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SUMMARY

The length LCn of the longest common subsequences of two stringsX = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) is way to measure the similarity between X and Y . We study the

asymptotic behavior of LCn when the two strings are generated by a hidden Markov model

(Z, (X, Y )). The latent chain Z is an aperiodic time-homogeneous and irreducible finite

state Markov chain and the pair (Xi, Yi) is generated according to a distribution depending

of the state of Zi for every i ≥ 1. The letters Xi and Yi each take values in a finite alphabet

A.

The goal of this work is to build upon asymptotic results for LCn obtained for se-

quences of iid random variables. Under some standard assumptions regarding the model

we first prove convergence results with rates for E[LCn]. Then, versions of concentration

inequalities for the transversal fluctuations of LCn are obtained. Finally, we have outlined

a proof for a central limit theorem by building upon previous work and adapting a Stein’s

method estimate.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

There are many settings where one needs to compare two sequences and measure their

similarity. For instance, comparison can be used for error-correction or for establishing

relations. If there is a clear correspondence between the letters in the two sequences it is

most sensible to develop measures that use it. Such measures between a = (a1, . . . , an)

and b = (b1, . . . , bn) are the Euclidean distance
√∑n

i=1(ai − bi)2, the city block distance∑n
i=1 |ai − bi| or the Hamming distance

∑n
i=1 1ai=bi .

However, often the correspondence between letters is not known in advance. A useful

measure in this case which also respects the order of the elements in the sequences is the

length of the longest common subsequences.

For two finite sequences (X1, . . . , Xn) and (Y1, . . . , Ym) taking values in a finite alphabet

A, the object of study is LCS(X1, . . . , Xn;Y1, . . . , Ym), the length of the longest common

subsequences of X1, . . . , Xn and Y1, . . . , Ym, which is abbreviated as LCn when n = m.

Clearly LCn is the largest k such that there exist 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 <

· · · < jk ≤ n with

Xis = Yjs , for all s = 1, 2, 3, . . . , k.

Example 1.0.1. IfX = {A,C, T,G,A,C, T, C,A,A,G,C,A, T,A} and Y = {C,A,A,G,

C,A, T,A,A,C, T,G,A,C, T}, the longest common subsequences have length 9, and so

LC15 = 9. Here is a visual representation of this fact. The longest common subsequences
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can be seen in bold (and red).

A C T G A C T C A A G C A T A

C A A G C A T A A C T G A C T

Note that longest common subsequences do not necessarily consist of only contiguous

letters. The realization is also not unique. Here is another set of longest common subse-

quences for the same strings X and Y .

A C T G A C T C A A G C A T A

C A A G C A T A A C T G A C T

1.1 Asymptotic results for LCn

When the sequences are generated by a probabilistic model, the length of the longest com-

mon subsequence is a random variable as well. The distribution of LCn depends on the

model and cannot be determined for general n even for some of the simplest models. Some

understanding of LCn has been obtained through several asymptotic results. We now list

some of the major ones.

For two independent words sampled independently and uniformly at random from the al-

phabet, Chvátal and Sankoff [7] proved that

lim
n→∞

E[LCn]/n = γ∗,

and provided upper and lower bounds on γ∗.

This was followed by Alexander [1] who obtained, for iid draws, the following generic rate
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of convergence result:

nγ∗ − C
√
n log n ≤ E[LCn] ≤ nγ∗, (1.1)

where C > 0 is an absolute constant.

Then Houdré and Matzinger [18] showed a closeness to the diagonal result which is rather

technical and will be stated more precisely in Chapter 3. Further work by Houdré and

Işlak [16] establishes a central limit theorem for the length of the longest common subse-

quence in the iid case.

1.2 Hidden Markov models and thesis outline

From a practical point of view the independence assumptions, both between words and also

among draws, has to be relaxed as they are often lacking. One such instance is in the field of

computational biology where one compares similarities between two biological sequences.

In particular, alignments of those sequences need to be qualified as occurring by chance or

because of a structural relation. One way to generate alignments is with a hidden Markov

model (HMM). The states of the hidden chain account for a match between two elements

in X and Y or for an alignment of an element with a gap. Given X and Y one can find

the most probable alignment using the Viterbi algorithm. This model is particularly useful

when the similarity between X and Y is weak. In this case standard methods for pairwise

alignment often fail to identify the correct alignment or test for its significance. With a

hidden Markov model one can evaluate the total probability that X and Y are aligned by

summing up over all alignments, and this sum can be efficiently computed with the Forward

algorithm. For more information we refer the reader to Chapter 4 in [11].

There are very few results on the asymptotics of the longest common subsequences in a

model exhibiting dependence properties. A rare instance is due to Steele [26] who showed

the convergence of E[LCn]/n when (X, Y ) is a random sequence for which there is a
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stationary ergodic coupling, e.g., an irreducible, aperiodic, positive recurrent Markov chain.

This thesis studies the longest common subsequences for strings exhibiting a different

Markov relation, namely we study the case when (X, Y ) is emitted by a latent Markov

chain Z, i.e., when (Z, (X, Y )) is a hidden Markov model. A hidden Markov model con-

sists of a Markov chain Z = (Zi)i≥1 which emits the observed variables (Xi)i≥1. In our

setting the Markov chain Z is defined on a finite state space S and is aperiodic, time homo-

geneous and irreducible. The possible states of Z are each associated with a distribution

on the values of X . In other words, the observation X = (Xi)i≥1 is a mixture model where

the choice of mixture component of each observation depends on the component of the

previous observation. The mixture components are given by the sequence Z. In our setting

a single sequence of components Z gives rise to the two sequences (X, Y ). In particular

each Zi generates a pair (Xi, Yi), where X and Y take values in the same alphabet A.

Graphically, the model can be presented as

(X1, Y1)

Z1

(X2, Y2)

Z2

(Xn, Yn)

Zn

Figure 1.1: A hidden Markov model

Note that this framework includes the special case when (Z,X) and (Z ′, Y ) are hidden

Markov models, with the same parameters, while Z and Z ′ are independent. In our set-

ting, mean convergence is quickly proved in Section 2.1 of Chapter 2. Then, a rate of

convergence result, obtained in Section 2.2 of Chapter 2, recovers, in particular, (1.1). In

Chapter 3 we generalize the technical result regarding closeness to the diagonal of Houdré

and Matzinger [18] mentioned above. Chapter 4 establishes a Stein’s method for functions

of hidden Markov models by generalizing on a result by Chatterjee [6]. This result is used

in Chapter 5 to outline a proof for the central limit theorem by following the approach
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in [16].

Throughout this manuscript our probability space (Ω,F ,P) is assumed to be rich enough

to consider all the random variables we are studying.
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CHAPTER 2

RATE OF CONVERGENCE

In this chapter we present a few results regarding the asymptotic behavior of E[LCn] and

thus generalizing the work of Chvátal and Sankoff [7] and Alexander [1].

2.1 Mean convergence

Recall that a hidden Markov model (Z, V ) consists of a Markov chain Z = (Zn)n≥1 which

emits the observed variables V = (Vn)n≥1. The possible states in Z are each associated

with a distribution on the values of V . In other words the observation V is a mixture model

where the choice of the mixture component for each observation depends on the component

of the previous observation. The mixture components are given by the sequence Z. Note

also that given Z, V is a Markov chain. For such a model our first easy result asserts the

mean convergence of LCn.

Proposition 2.1.1. Let Z be an aperiodic, irreducible, time homogeneous finite state space

Markov chain. Let µ, P , and π be respectively the initial distribution, transition matrix and

stationary distribution of Z. Let each Zn, n ≥ 1, generate a pair (Xn, Yn) according to a

distribution associated to the state of Zn, i.e., let (Z, (X, Y )) be a hidden Markov model,

where X = (Xn)n≥1 and Y = (Yn)n≥1. Further, for all i ≥ 1 and j ≥ 1, let Xi and Yj

take their values in the common finite alphabet A and let there exists a ∈ A, such that

P(Xi = Yj = a) > 0, for some i ≥ 1 and j ≥ 1. Then,

lim
n→∞

E[LCn]

n
= γ∗,

where γ∗ ∈ (0, 1].

Proof. If µ = π, the sequence (X, Y ) is stationary and therefore by superadditivity and
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Fekete’s lemma or Kingman’s subadditivity theorem (see [27]) imply:

lim
n→∞

E[LCn]

n
= sup

k≥1

E[LCk]

k
= γ∗, (2.1)

for some γ∗ ∈ (0, 1]. When µ 6= π, a coupling technique will prove the result. Let Z be

a Markov chain with initial and stationary distribution π and having the same transition

matrix P as the chain Z. Assume, further, that the emission probabilities are the same for

Z and Z and denote by (Z, (X,Y )) the corresponding HMM. Next consider the coupling

(Z,Z) where the two chains stay together after the first time i for which Zi = Zi, and let

τ be the meeting time of Z and Z. Next, and throughout, let X(n) := (X1, . . . , Xn) and

similarly for Y (n), X
(n)

and Y
(n)

. Since LCS(X(n);Y (n)) − LCS(X
(n)

;Y
(n)

) ≤ n, then

for any K > 0,

|E[LCS(X(n);Y (n))− LCS(X
(n)

;Y
(n)

)]|

=

∣∣∣∣E [[LCS(X(n);Y (n))− LCS(X
(n)

;Y
(n)

)]1τ>K

]
+ E

[
[LCS(X(n);Y (n))− LCS(X

(n)
;Y

(n)
)]1τ≤K

] ∣∣∣∣
≤ nP(τ > K) +K +

∣∣∣E [[LCSK(X(n);Y (n))− LCSK(X
(n)

;Y
(n)

)]1τ≤K

]∣∣∣
≤ nP(τ > K) +K, (2.2)

where LCSK(·; ·) is now the length of the longest common subsequences restricted to the

letters Xi and Yi, for i > K, noting also that when τ ≤ K, then LCSK(X(n);Y (n)) and

LCSK(X
(n)

;Y
(n)

) are identically distributed. If K ∈ (mk,m(k + 1)], for some m ≥ 0,
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by an argument going back to Doeblin [9] (see also [28]),

P(τ > K)

≤ P(Zk 6= Zk, Z2k 6= Z2k, . . . , Zmk 6= Zmk)

= P(Zk 6= Zk)P(Z2k 6= Z2k|Zk 6= Zk) · · ·P(Zmk 6= Zmk|Z(m−1)k 6= Z(m−1)k)

≤ (1− ε)m−1

≤ cαK , (2.3)

where α = k
√

1− ε ∈ (0, 1) and c = 1/(1− ε)2. Therefore, τ is finite with probability one.

Choosing K =
√
n, yields P(τ > K)+K/n→ 0 and finally E[LCn]/n→ γ∗, as n→∞.

Clearly, E[LCn] ≤ n and to see that γ∗ > 0, note first that, by aperiodicity and irreducibil-

ity, P k ≥ ε, for some fixed k and ε > 0, i.e., all the entries of the matrix P k are larger than

some positive quantity ε. Therefore P(X1 = Yk+1) > p, for some p = p(k, ε) > 0. Now,

LCnk+1 ≥ 1X1=Yk+1
+ 1Xk+1=Y2k+1

+ · · ·+ 1X(n−1)k+1=Ynk+1
, (2.4)

hence
np

nk + 1
≤ E[LCnk+1]

nk + 1
.

Letting n→∞ implies that γ∗ ∈ [p/(k + 1), 1] ⊂ (0, 1], since p > 0.

Remark 2.1.2. (i) Under a further assumption, one can show that γ∗ > P(X1 = Y1).

Indeed, assume that for all x, y ∈ A, z ∈ S , P(Xi = x, Yi = y|Zi = z) = P(Xi = y, Yi =
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x|Zi = z) > 0, and let Z be started at the stationary distribution. Then for any n ≥ 2,

E[LCn] ≥ E[LCn−21Xn=Yn,Xn−1=Yn−1 ] + 2P(Xn = Yn, Xn−1 = Yn−1)

+ E[LCn−21Xn=Yn,Xn−1 6=Yn−1 ] + P(Xn 6= Yn, Xn−1 = Yn−1)

+ E[LCn−21Xn 6=Yn,Xn−1=Yn−1 ] + P(Xn = Yn, Xn−1 6= Yn−1)

+ E[LCn−21Xn 6=Yn,Xn−1 6=Yn−1 ] + P(Xn 6= Yn, Xn−1 6= Yn−1, Xn = Yn−1)

> E[LCn−2] + P(Xn = Yn) + P(Xn−1 = Yn−1)

= E[LCn−2] + 2P(X1 = Y1),

by stationarity. Therefore, iterating, still using stationarity, and since E[LC0] = 0 while

E[LC1] = P(X1 = Y1), it follows that for n ≥ 2, E[LCn] > nP(X1 = Y1). Finally,

γ∗ > P(X1 = Y1) =
∑
α∈A

P(X1 = α)P(Y1 = α),

and this inequality is strict since Fekete’s lemma, e.g., see [27], ensures that

γ∗ = sup
n

E[LCn]/n.

(ii) Steele’s general result, see [26], asserts that Proposition 2.1.1 holds if there is a sta-

tionary ergodic coupling for (X, Y ). Such an example is when the sequences X and Y

are generated by two independent aperiodic, homogeneous and irreducible hidden Markov

chains with the same parameters (and so the same emission probabilities). Indeed, at first,

when the hidden chains ZX and ZY generating respectively X and Y are started at the sta-

tionary distribution, convergence of E[LCn]/n towards γ∗, follows from super-additivity

and Fekete’s lemma (see [27]). As previously, γ∗ > 0, since the properties of the hidden

chains imply (2.4). Then, when the initial distribution is not the stationary distribution, one

can proceed with arguments as above. In particular let τ1 and τ2 be the respective meeting

times of the chains (ZX , ZX) and (ZY , ZY ), and let τ = max(τ1, τ2). Then, equation (2.2)

9



continues to hold:

∣∣E[LCS(X;Y )− LCS(X;Y )]
∣∣ ≤ nP(τ > K) +K

≤ 2nP(τ1 > K) +K. (2.5)

TakingK =
√
n and noting the exponential decay of P(τ1 > K) finishes the corresponding

proof.

2.2 Rate of convergence

The previous section gives a mean convergence result, we now deal with its rate. Again let

(X, Y ) be the outcome of a hidden Markov chain Z with µ, P and π as initial distribution,

transition matrix and stationary distribution respectively. In this section we impose the

additional restriction that the emission distributions for all states in the hidden chain are

symmetric (this is discussed further in Proposition 2.2.8 and in the Appendix), namely for

all x, y ∈ A and all z ∈ S , P(Xi = x, Yi = y|Zi = z) = P(Xi = y, Yi = x|Zi = z).

Symmetry clearly implies that the conditional law of X given Z and of Y given Z are the

same since for all x, y and z,

P(Xi = x|Zi = z) =
∑
y∈A

P(Xi = x, Yi = y|Zi = z) =
∑
y∈A

P(Xi = y, Yi = x|Zi = z)

= P(Yi = x|Zi = z).

In turn this implies that Xi and Yi are identically distributed.

Moreover, one needs to control the dependency between X and Y and a way to do so

is via the β−mixing coefficient, as given in Definition 3.3 of [5] which we now recall.

Definition 2.2.1. Let F1 and F2 be two σ−fields ⊂ F , then the β−mixing coefficient,
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associated with these sub-σ-fields of F , is given by:

β(F1,F2) :=
1

2
sup

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|,

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ}

of Ω such that Ai ∈ F1, for all i ∈ {1, . . . , I}, I ≥ 1 and Bj ∈ F2 for all j ∈ {1, . . . , J},

J ≥ 1.

In our case the above notion of β−mixing coefficient is adopted for the σ−fields generated

by two sequences. Moreover, by [5, Proposition 3.21], for a fixed n ≥ 1, and since X(n) =

(X1, . . . , Xn) and Y (n) = (Y1, . . . , Yn) are discrete random vectors,

β(n) := β
(
σ
(
X(n)

)
, σ
(
Y (n)

))
=

1

2

∑
u∈An

∑
v∈An

∣∣P (X(n) = u, Y (n) = v
)
− P

(
X(n) = u

)
P
(
Y (n) = v

)∣∣ , (2.6)

where σ
(
X(n)

)
and σ

(
Y (n)

)
are the σ−fields generated by X(n) and Y (n). Clearly X(n)

and Y (n) are independent if and only if β(n) = 0. Further, set β∗ := limn→∞ β(n), where

the limit exists since β(n) is non-decreasing, in n, and β(n) ∈ [0, 1] (see Section 5 in [5]).

Remark 2.2.2. (i) Another definition of β−mixing coefficient based on “past” and “fu-

ture” is often studied in the literature, see, for instance, [4, Section 2]. For a single se-

quence of random variables S = (Sk)k∈Z and for −∞ ≤ J ≤ L ≤ ∞, let

FLJ := σ(Sk, J ≤ k ≤ L),

and for each n ≥ 1, let

βn := sup
j∈Z

β(F j−∞,F∞j+n).

In particular [4, Theorem 3.2] implies that if S is a strictly stationary, finite-state Markov
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chain that is also irreducible and aperiodic, βn → 0 as n → ∞. The mixing definition

relevant to our approach is different and this limiting behavior does not follow. A further

discussion of the values of β(n) is included in Remark 2.2.6 (i).

(ii) One might also be interested to use the α−mixing coefficient defined for σ− fields S

and T as:

α(S, T ) = 2 sup{|Cov(1S,1T )| : (S, T ) ∈ S × T }

Suppose further that T has exactly N atoms. The following holds (see [4] and [3, Theorem

1]):

2α(S, T ) ≤ β(S, T ) ≤ (8N)1/2α(S, T ).

However, for our setting the number of atomsN will be |A|n, and since α(n) := α(σ(X(n)), σ(Y (n)))

is increasing, a bound on β(n) using the inequality above is useless.

The following rate of convergence is our main result:

Theorem 2.2.3. Let (Z, (X, Y )) be a hidden Markov model, where the sequence Z is an

aperiodic time homogeneous and irreducible Markov chain with finite state space S. Let

the distribution of the pairs (Xi, Yi), i = 1, 2, 3, . . ., be symmetric for all states in Z. Then,

for all n ≥ 2,

E[LCn]

n
≥ γ∗ − 2β∗ − C

√
lnn

n
− 2

n
− (1− 1µ=π)

(
1√
n

+ cα
√
n

)
, (2.7)

where α ∈ (0, 1), c > 0 are constants as in (2.3) and C > 0. All constants depend on the

parameters of the model but not on n. Moreover with the same α and c,

E[LCn]

n
≤ γ∗ + (1− 1µ=π)

(
1√
n

+ cα
√
n

)
. (2.8)
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A key ingredient in proving Theorem 2.2.3 is a Hoeffding-type inequality for Markov

chains, a particular case of a result due to Paulin [22], which is now recalled. It relies

on the mixing time τ(ε) of the Markov chain Z given by

τ(ε) := min{t ∈ N : dZ(t) ≤ ε},

where

dZ(t) := max
1≤i≤N−t

sup
x,y∈Λi

dTV (L(Zi+t|Zi = x),L(Zi+t|Zi = y)),

and where dTV (µ, ν) = 1
2

∑
x∈Ω |µ(x) − ν(x)| is the total variation distance between the

two probability measures µ and ν on the finite set Ω.

Lemma 2.2.4. Let M := (M1, . . . ,MN) be a (not necessarily time homogeneous) Markov

chain, taking values in a Polish space Λ = Λ1×· · ·×ΛN , with mixing time τ(ε), 0 ≤ ε ≤ 1.

Let

τmin := inf
0≤ε<1

τ(ε)

(
2− ε
1− ε

)2

,

and let f : Λ→ R be such that there is c ∈ RN
+ with |f(u)− f(v)| ≤

∑N
i=1 ci1ui 6=vi . Then

for any t ≥ 0,

P(f(M)− Ef(M) ≥ t) ≤ exp

(
−2t2

τmin
∑N

i=1 c
2
i

)
. (2.9)

For our purposes, the Hoeffding-type inequality used below follows directly from (3.10)

once one notes that (Zi, Xi, Yi)i≥1 is jointly a Markov chain on a bigger state space. Let

τ(ε) be the mixing time of this chain. Taking f to be the length of the longest common

subsequences of X1, . . . , Xn and Y1, . . . , Yn we have c = ((0, . . . , 0), (1, . . . , 1)) ∈ Rn ×

R2n, since f is a function of Z, X and Y , whose values do not depend on Z. Letting

A :=
√
τmin/2, (3.10) becomes,

P(LCn − E[LCn] ≥ t) ≤ exp

[
−t2

A2n

]
, (2.10)

13



for all t ≥ 0.

Remark 2.2.5. (i) When X and Y are generated by two independent hidden chains ZX

and ZY , the same reasoning yields (2.10) where now τ̃(ε) is the mixing time of the chain

(ZX
n , Z

Y
n , Xn, Yn)n≥1.

(ii) The mixing time τ(ε) of (Zn, Xn, Yn)n≥1 is the same as the mixing time τ̃(ε) of the chain

(Zn)n≥1. Two proofs of this fact are provided in the Appendix.

Proof of Theorem 2.2.3. First recall a result of Berbee [2], see also [10, Theorem 1, Section

1.2.1], [24, Chapter 5], and [14], asserting that on our probability space, which is rich

enough, there exists Y ∗(n) := (Y ∗1 , . . . , Y
∗
n ), independent of (Z,X)(n) = ((Z1, X1), . . . ,

(Zn, Xn)), having the same law as Y (n) = (Y1, . . . , Yn) and such that

P(Y (n) 6= Y ∗(n)) = β(n), (2.11)

where β(n) = β(σ((Z,X)(n)), σ(Y (n))) is the β−mixing coefficient of (Z,X)(n) and Y (n).

Note also that if (Yi)i≥1 is stationary, then (Y ∗1 , . . . , Y
∗
k ) and (Y ∗` , . . . , Y

∗
`+k−1) are iden-

tically distributed, for every `, k ≥ 1, and that if (X(n), Y (n)) is symmetric, then so is

(X(n), Y ∗(n)) where X(n) = (X1, . . . , Xn). Note finally that this implies that Y ∗(n) is inde-

pendent of both X(n) and Z(n) = (Z1, . . . , Zn).

Next, fix k ∈ N, the idea of the proof is to relate E[LCkn] to E[LC2n]. For k = 4, this

is done in the i.i.d case in [23]. However, we wish to take k → ∞ and therefore follow

arguments presented for the i.i.d case in [20]. Call (ν, τ) := (ν1, . . . , νr, τ1, . . . τr) an r−

partition with k ≤ r ≤ d2kn/(2n− 1)e if

1 = ν1 ≤ ν2 ≤ · · · ≤ νr+1 = kn+ 1,

1 = τ1 ≤ τ2 ≤ · · · ≤ τr+1 = kn+ 1,

(νj+1 − νj) + (τj+1 − τj) ∈ {(2n− 1, 2n}, for j ∈ [1, r − 1],

(νr+1 − νr) + (τr+1 − τr) < 2n.

(2.12)
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Let Brk,n be the set of all r− partitions defined as above and let

Bk,n =

d2kn/(2n−1)e⋃
r=k

Brk,n.

If (ν, τ) is an r−partition, setting

LCkn(ν, τ) :=
r∑
i=1

LCS(Xνi , . . . , Xνi+1−1;Yτi , . . . , Yτi+1−1),

then:

LCkn = max
(ν,τ)∈B(k,n)

LCkn(ν, τ).

Let νi+1 − νi = n−m, τi+1 − τi ≤ n+m for m ∈ (−n, n) and τi − νi = `. Then,

E[LCS(Xνi , . . . , Xνi+1−1;Yτi , . . . , Yτi+1−1)]

= E[LCS(X1, . . . , Xn−m;Y`, . . . , Y`+n+m−1)] (2.13)

≤ E
[
LCS(X1, . . . , Xn−m;Y ∗` , . . . , Y

∗
`+n+m−1)1Y (kn)=Y ∗(kn)

]
+ min(n−m,n+m)P

(
Y (kn) 6= Y ∗(kn)

)
(2.14)

≤ E[LCS(X1, . . . , Xn−m;Y ∗` , . . . , Y
∗
`+n+m−1)] + nβ(kn). (2.15)

In the last expression the LCS is now a function of two independent sequences. Station-

arity implies (2.13) and LCS(X1, . . . , Xn−m;Y ∗` , . . . , Y
∗
`+n+m−1) ≤ min(n − m,n + m)

entails (2.14). The error term nβ(kn) in (2.15) follows from an application of Berbee’s

result (2.11). The same properties also imply

E[LCS(X1, . . . , Xn−m;Y ∗` , . . . , Y
∗
`+n+m−1)]

= E[LCS(X1, . . . , Xn−m;Y ∗1 , . . . , Y
∗
n+m)]

≤ E[LCS(X1, . . . , Xn−m;Y1, . . . , Yn+m)] + nβ(kn), (2.16)
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and

E[LCS(X1, . . . , Xn−m;Y ∗` , . . . , Y
∗
`+n+m−1)]

= E[LCS(X1, . . . , Xn+m;Y ∗1 , . . . , Y
∗
n−m)] (2.17)

≤ E[LCS(Xn−m+1, . . . , X2n;Yn+m+1, . . . , Y2n)] + nβ(kn), (2.18)

where the symmetry of the distributions of X and Y ∗ is used to get (2.17). Next by super-

additivity of the LCSs as well as (2.15), (2.16) and (2.18),

E[LCS(Xνi , . . . , Xνi+1−1;Yτi , . . . , Yτi+1−1)]

≤ 1

2

(
E[LCS(X1, . . . , Xn−m;Y1, . . . , Yn+m)]

+ E[LCS(Xn−m+1, . . . , X2n;Yn+m+1, . . . , Y2n)] + 2nβ(kn)

)
+ nβ(kn)

≤ 1

2

(
E[LC2n] + 2nβ(kn)

)
+ nβ(kn)

=
1

2
E[LC2n] + 2nβ(kn). (2.19)

This inequality is key to the proof, since it yields an upper bound on E[LCkn(ν, τ)] in terms

of E[LC2n], a quantity that does not depend on the partitioning (ν, τ). A similar result is

central to the proof of the rate of convergence in the independent setting [1]. However,

independence allows one to get (2.19) directly without the mere presence of or the need to

introduce β-mixing coefficients. Moreover, our approach is more direct. Applying Hoeffd-

ing’s inequality and summing over all partitions provide a relation between E[LCkn] and

E[LC2n] which can be used to get the rate of convergence. Indeed,

E[LCkn(ν, τ)] ≤ r

2
(E[LC2n] + 4nβ(kn)) ≤ 1

2

⌈
2kn

2n− 1

⌉
(E[LC2n] + 4nβ(kn)).
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In addition, for t > 0,

P
(
LCkn(ν, τ)− 1

2

⌈
2kn

2n− 1

⌉
(E[LC2n] + 4nβ(kn)) > tkn

)
≤ P (LCkn(ν, τ)− E[LCkn(ν, τ)] > tkn)

≤ exp

[
−t

2kn

A2

]
, (2.20)

where the second inequality follows from Lemma 3.2.2. Next note that:

P
(
LCkn −

1

2

⌈
2kn

2n− 1

⌉
(E[LC2n] + 4nβ(kn)) > tkn

)
=

∑
(ν,τ)∈Bk,n

P
(
LCkn(ν, τ)− 1

2

⌈
2kn

2n− 1

⌉
(E[LC2n] + 4nβ(kn)) > tkn

)

≤ |Bk,n| exp

[
−t

2kn

A2

]
.

The above can be rewritten as:

P
(
LCkn
kn

> t+
1

k

⌈
2kn

2n− 1

⌉(
E[LC2n]

2n
+ 2β(kn)

))
≤ |Bk,n| exp

[
−t

2kn

A2

]
.

Then, since LCkn ≤ kn,

E
[
LCkn
kn

]
≤ t+

1

k

⌈
2kn

2n− 1

⌉(
E[LC2n]

2n
+ 2β(kn)

)
+ P

(
LCkn
kn

> t+
1

k

⌈
2kn

2n− 1

⌉
E[LC2n]

2n

)
≤ t+

1

k

⌈
2kn

2n− 1

⌉(
E[LC2n]

2n
+ 2β(kn)

)
+ |Bk,n| exp

[
−t

2kn

A2

]
. (2.21)

Next a bound on |Bk,n| is obtained using methods as in [20]. Recall that k ≤ r ≤

d2kn/(2n− 1)e and that Bk,n =
⋃2kn/2n−1

r=k Brk,n. Now

|Brk,n| ≤ 2r−12n

(
nk + r − 1

r − 1

)
. (2.22)
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Indeed, the sum of sizes of the partition on the X side should sum to nk which gives a

factor of less than
(
nk+r−1
r−1

)
. Also for each choice of the first r− 1 elements of the partition

on the X side we have at most 2 choices on the Y side. The last interval can take at most

2n values, as per (2.12). Recall Stirling’s formula (see [12]), for n ≥ 1,

nne−n
√

2πne
1/(12n+1) ≤ n! ≤ nne−n

√
2πne

1/12n.

Since in the end of the proof k →∞, this bound can be used in (2.22) to obtain:

|Brk,n| ≤ (2r−12n)
(nk + r − 1)nk+r−1

√
2π(nk + r − 1)e1/12(nk+r−1)

(r − 1)(r − 1)
√

2π(r − 1)e1/12(r−1)+1(nk)nk
√

2πnke1/12(nk)+1

≤ 2rn
(nk + r − 1)nk+r−1

(r − 1)r−1(nk)nk

≤ 2rn

(
1 +

nk

r − 1

)r−1(
1 +

2

2n− 1

)nk
≤ 2rn

(
1 + n+

n

k − 1

) 2nk
2n−1

(
2n+ 1

2n− 1

)nk
.

The last inequality in the above expression holds true since k ≤ r ≤ d2kn/(2n−1)e. Then

for |Bk,n| one gets:

|Bk,n| ≤
(

2nk

2n− 1
− k + 2

)
max
r
|Brk,n|

≤
(

k

2n− 1
+ 2

)
2rn

(
1 + n+

n

k − 1

) 2nk
2n−1

(
2n+ 1

2n− 1

)nk
≤ exp

((
ln
(

k
2n−1

+ 2
)

nk
+
r ln 2 + lnn

nk
+

2

2n− 1
ln(2n) + ln

(
2n+ 1

2n− 1

))
nk

)

≤ exp

((
ln k

k
+

2

2n− 1
ln 2 +

2

2n− 1
ln (2n) + ln

(
2n+ 1

2n− 1

))
nk

)
≤ exp

((
ln k

k
+

4

2n− 1
ln 2 +

2

2n− 1
lnn+ ln

(
2n+ 1

2n− 1

))
nk

)
≤ exp (10k lnn) ,

where the last inequality holds for large k, in particular k > n, and since ln(1 + x) ≤ x for

18



x > 0. Let t = 2A
√

10
√

lnn/n. Then,

|Bk,n| exp

(
−t

2kn

A2

)
≤ exp (10k lnn) exp

(
−t

2kn

A2

)
≤ exp(−30k lnn).

Next, note that, as k →∞, E [LCkn/(kn)]→ γ∗ and that

1

k

⌈
2kn

2n− 1

⌉
≤ 1

k

(
2kn

2n− 1
+ 1

)
→ 2n

2n− 1
.

Recall also that β∗ = limn→∞ β(n) = limk→∞ β(kn). Then (2.21) implies:

2n

2n− 1

(
E[LC2n]

2n
+ 2β∗

)
≥ γ∗ − 2A

√
10

√
lnn

n
, (2.23)

and finally:

E[LC2n]

2n
≥ 2n− 1

2n

(
γ∗ − 2A

√
10

√
lnn

n

)
− 2β∗

≥ γ∗ − 2β∗ − 2A
√

10

√
lnn

n
− 1

2n
. (2.24)

To get the result for words of odd length note that by (2.23),

E[LC2n+1]

2n+ 1
≥ E[LC2n]

2n+ 1

≥ 2n− 1

2n+ 1

(
γ∗ − 2A

√
10

√
lnn

n

)
− 2n

2n+ 1
2β∗

≥ γ∗ − 2β∗ − 2A
√

10

√
lnn

n
− 2

2n+ 1
.

Of course, these last bounds are only of interest, for n large enough, if γ∗ > 2β∗. Oth-

erwise, we get the trivial lower bound 0 (see Remark 2.2.6 below). One is then left with

slightly modifying the constants to get (2.7). The extra term on the right hand side in (2.7)
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accounts for the difference in initial distributions (2.2).

The proof of the upper bound (2.8), where symmetry is not needed, follows by combining

Fekete’s lemma (see [27]) with (2.2) and (2.3).

Remark 2.2.6. (i) Recall that the β−mixing coefficient β(n) is a measure on the de-

pendency between (X1, . . . , Xn) and (Y1, . . . , Yn). The bounds in Theorem 2.2.3 rely on

β∗ := limn→∞ β(n) which somehow quantifies a weak dependency requirement and β∗ 6= 0

unless the sequences X and Y are independent. Note also that the lower bound in Theo-

rem 2.2.3 is meaningful only if 2β∗ < γ∗. Besides the independent case, there are instances

for which this condition is satisfied. For example, let X and Y be both Markov chains

with L states and with the same transition matrix P , where some rows of P are equal to

(1, 1, 1, . . . , 1)/L, i.e., such that there exists a set of states L such that the transition prob-

ability between each one of these states is uniform. Let the initial distribution of X1 be µ

with µ(x) = 0 if x /∈ L and assume that Y1 = X1. Then the sequence Ỹ defined, for all

n, via Ỹi = Yi, for i ≥ 1 while Y1 is distributed according to µ will be such that Ỹ (n) and

Y (n) have the same distribution. Moreover for all n, Ỹ (n) and X(n) will be independent

and P(Ỹ (n) 6= Y (n)) ≥ β(n), but P(Ỹ (n) 6= Y (n)) = P(Y1 6= Ỹ1) which can be made as

small as desired for a suitable choice of µ. Thus the lower bound in Theorem 2.2.3 holds

and is meaningful.

(ii) There are instances when the lower bound in Theorem 2.2.3 is vacuous. Such a case

is when Xi = Yi for all i ≥ 1 and the Xi are independent and uniformly distributed over

the letters in A. Then, it is clear that γ∗ = 1 whereas one shows that

β(n) = 1− 1

|A|n
,

and so β∗ = 1. In this case the lower bound in (2.7) is a negative quantity.

(iii) Theorem 2.2.3 continues to hold for Markov chains with a general state space Λ.
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Indeed, the Hoeffding inequality (2.10) is true when Λ is a Polish space. The exponential

decay (2.3) holds when Λ is petite, i.e., when there exist a positive integer n0, ε > 0 and

a probability measure ν on Λ such that P n0(x,A) ≥ εν(A), for every measurable A and

x ∈ Λ, and where P n0(x,A) is the n0−step transition law of the Markov chain (see [25,

Theorem 8]).

When X and Y are generated by independent hidden Markov models. Then the following

variant of Theorem 2.2.3 holds (for a sketch of proof, see the Appendix).

Corollary 2.2.7. Let (ZX , X) and (ZY , Y ) be two independent hidden Markov models,

where the latent chains ZX and ZY have the same initial distribution, transition matrix

and emission probabilities. Then, for all n ≥ 2,

E[LCn]

n
≥ γ∗ − C

√
lnn

n
− 2

n
− (1− 1µ=π)

(
1√
n

+ cα
√
n

)
, (2.25)

where α ∈ (0, 1), c > 0 are constants as in (2.3) and C > 0. All constants depend on the

parameters of the model but not on n. Moreover with the same α and c,

E[LCn]

n
≤ γ∗ + (1− 1µ=π)

(
1√
n

+ cα
√
n

)
. (2.26)

As mentioned in the end of the proof of Theorem 2.2.3, the symmetry of the distribution of

(Xi, Yi) is used only for proving the lower bound. Let

h(n) := max
m∈[−n,n]

(
2
n−m∑
i=1

P(Xi 6= Yi) +
n+m∑

i=n−m+1

P(Xi 6= Yi)

)
.

Then the following holds:

Proposition 2.2.8. Let (Z, (X, Y )) be a hidden Markov model, where the sequence Z is an

aperiodic time homogeneous and irreducible Markov chain with finite state space S. Then,
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for all n ≥ 2,

E[LCn]

n
≥ γ∗ − h(n)

n
− 2β∗ − C

√
lnn

n
− 2

n
− (1− 1µ=π)

(
1√
n

+ cα
√
n

)
. (2.27)

For a sketch of proof of this proposition, and some comments on h(n), we again refer the

reader to the Appendix.

2.3 Appendix

First, as asserted in Remark 2.2.5 (ii), we provide two proofs of the fact that the mixing

time τ(ε) of (Zn, Xn, Yn)n≥1 is the same as the mixing time τ̃(ε) of the chain (Zn)n≥1.

Proof 1. Let T̃ = (T̃n)n≥1 be a Markov chain with finite state space S. Each T̃i emits an

observed variable Ti according to some probability distribution that depends only on the

state T̃i. Let T = (Tn)n≥1 and assume Ti ∈ A - a finite alphabet. Note that (T̃, T ) is a

Markov chain; let τ(ε) be its mixing time, and let τ̃(ε) be the mixing time for the hidden

chain T̃ . Then,

dTV (L((T̃i+t, Ti+t)|(T̃i, Ti) = (x, u)),L((T̃i+t, Ti+t)|(T̃i, Ti) = (y, v)))

=
1

2

∑
(z,w)∈S×A

∣∣∣∣P((T̃i+t, Ti+t) = (z, w)|(T̃i, Ti) = (x, u))−

− P((T̃i+t, Ti+t) = (z, w)|(T̃i, Ti) = (y, v)

∣∣∣∣
=

1

2

∑
(z,w)

∣∣∣∣P(T̃i+t = z|T̃i = x)P(z → w)− P(T̃i+t = z|T̃i = y)P(z → w)

∣∣∣∣
=

1

2

∑
(z,w)

P(z → w)

∣∣∣∣P(T̃i+t = z|T̃i = x)− P(T̃i+t = z|T̃i = y)

∣∣∣∣
=

1

2

∑
z∈S

∣∣∣∣P(T̃i+t = z|T̃i = x)− P(T̃i+t = z|T̃i = y)

∣∣∣∣
= dTV (L(T̃i+t|T̃i = x),L(T̃i+t|T̃i = y)),
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where P(z → w) := P(Ti = w|T̃i = z), i.e., the probability that a state with value z ∈ S

emits w ∈ A. By definition of T and T̃ this last probability does not depend on i. Then∑
w∈A P(z → w) = 1. Therefore, d(T̃,T )(t) = dT̃ (t) and τ(ε) = τ̃(ε).

Before we present the second proof, we recall the following classical result [21, Proposition

4.7]:

Lemma 2.3.1. Let µ and ν be two probability distributions on Ω. Then,

dTV (µ, ν) = inf{P(X 6= Y ) : (X, Y ) is a coupling of µ and ν}.

Moreover, there is a coupling (X, Y ) which attains the infimum and such a coupling is

called optimal.

Proof 2. An alternative approach to proving the result of Remark 2.2.5 (ii) relies on cou-

pling arguments and was kindly suggested by D. Paulin in personal communications with

the authors.

Let (T̃ 1, T̃ 2) be an optimal coupling according to dTV (L(T̃t|T̃1 = x),L(T̃t|T̃1 = y)) for

some x, y ∈ S , i.e., T̃ 1 and T̃ 2 are Markov chains with the same transition probability as

T̃ , T̃ 1
0 = x, T̃ 2

0 = y, and

P(T̃ 1
t 6= T̃ 2

t ) = dTV (L(T̃t|T̃1 = x),L(T̃t|T̃1 = y)) (2.28)

Next let T 1
t and T 2

t be respectively distributed according to the distributions associated with

T̃ 1
t and T̃ 2

t and be independent of all the other random variables. In addition, if for some

t ≥ 1, T̃ 1
t = T̃ 2

t , then T 1
t = T 2

t . Then

P(T̃ 1
t 6= T̃ 2

t ) = P
(

(T̃ 1
t , T

1
t ) 6= (T̃ 2

t , T
2
t )
)
,
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and by Lemma 2.3.1, for any u, v ∈ A and any i ≥ 1,

P
(

(T̃ 1
t , T

1
t ) 6= (T̃ 2

t , T
2
t )
)

≥ dTV

(
L((T̃i+t, Ti+t)|(T̃i, Ti) = (x, u)),L((T̃i+t, Ti+t)|(T̃i, Ti) = (y, v))

)
.

Together with (2.28), the above yields

dTV (L(T̃t|T̃1 = x),L(T̃t|T̃1 = y)) ≥

≥ dTV

(
L((T̃i+t, Ti+t)|(T̃i, Ti) = (x, u)),L((T̃i+t, Ti+t)|(T̃i, Ti) = (y, v))

)

Taking the sup over x, y, u, v gives d(T̃,T )(t) ≤ dT̃ (t).

For the reverse inequality, consider the optimal coupling
(

(T̃ 1, T 1), (T̃ 2, T 2)
)

according to

dTV

(
L((T̃t, Tt)|(T̃1, T1) = (x, u)),L((T̃t, Tt)|(T̃1, T1) = (y, v))

)
, for some x, y ∈ S and

u, v ∈ A. Then,

P
(

(T̃ 1
t , T

1
t ) 6= (T̃ 2

t , T
2
t )
)

= dTV

(
L((T̃t, Tt)|(T̃1, T1) = (x, u)),L((T̃t, Tt)|(T̃1, T1) = (y, v))

)
,

(2.29)

and

P
(

(T̃ 1
t , T

1
t ) 6= (T̃ 2

t , T
2
t )
)
≥ P(T̃ 1

t 6= T̃ 2
t ).

However, by the Lemma 2.3.1, for any i ≥ 1,

P(T̃ 1
t 6= T̃ 2

t ) ≥ dTV (L(T̃i+t|T̃i = x),L(T̃i+t|T̃i = y)). (2.30)

Taking the sup in (2.29) and (2.30) gives, d(T̃,T )(t) ≥ dT̃ (t), and then d(T̃,T )(t) = dT̃ (t).
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Proof of Corollary 2.2.7. The Hoeffding inequality (2.10) holds as long as (Z,X, Y ) is a

Markov chain. In addition, (X, Y ) has to be symmetric (see proof of Proposition 2.2.8)

in order for (2.19) to hold. Again one such setting is when X and Y are two independent

HMM with the same transition matrix for the latent chain and same emission probabilities.

A rate of convergence result then follows from arguments as in Section 2.2. The bound on

Bk,n is the same, and there is a Hoeffding type inequality for this model as per Remark 2.2.5

(i). One thing that differs is the bound (2.19), which is now much easier to get. When

started at the stationary distribution, by stationarity, independence and symmetry, one has:

LCS(Xνi , . . . , Xνi+1−1;Yτi , . . . , Yτi+1−1) ≤ LCS(X1, . . . , Xn−m, Y1, . . . , Yn+m)

= LCS(X1, . . . , Xn+m;Y1, . . . , Yn−m)

≤ 1

2
LC2n.

In particular, there is no need to introduce mixing coefficients in this case (β = 0). When

the hidden chains are not started at the stationary distribution one gets an error as in (2.5).

Then Theorem 2.2.3 holds but with constants depending on the new model. Moreover,

this setting reduces to the one where X and Y are independent Markov chains by letting

each state of the hidden chains emit a unique letter, which can further recover the iid case

originally obtained in [1].

Proof of Proposition 2.2.8. The symmetry of the distribution of (X, Y ) is only used to

get (2.17), which entails that for any m ∈ {−n + 1, . . . , n − 1}, LCS(X1, . . . , Xn−m;

Y1, . . . , Yn+m) and LCS(X1, . . . , Xn+m; Y1, . . . , Yn−m) are identically distributed and up-

per bounded by half of LC2n. Such a result yields a comparison between E[LC2n] and

E[LCkn], leading as k → ∞, to a lower bound on E[LC2n] involving γ∗. Without assum-

ing symmetry, the step (2.17) in obtaining (2.19) needs to be modified. One way to do so
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is to make use of the Lipschitz property of the LCS to get the following estimate:

LCS(X1, . . . , Xn−m;Y1, . . . , Yn+m)

= LCS(X1, . . . , Xn+m;Y1, . . . , Yn−m) +

(
LCS(X1, . . . , Xn−m;Y1, . . . , Yn+m)

− LCS(X1, . . . , Xn+m;Y1, . . . , Yn−m)

)
≤ LCS(Y1, . . . , Yn−m;X1, . . . , Xn+m) + 2

n−m∑
i=1

1Xi 6=Yi +
n+m∑

i=n−m+1

1Xi 6=Yi .

Taking expectations, then (2.19) becomes

E[LCS(Xνi , . . . , Xνi+1−1;Yτi , . . . , Yτi+1−1)] ≤ 1

2

(
E[LC2n] + h(n)

)
+ 2nβ(kn),

where h(n) := maxm∈[−n,n]

(
2
∑n−m

i=1 P(Xi 6= Yi) +
∑n+m

i=n−m+1 P(Xi 6= Yi)
)
. This leads

to a non-symmetric version of (2.7), namely,

E[LCn]

n
≥ γ∗ − C

√
lnn

n
− h(n)

n
− 2β∗ − 1

n− 2
− (1− 1µ=π)

(
1√
n

+ cα
√
n

)
. (2.31)

If h(n) = O(
√
n lnn), then the rate in (2.27) or (2.31) will be the same as in (2.7). Such

will be the case when (Z ′, X) and (Z ′′, Y ) are two independent hidden Markov models and

Z = (Z ′, Z ′′) is a coupling of the two latent chains such that if Z ′i = Z ′′i , then Z ′j = Z ′′j for

any j > i. Then, (Z, (X, Y )) is a hidden Markov model where Xi = Yi once the two latent

chains have met, and by (2.3) h(n) = O(
√
n log n).

However, h(n) can be much larger, e.g, of order n. A case in hand is when the Xi

and Yi are iid Bernoulli random variables with parameters 1/3 and 1/2 respectively. Then

P(Xi 6= Yi) = P(Xi = 0, Yi = 1) + P(Xi = 1, Yi = 0) = 1/6 + 2/6 = 1/2, for all i ≥ 1,
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and

(
2
n−m∑
i=1

P(Xi 6= Yi) +
n+m∑

i=n−m+1

P(Xi 6= Yi)

)
=
(
2(n−m)1/2 + (2m)1/2

)
= n.

Note also that when X = (Xi)i≥1 and Y = (Yi)i≥1 are independent sequences of random

variables, the symmetry assumption is equivalent toX and Y being identically distributed.
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CHAPTER 3

CLOSENESS TO THE DIAGONAL

3.1 Preliminaries

Let (Z,X, Y ) be a hidden Markov model where Z a hidden irreducible aperiodic and time

homogeneous Markov chain on a finite state S. At each step Zi the chain outputs a pair

(Xi, Yi) taking values in A × A. Assume the output distribution is symmetric and there

exist 0 < pL ≤ pU < 1 such that for all x, y ∈ A, s ∈ S , P(Xi = x, Yi = y|Zi = s) =

P(Xi = y, Yi = x|Zi = s) ∈ [pL, pU ]. Let Z be started at the stationary distribution.

Lemma 3.1.1. There is εM > 0 such that for 0 < ε < εM ,

P(LCS(X1, . . . , X2n−εn;Y1, . . . , Yεn) = bεnc) ≥ 1− cn, (3.1)

where c ∈ (0, 1) depends on the parameters of the model.

Proof. Let T0 = εn, and Ti = inf{k > Ti−1 : Xk = Yi} for i = 1, . . . , εn. Then

P(LCS(X1, . . . , X2n−εn;Y1, . . . , Yεn) = bεnc) = 1− P(Tεn ≥ (2− ε)n).

Moreover,

P(Tεn ≥ (2− ε)n) = P (Tεn − T0 ≥ (2− 2ε)n)

= P

(
εn∑
k=1

(Tk − Tk−1) ≥ (2− 2ε)n

)

≤ min
t>0

E[exp(t
∑εn

k=1(Tk − Tk−1))]

exp(t(2− 2ε)n)

= min
t>0

E[E[exp(t
∑εn

k=1(Tk − Tk−1))|Z]]

exp(t(2− 2ε)n)
.
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Clearly, given Z, the variables Ti − Ti−1 are independent for i = 1, . . . , εn and

P(Tk − Tk−1 = x|Z) ≤ (1− pL)x−1pU = (1− pL)x−1pLr,

where r := pU/pL ≥ 1 (see Remark 3.1.2). Then

E[E[exp(t
∑εn

k=1 t(Tk − Tk−1))|Z]]

exp(t(2− 2ε)n)
=

E[
∏εn

k=1 E[exp t(Tk − Tk−1)|Z]]

exp(t(2− 2ε)n)

≤ E [
∏εn

k=1 (
∑∞

x=0 e
tx(1− pL)x−1pLr)]

exp(t(2− 2ε)n)

=
rεnpεnL e

tεn

(1− (1− pL)et)εnet(2n−2εn)
. (3.2)

We now wish to minimize the right-hand side as a function of twhere t ∈ (0,− ln(1−pL)).

Computing the derivative and setting it equal to 0,

et(3εn−2n)(3εn− 2n)(1− (1− pL)et)εn − et(3εn−2n)(1− (1− pL)et)εn−1εn(pL − 1)et = 0.

Then,

3ε− 2− et(1− pL)(3ε− 2)− ε(pL − 1)et = 0,

or

et =
3ε− 2

(2ε− 2)(1− pL)
=

ε

(2ε− 2)(1− pL)
+

1

1− pL
.

The boundary points t = 0 and t = − ln(1 − pL) give bounds of 1 and ∞ respectively.

So the minimum is indeed at et = (3ε − 2)/((2ε − 2)(1 − pL)). Recall that t > 0 so

2− 3ε > (2− 2ε)(1− pL), i.e., ε < 2pL/(2pL + 1).
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The bound (3.2) then becomes:

E[exp(t
∑εn

k=1(Tk − Tk−1))]

exp(t(2− ε)n)
≤

(rpL)εn
(

3ε−2
(2ε−2)(1−pL)

)3εn−2n

(
ε

(2−2ε)

)εn
=

(
rpL

(1− pL)3

(2− 3ε)3

(2− 2ε)2ε

)εn(
2− 3ε

(2− 2ε)(1− pL)

)−2n

.

Since p is a fixed constant, the above is a function of ε (and ε < 2pL/(2pL+1)). We want to

show that asymptotically it behaves like cn, for c < 1. Then we need to show that f(ε) < 1

where:

f(ε) :=

(
rpL

(1− pL)3

(2− 3ε)3

(2− 2ε)2ε

)ε(
2− 3ε

(2− 2ε)(1− pL)

)−2

=

(
rpL(2− 2ε)

ε

)ε(
(1− pL)(2− 2ε)

(2− 3ε)

)2−3ε

.

The function f is continuous and positive for ε ∈ (0, 2pL/(2pL + 1)]. Moreover:

f ′(ε)

f(ε)
= ln

(
rpL(2− 2ε)

ε

)
+ ε

ε

rpL(2− 2ε)

−2εrpL − rpL(2− 2ε)

ε2

− 3 ln

(
(1− pL)(2− 2ε)

(2− 3ε)

)
+ (2− 3ε)

2− 3ε

(1− pL)(2− 2ε)

2(pL − 1)(2− 3ε)− (1− pL)(2− 2ε)(−3)

(2− 3ε)2

= ln

(
rpL(2− 2ε)(2− 3ε)3

ε(1− pL)3(2− 2ε)3

)
+
−2

2− 2ε
+

2

2− 2ε

= ln

(
rpL(2− 2ε)(2− 3ε)3

ε(1− pL)3(2− 2ε)3

)
.

Now note that

(2− 3ε)3

(1− pL)3(2− 2ε)3
= e3t > 1,
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and

rpL(2− 2ε)

ε
>
pL(2− 2pL

2pL+1
)

2pL
2pL+1

= pL + 1 > 1.

Therefore, f ′(ε)/f(ε) > ln 1 = 0 and so f(ε) is a strictly increasing function for ε ∈

(0, 2pL/(2pL + 1)). Finally note that f(2pL/(2pL + 1)) = r and f(0+) = (1− pL)2. Then

there is εM ∈ (0, 2pL/(2pL + 1)] such that f(εM) = 1. Hence for ε < εM ,

P (Tεn ≥ (2− ε)n) ≤ f(ε)n = cn,

where c := f(ε) < 1 and then (3.1) follows.

Remark 3.1.2. When X and Y are independent sequences of iid random variables, the

variables Tk − Tk−1, k = 1, . . . , εn are independent geometric with parameters depending

on Yk (since the distribution for the letters in the X and Y sequences may not be uniform).

Then since the moment generating function M is decreasing in p, the bound (3.2) holds

with r = 1. Therefore in the independent case (3.1) holds whenever ε < 2pL/(2pL + 1).

Now for p > 0 and q ∈ (−1, 1) let

γ̃n(p) :=
E[LCS(X1, . . . , Xn;Y1, . . . , Ynp)]

n(1 + p)/2
,

γn(q) :=
E[LCS(X1, . . . , Xn−nq;Y1, . . . , Yn+nq)]

n
.

One is interested in the limits γ̃(p) := limn→∞ γ̃n(p) and γ(q) := limn→∞ γn(q). When

p = 1 or q = 0, the limit exists, see [17], and is denoted by γ∗. Furthermore, γn(0) ≤ γ∗

and γ̃n(1) ≤ γ∗ for all n. Note that γ̃n(p) (resp. γn(q)) is symmetric about 1 (resp. 0) since,

by the symmetry assumption on the output distribution, each output (a, b) from a hidden
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state is equally likely to be (b, a).

Remark 3.1.3. For p 6= 1 (respectively q 6= 0) Fekete’s theorem fails to apply directly

unless X and Y are generated by independent hidden chains. Then one can say further

that γn (respectively γ̃n) is concave and attains a maximum at 1 (respectively 0).

Lemma 3.1.4. The limit γ∗ ∈ (γ`, γu], where

γ` :=
∑
α∈A

P(X1 = α)P(Y1 = α) > 0,

and

γu := 1−
∑

a,b,c,d∈A
b6=d,b 6=c,a 6=d

P(X0 = a,X1 = b, Y0 = c, Y1 = d) < 1.

Let δ ∈ [0, γ∗). For any p1 ∈ (0, (γ∗ − δ)/(2− γ∗ + δ)) and p2 > (2− γ∗ + δ)/(γ∗ − δ),

and any n,

γ̃n(p1) < γ∗ − δ, γ̃n(p2) < γ∗ − δ. (3.3)

Proof. For any n ≥ 2,

E[LCn] ≥ E[LCn−21Xn=Yn,Xn−1=Yn−1 ] + 2P(Xn = Yn, Xn−1 = Yn−1)

+ E[LCn−21Xn=Yn,Xn−1 6=Yn−1 ] + P(Xn 6= Yn, Xn−1 = Yn−1)

+ E[LCn−21Xn 6=Yn,Xn−1=Yn−1 ] + P(Xn = Yn, Xn−1 6= Yn−1)

+ E[LCn−21Xn 6=Yn,Xn−1 6=Yn−1 ] + P(Xn 6= Yn, Xn−1 6= Yn−1, Xn = Yn−1)

> E[LCn−2] + P(Xn = Yn) + P(Xn−1 = Yn−1)

= E[LCn−2] + 2P(X1 = Y1).
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Therefore by stationarity, for n ≥ 2, E[LCn] > nP(X1 = Y1). Then

γ∗ > P(X1 = Y1) =
∑
α∈A

P(X1 = α)P(Y1 = α).

The inequality is strict because Fekete’s lemma implies that γ∗ = supn E[LCn]/n.

On the other hand, if A is the event {Xn 6= Yn, Xn−1 6= Yn, Xn 6= Yn−1},

E[LCn] ≤ E[LCn−11A] + E[(LCn−1 + 1)1AC ]

= E[LCn−1] + P(AC).

Therefore by stationarity, for n > 1, E[LCn] ≤ n(1 − P(X1 6= Y1, X0 6= Y1, X1 6= Y0)).

Then

γ∗ ≤ 1− P(X1 6= Y1, X0 6= Y1, X1 6= Y0)

= 1−
∑

a,b,c,d∈A
b6=d,b 6=c,a6=d

P(X0 = a,X1 = b, Y0 = c, Y1 = d).

Let δ ∈ [0, γ∗) and q ∈ (−1,−1+γ∗−δ). By definition, γn(q) < 1+(−1+γ∗−δ) = γ∗−δ

for all n. Then γ̃n(1−q)(p1) < γ∗ − δ for p1 = (q + 1)/(1 − q) and all n, i.e., when

p1 ∈ (0, (γ∗−δ)/(2−γ∗+δ). Note that γ̃n(p) = γ̃n(1/p) by symmetry, so γ̃n(p2) < γ∗−δ

for p2 > (2− γ∗ + δ)/(γ∗ − δ) and all n.

3.2 Main result

The main result provides a quantitative estimate of the fact that the positions in X and Y

of the same letter in the longest common subsequence cannot be too far apart. Let n = km
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and let the integers

r0 = 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm−1 ≤ rm = n, (3.4)

be such that

LCn =
m∑
i=1

LCS(Xk(i−1)+1 . . . Xki;Yri−1+1 . . . Yri). (3.5)

When the above is satisfied, we identify (r0, . . . , rm) as an optimal alignment for the se-

quences X and Y .

Let ε > 0, p1 > 0 and p2 > 0 be constants. Let Anε,p1,p2 be the set of optimal alignments of

X1, . . . , Xn and Y1, . . . , Yn, for which a proportion of at least 1− ε of the integer intervals

[ri−1 + 1, ri] for i = 1, . . . ,m have their length between kp1 and kp2. More precisely,

Anε,p1,p2 is the event that for all integer vectors (r0, r1, . . . , rm) satisfying (3.4) and (3.5),

Card({i ∈ 1, 2, . . . ,m : kp1 ≤ ri − ri−1 ≤ kp2}) ≥ (1− ε)m. (3.6)

The main result states that Anε,p1,p2 holds with high probability. It uses the β−mixing coef-

ficient, as given in Definition 3.3 of [5], to measure the dependence between X and Y .

Definition 3.2.1. Let F1 and F2 be two σ−fields ⊂ F , then the β−mixing coefficient,

associated with these sub-σ-fields of F , is given by:

β(F1,F2) :=
1

2
sup

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|, (3.7)

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ}

of Ω such that Ai ∈ F1, for all i ∈ {1, . . . , I}, I ≥ 1 and Bj ∈ F2 for all j ∈ {1, . . . , J},

J ≥ 1.

In our case, since X(n) = (X1, . . . , Xn) and Y (n) = (Y1, . . . , Yn) are discrete random

34



vectors for any fixed n ≥ 1, by Proposition 3.21 in [5]:

β(n) := β
(
σ
(
X(n)

)
, σ
(
Y (n)

))
=

1

2

∑
u∈An

∑
v∈An

∣∣P (X(n) = u, Y (n) = v
)
− P

(
X(n) = u

)
P
(
Y (n) = v

)∣∣ , (3.8)

where σ
(
X(n)

)
and σ

(
Y (n)

)
are the σ−fields generated by X(n) and Y (n). Clearly X(n)

and Y (n) are independent if and only if β(n) = 0. Further, set β∗ := limn→∞ β(n), where

the limit exists since β(n) is non-decreasing, in n, and β(n) ∈ [0, 1] (see Section 5 in [5]).

A key ingredient in proving Theorem 3.2.3 is a Hoeffding-type inequality for Markov

chains, a particular case of a result due to Paulin [22], which is now recalled. It relies

on the mixing time τ(ε) of the Markov chain Z given by

τ(ε) := min{t ∈ N : dZ(t) ≤ ε},

where

dZ(t) := max
1≤i≤N−t

sup
x,y∈Λi

dTV (L(Zi+t|Zi = x),L(Zi+t|Zi = y)),

and where dTV (µ, ν) = 1
2

∑
x∈Ω |µ(x) − ν(x)| is the total variation distance between the

two probability measures µ and ν on the finite set Ω.

Lemma 3.2.2. Let M := (M1, . . . ,MN) be a (not necessarily time homogeneous) Markov

chain, taking values in a Polish space Λ = Λ1×· · ·×ΛN , with mixing time τ(ε), 0 ≤ ε ≤ 1.

Let

τmin := inf
0≤ε<1

τ(ε)

(
2− ε
1− ε

)2

, (3.9)

and let f : Λ→ R be such that there is c ∈ RN
+ with |f(u)− f(v)| ≤

∑N
i=1 ci1ui 6=vi . Then

for any t ≥ 0,

P(f(M)− Ef(M) ≥ t) ≤ exp

(
−2t2

τmin
∑N

i=1 c
2
i

)
. (3.10)
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For our purposes, the Hoeffding-type inequality used below follows directly from the above

result once one notes that (Zi, Xi, Yi)i≥1 is jointly a Markov chain on a bigger state space

with τ(ε) - the mixing time of the chain

Theorem 3.2.3. Let ε > 0 and δ ∈ (4β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that

γ̃n(p1) < γ∗ − 2δ and γ̃n(p2) < γ∗ − 2δ for all n. Fix the integer k to be such that

(1 + ln(k + 1))/k ≤ (δ − 4β∗)2ε2/(8τmin), then

P(Anε,p1,p2) ≥ 1− exp

(
−n
(
−1 + ln(k + 1)

k
+

(δ − 4β∗)2ε2

8τmin

))
, (3.11)

for all n = n(ε, δ) large enough.

Remark 3.2.4. Note that when X and Y are generated by independent hidden chains ZX

and ZY , (then Z = ZX × ZY ), β∗ = 0 and up to the mixing time τmin in the expression

above, we recover the independent case.

3.3 Proof of Theorem 3.2.3

Let 0 = r0 ≤ r1 ≤ . . . ≤ rm = n be a fixed set of integers. Again we alignXk(i−1)+1 . . . Xki

with Yri−1+1 . . . Yri and get the alignment score:

Ln(r) :=Ln(r0, r1, . . . , rm)

:=
m∑
i=1

LCS(Xk(i−1)+1 . . . Xki;Yri−1+1 . . . Yri).

Note that Ln(r) ≤ LCn. Let Rε,p1,p2 be the set of all integer vectors satisfying (3.4)

and (3.6), whileRε,p1,p2 be the set of all integer vectors satisfying (3.4) but not (3.6). Note

that if r∗ is a random vector satisfying (3.4), P(r∗ ∈ Rc
ε,p1,p2

) = P(r∗ ∈ Rε,p1,p2). Indeed,

Rc
ε,p1,p2

\ Rε,p1,p2 consists of the vectors not satisfying (3.4) and then P(r∗ ∈ Rc
ε,p1,p2

\

Rε,p1,p2) = 0.
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Lemma 3.3.1. Let ε > 0 and δ ∈ (4β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that

γ̃n(p1) < γ∗ − 2δ and γ̃(p2) < γ∗ − 2δ for all n. Let r ∈ Rε,p1,p2 , then

E[Ln(r)− LCn] ≤ −(δ − 4β∗)εn

2
, (3.12)

for all n = n(ε, δ) large enough.

Proof. For p /∈ [p1, p2],

E[LCS(X1 . . . Xk;Y1 . . . Ykp)]

k(1 + p)/2
≤ γ∗ − 2δ.

Following a similar argument as in [17] and by stationarity, when ri − ri−1 = kp,

2E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

k + ri − ri−1

≤
2E[LCS(X(i−1)k+1 . . . Xik;Y(i−1)k+1 . . . Y(i−1)k+kp)]

k(1 + p)
+ 4β(n)

≤ E[LCS(X1 . . . Xk;Y1 . . . Ykp)]

k(1 + p)/2
+ 4β∗

≤ γ∗ − 2δ + 4β∗.

Thus,

γ∗
(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)] ≥ (δ − 2β∗)k.

LetM = {i : ri − ri−1 /∈ [kp1, kp2]}. Then

∑
i∈M

(
γ∗
(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)
≥

∑
i∈M

(δ − 2β∗)k ≥ n(δ − 2β∗)ε.
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On the other hand,

∑
i∈M

(
γ∗
(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)

≤
m∑
i=1

(
γ∗
(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)
=γ∗n− Ln(r).

Therefore,

γ∗n− Ln(r) ≥ n(δ − 2β∗)ε, (3.13)

when r ∈ Rε,p1,p2 . Finally, since limn→∞ E[LCn]/n = γ∗,

0 ≤ γ∗ − E[LCn]

n
≤ δε

2
, (3.14)

for n = n(ε, δ) large enough. Combining (3.13) and (3.14) recovers (3.12).

We now proceed with the proof of Theorem 3.2.3. Clearly,

Card(Rε,p1,p2) ≤
(
n+m

m

)
≤ (n+m)m

m!
≤
(
e(n+m)

m

)m
= (e(k + 1))m. (3.15)

For the event Anε,p1,p2 to hold, there needs to exist at least one r ∈ Rε,p1,p2 . Thus,

(Anε,p1,p2)
c =

⋃
r∈Rε,p1,p2

{Ln(r)− LCn ≥ 0},

and

P((Aε,p1,p2)
c) ≤

∑
r∈Rε,p1,p2

P(Ln(r)− LCn ≥ 0). (3.16)
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When r ∈ Rε,p1,p2 it follows from Lemma 3.3.1 that:

E[Ln(r)− LCn] ≤ −(δ − 4β∗)εn

2
,

and so

P(Ln(r)− LCn ≥ 0) ≤ P
(
Ln(r)− LCn − E[Ln(r)− LCn] ≥ (δ − 4β∗)εn

2

)
, (3.17)

for all n large enough. Now, the difference Ln(r)−LCn changes by at most plus or minus

two, when any of the entries X1, . . . , Xn, Y1, . . . , Yn are changed. Therefore, Lemma 3.2.2

applied to the right-hand side of (3.17), gives

P(Ln(r)− LCn ≥ 0) ≤ P
(
Ln(r)− LCn − E[Ln(r)− LCn] ≥ (δ − 4β∗)εn

2

)
≤ exp

(
−(δ − 4β∗)2ε2

8τmin

n

)
.

Combining the last inequality with (3.16), one obtains:

P((Anε,p1,p2)
C) ≤ Card(Rε,p1,p2) exp

(
−(δ − 4β∗)2ε2

8τmin

n

)
.

But from (3.15),

P((Anε,p1,p2)
C) ≤(e(k + 1))m exp

(
−(δ − 4β∗)2ε2

8τmin

n

)
= exp

(
−n
(
−1 + ln(1 + k)

k
+

(δ − 4β∗)2ε2

8τmin

))
.

Therefore, the proof of Theorem 3.2.3 is complete.

Before we move on we show the following corollary that makes use of the rate of conver-

gence of E[LCn] which we recall next, and holds for all n ≥ 1. Our rate of convergence
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result, that is Theorem 2.2.3, states that there is a constant CA such that

CA

√
lnn

n
+ 2β∗ ≥ γ∗ − E[LCn]

n
,

for every n. The following variant of Theorem 3.2.3 holds

Corollary 3.3.2. Let δ ∈ (6β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that γ̃n(p1) < γ∗ − 2δ

and γ̃n(p2) < γ∗ − 2δ for all n. Let α ∈ (0, 1) and

ε := c1

√
1 + ln(1 + nα)

nα
,

where c1 > 0 such that

c2
1 ≥

16τmin
(δ − 6β∗)2

,

and

c2
1

(
1 + ln(1 + nα)

nα

)
≥ 4C2

A

δ2

lnn

n
,

for all n ≥ 1. Then,

P(Anε,p1,p2) ≥ 1− exp
(
−n1−α(1 + ln(1 + nα))

)
, (3.18)

for all n ≥ 1.

Proof. First show the following variant of Lemma 3.3.1.

Lemma 3.3.3. δ ∈ (6β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that γ̃n(p1) < γ∗ − 2δ and

γ̃(p2) < γ∗ − 2δ for all n. Let α ∈ (0, 1), ε > 0 and c1 > 0 be such that

ε := c1

√
1 + ln(1 + nα)

nα
≥ 2CA

δ

√
lnn

n
,
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for all n ≥ 1. Let r ∈ Rε,p1,p2 , then

E[Ln(r)− LCn] ≤ −(δ − 6β∗)εn

2
, (3.19)

for all n ≥ 1.

Proof of Lemma 3.3.3. The proof is very similar to Lemma 3.3.1. For p /∈ [p1, p2],

E[LCS(X1 . . . Xk;Y1 . . . Ykp)]

k(1 + p)/2
≤ γ∗ − 2δ.

Following a similar argument as in [17] and by stationarity, when ri − ri−1 = kp,

2E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

k + ri − ri−1

≤ γ∗ − 2δ + 4β∗.

Thus,

(γ∗ − 2β∗)

(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

≥ (2δ − 6β∗)

(
k + ri − ri−1

2

)
≥ (δ − 3β∗)k.

LetM = {i : ri − ri−1 /∈ [kp1, kp2]}. Then

∑
i∈M

(
(γ∗ − 2β∗)

(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)
≥

∑
i∈M

(δ − 3β∗)k

≥ n(δ − 3β∗)ε.
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On the other hand,

∑
i∈M

(
(γ∗ − 2β∗)

(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)

≤
m∑
i=1

(
(γ∗ − 2β∗)

(
k + ri − ri−1

2

)
− E[LCS(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri)]

)
= (γ∗ − 2β∗)n− Ln(r).

Therefore,

(γ∗ − 2β∗)n− Ln(r) ≥ n(δ − 3β∗)ε, (3.20)

when r ∈ Rε,p1,p2 . Finally, Theorem 2.2.3 implies that for all n ≥ 1,

γ∗ − 2β∗ − E[LCn]

n
≤ CA

√
lnn

n
.

So in particular, let α ∈ (0, 1), ε > 0 and c1 > 0 be such that

ε := c1

√
1 + ln(1 + nα)

nα
≥ 2CA

δ

√
lnn

n
,

for all n ≥ 1. Then

γ∗ − 2β∗ − E[LCn]

n
≤ δε

2
, (3.21)

for all n ≥ 1. Combining (3.20) and (3.21) recovers (3.19).

The remainder of the proof of Corollary 3.3.2 follows from the same arguments that finish

the proof of Theorem 3.2.3.

42



3.4 Closeness to the diagonal

Let Dn
ε,p1,p2

be the event that the points representing any optimal alignment of X1, . . . , Xn

with Y1, . . . , Yn are above the line y = p1x − p1nε − p1k, and below the line y = p2x +

p2nε+ p2k.

Theorem 3.4.1. Let ε > 0 and δ ∈ (4β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that

γ̃n(p1) < γ∗ − 2δ and γ̃n(p2) < γ∗ − 2δ for all n. Fix the integer k to be such that

(1 + ln(1 + k))/k ≤ (δ − 4β∗)2ε2/(8τmin), then

P(Dn
ε,p1,p2

) ≥ 1− 2 exp

(
−n
(
−1 + ln(1 + k)

k
+

(δ − 4β∗)2ε2

8τmin

))
, (3.22)

for all n = n(ε, δ) large enough.

Proof. See the proof of Theorem 4.1 in [18].

3.5 Short string-lengths properties are generic

Let P be a relation assigning to every pair of strings (x, y) the value 1 if the pair (x, y) has

a certain property, and 0 otherwise. Hence, if A is the alphabet we consider,

P :
(
∪kAk

)
×
(
∪kAk

)
→ {0, 1},

and if P(x, y)− 1, the string pair (x, y) is said to have the property P .

Let now ε > 0, be fixed and let r = (r0, . . . , rm) satisfy condition (3.4). Let also Bn
P(r, ε)

be the event that there is a proportion of at least 1− ε of the string pairs

(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yi) (3.23)
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satisfying the property P , i.e.,

Bn
P(r, ε) =

{
m∑
i=1

P(X(i−1)k+1 . . . Xik;Yri−1+1 . . . Yri) ≥ (1− ε)m

}
.

Next, let Bn
P(ε) be the event that Bn

P(r, ε) holds for all r satisfying (3.4) and LCn = Ln(r).

There is a q ∈ [0, 1] such that

P(P(X1 . . . Xk;Ys . . . Ys+`) ≥ 1− q,

and

P(P(Xs . . . Xk+s;Y1 . . . Y`)) ≥ 1− q,

for all ` ∈ [kp1, kp2] and all integers s ≥ 1. If X and Y are independent sequences, by

stationarity it is enough to consider only the case when s = 1.

We want to find minimum value of q = q(k) such that a large proportion of the aligned

pairs (3.23) has the propertyP . Recall thatRn
ε,p1,p2

is the event that every optimal alignment

aligns a proportion of at least 1− ε of the sub-strings X(i−1)k+1 . . . Xik with sub-strings of

Y with length in [kp1, kp2].

Let B̃n
P(r, ε) be the event that among the aligned string pieces (3.23) there are no more than

εm which do not satisfy the property P and have their length ri − ri−1 ∈ [kp1, kp2]. For

ε1 > 0, ε2 > 0,

Anε,p1,p2 ∩

 ⋂
r∈Rε,p1,p2

B̃n
P(r, ε2)

 ⊂ Bn
P(ε1 + ε2),

and so

P((Bn
P(ε1 + ε2))c) ≤ P((Anε1,p1,p2)

c) +
∑

r∈Rε1,p1,p2

P((B̃n
P(r, ε2))c).
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Next,

P((B̃n
P(r, ε2))c) ≤

(
m

ε2m

)
qε2m ≤ exp(He(ε2)m)qε2m,

where He is the base e entropy function. Hence,

P((B̃n
P(r, ε2))c) ≤ qε2m exp(He(ε2)m).

Therefore,

P((Bn
P(ε1 + ε2))c) ≤ P((Anε1,p1,p2)

c) + (e(k + 1))mqε2m exp(He(ε2)m).

Taking q(k) = 1/(2e(k + 1))1/ε2 , finally yields

P((Bn
P(ε1 + ε2))c) ≤ P((Anε1,p1,p2)

c) + exp((He(ε2)− ln 2)m).

When ε2 < 1/2,He(ε2) < ln 2, and then exp((He(ε2)−ln 2)m) is exponentially small in n.

Furthermore, Theorem 3.2.3 provides an exponentially small lower bound on P((Anε1,p1,p2)
c).

Letting ε := ε1 = ε2, we have obtained the following result.

Theorem 3.5.1. Let 0 < ε < 1 and δ ∈ (4β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such

that γ̃n(p1) < γ∗ − 2δ and γ̃n(p2) < γ∗ − 2δ for all n. Let the integer k be such that

(1 + ln(k + 1))/k ≤ (δ − 4β∗)2ε2/(32τmin), and

min
`∈[kp1,kp2],s≥1

P(P(X1 . . . Xk;Ys . . . Ys+`) ≥ 1− 1

(2e(k + 1))2/ε
,

min
`∈[kp1,kp2],s≥1

P(P(Xs . . . Xk+s;Y1 . . . Y`)) ≥ 1− 1

(2e(k + 1))2/ε
.

Then for any r satisfying (3.4) andLn(r) = LCn, the proportion of string pairs (X(i−1)k+1 . . . Xik;
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Yri−1+1 . . . Yri) satisfying property P is at least 1− ε with probability at least equal to:

1− exp

(
−n
(
−1 + ln(k + 1)

k
+

(δ − 4β∗)2ε2

32τmin

))
− exp

(n
k

(
He

( ε
2

)
− ln 2

))
,

for all n = n(ε, δ) large enough.
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CHAPTER 4

STEIN’S METHOD

This chapter will focus on the development of tools that are used in the proof for the central

limit theorem. In particular, we show a version of Stein’s method for normal approximation

that holds for hidden Markov models. In the process, the concept of a discrete derivative is

realized and we give useful bounds for some expressions. Finally, we show an upper bound

on the variance of LCn that supports the main assumption in Theorem 5.1.1.

4.1 Preliminaries

Stein’s method is a way to obtain normal approximation based on the observation that the

standard normal distribution N is the only distribution that satisfies

E[N f(N )] = E[f ′(N )],

for all absolutely continuous f with a.e. derivative f ′ such that E[f ′(N )] < ∞. Then for

another random variable W , the value of |E[Wf(W ) − f ′(W )]| can be thought of as a

distance measuring the proximity of W and N .

The distance between two probability measures µ and ν is often of the type:

d(µ, ν) = sup
h

{∣∣∣∣∫ hdµ−
∫
hdν

∣∣∣∣ : h ∈ H
}
,

where H is a class of functions. (We write d(X, Y ) instead of d(µ, ν) when X ∼ µ and

Y ∼ ν). Various H give rise to various distances. For instance, when H is the set of

1−Lipschitz functions we get dW (µ, ν) - the Wasserstein distance, while forH is the set of

1(−∞,x] for x ∈ R we get dK(µ, ν) - the Kolmogorov distance. Now let H∗ be the family
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of functions f that are solutions to the differential equation

h(W )− E[h(N )] = f ′(W )−Wf(W ),

where h ∈ H, W ∼ µ and N ∼ ν = N (0, 1).

Bounding |E[h(W )]− E[h(N )]| only depends on the properties of the solutions f and the

law of W . More precisely the following result holds [23, Corollary 3.38]:

Proposition 4.1.1. Let N ∼ N (0, 1) and let W be a random variable with finite expecta-

tion. Then,

dK(W,N ) ≤ sup
f∈H∗

|E(f ′(W )−Wf(W ))|,

whereH∗ is the set of all absolutely continuous f : R→ R such that ||f ||∞ := supx∈R |f(x)| ≤√
π/2, ||f ′||∞ ≤ 2 and such that for all u, v, w ∈ R,

|(w + u)f(w + u)− (w + v)f(w + v)| ≤
(
|w|+

√
2π/4

)
(|u|+ |v|).

A simple optimization argument can yield the following result by Chatterjee [6, Propo-

sition 1.1]:

Corollary 4.1.2. Let Z be a standard normal random variable and W be any random

variable with E[W ] = 0 and E[W 2] = 1. Then

dK(W,N ) ≤ 2

(
sup
f∈H∗

|E(f ′(W )−Wf(W ))|
)1/2

, (4.1)

where H∗ is the set of all f : R → R that are twice continuously differentiable, and

|f(x)| ≤ 1, |f ′(x)| ≤ 1, and |f ′′(x)| ≤ 1 for all x ∈ R.

In applications, W = W (n), i.e., it is often a random quantity connected to some object

of varying size n. A suitable bound on the right-hand side of (4.1) in terms of n can yield
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weak convergence of W (n) to N and therefore a central limit theorem can be established

for W (n).

For instance ifW = g(X) - a function of n independent random variablesX = (X1, . . . , Xn)

such bounds have been obtained by Chatterjee in [6]. His approach relies on introducing

discrete derivatives on exchangeable pairs. In particular, let X ′ = (X ′1, . . . , X
′
n) with X ′i

- an independent copy of Xi and W ′ = g(X ′). Then (W,W ′) is an exchangeable pair

because it has the same joint distribution as (W ′,W ). A perturbation WA = gA(X) :=

g(XA) of W is defined through the change XA of X as follows:

XA
i =

 X ′i if i ∈ A

Xi if i /∈ A.

for any A ⊆ [n]. Then a discrete derivative can be defined for any A ⊆ [n] and i /∈ A, as:

∆ig
A = g(XA)− g(XA∪{i}).

Chatterjee’s result then reads as follows:

Theorem 4.1.3. Let W be a function of n independent random variables as above with

E[W ] = 0 and E[W 2] = 1. Then:

|E(f ′(W )−Wf(W ))| ≤
√
V arE(T |W ) +

1

4

n∑
i=1

E|∆ig|3, (4.2)

for every f ∈ H∗ (as in Corollary 4.1.2) and where

T :=
1

2

n∑
i=1

∑
A⊆[n]\{i}

1

n
(
n−1
|A|

)∆ig∆ig
A. (4.3)

Very little work has been done outside the independent case. Some notable exceptions

include [8] where a rate of convergence of the n−step probability distribution to the sta-

tionary for the Ehrenfest urn model is obtained, and [13] and [15] where Markov chains
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appear in the generation of exchangeable pairs. I was able to show the following:

Theorem 4.1.4. Let (Z,X) be a hidden Markov model with Z an aperiodic time homo-

geneous and irreducible Markov chain on a finite state space S, and X taking values in a

finite alphabet A. Let W := g(X1, . . . , Xn) with E[W ] = 0 and E[W 2] = 1. There exist

a sequence of independent random variables R0, R1, . . . , R|S|(n−1) and a function h such

that h(R0, . . . , R|S|(n−1)) has the same law as g(X1, . . . , Xn). Then:

|E(f ′(W )−Wf(W ))| ≤
√
V arE(T |h(R0, . . . , R|S|(n−1))) +

1

4

|S|(n−1)∑
i=1

E|∆ih|3,

for every f ∈ H∗ (as in Corollary 4.1.2) and where

T :=
1

2

|S|n∑
i=1

∑
A⊆[|S|n]\{i}

1

n
(
n−1
|A|

)∆ih∆ih
A.

The main idea of the proof of the above result is to think of R = (R0, . . . , R|S|(n−1)) as

stacks of independent random variables on the |S| possible states of the hidden chain that

determine the next step in the process, with R0 specifying the initial state. Each Ri takes

values in S × A and is distributed according to the transition probability from the present

hidden state. Then one can write g(X1, . . . , Xn) = h(R0, . . . , R|S|(n−1)) for h = g ◦ γ

where the function γ translates between R and X . This construction is carried out in more

detail in the following section.

4.2 HMM as stacks of independent random variables

Let (Z,X) be a hidden Markov model with Z an aperiodic time homogeneous and irre-

ducible Markov chain on a finite state space S, and X taking values in a finite alphabet A.

Let P be transition matrix of the hidden chain and Q be the |S|× |A| probability matrix for

the observations, i.e., Qij is the probability of seeing output j if the latent state is in chain
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i. Let the initial distribution of the hidden chain be µ. Then

P
(

(Z1, . . . , Zn;X1, . . . , Xn) = (z1, . . . , zn;x1, . . . , xn)

)
= µ(z1)Qz1,x1Pz1,z2 . . . Pzn−1,znQzn,xn .

Our goal is to introduce a sequence of independent random variables R0, R1, . . . , R|S|(n−1)

taking values on S×A and a function γ such that γ(R0, . . . , R|S|(n−1)) = (Z1, . . . , Zn;X1, . . . , Xn).

For any s, s′ ∈ S, x ∈ A and i ∈ [0, n− 1], let

P
(
R0 = (s, x)

)
= µ(s)Qs,x

P
(
Ri|S|+s′ = (s, x)

)
= Ps′,sQs,x.

The random variablesRi are well defined since
∑

xQs,x = 1 for any s ∈ S, and
∑

s Ps′,s =∑
s µ(s) = 1 for any s′ ∈ S. One can think of the variables Ri as a set of instructions on

where the hidden Markov model goes next. The function γ reconstructs the realization

(Zi, Xi) sequentially from the sequence (Ri). In particular, γ captures the following rela-

tions

(Z1, X1) = R0

(Zi+1, Xi+1) = Ri|S|+s if Zi = s for i ≥ 1.

One can think of the sequence (Ri) as |S| stacks of random variables on the S possible

states of the latent Markov chain, and the values being rules for the next step in the model.

Note that only one variable on the ith level of the stack will be used to determine the (i+1)-

st hidden and observed pair. Furthermore, the distribution of the random variables Ri for

i ≥ 1 encodes the transition and output probabilities in the P andQmatrices of the original

model.

Thus one can write f(X1, . . . , Xn) = h(R0, . . . , R|S|(n−1)) for g := h◦γ where the function
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γ does the translation from (Ri)i≥0 to (Zi, Xi)i≥1 as described above.

Let R′ = (R′0, . . . , R
′
|S|(n−1)) be an independent copy of R. Let A ⊆ {0, 1, . . . , |S|(n− 1)}

and let the change RA of R be defined as follows

RA
i =

 R′i if i ∈ A

Ri if i /∈ A.

Recall that the discrete derivative of h with a perturbation A is

∆ih
A = h(RA)− h(RA∪{i}).

Theorem 4.1.4 follows from Theorem 4.1.3 since when (Z,X) is a hidden Markov model

one writes

W = g(X1, . . . , Xn) = h(R0, . . . , R|S|(n−1)),

and the sequence (Ri))i≥0 is a sequence of independent random variables and the conclu-

sion of Theorem 4.1.3 holds for (Ri)i≥0.

The remainder of the chapter establishes bounds on the discrete derivative ∆ih(RA) where

h = g ◦ γ and g is a Lipschitz function. The following results will be used in the next

chapter where we outline a proof to a central limit theorem for LCn - which is a Lipschitz

function of the observed variables of a hidden Markov model.

4.3 Bounds on ∆ih
A

The latent chain in the hidden Markov model is irreducible and aperiodic. Assume that

each value in A, the space of possible values for the observed variables X , can be reached

through some state in S. Assume further that the latent chain is started at the stationary
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distribution. Then there is K and ε > 0 such that

P(Xn = x,Xn+K = x′) ≥ ε, (4.4)

for all x, x′ ∈ A and all n ≥ 1. Such K and ε exist since the chain is irreducible and then

P(Zn = s, Zn+k = s′) > 0,

for all n ≥ 1 and s, s′ ∈ S.

Proposition 4.3.1. Let (Z,X) be a hidden Markov model as above and letK > 0 and ε > 0

as in (4.4). Let g : An → R be Lipschitz with constant c > 0. Let R = (R0, . . . , R|S|(n−1))

be a vector of independent random variables and h be the function such that

g(X1, . . . , Xn) = h(R0, R|S|(n−1)).

Then

P(h(R)− h(Ri) ≥ cKx(n)) ≤ C(1− ε)x(n), (4.5)

where x(n) > 0 is some function of n. Furthermore, let α > 0. Then for any r > 0,

E|h(R)− h(Ri)|r ≤ C(lnn)r, (4.6)

where C = C(r) and n large enough.

Proof. The sequence of instructions Ri may give rise to a different realization (Z ′, X ′) of

the hidden Markov model, as compared to (Z,X) - the one generated by R. However, the

probability of seeing a mismatch between X and X ′ decays exponentially with the size of
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the mismatch. Assume Ri determines (Zj, Xj) and R′i determines (Z ′j, X
′
j). Then

P(Xj+K 6= X ′j+K)

=
∑
x∈A

P(Xj+K = x,X ′j+K 6= x)

=
∑
x∈A

P(Xj+K = x)P(X ′j+K 6= x)

≤ (1− ε),

where we have used that if Xj+K 6= X ′j+K , then two variables have been generated by

different instructions Rj1 and Rj2 and so Xj+K and X ′j+K are independent.

Let r > 0. Then

P(Xj+K 6= X ′j+K , Xj+2K 6= X ′j+2K , . . . , Xj+x(n)K 6= X ′j+x(n)K) ≤ (1− ε)x(n).

Note that once X` = X ′`, Xm = X ′m for all m ≥ l. Let E be the event

E := {Xj+K 6= X ′j+K , Xj+2K 6= X ′j+2K , . . . , Xj+x(n)K 6= X ′j+x(n)K}.

Then

P(|h(R)− h(Ri)| ≥ x(n))

≤ P(E)

≤ (1− ε)x(n).

This suffices for the proof of (4.5). Now,

E|h(R)− h(Ri)|r = E|h(R)− h(Ri)|r1E + E|h(R)− h(Ri)|r1EC ,
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Then

E|h(R)− h(Ri)|r ≤ (Cn)r(1− ε)x(n) + (CKx(n))r. (4.7)

Let x(n) = − r lnn
ln(1−ε) > 0. Then,

E|h(R)− h(Ri)| ≤
(
− Cr

ln(1− ε)

)r
(lnn)r + (CK)r. (4.8)

The order of the bound is optimal. Indeed, assume that x(n) is such that

(1− ε)x(n) ≤
(

lnn

n

)r
, (4.9)

or

x(n) ≥ −r(lnn− ln(lnn))

ln(1− ε)
.

Then

E|h(R)− h(Ri)| ≤
(
− Cr

ln(1− ε)

)r
(lnn− ln(lnn))r + Cr,

and the right-hand side has the same order of growth as (4.8).

If the order of growth of (1− ε)x(n) is higher than the one in (4.9), the bound on the second

term in (4.7) is of higher order as well.

Using Efron-Stein’s inequality one can produce the an upper bound on the variance of

f(X).

Corollary 4.3.2. Let (Z,X) be a hidden Markov model as above. Let g : An → R be
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Lipschitz with constant c. Then

V ar (g(X1, . . . , Xn) ≤ Cn1+α,

for any α > 0, C = C(|S|) and n large enough.

Proof. As in Proposition 4.3.1 let R = (R0, . . . , R|S|(n−1)) be a vector of independent

random variables and h be a function such that

g(X1, . . . , Xn) = h(R).

Let R′ = (R′0, . . . , R
′
|S|(n−1)) be an independent copy of R. Applying Efron-Stein’s in-

equality to h(R) yields,

V ar(h(R))) ≤ 1

2

|S|(n−1)∑
i=0

E[(h(Z)− h(Zi))2],

with Ri defined as in Proposition 4.3.1.

By Proposition 4.3.1 there is α > 0 and a constant C = C(α) > 0, s.t

V ar(h(R)) ≤ 1

2
(|S|(n− 1) + 1)Cnα ≤ C ′n1+α,

where C ′ > 0 is a function of |S| and α. Finally, note that V ar(g(X1, . . . , Xn)) =

V ar(h(R)).

Remark 4.3.3. Note that the bound on the variance also follows from using an exponential

bounded difference inequality for Markov chains proved by Paulin [22]. This holds for the

general case when X is a Markov chain (not necessarily time homogeneous), taking values

in a Polish space Λ = Λ1 × · · · × Λn, with mixing time τmin. Then for any t ≥ 0,

P(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
−2t2

||c||2τmin

)
.
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CHAPTER 5

CENTRAL LIMIT THEOREM

5.1 Introduction

So far we have obtained the rate of convergence of E[LCn] and a closeness to the diago-

nal estimate. Furthermore we have outlined a way to modify the generalized perturbative

approach introduced by Chatterjee for the case of sequences generated by hidden Markov

models. Those are all the key results used in [16] to obtain a central limit theorem for LCn

in the independent case. In this chapter we follow the arguments in [16] to get the following

result

Theorem 5.1.1. Let (Z, (X, Y )) be a hidden Markov model. Assume V ar(LCn) ≥ Kn

for some constant K > 0, independent of n. Then,

lim
n→∞

sup
x∈R

∣∣∣∣∣P
(
LCn − E[LCn]√

V ar(LCn)
≤ x

)
− P(N ≤ x)

∣∣∣∣∣ = 0, (5.1)

where N is the standard normal random variable.

Recall that there exists a vector R = (R0, . . . , R|S|(n−1)) of independent random variables

(though not identically distributed) taking values in S×A and a function h : (S×A)n → R

such that

LCn = h(R).

As in chapter 4, let R′ be an independent copy of R, and if A ⊂ {0, . . . , |S|(n− 1)}, let

RA
i =

 R′i if i ∈ A

Ri if i /∈ A

57



Then the discrete derivative of g is defined for any A ( {0, . . . , |S|(n− 1)} and i /∈ A, as

∆ih
A = h(RA)− h(RA∪i).

Let

T :=
1

2

∑
A({0,...,|S|(n−1)}

1(|S|(n−1)
|A|

)
(|S|(n− 1)− |A|)

∑
j /∈A

∆jh∆jh
A..

Theorem 4.1.3 implies that

dW

(
h(R)− Eh(R)√
V ar(h(R))

,N

)
≤
√
V ar(T )

σ2
+

1

2σ3
E|∆jh|3, (5.2)

where σ2 := V ar(LCn) = V ar(h(R)) and dW is the Monge-Kantorovich-Wasserstein

distance. Note that here we use the variance V ar(T ) as an upper bound of the conditional

variance in Theorem 4.1.3, since it is a simpler object to study.

Assuming σ2 > Kn we show in Section 5.2 that the right-hand side of (5.2) converges to

0 as n→∞. This in turn will imply Theorem 5.1.1.

5.2 Proof of Theorem 5.1.1

We first note that E|∆jg|3/(2σ3)→ 0 as n→∞. Indeed, by Proposition 4.3.1 with α = 1

and r = 3, there is a constant C such that

E|∆jh|3 ≤ Cn,

for all large n. Then σ3 > K3/2n3/2, it follows that E|∆jh|3/(2σ3)→ 0 as n→∞.

We next turn to bounding Var(T ) from above. It will be enough to show that Var(T ) =

o(n2) in order for Theorem 5.1.1 to hold.

To do so, we start by giving a variant of Theorem 3.2.3. Assume n = vd, and let the
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integers

0 = r0 ≤ r1 ≤ r2 ≤ · · · ≤ rd−1 ≤ rd = n, (5.3)

be such that

LCn =
d∑
i=1

|LCS(Xv(i−1)+1 . . . Xvi;Yri−1+1 . . . Yri |, (5.4)

so the vector r = (r0, . . . , rd) determines an optimal alignment for the pair (X, Y ).

As in Chapter 3 for any p > 0, let

γ̃n(p) :=
E[LCS(X1, . . . , Xn;Y1, . . . , Ynp)]

n(1 + p)/2
.

Let ε > 0, p1 > 0 and p2 > 0 be constants. Let Anε,p1,p2 be the set of optimal alignments of

X1, . . . , Xn and Y1, . . . , Yn, for which a proportion of at least 1− ε of the integer intervals

[ri−1+1, ri] for i = 1, . . . , d have their length between vp1 and vp2. More precisely,Anε,p1,p2

is the event that for all integer vectors (r0, r1, . . . , rd) satisfying (5.3) and (5.4),

Card({i ∈ 1, 2, . . . , d : vp1 ≤ ri − ri−1 ≤ vp2}) ≥ (1− ε)d. (5.5)

Let β∗ and τmin be the β−mixing coefficient and mixing time for the hidden Markov model

as defined in Chapter 2.

Recall the following result regarding closeness to the diagonal from Chapter 3 (Corol-

lary 3.3.2).

Proposition 5.2.1. Let δ ∈ (6β∗, γ∗/2). Let 0 < p1 < 1 < p2 be such that γ̃n(p1) < γ∗−2δ

and γ̃n(p2) < γ∗ − 2δ for all n. Let α ∈ (0, 1), d = n1−α, v = nα and

ε := c1

√
1 + ln(1 + nα)

nα
,
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where c1 > 0 such that

c2
1 ≥

16τmin
(δ − 6β∗)2

,

and

c2
1

(
1 + ln(1 + nα)

nα

)
≥ 4C2

A

δ2

lnn

n
,

for all n ≥ 1. Then,

P(Anε,p1,p2) ≥ 1− exp
(
−n1−α(1 + ln(1 + nα))

)
,

for all n ≥ 1.

We now focus on estimating the variance term in (5.2). Note that,

V ar(T ) =
1

4
V ar

 ∑
A({0,...,|S|(n−1)}

∑
j /∈A

∆jh(R)∆jh(RA)(|S|(n−1)+1
|A|

)
(|S|(n− 1) + 1− |A|)


=

1

4

∑
(A,B,j,k)∈S1

Cov(∆jh∆jh
A,∆kh∆kh

B)(|S|(n−1)+1
|A|

)
(|S|(n− 1) + 1− |A|)

(|S|(n−1)+1
|B|

)
(|S|(n− 1) + 1− |B|)

,

where

S1 := {(A,B, j, k) : A ( {0, . . . , |S|(n− 1)}, B ( {0, . . . , |S|(n− 1)}, j /∈ A, k /∈ B}.

The following proposition (see [16, Proposition 2.1]) will be useful at various points of the

proof.

Proposition 5.2.2. LetR be a subset of {0, . . . , |S|(n− 1)}2, and let

S∗ = {(A,B, j, k) : A ( {0, . . . , |S|(n− 1)}, B ( {0, . . . , |S|(n− 1)}, j /∈ A, k /∈ B, (j, k) ∈ R}.
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Then

∑
(A,B,j,k)∈S∗

1(|S|(n−1)+1
|A|

)
(|S|(n− 1) + 1− |A|)

(|S|(n−1)+1
|B|

)
(|S|(n− 1) + 1− |B|)

= |R|.

Proof. Some elementary manipulations yield

∑
(A,B,j,k)∈S∗

1(|S|(n−1)+1
|A|

)
(|S|(n− 1) + 1− |A|)

(|S|(n−1)+1
|B|

)
(|S|(n− 1) + 1− |B|)

=
∑

(j,k)∈R

|S|(n−1)∑
s,r=0

∑
A 63j,|A|=s
B 63k,|B|=r

1(|S|(n−1)+1
s

)
(|S|(n− 1) + 1− s)

(|S|(n−1)+1
r

)
(|S|(n− 1) + 1− r)

=
∑

(j,k)∈R

|S|(n−1)∑
s,r=0

(|S|(n−1)
s

)(|S|(n−1)
r

)(|S|(n−1)+1
s

)
(|S|(n− 1) + 1− s)

(|S|(n−1)+1
r

)
(|S|(n− 1) + 1− r)

=
∑

(j,k)∈R

|S|(n−1)∑
s,r=0

1

(|S|(n− 1) + 1)2

= |R|

Note that by Proposition 4.3.1, ifR = {0, . . . , |S|(n− 1)}2,

∑
(A,B,j,k)∈S1

∣∣∣∣∣ Cov(∆jh∆jh
A,∆kh∆kh

B)(|S|(n−1)+1
|A|

)
(|S|(n− 1) + 1− |A|)

(|S|(n−1)+1
|B|

)
(|S|(n− 1) + 1− |B|)

∣∣∣∣∣
≤ C(a)|R|na

= O(n2+a),

where a > 0 and C(a) > 0 is a constant that depends on a and the parameters of the model.

In particular, it is not enough to apply Proposition 5.2.2 to get that V ar(T ) = o(n2). To

get the desired asymptotic behavior we use the optimal alignment introduced in (5.4).

For notational convenience, below we write
∑

1 for
∑

(A,B,j,k)∈S1 . Also, for random vari-
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ables U, V and a random variable Z taking its values in R, we write CovZ=z(U, V ) for

E[(U − E[U ])(V − E[V ])|Z = z],z ∈ R. Moreover, let

kn,A,B =
1(|S|(n−1)+1

|A|

)
(|S|(n− 1) + 1− |A|)

(|S|(n−1)+1
|B|

)
(|S|(n− 1) + 1− |B|)

.

Let, now, the random variable Z be the indicator function of the event Anε,p1,p2 where

ε := c1

√
1 + ln(1 + nα)

nα
,

and c1 as in Property 5.2.1. Then

V ar(T ) =
∑

1

kn,A,BCov(∆jh∆jh
A,∆kh∆kh

B)

=
∑

1

kn,A,BCovZ=0(∆jh∆jh
A,∆kh∆kh

B)P(Z = 0)

+
∑

1

kn,A,BCovZ=1(∆jh∆jh
A,∆kh∆kh

B)P(Z = 1). (5.6)

To estimate the first term on the right-hand side of (5.6), note that h(R) ≤ n because

h(R) = LCn. Then by Proposition 5.2.2 and Proposition 5.2.1,

∑
1

kn,A,BCovZ=0(∆jh∆jh
A,∆kh∆kh

B)P(Z = 0)

≤
∑

1

kn,A,Bn
2P(Z = 0)

≤ Cn4e−n
1−α(1+ln(1+nα)). (5.7)
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For the second term in the right-hand side of (5.6) note that

∑
1

kn,A,BCovZ=1(∆jh∆jh
A,∆kh∆kh

B)P(Z = 1)

≤
∑

1

kn,A,B
∣∣CovZ=1(∆jh∆jh

A,∆kh∆kh
B)
∣∣P(Z = 1)

≤
∑

1

kn,A,B
∣∣CovZ=1(∆jh∆jh

A,∆kh∆kh
B)
∣∣ . (5.8)

Before we proceed with more careful estimates on right-hand side of (5.8) we show the

following simple bound of the terms in the sum.

Proposition 5.2.3. Let (A,B, j, k) ∈ S1. For any a > 0,

∣∣CovZ=1(∆jh∆jh
A,∆kh∆kh

B)
∣∣ ≤ Cna,

where C > 0 depends only on the parameters of the hidden Markov models and for all n

large enough.

Proof. Let a > 0. By Proposition 4.3.1, for all n large enough,

∣∣Cov(∆jh∆jh
A,∆kh∆kh

B)
∣∣ ≤ Cna.

Now note that

∣∣Cov(∆jh∆jh
A,∆kh∆kh

B)
∣∣

=

∣∣∣∣CovZ=0(∆jh∆jh
A,∆kh∆kh

B)P(Z = 0)

+ CovZ=1(∆jh∆jh
A,∆kh∆kh

B)P(Z = 1)

∣∣∣∣
≥ −

∣∣CovZ=0(∆jh∆jh
A,∆kh∆kh

B)
∣∣P(Z = 0)

+
∣∣CovZ=1(∆jh∆jh

A,∆kh∆kh
B)
∣∣P(Z = 1),
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and then using (5.7),

∣∣CovZ=1(∆jh∆jh
A,∆kh∆kh

B)
∣∣

≤ Cna + Cn4e−n
1−α(1+ln(1+nα))

≤ Cna,

for all n large enough.

Next we estimate the right-hand side of (5.8) using properties arising from the optimal

alignment. Recall that for each pair of words (X, Y ) there is an optimal alignment r satis-

fying (5.3) and (5.4). Note that conditionally on {Z = 1}, r satisfies (5.5).

Definition 5.2.4. For the optimal alignment r, each of the sets

{Xnα(i−1)+1, . . . Xnαi;Yri−1+1 . . . , Yri}, i = 1, . . . , n1−α

is called a cell of r.

Let Pj be the set of cells (zero, one or two) of the optimal alignment potentially modified

by a change in the instruction hj . Assume that hj determines Xj′ and Yj′ . Note that Pj is

empty if the instruction hj is not used, and the other two cases correspond to Xj′ and Yj′

being in the same or different cells respectively.

Define the following subsets of S1 with respect to the alignment r:

S1,1 = {(A,B, j, k) ∈ S1 : hj and hk influence the same cell in r},

and

S1,2 = {(A,B, j, k) ∈ S1 : hj and hk influence different cells in r},
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Clearly, S1,1 ∩ S1,2 = ∅ and S1 = S1,1 ∪ S1,2. Now, for a given subset S of S1, and for

(A,B, j, k) ∈ S1, define

CovZ=1,(A,B,j,k),S(U, V ) = E[(U − E[U ])(V − E[V ])1(A,B,j,k)∈S|Z = 1].

When (A,B, j, k) is understood from context we write CovZ=1,S(U, V ) instead.

The right-hand side of (5.8) is then bounded by

∑
1

kn,A,B
∣∣CovZ=1(∆jh∆jh

A,∆kh∆kh
B)
∣∣

≤
∑

1

kn,A,B
∣∣CovZ=1,S1,1(∆jh∆jh

A,∆kh∆kh
B)
∣∣

+
∑

1

kn,A,B
∣∣CovZ=1,S1,2(∆jh∆jh

A,∆kh∆kh
B)
∣∣ (5.9)

Next, note that by the definition of CovZ=1,S1,1 and Proposition 5.2.3,

∑
1

kn,A,B
∣∣CovZ=1,S1,1(∆jh∆jh

A,∆kh∆kh
B)
∣∣

≤
∑

1

kn,A,BE
[∣∣(∆jh∆jh

A − E[∆jh∆jh
A])

(∆kh∆kh
B − E[∆kh∆kh

B])
∣∣1(A,B,j,k)∈S1,1

∣∣∣∣Z = 1

]
≤ CnaE[|R||Z = 1],

where

R = {(j, k) ∈ {0, . . . , |S|(n− 1)}2 : Rj and Rk influence the same cell in r}.

Let Ri be the number of pairs of indices (j, k) ∈ {0, . . . , |S|(n − 1)}2 that influence the

ith-cell. Recall that given Z = 1, the number of cells with more than nα(1 + p2) letters is

less than εn1−α. If α > 2/3, then εn1−α < 1 for large n and then all cells have no more
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than nα(1 + p2) letters given that Z = 1.

To estimate |Ri| note that by Proposition 4.3.1 the probability that a change of an instruc-

tion Rj for a pair (Xj′ , Yj′) leads to changes in pairs (Xk′ , Yk′) decays exponentially with

the distance |j′ − k′|. Therefore,

E[|Ri||Z = 1] ≤ (Cna + (1 + p2)nα)2 ≤ Cn2α.

Now since

E[|R||Z = 1] =
n1−α∑
i=1

E[|Ri||Z = 1],

it follows that

∑
1

kn,A,B
∣∣CovZ=1,S1,1(∆jh∆jh

A,∆kh∆kh
B)
∣∣

≤ Cnan1−αn2α

= Cn1+α+a. (5.10)

We move next to the estimation of the second term of the right-hand side of (5.9) which is

given by

∑
1

kn,A,B
∣∣CovZ=1,S1,2(∆jh∆jh

A,∆kh∆kh
B)
∣∣ .

To estimate the covariance terms we need to decompose them in such a way that indepen-

dence of certain random variables leads to a simplified expression. For this purpose, for

each i ∈ {0, . . . , |S|(n−1)} let Pi be the set of cells in the optimal alignment that contains

the letter determined by the Ri instruction. Then let

∆̃ih = h(Pi)− h(P ′i ),
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where P ′i is the same as Pi except that the instructionRi is replaced by the independent copy

R′i. While the change of Ri can lead to multiple changes among the realization (X, Y ),

the variable ∆̃ih is the difference between the length of the longest common subsequence

before and after the modification restricted to the cell Pi. Now for (A,B, j, k) ∈ S1,

CovZ=1,S1,2(∆jh∆jh
A,∆kh∆kh

B)

= CovZ=1,S1,2((∆jh− ∆̃jh)∆jh
A,∆kh∆kh

B)

+ CovZ=1,S1,2(∆̃jh(∆jh
A −

≈
∆jh

A),∆kh∆kh
B)

+ CovZ=1,S1,2(∆̃jh
≈
∆jh

A, (∆kh− ∆̃kh)∆kh
B)

+ CovZ=1,S1,2(∆̃jh
≈
∆jh

A, ∆̃kh(∆kh
B −

≈
∆kh

B))

+ CovZ=1,S1,2(∆̃jh
≈
∆jh

A, ∆̃kh
≈
∆kh

B), (5.11)

where for any i /∈ A, we also set
≈
∆jh

A = hA|Pi − hA∪{i}|Pi , i.e., the restriction is the same

as in ∆̃ih but there is a set A of instruction flipped as well.

The first technical assumption we make (which will be addressed in future work) concerns

the contribution of the last term in (5.11). In particular,

Assumption 1. Assume

∑
1

kn,A,B|CovZ=1,S1,2(∆̃jh
≈
∆jh

A, ∆̃kh
≈
∆kh

B)| ≤ Cn1+α.

for all n large enough.

The second assumption we make concerns the distribution of ∆jh− ∆̃jh.

Assumption 2. If (A,B, j, k) ∈ S1,2, then

|∆jh
A −

≈
∆jh

A| =d |∆jh− ∆̃jh|.
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We first estimate the first term in (5.11). It is given by

CovZ=1,S1,2((∆jh− ∆̃jh)∆jh
A,∆kh∆kh

B).

Let

U := (∆jh− ∆̃jh)∆jh
A,

and

V := ∆kh∆kh
B,

so that the first term is equivalent to CovZ=1,S1,2(U, V ). Note that

|CovZ=1,S1,2(U, V )|

= |E[(U − E[U ])(V − E[V ])1(A,B,j,k)∈S1,2|Z = 1]|

≤ E[|UV |1(A,B,j,k)∈S1,2 |Z = 1]

+ E|V |E[|U |1(A,B,j,k)∈S1,2|Z = 1]

+ E|U |E[|V |1(A,B,j,k)∈S1,2|Z = 1]

+ E|U |E|V |E[1(A,B,j,k)∈S1,2 |Z = 1]

:= T1 + T2 + T3 + T4.

Note that

T1 :=E[|UV |1(A,B,j,k)∈S1,2|Z = 1]

≤ E|UV |
P(Z = 1)

≤ CE|UV |,
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where we have used that P (Z = 0) is exponentially small for large n by Theorem 3.2.3.

Now since |∆jh− ∆̃jh| ≤ Cn, Property 4.3.1 implies that

E|UV | ≤CnaE|∆jh− ∆̃jh|+ Cn4e−n
1−α(1+ln(1+nα))

for large n. Similar approach yields the same upper bound for T2, T3 and T4. Then,

|CovZ=1,S1,2(U, V )| ≤ CnaE|∆jh− ∆̃jh|+ Cn4e−n
1−α(1+ln(1+nα)).

Now by Assumption 2, and using the symmetry between A and B and between j and k,

each of the first four terms in (5.11) is bounded above by

CnaE|∆jh− ∆̃jh|+ Cn4e−n
1−α(1+ln(1+nα)).

Together with Assumption 1, we can bound second term of the right-hand side of (5.9)

∑
1

kn,A,B|CovZ=1,S1,2(∆jh∆jh
A,∆kh∆kh

B)|

≤ n1+α + 4
∑

1

kn,A,BCn
aE|∆jh− ∆̃jh|+ Cn4e−n

1−α(1+ln(1+nα)).

Next by superadditivity, we immediately get

∆jh ≤ ∆̃jh.

By independence, E[∆jh] = 0, so

∑
1

kn,A,B|CovZ=1,S1,2(∆jh∆jh
A,∆kh∆kh

B)|

≤ n1+α + 4
∑

1

kn,A,BCn
aE[∆̃jh] + Cn4e−n

1−α(1+ln(1+nα)). (5.12)
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Our final assumption is regarding a bound on the middle term above.

Assumption 3. Assume

4
∑

1

kn,A,BCn
aE[∆̃jh] ≤ Cn1+a+α.

Then (5.7), (5.10), and (5.12) imply

V ar(T ) ≤Cn1+a+α + Cn4e−n
1−α(1+ln(1+nα))

≤ Cn1+a+α.

Therefore, Theorem 4.1.3 ensures that

dW

(
LCn − ELCn√

V arLCn
,N
)
≤ C

1

n
1−a−α

2

.

for all n ≥ 1 and with C > 0 a constant independent of n.

70



CHAPTER 6

CONCLUSION

In this thesis we have studied the asymptotic behavior of the length of the longest common

subsequences of two strings generated by a hidden Markov model. Under some standard

assumptions regarding the model we have generalized results of Chvátal and Sankoff [7]

and Alexander [1] for the convergence of E[LCn]. We have also obtained versions for the

closeness of the diagonal estimate of Houdré and Matzinger [18] and we have outlined

a proof for a central limit theorem by building upon work by Houdré and Işlak [16] and

adapting a Stein’s method estimate by Chatterjee [6].

For the central limit theorem proof to be complete one needs to provide a linear lower

bound on V ar(LCn) - a result that is not yet obtained even for the iid case. Another point

that needs to be addressed are the two technical assumptions in our outline for the proof.

A second direction for future work concerns other models with a dependence structure. For

instance one can try to obtain similar results for the rate of convergence or even a central

limit theorem by only assuming a suitable mixing condition for the sequences.

Finally, the new version of Stein’s method for dependent sequences, that is Theorem 4.1.3,

can be applied to Markovian equivalents of other models, like the ones discussed in [19].

Some instances are the stochastic coverage process, and the problem of set approximation

with random tessellations. Furthermore, a Stein’s method for functions of dependent ran-

dom variables should be obtainable directly using the dependency structure, especially if

the variance of the function in question is of higher order. Such would be the case when

the underlying model is the two dimensional Ising model at critical temperature.
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[17] C. Houdré and G. Kerchev, “On the rate of convergence for the length of the longest
common subsequences in hidden markov models,” 2018. arXiv: 1712 . 09881
[math.PR].
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[19] R. Lachièze-Rey and G. Peccati, “New Berry-Esseen bounds for functionals of bi-
nomial point processes,” Ann. Appl. Probab., vol. 27, no. 4, pp. 1992–2031, 2017.

[20] J. Lember, H. Matzinger, and F. Torres, “The rate of the convergence of the mean
score in random sequence comparison,” Ann. Appl. Probab., vol. 22, no. 3, pp. 1046–
1058, 2012.

[21] D. A. Levin and Y. Peres, Markov chains and mixing times. American Mathematical
Society, Providence, RI, 2017, pp. xvi+447, Second edition of [ MR2466937], With
contributions by Elizabeth L. Wilmer, With a chapter on “Coupling from the past”
by James G. Propp and David B. Wilson, ISBN: 978-1-4704-2962-1.

[22] D. Paulin, “Concentration inequalities for Markov chains by Marton couplings and
spectral methods,” Electron. J. Probab., vol. 20, no. 79, 32, 2015.

[23] W. T. Rhee, “On rates of convergence for common subsequences and first passage
time,” Ann. Appl. Probab., vol. 5, no. 1, pp. 44–48, 1995.

[24] E. Rio, Asymptotic theory of weakly dependent random processes, ser. Probability
Theory and Stochastic Modelling. Springer, Berlin, 2017, vol. 80, pp. xviii+204,
Translated from the 2000 French edition [ MR2117923], ISBN: 978-3-662-54322-1;
978-3-662-54323-8.

73

https://arxiv.org/abs/1408.1559
https://arxiv.org/abs/1712.09881
https://arxiv.org/abs/1712.09881


[25] G. O. Roberts and J. S. Rosenthal, “General state space Markov chains and MCMC
algorithms,” Probab. Surv., vol. 1, pp. 20–71, 2004.

[26] J. M. Steele, “Long common subsequences and the proximity of two random strings,”
SIAM J. Appl. Math., vol. 42, no. 4, pp. 731–737, 1982.

[27] ——, Probability theory and combinatorial optimization, ser. CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1997, vol. 69, pp. viii+159, ISBN: 0-89871-380-
3.

[28] H. Thorisson, Coupling, stationarity, and regeneration, ser. Probability and its Ap-
plications (New York). Springer-Verlag, New York, 2000, pp. xiv+517, ISBN: 0-387-
98779-7.

74


	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction and Background
	Asymptotic results for LCn
	Hidden Markov models and thesis outline

	Rate of convergence
	Mean convergence
	Rate of convergence
	Appendix

	Closeness to the diagonal
	Preliminaries
	Main result
	Proof of Theorem 3.2.3
	Closeness to the diagonal
	Short string-lengths properties are generic

	Stein's method
	Preliminaries
	HMM as stacks of independent random variables
	Bounds on i hA

	Central limit theorem
	Introduction
	Proof of Theorem 5.1.1

	Conclusion
	References

