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SUMMARY

The purpose of this thesis is to study algorithmic questions that arise in the context

of game theory and microeconomics. In particular, we investigate the computational com-

plexity of various economic solution concepts by using and advancing methodologies from

the fields of combinatorial optimization and approximation algorithms.

We first study the problem of allocating a set of indivisible goods to a set of agents,

who express preferences over combinations of items through their utility functions. Several

objectives have been considered in the economic literature in different contexts. In fair

division theory, a desirable outcome is to minimize the envy or the envy-ratio between any

pair of players. We use tools from the theory of linear and integer programming as well

as combinatorics to derive new approximation algorithms and hardness results for various

types of utility functions. A different objective that has been considered in the context

of auctions, is to find an allocation that maximizes the social welfare, i.e., the total utility

derived by the agents. We construct PCP-based reductions from multi-prover proof systems

to obtain hardness results, given standard assumptions for the utility functions of the agents.

We then consider equilibrium concepts in games. We derive the first subexponential

algorithm for computing approximate Nash equilibria in 2-player noncooperative games. We

extend our result to multi-player games and we further propose a second algorithm based

on solving polynomial equations over the reals. Both algorithms improve the previously

known upper bounds on the complexity of the problem.

Finally, we study game theoretic models that have been proposed recently to address

incentive issues in Internet routing. We obtain a polynomial time algorithm for computing

equilibria in such games, i.e., routing schemes and payoff allocations from which no subset

of agents has an incentive to deviate. Our algorithm is based on linear programming duality

theory. We also obtain generalizations when the agents have nonlinear utility functions.

vii



CHAPTER I

INTRODUCTION

The interaction of economic agents has become a fundamental paradigm in computer science

applications. The expansion of the Internet and the world wide web have led to numerous

examples including electronic commerce (e.g. web auctions), Internet routing, network

design and other related problems on multi-agent systems. It is therefore natural that the

modern theory of algorithms should adopt game theoretic models to analyze applications

as above.

Game theory and economics have been rich in providing models and solution concepts

as well as in prescribing strategies for rational agents. However, the outcomes proposed by

the economic theory often involve optimization problems with no known efficient solutions.

Resolving such complexity questions is a challenge for the evolving field of algorithmic game

theory and requires a combination of methodologies from computer science and economics.

The purpose of this thesis is to study algorithmic aspects of game theory and microe-

conomics. In particular, we investigate the computational complexity of various economic

solution concepts. We have chosen representative problems from different areas of eco-

nomics such as fair division, auction design and computation of equilibria in games and

in many cases, we develop approximation algorithms or provide inapproximability results.

Some of the main tools used include combinatorial methods, theory of linear and integer

programming, and probabilistic techniques. Below we briefly describe the problems that we

consider along with our contribution and the methodologies used.

1.1 Problems studied - Techniques and Contributions

In the second chapter, we study fair division questions from an algorithmic perspective. Fair

division is a central topic in economic theory with numerous applications in everyday life.

Ever since the first attempt for a mathematical treatment of the topic by Steinahus, Banach
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and Knaster [98], a vast literature on cake-cutting algorithms and allocations of divisible

goods has emerged (see among others [15] and [87]). In the case of indivisible goods however,

different techniques are required and very few algorithmic results are known. We (jointly

with R. Lipton, E. Mossel and A. Saberi) study the problem of allocating a set of indivisible

goods to a set of agents who express preferences over combinations of items through their

utility functions. Our fairness criterion is to minimize the envy among the agents. We derive

approximation algorithms and hardness results for various types of utility functions. In the

case of identical and additive utilities, we use techniques from the theory of linear and integer

programming as well as combinatorial tools to obtain a polynomial time approximation

scheme. In the case of non-additive utilities, we use information theoretic arguments to show

(unconditionally) that an exponential amount of communication is required to compute the

optimal solution. We also show that our results hold for other allocation models in which

we have a combination of divisible and indivisible goods (e.g. in partitioning measurable

spaces with atoms [22]).

In the third chapter we study optimization problems that arise in the design of com-

binatorial auction protocols. Lately, a large volume of transactions is conducted through

auctions including, among others, selling spectrum licenses, treasury bills and even flowers

in Dutch auctions. In a combinatorial auction, a set of indivisible goods is to be sold to a

set of agents. The most desirable outcome from an economic point of view is to pick the

allocation that maximizes the social welfare, i.e., the total utility derived by the agents.

We (jointly with S. Khot, R. Lipton and A. Mehta) derive inapproximability results when

the agents have submodular utility functions. Submodularity can be seen as the discrete

analog of concavity and is a natural property in many economic settings since it expresses

the fact that an agent’s utility gets saturated as we allocate more goods to him. We show

that the problem is not approximable with a factor better than 1 − 1/e, unless P= NP.

Our result is based on the PCP theorem and on constructing reductions from multi-prover

proof systems for MAX-3-COLORING.

In the fourth chapter we investigate the complexity of computing Nash equilibria in

noncooperative games. Noncooperative game theory has been extensively used to analyze

2



interactions among selfish players. The dominant concept of rationality in noncooperative

games is the Nash equilibrium, a behavior from which no player has an incentive to deviate

(unilaterally). Polynomial time algorithms for equilibria however are still elusive and there

is a need to develop an algorithmic theory of equilibria. Rationality properties of a solution

do not suffice if computing an equilibrium is an intractable problem. People in practice tend

to follow strategies that are simple and easy to compute, therefore complexity issues should

be taken into consideration. We obtain the currently best upper bounds for computing

approximate Nash equilibria. In particular, we (jointly with R. Lipton and A. Mehta)

derive the first subexponential algorithm for 2-player and constant-player games, by using

probabilistic techniques. We also identify cases where exact equilibria are polynomial time

computable such as games with low rank payoff matrices. In a subsequent work, we (jointly

with R. Lipton) provide another algorithm for multi-player games, based on results for

finding solutions of polynomial equations. The second algorithm improves the dependence

on the degree of approximation and the number of players at the expense of raising the

dependence on the number of strategies.

Finally, in the fifth chapter, we study a game theoretic model for addressing incen-

tive issues in Internet routing. The Internet is composed of many administrative domains

(Autonomous Systems, ASes) each of which can be seen as an agent trying to route its

customers’ traffic and maximize its own benefit. As an attempt to model the interaction of

these entities, Papadimitriou [82] proposed the following cooperative game: Given a multi-

commodity flow satisfying capacity and demand constraints, the total payoff derived is the

amount of flow routed (or more generally a function of the flow routed). An outcome of

the game is a feasible multicommodity flow along with an allocation of the total payoff to

the players. The dominant solution concept in cooperative games is the notion of the core,

which consists of outcomes that are stable against deviations from any subset of agents. We

(jointly with A. Saberi) show that under this model, the core is nonempty, i.e., there exists

a routing scheme of the demand traffic and an allocation of the total payoff such that no

subset of ASes has an incentive to secede from the scheme. We further obtain a polynomial

3



time algorithm to compute such an outcome. Our algorithm is based on an economic inter-

pretation of the dual variables of the multicommodity flow linear program and the payoff

allocation is obtained by solving the dual program. We also extend our result to the case

where the payoff is a concave function of the routed flow.
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CHAPTER II

FAIR DIVISION

2.1 Introduction

Fair division is a central topic in economic theory with numerous applications in everyday

life. The first attempt for a mathematical treatment of the problem was made by the Polish

school of mathematicians (Steinhaus, Banach, and Knaster [98]) and was the source of many

interesting questions. Over the past fifty years, a vast literature has emerged (see [15, 87]

for a summary of related results) and several notions of fairness have been suggested.

The fairness criterion that we focus on is the amount of envy between any pair of players.

An allocation is envy-free if and only if every player likes his own share at least as much as

the share of any other player. The class of envy-free allocations as a solution concept was

introduced by Foley [36] and Varian [101] and has been studied extensively since then in

the economic literature [87, 15]. However, in most of the models considered so far, either

all goods are divisible or there is at least one divisible good, e.g. money, so that players

can compensate each other and achieve envy-freeness [1, 100]. We believe that indivisibility

issues should be taken into consideration.

We study the problem of allocating m indivisible goods to a set of n players in a fair

manner. When goods are indivisible, an envy-free allocation may not exist and we wish to

find allocations with upper bounds on the envy. In our model, each player p has a certain

utility value vp(S) for each subset S of the goods. Given an allocation of the goods to the

players, a player p envies player q if her valuation for the bundle given to player q is more

than her valuation for her own bundle. In that case, her envy is the difference.

2.1.1 Our Results

We first show that there always exists an allocation with maximum envy at most α, where

α is the maximum marginal utility of the goods, i.e., the value by which the utility of a
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player is increased when one more good is added to her bundle. Assuming that we have

oracle access to the players’ utilities, we give an O(mn3) time algorithm for producing a

desired allocation. The problem of finding allocations with bounded envy in the presence of

indivisible goods was introduced in [22] and a bound of O(αn3/2) was obtained. Our bound

is a substantial improvement and it is also tight.

We then look at the optimization problem of computing allocations with minimum

possible envy. We show that in most cases the problem is hard. First, using a similar

argument as in [77], we show that any algorithm needs exponential time to obtain enough

information about the valuations of players even if the valuations are provided via an oracle.

We then look at the special case of additive utilities, i.e., vp(S) =
∑

i∈S vp({i}). Even in

this case we prove that for any constant c, there can be no 2mc
-approximation algorithm

for the minimum envy problem, unless P = NP.

We believe that a more suitable objective function is the maximum envy-ratio. The

envy-ratio of player p for player q is the utility of p for q’s bundle over her utility for her

own bundle. If all players have the same utility function, the problem is closely related to a

class of scheduling problems on identical processors. If we think of the players as identical

machines and the set of goods as a set of jobs, then our problem is equivalent to scheduling

the jobs so as to minimize the ratio of the maximum completion time over the minimum

completion time. In [17] it is shown that Graham’s greedy algorithm [40] achieves an

approximation factor of 1.4 for the envy-ratio problem. We improve this result and derive

a polynomial time approximation scheme.

Finally the issue of incentive compatibility is addressed. We prove that any algorithm

that produces an allocation with minimum envy cannot be truthful. We also show that

randomly allocating the goods to the players results in an allocation with envy at most

O(
√
α n1/2+ε) with high probability.

2.2 Model, Definitions and Notation

Let N = {1, 2, ..., n} be a set of players and M = {1, 2, ..., m} be a set of indivisible

goods. A utility function vp is associated with each player p. For S ⊆ M , vp(S) is the
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happiness player p derives if she obtains the subset S. We assume that vp is non-negative

and monotone i.e. vp(S) ≤ vp(T ) for every S ⊆ T and every p.

An allocation A is a partition of the goods A = (A1, A2, ..., An) where ∪n
p=1Ap = M

and Ap ∩ Aq = ∅ for all p 6= q. The subset Ap denotes the set of goods allocated to player

p. Note that some of the sets Ap may be empty. A partial allocation will be a partition of

some subset of M .

Given an allocation A = (A1, A2, . . . , An), we say that player p envies player q if she

prefers the bundle allocated to q to her own i.e. vp(Ap) < vp(Aq). We will denote by epq

the envy of p for q:

epq(A) = max{0, vp(Aq)− vp(Ap)}.

We define e(A) to be the maximum envy between any pair of players.

e(A) = max{epq(A), p, q ∈ N}.

We will often omit the parameter A in the notation.

2.3 Existence of Allocations with Bounded Maximum Envy

A natural question is whether there exist allocations with bounded envy. We obtain a

bound on the envy in terms of the maximum marginal utility of the goods. The marginal

utility of a good i with respect to a player p and a subset of goods S, is the amount by

which it increases the utility of p, when added to S, i.e., vp(S∪{i})−vp(S). The maximum

marginal utility is:

α = max
S,p,i

vp(S ∪ {i})− vp(S)

In addition to proving a bound on the envy, we present an efficient algorithm that

computes a desired allocation. For that, we assume that the algorithm can ask an oracle

for the utility of a player p for any subset S.

Theorem 1 For any set of goods and any set of players, there exists an allocation A such

that the maximum envy of A is bounded by the maximum marginal utility of the goods, α.
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Furthermore, given oracle access for the utility functions of the players, there is an O(mn3)

time algorithm for finding such an allocation.

Given an allocation A, we define the envy graph of A as follows: every node of the graph

represents a player and there is a directed edge from p to q if and only if p envies q. The

proof of Theorem 1 is based on the following Lemma:

Lemma 2 For any partial allocation A with envy graph G, we can find another partial

allocation B with envy graph H such that:

• e(B) ≤ e(A),

• H is acyclic.

Proof :

If G has no directed cycles, we are done. Suppose that C = p1 → p2 → · · · → pr → p1 is

a directed cycle inG. If A = {A1, ..., An}, we can obtain A′ = (A′1, ...A
′
n) by re-allocating the

goods as follows: A′p = Ap for all p /∈ {p1, . . . , pr}, andA′p1
= Ap2 , A

′
p2

= Ap3 , . . . , A
′
pr

= Ap1 .

Note that all players evaluate what they have in A′ at least as much as what they have

in A. Therefore it is easy to see that e(A′) ≤ e(A).

We can also show that the number of edges in the envy graph G′ corresponding to A′

has decreased. To see this, first note that the set of the edges between pairs of vertices in

N \ C has not changed. Also every edge of the form p → pj for p ∈ N \ C and pj ∈ C

has now become the edge p → pj−1 (or p → pr if j = 1) in G′ and no more edges of this

form have been added. The number of edges of the form pj → p has either decreased or

remained the same since players in C are strictly happier. Finally for pi ∈ C the number

of edges from pi to vertices in C has decreased by at least 1.

Thus by repeatedly removing cycles using the above procedure, we will obtain an allo-

cation B with corresponding envy graph H such that e(B) ≤ e(A) and H is acyclic. Since

the number of edges decreases at every step, the process will terminate. 2

Proof of Theorem 1 : We give an algorithm that produces the desired allocation. The

algorithm proceeds in m rounds. At each round one more good is allocated to some player.
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In the first round, we allocate good 1 to some player arbitrarily. Clearly the maximum

envy is at most α. Suppose at the end of round i, the goods {1, ..., i} have been allocated

to the players and the maximum envy is at most α. At round i + 1, we construct the

envy graph corresponding to the current allocation. We use the procedure of Lemma 2 to

obtain an allocation A in which the maximum envy is at most α and the new envy graph

G is acyclic. Since G is acyclic, there is a player p ∈ N with in-degree 0, which implies

that nobody envies p. We then allocate good i + 1 to p. Let B = (B1, ..., Bn) be the new

allocation. For any 2 players q, r with q, r 6= p, eqr(B) = eqr(A) ≤ α. For q ∈ N \ {p}, since

eqp(A) = 0 we have:

eqp(B) = max{0, vq(Ap ∪ {i})− vq(Aq)}

≤ max{0, α+ vq(Ap)− vq(Aq)} ≤ α

The analysis for the running time of the algorithm is straightforward. In Lemma 2, we

keep removing cycles until the envy-graph is acyclic. Finding a cycle and removing it takes

at most O(n2) time and it decreases the number of edges by at least one. Initially the envy

graph has no edges. Allocating a good at any round adds at most n − 1 edges to the new

envy graph. Since every cycle removal decreases the number of edges, the number of times

we have to remove a cycle is at most O(nm) and the total running time is O(mn3). 2

In [22], a similar model has been defined with the difference that the utility function

of every player is additive and we have a combination of divisible and indivisible goods.

More formally, in [22] the problem is to partition a measurable space (Ω,F). Each player

has a utility function which is a probability measure vp on (Ω,F) such that for each vp

the maximum value of an atom is α. A subset S ⊆ Ω is an atom for vp if vp(S) > 0 and

∀E ⊂ S, either vp(E) = 0 or vp(E) = vp(S). It is shown that there exist allocations with

envy at most O(αn3/2).

We can prove that our result also holds for their model and hence it improves the bound

of O(αn3/2) to α. The idea is that we can partition Ω into indivisible goods of value at

most α and then apply Theorem 1. In particular, we use the following Lemma:
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Theorem 3 When the utilities of the players are probability measures on (Ω,F) = ([0, 1],

Borel sets) with atoms of value at most α, there exists a partition A = (A1, ..., An) of Ω

such that e(A) ≤ α.

Proof : Since each measure vp has atoms of value at most α, this means that for every

x ∈ [0, 1], vp({x}) ≤ α. The case α = 0 corresponds to an infinitely divisible cake and an

envy-free allocation always exists [22]. For α > 0 we can reduce the problem to allocating

indivisible goods of value at most α and then use Theorem 1.

Lemma 4 The interval [0, 1] can be partitioned in m disjoint sets S1, ..., Sm such that

m = O(n/α) and vp(Sj) ≤ α for every p = 1, ..., n, j = 1, ...,m

Proof : Find the minimum possible value for x ∈ [0, 1] such that vp([0, x]) ≤ α for every

player p. Such an x exists since atoms have value at most α. Set S1 = [0, x] and consider

the interval (x, 1]. Again find the minimum value of y ∈ (x, 1] such that vp((x, y]) ≤ α for

every p. Set S2 = (x, y]. We can continue in the same manner until we partition the whole

interval [0, 1]. It is easy to check that the number of disjoint intervals S1, S2, ..., Sm of the

partition will be O(n/α). 2

We can now treat the intervals S1, ..., Sm produced in the previous Lemma as indivisible

goods and Theorem 1 will complete the proof. 2

2.4 Minimizing Envy as an Optimization Problem

Although we can produce an allocation with bounded envy, in many instances the maxi-

mum envy can be smaller than α. Therefore we would like to look at the following two

optimization problems:

Problem 1: Minimum envy

Compute an allocation A that minimizes the envy

max
p,q

{0, vp(Aq)− vp(Ap)}

10



Problem 2: Minimum envy-ratio

Compute an allocation A that minimizes the envy-ratio

max
p,q

{1, vp(Aq)
vp(Ap)

}

As we will see it is not always possible to have a polynomial time algorithm for computing

an optimal solution, hence we will also be interested in obtaining approximation algorithms.

Given a minimization problem Π, we say that an algorithm has an approximation factor of

ρ for Π, if for any instance I of Π, the algorithm outputs a solution which is guaranteed to

be at most ρ OPT (I), where OPT (I) is the optimal solution. We will say that an algorithm

is a Polynomial Time Approximation Scheme (PTAS) if for any instance I and any error

parameter ε > 0, the algorithm runs in time polynomial in the input size and outputs a

solution which is at most (1 + ε)OPT (I). If in addition the running time is polynomial

in 1/ε then we say that the algorithm is a Fully Polynomial Time Approximation Scheme

(FPTAS).

In the following theorem we show that any algorithm needs an exponential number of

queries in the worst case to produce an optimal solution. Our construction is similar to

Nisan and Segal [77].

Theorem 5 Any (deterministic) algorithm that computes an allocation with minimum envy

or minimum envy-ratio requires a number of queries which is exponential in the number of

goods in the worst case.

Proof : We give an outline of the proof. Suppose m = 2k. We consider the following

class of utility functions F . A function v is in F if:

v(S) = 0 for all S with |S| < k.

v(S) = 1 for all S with |S| > k.

v(S) = 1− v(S̄) for all |S| = k

Now, consider instances (v, v) in which there are two players with the same utility

function v for some v ∈ F . The number of such instances is doubly exponential in k. Since
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the algorithm asks only a polynomial number of queries, it can produce only an exponential

number of different query sequences. Therefore, there exist two different functions u, v ∈ F

such that the query sequences corresponding to the instances defined by u and v are the

same.

Consider the instances (u, v) and (v, u). The algorithm will produce the same query

sequences for both instances and therefore it will produce the same allocation for (u, v) and

(v, u). It is easy to see that although for either case, there exists an allocation which is

envy-free, there is no single allocation that is envy-free for both instances. 2

We would like to note that an interesting fact about Theorem 5 is that it is unconditional,

i.e., not dependent on any complexity theory assumption.

2.4.1 Additive Utilities

We consider a natural special case of the problem in which the utility functions of all

players are additive i.e. for all p ∈ N , vp(S) =
∑

i∈S vp({i}). In that case, an instance of

the problem is specified by an n×m matrix V = (vp,i).

2.4.1.1 The minimum envy problem

Still, the problem of finding a minimum-envy allocation is NP-hard, even when the number

of players is two. This follows from the fact that for two players with the same utility

functions, deciding whether an envy-free allocation exists is equivalent to deciding if there

exists a partition of a set of positive integers in two subsets of equal sum, which is NP-

complete [102].

Since the objective function of the minimum envy problem can be zero and since deciding

whether the minimum envy is zero is NP-complete, we cannot have any polynomial time

approximation algorithm, unless P = NP. One way to remedy this is to add 1 (or some

positive constant) to our objective function. In that case, Theorem 1 guarantees a (1 +α)-

approximation algorithm, where α = max vp,i. Even in this case though, strong hardness

results can be obtained. We can show that for any constant c, there is no 2mc
-approximation

algorithm, unless P = NP. The proof is along the same lines as the inapproximability result

for the problem Subset-Sums Difference in [10] and we omit it.
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2.4.1.2 The minimum envy-ratio problem

We believe that a more suitable objective function is the envy-ratio. In the rest of this

section, we study the envy-ratio problem in the case where the players have the same utility

function. We will denote the utility that players derive from having good i by v(i).

This special case is closely related to a class of scheduling problems on identical proces-

sors. We can think of the set of players as a set of identical machines and the set of goods as

a set of m jobs to be scheduled on the machines. Every job has a positive processing time

and the load of every processor is the sum of the processing times of the jobs assigned to

it. Several objective functions have been considered such as minimizing the maximum com-

pletion time (makespan) [40, 44] or maximizing the minimum completion time [27, 106, 2].

Our problem is equivalent to minimizing the ratio of the maximum completion time over

the minimum completion time.

The following greedy algorithm was proposed by Graham for the minimum makespan

problem [40]: Sort the goods in decreasing order of their values and allocate them one

by one in that order. At every step, allocate the next good to the player whose current

bundle has the least value. In [17] it was proved (in the context of scheduling) that the

approximation factor of Graham’s algorithm is 1.4 for the ratio problem.

Theorem 6 [17] Graham’s algorithm achieves an approximation factor of 1.4 for the envy-

ratio problem.

In the next Theorem, we improve this result and show that we can achieve any constant

factor arbitrarily close to 1 for the envy-ratio problem.

Theorem 7 There is a PTAS for the envy-ratio problem when all players have the same

utility for each good.

Proof : Before going into the details of the proof we give a brief outline of the technique.

Our algorithm is similar to [2] and [106]. However our objective function does not fit in

their framework. The algorithm is as follows: Given our original instance, we round the

utility of each good to obtain a coarser instance in which there is a constant number of
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distinct utilities, i.e., a constant number of different types of goods. We then show that in

the new instance, we can find an optimal solution by searching, for every player, among

a constant number of distinct assignments of goods. The constant will be exponential in

the approximation parameter 1/ε. This observation enables us to compute the optimal

solution in the rounded instance by solving a series of integer programs with a constant

number of variables using Lenstra’s algorithm [64]. After finding an optimal allocation in

the rounded instance, we will convert it into an allocation for the original instance. In

the whole process, there are 2 sources of error: computing the rounded instance from the

original one and transforming the optimal allocation of the rounded instance to an allocation

of the original instance. We are able to bound the error by 1 + ε.

Let I be an instance of the problem, with n players, m goods and utility v(i) for good

i. If m < n then the optimal envy-ratio is ∞ and any allocation is optimal. Hence we can

assume without loss of generality that m ≥ n. We start with some basic facts about the

optimal solution.

Let L be the average utility of the players,

L =
1
n

∑
i∈M

v(i)

If all the goods were divisible, we could allocate a fraction of 1/n from each good to a player

and everybody would receive a utility of exactly L.

We briefly sketch how to handle goods with utility greater than L. Suppose there exists

a good i with v(i) ≥ L. If i is assigned to a player p in an optimal allocation, then there

is an allocation with the same or less envy-ratio in which i is the only good allocated to p.

To see this, suppose that player p receives good i and some other good, say j in an optimal

solution. Let q be the person with minimum utility and bundle Smin. Then v(Smin) < L

and by giving good j to q, it is easy to see that the ratio does not increase, and hence the

new solution is also optimal. Therefore goods with high utility can be assigned to players

until we are left with goods that satisfy v(i) < L. This does not mean that if we have a

PTAS for the case when v(i) < L for all i, we can derive a PTAS for the general problem,

as is the case in [2]. Instead we will have to round ”big” goods appropriately so that in
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the rounded instance their utility is also higher than the corresponding average utility, L.

We will then output an optimal solution for the rounded instance in which such goods are

assigned to players with no other good in their bundle. We omit the details for handling

goods with v(i) ≥ L and from now on we will assume that v(i) < L for every i. We have

the following fact:

Claim 8 If v(i) < L for every good i, then there exists an optimal allocation A = (A1, ..., An)

such that 1
2L < v(Ai) < 2L.

The proof is by showing that in a given optimal solution, it is possible to reallocate the

goods so that the envy-ratio does not increase and the conditions of the claim are satisfied.

We will now describe how to round the values of the goods and obtain an instance in

which there is only a constant number of different types of goods (i.e. a constant number

of distinct values for the goods). The construction is the same as in [2].

We will denote the rounded instance by IR(λ), where λ is a positive constant and will

be determined later (λ will be O(1/ε)). We will often omit λ in the notation.

We first round the value of every good with relatively high value. In particular, for

every good i with v(i) > L/λ, we round v(i) to the next integer multiple of L/λ2. Roughly

this means that we round up the first least significant digits of v(i). We cannot afford to

do the same for goods with small value since the error introduced by this process might be

very big. Instead, let S be the sum of the values of the goods with value less than L/λ. We

round S to the next integer multiple of L/λ, say SR. Instance IR(λ) will have SRλ/L new

goods with value L/λ. This completes the construction. Note that in IR(λ) all values are

of the form kL/λ2, where λ ≤ k ≤ λ2. Hence we have only a constant number of distinct

values, since λ is a constant.

Let MR be the set of goods in the new instance and vR(i) be the value of each good.

Let LR = 1
n

∑
j∈MR vR(i). It is easy to see that L ≤ LR and that all values in IR(λ) are

at most LR. Hence by Claim 8 there is an optimal solution AR = (AR
1 , ..., A

R
n ) such that

1
2L

R < v(AR
p ) < 2LR for every p. In the algorithm below we will search for such a solution.

We represent a player’s bundle by a vector t = (tλ, ..., tλ2), where tk is the number of
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goods with value kL/λ2 assigned to her. We will then say that the player is of type t. The

utility derived from t is v(t) =
∑

k tkkL/λ
2. Let U be the set of all possible types t, with

1
2L

R < v(t) < 2LR. It is easy to see that |U | is bounded by a constant which is exponential

in λ. Hence for a player of type t ∈ U , there is only a constant number of distinct values for

her utility. Let V (U) be the set of these values, i.e. V (U) = {u : v(t) = u for some t ∈ U}.

We can now show how to find the optimal envy-ratio in IR(λ). For all pairs of values

u1, u2 ∈ V (U), we will solve the following decision problem: Is there an allocation in which

the utility of every player is between u1 and u2? Since |V (U)| is constant, after solving the

above problem for all u1, u2 we can output the allocation corresponding to u∗1, u
∗
2 for which

the minimum ratio u∗2/u
∗
1 is attained.

To solve the decision problem, we will write an integer program (IP) with a constant

number of variables and use Lenstra’s algorithm [64]. In the following IP, for each t ∈ U we

have an integer variable Xt indicating how many players are of type t. The first constraint

implies that all players will obtain an allocation of type t ∈ U and the second that all goods

are assigned. It is obvious that the decision problem with inputs u1, u2 has a solution iff

the corresponding integer program is feasible. Therefore we can find the optimal solution

of IR(λ) in polynomial time. Note that the actual running time is exponential in λ which

is the reason why we will finally obtain a PTAS and not an FPTAS.

In the following IP, Uu2
u1

is the set of all types t ∈ U such that u1 ≤ v(t) ≤ u2 and nk is

the number of goods in IR(λ) of value kL/λ2.

∑
t∈U

Xt = n∑
t∈U

Xttk = nk ∀k

Xt ≥ 0 ∀Xt with t ∈ Uu2
u1

Xt = 0 ∀Xt with t ∈ U \ Uu2
u1

We need to see how the original instance is related to the rounded instance. The following

Lemma has been proved in [2]:
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Lemma 9 Let A = (A1, ..., An) be an allocation in I, where 1
2L < v(Ai) < 2L. Then there

exists an allocation B = (B1, ..., Bn) in the rounded instance, IR, such that:

v(Ai)−
1
λ
L ≤ v(Bi) ≤

λ+ 1
λ

v(Ai) +
1
λ
L

Also if B = (B1, ..., Bn) is an allocation in IR such that 1
2L

R < v(Bi) < 2LR, then there

exists an allocation A = (A1, ..., An), in I such that:

λ

λ+ 1
v(Bi)−

2
λ
L ≤ v(Ai) ≤ v(Bi) +

1
λ
L

We are now ready to prove our Theorem. Our algorithm will be: Given instance I,

compute the instance IR, find an optimal allocation AR = (AR
1 , ..., A

R
n ) for IR, and then

convert AR to an allocation A = (A1, ..., An) for I using Lemma 9. Output A.

Suppose without loss of generality that v(AR
1 ) ≤ ... ≤ v(AR

n ) and v(A1) ≤ ... ≤ v(An).

Let A∗ = (A∗1, ..., A
∗
n) be an optimal solution to I satisfying the conditions of Claim 8 and

assume v(A∗1) ≤ ... ≤ v(A∗n). We want to show:

v(An)
v(A1)

≤ (1 + ε)
v(A∗n)
v(A∗1

)

By Lemma 9 we know that:

v(An) ≤ v(AR
n ) +

1
λ
L ≤ v(AR

n ) =
1
λ
LR ≤ v(AR

n )(1 +
2
λ

)

Similar calculations yield: v(A1) ≥ v(AR
1 )( λ

λ+1 −
4
λ). Therefore:

v(An)
v(A1)

≤ v(AR
n )

v(AR
1 )

(
1 + 2

λ
λ

λ+1 −
4
λ

)

We need to relate the optimal solution in IR with the optimal solution in I. By using

the first part of Lemma 9 and by performing similar calculations we have that there exists

an allocation A′ = (A′1, ..., A
′
n) in IR such that:

v(A′n)
v(A′1)

≤ v(A∗n)
v(A∗1)

(
λ+1

λ + 2
λ

1− 2
λ

)

Since AR is an optimal solution in IR the ratio in A′ will be at least as big as in AR.

Hence by combining the above equations we finally have:

v(An)
v(A1)

≤ v(A∗n)
v(A∗1)

(
1 + 2

λ
λ

λ+1 −
4
λ

)(
λ+1

λ + 2
λ

1− 2
λ

)

≤ (λ+ 1)(λ+ 2)(λ+ 3)
(λ− 2)(λ2 − 4λ− 4)

OPT
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Thus, if we set λ = 56/ε, it is easy to see that the factor will be at most 1 + ε.

2

2.5 Truthfulness

So far we have assumed that we can obtain the actual utilities of the players for the goods.

However, in many situations this is private information and the players may have incentives

to lie about their valuations in order to obtain a better bundle. We would like to investigate

the question of whether we can have mechanisms that elicit the true valuations from the

players and also produce allocations with minimum or bounded envy. A mechanism is

truthful if for every player, her profit is maximized by declaring her true utility, i.e., being

truthful is a dominant strategy.

Truthful mechanisms have been the subject of research especially in the context of

auctions. However, unlike our problem, auction mechanisms are allowed to compensate the

players with money to ensure truthfulness.

We present a simple argument to prove that any mechanism that computes a minimum-

envy allocation cannot be truthful even in the special case where the utility functions are

additive.

Theorem 10 Any mechanism that returns an allocation with minimum possible envy is

not truthful.

Proof : LetM be a mechanism that outputs an allocation with minimum envy. Consider

the following instance: We have two players, 1 and 2 and k+2 goods. In particular we have

good a, good b and k eggs. Let’s say k = 100. The k eggs are playing the role of an almost

divisible good of value 0.2. Suppose the players have the following utilities for the goods:

v1(a) = 0.45, v1(b) = 0.35, v1(egg) = 0.2/k,

v2(a) = 0.35, v2(b) = 0.45, v2(egg) = 0.2/k

The specific instance admits an envy-free allocation: give to player 1 good a and 25 eggs

and give the rest to player 2. Therefore in the allocation that M will output there will be

18



no envy. Let A be the partition that M outputs for this instance. Note that in A each

player receives exactly one of the goods a, b because if one player received both then the

other player would envy her. Also we note that it is Player 1 who receives a. To see this,

suppose on the contrary that player 1 receives b. Then in order for A to be envy-free player

1 should receive at least 75 eggs (otherwise the bundle S of player 1 is worth less than 1/2

and she will be envious). But then player 2 will receive a and at most 25 eggs so she will

be envious, a contradiction. Therefore in A player 1 receives a and T eggs and player 2

receives b and k − T eggs. It is also easy to see that 25 ≤ T ≤ 75.

Case 1: T < 74

In this case player 1 can increase her utility by lying and declaring that good a has less

value for her. It is possible for her to lie in such a way to force the mechanism to give her

the good a and at least T + 1 eggs (assuming that 2 does not change her declaration). She

can declare that her valuation function is: v1(a) = 0.45−δ, v1(b) = 0.35+δ, v1(egg) = 0.2/k

where δ is such that:

0.45− δ + (T + 1)0.2/k = 1/2

Notice that under this new declaration, there still exists an envy-free outcome. Let A′ be

the new output of M. Again player 1 will receive a. This is true because if player 1 receives

b then she has to receive at least k − T − 1 eggs so that she is not jealous. But then player

2 will receive good a and at most T + 1 ≤ 74 eggs which in total is worth less than 1/2.

Hence player 1 will get a and at least T + 1 eggs (otherwise her bundle is worth less than

1/2) which is more than what she gets if she is honest.

Case 2: T ≥ 74

Now it is player 2 who can try to cheat. By misreporting her utilities in a similar manner

as in Case 1, she can obtain a higher utility than before. 2

In the rest of the section, we present a simple truthful mechanism which allocates the

goods to the players uniformly at random. We assume that the sum of the utilities of each

player over all goods is one. We will show that with high probability the maximum envy of

the resulting allocation is no more than O(
√
αn1/2+ε).
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Theorem 11 Suppose that vp,j ≤ α ∀p ∈ N, j ∈ M . Then for every ε > 0, and for large

enough n, there exists a truthful algorithm such that with high probability the allocation

output by the algorithm has maximum envy at most O(
√
α n1/2+ε).

Proof : The proof is based on the probabilistic method. Allocate each good indepen-

dently to player p with probability 1/n. Clearly this is a truthful mechanism. We will

show that with high probability, the allocation produced satisfies the desired bound. Fix

two players p, q. Given p and q we define a random variable Yj indicating the contribution

of good j to the envy of player p for q. The variable Yj is equal to 1, if good j is allo-

cated to player q, -1, if it is allocated to player p, and 0 otherwise. Hence: Yj = 1 with

probability 1/n, −1 w.p. 1/n and 0 w.p. (n − 2)/n. We now define the random variable:

fpq =
∑

j vp,jYj . Clearly the envy of p for q is epq = max{0, fpq}. We will show that with

high probability, for every p, q, fpq ≤ O(
√
α n1/2+ε) and this will complete the proof.

The expectation of fpq is:

E[fpq] =
∑

j

E[Yj ]vp,j = 0

To compute the variance, note that the variables {Yj} are independent. Thus:

V ar[fpq] =
∑

j

v2
p,jV ar[Yj ] =

2
n

∑
j

v2
p,j ≤

2α
n

∑
j

vp,j =
2α
n

By using Chebyshev’s inequality, we have that for any ordered pair of players p, q such that

p 6= q and for t > 0:

Pr[|fpq| ≥ t] ≤ 2α
nt2

Hence we have:

Pr[max
p,q

fpq < t] = Pr[
⋂
(p,q)

fpq < t] = 1− Pr[
⋃
(p,q)

fpq ≥ t]

≥ 1−
∑
(p,q)

2α
nt2

≥ 1− 2αn
t2

If we set t = 2
√
α n1/2+ε we have that:

Pr[max. envy < 2
√
αn1/2+ε] ≥ 1− n−2ε (1)

2
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2.6 Discussion

Our algorithm for minimizing the envy-ratio works only if the utility functions of the players

are additive and identical. It would be very interesting to find an approximation algorithm

for the general case. One approach is to use a linear programming relaxation similar to

Lenstra et al. [65].

There are many related notions of fairness such as max-min fairness or proportional

fairness and we would like to know the complexity of these solution concepts as well. Some

progress along these lines has already been made in [11].

Another question concerns the tradeoff between fairness and optimality of a solution.

An allocation is optimal if it maximizes the sum of the utilities of the players. Such a

tradeoff can be seen as the social cost of fairness or the “price of socialism”.
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CHAPTER III

COMBINATORIAL AUCTIONS

3.1 Introduction

A large volume of transactions is nowadays conducted via auctions, including auction ser-

vices on the internet (e.g., eBay) as well as FCC auctions of spectrum licences. Recently,

there has been a lot of interest in auctions with complex bidding and allocation possibilities

that can capture various dependencies between a large number of items being sold. A very

general model which can express such complex scenarios is that of combinatorial auctions.

In a combinatorial auction, a set of goods is to be allocated to a set of players. A utility

function is associated with each player specifying the happiness of the player for each subset

of the goods. One natural objective for the auctioneer is to maximize the economic efficiency

of the auction, which is the sum of the utilities of all the players. Formally, the allocation

problem is defined as follows: We have a set M of m indivisible goods and n players. Player

i has a monotone utility function vi : 2M → R. We wish to find a partition (S1, . . . , Sn)

of the set of goods among the n players that maximizes the total utility or social welfare,∑
i vi(Si). Such an allocation is called an optimal allocation.

We are interested in the computational complexity of the allocation problem, and we

would like an algorithm which runs in time polynomial in n and m. However, one can see

that the input representation is itself exponential in m for general utility functions. Even if

the utility functions have a succinct representation (polynomial in n and m), the allocation

problem may be NP-hard [60, 4]. In the absence of a succinct representation, it is typically

assumed that the auctioneer has oracle access to the players’ utilities and that he can ask

queries to the players. There are 2 types of queries that have been considered. In a value

query the auctioneer specifies a subset S ⊆ M and asks player i for the value vi(S). In a

demand query, the auctioneer presents a set of prices for the goods and asks a player for

the set S of goods that maximizes his profit (which is his utility for S minus the sum of
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the prices of the goods in S). Note that if we have a succinct representation of the utility

functions then we can always simulate value queries. The problem remains hard in the query

model and we are therefore interested in approximation algorithms and inapproximability

results.

A natural class of utility functions that has been studied extensively in the literature is

the class of submodular functions. A function v is submodular if for any 2 sets of goods

S ⊆ T , the marginal contribution of a good x 6∈ T , is bigger when added to S than when

added to T , i.e., v(S ∪ x) − v(S) ≥ v(T ∪ x) − v(T ). Submodularity can be seen as the

discrete analog of concavity and arises naturally in economic settings since it captures the

property that marginal utilities are decreasing as we allocate more goods to a player. It is

known that the class of submodular utility functions contains the functions with the Gross

Substitutes property [42], and also that submodular functions are complement-free.

3.1.1 Previous Work

For general utility functions, the allocation problem is NP-hard. Approximation algo-

rithms have been obtained that achieve factors of O( 1√
m

) ([61, 12], using demand queries)

and O(
√

log m
m ) ([46], using value queries). It has also been shown that we cannot have

polynomial time algorithms with a factor better than O( log m
m ) ([12], using value queries)

or better than O( 1
m1/2−ε ) ([61, 91], even for single minded bidders). If we allow demand

queries, exponential communication is still required to achieve any approximation guarantee

better than O( 1
m1/2−ε ) [77]. For single-minded bidders, as well as for other classes of utility

functions, approximation algorithms have been obtained, among others, in [5, 7, 61]. For

more results on the allocation problem with general utilities, see [20].

For the class of submodular utility functions, the allocation problem is still NP-hard.

The following positive results are known: In [60] it was shown that a simple greedy algorithm

using value queries achieves an approximation ratio of 1/2. An improved ratio of 1−1/e was

obtained in [4] for a special case of submodular functions, the class of additive valuations

with budget constraints. Very recently, approximation algorithms with ratio 1 − 1/e were

obtained in [30, 31] using demand queries. As for negative results, it was shown in [77]
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that an exponential amount of communication is needed to achieve an approximation ratio

better than 1 − O( 1
m). In [30] it was shown that there cannot be any polynomial time

algorithm in the succinct representation or the value query model with a ratio better than

50/51, unless P= NP.

3.1.2 Our Result

We show that there is no polynomial time approximation algorithm for the allocation prob-

lem with monotone submodular utility functions achieving a ratio better than 1−1/e, unless

P= NP. Our result is true in the succinct representation model, and hence also in the value

query model. The result does not hold if the algorithm is allowed to use demand queries.

A hardness result of 1 − 1/e for the class XOS (which strictly contains the class of

submodular functions) is obtained in [30] by a gadget reduction from the maximum k-

coverage problem. For a definition of the class XOS, see [60]. Similar reductions do not

seem to work for submodular functions. Instead we provide a reduction from multi-prover

proof systems for MAX-3-COLORING. Our result is based on the reduction of Feige [33]

for the hardness of set-cover and maximum k-coverage. The results of [33] use a reduction

from a multi-prover proof system for MAX-3-SAT. This is not sufficient to give a hardness

result for the allocation problem, as explained in Section 3.3. Instead, we use a proof system

for MAX-3-COLORING. We then define an instance of the allocation problem and show

that the new proof system enables all players to achieve maximum possible utility in the

yes case, and ensure that in the no case, players achieve only a (1 − 1/e)-fraction of the

maximum utility on the average. The crucial property of the new proof system is that when

a graph is 3-colorable, there are in fact many different proofs, i.e., colorings, that make the

verifier accept. This would not be true if we start with a proof system for MAX-3-SAT. By

introducing a correspondence between colorings and players of the allocation instance, we

obtain the desired result.

The current state of the art for the allocation problem with submodular utilities, in-

cluding our result, is summarized in Table 1. We note that we do not address the question

of obtaining truthful mechanisms for the allocation problem. For some classes of functions,
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Table 1: Approximability results for submodular utilities
Algorithms Hardness

Value Queries 1/2 [60] 1− 1/e
Demand Queries 1− 1/e [31] 1−O(1/m) [77]

incentive compatible mechanisms have been obtained that also achieve reasonable approxi-

mations to the allocation problem (e.g. [61, 5, 7]). For submodular utilities, the only truthful

mechanism known is obtained in [30]. This achieves an O( 1√
m

)-approximation. Obtaining a

truthful mechanism with a better approximation guarantee seems to be a challenging open

problem.

In the next section we define the model formally and introduce some notation. In

Section 3.3 we present a weaker hardness result of 3/4 using a 2-prover proof system to

illustrate the ideas in our proof. In Section 3.4 we present the hardness of 1− 1/e based on

the k-prover proof system of [33].

3.2 The Model

We assume we have a set of players N = {1, ..., n} and a set of goods M = {1, ...,m} to

be allocated to the players. Each player has a utility function vi, where for a set S ⊆ M ,

vi(S) is the utility that player i derives if he obtains the set S. We make the standard

assumptions that vi is monotone and that vi(∅) = 0.

Definition 1 A function v : 2M → R is submodular if for any sets S ⊂ T and any

x ∈M\T :

v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T )

An equivalent definition of submodular functions is that for any sets S, T : v(S ∪ T ) +

v(S ∩ T ) ≤ v(S) + v(T ).

An allocation of M is a partition of the goods (S1, ..., Sn) such that
⋃

i Si = M and

Si ∩ Sj = ∅. The allocation problem we will consider is:

The allocation problem with submodular utilities: Given a monotone,

submodular utility function vi for every player i, find an allocation of the goods
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(S1, ..., Sn) that maximizes
∑

i vi(Si).

To clarify how the input is accessed, we assume that either the utility functions have a

succinct representation1, or that the auctioneer can ask value queries to the players. In a

value query, the auctioneer specifies a subset S to a player i and the player responds with

vi(S). In this case the auctioneer is allowed to ask at most a polynomial number of value

queries.

3.3 A Hardness of 3/4

We first present a hardness result of 3/4. The reduction of this section is based on a 2-prover

proof system for MAX-3-COLORING, which is analogous to the proof system of [69] for

MAX-3-SAT. We remark that this proof is provided here only to illustrate the main ideas

of our result and to give some intuition. In the next Section we will see that by moving to

a k-prover proof system we can obtain a hardness of 1− 1/e.

In the MAX-3-COLORING problem, we are given a graph G and we are asked to color

the vertices of G with 3 different colors so as to maximize the number of properly colored

edges, where an edge is properly colored if its vertices receive different colors. Given a graph

G, let OPT (G) denote the maximum fraction of edges that can be properly colored by any

3-coloring of the vertices. We will start with a gap version of MAX-3-COLORING: Given

a constant c, we denote by GAP-MAX-3-COLORING(c) the promise problem in which

the yes instances are the graphs with OPT (G) = 1 and the no instances are graphs with

OPT (G) ≤ c. By the PCP theorem [6], and by [80], we know:

Proposition 12 There is a constant c < 1 such that GAP-MAX-3-COLORING(c) is NP-

hard, i.e., it is NP-hard to distinguish whether

YES Case: OPT (G) = 1, and

NO Case: OPT (G) ≤ c.

Let G be an instance of GAP-MAX-3-COLORING(c). The first step in our proof is a

1By this we mean a representation of size polynomial in n and m, such that given S and i, the auctioneer
can compute vi(S) in time polynomial in the size of the representation. For example, additive valuations
with budget limits [60] have a succinct representation.
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reduction to the Label Cover problem. A label cover instance L consists of a graph G′, a set

of labels Λ and a binary relation πe ⊆ Λ× Λ for every edge e. The relation πe can be seen

as a constraint on the labels of the vertices of e. An assignment of one label to each vertex

is called a labeling. Given a labeling, we will say that the constraint of an edge e = (u, v) is

satisfied if (l(u), l(v)) ∈ πe, where l(u), l(v) are the labels of u, v respectively. The goal is to

find a labeling of the vertices that satisfies the maximum fraction of edges of G′, denoted

by OPT (L).

The instance L produced from G is the following: G′ has one vertex for every edge (u, v)

of G. The vertices (u1, v1) and (u2, v2) of G′ are adjacent if and only if the edges (u1, v1) and

(u2, v2) have one common vertex in G. Each vertex (u, v) of G′ has 6 labels corresponding

to the 6 different proper colorings of (u, v) using 3 colors. For an edge between (u1, v1) and

(u2, v2) in G′, the corresponding constraint is satisfied if the labels of (u1, v1) and (u2, v2)

assign the same color to their common vertex. From Proposition 12 it follows easily that:

Proposition 13 It is NP-hard to distinguish between:

YES Case: OPT (L) = 1, and

NO Case: OPT (L) ≤ c′, for some constant c′ < 1

We will say that 2 labelings L1, L2 are disjoint if every vertex of G′ receives a different

label in L1 and L2. Note that in the YES case, there are in fact 6 disjoint labelings that

satisfy all the constraints.

The Label Cover instance L is essentially a description of a 2-prover 1-round proof

system for MAX-3-COLORING with completeness parameter equal to 1 and soundness

parameter equal to c′ (see [33, 69] for more on these proof systems).

Given L, we will now define a new label cover instance L′, the hardness of which will

imply hardness of the allocation problem. Going from instance L to L′ is equivalent to

applying the parallel repetition theorem of Raz [85] to the 2-prover proof system for MAX-

3-COLORING.

We will denote by H the graph in the new label cover instance L′. A vertex of H is now

an ordered tuple of s vertices of G′, i.e., it is an ordered tuple of s edges of G, where s is a
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constant to be determined later . We will refer to the vertices of H as nodes to distinguish

them from the vertices of G. For 2 nodes of H, u = (e1, ..., es) and v = (e′1, ..., e
′
s), there is

an edge between u and v if and only if for every i ∈ [s], the edges ei and e′i have exactly

one common vertex (where [s] = {1, ..., s}). We will refer to these s common vertices as

the shared vertices of u and v. The set of labels of a node v = (e1, ..., es) is the set of 6s

proper colorings of its edges (Λ = [6s]). The constraints can be defined analogously to the

constraints in L. In particular, for an edge e = (u, v) of H, a labeling satisfies the constraint

of edge e if the labels of u and v induce the same coloring of their shared vertices.

By Proposition 13 and Raz’s parallel repetition theorem [85], we can show that:

Proposition 14 It is NP-hard to distinguish between:

YES Case: OPT (L′) = 1, and

NO Case: OPT (L′) ≤ 2−γs, for some constant γ > 0.

Remark 1 In fact, in the YES case, there are 6s disjoint labelings that satisfy all the

constraints.

This property will be used crucially in the remaining section. The known reductions from

GAP-MAX-3-SAT to label cover, implicit in [33, 69], are not sufficient to guarantee that

there is more than one labeling satisfying all the edges. This was our motivation for using

GAP-MAX-3-COLORING instead.

The final step of the proof is to define an instance of the allocation problem from L′.

For that we need the following definition:

Definition 2 A Partition System P (U, r, h, t) consists of a universe U of r elements, and

t pairs of sets (A1, Ā1), ...(At, Āt), (Ai ⊂ U) with the property that any collection of h′ ≤ h

sets without a complementary pair Ai, Āi covers at most (1− 1/2h′)r elements.

If U = {0, 1}t, we can construct a partition system P (U, r, h, t) with r = 2h and h = t.

For i = 1, ..., t the pair (Ai, Āi) will be the partition of U according to the value of each

element in the i-th coordinate. In this case the sets Ai, Āi have cardinality r/2.
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For every edge e in the label cover instance L′, we construct a partition system P e(U e, r,

h, t = h = 3s) on a separate subuniverse U e as described above. Call the partitions

(Ae
1, Ā

e
1),....,(A

e
t , Ā

e
t ).

Recall that for every edge e = (u, v), there are 3s different colorings of the s shared

vertices of u and v. Assuming some arbitrary ordering of these colorings, we will say that

the pair (Ae
i , Ā

e
i ) of P e corresponds to the ith coloring of the shared vertices.

We define a set system on the whole universe
⋃
U e. For every node v and every label i,

we have a set Sv,i. For every edge e incident on v, Sv,i contains one set from every partition

system P e, as follows. Consider an edge e = (v, w). Then Ae
j contributes to all the sets Sv,i

such that label i in node v induces the jth coloring of the shared vertices between v and w.

Similarly Āe
j contributes to all the Sw,i such that label i in node w gives the jth coloring

to the shared vertices (the choice of assigning Ae
j to the Sv,i’s and Āe

j to the Sw,i’s is made

arbitrarily for each edge (v, w)). Thus

Sv,i =
⋃

(v,w)∈E

B
(v,w)
j

where E is the set of edges of H, B(v,w)
j is one of A(v,w)

j or Āj
(v,w), and j is the coloring

that label i gives to the shared vertices of (v, w).

We are now ready to define our instance I of the allocation problem. There are n = 6s

players, all having the same utility function. The goods are the sets Sv,i for each node v

and label i. If a player is allocated a collection of goods Sv1,i1 ...Svl,il , then his utility is

|
l⋃

j=1

Svj ,ij |

It is easy to verify that this is a monotone and submodular utility function. Let OPT (I)

be the optimal solution to the instance I.

Lemma 15 If OPT (L′) = 1, then OPT (I) = nr|E|.

Proof : From Remark 1, there are n = 6s disjoint labelings that satisfy all the constraints

of L′. Consider the ith such labeling. This defines an allocation to the ith player as follows:

we allocate the goods Sv,l(v) for each node v, to player i, where l(v) is the label of v in this
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ith labeling. Since the labeling satisfies all the edges, the corresponding sets Sv,l(v) cover

all the subuniverses. To see this, fix an edge e = (v, w). The labeling satisfies e, hence

the labels of v and w induce the same coloring of the shared vertices between v and w,

and therefore they both correspond to the same partition of P e, say (Ae
j , Ā

e
j). Thus U e is

covered by the sets Sv,l(v) and Sw,l(w) and the utility of player i is r|E|. We can find such

an allocation for every player, since the labelings are disjoint. 2

For the No case, consider the following simple allocation: each player gets exactly one

set from every node. Hence each player i defines a labeling, which cannot satisfy more

than 2−γs fraction of the edges. For the rest of the edges, the 2 sets of player i come from

different partitions and hence can cover at most 3/4 of the subuniverse. This shows that

the total utility of this simple allocation is at most 3/4 of that in the Yes case. In fact, we

will show that this is true for any allocation.

Lemma 16 If OPT (L′) ≤ 2−γs, then OPT (I) ≤ (3/4 + ε)nr|E|, for some small constant

ε > 0 that depends on s.

Proof : Consider an allocation of goods to the players. If player i receives sets S1, ..., Sl,

then his utility pi can be decomposed as pi =
∑

e pi,e, where

pi,e = |(∪jSj) ∩ U e|

Fix an edge (u, v). Let mi be the number of goods of the type Su,j for some j. Let m′
i

be the number of goods of the type Sv,j for some j, and let xi = mi + m′
i. Let N be the

set of players. For the edge e = (u, v), let N e
1 be the set of players whose sets cover the

subuniverse U e and N e
2 = N\N e

1 . Let ne
1 = |N e

1 | and ne
2 = |N e

2 |. Note that for i ∈ N e
1 , the

contribution of the xi sets to pi,e is r. For i ∈ N e
2 , it follows that the contribution of the

xi sets to pi,e is at most (1− 1
2xi )r by the properties of the partition system of this edge2.

2To use the property of P e, we need to ensure that xi ≤ 3s. However since i ∈ Ne
2 , even if xi > 3s, the

distinct sets Ae
j or Āe

j that he has received through his xi goods are all from different partitions of Ue and

hence they can be at most 3s.
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Hence the total utility derived by the players from the subuniverse U e is

∑
i

pi,e ≤
∑
i∈Ne

1

r +
∑
i∈Ne

2

(1− 1
2xi )r

In the YES case, the total utility derived from the subuniverse U e was nr. Hence the

loss in the total utility derived from U e is

∆e ≥ nr −
∑
i∈Ne

1

r −
∑
i∈Ne

2

(1− 1
2xi )r = r

∑
i∈Ne

2

1
2xi

By the convexity of the function 2−x, we have that

∆e ≥ r ne
2 2

−
P

i∈Ne
2

xi

ne
2

But note that
∑

i∈Ne
1
xi ≥ 2ne

1, since players in N e
1 cover U e and they need at least 2 sets

to do this. Therefore
∑

i∈Ne
2
xi ≤ 2ne

2 and ∆e ≥ r ne
2/4. The total loss is

∑
e

∆e ≥ r/4
∑

e

ne
2

Hence it suffices to prove
∑

e n
e
2 ≥ (1− ε)n|E|, or that

∑
e n

e
1 ≤ εn|E|.

For an edge (u, v), let N e,≤s
1 be the set of players from N e

1 who have at most s goods of

the type Su,j or Sv,j . Let N e,>s
1 = N e

1\N
e,≤s
1 .

∑
e

ne
1 =

∑
e

|N e,>s
1 |+ |N e,≤s

1 | ≤ 2n|E|
s

+
∑

e

|N e,≤s
1 |

where the inequality follows from the fact that for the edge e we cannot have more than

2n/s players receiving more than s goods from u and v.

Claim 17
∑

e |N
e,≤s
1 | < δn|E|, where δ ≤ c′s2−γs, for some constant c′.

Proof : Suppose that the sum is δn|E| for some δ ≤ 1. Then it can be easily seen that

for at least δ|E|/2 edges, |N e,≤s
1 | ≥ δn/2. Call these edges good edges.

Pick a player i at random. For every node, consider the set of goods assigned to player

i from this node, and pick one at random. Assign the corresponding label to this node. If

player i has not been assigned any good from some node, then assign an arbitrary label to

this node. This defines a labeling. We look at the expected number of satisfied edges.
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For every good edge e = (u, v), the probability that e is satisfied is at least δ/2s2, since

e has at least δn/2 players that have covered U e with at most s goods. Since there are

at least δ|E|/2 good edges, the expected number of satisfied edges is at least δ2|E|/4s2.

This means that there exists a labeling that satisfies at least δ2|E|/4s2 edges. But, since

OPT (L′) ≤ 2−γs, we get δ ≤ c′s2−γs, for some constant c′. 2

We finally have ∑
e

ne
1 ≤

2n|E|
s

+ δn|E| ≤ εn|E|

where ε is some small constant depending on s. Therefore the total loss is∑
e

∆e ≥
1
4
(1− ε)nr|E|

which implies that OPT (I) ≤ (3/4 + ε)nr|E|. 2

Given any ε > 0, we can choose s large enough so that Lemma 16 holds. From Lemmas 15

and 16, we have:

Theorem 18 For any ε > 0, there is no polynomial time (3/4+ε)-approximation algorithm

for the allocation problem with monotone submodular utilities, unless P = NP.

3.4 A Hardness of 1-1/e

In this section we obtain a stronger result by using a k-prover proof system (i.e., a label

cover problem on hypergraphs) for MAX-3-COLORING. The new proof system is obtained

in a similar manner as the proof system for MAX-3-SAT by Feige [33].

Let G be an instance of GAP-MAX-3-COLORING(c). From the graph G, we will

define a new label cover instance. The label cover instance is now defined on a hypergraph

H instead of a graph. Let s and k be constants to be determined later. The hypergraph

H consists of k layers of vertices, V1, ..., Vk. To every layer Vi, we associate a binary string

Ci ∈ {0, 1}s of weight s/2, with the property that the Hamming distance between any 2

strings is at least s/3. One can obtain such a collection of strings by using the codewords

of an appropriate binary code (see [33] for more details). Notice that each Ci defines a

partition of the indices {1, ..., s} into 2 sets Ai, Bi, each of cardinality s/2, where an index

l belongs to Ai (resp. Bi) if the l-th bit of Ci is 1 (resp. 0).
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We will refer to the vertices of H as nodes. One difference from Section 3.3 is that now

a node of H will contain both edges and vertices of G. To be more specific, a node v in Vi

is an ordered s-tuple v = (v1, ..., vs), where for l ∈ {1, ..., s}, if l ∈ Ai, then vl is an edge of

G, otherwise it is a vertex of G. Clearly there are at most nO(s) nodes in each layer Vi and

since k and s are constants, the size of H is polynomial in the size of G.

A label of a node v in Vi will be a proper coloring of the s/2 edges corresponding to

v and a coloring of the s/2 vertices corresponding to v. Hence there are 6s/23s/2 distinct

labels. For technical reasons we make 6s/23s/2 copies of each label so that in total we have

6s labels in every node.

Edges of the hypergraph H have cardinality k and contain one node from each layer.

For every ordered tuple of s edges (e1, ..., es), of G and a choice of s vertices (u1, ..., us),

one from each ei, we will have a hyperedge (v1, ..., vk) in H, with vi ∈ Vi if and only if the

nodes v1, ..., vk satisfy the following:

1. vl
i = el if l ∈ Ai.

2. vl
i = ul if l ∈ Bi.

We will call the vertices u1, ..., us the shared vertices of the hyperedge (v1, ..., vk). Given a

labeling to the nodes of H, let (l(v1), ..., l(vk)) be the labels of the hyperedge e = (v1, ..., vk).

We will say that e is weakly satisfied if there exists a pair of nodes vi, vj that agree on

the coloring of the shared vertices as induced by their labeling. We will call the pair

of labels (l(vi), l(vj)) a consistent pair with respect to the hyperedge e and the labeling.

We will say that a hyperedge is strongly satisfied if for every pair vi, vj , (l(vi), l(vj)) is

consistent. This completes the description of the label cover instance L. Let OPTweak(L)

(resp. OPT strong(L)) be the maximum fraction of hyperedges that can be weakly (resp.

strongly) satisfied by any labeling. The following lemma is essentially Lemma 5 in [33].

Lemma 19 It is NP-hard to distinguish between:

YES Case: OPT strong(L) = 1

NO Case: OPTweak(L) ≤ k22−γs, for some constant γ > 0.
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Remark 2 In the YES Case of Lemma 19, there are 6s disjoint labelings that strongly

satisfy all the hyperedges.

This follows from a similar argument as for Remark 1.

To define the instance of the allocation problem, we will first construct a set system as

in Section 3.3. For this we will need a more general notion of a partition system:

Lemma 20 ([33]) Let U = [k]n. We can construct a partition system on U of the form

P = {(A1
1, ..., A

1
k), (A

2
1, ..., A

2
k), ..., (A

n
1 , ..., A

n
k)}, with the properties that

1. For i = 1, ..., n, ∪Ai
j = U .

2. Any collection of l ≤ n sets, one from each partition, covers exactly (1−(1−1/k)l)|U |

elements.

For every hyperedge e, we will have a separate subuniverse U e. Let n = 6s be the number

of labels of each node. For each hyperedge e we construct a partition system P e on the sub-

universe U e as in Lemma 20. Let P e = {(Ae
1,1, ..., A

e
1,k), (A

e
2,1, ..., A

e
2,k), ..., (A

e
n,1, ..., A

e
n,k)}.

Notice that for a hyperedge e = (v1, ..., vk), we can always find n disjoint labelings of the

nodes v1, ..., vk that strongly satisfy the hyperedge e. This follows from the fact that there

are 6s proper colorings of an s-tuple of edges of G and for each such coloring we can pick

a label from each node vi that respects this coloring. Due to the multiple copies of each

distinct label, we in fact have more than n labelings that strongly satisfy e. We arbitrarily

pick n of these disjoint labelings (note that any other labeling that strongly satisfies e is

”isomorphic” to one of the n labelings picked). Assuming some arbitrary ordering among

the n labelings, we associate the jth partition of P e with the jth labeling of e, for every e.

If (lj1, ..., l
j
k) is the jth labeling of e and (Ae

j,1, ..., A
e
j,k) is the jth partition of P e we will also

say that the set Ae
j,i corresponds to the label lji of vi.

We can now define our set system. We will have one set Sv,i for every node v and label

i. Let v ∈ Vl for some l ∈ [k]. For an edge e that contains node v, suppose label i is in the

jth labeling of e. We will then include the set Ae
j,l from the jth partition in Sv,i. Hence
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Sv,i is the following union of sets:

Sv,i =
⋃

e:v∼e

Ae
je(i),l

where je(i) is the labeling of edge e that contains i.

As in Section 3.3, the instance of the allocation problem contains n = 6s players with

the same submodular utility function. The goods are the sets Sv,i and the utility of a player

for a collection of sets is the cardinality of their union. Let I denote the instance of the

allocation problem and let OPT (I) be the optimal solution of I. Let r = |U e| and let E

be the set of the hyperedges of H. Our hardness result is established by the following two

lemmas.

Lemma 21 If OPT strong(L) = 1, then OPT (I) = nr|E|.

Proof : Since OPT strong(L) = 1, consider a labeling that strongly satisfies all the

hyperedges. By the discussion above, we can always pick a labeling such that when restricted

to the nodes of an edge, it corresponds to one of the n disjoint labelings of that edge. Let

l(v) be the label of each node. Pick a player and allocate to him all the sets {Sv,l(v)}. We

claim that the sets cover the subuniverse U e for every edge e and the utility of the player

is therefore r|E|. To see this, fix an edge e = (v1, ..., vk). Since the labeling strongly satifies

the edge, it corresponds to some partition of the partition system P e, say the jth partition.

Hence for i = 1, ..., k, the set Ae
j,i which corresponds to label l(vi) is contained in Svi,l(vi).

Thus the player covers the entire subuniverse U e with the sets Svi,l(vi). Since this is true

for every edge, his utility is exactly r|E|. By Remark 2 we can repeat the above for all the

6s players. 2

Lemma 22 If OPTweak(L) ≤ k22−γs, then OPT (I) ≤ (1 − 1/e + ε)nr|E|, where ε > 0 is

some small constant depending on s and k.

Proof : Consider an allocation of the goods to the players, i.e., an allocation of the labels

of each node. We decompose the utility pi of player i as: pi =
∑
pi,e, where pi,e is as in
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Section 3.3. For a node v and a player i, let mv
i be the number of sets of the type Sv,j that

player i has received. Fix an edge e = (v1, ..., vk). Let xe
i =

∑k
l=1m

vl
i . Define the set of

players:

N e
1 = {i : ∃vj , vl such that i has a pair of consistent labels for these 2 nodes}

Let N e
2 = N\N e

1 , and let ne
1 = |N e

1 |, ne
2 = |N e

2 |. Trivially, for i ∈ N e
1 , the contribution of the

xe
i sets to pi,e is at most r. For i ∈ N e

2 , the xe
i sets of the type Svl,j do not contain even one

pair of labels which are consistent for some pair of nodes in e. For each set Svl,j that player

i has received, let Ae
t,l be the set from the partition system P e contained in Svl,j . It follows

that the sets Ae
t,l corresponding to the labels of player i come from different partitions of

U e. Therefore, by Lemma 20, we get that the sets Svl,j cover exactly 1− (1− 1
k )xe

i fraction

of the subuniverse U e. Hence the total utility derived by the players from the subuniverse

U e is ∑
i

pi,e ≤
∑
i∈Ne

1

r +
∑
i∈Ne

2

(
1− (1− 1

k )xe
i
)
r

The loss in the total utility compared to the YES case is:

∆e ≥ nr −
∑
i∈Ne

1

r −
∑
i∈Ne

2

(1− (1− 1
k )xe

i )r = r
∑
i∈Ne

2

(1− 1
k
)xe

i

By the convexity of the function (1− 1
k )x, we have that

∆e ≥ rne
2(1−

1
k
)

P
i∈Ne

2
xe

i

ne
2 (2)

Let N e,≤k2

1 be the set of players from N e
1 who have at most k2 goods of the type Svl,j .

Let N e,>k2

1 = N e
1\N

e,≤k2

1 .

∑
e

ne
1 =

∑
e

|N e,>k2

1 |+ |N e,≤k2

1 | ≤ kn|E|
k2

+
∑

e

|N e,≤k2

1 |

where the inequality follows from the fact that for the edge e we cannot have more than

n/k players receiving more than k2 goods from the nodes v1, v2, ..., vk.

Claim 23
∑

e |N
e,≤k2

1 | < δn|E|, for δ ≤ ck32−γs, for some constant c.
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Proof : The proof is similar to that of Claim 6. If we assume the contrary to the

statement then we can find a labeling which weakly satisfies more than k22−γs fraction of

the edges, a contradiction. 2

Hence
∑

e n
e
1 ≤

n|E|
k +δn|E|, which implies

∑
e n

e
2 ≥ (1−β)n|E|, for some small constant

β > 0. In Section 3.3, this sufficed to obtain the hardness result of 3/4, because
∑

i∈Ne
2
xe

i ≤

2ne
2. Here a similar argument would need that

∑
i∈Ne

2
xe

i ≤ kne
2, which may not be true for

every edge because players in N e
1 are only weakly satisfying e. However, we will see that

for most edges,
∑

i∈Ne
2
xe

i is still small.

Since
∑

e n
e
1 ≤ βn|E|, it follows that for at least a 1 −

√
β fraction of the edges, ne

2 ≥

(1−
√
β)n. Call these edges good. For each good edge e:∑

i∈Ne
2
xi

ne
2

≤ kn

(1−
√
β)n

≤ k(1 + β′)

for some small constant β′ > 0. From (2), we get that for every good edge the loss ∆e ≥

rne
2(1− 1

k )k(1+β′) ≥ rne
2(1− β′′)1

e , for some small constant β′′ > 0. Summing the loss over

all the good edges, we get that the total loss in utility is at least

r
∑

e:eis good
(1−

√
β)n(1− β′′)1

e ≥
n

e
r|E|(1−

√
β)2(1− β′′) ≥ 1

e
nr|E|(1− ε)

where ε > 0 is some small constant. Hence the total utility is at most (1− 1
e + ε)nr|E| 2

Given any ε > 0, we can choose large enough constants s, k so that Lemma 22 holds.

Hence we get:

Theorem 24 For any ε > 0, there is no polynomial time (1− 1
e+ε)-approximation algorithm

for the allocation problem with monotone submodular utilities, unless P=NP.

3.5 Conclusion

We have provided a (1− 1/e ' 0.632)-hardness of approximation in the value query model.

There is a gap between the upper and lower bounds in both the value query and demand

query model. It would be interesting to narrow these gaps. It will also be interesting to

obtain truthful mechanisms with good approximation guarantees.
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CHAPTER IV

EQUILIBRIUM CONCEPTS IN GAMES

4.1 Introduction

Noncooperative game theory has been extensively used for modeling and analyzing situa-

tions of strategic interactions. One of the dominant solution concepts in noncooperative

games is that of a Nash equilibrium [73]. Briefly, a Nash equilibrium of a game is a situation

in which no agent has an incentive to deviate from her current strategy. A nice property of

this concept is the well known fact that every game has at least one such equilibrium [73].

We consider the problem of computing a Nash equilibrium in finite games. The proof

given by Nash for the existence of equilibria is based on Brouwer’s fixed point theorem and

is nonconstructive. Even for 2-player games there is still no polynomial time algorithm.

The running time of all known algorithms (see among others [55, 57, 59, 62, 63]) is either

exponential (in the number of available pure strategies) or has not been determined yet (and

is believed to be exponential). For m-person games, m > 2, the problem seems to be even

more difficult. While for 2-player games it can be formalized as a Linear Complementarity

Problem (and hence some of the algorithms above) the problem for 3-player games is a Non-

linear Complementarity Problem. Algorithms for equilibria in multi-player games (among

others, [88, 105]) are also believed to be exponential. Recently it has been shown that finding

equilibria with certain natural properties (e.g. maximizing payoff) is NP-hard [19, 38]. The

complexity of finding a single equilibrium has been of considerable interest in the computer

science community and has been addressed as one of the current challenges in computational

complexity [82]. In fact it is known that the problem for 2-person games lies in some class

between FP and FNP [81] (the search versions of P and NP). For a summary of results

on algorithms for Nash equilibria see the surveys [104, 71].

An issue related to the complexity of the problem is that even for 3-player games, there

exist examples [73] in which the payoff data are rational numbers but all the Nash equilibria
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have irrational entries. Hence it is not even clear whether an equilibrium can be finitely

represented on a Turing machine. This problem does not exist in 2-player games, in which

it is known that there is always an equilibrium that can be described by polynomially sized

rational numbers.

A second and related issue is the need to play simple strategies. Even if Nash strategies

can be computed efficiently, they may be too complicated to implement. This has been

pointed out, among others, by Simon [97] and later by Rubinstein [90] in the context

of bounded rationality. Players tend to prefer a sub-optimal strategy (with respect to

rationality) instead of following a complex plan of action. In this chapter, we consider

normal form games and we will call a strategy simple if it is a uniform distribution on

a small support (multi)set. The importance of small support strategies becomes clear if

we consider the pure strategies to be resources. In this case an equilibrium is almost

impractical if a player has to use a mixed strategy which randomizes over a large set of

resources. However, there exist games whose Nash equilibria are completely mixed, i.e., a

player has to randomize over all his available pure strategies.

4.1.1 Our Results

We address the above issues (namely, the need for efficient algorithms and the need for

simple strategies), by using the weaker concept of ε-equilibrium (strategies from which

each player has only an ε incentive to defect). In particular, we propose two algorithms

for computing approximate equilibria both of which improve the previously known upper

bounds on the complexity of the problem.

In Section 4.2.1 we show that for any 2-person game, there exists an ε-equilibrium with

only logarithmic support (in the number of available pure strategies). Moreover the strategy

of each player in such an equilibrium is uniform on its support set and can be expressed

in polylogarithmically many bits. In our opinion, this is an interesting observation on the

structure of competitive behavior in various scenarios - namely, extremely simple approxi-

mate solutions exist. Our proof is based on the probabilistic method and it directly yields

a quasi-polynomial (nO(ln n), where n is the number of available pure strategies) algorithm
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for computing such an approximate equilibrium. To our knowledge this is the first subex-

ponential algorithm for ε-equilibria. In addition to having small support, our approximate

equilibria provide both players with a good payoff too: the payoff that each player receives

using these strategies is almost the same as that in some exact Nash equilibrium. Finally,

our result can be easily generalized to multi-player games and our algorithm remains subex-

ponential as long as the number of players is constant. It is interesting to note that although

the problem of finding exact equilibria is believed to become more difficult in the “tran-

sition” from 2-player to 3-player games (due to the nonlinearity of the complementarity

problem), this is not the case for approximate equilibria.

A second result (Section 4.2.2) is that if the players are allowed to communicate and

“sign treaties” then there are constant support strategies which approximate the payoffs

that each player gets in an equilibrium (in fact there are constant support strategies that

approximate the payoffs of any pair of strategies). In real life, such treaties are not unknown

(though often tacit) - this result can be considered as an explanation of why certain small

strategies behave well and are used in real games, as opposed to a large and complicated

Nash equilibrium.

In Section 4.2.3 we investigate the question: when does a game have small support exact

Nash equilibria? We give a sufficient condition for 2-person games: if the payoff matrices

of the players have low rank then there exists a Nash equilibrium with small support. Our

proof is based on Caratheodory’s theorem and the result has some interesting corollaries

regarding the computation of Nash equilibria. In particular, we show that if the matrices can

be well approximated by low rank matrices, then there exists an approximate equilibrium

with small support. It also follows that if the payoff matrices have constant rank, we can

compute an exact Nash equilibrium in polynomial time.

In Section 4.3, we take an algebraic approach by using the observation that Nash equi-

libria are essentially the roots of a single polynomial equation. Based on this, we first show

that every game has at least one Nash equilibrium for which all the entries in the proba-

bility distributions are algebraic numbers and hence can be finitely represented. A finite

representation has been known for 2-player games but nothing was known for games with
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three or more players. The current bounds for the size of the representation are exponential.

We also use results from the existential theory of reals and propose a second algorithm for

computing an approximate equilibrium, which runs in time poly(log 1/ε, L,mn). Here m

is the number of players, n is the total number of available strategies, ε is the degree of

approximation and L is the maximum bit size of the payoff data. For the case of two players

our algorithm can be modified to compute an exact Nash equilibrium in time 2O(n). This is

yet another exponential algorithm for computing an exact equilibrium in 2-person games.

Finally we address the question of whether the existence of Nash equilibria can have

any additional algebraic implications. We observe that since the set of Nash equilibria is

a nonempty semi-algebraic set, this implies the existence of nontrivial solutions in certain

systems of polynomial inequalities. We believe that this can be a new approach for providing

simple proofs for the existence of solutions in such systems.

4.1.2 Related Work

The problem of looking for small support equilibria has been studied earlier. Koller and

Megiddo [55] prove that for two person games in extensive form there exist equilibrium

strategies whose support is at most the number of leaves of the game tree. However, not

all games can be represented in the extensive form with a small number of leaves (where

by small we mean logarithmic in the number of pure strategies). Our result guarantees the

existence of equilibria with logarithmic support for any two person normal form game (and

also for multiple players as stated above) but the equilibria are only approximate.

For the class of 2-person zero-sum games, results for approximate minmax strategies

have been proved independently by Althöfer [3], Lipton and Young [69], and Newman [75].

In fact the proofs of Section 4.2.1 use the same technique (sampling). Recent algorithms

for exact or approximate equilibria but only for special classes of games have been obtained

among others in [66, 50, 51].

The fact that Nash equilibria are fixed points of a certain map [73] gives rise to many

algorithmic approaches that are based on Scarf’s algorithm [92], which is a general algorithm

for approximating fixed points of continuous mappings. The worst case complexity of this
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algorithm and its variants is exponential in all the parameters, namely the total number

of strategies, the number of players and the digits of accuracy [43]. Our first algorithm

(Section 4.2.1) is subexponential in the number of strategies and exponential in the accuracy

parameter and the number of players. Our second algorithm is polynomial in the digits of

accuracy but exponential in the number of strategies and players. Our second algorithm is

also stronger in the sense that not only players have very small incentive to deviate from the

approximate equilibrium, but also the set of strategies which are output are exponentially

close to some exact Nash equilibrium. This is not ensured neither by our first algorithm

nor by Scarf’s algorithm. More information on algorithmic approaches can be found in the

surveys [71, 104].

The algebraic characterization of Nash equilibria as the set of solutions to a system of

polynomial inequalities has been used before. In [99], algebraic techniques are presented

for counting the number of completely mixed equilibria. In [23] it is shown that every

real algebraic variety is isomorphic to the set of completely mixed Nash equilibria of some

three-person game. However representation and complexity issues are not addressed there.

A similar approach to ours was developed independently in [83], yielding a polynomial time

algorithm for symmetric games with relatively small number of strategies.

4.2 Small Support ε-equilibria

We start with some definitions and notation for 2-player games. As we will see the results

of Section 4.2.1 generalize to multiple player games. Consider a 2-player game where for

simplicity the number of available (pure) strategies for each player is n. We will refer to the

two players as the row and the column player and we will denote their payoff matrices by

R,C respectively. The meaning of the payoff matrices is that if the row player chooses his

ith pure strategy and the column player chooses his jth pure strategy, then they receive a

payoff of Rij , Cij respectively.

A mixed strategy (or a randomized strategy) for a player is a probability distribution

over the set of his pure strategies and will be represented by a vector x = (x1, x2, ..., xn),

where xi ≥ 0 and
∑
xi = 1. Here xi is the probability that the player will choose his
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ith pure strategy. If xi > 0 we say that the mixed strategy x uses the ith pure strategy.

The support of x (Supp(x)) is the set of pure strategies that it uses. A mixed strategy is

called k-uniform if it is the uniform distribution on a multiset S of pure strategies, with

|S| = k. For a mixed strategy pair x, y, the payoff to the row player is the expected value of

a random variable which is equal to Rij with probability xiyj . Therefore the payoff to the

row player is (x,Ry), where (. , .) denotes the inner product of two n-dimensional vectors.

Similarly the payoff to the column player is (x,Cy).

The notion of a Nash equilibrium [73] is formulated as follows:

Definition 3 A pair of strategies x∗, y∗ form a Nash equilibrium if and only if:

(i) for every (mixed) strategy x̄ of the row player, (x̄, Ry∗) ≤ (x∗, Ry∗),

(ii) for every (mixed) strategy ȳ of the column player, (x∗, Cȳ) ≤ (x∗, Cy∗).

In other words, no player has an incentive to (unilaterally) deviate from his strategy. In

the same manner we can define Nash equilibria for multi-player games, requiring that no

player has an incentive to deviate, given that the other players do not change their strategy.

Similarly we can define ε-equilibria:

Definition 4 For any ε > 0 a pair of mixed strategies x′, y′ is called an ε-Nash equilibrium

if and only if:

(i) for every (mixed) strategy x̄ of the row player, (x̄, Ry′) ≤ (x′, Ry′) + ε,

(ii) for every (mixed) strategy ȳ of the column player, (x′, Cȳ) ≤ (x′, Cy′) + ε.

4.2.1 A Subexponential Algorithm for 2-person Games and Generalizations

For the present we assume that all entries of R and C are between 0 and 1. Our main result

is:

Theorem 25 For any Nash equilibrium x∗, y∗ and for any ε > 0, there exists, for every

k ≥ 12 ln n
ε2

, a pair of k-uniform strategies x′, y′, such that:

1. x′, y′ is an ε-equilibrium,
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2. |(x′, Ry′) − (x∗, Ry∗)| < ε (row player gets almost the same payoff as in the Nash

equilibrium),

3. |(x′, Cy′)− (x∗, Cy∗)| < ε (column player gets almost the same payoff as in the Nash

equilibrium).

Proof :

The proof is based on the probabilistic method. For the given ε > 0, fix k ≥ 12 lnn/ε2.

Form a multiset A by sampling k times from the set of pure strategies of the row player,

independently at random according to the distribution x∗. Similarly form a multiset B by

sampling k times from the pure strategies of the column player, independently at random

according to the distribution y∗.

Let x′ be the mixed strategy for the row player which assigns probability 1/k to each

member of A and 0 to other pure strategies. Let y′ be the mixed strategy for the column

player which assigns probability 1/k to each member of B and 0 to other pure strategies.

Clearly, if a pure strategy occurs α times in the multiset, then it is assigned probability

α/k.

Denote by xi the ith pure strategy of the row player, and by yj the jth pure strategy of

the column player. In order to analyze the probability that x′, y′ is an ε-Nash equilibrium

it suffices to consider only deviations to pure strategies.

We define the following events:

φ1 = {| (x′, Ry′)− (x∗, Ry∗) |< ε/2}

π1,i = {(xi, Ry′) < (x′, Ry′) + ε}, (i = 1, ..., n)

φ2 = {| (x′, Cy′)− (x∗, Cy∗) |< ε/2}

π2,j = {(x′, Cyj) < (x′, Cy′) + ε}, (j = 1, ..., n)

GOOD = φ1 ∩ φ2

n⋂
i=1

π1,i

n⋂
j=1

π2,j

We wish to show that Pr[GOOD] > 0. This would mean that there exists a choice of A

and B such that the corresponding strategies x′ and y′ satisfy all three conditions in the
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statement of the theorem.

In order to bound the probabilities of the events φc
1 and φc

2 we introduce the following

events:

φ1a = {| (x′, Ry∗)− (x∗, Ry∗) |< ε/4}

φ1b = {| (x′, Ry′)− (x′, Ry∗) |< ε/4}

φ2a = {| (x∗, Cy′)− (x∗, Cy∗) |< ε/4}

φ2b = {| (x′, Cy′)− (x∗, Cy′) |< ε/4}

Note that φ1a∩φ1b ⊆ φ1. The expression (x′, Ry∗) is essentially a sum of k independent

random variables each of expected value (x∗, Ry∗). Each such random variable takes value

between 0 and 1. Therefore we can apply a standard tail inequality [45] and get:

Pr[φc
1a] ≤ 2e−kε2/8

Using a similar argument we have:

Pr[φc
1b] ≤ 2e−kε2/8

Therefore Pr[φc
1] ≤ 4e−kε2/8 and the same holds for the event φc

2.

In order to bound the probabilities of the events π1,i’s and π2,j ’s we define the following

auxilliary events:

ψ1,i = {(xi, Ry′) < (xi, Ry∗) + ε/2}, (i = 1, ..., n)

ψ2,j = {(x′, Ryj) < (x∗, Ryj) + ε/2}, (j = 1, ..., n)

We can easily see that

ψ1,i ∩ φ1 ⊆ π1,i, (i = 1, ..., n)

ψ2,j ∩ φ2 ⊆ π2,j , (j = 1, ..., n)

Using the Hoeffding bound again we get:

Pr[ψc
1,i] ≤ e−kε2/2
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Pr[ψc
2,j ] ≤ e−kε2/2

Now by combining the above equations we see that:

Pr[GOODc] ≤ Pr[φc
1] + Pr[φc

2] +
n∑

i=1

Pr[πc
1,i] +

n∑
j=1

Pr[πc
2,j ]

≤ 8e−kε2/8 + 2n[e−kε2/2 + 4e−kε2/8] < 1

Thus Pr[GOOD] > 0. 2

Note that not only do the strategies x′, y′ form an ε-equilibrium, but they also provide

both players with a payoff ε-close to the payoffs they would get in some Nash equilibrium.

In fact, the payoffs of every Nash equilibrium can be thus approximated by a small strategy

ε-equilibrium. Furthermore x′, y′ are k-uniform, which implies the following corollary:

Corollary 26 For a 2-person game, there exists a quasi-polynomial algorithm for comput-

ing all k-uniform ε-equilibria.

Proof : Given an ε > 0, fix k = 12 ln n
ε2

. By an exhaustive search, we can compute

all k-uniform ε-equilibria (by Theorem 25 at least one such equilibrium exists; verifying

ε-equilibrium condition is easy as we need to check only for deviations to pure strategies).

The running time of the algorithm is quasi-polynomial since there are
(
n+k−1

k

)2
possible

pairs of multisets to look at. 2

To our knowledge this is the first subexponential algorithm for finding an approximate

equilibrium. Furthermore, given the payoffs of any Nash equilibrium the algorithm can find

an ε-Nash equilibrium in which both players receive payoffs ε-close to the given values.

When the entries of R and C are not between 0 and 1 the ε-incentive to defect and the

ε-change in payoff both get magnified by Rmax−Rmin for the row player and by Cmax−Cmin

for the column player. Here Rmax and Rmin denote the maximum and minimum entry of

R, and similarly for C. Additionally if the players do not have the same number of pure

strategies (say n1, n2) then the same result holds with k ≥ 12 ln max{n1,n2}
ε2

.
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Our results can also be generalized to games with more than two players. In particular

for an m-person game:

Theorem 27 Let x∗1, ..., x
∗
m be a Nash equilibrium in an m-person game. Let p∗1, ..., p

∗
m be

the payoffs to the players in the Nash equilibrium. Then for any ε > 0, there exists, for

every k ≥ 3m2 ln m2n
ε2

, a set of k-uniform strategies x′1, ..., x
′
m, such that:

1. x′1, ..., x
′
m is an ε-equilibrium,

2. |p′i − p∗i | < ε for i = 1, ...,m

where p′1, ..., p
′
m are the payoffs to the players if they play strategies x′i.

The proof of Theorem 27 is completely analogous to that of Theorem 25 and we omit

it. As we see, we can guarantee an ε-equilibrium with logarithmic support only when the

number of players, m, is constant. It seems to us that the technique of sampling cannot help

us prove a more general theorem than that. It is an interesting question to see whether this

can be done using a different technique. However, it is still interesting that we can prove

the existence of simple approximate equilibria even for 3-player games. This is so because

the problem of finding exact equilibria for 3-player games seems to be more difficult than

for 2-player games due to the existence of irrational equilibria and the non-linearity of the

Complementarity Problem.

Corollary 26 also generalizes to games with a constant number of players since in this

case the number of combinations of multisets that the algorithm has to look at is still

quasi-polynomial.

4.2.2 Approximating Payoffs of Nash equilibria with Constant Support

In terms of the size of the support we can do much better, if we have weaker requirements.

There may be applications in which we would not even insist on an approximate equilibrium.

All we would care for is to approximate the payoffs in an actual Nash equilibrium. The

next result is in that direction:

Theorem 28 For any Nash equilibrium x∗, y∗ and any ε > 0, there exists, for every k ≥

5/ε2, a pair of k-uniform strategies (x, y), such that
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1. |(x,Ry)− (x∗, Ry∗)| < ε,

2. |(x,Cy)− (x∗, Cy∗)| < ε.

Again this result can be generalized to multiple player games. For an m-person game

the support of the k-uniform strategies will be O(m2 lnm/ε2).

Theorem 28 establishes the existence of constant support strategies which approximate

the payoffs that both players get in a Nash equilibrium. The techniques used to prove

this are the same as those used to prove Theorem 25, and the proof is omitted. Again,

we assume that the entries of R and C are between 0 and 1 (in the general case we get a

magnification by Rmax −Rmin and Cmax − Cmin as before). Note that Theorem 28 is true

for any pair of strategies x∗, y∗, not necessarily for Nash equilibria.

A situation in which this result could be applicable is the following: Consider a game

between two players both having a very large number of pure strategies at their disposal.

Let v1, v2 be the payoffs in a Nash equilibrium to the row and column player respectively.

If the support of the equilibrium strategies is very big, then it would be preferable for both

players to sign a “bilateral treaty” and use only a small number of strategies, as provided

by the result. In that case, both players would still receive a payoff close to v1 and v2

respectively, while using a small number of strategies. Furthermore, each player will be

able to check, during the game, if the other player has violated the treaty, in which case he

can switch to any other strategy.

4.2.3 A Sufficient Condition for Small Support Exact Equilibria

In this section we investigate the question: when does a 2-person game have small support

exact Nash equilibria? We show that if the payoff matrices have low rank then the game

has a small support Nash equilibrium. Furthermore we show that if the payoff matrices

can be approximated by low rank matrices then the game has a small support approximate

equilibrium (where the approximation factor depends on how well the matrices can be

approximated).

Suppose that the two players have n1 and n2 available pure strategies respectively. Then

the payoff matrices, R, C, are of dimension n1 × n2.
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Theorem 29 Let x∗, y∗ be a Nash equilibrium. If rank(C) ≤ k, then there exists a mixed

strategy x for the row player with |Supp(x)| ≤ k + 1 such that x, y∗ is a Nash equilibrium.

Similarly, if rank(R) ≤ k, then there exists a mixed strategy y for the column player with

|Supp(y)| ≤ k + 1 such that x∗, y is a Nash equilibrium. Furthermore the payoff that both

players receive in the equilibria x, y∗ and x∗, y is equal to the payoff in the initial equilibrium

x∗, y∗.

Our original proof of Theorem 29 was a generalization of a result due to Raghavan [84],

which deals with “completely mixed equilibria”, i.e., equilibria which use all the pure strate-

gies. The generalization was based on a careful Gaussian elimination type step. However,

we now suspect that this theorem may not be unknown to the game theory community as

we recently realized that a simple proof follows from the polyhedral structure of the set of

Nash equilibria (see [104, 48]). We would still like to bring the theorem to the attention of

the broader computer science and economics community as it has some interesting corollar-

ies regarding the computation of Nash equilibria. We present below another simple proof,

based on Caratheodory’s theorem, suggested to us by N. Vishnoi and N. Devanur [29]:

Proof of Theorem 29 : Let S be the k-dimensional space spanned by the columns of

R. Since Ry∗ is a convex combination of the columns of R, it can be written as a convex

combination of at most k + 1 columns of R (by Caratheodory’s Theorem). Let this new

convex combination be Ry. Note that Supp(y) ⊆ Supp(y∗). This implies that y is a best

response to x∗. Since Ry∗ = Ry, x∗ is also a best reponse to y. Hence x∗, y is a Nash

equilibrium. Since Ry∗ = Ry the first player receives the same value in x∗, y as in x∗, y∗.

The second player will also receive the same value as in the initial equilibrium because

Supp(y) ⊆ Supp(y∗). 2

Definition 5 For two matrices C,D, D is an ε-approximation of C if C = D + E, where

|Eij | ≤ ε for every i, j.

Lemma 30 Let D be an ε-approximation of C. Let x∗, y∗ be a Nash equilibrium for the

game with payoff matrices R,D. Then x∗, y∗ is a 2ε-Nash equilibrium for the game with

payoff matrices R,C.
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Proof : Clearly (x∗, Ry∗) ≥ (x̄, Ry∗), ∀ x̄. For any strategy ȳ:

(x∗, Cy∗) = (x∗, Dy∗) + (x∗, Ey∗) ≥ (x∗, Dȳ) + (x∗, Ey∗)

Since |Eij | ≤ ε, ∀ i, j,

(x∗, Eȳ)− (x∗, Ey∗) ≤ 2ε

Hence,

(x∗, Cy∗) ≥ (x∗, Dȳ) + (x∗, Eȳ)− 2ε = (x∗, Cȳ)− 2ε

2

Corollary 31 For any game R,C, and for any k < min{n1, n2}, if C can be ε-approximated

by a rank k matrix, then there exists a 2ε-equilibrium x, y with |Supp(x)| ≤ k+1. Similarly

for R.

In particular, we can use the Singular Value Decomposition to approximate the payoff

matrices R,C by rank k matrices for any k. The approximation factor ε of Corollary 31 is

then a function of the singular values of the matrices.

A useful corollary arises from the observation that for 2-person games, if we know the

support of a Nash equilibrium, then we can compute the exact equilibrium strategies in

polynomial time. This is because an equilibrium strategy y for the column player equalizes

the payoff that the row player gets for every pure strategy in his support and vice versa.

Hence we can write a linear program and compute the Nash equilibrium with the given

support. The following is a direct consequence of this observation and Theorem 29.

Corollary 32 If the payoff matrices R,C have constant rank, then we can compute an

exact Nash equilibrium in polynomial time. In particular if one of the players has a constant

number of pure strategies, we can compute a Nash equilibrium in polynomial time.

4.3 An Algebraic Approach

In this Section, we will mainly be interested in multi-player games. We start with the

observation that the set of Nash equilibria of an m-player game is the set of solutions to a
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system of polynomial inequalities. For this we need to introduce some additional notation.

Consider a game with m players and suppose that the number of available pure strategies

for player i is ni. Let n0 = maxni. We will denote the m-dimensional payoff matrix of

player i by Ai. If players 1, · · · ,m play the pure strategies j1, · · · , jm respectively, player

i receives a payoff equal to Ai(j1, · · · , jm). We assume that the entries of the matrices are

integers, at most L bits long and H = 2L is their maximum absolute value.

A mixed strategy for player i will be represented by a vector xi = (xi1, xi2, · · · , xi,ni),

where xij ≥ 0 and
∑
xij = 1. We denote by Si the strategy space of player i, i.e., the

(ni − 1)-dimensional unit simplex. For an m-tuple of mixed strategies x = (x1, · · · , xm) ∈

S1 × · · · × Sm, the expected payoff to the ith player is:

P i(x) =
n1∑

j1=1

· · ·
nm∑

jm=1

Ai(j1, · · · , jm)x1,j1 · · ·xm,jm (3)

For a tuple of mixed strategies x = (x1, · · · , xm), we will denote by x−i the set of strate-

gies: {xj : j 6= i}. We will also denote by (x−i, x′i) the tuple (x1, · · · , xi−1, x
′
i, xi+1, · · · , xm),

i.e., the ith player switches to the strategy x′i while all other players keep playing the same

strategy as in x. Under this notation, a Nash equilibrium is formulated as follows:

Definition 6 A tuple of strategies x = (x1, · · · , xm) ∈ S1 × · · · × Sm is a Nash equilibrium

if for every player i and for every mixed strategy x′i ∈ Si, P i(x−i, x′i) ≤ P i(x).

As we have already seen in the proof of Theorem 25, it is enough to consider only

deviations to pure strategies. For a player i, let sj
i denote her jth pure strategy. Then an

equivalent definition is the following: x is a Nash equilibrium if for any player i and any

pure strategy of player i, sj
i : P

i(x−i, sj
i ) ≤ P i(x).

Similarly, a tuple of strategies x = (x1, · · · , xm) is an ε-equilibrium if for every player i

and for every pure strategy sj
i , P

i(x−i, sj
i ) ≤ P i(x) + ε.

Another notion of approximation that we will use is that of ε-closeness:

Definition 7 A point x = (x1, · · · , xm) ∈ S1×· · ·×Sm is ε-close to a point y ∈ S1×· · ·×Sm

if and only if ||xi − yi||∞ ≤ ε for all i = 1, ...,m

Note that an ε-equilibrium is not necessarily close to a real Nash equilibrium.
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4.3.1 Nash Equilibria as Roots of a Polynomial

From the above definitions, a Nash equilibrium is a solution of the following system of

polynomial inequalities and equalities:

xij ≥ 0 i = 1, ...,m, j = 1, ..., ni

ni∑
j=1

xij = 1 i = 1, ...,m

P i(x−i, sj
i ) ≤ P i(x) i = 1, ...,m, j = 1, ..., ni

(4)

Let n =
∑
ni. The system has n variables and 2n+m = O(n) multilinear constraints.

By adding slack variables we can convert every constraint to an equation, where each

polynomial is of degree at most m (the degree of a polynomial is the maximum total degree

of its monomials). Note that the slack variables are squared so that we do not have to add

any more constraints for their nonnegativity:

Bij = xij − β2
ij = 0 i = 1, ...,m, j = 1, ..., ni

Γi =
ni∑

j=1

xij − 1 = 0 i = 1, ...,m

∆ij = P i(x)− P i(x−i, sj
i )− δ2ij = 0 i = 1, ...,m, j = 1, ..., ni

(5)

We can now combine all the polynomial equations into one by taking the sum of squares

(P1 = 0 and P2 = 0 is equivalent to P 2
1 + P 2

2 = 0, when looking for solutions over the

real numbers). Therefore we have the following polynomial which we will refer to as the

polynomial of the game (A1, ..., Am):

Φ(A1, ..., Am) =
m∑

i=1

ni∑
j=1

B2
ij +

m∑
i=1

Γ2
i +

m∑
i=1

ni∑
j=1

∆2
ij (6)

Claim 33 Φ(A1, ..., Am) has degree 2m, O(n) variables, nO(m)
0 monomials and maximum

absolute value of its coefficients O(nH2).
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4.3.2 Finite Representation of Nash Equilibria

The fact that there exist games whose equilibria have irrational entries in their probability

distributions is not necessarily an obstacle towards obtaining a finite representation for a

Nash equilibrium. For example, a real algebraic number α can be uniquely described by

the irreducible polynomial with integer coefficients, P , for which P (α) = 0 and an interval

which isolates the root α from the other roots of P . In the next Theorem we show that

every game has a Nash equilibrium that can be finitely represented. The proof is based

on a deep result from the theory of real closed fields known as the transfer principle [9].

We also need to use the fact that equilibria always exist. We are not aware if there is an

alternative way of proving Theorem 34. The original topological proof of existence by Nash

via Brouwer’s fixed point theorem, though powerful enough to guarantee an equilibrium,

does not seem to give any further information on the algebraic properties of the equilibria.

Theorem 34 For every finite game there exists a Nash equilibrium x = (x1, ..., xm) such

that every entry in the probability distributions x1, · · · , xm is an algebraic number.

To prove this theorem, we first need the following definition:

Definition 8 An ordered field R is a real closed field if

1. every positive element x ∈ R is a square (i.e., x = y2 for some y ∈ R).

2. every univariate polynomial of odd degree with coefficients in R has a root in R.

Obviously the real numbers are an example of a real closed field. The following theorem

on the existence of roots over real closed fields is known as the transfer principle and is due

to Tarski and Seidenberg:

Theorem [Tarski-Seidenberg] : Let R be a real closed field and P be a polynomial with

coefficients from R. Let R′ ⊇ R be another real closed field that contains R. Then P has a

root in R if and only if it has a root in R′.

Proof of Theorem 34 : Given a game (A1, ..., Am), the set of its Nash equilibria is

the set of roots of the corresponding polynomial Φ (excluding the slack variables). By
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Nash’s proof [73] we know that the equation Φ(A1, ..., Am) = 0 has a solution over the

reals. Consider the field of the real algebraic numbers Ralg. It is known that Ralg is a real

closed field [9]. The real numbers form a real closed field which contains Ralg. Since the

coefficients of Φ are integers, it follows immediately from the Tarski-Seidenberg Theorem

that there exists a Nash equilibrium in Ralg. 2

A natural question is whether there are reasonable upper bounds for the degree and

the coefficient size of the polynomials that represent the entries of an equilibrium. The

known upper bounds are exponential. In particular, it follows by [9][Chapter 13] and by

Claim 33 that the degrees of the polynomials will be mO(n) and the coefficient size will be

O(L+ log n)mO(n).

4.3.3 Algorithmic Implications

We will use the formulation of Nash equilibria as roots of the polynomial Φ to propose

an algorithm for computing approximate equilibria. For this we will use as a subroutine a

decision algorithm for the existential theory of reals.

A special case of the decision problem for the existential theory of reals is to decide

whether the equation P (x1, ..., xk) = 0 has a solution over the reals. Here P is a polynomial

in k variables of degree d and with integer coefficients. The best upper bound for the

complexity of this problem is dO(k), as provided by the algorithms of Basu et al. [8] and

Renegar [86].

Theorem 35 For an m-person game, m ≥ 2, and for 0 < ε < 1, there is an algorithm which

runs in time poly(log 1/ε, L,mn) and computes an m-tuple of strategies x ∈ S1 × · · · × Sm

such that:

1. x is ε/d-close to some Nash equilibrium y, where d = 2m+1nm
0 H.

2. |P i(x)− P i(y)| < ε/2 for all i = 1, ...,m.

3. x is an ε-Nash equilibrium.

To prove Theorem 35, we need the following Lemma:
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Lemma 36 Let y = (y1, ..., ym) be a Nash equilibrium. Let x = (x1, ..., xm) be ∆-close to

y, where ∆ < 1. Then:

1. x is an ε-Nash equilibrium for ε = 2m+1nm
0 H∆.

2. |P i(x)− P i(y)| < ε/2 for all i = 1, ...,m.

Proof :

We give a sketch of the proof. Let ε = 2m+1nm
0 H∆. Since x is ∆-close to y, each xi

can be written in the form xi = yi + ei, where ei = (ei1, ..., ei,ni) and |eij | ≤ ∆. For the

first claim, we need to prove that for every player i, P i(x) ≥ P i(x−i, sj
i )− ε, for every pure

strategy sj
i . Fix a pure strategy sj

i . Then:

P i(x) =
∑
j1

· · ·
∑
jm

Ai(j1, ..., jm)(y1,j1 + e1,j1) · · · (ym,jm + em,jm)

= P i(y) + E1 + · · ·+ E2m−1

where each term Ei is an m-fold sum. Since y is a Nash equilibrium we have:

P i(x) ≥ P i(y−i, sj
i ) +

∑
Ei = P i(x−i, sj

i ) +
∑

Fi +
∑

Ei

where each Fi is an (m− 1)-fold sum similar to the Ei terms. By performing some simple

calculations we can actually show that: |
∑
Ei +

∑
Fi| ≤ ε. Hence

∑
Ei +

∑
Fi ≥ −ε,

which proves the first claim. The second claim can also be verified along the same lines. 2

From now on, let A be an algorithm that decides whether P (x1, ..., xk) = 0 has a solution

over the reals in time dO(k), for a degree d polynomial P (either the algorithm of [8] or [86]

will do).

Proof of Theorem 35 : By Lemma 36, we only need to find an m-tuple x such that x is

ε/d-close to some Nash equilibrium y. Let Φ(A1, ..., Am) be the corresponding polynomial of

the game. By Claim 33, the time to compute the coefficients of all the monomials of Φ, given

the payoff matrices, is nO(m)
0 which is poly(mn). We can now use A combined with binary

search to compute a rational approximation of some root. Suppose we start with the variable

x11. We can add two more constraints to Φ expressing the fact that x11 ∈ [0, 1/2] (by adding
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slack variables to the inequalties x11 ≥ 0 and x11−1/2 ≤ 0, then squaring the equations and

adding them to Φ). We then run A for the new polynomial and if the answer is yes we know

that there exists an equilibrium with x11 ∈ [0, 1/2]. We can replace the constraints that we

added with the ones corresponding to x11 ∈ [0, 1/4]. If the answer is no then there exists an

equilibrium with x11 ∈ [1/4, 1/2], hence we can continue our binary search in that interval.

Proceeding in this manner we will find an interval I11 with length at most ε/(n1d). For this

we need to run O(log n1d/ε) = O(log 1/ε+m+m log n+ L) = poly(log 1/ε, L,m, n) times

the algorithm A. We will then add to Φ the constraints corresponding to x11 ∈ I11 and we

will go on to the next variable. When we are done with the variable x1,ni−1, the interval

I1,ni for x1,ni is also determined. This is because x1,ni should be equal to 1 −
∑

j 6=ni
x1j ,

so that x1 is a probability distribution. Therefore the length of I1,ni will be at most ε/d.

Hence by the end of this step we know that we can select a probability distribution x1 for

the first player such that |x1 − y1|∞ ≤ ε/d for some Nash equilibrium y. We continue the

procedure to determine an interval for every variable xij . We can then output a rational

number in Iij for each variable so as to ensure that x1, ..., xm are probability distributions.

Note that by the end we have only added O(n) additional slack variables and constraints.

Therefore the total running time will be poly(log 1/ε, L,mn).

2

We can also show that for 2-person games we can compute an exact Nash equilibrium

using algorithm A as a subroutine. The crucial observation is that if we know the support

of the Nash equilibrium strategies for 2-person games, the exact strategies can be computed

by solving a linear program, as explained in Section 4.2.3. By adding constraints of the

form xij = 0 and by running A a linear number of times, we can identify the support of

some Nash equilibrium.

Theorem 37 There exists an algorithm that runs in time 2O(n) and computes an exact

Nash equilibrium.

Proof : Let (A1, A2) be a 2-person game and let Φ(A1, A2) be the corresponding poly-

nomial. We can add the constraint x11 = 0 and decide if Φ + x2
11 = 0 has a solution. If
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yes then there exists a Nash equilibrium in which player 1 does not use strategy 1 and we

can go on to the second variable x12 while keeping the constraint x11 = 0. If on the other

hand the answer was no, then we know that all Nash equilibria use strategy 1. We can pro-

ceed in the same manner: suppose that at step i, we have already included the constraints

x1,j1 = 0, ..., x1,jk
= 0. We now add x1i = 0. If the answer of A is yes we go to the next

step and include all the constraints we have already added in our polynomial otherwise we

know that all equilibria in which x1,j1 = 0, ..., x1,jk
= 0, use strategy i. After 2n steps we

will know exactly the support of an equilibrium and then we can solve the corresponding

linear program to compute it. 2

This is yet another exponential algorithm for computing an exact equilibrium in 2-

person games. An upper bound on the compexity of the problem can be obtained by

the naive algorithm that tries all possible pairs of supports for the two players, which is

O(2nLPn
n ) = 2O(n), where LPn

n is the time to solve a linear program with O(n) variables

and O(n) constraints. Our algorithm achieves the same asymptotic bound but is in fact

worse since the constant in the exponent is bigger than two. However we would still like

to bring it to the attention of the community firstly because it is a different approach that

has not been addressed before to the best of our knowledge and secondly because a future

improvement in decision algorithms for low degree polynomial equations would directly

imply an improvement in our algorithm too.

4.3.4 An application: systems of polynomial inequalities

Much of the research on equilibria in economic models has focused on the algorithmic

problem of computing an equilibrium. A common approach has been to reduce the question

to an already known and studied problem (e.g. fixed point approximations, linear and

nonlinear complementarity problems, systems of polynomial equations and many others).

In this section we would like to propose an alternative viewpoint and take advantage of

the fact that Nash or market equilibria always exist. In particular, if a problem can be

reduced to the existence of an equilibrium in a game or market, then we are guaranteed

that a solution exists. As an example, we give the following theorem:
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Theorem 38 Let A be a n×n matrix and ai be the i-th row of A. Let S ⊆ {1, ..., n}. Then

the following system of inequalities in n variables x = (x1, ..., xn)

xTAx− aix ≥ 0, i ∈ S

has a nonzero solution. In fact it has a probability distribution as a solution.

Proof :

Consider the symmetric game (A,AT ). It is known that every symmetric game has an

equilibrium in which both players play the same strategy. The inequalities of the system

correspond to the constraints that if both players play strategy x, a deviation to a pure

strategy i, for i ∈ S does not make a player better off. 2

Deciding whether a set of polynomial equations and inequalities has a solution (or a

non-trivial solution) has been an active research topic. Similar theorems can be obtained

for any system that corresponds to partial constraints for the existence of Nash equilibria

or market equilibria. We do not know if an algebraic proof of Theorem 38 is already known.

We believe that the existence of equilibria in games and markets can yield a way of providing

simple proofs for the existence of solutions in certain systems of polynomial inequalities.

4.4 Discussion

Another attempt to prove the results of Section 4.2.1 would be to approximate the vectors

of a Nash equilibrium by vectors of small support. It is not difficult to see that we can

approximate any probability distribution vector by a vector of logarithmic support in the

l∞ norm with error at most 1/ log n. However, approximating an equilibrium x∗, y∗ in this

manner does not imply that the approximating vectors will form an ε-equilibrium, for any

given fixed ε. On the other hand it can be shown that an ε-approximation in the l1 norm

does yield an ε-equilibrium, but such an approximation is not always possible (e.g. if the

Nash strategies are the uniform distributions).

An interesting open question is whether we can generalize the results of Section 4.2.1 to

games where the number of players is not constant. Another question would be to generalize
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the result so that the incentive to defect does not depend on the range of the payoff matrices

(which can be much higher than the expected payoff in any equilibrium).
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CHAPTER V

GAME-THEORETIC MODELS FOR INTERDOMAIN

ROUTING

5.1 Introduction

The Internet, which has become a common playground for a large number of entities with

selfish motives and varying degrees of collaboration, naturally gives rise to new game the-

oretic issues [82]. Problems that stem from Internet applications are very different from

traditional algorithmic problems as the behavior of the participants is determined by their

own goals and not by the instructions of the designer. It seems that such problems would

require techniques and ideas from both computer science and game theory. In this chapter

we focus on one specific problem, namely incentive issues in Internet routing.

The Internet is composed of many administrative domains or Autonomous Systems

(ASes). Each AS is usually administered by a single entity. For example, a corporation or

a university campus often defines an autonomous system. The connectivity of the Internet

is determined by agreements between ASes for routing each other’s traffic. The current

protocol for routing between ASes is the Border Gateway Protocol (BGP). BGP works

without a centralized authority by allowing ASes to constantly announce and exchange

routing paths.

ASes can be considered independent self-interested agents, following routing policies

that serve their own interests. In particular, ASes would like to satisfy their own and

their customers’ traffic demands and at the same time they would prefer to avoid carrying

transit traffic, i.e., traffic that is neither originated nor destined to them or their customers.

Avoiding transit traffic though, may result in sub-optimal efficiency and instability in the

network and may even affect the network connectivity.

A question that arises naturally is whether it is possible to have a routing scheme which
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maximizes network efficiency and is stable in the sense that no AS or subset of ASes has an

incentive to secede. In [82], Papadimitriou proposed a game theoretic formulation of this

question by defining the following coalitional game: Given a network with a multicommodity

flow, satisfying node capacity and demand constraints, the payoff of a node is the total flow

originated or terminated at it (flow passing through a node is not included in its payoff).

One of the open problems in [82] was to find sufficient conditions under which the core of the

game is non-empty. An outcome of a game is in the core if no subset of players can collude

and obtain a better payoff for its members, either viewed as a set (transferable payoff), or

for each player in the coalition individually (non-transferable payoff).

We show that the core of this game is always non-empty. In the transferable case, an

allocation in the core can be computed in polynomial time by solving the dual program

of the multicommodity flow problem. For the same game with non-transferable payoff our

proof of non-emptiness of the core is non-constructive. It is still an open question whether

a core allocation can be computed efficiently for this case.

We also generalize this result to the case where a strictly concave utility function is as-

sociated with each commodity. In [52], Kelly proposed such a model for analyzing charging,

rate control and routing in communication networks. An optimal outcome in his model

is expressed as the solution of a non-linear program. The dual variables of that program

(shadow prices) can be interpreted as actual payments of the nodes for their traffic. Using a

similar argument as before, we show that if ASes compensate each other according to these

shadow prices, the resulting payoff allocation is in the core.

The use of dual variables for producing an allocation in the core is not new. In [16, 24,

39, 41, 47, 49, 79, 95] classes of games are defined in which a core allocation is obtained as

a function of the dual variables. In fact if the demand constraints are dropped and all the

nodes have unit capacity then the non-emptiness of the core in the multicommodity flow

game with transferable payoff follows from Theorem 1 in [24]. For facility-location games

[16, 39] show that the dual of the facility location problem is equivalent to the problem

of finding core allocations if there is no integrality gap. In some games, e.g. [95] every

allocation in the core is obtained via a dual solution. However this is not the case in our
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game. Several complexity results have also been obtained (e.g. for testing membership or

non-emptiness of the core) among others by [24, 32, 25, 18].

Incentive issues in routing have also been addressed in [76] and [34] from a mechanism

design point of view. In their models each link [76] or node [34] incurs a cost for routing a

packet. VCG-type payment mechanisms are obtained to make the links or the nodes behave

truthfully regarding the cost of routing.

In the next section we give some definitions and results from coalitional game theory

which will be used later on. In Section 5.3 we focus on the linear multicommodity flow

game and prove that the core is always non-empty in both the transferable and the non-

transferable case. In Section 5.4 we give a game-theoretic formulation of Kelly’s non-linear

model [52] and prove that again the core is non-empty. We conclude in Section 5.5 with

open problems and directions for further research.

5.2 Definitions and Notation

A coalitional (or cooperative) game is determined by a set of players N = {1, · · · , n}, a

set of possible outcomes O(S) for every coalition S ⊆ N and a set of payoff vectors V (S)

corresponding to the outcomes. A payoff vector x ∈ V (S) corresponding to the outcome

o ∈ O(S) determines the payoff of each player if the outcome o is realized. The set N is

sometimes referred to as the grand coalition.

A solution concept in coalitional game theory is usually defined as a set of payoff alloca-

tions that are stable in some certain sense. Among all the solution concepts that have been

proposed over the years, the core is probably the most intuitive one. The core consists of

all payoff allocations for which no subset of players (coalition) can improve upon by coop-

erating only among themselves. This means that once an agreement in the core has been

reached, no coalition has an incentive to secede.

We will define the core for two scenarios of coalitional games. In games with transferable

payoff, players can compensate each other with side payments. In such games a coalition S

can be completely characterized by the maximum total payoff that it can achieve in O(S).

We will denote this number by v(S). The coalition is allowed to split the payoff v(S) among
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its members in any possible way. The core of the game will be the set of payoff allocations

for which no coalition can gain more.

More formally, with each such game we associate a characteristic function v : P (N) →

R+, where P (N) is the powerset of N . Following standard assumptions in the literature we

require that:

(i) v(∅) = 0.

(ii) v(S ∪ T ) ≥ v(S) + v(T ), if S ∩ T = ∅.

We will denote a payoff allocation by a vector x = (x1, · · · , xn), xi ≥ 0, where xi is the

payoff allocated to player i. Given an allocation x, we will denote by x(S) the payoff that

is allocated to a coalition S, i.e., x(S) =
∑

i∈S xi. A payoff allocation is an imputation if

x(N) = v(N). The core is the set of stable imputations:

core = {x : x(N) = v(N) and x(S) ≥ v(S) ∀S ⊂ N}.

In games with non-transferable payoff, compensations among different players are not

possible. In this case a coalition S is characterized by the set V (S) of payoff vectors.

The interpretation of V (S) is that it contains all the possible payoff allocations that can be

obtained by S. A coalition S can improve upon a payoff vector x if there exists an allocation

y ∈ V (S) such that xi < yi for all i ∈ S. Hence the core will be:

core = {x ∈ V (N) : ∀S 6 ∃y ∈ V (S) s.t. yi > xi ∀i ∈ S}.

Necessary and sufficient conditions for the non-emptiness of the core in games with

transferable payoff were given by Bondareva and Shapley [13, 94]. In [93], Scarf generalized

their result and provided a sufficient condition in games with non-transferable payoff.

Definition 9 Let T be a collection of coalitions. T is said to be a balanced collection if

and only if we can find nonnegative weights δS for all S ∈ T such that for every i ∈ N ,∑
S∈T :i∈S δS = 1.

Given a coalition S, we will call a vector u attainable by S if u ∈ V (S). We will also

denote by uS the vector whose entries are the entries of u that correspond to the players of

S (i.e., the projection of u to S).
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Definition 10 A game is balanced if and only if for every balanced collection T , if u is

such that uS is attainable by S, for all S ∈ T , then u is attainable by N .

Theorem [Scarf] : Every balanced game has a non-empty core.

5.3 The Multicommodity Flow Game with Linear Utility
Functions

As an attempt to address incentive issues in the Internet, Papadimitriou [82] defined the

following coalitional game: let G be an undirected graph on a set of nodes N with a capacity

ci on each node and a symmetric demand matrixD (where dij is the demand between nodes i

and j). Each node represents an AS and the capacity of node i is a simplification attempting

to capture the capability of the corresponding subnetwork. An outcome of the game is a

feasible multicommodity flow subject to demand and capacity constraints, i.e., a vector {fp}

where for a path p from i to j, fp is the flow exchanged between these nodes along path p.

The total flow exchanged between i and j will then be equal to fij = fji =
∑
fp, where the

sum is taken over all paths connecting i and j. Therefore the matrix F = (fij) will satisfy

F ≤ D. In the game with transferable payoff the value v(S) for a coalition S ⊆ N is the

maximum flow subject to demand and capacity constraints in the graph induced by S. In

other words v(S) = max
∑

i

∑
j fij/2, where the maximum is taken over feasible flows. In

the non-transferable case the set V (S) consists of the vectors u = (u1, · · · , u|S|) such that

there exists a feasible flow F in the graph induced by S for which ui =
∑

j fij/2. Note that

for a vector u ∈ V (S), it is not necessarily true that the sum
∑
ui is equal to the maximum

flow in the graph induced by S.

Finding sufficient conditions for the non-emptiness of the core was posed as an open

problem in [82]. In the following subsections we will show that the core is always non-

empty in both cases.

5.3.1 The Coalitional Game with Transferable Payoff

For each i, j ∈ N , let Pij denote the set of all paths between i and j and let P =
⋃
Pij . A

maximum flow satisfying as much of the demands as possible is the solution of the following
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linear program:

maximize
∑
p∈P

fp

subject to
∑
p:i∈p

fp ≤ ci ∀i ∈ N

∑
p∈Pij

fp ≤ dij ∀i, j ∈ N

fp ≥ 0 ∀p ∈ P

(7)

The dual program is:

minimize
∑
i∈N

cixi +
∑

i,j∈N

dijyij

subject to yij +
∑
i∈p

xi ≥ 1 ∀p ∈ Pij

xi ≥ 0 ∀i ∈ N

yij ≥ 0 ∀i, j ∈ N

(8)

Here the dual variable xi corresponds to node i in the graph and the variable yij corre-

sponds to the unordered pair of nodes (i, j).

The first part of the following theorem can also be proved by directly applying the

Bondareva-Shapley theorem. However that would be a nonconstructive proof. Instead, our

proof yields a polynomial time algorithm for computing an allocation in the core.

Theorem 39 The core of the multicommodity flow game with transferable payoff is non-

empty. Furthermore, a payoff allocation in the core can be computed in polynomial time.

Proof : Consider an optimal dual solution {xi}, {yij}. For each node i define its payoff

to be:

pi = cixi +

∑
j dijyij

2

To show that the payoff vector {pi} belongs to the core we need to show that:

(i)
∑

i∈N pi = OPT (N).

65



(ii) For every subset S,
∑

i∈S pi ≥ OPT (S).

where for S ⊆ N , OPT (S) is the optimal value of (7) when restricted to the subgraph

induced by S.

For the first part note that:

∑
i∈N

pi =
∑
i∈N

cixi +
∑

i,j∈N

dijyij = OPT (N)

by the strong duality theorem.

For the second part, consider a coalition S and the network that is induced by S. Let

i ∈ S, j ∈ S and p ∈ Pij such that p is entirely in the induced graph. Since {xi : i ∈

N}, {yij : i, j ∈ N} is a dual optimal (and hence feasible) solution to the original problem

it holds that :

yij +
∑
i∈p

xi ≥ 1

Therefore, ({xi : i ∈ S}, {yij : i, j ∈ S}) is a dual feasible solution for the induced linear

program on S. Thus: ∑
i∈S

cixi +
∑
i,j∈S

dijyij ≥ OPT (S)

But now the following holds:

∑
i∈S

pi =
∑
i∈S

cixi +
∑
i∈S

(

∑
j∈N dijyij

2
)

≥
∑
i∈S

cixi +
1
2

∑
i∈S

∑
j∈S

dijyij

=
∑
i∈S

cixi +
∑
i,j∈S

dijyij

≥ OPT (S)

Hence {pi} is in the core.

The above argument directly yields a polynomial time algorithm for computing an allo-

cation that lies in the core by solving the dual program. It should be noted here that even

though the dual program in general has an exponential number of constraints, it is known

that it can be solved in polynomial time [102].
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In the payoff allocation that we constructed, each of the nodes i, j receives exactly half

of the payoff term yijdij . It is easily seen that if we arbitrarily allocate αijyijdij to node i

and (1−αij)yijdij to node j for 0 ≤ αij ≤ 1 the resulting allocation is also in the core. We

should note however that these are not the only core allocations of the game.

5.3.2 The Coalitional Game with Non-Transferable Payoff

In a coalitional game with transferable payoff, we assume that players can compensate each

other with a side payment. This assumption is not justified in many cases [78].

We will show that the core of the multicommodity flow game without transferable payoff

is not empty using Scarf’s Theorem (Section 5.2). Thus, we only need to show that the

game is balanced.

Theorem 40 The multicommodity flow game with non-transferable payoff is balanced and

hence has a non-empty core.

Proof : Consider a balanced collection of coalitions T . Let δS be the corresponding

weight to each coalition such that for every i ∈ N ,
∑

S∈T,i∈S δS = 1. Consider a payoff

vector u which is attainable by every coalition S ∈ T . We need to show that u is attainable

by N . For a coalition S ∈ T , since u is attainable by S, there exists a feasible flow fS

subject to demand and capacity constraints such that for every player i:
∑

j f
S
ij/2 = ui (fS

ij

is the flow routed for the commodity (i, j) in the subgraph induced by S). We construct

the flow f =
∑

S∈T δSf
S . For a node i the total flow that we route for the commodities

containing i (divided by 2) is:

1
2

∑
S∈T,i∈S

δS
∑

j

fs
ij =

∑
S∈T,i∈S

δSui = ui

It is also easy to see that this flow satisfies capacity and demand constraints. Hence u is

attainable by N and the game is balanced, which implies that the core is non-empty. 2
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5.4 The Game with Concave Utility Functions

In [52], Kelly defines a mathematical model for analyzing issues of pricing, rate control

and routing in communication networks. Similar models have also been used among others

by [53, 67, 68]. The model consists of a network with a set of nodes N , a capacity for

each node ci and a set of commodities K. We will denote by Ps the set of paths that

commodity s is using to send flow from its source to its sink and P = ∪Ps. If a commodity

s is sending flow at a rate of xs then its source and sink derive a utility of Us(xs) where

Us is an increasing, strictly concave and continuously differentiable function (according to

Shenker [96] traffic that leads to such utility functions is called elastic traffic). We further

assume that the aggregate utility of the network for flow rates {xs} is
∑

s Us(xs).

In this setting, if flow fp is sent along each path p ∈ P then the total flow rate for

commodity s is
∑

p∈Ps
fp. To find the system’s optimal rates we need to solve the following

non-linear optimization problem:

maximize
∑
s∈K

Us(xs)

subject to
∑
i∈p

fp ≤ ci ∀i ∈ N

∑
p∈Ps

fp = xs ∀s ∈ K

fp ≥ 0 ∀p ∈ P

xs ≥ 0 ∀s ∈ K

(9)

Note that unlike Section 5.3 we do not have any demand constraints. This is purely for

ease of exposition and our results hold even when a demand matrix is specified.

We construct the dual of (9). Consider the Lagrangian form:

L(x, f, λ, µ) =
∑
s∈K

Us(xs) +
∑

i

µi(ci −
∑
i∈p

fp)−
∑
s∈K

λs(xs −
∑
p∈Ps

fp)

=
∑
s∈K

(Us(xs)− λsxs) +
∑
p∈P

fp(λs(p) −
∑
i∈p

µi) +
∑
i∈N

ciµi

where λ = {λs : s ∈ K}, µ = {µi : i ∈ N,µi ≥ 0} are vectors of Lagrange multipliers and

for a path p, s(p) denotes the commodity that the path serves. Define the function

D(λ, µ) = max
x≥0,f≥0

L(x, f, λ, µ)
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We can simplify the function D(λ, µ) by noting that:

∂L

∂fp
= λs(p) −

∑
i∈p

µi

This means that at a maximum of L over the orthant x ≥ 0, f ≥ 0 the following should be

true:

If fp > 0 then λs(p) =
∑
i∈p

µi.

Thus

D(λ, µ) = max
x≥0

∑
s∈K

(Us(xs)− λsxs) +
∑
i∈N

ciµi

=
∑
s∈K

max
xs

(Us(xs)− λsxs) +
∑
i∈N

ciµi

The dual program of (9) is:

minimize D(λ, µ)

subject to µi ≥ 0 ∀i ∈ N
(10)

The objective function of (9) is differentiable and strictly concave and the feasible region

is compact. Hence (9) has an optimal solution. By the duality theorem [74], there exists a

dual optimal solution for (10).

As in [52, 67] the dual variables of an optimal solution (shadow prices) can be interpreted

as congestion control signals. Furthermore they can also indicate actual payments to the

nodes for routing traffic. In this case we show that payments defined by an optimal dual

solution result in a payoff allocation which lies in the core.

As in Section 5.3 we can view the nodes of the network as players in a coalitional

game with transferable payoff. The outcome of the game is again a multicommodity flow

satisfying the constraints in (9) and for a coalition S ⊂ N we define its payoff v(S) to be:

v(S) = 2OPT (S) where OPT (S) is the optimal value of (9) when restricted to the subgraph

induced by the nodes in S. This is a natural generalization of the game that we studied in

Section 5.3 where now the total payoff of a coalition is not the maximum flow it can send

but a concave function of the maximum flow.
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The question that arises of course is whether this game has a non-empty core. We will

answer this question in the affirmative.

Theorem 41 Any optimal solution (λ, µ) to the dual program (10) gives rise to a payoff

allocation which is in the core.

Proof : The argument is essentially the same as in the proof of Theorem 39. For a node

i ∈ N , let K(i) be the set of commodities in which i is either a source or a sink. We can

define the following payoff allocation to the nodes:

pi =
∑

s∈K(i)

max
xs

(Us(xs)− λsxs) + 2ciµi

To show that p = {pi} is in the core note first that:

∑
i∈N

pi =
∑
i∈N

(
∑

s∈K(i)

max
xs

(Us(xs)− λsxs) + 2ciµi)

= 2
∑
s∈K

max
xs

(Us(xs)− λsxs) + 2
∑
i∈N

ciµi = v(N)

Therefore it remains to show that for every coalition S,
∑

i∈S pi ≥ 2OPT (S). Consider

a coalition S and the dual variables that correspond to commodities and nodes in the

subgraph induced by S. These variables form a feasible solution to the dual of (9) when

restricted to this subnetwork. Therefore we have:

∑
i∈S

pi = 2D(λ, µ;S) ≥ 2OPT (S) = v(S)

where by D(λ, µ;S) we denote the dual objective function restricted to the subnetwork of

S. Hence the allocation {pi} lies in the core.

2

We should also note that our proof for the non-transferable case in Section 5.3.2 also

holds when the utilities are concave functions of the flow, which is the case here.

5.5 Discussion

In [54], Kelly and Vazirani showed that the problem of charging and rate control as defined

in Kelly [52] can be seen as a generalization of Fisher’s market equilibrium problem [14, 28].
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The optimum dual variables in that model correspond to market clearing prices. Hence,

Theorem 41 on core allocations in section 5.4 is along the same lines of the classic result in

coalitional game theory that allocations corresponding to an equilibrium in the market lies

in the core [78].

The core of a game is a useful concept in a cooperative setting where all the informa-

tion regarding preferences, capacities and demands is known to all agents. Clearly this is

not the case in the Internet. Moreover, in the core allocation that we constructed in sec-

tions 5.3.1 and 5.4, the payoff that a node receives depends on its capacity. It can be seen

by using complementary slackness conditions that a node might receive a bigger payoff if it

announces a smaller capacity. It is an interesting problem to design a distributed strategy-

proof mechanism such that no node has an incentive to lie about its capacity. For related

results on algorithmic mechanism design see [76, 34, 35].

The proof of non-emptiness of the core in Section 5.3.2 is based on Scarf’s Theorem which

is non-constructive. An open problem is to find an algorithm for computing a solution in

the core efficiently.

Finally, in the non-linear model, if each commodity uses only one path, it is shown in

[37, 67] that shadow prices can be computed by a distributed algorithm where the local

computation is done on each link (on each AS in our case). We are not aware of any result

for the general case.
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