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SUMMARY 
 
 
 
The goal of this research is to advance the state of the art in bulk power system 

reliability assessment. Bulk power system reliability assessment is an important 

procedure at both power system planning and operating stages to assure reliable and 

acceptable electricity service to customers. With the increase in the complexity of 

modern power systems and advances in the power industry toward restructuring, the 

system models and algorithms of traditional reliability assessment techniques are 

becoming obsolete as they suffer from nonrealistic system models and slow convergence 

(even non-convergence) when multi-level contingencies are considered and the system is 

overstressed. To allow more rigor in system modeling and higher computational 

efficiency in reliability evaluation procedures, this research proposes an analytically-

based security-constrained adequacy evaluation (SCAE) methodology that performs bulk 

power system reliability assessment.  

The SCAE methodology adopts a single-phase quadratized power flow (SPQPF) 

model as a basis and encompasses three main steps: (1) critical contingency selection, (2) 

effects analysis, and (3) reliability index computations. In the critical contingency 

selection, an improved contingency selection method is developed using a wind-chime 

contingency enumeration scheme and a performance index approach based on the system 

state linearization technique, which can rank critical contingencies with high accuracy 

and efficiency. In the effects analysis for selected critical contingencies, a non-divergent 

optimal quadratized power flow (NDOQPF) algorithm is developed to (1) incorporate 

major system operating practices, security constraints, and remedial actions in a 



 xvi

constrained optimization problem and (2) guarantee convergence and provide a solution 

under all conditions. This algorithm is also capable of efficiently solving the ISO/RTO 

operational mode in deregulated power systems. Based on the results of the effects 

analysis, reliability indices that provide a quantitative indication of the system reliability 

level are computed. In addition, this research extends the proposed SCAE framework to 

include the effects of protection system hidden failures on bulk power system reliability. 

The overall SCAE methodology is implemented and applied to IEEE reliability test 

systems, and evaluation results demonstrate the expected features of proposed advanced 

techniques. Finally, the contributions of this research are summarized and 

recommendations for future research are proposed. 
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CHAPTER I 

INTRODUCTION 
 
 
 

1.1 Bulk Power System Reliability  
 
 
 
An electric power system is generally composed of three parts: (1) generation, (2) 

transmission, and (3) distribution systems, all of which contribute to the production and 

transportation of electric energy to customers. The reliability of an electric power system 

is defined as the probability that the power system will perform the function of delivering 

electric energy to customers on a continuous basis and with acceptable service quality 

[1]. For the purpose of conducting power system reliability assessment, the three power 

system parts are combined into different system hierarchical levels, as shown in Figure 

1.1 [2, 3]. Hierarchical level 1 (HL1) involves the reliability analysis of only the 

generation system, hierarchical level 2 (HL2) includes the reliability evaluation of the 

composite of both generation and transmission systems, referred to as the bulk power 

system or the composite power system, and hierarchical level 3 (HL3) consists of a 

reliability study of the entire power system.  

At the present stage of development, the reliability evaluation of the entire power 

system (HL3) is usually not conducted because of the immensity and complexity of the 

problem in a practical system. Instead, power system reliability is assessed separately for 

the generation system (HL1), the bulk power system (HL2), and the distribution system 

[4]. Reliability analysis methods for generation and distribution systems are well 
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developed. However, reliability assessment techniques for bulk power systems are not as 

well developed due to difficulties arising from the huge computational burden associated 

with the bulk power system reliability analysis [1]. Thus, this research concentrates on 

the area of bulk power system reliability assessment. 

 

Generation
System

Distribution
System

Transmission
System

Hierarchical
 Level 1

Hierarchical
 Level 2

Hierarchical
 Level 3

 

Figure 1.1: Hierarchical levels for power system reliability assessment. 

 
Bulk power system reliability assessment refers to the process of estimating the ability 

of the system to simultaneously (a) generate and (b) move energy to load supply points 

[4]. Traditionally, it has formed an important element of both power system planning and 

operating procedures. 

The main objective of power system planning is to achieve the least costly design with 

acceptable system reliability. For this purpose, long-term reliability evaluation is usually 

executed to assist long-range system planning in the following aspects: (1) the 

determination of whether the system has sufficient capacity to meet system load 

demands, (2) the development of a suitable transmission network to transfer generated 

energy to customer load points, (3) a comparative evaluation of expansion plans, and (4) 

a review of maintenance schedules [5, 6]. 
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Power system operating conditions are subject to changes such as load uncertainty, 

i.e., the load may be different from that assumed in design studies, and unplanned 

component outages. To deliver electricity with acceptable quality to customers at 

minimum cost and to prevent cascading sequences after possible disturbances, short-term 

reliability prediction that assists operators in day-to-day operating decisions is needed. 

These decisions include determining short-term operating reserves and maintenance 

schedules, adding additional control aids and short lead-time equipment, and utilizing 

special protection systems [7, 8].  

 
 
 

1.2 Power Industry Restructuring 
 
 
 
The traditional electric power industry was characterized by the monopolistic but 

regulated market mechanism and the bundled utility structure. For example, in the United 

States, a large number of electric utilities controlled electric service to customers in 

different control areas before the Federal Energy Regulatory Commission (FERC) issued 

Orders 888 and 889, which encouraged wholesale competition in 1996 [9]. As a result, a 

utility in one control area became a regional monopoly, i.e., customers in this area could 

not select their power source and had to buy energy from the local utility. On the other 

hand, each electric utility was subjected to governmental regulation. For example, any 

request for an electric rate hike had to be approved by the local regulatory commission. 

Inside each control area, the electric utility was vertically bundled, supplying a series of 

electric services to customers, including generation, transmission, distribution, and all 
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operational and maintenance activities required to keep the system operating under 

normal conditions [10]. 

In recent years, many countries have deregulated their electric power industries at 

various levels. The conventional vertically-integrated power utility structure, consisting 

of generation, transmission, and distribution segments, was unbundled to functionally 

separate entities. In restructured power systems, generation and distribution services are 

provided by independent generation and distribution companies, respectively, while 

electricity transmission systems with open access are overseen by independent 

transmission operators (ISOs) or regional transmission organizations (RTOs) [11]. The 

purpose of power system restructuring is to change the monopolistic but regulated power 

industry into a competitive power market under a deregulated environment in which 

power market participants (power suppliers and consumers) are allowed to buy and sell 

power based on their economic profits. The ultimate goal of the competition mechanism 

in power markets is to decrease electricity prices for consumers.  

Power industry deregulation has resulted in notable changes in the system operating 

condition, compared to that in the traditional regulated power system [12-14]. First, the 

transmission system that transfers electric energy over long distances is more heavily 

used in the deregulated environment. The reason for the increased use is merely 

economic, i.e., large wholesale energy buyers are able to satisfy their needs by 

purchasing less expensive energy from geographically distant regions, which tends to 

overload the transmission system. Second, power system operating conditions may vary 

over a much wider range in the deregulated environment. Transmission open access and 

non-utility generation have prompted the more competitive environment, making it 
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possible for customers to choose their suppliers. As a result, the operating condition of 

the system may vary considerably according to the customer demand and choice, and 

some could be dramatically different from what they were before or what they are 

forecasted to be. In addition, since power consumers have more freedom to choose lower-

cost energy providers from the power producers in the deregulated environment, the 

operating conditions of a system can change more frequently. 

These scenarios triggered by power system restructuring indicate that deregulated 

power systems are more often operated in patterns that were not previously observed, 

which inevitably force system operating points very close to their physical limits [15, 16]. 

Consequently, new concerns about power system reliability assessment have risen. 

Specifically, advanced reliability assessment techniques that allow more rigor in system 

modeling and higher computational efficiency in the reliability evaluation procedure are 

required to facilitate power market effectiveness while maintaining an acceptable system 

reliability level. 

 
 
 

1.3 Problem Statement 
 
 
 
Bulk power system reliability assessment involves two major challenges: (1) the large 

size of the state space of a practical system and (2) the need to realistically and efficiently 

perform the effects analysis of critical contingencies [4]. In the area of the effects 

analysis, since hidden failures in the protection system [17] have recently been identified 

as a major contributing factor to power system unreliability [128-130], the evaluation of 
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the effects of hidden failures in the protection system has become another major concern 

in bulk power system reliability assessment.  

 
 
 

1.3.1 Large Size of System State Space 
  
 
 
One of the major impediments in bulk power system reliability assessment is the large 

size of the practical system state space. The entire system state space contains all possible 

system states (contingencies). Each system state is defined as a particular condition in 

which every component is in a given operating state of its own. The operating states that 

components may experience are determined by (a) component operating characteristics 

and (b) component outage modes, which are described in detail as follows. 

Component Operating Characteristics Since a bulk power system is composed of 

generation and transmission systems, components involved in the bulk power system 

reliability study are mainly generating units and transmission circuits (transmission lines 

or transformers). The operating state of a transmission circuit is either working or failed. 

Such an operating characteristic of a circuit can be modeled with a two-state (up or 

down) Markov model, as shown in Figure 1.2. However, the operating characteristic of a 

generating unit is not as simple as the two-state up/down procedure. Generating units are 

a type of complex equipment with many auxiliary devices, such as pulverizers, water 

pumps, fans, and so on. Some failures of auxiliary devices may cause a generating unit to 

experience a number of partial failure states in which a generating unit continues to 

operate, but it does so at reduced capacity. Such states are known as derated states of the 
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generating unit [2, 4]. The simplest generating unit model accounting for one derated 

state in addition to the fully capacity and completely failed states is shown in Figure 1.3. 

 

Up Down
 

Figure 1.2: A two-state Markov component model. 

 
 

Up

DownDerated
 

Figure 1.3: A generating unit model with one derated state. 

 
Component Outage Modes Component outage modes generally considered in bulk 

power system reliability assessment include independent and common-mode outages. 

Independent outages refer to component failures resulting from unrelated causes. Each 

component involved in independent outages can be represented with a model as shown in 

Figure 1.2 or 1.3.  The operating state of each component is independent to the operating 

states of other components. Common-mode outages refer to the simultaneous failures of 

several components resulting from a single cause [4]. One example of a common-mode 

failure is the failure of transmission lines on the same right-of-way that are hit by 

lightning. Note that the components involved in a common-mode outage can still fail 

independently without influencing the failure of other components. When the common-

mode outage is concerned, the components involved in a common-mode outage are 

considered as a single entity. A common-mode outage model of such an entity that 
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involves two components is illustrated in Figure 1.4, which contains four operating states 

and possible transitions among them. Note that such a model represents both independent 

and common-mode outages that the two components can experience.  

 
1 Up
2 Up

1 Up
2 Down

1 Down
2 Up

1 Down
2 Down

 

Figure 1.4: A common-mode failure model with two components. 

 
The analysis of the operating states that system components may reside in and transit 

to found that in a large-scale bulk power system, including a large amount of generating 

units and transmission circuits, the number of total system states in the system state space 

is enormous. Specifically, for a system with n  components, if only independent 

component outages occur, and each component model is simplified to contain only two 

operating states (up or down), the entire system state space includes a total of n2  system 

states. When n  is 2000, the number of system states in the state space is more than 60010 . 

If all possible system states (contingencies) are analyzed one by one for the purpose of 

identifying the critical contingencies that contribute to system unreliability, the 

contingency analysis procedure requires too much computational effort and becomes 

impractical. Therefore, effective state space reduction techniques that can navigate to 
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identify critical contingencies rather than evaluating every contingency in the huge state 

space should be developed. 

 
 
 

1.3.2 Effects Analysis of Critical Contingencies 
 
 
 
The most important but computationally demanding procedure in bulk power system 

reliability assessment is the effects analysis of critical contingencies [4], which evaluates 

the impact of component failures on system operation and classifies system contingencies 

into successful and failed categories according to pre-defined system reliability criteria. 

The system reliability criteria selected in advance define the events or conditions that 

indicate system unreliability, such as the loss of system load or the violation of certain 

operating constraints. Any contingencies that the effects analysis identifies as leading to 

system unreliability fall into the failed category. Other evaluated contingencies fall into 

the successful category. The results for both categories of contingencies are used to 

calculate reliability indices, which quantitatively measure the level of system reliability. 

With the aim of realistically evaluating component failure effects and how the system 

operating condition can be affected, the contingency effects analysis requires the 

consideration of practical system responses, such as remedial actions, protection system 

hidden failures, possible system transient behaviors, and so on, in addition to the 

traditional power flow analysis. However, most current effects analysis techniques 

conduct only traditional power flow analysis to obtain the system post-contingency 

situation, which lacks the capability of realistically analyzing whether a contingency 

leads to the unreliability of a system.  
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Moreover, since the effects analysis must not only be performed for every contingency 

that is examined in the reliability evaluation but may also have to be repeated more than 

once for each contingency if multiple load levels are considered, the efficiency of such 

analysis techniques is also critical to the overall performance of the bulk power system 

reliability assessment. Traditional power flow analysis, however, often suffers from slow 

convergence (even non-convergence) when the system is severely stressed by 

contingencies. As a result, conducting the effects analysis in a realistic and efficient 

manner is another major challenge existing in bulk power system reliability assessment. 

 
 
 

1.3.3 The Effects of Protection System Hidden Failures on Bulk Power 
System Reliability 

 
 
 
A hidden failure in the protection system is defined in [17] as “a permanent defect that 

will cause a relay or a relay system to incorrectly and inappropriately remove a circuit 

element(s) as a direct consequence of another switching event.” In other words, hidden 

failures may cause multiple component outages that are dependent upon each other, i.e., 

an initial component outage can lead to the cascading tripping of other components 

because of a malfunction in the protection system. In addition, such hidden failures 

remain hidden in normal system conditions, and in the event of a system disturbance such 

as a fault or an overload, hidden failures are exposed and cause unnecessary outages, 

which stresses the system even more and reduces the system reliability level. Thus, 

hidden failures in the protection system have been identified as the major contributing 

factor to power system unreliability [128-130].  
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In the current practice of bulk power system reliability assessment, however, 

protection systems are generally assumed to be perfect, and hidden failures in protection 

systems are not taken into account. Specifically, system substations are represented with 

simplified buses, and different transmission lines simply converge at the buses to connect 

generators or to serve loads. The substation configuration and the associated protection 

system scheme are ignored in the present bulk power system network model. Therefore, a 

more detailed bulk power system model that includes information about substations and 

protection systems should be applied so that the effects of protection system hidden 

failures on bulk power system reliability can be considered, and appropriate techniques 

should be developed to identify any possible hidden failure outages. 

 
 
 

1.4 Research Scope 
 
 
 
This research aims to advance the state of the art in bulk power system reliability 

assessment. In particular, a comprehensive approach for bulk power system reliability 

assessment, i.e., the security-constrained adequacy evaluation (SCAE) methodology, is 

developed based on analytical techniques. In this methodology, the probabilistic model is 

applied to represent practical system behavior, and the following areas are investigated to 

address major challenges encountered in the area of bulk power system reliability 

assessment. 

Critical Contingency Selection Since the complete contingency evaluation of the 

entire state space is impractical for large-scale bulk power systems, a variety of critical 
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contingency selection techniques have been developed for the purpose of conducting a 

rapid preliminary identification of critical contingencies in the state space. In this 

research, based on the traditional performance index (PI) approach, the quadratized 

power flow model, and the wind-chime contingency enumeration scheme, an improved 

critical contingency selection technique is investigated to reduce misranking in the 

procedure of identifying and ranking critical contingencies among all the possible system 

contingencies.  

Contingency Effects Analysis The critical contingency effects analysis is the most 

important but computationally demanding procedure in bulk power system reliability 

assessment. Most existing contingency effects analysis algorithms are implemented based 

on the traditional power flow model, which suffers from a lack of realistic system models 

and slow convergence or even divergence when the system is severely stressed. In this 

research, a non-divergent optimal quadratized power flow (NDOQPF) algorithm based 

on the quadratized power flow model is proposed for performing contingency effects 

analysis efficiently and realistically. In the proposed NDOQPF algorithm, the quadratized 

power flow model is adopted as a basis to achieve faster convergence in solving power 

flow solutions for the purpose of improving algorithm efficiency, and major system 

controls, such as real power economic dispatch, reactive power proportional dispatch, and 

remedial actions, are incorporated into the procedure of simulating the system response to 

critical contingencies for the purpose of achieving a realistic contingency effects analysis. 

This algorithm also aims to guarantee the convergence of power flow solutions under all 

system operating conditions such that an optimal or suboptimal solution can always be 

provided to operators. In addition, the proposed algorithm can effectively simulate 
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system operating conditions in deregulated power systems.  

Protection System Hidden Failure Analysis Protection systems are generally assumed 

to be perfect in current bulk power system reliability assessment practice. To account for 

the effects of hidden failures in the protection system on bulk power system reliability in 

this research, we incorporate the breaker-oriented substation model, which includes a 

specific bus arrangement and associated protection system schemes in the bulk power 

system network model. Based on such a detailed system network model and the analysis 

of the influence of the advanced system monitoring function on detecting protection 

system hidden failures, a protection system hidden failure effects analysis technique is 

developed to obtain hidden failure outages following any initial equipment outages. The 

proposed security-constrained adequacy evaluation methodology is extended so that it 

includes contingencies resulting from hidden failure outages. As a result, the effects of 

protection system hidden failures on bulk power system reliability can then be evaluated. 

 
 

 

1.5 Thesis Outline 
 
 
 
This thesis is organized as follows. Chapter 2 provides a literature survey of existing 

reliability modeling and assessment techniques for bulk power systems. This chapter 

summarizes the major work that has been done in this area and analyzes the advantages 

and disadvantages of existing techniques, which provides the motivation for this research.  

Chapter 3 proposes a comprehensive approach for bulk power system reliability 

assessment. This chapter describes the overall algorithm of the proposed security-
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constrained adequacy evaluation methodology and the development of various advanced 

techniques used to implement this methodology, including the quadratized power flow 

model, the performance index approach based on system state linearization, the wind-

chime contingency enumeration scheme, remedial actions, the non-divergent optimal 

quadratized power flow algorithm, and so on.   

Chapter 4 evaluates the effects of protection system hidden failures on bulk power 

system reliability. This chapter introduces the background of protection system hidden 

failures, incorporates the breaker-oriented substation model into the system network 

model, analyzes the ability of advanced system monitoring to detect protection system 

hidden failures, and then develops the effects analysis procedure of protection system 

hidden failures. In addition, this chapter extends the bulk power system reliability 

evaluation framework proposed in the previous chapter to evaluate system contingencies 

caused by protection system hidden failures. 

Chapter 5 applies the proposed comprehensive bulk power system reliability 

assessment approach to IEEE reliability test systems and then provides representative 

simulation results to demonstrate the effectiveness of the proposed approach. 

Finally, Chapter 6 summarizes the results of this research and suggests topics for 

future study. 
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CHAPTER II     

OVERVIEW OF BULK POWER SYSTEM 
RELIABILITY ASSESSMENT  

 
 
 

2.1 Introduction 
 
 
 

This chapter provides an overview of various existing reliability modeling and 

assessment techniques for bulk power systems. The purpose of this overview is to 

summarize the main developments in the area of bulk power system reliability 

assessment in the past several decades and reveal the motivation of this research.  

 
 
 

2.2 Bulk Power System Reliability Modeling Methods 
 

 
 
Bulk power system reliability modeling techniques have evolved from traditional 

deterministic modeling methods to the current more advanced probabilistic modeling 

methods. Recently, some intelligent concepts, such as fuzzy set theory, have also been 

incorporated into probabilistic modeling techniques.  

 
 
 
 
 
 
 



 16

2.2.1 Deterministic Method 
 
 
 
It is incumbent on power system planners and operators to ensure that customers 

receive adequate and secure energy supplies within reasonable economic constraints. 

Historically, such a task has involved the assessment of bulk power system reliability 

using deterministic criteria [18, 19], which generally include a list of empirical 

contingencies involving the outages of some important power system components. With 

these contingencies in mind, planners and operators of the power system can incorporate 

sufficient redundancy so that any system failures during such contingencies can be 

prevented. The more comprehensive the list of contingencies, the lower the probability of 

a system failure resulting from contingencies not listed. Through such deterministic 

methods, a satisfactory degree of system reliability has been achieved in the past decades 

[4].  

It is crucial that power system planners more closely examine the key element of 

deterministic criteria, i.e., the contingency list. The contingency list, which is generally 

developed based on the planners’ experience, is often the result of an informal framework 

[4]. As power systems become more complex, and unforeseen power flow patterns occur 

because of independent power producers, the contingency list becomes a less reliable 

means of assessing the power system reliability because the impact of contingencies 

absent from the list may become significant [20]. Therefore, the trend is to develop 

automated procedures for selecting the contingency list by taking into account power 

flow patterns and new operating scenarios. 
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2.2.2 Probabilistic Method  
 
 
 
As power systems grow much larger and more complex, the need for the rigorous 

analysis of bulk power system reliability becomes more obvious. Because of the 

stochastic nature of system behavior, such as component outages or load-level changes, 

the development and application of probabilistic techniques for modeling the bulk power 

system and evaluating an appropriate set of expected risk indices have received 

considerable attention [2-4]. 

In the probabilistic modeling method, uncertainties affecting power system reliability 

are accounted for using probabilistic techniques. For example, the Markov model is 

widely used to represent component states, electric load levels, system states, and so on. 

Such a probabilistic modeling method enables the calculation of probability, frequency, 

and duration indices of system failures. These indices are no longer deterministic values 

but expected values of probability distributions [2, 3]. 

 
 
 

2.2.3 Fuzzy-Probabilistic Method  
 
 
 
In recent years, some power system reliability probabilistic modeling methods have 

attempted to incorporate the fuzzy set concept in modeling system uncertainties [21-26]. 

For example, fuzzy numbers are used to model uncertainties in system component failure 

and repair rates, fuzzy load duration curves are developed using a fuzzy number in each 

time step [21-24], and fuzzy power flow models [25, 26] are developed to identify 

possible system behaviors given specified uncertainties. These fuzzy representations of 
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system uncertainties are then integrated into the probabilistic evaluation procedure. 

However, by using this fuzzy-probabilistic method, the computational burden increases 

significantly without a commensurate gain in the quality of results. 

 
 
 

2.2.4 Summary 
 
 
 
Although the deterministic method still dominates the planning and operating phases 

in practice, it can no longer assess the reliability of modern complex power systems 

effectively. Instead, with the availability of more component failure data and 

computational resources, the more superior probabilistic modeling method becomes the 

promising means to represent practical system behavior. In the next section, bulk power 

system reliability assessment techniques are reviewed, with an emphasis on those based 

on probabilistic models. 

 
 
 

2.3 Bulk Power System Reliability Assessment Methods 
 
 
 
Current bulk power system reliability assessment techniques in the literature fall into 

two fundamental categories: analytical and Monte Carlo simulation techniques [27-31].  

 
 
 
 
 
 
 



 19

2.3.1 Analytical and Monte Carlo Simulation Techniques 
 
 
 
The reliability assessment of bulk power systems must consider a multiplicity of 

factors, such as the failure and repair rates of equipment and operating practices, 

including economic generation scheduling, security controls, emergency controls, 

projected load variations, and maintenance schedules. These system characteristics can be 

represented with analytical models in the analytical technique [2, 4, 32]. By using the 

analytical technique, system contingencies, which may involve line failures, unit outages, 

or both, are first enumerated up to a certain level. To identify the contingencies that result 

in system failures, failure effects analysis is then conducted to test system contingencies 

against some predetermined criteria. The impact of each contingency on the system, such 

as line loading and bus voltages, is obtained by solving power flows. Based on the results 

of effects analysis, system reliability indices such as loss-of-load probabilities, 

frequencies, and durations can be calculated [33, 34]. 

The bulk power system reliability assessment problem is treated as a series of 

experiments by the Monte Carlo simulation technique. This technique consists of 

randomly sampling system states, testing them for acceptability, and aggregating the 

contribution of loss-of-load states to the reliability until the variations of reliability 

indices drop below pre-specified tolerances [3]. The basic approach can be applied for 

each hour in a year in chronological order (the sequential approach), or the hours of the 

study time can be considered as random (the random approach). The simulation of 

selected system states is done with the use of load flows that consider generation dispatch 

and other pre-selected operating policies. Simulation results are distributions of the 
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variables of interest (i.e., circuit flows, voltage levels, energy curtailment, and so on). 

These results are utilized in the computation of appropriate reliability indices [35-37]. 

 
 
 
2.3.2 The Comparison of Two Techniques 

 
 
 
The comparison of analytical and Monte Carlo simulation techniques is performed in 

this section. Both techniques solve power flow problems to identify system deficiencies. 

Power flow models vary widely and differ in computing speed, precision, and computer 

storage requirement. Since the number of contingencies in a practical system is 

enormous, a large number of power flow problems have to be solved. Therefore, in both 

analytical and Monte Carlo simulation techniques, the employed power flow model plays 

an important role in assessing overall system reliability efficiently and accurately [4]. On 

the other hand, the analytical and the Monte Carlo simulation techniques differ with 

regard to the processes of selecting states and evaluating reliability indices. The 

analytical technique selects states in an increasing order in terms of contingency levels, 

and this process stops at a particular component outage level or when the state probability 

becomes less than a specified value. Each state is assessed only once, and reliability 

indices are calculated mathematically from the statistical data associated with each state. 

Monte Carlo simulation techniques, however, select states randomly based on the concept 

of random numbers. States with greater probabilities of occurrence are more likely to be 

simulated several times, and this simulation process stops either after a fixed number of 

simulations or on the basis of statistical stopping rules. The expected values of indices are 

determined by averaging the indices obtained from each simulation [3]. 
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In Monte Carlo simulation, the number of system states that must be sampled before 

the indices stabilize is extremely large, and this number increases significantly as the 

system reliability level increases. Thus, a major drawback of the Monte Carlo simulation 

method is that it requires a long computation time. In particular, when using the 

sequential approach, the computational burden may be unmanageable for a practical bulk 

power system. Besides the long computation time, another limitation exists in the random 

approach. In power systems, the outages of some components may influence the 

probabilities of related component outages, which are referred to as “fat tail” effects. 

Since the random approach does not include this sequence information, it cannot account 

for the fat tail effects in the simulation procedure.  Compared to Monte Carlo simulation, 

the analytical technique can provide reliability indices in a relatively short computation 

time. It can also consider fat tail effects and other complex processes of the system using 

appropriate analytical models without significantly increasing the computational burden. 

In addition, the computational effort in the analytical method is much less dependent on 

the system reliability level.  

 
 
  

2.4 Adequacy and Security Reliability Assessment 
 
 
 
Bulk power systems must not only provide adequate generation and transmission 

capacity to meet the demand of customers while satisfying system operating constraints, 

but also be capable of maintaining system stability following faults, switchings, and other 

disturbances. Regarding these two aspects, the reliability of a bulk system can be 
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evaluated by two attributes: adequacy and security [2, 39]. Adequacy refers to the ability 

of the system to supply the aggregate electric energy requirements of customers within 

component ratings and voltage limits when planned and unplanned component outages 

occur. Adequacy assessment involves system steady-state conditions of post-

contingencies, i.e., the system is assumed to always reach a stable equilibrium point after 

equipment outages, and the dynamics of the transition from one state to another are 

neglected. The second attribute, system security, refers to the ability of the power system 

to withstand disturbances arising from faults or equipment outages. Security assessment 

involves system transient responses and cascading sequences after a disturbance. 

Transient responses include the fluctuations of both the system frequency and bus 

voltages. If the fluctuations exceed certain operating limits, cascading sequences, such as 

line and generator tripping, may occur and persist until the system completely separates 

or collapses. These effects may not be properly accounted for in adequacy studies and 

must be captured in security evaluations. Although most research has been devoted to the 

adequacy assessment of bulk power system reliability, some concerns have recently 

shifted to security evaluations that also integrate the adequacy studies. The following two 

sections summarize the main approaches developed in these two areas. 

 
 
 

2.4.1 Adequacy Assessment 
 
 
 
The major difficulty in adequacy assessment involves the enormous computational 

effort required to analyze as many contingencies that may have a nonzero contribution to 

system unreliability as possible. The massive computational demand is a result of the 
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following two factors:  The first involves the large system size and the resulting large 

number of system states that must be assessed. It is usually not feasible or even possible 

to investigate all the contingencies of a power network. In practice, only credible outage 

states up to a certain contingency level are investigated. It has been noticed that as the 

system size increases, the consideration of higher-level contingencies is necessary, which 

will rapidly increase the computation time [4]. Another factor involves the complexity of 

the failure effects analysis in the assessment of each state. The objective of such an 

analysis is to identify the impact of each state on system operations by solving power 

flow problems. It is the most important but the most computationally demanding part of 

reliability assessment, and its performance influences the effectiveness of the overall 

reliability evaluation [2, 4]. 

Research attempting to solve the above two problems are further classified as 

adequacy and security-constrained adequacy evaluations, which are reviewed separately 

as follows. 

 
 
 

2.4.1.1  Adequacy Evaluation 
 
 
 
The following research effort based on analytical techniques has been dedicated to 

reducing the number of contingencies that must be evaluated and therefore to cut down 

the computational burden while at the same time increasing the assessment accuracy. 

Inclusion of State Effects without Actual Evaluation To improve reliability 

assessment, a state extension algorithm is proposed [40, 41]. In this method, the system 

state space is enumerated in the form of a tree graph based on different outage levels, and 
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a coherent system is assumed, i.e., if an investigated state is a failure state, the descendant 

states with higher outage levels in the sub-tree of this investigated state are concluded to 

be failures, too. The information of the sub-tree, including its probability and associated 

repair and failure rates, is computed based on the knowledge of the investigated state. 

The contribution of states in the sub-tree to system unreliability is taken into account 

when system reliability indices are calculated. In this method, the effects of some un-

investigated high-level contingencies are included in the reliability evaluation procedure, 

and more accurate indices are obtained without increasing the computational burden. 

The drawback of this algorithm is that it requires the component sequence adjustment 

in the tree graph so that it includes as many effects as possible of un-investigated high-

level failure states. In its application to the testing systems [40], results show that it could 

not provide satisfactory assessment in some situations. In addition, for a large system, 

even the number of contingencies up to the boundary outage level is too large to be 

examined one by one [40]. A possible solution is to use the contingency selection 

scheme, which provides information useful in adjusting the component sequence to 

further reduce the computational effort in evaluating the states up to the boundary outage 

level. 

Simplification of the System Model by System Equivalent Models The practical bulk 

power system can be extremely complex because of the large number of components and 

complex interconnections among them. To simplify the system model, an adequacy 

equivalent method [42, 43] is proposed, in which a general power network is divided into 

two areas: the area of interest (AI) and the interconnected area (IA). The IA is replaced 

with an equivalent model that is simpler than the original network but retains all the 
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essential information. The equivalent model is expressed in terms of a capacity margin 

table that contains the information of available capacities, probabilities, and frequencies 

of simplified states in the IA. Once this equivalence is developed, the adequacy 

evaluation can be conducted effectively with reduced computational effort. In [44, 45], 

the equivalent method is extended to include the equivalent load model in the IA so that 

its load curtailment can also be considered. Furthermore, in [46], the composite power 

system is divided into three areas: the area of interest, the boundary buses, and the 

external area. The external area is replaced by an equivalent probabilistic model, and the 

statistical behavior of its components is included.  

Although the system equivalent method can simplify the analysis to some extent and 

reduce the computational burden, it should be noted that this method has some 

limitations. First, an equivalent model is a simplified model of the original network and 

cannot be complete and precise in all aspects. In addition, this method is system 

dependent, i.e., different equivalent models need to be developed under different system 

operating conditions and for different areas of interest. As a result, the extra 

computational effort is brought into the evaluation procedure.  Furthermore, the 

implementation of this method is based on the DC power flow model, which cannot 

check the voltage and reactive power of the power supply at load points and capture the 

effects of voltage and reactive power supplies on system reliability. 

Reduction of State Space by the Contingency Selection Method In adequacy 

assessment, an important fact is that many component outages (contingencies) do not 

cause the service curtailment or other adverse impact on service quality [47-49]. The 

contingency selection method can eliminate states whose impact on the system is small, 
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thus reducing the state space to include only states whose impact on the system is 

significant. Selected states are further ranked according to their levels of impact on the 

system [52]. Typical contingency selection methods consist of the performance index (PI) 

method, the screening method, and the hybrid scheme. 

In the PI method, a variety of performance indices, such as the circuit current index, 

the voltage index, and the reactive power index, are defined to measure the normality of a 

system [51-55]. When a contingency occurs, the system operating condition changes and 

so do the associated PIs. The variations of PIs from pre-contingency to post-contingency 

can be considered as an indication of the impact of the contingency on system operations. 

Contingencies are further ranked in a descending order of the projected PI changes. 

Although the PI method is efficient, it is vulnerable to misrankings. The inaccuracies of 

the PI method are mainly the result of (1) the nonlinearities of the system model [55] and 

(2) the discontinuities of the system model arising from generator reactive power limits, 

regulator tap limits, and so on [53, 54]. In contrast to the PI method, the screening 

method is more accurate but inefficient. In this method, the contingency selection is 

based on approximate network solutions such as Fast Decoupled Power Flow solutions 

[54, 56], which can consider the nonlinearities of the power system to some extent and 

provide more accurate results than the PI method. However, the contingency selection 

using the screening method needs to solve post-contingency cases, which are time 

consuming. In particular, time may be wasted while solving contingencies without much 

impact on system operations. The hybrid scheme [5, 50], a combination the PI and the 

screening methods, achieves both efficient and accurate contingency selection and 

ranking. Efficiency is achieved by employing the PI method first to quickly identify the 
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conceivable contingencies. The accuracy of ranking is guaranteed by using screening 

methods for only a subset of contingencies that cannot be ranked with confidence by the 

PI methods. Thus, the hybrid scheme employs the best properties of both the PI and the 

screening methods.       

The research reviewed above is based on the analytical technique. Because of the 

critical limitations of the Monte Carlo simulation technique, such as long computation 

time, its application is less popular than that of the analytical technique. To accelerate the 

convergence of the Monte Carlo simulation, some methods, including parallel processing 

[57-62], state space pruning [63-69], variance reduction [70-77], and so on, are proposed 

in the literature. The improvements, however, are quite limited, so the need persists for 

techniques that alleviate the computational burden while dealing with composite systems 

of realistic dimensions [38].  

 
 
 

2.4.1.2  Security-Constrained Adequacy Evaluation (SCAE) 
 
 
 
In the previous section, the main research effort focused on developing techniques that 

select credible contingencies. As far as effects analysis is concerned, traditional power 

flow techniques, including DC power flow and AC power flow, are generally used as the 

primary means to perform contingency evaluations.  

Some recent research efforts have concentrated on improving effects analysis 

performance by integrating remedial/corrective actions, i.e., remedial actions are applied 

to satisfy system security constraints while solving power flow problems after 

contingencies. This strategy is referred to as security-constrained adequacy evaluation 
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(SCAE). System security constraints include bus voltage limits, line flow limits, real 

power and reactive power generation limits, and so on. In practice, when generator or line 

outages occur or line overloads resulting from outages occur, generating units should be 

rescheduled so that the power system can maintain generation-demand balance and 

alleviate line overloads. If violations corresponding to the bus voltage limits exist, 

reactive power (generation, transformer taps, and shunt compensation) must be 

rescheduled to eliminate abnormal voltages in the system [78]. The purpose of these 

remedial actions is to keep the system operating normally, and thus avoid load 

curtailment, if possible, or to minimize total load curtailment, if unavoidable.  

In [78-84], some security-constrained adequacy evaluation methodologies are 

presented. In these methods, the procedures for effects analysis are implemented by 

solving power flow problems coupled with remedial actions. Optimization power flow 

problems are formulated to minimize the load curtailment through remedial actions and 

load shedding in the effects analysis procedure. Linear programming models for remedial 

actions that adjust active power [79-81] and reactive power [83] are derived. Some 

techniques, including the simplex method and the interior point method [78], are applied 

to solve the formulated optimal power flow problems. 

Since the optimal power flow technique is an important issue related to the effects 

analysis procedure in SCAE, a brief review of the formulation and the solution of optimal 

power flow is provided in the following section.  
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2.4.1.3  Optimal Power Flow 
 
 
 
Optimal power flow (OPF) is a mathematical optimization tool for adjusting the power 

flow in a power network to achieve the optimal value of a predefined objective while 

satisfying system operating constraints [85, 86]. OPF has undergone intensive research 

and development over the past several decades [87-95]. Mathematically, the general OPF 

problem can be expressed as follows. 

Minimize  ),( uxf  

Subject to 0),( =uxg  

             0),( ≤uxh  

             maxmin uuu ≤≤ ,                   (2.1) 

where  

),( uxf  objective function 

0),( =uxg  power flow equations 

0),( ≤uxh  operating constraints 

x  vector of system state variables 

u  vector of control variables. 

maxmin uuu ≤≤  feasible region of control variables. 

The OPF objective function varies with different operational objectives. Typical 

examples of objective functions are minimum generation cost [96, 97], minimum system 

transmission loss [98], voltage and reactive power optimization [99], preventive and 

corrective control optimization [100], and so on.  In reliability assessment, the objective 

may include the minimum amount of remedial actions, minimum load curtailments, and 
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so on. A predefined objective can be achieved if control variables in the system are 

available for adjustment. Control variables usually include MW/MVAR generation 

adjustment, shunt capacitor/reactor switching, phase shifter adjustment, transformer tap 

adjustment, load transfer, area interchange, and load shedding.  

Constraints in the OPF generally contain equality and inequality equations. Equality 

constraints are usually power flow equations. Inequality constraints consist of functional 

operating constraints, including branch flow limits, bus voltage magnitude limits, and so 

on. In addition, the feasible region of control variables is contained in the constraints set, 

including unit active and reactive power output limits, transformer tap limits, and so on.  

Some variations in formulating the OPF problem exist with its application in different 

areas. These variations mainly include the decomposition of real and reactive OPF [86], 

contingency constrained OPF [101, 102], stability constrained OPF [103, 104], and so on. 

Also, a wide variety of optimization techniques, such as linear programming (LP), 

quadratic programming, nonlinear programming, hybrid versions of linear programming, 

and integer programming, have been employed to solve the formulated OPF problems. 

Because of the large-scale nature of the problem and the resulting computational 

complexity of reliability assessment, the linear programming (LP) technique, which has a 

relatively simple formulation and is capable of providing fast solutions, is the most 

attractive tool.  

The application of the LP technique requires that the nonlinear objective function and 

constraints be linearized around the operating point. The obtained LP problem can be 

solved using the different variants of the simplex method. Among them, the most 

commonly used technique is the revised simplex method. However, interior point 
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methods have recently shown superiority over the simplex method for solving large-scale 

LP problems. 

In spite of the tremendous research that has been done, the OPF remains a difficult 

mathematical problem, and its use has been somewhat restricted by its lack of efficiency, 

flexibility, and reliability. To solve such problems, a novel formulation and solution 

approach for the OPF problem was developed [86]. The optimal solution is obtained by 

gradually reducing the power mismatch at each bus while at the same time incorporating 

the economic dispatch process and observing operating constraints. This OPF model has 

the following merits: (1) it guarantees a non-divergent solution if a feasible power flow 

solution exists; (2) it realistically simulates actual system operating practices by 

incorporating the economic dispatch and remedial actions when operating constraint 

violations occur; and (3) compared with other OPF models, it is efficient because of the 

implementation of extensive model reduction and the application of sparse techniques 

[86]. 

 
 
 

2.4.2 Integrated Adequacy and Security Assessment  
 
 
 
The security assessment of a composite power system involves evaluating system 

behavior while integrating transient stability as well as cascading sequences after a 

disturbance. For the correct assessment of system security, the contingency analysis has 

to be repeated for all significant initial conditions and at different points in time to 

account for the impact of time-dependent factors, including the transient behavior of 

generators, the operation of many types of protection schemes, the automatic actions of 
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different controls, and operators’ actions [105, 106]. Nowadays, a major effort in the 

security assessment has been devoted to extending existing adequacy assessment 

techniques to include the assessment of system security. Other work is based on time 

domain simulation that achieves the security assessment. 

Integration of Transient Stability Limit: A framework that evaluates both the adequacy 

and security reliability of the system is presented in [106]. In security analysis, the system 

transient stability limit is identified by comparing the fault clearing time with the critical 

clearing time. Providing critical clearing time requires a transient stability evaluation. For 

unstable states, remedial actions are applied, and some indices corresponding to the 

security evaluation are also provided. The security assessment presented in reference 

[105] also takes into account the cascading sequences besides the transient stability. 

System states are classified into nine types: adequate, inadequate, partially adequate, 

stable, unstable, secure, not secure, marginally adequate, and system collapse states. 

Based on the classified states, a possible sequence of events after the occurrence of a 

disturbance is built.  

Integration of Security Constraints The security assessment technique presented in [81, 

82] is based on the previously described security-constrained adequacy evaluation. In 

[81], besides the basic operating constraints that have to be satisfied for the steady- state 

performance, a transient-performance constraint set that can reflect the transient behavior 

of a power system when subject to system faults is formed. In [82], instead of introducing 

new constraint sets, dynamic system models are suggested for use in determining system 

operating limits that include security consideration. 
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Design Contingency Set In [108], a design contingency set (DCS) is set up first. A 

DCS is a set of contingencies that the system must be able to withstand with acceptable 

transient performance. Based on the DCS, security limits are derived by ensuring that the 

system is stable for all DCS contingencies. Security evaluation can be quantified by 

evaluating the ability of the system to operate within the security limits in the steady state. 

This method captures the impact of contingencies on security without the need for a 

transient analysis. However, it may result in the following two problems: (1) because 

reliability assessment is based on the DCS, it is difficult to determine if the DCS was 

selected properly and (2) the procedure of determining security limits still requires 

stability studies. 

Time-Domain Simulation In [107], a time-domain simulation that obtains the power 

system response after a disturbance is applied. In the simulation, the dominant dynamic 

phenomena, i.e., the voltage stability problem, power-frequency control, and the 

cascading tripping of power system components, are crucial because these processes 

determine whether new steady-state equilibrium can be reached. The consideration of 

voltage stability in reliability assessment is addressed in [109-112]. After the power 

system reaching a steady state, the procedure of minimizing the overall curtailed load, 

voltage restoration, and economic dispatching is applied.  

Because of the complexity of considering transient stability as well as cascading 

events after contingencies, security assessment incurs an extremely heavy computational 

burden and has slow convergence.  
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2.4.3 Summary  
 
 
 
Bulk power system reliability assessment includes two aspects: adequacy and security. 

Of the two, adequacy assessment has been the major concern. The key issue associated 

with adequacy assessment is the computational burden and the performance of effects 

analysis to evaluate large-scale systems. Research, which has focused on both analytical 

and Monte Carlo simulation techniques, has found the former superior to the latter. In 

addition, a security-constrained adequacy evaluation has recently received more attention, 

as it is able to simulate actual operational practices that improve the performance of 

effects analysis procedures. Regarding security assessment, some effort has been devoted 

to including transient stability analysis and cascading sequences of power system 

behavior after disturbances occur. 

 
 
 

2.5 Summary 
 
 
 

The overview of current bulk power system reliability assessment techniques reveals 

following facts: (1) the probabilistic modeling method has become the most promising 

means to represent practical system behavior, (2) the analytical technique is superior to 

the Monte Carlo simulation technique in performing reliability assessment for large scale 

bulk power systems, and (3) the contingency selection method and the security-

constrained adequacy evaluation method are the most effective ways to reduce the system 

state space and perform contingency effects analysis, respectively.  
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This overview also indicates that (1) contingency selection and ranking based on the 

current contingency selection method is prone to misranking, (2) the security-constrained 

adequacy evaluation method based on the traditional power flow model suffers from the 

lack of realistic system simulation and  slow convergence (even non-convergence) when 

the system is heavily stressed, (3) no research effort has been devoted to the evaluation of 

the effects of protection system hidden failures on bulk power system reliability 

assessment. In this work, these problems are addressed in the proposed comprehensive 

approach for bulk power system reliability, which is illustrated in detail in following 

Chapter III and Chapter IV.  
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CHAPTER III     

BULK POWER SYSTEM RELIABILITY            
ASSESSMENT METHODOLOGY 

 
 
  

3.1 Introduction 
 
 
 

The objective of this research is to advance the state of the art in bulk power system 

reliability assessment. Specifically, a framework of security-constrained adequacy 

evaluation (SCAE) based on the analytical technique is proposed to determine the ability 

of the bulk system to supply the electric load while satisfying security constraints. The 

SCAE framework is implemented based on a single-phase quadratized power flow model 

and encompasses three main steps: (a) critical contingency selection, (b) contingency 

effects analysis, and (c) reliability index computations. To address the major challenges 

in the bulk power system reliability assessment practice, this research focuses on the first 

two steps.  

Since a complete evaluation of all possible system contingencies is impractical, only 

critical contingencies, those that may lead to system unreliability, are identified in a rapid 

preliminary analysis for the purpose of reducing the system state space. In the critical 

contingency selection, a systematic contingency selection/enumeration scheme based on 

the performance index approach, the single-phase quadratized power flow model, and the 

wind-chime contingency enumeration scheme is investigated to improve the accuracy of 

the critical contingency selection. 
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Contingency effects analysis is the most important but the most computationally 

demanding procedure. In the effects analysis, it is important to simulate contingencies 

realistically to capture the system response under all major controls and adjustments. The 

simulation of contingencies must also be efficient so that the overall computational effort 

of the SCAE methodology is reasonable. Effects analysis based on traditional power flow 

technology often breaks down (non-convergence), especially when multi-level 

contingencies are considered and when the system is severely stressed. Thus, in this 

proposed research, a non-divergent optimal quadratized power flow (NDOQPF) 

algorithm is proposed for effects analysis. This algorithm is implemented based on the 

single-phase quadratized power flow model because of its faster convergence and ability 

to model complex component characteristics. A constrained optimization problem is 

formulated that can incorporate system security constraints and remedial actions in the 

contingency simulation. The non-divergence is achieved by the introduction of fictitious 

bus injections that are driven to zero as the solution progresses. The proposed algorithm 

guarantees convergence if a solution exists; in the event that a solution does not exist, it 

provides a non-optimal solution that may include load shedding. In addition, this 

algorithm is capable of efficiently solving the ISO/RTO operational model in the 

deregulated environment and providing a solution under all conditions. 

While this research focuses on the critical contingency selection and contingency 

effects analysis, to form an overall reliability evaluation procedure, the SCAE framework 

also includes the reliability index computation. Reliability indices, including probability, 

frequency, and duration indices of system failure events, are calculated and considered as 

a quantitative indication of the level of system reliability. 
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3.2 The Overall Algorithm  
 
 
 
The overall developed computational algorithm of the proposed SCAE methodology 

for bulk power system reliability assessment, shown in Figure 3.1, is implemented based 

on the single-phase quadratized power flow model. The constituent parts of the approach 

are critical contingency selection, contingency effects analysis, reliability index 

computation, and so forth.  
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Figure 3.1: Overall computational algorithm of the SCAE methodology.  
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The bulk power system reliability assessment procedure based on the proposed SCAE 

methodology and functions of different parts of the overall algorithm of the SCAE 

methodology are discussed below. 

First, feasible contingencies up to a certain contingency level are defined, and an 

enumeration for each level of feasible contingencies is provided by the contingency 

enumeration scheme. Then, the contingencies in each level are ranked according to their 

impact on system operation by the contingency selection scheme. Such a contingency 

enumeration and selection procedure can be repeated for a number of electric load levels. 

The ranked contingencies are then subjected to the effects analysis. 

Three options for the effects analysis are provided in branches A, B, and C: the 

network solution approach with possible remedial actions, the system simulation 

approach, and market simulation, respectively. These three options provide a means to 

perform the effects analysis of either regulated or deregulated power systems and to 

evaluate the adequacy or security aspect of system reliability. 

In branch A of Figure 3.1, the network solution approach with remedial actions applies 

the proposed NDOQPF algorithm to the effects analysis of regulated power systems. It is 

implemented based on the single-phase quadratized power flow model. The contingency 

simulation procedure incorporates the major controls and adjustments inherent in a 

regulated environment. A constrained optimization problem is formulated to solve for the 

predefined operating objective. Whenever abnormal operating conditions occur, remedial 

actions are applied to satisfy security constraints. Non-divergence is achieved by 

introducing fictitious bus injections that are driven to zero as the solution progresses. If a 
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solution exists, the proposed methodology guarantees convergence; if a solution does not 

exist, it provides a non-optimal solution that may include load shedding. 

In recent years, electric power industry has been deregulated in many countries. The 

market simulation in branch C in Figure 3.1 represents a means to perform the effects 

analysis in deregulated power systems. In a deregulated environment, the ISO/RTO 

operational procedure is to determine the least expensive dispatch of generation based on 

energy bids. When transmission congestion occurs, appropriate remedial actions are 

taken to relieve congestion. This procedure, although has a different objective and 

remedial action set, is similar to that in the regulated environment. Therefore, the effects 

analysis in the deregulated environment can be formulated and solved by the NDOQPF 

methodology in much the same way as it is in the regulated system. Moreover, because of 

the impact of deregulation on system operation, the traditional power flow analysis under 

contingencies is prone to a non-convergence situation. Because of its ability to solve such 

a problem, the NDOQPF algorithm is especially effective in the deregulated environment 

to solve the ISO/RTO operational model by always providing a solution to ISO/RTO 

operators under all conditions. 

The system simulation approach in branch B is capable of considering full security 

evaluation in the effects analysis, which includes transient stability analysis, cascading 

sequences, and other dynamic aspects of power system behavior after contingencies. This 

security assessment scheme is not addressed in this work, but it will be implemented in 

future work. 

The results of the contingency effects analysis for all evaluated contingencies are 

stored and processed to provide reliability indices. Three classes of reliability indices are 
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computed: (a) probability indices, (b) frequency indices, and (c) duration indices. These 

indices provide system planners and operators with quantitative values that indicate the 

level of system reliability. 

The basis of the proposed SCAE methodology, i.e., the single-phase quadratized 

power flow model, and the three major constituent parts of the methodology, including 

critical contingency selection, contingency effects analysis, and reliability index 

computation, are described in detail in the following sections. 

 
 
 

3.3 The Single-Phase Quadratized Power Flow Model  
 
 
 
In the proposed SCAE methodology, an advanced power flow model, the single-phase 

quadratized power flow (SPQPF) model [52], is applied in both critical contingency 

selection and contingency effects analysis. The SPQPF model is able to improve the 

accuracy of the critical contingency selection and the efficiency of power flow solutions 

in the effects analysis. To illustrate the characteristics of the SPQPF model, a comparison 

of the traditional power flow (TPF) model and the SPQPF model is described below. 

The TPF model consists of power balance equations at each bus in the system. These 

equations are expressed in polar coordinates in terms of system states (bus voltage 

magnitudes and angles); nonlinear trigonometric terms inevitably appear in the equations. 

In addition, most system loads are induction machines, and their models contain 

relatively high-order nonlinear terms. Consequently, the TPF formulation results in a set 

of complex and highly nonlinear equations. When an iterative method such as the 
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Newton-Raphson method is used to solve such equations, a number of iterations may be 

required and in some cases, the solution may be difficult to find. [113]. 

The SPQPF model, however, is set up based on the application of the Kirchhoff’s 

current law at each bus, with the intention that most of the power flow equations are 

linear in the large-scale system. Furthermore, system states (bus voltage phasors) are 

expressed as Cartesian coordinates (bus voltage real and imaginary parts) that can avoid 

trigonometric terms. As trigonometric functions are absent, power flow equations are less 

complex. Moreover, since the Newton-Raphson method is ideal for solving quadratic 

equations, all power flow equations are quadratized by introducing additional state 

variables. As a result, all power flow equations are linear or quadratic. The formulation of 

the quadratized power flow model provides superior performance in two aspects: (a) 

faster convergence and (b) ability to model complex load characteristics in the 

quadratized form. 

 
 
 

3.4 Critical Contingency Selection 
 
 
 
Since the complete evaluation of all possible system contingencies is impractical, 

critical contingency selection is applied first to approximate but quickly identify the 

critical contingencies that may lead to system unreliability, such as system loss of load. 

Such selection of critical contingencies is implemented using an improved contingency 

selection/enumeration technique based on the performance index (PI) approach, the 

single-phase quadratized power flow model, and the wind-chime contingency 
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enumeration scheme, which can select critical contingencies with high efficiency and less 

misranking. This technique is developed in this section. 

 
 
 

3.4.1 The Performance Index Linearization Approach 
 
 
 
The system performance index, defined as a function of system states and a 

contingency control variable [52, 113], is used to forecast the influence of contingencies 

on the system operation based on pre-contingency conditions. The performance index is 

generally expressed as follows: 

( )∑=
j

n
cjj uxfwJ 2),( ,                        (3.1)  

where 

x     system state vector 

jw   appropriate circuit weight coefficient, 10 ≤< jw  

n      integer parameter that defines the exponent. 

cu    contingency control variable 

Note that the value of contingency control variable cu  is one (1.0) for the pre-

contingency condition and changes to zero (0) for the post-contingency case.  

The quantities jf  inside the parentheses express the normalized value, such as power 

flow, circuit current, voltage magnitude, and generator reactive power, with respect to 

equipment capability or allowable limits. Thus, while the values of the quantities in the 

parentheses in the range (-1.0 to 1.0) indicate the system normal operating conditions of 

the system, the values outside this range indicate the system abnormal operating 
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conditions of the system. When these quantities are raised to a power of n2 , they will 

produce large values for abnormal conditions and very small values for normal 

conditions.  

   Two examples of performance indices, i.e., current-based circuit loading index ( CJ ) 

and voltage index ( VJ ), are defined as follows: 

Current-Based Circuit Loading Index 
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where 

jI     current magnitude in circuit j  

jNI ,  current rating of circuit j  

jw    appropriate circuit current weight, 10 ≤< jw  

n      integer parameter that defines the exponent. 

 
Voltage Index 
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where 

kV    voltage magnitude at bus k  

meankV ,   nominal voltage value (typically 1.0 p.u.), which  is in general the mean value in  

         the desired range, i.e., ( )minmax

2
1

kk VV +  
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stepkV ,    voltage deviation tolerance (i.e., ( )minmax

2
1

kk VV − ) 

kw   appropriate bus weight, 10 ≤< kw  

n    integer parameter that defines the exponent. 

Performance indices provide a quantitative way of representing the impact of 

contingencies on system operating conditions. A contingency that causes a change in the 

system operating condition will be accompanied by a change in the performance indices 

( J∆ ) before and after the contingency. Thus, the critical contingencies that may have an 

adverse impact on system reliability can be recognized by ranking the changes in the 

performance indices. The larger the performance index change ( J∆ ) is, the more critical 

the corresponding contingency is. 

Generally, the post-contingency performance index (PI) or the change in the 

performance index ( J∆ ) before and after the contingency is found by linearizing the 

performance index in terms of the contingency control variable based on the pre-

contingency condition, i.e.,  

( )1)1()0( −+=≅= c
c

c
pre

c
post u

du
dJuJuJ  ,                                              (3.4) 

c
c

pre
c

post

du
dJuJuJJ −==−==∆ )1()0( .                                (3.5) 

Such a performance index linearization method only takes into account only the first-

order term with respect to contingency control variable cu  when calculating J∆ . This 

method is prone to misranking because of the inaccuracies caused by system 

nonlinearities.  To reduce the error introduced by the linear approximation in the general 

performance index linearization method, a new technique that linearizes system states 
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with respect to the contingency control variable is investigated to reduce the incidence of 

misranking. The system state linearization approach, implemented based on the 

quadratized power flow model, can include higher-order (nonlinear) terms in calculating 

performance index changes to reduce the error.  

 
 
 

3.4.2 The System State Linearization Approach 
 
 
 
In the system state linearization approach [114, 115], instead of linearizing the 

performance index directly, the system states of the quadratized power flow model are 

linearized with respect to the contingency control variable. The post-contingency 

performance index J  is then calculated based on the approximate post-contingency 

system states as follows: 

)),1(( 0
cc uu

du
dxxJJ −+= ,          (3.6) 

       
where  

0x   pre-contingency operating conditions  

x    system states of the SPQPF model 

cu   contingency control variable 

The use of linearized system states in calculating the system performance index 

includes higher-order terms in Taylor’s series and provides traces of indices with 

curvature, which can follow the highly nonlinear variations of the original performance 

indices to some extent. Based on Equation (3.6), the change in performance index ( J∆ ) 

is calculated as follows: 
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The sensitivity of the state with respect to the control variable can be easily computed 

as follows: 
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Note that 
x

uxG
∂

∂ ),( , the Jacobian matrix of the system, is pre-computed at the present 

operating condition and remains invariant for all contingencies. Thus, for each 

contingency, only the partial derivatives of the power flow equation ),( uxG with respect 

to the contingency control variable have to be computed. The vector has only a few 

nonzero entries, so the computations are extremely fast. It should also be noted that 

cdu
dx is a vector of the same size as the state vector, each element of which is the 

derivative of the corresponding system state with respect to the contingency control 

variable. Once the new state is computed via this linear approximation, the calculation of 

the new value of the performance index is a straightforward operation. 

The concept of this approach is presented graphically in Figures 3.2 and 3.3, based on 

results obtained from the application of the method to a test system. The first-order 

analysis curve represents the general linear curve obtained from the performance index 

linearization method. The higher-order analysis curve represents the nonlinear curve 

obtained from the system state linearization method. 

It can be seen that the system state linearization approach is superior to the general 

performance index linearization method in calculating performance index changes and 
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the subsequent ranking of contingencies. Thus, the system state linearization approach 

has unique potential for improving the contingency selection accuracy [113-117].  
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Figure 3.2: Plot of the circuit-loading index vs. the contingency control variable uc. 
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Figure 3.3:  Plot of the voltage index vs. the contingency control variable uc. 
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3.4.3 The Wind-Chime Contingency Enumeration Scheme 
 
 
 
The wind-chime contingency enumeration scheme [33,114], shown in Figure 3.4, can 

systematically enumerate system contingencies according to their different outage levels 

and rank contingencies in each level in terms of severity based on the results of the 

performance index changes obtained from the system state linearization method. 

 

Figure 3.4: Wind-chime contingency enumeration scheme. 

 

The contingency enumeration procedure begins with the base case. All the first-level 

contingencies are enumerated and ranked in decreasing order of severity. The second 

outage-level contingencies are obtained from each contingency in the first level by 

having one more component on outage and then ranked in the same way. The new outage 
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component should be selected to make sure the obtained contingencies are distinct. This 

procedure continues until it reaches the predefined contingency depth level.  

In each outage level, the reliability evaluation starts from the highest ranked 

contingencies in terms of severity. If the evaluation results of several successive 

contingencies show zero contribution to system unreliability, it is reasonable to conclude 

that the remaining contingencies in this level do not need to be investigated since they are 

considered to affect system reliability less severely. Figure 3.4 shows the resulting three 

types of system contingencies: (1) evaluated contingencies with nonzero contribution to 

unreliability, (2) evaluated contingencies with zero contribution to unreliability, and (3) 

non-evaluated contingencies. In such a way, computational effort can be saved by 

performing reliability evaluation only on the most severe contingencies. 

 
 
 

3.5 The Contingency Effects Analysis 
 
 
 
After critical contingency selection, the contingency effects analysis is performed to 

test selected system contingencies (states) against certain criteria to identify the 

contingencies that violate the criteria and therefore represent system failure. This 

procedure is the most important and computationally demanding in system reliability 

evaluation. In this section, a non-divergent optimal quadratized power flow (NDOQPF) 

algorithm is proposed for contingency effects analysis, as it can realistically and 

efficiently simulate the system response to critical contingencies and incorporate major 

system controls and adjustments such as real power economic dispatch, reactive power 
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proportional dispatch, and remedial actions. For this algorithm, a constrained 

optimization problem is formulated to solve for the predefined operation objective while 

satisfying system security constraints. Non-divergence is achieved by introducing 

fictitious bus injections that are driven to zero as the solution progresses. If a solution 

exists, the proposed algorithm guarantees convergence; if a solution does not exist, it 

provides a sub-optimal solution that may include load shedding. 

To consider the effects of remedial actions on system reliability, quadratized remedial 

action models are developed and incorporated into the effects analysis procedure.  Both 

the quadratized remedial action models and the NDOQPF algorithm are discussed below.  

 
 
 

3.5.1 Remedial Actions 
 
 
 
Remedial actions (RAs) provide a means to correct abnormal system operating 

conditions, such as alleviating circuit overloads and abnormal voltages. Abnormal 

conditions usually result from scheduled or random events, particularly system 

contingencies. A list of typical remedial actions along with their relative costs is 

presented in Table 3.1.  

Remedial actions greatly affect the reliability of power system operations by providing 

corrective measures after contingencies. In the SCAE methodology, whenever security 

constraint violations occur after a certain contingency, remedial actions without load 

shedding will be applied first. If the violations cannot be eliminated completely, the last 

type of remedial action, i.e., load shedding, would be used to alleviate the emergency. A 

contingency that requires load shedding to maintain normal system operation is recorded 
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as a system failure. Such results of the contingency effects analysis are stored and 

subsequently used to calculate reliability indices.    

Table 3.1: List of typical power system remedial actions. 

 
 Remedial Action Associate Cost 

1 Shunt Capacitor Switching Low 

2 Shunt Reactor Switching Low 

3 Phase Shifter Adjustment Low 

4 MVAR Generation Adjustment Low 

5 Generation Bus Voltage Low 

6 Transformer Taps Low 

7 FACTS Controls Low 

8 Load Transfer Low 

9 MW Generation Adjustment Moderate 

10 Area Interchange High 

11 Interruptible Load Shedding High 

12 Firm Load Shedding High 

13 Critical Load Shedding High 

   

Quadratized remedial action models are set up to analyze the effects of remedial 

actions on power system reliability. A control variable u  is integrated into each remedial 

action model to represent the availability and magnitude of the remedial action [118-

120]. An example of a shunt capacitor/reactor model is provided below to illustrate the 

quadratized models of remedial actions. 
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Figure 3.5 shows a discrete shunt switched capacitor/reactor model that is connected at 

bus k . It is characterized with the maximum admittance max,
~

ky and remedial action control 

variable SCRu . 

 

 
Figure 3.5: Shunt capacitor/reactor at bus k. 

 
The control variable SCRu  is defined as follows: 

ni
n
iuSCR L,1,0, ==            (3.9) 

where n  is the total number of switched steps and i  represents the different steps that the 

capacitor/reactor can be adjusted to. The value of SCRu  indicates the available normalized 

amount of adjustment and varies between 0 - 1. 

Based on the defined control variable SCRu , the model for this switched 

capacitor/reactor in standard form is given as follows: 

kSCRkdk VuyI ~~~
max,= .               (3.10) 

This model is already a quadratized model since the highest term order is no greater 

than two. Therefore, no effort is required to quadratize this model. For other remedial 

action models in which the highest term order is greater than two, additional state 

variables should be introduced to quadratize the models. 
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3.5.2 The Non-Divergent Optimal Quadratized Power Flow Algorithm 
 
 
 
In this section, a non-divergent optimal quadratized power flow (NDOQPF) algorithm 

is proposed for contingency effects analysis to simulate the system response to critical 

contingencies. 

Consider an electric power system and let vectors x  and u  represent system states 

and available controls of remedial actions, such as unit real/reactive generation 

adjustments, switched capacitors/reactors, and so on. The last remedial action that would 

be used is load shedding. Assume a given initial operating state vector 0x  and control 

variable vector 0u  and consider a general system bus k  in the system, as shown in 

Figure 3.6. Unless 0x  and 0u  represent a power flow solution, a current mismatch equal 

to imkrmk jII __ +  exists at bus k . Assume that a fictitious current source is placed at bus 

k  and let the output of the current source be equal to imkrmk jII __ + . Taking into account 

the fictitious current source, Kirchhoff’s current law is then satisfied at bus k . Similar 

fictitious sources/mismatches can be assumed for all other SPQPF equations such that 0x  

and 0u  represent the current system operating condition. The actual operating condition 

of the system can be obtained by gradually driving the output of fictitious 

sources/mismatches to zero. This transition can be achieved along a trajectory that 

maintains feasibility and optimality.  
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Figure 3.6: A general bus k  in a power system with a fictitious current source. 

 
Mathematically, the above procedure is formulated as an optimization problem: 
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where 

µ     penalty coefficient for mismatches  

im    mismatch value of the thi  SPQPF equation 
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iλ    weight coefficient of the thj  remedial action 

ju∆ amount of the thj  remedial action adjustment 

n     number of SPQPF equations 

r     number of total remedial action control variables 

0),,( =muxG  SPQPF equations 

x     vector of system state variables 

u     vector of system remedial action control variables 

m    vector of mismatch variables 

b      number of system buses 

l       number of system circuit branches 

edg   number of generators participating economic dispatch 

pvg   number of PV generators 

The first term in the objective function is a penalty function that tends to reduce 

mismatches to zero and thus reaches feasibility. The second term is a pre-selected 

function to be optimized. In the present case, as shown in (3.11), this term expresses the 

total amount of remedial actions. However, it can be substituted with any other functions 

of interest.  

The defined optimization problem is a large-scale problem. The size of this problem 

can be drastically reduced with simple transformations. Specifically, all mismatch 

variables can be substituted with one artificial control variable v  as follows: 

vmm ii
0= ,  10 ≤≤ v                                                        (3.12) 
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where variable v  represents the normalized change of mismatches. Note that this simple 

transformation replaces all mismatch variables (a total of n ) with a single variable v . 

Variables gjP  (a total of edg ) can also be replaced with only two variables that 

implicitly incorporate the economic dispatch process. Assume that the initial generation 

0
gjP  ( edgj ,,1L= ) is an economic dispatch schedule with respect to the initial electric 

load LP  and the Lagrange multiplier 0λ . Assume now that the system load has increased 

from LP to LL dPP +  and consider the economic dispatch problem: 

Min   ∑∑
==
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j
gjjgjjj
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where  

q    system transmission loss. 

jjj cba ,,   generation cost coefficients for the thj  generating unit . 
 

If 0=LdP , then the solution for the above problem is 0
gjP  ( edgj ,,1L= ). When 

0≠LdP , according to the Lagrange theory, the solution must satisfy the following 

necessary conditions: 
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Upon linearization of the above equations around the point 0
gjP  and 0λ  [52], 
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The solution of above equations yields: 
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or   Lfjgj dPpdP = ,   

 
where fjP  is the economic participation factor for generator j . 

To allow flexibility in the model, two economic participation factors are defined, one 

( +
fp ) for a generation increase and the other ( −

fp ) for a generation decrease. Two 

additional variables 1w  and 2w  are introduced to represent the total system generation 

increase and decrease, respectively. They satisfy the condition 021 =ww , which is 

incorporated into the SPQPF model. Therefore, 
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21 wpwpdP fjfjgj
−+ += ,    edgj ,,1L=                                           (3.18) 

 
where 
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This transformation guarantees that any changes in unit output will preserve an 

optimal economic dispatch. Moreover, it reduces the variables of 0
gjP  ( edgj ,,1L= ) to 

only two variables, 1w  and 2w .  

21
00 wpwpPPdPP fjfjgjgjgjgj

−+ ++=+= ,   edgj ,,1L= .                      (3.20) 

 
Another feature that has been incorporated in the SPQPF model is the ability to 

allocate reactive power burden among PV generating units connected to the same bus, 

which is implemented based on the following derivation: 
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where  

ik     a proportional constant for bus i  

mpvb   number of buses connected to multiple PV generators  



 60

pvig   number of PV generators connected to bus i  

The substitution of above transformations around the present operating point yields: 
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where  

spvg : number of buses with single PV generator. 

The solution method for the above problem is iterative. Each iteration includes two 

steps: (a) the linearization of the objective function and operating constraints and (b) the 

solution of the resulting linear programming (LP) problem. The efficient co-state method 

[52] is employed in the first step to compute the sensitivities of the objective function and 

operating constraints with respect to the control variables. The simplex method can be 

used in the second step to solve the LP problem. 
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During the solution procedure, the mismatch variable v  is reduced step by step from 

one to zero. A nonzero value of mismatch variable ( 0≠v ) indicates that the algorithm 

has not yet converged. In each step, given the allowed minimum mismatch value minv and 

participation factors obtained from the solution of the previous step, the power flow 

problem is solved. Note that in the power flow solution, any generation increase ( 01 ≠w ) 

or decrease ( 02 ≠w ) is distributed to individual generating units according to equation 

(3.18) to preserve economic dispatch. Based on the power flow solution, if any operating 

constraints are violated, they are added to the set of active constraints in the optimization 

problem. The solution to the optimization problem provides new remedial actions that 

force a feasible operating point. Remedial actions may require that one or more 

generating units be removed from real power economic dispatch and be controlled 

individually to maintain the feasibility of the operating state. When feasibility has been 

reinstated, the mismatch variable v  is further reduced. This procedure is repeated until 

the mismatch variable reaches zero. The flow chart of the NDOQPF algorithm is 

illustrated in Figure 3.7. 

The proposed NDOQPF algorithm achieves power flow non-divergence by 

introducing fictitious sources/mismatches that are driven to zero as the solution 

progresses. Therefore, if a solution exists, the algorithm guarantees convergence; if a 

solution does not exist, the algorithm provides a sub-optimal solution that may include 

load shedding. Also, the solution moves along the economic dispatch for active power 

and proportional dispatch for reactive power by virtue of Equations (3.10) and (3.13). 

Note that the algorithm realistically mimics the operating practices of power systems by 

incorporating remedial actions that alleviate operating constraint violations. Another 
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improvement is that violated operating constraints appear gradually since the system is 

gradually loaded. The appearance of an overwhelming number of violated constraints, 

which can occur to the traditional power flow solution, is improbable with the proposed 

algorithm.  
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Figure 3.7: Flow chart of the non-divergent optimal quadratized power flow algorithm. 
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3.6  The Application of the NDOQPF Algorithm in Deregulated 
Power Systems 

 
 
 
The challenge of power system restructuring is to maintain system reliability while 

creating competitive markets [121]. Many of the current models for the competitive 

market employ independent transmission operators (ISOs) or regional transmission 

organizations (RTOs) to operate the transmission system, ensure fair access and system 

reliability, and provide an open market for power transactions. Many ISOs/RTOs are in 

operation today in the United States, most notably the PJM RTO, CA ISO, NY ISO, NE 

ISO, ERCOT ISO, and MISO, and others are currently being established [122-124]. In 

the power market, energy is the primary commodity and an energy bid is an offer to 

supply or consume energy (MWhr) at a price ($) that is submitted by market participants 

(power suppliers or consumers). Market participants offer their bids to the ISO/RTO 

operator that collects and maintains competitive offers for each trading interval. Upon 

receiving these bids, the ISO/RTO uses this information to determine the least cost 

market / schedule of generation while satisfying customer demand and system reliability 

requirements. If transmission congestion occurs, the power bids, which may include 

possible remedial actions to relieve congestion,  are appropriately selected. This process, 

referred to as congestion management, is no different from typical remedial action 

procedures used in the regulated environment except that it allows power bids as one of 

remedial actions. 

Mathematically, this ISO/RTO operational procedure is formulated as a constrained 

optimization problem. The objective is to minimize the overall system cost (defined with 

energy bids) while satisfying system constraints. This objective function is usually 
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piecewise linear or staircase. The constraints of the optimization problem are power flow 

equations, transmission capability limits, bus voltage limits, and so on. Specifically, this 

constrained optimization problem is formulated as follows:  

Minimize   ∑
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where 

iC  bidding function of the generator i  

n   number of generators participating in the market 

0),( =uxG   power flow equations  

x   vector of system state variables 

u   vector of remedial action control variables 

b   number of system buses 

iT
~

 load of transmission line i  

iT
−

 load limit of transmission line i  

l   number of circuit branches 

giP  real power output of generator i   
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giQ  reactive power output of generator i   

g  number of total generators  

r   number of total control variables  

This problem is formulated as a NDOQPF. Note that congestion management is 

incorporated in the optimization problem by introducing remedial action control vector u . 

The formulated constrained optimization problem in the deregulated environment is no 

different from that in the regulated deregulated environment. Therefore, the proposed 

NDOQPF algorithm is capable of efficiently solving the generic ISO/RTO operational 

model. In fact, the NDOQPF algorithm is particularly effective in the deregulated 

environment. Due to the impact of deregulation on the system operation, the transmission 

system is more likely to be heavily stressed, as it may be operated in various or unusual 

power flow patterns from what it was originally designed for [125-126]. Because of these 

new scenarios appearing in the deregulated environment, power flow analysis under 

contingencies will inevitably encounter divergent situations more frequently than it will 

in regulated power systems. The NDOQPF algorithm can efficiently solve such power 

flow non-convergent problems and provide always a solution (optimal or suboptimal) to 

the ISO/RTO operator. Indeed, its ability to always provide a solution is a major 

advantage of the proposed methodology.  
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3.7 The Reliability Index Computation 
 
 
 
Once the contingency effects analysis is complete, a set of system states 

(contingencies) that satisfy the pre-defined system failure criterion is identified from the 

system state space. The probabilities of system states in this set and the transition rates 

from any state inside the set to a state outside the set are used to calculate reliability 

indices. The reliability index calculation is illustrated by the example system state space 

shown in Figure 3.8.  

 

 
 

Figure 3.8: An example system state space diagram. 

 
This system state space includes states that have been evaluated and not evaluated. 

They are distinguished by the critical contingency selection and the effects analysis. 

Among  the evaluated states, system state j  at a certain load level is characterized by its 

occurrence probability jp  and associated transition rates to and from other system states, 

such as jkλ and ijλ . The probability jp  of system state j  can be calculated based on the 
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probability of every independent component working status (up or down) in this state by 

the following direct method: 

∏
=

=
n

i
cij pp

1

,                                     (3.24) 

 
where  

jp  probability of system state j  

cip   probability of independent component i   in its own working status 

n    number of independent components in system state j . 

A set of system states ( rS ) that contains the evaluated states that possess some 

common features such as a system failure is identified by retrieving the stored results of 

the effects analysis. Based on the identified set rS  as well as the probability and 

transition rates associated with each system state (contingency) in this set, three different 

classes of reliability indices can be computed: (a) the probability index, (b) the frequency 

index, and (c) the duration index. 

 
1. Probability Index 

 
The probability of rS , ][ rr SP , is obtained by adding all the probabilities jp : 

∑
∈

=
rSj

jrr pSP ][ .                          (3.25) 

The probabilities jp , rSj∈ , can be added because the events of being in any of the 

states j  are mutually exclusive.  
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2. Frequency Index 

 
The frequency of rS ,

rSf , is the sum of the frequency of leaving a state j  inside rS   

for a state i  outside rS , which can be calculated as follows: 
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where  

jiλ    transition rate from state j  to state i  

jif   frequency of transferring from state j  to state i , which is defined as the expected 

number of direct transfers from j  to i  per unit time. The relationship between jif and 

jiλ can be written as ijiji pf λ= .      

 
3. Duration Index 

 
The duration index of rS , 

rST , is the ratio of the probability index over the frequency 

index: 

r

r
S

rr
S f

SPT ][
= .                            (3.27) 

 
These reliability indices indicate the system reliability level quantitatively, which can 

help system planners and operators to plan and operate power systems with an acceptable 

reliability level. 
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3.8 Summary 
 
 
 
Based on the quadratized power flow model, a comprehensive approach for bulk 

power system reliability assessment is proposed in this chapter. In this approach, an 

improved contingency selection technique is developed to perform critical contingency 

selection and ranking with high accuracy, and a non-divergent optimal quadratized power 

flow algorithm is implemented to conduct effects analysis realistically and efficiently. In 

addition, reliability index computation is also included in this approach. In the next 

chapter, a method to evaluate the effects of protection system hidden failures on bulk 

power system reliability is put forward, and the proposed framework in this chapter will 

be extended to evaluate also contingencies resulting from protection system hidden 

failures.  
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CHAPTER IV  

EFFECTS OF PROTECTION SYSTEM HIDDEN 
FAILURES ON BULK POWER SYSTEM RELIABILITY  

 
 
 

4.1 Introduction 
 
 
 
Current bulk power system reliability assessment practice mainly focuses on the 

analysis of N-1 contingencies and some credible N-2 cases. The component outage 

modes involved in these contingencies generally include independent and common-mode 

outages. Most contingencies that involve multiple component outages are considered the 

result of several independent, successive events in the system, and they are usually not a 

major concern in the reliability assessment procedure. However, recent research [128-130] 

shows that protection system hidden failures may cause multiple component outages that 

are dependent upon each other, i.e., an initial component outage event can lead to the 

cascading tripping of other intact components because of a malfunction in the protection 

system. Consequently, protection system hidden failures have been recognized as a 

contributing factor in spreading power system disturbances and even causing system 

blackouts. Since protection systems are generally assumed to be perfect when bulk power 

system reliability is considered, the effects of protection system hidden failures have not 

been taken into account in the current practice of bulk power system reliability 

assessment.  
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This chapter will discuss protection system hidden failures. First, it will provide some 

background information, including a definition, characteristics, and examples. Then, for 

the purpose of considering protection system hidden failures in the reliability assessment 

procedure, it will propose a breaker-oriented substation model composed of detailed 

substation configurations and protection system schemes in the system network model. In 

addition, it will introduce advanced system real time monitoring and analysis 

technologies brought by the application of electronic intelligent devices in modern 

substations. The proposed approach assesses the impact of such technologies on detecting 

protection system hidden failures.  Then this chapter will present the development of a 

hidden failure effects analysis method that can identify hidden failure outages following 

any possible initial equipment outages in each system substation. Finally, by expanding 

the security-constrained adequacy evaluation methodology proposed in the previous 

section, this chapter will evaluate contingencies resulting from hidden failure outages and 

include the effects of protection system hidden failures on bulk power system reliability. 

 
 
 

4.2 Protection System Hidden Failures 
 
 
 
A hidden failure in the protection system is defined in [17] as “a permanent defect that 

will cause a relay or a relay system to incorrectly and inappropriately remove a circuit 

element(s) as a direct consequence of another switching event.” In other words, hidden 

failures remain hidden during normal system conditions, and when system disturbances 

occur, such as faults or overloads occur, hidden failures are exposed and cause 
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unnecessary outages of intact equipment. The existence of hidden failures in protection 

systems exacerbates an already stressed system situation and reduces the system 

reliability level.  

Protection systems consist of many components, such as transducers (current and 

voltage transformers), relays, and circuit breakers, which contribute to the detection and 

removal of faults [127]. Each of these protection system components may suffer from 

hidden failures depending on the inherent mechanism of the component. Some example 

hidden failures that may exist in these major protection system components are briefly 

analyzed below. 

 
Current Transformer (CT) 

 
After a fault occurs, fault currents may cause the current transformer core to become 

saturated, in which the secondary current of the current transformer cannot faithfully 

represent the primary current. 

 
Voltage Transformer (VT) 

 
 For some voltage transformers, such as coupling capacitor voltage transformers 

(CCVTs), when a fault occurs and causes the system voltage to decrease from the normal 

value to a lower value, the output of the voltage transformer may be significantly 

different from the actual primary voltage during the transient procedure. 

 
Relay 

When the system operating condition changes, if the setting of an influenced relay 

does not change accordingly, the relay may fail to detect the system status correctly under 
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some system disturbances and then operate inappropriately as a result of the outdated 

relay setting. 

 
Circuit Breaker 

Any failures in the trip mechanism of a circuit breaker, such as the open circuit of trip 

coils and the failure to separate circuit breaker plates because of welding or obstacles in 

the plate motion paths, will cause the circuit breaker fail to trip when it is required to 

open the faulty circuit. 

 
Most of present research focuses on the study of hidden failures in relays. For 

example, the mechanism and consequence of some possible hidden failure modes in 

various relays used for transmission system protections are analyzed in [131, 132].  On 

the other hand, the analysis of hidden failures in other protection system components, 

such as transducers and circuit breakers, has not received much attention.  

 
 
 

4.3 The Breaker-Oriented Substation Model 
 
 
 
Since protection systems are assumed to be perfect in the current bulk power system 

reliability assessment procedure, system substations are generally simplified to buses, and 

different transmission lines simply converge at buses to connect generators or to serve 

loads. In this study, to consider the effects of protection system hidden failures on bulk 

power system reliability, we convert each bus in the general power system model into a 

breaker-oriented substation with a specific bus arrangement (breaker and a half, ring, and 
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so on) [133, 134]. The selection of bus arrangements follows usual design procedures and 

practices. Breaker-oriented substation models become an integral part of the system 

network model and reflect the real life existence of substation configurations. Figure 4.1 

illustrates a breaker-oriented substation model that consists of a breaker-and-a-half bus 

arrangement, six circuit breakers (CB1 to CB6), and four incoming/outgoing transmission 

lines (L1 to L4). 
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Figure 4.1: A breaker-and-a-half bus arrangement substation model. 

 
The incorporation of breaker-oriented substation models adds a new level of detail in 

the system network model, based on which the protection system schemes for various 

power system components can be introduced into the network model as well. For 

instance, two examples of protection system schemes are presented in Figure 4.1. The 

purpose of protection systems 1 and 2 is to protect transmission line L1 and Bus B, 
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respectively. The major components in these two protection systems include current 

transformers (CT1 to CT4), a voltage transformer (VT), relays (R1 and R2), and circuit 

breakers (CB1 to CB4) associated with trip coils (TC1 to TC4). The detailed substation 

and protection system models make the study of the impact of protection system 

performance on power system operation feasible. Specifically, in this work, the effects of 

protection system hidden failures on bulk power system reliability are investigated. 

 
 
 

4.4 The Impact of Advanced System Monitoring and Analysis 
Technologies  

 
 
 
Nowadays, besides traditional conventional remote terminal units (RTUs), a variety of 

intelligent electronic devices (IEDs), such as phasor measurement units (PMUs) and 

digital protection relays, have become available in modern power system substations. 

Compared to the limitation, inaccuracy, and delay of the traditional system substation 

data obtained from RTUs, more redundant, accurate, and real time system data can be 

obtained from IEDs. Based on the measurements of IEDs as well as RTUs, the substation 

level system information extraction process, including substation level state estimation 

and alarm processing, can significantly advance the capability of system real time 

monitoring [135-137].  

The advanced system monitoring and analysis functions brought by the application of 

IEDs can detect protection system hidden failures existing in transducers and relays 

considerably. In particular, real time validation and verification can be performed for 

transducer outputs and relay settings. If any hidden failures exist in current or voltage 
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transformers that cause the outputs of these transducers to fail to reflect actual system 

status, the substation level state estimation can identify bad data in a rapid, reliable way. 

In addition, based on the real time synchronized measurements of system states obtained 

from PMUs, the real time system model can be built and relay settings can be verified on 

line to avoid any protection system malfunction caused by outdated relay settings. 

However, such advanced monitoring and analysis technologies cannot detect the trip 

abilities of circuit breakers. Hidden failures in the circuit breaker trip mechanism such as 

the welding plates of circuit breakers will remain uncovered until circuit breakers fail to 

open during system disturbances. Hence, in this work, the consideration of protection 

system hidden failures concentrates on hidden failures in the circuit breaker trip 

mechanism. 

 
 
 

4.5 Probabilistic Modeling of Hidden Failures in the Circuit 
Breaker Trip Mechanism 

 
 
 
This section presents the probabilistic modeling of hidden failures in the circuit 

breaker trip mechanism (CBTM). For the example substation model in Figure 4.1, which 

has six circuit breakers, the independent and common-mode hidden failure models of 

CBTMs are described below. 

 
Independent Hidden Failures of CBTMs 

  
Each CBTM can cycle between the normal and the hidden failure status. This process 

can be modeled as a two-state Markov process with constant transition rates. We assume 
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that the occurrences of such hidden failures are independent with their own failure and 

repair rates. Two-state Markov models for the six CBTMs (CBTM1 to CBTM6) are 

shown in Figure 4.2, in which xλ and xµ represent the failure and repair rates of each 

CBTM, respectively. 
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Figure 4.2: Two-state Markov models of CBTMs. 

 

The differential equations that govern transitions for each CBTM between the normal 

and hidden failure status are given as follows: 

XX
X t
dt

td App )()(
= ,              (4.1) 

 
where )(tXp  is the row vector that contains normal and hidden failure status probabilities 

(i.e., )(tpX  and )(tqX ) of each CBTM X ,  

)]()([)( tqtpt XXX =p . 
 
Also, the probabilities of the normal and the hidden failure status for each CBTM 

satisfy the following condition: 

1)()( =+ tqtp XX ,             (4.2) 
 

where 1)(0 ≤≤ tpX  and 1)(0 ≤≤ tqX . In addition, XA  is the transition intensity matrix 
for CBTM X , i.e.,  
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The initial condition represents a CBTM with the probability of normal status set to one 

and the probability of hidden failure status set to zero. 

 
]01[)0( =Xp . 

 
 

The solution to the above differential equations gives the probabilities of the normal and 

the hidden failure status of each CBTM X : 
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If only long-term status probabilities are of interest, the normal and hidden failure status 

probabilities of each CBTM are expressed as follows: 
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XX
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+

=∞)( .          (4.5) 

 

For the substation shown in Figure 4.1, each combination of the operational status of 

each of the six CBTMs constitutes a substation state. The different combinations of 

CBTM statuses generate a total of 64 (26) substation states in the state space. Part of this 

state space (states 1 to 16) is shown in Table 4.1. 
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Table 4.1: State enumeration for the example substation (states 1-16). 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CBTM1  X  X X X X X   

CBTM2   X X   X X X X 

CBTM3    X X   X  

CBTM4    X X   X 

CTMB5    X  X    X 

CBTM6    X  X   X 
X indicates a hidden failure status of the CBTM 
 
 
Because we assume that hidden failures of CBTMs are independent, the probability of 

each substation state can be obtained by multiplying the probability of each CBTM 

status. For example, for substation state 3 in Table 4.1, in which CBTM2 is in hidden 

failure status and all others are in normal status, the probability for this substation state is 

expressed as follows:  

∏
=

=
6

3
213 )()()()(

i
CBTMiCBTMCBTMS tptqtptp .          (4.6) 

  
 
The sum of the substation state probabilities is forced to 1 simply because the total 64 

states are mutually exclusive and their union forms the certain event, i.e. , 
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Common-Mode Hidden Failures of CBTMs 
 
The independent hidden failure model of CBTMs does not account for common-mode 

failures, which involve simultaneous hidden failures of two or more CBTMs as a result of 

a single event. For example, a loss of the power resource that supplies power to two or 
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more trip coils can cause multiple circuit breakers to enter hidden failure status 

simultaneously. When considering common-mode hidden failures of the CBTM in the 

substation, shown in Figure 4.1, the differential equations that govern the transitions 

among substation states, initial conditions, and the sum of probabilities are given below: 
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S t
dt

td App )()(
= , 
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where )(tSp  is the row vector of substation state probabilities, and SA  is the substation 

transition intensity matrix. Off-diagonal terms ( i , j ) of matrix SA  have the failure/repair 

rate from state i  to state j , and diagonal terms are the negative sum of the failure and 

repair rates of all transitions from the current state to an adjacent state (transition rates 

found in the same row).  The sum of all the elements in each row of the transition matrix 

is zero. The initial state is assumed to be at state 1 in Table 4.1, in which every 

component works in the normal status. The solution to the differential equations gives the 

probability of each substation state at any instant in time.  

 
 
 

4.6 Effects Analysis of CBTM Hidden Failures 
 
 
 
Hidden failures in CBTMs can cause the trip of intact equipment following system 

disturbances, which reduce the level of system reliability. In this section, a hidden failure 
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effects analysis method is proposed to identify additional outages caused by such hidden 

failures given initial faults. This method is illustrated by using the example substation 

shown in Figure 4.1.  

We assume that the substation is operating under state 3 as enumerated in Table 4.1, in 

which the trip mechanism of circuit breaker 2 (CBTM2) has a hidden failure that can 

cause circuit breaker 2 (CB2) to fail to open while all other circuit breakers are in the 

normal operating status. If an initial fault F1 occurs in transmission line L1, circuit 

breakers 1 and 2 should open to isolate the faulty circuit L1 accordingly. Since CB2 fails 

to open because of its hidden failure, circuit breaker 3 (CB3) that is adjacent to CB2 will 

open and result in the outage of the intact component of transmission line L2 following 

the initial fault on transmission line L1. The conditional probability of the hidden failure 

outage of transmission line L2, given the incidence of the initial fault on L1, is the 

product of the occurrence probability of substation state 3 and the probabilities of all 

other substations in their specific states, expressed as follows: 

∏
=

=
N

i
ikSScd tptptP

1
33_ )()()( ,            (4.9) 

 
where 

)(3 tpS   probability of the example substation in state 3 

)(tpik   probability of the substation i  in state k  

N       total number of the rest substations in the system 

Such an effects analysis procedure can be repeated for all other possible initial faults. 

The results, including initial faulty circuits, associated hidden failure outages, and 

corresponding conditional probabilities are listed in Table 4.2. We can see that the initial 
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faults on L1 or L2 will cause outages of intact equipment in the substation under state 3, 

while the initial faults on other components do not cause any hidden failure outages. For 

the example substation with a total of 64 substation states, a cut-off probability can be 

predefined to reduce states in the state space that are subject to hidden failure effects 

analysis. The states with probabilities less than the cut-off probability will not be 

considered because of their small incidence. Furthermore, the hidden failure effects 

analysis procedure can be performed for all substation states and all substations in the 

system. 

After all hidden failure outages following each initial system disturbance are obtained 

through the above hidden failure effects analysis procedure, the proposed framework of 

bulk power system reliability assessment, i.e., the security-constrained adequacy 

evaluation (SCAE) methodology, is extended to include these hidden failure outages. 

Specifically, the SCAE methodology evaluates system contingencies resulting from 

independent outages, common-mode outages, and hidden failure outages. All these 

contingencies are subject to the three main steps in SCAE: (a) critical contingency 

selection, (b) effects analysis, and (c) reliability index computation. In such a way, the 

effects of protection system hidden failures on bulk power system reliability are included 

in the bulk power system reliability assessment procedure.  
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Table 4.2: Hidden failure effects analysis for substation state 3. 

Initial Fault Hidden Failure Outage Conditional Probability 

Fault on Bus A N/A N/A 

Fault on L1  L2  3sp  

Fault on L2  L1 3sp  

Fault on Bus B N/A N/A 

Fault on L3  N/A N/A 

Fault on L4  N/A N/A 

 
 
 
4.7 Summary 
 
 
 

A method for evaluating the effects of protection system hidden failures on bulk 

power system reliability is developed in this chapter. In this method, by replacing each 

system bus with a substation configuration, the breaker-oriented system network model is 

developed to take into account protection system performance on system reliability. Also, 

the influence of advanced system real-time monitoring and analysis technologies on the 

detection of protection system hidden failures is analyzed. Based on such analysis results, 

this work focuses on identifying contingencies resulting from the hidden failure in the 

circuit breaker trip mechanism. The framework for bulk power system reliability 

assessment proposed in the previous chapter is then extended to include contingencies 

resulting from CBTM hidden failures such that the effects of protection system hidden 

failures on system reliability is included in the reliability assessment procedure. In the 

next chapter, the demonstration and application of the proposed comprehensive approach 

for bulk power system reliability assessment are provided. 
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CHAPTER V 

APPROACH DEMONSTRATION AND APPLICATION 
 
 
 

5.1 Approach Demonstration 
 
 
 
In this section, the IEEE 24-bus reliability test system and its derivation, i.e., the 

circuit breaker-oriented 24-substation reliability test system, are used to demonstrate 

three advanced techniques developed to implement the proposed comprehensive 

approach for bulk power system reliability assessment: (1) the system state linearization 

approach for the critical contingency selection, (2) the non-divergent optimal quadratized 

power flow algorithm for the contingency effects analysis, and (3) the hidden failure 

effects analysis method for evaluating the impact of protection system hidden failures on 

bulk power system reliability.  

The IEEE 24-bus reliability test system [138], as shown in Figure 5.1, was developed 

by the IEEE reliability subcommittee and published in 1979 as a benchmark for testing 

various reliability analysis methods. In this test system, the generation system contains 32 

generating units, ranging from 12MW to 400MW, and the transmission system contains 

24 load or generation buses connected by 38 transmission lines or transformers at two 

voltage levels, 138kV and 230kV. This test system is used to test the system state 

linearization approach and the non-divergent optimal quadratized power flow algorithm. 

In addition, the hidden failure effects analysis method for evaluating the impact of 

protection system hidden failures on bulk power system reliability is demonstrated with 
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the circuit breaker-oriented 24-substation reliability test system, shown in Figure 5.2 in 

section 5.1.3. The circuit breaker-oriented 24-substation reliability test system is derived 

from the original IEEE 24-bus reliability test system by converting each bus in the 

original IEEE 24-bus reliability test system to a substation with a specific bus 

arrangement.  
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Figure 5.1: The IEEE 24-bus reliability test system. 
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In both reliability test systems, the system peak load level is applied, and available 

remedial actions include generating unit real power re-dispatching, generating unit and 

the synchronous condenser reactive power rescheduling, reactor bank switching, and load 

shedding. The representative results illustrate the features of these advanced techniques.  

 
 
 

5.1.1 System State Linearization Approach  
 
 
 
To demonstrate the effectiveness of the proposed system state linearization approach 

for critical contingency selection and ranking, the first-level contingencies of the IEEE 

24-bus reliability test system are ranked using three different contingency selection and 

ranking methods in terms of two types of performance index changes: (1) the current-

based circuit loading index and (2) the voltage index, as defined in section 3.3.1. The 

three contingency selection and ranking methods include (1) the full power flow solution 

method, (2) the traditional performance index linearization method, and (3) the proposed 

system state linearization method. The full power flow solution method calculates the 

exact performance index changes resulting from contingencies and provides a complete 

accurate ranking of the contingencies. The contingency ranking results obtained from the 

full power flow solution method can be used as the standard to verify the contingency 

selection and ranking accuracy of the other two methods. The second method, the 

traditional performance index linearization method, predicts the linear approximation of 

the exact performance index change by taking into account only the first-order term of 

the Taylor’s series in calculating the performance index change before and after a 

contingency. The third method, the proposed system state linearization method, can 
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predict the nonlinearity of performance index changes to a certain extent by including 

higher-order terms in Taylor’s series. 

Based on these three contingency selection and ranking methods, changes in the two 

types of performance indices are computed for the first-level contingencies resulting from 

independent transmission circuit outages, and these contingencies are ranked according to 

performance index changes. Parts of these results are provided in Tables 5.1 and 5.2. 

Table 5.1 shows the changes in the current-based circuit loading index and subsequent 

contingency ranking results of the three methods. Table 5.2 shows the changes in the 

voltage index and subsequent contingency ranking results of the three methods. Such 

results demonstrate that the proposed system state linearization method can predict 

performance index changes more accurately than the traditional performance index 

linearization method because the indirect differentiation procedure of the system state 

linearization method yields higher-order sensitivity terms when calculating performance 

index changes. Consequently, the system state linearization method can result in less 

misranking in critical contingency selection and ranking than the traditional performance 

index linearization technique, which results in severe misranking as shown in Table 5.1. 

For the first-level contingencies resulting from independent generating unit outages, 

the three methods are applied to calculate the current-based circuit loading index changes 

and subsequent rank contingencies. Part of such performance index changes and 

contingency ranking results shown in Table 5.3 reveals that the traditional performance 

index linearization method has produced misranking, while the proposed system state 

linearization method provides complete, accurate contingency ranking. These results 

indicate that generating unit outages cause low nonlinearity in performance index 
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variations, and the traditional performance index linearization method can present 

satisfactory ranking results. Hence, the ranking of contingencies resulting from 

generating unit outages is generally not a major concern in critical contingency selection 

and ranking.  

Table 5.1: Changes in the current-based circuit loading index and contingency ranking 
results for independent transmission circuit outages. 

Outage 
Circuit 

Exact 
J∆  

Exact 
Ranking 

Traditional PI 
Linearization 

J∆  

Traditional PI 
Linearization 

Ranking 

Proposed 
System State 
Lnearization 

J∆  

Proposed 
System State 
Linearization 

Ranking 

C60-100 60.5755 1 -3.1615 33 4.16212 1 

C150-240 2.91412 2 0.03554 14 1.08256 5 

C30-240 2.91410 3 0.05060 10 2.11779 4 

C140-160 2.5400 4 -0.28261 31 3.30945 2 

C160-170 1.4861 5 -0.34598 32 2.51369 3 

C20-60 1.3223 6 0.42555 1 0.63109 9 

C200-230 1.1885 7 0.15394 2 0.90109 6 

C120-230 1.1719 8 0.12725 4 0.88311 7 

C160-190 0.9607 9 0.03769 13 0.21585 13 

C150-210 0.8729 10 0.15079 3 0.64768 8 

(C: CIRCUIT) 
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Table 5.2: Changes in the voltage index and contingency ranking results for independent 
transmission circuit outages. 

Outage 
Circuit 

Exact 
J∆  

Exact 
Ranking 

Traditional PI 
Linearization 

J∆  

Traditional PI 
Linearization 

Ranking 

Proposed 
System State 
Linearization 

J∆  

Proposed 
System State 
Linearization 

Ranking 

C60-100 29,578.0 1 -0.86953 33 36.17562 1 

C150-240 14.6924 2 0.19610 2 0.91132 3 

C30-240 4.92840 3 0.03831 7 0.32333 7 

C20-40 1.2586 4 -0.00177 19 0.06838 17 

C140-160 0.9363 5 0.03405 8 0.84005 4 

C160-170 0.7549 6 0.25152 1 0.60161 5 

C10-30 0.4042 7 0.07364 3 0.21500 8 

C90-120 0.31384 8 0.05423 5 0.10594 11 

C160-190 0.3014 9 0.07017 4 0.11739 10 

C90-110 0.16475 10 0.03251 9 0.05693 19 

(C: CIRCUIT) 
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Table 5.3: Changes in the current-based circuit loading index and contingency ranking 
results for independent generating unit outages. 

 
Outage 

Unit 
Exact 

J∆  
Exact 

Ranking 
Traditional PI 
Linearization 

J∆  

Traditional PI 
Linearization 

Ranking 

Proposed 
System State 
Linearization 

J∆  

Proposed 
System State 
Linearization 

Ranking 

G20 - 3,4 0.42871 1 0.28979 1 0.42353 1 

G10 - 3,4 0.36657 2 0.25198 2 0.36217 2 

G20 - 1,2 0.0403 3 0.03813 3 0.04025 3 

G10 - 1,2 0.03512 4 0.03316 4 0.03508 4 

G150 -1~5 -0.04601 5 -0.04726 5 -0.04589 5 

G70 -1~3 -0.129 6 -0.84040 11 -0.12283 6 

G230 -1,2 -0.25074 7 -0.34508 7 -0.24495 7 

G220 -1~6 -0.27395 8 -0.30632 6 -0.27054 8 

G160 -0.3335 9 -0.49543 8 -0.32745 9 

G230 - 3 -0.36234 10 -0.77921 10 -0.33188 10 

(G: GENERATOR) 

 
 
 
5.1.2 Non-Divergent Optimal Quadratized Power Flow Algorithm  

 
 
 
Based on the results of contingency selection and ranking, the non-divergent optimal 

quadratized power flow (NDOQPF) algorithm is applied to the most critical 

contingencies for their effects analysis. Part of the contingency effects analysis results for 

first-level contingencies resulting from both independent and common-mode 

transmission circuit outages is listed in Table 5.4. For each contingency, the result of the 

effects analysis shows if it causes any operating constraint violations; when constraint 

violations occur, the result also shows if load shedding is required to maintain normal 
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system operation; whenever load shedding is necessary, the corresponding contingency is 

recorded as a system failure state and make a non-zero contribution to system 

unreliability. Table 5.4 shows that six contingencies that result from independent outages 

and four contingencies that result from common-mode outages cause constraint violations 

and require load shedding for the system to operate normally. They represent system 

failure states. Some of the remaining contingencies may cause constraint violations, but 

remedial actions without load shedding can maintain normal system operation. Such 

evaluation results reflect the ability of the NDOQPF algorithm to simulate contingencies 

in a realistic manner to capture the system response including all major controls and 

adjustments. 

Table 5.4: Part of the effects analysis results of first-level contingencies.  

No. Outage Mode Outage 
Components 

Constraints 
Violations 
(Yes/No) 

RAs w/o Load 
Shedding 
(Yes/No) 

Load 
Shedding 
(Yes/No) 

1 Independent C60-100 Yes Yes Yes 

2 Independent C150-240 Yes Yes Yes 

3 Independent C30-240 Yes Yes Yes 

4 Independent C160-170 Yes Yes Yes 

5 Independent C20-60 Yes Yes Yes 

6 Independent C120-230 Yes Yes Yes 

7 Common-mode C70-80 

G70-1,2,3 

Yes Yes Yes 

8 Common-mode C190-200 Yes Yes Yes 

9 Common-mode C200-230 Yes Yes Yes 

10 Common-mode C150-210 Yes Yes Yes 

(C: CIRCUIT G: GENERATING UNIT) 
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Regarding the second-level or higher-level contingencies, using the traditional power 

flow algorithm such as the Newton-Raphson method to conduct the effects analysis may 

produce non-convergence because of the severe impact of high-level contingencies on 

system operation. This non-convergence problem can be solved using the NDOQPF 

algorithm. For example, consider the second-level contingency that involves the outages 

of two circuits C30-90 (first level) and C150-240 (second level). The traditional power 

flow under this second-level contingency diverges, while the NDOQPF algorithm 

converges and provides a list of remedial actions. For illustrative purposes, the effects 

analysis procedure and results of this contingency are detailed below.  

The first-level outage of circuit C30-90 does not cause any constraint violations when 

control variable v  is reduced from 1.0 directly to 0.0. The solution of the first-level 

outage, represented with 0x (the vector of system state variables) and 0u (the vector of 

system control variables), is used as the base case for the second-level outage of C150-

240. Under the operating point ( 0x , 0u ), after the first-level outage and given the 

additional outage of circuit C150-240, the mismatch vector 0m  is calculated first. The 

artificial control variable v  is then gradually reduced as follows: 

:v  0.0333.0667.00.1 →→→ . 
 
Note that when v  is 1.0, the mismatch vector is 0m , and the operating point is 

0x and 0u , the system does not have any constraint violations. In the progress of the 

solution, the optimization problem shown in Equation 3.22 is formulated at each step of 

the control variable v if constraint violations exist and solved using the linear 

programming technique. The procedure is repeated until variable v  reaches zero. During 

the solution procedure, the voltages at bus 30 and bus 240 are lower than their lower 
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limits when each time variable v  is reduced to a new level. Therefore, major active 

constraints in the formulated optimization problem include the following two inequality 

constraints: 

min
3030 VV ≥ , 

 
min

240240 VV ≥ . 
 
Such violated constraints cannot be eliminated completely by the available remedial 

actions (excluding load shedding). Therefore, to maintain the normal system operating 

conditions, load shedding is applied as a remedial action, and 63% of the system load at 

bus 30 is tripped. 

MVARjMWLoad busshedding 4.2382.11330_ += . 
 
Corresponding to this load change, the reduction in the total amounts of system real 

power and reactive power outputs are as follows: 

MWP 91.106=∆ , MWQ 4.23=∆ . 
 
The solution of this second-level contingency illustrates the major advantage of the 

NDOQPF algorithm in achieving the non-divergent solution when the system is 

overstressed by multi-level contingencies. 

 
 
 

5.1.3 Protection System Hidden Failure Effects Analysis  
 
 
 
The effects of protection system hidden failures on bulk power system reliability are 

evaluated using a circuit breaker-oriented, 24-substation reliability test system as shown 

in Figure 5.2. The circuit breaker-oriented, 24-substation reliability system is mostly 



 94

derived from the original IEEE 24-bus reliability test system. The original IEEE 24-bus 

reliability test system is a bus-oriented system, and the approach used to develop the 

circuit breaker-oriented system is to replace each node (bus) of the original system with a 

substation that has specific bus arrangement (e.g., ring, breaker and a half, and so on). 

The bus arrangement at each node and the location of each circuit breaker become the 

explicit part of the network model.  
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Figure 5.2: A circuit breaker-oriented, 24-substation reliability test system. 
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As an example, bus 180 of the original IEEE 24-bus reliability test system, which 

connects to one unit, three circuits, and one system load, is replaced by substation 180 

with a mixed breaker-and-a-half and a double-breaker scheme as illustrated in Figure 5.3. 

The overall conversion procedure from the original bus-oriented system to the breaker-

oriented system amounts to replacing each bus of the original IEEE 24-bus reliability test 

system with a substation. To make the overall model more realistic, we have selected a 

variety of bus arrangements, such as breaker-and-a-half, double-breaker, ring bus, and so 

on. Therefore, the proposed circuit breaker-oriented 24-substation reliability test system 

includes substations of various breaker arrangements and different reliability levels. A 

summary of substation topology is provided in Table 5.5.    
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Figure 5.3: A circuit breaker-oriented model of substation 180. 
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Table 5.5: Substation topology summary of the circuit breaker-oriented 24-substation 
reliability test system. 

 

Bus Arrangement Substation Number 

Double-breaker 70, 130, 220, 240 

Breaker-and-a-half 10, 20, 30, 90, 100, 110, 160, 210 

Mixed double-breaker  

and breaker-and-a-half 

140, 150, 170, 180, 230 

Ring-bus 40, 50, 60, 80, 120, 190, 200 

 
 
Based on the circuit breaker-oriented system model, the effects analysis of the circuit 

breaker trip mechanism (CBTM) hidden failure is performed for each substation. We 

consider two different levels of CBTM hidden failure probabilities to illustrate the impact 

of different CBTM hidden failure probability levels on bulk power system reliability. 

Note that only independent hidden failure outages are concerned in the CBTM hidden 

failure effects analysis. Under these assumptions, contingencies resulting from hidden 

failure outages in substation 180 are listed in Table 5.6. The results include the initial 

faulty circuits and the corresponding hidden failure outages. 

After the contingencies resulting from CBTM hidden failures for all substations are 

obtained and consolidated, the security-constrained adequacy evaluation approach is 

applied to evaluate contingencies resulting from independent, common-mode, and hidden 

failure outages. The reliability evaluation result of first-level contingencies resulting from 

transmission circuit outages shows that six contingencies that result from independent 

outages, four contingencies that result from the common-mode outages, and forty-seven 

contingencies that result from hidden failure outages lead to system unreliability. These 
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contingencies are provided in Table 5.7, in which only a portion of the contingencies 

resulting from hidden failure outages are listed. The table shows that most of 

contingencies that lead to system failures are contingencies resulting from hidden failure 

outages because of intact system component outages following initial system faults, 

which exacerbate an already stressed system. 

 The reliability indices of probability, frequency, and duration of such system loss-of-

load events are calculated for both situations with and without the consideration of 

contingencies resulting from hidden failure outages. In situations in which contingencies 

resulting from hidden failure outages are included, the hidden failure probabilities of 

circuit breakers are assumed at a level of 10e-2. All these results are shown in Table 5.8, 

which indicate that hidden failures in protection systems can downgrade the system 

reliability level.  
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Table 5.6: Summary of the effects analysis for substation 180. 

Initial Faulty Circuit Hidden Failure Outage  

Fault on BUS180-U  C170-180 

Fault on C170-180 or BUS180-1 UNIT180 

Fault on C180-210A or  BUS180-2 C180-210B 

Fault on C180-210B or  BUS180-3 C180-210A 

UNIT180 

C180-210A 

Fault on BUS180-N 

LOAD180 

C170-180 

C180-210B 

Fault on BUS180-S   

LOAD180 

Fault on UNIT180 N/A 

Fault on LOAD180 or BUS180-Z N/A 

Common-mode outage of  

C180-210A and C180-210B  

N/A 
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Table 5.7: List of contingencies leading to system unreliability. 

Contingency Type Contingency 
Number 

Outage Component 

1 C60-100 

2 C150-240 

3 C30-240 

4 C160-170 

5 C20-60 

 

Independent outages 

6 C120-230 

7 C70-80, G70-1,2,3 

8 C190-200 

9 C200-230 

 
Common-mode 

outages 

10 C150-210 

11 C30-90, C30-240 

12 C20-40,C40-90 

13 C50-100,C10-50 

14 C60-100,C20-60 

15 C80-100,C80-90 

16 C60-100,C50-100 

17 C110-140,C140-160 

18 C160-190,C160-170 

19 C150-210, C150-240 

 
Hidden failure 

outages 

20 C30-240,C150-240 
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Table 5.8: Comparison of reliability indices with and without contingencies resulting 
from hidden failure outages. 

Reliability 
Index 

W/o  Contingencies 
Resulting from Hidden 

Failure Outages 

With Contingencies 
Resulting from Hidden 

Failure Outages 

Probability 6.976e-4 8.903e-4 

Frequency (/yr) 0.261 0.384 

Duration (hrs) 23.428 20.320 

  
 
 
 

5.2 Approach Application 
 
 
 
In this section, the proposed comprehensive approach for bulk power system 

reliability assessment is applied to evaluate the reliability of two circuit breaker-oriented 

reliability test systems: (1) the circuit breaker-oriented, 24-substation reliability test 

system shown in Figure 5.2 and (2) the circuit breaker-oriented, 73-substation reliability 

test system derived from an enhanced IEEE reliability test system [139]. The enhanced 

IEEE reliability test system, developed by the Reliability Test System Task Force of the 

Application of Probability Methods Subcommittee in 1996, is an extension version of the 

original IEEE 24-bus reliability test system. It is a multi-area reliability test system that 

links three single IEEE 24-bus reliability test systems, shown in Figure 5.4. In this multi-

area system, areas A and B are connected through three interconnections: (1) a 230kV 

transmission line connecting bus 123 and bus 217, (2) a 230kV transmission line 

connecting bus 113 and bus 215, and (3) a 138kV transmission line connecting bus 107 

and bus 203. Area C is connected to areas A and B through two interconnections: (1) a 



 101

230kV transmission line connecting area B at bus 223 to area C at bus 318 and (2) a 

230kV transmission line connecting area A at bus 121 to area C at bus 325. In addition, a 

transformer has been added between bus 325 and bus 323 in area C. In this enhanced 

IEEE reliability test system, the generation system contains 96 generating units, ranging 

from 12MW to 400MW, and the transmission system contains 73 load or generation 

buses connected by 120 transmission lines or transformers at two voltage levels, 138kV 

and 230kV.  The conversion of this IEEE 73-bus reliability test system to the circuit 

breaker-oriented, 73-substation reliability test system is done by converting each bus in 

the IEEE 73-bus reliability test system to a substation with a specific bus arrangement. A 

summary of the substation topology is provided in Table 5.9.    

 
Table 5.9: The substation topology summary of the circuit breaker-oriented, 73-

susbstation reliability test system. 
 

Bus Arrangement Substation No. 
 
Double-breaker 

107, 113,122, 124, 207, 213, 222, 224, 
307, 313,322, 324, 325 

 
Breaker-and-a-half 

101, 102, 103, 109, 110, 111, 116, 121, 
201, 202, 203, 209, 210, 211, 216, 221, 
301, 302, 303, 309, 310, 311, 316, 321 

Mixed double-breaker     
and breaker-and-a-half 

114, 115, 117, 118, 123, 214, 215, 217, 
218, 223, 314, 315, 317, 318, 323 

 
Ring-bus 

104, 105, 106, 108, 112, 119, 120, 204, 
205, 206, 208, 212, 219, 220, 304, 305, 
306, 308, 312, 319, 320 

 
 
The proposed comprehensive approach for bulk power system reliability assessment is 

applied to evaluate the reliability of two circuit breaker-oriented reliability test systems 

shown in Figures 5.2 and 5.4. Reliability indices are calculated under different 

component outage modes, component outage levels, and load levels for the two systems.  
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Component Outage Modes 
  
The proposed bulk power system reliability assessment approach consists of three 

types of component outage modes: (1) independent outages, (2) common-mode outages, 

and (3) hidden failure outages. Independent outages are generally the basic outage mode 

considered in the reliability analysis, based on which reliability indices are calculated for 

the following three situations: (1) consider only independent outages, (2) consider both 

independent and common-mode outages, and (3) consider all the three outage modes. 

 
Outage Levels of Transmission Circuits and Generating Units 

  
The outage levels of transmission circuits and generating units refer to the maximum 

numbers of transmission circuit or generating unit outage events allowed in a 

contingency. For example, if both the transmission circuit outage level and the generating 

unit outage level are selected as one, contingencies with up to one transmission circuit 

outage event and one generating unit outage event will be considered in the reliability 

analysis procedure. All possible combinations of outage events that should be considered 

in a contingency under this case are enumerated in Table 5.10. Note that the simultaneous 

failures of two or more components in a common-mode outage or a hidden failure outage 

account for only one outage event.  

Table 5.10: Enumeration of outage event combinations given the transmission circuit 
and generating unit outage levels as one. 

 

Combination List 1 2 3 4 

Number of transmission circuit 
outage event 0 1 0 1 

Number of generating 
unit outage event 0 0 1 1 
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Load Levels 
 

To assess bulk power system reliability under different system load levels, the system 

load model at bus k  is defined as follows: 

22110 vavaaP kkkkL ++= ,          
 

where  

0ka , 1ka , and 2ka    real power load control coefficients at bus k  

1v  and 2v                independent system load level control variables 

The real power load control coefficient 0ka  is the real power load value at bus k  in 

the base case, and coefficients 1ka  and 2ka  can be positive or negative real power load 

values for each load in the system. The number of discrete values that independent load 

level control variables 1v and 2v  can take determines how many load levels will be 

considered in the reliability analysis, and each specific combination of 1v and 2v  

determines an actual load level. Some examples of the number of discrete values that 

load level control variables 1v and 2v  can take and the corresponding load levels resulting 

from different combinations of such values are listed in Table 5.11.   
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Table 5.11: The number of discrete values of independent load level control variables 
and corresponding load levels 

Number of Discrete Values of 
Independent Load Level 
Control Variables 1v and 2v  

Values of 1v and 2v  Corresponding Load Levels  

 

1 
11 =v  

12 =v  

 

11 =v , 12 =v  

 

2  
)1,0(1 =v  

)1,0(2 =v  

1,1 21 == vv  

0,0 21 == vv  

0,1 21 == vv   

1,0 21 == vv   

 

The reliability indices for the two circuit breaker-oriented reliability test systems under 

different component outage modes, component outage levels, and load levels are 

provided in Tables 5.12 ~ 5.17. Three load levels used in the reliability assessment are 

provided in Table 5.18. Based on these results, we can draw the following conclusions: 

(1) The impact of hidden failure outages on the level of system reliability is significant. 

Figures 5.5 ~ 5.8 illustrate the variation of probability and frequency indices when 

considering hidden failure outages. 

(2) The level of system reliability decreases with the increases of the system load level 

and the component outage level. Figures 5.5 ~ 5.10 illustrate the variation of probability 

and frequency indices when considering different load levels and component outage 

levels. 

(3) The influence of generating unit outages on the level of system reliability is more 

substantial than that of transmission circuit outages because generating units have much 

higher failure probabilities and longer reparation time than transmission circuits. The 
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contributions to the probability index from transmission circuit outages and generating 

unit outages under the independent outage mode and the low load level of the 24-

substation system, which are obtained from Tables 5.12 and 5.15, are shown in Figure 

5.11. 

(4) The level of system reliability increases with the increase of the system scale, which 

is illustrated by the comparison of probability and frequency indices of two reliability test 

systems under different component outage modes and load levels, shown in Figures 5.12 

~ 5.15.  
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Area B
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Figure 5.4: IEEE three-area reliability test system.
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Table 5.12: The reliability assessment of the 24-substation reliability test system (circuit 
outage level: 1, generating unit outage level: 0). 

 
Outage Mode(s)  

Load 
Level 

 
Reliability  

Index  
Independent 

 
Independent and 
Common-mode 

Independent, Common-
mode, and Hidden 

Failure 

Probability 6.9761e-4 6.977e-4  8.903e-4 

Frequency (/yr) 0.2608 0.2609 0.3838 

 

Peak 

Duration (hrs) 23.4279 23.4242 20.3202 

Probability 6.3309e-4 6.3312e-4 8.0457e-4 

Frequency (/yr) 0.2043 0.204348 0.3109 

 

Medium 

Duration (hrs) 27.1404 27.1404 22.6675 

Probability 3.0438e-4 3.0438e-4 4.7234e-4 

Frequency (/yr) 0.1420 0.1420 0.2361 

 

Low 

Duration (hrs) 18.7754 18.7754 17.5229 
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Figure 5.5: The probability indices of the 24-substation reliability test system under 
different component outage modes and load levels  

(circuit outage level: 1, generating unit outage level: 0). 
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Figure 5.6: The frequency indices of the 24-substation reliability test system under 
different component outage modes and load levels 

 (circuit outage level: 1, generating unit outage level: 0). 
 
 
Table 5.13: The reliability assessment of the 24-substation reliability test system (circuit 

outage level: 2, generating unit outage level: 0). 
 

Outage Mode(s)  
Load 
Level 

 
Reliability  

Index  
Independent 

 
Independent and 
Common-mode 

Independent, Common-
mode, and Hidden 

Failure 

Probability 7.1549e-4 7.1549e-4 9.1493e-4 

Frequency (/yr) 0.2681 0.2681 0.3944 

 

Peak 

Duration (hrs) 23.3799 23.3866 20.3203 

Probability 6.4844e-4 6.4844e-4 8.2603e-4 

Frequency (/yr) 0.2094 0.2094 0.3191 

 

Medium 

Duration (hrs) 27.1229 27.1255 22.6778 

Probability 3.1677e-4 3.1673e-4 4.9070e-4 

Frequency (/yr) 0.1504 0.1503 0.2479 

 

Low 

Duration (hrs) 18.4559 18.4611 17.3420 
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Figure 5.7: The probability indices of the 24-substation reliability test system under 
different component outage modes and load levels 

 (circuit outage level: 2, generating unit outage level: 0). 
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Figure 5.8: The frequency indices of the 24-substation reliability test system under 
different component outage modes and load levels 

 (circuit outage level: 2, generating unit outage level: 0). 
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Table 5.14: The reliability assessment of the 24-substation reliability test system  
(circuit outage level: 0). 

Generating Unit Independent Outage level  
Load 
Level 

 
Reliability  

Index 1 2 

Probability 0.0620 0.2163 

Frequency (/yr) 8.6007 36.8293 

 

Peak 

Duration (hrs) 63.1009 51.4594 

Probability 0.0186 0.0660 

Frequency (/yr) 2.1617 9.6035 

 

Medium 

Duration (hrs) 75.5313 60.2411 

Probability 0.0060 0.0207 

Frequency (/yr) 1.0579 4.8271 

 

Low 

Duration (hrs) 49.6833 37.6181 
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Figure 5.9: The probability indices of the 24-substation reliability test system under 
different load levels (circuit outage level: 0, generating unit outage levels: 1 and 2). 
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Figure 5.10: The frequency indices of the 24-substation reliability test system under 
different load levels (circuit outage level: 0, generating unit outage levels: 1 and 2). 

 
 

Table 5.15: The reliability assessment of the 24-substation reliability test system (circuit 
outage level: 1, generating unit outage level: 1). 

Outage Mode(s)  
Load 
Level 

 
Reliability  

Index  
Independent 

 
Independent and 
Common-mode 

Independent, Common-
mode, and Hidden 

Failure 

Probability 0.0787 0.0788 0.0795 

Frequency (/yr) 8.4781 8.4904 8.8134 

 

Peak 

Duration (hrs) 81.3246 81.2787 79.0507 

Probability 0.02078 0.02088 0.02141 

Frequency (/yr) 2.7722 2.7899 3.0887 

 

Medium 

Duration (hrs) 65.6655 65.5649 60.7159 

Probability 0.007536 0.007538 0.0081 

Frequency (/yr) 1.7453 1.7458 2.0406 

 

Low 

Duration (hrs) 37.8227 37.8254 34.6066 
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Transmission circuit
outage contribution:
4.1% (3.04e-4)
Generating unit outage
contribution: 95.9%
(0.00723)

 

Figure 5.11: The contributions to the probability index from transmission circuit outages 
and generating unit outages under the independent outage mode and the low load level 

for the 24-substation reliability test system.  
 

 

Table 5.16: The reliability assessment of the 73-substation reliability test system (circuit 
outage level: 1, generating unit outage level: 0). 

Outage Mode(s)  
Load 
Level 

 
Reliability  

Index  
Independent 

 
Independent and 
Common-mode 

Independent, Common-
mode, and Hidden 

Failure 

Probability 5.3114e-5 5.3120e-5 6.7657e-5 

Frequency (/yr) 0.0242 0.0242 0.0324 

 

Peak 

Duration (hrs) 19.2585 19.2569 18.3109 

Probability 4.0715e-5 4.0720e-5 5.2900e-5 

Frequency (/yr) 0.0138 0.0138 0.0212 

 

Medium 

Duration (hrs) 25.8028 25.7982 21.8642 

Probability 3.9729e-5 3.9731e-5 5.0713e-5 

Frequency (/yr) 0.0128 0.0128 0.0195 

 

Low 

Duration (hrs) 27.1420 27.1403 22.8242 
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Figure 5.12: The comparison of probability indices of the 24-substation system and the 
73-substation system under the peak load level and different component outage modes 

(circuit outage level: 1, generating unit outage level: 0). 
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Figure 5.13: The comparison of frequency indices of the 24-substation system and the 73-
substation system under the peak load level and different component outage modes 

(circuit outage level: 1, generating unit outage level: 0). 
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 Table 5.17: The reliability assessment of the 73-Substation reliability test system (circuit 
outage level: 0, generating unit outage level: 1). 

 
Load Level Peak Medium Low 

Probability 0.003713 0.002372 3.8988e-4 

Frequency (/yr) 0.4196 0.2078 0.04522 

 
Reliability 
Index 

Duration (hrs) 77.5157 99.9914 75.5313 
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Figure 5.14: The comparison of probability indices of the 24-substation system and the 
73-substation system under the independent component outage mode and different load 

levels (circuit outage level: 0, generating unit outage level: 1). 
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Figure 5.15: The comparison of frequency indices of the 24-substation system and the 73-

substation system under the independent component outage mode  
(circuit outage level: 0, generating unit outage level: 1). 

 
 

Table 5.18: Three load levels used in the reliability assessment of two systems  

Load Level 24-substation system 73-substation system 

Peak 2850MW (100%) 9528MW (100%) 

Medium 2456MW (86.2%) 8550MW (89.7%) 

Low 2130MW (74.7%) 7572MW (79.5%) 
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5.3 Summary 
 
 
 

In this chapter, the demonstration and application of the proposed comprehensive 

approach for bulk power system reliability assessment are implemented based on two 

IEEE reliability test systems and their derivations, i.e., the circuit breaker-oriented system 

network models. Representative results are provided to demonstrate the effective features 

of advanced techniques in the proposed approach for bulk power system reliability 

assessment. Reliability evaluation results for two circuit breaker-oriented reliability test 

systems are provided and compared under different system component outage modes, 

outage equipment, and load levels. In the next chapter, conclusions of this research are 

summarized and future work is recommended. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS  
 

 
 

6.1 Conclusions 
 
 
 

The goal of this research is to advance the state of the art in bulk power system 

reliability assessment. A comprehensive approach for bulk power system reliability 

assessment, i.e., the security-constrained adequacy evaluation (SCAE) methodology, is 

developed to evaluate the ability of the system in supplying the electric load while 

satisfying security constraints [142]. Research contributions have been made in following 

areas: 

1. The single phase quadratized power flow (SPQPF) model is applied in the proposed 

SCAE methodology for bulk power system reliability assessment. Compared with the 

traditional power flow model, the SPQPF model yields improved contingency 

selection and ranking accuracy, speeds up the procedure of the effects analysis 

because of its faster convergence characteristics, and makes the effects analysis more 

realistic with its ability to model complex load characteristics. 

2. An improved critical contingency selection scheme is developed to efficiently identify 

and rank critical contingencies with high accuracy [116, 117]. Specifically, the system 

state linearization approach is investigated to reduce the error introduced by the linear 

approximation in the traditional performance index linearization methods for 

contingency selection and ranking. The system state linearization approach includes 
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higher-order terms in the performance index calculation procedure to trace nonlinear 

variations of the performance index for a post-contingency situation and therefore 

effectively reduce misranking in the contingency selection and ranking procedures. 

3. A non-divergent optimal quadratized power flow (NDOQPF) algorithm that performs 

contingency effects analysis is proposed [118-120, 140, 141]. Quadratized remedial 

action models are developed, and the concept of the remedial action control variable is 

used to represent the availability and amount of system remedial actions. Compared 

with the traditional power flow solution procedure, the NDOQPF algorithm has the 

following merits:  

(1) It is able to simulate contingencies in a realistic manner to capture the system   

response including major controls and adjustments. In addition, because of its 

efficiency, the overall computational effort of SCAE is reasonable;  

(2) If a solution exists; it guarantees convergence; if a solution does not exist, such as 

when multi-level contingencies are considered and the system is severely stressed, 

it can provide a sub-optimal solution that may include load shedding for the 

system; 

(3) It is applicable to both a regulated and deregulated power system environment. In 

particular, in a deregulated environment in which the system is more likely to be 

heavily stressed and may be operated in different power flow patterns from the 

ones it was originally designed to operate in, the NDOQPF is capable of 

efficiently solving the ISO/RTO operational model and providing solutions under 

all conditions. 
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4. The impact of protection system hidden failures on bulk power system reliability 

assessment is investigated [134]. A circuit breaker-oriented substation model is 

introduced to include the detailed substation configuration as well as the protection 

system scheme in the system network model. In addition, the impact of advanced 

system real time monitoring technologies on detecting protection system hidden 

failures is analyzed.  Also, a hidden failure effects analysis method is developed to 

obtain hidden failure outages following any possible initial equipment outages. The 

security-constrained adequacy evaluation methodology is extended to evaluate 

contingencies resulting from protection system hidden failures as well as other 

contingencies resulting from independent and common-mode outages so that the 

impact of protection system hidden failures on bulk power system reliability 

assessment is included. 

5. The proposed comprehensive bulk power system reliability assessment approach is 

implemented in a Visual C++ environment using object-oriented techniques and is 

applied to evaluate the reliability of two reliability test systems. 

 
 
 

6.2 Recommendations for Future work 
 
 
 

Based on the conclusions above, recommendations for future research directions are 

listed as follows: 
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1. More potentially efficient algorithms for solving large-scale optimization problems, 

such as the interior point method, should be implemented and evaluated to improve the 

performance of the optimization problem solution. 

 2. The proposed approach will be applied to solve the ISO/RTO operational model to 

demonstrate its effectiveness in deregulated power systems.  

3. The proposed approach will be extended to integrate the security assessment, which 

involves evaluating system behavior while including transient stability as well as 

cascading sequences after system disturbances. 

4. The performance of the software that implements the proposed approach in the Visual 

C++ environment using object-oriented techniques will be further improved.  
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