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SUMMARY

This thesis investigates both theoretical and practical aspects of the design

and analysis of modern error-control coding schemes, namely low-density parity-check

(LDPC) codes and rateless codes for unequal error protection (UEP). It also studies

the application of modern error-control codes in efficient data dissemination in wireless

ad-hoc and sensor networks.

Two methodologies for the design and analysis of UEP-LDPC codes are pro-

posed. For these proposed ensembles, density evolution formulas over the binary

erasure channel are derived and used to optimize the degree distribution of the codes.

Furthermore, for the first time, rateless codes that can provide UEP are developed.

In addition to providing UEP, the proposed codes can be used in applications for

which unequal recovery time is desirable, i.e., when more important parts of data are

required to be recovered faster than less important parts. Asymptotic behavior of

the UEP-rateless codes under the iterative decoding is investigated. In addition, the

performance of the proposed codes is examined under the maximum-likelihood decod-

ing, when the codes have short to moderate lengths. Results show that UEP-rateless

codes are able to provide very low error rates for more important bits with only a

subtle loss in the performance of less important bits. Moreover, it is shown that given

a target bit error rate, different parts of the information symbols can be decoded after

receiving different numbers of encoded symbols. This implies that information can be

recovered in a progressive manner, which is of interest in many practical applications

such as media-on-demand systems.

This work also explores fundamental research problems related to applying error-

control coding such as rateless coding to the problem of reliable and energy-efficient

xviii



broadcasting in multihop wireless ad-hoc sensor networks. The proposed research

touches on the four very large fields of wireless networking, coding theory, graph

theory, and percolation theory. Based on the level of information that each node

has about the network topology, several reliable and energy-efficient schemes are pro-

posed, all of which are distributed and have low complexity of implementation. The

first protocol does not require any information about the network topology. Another

protocol, which is more energy efficient, assumes each node has local information

about the network topology. In addition, this work proposes a distributed scheme for

finding low-cost broadcast trees in wireless networks. This scheme takes into account

various parameters such as distances between nodes and link losses. This protocol

is then extended to find low-cost multicast trees. Several schemes are extensively

simulated and are compared.
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CHAPTER I

INTRODUCTION

Many communication channels suffer from noise, interference, or distortion because

of hardware imperfections or physical limitations. The goal of error-control coding

(ECC) is to encode information in such a way that even if the channel introduces

errors, the receiver can correct the errors and recover the original transmitted infor-

mation.

Error-control coding is pervasive in many aspects of human life. It has strongly

influenced not only the development of wireless systems, CDs, DVDs, and data stor-

age, but also computer networks, satellites, optical communication systems, mobile

phones, and of course the Internet.

After the seminal work of Shannon in 1948 [66], which defined the theoretical lim-

its on noiseless data communications, the first ECC scheme was proposed by Ham-

ming [19]. After that, many other coding schemes were proposed. However, no one

really knew how to achieve the theoretical performance limits promised by Shannon.

In 1963, Galleger invented low-density parity-check (LDPC) codes [14]. The true

power of these codes was, however, overlooked, partly because of the lack of sufficient

computing power for their implementation at the time.

Loosely speaking, error-control coding history can be divided into pre-turbo code

and post-turbo code. Turbo codes [5] and their ingenious iterative decoder, invented

in 1993 by Claude Berrou and Alain Glavieux, revolutionized the area. After turbo

codes started to gain attention, coding theorists turned their research efforts toward

the area of soft decision iterative decoders and toward the search for lower complexity

codes. These efforts led to the rediscovery of LDPC codes [35]. Today, the codes
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coming closest to the Shannon bound are LDPC codes, and much work has recently

focused on their construction and analysis.

While LDPC codes are among the most promising codes that are designed for

fixed rates, a new class of codes, called rateless or Fountain codes, has recently been

introduced. As the name suggests, rateless codes do not have any rate, and their

design for lossy channel applications is independent of the value of channel loss.

These codes were introduced primarily for the purpose of scalable and fault-tolerant

data distribution over computer networks. Examples of such codes are LT codes [31],

Raptor codes [68], and Online codes [39]. The fact that the design of rateless codes is

independent of the channel parameter makes them very interesting for applications

such as transmitting data over lossy multicast channels, nonuniform channels, and

time-varying channels.

This work investigates both the theoretical and practical aspects of the design and

analysis of LDPC codes and rateless codes. In Chapters 3, we propose two schemes

for designing LDPC codes that provide unequal error protection (UEP). UEP is very

important when certain parts of the information may need a higher level of protection

against error than other parts. For example, in a packet sent through a network,

header bits are more important than payload bits and have to be protected more.

Another example is in a compressed video stream, such as an MPEG stream, where

I-frames need more protection than P-frames and B-frames. In Chapter 4, we develop,

for the first time, rateless codes that can provide unequal error protection. In addition

to providing UEP, these codes can also be used in applications for which unequal

recovery time (URT) is desirable, i.e., when more important parts of data must be

recovered faster than less important parts. In our design and analysis, we consider

both asymptotic and finite-length cases. We investigate the asymptotic behavior of

UEP-rateless codes when using iterative decoding. We also study the performance

of maximum-likelihood (ML) decoders for the proposed finite-length UEP-rateless
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codes. Moreover, we analyze the ML decoding performance of traditional rateless

codes.

Further, we investigate the problem of reliable and energy-efficient broadcasting in

multihop wireless ad-hoc and sensor networks. The goal is to deliver a large number

of data packets, in a multihop fashion, to all the nodes in a network, such that the

energy consumption is minimized. Our approach to tackle this problem is based

on utilizing rateless codes. In Chapter 5, we propose a two-phase protocol called

collaborative rateless broadcast (CRBcast). This scheme utilizes an application-layer

rateless coding in conjunction with a simple and scalable broadcast scheme called

probabilistic broadcast (PBcast). In the first phase of CRBcast, rateless encoded

packets are broadcast based on PBcast. The second recovery phase, which is based

on simple collaborations of nodes, ensures that all nodes can recover original data.

CRBcast is a localized scheme that does not need any knowledge of the network. We

study both the theoretical and practical aspects of PBcast and CRBcast for large-

scale networks. In order to do this, we deal with many properties of random graphs

such as connectivity, coverage, and giant components.

In Chapter 6, we study the same problem for the cases in which nodes in the net-

work do have some local knowledge of their neighboring nodes. This local information

can be exploited to design more efficient data dissemination protocols for wireless sen-

sor networks. We propose a scheme called the fractional transmission scheme (FTS).

In FTS, different neighbors of a node share the data delivery, and each node sends

only a fraction of the total encoded packets required by a receiving node. FTS is a

distributed and efficient broadcast scheme that has also low-complexity and provides

load balancing.

In Chapter 7, we consider the problem of efficient broadcasting for a general

wireless network model, where packet transmissions are associated with costs based

on parameters such as the distance between nodes, link losses, etc. We also consider

3



nodes with adjustable transmission power. We propose a distributed protocol for

finding low-cost broadcast trees, which can be used for reliable, energy-efficient, and

low-latency data broadcast in wireless networks. The proposed scheme, referred to as

broadcast decremental power (BDP), evolves a given spanning tree of the network and

forms other spanning trees with lower broadcast costs. In our scheme, the Bellman-

Ford tree is considered as the initial spanning tree. We then propose a generalization

of BDP for efficient multicast, where only a subset of nodes in the network requires

the data. This scheme is referred to as multicast decremental power (MDP).

Finally, Chapter 8 summarizes the completed work and points out some of the

possible future research directions.
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CHAPTER II

BACKGROUND

In this chapter, we briefly present the necessary background on which the thesis is

based. We begin by introducing the binary erasure channel model. Then, we review

low-density parity-check and rateless codes and important developments in these ar-

eas. Next, we provide background on unequal error protection and related previous

work. Finally, we review the problem of efficient data broadcasting in wireless sensor

networks.

2.1 Binary Erasure Channel

The binary erasure channel (BEC) was introduced by Elias in 1955 [13]. For about

40 years, BEC was considered just a theoretical model rather than a realistic model.

However, after the emergence of the Internet, the erasure channel model became a

realistic one. Indeed, erasure channels can be used to model data networks, where

data is transmitted in the form of packets, which either arrive correctly or are lost for

many reasons such as buffer overflow or packet checksum mismatch. In binary erasure

channels, bits are either received correctly or are lost. The BEC is represented by a

parameter ε, which is called the channel erasure probability. In other words, a bit is

either lost or received correctly with probability ε or 1 − ε, respectively. Figure 2.1

depicts the BEC model. The Shannon capacity of the BEC with parameter ε is

CBEC = 1 − ε bits per channel use. In this work, we mostly consider channels as

erasure channels.
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Figure 2.1: Binary erasure channel.

2.2 Low-Density Parity-Check Codes

A low-density parity-check (LDPC) code over GF (2) is defined as a linear block code

(n, k) with an m× n (m = n− k) sparse parity-check matrix H = [hij ] (i.e., most of

the elements of H are 0 and a few of them are 1). A codeword x is a valid codeword

if and only if HxT = 0. Each column of H corresponds to one bit of a codeword x,

and each row corresponds to a parity-check equation. An LDPC code can also be

represented by a graph called a Tanner graph [71]. A Tanner graph is a bipartite

graph with bipartition V and C, where V = {v1, v2, . . . , vn} is the set of variable

nodes and C = {c1, c2, . . . , cm} is the set of check nodes. Variable nodes correspond

to the bits of the codeword, and check nodes correspond to the set of parity-check

constraints. Check node i (ci) and variable node j (vj) are adjacent (connected by

an edge) if and only if hij = 1. We denote such a graph by G(n, m). As an example,

Figure 2.2 depicts the Tanner graph of the code defined by

H =

























0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1

























(1)

The degree of each node is defined as the number of edges connected to that node.

An LDPC code is called regular if all variable nodes have the same degree and also

all check nodes have the same degree. Otherwise, the code is called irregular. Let λi

denote the fraction of the edges connected to variable nodes of degree i. Similarly,
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Figure 2.2: The Tanner graph of the H matrix given in (1). Circular and rectangular nodes
correspond to variable nodes and check nodes, respectively.

let ρi denote the fraction of the edges connected to check nodes of degree i. A degree

distribution for the Tanner graph is the pair (λ, ρ), where

λ = λ(x) =
∑

i

λix
i−1 and ρ = ρ(x) =

∑

i

ρix
i−1. (2)

For a given length n and given degree distribution pair (λ, ρ), an ensemble Cn(λ, ρ)

of LDPC codes is defined by choosing the edges randomly [64]. More precisely, for

each variable node of degree i we assign i sockets. Similarly, for each check node of

degree i we assign i sockets. The total number of sockets in each side of the graph

(total number of edges) is E = n
∫ 1
0

λ(x)dx
. We enumerate the E variable sockets in

some arbitrary order and proceed in the same way with the check sockets. Then, a

code (a particular instance of this ensemble) can be specified with a permutation π

on E letters. For each i = 1, 2, . . . , E, we connect the variable node associated with

the ith variable socket to the check node associated with the π(i)th check socket.

2.2.1 Iterative Decoding on the Binary Erasure Channel

The decoding of LDPC codes is based on a message passing algorithm called belief

propagation (BP). This algorithm is iterative and in each iteration messages are passed

from variable nodes to check nodes, and from check nodes back to variable nodes. The

messages that are passed between the nodes are in the form of a log-likelihood ratio

(LLR) [64]. The message passed from a variable node v to a check node c contains

the information about the probability that v has a certain value given the observed

value of that variable node, and all the values communicated to v in the prior round

7



from check nodes adjacent to v other than c. On the other hand, the message passed

from c to v contains the information about the probability that v has a certain value

given all the messages passed to c in the previous round from message nodes other

than v. In general, memoryless binary-input output-symmetric channel LLRs can

take values in the range [−∞, +∞]. However, for the special case when the channel

is BEC, LLRs can only take values in {−∞, 0, +∞}. LLR=0 means that the message

is absolutely uncertain and |LLR|=+∞ means that the message is absolutely certain.

The sign of the LLR determines whether the value of the associated bit is 0 or 1. For

the BEC, the BP algorithm is very simple and can be described much easier in the

following [28, 67]:

• Initialize the value of all the check nodes to zero.

• For every variable node v in the graph that its value is known, add (modulo 2)

the value of v to the values of all adjacent check nodes of v. Remove v and all

edges incident to it from the Tanner graph.

• While there is a check node c of degree one, substitute the value of c into the

value of its unique adjacent variable node v′, add that value to the values of all

check nodes adjacent to v′ and remove v′ and all of its incident edges from the

graph.

The number of operations performed by this algorithm is proportional to the number

of edges in the graph. Therefore, for LDPC codes, the algorithm runs in time linear

in the block length of the code (O(n)).

2.2.2 Density Evolution on the Binary Erasure Channel

Density evolution (DE) is a technique for analyzing the performance of LDPC codes

under BP decoding when code length (n) goes to infinity. As the name suggests,

DE tracks the evolution of the distribution of messages that are passed from variable

nodes to check nodes and vice versa. For the sake of analysis and without loss of
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generality we can assume the all-zero codeword is transmitted [64]. Therefore, when

the transmission channel is BEC, the LLR messages can only take two values (either

+∞ or 0). Hence, we only need to keep track of one parameter xi, which is the

probability that the messages passed from a variable node to a check node at round i

of BP is 0. It was shown in [28,30] that given the degree distribution pair (λ, ρ), the

DE formula is given by

xi = x0λ(1− ρ(1− xi−1)) for i ≥ 1, (3)

where x0 = ε for a BEC with channel erasure probability ε. It was shown in [64]

that the density evolution recursion given in (3) always converges to a fixed point.

Moreover, there exits a threshold εth(λ, ρ) for the fixed point of (3), defined as

εth(λ, ρ) = sup{ε ∈ [0, 1] : xi
i→∞−→ 0}. (4)

The threshold εth is the supremum value of ε such that the error rate can be made

arbitrarily small.

2.3 Rateless Codes

Rateless (Fountain) codes are a new class of linear error-control codes. Examples of

such codes are LT codes [31], Raptor codes [68], and Online codes [39]. The idea be-

hind rateless codes is that every receiver continues collecting the encoded data until

the decoding can be finished successfully. Unlike traditional codes, rateless codes on

lossy channels do not assume any knowledge of the channel. Therefore, rateless codes

are very suitable candidates for applications in which the channel erasure probability

is unknown, nonuniform, or time varying. It has been shown that rateless codes have

very simple encoding and decoding algorithms. Asymptotically good degree distribu-

tions for them have also been developed [31], [68], [39]. Raptor and Online codes are

extensions of LT codes, in which an outer traditional pre-code is concatenated to an

inner LT code to get practically better results.
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Next, we review LT codes. Suppose we want to transmit a message comprised

of n input symbols. Let Ω1, . . . , Ωn be a probability distribution on {1, . . . , n} so

that Ωi denotes the probability that the value i is chosen. We may also denote this

distribution by its generator polynomial Ω(x) =
∑n

i=1 Ωix
i. An encoding (output)

symbol is formed as follows:

• Randomly choose a degree d according to the distribution Ω1, . . . , Ωn

• Choose uniformly at random d input symbols

• Perform bitwise XOR operations on the selected d input symbols to form the

output symbol

The output symbol is then transmitted. We repeat this process until a sufficient

number of output symbols is obtained at the receiver. In general, the number of

output symbols required to give a high probability of decoding n input symbols can

be expressed as γn for a fraction γ & 1 (γ is called the rateless overhead). When

transmitting information using a traditional code, both the sender and the receiver

are in possession of a description of the coding method used. For rateless codes, this

is not necessarily the case, since the code is being generated concurrently with the

transmission. Therefore, in order to be able to recover the original data from the

output symbols, it is necessary to transmit a description of the code together with

the output symbols. In a setting where the symbols are data packets, we can include

the information that describes the set of neighbors of an output symbol in the header

of the packet [68]. There are also several other methods to accomplish this [31].

Without loss of generality and for simplicity, we may assume that the symbols are

binary symbols. Following [39] and [30] we may view the input and output symbols

as vertices of a bipartite graph G, where the input symbols correspond to the variable

nodes and the output symbols correspond to the check nodes. The ensemble of LT

codes can be specified by parameters Ω(x), n, and γ. The average check-node degree

is given by µ =
∑n

i=1 iΩi = Ω′(1), where Ω′(x) is the derivative of Ω(x) with respect
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to x. Moreover, it is straightforward to show that the degree of variable nodes has a

binomial distribution. Specifically, the probability λd that a variable node has degree

d is given by

λd =

(

µγn

d

)

(1

n

)d(
1− 1

n

)µγn−d
. (5)

Asymptotically (as n goes to infinity), and assuming that µγ is constant, we can

approximate distribution (20) by a poisson distribution with mean µγ expressed as

follows:

λd =
e−µγ(µγ)d

d!
. (6)

2.3.1 Iterative Decoding on the Binary Erasure Channel

The decoding of LT codes on the BEC is similar to the decoding of LDPC codes on

the BEC. The BP decoder can be best described in terms of the graph associated with

the decoder. It performs the following steps until either no output symbols of degree

one are present in the graph or until all the input symbols have been recovered [68].

At each step of the algorithm, the decoder identifies an output symbol of degree one.

If none exists, and if not all the input symbols have been recovered, the algorithm

reports a decoding failure. Otherwise, the value of the output symbol of degree one

recovers the value of its unique neighbor among the input symbols. Once this input

symbol value is recovered, its value is added to the values of all the neighboring output

symbols, and the input symbols and all edges emanating from it are removed from

the graph.

Figure 2.3 depicts a small example of an LT code, where n = 7 and γ = 8/7.

Circular nodes correspond to the input symbols, and the rectangular nodes correspond

to the output symbols. The values of the output symbols are known at the receiver,

and the goal is to find the values of the input symbols. The decoding starts by

copying the value of c3 to its unique neighbor v2. Next, since c2 has only one unknown

neighbor, it recovers the value of v1. The next output symbol with only one unknown
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neighbor is c4 and recovers v6. The decoding continues until no output symbol with

exactly one unknown neighbor exists. In this example, the decoding is successful

since the values of all the input symbols are determined.

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3 c4 c5 c6 c7 c8

Figure 2.3: An example of an LT code, where n = 7 and γ = 8/7. The circular and rectangular
nodes correspond to input and output symbols, respectively.

2.3.2 Density Evolution on the Binary Erasure Channel

Similar to LDPC codes, we can use the density evolution tool in the analysis and

design of rateless codes under the iterative decoding. Consider an LT code with pa-

rameters Ω(x), information length n, and overhead γ. Define xi to be the probability

that the value of a variable node is unknown at round i of BP. It is clear that x0 = 1

since at first the value of all input nodes are unknown. The DE can be formulated as

follows [39]:

xi = δ(1− β(1− xi−1)), for i ≥ 1, (7)

in which δ(x) = eµγ(x−1) and β(x) = Ω′(x)
Ω′(1)

.

2.4 Unequal Error Protection

Most error-control coding schemes protect all data equally. In other words, they

provide equal error protection (EEP). However, in several important applications,

some parts of information may need a higher level of protection against error than

other parts. For example, in a packet sent through a network, header bits are more

important than payload bits and have to be protected more. Another very important

application is in transmitting multimedia over error-prone wireless networks. In such
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cases, we are left with three options. First, EEP codes with high protection for

the entire data could be used. This is not efficient since EEP codes provide far

more protection than is necessary by adding excessive redundancy. Second, different

codes could be used for different parts of data. This approach is not prudent since

the performance of codes degrades as the length of data decreases. Finally, a more

interesting and challenging solution is the construction of a single code that induces

a selective protection property known as unequal error protection (UEP).

The first UEP codes were proposed by Masnick and Wolf [38] in 1967. Later, many

other UEP design methodologies were developed, e.g., [8, 9, 21, 36, 50, 73]. Because of

the outstanding performance of LDPC and rateless codes, it is desirable to design

these codes such that they provide UEP. In this work, we propose two schemes for

designing UEP-LDPC codes. The proposed schemes are among the very first studies

on UEP-LDPC codes. We also propose a novel scheme for having UEP-rateless codes,

which to the best of our knowledge is devised for the first time.

2.5 Data Broadcast in Wireless Sensor Networks

Wireless sensor networks are becoming a part of our everyday lives [3]. They are find-

ing applications in many areas such as health, disaster relief, environmental surveil-

lance, and military sensing. In such networks, sensor nodes have limited energy,

storage, and computational capability. Further, these networks are characterized by

short communication range, low data rate, and dense deployment. The topology

of a sensor network is subject to frequent changes because of node mobility or fre-

quent node failure. In most of the applications, the deployment of nodes is such that

recharging their batteries is infeasible; hence, low energy expenditure is of paramount

importance. For this reason, protocols tailored to such networks must place the ut-

most emphasis on the conservation of energy, and the direct application of protocols

used for general wireless networks is not efficient.
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One of the common models for wireless ad-hoc and sensor networks with omni-

directional antennas is the random geometric graph model [46]. A network with N

nodes and transmission range r is modeled by a graph G(N, r) such that there is an

edge between any two nodes if and only if their distance is less than or equal to r.

Gupta et al. studied the connectivity of such graphs when N is very large [17]. They

showed that if N nodes are deployed uniformly at random in a field with area A and

the transmission range of the nodes is such that

πr2

A
=

ln N + ω(N)

N
, (8)

then the resulting network is asymptotically connected with probability one if and

only if ω(N)→∞.

By the nature of their applications, one-to-all (broadcast) and one-to-many (mul-

ticast) communication tasks are very common in wireless ad-hoc and sensor networks.

One situation that calls for one-to-all broadcasting is the software update (needed for

adding new functionalities, maintenance, and debugging) in all the sensor nodes after

their deployment. Another example is route discovery in reactive routing protocols

(where route query packets are forwarded to all nodes in the network). Some impor-

tant factors that influence the efficiency of a broadcasting scheme can be reliability

(defined as the percentage of nodes in the network that are able to retrieve the data),

energy-efficiency, complexity, scalability, and latency. Based on the application, some

factors might be more important than others. For example, for updating the software

in all the nodes in the network, reliability is very important, while latency might

have less importance. Broadcasting streaming media is a case where latency is of

paramount importance. Energy is usually an important issue especially for battery-

powered sensor networks.

In this study, we consider the case that a large number of packets have to be

broadcast in a multihop wireless sensor network with our main concerns being relia-

bility and energy-efficiency. We are also interested in broadcasting schemes that have
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low complexity of implementation and are distributed and practical.

The most straightforward way to perform broadcasting is flooding [20]. In the

flooding method, a node rebroadcasts a packet that it receives for the first time. In

a connected and lossless network, flooding guarantees reliability. Although flooding

is simple and scalable, it has the following disadvantage. Many redundant rebroad-

casts occur especially in dense networks, which over-consume the precious network

resources of energy and bandwidth. This problem is known as the broadcast storm

problem [42].

The problem of reliable and energy-efficient broadcasting in wireless networks has

different solutions in the two following models.

• In the first model, the nodes have only relaying capability. In this case, re-

liable and energy-efficient broadcasting in a wireless network is equivalent to

the problem of finding a minimum-connected dominating-set (MCDS) for the

corresponding network graph, if we model the network as a geometric graph.

Unfortunately, determining an MCDS is an NP-complete problem [15] even if a

centralized algorithm utilizing the full knowledge of the graph topology is ap-

plied. This forces the employment of some heuristic and suboptimal schemes.

One of the important schemes is called probabilistic broadcast (PBcast) [18,42].

This approach was originally introduced in [7] to reduce traffic for multicast

wired networks and later was tailored for wireless applications. In PBcast, a

source broadcasts all the packets with probability one. Any other node re-

broadcasts every packet that it receives for the first time with some probabil-

ity p < 1. Therefore, the number of unnecessary rebroadcasts is decreased.

However, some nodes may not receive all the packets because of disconnectiv-

ity caused by the probabilistic relaying. A high value for p may be chosen

to achieve reliability; however, if p is too high, energy efficiency will be lost.

Some other heuristic algorithms for attacking this problem have been proposed,
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e.g., [18, 26, 42, 45, 51, 70, 74]. Most of them assume considerable knowledge of

network topology and are either impractical or suffer from lack of reliability.

Note that in all the above schemes, to ensure reliability one, every single packet

needs to be received by all the nodes in the network. This constraint may cause

lots of retransmissions and may require in-sequence data delivery. Moreover,

these schemes would be far less efficient for lossy networks (i.e., networks with

unreliable communication links).

• In the second model, in addition to relaying, each node has the capability of

doing local processing and coding. This model was first introduced in [2] and

opened a new research path known as network coding.

We illustrate the difference between the optimal solutions for these two models in a

small example. Assume that we want to broadcast two symbols x and y from a source

S to all the nodes in the wireless network shown in Figure 2.4

C

D E

S

A B

x,y

Figure 2.4: Two symbols x and y have to reach all the nodes in this wireless network with minimum
number of transmissions.

The optimal solutions for the first and second model are shown in Figures 2.5(a)

and 2.5(b), respectively. In the former model, nodes S, A, and B forward x and y. The

total number of transmissions is six, and this is an optimal solution. In the second

model, node S forwards x and y. Node A forwards only x, and node B forwards only

y. Node C collects x and y and forwards bitwise XOR x + y. Clearly, node D can
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recover x and y by receiving x and x + y. Similarly, node E can recover x and y by

receiving y and x + y. Hence, x + y is beneficial to both nodes D and E. In this case,

the optimal broadcasting happens with only five transmissions. We conclude that

local coding in the network can reduce the number of transmissions and offers in a

better energy efficiency.

C

D E

S

A B

x,y

x,y x,y

(a)

x y

x+y

C

A

D E

B

S

x,y

(b)

Figure 2.5: Optimal schemes for broadcasting x and y from source S to all the nodes in the network.
(a) Nodes only have relaying capability. Minimum number of required transmissions is 6. (b) Nodes
have relaying and coding abilities. Minimum number of required transmissions is 5.

Considerable work has been done in the area of coding within networks includ-

ing [32, 34] and references therein. Next, we briefly review the approach that is well

known as Network Coding in the community.

2.5.1 Network Coding

The problem of minimum-cost multicast/braodcast in wireless networks can be ad-

dressed by Network Coding (NC) approach [33]. In NC, a network is modeled with

a directed hypergraph H = (N ,A), where N is the set of nodes and A is the set

of hyperarcs. A hypergraph is a generalization of a graph, where we have hyperarcs

instead of arcs (edges). A hyperarc is a pair (i, J), where i ∈ N is the start point and

J is the set of end points and is a non-empty subset of N [33]. Each hyperarc (i, J)
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represents a lossless broadcast link1 from node i to nodes in the set J . The source

node and the set of destinations nodes are denoted by s, and T , respectively. For

the general multicast problem, T could be any subset of N . For the special case of

broadcasting, we have T = N\s. By ziJ we denote the rate at which coded packets

are injected and received on hyperarc (i, J).

NC can be divided into two decoupled problems. The first one is to determine the

subgraph over which coding has to be performed and the flow rate on each link (ziJ)

such that multicast/broadcast cost is minimum. The other problem is to determine

the code to use over that subgraph.

In the first problem, to achieve a minimum-cost multicast/broadcast of rate arbi-

trarily close to R, we need to solve the following optimization problem.

minimize f(z) (9)

subject to

ziJ ≥
∑

j∈J

x
(t)
iJj , ∀(i, J) ∈ A, t ∈ T,

∑

{J |(i,J)∈A}

∑

j∈J

x
(t)
iJj −

∑

{j|(j,I)∈A,i∈I}

x
(t)
jIi = σ

(t)
i , ∀i ∈ N , t ∈ T (10)

x
(t)
iJj ≥ 0, ∀(i, J) ∈ A, j ∈ J, t ∈ T. (11)

where,

σ
(t)
i =























R, if i=s,

−R, if i=t,

0, otherwise.

(12)

An example for the cost function f(z) could be
∑

(i,J)∈A ziJ . In this case, the problem

is a linear programming (LP) problem and can be solved in polynomial time.

The second problem (coding problem) is solved as follows. Whenever a node has

to inject a packet, it sends a random linear combination of the packets it has in its

1A generalized model that considers lossy broadcast links is also studied in [33].
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memory. The coefficients of the linear combinations are chosen independently and

uniformly over all elements of a finite field GF (q). We will refer to this type of coding

as random sum coding. Clearly, information about the chosen coefficients must also

be sent along with the sent packet for the decoding purpose.

We note the following shortcomings with NC.

• The assumption of a directed graph is a limiting one since wireless networks

consisting of nodes with omnidirectional antennas are, by their nature, not

directed. This means that for any two nodes i and j that are in the transmission

range of each other, the transmission can happen in both directions from i to

j or from j to i in different time slots. The issue of finding optimal directions

for the edges is an intractable problem by itself considering the fact that the

number of possible combinations of assignable directions grows exponentially

with the number of edges in the network.

• The size of the finite field GF (q) from which the coefficients of linear combina-

tions are selected must be very large for optimality. This makes the computa-

tions costly.

• The overhead for network coding (due to the transmission of coefficients with

each packet) is np log2 q bits for each sent packet, where np is the number of

original packets. This overhead might be prohibitive if np log2 q is comparable

to the size of the packets.

• The decoding is required to be Gaussian elimination with cubic complexity with

respect to np.

• The computational complexity of NC for broadcasting over a lossy wireless

network of N nodes and average node degree J is prohibitive for large networks

since it involves an expensive optimization with over N22J constraints and

variables [33].

Instead of using random sum codes that have cubic complexity of decoding, other
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coding techniques can also be employed at each node. One of the best options is

rateless (Fountain) erasure coding [31, 39, 68]. Rateless codes have linear encoding

and decoding complexity. The encoding is a low-weight packet-level addition of input

packets over GF (2), and the decoding is done by a simple iterative decoding as we

explained in Section 2.3.1. Unlike traditional codes, rateless codes do not assume any

knowledge of the channel and are adaptable to different channel conditions. In [10,11,

41, 68], the applicability of rateless codes for reliable multicast/broadcast in single-

hop lossy networks was mentioned. The original packets are first encoded using a

rateless code. The encoded packets are then broadcast. In this case, the redundancy

is optimal for all clients independent of their packet loss rates. No prior knowledge

of the channel status is needed. However, the performance of broadcasting encoded

data over multihop wireless networks depends on the routing scheme as well. One

option is to find the optimal sub-network as in the case of NC (using LP) and then

use rateless coding over the sub-network. However, the problem of finding routes

using LP is not very practical for large networks such as sensor networks.
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CHAPTER III

UNEQUAL ERROR PROTECTION USING

LOW-DENSITY PARITY-CHECK CODES

3.1 Introduction

Unequal Error Protection (UEP) property is very desirable for applications where

different bits have different significance. The first UEP codes were proposed by

Masnick and Wolf [38]. Later, other UEP design methodologies were developed,

e.g., [8, 9, 21, 22, 36] based on different coding schemes such as cyclic codes and con-

volutional codes. After the rediscovery of LDPC codes and the invention of rateless

codes, many researchers started studying them from different aspects. These codes

show outstanding performance and low complexity of implementation. However, there

was not much work on studying these codes for unequal error protection. In the next

two chapters, we investigate this problem.

In this chapter, we propose two schemes to construct efficient LDPC codes that

provide UEP [49,52,57,58]. The first scheme is based on traditional bipartite Tanner

graphs, and the second scheme is a novel approach based on combining two Tan-

ner graphs resulting a 3-partite ensemble. We derive density evolution formulas for

both the proposed unequal error protection LDPC ensembles over the binary erasure

channel. Using the density evolution formulas, we can optimize the codes based on

the requirements of our problem. We compare our schemes with some other LDPC

codes, the time-sharing method, and a previous work on UEP using LDPC codes [73].

Simulation results confirm the superiority of the proposed design methodologies for

UEP. We also compare the two proposed schemes. It is shown that by employing the

scheme based on combined Tanner graphs we can achieve improved performance over
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the first proposed scheme. Specifically, error floor decreases for more important parts

of data in the second proposed scheme.

3.2 UEP Using LDPC Codes

Up until now different schemes for designing capacity achieving (CA) LDPC codes

over the BEC have been devised, e.g., [43]. These schemes are based on designing

codes of rate R with the threshold channel erasure probability (εth) as close as possible

to 1−R. When the channel erasure probability is less than εth, the average bit error

rate (BER) (the probability that a bit is not recovered after the decoding stops) goes

to zero when long enough code lengths and large enough number of decoding iterations

are considered. Therefore, CA codes are superior to the UEP codes asymptotically as

they provide small enough error rates for all data. However, short- to moderate-length

codes are preferable in practice. For these lengths, UEP codes are desirable. In the

proposed UEP designs, we neither optimize the codes based on εth nor use the average

BER of all data in our analysis. Instead, we divide the codeword into different groups

and investigate the average BER for each group. The codes are optimized such that

some information bits have lower BER than the other bits.

Throughout this chapter, we are only concerned with the performance of informa-

tion bits, thus UEP for information bits is considered. Therefore, we need to determine

the positions of the information bits in the codeword. For an (n, k) LDPC code that

is defined by a parity-check matrix H , not every arbitrary collection of k bits in the

codeword (correspondingly k columns of H) can correspond to the information bits.

The following should be satisfied by H .

Lemma 3.1. Let (n − k) × n matrix H = [h1h2 . . . hn] be the parity-check matrix

corresponding to an (n, k) linear code. To have [i1, i2, . . . , ik] as the positions of the

information bits in the codeword, matrix HP = H \ HI must be full rank, where

HI = [hi1hi2 . . . hik ].

22



Proof. Let us define X = (x1, x2, . . . , xn), XI = (xi1 , . . . , xik), and XP = X \ XI .

Then, X is a valid codeword if and only if HIX
T
I +HP XT

P = 0T . Using this equation,

we can find parity bits XP as a function of information bits XI if and only if HP is

full rank.

In this work, the information bits are divided into two groups with two levels of

importance. One group consists of the more important bits (MIB) that need higher

protection. The other group contains the less important bits (LIB). More specifically,

the following problem is studied.

3.3 Problem Statement

Suppose we want to transmit k information bits with two levels of importance over

an erasure channel with erasure probability ε. To do this, we want to design an (n, k)

UEP code C having rate R = k/n. Let kM = αk (where 0 < α < 1) be the number

of MIB and kL = (1− α)k be the number of LIB as in Figure 3.1. Let m = n− k be

the number of parity bits (PB).

More Important Bits Less Important Bits

kM = αk kL = (1− α)k

Figure 3.1: Information is divided into two parts. A fraction α of the data are more important
bits, and a fraction 1− α of the data are less important bits.

It should be noted that although we consider that information bits have two levels

of importance, the generalization of the proposed schemes for the cases with more

levels of importance is straightforward.

In this chapter, we first study the design of UEP-LDPC codes based on traditional

bipartite Tanner graphs [52, 58]. Then, we develop the second type of UEP-LDPC

codes that are constructed based on combining two Tanner graphs [57].
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3.4 UEP-LDPC Codes: Traditional Tanner Graphs

Before explaining our design criteria, it is good to provide some insight into how an

LDPC code can have different error protection levels for different bits. It is known that

it is best to have high degrees for variable nodes. This is because the more information

a variable node receives from its adjacent check nodes, the more accurately it can

judge about its correct value. In contrast, from the point of view of a check node,

it is best to have a low degree, since the lower the degree of a check node, the more

valuable the information it can transmit back to its neighbors [29]. Assuming a fixed

number of edges in the graph, increasing degrees of some variable nodes results in

decreasing degrees of some other variable nodes, and this provides UEP.

Next, a method for providing UEP is proposed. In this method, we consider

the conventional bipartite Tanner graph with n variable nodes and m check nodes.

For the simplicity of design, we assume to have partially regular ensembles. By

partially regular, we mean that all the MIB, LIB, and PB have the same degrees

dM , dL, and dp, respectively. Further, all check nodes have the same degree dc.

Figure 3.2 shows the Tanner graph of this ensemble. Let H = [HM |HL|Hp] denote

the corresponding parity-check matrix of this graph, where HM , HL, and Hp are

submatrices that correspond to the MIB, LIB, and PB, respectively. By Lemma 3.1,

we conclude that the assumption of separating information bits and parity bits as

specified above is valid if and only if Hp is full rank. Next, we derive density evolution

formulas for the proposed partially regular ensemble.

3.4.1 UEP Density Evolution

Let us consider the standard iterative decoding algorithm for the BEC. To achieve

UEP with a significant gap among the different protection levels, we modify the

density evolution formulas introduced in [30]. In our formulation, three parameters

Mi, Li, and pi are introduced. These parameters denote the expected fractions of
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m

kL

dM dL

kM

dp

m

Figure 3.2: The Tanner graph of the proposed ensemble for providing UEP.

the erasure messages at the ith iteration that are passed from the variable nodes that

correspond to the MIB, LIB, and PB, respectively. Furthermore, let qi denote the

probability that an erasure message is passed from the check nodes to the variable

nodes at the ith iteration. Then, the unequal density evolution (UDE) formulas are

given as

M0 = L0 = p0 = ε, (13)

Mi+1 = M0q
dM−1
i , Li+1 = L0q

dL−1
i , pi+1 = p0q

dp−1
i , (14)

qi = 1− (1− λdM
Mi − λdL

Li − λdppi)
dc−1, (15)

where λdM
, λdL

, and λdp are the fractions of the edges that are connected to the MIB,

LIB, and PB, respectively. These parameters can be obtained by

λdM
=

αRdM

αRdM + (1− α)RdL + (1−R)dp
,

λdL
=

(1− α)RdL

αRdM + (1− α)RdL + (1−R)dp
,

λdp =
(1− R)dp

αRdM + (1− α)RdL + (1−R)dp
.

The following lemma points out the UEP property of the proposed ensemble.

Lemma 3.2. Let ε be the erasure probability of a BEC and βi,ε , Li+1,ε

Mi+1,ε
be the UEP

gain at the ith decoding iteration. Then, βi,ε increases when the erasure probability of

the channel, ε, decreases. Moreover, βi,ε is an increasing function of the number of

iterations i.
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Proof. Using (14), we have βi,ε = ( 1
qi,ε

)
dM−dL . Since dM > dL, we need to show that

qi,ε is an increasing function of ε. This can be proven by induction. Assume ε2 > ε1.

From (15) we have q0,ε = 1 − (1 − ε)dc−1. This implies that q0,ε2 > q0,ε1 . Now we

assume that qi−1,ε2 > qi−1,ε1 . From (14) we have Mi,ε2 > Mi,ε1 , Li,ε2 > Li,ε1 , and

pi,ε2 > pi,ε1. Using (15) we conclude that qi,ε2 > qi,ε1. This proves the first part of the

lemma.

To prove the second part, we must show that qi,ε is a decreasing function of i.

This can be done by induction on i. First, note that q0,ε < 1. From (15), we have

q1,ε < q0,ε. Now assume that qi,ε < qi−1,ε < . . . < q1,ε < q0,ε < 1. Let

f(qi,ε) , ελdM
qdM−1
i,ε + ελdL

qdL−1
i,ε + ελdpq

dp−1
i,ε . (16)

We have f(qi,ε) < 1 and

qi+1,ε − qi,ε = (1− f(qi−1,ε))
dc−1 − (1− f(qi,ε))

dc−1

= (f(qi,ε)− f(qi−1,ε))×K

in which K > 0. Using (16), the value of f(qi,ε)− f(qi−1,ε) can be seen to be negative

since qi,ε < qi−1,ε. Therefore, we have qi+1,ε < qi,ε. This completes the proof.

Using the UDE formulas, the asymptotic behavior of a code for a given degree

distribution can be estimated1. Moreover, we can optimize the degrees such that we

have low error rates for MIB while keeping the overall performance comparable with

other codes. For a given R and α, we need to find optimal values for dM , dL, dp, and

dc. However, we have one equality constraint that is imposed by the edges as

αRdM + (1− α)RdL = (1−R)(dc − dp). (17)

Therefore, we have three independent variables to optimize. We considered dc as

the dependent variable. By assuming a maximum value for the degrees (dmax) and

1An alternative way to obtain the performance of a code over the BEC is by determining the
stopping sets characteristics. Such an approach is more complicated especially for the UEP case.
However, the results of two approaches will be consistent asymptotically.
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considering dM > dL > dp, we can easily search through all the possible values for

the degrees and select the ones that result in very low error rates for MIB. The cost

function is considered as MI (for some large integer I).

3.4.2 Simulation Results

Assume we want to design a UEP code with α = 0.1 and rate 1/2. By setting

dmax = 25, ε = 0.452, and I = 25, we minimized the cost function MI . Table 3.1

shows the degrees, MI , LI , and pI for two optimized codes.

Table 3.1: Degree distributions, M25, L25, and p25 of some optimized UEP-LDPC codes of rate
1/2 and α = 0.1 found by the proposed method.

Code dM dL dp dc M25 L25 p25

1 23 3 2 7 2.18e-6 1.48e-1 2.58e-1
2 24 4 2 8 2.31e-12 1.52e-2 1.45e-1

As is shown in the table, asymptotically, the performance gaps between the BERs

of MIB and the rest of the codeword bits are several orders of magnitude for 25

decoding iterations. Increasing the number of iterations results in even larger gaps.

To measure the performance of the proposed codes for the finite-length case, we

found the BER versus ε for Code 1 (εth = 0.455) when the length of the code is

n = 4000 [Figure 3.3(a)]. Two other codes were chosen for comparison with our code:

the regular (3, 6) (εth = 0.429) and a BEC-optimized irregular code, referred to as

Code A, found from [1] by setting the maximum allowable degree to 25. The degree

distribution of Code A3is given by λ(x) = 0.249765x + 0.247164x2 + 0.148003x5 +

0.0033269x6+0.351741x19 and ρ(x) = x7 with εth = 0.489. To have a fair comparison,

we showed the performance of kM = 200 highest-degree nodes (as MIB) and the rest

2If we optimize a code for a large value of ε, asymptotically, the code will have a good performance
for large ε′s. On the other hand, if we optimize a code for a small value of ε, asymptotically, the
code will have a good performance in the error floor region.

3We need to make a subtle change to the distribution of finite-length codes. For example, we used
λ(x) = 0.249625x+ 0.2475x2 + 0.148125x5 +0.0035x6 +0.35125x19 and λ(x) = 0.249x+0.2475x2 +
0.15x5 + 0.0035x6 + 0.35x19, for n = 4000 and n = 1000, respectively. In both cases εth = 0.489.
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of the nodes (LIB and PB) separately for Code A. As we can see in Figure 3.3(a),

there is a large gap between the BERs of the MIB and LIB in the proposed code4.

This gap is at least two orders of magnitude, and it increases when the channel

erasure probability decreases as in Lemma 3.2 for the asymptotic case. Moreover, the

performance of the MIB in the proposed code is always better than the performance

of the MIB in the two other codes. In addition, the error floor in the LIB and PB

are lower in the proposed code in comparison with Code A. We also note that the

performance of the proposed code is far better than the performance of the regular

(3, 6) for ε > 0.3921. For smaller ε′s, the performance of the regular (3, 6) beats

the performance of LIB in the proposed method. This is because of the well known

result that the regular (3, 6) does not show an error floor unlike the irregular codes.

However, we note that the performance of MIB in the proposed code is superior to

the performance of the regular (3, 6).

It is worth noting that not only will MIB be retrieved with much less error than

LIB, but also MIB converges in fewer decoding iterations than LIB. This can be seen

in Figure 3.3(b) for Code 1 at ε = 0.42. This is useful when fast decoding for MIB is

needed.

We also illustrated the performance of Code 1 when n = 1000 (Figure 3.4). Again,

we compared the proposed code with the regular (3, 6) and Code A of lengths 1000.

As we can see, the proposed code is superior to the regular (3, 6) in the shown range.

Moreover, although the performances of LIB and PB are close in Code 1 and Code A,

the performance of MIB is far better than the performance of the 50 highest-degree

nodes in Code A.

4The BER for MIB is found by averaging over the fraction of the bits in MIB that has not been
recovered when decoding stops. Similarly, BERs of LIB and PB can be obtained.
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Figure 3.3: (a) Comparison of the bit error rates of Code 1 with Code A and the regular (3, 6).
All codes are of length 4000 and rate 1/2. (b) Recovery convergence rate of MIB and LIB in Code
1 at ε = 0.42.

3.4.3 Efficient Encoding

As we can see in Table 3.1, the degree-distribution optimization has resulted in dp = 2.

We also observed the same result for most of our other UEP code designs. In fact,

we exploit this property of the parity nodes to simplify the encoding of the proposed

codes as follows. Since dp = 2, all columns of Hp have weight two. However, given

that Hp is m×m and full rank by Lemma 3.1, no more than m−1 columns of weight

two are allowed. To overcome this problem we use the method proposed in [76]. One
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Figure 3.4: Comparison of the bit error rates of Code 1 with Code A and the regular (3,6). All
codes are of length 1000 and rate 1/2.

of the weight-two columns is replaced with a weight-one column. This does not have

an important effect on the performance of the code but ensures that Hp is full rank.

It was shown in [76] that Hp can be either a dual-diagonal matrix Q or a column

permutation of Q. In other words, Hp = QΠ, where Π is a random permutation

matrix. An m×m dual-diagonal matrix Q is defined as :

Q =

































1

1 1

1 1

· · ·

1 1

1 1

































(18)

A systematic generator matrix for the parity-check matrix H = [HM |HL|QΠ] is

given by G = [I|HT
I Q−T Π] in which HI = [HM |HL]. It can be easily verified that
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GHT = 0. It can also be verified that Q−T has the following form

Q−T =

































1 1 1 1 · · · · · · 1

1 1 1 · · · · · · 1

. . .
...

1 1 1

1 1

1

































(19)

which is precisely the transformation matrix corresponding to a differential encoder

whose transfer function is 1
1
⊕

D
[76]. The transfer function 1

1
⊕

D
is equivalent to the

feedback system depicted in Figure 3.5, in which D represents one unit delay.

⊕
D

⊕
D

Figure 3.5: Linear feedback system equivalent to 1
1
⊕

D .

The encoder for these codes is depicted in Figure 3.6. Thus, these codes are

systematic and are a generalized form of the Repeat Accumulate (RA) codes (for

which Π is equal to the identity matrix).

Π

[MIB|LIB]

[MIB|LIB] PBHT
I

1
1
⊕

D

Figure 3.6: Efficient encoding for the proposed UEP codes when dp = 2.

Pictorial Example: As an experiment, Code 1 with rate R = 1/2 was used

to provide UEP for the Lena image. Figure 3.7(a) depicts the Lena image before

transmission. We encode the image employing the encoding scheme explained above.

The transmission channel is an erasure channel with ε = 0.45. The face in the image

is considered as MIB, and the rest is considered as LIB. Figure 3.7(b) shows the
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reconstructed image at the receiver. Clearly, the MIB have been protected much

better than the LIB.

(a)

(b)

Figure 3.7: (a) Original Lena image. (b) Reconstructed Lena image. The transmission is over
an erasure channel with ε = 0.45. Code 1 with rate R = 1/2 was used as the channel encoder to
provide UEP.

3.4.4 Comparison with the Time-Sharing Method

One approach to provide UEP is the time-sharing method. In this method, several

codes of different rates are used for different parts of the data. This method increases

the complexity of the system. Additionally, since the MIB is usually very short, the
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code length would be short. We expect that this causes performance degradation.

The following simulation confirms that the time-sharing technique does not perform as

well as the proposed method. Suppose we want two levels of protection for a message

whose α fraction is MIB. In the first method, a UEP code of rate R is considered.

Alternatively, we can design two codes TSM and TSL with rates RM and RL for MIB

and LIB, respectively. By fixing the total number of the parity bits in both methods,

we get

α

RM

+
1− α

RL

=
1

R
.

For a given R and α, we can have different pairs of RM and RL, which choosing

the best pair can be done by trial and error. Figure 3.8 compares the performance

of UEP Code 1 of length 4000, R = 0.5, and α = 0.1 with the time-sharing method

having RL = 0.52 and RM = 0.37. The codes that are used in the time-sharing
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Figure 3.8: Comparison of the proposed UEP method with the time-sharing method.

method are the best codes that we could find from [1] for the given rates. They have
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the following degree distributions:

λTSL
(x) = 0.299488x + 0.144426x2 + 0.0159922x3 + 0.165696x4

+ 0.175288x9 + 0.134321x24 + 0.0647887x25 ,

ρTSL
(x) = x7,

λTSM
(x) = 0.249839x + 0.128926x2 + 0.113474x4 + 0.0514865x5

+ 0.0767592x10 + 0.0636197x11 + 0.142641x27

+ 0.174203x99 ,

ρTSM
(x) = 0.7x6 + 0.3x7.

with εth
L = 0.474 and εth

M = 0.628, respectively. To have better performance for MIB

and LIB in the time-sharing method, we assume that MIB and LIB correspond to

the higher degree variable nodes in TSM and TSL, respectively. Figure 3.8 indicates

that the proposed UEP scheme outperforms the time-sharing scheme for ε < 0.446.

For example, at ε = 0.42, the MIB (LIB) in Code 1 has more than two orders of

magnitude (about one order of magnitude) less BER in comparison with the case

that TSM (TSL) is used. Further, the superiority of the proposed method versus

time-sharing increases when the channel erasure probability decreases.

3.4.5 Comparison with the Previous UEP-LDPC Codes based on CDFs

In [73], authors proposed UEP-LDPC codes constructed based on the orbits of cyclic

difference families (CDFs). We note that the codes have very high protection for

some codeword bits. This approach is desirable in the applications such as holo-

graphic memory systems where the noise has nonuniform pattern. Therefore, differ-

ent protection levels for codeword bits are provided to achieve uniform BER after the

decoding. In applications where UEP for information bits is needed, this approach

may not be efficient. Specifically, it can be shown that the most highly protected

codeword bits in [73] are not the information bits. This is because of the parity-check

matrix structure that is used. As an example, a code of length n = 553 and R ∼= 0.57
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would have an H matrix of the form depicted in Figure 3.9, in which H1 is a 316×79

submatrix, H2 and H3 are 158× 79 and H4, H5, H6, and H7 are 79× 79 submatrices.

Note that all elements in the gray part of H are zeros. Moreover, the bits correspond























=H

H2

H4

H1

H3

H5 H6 H7

Figure 3.9: The structure of the parity-check matrix constructed using the CDF method.

to H1 are the most protected bits. We claim that the codeword bits corresponding

to H1 are the parity bits. Otherwise, we must have rank(H\H1) = n(1 − R) = 237,

which is impossible. Therefore, the most highly protected bits are the parity bits. By

a similar argument, it is shown that H2 and H3 cannot together correspond to the

information bits. Therefore, a possible choice for information bits can correspond to

H2, H4, and H5. For comparison, we also give a code based on our proposed method

having length n = 555, R = 0.6, dM = 23, dL = 3, dp = 2, dc = 11 and α ∼= 0.15. It

should be mentioned that in this example the channel is AWGN. We used the same

code that we designed using density evolution formulas over the BEC. Figure 3.10

shows the BER versus SNR for the information bits. Note that BER of the parity

bits was not shown in this figure. The number over each graph represents the number

of information bits in each part. It is concluded that although our proposed code has

a slightly higher rate, it has much better performance than the code in [73].

3.5 UEP-LDPC Codes: Combined Tanner Graphs

Let us consider again the UEP problem mentioned in Section 3.3. Let G(n, m) be

defined as the Tanner graph corresponding to C with n variable nodes and m check

nodes. Let H denote an m×n binary full-rank parity-check matrix corresponding to

G(n, m).
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Figure 3.10: Comparison of the code designed by the CDF method and the proposed method.

The previous scheme on UEP-LDPC codes studied in Section 3.4 is based on

having different degrees for MIB, LIB, and PB. To further reduce the error rates for

the MIB, we propose another scheme. In this scheme, we combine two Tanner graphs.

The first Tanner graph corresponds to a high-rate LDPC code that is for protecting

MIB. The second graph is for protecting all the data. The first Tanner graph has the

role of determining the values of those bits in MIB that the second graph failed to

determine. Therefore, the error rate for MIB can be reduced. Let G1 = G(n1, m1)

and G2 = G(n, m2) denote the first and second graph, respectively. Here, m1 = γm

and m2 = (1 − γ)m for some 0 < γ < 1. The proposed ensemble is depicted in

Figure 3.11. Let us call the proposed ensemble as Gc. The first n1 variable nodes

in Gc, are protected by both G1 and G2. It should be noted that not all of these n1

bits can be taken as information bits. In the following lemma we prove that we have

n1 −m1 information bits in this part of the codeword.

Lemma 3.3. Consider two Tanner graphs G1 = G(n1, m1) and G2 = G(n, m2) that

are combined to form an ensemble as in Figure 3.11. Then, n1 variable nodes that
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Figure 3.11: The Tanner graph of the proposed combined ensemble for providing UEP.

are common in both graphs contain n1 −m1 information bits.

Proof. Let H1 and H2 = [H21|H22] denote m1 × n1 and m2× n parity-check matrices

corresponding to G1 and G2, respectively. It is easy to see that the parity-check

matrix of the combined code is given by

H =





H1 0

H21 H22



 .

Since H is full rank, using algebra we can show that H1 and H22 are also full rank.

Since H22 is full rank, we conclude that all the first n1 bits can potentially be informa-

tion bits (their values can be set independently). However, since H1 is also full rank

with rank m1, we conclude that only n1−m1 bits of the first n1 bits are information

bits, and the values of the other m1 bits are determined by the n1 −m1 information

bits. This completes the proof.

We consider all of these n1−m1 bits as MIB, i.e., kM = n1−m1. To impose different

protection levels for MIB and LIB, it is necessary to know the positions of MIB and

LIB in Gc. The following lemma states the necessary and sufficient conditions for

arranging MIB, LIB, and parity bits as in Figure 3.11. The corresponding codeword

is in the form of c = [MIB|P1|LIB|P2], where the parity bits have been divided into
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two parts P1 and P2.

Lemma 3.4. Let H1 = [A|Hp1] and H2 = [B|C|E|Hp2] denote the parity-check ma-

trices that correspond to G1 and G2, respectively. Here A, Hp1, B, C, E, and Hp2

are matrices of size m1×kM , m1×m1, m2×kM , m2×m1,m2×kL, and m2×m2, re-

spectively. The assumption of separating MIB, LIB, and PB as shown in Figure 3.11

is valid if and only if Hp1 and Hp2 are full rank.

Proof. Let us define Hp as

Hp =





Hp1 0

C Hp2



 .

The columns of Hp correspond to the PB if and only if Hp is full rank. This is possible

if and only if Hp1 and Hp2 are full rank.

Next, we derive density evolution formulas for the proposed ensemble.

3.5.1 UEP Density Evolution

Here, we derive the UDE formulas for the proposed ensemble. See Figure 3.11 for

the definitions of dM1, dM2, dp11, dp12, dL, dp2, dc1, and dc2. Let M1,i and p11,i denote

the expected fractions of erasure messages that are received by the check nodes in G1

from the variable nodes that correspond to MIB and P1, respectively. Let M2,i, p12,i,

Li, and p2,i denote the expected fractions of erasure messages that are received by the

check nodes in G2 from the variable nodes that correspond to MIB, P1, LIB, and P2,

respectively. Let Mi and p1,i denote the expected fractions of erasure messages that

are sent to an incident edge from the variable nodes that correspond to MIB and P1,

respectively. Let also qi (ri) denote the probability that an erasure message is passed

from the check nodes to the variable nodes in G1 (G2). Note that subscript i is the

iteration number. The UDE formulas for i ≥ 0 are given by

M1,0 = M2,0 = L0 = p11,0 = p12,0 = ǫ,
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M1,i+1 = ǫqdM1−1
i rdM2

i , M2,i+1 = ǫrdM2−1
i qdM1

i ,

p11,i+1 = ǫq
dp11−1
i r

dp12

i , p12,i+1 = ǫr
dp12−1
i q

dp11

i ,

Li+1 = ǫrdL−1
i , p2,i+1 = ǫr

dp2−1
i ,

Mi+1 =
dM1M1,i+1 + dM2M2,i+1

dM1 + dM2

,

p1,i+1 =
dp11p11,i+1 + dp12p12,i+1

dp11 + dp12
,

qi = 1− (1− λd1M1,i − λd2p11,i)
dc1−1,

ri = 1− (1− λd3M2,i − λd4p12,i − λd5Li − λd6p2,i)
dc2−1,

where λd1 , λd2 are the fractions of edges that are connected to the MIB and P1 in

G1, respectively. Furthermore, λd3 , λd4 , λd5 , and λd6 are the fraction of edges that

are connected to the MIB, P1, LIB, and P2 in G2, respectively. These parameters

are obtained by λd1 = αRdM1

T1
, λd2 = γ(1−R)dp11

T1
, λd3 = αRdM2

T2
, λd4 = γ(1−R)dp12

T2
, λd5 =

(1−α)RdL

T2
, and λd6 = (1−γ)(1−R)dp2

T2
, in which T1 = αRdM1 + γ(1 − R)dp11 and T2 =

αRdM2 + γ(1−R)dp12 + (1− α)RdL + (1− γ)(1− R)dp2.

Using the UDE formulas, the asymptotic behavior of a code with a given degree

distribution can be estimated. Moreover, we can optimize the degrees so that we have

low error rates for MIB while keeping the overall performance comparable to other

codes. For a given R and α, optimal values for dM1, dM2, dp11, dp12, dL, dp2, dc1, dc2,

and γ need to be found. However, we have two equality constraints imposed by edge

constraints. These constraints are given by

αRdM1 = γ(1− R)(dc1 − dp11),

αRdM2 + γ(1− R)dp12 + (1− α)RdL = (1− γ)(1−R)(dc2 − dp2).

Therefore, we require to optimize seven independent variables. We considered dc2

and γ as dependent variables. By setting some upper bounds for the degrees, we

can search through all the possible values for degrees and select the ones that result
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in very low error rates for MIB. The cost function is considered as MI (for some

large integer I for which MI is very close to its steady state value). It should be

noted that the rate of the code corresponding to G1 is given by Rp = αR
αR+γ(1−R)

.

For a fixed R and α, the larger is γ, the smaller are Rp and BER for MIB. On the

other hand, we need to keep Rp large such that the performance of LIB remains

acceptable. Therefore, we impose a lower bound on the rate Rp. Note that since

the UDE formulas represent the asymptotic performance, every code obtained by the

UDE formulas would not be necessarily optimal for finite-length codes. Therefore,

we further refine the solutions for finite-length codes by choosing the one that has

highest performance using iterative decoding.

3.5.2 Simulation Results

Consider the problem of designing a rate 1/2 UEP code with α = 0.1. Let us assume

the following search space: dM1, dM2, dL ≤ 25, dp11, dp12, dp2 ≤ 5, dc1, dc2 ≤ 15, and

Rp ≥ 0.8. Using the UDE formulas, we optimize the codes. For example, we picked a

code that results in MI = 0 and LI = 7.9×10−31 for ǫ = 0.45 and I = 1000 iterations.

This code also results in MI = 2.85 × 10−26 and LI = 2.49× 10−12 for ǫ = 0.45225.

Table 3.2 summarizes the degrees for the optimized code. For the finite-length case,

Table 3.2: Degree distributions of the proposed rate 1/2 UEP-LDPC code.

dM1 dM2 dp11 dp12 dL dp2 dc1 dc2 γ

1 22 2 2 3 2 9 7 0.0143

we found the BERs versus the channel erasure probability for this code when the code

length is n = 4000 (kM = 200, kL = 1800, m1 = 28, m2 = 1972) and the maximum

number of decoding iterations is 200. Figure 3.12 shows the performance of the

proposed code compared to our previous code (Code 1) presented in Section 3.4.2

with dM = 23, dL = 3, dp = 2, and dc = 7. Figure 3.12 shows that the performance

of MIB has improved by about one order of magnitude. On the other hand, the
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performance of LIB has degraded slightly for large ǫ, although LIB does not show

an error floor as opposed to Code 1. We also included the BERs for P1 and P2 in

Figure 3.12. Although P1 has a total degree that is much smaller than that of MIB,

the BER performances of P1 and MIB are close. This is because the only neighbors

of the check nodes in G1 are MIB and P1. Hence, certain messages from MIB help

P1 to be determined.
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Figure 3.12: Comparison of the proposed method based on combined Tanner graphs and the
method in Section 3.4. The codes are of length n = 4000, rate 1/2, and α = 0.1.

We also illustrated the performance of the proposed code when n = 1000 (kM = 50,

kL = 450, m1 = 7, m2 = 493) in Figure 3.13. For comparison, we depicted the perfor-

mance of Code 1 and a BEC-optimized irregular code, referred to as Code B, found

from [1] by setting the maximum allowable degree to 25. The degree distribution for

Code B is given by λ(x) = 0.24976x+0.24716x2 +0.148x5 +0.003326x6 +0.35174x19

and ρ(x) = x7. We showed the performance of kM = 50 highest degree nodes (as

MIB) and rest of the nodes separately for Code B. We note that the performance of

MIB in the proposed code is by far (three orders of magnitude for ǫ = 0.38) better

than the performance of MIB in Code B.
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Figure 3.13: Comparison of the proposed method based on combined Tanner graphs, the method
in Section 3.4, and Code B. All the codes are of length n = 1000 and rate 1/2.

3.5.3 Efficient Encoding

Here, we present an efficient encoding scheme for the case that dp11 = 2 and dp2 = 2,

which occurs in many optimized cases. We have Hp1 and Hp2 as full-rank matrices

by Lemma 3.4. It can be seen easily that Hp1 (Hp2) is either an m1 ×m1 (m2 ×m2)

dual-diagonal matrix Q1 (Q2) or its column permutation. Let us say Hp1 = Q1Π1

and Hp2 = Q2Π2 for some random permutation matrices Π1 and Π2. A systematic

generator matrix for the parity-check matrix

H =







A Q1Π1 0 0

B C E Q2Π2






,

is given by

G =







IkM×kM
AT Q−T

1 Π1 0 (BT + AT Q−T
1 Π1C

T )Q−T
2 Π2

0 0 IkL×kL
ET Q−T

2 Π2






.

It can be easily verified that GHT = 0. The matrix Q−T
1 (Q−T

2 ) corresponds to a

differential encoder whose transfer function is 1
1
⊕

D
[76]. The encoder for these codes

is depicted in Figure 3.14. We assumed that the information bits are I = [MIB|LIB],
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and therefore the codeword bits are in the form of c = [MIB|P1|LIB|P2].

T
A D1

1
1ΠMIB 1P

MIB

T
D D1

1
2ΠLIB

LIB

T
B D1

1
2Π

T
C D1

1
2Π1P

⊕MIB
2P

]|||[ 21 PLIBPMIBc =

Figure 3.14: Efficient encoding for the proposed combined ensemble when dp11 = dp2 = 2.

3.6 Conclusion

In this chapter, we proposed two frameworks to design unequal error protection LDPC

codes. We considered the cases in which information bits have two levels of impor-

tance, more important bits (MIB) and less important bits (LIB). We considered two

different ensembles in our designs. The first ensemble is similar to the ensemble of

traditional bipartite Tanner graphs. The second one is a combination of two bipartite

graphs resulting in a 3-partite one. We assumed partially regular ensembles, which

simplifies the optimization problems by reducing the number of variables (degrees

of different variable nodes and check nodes). We derived density evolution formulas

for the proposed schemes and optimized the codes based on them. The optimization

problems can be solved easily even if we search through all feasible solutions, despite

the design of conventional LDPC codes for which very complex degree-optimization

algorithms are required.
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We demonstrated the BER performance of different parts of the UEP-LDPC codes

designed by our proposed schemes for several code lengths. Our results indicate that

our proposed codes provide strong UEP with several orders of magnitude lower BER

for MIB than LIB. We also compared our codes with other competitive codes, and

simulation results confirmed the superiority of our schemes.

In our second proposed scheme, we have more degrees of freedom for designing

UEP codes. This offers a trade off between the complexity of design and the perfor-

mance. This scheme is very desirable, especially if very low error rates for MIB are

required. It was shown in our examples that we can further decrease BER of MIB by

using a UEP code designed by the combined Tanner graph scheme instead of a UEP

code designed based on traditional Tanner graphs.

Finally, we proposed simple and efficient encoding schemes for special cases of the

proposed UEP codes, i.e., for optimized codes having parity bits of degree two in

each Tanner graph. Since these cases occur often for optimized codes, the proposed

efficient encoding schemes would be desirable.
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CHAPTER IV

UNEQUAL ERROR PROTECTION USING RATELESS

CODES

4.1 Introduction

In Chapter 3, we proposed two design methodologies for providing unequal error pro-

tection of data based on LDPC codes. In this chapter, we develop UEP schemes that

are based on rateless (Fountain) codes. Rateless codes are a new class of error-control

coding schemes. LT codes [31], Raptor codes [68], and Online codes [39] are examples

of such codes. It has been shown that these codes have very simple encoding and

decoding algorithms. Asymptotically good degree distributions for them were also

developed [68], [39]. Rateless codes on lossy channels do not assume any knowledge

of the channel. Therefore, rateless codes are very suitable candidates for applications

such as transmitting data on lossy multicast channels, nonuniform channels, and time-

varying channels. In some of these applications, we may not have an estimate of the

channel erasure probability at all times. In some others, different users may receive

data that is passed through different channels. Traditional codes cannot be optimal

for such cases because of the unknown or varying characteristics of the channels. In

particular, rateless codes can fit very well for networking applications, such as wireless

networks and the Internet. Because of many reasons such as buffer overflow at inter-

mediate nodes, collision, and noisy channels, some packets may become lost or may be

declared as lost if the internal checksum does not match. Therefore, these networks

are a very good model of erasure channels with unknown and time-varying erasure

probabilities. Although, the schemes based on automatic repeat request (ARQ) such

as the transmission control protocol (TCP) ensure reliability by retransmission of the
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lost packets, it is well known that such protocols behave poorly in many cases, such

as one-to-many transmissions, or transmission of data over very noisy channels such

as wireless links. Therefore, forward error-control schemes are more desirable and

among them rateless erasure codes have the potential of replacing TCP [41].

In all previous studies on rateless codes, equal error protection (EEP) of all data

was considered. The EEP property would be sufficient for applications such as mul-

ticasting bulk data (e.g., a software file) [10]. However, in several applications, a

portion of data may need more protection than the rest of data. For example, in

an MPEG stream [69], I-frames need more protection than P-frames. In some other

applications, a portion of data may need to be recovered prior to the other parts. An

example would be video-on-demand systems, in which the stream should be recon-

structed in sequence [41], [75]. Such applications raise a need for having codes with

unequal error protection (UEP) or unequal recovery time (URT).

For the applications similar to the ones we described above, designing rateless

codes with unequal error protection property (UEP-rateless codes) is of great interest.

In this work, we develop, for the first time, rateless codes that can provide UEP [54,

56, 59]. This implies that some portion of data would be protected more than the

other parts. Theoretical and simulation results illustrate that a strong UEP can

be achieved by the proposed rateless codes. These codes can also be employed in

applications for which URT is desirable, i.e., the number of received symbols for

recovering more important parts is less than that number for recovering less important

parts. In our design and analysis, we consider both asymptotic and finite-length cases.

We investigate the asymptotic behavior of UEP-rateless codes under the iterative

decoding. We also study the performance of maximum-likelihood (ML) decoders for

the proposed finite-length UEP-rateless codes. Moreover, we analyze the ML decoding

performance of traditional rateless codes [53].

This chapter is organized as follows. In Section 4.2 design and asymptotic analysis

46



of UEP-rateless codes under the iterative decoding is studied. Section 4.3 investigates

design and analysis of finite-length UEP-rateless codes when the maximum-likelihood

(ML) decoding is considered. Finally, we conclude the chapter in Section 4.4.

Throughout this chapter, we assume the following terminologies. In a graph

G(V, E), where V is the set of vertices (nodes) and E is the set of edges, two vertices

u and v are adjacent or neighbor if there is an edge e = (u, v) ∈ E with ends u and

v. Two edges e1 and e2 are adjacent if they share an end. A vertex v and an edge e

are incident if v is an end of e. The degree of a vertex v is defined as the number of

edges of G incident to v. We call G′(V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

Moreover, G′ is a subgraph of G induced by V ′ if G′ contains all the edges (u, v) ∈ E

with u, v ∈ V ′.

4.2 Design and Asymptotic Analysis of UEP-Rateless Codes

Let Ω(x) =
∑n

i=1 Ωix
i be the generator polynomial corresponding to the probability

distribution of the degrees of output symbols (check nodes) in an LT code. In our

proposed scheme, the neighbors of a check node are selected nonuniformly at random.

Let us partition the n input symbols (variable nodes) into r sets s1, s2, . . . , sr of sizes

α1n, α2n, . . . , αrn such that
∑r

j=1 αj = 1. Let pj(n)2 be the probability that an edge

is connected to a particular variable node in sj, for j = 1, . . . , r (see Figure 4.1).
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Figure 4.1: Nonuniform probability distribution function for selecting a variable node (input sym-
bols) by an edge.
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Clearly, we have
∑r

i=1 pi(n)αin = 1. The proposed ensemble at the receiver is

specified by parameters Ω(x), n, γ, and P (x, z), in which P (x, z) =
∑r

i=1(αix
i +piz

i).

The average check-node degree is given by µ =
∑n

i=1 iΩi = Ω′(1), where Ω′(x) is the

derivative of Ω(x) with respect to x. Moreover, it is straightforward to show that

the degree of variable nodes in sj has a binomial distribution, for j = 1, 2, . . . , r.

Specifically, the probability λd,j that a variable node in sj has a degree d is given by

λd,j =

(

µγn

d

)

pd
j (1− pj)

µγn−d. (20)

Asymptotically (as n goes to infinity), we can approximate distribution (20) by a

Poisson distribution if the following two conditions are satisfied for j = 1, . . . , r:

C1 : pj(n) = o(1)

C2 : µγnpj = θj is a constant

Satisfying these conditions, λd,j approaches to

e−θj (θj)
d

d!
, (21)

which is a Poisson distribution with mean θj .

Throughout this chapter we assume conditions C1 and C2 are satisfied. For

example, we can have pj(n) =
kj

n
, for some non-negative constant kj that satisfy

∑r
j=1 αjkj = 1. Accordingly, C2 reduces to µγ has to be a constant. This condition

can be easily addressed if we consider both µ and γ as constants. Assuming that µ

is a constant results in constant average variable-node and check-node degrees. This

is desirable since the resulting graph will be a tree as n→∞ [39], and the encoding

complexity will be linear in n.

To investigate the recovery probability of an input symbol in a generalized rateless

code, we use a technique called And-Or tree analysis ( [27] and [39]). Next, we describe

this technique and will generalize it to fit our problem. Then, we will see how And-Or

tree analysis and recovery probability of input nodes in rateless coding are related.

2The special case p1 = . . . = pr = 1
n , results in the previously studied EEP-rateless codes.
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4.2.1 And-Or Tree Analysis Technique

An And-Or tree Tl is defined as following. Let Tl be a tree of depth 2l. The root of the

tree is at depth 0, its children are at depth 1, their children at depth 2, and so forth.

Each node at depth 0, 2, 4, . . . , 2l − 2 is called an OR-node (that evaluates logical

OR operation on the value of its children), and each node at depth 1, 3, 5, . . . , 2l − 1

is called an AND-node (that evaluates logical AND operation on the value of its

children). Figure 4.2 depicts an Tl.

⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

depth 0

depth 1

depth 2

depth 3

depth 2l

Figure 4.2: An And-Or tree of depth 2l. Nodes represented by ⊡ and ⊕ are AND-nodes and
OR-nodes, respectively.

Suppose that each OR-node independently chooses to have i children with prob-

ability δi, where
∑

i δi = 1. Similarly, each AND-node chooses to have i children

with probability βi, where
∑

i βi = 1. Each node at depth 2l is assigned a value 0

or 1 independently, with y0 being the probability that it is 0. Also, OR-nodes with

no children are assumed to have a value 0, whereas AND-nodes with no children are

assumed to have a value 1. We are interested in finding yl, the probability that the
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root node evaluates to 0, if we treat the tree as a boolean circuit.

The following lemma from [27], which is called the And-Or tree lemma, formulates

yl. The proof is straightforward, considering that the OR-nodes at depth 2 in Tl are

the roots for independent And-Or trees Tl−1. Therefore, yl can be computed as a

function of yl−1, the probability that the root of an And-Or tree Tl−1 evaluates to 0.

Lemma 4.1. The probability yl that the root node of an And-Or tree Tl evaluates to

0 is yl = f(yl−1), where yl−1 is the probability that the root node of an And-Or tree

Tl−1 evaluates to 0, and

f(x) = δ(1− β(1− x)),

δ(x) =
∑

i

δix
i, and β(x) =

∑

i

βix
i.

(22)

Next, we generalize the And-Or tree construction to the case that OR-nodes are

unlike each other. Specifically, suppose we have r different types of OR-nodes: Type

1,Type 2,. . ., Type r. Number of OR-nodes of each type is sufficiently large. Suppose

the root of a generalized And-Or tree GTl,j is an OR-node of Type j, and the depth

of the tree is 2l. We construct GTl,j similar to Tl except that each OR-node of Type

k chooses to have i children with probability δi,k, for k = 1, . . . , r. Each AND-node,

as before, chooses to have i children with probability βi. However, each child of an

AND-node independently will be an OR-node of Type k with probability qk. Each

node of Type k at depth 2l, is assigned a value 0 or 1 independently, with y0,k being

the probability that it is 0. Also, OR-nodes with no children are assumed to have a

value of 0, whereas AND-nodes with no children are assumed to have a value of 1.

We are interested in finding yl,j, the probability that the root node evaluates to 0, if

we treat the tree as a boolean circuit. Lemma 4.2 formulates yl,j.

Lemma 4.2. Let yl,j be the probability that the root of an And-Or tree GTl,j evaluates

to 0. Then

yl,j = δj(1− β(1−
r
∑

k=1

qkyl−1,k)), (23)
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in which δj(x) =
∑

i

δi,jx
i and β(x) =

∑

i

βix
i.

The proof is straightforward and is similar to the proof of Lemma 4.1. The

relation between the above analysis and the error probabilities for the generalized

rateless codes is given in the following subsection.

4.2.2 Analysis of the Generalized Rateless Codes

In this section, we examine the generalized rateless codes under iterative decoding.

Let G denote the bipartite graph corresponding to the code at the receiver. Follow-

ing [68] and [39], we can rephrase the belief propagation decoding algorithm for our

analysis as following. At every iteration of the algorithm, messages (0 or 1) are sent

along the edges from check nodes to variable nodes, and then from variable nodes to

check nodes. A variable node sends 0 to an adjacent check node if and only if its

value is not recovered yet. Similarly, a check node sends 0 to an adjacent variable

node if and only if it is not able to recover the value of the variable node. In other

words, a variable node sends 1 to a neighboring check node if only if it has received

at least one message with value 1 from its other neighboring check nodes. Also, a

check node sends 0 to a neighboring variable node if only if it has received at least

one message with value 0 from its other neighboring variable nodes. Therefore, we

see that variable nodes indeed do the logical OR operation and the check nodes do

the logical AND operation. We can use the results of Lemma 4.2 on a subgraph Gl

of G to find the probability that a variable node is not recovered after l decoding

iterations (its value evaluates to zero). We choose Gl as following. Choose an edge

(v, w) uniformly at random from all edges. Call the variable node v the root of Gl.

Subgraph Gl is the graph induced by v and all neighbors of v within distance 2l after

removing the edge (v, w). We can see Gl is a tree asymptotically [27]. We can map

each check node to an AND-node and each variable node in sj to an OR-node of

Type j. We only need to compute the probabilities βi, δi,j , and qk. We have βi is the
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probability that a randomly chosen edge is connected to a check node with i children.

This is the probability that the edge is connected to a check node of degree i+1. We

know the probability that a check node has degree i + 1 is Ωi+1. Therefore, we have

βi =
(i + 1)Ωi+1
∑

i

iΩi
=

(i + 1)Ωi+1

Ω′(1)
,

and consequently

β(x) =
∑

i

βix
i =

Ω′(x)

Ω′(1)
.

Similarly, we have δi,j is the probability that the variable node connected to a ran-

domly selected edge has degree i + 1 given that the variable node belongs to sj .

Therefore,

δi,j =
(i + 1)λi+1,j
∑

i

λi,j

Using (21), we conclude that

δi,j =
(i + 1)λi+1,j

pjµγn

=
(i + 1)e−µγnpj (µγnpj)

i+1

µγnpj(i + 1)!

=
e−µγnpj (µγnpj)

i

i!
.

After substitution, we have

δj(x) =
∑

i

δi,jx
i

=
∑

i

e−µγnpj(µγnpjx)i

i!

= enpjµγ(x−1).

Additionally, we have qk = pkαkn. We summarize our results in the following

lemma.

Lemma 4.3. Consider a generalized rateless code with parameters Ω(x), P (x, z), n,

and γ. Let yl,j be the probability that a variable node in sj is not recovered after l
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decoding iterations. For j = 1, . . . , r we have

y0,j = 1

and

yl,j = δj(1− β(1−
r
∑

k=1

pkαknyl−1,k)), l ≥ 1 (24)

in which

β(x) = Ω′(x)/Ω′(1)

and

δj(x) = enpjµγ(x−1)

with µ = Ω′(1).

Next, we prove a few lemmas that mostly represent the properties of the proposed

codes.

Lemma 4.4. yl,j is a decreasing function of the number of iterations l.

Proof. We prove this lemma by induction. We have y1,j = e−npjγΩ1 < y0,j. Now

suppose yl,j < yl−1,j for j = 1, . . . , r. We need to show yl+1,j < yl,j. This can be

shown easily using the fact that β(·) and δj(·) are both increasing functions of their

argument.

From Lemma 4.4, {yl,j}l is a monotone decreasing sequence. Moreover, {yl,j}l is a

bounded sequence since we have yl,j ∈ [0, 1] for l ≥ 0. From the monotone convergence

theorem [4], we conclude that {yl,j}l is a convergent sequence that converges to a fixed

point in [0, 1].

The following lemma can be proved similar to Lemma 4.4.

Lemma 4.5. yl,j decreases when γ increases (more output symbols are collected).
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Definition 4.1. Define Gl,i,j , yl,i

yl,j
. This parameter compares the recovery proba-

bilities of nodes in si and sj. The larger the value of Gl,i,j, the higher the recovery

probability of the nodes in sj in comparison with the nodes in si.

It can be shown that Gl,i,j = e
n(pj−pi)µγβ(1−

r
∑

k=1
pkαknyl−1,k)

. Therefore, we have:

Lemma 4.6. For l ≥ 1, Gl,i,j > 1 if and only if pj > pi.

Lemma 4.7. Consider two sets si and sj. Suppose that pj > pi. Then, Gl,i,j is an

increasing function of the number of iterations l and the overhead γ.

Proof. First we need to show that Gl+1,i,j > Gl,i,j. This can be shown easily using

Lemma 4.4 and the fact that β(·) is an increasing function of its argument. The

second part is concluded using Lemma 4.5.

From Lemmas 4.6 and 4.7, we conclude the following. To increase the recovery

probability of nodes in a set, we need to increase the selection probability of the

nodes in that set. Moreover, if two nodes in different sets have different selection

probabilities, the difference between their recovery probabilities increases by receiving

more check nodes or by increasing the number of iterations in the iterative decoding

algorithm.

4.2.3 A Special Case

In this section, a special case of the generalized rateless codes with parameters Ω(x),

P (x, z), n, γ, and r = 2 is investigated.

Assume we have two levels of importance on n information bits. Assume n1 = αn

(0 < α < 1) is the number of more important bits (MIB), which reside in the first

part of the information, and n2 = (1−α)n is the number of less important bits (LIB).

To ensure lower average BERs for MIB than LIB, the probability of selecting MIB

has to be more than that of LIB by Lemma 4.6. We set p1 = kM

n
and p2 = kL

n
for

some 0 < kL < 1 and kM = 1−(1−α)kL

α
. Let yl,M and yl,L denote the error probabilities

54



of MIB and LIB at the lth decoding iteration, respectively. From Lemma 4.3, we

conclude that

yl,M = e−kMµγβ(1−(1−α)kLyl−1,L−αkMyl−1,M ) (25)

and

yl,L = e−kLµγβ(1−(1−α)kLyl−1,L−αkMyl−1,M ) (26)

with β(x) = Ω′(x)/Ω′(1), µ = Ω′(1), and y0,L = y0,M = 1.

The sequences {yl,M}l and {yl,L}l are convergent by Lemma 4.4. Let us call

the corresponding fixed points as yL and yM , respectively. It can be shown that

∂yM

∂kM
|kM=1 = −ϕ and ∂yL

∂kM
|kM=1 = ϕ α

1−α
, where ϕ = −y ln y > 0. Here, y is the bit

error probability when uniform selection (kM = 1) is done and satisfies y = e−γΩ′(1−y).

These results express the variations of the bit error rates when kM is slightly greater

than one. We note that yM decreases but yL increases. However, for 0 < α < 1
2
, the

decreasing slope of yM is 1−α
α

times greater than the increasing slope of yL.

Example: In this example, we consider the degree distribution as in [68]:

Ω1(x) = 0.007969x + 0.493570x2 + 0.166220x3 + 0.072646x4

+ 0.082558x5 + 0.056058x8 + 0.037229x9

+ 0.055590x19 + 0.025023x64 + 0.003135x66.

(27)

Figure 4.3 shows yL and yM versus kM for α = 0.1. We considered two overheads

γ = 1.03 and γ = 1.05. As an example, we consider the case that γ = 1.05. Uniform

selection (kM = 1) results in the BER of 3.4×10−3 for all data whereas yM = 5×10−5

and yL = 9× 10−3 when kM = 1.9. This shows that the BER of MIB has improved

substantially (about two orders of magnitude) at the cost of a slight performance loss

on the LIB.
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Figure 4.3: Asymptotic analysis of bit error rates versus kM for the UEP-rateless code with
parameters Ω1(x), n, and P (x, z) = 0.1x + kM

n z + 0.9x2 + kL

n z2.

Figure 4.4 compares the average BER and the BER of MIB with the BER of the

EEP-code for γ = 1.05. For example, for kM = 2, the average performance of the

UEP code is tripled. However, the performance of MIB is 87 times better than the

case of EEP.
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Figure 4.4: The ratios of the average BER and the MIB error rate to the BER of the EEP-code
versus kM . In this case γ = 1.05.

Figure 4.5 depicts the BERs of MIB and LIB versus the overhead γ for kM = 2.
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We have also included the BERs for the EEP code. Interestingly, nonuniform selection

reduces BERs of both MIB and LIB for small overheads. For large overheads, the

BER of MIB improves significantly while in return the performance of LIB slightly

degrades.
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Figure 4.5: Asymptotic BERs of MIB and LIB versus overhead γ for kM = 2, as well as the BERs
of the EEP code (kM = 1).

It should be mentioned that we can also interpret the UEP as the URT. This

implies that given a target bit error rate, different parts of information bits can be

decoded after receiving different numbers of encoded bits. In other words, the BER

of MIB reaches a target BER sooner (smaller overhead) than the BER of LIB (see

Figure 4.5).

4.2.4 Simulation Results on the Iterative Decoding of a Moderate-Length
UEP-Rateless Code

Here, we give simulation results for the case that the number of information bits is

n = 2000. We considered two cases, an EEP code and a UEP code with kM = 2 and

α = 0.1. We considered Ω1(x) in both cases. Figure 4.6 shows the bit error rates

after performing LT decoding. We notice that the performance of MIB improves

substantially in the UEP case. Even LIB has better performance than the case of
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EEP for small overheads. We conclude that for small overheads, UEP is provided

while the overall performance of the UEP code is better than that of the EEP code.

Figure 4.6 also depicts a large gap between the BERs of MIB and LIB. For example,

the BER of MIB is about two orders of magnitude better than that of LIB when

γ = 1.3. This gap increases monotonically with the overhead.

Next, let us consider the URT problem. In URT, the BER of MIB reaches a target

BER faster (smaller overhead) than the BER of LIB. For example in Figure 4.6, we

need to collect 1.16n = 2320 output symbols to have BER = 10−3 for MIB. However,

1.33n = 2660 output symbols need to be collected to achieve the same BER for LIB.

This implies faster recovery for MIB than LIB.
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Figure 4.6: Iterative decoding performance of the UEP-rateless code with parameters Ω1(x),
n = 2000, kM = 2, and α = 0.1 in comparison with the EEP-rateless code.

4.3 Finite-Length Analysis of UEP-Rateless Codes

In this section, finite-length analysis of LT and Raptor codes over the BEC is inves-

tigated. First, we derive upper and lower bounds on the maximum-likelihood (ML)

decoding error probabilities of LT and Raptor codes when they provide EEP. This not

only provides a ground for comparison between the EEP- and UEP-rateless codes,

but also offers a lower bound on the performance of EEP-rateless codes under the
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iterative decoding. We then study this for UEP-LT and UEP-Raptor codes. ML de-

coding is computationally complex especially for long codes. However, the derivation

of bounds on the ML decoding is of interest, as it provides an ultimate indication on

the code performance.

4.3.1 Bounds on the Maximum-Likelihood Decoding Error Probabilities
of Finite-Length LT and Raptor Codes over the BEC

We investigate the performance of finite-length LT and Raptor codes under the ML

decoding. In our analysis, we consider the non-replacement selection of the input

nodes of LT codes. This means that given a check-node degree is d, a sequence of d

different input nodes is selected uniformly at random from the n input nodes. Thus,

a particular sequence is selected with a probability 1

(n
d)

.

4.3.1.1 ML Decoding of LT Codes over the BEC

The ML decoding of LT codes over the BEC is the problem of recovering n information

bits from nγ received check bits. This is equivalent to solving the linear equation

HxT = b, (28)

in which H = [hij ] is an nγ × n adjacency matrix corresponding to the graph that

is formed by the input nodes and the received check nodes. Here, hij = 1 if the ith

received check node and the jth input node are adjacent, otherwise hij = 0. Moreover,

b is an n dimensional column vector in which bi is the value of the ith received check

node. Equation (28) has at least one solution. It has multiple solutions if and only if

H is not full rank. Moreover, the ith bit does not have a unique solution if and only if

Hi (the ith column of H) is in the column space spanned by H\Hi. In the following

lemma, we derive an upper bound on the ML decoding bit error probability of LT

codes under the ML decoding.
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Lemma 4.8. Given an LT code with parameters Ω(x), n, and overhead γL, an upper

bound on the bit error probability of the LT code under the ML decoding is

pML
b ≤ min

{

1,
n
∑

w=1

(

n− 1

w − 1

)

(

∑

d

Ωd

∑

s=0,2,...,2⌊ d
2
⌋

(

w
s

)(

n−w
d−s

)

(

n
d

)

)nγL
}

. (29)

Proof. Let pML
b be the probability that the ith bit cannot be determined by the ML

decoder, for an arbitrary i ∈ {1, 2, . . . , n}. We have

pML
b = Pr{∃x ∈ GF (2)n, x(i) = 1 : HxT = 0T}

≤
∑

x∈GF (2)n,x(i)=1

Pr{HxT = 0T}.

Let x ∈ GF (2)n, x(i) = 1, and I = {i1, i2, . . . , iw} be the set of indices such that j ∈ I

if and only if x(j) = 1. The rows of H , when viewed as random binary vectors, are

generated from independent trials of a random variable R, such that for any vector

ν ∈ GF (2)n, Pr(R = ν) = Ωd

(n
d)

, where d is the weight of ν. Therefore,

Pr{HxT = 0T} =
(

Pr{RxT = 0}
)nγL .

Suppose that weight(R) = d. Moreover, let R(I) be defined as a sub-vector of R

containing components of R that are specified by the elements of I, i.e., R(I) =

{R(i1), R(i2), . . . , R(iw)}. We have

Pr{RxT = 0} = Pr{R(I) contains even number of 1’s}

=

∑

s=0,2,...,2⌊ d
2
⌋

(

w
s

)(

n−w
d−s

)

(

n
d

) .

Since each row of H has weight d with probability Ωd, and there are
(

n−1
w−1

)

choices of

x with weight w, we conclude the assertion.

A lower bound on the bit error probability of LT codes under ML decoding can

be found by computing the probability that a variable node is not adjacent to any of

the check nodes. This lower bound is given by [68]

pML
b ≥

(

1− µ

n

)nγL

, (30)

60



in which µ =
∑

d dΩd is the average check-node degree.

Figure 4.7 shows the upper and lower bounds on ML decoding error probabilities

versus overhead γL for an LT code with distribution Ω1(x) and length 500. The results

imply that the bound is almost tight for γ > 1.3.
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Figure 4.7: Upper and lower bounds on the ML decoding BERs versus overhead γL for an LT code
with distribution Ω1(x) and length n = 500.

4.3.1.2 ML Decoding of Raptor Codes over the BEC

Raptor codes introduced by Shokrollahi [68] are an extension of LT codes, in which

an outer high-rate traditional pre-code is concatenated to an inner LT code to get

practically better results than the LT code. Let C be a linear code of length n, rate

R = 1−m
n
, and dimension k = n−m. A Raptor code with parameters (k, C, Ω(x)) is an

LT code with distribution Ω(x) on n bits that are the codeword bits of the pre-code C.

If γL denotes the overhead of the LT code, the overhead of the Raptor code is γ = γL

R
.

In this study, we assume the pre-code is an (n, k) LDPC code with a parity-check

matrix H ′ = [h′
ij] whose entries are independent and identically distributed (i.i.d)

Bernoulli random variables with parameter ρ. We denote such a code by (n, k, ρ)
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LDPC code. The following lemmas, whose proofs are given in Appendix A, develop

upper and lower bounds on the ML decoding error probability of Raptor codes.

Lemma 4.9. Let C be an (n, k, ρ) LDPC code. Given a (k, C, Ω(x)) Raptor code with

overhead γ, an upper bound on the ML decoding bit error probability is obtained as

pML
b ≤

n
∑

e=0

(

n

e

)

ǫe
U(1− ǫU)n−e e

n
min

{

1,

e
∑

w=1

(

e− 1

w − 1

)(

A
(

w, ρ
)

)m
}

,

where

A(w, ρ) : =
1 + (1− 2ρ)w

2
. (31)

Here, m = n − k. Also, ǫU is the upper bound on the ML decoding bit error rate

of the LT code with parameters Ω(x), n, and overhead γL = k
n
γ that was found by

Lemma 4.8.

Lemma 4.10. Let C be an (n, k, ρ) LDPC code. Given a (k, C, Ω(x)) Raptor code

with overhead γ, a lower bound on the ML decoding bit error probability is given by

pML
b ≥ max

{

0,

n
∑

e=0

(

n

e

)

ǫe
L(1− ǫL)n−e e

n
min

{

1,

e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ)
}

− 1

2

n
∑

e=0

(

n

e

)

ǫe
U(1− ǫU)n−e e

n
min

{

1,

e−1
∑

w0=1

e−w0
∑

w1=0

e−w0−w1
∑

w2=0

1(w1 + w2)

·
(

e− 1

w0 − 1

)(

e− w0

w1

)(

e− w0 − w1

w2

)

Dm(w0, w1, w2, ρ, ρ, ρ)
}

}

,

where

D(w0, w1, w2, ρ, ρ, ρ) :=A(w0, ρ)A(w1, ρ)A(w2, ρ)

+ A(w0, ρ)A(w1, ρ)A(w2, ρ),

1(x) :=















0 if x = 0

1 otherwise

62



A(·) = 1− A(·), and m = n− k. Also, A(·) is defined as (31). Moreover, ǫL (ǫU ) is

the lower bound (upper bound) on the ML decoding bit error rate of the LT code with

parameters Ω(x), n, and overhead γL = k
n
γ found by (30) and (29).

Figure 4.8 depicts the upper and lower bounds on the ML decoding bit error

probabilities versus overhead γ for the fixed degree distribution Ω1(x). We considered

an LT code with n = 500 and a Raptor code with k = 500 and a pre-code C as an

(510, 500, 0.4) LDPC code with R ≈ 0.98. Note that in each case we assumed the

decoder starts the decoding after receiving 500γ check bits. As we can see, the bounds

are tight for small error rates. Moreover, as expected and was shown in [68], Raptor

codes can achieve lower error rates than LT codes.
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Figure 4.8: Upper and lower bounds on the ML decoding BERs of LT and Raptor codes versus
overhead γ for transmitting 500 information bits over an erasure channel.

4.3.2 Bounds on the Maximum-Likelihood Decoding Error Probabilities
of Finite-Length UEP-LT and UEP-Raptor Codes over the BEC

In this section, we consider the problem of finite-length UEP-rateless codes. Suppose

we want to transmit n bits with two different levels of importance over a BEC. Assume

n1 = αn (0 < α < 1) is the number of MIB and n2 = (1 − α)n is the number of

LIB. A UEP-LT code is constructed similar to a traditional LT code except that
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the check nodes select their adjacent variable nodes nonuniformly at random. This

means that a check node with degree d, selects d1 = min([αdkM ], n1) ([x] means the

nearest integer to x) variable nodes from MIB (for some kM > 1) and d2 = d − d1

variable nodes from LIB as shown in Figure 4.9. Note that here the non-replacement

selection is considered. This means that any sequence of d1 (d2) different variable

nodes in MIB (LIB) is selected uniformly with probability 1

(n1
d1

)
( 1

(n2
d2

)
). By cascading

1n 2n

2d
1d

Figure 4.9: Nonuniform selection of variable nodes (input symbols) in UEP-LT codes.

a UEP-LT code and a traditional pre-code C, we can form a UEP-Raptor code2. This

implies that the codeword bits of C are the input bits of the UEP-LT code. Let C be

a linear code of length n, rate R = 1− m
n

and dimension k = n−m. Let also H ′ be

the parity-check matrix that corresponds to C. Here the number of information bits

is k. We may design the pre-code C such that all the first n1 bits of the codeword bits

correspond to the more important information bits. This is possible if and only if the

submatrix of H ′ containing the last n2 columns has full rank. In this case, the ratio

of the number of more important information bits to the total number of information

bits is αR = α
R
. As before, let us assume the pre-code C is an (n, k, ρ) LDPC code.

Next, we derive upper and lower bounds on the ML decoding error probabilities of

the UEP-LT and UEP-Raptor codes.

2An alternative way to form a UEP-Raptor code is by cascading a traditional LT code and a
UEP pre-code. Although we do not consider this case in this study, the analysis will be similar.
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4.3.2.1 ML Decoding of UEP-LT Codes

In this section, we examine the performance of UEP-LT codes under the ML decoding.

In the following lemma, upper bounds on the ML decoding error probabilities of the

proposed ensemble are derived.

Lemma 4.11. Consider a UEP-LT code with parameters Ω(x), n, α, kM , and over-

head γL. The upper bounds on the bit error probabilities of MIB and LIB under the

ML decoding are

pML
b,MIB ≤ min

{

1,

n
∑

w=1

w
∑

w1=1

(

n1 − 1

w1 − 1

)(

n2

w2

)

·
(

∑

d

Ωd

1
∑

t=0

( 2
∏

r=1

(

∑

s=t,2+t,...,2⌊ dr
2
⌋−t

(

wr

s

)(

nr − wr

dr − s

)

)

)

(

n1

d1

)(

n2

d2

)

)nγL
}

and

pML
b,LIB ≤ min

{

1,

n
∑

w=1

w−1
∑

w1=0

(

n1

w1

)(

n2 − 1

w2 − 1

)

·
(

∑

d

Ωd

1
∑

t=0

( 2
∏

r=1

(

∑

s=t,2+t,...,2⌊ dr
2
⌋−t

(

wr

s

)(

nr − wr

dr − s

)

)

)

(

n1

d1

)(

n2

d2

)

)nγL
}

,

respectively. Here, w2 = w −w1, n1 = αn, n2 = (1− α)n, d1 = min([αdkM ], n1), and

d2 = d− d1.

Proof. Let H = [hcv] be the adjacency matrix corresponding to the graph that is

formed by the input nodes and the received check nodes. This means that hcv = 1

if and only if the cth received check node is adjacent to vth variable node. Let pML
b,i

be the bit error probability of the ith bit under ML decoding. For an arbitrary

i ∈ {1, 2, . . . , n} we have

pML
b,i = Pr{∃x ∈ GF (2)n, x(i) = 1 : HxT = 0T}

≤
∑

x∈GF (2)n,x(i)=1

Pr{HxT = 0T}.
(32)
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Let x ∈ GF (2)n, x(i) = 1, and I = {i1, i2, . . . , iw1} be the set of indices such that

j ∈ I if and only if x(j) = 1 and j ∈ {1, . . . , n1}. Similarly, J = {j1, j2, . . . , jw2} is

the set of indices such that j ∈ J if and only if x(j) = 1 and j ∈ {n1 + 1, . . . , n}. As

in the proof of Lemma 4.8 we have

Pr{HxT = 0T} =
(

Pr{RxT = 0}
)nγL ,

where R is any row of H . Suppose that weight(R) = d.

Pr{RxT = 0} = Pr{R(I) contains even number of 1’s}

· Pr{R(J) contains even number of 1’s}

+ Pr{R(I) contains odd number of 1’s}

· Pr{R(J) contains odd number of 1’s}

=

1
∑

t=0

( 2
∏

r=1

(

∑

s=t,2+t,...,2⌊ dr
2
⌋−t

(

wr

s

)(

nr − wr

dr − s

)

)

)

(

n1

d1

)(

n2

d2

)

For i ∈ MIB, there are
(

n1−1
w1−1

)(

n2

w2

)

possible different x’s, and for i ∈ LIB, this value is
(

n1

w1

)(

n2−1
w2−1

)

. This completes the proof.

Lower bounds on the bit error probabilities of MIB and LIB under the ML decod-

ing are given by

pML
b,MIB ≥

(

1−
∑

d

Ωd
d1

n1

)nγL

(33)

and

pML
b,LIB ≥

(

1−
∑

d

Ωd
d2

n2

)nγL

, (34)

respectively. These are the probabilities that a node in MIB or LIB is not a neighbor

of any of the check nodes.

Figure 4.10 shows the upper bound (UB) and lower bound (LB) on the ML decod-

ing BERs of MIB and LIB versus overhead γL for a UEP-LT code with parameters
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n = 500, Ω1(x), kM = 2, and α = 0.1. We also included the bounds on the ML

decoding performance of an EEP-LT code with n = 500 and Ω1(x). As an example,

for γ = 1.8 where the bounds are tight, we note that BER of LIB degrades less than

one order of magnitude in comparison with the EEP code. However, BER of MIB

improves by about four orders of magnitude.
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Figure 4.10: Upper and lower bounds on the ML decoding BERs of MIB and LIB versus overhead
γL for a UEP-LT code with parameters n = 500, Ω1(x), kM = 2, and α = 0.1. The bounds on the
decoding performance of the EEP-LT code are also depicted.

4.3.2.2 ML Decoding of UEP-Raptor Codes

Let us consider the case that we cascade a UEP-LT code by a pre-code C to form a

UEP-Raptor code. Similar to Lemma 4.9, we can show the following.

Lemma 4.12. Let C be an (n, k, ρ) LDPC code. Consider a UEP-Raptor code that

has a UEP-LT code with parameters Ω(x), n, γL, α, and kM together with the pre-

code C. Upper bounds on the bit error probabilities of MIB and LIB under the ML
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decoding are given by

pML
b,MIB ≤

n
∑

e=1

min(n1,e)
∑

e1=max(1,e−n2)

(

n1 − 1

e1 − 1

)(

n2

e− e1

)

ǫe1
U1(1− ǫU1)

n1−e1

· ǫe−e1
U2 (1− ǫU2)

n2−e+e1 min

{

1,
e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ)

}

and

pML
b,LIB ≤

n
∑

e=1

min(n1,e−1)
∑

e1=max(0,e−n2)

(

n1

e1

)(

n2 − 1

e− e1 − 1

)

ǫe1
U1(1− ǫU1)

n1−e1

· ǫe−e1
U2 (1− ǫU2)

n2−e+e1 min

{

1,

e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ)

}

,

respectively. Here, ǫU1 and ǫU2 are the upper bounds on the ML decoding BERs of

MIB and LIB in the UEP-LT code, respectively, m = n− k, and A(.) is defined as in

Lemma 4.9.

Likewise, similar to Lemma 4.10, we can show the following.

Lemma 4.13. Let C be an (n, k, ρ) LDPC code. Consider a UEP-Raptor code that

has a UEP-LT code with parameters Ω(x), n, γL, α, and kM together with the pre-

code C. Lower bounds on the bit error probabilities of MIB and LIB under the ML

decoding are given by

pML
b,MIB ≥max

{

0,

n
∑

e=1

min(n1,e)
∑

e1=max(1,e−n2)

(

n1 − 1

e1 − 1

)(

n2

e− e1

)

ǫe1
L1(1− ǫL1)

n1−e1

· ǫe−e1
L2 (1− ǫL2)

n2−e+e1 min
{

1,

e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ
)

}

− 1

2

n
∑

e=1

min(n1,e)
∑

e1=max(1,e−n2)

(

n1 − 1

e1 − 1

)(

n2

e− e1

)

ǫe1
U1(1− ǫU1)

n1−e1

· ǫe−e1
U2 (1− ǫU2)

n2−e+e1 min
{

1,

e−1
∑

w0=1

e−w0
∑

w1=0

e−w0−w1
∑

w2=0

1(w1 + w2)

·
(

e− 1

w0 − 1

)(

e− w0

w1

)(

e− w0 − w1

w2

)

Dm(w0, w1, w2, ρ, ρ, ρ)
}

}
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and

pML
b,LIB ≥max

{

0,

n
∑

e=1

min(n1,e−1)
∑

e1=max(0,e−n2)

(

n1

e1

)(

n2 − 1

e− e1 − 1

)

ǫe1
L1(1− ǫL1)

n1−e1

· ǫe−e1
L2 (1− ǫL2)

n2−e+e1 min
{

1,

e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ)
}

− 1

2

n
∑

e=1

min(n1,e−1)
∑

e1=max(0,e−n2)

(

n1

e1

)(

n2 − 1

e− e1 − 1

)

ǫe1
U1(1− ǫU1)

n1−e1

· ǫe−e1
U2 (1− ǫU2)

n2−e+e1 min
{

1,

e−1
∑

w0=1

e−w0
∑

w1=0

e−w0−w1
∑

w2=0

1(w1 + w2)

·
(

e− 1

w0 − 1

)(

e− w0

w1

)(

e− w0 − w1

w2

)

Dm(w0, w1, w2, ρ, ρ, ρ)
}

}

,

respectively. Here, ǫL1 (ǫU1) and ǫL2 (ǫU2) are the lower bounds (upper bounds) on the

ML decoding BERs of MIB and LIB in the UEP-LT code, respectively and m = n−k.

Moreover, A(·), A(·), and D(·) are defined as in Lemmas 4.9 and 4.10.

Figure 4.11 shows the upper and lower bounds on the ML decoding BERs of MIB

and LIB versus overhead γ for a UEP-Raptor code with parameters k = 500, Ω1(x),

kM = 2, α = 0.1, and a pre-code C as an (510, 500, 0.4) LDPC code with R ≈ 0.98.

We also included the bounds on the ML decoding performance of an EEP-Raptor

code with k = 500, Ω1(x), and the same pre-code. As an example, for γ = 1.8 where

the bounds are tight, the BER of LIB is increased less than one order of magnitude

but the BER of MIB is decreased by about four orders of magnitude. This shows a

large gap between the BERs of MIB and LIB and very low error rates for the MIB.

4.4 Conclusion

In this chapter, we proposed a modification in the structure of rateless codes to

provide unequal error protection (UEP) and unequal recovery time (URT) properties.

We analyzed the performance of the iterative decoding algorithm for the proposed
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Figure 4.11: Upper and lower bounds on the ML decoding BERs of MIB and LIB for the UEP-
Raptor code with parameters k = 500, Ω1(x), kM = 2, α = 0.1, and a (510, 500, 0.4) LDPC code as
the pre-code. The bounds on the decoding performance of the EEP-Raptor code are also depicted.

codes asymptotically (when the length of the code goes to infinity). It was shown that

UEP-rateless codes can provide very low error rates for more important bits with only

a subtle loss in the performance of less important bits. Next, we focused on finite-

length rateless codes and derived upper and lower bounds on the maximum-likelihood

decoding bit error rates of EEP- and UEP-rateless codes. The results show not only

that the bounds are tight for small error rates, but also that the bit error rates of

more important bits are significantly improved with respect to the bit error rates of

less important bits. We also discussed that the UEP problem can be viewed as a

URT problem for a fixed bit error rate. That is to say, different parts of information

can be retrieved if the receiver receives different numbers of encoded packets, which

corresponds to different recovery times.
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CHAPTER V

EFFICIENT BROADCASTING IN WIRELESS AD-HOC

AND SENSOR NETWORKS WITH NO TOPOLOGY

KNOWLEDGE

5.1 Introduction

An important issue in multihop wireless networks that has attracted a lot of attention

is efficient network-wide broadcasting. The type of broadcast data could be bulk data,

e.g., software files or short data like route discovery packets. Some important factors

that influence the efficiency of a broadcasting scheme can be reliability (defined as

the percentage of nodes in the network that are able to retrieve the data), energy

efficiency, complexity, scalability, and latency. Depending on the application, some

factors might be more important than others. For example, for updating the software

in all the nodes in the network, reliability is very important, while latency might be

less important. Energy is usually an important issue, especially for battery-powered

sensor networks.

In this chapter, we consider a case in which a large number of packets have to

be broadcast in a multihop wireless sensor network with no availability of informa-

tion about the network topology, and our main concerns are reliability and energy

efficiency. We propose an efficient two-phase broadcast scheme, which we refer to as

collaborative rateless broadcast (CRBcast) [55, 60]. CRBcast is based on probabilistic

broadcast (PBcast) and an application layer rateless coding. In the first phase, the

rateless-encoded packets are broadcast based on PBcast, in which each node prob-

abilistically relays every new received packet. The second recovery phase, which is

based on simple collaborations of the nodes, ensures that all the nodes can recover
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the original data.

Since the original packets are first encoded by a rateless code in CRBcast, the

number of the original packets should be large enough to minimize the overhead

incurred by the coding scheme. Therefore, CRBcast is suitable for applications such

as data dissemination in which we are required to broadcast moderate to large number

of packets.

Since the characteristics of PBcast influence CRBcast, we first investigate PBcast

analytically and by simulations. PBcast has been studied before by simulations in

some studies, e.g., [18,24,65]. We elaborate the problem here and provide asymptotic

analysis for finding the optimal forwarding probability. Then, we investigate the

effectiveness of CRBcast. CRBcast not only is a reliable and energy efficient scheme,

but is also a scalable scheme that requires no knowledge of the network topology.

This property makes CRBcast to be a very desirable scheme in some applications.

For our problem, we consider the following setup. We assume a wireless network

of N static nodes with omnidirectional antennas and transmission range r deployed

uniformly at random in a field with area A. We model the network by a random

geometric graph G(N, r). We also assume that r is large enough so that G(N, r) is

connected. Furthermore, we consider lossless networks by assuming lossless channels

and the existence of a medium access control (MAC) layer, which prevents collision of

packets. That is to say, every packet sent by a node correctly reaches all its neighbors.

We also apply a more specific MAC scheme for our simulations in Section 5.4.4.

In this MAC scheme, when a node is transmitting, all of its neighbors up to two hops

will be silent and will not transmit. This avoids interference and the hidden terminal

problem [72]. We refer to this MAC as two-hop blocking MAC. A similar MAC was

considered in [51].

In our model, we consider only the energy spent for RF transmissions as in [74].
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Therefore, the energy consumption is proportional to the number of packet transmis-

sions in the network.

5.2 Asymptotic Analysis of Probabilistic Broadcast

PBcast is a scalable and simple scheme for broadcasting in multi-hop wireless net-

works. In PBcast, every node relays a packet that it receives for the first time with

some probability p. Let us assume that at any time slot, in which a packet travels

in the network, we color each node as black or white with probability p and 1 − p,

respectively. Therefore, black nodes forward a new received packet while white nodes

do not forward it. Suppose B and W are the sets of the black and white nodes,

respectively. Let GB(p, r) = G(N, r)\W represents the subgraph of G(N, r) induced

by B. The following remark can be concluded.

Remark: The problem of energy-efficient and reliable broadcasting in wireless

networks using PBcast can be rephrased as finding the lowest p such that GB(p, r)

is connected and every white node is in the single-hop neighborhood of at least one

black node.

For clarification, consider Figure 5.1 in which a random deployment of 16 nodes

is depicted. The source node is in the center. The forwarding probability is p = 1/2.

There is an edge between two nodes if they are in the transmission range of each other.

All the black nodes are connected, and every white node has at least one black node

as its neighbor. Therefore, if the source node broadcasts a packet, all the nodes in

G(N, r) receive it. This implies that reliability of PBcast is one in this case (although

the number of transmissions is not minimum). Next, we will show that there exists a

threshold pth such that the reliability of PBcast is equal to one asymptotically almost

surely if and only if p > pth.
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Figure 5.1: A random deployment of 16 nodes in a field. At any instant, each node is colored black
with probability p and is colored white with probability 1− p. In this figure p = 1/2.

5.2.1 Connectivity of Black Nodes

Our goal is to find the condition under which GB(p, r) is connected. Connectivity of

geometric graphs is a well studied subject. Gupta et al. [17] derived the condition

for asymptotic connectivity of a random geometric graph. Later, [47] generalized the

case and considered the connectivity of a random geometric graph with unreliable

nodes in which each node fails with probability 1− p. Interestingly, the connectivity

of random graphs with unreliable nodes can be used to find the connectivity condition

in GB(p(N), r(N)) by mapping the failed nodes into white nodes and the active nodes

into black nodes. The following theorem states the necessary and sufficient condition

for connectivity of GB(p(N), r(N)) for large values of N . For proof we refer readers

to [47].

Theorem 5.1. Consider a random graph GB(p(N), r(N)). Let A denote the area of

a square field in which we deployed the N nodes at random. Assume p(N)×N →∞

as N → ∞ and let ω(N) be any slowly growing function such that ω(N) → ∞ as
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N →∞. Suppose we have

lim
N→∞

(

p(N)Nπr2(N)

(ln(p(N)N) + ω(N)) A

)

= α. (35)

If α > 1, then GB(p(N), r(N)) is connected asymptotically almost surely. On the

other hand, if α < 1, then GB(p(N), r(N)) is not connected asymptotically almost

surely.

Using Theorem 5.1, we conclude that pth for the connectivity of GB(p(N), r(N))

is given by:

pthπr2(N)

A
=

ln(pthN) + ω(N)

N
as N →∞. (36)

5.2.2 Sufficient Condition for the Coverage of White Nodes

In this section, we examine the sufficient condition under which every white node has

at least one black node as its neighbor. We prove that (36) is a sufficient condition.

Theorem 5.2. p > pth, where pth satisfies (36), provides a sufficient condition for

the coverage of all white nodes.

Proof. Let us define Ci as the event that the ith node has at least one black node

neighbor (within a single hop) provided that the ith node is white. We show that

asymptotically Pr(
N
⋂

i=1

Ci) goes to one if (36) is satisfied. By union bound we have:

Pr(

N
⋂

i=1

Ci) ≥ 1−NPr(Ci). (37)

Moreover,

Pr(Ci) =

(

p(1− πr2

A
) + (1− p)

)N−1

=

(

1− p
πr2

A

)N−1

.

(38)

Using inequality 1− x < e−x and (36) we have:
(

1− p
πr2

A

)N−1

< e−p πr2

A
(N−1)

< e− ln(pthN)−ω(N).

(39)
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Therefore,

Pr(

N
⋂

i=1

Ci) ≥ 1− N

pthN
e−ω(N) → 1 as N →∞. (40)

This concludes the assertion.

From Theorems 5.1 and 5.2, we conclude the following corollary.

Corollary 5.1. Broadcasting a single packet to a network by PBcast achieves relia-

bility one asymptotically almost surely if and only if p > pth, where pth satisfies (36).

So far, we have considered the case of broadcasting a single packet. We now study

the case of broadcasting np packets in a multi-hop wireless network. Let R1 denote

the fraction of nodes that receive a particular packet in PBcast. It is clear that in

a uniform packet dissemination, R1 also denotes the probability that a node receives

the packet. Since the transmissions of packets are independent, the probability Rnp

that a node receives all np packets is equal to R
np

1 for a uniform packet dissemination.

However, packet transmissions are not uniform in general. For instance nodes at the

neighborhood of the source always receive the packets while the border nodes receive

less packets. Therefore, Rnp is not equal to R
np

1 in general. In the next lemma, we

derive bounds on Rnp.
1

Lemma 5.1. Consider the PBcast protocol for broadcasting np packets in a large

wireless network with N nodes. Let R1 and Rnp denote the probabilities that a node

receives a particular packet and np packets, respectively. Then,

R
np

1 ≤ Rnp ≤ R1. (41)

1Alternatively, broadcasting np packets can be performed such that a node keeps its forward-
ing status during the broadcasting session. This implies that a node is a forwarding node (with
probability p) for the whole broadcasting session. In this case Rnp

= R1. However, this unevenly
distributes the energy consumption in the network, i.e., the fixed forwarding nodes consume much
more energy than non-forwarding nodes. This is not desirable especially for sensor networks.
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Proof. The right-hand side inequality is obvious. We prove the left-hand side inequal-

ity. Let us partition the nodes in the network into groups 1, 2, . . . , j such that the

packet dissemination in each group is uniform. Let the fraction of the nodes in the

ith group be αi (0 < αi ≤ 1 and
∑j

i=1 αi = 1). Also, let R1,i be the probability that

a node in the ith group receives a packet. A circular partitioning may be suitable

since the nodes with similar distances from the source are expected to have the same

probability of receiving the packets. Assuming that the number of nodes in each

partition is large enough, it is clear that we have

R1 =

j
∑

i=1

αiR1,i. (42)

Since the packet transmissions are independent in PBcast and assuming uniform

reception of data in each group of nodes, we have

Rnp =

j
∑

i=1

αiR
np

1,i. (43)

Using Jensen’s inequality, we conclude that Rnp ≥ R
np

1 .

Since energy consumption is proportional to the number of packet transmissions,

it is also desirable to obtain the total number of required transmissions per original

packet (Ntx/np). Since not all the black nodes receive a packet to transmit, Ntx/np

in PBcast is upper bounded by the total number of black nodes plus one (for the

source node), which is equal to pN +1 on the average. Moreover, in the area spanned

by the nodes that receive a particular packet, on the average, fraction p of them are

transmitting nodes. Therefore, we have

Ntx/np = pNR1. (44)

5.2.3 Simulation Results for Probabilistic Broadcast

In this section, we demonstrate PBcast properties by simulation. First, we consider

random deployment of N nodes uniformly in a field with area A = 2000m×2000m, for
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N = 104, 105, and 106. For each N , we chose transmission range r using πr2

A
> lnN

N
[17],

so that the network G(N, r) is connected. We computed pth; the threshold for the

reliable broadcasting of a single packet from (36). Table 5.1 gives the analytical

results. We note that as N increases the required pth decreases.

Table 5.1: The values of pth for reliable broadcasting of a single packet in the geometric graph
G(N, r) deployed randomly in an area A = 2000m× 2000m.

N r(m) pth

104 50 0.43
105 20 0.34
106 8 0.25

Next, we consider the following network topology. We assume N = 104 nodes

with transmission range r = 50m are deployed uniformly at random in an area A =

2000m× 2000m. We call this topology as T for our future references. We developed

event driven softwares in C++ for our simulations.

We first verify our theoretical analysis for pth. We also confirm that for reliable

broadcasting of np > 1 packets, the required relaying probability is much higher than

pth. In Figure 5.2, the fraction of nodes that successfully receive a particular packet

(denoted by R1) and np = 2000 packets (denoted by Rnp) are shown. Each point

in the figure is the result of averaging over 300 different random graphs with the

topology T . We also depicted R
np

1 , which is a lower bound for Rnp by Lemma 5.1.

We confirm that R1 is very close to one for p > 0.43, which is the analytical threshold

value given by Table 5.1. However, for np > 1, the reliability decreases and a larger

forwarding probability p is needed. We note that for Rnp ≈ 1 in PBcast, p has to be

very close to one. For example, forwarding probability of at least p = 0.7 is required

for Rnp ≥ 0.99.

Next, we give the simulation results for the required number of transmissions per

packet (Ntx/np) versus the forwarding probability p, since it is the criterion for energy
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Figure 5.2: R1, Rnp
, and R

np

1 versus forwarding probability p for a wireless sensor network with
the topology T (np is equal to 2000).

consumption. Figure 5.3 shows Ntx/np versus p for the topology T when np = 2000.
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Figure 5.3: Ntx/np versus forwarding probability p for the network topology T .

We note that when the number of required transmissions per packet is plotted

using Equation (44), we get the same result as the simulation provided in Figure 5.3.

As we can see Ntx/np is an increasing function of p. The greatest rate of increase

in Ntx/np happens around p ≈ 0.24. This point is the threshold for occurrence of

a giant component in GB(p, r). Let pG denote this threshold. As given in [47], the
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asymptotic value of pG can be calculated by

pGNr2/A = λc ≈ 1.44. (45)

We refer to the giant component again in Section 5.4, where we observe that the

optimal value of p in our proposed protocol (p∗) is close to pG. Therefore, (45) can

be used for the approximation of p∗.

Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 depict screen shots of broadcasting a single packet

using PBcast with different forwarding probabilities p. The network topology T is

considered, and the source node is located in the center of the area. We see three

types of nodes. Black, white, and red1. The black nodes are those that forwarded

the packet after receiving it. The white nodes are those that only received the packet

(did not forward it). The red nodes are those that did not receive the packet. As

can be seen, when p is small only a very small fraction of nodes received the packet.

For example, for p = 0.2 only 12% of the nodes received the packet. However, for

p = 0.25, 74% of nodes received the packet. This is the point that a giant component

has happened. More nodes received the packet when p is increased.

1Nodes in red may appear as light gray in a non-color print version of this document.
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Figure 5.4: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.1
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Figure 5.5: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.15
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Figure 5.6: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.2
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Figure 5.7: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.25
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Figure 5.8: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.3
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Figure 5.9: A screen shot of broadcasting a single packet over a network with topology T using
PBcast with forwarding probability p = 0.5
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5.3 RBcast: Rateless Probabilistic Broadcast

We noted in Section 5.2.3 that as the number of packets for broadcasting (np) in-

creases, the forwarding probability p also has to increase so that PBcast provides

high reliability. The reason is that every single packet must be received by all the

nodes in the network; however, as the number of packets increases the probability

that some nodes miss some packets increases as well. Therefore, as np increases,

the performance of a reliable PBcast becomes close to the performance of flooding

(p = 1), and PBcast will not be energy efficient.

To overcome this problem, we investigate the following potential solution. The

source node encodes the data using a channel code before broadcasting it. The

encoded packets then are broadcast using PBcast. By doing this, nodes in the network

do not require to receive all the broadcast packets. They only need to receive enough

packets to be able to decode the data. We use rateless codes, because these codes do

not require any information about the channel and also for their simple encoding and

decoding. A node is able to decode and retrieve the original np packets if it receives

at least npγ encoded packets, where γ ≥ 1 is the overhead of rateless codes. We refer

to this scheme as rateless probabilistic broadcast (RBcast). Figure 5.10 illustrates

the schematic of RBcast. Next, we consider broadcasting np = 2000 packets over a

Rateless Decoder

k

Source

Rateless Encoder 

A destination

PBcast

A Wireless Sensor Network

np

np≥ npγ

Figure 5.10: The schematic of RBcast.

random graph with the topology T using RBcast. In our simulations, we use the
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rateless code in [39] that results in a decoding failure probability less than 10−8 for

np = 2000 and γ = 1.03. The source node generates encoded packets, and these

packets are broadcast in the network based on PBcast. The broadcast session ends

if all the nodes in the network receive at least npγ = 2060 packets. In this way, it is

guaranteed that all the nodes can retrieve the original data with probability almost

one. Figure 5.11 depicts the number of transmissions per packet versus p for RBcast.
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Figure 5.11: The number of transmissions per packet for providing reliability of at least 1− 10−8

in RBcast. We considered np = 2000 and γ = 1.03 for a random network with topology T .

As is shown, when p is very small, a large number of transmissions is required.

The minimum number of transmissions per packet is about 4850 and happens at

p = 0.37 ∼ 0.4. To compare RBcast with PBcast, we recall that Ntx/np ≈ 7000

transmissions are necessary for gaining reliability of 99% in PBcast. Therefore, RB-

cast results in 30% less transmissions in comparison with PBcast. This result is

promising; however, we next propose another broadcasting scheme which is similar

to RBcast and improves the efficiency even more.
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5.4 CRBcast: Collaborative Rateless Broadcast

In this section, we propose a scheme for reliable and energy-efficient broadcasting in

multihop wireless networks. In the proposed scheme, we provide reliability by em-

ploying rateless coding. In rateless coding, potentially unlimited number of encoded

packets can be generated by simple XOR operations on the original packets. A re-

ceiver is able to retrieve the original packets when it receives a sufficient subset of the

encoded packets. No information about the channel is needed, and there is no need

for in-sequence data delivery. In other words, it is not important which encoded pack-

ets a node receives. The only important thing is the number of the received encoded

packets. We propose to use rateless codes in conjunction with a light-weight PBcast

algorithm, which is a simple and scalable broadcasting scheme. In light-weight PB-

cast, we choose a small value for p. Light-weight PBcast reduces the probability of

multiple reception of the same packet. This prevents many redundant transmissions.

Therefore, the total number of transmissions decreases as does energy consumption.

Since not every node in the network can recover the original packets, we need a second

recovery phase to guarantee reliability. Next, we explain our proposed scheme, which

we call collaborative rateless broadcast (CRBcast). CRBcast consists of the following

two phases.

5.4.1 The CRBcast Protocol

CRBcast consists of the following two phases.

5.4.1.1 CRBcast-Phase I

In Phase I, the original np packets at source are first encoded to npγ encoded packets.

Then, the encoded packets are broadcast using PBcast.

At the end of Phase I, some nodes, referred to as complete nodes, receive all

npγ different packets and can reconstruct the original packets. We refer to the rest

of the nodes that did not receive npγ different packets as incomplete nodes. The
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number of complete nodes after Phase I and the number of transmissions per packet

can be approximated by NR(npγ) and Ntx/np = pNR1γ, respectively, as discussed in

Section 5.2.

The parameter γ ≥ 1 is the overhead imposed by the rateless coding and is selected

such that the probability of successful decoding (PR(np, γ)) is almost one. For large

values of np, the probability PR for rateless codes described in [39,68] approaches one

when γ is slightly greater than one, while the complexity of encoding and decoding

is linear.

5.4.1.2 CRBcast-Phase II

Phase II is based on a simple collaboration among complete and incomplete nodes

such that each complete node sends only once the required number of packets to its

neighbors to complete them. The new complete nodes repeat this and the process

continues until no new complete nodes remain. Therefore, we need two types of very

short handshake messages between complete and incomplete nodes: advertisement

messages (ADV) and request messages (REQ). Whenever a node becomes complete,

it advertises its completeness to its neighbors once using an ADV message (which

includes the ID of the complete node and some flag bits that indicate the message is

an ADV message). Any incomplete neighbor that receives the ADV message responds

by a REQ message including the required number of new packets for its completion,

the ID of the complete node, and some flag bits associated with the REQ message.

For example, suppose a node has already received n1 packets when it receives an ADV

message. This node would use an REQ message asking for npγ − n1 new packets. It

should be noted that the complete node generates new encoded packets by performing

rateless-encoding on the retrieved original packets. In this way, it can be guaranteed

that new encoded packets are sent to the incomplete node.

Here are more details about the collaboration between nodes. If an incomplete
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node receives multiple ADV messages from different neighbors, it will respond only

to the one with the lowest ID number. Moreover, after sending an ADV message,

each complete node waits long enough to receive the REQ messages from all of its

incomplete neighbors. When a complete node receives different REQ messages from

different incomplete neighbors, it sends the maximum number of the required packets.

Each complete node advertises once and each incomplete node requests once. In a

connected network with lossless channels, we prove in Lemma 5.2 that all nodes are

eventually completed. The total number of ADV messages (nadv) plus REQ messages

(nreq) is less than 2N packets for the whole broadcasting session (equivalently, 2N/np

transmissions per packet). These handshake messages result in negligible overhead

due to their relatively short packet sizes and the fact that np is large.

Lemma 5.2. Let G(N, r) be a lossless, stationary, and connected wireless network.

Then, CRBcast provides reliability one independent of the value p.

Proof. Let S denote the set of complete nodes after the completion of Phase II. We

note that S is a nonempty set since the neighbors of the source are definitely complete.

If |S| = N then we are done. Otherwise, connectivity of G(N, r) implies that there

exists at least an edge (i, j) such that i ∈ S and j /∈ S. However, this contradicts

the protocol in Phase II. Since, once node i becomes complete, it completes all its

incomplete neighbors based on the ADV and REQ mechanism in CRBcast. Therefore,

j is also complete, i.e., j ∈ S, which contradicts our assumption.

5.4.2 Extensions of CRBcast

In this section, we propose two extensions of CRBcast. These extensions can further

reduce the number of transmissions.

Probabilistic Advertising in Phase II: In the original CRBcast protocol, every

complete node advertises its status to its neighbors once. However, to decrease the

number of transmissions, we can modify Phase II such that every complete node
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advertises once with probability padv. Similar to Corollary 5.1, asymptotically, the

condition padv > pth is sufficient for reliable broadcasting. However, it should be noted

that although the total number of advertisements reduces by a factor of 1− padv, the

total number of transmissions does not reduce by the same factor. The rational is

that even if a complete node advertises, it does not send any encoded packet if all of

its neighbors are complete.

Multi-Stage Recovery in Phase II: In our original CRBcast protocol, every

complete node sends the maximum number of packets that is required by its neigh-

bors to become complete. However, in many cases, a smaller number of transmissions

suffices due to the redundancy that is inherent in the wireless medium. For example,

consider the following scenario shown in Figure 5.12. Suppose nodes A and E are

complete. However, nodes B, C, D, and F require 50, 100, 500, and 250 packets,

respectively. In the original CRBcast protocol, nodes A and E must send 500 and 250

packets, respectively. However, since node D also receives the transmitted packets

from node E, a more efficient scheme would only require that nodes A and E send

250 packets each. In general, finding the optimal number of transmissions for each

A

B
C

D

E

F

Figure 5.12: A scenario in which multi-stage recovery reduces the number of transmissions.

complete node needs a global knowledge of the network status, which is not practi-

cal. Here, we propose a simple modification to CRBcast for reducing the number of

transmissions.

We put an upper bound nmax on the number of packets that each complete node

sends after receiving the requests from its neighbors. Therefore, a complete node

may not complete all its neighbors at the first try. Instead, it would hope that
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its neighbors would receive more packets from other complete nodes. However, to

ensure that all the neighbors become complete ultimately, a complete node advertises

periodically with sufficient time interval between advertisements until all its neighbors

become complete (no REQ message is received). If we consider nmax = ρnpγ for some

0 < ρ ≤ 1, we have nadv, nreq ≤ ⌈1/ρ⌉N . Therefore, the total overhead because

of the handshaking in Phase II is upper bounded by 2⌈1/ρ⌉N . Decreasing nmax

reduces the number of data packet transmissions. However, it increases the overhead

of handshake messages.

5.4.3 Simulation Results for CRBcast: Time-Relaxed Implementation

Here, we provide the simulation results for the number of transmissions per packet

(Ntx/np) that is necessary for all nodes to receive at least npγ distinct encoded packets

as a function of p. This quantity is the indication of the energy consumption in

the network. In our simulations, we used the rateless code in [39] that results in a

decoding failure probability less than 10−8 for np = 2000 and γ = 1.03. Therefore,

the recovery probability (PR) is almost one. We considered the network topology T

described in Section 5.2. Figure 5.13 depicts the result. We also included the number
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Figure 5.13: The number of transmissions per packet for providing reliability at least 1− 10−8 in
CRBcast. We considered np = 2000 and γ = 1.03 for the network topology T .
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of transmissions per packet in Phase I and II. As expected, the total number of

transmissions in Phase I increases with p, while the total number of transmissions

in Phase II decreases with p. The minimum total number of transmissions occurs

at p∗ = 0.25, for which Ntx/np is equal to 2769 transmissions per packet. This

results in saving of more than 72% packet transmissions in comparison with flooding.

To compare CRBcast with PBcast, we recall that Ntx/np ≈ 7000 transmissions are

necessary for gaining reliability of 99% in PBcast. Therefore, CRBcast results in

60% less transmissions in comparison with PBcast, while CRBcast’s reliability is

almost one. To compare CRBcast with RBcast, we recall that RBcast can achieve

the minimum of Ntx/np ≈ 4850. Therefore, CRBcast outperforms RBcast in terms

of number of transmissions per packet by about 43%. This shows the effectiveness of

introducing the second recovery phase in CRBcast.

It is worth noting that using (45), the giant component for GB(p, r) happens

theoretically at pG ≈ 0.24. We observe that p∗ is close to pG. We can explain

this by recalling that at pG a large fraction of nodes receive each packet (in Phase

I). This balances the recoveries in the two phases. Therefore, (45) can be used as

an approximation for p∗. We should also mention that the number of handshaking

transmissions is at most 2N = 20000 packets, which is about 0.3% of the total

number of transmissions. Considering that handshake packets are much shorter than

data packets, we see that this overhead is wholly negligible.

Next, we implement the two modifications of CRBcast for the above example

when p = 0.25. First, we consider probabilistic advertisements with padv = 0.45.

The number of transmissions per packet is reduced to 2587 while the reliability is

0.9999. This is 6.5% improvement in energy consumption in comparison with the

original CRBcast. We also consider the multi-stage recovery in Phase II for CRBcast

with p = 0.25. We consider nmax = 50. The number of transmissions per packet

including the number of handshake messages is reduced to 2584. Thus, almost the
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same improvement as probabilistic advertisement is achieved. Table 5.3 summarizes

Ntx/np and reliability in different methods.

Table 5.2: Comparison of energy consumption and broadcast reliability in different broadcast
schemes. The value of p is chosen as 0.7, 0.37, and 0.25 for PBcast, RBcast and CRBcast-based
methods, respectively.

Broadcasting Scheme Ntx/np Reliability

Flooding 10001 1
PBcast 6999 0.99
RBcast 4850 1

CRBcast 2769 1
CRBcast with padv = 0.45 2587 0.9999

Multi-stage CRBcast with nmax = 50 2584 1

Finally, we implement the approximation algorithm for finding an MCDS pro-

posed in [37], which is a centralized algorithm and needs full knowledge about the

topology of the network. The algorithm results in 1956 transmissions per packet,

which outperforms CRBcast. However, the algorithm in [37] is neither scalable nor

practical for large networks. Moreover, it has the uneven-load-balancing problem (i.e.,

some nodes run out of battery power much faster than the others). More importantly,

broadcast schemes that are based on finding an MCDS cannot be adapted easily for

mobile or lossy networks. In contrast, generalization of CRBcast for lossy and mobile

networks is straightforward. Phase I remains the same (however, a higher p would

be required). In Phase II, each complete node including the source node sends ADV.

Lost ADV messages can be compensated by periodical re-advertisements. Lost REQ

and data packets can be compensated by requesting the number of necessary packets

that do not arrive within a fixed time period.

5.4.4 Simulation Results for CRBcast: Time-Constrained Implementa-
tion

In our simulations in Section 5.4.3, we made some assumptions that may not be nec-

essary or very practical. The first assumption disregarded the waiting time to access
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the channel. The second assumption in our simulations of CRBcast was that Phase

I and Phase II are executed sequentially. In other words, we assumed that Phase II

starts when Phase I is over, i.e., all the nodes have already forwarded their packets

in Phase I. Using these assumptions, we were able to carry out theoretical work and

find the optimal forwarding probability. We can argue that these assumptions could

be realized if we do not have any constraint on the latency of broadcasting, i.e., if we

give broadcasting sufficient time for completion. We refer to this implementation of

CRBcast as time-relaxed implementation.

In this section, we repeat the experiment assuming the nodes that have some

packets to send will contend for a channel to avoid any collision. For this purpose,

we consider the two-hop blocking MAC scheme. We assume that the complete trans-

mission of one packet from a node to its one-hop neighbors takes one time unit. By

considering such a MAC layer, we will also be able to compare the latency of the

broadcasting algorithms.

Bringing the MAC into the picture, slightly changes the implementation of CRB-

cast in that we no longer can assume the separation of Phase I and Phase II. This

means while some of the nodes in the network may be in the probabilistic forwarding

phase, other nodes are in Phase II. A node is in Phase I at the beginning, and it

forwards the packets that it receives for the first time with a probability p, whenever

it gets the channel. If the channel is not free, it will put the packets in its queue

and send one packet at a time, whenever the channel becomes available. A node is

considered to be in Phase II if it is either complete or is a neighbor of a complete

node (if it hears an ADV message). In these cases, the node will not continue to send

those packets that are waiting in its queue. Instead, if it is a complete node, it will

re-encode and send new packets to its neighbors based on the requests that it receives.

If it is a neighbor of a complete node, it will request the number of packets it requires

to be complete. Upon reception of the required packets, it becomes a complete node
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and, when it has the channel, sends ADV message. This process continues until all

the nodes become complete.

We compare CRBcast, PBcast, and another scheme called Multipoint Relaying

(MPR) [51]. In MPR, each node i is aware of its neighborhood up to two hops and

selects a subset Mi of its one-hop neighbors as forwarding nodes such that for any

node j that is two hops away from i, there exists a node in Mi that is connected to

j. Therefore, if i transmits a packet and only nodes in Mi forward it, all the nodes

in the two-hop neighborhood of i will receive the packet. Yet, when broadcasting is

performed, a node k forwards a message received from node i if and only if k ∈ Mi.

Figure 5.14 compares Ntx/np with respect to forwarding probability p when np =

2000 packets are broadcast over the network topology T using CRBcast for both time-

relaxed and time-constrained cases. We see that there is discrepancy between the two

graphs. This is because of different simulation setups. For example, we see that for

large values of p, time-constrained CRBcast has smaller Ntx/np. This is because

there are some nodes in the network that start their Phase II before completing

their Phase I. As can be seen, similar to the time-relaxed case, there is an optimal

forwarding probability for the time-constrained case, and the corresponding optimal

forwarding probability values are close. The minimum Ntx/np, which is equal to 3053

transmissions per packet, occurs at p = 0.27.

Figure 5.15 depicts the latency of PBcast and CRBcast versus forwarding prob-

ability p for broadcasting np = 2000 packets over the network topology T . The

two-hop blocking MAC was considered for both schemes. Clearly, latency is an in-

creasing function of p for PBcast. The case is different for CRBcast. When p is very

small, each packet is forwarded by very few nodes in Phase I. Therefore, most of the

load will be in Phase II, which is more time consuming. This causes a high latency.

By increasing p, a better balance between Phase I and Phase II is in place. Hence,
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Figure 5.14: Ntx/np versus forwarding probability p for CRBcast over the network topology T for
two different implementations.

we expect that the latency would decrease since more nodes can forward the pack-

ets simultaneously. However, we should note that increasing p beyond a threshold

causes many unnecessary transmissions, which increases the latency. This explains

the variation of CRBcast’s latency in Figure 5.15.
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Figure 5.15: Latency of PBcast and CRBcast versus forwarding probability p for broadcasting
np = 2000 packets over the network topology T . The two-hop blocking MAC was considered for
both schemes.

Table 5.3 summarizes the results for the minimum number of transmissions per

95



packet and the corresponding latency for different broadcast schemes when the two-

hop MAC is considered. As can be seen, CRBcast has 69.5%, 56.4%, and 63.3% less

energy consumption in comparison with flooding, PBcast (p = 0.7), and MPR, re-

spectively. In terms of latency, PBcast and CRBcast are quite close, though CRBcast

has slightly lower latency.

Table 5.3: Comparison of energy consumption and latency in different broadcast schemes. The
value of p is chosen as 0.7 and 0.27 for PBcast and CRBcast, respectively.

Broadcasting Scheme Ntx/np Latency (time unit)

Flooding 10001 9.7e4
PBcast 6999 6.7e4

CRBcast 3053 6.1e4
MPR 8311 8.0e4

5.5 Conclusion

In this chapter, we studied the problem of reliable and energy-efficient broadcasting

in wireless sensor networks when no knowledge of the topology of the network is

available. We first studied the probabilistic broadcast (PBcast) scheme as a simple

and scalable method. We derived the formula for the optimal forwarding probability

pth when only a single packet is broadcast over a network with a large number of

nodes. This pth is the minimum forwarding probability that guarantees almost surely

all the nodes in the network receive the packet. We further showed that to reliably

broadcast a large number of packets, a large forwarding probability (p) has to be used

for PBcast. This makes PBcast energy inefficient.

Next, we studied the integration of rateless codes into PBcast. To do this, the

original data is first encoded at the source using a rateless (Fountain) code. The

encoded packets are then broadcast by PBcast. We called this scheme rateless prob-

abilistic broadcast (RBcast). We showed that this scheme could be efficient and will

outperform PBcast if p is not too small. We then modified RBcast and proposed our

96



main, even more efficient, two-phase broadcast scheme, referred to as collaborative

rateless broadcast (CRBcast). The first phase of CRBcast is similar to RBcast. In

this phase, however, it is not required that all nodes be able to decode the data. The

second recovery phase, which is based on simple collaborations of the nodes, ensures

that all the nodes can recover the original data.

We studied two different implementations for CRBcast, namely time-relaxed and

time-constrained. In the former, the latency of broadcasting is not an issue, and an

ideal MAC and relaxed timing are considered. These assumptions made the analy-

sis more tractable. In the time-constrained implementation, a more realistic MAC

referred to as two-hop blocking MAC is in place. We showed by simulation that CRB-

cast substantially reduces energy consumption for reliable broadcasting in comparison

with other schemes such as flooding, PBcast, RBcast, and MPR. A very important

property of CRBcast is that it is not only a reliable and energy-efficient scheme, but

also a scalable and practical one that does not require any information about the

network topology. Hence, CRBcast can be easily generalized for mobile and lossy

networks.
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CHAPTER VI

EFFICIENT BROADCASTING IN WIRELESS AD-HOC

AND SENSOR NETWORKS WITH KNOWLEDGE OF

LOCAL TOPOLOGY

6.1 Introduction

In Chapter 5, we proposed the CRBcast protocol, which is a viable approach for

reliable and energy-efficient broadcasting in multihop wireless sensor networks that

also addresses scalability and load balancing, while requiring no knowledge of the

network topology. However, for the cases in which some local information about the

network is available, we can exploit the extra information and improve the energy

efficiency of broadcasting. In this chapter, we investigate reliable and energy-efficient

broadcasting in multihop wireless sensor networks assuming the availability of local

information about the neighborhood around each node. By the availability of local

information, we mean that each node knows its hop-distance from the source and those

of its neighbors. We propose a scheme, referred to as Fractional Transmission Scheme

(FTS), which is scalable and has low complexity1 [62,63]. FTS utilizes rateless coding

and the broadcasting nature of wireless channels to reduce energy consumption while

ensuring the reliable delivery of packets to all the nodes in a network, even if the links

in the network are lossy. For that, FTS even does not require any knowledge of the

values of link losses.

In FTS, based on its local knowledge of the network topology, each node converges

on a fraction of encoded data that it must send after decoding and re-encoding. In

1This study was done collaboratively with my colleague Badri N. Vellambi.
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other words, different neighbors of a node share the data delivery, and each node sends

only a fraction of the total encoded packets required by a receiving node. If each node

knows its geographical location and those of its neighbors, energy consumption can

be even further reduced. In this case, each node can adapt its transmission power

based on its farthest neighbor. This scheme is referred to as FTSadapt.

We analyze FTS for grid networks and compare the results with the corresponding

optimal case. Further, extensive simulation results are provided considering grid and

random geometric networks for both lossless and lossy networks. These results suggest

better or comparable energy consumption in comparison with some other competitive

techniques such as CRBcast, Network Coding (NC), Broadcast Incremental Power

(BIP) [74], and Multipoint Relaying (MPR) [51]. Due to their low complexity and

requirement of only local information, unlike NC and BIP, FTS and FTSadapt can

easily be applied to large networks.

6.2 Network Models and Terminologies

For simplicity and tractability of analysis, we consider the following setup. A net-

work of N static nodes with omnidirectional antennas and a transmission range r is

assumed. Such a wireless network can be modeled as a geometric undirected graph

G(V, E), in which V is the set of nodes and E is the set of edges. There is an edge

between two nodes u and v if and only if the Euclidean distance between u and v

is less than or equal to r. We also assume that r is large enough so that G(V, E) is

connected. The neighborhood Nr(u) of a node u is the set of all nodes that are within

a distance of r units away from u. The wireless nature of the network is modeled by

the assumption that each node u transmits the same message to all the nodes in its

neighborhood. For a graph G(V, E) with a unique source node s, H : V −→ N∪ {0}
denotes the hop-distance function that maps each node v to the length of the short-

est path connecting s to v. Finally, we assume that the network is equipped with a
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one-to-one node identifier function id : V −→ N such that each node v knows id(v).

For simplicity, we assume that for any u, v ∈ V , if u is closer to the source than v

then id(u) < id(v).

We consider only the energy expended on RF transmissions (as in [74]) as the

cost criteria for energy-efficiency. The cost for sending a packet from a node with

transmission range r is taken to be r2. We also denote the number of transmissions

per packet per node by N/p/n and the corresponding energy consumption per packet

per node by C/p/n.

In our simulations for lossy networks, we consider that the transmissions in net-

works are subject to distance attenuation and Rayleigh fading. Therefore, when a

node u with a nominal transmission range r transmits, the signal-to-noise (SNR) of

the signal received at a node v with distance duv from the node u is λr2/dα
uv, where λ

is an exponentially-distributed random variable with unit mean, and α is an attenua-

tion parameter called path loss. The value of α is usually between 2 and 4 depending

on the characteristics of the channel; however, in this work, we consider α = 2. We

assume that a packet transmitted by a node u is successfully received by a node

v ∈ Nr(u) if and only if the received SNR exceeds a threshold β, i.e., λr2/d2
uv > β.

We took β = 1/2.

We also consider the two-hop blocking MAC in our simulations. In this MAC

scheme, when a node is transmitting, all of its neighbors up to two hops will be silent

and will not transmit. This avoids interference and the hidden terminal problem [72].

A similar MAC was considered in [51]. By considering the MAC layer, we will also

be able to compare the latency performance of the different broadcasting algorithms.

Some standard networks that are considered in this study are grid networks and

random deployment models. In grid networks, we consider two cases. First, the

source is considered to be one of the four corners of the grid, and second the source

is in the center of the grid. When the source is in the corner, the grid is assumed to
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be a square of l rows and l columns with neighbors spaced equally apart from each

other. When the source is placed in the center, the network is assumed to be a square

of 2l − 1 rows and 2l − 1 columns. In both scenarios, the transmission range r is

chosen to be equal to the distance between any two neighboring nodes, constraining

the maximum degree of a node in the network to be four. In random deployment

networks, the nodes are placed independently and uniformly at random in a field of

A× A distance unit2.

6.3 FTS: Fractional Transmission Scheme

In this section, we propose a broadcasting scheme referred to as Fractional Transmis-

sion Scheme (FTS). FTS is based on the idea that multiple neighbors of a node u can

share the work of packet transmission to u. It suffices that each neighbor of a node

just sends a fraction of the data such that the total sum of all fractions received by

the node is enough for successful data recovery. To be efficient, packets from different

neighbors should be innovative. To ensure this, we employ rateless coding. First, the

source encodes the data and forwards it. When other nodes receive enough encoded

data packets, they perform decoding and re-encoding to generate new (innovative)

packets.

It is assumed that each node is aware of its hop-distance from the source. Each

node can also be aware of the hop-distances of its immediate neighbors from the

source by simple HELLO message exchanges. In FTS, over each link between two

nodes, the one with the smaller hop-distance (from the source) transmits to the one

with the higher hop-distance. In the case that both the nodes have the same hop-

distance, the one with lower id transmits to the other. Therefore, a node v will expect

to receive data from the nodes in its parent set Pr(v) defined as:

Pr(v) = {w ∈ Nr(v) : H(w) < H(v)} ∪ {w ∈ Nr(v) : (H(w) = H(v)) ∧ (id(w) < id(v))}.

On the other hand, each node w is responsible for providing a fraction of data to a set of
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nodes that are called its children defined as Cr(w) = Nr(w)\Pr(w). The fraction of data

that each node w must send, αw, has to be determined. Next, we provide details on how

FTS determines these fractions and how it operates.

6.3.1 Description of FTS

FTS includes three phases: Initial Fraction Exchange Phase, Fraction Reduction Phase,

and Data Transmission Phase. In the first two phases, each node determines the fraction

of data that it must send. The last phase is the actual data transmission phase. In Initial

Fraction Exchange Phase (Algorithm 1), each node v determines the number of neighbors

κv that will send data to v. In other words, kv = |Pr(v)| represents the number of neighbors

of v that have either a smaller hop-distance from the source or the same hop-distance but

a smaller id. Therefore, v expects a fraction of 1/κv of the required data from each of

them. Once v determines the fraction it expects, it declares this fraction to nodes in Pr(v).

Each node w collects all the requested fractions that it must send to its children Cr(w).

It considers the maximum of these fractions as the sufficient fraction of data that it must

send. For example, if Cr(w) = {u, v} with κu = 3 and κv = 4, this means that u and

v expect fractions of 1
3 and 1

4 of data from w, respectively. Then, αw = 1
3 . After this

phase, the sum of the fraction of data that each node receives might be larger than one.

Therefore, we can further reduce the fraction by another phase called Fraction Reduction

Phase (Algorithm 2). In this phase, each node v asks its neighbors in Pr(v) to reduce their

fractions equally by fv such that the total fraction that v receives adds up to one. Each

node then reduces its fraction by the minimum of requested reduced fractions. The new

fraction that node w will send is denoted by α′
w. Figure 6.1 shows a small part of a network

as an example. Suppose Pr(u1) = {w1}, Pr(u2) = {w1, w2}, and Pr(u3) = {w2, w3, w4}.

Moreover, Cr(w1) = {u1, u2}, Cr(w2) = {u2, u3}, Cr(w3) = {u3}, and Cr(w4) = {u3}. We

have κu1 = 1, κu2 = 2, and κu3 = 3. Therefore, αw1 = 1, αw2 = 1/2, and αw3 = αw4 = 1/3.

By the fraction reduction phase, we have fu1 = 0, fu2 = 1/4, fu3 = 1/18. The final fractions

will be α′
w1

= 1, α′
w2

= 1/2 − 1/18, and α′
w3

= α′
w4

= 1/3 − 1/18.
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Figure 6.1: A small example.

Algorithm 1 Initial Fraction Exchange Phase

Require: Graph G(V, E) with source s ∈ V where each node v ∈ V knows its
minimum hop-distance H(v) from source.

1: for v ∈ V \ {s} do
2: αv = 0.
3: end for
4: αs = 1.
5: for v ∈ V do
6: transmit: (H(v), id(v))
7: end for
8: for v ∈ V do
9: identify κv = |Pr(v)|

10: transmit: (v,H(v), κv)
11: end for
12: for v ∈ V do
13: for w ∈ Nr(v)\Pr(v) do
14: αv = max(αv,

1
κw

)
15: end for
16: end for
17: for v ∈ V do
18: transmit: αv

19: end for

Algorithm 2 Fraction Reduction Phase

1: for v ∈ V do
2: transmit: fv = max

(

(
∑

w∈Pr(v)

αw − 1)/κv, 0
)

3: end for
4: for v ∈ V do
5: α′

v = max(αv − min
w∈Cr(v)

fw, 0)

6: end for

Once the first two phases are complete, we start the Data Transmission Phase (Algo-

rithm 3). In this phase, once a node v receives fraction max(αw − fv, 0) of packets from

a neighbor w it sends acknowledgement of partial completeness (P − ACK(v → w)), and
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when it becomes complete (receives enough encoded packets to decode), it sends acknowl-

edgement of completeness (C −ACK(v)) to its neighbors. It then decodes and re-encodes

data using a rateless code and sends new encoded packets until all the children of v are

either complete or do not need any more packets from v.

Algorithm 3 Data Transmission Phase

1: send(s) = 1
2: transmit: npγ encoded packets
3: for v ∈ V \ {s} do
4: send(v) = 0, done(v) = 0
5: end for
6: while ∃ v ∈ V with send(v) = 0, done(v) = 0 do
7: A = {u ∈ V : send(u) = 0, done(u) = 0}
8: for w ∈ A do
9: if w has received npγ encoded packets then

10: decode np data packets
11: transmit: C − ACK(w)
12: set send(w) = 1
13: else
14: if w has received max(αz − fw, 0)npγ packets from neighbor z then
15: transmit: P − ACK(w → z)
16: end if
17: end if
18: end for
19: B = {u ∈ V : send(u) = 1}
20: for t ∈ B do
21: if all neighbors have either sent a C − ACK or a P − ACK directed at t

then
22: set send(t) = 0, done(t) = 1
23: else
24: generate an encoded packet P .
25: transmit: P
26: end if
27: end for
28: end while

6.3.2 Discussion of Various Overheads

The proposed FTS scheme has three overhead messages/signals whose effects on latency and

transmission cost are described below. Since the network is assumed to be stationary, the

setup overheads correspond to the initial fraction exchange phase and the fraction reduction
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phase, which have to be performed just once. In the former phase, the determination of

the hop counts and the initial fractions can be initiated by the source by flooding a single

packet. This can be completed in Θ(N) time units and by spending Θ(1) units of energy

per node. In the latter, each node has to declare the amount by which its neighbors can

deduct the fraction that it needs to send. This can again be performed in Θ(Nr2(N)) time

units by spending Θ(1) energy units per node.

The second overhead is that of coding. In general, the number of output packets required

to give a high probability of retrieving np input packets is expressible as γnp for a fraction

γ ≥ 1 (γ is called the coding overhead). The coding overhead corresponds to the number of

additional packets that are required over and above the bare minimum number of packets

required for decoding all the transmitted packets. If one performed maximum likelihood

(ML) decoding, one would have a smaller coding overhead. However, the complexity would

make this option restrictive. On the other hand, using iterative decoding will enable lower

decoding complexity but will have a higher coding overhead. Throughout this work, we set

the rateless coding overhead γ to be 1.03 for np = 2000 packets as described in [39].

The third overhead is the bits that need to be appended to the header of an encoded

packet to identify the index of the packets that were added to form the current packet. In

rateless codes, at most np bits must be added to each output packet. The overhead imposed

by these additional bits is considerably smaller than the corresponding overhead in random

sum coding, which is np log2 q bits2.

The last overhead, which is also the most important one, is that of acknowledgement

of the completion or acknowledgement of partial receipt (from a particular neighbor). The

acknowledgement of completion needs to be transmitted only once. It must be noted that

the acknowledgement of partial receipt is necessary only if we want a node to stop trans-

mitting once all its children have received the required number of packets prior to sending

all its determined share of packets. In partial acknowledgment, we can achieve benefits

in conserving energy while transmitting encoded data packets by allowing each node to

2In random sum coding, each packet is multiplied by a coefficient chosen randomly from GF (q).
These coefficients must also be appended to the header of packets.

105



transmit control packets, which are very short in length, of order Θ(Nr2(N)).

6.3.3 Analysis of FTS on Grid Networks

FTS lends itself to easy analysis over grid networks and yields the following results on the

average energy consumed.

6.3.3.1 Lossless Grid Networks

For simplicity, we first consider the case that all the links are lossless, and we then extend

it to the case in which we have signal attenuation and Rayleigh fading channels.

Lemma 6.1. For an l × l grid network with the source node in the corner of the grid, the

average number of transmissions per packet per node under FTS when a rateless code of

overhead γ is used is given by

N/p/n =
(l2 + 2l − 4)γ

2l2
.

Proof. Without loss of generality, we assume that the source node is in the bottom left

corner of the grid. It is clear that the source node has to inject a fraction of one; otherwise,

no node in the network can perform decoding. Nodes at the bottom and left edges that

are not corner nodes, which are 2(l − 2) in number, have to send a fraction of one as their

neighbors have κ = 1. The node at the top right corner transmits a fraction of zero. All

other nodes, which are (l− 1)2 + 1 nodes in number, transmit a fraction of 1
2 , since each of

their neighbors have κ = 2. Therefore, the total number of transmissions per packet can be

easily calculated as (l2+2l−4)γ
2 , where γ is coding overhead. One can easily check that for

such a grid network, the Fraction Reduction Phase does not change the fraction of data for

all but one of the nodes. This node, which we call v, is in the position (1,1) assuming the

source is at (0,0). The unique property of node v is that the two children of v have other

parents that will send a fraction of one of data (all data). Therefore, α′
v = 1/2−1/4 = 1/4.

This change is negligible.

Figure 6.2 shows the fractions of data that each node sends in FTS in a 4×4 grid, when

source is in the bottom left corner. We have N/p/n = 10/16γ. Similarly, we can prove the
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Figure 6.2: The fraction of data that each node sends to its neighbors after decoding and re-
encoding in FTS. Source is in the bottom left corner. We have N/p/n = 10/16γ.

following lemma for the case in which the source is located in the center of a grid.

Lemma 6.2. For a (2l−1)× (2l−1) grid network with the source in the center of the grid,

N/p/n = (2l2−5)γ
(2l−1)2

, under FTS when a rateless code of overhead γ is used.

Assuming that each node has transmission range r, the average cost of transmissions

per packet per node is given by C/p/n = N/p/n × r2. From Lemmas 6.1 and 6.2 we note

C/p/n = γr2

2 for FTS; asymptotically (when l is very large).

Next, we would like to compare the cost of broadcasting with FTS and NC. If we fix

the direction of the edges from a node with lower hop count to its neighbor with higher hop

count, as for example in Figure 6.2, we will prove next that asymptotically the broadcasting

costs of FTS and NC are very close.

Lemma 6.3. For an l× l grid network with the source node in the corner of the grid, under

NC (with the default direction that the node closer to the source always transmits to its

neighbors that are farther away) we have N/p/n = (l2+l−2)
2l2 .

Proof. (By Badri N. Vellambi) With the default direction, it can be seen that each node

can potentially get data from at most two of its neighbors and transmit to potentially at

most two neighbors. It can be seen that for the set of nodes in any diagonal below the

main diagonal of that of the grid, the fractions that are transmitted by the nodes satisfy

the conditions of Lemma B.1 in Appendix B. For the set of nodes in any other diagonal,
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the fractions transmitted satisfy the hypotheses of Lemma B.2 in Appendix B. Thus, for

an l × l grid,

N/p/n =
1 + T2 + . . . + Tl−1 + T

′

l + T
′

l−1 + . . . + T
′

2

l2
=

(l2 + l − 2)

2l2
.

Figure 6.3 shows the fractions of data that each node sends in NC in a 4 × 4 grid.

Source is in the bottom left corner. We have N/p/n = 9/16. Recall that FTS results in

N/p/n = 10/16γ.
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Figure 6.3: The fraction of data that each node sends to its neighbors after decoding and re-
encoding in NC. Source is in the bottom left corner. We have N/p/n = 9/16.

We can easily extend this directed grid analysis to the (2l− 1)× (2l− 1) grid when the

source is in the center and directions on each edge are chosen to be directed from a node

closer to the source to one farther. In this case, N/p/n = 2l2−2l+1
(2l−1)2

.

Asymptotically, NC makes 1
2 transmissions per packet per node for broadcasting in the

assumed directed graph. It should be mentioned that the considered direction for the edges

are not the best directions, and we can reduce the number of transmissions by choosing

another set of directions.

A lower bound for the N/p/n for an arbitrary (connected) directed grid network is 1
3 .

This follows from the fact that each node in a connected directed grid can have, at most,

three outgoing edges and hence each transmission can benefit, at most, three nodes. This
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minimum N/p/n of 1
3 can be asymptotically (l → ∞) achieved for an l × l grid under the

following scheme, referred to as asymptotically-optimal scheme:

• 3|l: Nodes in the bottommost row (except the rightmost one) and those in columns

with index of the form 3j +2 (j = 0, 1, . . . , l
3 − 1) transmit the whole data set. Other

nodes do not transmit. Figure 6.4(a) illustrates the case for a 6× 6 grid.

• 3|(l − 1): Nodes in the bottommost row and in columns with index of the form

3j + 1 (j = 0, 1, . . . , l−1
3 ) transmit a fraction of 1. Other nodes do not transmit.

Figure 6.4(b) illustrates the case for a 7× 7 grid.

• 3|(l − 2): Nodes on the bottommost row except the last node and also nodes in

columns with index of the form 3j +1 (j = 0, 1, . . . , l−2
3 ) transmit the whole data set.

Other nodes do not transmit. Figure 6.4(c) illustrates the case for a 8× 8 grid.

It can be shown easily that

N/p/n =























1
3 + 2

3l − 1
l2

3|l
1
3 + 4

3l − 2
3l2

3|(l − 1)

1
3 + 1

l − 4
3l2

3|(l − 2)

(46)

These results can be extended to the case that source is in the center, keeping directions

of edges symmetric with respect to the center. We have:

N/p/n =























4l2+2l−9
3(2l−1)2

3|l
4l2+4l−5
3(2l−1)2

3|(l − 1)

4l2−7
3(2l−1)2

3|(l − 2)

(47)

6.3.3.2 Lossy Grid Networks

Here, we assume a more realistic case that the transmissions are subject to distance atten-

uation and Rayleigh fading as we described in Section 6.2. Assuming that the nodes have

transmission range r, and two neighboring nodes in a grid are separated by distance r, we

have

Pr{A packet is obtained by its neighbor}

= Pr{λ > β} = e−β = e−1/2
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(a) (b)

(c)

Figure 6.4: Optimal directions for an l × l grid. The nodes in the bold edges send all of the data
and the other nodes are just receivers. (a) l = 6. (b) l = 7. (c) l = 8.

Therefore, each node v on the average needs to send fraction α′

v

e−1/2 instead of α′
v. We

conclude that N/p/n and C/p/n that we calculated for FTS in the lossless case, need to be

scaled by a factor of 1
e−1/2 for this case.

6.4 Simulation Results

To compare the energy-efficiency of FTS with present broadcasting algorithms such as BIP,

NC, MPR, and CRBcast, we simulated these algorithms on square grids and randomly

deployed networks. For the latter case, we considered N nodes with transmission range

r(m) are randomly deployed in an area 100m × 100m, for different N ’s and r’s. The

transmission range r in each case was selected such that the resulting graph is connected.

We considered γ = 1.03 for rateless codes since this value is sufficient for the transmission
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of np ≥ 2000 packets with a decoding failure probability of less than 10−8 [39]. The size of

the packets was assumed to be the same in all the schemes. Therefore, it is worth noting

that the amount of information payload per packet would be higher for FTS in comparison

with NC as described in Section 6.3.2. We disregarded this in our simulations.

We present our results in the two following subsections. The former presents the simu-

lation results for lossless networks, and the latter presents the results for lossy networks.

6.4.1 Simulations for Lossless Networks

6.4.1.1 Lossless Grid Networks

Figure 6.5 shows the corresponding N/p/n for different schemes for l × l grid networks

with the source node in the corner. The results for FTS, NC, BIP, CRBcast, and the

asymptotically-optimal scheme are presented. We implemented NC on a grid with the

default directions (flow from the node closer to the source to the farther one). For large
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Figure 6.5: Comparing N/p/n versus the size of the network in different broadcasting schemes for
an l × l grid with the source node in the corner.

values of l, it can be noted that for the optimal case N/p/n is about 1
3 . BIP performs

slightly worse. NC and FTS perform very close with an asymptotic N/p/n of 0.5 and 0.5γ,

respectively. For large grid networks, the only difference in the cost of broadcasting between

FTS and NC is the factor γ, the overhead of rateless coding. For NC, we assumed that the

random sum coding over a large field GF (q) results in no coding overhead (for the price of
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a higher complexity of decoding). Increasing the number of packets np, γ becomes closer

to one and FTS and NC result in the same energy consumption. Although NC and BIP

have better energy-efficiency than FTS, it must be understood that they are considerably

more sophisticated algorithms. BIP assumes global knowledge of the network for successful

implementation, and NC requires LP optimization. On the other hand, FTS does not rely

upon the presence of global knowledge but just on local knowledge of the topology of the

network and does not require complex optimizations. Comparing to CRBcast, which does

not assume any knowledge about the networks, we find that we are able to achieve more

than 25% improvement by exploiting the local information.

Figure 6.6 shows the corresponding N/p/n for different schemes for (2l − 1) × (2l − 1)

grid networks with the source node in the center. Similar results are observed.
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Figure 6.6: Comparing N/p/n versus the size of the network in different broadcasting schemes for
a (2l − 1)× (2l − 1) grid with the source node in the center.

6.4.1.2 Lossless Random Networks

First, we compare FTS and NC. We only give results for small number of nodes (i.e., 20

nodes) since we could not run the complex optimization for NC for large number of nodes.

For FTS, we can easily assign direction for edges based on their hop distances from the

source, as explained in Section 6.3. We also use these directions in our simulations for NC.

The average C/p/n for FTS and NC are tabulated in Table 6.1. Clearly, given the same
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graph and directions, NC has a lower cost. As we see, the excess in energy consumption

of FTS is less than 4% in comparison with NC. However, FTS is a very simple and easily

implementable scheme and does not require any complex optimizations. This makes FTS

to be more flexible and practical, with energy consumption relatively close to NC.

Next, we consider networks of up to 500 nodes. We compare FTS with CRBcast, MPR,

Table 6.1: Average broadcast cost per packet per node in randomly deployed wireless networks
consisting of N nodes with transmission range r deployed in an area of 100m× 100m.

N r(m) Approach C/p/n

15 23 NC 273.3
FTS 283.3

20 22 NC 243.6
FTS 253.7

25 21 NC 225.8
FTS 231.6

and BIP.

In the BIP scheme, different nodes can have different transmission ranges to decrease

the cost of broadcasting. Given the option that nodes can adjust their transmission range,

we can extend FTS to FTSadapt. FTSadapt is similar to FTS except that every node v in

the network has the option of reducing its transmission range from r to rv, where rv equals

the distance between v and the farthest neighbor of v that is going to listen to v (i.e., the

farthest child of v) in the data transmission phase (Algorithm 3).

Figure 6.7 compares C/p/n for different schemes FTS, FTSadapt, MPR, CRBcast, and

BIP. As we can see, BIP has the best possible performance. FTSadapt and FTS are next. We

should note that BIP is a centralized scheme that needs the global knowledge of the network,

and its complexity is very high. In contrast, FTS and FTSadapt are distributed schemes with

low complexity. Comparing the performance of FTSadapt and FTS with MPR, which also

assumes local information, we see that FTS and FTSadapt have much better performance.

Comparing FTS and FTSadapt with CRBcast, we conclude FTS and FTSadapt could improve

the energy efficiency by exploiting the local information.

We also simulate FTS for the same network topology that we used to simulate CRBcast
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Figure 6.7: Comparing C/p/n of different broadcasting schemes for random deployment of N nodes
with transmission range r in an area 100m× 100m.

in Section 5.4.3. The network consists of N = 104 nodes with transmission range r = 50m,

deployed uniformly at random in an area A = 2000m × 2000m. The links are assumed to

be lossless. Table 6.2 presents the results.

Table 6.2: Comparison ofN/p/n in FTS and CRBcast. The value of p is chosen as 0.25 for CRBcast.

Broadcasting Scheme N/p/n

CRBcast 0.2769
FTS (without the fraction reduction phase) 0.2073

FTS (with the fraction reduction phase) 0.1600

As can be seen, FTS without and with the fraction reduction phase (Algorithm 2)

improves the energy efficiency in comparison with CRBcast by 25% and 42%, respectively.

This improved efficiency is the result of the fact that unlike CRBcast, FTS exploits local

information about the network topology.
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6.4.2 Simulations for Lossy Networks

In this section, we consider the channel model and MAC scheme as explained in Section 6.2

and compare FTS with some competitive broadcasting schemes such as BIP, NC, and MPR.

Schemes such as BIP and MPR are originally tailored for lossless networks, and they

will not guarantee reliability in lossy networks. However, they can be extended to lossy

networks using either multiple retransmissions or forward error correction at each link. In

this way, if a channel has a corresponding loss probability of ǫ, the number of transmissions

will be scaled, on the average, by a factor of 1
1−ǫ .

6.4.2.1 Lossy Grid Networks

Figure 6.8 depicts the transmission cost C/p/n for different reliable broadcasting schemes

for l × l grid networks with the source node in the corner. It is assumed that any two

adjacent nodes have a distance of one unit and also a transmission radius of r = 1. The

transmissions are subject to distance attenuation and Rayleigh fading with the probability

of successful delivery of a packet represented as e−1/2. For FTS, we depicted both the

simulation and analytical results as derived in Section 6.3.3. As can be seen, the simulation

and analytical results are almost the same. We also depicted the cost of broadcasting with

NC. The asymptotically-optimal result corresponds to the scheme whose N/p/n was derived

in (46) and has been scaled by factor r2

e−1/2 . The lower bound is also r2

3e−1/2 . It should be

noted again that the reason that NC does not reach optimality here is that the assumed

direction of edges for them is not optimal.

We also depicted the latency of different schemes in Figure 6.9 for reliable delivery of

2000 packets. The two-hop blocking MAC was considered in our simulations. We did not

include the latency of NC, since it is not very clear how the MAC layer and interference

can be integrated in the NC. This does not affect energy consumption, but it does affect

the latency. However, we expect NC to have a lower latency than FTS, since in FTS each

node has to first wait to receive sufficient number of packets to be able to decode, before it

can generate and send new encoded packets.
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Figure 6.8: Comparing C/p/n versus the size of the network in different broadcasting schemes for
an l × l grid with the source node in the corner.

6.4.2.2 Lossy Random Networks

Here, we consider N nodes with transmission range r are randomly deployed in an area

100m × 100m, for different values of N and r. The source is assumed to be in the center

of the area. The transmission range r in each case is selected such that the resulting graph

is connected. Transmissions are subject to distance attenuation and Rayleigh fading with

SNR threshold β = 1/2. First, we compare FTS and NC. For FTS, we can easily assign

direction for edges based on their hop distances from the source, as explained in Section 6.3.

We also use these directions in our simulations for NC. Table 6.3 compares the average C/p/n

for FTS and NC. Clearly, given the same graph and directions, NC has a lower cost. As

we see, the excess in energy consumption of FTS is less than 8% in comparison with NC.

However, FTS is a very simple and easily implementable scheme and does not require any

complex optimizations.

Next, we consider networks of up to 500 nodes. Due to the complexity of optimization

for large networks, we were not able to run NC for these experiments. Therefore, we only

compare FTS with MPR and BIP for large networks.

Given the option that nodes can adjust their transmission range (as in BIP), we can

implement FTSadapt, in which every node v in the network has the option of reducing its
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Figure 6.9: Comparing latency of different schemes.

Table 6.3: Average broadcast cost per packet per node in randomly deployed wireless networks
consisting of N nodes with transmission range r deployed in an area of 100m× 100m.

N r(m) Approach C/p/n

15 23 NC 331.10
FTS 357.64

20 22 NC 326.04
FTS 336.61

25 21 NC 300.29
FTS 323.05

transmission range from r to rv, where rv equals the distance between v and the farthest

neighbor of v that is going to listen to v (i.e., the farthest child of v) in the data transmission

phase (Algorithm 3). Thus, the probability that a child w of v receives a packet from v

decreases, since we have

Pr{w receives a packet from v}

= Pr{λ > βd2
vw/r2

v} = e−βd2
vw/r2

v < e−βd2
vw/r2

.

Therefore, by FTSadapt a greater number of transmissions is needed; however, each trans-

mission has less cost. Overall, we would expect that FTSadapt would be more energy-efficient

than FTS.

Figure 6.10 compares C/p/n for different schemes FTS, FTSadapt, MPR, and BIP. As

117



we can see, BIP has the best possible performance. FTSadapt and FTS are next. Again,

it is important to keep in mind that BIP is a centralized scheme that requires the global

network topology knowledge. In contrast, FTS and FTSadapt are distributed schemes with

low complexity. Comparing the performance of FTSadapt and FTS with MPR, which is a

distributed scheme, we see that FTS and FTSadapt have much better performance.
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Figure 6.10: Comparing C/p/n of different broadcasting schemes for random deployment of N
nodes with transmission range r in an area 100m× 100m.

Figure 6.11 depicts the latency of different broadcasting schemes. The two-hop block-

ing MAC was considered in our simulations. FTS has the lowest latency. We note that

FTSadapt has slightly larger latency than FTS, which is due to the fact that the number of

transmissions increases when FTSadapt is implemented.

6.5 Conclusion

In this chapter, we studied the problem of reliable and energy-efficient broadcasting in wire-

less sensor networks when some local knowledge of the topology of the network is available.

We proposed two low-complexity, distributed, and reliable broadcasting schemes. Both uti-

lize rateless coding at each node of the network to reduce the redundancy of transmitted

information, which is a key in reducing the energy consumption. The proposed protocols,

referred to as FTS and FTSadapt, assume only local knowledge of the wireless network in
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Figure 6.11: Comparing latency of different broadcasting schemes for sending 2000 packets over a
random deployment of N nodes with transmission range r in an area 100m× 100m.

comparison to some current sophisticated algorithms that assume global knowledge, e.g.,

BIP. We compared our schemes with other broadcasting algorithms such as CRBcast, MPR,

BIP and network coding (NC) in both lossy and lossless networks with grid and random

deployment. Regarding energy efficiency, the results of our simulations show that, as ex-

pected, our algorithms perform better than CRBcast since CRBcast does not assume any

knowledge of the network. The results also suggest FTS and FTSadapt perform much better

than those schemes with similar assumptions and complexity, and that our schemes achieve

energy efficiency close to that of more complex and efficient schemes such as BIP and NC.

We conclude that because of their ease of implementation, low complexity, and competi-

tive performance, FTS and FTSadapt are viable approaches for broadcasting in large-scale

wireless ad-hoc and sensor networks, given the availability of limited and local information

about the network topology.
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CHAPTER VII

LOW-COST BROADCAST AND MULTICAST TREES IN

WIRELESS SENSOR NETWORKS

7.1 Introduction

In Chapter 6, we introduced FTS as a reliable and energy-efficient scheme for broadcasting

in wireless ad-hoc and sensor networks. As we mentioned in that chapter, FTS is applicable

for lossy networks, with no required knowledge of link-loss probabilities. However, for the

cases in which link losses are different, or in general the costs of packet delivery over different

links are unlike and known to their incident neighbors, FTS may not be a very good solution.

The reason is that FTS does not discriminate between good links (delivering a packet over

them is less costly) and bad links (delivering a packet over them is very costly).

FTS also incurs a high latency because each node has to wait to receive sufficient number

of packets for successful decoding before being able to re-encode and send the new encoded

packets. This limits the applicability of FTS for delay-sensitive broadcast scenarios. A very

interesting and challenging problem therefore would be to design a reliable broadcasting

scheme for networks with different and locally-known link costs that reduces both energy

consumption and latency.

Our main objective in this chapter is to develop broadcast and multicast schemes that

reduce both the total broadcast/multicast energy consumption and latency with emphasis

on low-complexity distributed protocols. Our approach is based on first finding a low-cost

spanning tree of the network and then allowing only the non-leaf nodes to send data [61].

If the links on the tree are lossless, to ensure reliability, no error-control coding is required.

Non-leaf nodes in the tree only relay the packets that they receive. However, if the links are

lossy, to ensure reliability, each non-leaf node does coding. Though any capacity-achieving

erasure code could be employed from energy-consumption point of view, not all of them are
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efficient in terms of latency. Therefore, we employ special types of random codes that do

not require decoding before re-encoding [44] to avoid high latency1.

The benefits of having a spanning tree are as follows. First, we reduce the number of

forwarding nodes and therefore the number of redundant packet transmissions is reduced.

Second, we guarantee that every node is included in the tree. One choice of a spanning

tree is the Bellman-Ford tree, which is formed in a distributed fashion and optimizes the

unicast cost of transmitting data from source to every node in the network. However, the

Bellman-Ford tree (BFT) does not consider the wireless channel medium property, which

enables the reception of a single transmission potentially by all neighboring nodes.

In this chapter, we propose and evaluate two distributed protocols for finding low-

cost broadcast and multicast trees in wireless networks. The constructed trees can then be

used for reliable, energy-efficient, and low-latency data broadcast and multicast in wireless

networks. The proposed schemes, referred to as broadcast decremental power (BDP) and

multicast decremental power (MDP), evolve a given spanning tree of a network and form

other spanning trees with lower broadcast/multicast costs. In our schemes, the Bellman-

Ford tree is considered as the initial spanning tree.

Links in a network are assumed to have some cost based on parameters such as the

distance between nodes, link losses, etc. We consider two different network scenarios. In

the first one, the nodes in the network have adjustable transmission power, and in the sec-

ond one, the transmission power is fixed. Links in networks are assumed to have some cost

based on parameters such as the distance between nodes, link losses, etc. Exhaustive simu-

lation results are provided for the two different communication power scenarios and different

network topologies to evaluate the proposed schemes. We show that broadcast/multicast

cost is substantially improved comparing to BF and well-known centralized schemes such

as Broadcast Incremental Power (BIP) and Multicast Incremental Power (MIP), which can

be implemented for the adjustable radius model. For the fixed power model, we compare

1The new broadcast scheme, in return, would lack some of the desirable properties of FTS such
as load balancing, and simplicity (i.e., local fraction exchange without any need for distributed
optimization).
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our scheme with BF, NC, CRBcast, and FTS. Substantial improvement compared to BF

and Network Coding (NC) is observed in most of our simulations. The proposed schemes

are shown to have, at most, quadratic complexity, and, unlike NC, their application can be

extended to large networks.

7.2 Network Model

Throughout this chapter, we model a wireless network by a weighted undirected graph

G(V,E,C), where V denotes the set of nodes in the network with |V | = N , E is the set

of edges, and C : V × V → R+ ∪ {0,∞} represents the function denoting the cost of

transmitting a packet between any two nodes. Specifically, for any i, j ∈ V , cij := C(i, j) is

the cost of delivering one packet from node i to node j. These costs can be assigned based

on different metrics such as the distance between nodes, link losses, etc. Links are assumed

bidirectional and symmetric, i.e., cij = cji. We assume that each node knows the cost of

reaching its adjacent neighbors.

To integrate the wireless channel property in our model, we assume the following, which

we call the wireless cost property. If a node i transmits a packet with a cost C, then a node

j will also receive the packet if and only if cij ≤ C.

7.3 Related Work

The problem of minimum-cost broadcasting in wireless networks can be approached differ-

ently in the two models that follow.

1. In the first model, the nodes have only relaying capability. In this case, the problem

of reliable and minimum-cost broadcasting in a wireless network is NP-complete.

Generally, this problem is equivalent to finding a minimum-cost broadcast tree if the

graph is weighted, and it is equivalent to finding a minimum-connected dominating-

set (MCDS) for the corresponding network graph for the special case in which the

costs can take only two values {c,∞}1. Both of these problems have been shown to

1This happens, for example, when the transmission radius is fixed and nodes within the trans-
mission range of each other can communicate with cost c; otherwise, they cannot communicate.
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be NP-complete [16, 25] even if a centralized algorithm utilizing the full knowledge

of the graph topology is employed.

Since broadcast is a special case of multicast, the minimum-cost multicast problem is

at least as hard as the minimum-cost broadcast problem2. Some heuristic algorithms

for tackling the broadcast problem have been proposed, e.g., [18,23,42,45,51,70] for

cases in which the transmission range of the nodes in the network is fixed and

cij ∈ {c,∞} for i, j ∈ V and i 6= j. In [74], the authors considered another transmis-

sion model, in which each node can adaptively select its communication radius and

accordingly cij can take any non-negative value. For this model, they proposed novel

heuristic broadcast and multicast schemes, which they called broadcast incremental

power (BIP) and multicast incremental power (MIP), respectively. BIP and MIP

are centralized schemes in which a central node adds nodes to the tree one at a time,

based on its knowledge of the whole network topology (geographical positions of the

nodes) and knowing the nodes have already been included in the tree. BIP and

MIP demonstrate good performance, though the centralized nature of the schemes

is limiting. Since the introduction of BIP and MIP, not much improvement has been

achieved because of the complexity of the problems.

2. In the second model, in addition to relaying, each node has the capability to do

local processing and coding. This model was first exploited in [2] and opened a new

research area known as network coding (NC). Considerable work has been done in

this area including [32,34] and the references therein. In this model, the problem is

solvable by a polynomial-time algorithm assuming that the network is directed. We

discussed NC in detail in Section 2.5.1 and mentioned its advantages and shortcom-

ings.

The difference between the NC approach and our proposed schemes can be stated in

the following way. NC assumes a directed graph and tries to find a low-cost subgraph. The

2Even in wireline networks, the minimum-cost multicast problem, which is equivalent to solving
the Minimum Steiner Tree problem, is an NP-complete problem, while the minimum-cost broadcast
problem is equivalent to finding the minimum-spanning tree that runs in polynomial time.
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resulting subgraph may not be a tree. Therefore, a node might have different incoming

flows, in which case NC uses a random sum coding scheme to combine the incoming data

from different neighbors. In contrast, our schemes work on an undirected graph. We try

to find a low-cost subgraph which is a tree. In such a subgraph, each node has exactly one

incoming flow and therefore there is no need to combine the data. If, however, the links are

lossy, local rateless coding is implemented on each link for loss recovery.

7.4 Terminologies and Definitions

Throughout this chapter, we assume the following terminologies. We denote the set of

neighbors of a node i (any node that is connected to i by an edge) by N (i). After directions

are assigned to some edges in a network, if an edge (i, j) is directed from i to j, then i is

called the parent of node j, denoted as P(j), and j is called a child of node i. On the other

hand, if an edge (i, j) does not have any direction, we say i is a neutral neighbor of j, and

vice versa. We denote the set of children of node i and the set of neutral neighbors of i

by C(i) and T (i), respectively. For example, for node i in Figure 7.1, we have P(i) = {A},

C(i) = {B,C,D}, and T (i) = {E,F}.

i A

B

C

D

E
F

Figure 7.1: The subgraph induced by node i.

The cost of broadcast for each node i in the network is defined as

Pi = max
j∈C(i)

cij, (48)

and the total broadcast cost is

P =
∑

i∈V

Pi. (49)
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For any node j ∈ N (i), the additional cost of having node j as a child of node i, is denoted

by

∆cij = cij − max
k∈C(i)\{j}

{cik} (50)

7.5 Cost Models

In our proposed schemes, cij’s can be selected arbitrarily. However, a reasonable cost model

can be based on the required energy to reach a node j from a node i. In our models, we

consider only the energy spent for RF transmissions as in [74]. We consider the following

two cost models in this chapter.

A. In this model, also studied in [74], we assume that the transmission range of a

node can be adjusted a within a given range. Therefore, we assume that the cost

(energy) needed for sending a packet from node i to node j, which are separated

by distance rij is2

cij = rα
ij. (51)

Parameter α is called the path loss, which is usually between 2 and 4, depending

on the characteristics of the channel. The links in this model are assumed to be

lossless. Therefore, nodes that are selected to be relay nodes (non-leaf nodes in

the tree) will relay packets that they receive with a transmission power that is

determined by the protocol. In this case, the number of packets (np) could be

small or large. We refer to this model as Model A.

B. In the second model, referred to as Model B, we assume the transmission radius r

is fixed for all nodes in the graph. Hence, the graph can be modeled by a random

geometric graph, in which there is a link between two nodes i and j, which are

separated by distance rij if and only if rij ≤ r. In this case, we also assume

the links are lossy, i.e., a packet sent through a link between i and j, will be

2In fact, we have cij ∝ rα
ij . However, since we are interested in a comparison of different schemes,

and not the exact values of the energy, without loss of generality, we can consider the constant factor
as one.
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lost with a probability of ǫij . Therefore, the cost (energy) needed for successfully

delivering a packet from node i to node j is given by

cij =















rαγ
1−ǫij

if rij ≤ r

∞ otherwise

(52)

The factor 1
1−ǫij

reflects the fact that the channel capacity between two nodes i

and j is 1− ǫij packets per channel use, and hence the least number of required

packet transmissions to successfully deliver a packet is 1
1−ǫij

packets. This bound

can be achieved by using a capacity-achieving error-control code when np is large.

In the cases for which np is not very large, more packets may need to be sent, and

we consider this case by scaling with a parameter γ(np) ≥ 1, which is called the

coding overhead and is a decreasing function of np. To minimize the overhead γ

imposed by the coding scheme, np should be large.

In [44], several coding schemes were proposed for coding over line networks. The

proposed coding schemes all reach the capacity of each link, but they are different

in terms of delay and complexity of processing at each node. One of the suggested

coding schemes is to decode and re-encode at each node. The other coding scheme

is called greedy random coding. In greedy random coding, at each time slot,

each non-leaf node transmits random linear combinations (over GF (2)) of all the

packets it has received so far. The main advantage of this greedy random scheme,

aside from its adaptability to channel losses, is optimality in terms of delay. Its

drawback is high decoding complexity, which is O(n2
p log np) XOR operations on

packets [44].

It should be noted that for the cost models that we have assumed, the wireless cost

property mentioned in Section 7.2 is well-justified. For the first case, when a node i sends

a packet with a cost C, this packet reaches all the nodes within the radius α
√

C. Any

node j with cij < C, equivalently rij < α
√

C, receives the packet. For the second model,

since the transmission power for all the nodes is the same, the costs of a node i reaching

its different neighbors is proportional to the number of packet transmissions required to
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successfully deliver a packet to each of them. Clearly, communication with a higher cost

C, which corresponds to a greater number of transmissions, will be more than sufficient for

any neighbor j with cij < C to be able to retrieve the packet.

7.6 The Proposed Protocol for Finding Low-Cost Broadcast

Trees in Wireless Networks

We are interested in developing a simple and distributed protocol for finding low-cost broad-

cast trees in wireless networks. Before we explain our scheme, we give an example to show

how we can take advantage of the wireless medium to reduce the broadcast cost. Figure 7.2

depicts a small network in which node S is the source, and the cost of communication on

each link has been given on the top of it. We would like to establish the minimum-cost

broadcast tree. Figure 7.3 shows the tree found by the Bellman-Ford scheme. The total

cost for establishing this broadcast session is PS + PA + PD = 6. It is not hard to see

that the broadcast tree in Figure 7.4 has the minimum wireless cost, which is 4.5. We took

advantage of the fact that node D is the only neighbor of node E and has to send data to it

with a cost of two. Now, node B has two options for receiving data. It could get data from

node S, with an additional cost of two, or get data from node D with an additional cost of

0.5. Clearly, the latter is more cost efficient.
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Figure 7.2: A network of 6 nodes, in which S is the source node.
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Figure 7.3: The broadcast tree found by the BF algorithm. Here, P = 6.
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Figure 7.4: The minimum-cost broadcast tree. Here, P = 4.5.

Our proposed protocol works based on the following simple and local rule. Given a

broadcast tree, each node j other than the source tries to select the best parent. By the

best parent, we mean a neighbor that has to pay the smallest additional cost to be the

parent of j. In other words, each node j chooses its parent as follows:

P(j) = arg min
i∈P(j)∪T (j)

{∆cij} (53)

Clearly, to find P(j) from (53), node j has to know how much additional cost will incur if j

becomes a child to its non-child neighbors. This can be done by simple “HELLO” message

exchanges between the neighbors. This means that node j asks its non-child neighbors

i ∈ P(j) ∪ T (j) about its additional cost ∆cij , by sending REQ-∆cij message. These

neighbors reply back with the additional cost by sending an ACK-∆cij message, and j

decides about its parent. When the decision is made, j informs its neighbors about the

decision, and the neighbors update their lists accordingly. Specifically, j sends ACK-join

to the new parent it chose, ACK-release to its previous parent in the tree, and ACK-

unchanged to its other non-child neighbors. Clearly, the status of children of j will not

change at this step. As we mentioned, a child decides which node will be its parent and

not vice versa. To avoid any conflict, when a node i receives request for additional costs

from different neighbors, it will handle them one by one. Specifically, i responds to the first

requesting node and waits for its reply. After that, based on the new configuration in the

tree, i replies to the next requesting node and so on.

To implement this protocol in a network, we again consider the example in Figure 7.3.

We have ∆cSB = 2 and ∆cDB = 0.5. Therefore, node B chooses node D as its parent,

instead of node S. This results in the broadcast tree in Figure 7.4.

Since each decision is made locally, it might not lead to the best possible one. Moreover,
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since all the nodes are making new decisions, their new decisions may result in a different

decision for their neighbors later. Therefore, the algorithm needs to be run several times to

converge.

We call this scheme Broadcast Decremental Power (BDP) since each node tries to de-

crease the total broadcast power.

7.6.1 Cycle Occurrence

BDP, as explained above, may cause disconnectivity and cycles in a graph. This can be

best explained by the following example. Figure 7.5 depicts a graph and the broadcast tree

found by the Bellman-Ford scheme.

1 10

1

3

1S A B

C

D

Figure 7.5: The broadcast tree found by the BF algorithm.

If we apply BDP, we have ∆cAB = 10, and ∆cDB = 3. Therefore, B chooses to have

D instead of A as its parent. The resulting broadcast tree is depicted in Figure 7.6. As is

1 10

1

3

1S A B

C

D

Figure 7.6: Nodes B, C, and D form a cycle, which has to be avoided.

shown, nodes B, C, and D form a cycle, and they are isolated from the source node. One

way to overcome this problem is to have each node be aware of the list of all nodes included

in the path from the source node to itself. In this way, a node i will consider itself as a

potential parent for a neighboring node j if and only if j is not included in the path from

the source node to i. In the previous example (Figure 7.5), the path from S to D includes
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node B; therefore, node D cannot be a parent for B. Clearly, when the tree changes, all the

nodes have to update their path list. However, this scheme is a centralized one, and we are

interested in a decentralized scheme. Next, we propose a simple and decentralized scheme

for cycle avoidance.

7.6.2 The Proposed Cycle-Avoidance Scheme

As mentioned, BDP starts with a spanning tree. In this study, we consider the BFT, due to

the fact that it can easily be formed in a distributed fashion [6]. When the BFT is formed,

not only does each node know which of its neighbors is a parent, child, or neutral, but each

node also knows the total cost of the path from the source node to itself. We call this cost

the unicast cost, and denote this as uci, for node i. For example, in Figure 7.5, ucB = 11

and ucD = 13. Our proposed cycle-avoidance scheme uses these unicast costs in such a way

that a node i can be a potential parent for its neighboring node j only if uci < ucj . It can

be easily shown that this prevents the formation of cycles. Following this rule, in Figure 7.5,

node D cannot be a parent for node B. Therefore, BDP and BF result in the same tree,

which is the optimal one in this example. In contrast, in Figure 7.4, ucB = 3 and ucD = 2;

hence, node D can potentially be a parent for node B. For a node j, we denote the set of

its potential parents based on this cycle-avoidance scheme as PCA(j).

7.6.3 BDP: Broadcast Decremental Power

We now summarize the BDP protocol for a given network graph G(V,E,C) in Algorithm 4.
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Algorithm 4 Broadcast Decremental Power
Require: A spanning tree of Graph G, Lmax ∈ N. Each node has to know its unicast cost (uc) to

the source S.
1: for j ∈ V do

2: transmit: ucj

3: end for

4: for j ∈ V do

5: PCA(j) = {i|i ∈ N (j) ∧ uci < ucj}
6: end for

7: set iteration = 1
8: while iteration < Lmax do

9: for j ∈ V \ S do

10: transmit: REQ-∆cij to {i|i ∈ (P(j) ∪ T (j)) ∩ PCA(j)}
11: if j received ACK-∆cij from all i ∈ (P(j) ∪ T (j)) ∩ PCA(j) then

12: Pnew(j) = arg mini∈(P(j)∪T (j))∩PCA(j){∆cij}
13: transmit: ACKjoin to Pnew(j)
14: transmit: ACKrelease to P(j)
15: transmit: ACKunchanged to

(

(P(j) ∪ T (j)) ∩ PCA(j)
)

\ {Pnew(j),P(j)}
16: P(j)←− Pnew(j)
17: end if

18: if i received REQ-∆cij then

19: ∆cij = cij −maxk∈C(i)\{j}{cik}
20: transmit: ACK-∆cij to j
21: waits to receive ACKjoin, ACKrelease, or ACKunchanged from j
22: if i received ACKjoin from j then

23: C(i) = C(i) ∪ {j}
24: end if

25: if i received ACKrelease from j then

26: C(i) = C(i) \ {j}
27: end if

28: end if

29: end for

30: end while

Next, we prove that BDP protocol converges.

Lemma 7.1. Let C(l)(i) denote the set of children of a node i after the lth iteration, and

for each node i, P
(l)
i = maxj∈C(i) cij . Moreover, let us define the total broadcast cost after

the lth iteration of BDP as

P
(l)
BDP =

∑

i∈V

P
(l)
i . (54)

Then, P
(l)
BDP is a decreasing function of l, and it converges.

Proof. At any iteration l, each node in the BDP protocol selects its parent based on whether

or not the new parent reduces the total broadcast cost (P
(l)
BDP ). Therefore, the total cost

is a decreasing sequence of l. Moreover, P
(l)
BDP is bounded from below, since P

(l)
BDP ≥ 0 for

all l. From the monotone convergence theorem [4], we conclude the P
(l)
BDP is a convergent
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sequence that converges to a fixed point.

7.7 The Proposed Protocol for Finding Low-Cost Multicast

Trees in Wireless Networks

Even more complex than the broadcast problem is the problem of minimum-cost multicast

in wireless networks. In this section, we propose a simple extension of BDP that is suitable

for multicast.

7.7.1 MDP: Multicast Decremental Power

To obtain a low-cost multicast tree, we first form a broadcast tree using BDP. Next, the

broadcast tree is pruned by eliminating all transmissions that are not needed to reach the

destinations. In other words, nodes with no downstream destinations will not transmit.

Moreover, for the case with adjustable transmission ranges, each node adjusts its transmis-

sion range based on its farthest child in the multicast tree, with some more-distant children

perhaps already having been pruned. To form the multicast tree in a decentralized fashion,

we propose the following scheme. After the broadcast tree is formed, each destination node

that is a leaf in the multicast tree, sends a “join token” back to its parent. Parents that

receive a join token then send the tokens back to their parent and so on, until all the tokens

reach the source. Therefore, only the nodes that receive a join token know that they are

included in the multicast tree. Moreover, if a node receives a join token from its child, it

adds it to its children’s list for the multicast tree.

7.8 Computational Complexity of BDP and MDP

In this section, we estimate the computational complexity of the proposed algorithms. From

the setup (Algorithm 4), it can be seen that in the adjustable communication radius model,

N (j) is potentially of the order of Θ(N) for almost all j ∈ V . Thus, PCA(j) has a potential

size of Θ(N). Thus, to implement steps 1 through 6 in Algorithm 4, one potentially does

Θ(N2) computations. It can also be seen that implementing step 10 takes Θ(N) amount

of work, where as implementing 11 through 28 takes a constant amount of work. Thus, it

can be seen that the sum total of the work to implement steps 8 to 30 is Θ(LmaxN
2), which
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is also the same as the total order of complexity of the algorithm since steps 1 through 7

have a complexity of Θ(N2). While the order of complexity of BF algorithm is also Θ(N2),

BIP has a complexity of Θ(N3) [74]. Similarly, in the fixed communication radius scenario,

the expected size of N (j) and PCA(j) are both Θ(log N) with a high probability for any

j ∈ V . This will ensure that the BDP algorithm in the finite communication radius case

has a complexity of Θ(LmaxN log N). The complexity of MDP in the two models assumed

here is the same as that of BDP for the respective models since MDP uses BDP, and the

additional work is of the order of Θ(N), which is a small overhead compared to the work

already done to complete BDP.

7.9 Performance Evaluation: Adjustable Communication

Radius Model

In this section, we evaluate the performance of BDP and MDP for the case of the adjustable

communication radius model. We compare the cost of BDP with that of BF and BIP. We

also compare the cost of MDP with that of MIP and BF (as pruned for multicast).

7.9.1 Broadcast

First, we define PBDP , PBF , and PBIP to be the total power of a broadcast tree generated

by BDP, BF, and BIP, respectively. We can normalize these values by dividing them to the

power of the best scheme, i.e.,

ηBDP =
PBDP

min(PBDP , PBF , PBIP )
, (55)

ηBF =
PBF

min(PBDP , PBF , PBIP )
, (56)

ηBIP =
PBIP

min(PBDP , PBF , PBIP )
. (57)

We consider the example of a small network given in [74]. Figures 7.7, 7.8, and 7.9 depict

the broadcast tree rooted at node S formed by the BIP, BF, and BDP schemes, respectively.

We have PBIP = 10.9, PBF = 12.7, and PBDP = 6.3 for α = 2. Interestingly, BDP results

in the optimal tree, which was found by exhaustive search in [74]. This example, though

small, shows the potential that BDP has for reducing the broadcast cost.
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Figure 7.7: The broadcast tree formed by BIP. The broadcast cost is 10.9.
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Figure 7.8: The broadcast tree formed by BF. The broadcast cost is 12.17.
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Figure 7.9: The broadcast tree formed by BDP. The broadcast cost is 6.3.

Next, we consider 100 instances of networks generated as follows. We have N = 50

nodes are randomly deployed in an area 50m × 50m with the source node in the center of

the area. Figure 7.10 shows the normalized broadcast tree power ηBPD, ηBIP , and ηBF ,

for different network instances. As we can see, for most of the network instances, BDP has

a better performance than BIP. The average improvement in the power (cost) of the trees

generated by BDP in comparison with that of BIP and BF is 7.2% and 25.1%, respectively.

Figure 7.11 depicts the empirical probability distribution function for the number of it-

erations required for the convergence of BDP. We note that in 96% of the network instances,

134



10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Network

N
or

m
al

iz
ed

 T
re

e 
Po

w
er

BDP
BIP
BF

Figure 7.10: Normalized broadcast tree cost (power) for BDP, BIP, and BF, for 100 network
instances; 50-node networks, deployed in an area 50m× 50m.

three iterations or less is sufficient for convergence. Here, we also note that the number of

iterations is always less than or equal to five.
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Figure 7.11: Distribution of the number of iterations required for the convergence of BDP; 50-node
networks, deployed in an area 50m× 50m.

Next, we consider one instance of the aforementioned networks. Figures 7.12, 7.13,

and 7.14 depict the broadcast trees formed by the BIP, BF, and BDP schemes, respectively.

BDP converges in 3 iterations in this example. Assuming that α = 2, we have PBIP = 1268,

PBF = 1516, and PBDP = 964. We see that BDP reduces the broadcast cost by 24% and

36% compared to BIP and BF, respectively.

Comparing Figures 7.12 and 7.14, we observe many interesting differences that show
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Figure 7.12: The broadcast tree formed by BIP. The broadcast cost is 1268.
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Figure 7.13: The broadcast tree formed by BF. The broadcast cost is 1516.

the effectiveness of BDP in comparison with BIP. For example, in BIP, node A is a parent

for nodes B, D, and J. Moreover, node C has only F as its child, and D has only E as its

child. Having so few children reduces transmission efficiency. In BDP, however, the power

of A is just large enough to reach B. B is then a parent for C by a very small power, and

C is a parent of many nodes, i.e., D, E, F, G, I, and K. The fact that each node may have

more children means that the wireless channel property is better exploited in BDP.

Again, it should also be noted that BIP is a centralized scheme, while BDP is a dis-

tributed scheme. Therefore, not only does BDP result in a lower-cost tree, but it is also

scalable and more practical.
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Figure 7.14: The broadcast tree formed by BDP. The broadcast cost is 964.

Next, we consider another example. Figure 7.15 shows the normalized broadcast tree

cost (power) ηBPD, ηBIP , and ηBF , for 100 network instances. Networks include 20 nodes

that have been randomly deployed in an area 10m × 10m, with the source node in the

center of the area. As we can see, for most of the network instances, BDP has a better

performance than BIP. The average improvement in the cost of the trees generated by BDP

in comparison with that of BIP and BF is 15.8% and 26%, respectively.
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Figure 7.15: Normalized broadcast tree cost for BDP, BIP, and BF, for 100 network instances;
20-node networks, deployed in an area 10m× 10m.

Figure 7.16 depicts the empirical probability distribution function for the number of it-

erations required for the convergence of BDP. We note that in 93% of the network instances,

only one or two iterations are enough for convergence. We also note that the number of
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iterations is always less than or equal to four. Comparing Figures 7.16 and 7.11, we note

that when the number of nodes in the network decreases, the average number of iterations

for convergence of BDP also decreases.
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Figure 7.16: Distribution of the number of iterations required for the convergence of BDP; 20-node
networks, deployed in an area 10m× 10m.

7.9.2 Multicast

We compare the cost of MDP with that of MIP, and BF (as pruned for multicast). For all

three cases, we only consider the cost for reaching the destination nodes (which are a subset

of the total nodes in the network). Table 7.1 compares the gain of using MDP versus MIP

and BF, averaged over 100 network instances, for different number of destination nodes.

The networks include 50 nodes that have been randomly deployed in an area 10m × 10m,

with the source node in the center of the area. As we can see, when we only have one or two

destinations, BF performs better than MDP and MIP. The reason is that BF provides the

minimum-cost path to each destination. When the number of destinations is very small,

the wireless medium cannot be well exploited. We also note that when we have just one

destination (i.e., unicast), MIP has a better performance than MDP, since MDP takes

advantage of the wireless medium more than MIP does, and wireless medium cannot be

exploited in unicast. However, as the number of destination nodes increases, BF degrades

and MDP outperforms both BF and MIP. Next, we consider one sample of these networks.

Figures 7.17, 7.18, and 7.19 depict the multicast trees formed by MIP, BF, and MDP,
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Table 7.1: Average gain of using MDP versus MIP and BF for different number of destinations.
Average is taken over 100 network instances; 50-node networks, deployed in an area 10m× 10m.

# of destination nodes Gain: MDP vs. MIP Gain: MDP vs. BF

1 −15.6% −38.5%
5 1.31% −2.59%
15 5.07% 14.03%
25 5.88% 19.02%
35 6.7% 22.8%
50 7.2% 25.15%

respectively. The number of destination nodes is 15, all randomly chosen from the nodes in

the network. The destination nodes are indicated by lager circles. MDP reduces the cost

of multicast by 18.4% and 24.4% compared to MIP and BF, respectively.
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Figure 7.17: The multicast tree formed by MIP, for a network of 50 nodes and 15 randomly chosen
destination nodes. Destination nodes are indicated by larger circles.

7.10 Performance Evaluation: Fixed Communication Ra-

dius Model

In this section, we consider broadcast and multicast problems for graphs G(V,E,C), in

which the nodes have a fixed transmission radius r, and, as before, each edge has a cost

as was defined in (52). The proposed schemes remain the same even in this model, and

we compare them with the unpruned and pruned BF schemes. However, we can no longer

compare the results here with BIP and MIP, which work only when the nodes have an
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Figure 7.18: The multicast tree formed by BF, for a network of 50 nodes and 15 randomly chosen
destination nodes. Destination nodes are indicated by larger circles.
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Figure 7.19: The multicast tree formed by MDP, for a network of 50 nodes and 15 randomly
chosen destination nodes. Destination nodes are indicated by larger circles.

adjustable communication radius. Instead, in graphs with a small number of nodes, we

compare our schemes with NC. We could not simulate NC for large networks because of the

huge complexity of the optimization. NC is defined on a directed graph, and it becomes

unclear as to what directions links must be assigned to reach the optimal performance.

In this study, we have used directions based upon hop-distance from the source. On each

edge, directions are chosen so that the node having a smaller hop-distance can potentially

transmit packets to the one having the larger hop-distance. In cases where both ends of

an edge have the same hop-distance, the one closer to the source in the sense of Euclidean

distance can transmit to the one that is farther. We also present some simulations that
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compare BDP with CRBcast and FTS, proposed in Chapters 5 and 6, respectively.

7.10.1 Broadcast

Figure 7.20 depicts the normalized tree cost (power) PBDP
min(PBDP ,PBF ) and PBDP

min(PBDP ,PBF )

formed by BDP and BF, respectively when N = 200 nodes with transmission radius r = 20m

are randomly deployed in an area 100m × 100m, for 500 network instances. The links are

assumed to have packet erasure probabilities of either 0.45 or 0.55 with equal probabil-

ity, and link costs are assumed to be proportional to 1
1−ǫij

, which are 1.8182 and 2.2222,

respectively.
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Figure 7.20: Normalized broadcast tree cost (power) for BDP and BF, for 500 network instances.
N = 200 nodes with transmission radius r = 20m are randomly deployed in an area 100m× 100m.
The links are assumed to have packet erasure probabilities that are equiprobably either 0.45 or 0.55.

Figure 7.21 depicts average value
P

(l)
BDP
PBF

versus the number of iterations (l) of BDP. BDP

starts with the BF tree (iteration zero) and improves the broadcast cost about 41% in just

the first iteration. Improvement is about 49% in the second iteration, and 52% when the

BDP converges. These substantial improvements gained in just one or two iterations are

very desirable.

We also consider various scenarios with different link erasure values. Table 7.2 sum-

marizes the average gains of employing BDP compared to BF. We observe the following

interesting results. The highest gain among different link-cost scenarios is achieved when
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Figure 7.21: Average value
P

(l)
BDP

PBF
versus the number of iterations (l) of BDP. Substantial power

reduction occurs in just the first two iterations.

link costs are about the same (i.e., when ǫ = 0.45 or ǫ = 0.55 equiprobably), and the low-

est improvement happens when link costs are very different (i.e., when ǫ = 0.1 or ǫ = 0.9

equiprobably). We can explain this as follows. When the link costs are very different, BF

avoids a large number of very costly links. Hence, by applying BDP, those remaining costly

links are further avoided. Thus, the performance of BF and that of BDP are close. How-

ever, when the links have similar costs, the BDP algorithm can benefit a lot by changing

the links in the tree and making it suitable for wireless cases. Comparing this case with the

case that all links have the same cost (i.e., when ǫ = 0.5), we see the former has a better

gain.

Table 7.2: Average reduction in broadcast energy consumption of BDP compared to BF, for dif-
ferent link erasure probabilities (different link costs). Networks include 200 nodes with transmission
radius r = 20m, which are randomly deployed in an area 100m× 100m.

Link erasure Gain: BDP vs. BF

0.5 30%
0.45 or 0.55 equiprobably 52%
0.4 or 0.6 equiprobably 47%

0.35 or 0.65 equiprobably 43%
0.1 or 0.9 equiprobably 22%

Uniform in [0, 1] 42%

In Table 7.3, we compare the average gain of employing BDP versus NC for three
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different network topologies, and also for three link erasure scenarios. As can be seen, in

most cases, BDP outperforms NC because in BDP the directions of the edges are not pre-

fixed and are selected based on the costs, whereas NC assumes a fixed directed graph. The

maximum gain is 67.91%. There are few cases that NC outperforms BDP by less than 2%.

Table 7.3: Average reduction in broadcast energy consumption of BDP compared to NC for
different network topologies and different link erasure scenarios. Networks consist of N nodes with
transmission range r meter deployed uniformly at random in an area 100m× 100m.

Link erasure (N, r) Gain: BDP vs. NC

0.1 or 0.9 equiprobably (15, 23) 11.30%
,, (20, 22) 8.17%
,, (25, 21) 3.25%

0.45 or 0.55 equiprobably (15, 23) 5.27%
,, (20, 22) 1.27%
,, (25, 21) -1.37%

Uniform in [0, 1] (15, 23) -1.95%
,, (20, 22) 21.95%
,, (25, 21) 67.91%

We also simulate BDP for the same network topology that we used to simulate CRBcast

(in Section 5.4.3) and FTS (in Section 6.4.1.2). The network consists of N = 104 nodes with

transmission range r = 50m, deployed uniformly at random in an area A = 2000m×2000m.

The links are assumed to be lossless, i.e., ǫ = 0. Table 7.4 presents the results. As can be

seen, in comparison with CRBcast, BDP improves the energy efficiency by 13.5%. This is

not a substantial improvement and as we see, FTS results in a better improvement than

BDP. The reason is that in this case, the links are lossless and the transmission range is

fixed for all the nodes. Therefore, all the links have the same cost. However, BDP improves

the broadcast cost significantly when the link costs are very different, by avoiding the more

costly links.

Our next results are based on simulating FTS, BF, and BDP in lossy networks, with

different scenarios for link losses. We also considered two network topologies, N = 200 and

500 nodes with transmission ranges r = 15m and 10m, respectively, deployed randomly in
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Table 7.4: Comparison of N/p/n in BDP, BF, FTS, and CRBcast. The value of p is chosen as 0.25
for CRBcast.

Broadcasting Scheme N/p/n

CRBcast 0.2769
FTS (without the fraction reduction phase) 0.2073

FTS (with the fraction reduction phase) 0.1600
BDP 0.2395

an area 100m×100m. The simulation results are given in Table 7.5. As is shown, when link

erasure probabilities or equivalently link costs are the same or very close, FTS has better

or similar performance compared to BDP. However, when the link erasure probabilities

are very different, BDP outperforms FTS since BDP takes into account the link costs and

decreases the broadcast cost accordingly.

Table 7.5: Comparison of N/p/n in FTS, BF, and BDP in lossy networks, with different scenarios
for link losses. Networks consist of N nodes with transmission range r meter deployed uniformly at
random in an area 100m× 100m.

Link erasure (N, r) FTS BF BDP

0.5 (200, 15) 0.442 0.734 0.541
,, (500, 10) 0.401 0.76 0.523

0.45, 0.55 equiprobably (200, 15) 0.487 0.83 0.473
,, (500, 10) 0.442 0.868 0.45

0.4, 0.6 equiprobably (200, 15) 0.55 0.83 0.50
,, (500, 10) 0.49 0.86 0.47

0.35, 0.65 equiprobably (200, 15) 0.62 0.831 0.51
,, (500, 10) 0.567 0.84 0.49

0.2, 0.8 equiprobably (200, 15) 1.07 0.62 0.51
,, (500, 10) 0.978 0.607 0.482

0.1, 0.9 equiprobably (200, 15) 2.12 0.57 0.48
,, (500, 10) 1.95 0.55 0.442

7.10.2 Multicast

For multicast, we consider a network consisting of N = 1000 nodes with a transmission

radius r = 8m, which are deployed uniformly at random in a square field with area 100m×

100m. The source node is placed in the center of the field. The links are assumed to have
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packet erasure probabilities of either 0.45 or 0.55 with equal probability. We consider cases

for which the number of destination nodes is 1, 10 ,25, 50, 100, 250, 500, and 1000. Table 7.6

summarizes the average reduction in multicast energy consumption of MDP compared to

BF. The average has been taken over 50 network instances. As we can see, for the case

that has only one destination node (unicast) BF provides a much better result than MDP.

However, the gain of applying MDP increases as the number of destination nodes increases.

For the special case of broadcast, MDP reduces the energy consumption by 55.46%.

Table 7.6: Average reduction in multicast energy consumption of MDP compared to BF for dif-
ferent number of destinations. The average is taken over 50 network instances; 1000-node networks,
deployed in an area 100m× 100m. Transmission radius r = 8m, and the links’ erasure probabilities
are equiprobably either 0.45 or 0.55.

# of destination nodes Gain: MDP vs. BF

1 −23.63%
10 −9.19%
25 2.81%
50 16.29%
100 26.8%
250 40.21%
500 48.46%
1000 55.46%

Next, we consider one instance of the above network topology with 100 destination

nodes. Figures 7.22 and 7.23 depict the multicast trees formed by BF and MDP, respec-

tively. The destination nodes are indicated by rings. The links’ erasure probabilities are

equiprobably either 0.45 or 0.55, and the links with larger losses are indicated by thinner

(and lighter-color) lines. We note that the number of relaying nodes in the BF tree is 198

while this number is 128 in the MDP tree. In MDP, on the average, one transmission ben-

efits more nodes than it does in BF. We have PBF = 2.42 × 104 and PMDP = 1.61 × 104.

This means 33% reduction in multicast energy consumption.

145



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 7.22: The multicast tree formed by BF, for a network of 1000 nodes with transmission
radius r = 8m and 100 randomly chosen destination nodes. The source node is in the center of the
area. Destination nodes are indicated by rings. The links’ erasure probabilities are equiprobably
either 0.45 or 0.55, and links with larger losses are indicated by thinner (and lighter-color) lines.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 7.23: The multicast tree formed by MDP, for a network of 1000 nodes with transmission
radius r = 8m and 100 randomly chosen destination nodes. The source node is in the center of the
area. Destination nodes are indicated by rings. The links’ erasure probabilities are equiprobably
either 0.45 or 0.55, and links with larger losses are indicated by thinner (and lighter-color) lines.
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In Table 7.7, we compare the average gain achieved by employing MDP versus em-

ploying NC for three different network topologies when the links’ erasure probabilities are

equiprobably either 0.1 or 0.9, and when 10 nodes are randomly chosen as destination nodes.

As we can see, MDP outperforms NC due to its flexibility to choose the directions of the

links in networks.

Table 7.7: The average gain of MDP versus NC for different network topologies. Networks consist
of N nodes with transmission range r meter deployed uniformly at random in a square area 100m×
100m. The links’ erasure probabilities are equiprobably either 0.9 or 0.1. Number of destinations,
which are randomly selected, is 10.

(N, r) Gain: MDP vs. NC

(15, 23) 17.7%
(20, 22) 14.14%
(25, 21) 30.16%

7.11 Conclusion

In this chapter, we considered the important and challenging problem of finding minimum-

cost broadcast and multicast trees in wireless networks. The problem is an NP-complete

problem. We proposed two simple and heuristic suboptimal protocols, referred to as broad-

cast decremental power (BDP) and multicast decremental power (MDP), that exploit the

wireless medium property to reduce broadcast/multicast costs. The proposed schemes also

have the advantage of being distributed and scalable. They are based on evolving a given

spanning tree (e.g., Bellman-Ford tree) such that the cost of the resulting tree is reduced

by considering the wireless broadcast medium. We showed that the proposed schemes con-

verge, and that the complexity of their implementation is at most quadratic in number of

nodes in a network. We considered two communication radius models, adjustable and fixed.

In the former, we compared our schemes with BF, BIP (for the broadcast case), a pruned

BF and MIP (for the multicast case). For the latter, we compared the proposed scheme

with BF, CRBcast, FTS, and NC (which we could implement only for small networks due

to the complexity of optimization). For both models, simulation results demonstrated the

superiority of the proposed schemes in terms of reducing broadcast/multicast costs in the
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majority of the scenarios. Our simulations confirm that BDP substantially improves the

broadcast cost in comparison with BF, BIP, and NC. MDP also improves the multicast cost

considerably in comparison with BF, MIP, and NC, when the destination nodes are not

very few.
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CHAPTER VIII

CONCLUSION

8.1 Contributions

In this dissertation, we explored and investigated new theoretical and practical challenges

in the application of modern error-control coding schemes, namely low-density parity-check

(LDPC) codes and rateless codes, in error-prone wireless ad-hoc and sensor networks. The

application of coding in such networks is necessary not only because of the noisy nature of

wireless channels, but also because of the nature of communications in wireless ad-hoc and

sensor networks.

First, we studied the problem of unequal error protection and designed several coding

schemes for practical applications such as multimedia communication in wireless ad-hoc and

sensor networks. Next, we examined the problem of reliable and energy-efficient broadcast

and multicast in such networks. The communication in wireless ad-hoc and sensor networks

is usually done in a multihop fashion, and each single transmission can potentially be

received by all the neighboring nodes. These properties provide new opportunities and also

challenges. One challenge is to determine the optimal set of nodes in the network that

forward packets. A second challenge is to determine the content of the forwarded packets.

In other words, should forwarding nodes only relay the incoming packets or also process the

packets (i.e., do mathematical operations on the packets and encode them) before sending

them? These challenges fit into the context of coding within a network, introduced for the

first time by Ahlswede et al. in 2000 [2]. A part of our work was to tackle these problems

using different approaches that touch on the four very large fields of wireless networking,

modern coding theory, graph theory, and percolation theory.

Next, we summarize the contributions of this dissertation:
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8.1.1 Design and Analysis of Unequal Error Protection Low-Density Parity-
Check Codes

We introduced two frameworks for the design and analysis of LDPC codes that provide

unequal error protection (UEP) [52, 57, 58], with a potential application in multimedia

communication in wireless networks. The two proposed schemes [49,52,57,58] can provide

a higher protection for more important parts of data and less protection for less important

parts. The first scheme is based on traditional bipartite Tanner graphs and the second

scheme is based on combining two Tanner graphs resulting a 3-partite ensemble. For both

schemes, we derived density evolution formulas on the binary erasure channel and used

these formulas to optimize the degree distribution of the codes. Using these techniques, we

found codes with overall good performance as well as significant UEP property. We also

showed that the proposed codes have linear encoding complexity, which is very desirable for

practical applications. Using the density evolution formulas, one can optimize codes based

on the requirements of a given problem.

8.1.2 Design and Analysis of Unequal Error Protection Rateless Codes

We developed rateless codes that provide UEP [54, 56, 59]. All other studies thus far were

based on designing rateless codes for equal error protection, and this study is the first one

to propose UEP-rateless codes. To analyze the proposed codes, we first investigated the

performance of these codes under the iterative decoding when the number of information

symbols (n) goes to infinity. Then, we examined the performance of the proposed codes

under the ML decoding for finite-length n. We derived upper and lower bounds on ML

decoding bit error probabilities for the proposed codes and showed that UEP-rateless codes

are able to provide very low error rates for more important bits with only a small per-

formance loss for the less important bits. Moreover, we showed that given a target bit

error rate, different parts of the information symbols can be decoded after receiving differ-

ent numbers of encoded symbols. This implies that the information can be recovered in

a progressive manner. This property is of interest in many practical applications such as

media-on-demand systems.
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8.1.3 Analysis of Rateless Codes under the Maximum-Likelihood Decod-
ing

We derived upper and lower bounds on the maximum-likelihood (ML) decoding of finite-

length rateless codes [53]. The bounds are shown to be tight for small error rates. These

bounds on ML decoding are of interest, as they provide an ultimate limit on the code

performance. Specifically, they can be used to optimize the degree distribution of rateless

codes when the decoding scheme performs similar or close to the ML decoding. Examples

of such decoding schemes are the Maxwell [40] and the guessing-based [48] decoders.

8.1.4 Rateless (Fountain) Coding for Reliable and Energy-Efficient Broad-
cast in Wireless Ad-Hoc and Sensor Networks

We studied the application of rateless codes in efficient data broadcasting in wireless sensor

networks. We proposed two main protocols, each of which assumes a different level of

information about the network topology and offers a solution accordingly. The proposed

schemes are energy efficient and provide reliable data delivery to all the nodes in the network.

They are also distributed and scalable and have low implementation complexity.

8.1.4.1 Collaborative Rateless Broadcast

We proposed the collaborative rateless broadcast (CRBcast) protocol [55], which is a two-

phase protocol that utilizes rateless coding in conjunction with a simple and scalable broad-

cast scheme called probabilistic broadcast (PBcast). Since the characteristics of PBcast

influence CRBcast, we investigated PBcast analytically and with simulations. Then, we

investigated the effectiveness of CRBcast. We extensively studied the properties of CRB-

cast by analysis and simulations. We concluded that CRBcast is not only a reliable and

energy efficient scheme but also a scalable scheme that requires no knowledge of the network

topology.

8.1.4.2 Fractional Transmission Scheme

We proposed a fractional transmission scheme (FTS) for the cases in which each node knows

its hop distance from the source and those of its immediate neighbors [62, 63]. This extra
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information can be exploited so that different neighbors of a node share the data delivery,

and each node sends only a fraction of the total encoded packets required by a receiving

node. By utilizing rateless encoding and decoding at each node, FTS provides reliability and

energy efficiency. We compared FTS with several competitive schemes such as broadcast

incremental power (BIP) and network coding (NC). The results suggest that although BIP is

a centralized scheme and NC utilizes a computationally expensive optimization, the energy

efficiency of FTS is comparable to the energy efficiency of BIP and NC. Because of its ease

of implementation, low complexity, and competitive performance, FTS is a viable approach

for broadcasting in large-scale wireless ad-hoc and sensor networks.

8.1.5 Efficient Broadcast and Multicast Trees for Wireless Networks

We proposed broadcast decremental power (BDP) for general wireless networks, in which

each link has been assigned a cost according to the distance between its incident nodes

or its erasure probability, and each node in the network is aware of the value of the costs

of its incident links [61]. BDP finds a low-cost (low-energy) broadcast tree for a wireless

network. We also extended BDP for multicasting in wireless networks, denoted as multicast

decremental power (MDP). Our simulations confirm that BDP substantially improves the

broadcast cost in comparison with the Bellman-Ford (BF) scheme, BIP, and NC. MDP also

improves the multicast cost considerably in comparison with BF, MIP, and NC, when the

number of destination nodes is not too small. Both BDP and MDP also have the advantage

that they can be implemented in such a way that they provide low-latency broadcast and

multicast.

8.2 Suggestions for Future Research

This dissertation opened up many interesting theoretical and practical research possibilities

in error-control coding, wireless ad-hoc and sensor networks, and other related areas in com-

munications and signal processing. In the following, some of the interesting and potentially

rich open directions for future research are listed.

• Applying the proposed unequal error protection schemes to practical scenarios such
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as video streaming and media-on-demand systems

• Joint image processing and UEP coding

• Designing short- to moderate-length rateless codes, whose iterative decoding and ML

decoding performance are close, using the ML decoding bounds derived in this thesis

• Multimedia broadcasting/multicasting in wireless sensor and actor networks utilizing

the proposed UEP coding schemes

• Extending CRBcast and FTS to efficient multicasting in wireless ad-hoc and sensor

networks

• Extending the application of rateless-coding based broadcasting to mobile ad-hoc

networks
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APPENDIX A

SUPPLEMENTARY FOR CHAPTER 4

Proof of Lemma 4.9. Let us assume that H ′ is the parity-check matrix corresponding to

the pre-code C. Moreover, let H ′
e be an m × e matrix composed of the columns of H ′

that correspond to the variable nodes that have not been recovered after the LT-decoding

process. Note that elements of H ′
e are independently one with probability ρ. We want

to obtain the probability that the ith bit cannot be determined either by the LT decoder

or by the pre-code decoder, for an arbitrary i ∈ {1, 2, . . . , n}. Let the jth column in H ′
e

correspond to the ith input bit of the LT code. We have

Pr{The pre-code fails to determine the ith bit}

= Pr{∃x ∈ GF (2)e, x(j) = 1 : H ′
ex

T = 0T }

≤
∑

x∈GF (2)e, x(j)=1

Pr{H ′
ex

T = 0T }

Let x ∈ GF (2)e, x(j) = 1, and weight of x is w. Let Rl denote the lth row of H ′
e. We have

Pr{H ′
ex

T = 0T } =

m
∏

l=1

Pr{Rlx
T = 0}.

Note that the events Rlx
T = 0 for l = 1, . . . ,m are equiprobable and independent. Let

A(w, ρ) be the probability that even number of 1’s occurs in a stream of independent 0’s

and 1’s of length w when probability of 1 is ρ. We have

Pr{Rlx
T = 0} = A(w, ρ) (58)

=
1 + (1− 2ρ)w

2
, (59)

where (59) is concluded from Lemma A.2 in Appendix A. Assuming that ǫ is the bit error

probability of the LT code, we conclude

pML
b ≤

n
∑

e=0

(

n

e

)

ǫe(1− ǫ)n−e e

n
min

{

1,

e
∑

w=1

(

e− 1

w − 1

)

Am(w, ρ)

}

. (60)

However, instead of the exact value of ǫ, we have bounds on it. Assuming ǫU is an upper

bound on ǫ and using Lemma A.1 in Appendix A we can easily conclude the assertion.
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Proof of Lemma 4.10. Consider H ′
e as was defined before. Let the jth column in H ′

e corre-

spond to the ith bit. We have:

Pr{The pre-code fails to determine the ith bit}

= Pr{∃x ∈ GF (2)e, x(j) = 1 : H ′
ex

T = 0T }

≥
∑

x∈GF (2)e,x(j)=1

Pr{H ′
ex

T = 0T }

− 1

2

∑

x,y∈GF (2)e, x(j)=1, y(j)=1, x 6=y

Pr{H ′
ex

T = 0T ,H ′
ey

T = 0T }

in which the inequality results in from the Bonferroni inequality [12]. The first term can be

calculated using Lemma 4.9. Let x, y ∈ GF (2)e such that x(j) = 1, y(j) = 1, and x 6= y.

We define three binary vectors z0, z1, and z2 ∈ GF (2)e such that for t = 1, . . . , e, z0(t) = 1

if and only if x(t) = 1 and y(t) = 1, z1(t) = 1 if and only if x(t) = 1 and y(t) = 0, and

z2(t) = 1 if and only if x(t) = 0 and y(t) = 1. Let w0, w1, and w2 be the weights of vectors

z0, z1, and z2, respectively. We have

Pr{H ′
ex

T = 0T ,H ′
ey

T = 0T } (61)

=

m
∏

l=1

Pr{Rlz
T
0 = Rlz

T
1 = Rlz

T
2 } (62)

=

(

A(w0, ρ)A(w1, ρ)A(w2, ρ) + A(w0, ρ)A(w1, ρ)A(w2, ρ)

)m

(63)

in which Rl denotes the lth row of H ′
e, (62) is resulted from the independency of

the elements of H ′
e, and (63) is obtained easily by the definition of A(.) as (31)

and A(·) := 1 − A(·). Summing over all possible values for e, w0, w1, and w2 and

noting that w1 and w2 cannot be zero simultaneously (since x 6= y), we conclude the

assertion.

Lemma A.1. Let us define g(ǫ) =
∑n

e=0

(

n
e

)

ǫe(1−ǫ)n−ef(e). Then, g(ǫ) is a non-decreasing

function of ǫ if f(e) is a non-decreasing function of e.

Proof. (By Badri N. Vellambi) Let us define hǫ1(e) =
(n

e

)

ǫe
1(1−ǫ1)

n−e and hǫ2(e) =
(n

e

)

ǫe
2(1−

ǫ2)
n−e. We need to show that if ǫ2 > ǫ1 then

∑n
e=0 hǫ2(e)f(e) ≥ ∑n

e=0 hǫ1(e)f(e). Since

ǫ2 > ǫ1 and due to the nature of functions hǫ1(e) and hǫ2(e) it can be easily shown that
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there exists an integer e0 such that hǫ2(e) > hǫ1(e) if and only if e ≥ e0. Therefore,

n
∑

e=0

(

hǫ2(e)− hǫ1(e)
)

f(e)

=
∑

e:hǫ2(e)>hǫ1 (e)

(

hǫ2(e)− hǫ1(e)
)

f(e)

−
∑

e:hǫ2(e)≤hǫ1 (e)

(

hǫ1(e)− hǫ2(e)
)

f(e)

≥ f(e0)
n
∑

e=e0

(

hǫ2(e) − hǫ1(e)
)

− f(e0 − 1)

e0−1
∑

e=0

(

hǫ1(e) − hǫ2(e)
)

= (f(e0)− f(e0 − 1))

n
∑

e=e0

(

hǫ2(e)− hǫ1(e)
)

≥ 0,

(64)

where in (64), we use the fact that

n
∑

e=0

hǫ1(e) =

n
∑

e=0

hǫ2(e) = 1.

Therefore,

n
∑

e=e0

(

hǫ2(e)− hǫ1(e)
)

=

e0−1
∑

e=0

(

hǫ1(e)− hǫ2(e)
)

.

Lemma A.2. Let x be a random binary vector of length ω. Each element of x is indepen-

dently 1 with probability ρ. Then, A(ω, ρ) defined as the probability that x has even number

of 1 is given by

A(ω, ρ) =
1 + (1− 2ρ)ω

2
. (65)

Proof. Since elements of x are chosen independently, we have:

A(ω, ρ) =
∑

i=0,2,...,2⌊ω
2
⌋

(

ω

i

)

ρi(1− ρ)ω−i. (66)

From binomial series, we have:

(ρ + (1− ρ))ω =

ω
∑

i=0

(

ω

i

)

ρi(1− ρ)ω−i, (67)

and

(−ρ + (1− ρ))ω =

ω
∑

i=0

(

ω

i

)

(−ρ)i(1− ρ)ω−i. (68)
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Adding two sides of (67) and (68), we conclude

1 + (1− 2ρ)ω =
ω
∑

i=0

(

ω

i

)

[(−ρ)i + ρi](1− ρ)ω−i (69)

=
∑

i=0,2,...,2⌊ω
2
⌋

(

ω

i

)

2ρi(1− ρ)ω−i (70)

= 2A(ω, ρ). (71)

Therefore,

A(ω, ρ) =
1 + (1− 2ρ)ω

2
. (72)
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APPENDIX B

SUPPLEMENTARY FOR CHAPTER 6

Lemma B.1. Let r ∈ N, r ≥ 2, M = {α ∈ [0, 1]r : αi + αi+1 ≥ 1, i ∈ 1, . . . , r − 1, α1 =

1, αr = 1}, then

Tr , min
α∈M

∑

i

αi = ⌈r + 1

2
⌉ (73)

Proof. (By Badri N. Vellambi) Suppose that r is even. Then,

Tr = min
α∈M

(

α1 + (α2 + α3) + . . . + (αr−2 + αr−1) + αr

)

≥ r + 2

2
. (74)

It can be seen that the equality is attained at α∗ = (α∗
1, . . . , α

∗
r), where α∗

i =







1 if i = 1, r

0.5 otherwise

In the case that r is odd, we see that

Tr = 2 + min
α∈M

((α2 + α3) + . . . + (αr−3 + αr−2) + αr−1) ≥
r + 1

2
. (75)

Clearly, the equality is attained at α∗ = (α∗
1, . . . , α

∗
r), where α∗

i =







1 if i is odd

0 otherwise

Lemma B.2. Let r ∈ N, r > 1. Let M = {α ∈ [0, 1]r : αi + αi+1 ≥ 1, ∀ i = 1, ..., r − 1}.
Then

T
′

r , min
α∈M

r
∑

i=1

αi = ⌊r
2
⌋ (76)

Proof. (By Badri N. Vellambi) Let r be even. Then

T
′

r = min
α∈M

(α1 + ... + αr) = min
α∈M

(

(α1 + α2) + ...(αr−1 + αr)

)

≥ r

2
. (77)

It can be verified that this minimum is attained at α = α∗ = (α∗
1, . . . , α

∗
r), where α∗

i = 1
2 ,

i = 1, . . . , r. In the case that r is odd,

T
′

r = min
α∈M

(

(α1 + α2) + ...(αr−2 + αr−1) + αr

)

(78)

≥ min
α∈M

(

(α1 + α2) + ...(αr−2 + αr−1)

)

+ min
α∈M

αr ≥
r − 1

2
. (79)
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Moreover, it can be seen that the bound is reached at α∗ = (α∗
1, . . . , α

∗
r), where

α∗
i =







0 if i is odd

1 otherwise
.
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