) by 1, . . . , 64

Step 1 Step 2 α1,i i
α1,0 1

g1,1 α1,16 2
α1,32 3
α1,48 4
α1,4 5

g1,2 α1,20 6
α1,36 7
α1,52 8
α1,8 9

g1 g1,3 α1,24 10
α1,40 11
α1,56 12
α1,12 13

g1,4 α1,28 14
α1,44 15
α1,60 16
α1,1 17

g2,1 α1,17 18
α1,33 19
α1,49 20
α1,5 21

g2,2 α1,21 22
α1,37 23
α1,53 24
α1,9 25

g2 g2,3 α1,25 26
α1,41 27
α1,57 28
α1,13 29

g2,4 α1,29 30
α1,45 31
α1,61 32
α1,2 33

g3,1 α1,18 34
α1,34 35
α1,50 36
α1,6 37

g3,2 α1,22 38
α1,38 39
α1,54 40
α1,10 41

g3 g3,3 α1,26 42
α1,42 43
α1,58 44
α1,14 45

g3,4 α1,30 46
α1,46 47
α1,62 48
α1,3 49

g4,1 α1,19 50
α1,35 51
α1,51 52
α1,7 53

g4,2 α1,23 54
α1,39 55
α1,55 56
α1,11 57

g4 g4,3 α1,27 58
α1,43 59
α1,59 60
α1,15 61

g4,4 α1,31 62
α1,47 63
α1,63 64
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After the above replacement is done, further replace the sk positions with symbol t in

OA(s2k, sk−lu +1, sk) by a random permutation of (t−1)sk +1, . . . , skt, for all t = 1, . . . , sk.

Denote by A = (aij), i = 1, . . . , sk, j = 1, . . . , sk−lu + 1, the resultant matrix. Suppose that

Xj
i ∼ Unif(0, 1]. Let Dl be the matrix

(
aij−Xj

i

s2k

)
, i = 1, . . . , sk, j = 1, . . . , sk−lu +1. Finally,

for j = 1, . . . , u, select rows of Dl as suggested by step 4 to form Dhj
. For the resultant

Dhj
, j = 1, . . . , u, and Dl, we have the following result.

Theorem 4.3. For k ≥ 2, a prime power s and 0 < l1 < l2 · · · lu < k,

(i) Dhu ⊂ Dhu−1 · · · ⊂ Dh1 ⊂ Dl;

(ii) Dl is an s2k × (sk−lu + 1) OA-lhd with s2k levels;

(iii) Dhj
is an s2(k−lj)×(sk−lu +1) design with s2(k−lj) levels and two-dimensional balance,

for j = 1, . . . , u.

Proof. (i) and (ii) are evident from the construction. (iii) follows from Lemma 4.4.
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APPENDIX A

BAYESIAN HIERARCHICAL MODELING FOR

INTEGRATING LOW-ACCURACY AND

HIGH-ACCURACY EXPERIMENTS

A.1 Proof of (34)

Recall from (33) that

p(θ3|yl,yh) ∝
∫

θ1,θ2

p(θ3)p(θ2)p(θ1|θ2)p(yl,yh|θ1,θ2,θ3)dθ1dθ2. (A1)

Perform the integration in (A1) in the following two steps:

1. Integrate out βl, ρ0 and δ0;

2. Integrate out σ2
l and σ2

ρ.

After perform the two steps, (A1) can be simplified to an integral involving τ1 and τ2 only.

Step 1: Integrate out βl, ρ0 and δ0.

Perform the integration∫
βl,ρ0,δ0

p(θ3)p(θ2)p(θ1|θ2)p(yl,yh|θ1,θ2,θ3)dβldρ0dδ0

= p(θ3)p(θ2)
∫

βl,ρ0,δ0

p(θ1|θ2)p(yl,yh|θ1,θ2,θ3)dβldρ0dδ0

(A2)

by integrating out βl, ρ0 and δ0 one by one.
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(a) Integrate out βl.∫
βl

p(θ1|θ2)p(yl,yh|θ1,θ2,θ3)dβl

=
∫

βl

(σ2
l )
−n+k+1

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |RlM|−

1
2 exp{−(ρ0 − uρ)2

2vρσ2
ρ

− (δ0 − uδ)2

2vδτ1σ2
ρ

}

· exp{−(yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

}

· exp{− 1
2σ2

l

[
(βl − ul)t(βl − ul)

vl
+ (yl − Flβl)

tR−1
l (yl − Flβl)]}dβl,

= (σ2
l )
−n+k+1

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |RlM|−

1
2 exp{−(ρ0 − uρ)2

2vρσ2
ρ

− (δ0 − uδ)2

2vδτ1σ2
ρ

}

· exp{−(yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

}

·
∫

βl

exp{− 1
2σ2

l

(βt
la1βl + βt

lb1 + c1)}dβl,

where a1 = vl
−1I(k+1)×(k+1) + Ft

lR
−1
l Fl,b1 = −2v−1

l ul − 2Ft
lR

−1
l yl and

c1 = vl
−1(ut

lul) + yt
lR

−1
l yl

∝ (σ2
l )
−n

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(ρ0 − uρ)2

2vρσ2
ρ

− (δ0 − uδ)2

2vδτ1σ2
ρ

}

· exp{−(yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}.

(A3)
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(b) Integrate out ρ0.∫
ρ0

(σ2
l )
−n

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(ρ0 − uρ)2

2vρσ2
ρ

− (δ0 − uδ)2

2vδτ1σ2
ρ

}

· exp{−(yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}dρ0

= (σ2
l )
−n

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(δ0 − uδ)2

2vδτ1σ2
ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}

·
∫

ρ0

exp{−(ρ0 − uρ)2

2vρσ2
ρ

− (yh − ρ0yl1 − δ01n1)
tM−1(yh − ρ0yl1 − δ01n1)
2σ2

ρ

}dρ0,

= (σ2
l )
−n

2 (σ2
ρ)
−n1+2

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(δ0 − uδ)2

2vδτ1σ2
ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}

·
∫

ρ0

exp{−a2ρ
2
0 + b2ρ0 + c2

2σ2
ρ

}dρ0,

where a2 = vρ
−1 + yt

l1M
−1yl1 , b2 = −2uρvρ

−1 − 2yt
l1M

−1(yh − δ01n1) and

c2 = u2
ρvρ

−1 + (yh − δ01n1)
tM−1(yh − δ01n1)

∝ (a2)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1+1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(δ0 − uδ)2

2vδτ1σ2
ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}

· exp{− t1δ
2
0 + t2δ0 + t3

2a2σ2
ρ

}, (A4)

where t1 = (vρ
−1+yt

l1
M−1yl1)(1

t
n1

M−11n1)−(yt
l1
M−11n1)

2, t2 = −2[(vρ
−1+yt

l1
M−1yl1)(1

t
n1

M−1yh)−

(uρvρ
−1 + yt

l1
M−1yh)(yt

l1
M−11n1)] and

t3 = (vρ
−1 + yt

l1M
−1yl1)(u

2
ρvρ

−1 + yt
hM

−1yh)− (uρvρ
−1 + yt

l1M
−1yh)2.
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(c) Integrate out δ0.∫
δ0

(a2)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1+1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−(δ0 − uδ)2

2vδτ1σ2
ρ

− 4c1 − bt
1a

−1
1 b1

8σ2
l

}

· exp{− t1δ
2
0 + t2δ0 + t3

2a2σ2
l

}dδ0

= (a2)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1+1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−4c1 − bt

1a
−1
1 b1

8σ2
l

}

·
∫

δ0

exp{−(δ0 − uδ)2

2vδτ1σ2
ρ

− t1δ
2
0 + t2δ0 + t3

2a2σ2
l

}dδ0,

= (a2)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1+1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−4c1 − bt

1a
−1
1 b1

8σ2
l

}

·
∫

δ0

exp{−a3δ
2
0 + b3δ0 + c3

2σ2
ρ

}dδ0,

where a3 = (vδτ1)−1 + t1a2
−1, b3 = −2uδ(vδτ1)−1 + t2a2

−1 and

c3 = u2
δ(vδτ1)−1 + t3a2

−1

∝ (a2a3)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−4c1 − bt

1a
−1
1 b1

8σ2
l

− 4a3c3 − b2
3

8σ2
ρa3

}.

(A5)

Step 2: Integrate out σ2
l and σ2

ρ.∫
σ2

l ,σ2
ρ

p(θ2)(a2a3)−
1
2 (σ2

l )
−n

2 (σ2
ρ)
−n1

2 τ
− 1

2
1 |a1RlM|−

1
2 exp{−4c1 − bt

1a
−1
1 b1

8σ2
l

− 4a3c3 − b2
3

8σ2
ρa3

}dσ2
l dσ2

ρ

∝ τ
−(αδ+ 3

2
)

1 τ
−(αε+1)
2 |a1RlM|−

1
2 (a2a3)−

1
2

·
∫

σ2
l

(σ2
l )
−(αl+

n
2
+1) exp{−

γl + 4c1−bt
1a
−1
1 b1

8

σ2
l

}dσ2
l

·
∫

σ2
ρ

(σ2
ρ)
−(αρ+αδ+αε+

n1
2

+1) exp{−
γρ + γδ

τ1
+ γε

τ2
+ 4a3c3−b23

8a3

σ2
ρ

}dσ2
ρ,

∝ τ
−(αδ+ 3

2
)

1 τ
−(αε+1)
2 |a1RlM|−

1
2 (a2a3)−

1
2 (γl +

4c1 − bt
1a

−1
1 b1

8
)−(αl+

n
2
)

·(γρ +
γδ

τ1
+

γε

τ2
+

4a3c3 − b2
3

8a3
)−(αρ+αδ+αε+

n1
2

). (A6)

Therefore, (A1) is proportional to

p(θ3)
∫

τ1,τ2

τ
−(αδ+ 3

2
)

1 τ
−(αε+1)
2 |a1RlM|−

1
2 (a2a3)−

1
2 (γl +

4c1 − bt
1a

−1
1 b1

8
)−(αl+

n
2
)

·(γρ +
γδ

τ1
+

γε

τ2
+

4a3c3 − b2
3

8a3
)−(αρ+αδ+αε+

n1
2

)dτ1dτ2. (A7)
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