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SUMMARY

In this dissertation we study the feature selection and classification problems and

apply our methods to real-world medical and biological data sets for disease diagnosis.

Classification is an important problem in disease diagnosis to distinguish patients

from normal population. DAMIP (discriminant analysis – mixed integer program)

was shown to be a good classification model, which can directly handle multigroup

problems, enforce misclassification limits, and provide reserved judgement region.

However, DAMIP is NP-hard and presents computational challenges. Feature se-

lection is important in classification to improve the prediction performance, prevent

over-fitting, or facilitate data understanding. However, this combinatorial problem

becomes intractable when the number of features is large.

In this dissertation, we propose a modified particle swarm optimization (PSO),

a heuristic method, to solve the feature selection problem, and we study its param-

eter selection in our applications. We derive theories and exact algorithms to solve

the two-group DAMIP in polynomial time. We also propose a heuristic algorithm

to solve the multigroup DAMIP. Computational studies on simulated data and data

from UCI machine learning repository show that the proposed algorithm performs

very well. The polynomial solution time of the heuristic method allows us to solve

DAMIP repeatedly within the feature selection procedure.

We apply the PSO/DAMIP classification framework to several real-life medical

xiii



and biological prediction problems. (1) Alzheimer’s disease: We use data from several

neuropsychological tests to discriminate subjects of Alzheimer’s disease, subjects of

mild cognitive impairment, and control groups. (2) Cardiovascular disease: We use

traditional risk factors and novel oxidative stress biomarkers to predict subjects who

are at high or low risk of cardiovascular disease, in which the risk is measured by

the thickness of the carotid intima-media or/and the flow-mediated vasodilation. (3)

Sulfur amino acid (SAA) intake: We use 1H NMR spectral data of human plasma

to classify plasma samples obtained with low SAA intake or high SAA intake. This

shows that our method helps for metabolomics study. (4) CpG islands for lung

cancer: We identify a large number of sequence patterns (in the order of millions),

search candidate patterns from DNA sequences in CpG islands, and look for patterns

which can discriminate methylation-prone and methylation-resistant (or in addition,

methylation-sporadic) sequences, which relate to early lung cancer prediction.

xiv



CHAPTER I

CLASSIFICATION

This chapter introduces the classification problem, summarizes the mathematical-

programming-based classification methods, and discusses Anderson’s model and its

related mixed integer programming model.

1.1 Introduction

The goal of classification is to predict the group of an observation from its features.

We use the famous iris data set [36, 37] as an example to describe the classification

problem. In this data set there are three types of irises: setosa, versicolour, and

virginica. Regardless of the type, each iris sample is measured by (1) sepal length in

cm (centimeter), (2) sepal width in cm, (3) petal length in cm, and (4) petal width

in cm. Here is part of the data.

Iris-setosa 5.1 3.5 1.4 0.2

Iris-setosa 4.9 3.0 1.4 0.2

...

Iris-versicolor 7.0 3.2 4.7 1.4

Iris-versicolor 6.4 3.2 4.5 1.5

...

Iris-virginica 6.3 3.3 6.0 2.5

Iris-virginica 5.8 2.7 5.1 1.9

...

Each iris sample is an observation, the type of the irises is the group, and the measures

of the iris sample are the features. Given observations in which the corresponding
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groups are known, the goal is to find a function to “predict” the group from the fea-

tures, and we want the predicted group to match the real group as likely as possible.

The data used to train the predictive function is called the training data. We want

the function to be predictive not only for the training data but also for data which

are not used for training, or testing data.

We introduce the notations used in the dissertation. Suppose in the data we

have n observations from K groups with m features. Let G = {1, 2, · · · , K} be the

set of indices of the groups, O = {1, 2, · · · , n} be the set of indices of the obser-

vations, and F = {1, 2, · · · ,m} be the set of indices of the features. Also, let Ok,

k ∈ G and Ok ⊆ O, be the set of indices of observations which belong to group

k. Moreover, let Fj, j ∈ F , be the domain of the jth feature, which could be the

space of real, integer, or binary values. The ith observation, i ∈ O, is represented as

(yi,xi) = (yi, xi1, · · · , xim) ∈ G×F1×· · ·×Fm, where yi is the group of observation i

and (xi1, · · · , xim) is the feature vector of observation i. In the classification problem,

we want to find a function f : (F1 × · · · × Fm) → G so that we can obtain the pre-

dicted group from the features. This function is sometimes called the decision rule.

Different classification models or methods refer to different forms of decision rules.

The classification methods can be parametric or nonparametric. In parametric

methods, data are assumed to follow some parametric distribution, while in non-

parametric methods, no distribution assumption is made. Examples of parametric

methods include linear discriminant analysis (LDA) and quadratic discriminant anal-

ysis (QDA); examples of nonparametric methods include support vector machine and

k-nearest-neighbor algorithm.
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1.2 Classification via Mathematical Programming

Mathematical-programming-based classification methods emerge in the 1960’s, gain

popularity in the 1980’s, and have grown drastically ever since. Most mathematical

programming approaches are nonparametric—cited as an advantage when contami-

nated data sets are analyzed [144]. Most of the literature on mathematical program-

ming methods is concerned with finding hyperplanes in the feature space to separate

data from different groups, in which mathematical programming is used to determine

the coefficients of the hyperplanes.

1.2.1 Linear Programming Classification Models

The use of linear programming (LP) to determine the coefficients of linear discrimi-

nant functions has been widely studied [38, 57, 64, 96]. The methods determine the

coefficients for different objectives, including minimizing the sum of distances to the

separating hyperplane of the observations, minimizing the maximum distance to the

hyperplane of the observations, maximizing some measures of goodness of fit, and so

on.

1.2.1.1 Two-group Classification

One of the earliest LP classification models is proposed by Mangasarian [96], which

constructs a hyperplane to separate data from two groups. Separation by a nonlinear

surface using LP is also proposed when the surface parameters appear linearly. Two

sets of points may be inseparable by one hyperplane or surface through a single-step

LP approach, but they can be strictly separated by more hyperplanes or surfaces via

a multi-step LP approach [97]. In [97] real problems with up to 117 data points, 10

features, and 3 groups are solved. The 3-group separation is achieved by separating

group 1 from groups 2 and 3, and then group 2 from group 3.
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Studies of LP models for the discriminant problem in the early 1980’s are car-

ried out by Hand [60], Freed and Glover [38, 39], and Bajgier and Hill [5]. Three

LP models for the two-group classification problem, including minimizing the sum

of deviations (MSD), minimizing the maximum deviation (MMD), and minimizing

the sum of interior distances (MSID) are proposed. Freed and Glover [40] provide

computational studies of these models where the test conditions involve normal and

non-normal populations.

MSD (Minimizing the sum of deviations)

min
∑
i∈O

di

s.t. w0 +
∑
j∈F

xijwj − di ≤ 0 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + di ≥ 0 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

di ≥ 0 ∀ i ∈ O

Note that urs is the abbreviation of unrestricted in sign.
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MMD (Minimizing the maximum deviation)

min d

s.t. w0 +
∑
j∈F

xijwj − d ≤ 0 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + d ≥ 0 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

d ≥ 0

MSID (Minimizing the sum of interior distances)

min pd−
∑
i∈O

ei

s.t. w0 +
∑
j∈F

xijwj − d+ ei ≤ 0 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + d− ei ≥ 0 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

d ≥ 0

ei ≥ 0 ∀ i ∈ O

where p is a weight constant.

The objective function of the MSD model is the L1-norm distance while the ob-

jective function of MMD is the L∞-norm distance. They are special cases of Lp-norm

classification [64, 145].

In some models the constant term of the hyperplane is a fixed number instead of

a decision variable. The model MSD0 shown below is an example in which the cut-off
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score b replaces w0 in the formulation. The same replacement can apply to other

formulations.

MSD0 (Minimizing the sum of deviations with constant cut-off score)

min
∑
i∈O

di

s.t.
∑
j∈F

xijwj − di ≤ b ∀ i ∈ O1

∑
j∈F

xijwj + di ≥ b ∀ i ∈ O2

wj urs ∀ j ∈ F

di ≥ 0 ∀ i ∈ O

A gap can be introduced between the two regions determined by the separating

hyperplane to prevent degenerate solutions. Take MSD as an example, the separation

constraints become

w0 +
∑
j∈F

xijwj − di ≤ −ε ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + di ≥ ε ∀ i ∈ O2.

The small number ε can be normalized to 1.

Besides introducing a gap, another normalization approach is introducing normal-

ization constraints such as
∑m

j=0 wj = 1 or
∑m

j=1 wj = 1 into the LP models to avoid

unbounded or trivial solutions.

Glover et al. [56] generalize the MSID model and give the hybrid model.
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Hybrid model

min pd+
∑
i∈O

pidi − qe−
∑
i∈O

qiei

s.t. w0 +
∑
j∈F

xijwj − d− di + e+ ei = 0 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + d+ di − e− ei = 0 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

d, e ≥ 0

di, ei ≥ 0 ∀ i ∈ O

where p, pi, q, qi are the cost for different deviations. Including different combinations

of deviation terms in the objective function then leads to variant models.

Joachimsthaler and Stam [64] review and summarize LP formulations applied to

two-group classification problems in discriminant analysis, including MSD, MMD,

MSID, and the hybrid model. They summarize the performance of the LP methods

together with the traditional classification methods such as Fisher’s linear discrimi-

nant function (LDF) [36], Smith’s quadratic discriminant function (QDF) [142], and

a logistic discriminant method. In their review, MSD sometimes but not uniformly

improves classification accuracy, compared with traditional methods. On the other

hand, MMD is found to be inferior to MSD. Erenguc and Koehler [30] present a

unified survey of LP models and their experimental results, in which the LP mod-

els include several versions of MSD, MMD, MSID, and hybrid models. Rubin [133]

provides experimental results of comparing these LP models with LDF and QDF. He

concludes that QDF performed best when the data follow normal distributions and

that QDF can be the benchmark when seeking situations for advantageous LP meth-

ods. In summary, the above review papers [30, 64, 133] describe previous work on LP

classification models and their comparison with traditional methods. However, it is
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difficult to make definitive statements about conditions under which an LP model is

superior to the others, as stated in [144].

Stam and Ungar [148] introduce a software package RAGNU, a utility program

in conjunction with the LINDO optimization software, for solving two-group classi-

fication problems using LP-based methods. LP formulations such as MSD, MMD,

MSID, hybrid models and their variants are contained in the package.

There are some difficulties in LP-based formulations—some models can result in

unbounded, trivial, or unacceptable solutions [109, 41], but possible remedies are

proposed. Koehler [73, 74, 75] and Xiao [162, 163] characterize the conditions of

unacceptable solutions in two-group LP discriminant models, including MSD, MMD,

MISD, the hybrid model, and their variants. Glover [55] proposes the normalization

constraint,
∑

j∈F(−|O2|
∑

i∈O1
xij + |O1|

∑
i∈O2

xij)wj = 1, which is more effective

and reliable. Rubin [134] examines the separation failure for two-group models and

suggests to apply the models twice, reversing the group designations at the second

time. Xiao and Feng [164] propose a regularization method to avoid multiple solutions

in LP discriminant analysis by adding the term ε
∑

j∈F w
2
j in the objective functions.

Bennett and Mangasarian [9] propose the model of minimizing the average of the

deviations, which is called robust linear programming.
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RLP (Robust linear programming)

min
1

|O1|
∑
i∈O1

di +
1

|O2|
∑
i∈O2

di

s.t. w0 +
∑
j∈F

xijwj − di ≤ −1 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + di ≥ 1 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

di ≥ 0 ∀ i ∈ O

It is shown that this model gives the null solution w1 = · · · = wm = 0 if and only if

1
|O1|
∑

i∈O1
xij = 1

|O2|
∑

i∈O2
xij for all j, in which case the solution w1 = · · · = wm = 0

is guaranteed to be not unique. Data of different diseases are tested by the proposed

classification methods, as in most of Mangasarian’s papers.

Mangasarian et al. [108] describe two applications of LP models in the field of

breast cancer research, one in diagnosis and the other in prognosis. The first ap-

plication is to discriminate benign from malignant breast lumps and the second one

is to predict when breast cancer is likely to recur. Both of them work successfully

in clinical practice. The RLP model [9] together with the multisurface method tree

algorithm (MSMT) [8] is used in the diagnostic system.

Duarte Silva and Stam [140] include the second-order (i.e., quadratic and cross-

product) terms of the feature values in the LP-based models such as MSD and hybrid

models and compare them with linear models, LDF, and QDF. The results of the sim-

ulation experiments show that the methods which include second-order terms perform

much better than first-order methods, given that the data substantially violate the

multivariate normality assumption. Wanarat and Pavur [160] investigate the effect
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of the inclusion of the second-order terms in the MSD, MIP, and hybrid models when

sample size is small to moderate. However, the simulation study shows that second-

order terms may not always improve the performance of a first-order LP model even

with data configurations that are more appropriately classified by QDF. Another re-

sult of the simulation study is that inclusion of the cross-product terms may hurt the

model’s accuracy, while omission of these terms causes the model to be not invariant

with respect to a nonsingular transformation of the data.

Pavur [121] studies the effect of the position of the contaminated normal data

in the two-group classification problem. The methods for comparison in their study

include MSD, MM (described in Section 1.2.2), LDF, QDF, and nearest neighbor

models. The nontraditional methods such as LP models have potential for outper-

forming the standard parametric procedures when non-normality is present, but this

study shows that no single model is consistently superior in all cases.

Asparoukhov and Stam [4] propose LP and MIP models to solve the two-group

classification problem where the features are binary. In this case the training data

can be partitioned into multinomial cells, allowing for a substantial reduction in the

number of variables and constraints. The proposed models not only have the usual

geometric interpretation, but also possess a strong probabilistic foundation. Let s be

the index of the cells, n1s, n2s be the number of data points in cell s from groups 1

and 2, respectively, and (bs1, · · · , bsm) be the binary digits representing cell s. The

model shown below is the LP model of minimizing the sum of deviations for two-

group classification with binary features.
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Cell convensional MSD

min
∑

s: n1s+n2s>0

(n1sd1s + n2sd2s)

s.t. w0 +
∑
j∈F

bsjwj − d1s ≤ 0 ∀ s : n1s > 0

w0 +
∑
j∈F

bsjwj + d2s > 0 ∀ s : n2s > 0

wj urs ∀ j ∈ {0} ∪ F

d1s, d2s ≥ 0 ∀ s

Binary features are usually found in medical diagnoses data. In this study three

real data sets about disease discrimination are tested: developing postoperative pul-

monary embolism or not, having dissecting aneurysm or other diseases, and suffering

from posttraumatic epilepsy or not. In these data sets the MIP model for binary fea-

tures (BMIP), which will be described later, performs better than other LP models

or traditional methods.

1.2.1.2 Multigroup Classification

Freed and Glover [39] extend the LP classification models from two-group to multi-

group problems. One formulation which uses a single discriminant function is given

below.
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min
K−1∑
k=1

ckαk

s.t.
∑
j∈F

xijwj ≤ Uk ∀ i ∈ Ok, k ∈ G

∑
j∈F

xijwj ≥ Lk ∀ i ∈ Ok, k ∈ G

Uk + ε ≤ Lk+1 + αk k = 1, · · · , K − 1

wj urs ∀ j ∈ F

Uk, Lk urs ∀ k ∈ G

αk urs k = 1, · · · , K − 1

where the number ε could be normalized to be 1, and ck is the misclassification cost.

However, single function classification is not as flexible and general as multiple func-

tion classification. Another extension from the two-group case to multigroup in [39]

is to solve two-group LP models for all pairs of groups and determine classification

rules based on these solutions. However, in some cases the group assignment is not

clear and the resulting classification scheme may be sub-optimal [144].

For the multigroup discrimination problem, Bennett and Mangasarian [10] define

the piecewise-linear separability of data from K groups as the following: The data

fromK groups are piecewise-linear separable if and only if there exist (wk0 , w
k
1 , · · · , wkm) ∈

Rm+1, ∀k ∈ G, such that wh0 +
∑

j∈F xijw
h
j ≥ wk0 +

∑
j∈F xijw

k
j + 1, ∀i ∈ Oh, h, k ∈

G, k 6= h. The following LP will generate a piecewise-linear separation for the K

groups if one exists, otherwise it will generate an error-minimizing separation.
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min
∑
h∈G

∑
k∈G,k 6=h

1

|Oh|
∑
i∈Oh

dhki

s.t. dhki ≥ −(wh0 +
∑
j∈F

xijw
h
j ) + (wk0 +

∑
j∈F

xijw
k
j ) + 1 ∀ i ∈ Oh, h, k ∈ G, k 6= h

wkj urs ∀ j ∈ {0} ∪ F , k ∈ G

dhki ≥ 0 ∀ i ∈ Oh, h, k ∈ G, k 6= h

The method is tested in three data sets. It performs pretty well in two of the data

sets which are totally (or almost totally) piecewise-linear separable. The classification

result is not good in the third data set, which is inherently more difficult. However,

by combining the multisurface method tree algorithm (MSMT) [8], the performance

improves.

Gochet et al. [57] introduce an LP model for the general multigroup classification

problem. The method separates the data with several hyperplanes by sequentially

solving LP’s. The vectors wk = (wk0 , w
k
1 , · · · , wkm), k ∈ G, are estimated for the clas-

sification decision rule. The rule is to classify an observation i into group s where s =

arg maxk{wk0 +
∑

j∈F xijw
k
j }.

Given that observation i is from group h, denote the goodness of fit for observation

i with respect to group k by

Gi
hk(w

h,wk) = [(wh0 +
∑

j∈F xijw
h
j )−(wk0+

∑
j∈F xijw

k
j )]

+, where [a]+ = max{0, a}.

Likewise, denote the badness of fit for observation i with respect to group k by

Bi
hk(w

h,wk) = [(wh0 +
∑

j∈F xijw
h
j )−(wk0+

∑
j∈F xijw

k
j )]
−, where [a]− = −min{0, a}.
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The total goodness of fit and total badness of fit are then defined as

G(w) = G(w1, · · · ,wK) =
∑

h∈G
∑

k∈G,k 6=h
∑

i∈Oh
Gi
hk(w

h,wk)

B(w) = B(w1, · · · ,wK) =
∑

h∈G
∑

k∈G,k 6=h
∑

i∈Oh
Bi
hk(w

h,wk)

The LP is to minimize the total badness of fit, subject to a normalization equation,

in which q > 0.

min B(w)

s.t. G(w)−B(w) = q

w urs

By expanding G(w) and B(w) and substituting Gi
hk(w

h,wk) and Bi
hk(w

h,wk)

by γihk and βihk respectively, the LP becomes

min
∑
h∈G

∑
k∈G,k 6=h

∑
i∈Oh

βihk

s.t. (wh0 +
∑
j∈F

xijw
h
j )− (wk0 +

∑
j∈F

xijw
k
j ) = γihk − βihk ∀ i ∈ Oh, h, k ∈ G, k 6= h

∑
h∈G

∑
k∈G,k 6=h

∑
i∈Oh

(γihk − βihk) = q

wkj urs ∀ j ∈ {0} ∪ F , k ∈ G

γihk, β
i
hk ≥ 0 ∀ i ∈ Oh, h, k ∈ G, k 6= h

The classification results for two real data sets show that this model can compete

with LDF and k-nearest neighbor method.
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1.2.2 Mixed Integer Programming Classification Models

While linear programming offers a polynomial-time computational guarantee, mixed

integer programming (MIP) allows more flexibility in modeling misclassified observa-

tions and/or misclassification costs.

1.2.2.1 Two-group Classification

In the two-group classification problem, binary variables can be used in the formula-

tion to track and minimize the exact number of misclassifications. Such an objective

function is also considered as the L0-norm criterion [144].

MM (Minimizing the number of misclassifications)

min
∑
i∈O

zi

s.t. w0 +
∑
j∈F

xijwj ≤Mzi ∀ i ∈ O1

w0 +
∑
j∈F

xijwj ≥ −Mzi ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

zi ∈ {0, 1} ∀ i ∈ O

(w0, w1, · · · , wm) is required to be a nonzero vector to prevent the trivial solution.

In this MIP formulation the objective function could include the deviation terms,

such as those in the hybrid models, as well as the number of misclassifications [5]; or

it could represent expected cost of misclassification [6, 1, 141, 135]. There are some

variant versions of the basic model.
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Stam and Joachimsthaler [146] study the classification performance of MM and

compare it with MSD, LDF, and QDF. In some cases the MM model performs better,

but in some cases it does not. MIP formulations are in the review studies of Joachim-

sthaler and Stam [64] and Erenguc and Koehler [30], and contained in the software

developed by Stam and Ungar [148]. Computational experiments show that the MIP

model performs better when the group overlap is higher [64, 146], although it is still

not easy to reach general conclusions [144].

Since the MIP model is NP-hard, exact algorithms and heuristics are proposed

to solve it efficiently. Koehler and Erenguc [76] develop a procedure to solve MM in

which the condition of nonzero w is replaced by the requirement of at least one viola-

tion of the constraints w0 +
∑

j xijwj ≤ 0 for i ∈ G1 or w0 +
∑

j xijwj ≥ 0 for i ∈ G2.

Banks and Abad [6] solve the MIP of minimizing the expected cost of misclassification

by an LP-based algorithm. Abad and Banks [1] develop three heuristic procedures to

the problem of minimizing the expected cost of misclassification. They also include

the interaction terms of the features in the data and apply the heuristics [7]. Duarte

Silva and Stam [141] introduce a divide and conquer algorithm for the classification

problem of minimizing the misclassification cost by solving MIP and LP subproblems.

Rubin [135] solves the same problem by using a decomposition approach and tests this

procedure on some data sets, including two breast cancer data sets. Yanev and Balev

[165] propose exact and heuristic algorithms for solving MM, which are based on some

specific properties of the vertices of a polyhedral set neatly connected with the model.

For the two-group classification problem where the features are binary, Asparoukhov

and Stam [4] propose LP and MIP models which partition the data into multinomial

cells and result in fewer number of variables and constraints. Let s be the index of the

cells, n1s, n2s be the number of data points in cell s from groups 1 and 2, respectively,
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and (bs1, · · · , bsm) be the binary digits representing cell s. Below is the MIP model for

binary features (BMIP), which performs better than other LP models or traditional

methods in three real data sets [4].

BMIP

min
∑

s: n1s+n2s>0

{|n1s − n2s|zs + min(n1s, n2s)}

s.t. w0 +
∑
j∈F

bsjwj ≤Mzs ∀ s : n1s ≥ n2s; n1s > 0

w0 +
∑
j∈F

bsjwj > −Mzs ∀ s : n1s < n2s

wj urs ∀ j ∈ {0} ∪ F

zs ∈ {0, 1} ∀ s : n1s + n2s > 0

Pavur et al. [123] include different secondary goals in the model MM and compare

their misclassification rates. A new secondary goal is proposed, which maximizes the

difference between the means of the discriminant scores of the two groups, represented

by the decision variable δ. In this model the term −δ is added to the minimization

objective function as a secondary goal with a constant multiplier while the constraint∑
j∈F x̄

(2)
j wj−

∑
j∈F x̄

(1)
j wj ≥ δ is included, where x̄

(k)
j = 1

|Ok|
∑

i∈Ok
xij, ∀j ∈ F , k =

1, 2. The results of simulation study show that an MIP model with the proposed

secondary goal has better performance than other studied models.

Glen [49] proposes IP techniques for normalization in the two-group discriminant

analysis models. One technique is to add the constraint
∑

j∈F |wj| = 1. In the pro-

posed model, wj, j ∈ F is represented by wj = w+
j − w−j , where w+

j , w
−
j ≥ 0, and bi-

nary variables δj and γj are defined such that δj = 1⇔ w+
j ≥ ε and γj = 1⇔ w−j ≥ ε.

The IP normalization technique is applied to MSD and MMD, and the MSD version
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is presented below.

MSD – with IP normalization

min
∑
i∈O

di

s.t. w0 +
∑
j∈F

xij(w
+
j − w−j )− di ≤ 0 ∀ i ∈ O1

w0 +
∑
j∈F

xij(w
+
j − w−j ) + di ≥ 0 ∀ i ∈ O2

∑
j∈F

(w+
j + w−j ) = 1

w+
j − εδj ≥ 0 ∀ j ∈ F

w+
j − δj ≤ 0 ∀ j ∈ F

w−j − εγj ≥ 0 ∀ j ∈ F

w−j − γj ≤ 0 ∀ j ∈ F

δj + γj ≤ 1 ∀ j ∈ F

w0 urs

w+
j , w

−
j ≥ 0 ∀ j ∈ F

di ≥ 0 ∀ i ∈ O

δj, γj ∈ {0, 1} ∀ j ∈ F

The variable coefficients of the discriminant function generated by the models are

invariant under origin shifts. The proposed models are validated using two data sets

from [56, 109]. The models are also extended for feature selection by adding the

constraint
∑

j∈F(δj + γj) = p, which allows only a constant number, p, of features to

be used for classification.
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Other than the objectives MSD and MMD, the normalization technique (i.e.,∑
j∈F |wj| = 1) and the feature selection technique (i.e.,

∑
j∈F(δj + γj) = p) are also

applied to the objective which maximizes classification accuracy (MCA), or, equiva-

lently, minimizes the number of misclassifications [50].

MCA (Maximizing classification accuracy)

max
∑
i∈O

zi

s.t. w0 +
∑
j∈F

xij(w
+
j − w−j ) + (M + ∆)zi ≤M ∀ i ∈ O1

w0 +
∑
j∈F

xij(w
+
j − w−j )− (M + ∆)zi ≥ −M ∀ i ∈ O2

∑
j∈F

(w+
j + w−j ) = 1

w+
j − εδj ≥ 0 ∀ j ∈ F

w+
j − δj ≤ 0 ∀ j ∈ F

w−j − εγj ≥ 0 ∀ j ∈ F

w−j − γj ≤ 0 ∀ j ∈ F

δj + γj ≤ 1 ∀ j ∈ F∑
j∈F

(δj + γj) = p

w0 urs

w+
j , w

−
j ≥ 0 ∀ j ∈ F

zi ∈ {0, 1} ∀ i ∈ O

δj, γj ∈ {0, 1} ∀ j ∈ F

where ∆ is a small positive number.

Furthermore, with this normalization technique and feature selection technique,

19



two-stage approaches are proposed in [50, 51]. Glen [54] also compares standard (i.e.,

one stage) MP-based classification methods with two-stage MP-based methods pro-

posed by Stam and Ragsdale [147] and Sueyoshi [151, 152]. The idea of two-stage

methods is to firstly identify the observations which are difficult to be classified and

deal with these observations in the second stage. Integer variables are used for part

of the observations in the second stage but not for all observations, so the MIP’s are

easier to solve. The results of the comparison indicate that “a single technique will

not produce good linear classifiers under all data conditions.”

Instead of linear discriminant functions obtained by MP-based models, Glen [53]

proposes piecewise-linear models with objectives MCA and MSD. The computational

results show that the MCA piecewise-linear model performs better than the standard

MCA model.

Glen [52] developes MIP models which determine the thresholds for forming di-

chotomous variables as well as the discriminant function coefficient wj’s. For each

continuous feature to be formed as a dichotomous feature, the model finds the thresh-

old among possible thresholds while determining the separating hyperplane and opti-

mizing the objective function such as minimizing the sum of deviations or minimizing

the number of misclassifications. Computational results of a real data set and some

simulated data sets show that the MSD model with dichotomous categorical variable

formation can improve classification performance. The reason for the potential for

performance improvement is that the generated linear discriminant function is a non-

linear function of the original variables.
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1.2.2.2 Multigroup Classification

Gehrlein [47] proposes MIP formulations of minimizing the total number of misclas-

sifications in the multigroup classification problem. He gives both a single function

classification scheme and a multiple function classification scheme, as follows.

GSFC (General single function classification – minimizing the number of misclassifi-

cations)

min
∑
i∈O

zi

s.t. w0 +
∑
j∈F

xijwj −Mzi ≤ Uk ∀ i ∈ Ok, k ∈ G

w0 +
∑
j∈F

xijwj +Mzi ≥ Lk ∀ i ∈ Ok, k ∈ G

Uk − Lk ≥ δ′ ∀ k ∈ G

Lg − Uk +Mygk ≥ δ ∀ g, k ∈ G, g 6= k

Lk − Ug +Mykg ≥ δ ∀ g, k ∈ G, g 6= k

ygk + ykg = 1 ∀ g, k ∈ G, g 6= k

wj urs ∀ j ∈ {0} ∪ F

Uk, Lk urs ∀ k ∈ G

zi ∈ {0, 1} ∀ i ∈ O

ygk ∈ {0, 1} ∀ g, k ∈ G, g 6= k

where Uk, Lk denote the upper and lower endpoints of the interval assigned to group

k, and ygk = 1 if the interval associated with group g precedes that with group k and

ygk = 0 otherwise. The constant δ′ is the minimum width of an interval of a group

and the constant δ is the minimum gap between adjacent intervals.
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GMFC (General multiple function classification – minimizing the number of misclas-

sifications)

min
∑
i∈O

zi

s.t. (wh0 +
∑
j∈F

xijw
h
j )− (wk0 +

∑
j∈F

xijw
k
j ) +Mzi ≥ ε ∀ i ∈ Oh, h, k ∈ G, k 6= h

wkj urs ∀ j ∈ {0} ∪ F , k ∈ G

zi ∈ {0, 1} ∀ i ∈ O

Both models work successfully on the iris data set provided by Fisher [36].

Pavur [120] solves the multigroup classification problem by sequentially solving

GSFC in one dimension each time. Linear discriminant functions are generated by

successively solving GSFC with the added constraints that all linear discriminants are

uncorrelated to each other. According to simulation results, this procedure substan-

tially improves the GSFC model and sometimes outperforms GMFC, LDF, or QDF.

To solve the three-group classification problem more efficiently, Loucopoulos and

Pavur [93] make a slight modification on GSFC and propose the model MIP3G, which

also minimizes the number of misclassifications. Compared with GSFC, MIP3G is

also a single function classification model, but it reduces the possible group orderings

from six to three in the formulation and thus becomes more efficient. Loucopou-

los and Pavur [94] report the results of a simulation experiment on the performance

of GMFC, MIG3G, LDF, and QDF for the three-group classification problem with

small training samples. Second-order terms are also considered in the experiment.

Simulation results show that GMFC and MIP3G can outperform the parametric pro-

cedures in some non-normal data sets and that the inclusion of second-order terms
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can improve the performance of MIP3G in some data sets. Pavur and Loucopoulos

[122] investigate the effect of the gap size in the MIP3G model for the three-group

classification problem. A simulation study illustrates that for fairly separable data,

or data with small sample sizes, a nonzero-gap model can improve the performance.

A possible reason for this result is that the zero-gap model may over-fit the data.

1.2.3 Nonlinear Programming Classification Models

In the literature, nonlinear programming is mainly applied to two-group classification

problems, therefore we focus on the two-group problems in this section.

Stam and Joachimsthaler [145] propose a class of nonlinear programming methods

to solve the two-group classification problem under the Lp-norm objective criterion.

This is an extension of MSD and MMD, for which the objectives are the L1-norm

and L∞-norm, respectively.

Minimize the general Lp-norm distance

min

(∑
i∈O

dpi

)1/p

s.t.
∑
j∈F

xijwj − di ≤ b ∀ i ∈ O1

∑
j∈F

xijwj + di ≥ b ∀ i ∈ O2

wj urs ∀ j ∈ F

di ≥ 0 ∀ i ∈ O

Based on the computational results, the authors recommend to apply this model

by using 1 ≤ p ≤ 3 and p =∞.
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Mangasarian et al. [107] propose a nonconvex model for the two-group classifica-

tion problem:

min d1 + d2

s.t.
∑
j∈F

xijwj − d1 ≤ 0 ∀ i ∈ O1

∑
j∈F

xijwj + d2 ≥ 0 ∀ i ∈ O2

max
j∈F
|wj| = 1

wj urs ∀ j ∈ F

d1, d2 urs

This model can be solved in polynomial-time by solving 2m linear programs, which

generate a sequence of parallel planes, resulting in a piecewise-linear nonconvex dis-

criminant function. The model works successfully in clinical practice for the diagnosis

of breast cancer.

Mangasarian [98] also formulates the problem of minimizing the number of mis-

classifications as a linear program with equilibrium constraints (LPEC) instead of the

MIP model MM described in Section 1.2.2.
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MM-LPEC (Minimizing the number of misclassifications – Linear program with equi-

librium constraints)

min
∑
i∈O

zi

s.t. w0 +
∑
j∈F

xijwj − di ≤ −1 ∀ i ∈ O1

zi(w0 +
∑
j∈F

xijwj − di + 1) = 0 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + di ≥ 1 ∀ i ∈ O2

zi(w0 +
∑
j∈F

xijwj + di − 1) = 0 ∀ i ∈ O2

di(1− zi) = 0 ∀ i ∈ O

0 ≤ zi ≤ 1 ∀ i ∈ O

di ≥ 0 ∀ i ∈ O

wj urs ∀ j ∈ {0} ∪ F

The general LPEC can be converted to an exact penalty problem with a quadratic

objective and linear constraints. A stepless Frank-Wolfe-type algorithm is proposed

for the penalty problem, terminating at a stationary point or a global solution. This

method is called the parametric misclassification minimization (PMM) procedure,

and numerical testing is included in [99].

To illustrate the next model, we first define the step function s : R→ {0, 1} as

s(u) =

 1 if u > 0

0 if u ≤ 0
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The problem of minimizing the number of misclassifications is equivalent to

min
∑
i∈O

s(di)

s.t. w0 +
∑
j∈F

xijwj − di ≤ −1 ∀ i ∈ O1

w0 +
∑
j∈F

xijwj + di ≥ 1 ∀ i ∈ O2

wj urs ∀ j ∈ {0} ∪ F

di ≥ 0 ∀ i ∈ O

Mangasarian [99] proposes a simple concave approximation of the step function

for nonnegative variables: t(u, α) = 1 − e−αu, where α > 0, u ≥ 0. Let α > 0 and

approximate s(di) by t(di, α). The problem then reduces to minimizing a smooth

concave function bounded below on a nonempty polyhedron, which has a minimum

at a vertex of the feasible region. A finite successive linearization algorithm (SLA) is

proposed, terminating at a stationary point or a global solution. Numerical tests of

SLA are done and compared with the PMM procedure described above. The results

show that the much simpler SLA obtains a separation that is almost as good as PMM

in considerably less computing time.

Chen and Mangasarian [22] define a hybrid misclassification minimization prob-

lem, which is more computationally tractable than the NP-hard misclassification

minimization problem, and a related algorithm. The basic idea of the hybrid ap-

proach is to obtain iteratively w0 and (w1, · · · , wm) of the separating hyperplane: (1)

For a fixed w0, solve RLP (Bennett and Mangasarian [9]) to determine (w1, · · · , wm),

and (2) for this (w1, · · · , wm), solve the one-dimensional misclassification minimiza-

tion problem to determine w0. Compared with RLP and PMM procedure, the hybrid

method performs better and is much faster than PMM.
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Mangasarian [100] proposes the model of minimizing the sum of arbitrary-norm

distances of misclassified points to the separating hyperplane. For a general norm

|| · || on Rm, the dual norm || · ||′ on Rm is defined as ||x||′ = max||y||=1 x
Ty. Define

[a]+ = max{0, a} and let w = (w1, · · · , wm), the formulation is:

min
∑
i∈O1

[w0 +
∑
j∈F

xijwj]
+ +

∑
i∈O2

[−w0 −
∑
j∈F

xijwj]
+

s.t. ||w||′ = 1

w0,w urs

The problem is to minimize a convex function on a unit sphere. A related deci-

sion problem to this minimization problem is shown to be NP-complete, except for

p = 1. For a general p-norm, the minimization problem can be transformed via an

exact penalty formulation to minimizing the sum of a convex function and a bilinear

function on a convex set.

1.2.4 Support Vector Machine

A support vector machine is a type of mathematical programming approach (Vapnik

[159]) originally for two-group classification problems. It has been widely studied

and has become popular in many application fields in recent years. The introductory

description of support vector machines (SVM) given here is summarized from the

tutorial by Burges [21].

In this section, the domain of yi is redefined to be consistent with SVM studies in

published literature. That is, for the ith observation (yi,xi) = (yi, xi1, · · · , xim), we

have yi ∈ {−1,+1} instead of yi ∈ G = {1, 2}. Besides, let w = (w1, · · · , wm).
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In the two-group separable case, SVM finds a separating hyperplane xTw− b = 0

in Rm by maximizing the margin between two groups, 2/||w||, or equivalently, mini-

mizing ||w||2.

SVM – separable case

min wTw

s.t. xTi w + b ≥ +1 ∀ i : yi = +1

xTi w + b ≤ −1 ∀ i : yi = −1

w, b urs

This problem can be solved by solving its Wolfe dual problem:

max
∑
i∈O

αi −
1

2

∑
i∈O

∑
j∈O

αiαjyiyjx
T
i xj

s.t.
∑
i∈O

αiyi = 0

αi ≥ 0 ∀ i ∈ O

Here αi is the Lagrange multiplier for observation i. The points (xi1, · · · , xim)

which satisfy αi > 0 are called the support vectors. The primal solution w is given

by

w =
∑
i∈O

αiyixi. (1.2.1)

b can be computed by solving yi(w
Txi + b)− 1 = 0 for any i with αi > 0.

In the non-separable case, slack variables ξi’s are introduced to handle the errors.

Let C be the penalty for the errors. The problem becomes
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SVM – non-separable case

min
1

2
wTw + C

(∑
i∈O

ξi

)k

s.t. xTi w + b ≥ +1− ξi ∀ i : yi = +1

xTi w + b ≤ −1 + ξi ∀ i : yi = −1

w, b urs

ξi ≥ 0 ∀ i ∈ O

When k is chosen to be 1, neither the ξi’s nor their Lagrange multipliers appear

in the Wolfe dual problem:

max
∑
i∈O

αi −
1

2

∑
i∈O

∑
j∈O

αiαjyiyjx
T
i xj

s.t.
∑
i∈O

αiyi = 0

0 ≤ αi ≤ C ∀ i ∈ O

The data points can be separated nonlinearly by mapping the data into some

higher dimensional space and applying linear SVM to the mapped data. Instead of

knowing explicitly the mapping Φ, SVM needs only the dot products of two trans-

formed data points Φ(xi) · Φ(xj). The kernel function K is introduced such that

K(xi,xj) = Φ(xi) · Φ(xj). Replacing xTi xj by K(xi,xj) in the above problem, the

separation becomes nonlinear while the problem to solve remains a quadratic pro-

gram. To predict the group of a new data point x after training, the sign of the

function f(x) is computed to determine the group of x:

f(x) =
Ns∑
i=1

αiyiΦ(si) · Φ(x) + b =
Ns∑
i=1

αiyiK(si,x) + b
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where si’s are the support vectors and Ns is the number of support vectors. Again

the explicit form of Φ(x) is avoided.

Mangasarian provides a general mathematical programming framework for SVM,

called generalized support vector machine or GSVM [101, 105]. Special cases can be

derived from GSVM, including the standard SVM.

Many SVM-type methods have been developed by Mangasarian and other authors

to solve huge-sized classification problems more efficiently. These methods include

successive overrelaxation for SVM [104], proximal SVM [42, 44], smooth SVM [87],

reduced SVM [86], Lagrangian SVM [106], incremental SVMs [43], and other meth-

ods [16, 103]. Mangasarian summarizes some of the developments in [102]. Examples

of applications of SVM include breast cancer studies [88, 89] and genome research [95].

Hsu and Lin [61] compare different methods for multigroup classification using sup-

port vector machines. Three methods studied are based on applying two-group SVM

several times: one-against-one, one-against-all, and directed acyclic graph (DAG)

SVM. The other two methods studied are methods considering all groups at once with

decomposition implementation. The experiment results show that the one-against-

one and DAG methods are more suitable for practical use than the other methods.

Lee et al. [85] propose a generic approach to multigroup problems with some the-

oretical properties, and the proposed method is well applied to microarray data for

cancer classification and satellite radiance profiles for cloud classification.
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1.3 Anderson’s Model and DAMIP

This section introduces Anderson’s model, a classification model which incorporates

misclassification-limit constraints, and the model DAMIP (discriminant analysis –

mixed integer program), whose solution gives the optimal decision rule of Anderson’s

model.

1.3.1 Anderson’s Model

Anderson [3] proposes a classification model which maximizes the probability of cor-

rect classification subject to some limits of misclassification probability. This model

is parametric—assuming data of each group follow certain distribution. Let πk be

the prior probability of group k and fk(x) be the value of the conditional proba-

bility density function for the data point x ∈ Rm of group k, k ∈ G. Also let

αhk ∈ (0, 1), h, k ∈ G, h 6= k be the predetermined limits of the misclassification prob-

ability that data of group h are misclassified to group k. The proposed model is to

seek for a partition {R0, R1, · · · , RK} of Rm, where Rk, k ∈ G = {1, · · · , K}, is the

region classified to group k and R0 is the reserved judgement region, in which the

group-assignment decision of data points is reserved.

Anderson’s model

max
∑
k∈G

πk

∫
Rk

fk(x)dx

s.t.

∫
Rk

fh(x)dx ≤ αhk ∀ h, k ∈ G, h 6= k.

Anderson shows that there exist nonnegative constants λhk, h, k ∈ G, h 6= k, such
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that the optimal decision rule is given by

Rk = {x ∈ Rm : Lk(x) = max
h∈{0}∪G

Lh(x)}, k ∈ {0} ∪ G, (1.3.1)

where

L0(x) = 0

Lk(x) = πkfk(x)−
∑

h∈G,h 6=k

λhkfh(x), k ∈ G. (1.3.2)

This rule is called Anderson’s rule.

However, the optimal λ’s are difficult to find.

1.3.2 DAMIP

Gallagher et al. [45, 46] first propose mixed integer programming formulations, named

DAMIP, for obtaining the optimal values of λ’s in Anderson’s rule. A nonlinear and

a linear version of DAMIP are presented below. The binary variable uki indicates

whether observation i is classified to group k or not. Recall that yi ∈ G represents the

group of observation i, the objective function (1.3.3) maximizes the total number of

correctly-classified observations. Constraints (1.3.4) define Lk(x) of Equation (1.3.2)

in Anderson’s rule, constraints (1.3.5) and (1.3.6) guarantee the correct value of uki

based on (1.3.1), and constraints (1.3.7) model the misclassification limits. The linear

version of DAMIP uses constraints (1.3.9)-(1.3.12) to model constraints (1.3.5) of the

nonlinear version, in which the variable ti achieves the value of max{0, Lki : k ∈ G}.

This (linear) version of DAMIP is based on [17], which is almost equivalent to non-

linear DAMIP except that DAMIP introduces a small value ε in its formulation to

increase the stability of the classification rule derived by DAMIP, as seen in constraint

(1.3.10) and (1.3.12).
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Nonlinear DAMIP

max
∑
i∈O

uyii (1.3.3)

s.t. Lki = πkfk(xi)−
∑

h∈G,h6=k

fh(xi)λhk ∀ i ∈ O, k ∈ G (1.3.4)

uki =

 1 if k = arg max{0, Lhi : h ∈ G}

0 otherwise
∀ i ∈ O, k ∈ {0} ∪ G (1.3.5)

∑
k∈{0}∪G

uki = 1 ∀ i ∈ O (1.3.6)

∑
i: i∈Oh

uki ≤ bαhknhc ∀ h, k ∈ G, h 6= k (1.3.7)

uki ∈ {0, 1} ∀ i ∈ O, k ∈ {0} ∪ G

Lki urs ∀ i ∈ O, k ∈ G

λhk ≥ 0 ∀ h, k ∈ G, h 6= k
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DAMIP

max
∑
i∈O

uyii (1.3.8)

s.t. Lki = πkfk(xi)−
∑

h∈G,h6=k

fh(xi)λhk ∀ i ∈ O, k ∈ G

ti − Lki ≤M(1− uki) ∀ i ∈ O, k ∈ G (1.3.9)

ti − Lki ≥ ε(1− uki) ∀ i ∈ O, k ∈ G (1.3.10)

ti ≤M(1− u0i) ∀ i ∈ O (1.3.11)

ti ≥ εuki ∀ i ∈ O, k ∈ G (1.3.12)∑
k∈{0}∪G

uki = 1 ∀ i ∈ O

∑
i: i∈Oh

uki ≤ bαhknhc ∀ h, k ∈ G, h 6= k

uki ∈ {0, 1} ∀ i ∈ O, k ∈ {0} ∪ G

Lki urs ∀ i ∈ O, k ∈ G

ti ≥ 0 ∀ i ∈ O

λhk ≥ 0 ∀ h, k ∈ G, h 6= k

Brooks [17] and Brooks and Lee [19] show that DAMIP is polynomially solv-

able for K = 2 but is NP-complete for a general K. Computational strategies in

the branch and bound algorithm for solving DAMIP are provided, including cutting

planes obtained by utilizing the conflict graph, a branching strategy incorporating

information from the conflict graph and the implied cuts, and a heuristic used to

generate integer feasible solutions. Computational results show that the strategies

significantly improve the computational time.
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Brooks and Lee [18] study the consistency property of DAMIP. Given some obser-

vations (i.e., samples of certain distributions), the classifier using the λ’s obtained by

solving DAMIP on these observations is strongly consistent to Anderson’s rule—when

the sample size goes to infinity, (1) the probability of correct allocation by DAMIP

converges to that by Anderson’s rule with probability one, and (2) the probabilities

of misclassification of group h to group k are less than or equal to the predetermined

limits with probability one. Furthermore, the consistency is universal—this applies

to all possible distributions.

When there is one (or more) group whose size is relatively smaller than the oth-

ers, the original objective function which maximizes the total number of correctly-

classified observations (or equivalently, the overall accuracy) might give a solution

with good overall accuracy but poor group accuracy for the small-sized group. In

this case, we can improve the group accuracies by changing the objective function

into maximizing the average group accuracy or maximizing the minimum group ac-

curacy. Recall that Ok, k ∈ G represents the set of indices of observations of group

k. To maximize the average group accuracy, we replace the objective function (1.3.8)

by (1.3.13). To maximize the minimum group accuracy, we use the objective function

(1.3.14) with additional constraints (1.3.15) and (1.3.16).

max
∑
k∈G

(
1

|Ok|
∑
i∈Ok

uki

)
(1.3.13)

max v (1.3.14)

v ≤ 1

|Ok|
∑
i∈Ok

uki ∀ k ∈ G (1.3.15)

v urs (1.3.16)
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Lee et al. [84] propose a linear programming approach, named DALP (discrimi-

nant analysis – linear program), as a heuristic method to get the λ’s in Anderson’s

rule.

DALP

min
∑
i∈O

(c1wi + c2si)

s.t. Lki = πkp̂k(xi)−
∑

h∈G,h6=k

p̂h(xi)λhk ∀ i ∈ O, k ∈ G

Lyii − Lki + wi ≥ 0 ∀ i ∈ O, k ∈ G, k 6= yi

Lyii + wi ≥ 0 ∀ i ∈ O

− Lki + si ≥ 0 ∀ i ∈ O, k ∈ G

Lki urs ∀ i ∈ O, k ∈ G

wi ≥ 0 ∀ i ∈ O

si ≥ 0 ∀ i ∈ O

λhk ≥ 0 ∀ h, k ∈ G, h 6= k

where c1 and c2 are constants controlling the emphasis on correctly classifying obser-

vations or placing them in the reserved judgement region and p̂k(xi) is the normalized

conditional probability density value defined by p̂k(xi) = fk(xi)∑
h∈G fh(xi)

.

The DAMIP/DALP approaches have been successfully applied to various multi-

group disease diagnosis and biological/medical prediction problems [82, 83, 31, 32, 81].
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CHAPTER II

FEATURE SELECTION

This chapter introduces the feature selection problem, discusses the concepts of fea-

ture relevance and redundancy, summarizes feature ranking methods, feature subset

selection methods, mathematical-programming-based feature subset selection meth-

ods, and describes particle swarm optimization, a heuristic method used for feature

subset selection.

2.1 Introduction

Feature selection is to select a subset of the original features in certain problems, in-

cluding regression, clustering, and classification. The goal of feature selection can be

(1) improving the prediction performance; (2) preventing over-fitting; (3) providing

faster predictors; and (4) facilitating data understanding. The focus of this chapter

is on feature selection for classification. In this section we provide two kinds of cate-

gorization of feature selection methods.

First we categorize feature selection methods into feature ranking and feature sub-

set selection by the output of the methods. In feature ranking, we weigh and rank

individual features; the output is the rankings of the features. Top ranking features

can be used for classification, but feature ranking is not necessarily used for clas-

sification directly. We can apply feature ranking for initially reducing the number

of features or simply for understanding the features. In feature subset selection, we

search for a “good” subset of features based on certain objective function; the output

is a subset of features, which is used for classification. The objective functions could
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involve prediction accuracy, the number of selected features, or other criteria. We

can also use cross-validation prediction accuracy as the objective function. Note that

this categorization refers to the output of feature selection. In other words, in feature

ranking we may evaluate subset of features to help for ranking individual features; in

feature subset selection we may utilize individual feature ranking to help for choosing

feature subsets.

The other categorization of feature selection methods is filter methods versus wrap-

per methods [65, 77, 79, 12, 27, 90]. Filter methods are independent of the classification

methods while wrapper methods are dependent on the classification methods. That

is, in filter methods, feature selection serves as a preprocessing step before classifica-

tion; in wrapper methods, feature selection involves classification.

Some review papers have been proposed to survey and introduce feature selection.

Dash and Liu [27] and Liu and Yu [90] identify four key steps and propose a catego-

rizing framework for feature subset selection. See Section 2.4 for more details. Guyon

and Elisseeff’s introduction [58] covers feature ranking, feature subset selection, and

related topics.

In this dissertation we do not consider feature extraction or construction, which

constructs new features from the raw ones. Principal component analysis is an exam-

ple of feature extraction methods. Instead, we deal with only the original features.

Besides, in this dissertation we use the term “feature selection” instead of “variable

selection.” These two terms are sometimes interchangeably used. In [58] the authors

call the raw data “variables” and the constructed ones “features.” We need not dis-

tinguish them in this dissertation, and we use the term “feature selection” universally.
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2.2 Feature Relevance and Redundancy

This section introduces the concept of feature relevance and feature redundancy and

provides remarks on different feature selection methods and the selected features.

2.2.1 Feature Relevance

We define feature relevance according to [65, 77, 166]. Let the random vector (Y,X1, · · · , Xm)

∈ G × F1 × · · · × Fm represent the data point, where Y denotes the group and

(X1, · · · , Xm) denotes the vector of features. Observed value of a data point is de-

noted by (y, x1, · · · , xm). Let Sj be the set of all features except Xj, i.e., Sj =

{X1, · · · , Xj−1, Xj+1, · · · , Xm}, and let sj be its observed value. Also, let p be the

probability measure on the space G × F1 × · · · × Fm.

A feature Xj is strongly relevant if and only if there exists some xj, y, and sj for

which p(Xj = xj, Sj = sj) > 0 such that

p(Y = y|Xj = xj, Sj = sj) 6= p(Y = y|Sj = sj).

A feature Xj is weakly relevant if and only if it is not strongly relevant, and there

exists a subset of features S ′j of Sj for which there exists some xj, y, and s′j with

p(Xj = xj, S
′
j = s′j) > 0 such that

p(Y = y|Xj = xj, S
′
j = s′j) 6= p(Y = y|S ′j = s′j).

A feature is relevant if it is either strongly relevant or weakly relevant; otherwise it is

irrelevant.

The above definitions are based on an optimal Bayes classifier. Xj is strong rel-

evant if the removal of Xj alone deteriorates the performance of an optimal Bayes

classifier; Xj is weak relevant if it is not strong relevant and there exists a subset of
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features, S ′j, such that a Bayes classifier performs worse on S ′j than on S ′j ∪ {Xj};

otherwise, Xj is irrelevant.

The definition of feature relevance helps us to identify the general goal: find all

strongly relevant features, a useful subset of weakly relevant features, but no irrel-

evant features [65]. However, in practice, in a problem with a particular objective

function and a particular classification method, a relevant feature, even strongly rel-

evant, does not imply that it is in the optimal feature subset; an irrelevant feature

does not imply that it should not be in the optimal feature subset. Incorporating

the classifier when searching for a good subset, wrapper methods for feature subset

selection can perform better, particularly in prediction accuracy [77].

2.2.2 Feature Redundancy

Intuitively, feature redundancy relates to correlation. That is, if two features are

highly correlated, one of them could be redundant. To deal with redundancy which

involves more than two features, Yu and Liu [166] introduce the definition of feature

redundancy among relevant features based on a feature’s Markov blanket defined by

Koller and Sahami [78].

Let F be the set of all features. Given a feature Xj, let S ′j ⊂ F and Xj /∈ S ′j. S ′j

is said to be a Markov blanket for Xj if and only if

p(F − S ′j − {Xj}, Y |S ′j, Xj) = p(F − S ′j − {Xj}, Y |S ′j).

Let F ′ be a subset of features. A feature is redundant in F ′ if and only if it is weakly

relevant and has a Markov blanket within F ′.

The definition partitions the set of weakly relevant features into two parts: (1)
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weakly relevant and redundant features; (2) weakly relevant but non-redundant fea-

tures. Note that the partition may not be unique.

In the previous subsection, the definition of feature relevance identifies the general

goal: finding all strongly relevant features and a useful subset of weakly relevant fea-

tures. The definition of feature redundancy further characterizes that non-redundant

features are the useful weakly relevant ones. However, similar to the situation of

feature relevancy, optimal subset for a particular problem may include features which

are redundant to each other.

Guyon and Elisseeff [58] discuss feature redundancy in the meaning of correlation.

Through examples, they show that including high correlated features can significantly

help to separate data of different groups, a self-useless feature can significantly im-

prove the classification performance when taken with others, and two self-useless

features can provide good separation together.

2.2.3 Remarks

The discussion of feature relevance and redundancy and the examples in the literature

suggest that

1. In a problem with a particular objective function and a particular classification

method, features chosen from wrapper methods for subset selection perform

better than features obtained from top ranking features by ranking methods.

2. Features chosen from subset selection may not include all strongly relevant

features, presumed to be important, and may include redundant or irrelevant

features.
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2.3 Feature Ranking

In feature ranking, we weigh and rank individual features. That is, we compute a

score Sj for each feature j and sort the scores. We can categorize feature ranking

methods into univariate or multivariate. If the computing of Sj involves the data from

feature j but no data from other features, the ranking is called univariate, otherwise

it is multivariate.

A simple feature ranking method for the two-group problem is the Pearson’s cor-

relation coefficient between feature j and group,

Sj =

∑
i∈O(xij − x̄j)(yi − ȳ)√∑

i∈O(xij − x̄j)2
∑

i∈O(yi − ȳ)2
,

where x̄j is the average value of feature j and ȳ is the average value of group, both

over all observations.

Some feature ranking methods calculate a score for each feature by performing

statistical tests; for example, t-test on the values of feature j between two groups.

Some feature ranking methods are based on mutual information; for example, the

minimal-redundancy-maximal-relevance criterion [125]. A simple wrapper method

for feature ranking is to classify the data using each single feature by a classification

method and regard the classification result as the score of that feature.

Guyon et al. [59] propose a feature selection method using support vector ma-

chine to select genes which separate normal and cancer subjects. Initially putting all

features in the list, this method iteratively trains the SVM with remaining features

in the list to get the weight vector w in Equation (1.2.1) (see Section 1.2.4) and re-

moves the feature with the smallest value of w2
j . The order of the removal of features

gives the feature ranking. This method is a wrapper method for feature ranking in
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the two-group problem. Similarly, Rakotomamonjy [130] investigates three feature

ranking criteria which are also based on SVM.
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2.4 Feature Subset Selection

Feature subset selection can be regarded as a combinatorial optimization problem, in

which we find an optimal subset of the original feature set according to an objective

function. The size of the selected subset can be predetermined, unrestricted, or in-

volved in the objective function. The selected features are then used for classification.

Figure 2.4.1 shows the process of feature subset selection for classification.

Figure 2.4.1: Feature subset selection for classification.

Feature subset selection methods are categorized into filter methods, wrapper

methods [79, 65, 77], and embedded methods [12, 58], in which the first two are men-

tioned in Section 2.1. In filter methods, the feature selection process does not involve

the classifier; feature selection filters features and passes them to the classifier. In

wrapper methods, the feature selection process uses the classifier as a black-box to

guide the selection; feature selection is regarded as a wrapper around the classifier.

In embedded methods, the feature selection process is performed while the classifier

is trained; feature selection is embedded within the classifier.

Dash and Liu [27] and Liu and Yu [90] provide a framework to categorize fea-

ture subset selection methods. They identify four steps in a feature subset selection

method: subset generation, subset evaluation, stopping criterion, and result valida-

tion, shown in Figure 2.4.2. In fact, the first three steps describe the procedure of
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solving the feature subset selection optimization problem, either heuristic or exact.

Furthermore, the authors categorize feature selection methods according to search

strategies, evaluation criteria, and data mining tasks, providing a way to distinguish

existing methods. In their framework, data mining tasks include classification and

clustering.

Figure 2.4.2: Four steps of feature subset selection [90].

In Liu and Yu’s framework, search strategies include complete search, sequential

search, and random search, which are exactly the solution methods to the feature

subset selection optimization problem. As for exact solution method, Narendra and

Fukunaga [112] propose a branch and bound algorithm for selecting the best k fea-

tures out of m original ones. To utilize the power of branch and bound, the objective

function needs to be monotone, i.e., the performance of a subset A should not be

worse than any proper subset of A. The assumption of monotonic property is not

very restrictive; however, if the objective function involves cross-validation technique

to overcome over-fitting, monotonic property will not be satisfied.

Traditional sequential search methods include sequential forward selection (SFS)
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and sequential backward selection (SBS). SFS starts with no features and greedily se-

lects features; SBS starts with all features and greedily drops features. Stearns [149]

proposes the plus-l-minus-r search method to prevent the drawback of SFS (SBS)

that once a feature is selected (dropped), it can no longer be dropped (selected).

Pudil et al. [129] propose floating search methods, which make the sequential search

more flexible, and Somol et al. [143] propose a more complex version of the floating

search methods. Siedlecki and Sklansky [139] apply genetic algorithms to the feature

selection problems, which is an example of random search in the framework.

In Liu and Yu’s framework, evaluation criteria are categorized into filter methods,

wrapper methods, and hybrid methods, which relate to the objective function of the

feature subset selection optimization problem. As described before, filters are inde-

pendent of the classifiers while wrappers are dependent on the classifiers. In hybrid

methods, both kinds of evaluation criteria (i.e., independent and dependent ones) are

used.

An example of the wrapper evaluation criterion is called LS bound, derived from

leave-one-out procedure of LS-SVM (least squares SVM) to evaluate gene selection

by Zhou and Mao [167]. An example of the filter evaluation criterion is the criterion

proposed by Bruzzone and Serpico [20] for the classification of remote sensing images

acquired by passive sensors. The criterion is based on an upper bound to the Bayes

error under the assumption that each group follows the Gaussian distribution with

equal covariance. The proposed criterion is

K∑
i=1

K∑
j>i

{(p(ωi) + p(ωj))Q(

√
dij

2
)},

where p(ωi) is the prior probability of group ωi, Q(x) = 1√
2π

∫∞
x
e−ξ

2/2dξ, and dij is

the Mahalanobis distance between group ωi and ωj. It is shown to outperform some
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criteria used in remote sensing, such as criteria based on the Bhattacharyya distance,

the Jeffreys–Matusita (J–M) distance, and scatter matrices.

Lasso (least absolute shrinkage and selection operator) [155] and LARS (least an-

gle regression) [28] are examples of embedded feature selection methods. They are

designed for regression problems, but a regression model can be regarded as a binary

classifier when the dependent variable yi’s in the data have value 1 or -1 instead of

continuous values and the predicted group of a new observation is determined by the

sign of the regressed y from xj’s.

Tibshirani [155] proposes the Lasso model. Assuming that xij’s are standardized

so that
∑

i∈O xij/|O| = 0 and
∑

i∈O x
2
ij/|O| = 1 for all j ∈ F , the Lasso estimate

wj, j ∈ {0} ∪ F , is given by solving the following quadratic program, where t is a

tuning parameter.

Lasso

min
∑
i∈O

(
yi − w0 −

∑
j∈F

xijwj

)2

s.t.
∑
j∈F

|wj| ≤ t

wj urs ∀ j ∈ {0} ∪ F

This model tends to produce some wj’s which are exactly 0, so by tuning the

parameter t, we also do feature selection in the same time when we train the binary

classifier.

LARS proposed by Efron et al. [28] is a procedure to calculate the values of wj’s
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in a regression model, one wj in each step, based on the equiangular directions. This

procedure is regarded as a feature selection algorithm, which relates to the classical

forward selection but is less greedy. LARS is computationally efficient, and the Lasso

solution can be obtained by a simple modification of the LARS procedure.

Keerthi [66] generalizes the LARS feature selection procedure to the SVM classi-

fier with L2 loss function. Computational study shows that this is an effective feature

selection method.

48



2.5 Feature Subset Selection via Mathematical Program-
ming

In this section we review some feature subset selection methods which utilize mathe-

matical programming, and we point out the type of these methods according to the

filter-wrapper-embedded-method categorization.

Bertolazzi et al. [11] propose a feature selection formulation for the two-group

classification problem with binary data, i.e., the values of all features are binary.

This method belongs to the filter methods. Originally the feature selection problem

for two-group binary-feature data is formulated as a set covering problem:

min
∑
j∈F

zj

s.t.
∑
j∈F

ai1i2,jzj ≥ 1 ∀ i1 ∈ O1, i2 ∈ O2 (2.5.1)

zj ∈ {0, 1} ∀ j ∈ F

where ai1i2,j = 1 if and only if xi1,j 6= xi2,j, and ai1i2,j = 0 otherwise. The meaning

of ai1i2,j = 1 is that observation i1 and i2 from different groups have distinct values

in feature j. In this formulation, the decision variable zj has value one if feature j is

selected, and the objective function is to minimize the number of selected features.

The constraint (2.5.1) says that, for each pair of observations from different groups,

at least one feature must be selected such that this feature distinguishes, or covers,

these two observations.

To increase the power of prediction on not only training data but also testing

data, the authors propose to raise the right hand side of (2.5.1), resulting in (2.5.2),∑
j∈F

ai1i2,jzj ≥ α ∀i1 ∈ O1, i2 ∈ O2 (2.5.2)
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where α is an integer which measures the degree of information provided by the se-

lected features for the generation of prediction rules. In this case the set covering

problem becomes the generalized set covering problem.

Furthermore, to reduce the computational burden in this model, an approximated

formulation is proposed, which reduces the number of constraints from quadratic to

linear in the number of observations. Define P1(j) and P2(j), for each feature j, as

the proportion of observations in O1 and O2 which have value 1 in feature j. The

constraint (2.5.2) is replaced by (2.5.3),

∑
j∈F

dijzj ≥ α ∀i ∈ O (2.5.3)

where dij has value 1 or 0 based on the following table.

P1(j) > P2(j) P1(j) < P2(j)

dij xij = 1 xij = 0 xij = 1 xij = 0

i ∈ O1 1 0 0 1

i ∈ O2 0 1 1 0

The generalized set covering problem is then solved by the greedy randomized adap-

tive search procedure.

In the two-group classification problem, when a hyperplane is obtained to separate

data of two groups under certain objectives such as minimizing the sum of deviations

or minimizing the number of misclassifications, Glen [49, 50, 51, 52] introduces to

these models the constraint that only p of the coefficients, w1, · · · , wm, of the sepa-

rating hyperplane w0 +
∑m

j=1 xijwj = 0 can be nonzero. The models then find the

optimal hyperplane while restrict the number of selected features to p. Section 1.2.2.1

has more details on these classification models. These models belong to the embedded
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feature subset selection methods.

Iannarilli and Rubin [62] propose mathematical programming models to select

features in the multigroup classification problems. The methods are categorized as

embedded methods. In these models, the binary variable zj indicates the selection

of feature j, and the objective function measures the pairwise intergroup margin

between groups, which is based on the group conditional distributions of the reduced

feature vectors and is related to the Bayes error. The original formulation is an integer

nonlinear program:

max
∑

h,k∈G,h<k

max
j∈F
{ahkj zj}

s.t.
∑
j∈F

zj ≤ r

zj ∈ {0, 1} ∀j ∈ F ,

where r is the upper bound of the number of selected features, and ahkj could be a

weighted L1 metric applied to the group means,

ahkj = f

(
c
|µhj − µkj|

σhjσkj
σhj+σkj

)
,

in which µhj and σhj are the training set conditional mean and standard deviation

of feature j given group h, c is a positive parameter, and f() is a bounded function,

e.g., the sigmoidal function tanh(). There are other choices of ahkj as other metrics.

This nonlinear formulation is then transformed to an equivalent linear one so that

it could be solved to optimality by standard solvers. With the auxiliary variable whkj ,

the integer linear program is
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max
∑

h,k∈G,h<k

∑
j∈F

ahkj w
hk
j

s.t.
∑
j∈F

zj ≤ r

∑
j∈F

whkj ≤ 1 ∀h, k ∈ G, h < k

whkj ≤ zj ∀h, k ∈ G, h < k, ∀j ∈ F

zj ∈ {0, 1} ∀j ∈ F

whkj ≥ 0 ∀h, k ∈ G, h < k, ∀j ∈ F

The above nonlinear/linear formulation is regarded as the L∞ model since, for

each pair of groups, only one feature with the maximum ahkj accounts in the objective

function. The authors propose the constrained Lp model in which not just one feature

could account for each pair of groups. Given the user-specified lower bounds λhk’s on

the intergroup margins, the constrained Lp model is

max
∑
j∈F

ājzj

s.t.
∑
j∈F

zj ≤ r

∑
j∈F

ahkj zj ≥ λhk ∀h, k ∈ G, h < k

zj ∈ {0, 1} ∀j ∈ F ,

where

āj =
1(
K
2

) ∑
h,k∈G,h<k

ahkj

denotes the average intergroup margin for feature j. The parameter λhk has to be
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tuned through trial and error.
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2.6 Particle Swarm Optimization

Particle swarm optimization (PSO) is a heuristic algorithm to solve an optimiza-

tion problem. It is an evolutionary computation technique originally developed by

Kennedy and Eberhart [68]. Candidate solutions, named positions of particles, are

initialized randomly in the solution space. In each iteration of the algorithm, each

particle moves to a new position based on a randomly-generated velocity, which is

affected by the best position (i.e., the solution with the best objective value) achieved

so far by this particle and the best position achieved so far by the particle in its

neighborhood. In PSO the population is called the swarm and the objective function

is called the fitness function. We will solve feature subset selection problem by PSO.

Elbeltagi et al. [29] compare five evolutionary-based optimization algorithms, in-

cluding genetic algorithms, memetic algorithms, PSO, ant-colony systems, and shuf-

fled frog leaping and conclude that PSO generally performs better than the other

methods.

2.6.1 Introduction to PSO

This section introduces the PSO algorithm, neighborhood topologies, convergence

properties, parameter selection, and other topics.

2.6.1.1 Algorithm

Let xi be the position vector and vi be the velocity vector of particle i. Let pi be the

best position vector of particle i in the history, i.e., the position possessing the best

fitness value among all positions visited so far by particle i. The initialization and

updating of xi’s and vi’s and the termination of PSO are as the following.
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• Initialization:

Randomly generate xi and vi within predetermined ranges for each particle i.

• Updating:

In each iteration, xi and vi are updated by

vi ← vi ω + (pi − xi) c1 rand() + (pn∗(i) − xi) c2 rand(), (2.6.1)

xi ← xi + vi, (2.6.2)

where n∗(i) is the index of the best particle (i.e., having the best fitness value in

the history) in the neighborhood of the ith particle, rand() denotes a random

number (i.e., rand() ∼ U(0, 1)), and ω, c1, and c2 are parameters. Also, each

component of vi is restricted within the range [−Vmax, Vmax] to prevent the speed

from being out of control (Vmax is a predetermined value).

• Termination:

The PSO algorithm terminates when certain criteria are met. The criteria could

involve the number of iterations (e.g. achieving an upper bound), the fitness

value (e.g. having few improvement), or the position vectors (e.g. most particles

not moving, particularly in discrete case).

ω, c1, and c2 are meaningful parameters in (2.6.1). The inertia weight ω is in-

troduced by Shi and Eberhart [138], which improves the convergence of PSO when

its value as well as values of other parameters are appropriately chosen. c1 and c2

are known as the acceleration coefficients of the cognitive part and the social part,

respectively. In the social-psychological metaphor, the cognitive part represents self-

learning of the particle while the social part represents learning from other particles.

Clerc and Kennedy [23] introduce the constriction coefficient χ, which ensures

convergence of PSO without using Vmax to limit the velocity. Under this version of
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PSO, the velocity updating formula (2.6.1) becomes

vi ← χ · [vi + c1 · rand() · (pi − xi) + c2 · rand() · (pn∗(i) − xi)]. (2.6.3)

Note that a PSO with constriction (i.e., (2.6.3) and (2.6.2)) is algebraically equivalent

to a PSO with inertia (i.e., (2.6.1) and (2.6.2)), given that the inertia is fixed but not

changeable during the PSO process.

Mendes et al. [110] propose the fully-informed version of PSO, in which the next

position of each particle is affected by the best positions of “all” particles in its

neighborhood instead of the best one. In this case the velocity updating formula

(2.6.1) becomes

vi ← vi ω +
∑
j∈N(i)

(pj − xi) cj rand(), (2.6.4)

where N(i) denotes the neighborhood of particle i. Their computational study shows

that the fully-informed PSO which assigns equal weights to each neighbor of the par-

ticle performs better.

2.6.1.2 Neighborhood Topologies

Several neighborhood topologies for PSO are proposed in the literature [67, 70, 124],

including gbest (global best), lbest (local best), von Neumann topology, and so on.

The gbest topology treats the entire population as the neighborhood of the target

particle. The lbest topology is described as a one-dimensional ring lattice, where all

particles are aligned and form a ring, as shown in Figure 2.6.1(a). Different neigh-

borhood sizes can be used in lbest. For example, lbest with size 3 represents that the

neighborhood of the ith particle contains particles i − 1, i, and i + 1; if with size 5,

particle i− 2 and i+ 2 are further included. The von Neumann topology is described

as a two-dimensional lattice, where in the 2d grid a particle has neighbors above,
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below, right, and left. See Figure 2.6.1(b). Note that the neighbors of a particle are

determined before the algorithm starts and are based on the indices of particles but

not on the positions of particles or the distances between particles in the solution

space. Besides, in any topology a particle itself can be either included in or excluded

from its neighborhood; however, study shows that the inclusion/exclusion of the tar-

get particle has little impact on behavior [70, 128].

Figure 2.6.1: Neighborhood topology of PSO. (a) lbest; (b) von Neumann.

The effect of neighborhood topology on the performance of PSO is significant and

is dependent on the fitness function. Kennedy and Mendes [70] recommend the von

Neumann topology since it performs more superiorly and consistently in the experi-

ment. Besides, PSO with higher connected population topology converges faster and

tends to be better for unimodal problems, and vice versa [67, 70].

2.6.1.3 Convergence Properties and Parameter Selection

Two types of tools have been used to analyze the convergence properties of PSO. Clerc

and Kennedy [23], Trelea [157], and van den Bergh and Engelbrecht [158] study the

convergence properties of PSO using dynamic system theory, in which the analysis

starts from a simplified deterministic model (one-particle system without random-

ness). On the other hand, Jiang et al. [63] study the convergence properties using

57



stochastic process theory. Regardless of the analysis methods, conditions about pa-

rameters ω, c1, and c2 under which the PSO system converges are given and guidelines

of parameter selections are also provided. Note that the convergent position of each

particle is the overall best position found so far, which says nothing about any local

or global optimal solutions.

One good setting of the parameters for the version with inertia is ω = 0.7298 and

c1 = c2 = 1.49618. These numbers satisfy convergence conditions and are popular

used in PSO literature [158, 128].

2.6.1.4 Others

Many applications, generalization, and variants of the basic PSO algorithm have been

studied since PSO is first proposed. Poli et al. [128] give a comprehensive overview

of PSO in the newly established journal Swarm Intelligence. Laskari et al. [80] apply

PSO to solving integer nonlinear programming problems and compare its performance

with that of branch and bound technique. Parsopoulos and Vrahatis [117] propose an

approach for computing all global minimizers of an objective function, where tech-

niques for objective function transformation are incorporated in the context of PSO.

Parsopoulos and Vrahatis propose the unified particle swarm optimization scheme,

which combines the global and local PSO variants. Although the neighborhood struc-

ture gbest is a generalization of lbest, the authors distinguish between them due to

their exploitation and exploration properties, respectively. Parameter selection and

adaptation in unified PSO are also studied [118]. Petalas et al. [126] propose the

memetic particle swarm optimization scheme, which incorporates local search tech-

niques to the standard PSO. The new scheme performs better than PSO in different

types of test problems. Poli [127] analyzes the publications on the applications of
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PSO. Fernandez Martinez and Garcia Gonzalo [33] generalize the PSO algorithm for

any time step ∆t:

vi(t+ ∆t)← vi(t) (1− (1− ω)∆t)

+ (pi(t)− xi(t)) c1 rand() ∆t

+ (pn∗(i)(t)− xi(t)) c2 rand() ∆t, (2.6.5)

xi(t+ ∆t)← xi(t) + vi(t+ ∆t)∆t. (2.6.6)

This generalization is based on a mechanical analogy: a damped mass-spring system.

A family of PSO versions is also derived from this mechanical analogy [34]. Cooren et

al. [25] study TRIBES, an adaptive version of PSO, which avoids manual parameter

tuning. In TRIBES the users determine only the adaptation rules while the particles’

behaviors and the topology changes automatically.

2.6.2 Binary PSO

Kennedy and Eberhart [69] modify the PSO algorithm to work on binary variables.

The binary PSO also operates on continuous variables since a continuous value can be

represented as a bit string given a prespecified precision. In Kennedy and Eberhart’s

binary PSO algorithm, all position vectors become binary vectors, but the velocity

vectors remain continuous. The velocity is used to define the probabilities that a bit

is one or zero. With the subscript j denoting the jth dimension of xi and vi, the

position updating formula becomes

xij =

 1 if rand() < S(vij),

0 otherwise,
(2.6.7)

where S(vij) = 1

1+e−vij
is the sigmoid function. The authors implement this method

using population topology lbest which includes the target particle and has neighbor-

hood size 3. Kennedy and Spears [71] compare this binary PSO with some versions
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of genetic algorithm on solving multimodal problems. In their experiment, the binary

PSO appeares to be robust.

Pampara et al. [114] propose the Angle Modulated PSO (AMPSO) which employs

a trigonometric function to generate bit strings. Instead of evolving the binary vectors

representing candidate solutions to the original problem, the standard PSO is applied

to optimize a simpler 4-dimensional tuple (a, b, c, d) that are the parameters of the

generating function

g(x) = sin(2π(x− a)× b× cos(A)) + d, (2.6.8)

where

A = 2π × c(x− a).

When the values of (a, b, c, d) are obtained in an iteration of PSO, they are substituted

back into function (2.6.8). Suppose that m is the dimension of the binary vector to

the original problem and that m evenly spaced intervals in the domain of x is pre-

determined. The binary vector is generated by the following procedure: sampling

a point at each interval and evaluating f(x) at that point; if f(x) is positive, the

variable corresponding to this interval is assigned to be 1, otherwise 0. Experimental

results using von Neumann topology show that AMPSO performs better than the

original binary PSO proposed by Kennedy and Eberhart [69].

2.6.3 Feature Selection Using PSO

In feature subset selection problem, the selection of features can be represented as a

binary vector, so the binary versions of PSO algorithm described in Section 2.6.2 are

candidate solution methods. Besides, several PSO variants are proposed for feature

selection although some of them are applied to regression or other problems instead
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of classification.

Agrafiotis and Cedeño [2] present a binary adaption of PSO for feature selec-

tion, applied in the construction of quantitative structure-activity relationship mod-

els based on neural networks. In this feature selection application, xij = 1 if the jth

feature of the ith particle is selected and xij = 0 if not selected. In each iteration

and for the ith particle, the number of features to be selected, k, is predefined. xij is

obtained by applying formulas (2.6.1) and (2.6.2) and is confined in the interval [0, 1].

Then the features are selected by employing roulette wheel selection: assigning the

jth feature a slice of a roulette wheel whose size is the probability qij obtained from

equation (2.6.9); then spinning the wheel and selecting the feature under the wheel’s

marker until k distinct features are selected.

qij =
xαij∑
j x

α
ij

(2.6.9)

In equation (2.6.9) the parameter α represents the selection pressure. In the compu-

tational tests, α is set to be 2; lbest including the target particle with neighborhood

size 5 is used for the population topology. The results show that this method com-

pares favorably with simulated annealing.

Monteiro and Kosugi [111] propose a feature selection method to extract infor-

mation from hyperspectral imagery data. This method uses two particle swarms

simultaneously, one PSO for deciding the number of selected features and the other

PSO for selecting features. The continuous version of PSO in one-dimension is used

to search for the number of selected features, where values are discretized by round-

ing to the nearest integers. The binary PSO by Agrafiotis and Cedeño [2] described

above is used to select features. Neural networks are utilized to construct regression

models with features selected by PSO.
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Shen et al. [137] propose a modified binary PSO for feature selection in multiple

linear regression and partial least-squares modeling. The gbest neighborhood topology

is used here. Let g be the index of the best particle in the whole population and recall

that pi is the best previous position of the ith particle. In this proposed algorithm

the velocity vij is defined as a random number, and the position xij is updated by

the rule:

If (0 < vij ≤ a), then xij ← xij, (2.6.10)

If (a < vij ≤
1

2
(1 + a)), then xij ← pij, (2.6.11)

If (
1

2
(1 + a) < vij ≤ 1), then xij ← pgj, (2.6.12)

where a is a value in the range of (0, 1) and initially set as 0.5. Using decreasing val-

ues of a and some percentage of particles not following previous bests, this method

has satisfactory performance and convergence rate compared with genetic algorithms.

Wang and Yu [161] modify the method of Shen et al. by introducing mutation

and apply to fault diagnosis in chemical process. SVM is used as the classifier and

the fitness function includes the correct classification rate as well as the number of

selected features.

Correa et al. [26] present a discrete PSO designed for feature selection. The

velocity is defined by proportional likelihoods which are affected by previous bests.

Each component of the velocity is multiplied by a random number, and the features

corresponding to the larger components of the velocity are selected.

Liu et al. [91] propose a method for solving classification problems where radial

basis function (RBF) neural network is used as the classifier and feature selection is

included. In their method the standard PSO is employed to do feature selection and
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neural network training simultaneously. Each particle consists of two parts: flags for

feature selection and parameters of the neural network. The jth feature is selected if

the corresponding flag is positive and not selected if its flag is nonpositive.

Ressom et al. [132, 131] combine SVM with PSO, applying to serum mass spectral

profiles for biomarker discovery. The biomarkers are mass-per-charge values (i.e., m/z

values), which form a continuous space. The continuous version of PSO with gbest

population topology operates in this continuous space to select biomarkers which bet-

ter distinguish cancer patients from healthy individuals.

Tang et al. [154] propose an evaluation criterion for feature selection, which origi-

nates from an exact calculation of the leave-one-out error of a least squares SVM, and

present a searching scheme to combine with the proposed criterion. In the searching

scheme, principle component analysis is applied to transform the original data, scaling

factors are introduced into the kernel matrix for SVM, and standard PSO is used to

optimize the evaluation criterion with respect to the scaling factor for the transformed

data. This feature selection method has good performance and low computational

cost to perform gene selection from DNA microarray data.

Samanta and Nataraj [136] implement PSO together with proximal support vector

machines [42] for machinery fault detection. Two versions of PSO are implemented

in this study. The first version is the binary PSO proposed by Kennedy and Eberhart

[69], in which the position vector xi is a binary vector indicating weather a feature

is selected or not. The second version is the original real-valued PSO, in which the

position vector represents the indices of selected features. In this implementation,

the dimension of the position vector is a predetermined value equal to the number
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of selected features, the values in the position vector are rounded to integers as in-

dices, and a solution is excluded if a feature appears more than once in the solution.

Simulation results show that the difference between these two versions of PSO is not

significant.
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CHAPTER III

PSO/DAMIP FRAMEWORK

This chapter introduces the PSO/DAMIP classification framework, which uses PSO

(particle swarm optimization) for feature selection and DAMIP (discriminant analy-

sis – mixed integer program) for classification. This is a wrapper method in which

PSO iteratively searches for the subsets of the original features with a good ten-

fold cross-validation classification accuracy obtained by solving DAMIP using the

selected features. Topics include the modified PSO, exact algorithms for solving two-

group DAMIP, heuristics for solving multigroup DAMIP without misclassification

constraints, and trials on solving DAMIP with cuts.

3.1 Modified PSO

We directly modify the original PSO algorithm to solve the binary problem—the

feature subset selection problem. In our framework, the number of selected features

is determined based on the number of observations and the number of features; in

our applications it is usually chosen from 3 to 20. The modified algorithm and the

selection of PSO parameters are described in this section.

3.1.1 Algorithm

Recall that xi is the position vector and vi is the velocity vector of particle i. Also, pi

is the best position vector of particle i in the history. We fix the number of selected

features to be k. The PSO algorithm is as the following.

• Initialization:
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For each particle i, xi is generated such that ones are in randomly-selected

k components and zeros are in the remaining components; vi is generated by

vij ∼ U(−Vinit.max, Vinit.max).

• Updating:

In each iteration, vi is updated by

vi ← vi ω + (pi − xi) c1 rand() + (pn∗(i) − xi) c2 rand(). (3.1.1)

(Recall that n∗(i) is the index of the best particle in the neighborhood of the

ith particle, rand() ∼ U(0, 1), and ω, c1, and c2 are parameters.)

xi gets k ones in the components whose corresponding components in vi have

the largest k valeus. The other components in xi get zeros.

• Termination:

The PSO algorithm terminates when (1) the maximum number of iterations is

achieved, or (2) the percentage of the number of particle moving is less than a

threshold.

We can also use the velocity updating formula (3.1.2) in the fully-informed version

of PSO instead of (3.1.1):

vi ← vi ω +
∑
j∈N(i)

(pj − xi) cj rand(), (3.1.2)

where N(i) denotes the neighborhood of particle i.

For the xi updating, instead of determining the zeros and ones based on the values

of vi, we can also use an alternative way: after updating vi by (3.1.1) or (3.1.2), we

first update xi by

xi ← xi + vi, (3.1.3)
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then change the largest k components of xi to ones and others to zeros.

All solutions visited during the PSO process are stored, so when a particle visits a

position which is already recorded, the objective function value is obtained directly.

In this way we avoid recalculating the ten-fold cross-validation classification accuracy,

i.e., solving ten classification problems.

3.1.2 Parameter Selection

Based on the literature and our computational experience, we choose the settings and

parameters of PSO listed below.

• Neighborhood topology:

We use von Neumann topology since it performs better than gbest or lbest with

smaller neighborhood sizes in our computational experience, which also matches

the results in the literature [70]. Also, we find that the inclusion or exclusion

of the target particle in the neighborhood (i.e., whether the neighborhood of

particle i includes particle i itself) is not critical.

• Vinit.max in the initialization step:

During the modified PSO algorithm the vij’s usually have values around or

smaller than one, so we set Vinit.max = 1. There is no significant difference if we

set Vinit.max larger, such as 2 or 6.

• Velocity updating formula:

We test on both formula (3.1.1) and (3.1.2) but we prefer the latter one, the

fully-informed version. This version converges slower but finds better solutions.

When using formula (3.1.2), we prefer not to include particle i in its neighbor-

hood.
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• ω, c1, and c2 in velocity updating:

We use ω = 0.7298 and c1 = c2 = 1.49618 in (3.1.1), which are popular used in

the literature [158, 128]. When we use the fully-informed version formula (3.1.2),

the cj’s are chosen as cj = 1.49618+1.49618
|N(i)| for all j ∈ N(i), which will satisfy the

convergence conditions. Under von Neumann neighborhood topology, |N(i)|

equals 5 or 4, depending on the inclusion/exclusion of the target particle.

• Vmax in velocity updating:

As described in Section 2.6.1.1, we might restrict vij’s within the range [−Vmax, Vmax].

Our computational experience shows that there is no need to use this restriction.

• Position updating:

There is no significant difference to determine the zeros and ones in xi based on

(1) the values of vi, or (2) the values of xi after executing the formula (3.1.3).

• Termination:

We use one or both of these criteria: (1) the maximum number of iterations is

achieved, and (2) the percentage of the number of particle moving is less than

a threshold. The suitable maximum number of iterations varies in different

applications.

• Number of particles:

Under von Neumann neighborhood topology, the number of particles might be

chosen as 9, 12, 16, 25, 36, or other numbers, depending on how large the total

number of features is.

We can temporarily run PSO with a large number of iterations, observe the be-

havior of PSO, and then decide a suitable upper bound of the iterations or other

68



suitable termination criteria. We can also do similar testing runs with different num-

ber of particles, neighborhood topologies, or other settings. After deciding suitable

parameters and settings from the testing runs, we use them on the same data set with

more independent runs or on other similar data sets. Figure 3.1.1 demonstrates the

behavior of PSO in a testing run. In this example the data set has two groups, 212

observations, and 6375 features. We select 10 features in this testing run. The PSO

uses 25 particles, fully-informed velocity updating, and von Neumann neighborhood

topology in which the target particle is not included in the neighborhood. The figure

shows the number of particle moving, the number of objective calculation, the best

accuracy, and the number of particle improving in 1000 iterations. (Note that when

a particle moves from its current position, we may or may not calculate the objective

function, depending on whether the new position is already recorded; when a particle

moves, the best accuracy of the particle in the history may or may not improve; and

when a particle improves its best accuracy, the overall best accuracy may or may not

change.) We then decide the suitable termination criteria according to the behavior

together with the elapsed time of the testing run and how many runs or data sets we

will implement next.
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Figure 3.1.1: Behavior of PSO in an example: (a) number of particle moving, (b)

number of objective calculation, (c) best accuracy, and (d) number of particle im-

proving.
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3.2 Solving Two-Group DAMIP by Exact Algorithms

We develop theories and exact algorithms to solve the two-group DAMIP problems.

Here is the nonlinear two-group DAMIP formulation:

max
∑
i∈O

uyii

s.t. L1i = π1f1(xi)− f2(xi)λ21 ∀ i ∈ O

L2i = π2f2(xi)− f1(xi)λ12 ∀ i ∈ O

uki =

 1 if k = arg max{0, L1i, L2i}

0 otherwise
∀ i ∈ O, k ∈ {0, 1, 2}

∑
k∈{0,1,2}

uki = 1 ∀ i ∈ O

∑
i1: i1∈O1

u2i1 ≤ bα12n1c

∑
i2: i2∈O2

u1i2 ≤ bα21n2c

u0i, u1i, u2i ∈ {0, 1}, L1i, L2i urs ∀ i ∈ O

λ12, λ21 ≥ 0

The following lemma gives basic observations of the problem and will be used for

developing propositions and algorithms.

Lemma 3.2.1.

(i) Observation i1 ∈ O1 is correctly classified if and only if

f2(xi1)

f1(xi1)
<
π1 + λ12

π2 + λ21
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and

π1f1(xi1)− f2(xi1)λ21 > 0.

(ii) Observation i2 ∈ O2 is correctly classified if and only if

f2(xi2)

f1(xi2)
>
π1 + λ12

π2 + λ21

and

π2f2(xi2)− f1(xi2)λ12 > 0.

(iii) Observation i ∈ O is classified in the reserved judgement region if and only if

π1

λ21

<
f2(xi)

f1(xi)
<
λ12

π2

.

(iv) If λ12 and λ21 satisfy π1
λ21

< λ12
π2

, then

π1

λ21

<
π1 + λ12

π2 + λ21

<
λ12

π2

.

Proof. (i) For i1 ∈ O1, i1 is correctly classified if and only if L1i1 > L2i1 and

L1i1 > 0. Equivalently, π1f1(xi1)−f2(xi1)λ21 > π2f2(xi1)−f1(xi1)λ12 and π1f1(xi1)−

f2(xi1)λ21 > 0. The former inequality is equivalent to
f2(xi1

)

f1(xi1
)
< π1+λ12

π2+λ21
.

(ii) For i2 ∈ O2, i2 is correctly classified if and only if L2i2 > L1i2 and L2i2 >

0. Equivalently, π2f2(xi2) − f1(xi2)λ12 > π1f1(xi2) − f2(xi2)λ21 and π2f2(xi2) −

f1(xi2)λ12 > 0. The former inequality is equivalent to
f2(xi2

)

f1(xi2
)
> π1+λ12

π2+λ21
.
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(iii) For i ∈ O, i is classified in the reserved judgement region if and only if L1i < 0

and L2i < 0. Equivalently, π1f1(xi) − f2(xi)λ21 < 0 and π2f2(xi) − f1(xi)λ12 < 0.

Note that both λ21 and λ12 are positive. The inequalities are equivalent to π1
λ21

<

f2(xi)
f1(xi)

< λ12
π2

.

(iv) π1+λ12
π2+λ21

− π1
λ21

= λ12λ21−π1π2
(π2+λ21)λ21

> 0. Similarly, λ12
π2
− π1+λ12

π2+λ21
= λ12λ21−π1π2

π2(π2+λ21)
> 0.

We then have a proposition to characterize the two-group problem without mis-

classification constraints.

Proposition 3.2.2. In the two-group case without misclassification constraints, there

exists an optimal solution such that at least one of λ12 or λ21 is zero. Furthermore,

in this solution, no observation is classified in the reserved judgement region.

Proof. We will prove the first part of the proposition by showing that, given any

feasible solution (λ12, λ21) > (0, 0), we can find another solution (λ̄12, λ̄21) in which

at least one of λ̄12 or λ̄21 is zero such that all correctly-classified observations under

the old solution (λ12, λ21) are still correctly classified under the new solution (λ̄12, λ̄21).

(i) If π1
π2
< λ12

λ21
, let λ̄21 = 0 and let λ̄12 satisfy π1+λ12

π2+λ21
= π1+λ̄12

π2
. Simplifying the

equality, we get λ̄12 = π2λ12−π1λ21
π2+λ21

. Note that 0 < λ̄12 < λ12.

(ii) If π1
π2
> λ12

λ21
, let λ̄12 = 0 and let λ̄21 satisfy π1+λ12

π2+λ21
= π1

π2+λ̄21
. Simplifying the

equality, we get λ̄21 = π1λ21−π2λ12
π1+λ12

. Note that 0 < λ̄21 < λ21.
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(iii) If π1
π2

= λ12
λ21

, let λ̄12 = 0 and λ̄21 = 0.

In all cases, (λ̄12, λ̄21) satisfies π1+λ12
π2+λ21

= π1+λ̄12
π2+λ̄21

and (λ̄12, λ̄21) < (λ12, λ21). Lemma

3.2.1(i) and (ii) contain the necessary and sufficient conditions for observations to be

correctly classified. If these conditions hold under (λ12, λ21), they will still hold under

(λ̄12, λ̄21).

If λ12 or λ21 is zero, L2i > 0 or L1i > 0 will hold for all i ∈ O. Then no observations

will be classified as reserved. This proves the second part of the proposition.

In the following proposition, we explain graphically the insights to develop an

algorithm to solve the two-group classification problem regardless of the misclassifi-

cation constraints.

Proposition 3.2.3. We draw the observations of group 1 and 2 on the f2(xi)
f1(xi)

-axes,

as shown in Figure 3.2.1(a). Once the values of λ12 and λ21 are determined, so are

the values of π1+λ12
π2+λ21

, π1
λ21

(if exists), and λ12
π2

.

(i) If λ12 and λ21 are small enough such that π1
λ21

< λ12
π2

is not satisfied, the lines

can be partitioned at π1+λ12
π2+λ21

into correctly-classified regions (C) and misclassified re-

gions (M), as described in Figure 3.2.1(b).

(ii) If λ12 and λ21 are large enough such that π1
λ21

< λ12
π2

is satisfied, the lines can

be partitioned at π1
λ21

and λ12
π2

into correctly-classified regions (C), misclassified regions

(M), and reserved judgement regions (R), as described in Figure 3.2.1(c).
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Proof. (i) Suppose λ12 and λ21 are small enough such that π1
λ21

< λ12
π2

is not satisfied.

By Lemma 3.2.1(iii), no reserved judgement region is constructed. The observations

i1 of group 1 in region M satisfy
f2(xi1

)

f1(xi1
)
> π1+λ12

π2+λ21
; by Lemma 3.2.1(i), they are not cor-

rectly classified. Since there is no reserved judgement region, they are misclassified.

The observations i1 of group 1 in region C satisfy
f2(xi1

)

f1(xi1
)
< π1+λ12

π2+λ21
, or equivalently,

L1i1 > L2i1 . Since there is no reserved judgement region, L1i1 > 0 holds. Therefore

the observations i1 of group 1 in region C are correctly classified. Proofs for observa-

tions of group 2 are similar.

(ii) Suppose λ12 and λ21 are large enough such that π1
λ21

< λ12
π2

is satisfied. Lemma

3.2.1(iv) describes the order of π1
λ21

, π1+λ12
π2+λ21

, and λ12
π2

. By Lemma 3.2.1(iii), the region

R’s are exactly the reserved judgement regions. The observations i1 of group 1 in

region M satisfy
f2(xi1

)

f1(xi1
)
> π1+λ12

π2+λ21
; they are not reserved nor correctly classified (by

Lemma 3.2.1(i)), so they are misclassified. The observations i1 of group 1 in region

C satisfy
f2(xi1

)

f1(xi1
)
< π1+λ12

π2+λ21
, or equivalently, L1i1 > L2i1 . Since these observations are

not reserved, L1i1 > 0 holds. Therefore the observations i1 of group 1 in region C are

correctly classified. Proofs for observations of group 2 are similar.

Based on Proposition 3.2.3, we give some detailed ideas of developing an algorithm

in the following remarks.

Remarks:

1. The misclassified group-one observations will be the rightmost ones on the f2(xi)
f1(xi)

axis; similarly, the misclassified group-two observations will be the leftmost ones.

In the problem with misclassification constraints, we can point out the obser-

vations which are allowed to be misclassified. Figure 3.2.2 demonstrates an
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Figure 3.2.1: Two-group problem on the f2(xi)
f1(xi)

axis. (a) Representation of observa-

tions. (b) The lines are partitioned at π1+λ12
π2+λ21

into correctly-classified regions (C) and

misclassified regions (M). (c) The lines are partitioned at π1
λ21

and λ12
π2

into correctly-
classified regions (C), misclassified regions (M), and reserved judgement regions (R).

example of the two-group problem with misclassification constrains; the bolder

points are the observations allowed to be misclassified. The maximum numbers

of allowable misclassification of group one and two are bα12n1c and bα21n2c, re-

spectively. All non-bold observations have to be correctly classified or reserved.

2. The reserved judgement region is constructed when λ12 and λ21 are large enough

to form the interval ( π1
λ21
, λ12
π2

). Once the interval is generated, all observations in

this interval are classified as reserved, no matter whether they could potentially
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Figure 3.2.2: Representation of observations allowed to be misclassified.

be classified correctly or not. Since the objective function is to maximize the

number of corrected-classified observations, we don’t necessarily need the re-

served judgement region unless misclassification constraints cannot be satisfied

without the reserved judgement region.

Figure 3.2.3 shows the cases in which the reserved judgement region is not or

is needed. Let a1 be the largest
f2(xi1

)

f1(xi1
)
-value of the group-one observations

i1’s which are not allowed to be misclassified. Similarly, let a2 be the smallest

f2(xi1
)

f1(xi1
)
-value of the group-two observations i2’s which are not allowed to be

misclassified.

• If a1 < a2 as shown in Figure 3.2.3(a), then any (λ12, λ21) which satisfies

π1+λ12
π2+λ21

= t ∈ (a1, a2) and is small enough to not form the interval ( π1
λ21
, λ12
π2

)

is a feasible solution which meets the misclassification constrains but does

not use the reserved judgement region. In this case we don’t need the

reserved judgement region.

• If a1 ≥ a2 as shown in Figure 3.2.3(b), then the misclassification constrains

cannot be satisfied without the reserved judgement region. In this case, we

determine the optimal interval (rL, rR) as the reserved judgement region

and get (λ12, λ21) by solving π1
λ21

= rL and λ12
π2

= rR. The optimal rL is cho-

sen to be on the immediate left of a2 (i.e., rL is on the left of a2 but also on

the right of all points which are on the left of a2); the optimal rR is chosen
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to be on the immediate right of a1. Choosing rL and rR in this way not

only meets the misclassification constraints but also guarantee optimality,

i.e., leave as many observations in the correctly-classified region as possible.

Figure 3.2.3: Cases in which reserved judgement region is not or is needed. (a)
a1 < a2. Reserved judgement region is not needed. (b) a1 ≥ a2. Reserved judgement
region is needed.

3. Suppose we don’t need the reserved judgement region to satisfy the misclassifi-

cation constraints no matter weather there are misclassification constraints or

not. In this case we only need to determine the optimal value of π1+λ12
π2+λ21

. Once

the value of π1+λ12
π2+λ21

is determined, the value of (λ12, λ21) can be chosen so that at

least one of them is zero, which guarantees to not form the reserved judgement

region.

We then determine an interval, (lL, lR), in which the optimal value of π1+λ12
π2+λ21

will

be located. There are four cases as shown in Figure 3.2.4.

• Case (a): No misclassification constraints. Let lL be on the immediate left
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of the leftmost group-two observation and let lR be on the immediate right

of the rightmost group-one observation.

• Case (b): A misclassification constraints on group one. Let lL be on the

immediate right of a1 and let lR be on the immediate right of the rightmost

group-one observation.

• Case (c): A misclassification constraints on group two. Let lL be on the

immediate left of the leftmost group-two observation and let lR be on the

immediate left of a2.

• Case (d): Misclassification constraints on both groups with a1 < a2. Let

lL be on the immediate right of a1 and let lR be on the immediate left of

a2.

It is sufficient to search for optimal π1+λ12
π2+λ21

in the interval (lL, lR) defined above.

For example, in case (a), if the value of π1+λ12
π2+λ21

goes leftward beyond lL, the num-

ber of correctly-classified group-one observations may decrease without any gain

on the number of correctly-classified group-two observations. This shows that

lL is a lower bound of the optimal π1+λ12
π2+λ21

in this case.

4. When we search for the optimal value of π1+λ12
π2+λ21

in the interval (lL, lR), we only

have to check the objective value at the positions where the closest observation

on the left is of group one and the closest observation on the right is of group

two. Figure 3.2.5 demonstrates an example in which we only need to check

at positions t1, · · · , t5. At other positions, the value of π1+λ12
π2+λ21

can either go

leftward to classify more group-two observations correctly or go rightward to

classify more group-one observations correctly without affecting any observa-

tions already classified correctly.
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Figure 3.2.4: The interval (lL, lR) in which optimal π1+λ12
π2+λ21

is located. (a) No mis-
classification constraints. (b) A constraint on group 1. (c) A constraint on group 2.
(d) Constraints on both groups with a1 < a2.

Figure 3.2.5: Positions to check the optimal value of π1+λ12
π2+λ21

within (lL, lR).

Algorithm 3.2.4. Exact algorithm for the two-group problem.

1. Sort group-one and group-two observations separately in ascending order by the

sort key f2(xi)
f1(xi)

.
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2. Find a1 and a2 if there is misclassification constraints on group one and two,

respectively (See Remark 2).

3. (The case of using the reserved judgement region.)

If there are misclassification constraints on both groups and if a1 ≥ a2:

(a) Choose rL and rR (See Remark 2 / Figure 3.2.3(b)).

(b) Calculate λ21 and λ21 (See Remark 2).

(c) Stop.

4. (The case of not using the reserved judgement region.)

(a) Choose lL and lR (See Remark 3 / Figure 3.2.4).

(b) Check which possible position within (lL, lR) for the value of π1+λ12
π2+λ21

has

the maximum number of correctly-classified observations (See Remark 4).

Decide the value of π1+λ12
π2+λ21

.

(c) Calculate λ21 and λ21 (See Remark 3).

The complexity of step 1 is O(n log n) and the complexity of other steps is O(n) or

O(1), so the overall complexity of Algorithm 3.2.4 is O(n log n). Besides, the remarks

give explanation for the correctness of the algorithm.

Based on Proposition 3.2.2, we develop an alternative exact algorithm for the

two-group problem without misclassification limits. The idea of this algorithm is as

the following. Assuming λ21 = 0, we find the optimal value of λ12; assuming λ12 = 0,

we find the optimal value of λ21; the better case of these two is optimal overall.

Assume λ21 = 0, L1i > L2i is equivalent to π2
f2(xi)
f1(xi)

− π1 < λ12. We draw the

π2
f2(xi)
f1(xi)

−π1-values of the observations and conclude that the value of λ12 determines
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the correctly-classified regions and misclassified regions of both groups, as shown in

Figure 3.2.6. Therefore we can find the best position of λ12 in the similar way as in

the previous algorithm. Since λ12 is nonnegative, we consider only the observations

with positive π2
f2(xi)
f1(xi)

− π1-values. Under the assumption of λ12 = 0, the analysis is

symmetric. Here is the algorithm.

Figure 3.2.6: Two-group problem on the π2
f2(xi)
f1(xi)

− π1 axis given that λ21 = 0.

The lines are partitioned at λ12 into correctly-classified regions (C) and misclassified
regions (M).

Algorithm 3.2.5. Exact algorithm for the two-group problem without misclassifica-

tion limits.

1. (Case: Assume λ21 = 0, find the optimal λ12.)

(a) Sort group-one and group-two observations separately in ascending order

by the sort key π2
f2(xi)
f1(xi)

− π1. Only observations with positive sort key

values are sorted and stored.

(b) Check which possible position for the value of λ12 has the maximum num-

ber of correctly-classified observations by counting the number of group-

one observations with sort key values less than λ12 and the number of

group-two observations with sort key values greater than λ12.

2. (Case: Assume λ12 = 0, find the optimal λ21.)
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(a) Sort group-one and group-two observations separately in ascending order

by the sort key π1
f1(xi)
f2(xi)

− π2. Only observations with positive sort key

values are sorted and stored.

(b) Check which possible position for the value of λ21 has the maximum num-

ber of correctly-classified observations by counting the number of group-

one observations with sort key values greater than λ21 and the number of

group-two observations with sort key values less than λ21.

3. The case which has larger number of correctly-classified observations determines

the optimal λ12 and λ21.

The complexity of Algorithm 3.2.5 is O(n log n), same as that of Algorithm 3.2.4.

Although Algorithm 3.2.5 has to do two sorting instead of one, it handles in the

sorting only the observations with positive sort key values, which enhances the speed.

In the situation without misclassification constraints, our computational experience

shows that the computational time of these two algorithms has no significant differ-

ence.

Algorithm 3.2.4 and 3.2.5 can be generalized to solve the DAMIP in which the ob-

jective function is modified to be maximizing the average group accuracy (i.e., formula

(1.3.13)) or maximizing the minimum group accuracy (i.e., formula (1.3.14)-(1.3.16))

instead of the original one, maximizing the total number of correctly-classified obser-

vations (i.e., formula (1.3.8)). The generalization is in step 4(b) of Algorithm 3.2.4

and step 1(b) and 2(b) of Algorithm 3.2.5: Check which possible position has the

maximum value of the objective function, which can be the number of correctly-

classified observations, the average group accuracy, or the minimum group accuracy,

depending on which model we are using. In fact, the algorithms give the optimal
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solutions no matter which objective function is used.

Furthermore, when checking which possible position has the maximum value of

the objective function, we can also incorporate a secondary objective function. That

is, when two different solutions tie under the primary objective, we compare the so-

lutions by the secondary one.
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3.3 Solving DAMIP without Misclassification Constraints
by Greedy Algorithm

We develop a greedy algorithm to solve the multigroup DAMIP problem without

misclassification constraints. We also provide computational results to show the per-

formance of the algorithm.

3.3.1 Introduction

The idea of the greedy algorithm for multigroup DAMIP is to separate observa-

tions from only two groups in a single step and handle all pairs of groups in turn.

When we separate group h and k in a step, we search for good λhk or λkh while

letting other λ’s remain unchanged; λhk or λkh are main factors for separating group

h and k although other λ’s also have effects. The search for a good λhk or λkh is

similar to Algorithm 3.2.5 and is based on the fact that Lhi > Lki is equivalent to

(πk+λkh)
fk(xi)
fh(xi)

+
∑

j∈G,j 6=h,k(λjh−λjk)
fj(xi)

fh(xi)
−πh < λhk. Here is the greedy algorithm.

Algorithm 3.3.1. Greedy algorithm for the multigroup problem without misclassi-

fication limits.

Input: (h1, k1), (h2, k2), · · · , (hT , kT ), where ht, kt ∈ G, ht 6= kt for all t = 1, · · · , T .

Initialization: λ̄hk = 0 for all h, k ∈ G, h 6= k.

z̄ = 0.

Loop t = 1 to T

1. (Case: Find the pseudo-optimal λhtkt while other λ’s are fixed at λ̄’s.)

(a) Sort the observations of group ht and kt separately in ascending order by

the sort key (πkt + λ̄ktht)
fkt (xi)

fht (xi)
+
∑

j∈G,j 6=ht,kt(λ̄jht− λ̄jkt)
fj(xi)

fht (xi)
−πht . Only

observations with positive sort key values are sorted and stored.
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(b) Check which possible position for the value of λhtkt has the maximum

greedy objective value defined by the sum of the number of group-ht ob-

servations with sort key values less than λhtkt and the number of group-kt

observations with sort key values greater than λhtkt . Let λ̂htkt be an opti-

mal solution.

(c) Calculate the true objective value (i.e., the number of correctly-classified

observations in all groups), ẑ1, using λ̄’s with λ̂htkt instead of λ̄htkt .

2. (Case: Find the pseudo-optimal λktht while other λ’s are fixed at λ̄’s.)

(a) Sort the observations of group kt and ht separately in ascending order by

the sort key (πht + λ̄htkt)
fht (xi)

fkt (xi)
+
∑

j∈G,j 6=kt,ht(λ̄jkt− λ̄jht)
fj(xi)

fkt (xi)
−πkt . Only

observations with positive sort key values are sorted and stored.

(b) Check which possible position for the value of λktht has the maximum

greedy objective value defined by the sum of the number of group-kt ob-

servations with sort key values less than λktht and the number of group-ht

observations with sort key values greater than λktht . Let λ̂kttt be an optimal

solution.

(c) Calculate the true objective value (i.e., the number of correctly-classified

observations in all groups), ẑ2, using λ̄’s with λ̂ktht instead of λ̄ktht .

3. If max{ẑ1, ẑ2} > z̄, then

(a) Update z̄ by max{ẑ1, ẑ2}.

(b) If ẑ1 > ẑ2, update λ̄htkt by λ̂htkt ; otherwise update λ̄ktht by λ̂ktht .

End Loop

To generalize the greedy algorithm for alternative objective functions such as

maximizing the average group accuracy (i.e., formula (1.3.13)) or maximizing the
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minimum group accuracy (i.e., formula (1.3.14)-(1.3.16)), the alternative objective

functions are used when we calculate the true objective value in step 1(c) and 2(c) of

Algorithm 3.3.1.

The greedy algorithm can easily be modified for the multigroup DAMIP problem

with misclassification constraints. Suppose the constraint
∑

i: i∈Oh
uki ≤ bαhknhc is

not satisfied by the current solution. In this case, we increase λhk and decrease λkh

to make this constraint valid.

3.3.2 Computational Study—Three-Group Case

The first part of the computational study is for the case K = 3. Guidelines for in-

put parameter selection are provided based on numerous computational results from

simulated data sets. Solutions obtained by the greedy algorithm are also compared

with those by CPLEX.

3.3.2.1 Input Parameter Selection

In this section we study how to choose good input parameters, (h1, k1), (h2, k2), · · · ,

(hT , kT ) in the three-group case. Intuitively we have to consider all pairs of groups,

but the order of the pairs could matter. The best order of group-pairs could be af-

fected by the distances between groups and the sizes of groups. Furthermore, we

could handle a group-pair more than once, i.e., having (ht1 , kt1) = (ht2 , kt2) for some

t1 6= t2. We perform computational study in the three-group case to find the best

strategies, i.e., the choices of group-pairs, when distances between groups or group

sizes vary.

The design of the computational study follows the procedures in [84, 18, 19].
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Table 3.3.1: Configurations in settings of the computational study

Settings Means Mahalanobis distances
Group 1 Group 2 Group 3 d(1,2) d(1,3) d(2,3)

A1 ∼ A7 (0, 0) (1, 0) (0.5, 0.8660) 1 1 1
B1 ∼ B7 (0, 0) (2, 0) (1, 1.7321) 2 2 2
C1 ∼ C7 (0, 0) (3, 0) (1.5, 2.5981) 3 3 3

D1 ∼ D15 (0, 0) (1, 0) (0.5, 1.4142) 1 1.5 1.5
E1 ∼ E15 (0, 0) (2, 0) (1, 2.8284) 2 3 3
F1 ∼ F15 (0, 0) (1, 0) (0.5, 1.9365) 1 2 2
G1 ∼ G15 (0, 0) (1.5, 0) (0.75, 2.9047) 1.5 3 3
H1 ∼ H15 (0, 0) (1.5, 0) (0.75, 0.6614) 1.5 1 1
I1 ∼ I15 (0, 0) (3, 0) (1.5, 1.3229) 3 2 2
J1 ∼ J15 (0, 0) (1.8, 0) (0.9, 0.4359) 1.8 1 1
K1 ∼ K15 (0, 0) (2.7, 0) (1.35, 0.6538) 2.7 1.5 1.5
L1 ∼ L25 (0, 0) (2, 0) (0.6875, 0.7262) 2 1 1.5

M1 ∼ M25 (0, 0) (3, 0) (1.0733, 0.5367) 3 1.2 2

Different distances between groups and different group sizes are designed in settings

from A1 to M25. In each setting, 200 simulated data sets are generated. In 100 data

sets, the observations of each group are generated from bivariate normal distributions

(i.e., the number of features is two) in which the means are given in Table 3.3.1

and the covariance matrices are 2-by-2 identity matrices. In the other 100 data sets,

the observations of each group are generated from contaminated normal distribution

in which 10% of the observations is generated from a normal distribution with the

covariance matrix multiplied by 100 while any other design remains the same. In

each setting, the Mahalanobis distances between groups are shown in Table 3.3.1 and

Figure 3.3.1. The Mahalanobis distance between group i and j is

d(i, j) =
√

(mi −mj)TS−1(mi −mj), (3.3.1)

where mi, mj are the group means and S is the common covariance matrix. Table

3.3.2 shows the sizes of groups in each setting.

We solve the DAMIP instance of each data set by Algorithm 3.3.1 using 42 different
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Table 3.3.2: Group sizes in settings of the computational study

Settings Number of observations
Group 1 Group 2 Group 3

A1, B1, C1 100 100 100
A2, B2, C2 100 100 150
A3, B3, C3 100 150 150
A4, B4, C4 100 150 200
A5, B5, C5 30 30 300
A6, B6, C6 30 300 300
A7, B7, C7 30 100 300
D1, E1, F1, G1, H1, I1, J1, K1 100 100 100
D2, E2, F2, G2, H2, I2, J2, K2 100 150 100
D3, E3, F3, G3, H3, I3, J3, K3 100 100 150
D4, E4, F4, G4, H4, I4, J4, K4 150 150 100
D5, E5, F5, G5, H5, I5, J5, K5 100 150 150
D6, E6, F6, G6, H6, I6, J6, K6 100 150 200
D7, E7, F7, G7, H7, I7, J7, K7 100 200 150
D8, E8, F8, G8, H8, I8, J8, K8 150 200 100
D9, E9, F9, G9, H9, I9, J9, K9 30 300 30
D10, E10, F10, G10, H10, I10, J10, K10 30 30 300
D11, E11, F11, G11, H11, I11, J11, K11 300 300 30
D12, E12, F12, G12, H12, I12, J12, K12 30 300 300
D13, E13, F13, G13, H13, I13, J13, K13 30 100 300
D14, E14, F14, G14, H14, I14, J14, K14 30 300 100
D15, E15, F15, G15, H15, I15, J15, K15 100 300 30
L1, M1 100 100 100
L2, M2 100 100 150
L3, M3 100 150 100
L4, M4 150 100 100
L5, M5 100 150 150
L6, M6 150 100 150
L7, M7 150 150 100
L8, M8 100 150 200
L9, M9 100 200 150
L10, M10 150 100 200
L11, M11 150 200 100
L12, M12 200 100 150
L13, M13 200 150 100
L14, M14 30 30 300
L15, M15 30 300 30
L16, M16 300 30 30
L17, M17 30 300 300
L18, M18 300 30 300
L19, M19 300 300 30
L20, M20 30 100 300
L21, M21 30 300 100
L22, M22 100 30 300
L23, M23 100 300 30
L24, M24 300 30 100
L25, M25 300 100 30
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Figure 3.3.1: Configurations in settings of the computational study.

strategies, in which 6 are “one-round” and the other 36 are “two-round”. We abbre-

viate the notation of the strategy (the input of Algorithm 3.3.1), (h1, k1), (h2, k2),

· · · , (hT , kT ), to h1k1 − h2k2 − · · · − hTkT . The six one-round strategies are 12-13-

23, 12-23-13, 13-12-23, 13-23-12, 23-12-13, and 23-13-12, all possible permutations of

group-pairs in which each group-pair appears once. The two-round strategies are the

combinations of a one-round strategy followed by a one-round strategy, for example,

12-13-23-12-13-23.

We have 191 settings (A1∼M25), 200 data sets in each setting (half from normal
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and half from contaminated normal), and 44 runs for each data set (6 using one-

round strategy and 36 using two-round strategy). To reiterate, a run means solving

an DAMIP instance using the greedy algorithm with a certain strategy.

First of all we analyze the computational time. The computational time is one

second or less in all the runs. Most of the time it is less than one second.

Secondly, we analyze how frequently an observation is classified as reserved. Larger

λ’s will create larger reserved judgement region and force more observations into that

region. In the case without misclassification constraints, we don’t want the reserved

region too large. In the classification results, 0.19% of the runs have observations

classified as reserved. Among the runs which have reserved observations, the aver-

age proportion of observations classified as reserved is 0.0065; among all runs, the

average proportion of observations classified as reserved is 0.000012. These numbers

show that the λ’s obtained by the greedy method are not too large to create large

reserved judgement region. Besides analyzing among all runs, we also analyze among

runs with one-round strategy and with two-round strategy separately. The results

are summarized in Table 3.3.3. One-round strategies classify fewer observations as

reserved.

Thirdly, we analyze how much the classification accuracy improves by using two-

round strategy rather than one-round strategy. The classification accuracy is the

number of correctly-classified observations divided by the number of observations.

The classification accuracy of any two-round-strategy run is compared with that of

its corresponding one-round-strategy run (for example, the corresponding one-round

strategy of 12-13-23-23-12-13 is 12-13-23, the first three group-pairs) and the improve-

ment is measured by the difference between these two accuracies. The results show
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Table 3.3.3: Results about reserved observations in the computational study

All runs Runs with Runs with
one-round strategy two-round strategy

Percentage of runs having re-
served observations

0.19% 0.09% 0.20%

Average proportion of reserved
observations over runs having
reserved observations

0.0065 0.0060 0.0066

Average proportion of reserved
observations over runs

0.000012 0.000006 0.000013

that about 25% of the two-round-strategy runs improve their one-round counterparts

while 75% do not improve. Among the 191× 200 data sets, about 62% of them have

at least one improved two-round-strategy run while 38% do not have any. The av-

erage improved accuracy over all two-round-strategy runs is 0.0023, and the average

improved accuracy over all improved two-round-strategy runs is 0.0092. In summary,

the two-round strategy does not improve the classification accuracy much. Therefore

we will focus on the one-round strategies in the remaining analysis.

The forth part of the analysis of the computational results is on which one-round

strategy performs better when distance between groups and group sizes vary. For

each setting, we treat the data sets generated from normal distribution and contami-

nated normal distribution separately. Table 3.3.5 lists good strategies in each setting,

in which the letter “n” and “c” in each setting indicate normal and contaminated

normal, respectively, and the content of each strategy index is shown in Table 3.3.4.

Good strategies are defined as the following. Each setting under normal or contam-

inated normal consists of 100 data sets, and the average accuracies (over 100 data

sets) of the one-round strategies are sorted in descending order. We determine which

strategies other than the highest-accurate one are also good enough, i.e., there is no
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Table 3.3.4: List of one-round strategies

Strategy index Strategy
1 12-13-23
2 12-23-13
3 13-12-23
4 13-23-12
5 23-12-13
6 23-13-12

significant difference between the accuracies between that strategy and the highest-

accurate strategy, by performing the paired t-test (100 samples, α = 0.10, two-tail).

The best strategy together with the ones whose accuracies are not significant different

from the best one are all considered as good strategies. Instead of using α = 0.10,

similar analysis is done using 0.05 and 0.20. From Table 3.3.5 we find that in some

settings there exist obviously good strategies, and furthermore, these good strategies

for normal and contaminated normal data sets match each other. For example, set-

ting A4n and A4c, A7n and A7c, and so on.

Besides, we find that all settings contain common good strategies in normal and

contaminated normal data sets except setting H4, K10, and M4. When good strate-

gies are obtained by using α = 0.20 in paired t-test, only 6 settings have no common

good strategies; when using α = 0.05, all settings have common good strategies.

Therefore in the following analysis we will not distinguish between normal or con-

taminated normal data sets.

We categorize the settings into scenarios based on distances between groups and

group sizes and look for the best strategies for each scenario. In Table 3.3.6, each

row represents one scenario characterized by some settings. Note that in the table

the “distances between groups” column and the “group sizes” column do not fully
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Table 3.3.5: Good strategies in each setting

Setting Strategy Setting Strategy Setting Strategy Setting Strategy Setting Strategy Setting Strategy
index index index index index index

A1n 1 2 3 4 5 6 D12n 3 4 2 1 F14n 3 4 2 I1n 5 2 3 6 1 4 K3n 2 1 6 5 3 L20n 4 6 1 2 5
A1c 1 2 3 4 6 5 D12c 1 2 4 3 F14c 2 3 I1c 1 6 2 3 4 5 K3c 6 4 1 L20c 4 1 2
A2n 4 6 D13n 4 2 F15n 2 5 3 4 I2n 5 2 K4n 4 1 3 6 2 5 L21n 2
A2c 4 6 1 D13c 4 F15c 5 3 2 I2c 6 2 5 K4c 2 6 1 L21c 2
A3n 2 1 4 5 6 D14n 3 4 2 G1n 3 4 2 1 5 I3n 6 2 1 K5n 2 1 4 6 5 L22n 4 6
A3c 1 5 2 4 6 D14c 2 G1c 5 4 3 6 2 1 I3c 4 1 2 K5c 6 L22c 6 1
A4n 4 D15n 5 2 G2n 2 5 I4n 4 5 1 3 6 2 K6n 4 6 1 L23n 5
A4c 4 D15c 5 G2c 2 1 5 3 I4c 6 4 3 1 K6c 4 3 1 2 6 5 L23c 5 6
A5n 6 4 1 2 E1n 4 3 5 2 1 6 G3n 4 6 5 1 2 3 I5n 2 3 5 6 1 4 K7n 2 5 L24n 1 3
A5c 6 4 E1c 1 6 4 5 G3c 4 6 3 I5c 6 5 2 K7c 2 6 5 L24c 1
A6n 2 4 3 E2n 2 3 G4n 3 5 4 6 1 2 I6n 4 1 2 K8n 5 L25n 6 3
A6c 4 3 1 2 E2c 5 2 1 3 G4c 1 3 2 6 4 5 I6c 1 4 6 2 5 K8c 2 6 5 4 L25c 3 4
A7n 4 2 E3n 4 6 3 G5n 2 4 3 6 5 1 I7n 5 2 4 K9n 5 M1n 6 5 4 2 3 1
A7c 4 E3c 4 6 G5c 6 4 5 2 1 I7c 2 K9c 5 M1c 4 1
B1n 3 4 1 2 6 5 E4n 1 2 5 3 6 G6n 4 6 1 5 2 I8n 5 2 4 K10n 4 6 M2n 6 4 5 3
B1c 3 1 4 2 E4c 1 5 3 2 6 G6c 4 6 3 I8c 5 2 K10c 2 1 M2c 4 6 2 1
B2n 4 6 1 2 3 E5n 5 4 6 2 3 G7n 2 I9n 5 4 K11n 5 4 3 M3n 2 5 6
B2c 6 4 E5c 1 2 3 5 4 6 G7c 2 3 5 6 4 I9c 5 4 K11c 6 3 5 4 M3c 6 2 5
B3n 2 1 4 3 5 6 E6n 4 6 3 2 5 1 G8n 3 5 2 6 I10n 4 6 1 2 K12n 1 2 4 3 M4n 3
B3c 6 5 4 2 E6c 4 5 G8c 5 I10c 1 4 2 K12c 4 3 M4c 1
B4 4 1 2 E7 2 G9 2 5 3 I11 4 K13 4 6 1 2 M5 2 5 6
B4c 6 4 3 E7c 2 5 6 G9c 3 2 I11c 6 5 4 3 K13c 4 1 2 M5c 2
B5 1 2 4 6 E8 2 5 3 4 1 6 G10 6 I12 4 2 K14 2 4 M6 1 4 2 6 5
B5c 6 4 E8c 5 1 6 4 G10c 4 6 I12c 2 4 1 3 K14c 2 M6c 4 1
B6 2 4 3 1 E9 2 5 3 G11 3 4 5 6 I13 4 6 1 2 K15 4 5 M7 4 1 6 2
B6c 4 2 3 1 E9c 2 3 4 G11c 5 3 I13c 4 1 2 K15c 5 M7c 6 2 4 1 3
B7 4 E10 6 4 G12 2 4 3 1 I14 2 4 5 L1 1 5 4 2 3 M8 2 1 4 5 3
B7c 4 E10c 6 4 G12c 2 1 I14c 2 L1c 6 5 4 1 3 M8c 1 2 6 4
C1 2 1 3 5 6 4 E11 5 6 G13 4 I15 4 5 L2 6 4 1 M9 2 5 6
C1c 1 E11c 5 6 3 4 G13c 4 3 I15c 5 6 L2c 6 1 4 5 2 M9c 2
C2 4 3 6 1 2 5 E12 1 2 G14 3 2 J1 2 1 6 5 3 4 L3 5 2 6 M10 1 4 6
C2c 4 2 3 6 1 5 E12c 2 1 3 4 G14c 1 2 3 J1c 2 1 5 6 3 4 L3c 6 5 2 M10c 4 6
C3 6 2 3 1 5 E13 4 2 1 G15 2 5 3 J2 5 2 L4 3 1 M11 6 5 2 4
C3c 2 3 5 1 4 6 E13c 4 3 G15c 3 5 2 J2c 5 6 L4c 1 3 4 2 6 M11c 6 2 5
C4 6 2 4 3 1 5 E14 2 3 H1 1 2 5 6 3 4 J3 4 6 1 L5 4 1 6 2 M12 3 1
C4c 6 4 E14c 3 2 1 H1c 5 6 4 1 2 3 J3c 4 6 2 1 L5c 2 1 4 3 M12c 4 1 3
C5 6 4 2 1 E15 3 4 5 2 H2 2 5 J4 3 4 2 5 L6 1 3 4 6 M13 3 4 6
C5c 4 6 1 E15c 5 2 H2c 5 6 2 J4c 4 3 6 L6c 4 1 2 M13c 4 3
C6 1 3 4 2 F1 3 5 4 6 1 2 H3 4 1 3 6 2 J5 2 6 4 1 L7 1 2 6 5 4 3 M14 5 4 6 1 2
C6c 2 3 4 1 F1c 4 3 6 5 2 1 H3c 4 3 1 J5c 2 5 6 L7c 5 6 2 4 3 1 M14c 1 4
C7 4 F2 2 3 H4 5 2 J6 4 1 2 L8 4 1 6 3 M15 5
C7c 4 F2c 2 1 5 H4c 6 J6c 6 4 L8c 4 1 2 M15c 5
D1 1 3 4 6 F3 6 4 H5 2 4 1 5 J7 2 5 6 L9 2 M16 3
D1c 3 5 6 2 4 F3c 4 6 3 5 H5c 6 4 2 5 1 3 J7c 2 6 L9c 2 M16c 3
D2 2 5 3 F4 5 3 H6 1 4 6 2 3 J8 5 L10 6 4 2 1 M17 1 4 3
D2c 2 3 F4c 5 2 H6c 4 6 3 J8c 5 L10c 6 4 M17c 3 4
D3 6 4 F5 2 5 6 3 4 H7 2 J9 5 L11 5 3 4 M18 5 6 1 2
D3c 6 F5c 3 2 5 H7c 2 1 J9c 5 L11c 6 5 M18c 6 5 1
D4 3 5 1 4 F6 4 H8 5 J10 1 2 4 6 3 L12 1 M19 6 5 4 3
D4c 2 5 1 3 F6c 4 6 3 H8c 5 J10c 4 6 3 1 5 2 L12c 1 3 4 2 M19c 3 4 6
D5 5 4 2 6 F7 2 3 H9 5 4 J11 6 5 3 4 L13 3 6 M20 1 2 4 6 5
D5c 6 5 2 4 3 1 F7c 2 1 H9c 5 J11c 3 4 5 6 L13c 3 6 4 1 M20c 4 1
D6 4 F8 5 2 H10 4 6 1 2 J12 3 4 2 1 L14 4 6 1 2 M21 2 4 1
D6c 4 F8c 5 2 3 H10c 6 4 5 2 1 J12c 3 4 L14c 4 3 M21c 2
D7 2 3 F9 3 2 5 4 H11 3 J13 4 6 1 2 5 L15 5 M22 4 6 1 2
D7c 2 F9c 2 3 H11c 5 6 4 3 J13c 4 2 1 L15c 5 M22c 1 2 4 6
D8 5 3 2 4 F10 6 4 H12 2 3 4 J14 2 L16 6 3 M23 5
D8c 5 2 1 F10c 6 4 H12c 3 4 2 1 J14c 2 L16c 3 M23c 5
D9 3 2 5 4 F11 5 4 3 6 H13 1 2 4 6 J15 5 L17 4 3 1 2 M24 3 1
D9c 2 1 F11c 3 4 5 H13c 4 2 J15c 5 L17c 3 4 1 M24c 1
D10 4 6 2 F12 3 4 2 1 H14 2 4 K1 6 1 5 4 2 L18 6 1 5 2 M25 6 3
D10c 4 6 F12c 1 2 3 H14c 2 4 K1c 4 5 2 6 1 L18c 5 6 M25c 3 4
D11 4 3 F13 4 H15 3 5 K2 5 2 4 6 3 L19 5 3 6 4
D11c 3 4 5 6 F13c 4 H15c 5 K2c 2 6 5 4 L19c 5 6 3 4
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describe a scenario; for example, two long distances and one large group size can

result in two situations: The large group can adjacent to two long distances or to one

long and one short distance. However, settings in a row characterize a unique scenario.

Table 3.3.6 shows the probability of being a good strategy. Take the first scenario

(setting A1, B1, C1) and strategy 2 as an example, strategy 2 appears five times in

the good strategy list of the six setting A1n, A1c, B1n, B1c, C1n, C1n (see Table

3.3.5), so its probability of being a good strategy is 5
6

= 0.8333. In each scenario,

we put ‘*’ to indicate the strategy with highest probability and the strategies whose

probabilities do not significantly differ from the highest one. The two-proportion

z-test (α = 0.1, two-tail) is performed here to help for indicating relatively large

probabilities although the assumption of the test, certain sizes greater than five, may

not satisfy.

We draw the conclusion of using certain strategies in certain occasions by checking

the information in Table 3.3.6 and the same kind of information when we use α = 0.20

and α = 0.05 in the paired t-test described above. In summary, the group size is more

important than the distance between groups as conditions of a data set to determine

a dominant strategy of the greedy algorithm. The suggested strategies under certain

conditions of the data sets are given in Table 3.3.7. The conditions include that one

group has notably larger size (say group 1, as seen in Table 3.3.7), two groups have

notably larger size, and three groups have notably different sizes. #Gk denotes the

size of group k and d(h, k) denotes the distance between group h and k. When none

of these conditions are satisfied, there might not exist dominant strategies, and one

practical way is to run all six one-round strategies and pick the best solution.
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Table 3.3.6: Probabilities of being good strategies in each scenario

Scenario Settings Probability of being a good strategy for each strategy index
Distances Group ‘*’ indicates relatively large probabilities

between groups sizes 1 2 3 4 5 6
same same A1 B1 C1 *1.0000 *0.8333 *0.8333 *0.8333 *0.6667 *0.6667
same 1 large A2 A5 B2 B5 C2 C5 0.6667 0.5000 0.2500 *1.0000 0.1667 *1.0000
same 2 large A3 A6 B3 B6 C3 C6 *0.8333 *1.0000 0.7500 *0.9167 0.5000 0.5000
same diff. A4 A7 B4 B7 C4 C7 0.1667 0.2500 0.1667 *1.0000 0.0833 0.2500
2 long same D1 E1 F1 G1 *0.8750 *0.7500 *0.8750 *1.0000 *0.8750 *0.8750
2 long 1 large D2 D9 E2 E9 F2 F9 G2 G9 0.2500 *1.0000 0.8125 0.1875 0.5625 0.0000
2 long 1 large D3 D10 E3 E10 F3 F10 G3 G10 0.0625 0.1250 0.2500 *0.8750 0.1250 *1.0000
2 long 2 large D4 D11 E4 E11 F4 F11 G4 G11 0.3750 0.3750 *0.8750 0.5625 *0.9375 0.5625
2 long 2 large D5 D12 E5 E12 F5 F12 G5 G12 0.7500 *1.0000 0.7500 0.7500 0.5000 0.4375
2 long diff. D6 D13 E6 E13 F6 F13 G6 G13 0.1875 0.2500 0.3125 *1.0000 0.1875 0.2500
2 long diff. D7 D14 E7 E14 F7 F14 G7 G14 0.1875 *1.0000 0.6250 0.1875 0.1250 0.1250
2 long diff. D8 D15 E8 E15 F8 F15 G8 G15 0.1875 0.8125 0.5625 0.3125 *1.0000 0.1875
1 long same H1 I1 J1 K1 *1.0000 *1.0000 *0.7500 *1.0000 *1.0000 *1.0000
1 long 1 large H2 H9 I2 I9 J2 J9 K2 K9 0.0000 0.4375 0.0625 0.3125 *1.0000 0.3125
1 long 1 large H3 H10 I3 I10 J3 J10 K3 K10 *0.9375 *0.7500 0.3125 *0.8125 0.1875 *0.7500
1 long 2 large H4 H11 I4 I11 J4 J11 K4 K11 0.2500 0.3125 *0.7500 *0.7500 *0.6250 *0.6875
1 long 2 large H5 H12 I5 I12 J5 J12 K5 K12 *0.5625 *0.8125 *0.5625 *0.8125 0.3750 0.4375
1 long diff. H6 H13 I6 I13 J6 J13 K6 K13 0.8125 0.8125 0.1875 *1.0000 0.1875 0.6250
1 long diff. H7 H14 I7 I14 J7 J14 K7 K14 0.0625 *1.0000 0.0000 0.3125 0.3125 0.1875
1 long diff. H8 H15 I8 I15 J8 J15 K8 K15 0.0000 0.1875 0.0625 0.2500 *1.0000 0.1250
diff. same L1 M1 *1.0000 *0.5000 *0.7500 *1.0000 *0.7500 *0.5000
diff. 1 large L2 L14 M2 M14 *0.7500 0.5000 0.2500 *1.0000 0.3750 *0.7500
diff. 1 large L3 L15 M3 M15 0.0000 0.5000 0.0000 0.0000 *1.0000 0.5000
diff. 1 large L4 L16 M4 M16 0.3750 0.1250 *0.8750 0.1250 0.0000 0.2500
diff. 2 large L5 L17 M5 M17 *0.6250 *0.6250 *0.6250 *0.7500 0.1250 0.2500
diff. 2 large L6 L18 M6 M18 *0.8750 *0.5000 0.1250 *0.5000 *0.6250 *0.7500
diff. 2 large L7 L19 M7 M19 0.5000 0.5000 *0.8750 *1.0000 0.6250 *1.0000
diff. diff. L8 L20 M8 M20 *1.0000 *0.7500 0.2500 *1.0000 0.3750 0.5000
diff. diff. L9 L21 M9 M21 0.1250 *1.0000 0.0000 0.1250 0.1250 0.1250
diff. diff. L10 L22 M10 M22 0.6250 0.3750 0.0000 *0.8750 0.0000 *1.0000
diff. diff. L11 L23 M11 M23 0.0000 0.2500 0.1250 0.2500 *1.0000 0.5000
diff. diff. L12 L24 M12 M24 *1.0000 0.1250 0.6250 0.2500 0.0000 0.0000
diff. diff. L13 L25 M13 M25 0.1250 0.0000 *1.0000 0.6250 0.0000 0.6250

Table 3.3.7: Suggested strategies of the greedy algorithm given certain conditions of
the data sets

Conditions Suggested strategy
#G1 > #G2, #G3 12-13-23 or 13-12-23

(If d(1, 2) < d(1, 3), choose 12-13-23; if d(1, 3) < d(1, 2),
choose 13-12-23.)

#G1, #G2 > #G3 13-12-23 or 23-12-13
(If d(1, 3) < d(2, 3), choose 13-12-23; if d(2, 3) < d(1, 3),
choose 23-12-13.)

#G1 > #G2 > #G3 13-12-23
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3.3.2.2 Compared with CPLEX

We compare the solutions obtained by the greedy algorithm with those obtained by

running CPLEX (IBM ILOG CPLEX version 12.2). In CPLEX we use default set-

tings except that we set the thread number to be one, in which case the running

is less affected by other jobs in the workstation so the computational time is more

comparable with each other. We also set the time limit to 3600 seconds; if CPLEX

cannot solve an instance in one hour, we terminate it and use the best solution. In

each setting, instead of running all 100 data sets, we only run the first five data sets

by CPLEX.

It is interesting to observe that CPLEX solves instances of data sets from nor-

mal distribution much better than those from contaminated normal. Among the 955

normal data sets, CPLEX solves 379 of them to optimality in an hour; the mean

(standard deviation) of the computational time of the 379 sets is 512 (819) seconds.

Among the 955 contaminated normal data sets, CPLEX solves only 165 sets to op-

timality in an hour; the mean (standard deviation) of the computational time of the

165 sets is 1342 (1024).

The comparison between solutions by CPLEX and by the greedy algorithm is

shown in Table 3.3.8. The solution by the greedy algorithm is represented by the

best solution among six one-round-strategy solutions. Solutions by CPLEX are cat-

egorized into three situations: solved to optimality within an hour, not optimal but

better than solution by greedy, and not optimal but worse than solution by greedy.

The accuracy difference is calculated by accuracy of CPLEX minus accuracy of greedy

and gap is calculated by accuracy difference over accuracy of CPLEX. The results

show that the greedy algorithm provides good solutions for the DAMIP problem.
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Table 3.3.8: Comparison between solutions by CPLEX and by the greedy algorithm

Situation of Counts Accuracy difference Gap
solution by CPLEX Mean (Std.) Mean (Std.)
Solution is optimal 544 0.0053 (0.0074) 0.62% (0.86%)
Solution is better 1031 0.0098 (0.0096) 1.39% (1.45%)
Solution is worse 335 — —

3.3.3 Computational Study—More-Than-Three-Group Case

The second part of the computational study is for the case K > 3. Computational

study is performed on four medical/biological data sets from UCI machine learn-

ing repository [37], including data set “Dermatology”, “Ecoli”, “Heart Disease”, and

“Nursery”. For each data set, we (1) choose a suitable one-round strategy, i.e., order

of all group-pairs, as the input parameter of the greedy algorithm (Algorithm 3.3.1);

(2) compare the DAMIP solutions solved by the greedy algorithm and by CPLEX;

and (3) compare the classification results by DAMIP, Bayes classifier, and DALP.

We use CPLEX to solve DALP to optimality with input parameter (c1, c2) = (1, 0),

(2, 1), (1, 2), and (0, 1) suggested in [84]. Recall that c1 emphasizes on correctly clas-

sifying the observations and c2 emphasizes on placing observations in the reserved

judgement region. From the results we observe that when c2 is relatively large, there

could be too many observations placed in the reserved judgement region. For the ease

of comparison, we will show the results using (c1, c2) = (1, 0).

3.3.3.1 Data Set “Dermatology”

The six groups of the “Dermatology” data set represent different diagnosis of erythemato-

squamous diseases, including psoriasis, seboreic dermatitis, lichen planus, pityriasis
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Table 3.3.9: “Dermatology”: Mahalanobis distances between groups

p. s.d. l.p. p.r. c.d. p.r.p.
p. – 8.17 20.96 8.68 11.14 17.17

s.d. – – 19.74 3.52 9.55 16.01
l.p. – – – 19.74 19.93 24.92
p.r. – – – – 9.71 16.24
c.d. – – – – – 17.24

p.r.p. – – – – – –

rosea, cronic dermatitis, and pityriasis rubra pilaris. The total number of the obser-

vations is 366, the numbers of observations in each group are 112, 61, 72, 49, 52, and

20, and the number of features is 34. Few missing values are replaced by their group

means. Table 3.3.9 shows the Mahalanobis distances between groups (see Equation

(3.3.1)). We observe that all groups are far from each other, indicating that this is

an easy classification problem.

For choosing a suitable one-round strategy, we start to test on all permutations

of group-pairs. However, we observe that all group-pairs encountered give the same

objective values, so we stop trying all permutations and arbitrarily choose 12-13-14-

15-16-23-24-25-26-34-35-36-45-46-56 as the input of the algorithm.

The greedy algorithm and CPLEX give exactly the same objective value 361 (or

0.9863 when divided by the number of observations). Both ways are solved in one

second. Here we run CPLEX using default settings with maximum eight threads.

The ten-fold cross-validation classification results by DAMIP (solved by CPLEX),

DAMIP (solved by greedy algorithm), Bayes, and DALP ((c1, c2) = (1, 0), solved by

CPLEX) are shown in Table 3.3.10 to 3.3.13. In summary, the overall accuracies are

0.9754, 0.9699, 0.9672, and 0.9672, respectively. The solution times are 4, 3, 1, and 3
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Table 3.3.10: “Dermatology”: Classification results by DAMIP solved by CPLEX

Ten-fold cross-validation
p. s.d. l.p. p.r. c.d. p.r.p. p. s.d. l.p. p.r. c.d. p.r.p.

p. 112 0 0 0 0 0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
s.d. 0 59 0 2 0 0 0.0000 0.9672 0.0000 0.0328 0.0000 0.0000
l.p. 0 0 71 0 1 0 0.0000 0.0000 0.9861 0.0000 0.0139 0.0000
p.r. 0 5 0 44 0 0 0.0000 0.1020 0.0000 0.8980 0.0000 0.0000
c.d. 0 0 0 0 52 0 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

p.r.p. 0 1 0 0 0 19 0.0000 0.0500 0.0000 0.0000 0.0000 0.9500
Overall accuracy: 0.9754

Table 3.3.11: “Dermatology”: Classification results by DAMIP solved by greedy
algorithm

Ten-fold cross-validation
p. s.d. l.p. p.r. c.d. p.r.p. p. s.d. l.p. p.r. c.d. p.r.p.

p. 111 1 0 0 0 0 0.9911 0.0089 0.0000 0.0000 0.0000 0.0000
s.d. 0 58 0 3 0 0 0.0000 0.9508 0.0000 0.0492 0.0000 0.0000
l.p. 0 0 71 0 1 0 0.0000 0.0000 0.9861 0.0000 0.0139 0.0000
p.r. 0 5 0 44 0 0 0.0000 0.1020 0.0000 0.8980 0.0000 0.0000
c.d. 0 0 0 0 52 0 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

p.r.p. 0 1 0 0 0 19 0.0000 0.0500 0.0000 0.0000 0.0000 0.9500
Overall accuracy: 0.9699

seconds. CPLEX are run in default settings with maximum one thread.

3.3.3.2 Data Set “Ecoli”

The original “Ecoli” data set consists of eight groups, representing different local-

ization sites of protein. The eight groups are cp (cytoplasm), im (inner membrane

without signal sequence), pp (perisplasm), imU (inner membrane, uncleavable sig-

nal sequence), om (outer membrane), omL (outer membrane lipoprotein), imL (inner

membrane lipoprotein), and imS (inner membrane, cleavable signal sequence); the
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Table 3.3.12: “Dermatology”: Classification results by Bayes

Ten-fold cross-validation
p. s.d. l.p. p.r. c.d. p.r.p. p. s.d. l.p. p.r. c.d. p.r.p.

p. 111 1 0 0 0 0 0.9911 0.0089 0.0000 0.0000 0.0000 0.0000
s.d. 0 55 0 6 0 0 0.0000 0.9016 0.0000 0.0984 0.0000 0.0000
l.p. 0 0 71 0 1 0 0.0000 0.0000 0.9861 0.0000 0.0139 0.0000
p.r. 0 3 0 46 0 0 0.0000 0.0612 0.0000 0.9388 0.0000 0.0000
c.d. 0 0 0 0 52 0 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

p.r.p. 0 1 0 0 0 19 0.0000 0.0500 0.0000 0.0000 0.0000 0.9500
Overall accuracy: 0.9672

Table 3.3.13: “Dermatology”: Classification results by DALP

Ten-fold cross-validation
p. s.d. l.p. p.r. c.d. p.r.p. p. s.d. l.p. p.r. c.d. p.r.p.

p. 111 1 0 0 0 0 0.9911 0.0089 0.0000 0.0000 0.0000 0.0000
s.d. 0 55 0 6 0 0 0.0000 0.9016 0.0000 0.0984 0.0000 0.0000
l.p. 0 0 71 0 1 0 0.0000 0.0000 0.9861 0.0000 0.0139 0.0000
p.r. 0 3 0 46 0 0 0.0000 0.0612 0.0000 0.9388 0.0000 0.0000
c.d. 0 0 0 0 52 0 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

p.r.p. 0 1 0 0 0 19 0.0000 0.0500 0.0000 0.0000 0.0000 0.9500
Overall accuracy: 0.9672
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Table 3.3.14: “Ecoli”: Mahalanobis distances between groups

cp im pp imU om
cp – 4.61 3.79 4.93 5.70
im – – 4.32 2.00 5.66
pp – – – 4.31 3.55

imU – – – – 5.56
om – – – – –

numbers of observations of each group are 143, 77, 52, 35, 20, 5, 2, and 2, respec-

tively. Since the sizes of the last three groups are very small, we only consider the

first five groups. When the group size shrinks to five, one of the seven predictive

features has identical value in all observations and thus eliminated. Therefore, the

data set we are using consists of 5 groups, 327 observations, and 6 features. Table

3.3.14 shows the Mahalanobis distances between groups.

We run all
(

5
2

)
! = 3628800 one-round strategies for input parameter of the greedy

algorithm, which is done in 4285 seconds. The objective values of all one-round

strategies are one of the three values: 297, 299, and 300, as seen in the histogram in

Figure 3.3.2. The histogram shows that if we only run part of the permutations of

group-pairs as the one-round strategy, we have a high probability to get the best one;

even if we are unlucky to get the best one, the other two objective values are also

close. Among the best results we choose 34-23-24-25-12-13-14-15-35-45 for further

use on this data set.

The greedy algorithm gives the objective value 300 (or 0.9174 as the accuracy) in

less than one second; CPLEX gives 301 (or 0.9205 as the accuracy) in one second.

Here we run CPLEX using default settings with maximum eight threads.

The ten-fold cross-validation classification results by DAMIP (solved by CPLEX),
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Figure 3.3.2: “Ecoli”: Histogram of the objective values of all one-round strategies
for the greedy algorithm

DAMIP (solved by greedy algorithm), Bayes, and DALP ((c1, c2) = (1, 0), solved by

CPLEX) are shown in Table 3.3.15 to 3.3.18. In summary, the overall accuracies are

0.8869, 0.8838, 0.8746, and 0.8899, respectively. The solution times are 28, < 1, < 1,

and 1 seconds. CPLEX are run in default settings with maximum one thread.

Besides using all features in the computational experiment, we also run different

classification methods using all possible subsets of the features in which the sizes of

the subsets are greater than or equal to two. Figure 3.3.3 and 3.3.4 demonstrate

the overall accuracy and minimum group accuracy, respectively, of the ten-fold cross-

validation results. Each tick of the x-axis represents a unique feature subset, and from

left to right the sizes of the subsets increase from two to six. The methods include
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Table 3.3.15: “Ecoli”: Classification results by DAMIP solved by CPLEX

Ten-fold cross-validation
cp im pp imU om cp im pp imU om

cp 138 1 4 0 0 0.9650 0.0070 0.0280 0.0000 0.0000
im 2 59 2 14 0 0.0260 0.7662 0.0260 0.1818 0.0000
pp 3 2 45 1 1 0.0577 0.0385 0.8654 0.0192 0.0192

imU 1 5 0 29 0 0.0286 0.1429 0.0000 0.8286 0.0000
om 0 0 1 0 19 0.0000 0.0000 0.0500 0.0000 0.9500
Overall accuracy: 0.8869

Table 3.3.16: “Ecoli”: Classification results by DAMIP solved by greedy algorithm

Ten-fold cross-validation
cp im pp imU om cp im pp imU om

cp 138 1 4 0 0 0.9650 0.0070 0.0280 0.0000 0.0000
im 2 59 2 14 0 0.0260 0.7662 0.0260 0.1818 0.0000
pp 3 1 46 1 1 0.0577 0.0192 0.8846 0.0192 0.0192

imU 1 5 0 29 0 0.0286 0.1429 0.0000 0.8286 0.0000
om 0 0 2 1 17 0.0000 0.0000 0.1000 0.0500 0.8500
Overall accuracy: 0.8838

Table 3.3.17: “Ecoli”: Classification results by Bayes

Ten-fold cross-validation
cp im pp imU om cp im pp imU om

cp 138 1 4 0 0 0.9650 0.0070 0.0280 0.0000 0.0000
im 2 56 1 18 0 0.0260 0.7273 0.0130 0.2338 0.0000
pp 3 1 43 1 4 0.0577 0.0192 0.8269 0.0192 0.0769

imU 1 3 0 31 0 0.0286 0.0857 0.0000 0.8857 0.0000
om 0 0 1 1 18 0.0000 0.0000 0.0500 0.0500 0.9000
Overall accuracy: 0.8746
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Table 3.3.18: “Ecoli”: Classification results by DALP

Ten-fold cross-validation
cp im pp imU om cp im pp imU om

cp 138 1 4 0 0 0.9650 0.0070 0.0280 0.0000 0.0000
im 2 59 2 14 0 0.0260 0.7662 0.0260 0.1818 0.0000
pp 3 1 46 0 2 0.0577 0.0192 0.8846 0.0000 0.0385

imU 1 4 0 30 0 0.0286 0.1143 0.0000 0.8571 0.0000
om 0 0 2 0 18 0.0000 0.0000 0.1000 0.0000 0.9000
Overall accuracy: 0.8899

Bayes, DALP ((c1, c2) = (1, 0), solved by CPLEX using one thread), DAMIP (solved

by greedy algorithm), and DAMIP with maximizing-minimum-group-accuracy objec-

tive (solved by greedy algorithm). The choice of input parameter for DAMIP with

the alternative objective is done by testing all possible one-round strategies, too. The

computational times are 1, 20, 3, and 4 seconds, respectively. We see that DAMIP

generally gives the best overall accuracy but it can have low minimum group ac-

curacy; DAMIP with maximizing-minimum-group-accuracy objective overcomes the

drawback and still gives good overall accuracies.

3.3.3.3 Data Set “Heart Disease”

The “Heart Disease” data set consists of five groups, denoted by 0, 1, 2, 3, and 4,

which represent different levels of diagnosis of heart disease (larger number means

more severe). The total number of observations is 920, coming from four locations;

the numbers in each group are 411, 196, 135, 135, and 43, respectively. Two of the

13 used features are discarded since they have missing values in more than half of

all observations; we use the remaining 11 features and replace any missing value by

the group mean. Table 3.3.19 shows the Mahalanobis distances between groups. We

observe that the groups are close to each other, indicating that this is a hard classi-

fication problem.
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Figure 3.3.3: “Ecoli”: 10-fold CV accuracy on all possible subsets of the features

We run all
(

5
2

)
! = 3628800 one-round strategies for input parameter of the greedy

algorithm, which is done in 7840 seconds. The objective values fall in the interval

[518, 550], as seen in the histogram in Figure 3.3.5. Among the best results we choose

15-24-35-13-14-25-12-23-34-45 for further use.

The greedy algorithm gives the objective value 550 (or 0.5978 as the accuracy)

in less than one second. CPLEX cannot get the optimal solution in 24 hours using

default settings with maximum eight threads. The best objective value obtained in 24

hours is 482 (or 0.5239 as the accuracy) with a 65.73% gap. Note that the objective

value obtained by the greedy algorithm with any one-round strategy is better than

this one from CPLEX.
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Figure 3.3.4: “Ecoli”: Minimum group accuracy (10-fold CV) on all possible subsets
of the features

The ten-fold cross-validation classification results by DAMIP (solved by greedy

algorithm), Bayes, and DALP ((c1, c2) = (1, 0), solved by CPLEX) are shown in Table

3.3.20 to 3.3.22. In summary, the overall accuracies are 0.5435, 0.5141, and 0.5326,

respectively. The solution times are 1, 1, and 4 seconds. CPLEX are run in default

settings with maximum one thread.

There are groups whose group accuracies are very low, so we try alternative ob-

jective functions in the greedy algorithms, including maximizing the average group

accuracy (i.e., formula (1.3.13)) and maximizing the minimum group accuracy (i.e.,
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Table 3.3.19: “Heart Disease”: Mahalanobis distances between groups

0 1 2 3 4
0 – 1.58 2.04 2.24 2.58
1 – – 0.65 1.04 1.65
2 – – – 0.53 1.18
3 – – – – 0.97
4 – – – – –

Table 3.3.20: “Heart Disease”: Classification results by DAMIP solved by greedy
algorithm

Ten-fold cross-validation
0 1 2 3 4 0 1 2 3 4

0 331 55 9 14 2 0.8054 0.1338 0.0219 0.0341 0.0049
1 50 87 31 28 0 0.2551 0.4439 0.1582 0.1429 0.0000
2 18 52 32 26 7 0.1333 0.3852 0.2370 0.1926 0.0519
3 14 37 29 44 11 0.1037 0.2741 0.2148 0.3259 0.0815
4 5 11 9 12 6 0.1163 0.2558 0.2093 0.2791 0.1395
Overall accuracy: 0.5435

Table 3.3.21: “Heart Disease”: Classification results by Bayes

Ten-fold cross-validation
0 1 2 3 4 0 1 2 3 4

0 319 59 7 15 11 0.7762 0.1436 0.0170 0.0365 0.0268
1 41 68 31 29 27 0.2092 0.3469 0.1582 0.1480 0.1378
2 12 41 21 25 36 0.0889 0.3037 0.1556 0.1852 0.2667
3 8 25 19 41 42 0.0593 0.1852 0.1407 0.3037 0.3111
4 2 6 3 8 24 0.0465 0.1395 0.0698 0.1860 0.5581
Overall accuracy: 0.5141
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Figure 3.3.5: “Heart Disease”: Histogram of the objective values of all one-round
strategies for the greedy algorithm

formula (1.3.14)-(1.3.16)). The choices of input parameter for the alternative ob-

jectives are done by testing all possible one-round strategies, too. The maximizing-

minimum-group-accuracy objective improves the group accuracies a little bit, as seen

in Table 3.3.23.

Besides using all features in the computational experiment, we also run different

classification methods using all possible subsets of the features in which the sizes of

the subsets are greater than or equal to two. Figure 3.3.6 and 3.3.7 demonstrate

the overall accuracy and minimum group accuracy, respectively, of the ten-fold cross-

validation results. Each tick of the x-axis represents a unique feature subset, and from

left to right the sizes of the subsets increase from two to eleven. The methods include
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Table 3.3.22: “Heart Disease”: Classification results by DALP

Ten-fold cross-validation
0 1 2 3 4 0 1 2 3 4

0 337 45 10 14 5 0.8200 0.1095 0.0243 0.0341 0.0122
1 49 60 45 33 9 0.2500 0.3061 0.2296 0.1684 0.0459
2 18 44 31 30 12 0.1333 0.3259 0.2296 0.2222 0.0889
3 11 26 27 49 22 0.0815 0.1926 0.2000 0.3630 0.1630
4 5 7 8 10 13 0.1163 0.1628 0.1860 0.2326 0.3023
Overall accuracy: 0.5326

Table 3.3.23: “Heart Disease”: Classification results by DAMIP solved by greedy
algorithm using the maximizing-minimum-group-accuracy objective

Ten-fold cross-validation
0 1 2 3 4 0 1 2 3 4

0 326 51 19 12 3 0.7932 0.1241 0.0462 0.0292 0.0073
1 46 59 54 23 14 0.2347 0.3010 0.2755 0.1173 0.0714
2 13 40 41 24 17 0.0963 0.2963 0.3037 0.1778 0.1259
3 10 22 44 38 21 0.0741 0.1630 0.3259 0.2815 0.1556
4 4 7 9 8 15 0.0930 0.1628 0.2093 0.1860 0.3488
Overall accuracy: 0.5207
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Bayes, DALP ((c1, c2) = (1, 0), solved by CPLEX using one thread), DAMIP (solved

by greedy algorithm), and DAMIP with maximizing-minimum-group-accuracy ob-

jective (solved by greedy algorithm). The computational times are 155, 4346, 656,

and 657 seconds, respectively. We see that DAMIP generally gives the best overall

accuracy but it can have low minimum group accuracy; DAMIP with maximizing-

minimum-group-accuracy objective overcomes the drawback and still gives good over-

all accuracies.

Figure 3.3.6: “Heart Disease”: 10-fold CV accuracy on all possible subsets of the
features

3.3.3.4 Data Set “Nursery”

The original “Nursery” data set consists of five groups, representing the rank of ap-

plications for nursery schools. The groups are not recommended, recommend, very
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Figure 3.3.7: “Heart Disease”: Minimum group accuracy (10-fold CV) on all possible
subsets of the features

recommended, priority, and special priority; the numbers in each group are 4320, 2,

328, 4266, and 4044. Since the “recommend” group is too small, we combine it with

the “very recom” group, resulting in four groups. The total number of observations is

12960 and the number of features is 8. Table 3.3.24 shows the Mahalanobis distances

between groups.

We run all
(

4
2

)
! = 720 one-round strategies for input parameter of the greedy al-

gorithm, which is done in 12 seconds. The objective values of all one-round strategies

are either 11694 or 11696, as seen in the histogram in Figure 3.3.8. The histogram

shows that if we only run part of the permutations, we will get the best or close to

the best objective value of all one-round strategies. Among the best results we choose
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Table 3.3.24: “Nursery”: Mahalanobis distances between groups

not recom very recom priority spec prior
not recom – 5.89 4.27 3.54
very recom – – 1.89 3.63

priority – – – 1.95
spec prior – – – –

34-23-24-25-12-13-14-15-35-45 for further use on this data set.

Figure 3.3.8: “Ecoli”: Histogram of the objective values of all one-round strategies
for the greedy algorithm

The greedy algorithm gives the objective value 11696 (or 0.9025 as the accuracy)

in one second. Originally we run CPLEX using default settings with maximum eight

threads, but it cannot get any feasible solution in 24 hours. We change the CPLEX

113



Table 3.3.25: “Nursery”: Classification results by DAMIP solved by greedy algo-
rithm

Ten-fold cross-validation
not very priority spec not very priority spec

recom recom prior recom recom prior
not recom 4320 0 0 0 1.0000 0.0000 0.0000 0.0000
very recom 0 145 185 0 0.0000 0.4394 0.5606 0.0000

priority 0 69 3544 653 0.0000 0.0162 0.8308 0.1531
spec prior 0 0 596 3448 0.0000 0.0000 0.1474 0.8526
Overall accuracy: 0.8840

setting to emphasize on MIP feasibility instead of balancing feasibility and optimality,

and by doing so we get the objective value 11550 (or 0.8912 as the accuracy) in 24

hours with a 11.44% gap.

The ten-fold cross-validation classification results by DAMIP (solved by greedy al-

gorithm), DAMIP using the maximizing-minimum-group-accuracy objective (solved

by greedy algorithm), Bayes, and DALP ((c1, c2) = (1, 0), solved by CPLEX) are

shown in Table 3.3.25 to 3.3.28. The choice of input parameter for DAMIP with

the alternative objective is done by testing all possible one-round strategies, too. In

summary, the overall accuracies are 0.8840, 0.8576, 0.8415, and 0.8928, respectively.

The solution times are 7, 6, 1, and 124 seconds. CPLEX are run in default settings

with maximum one thread.

Besides using all features in the computational experiment, we also run different

classification methods using all possible subsets of the features in which the sizes of

the subsets are greater than or equal to two. Figure 3.3.9 and 3.3.10 demonstrate

the overall accuracy and minimum group accuracy, respectively, of the ten-fold cross-

validation results. Each tick of the x-axis represents a unique feature subset, and from

left to right the sizes of the subsets increase from two to eight. The methods include
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Table 3.3.26: “Nursery”: Classification results by DAMIP solved by greedy algo-
rithm using the maximizing-minimum-group-accuracy objective

Ten-fold cross-validation
not very priority spec not very priority spec

recom recom prior recom recom prior
not recom 4320 0 0 0 1.0000 0.0000 0.0000 0.0000
very recom 0 309 21 0 0.0000 0.9364 0.0636 0.0000

priority 0 652 3061 553 0.0000 0.1528 0.7175 0.1296
spec prior 0 0 619 3425 0.0000 0.0000 0.1531 0.8469
Overall accuracy: 0.8576

Table 3.3.27: “Nursery”: Classification results by Bayes

Ten-fold cross-validation
not very priority spec not very priority spec

recom recom prior recom recom prior
not recom 4320 0 0 0 1.0000 0.0000 0.0000 0.0000
very recom 0 314 16 0 0.0000 0.9515 0.0485 0.0000

priority 0 895 2806 565 0.0000 0.2098 0.6578 0.1324
spec prior 0 5 573 3466 0.0000 0.0012 0.1417 0.8571
Overall accuracy: 0.8415

Table 3.3.28: “Nursery”: Classification results by DALP

Ten-fold cross-validation
not very priority spec not very priority spec

recom recom prior recom recom prior
not recom 4320 0 0 0 1.0000 0.0000 0.0000 0.0000
very recom 0 231 99 0 0.0000 0.7000 0.3000 0.0000

priority 0 225 3663 378 0.0000 0.0527 0.8586 0.0886
spec prior 2 0 685 3357 0.0005 0.0000 0.1694 0.8301
Overall accuracy: 0.8928
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Bayes, DALP ((c1, c2) = (1, 0), solved by CPLEX using one thread), DAMIP (solved

by greedy algorithm), and DAMIP with maximizing-minimum-group-accuracy objec-

tive (solved by greedy algorithm). The computational times are 184, 68800, 637,

and 630 seconds, respectively. We see that DAMIP generally gives the best overall

accuracy but it can have low minimum group accuracy; DAMIP with maximizing-

minimum-group-accuracy objective overcomes the drawback and still gives good over-

all accuracies.

Figure 3.3.9: “Nursery”: 10-fold CV accuracy on all possible subsets of the features
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Figure 3.3.10: “Nursery”: Minimum group accuracy (10-fold CV) on all possible

subsets of the features
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3.4 Trials on Solving DAMIP with Cuts

3.4.1 Combinatorial Benders’ Cuts

The formulation of DAMIP possesses the property that, in the inequalities which

contain both continuous and binary variables, exactly one binary variable appears.

Furthermore, the objective function contains only the binary variables but no con-

tinuous ones. These properties are suitable for the application of the Combinatorial

Benders’ (CB) cuts [24].

Let x be the vector of integer variables, y be the vector of continuous variables,

and B and G be index sets of general-integer and binary variables. Consider the

following mixed integer program:

min cTx

s.t. Fx ≤ g

Mx+ Ay ≥ b

Dy ≥ e,

xj ∈ {0, 1} for j ∈ B

xj integer for j ∈ G

where M is a matrix with exactly one nonzero element in each row i, say column

j(i), and the corresponding variable xj(i) is a binary variable. The problem can be

decomposed into the master problem and the slave problem:
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MASTER:

min cTx

s.t. Fx ≤ g

xj ∈ {0, 1} for j ∈ B

xj integer for j ∈ G

SLAVE(x̃):

Ay ≥ b−Mx̃

Dy ≥ e

Let x∗ be an optimal solution of the master problem. If the linear system SLAVE(x∗)

has a solution y∗, then (x∗, y∗) is optimal to the original problem; otherwise we find a

minimal infeasible subsystem of the slave problem (let the corresponding rows of A be

indexed by C), add the cut (3.4.1) to the master problem, and solve the master again.

∑
i∈C: x∗

j(i)
=0

xj +
∑

i∈C: x∗
j(i)=1

(1− xj) ≥ 1 (3.4.1)

The cut (3.4.1) is the Combinatorial Benders’ cut, which requires to change the

value of at least one x∗j(i) where i ∈ C. We look for the set of indices C by the fact

that the indices of the minimal infeasible subsystems are exactly the supports of the

extreme rays of the dual polyhedron of the slave problem [48, 116].
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In the application of the CB cut to the DAMIP problem, the big-M values will

not be used, which is an advantage of this method. The big-M values of DAMIP

appear in the M matrix in the slave problem. But when any row of Ay ≥ b −Mx∗

still has the big-M term after the value of x∗ is put in, that row is in fact a redundant

inequality, which can be taken away. We simply assign the dual variable of that row

to zero in the slave problem.

We implement the CB cuts in CPLEX. However, our computational experience

shows that our implementation does not reduce the solution time; default solving by

CPLEX is faster.

3.4.2 Projected Chvatal-Gomory Cuts

The property of DAMIP that the objective function contains only the binary variables

is suitable for the application of the projected Chvatal-Gomory (pro-CG) cuts [14].

It is shown that Combinatorial Benders’ cuts are pro-CG cuts but pro-CG cuts can

be much stronger than CB cuts [14].

Consider the mixed integer linear program

min cTx+ fTy

s.t. Ax+ Cy ≤ b

x ≥ 0, x integer

y ≥ 0

where A has size m× n and C has size m× r. Consider the related polyhedron

P (x, y) ≡ {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy ≤ b}.
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Let P (x) be the projection of P (x, y) onto the space of the integer variables x.

The projected Chvatal-Gomory cut is defined as a Chvatal-Gomory cut derived from

the system which describes P (x). Equivalently, a pro-CG cut is an inequality of the

form

buTAcx ≤ buT bc for any u ≥ 0 such that uTC ≥ 0T

To obtain a pro-CG cut αTx ≤ α0, the separation problem can be modeled by the

mixed integer linear program:

max αTx∗ − α0

s.t. αj ≤ uTAj for j = 1, . . . , n

0 ≤ uTCj for j = 1, . . . , r

α0 + 1− ε ≥ uT b

ui ≥ 0 for i = 1, . . . ,m

αj integer for j = 0, . . . , n

where Aj and Cj are the columns of A and C, and ε is a small positive number.

We implement the pro-CG cuts in CPLEX to solve DAMIP. However, we do not

gain in applying pro-CG cuts; default solving by CPLEX is faster.
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CHAPTER IV

APPLICATIONS

This chapter applies the PSO/DAMIP classification framework to several real-world

medical and biological prediction problems, including Alzheimer’s disease, cardiovas-

cular disease, sulfur amino acid intake, and CpG islands.

4.1 Alzheimer’s Disease

4.1.1 Background

This section describes the background of this study, including Alzheimer’s disease

and mild cognitive impairment, neuropsychological tests, predictive analysis using

neuropsychological data, data from Emory, and data from LONI/ADNI.

4.1.1.1 Alzheimer’s Disease and Mild Cognitive Impairment

Alzheimer’s disease (AD), the 7th leading cause of death in the United States, is a

progressive and irreversible brain disease which causes memory loss and other cogni-

tive problems severe enough to affect daily life. Dementia is a collection of symptoms

of cognitive function problems, such as thinking, remembering, or reasoning prob-

lems, and AD is the most common cause of dementia. Mostly AD occurs in people

over 65, although familial AD has an earlier onset. Currently, AD is incurable; drugs

are used to manage the symptoms or to prevent or slow the progress of the disease.

Mild cognitive impairment (MCI) is a condition that there is clear evidence of

cognitive problems, most often involving short term memory, but normal day to day
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functioning is preserved. In other words, MCI is a situation between normal aging

and dementia. People with MCI may or may not develop dementia in the future, but

people with MCI are at higher risk of developing dementia than those without MCI.

The evaluation of AD or MCI depends on some clinical and patient data, includ-

ing complete medical history, neurological exam, laboratory tests, neuropsychological

tests, brain scans (CT or MRI), and information from close family members.

4.1.1.2 Neuropsychological Tests

Neuropsychological changes in the expression of cognitive declines are important to

the diagnosis of AD and MCI. Bondi et al. [15] review neuropsychological changes

during the prodromal period of Alzheimer’s disease, which are important to the early

identification of the disease. Nelson and OConnor [113] review mild cognitive impair-

ment from the neuropsychological perspective, including the MCI diagnostic criteria,

MCI subtypes, and neuropsychological tests, for the purpose of early identification

of Alzheimer’s disease. The neuropsychological tests which follow certain criteria are

good instruments for evaluating neuropsychological status.

4.1.1.3 Predictive Analysis Using Neuropsychological Data

Statistical analyses as predictive analysis tools are applied to neuropsychological data

to understand MCI patents. Lopez et al. [92] analyze neuropsychological character-

istics of normal subjects, MCI-amnestic type (MCI-AT) subjects, and MCI-multiple

cognitive deficits type (MCI-MCDT) subjects. Tabert et al. [153] conduct hypoth-

esis testing to compare (1) MCI patients with controls, and (2) MCI patients who

converted to AD with MCI patients who did not, in a follow-up duration.
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Besides statistical analyses, some classification models are also applied to neu-

ropsychological data for predictive analysis. Stuss and Trites [150] apply discriminant

function analysis to discriminate the control group, the brain-damaged group with

a positive physical neurological exam, and the brain-damaged group with a negative

result of the same exam. Kluger et al. [72] apply logistic regression and stepwise entry

procedure to predict (1) whether nondemented elderly subsequently declined to any

diagnosis of dementia; and (2) whether nondemented elderly subsequently declined to

a diagnosis of probable Alzheimer’s disease. Possible predictor variables include de-

mographic variables, Global Deterioration Scale (GDS) score, and nine cognitive test

scores from the neuropsychological battery of NYU Aging and Dementia Research

Center.

4.1.1.4 Data from Emory

We apply our methods to classify subjects from three groups: Subjects of Alzheimer’s

disease, subjects of mild cognitive impairment, and the control group, using neuropsy-

chological test data.

Data of neuropsychological tests from 35 subjects were collected in Emory Alzheimer’s

Disease Research Center from 2004 to 2007. Eighteen kinds of neuropsychological

tests were applied to the subjects, but only four of them were applied to all subjects,

thus being used in our predictive model. These tests included

1. Mini Mental State Examination (MMSE),

2. Clock drawing test,

3. Word list memory tasks by the Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD),
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4. Geriatric depression scale (GDS).

The MMSE is a screening tool for cognitive impairment, which is brief, but cov-

ers five areas of cognitive function, including orientation, registration, attention and

calculation, recall, and language. The clock drawing test assesses cognitive functions,

particularly visuo-spatial abilities and executive control functions. The CERAD word

list memory tasks assess learning ability for new verbal information. The tasks in-

clude word list memory with repetition, word list recall, and word list recognition.

The GDS is a screening tool to assess the depression in older population.

Initially we have 153 features, including raw data from four neuropsychological

tests as well as subjects age. Raw data from tests contain information of individual

questions in the tests. Discarding features which contain missing values or which

are undiscriminating (i.e., features which contain almost the same value among all

subjects), we get 100 features for feature selection and classification. Besides, we also

use only the nine score-type features (i.e., total or subtotal scores in different tests)

instead of all raw data for feature selection and classification for comparison.

Our data comes from two trials. The number of subjects in two trials is listed in

Table 4.1.1, in which Ctl represents the control group. Besides mixing subjects from

both trials for analysis, we also train subjects of one trial and blind predict those of

the other trial.

4.1.1.5 Data from LONI/ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) data website at Labora-

tory of Neuro Imaging (LONI), UCLA, includes repository of clinical and imaging
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Table 4.1.1: Number of subjects of three groups from two trials in data from Emory

AD MCI Ctl Total
Trial 1 5 3 2 10
Trial 2 2 13 10 25
Total 7 16 12 35

data. Clinical data include data of several neuropsychological tests, which are used

for classification in this study. The neuropsychological tests include clock drawing

test, category fluency test, Boston naming test, and so on. The category fluency

test requires the systematic retrieval of hierarchically organized information from se-

mantic memory; the Boston naming test measures the ability to name objects of line

drawings.

The data set contain results of neuropsychological tests taken by subjects at sev-

eral time points; we use the data taken at the baseline time point, i.e., the first time

a subject took the tests. Data include 819 subjects and 59 features. The features are

score-type ones rather than raw data of the tests. After we handle missing values by

discarding some data, 786 subjects and 54 features are left for feature selection and

classification. The numbers of AD, MCI, and the control group are 223, 388, and

175, respectively.

4.1.2 Results

Besides training one trial and blind predicting the other trial in Emory data, in all

other cases we randomly select 67% of the subjects in each group for training using

10-fold cross-validation and use the remaining subjects for blind prediction. We apply

the PSO/DAMIP classification framework to discriminate subjects from AD, MCI,

and control groups. The best classification results as well as the selected features in
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Table 4.1.2: Classification results of Emory data. Five selected features: MMSE–
cMMtotal, WordList–cWL2Butter, WordList–cWL2Queen, WordList–cWL2Ticket,
GDS–GDS13.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00
MCI 0 11 0 0.00 1.00 0.00
Ctl 0 0 8 0.00 0.00 1.00

Overall accuracy: 0.96

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 1 4 0 0.20 0.80 0.00
Ctl 0 0 4 0.00 0.00 1.00

Overall accuracy: 0.91

each case are demonstrated in the following tables.

Classification results of Emory data are shown from Table 4.1.2 to Table 4.1.9.

Table 4.1.2, 4.1.3, 4.1.4, and 4.1.5 show the results of 10-fold cross-validation and

blind prediction from 100 features; Table 4.1.6 and 4.1.7 show the results of training

trial 1 and blind predicting trial 2 from 100 features; Table 4.1.8 shows the results of

training trial 2 and blind predicting trial 1 from 100 features; Table 4.1.9 shows the

results of 10-fold cross-validation and blind prediction from 9 score-type features.

Classification results of LONI/ADNI data are shown in Table 4.1.10 and 4.1.11,

which are results of 10-fold cross-validation and blind prediction from 54 features.

Using the PSO/DAMIP classification framework, we successfully discriminated

subjects from AD, MCI, and control groups with 80% accuracy in both training and
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Table 4.1.3: Classification results of Emory data. Four selected features: MMSE–
cMMtotal, MMSE–cMMz, WordList–cWL1Queen, GDS–GDS13; or five selected
features: MMSE–cMMtotal, MMSE–cMMz, WordList–cWL2Butter, WordList–
cWL1Queen, GDS–GDS13.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00
MCI 0 10 1 0.00 0.91 0.09
Ctl 0 0 8 0.00 0.00 1.00

Overall accuracy: 0.92

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 0 5 0 0.00 1.00 0.00
Ctl 0 1 3 0.00 0.25 0.75

Overall accuracy: 0.91

Table 4.1.4: Classification results of Emory data. Five selected features: MMSE–
cMMsRapple, WordList–cWL1Queen, WordList–cWL3Engine, GDS–GDS9, GDS–
GDS13.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 5 0 0 1.00 0.00 0.00
MCI 0 10 1 0.00 0.91 0.09
Ctl 0 1 7 0.00 0.13 0.88

Overall accuracy: 0.92

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 1 4 0 0.20 0.80 0.00
Ctl 0 0 4 0.00 0.00 1.00

Overall accuracy: 0.91
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Table 4.1.5: Classification results of Emory data. Five selected features: MMSE–
cMMtotal, WordList–cWL3Queen, WordList–cWL2Engine, GDS–GDS13, GDS–
GDS15.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 3 2 0 0.60 0.40 0.00
MCI 0 11 0 0.00 1.00 0.00
Ctl 0 0 8 0.00 0.00 1.00

Overall accuracy: 0.92

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 1 1 0 0.50 0.50 0.00
MCI 0 5 0 0.00 1.00 0.00
Ctl 0 0 4 0.00 0.00 1.00

Overall accuracy: 0.91

Table 4.1.6: Classification results of Emory data, training trial 1 and blind predicting
trial 2 from 100 features. Five selected features: MMSE–cMMsCounty, MMSE–
cMMsWorld, Clock–cClockHands1, WordList–cWL2Queen, WordList–cWRyShore.

Training
AD MCI Ctl AD MCI Ctl

AD 5 0 0 1.00 0.00 0.00
MCI 0 3 0 0.00 1.00 0.00
Ctl 0 0 2 0.00 0.00 1.00

Overall accuracy: 1.00

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 0 9 4 0.00 0.69 0.31
Ctl 0 1 9 0.00 0.10 0.90

Overall accuracy: 0.80
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Table 4.1.7: Classification results of Emory data, training trial 1 and blind predicting
trial 2 from 100 features. Five selected features: MMSE–cMMsCounty, MMSE–
cMMsWorld, Clock–cClockHands1, WordList–cWL2Queen, WordList–cWRyArm.

Training
AD MCI Ctl AD MCI Ctl

AD 5 0 0 1.00 0.00 0.00
MCI 0 3 0 0.00 1.00 0.00
Ctl 0 0 2 0.00 0.00 1.00

Overall accuracy: 1.00

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 2 9 2 0.15 0.69 0.15
Ctl 0 1 9 0.00 0.10 0.90

Overall accuracy: 0.80

Table 4.1.8: Classification results of Emory data, training trial 2 and blind pre-
dicting trial 1 from 100 features. Five selected features: Age, MMSE–cMMsRapple,
WordList–cWL2Queen, WordList–cWL2Engine, GDS–GDS13.

Training
AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00
MCI 1 12 0 0.08 0.92 0.00
Ctl 0 0 10 0.00 0.00 1.00

Overall accuracy: 0.96

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00
MCI 0 3 0 0.00 1.00 0.00
Ctl 0 0 2 0.00 0.00 1.00

Overall accuracy: 0.90
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Table 4.1.9: Classification results of Emory data from 9 score-type features. Two
selected features: MMSE–cMMtotal, Word List–cWLcorTotal.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00
MCI 1 9 1 0.09 0.82 0.09
Ctl 0 2 6 0.00 0.25 0.75

Overall accuracy: 0.79

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 1 1 0 0.50 0.50 0.00
MCI 0 5 0 0.00 1.00 0.00
Ctl 0 1 3 0.00 0.25 0.75

Overall accuracy: 0.82

Table 4.1.10: Classification results of LONI/ADNI data. Five selected features:
CLOCKHAND, AVTOT5, AVTOT6, CATVEGESC, TRABERROM.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 114 35 0 0.77 0.23 0.00
MCI 38 175 47 0.15 0.67 0.18
Ctl 3 42 72 0.03 0.36 0.62

Overall accuracy: 0.69

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 56 17 1 0.76 0.23 0.01
MCI 21 85 22 0.16 0.66 0.17
Ctl 0 22 36 0.00 0.38 0.62

Overall accuracy: 0.68

131



Table 4.1.11: Classification results of LONI/ADNI data. Five selected features:
AVTOT5, AVTOT6, CATVEGESC, TRABSCOR, TRABERROM.

Ten-fold cross-validation
AD MCI Ctl AD MCI Ctl

AD 113 35 1 0.76 0.23 0.01
MCI 36 173 51 0.14 0.67 0.20
Ctl 1 43 73 0.01 0.37 0.62

Overall accuracy: 0.68

Blind prediction
AD MCI Ctl AD MCI Ctl

AD 57 17 0 0.77 0.23 0.00
MCI 20 85 23 0.16 0.66 0.18
Ctl 0 23 35 0.00 0.40 0.60

Overall accuracy: 0.68

blind prediction for raw data from Emory. We conclude that raw data of neuropsy-

chological tests have potential to predict subjects from AD, MCI, and control groups.
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4.2 Cardiovascular Disease

Cardiovascular disease has been the top one leading cause of death in the United

States for many years, and atherosclerosis is a main cause of cardiovascular disease.

Early detection of atherosclerosis is very important.

4.2.1 Background

This section describes the background of this study, including subjects, measure-

ment of the biomarkers, carotid intima-media thickness (IMT), brachial artery flow-

mediated vasodilation (FMD), groups for classification, and features.

4.2.1.1 Subjects

A total of 124 healthy nonsmoking volunteers between the ages of 30 and 65 years

without any known cardiovascular risk factors, such as hypertension, diabetes, or hy-

percholesterolemia, and without clinically evident atherosclerosis were recruited by

advertisement. Subjects were excluded if they were known to had a history of dia-

betes (fasting glucose of > 126 mg/dL or hemoglobin A1c of > 7%), hypertension

(elevated systolic [> 140 mm Hg] or diastolic blood pressure [> 90 mm Hg] on 3

separate measurements), or hyperlipidemia requiring treatment; were smoking in last

3 months; or were on any vasoactive medications, vitamins, or supplements. Preg-

nant women and those with acute or chronic illnesses were also excluded. The study

was approved by the Emory University Institutional Review Committee. Informed

consent was obtained from all of the subjects.

After answering a questionnaire and a routine physical examination, overnight

fasting blood samples were obtained. Plasma levels of total, low-density lipoprotein

(LDL), and high-density lipoprotein (HDL) cholesterol; triglycerides; and glucose
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were measured. Highsensitivity (hs) C-reactive protein (CRP) was measured by im-

munonephelometry (Dade Behring).

4.2.1.2 Measurement of Thiol and Disulfide Forms of Glutathione and Cysteine,
Their Redox States, and the CySSG

Detailed procedures for measurements of blood GSH, GSSG, Cys, CySS, CySSG, Eh

GSH/GSSG, and Eh Cys/CySS have been described previously (15,1921). Samples

were collected directly into specially prepared tubes containing a preservative to re-

duce autooxidation, centrifuged, and the supernatant frozen at -80C, which shows

no significant loss for = 1 year. Analyses by highperformance liquid chromatography

were performed after dansyl derivatization on a 3-aminopropyl column with fluo-

rescence detection. 19 Metabolites were identified by coelution with standards and

quantified by integration relative to the internal standard, with validation relative to

external standards. Issues of sample collection, stability, analysis, and standardiza-

tion have been extensively studied, and the method has been used in several clinical

studies (22). The coefficient of variation for GSH was 5%, and the coefficient of vari-

ation for GSSG was 9.7%. The SD for week-to-week variation among individuals for

GSH redox potential was 3.22 mV. The reproducibility values were similar for Cys,

CySS, CySSG, and Eh Cys/CySS.

4.2.1.3 Measurement of Carotid IMT

IMT was measured using ultrasonography and standard techniques (25,26). Longi-

tudinal images of the distal 1.0 cm of both common carotid arteries, proximal to the

carotid bulb were obtained using multiple scanning angles. The images were stored

digitally, and measurements were made off-line using a semi-automated computer-

ized analytical software (Carotid Tools, MIA Inc., Iowa City, Iowa), by two observers
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blinded to the test results. Average values of the IMT of each of the four segments

of the distal 1.0 cm of both common carotid arteries (right near and far walls, and

left near and far walls) were used as the IMT values for each subject. Inter-observer

variability for carotid IMT was 0.03 ± 0.02 mm between measurements made in 20

subjects by 2 observers. Intra-observer variability was 0.02 ± 0.02 mm between 2

measurements made 1 week apart on 10 subjects.

4.2.1.4 Measurement of Brachial Artery FMD

Endothelium-dependent brachial artery FMD was determined as described previously

after the blood sample for biomarker evaluation was obtained (2,23). Briefly, ultra-

sound images were obtained at baseline under standardized conditions and 60 seconds

after induction of reactive hyperemia by 5-minute cuff occlusion of the forearm. Af-

ter a 15-minute period to re-establish baseline conditions, endothelium-independent

dilation of the brachial artery was assessed from images obtained before and 3 to 5

minutes after administration of 0.4 mg of sublingual nitroglycerin. Images were digi-

tized online, and arterial diameters were measured with customized software (Medical

Imaging Applications, Inc) by individuals blinded to the clinical status and labora-

tory status of the subjects. FMD and endothelium-independent vasodilation were

expressed as the percentage increase in diameter from baseline. In our laboratory,

the mean difference in FMD between 2 consecutive assessments performed in 11 sub-

jects an average of 8 days apart was 1.26±0.76%, with a correlation coefficient of 0.75.

The mean difference in the FMD between 2 readings of the same 11 measurements

was 0.82±0.48% (r=0.97).
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Table 4.2.1: Three grouping ways for classification

Relatively High Risk Relatively Low Risk
Criteria # Subjects Criteria # Subjects

Grouping by
IMT

IMT≥0.68 29 IMT<0.68 92

Grouping by
FMD

FMD≤8.25 75 FMD>8.25 46

Grouping by
IMD & FMD

IMT≥0.68 &
FMD≤8.25

22
IMT<0.68 &
FMD>8.25

39

4.2.1.5 Groups for Classification

Carotid IMT is a measure of early atherosclerosis; brachial artery FMD is a measure

of vascular endothelial function, and endothelial dysfunction is known to precede the

development of atherosclerosis. We use the values of IMT and/or FMD as the mea-

sure of the risk of atherosclerosis.

We group the subjects for classification in three ways, shown in Table 4.2.1. In

the first way subjects of high and low risks are separated by 0.68 mm of IMT. In the

second way subjects of high and low risks are separated by 8.25% of FMD, in which

the cut point 8.25% is obtained by the k-means clustering method. In the third way

we put the first two criteria together, resulting in half of the total number of subjects

remained for analysis.

4.2.1.6 Features

We have 25 candidate features, including (1) 11 traditional risk factors: age, gender,

body mass index (BMI), triglyceride (TG), LDL, HDL, total cholesterol (TC), dia-

betes mellitus, hypertension, prior smoking history, family history of coronary artery

disease (CAD), (2) Framingham risk score, (3) inflammatory marker: hs-CRP, (4) 7
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Table 4.2.2: Classification results on IMT, selecting five features: Age, BMI, Family
CAD history, Eh GSH/GSSG, d-ROM

Ten-fold cross-validation
Large IMT Small IMT Large IMT Small IMT

Large IMT 15 5 0.7500 0.2500
Small IMT 4 57 0.0656 0.9344
Overall accuracy: 0.8889

Blind prediction
Large IMT Small IMT Large IMT Small IMT

Large IMT 7 2 0.7778 0.2222
Small IMT 1 30 0.0323 0.9677
Overall accuracy: 0.9250

oxidative stress markers: GSH, GSSG, Eh GSH/GSSG, Cys, CySS, Eh Cys/CySS,

CySSG, and (5) 5 other factors: myeloperoxidase, systolic blood pressure (BP), dias-

tolic BP, fasting insulin, and d-ROM.

4.2.2 Results

This section shows the classification results for grouping by IMT, FMD, and both.

We randomly chose two-third of the subjects for training and the remaining one-third

for blind prediction. We conclude that our classification model is able to discriminate

healthy subjects of relatively high and low risk of atherosclerosis.

4.2.2.1 Classification Results for Grouping by IMT

Table 4.2.2 and 4.2.3 show two of the best classification results for grouping by IMT.

We aggregate the number of times each feature appears in the feature sets which

result in good classification results. For grouping by IMT, we select the results where

classification accuracies are greater than or equal to 75% in both groups and in both
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Table 4.2.3: Classification results on IMT, selecting six features: Age, Gender,
Hypertension, Family CAD history, Eh GSH/GSSG, d-ROM

Ten-fold cross-validation
Large IMT Small IMT Large IMT Small IMT

Large IMT 15 5 0.7500 0.2500
Small IMT 6 55 0.0984 0.9016
Overall accuracy: 0.8642

Blind prediction
Large IMT Small IMT Large IMT Small IMT

Large IMT 7 2 0.7778 0.2222
Small IMT 2 29 0.0645 0.9355
Overall accuracy: 0.9000

training and blind prediction. For all these results, we accumulate the number of times

each feature appears in two ways: (1) non-weighted, i.e., each feature is counted once

regardless of the size of the feature set it come from, and (2) weighted in reverse

proportion of the size of the feature set, i.e., each count is weighted by the reciprocal

of the size of the feature set. See Table 4.2.4 for the number of feature appearance.

Note that due to rounding error, the total number of weighted counts could be non-

integral or the sum of the percentages could be non-unity.

We also show the results where candidate features come from only the 11 tradi-

tional risk factors (age, gender, BMI, TG, LDL, HDL, TC, diabetes mellitus, hyper-

tension, prior smoking history, family CAD history). Table 4.2.5 shows two feature

sets with the same results.

If we use only the 7 oxidative stress markers (GSH, GSSG, Eh GSH/GSSG, Cys,

CySS, Eh Cys/CySS, CySSG) as candidate features, none of the results have overall

accuracies in training and blind prediction greater than or equal to 65%. Neither do

the results for grouping by FMD and by IMT and FMD.
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Table 4.2.4: Feature appearance for grouping by IMT of all 75% or better results

Non-weighted Weighted
Feature Name Count % Feature Name Count %

Family CAD history 190 12.6 Family CAD history 25.09 12.7
d-ROM 187 12.5 d-ROM 24.83 12.5

Eh GSH/GSSG 153 10.2 Eh GSH/GSSG 20.12 10.2
Age 133 8.9 Age 17.44 8.8
BMI 91 6.1 BMI 12.09 6.1

Hypertension 72 4.8 Hypertension 9.46 4.8
HDL 59 3.9 Framingham risk score 7.97 4.0

Framingham risk score 59 3.9 HDL 7.82 3.9
Myeloperoxidase 57 3.8 Myeloperoxidase 7.42 3.7

Diabetes 55 3.7 Diabetes 7.26 3.7
Fasting insulin 55 3.7 Fasting insulin 7.24 3.7

Systolic BP 52 3.5 Systolic BP 6.84 3.5
hs-CRP 46 3.1 hs-CRP 6.04 3.0

TG (Triglyceride) 42 2.8 TG (Triglyceride) 5.43 2.7
Prior smoking 39 2.6 Prior smoking 5.06 2.6

Gender 38 2.5 Gender 4.99 2.5
LDL 33 2.2 LDL 4.27 2.2

TC (Cholesterol) 29 1.9 TC (Cholesterol) 3.73 1.9
Eh Cys/CySS 23 1.5 Eh Cys/CySS 3.07 1.6

Cys 22 1.5 Cys 2.84 1.4
CySSG 21 1.4 CySSG 2.68 1.4
GSSG 15 1.0 GSSG 1.95 1.0
GSH 13 0.9 Diastolic BP 1.81 0.9

Diastolic BP 12 0.8 GSH 1.68 0.8
CySS 6 0.4 CySS 0.89 0.4
Total 1502 100.2 Total 198.02 100.0
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Table 4.2.5: Classification results on IMT, selecting (1) six features: Age, Gender,
BMI, TC, Hypertension, Family CAD history, or (2) six features: Age, Gender, BMI,
LDL, HDL, TC

Ten-fold cross-validation
Large IMT Small IMT Large IMT Small IMT

Large IMT 14 6 0.7000 0.3000
Small IMT 7 54 0.1148 0.8852
Overall accuracy: 0. 8395

Blind prediction
Large IMT Small IMT Large IMT Small IMT

Large IMT 7 2 0.7778 0.2222
Small IMT 1 30 0.0323 0.9677
Overall accuracy: 0. 9250

4.2.2.2 Classification Results for Grouping by FMD

Table 4.2.6 and 4.2.7 show two of the best classification results for grouping by FMD.

Note that all features in this set are traditional risk factors.

Table 4.2.8 shows the feature appearance for grouping by FMD, where classifica-

tion accuracies are greater than or equal to 70% in both groups and in both training

and blind prediction.

4.2.2.3 Classification Results for Grouping by both IMT and FMD

Table 4.2.9 shows the best classification results for grouping by IMT and FMD. Note

that all selected features are traditional risk factors.

Table 4.2.10 shows the feature appearance for grouping by IMT and FMD, where

classification accuracies are greater than or equal to 80% in both groups and in both
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Table 4.2.6: Classification results on FMD, selecting five features: Gender, BMI,
LDL, Hypertension, Family CAD history

Ten-fold cross-validation
Small FMD Large FMD Small FMD Large FMD

Small FMD 40 13 0.7547 0.2453
Large FMD 8 20 0.2857 0.7143
Overall accuracy: 0.7407

Blind prediction
Small FMD Large FMD Small FMD Large FMD

Small FMD 16 6 0.7273 0.2727
Large FMD 5 13 0.2778 0.7222
Overall accuracy: 0.7250

Table 4.2.7: Classification results on FMD, selecting six features: Gender, Hyper-
tension, GSSG, CySS, CySSG, Diastolic BP

Ten-fold cross-validation
Small FMD Large FMD Small FMD Large FMD

Small FMD 40 13 0.7547 0.2453
Large FMD 7 21 0.2500 0.7500
Overall accuracy: 0.7531

Blind prediction
Small FMD Large FMD Small FMD Large FMD

Small FMD 17 5 0.7727 0.2273
Large FMD 5 13 0.2778 0.7222
Overall accuracy: 0.7500

141



Table 4.2.8: Feature appearance for grouping by FMD of all 70% or better results

Non-weighted Weighted
Feature Name Count % Feature Name Count %

Gender 231 13.2 Gender 30.82 13.3
CySSG 190 10.9 CySSG 25.10 10.9

Hypertension 165 9.4 Hypertension 22.12 9.6
Diastolic BP 136 7.8 Diastolic BP 17.96 7.8

GSSG 120 6.9 GSSG 15.90 6.9
d-ROM 97 5.5 BMI 12.66 5.5

GSH 95 5.4 d-ROM 12.48 5.4
BMI 94 5.4 GSH 12.46 5.4
LDL 74 4.2 LDL 9.75 4.2

Fasting insulin 60 3.4 Fasting insulin 7.83 3.4
Myeloperoxidase 53 3.0 Myeloperoxidase 6.84 3.0

hs-CRP 51 2.9 hs-CRP 6.71 2.9
TG (Triglyceride) 49 2.8 TG (Triglyceride) 6.34 2.7

CySS 48 2.7 CySS 6.30 2.7
Eh Cys/CySS 46 2.6 Eh Cys/CySS 6.03 2.6

TC (Cholesterol) 42 2.4 TC (Cholesterol) 5.47 2.4
Systolic BP 38 2.2 Systolic BP 4.89 2.1

Prior smoking 37 2.1 Prior smoking 4.77 2.1
Eh GSH/GSSG 36 2.1 Eh GSH/GSSG 4.65 2.0

Cys 30 1.7 Cys 3.93 1.7
Diabetes 28 1.6 Diabetes 3.74 1.6

Family CAD history 13 0.7 Family CAD history 2.00 0.9
HDL 12 0.7 HDL 1.60 0.7

Framingham risk score 5 0.3 Framingham risk score 0.64 0.3
Age 0 0.0 Age 0.00 0.0

Total 1750 99.9 Total 230.99 100.1
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Table 4.2.9: Classification results on IMT and FMD, selecting (1) four features: Age,
HDL, Hypertension, Family CAD history, (2) five features: Age, HDL, Hypertension,
Family CAD history, Fasting insulin, or (3) six features: Age, HDL, Hypertension,
Family CAD history, Framingham risk score, CySS

Ten-fold cross-validation
Large IMT & Small IMT & Large IMT & Small IMT &
Small FMD Large FMD Small FMD Large FMD

Large IMT &
Small FMD

14 3 0.8235 0.1765

Small IMT &
Large FMD

1 24 0.0400 0.9600

Overall accuracy: 0.9048

Blind prediction
Large IMT & Small IMT & Large IMT & Small IMT &
Small FMD Large FMD Small FMD Large FMD

Large IMT &
Small FMD

4 1 0.8000 0.2000

Small IMT &
Large FMD

0 14 0.0000 1.0000

Overall accuracy: 0.9474
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training and blind prediction.

144



Table 4.2.10: Feature appearance for grouping by IMT and FMD of all 80% or better
results

Non-weighted Weighted
Feature Name Count % Feature Name Count %

d-ROM 1844 11.6 d-ROM 250.95 11.7
Age 1608 10.1 Age 220.44 10.2

Gender 1472 9.3 Gender 198.88 9.2
Hypertension 1080 6.8 Hypertension 147.49 6.9

Family CAD history 961 6.0 Family CAD history 130.37 6.1
BMI 865 5.4 BMI 117.89 5.5

Eh GSH/GSSG 716 4.5 Eh GSH/GSSG 95.65 4.4
Systolic BP 598 3.8 Systolic BP 80.50 3.7

Fasting insulin 581 3.7 Fasting insulin 77.57 3.6
Myeloperoxidase 524 3.3 Myeloperoxidase 71.68 3.3

Framingham risk score 514 3.2 Framingham risk score 69.28 3.2
hs-CRP 499 3.1 HDL 67.20 3.1
CySS 493 3.1 hs-CRP 66.84 3.1
HDL 490 3.1 CySS 65.26 3.0

Eh Cys/CySS 431 2.7 Eh Cys/CySS 57.45 2.7
CySSG 404 2.5 CySSG 54.25 2.5

Cys 389 2.4 Diastolic BP 53.55 2.5
Diastolic BP 382 2.4 Cys 52.29 2.4

Prior smoking 363 2.3 Prior smoking 49.26 2.3
GSH 342 2.2 GSH 47.08 2.2

TG (Triglyceride) 285 1.8 Diabetes 37.96 1.8
Diabetes 283 1.8 TG (Triglyceride) 37.90 1.8

GSSG 266 1.7 GSSG 35.44 1.6
TC (Cholesterol) 261 1.6 TC (Cholesterol) 34.99 1.6

LDL 240 1.5 LDL 31.86 1.5
Total 15891 99.9 Total 2152.03 99.9
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4.3 Sulfur Amino Acid Intake

In this study, we investigate whether variation in sulfur amino acid (SAA) intake

affects on metabolic changes in human plasma via 1H NMR.

4.3.1 Background

This section describes the background of this study, including study of sulfur amino

acid intake, subjects, diet and nutrient intake, 1H NMR spectroscopy, and data pre-

processing.

4.3.1.1 Study of Sulfur Amino Acid Intake

Influence of sulfur amino acid deficiency is studied in 1954 by Fillios and Mann [35].

Tor-Agbidye et al. [156] study the relationship between blood cyanide and plasma

cyanate concentrations on rats by controlling the SAAs in the diet. Paterson et al.

[119] and Bobyn et al. [13] study the effects of sulfur amino acid deficiency on rat

brain glutathione concentration by controlling the diets. Park et al. [115] study

whether the SAA content of a meal affected postprandial plasma cysteine, cystine, or

redox potential in humans and whether SAA intake level (adequate or inadequate)

prior to the meal affected these postprandial levels.

This study was conducted as a 13-day study of effects of diet on plasma GSH/GSSG

redox state. The overall design included a 3-d equilibration on normal SAA contain-

ing food, 5-d SAA free food, and 5-d SAA containing food. On the first and last day

of each 5-d period, hourly blood draws were taken for plasma metabolomic analyses

by NMR spectroscopy. On the other days of each 5-d period, blood draws were taken

at 8:30 AM before the breakfast.
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4.3.1.2 Subjects

Studies were performed with informed consent under a protocol approved by the

Emory Investigational Review Board. Average of age of all subjects was 23±2.93

(Mean±SD). The average of BMI in all individuals was 21.8±1.13 (Mean±SD). Male

was 57% and female was 43% of all participants. The race distribution was black

(43%), white (43%), and Asian (14%). All subjects were screened in the outpatient

unit of the Emory General Clinical Research Center (GCRC), where a history and

physical examination, body height and weight, fasting standard blood chemistry and

hematology tests and a urinalysis were performed (a serum pregnancy test was also

performed in menstruating females). Indirect calorimetry was performed to deter-

mine resting energy expenditure (REE). Eligible subjects at the time of the study

had to be within 10% of the ideal body weight for height. Individuals who currently

smoked were excluded.

Subjects being treated for hypertension were eligible for the study, butthose taking

chronic medications for other illnesses or with evidence of any acute disease process

were excluded. Because GSH redox state varies with age after 45 y, subjects be-

tween 18 and 40 y were recruited, with an approximately equal number of males

and females. Subjects were asked to discontinue antioxidants and nutritional sup-

plements (with the exception of once-daily multivitamin-mineral supplements) or ac-

etaminophen two weeks prior to the onset of the studies. Menstruating females were

scheduled for study in the follicular phase of their menstrual cycle, defined as between

7 to 10 days after the onset of the last period. Within one month following screening,

the subjects were scheduled to begin the study. During the 3-day equilibration pe-

riod, nutritionally balanced meals providing the RDA for SAA were provided by the

GCRC Bionutrition Unit Subjects. Following the equilibration period, subjects were

placed on the 0% SAA diet for a 5-day depletion period and then an isoenergetic,
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isonitrogenous diet with 3X the RDA for SAA for a 5-day repletion period while re-

maining in the GCRC inpatient unit.

4.3.1.3 Diet and Nutrient Intake

The SAA-free and SAA containing were isonitrogenous and isoenergetic. The pro-

tein equivalent was supplied in the form of specific L-amino acid mixtures, providing

1.0 g/kg per day as outlined in detail. The standard mixture was patterned after

hen’s egg protein and provided all 9 indispensable (essential) amino acids, including

Met, in amounts sufficient for the mean requirements of healthy young adults, but

which were higher than the requirements proposed by the World Health Organiza-

tion. The standard amino acid mixture also contained 8 dispensable (non-essential)

amino acids, including Cys and Glu, and was Gln- and taurine-free. To compensate

for the difference in Met + Cys between the SAA-free, 0% and SAA diet, the amount

of all non-essential amino acids was proportionally changed to maintain a constant

dietary nitrogen content. Met:Cys was at the ratio in the RDA (1:4) in SAA con-

taining diet. To improve palatability, a powdered flavoring agent was added to the

amino acid mixture. The dietary energy (1.4 times measured REE) was mainly de-

rived from lipid and carbohydrate sources provided in the form of protein-free wheat

starch and butter/safflower oil cookies and a sherbet-based drink. Experimental di-

ets were administered by the GCRC nutritionists on a standard schedule; meals at

8:30 AM, 12:30 PM and 5:30 PM and an evening “snack” at 9:30 PM. All meals and

snacks were to be consumed over no longer than a 20-minute period. Subjects were

highly compliant with these research dietary items. Adequate hydration and vitamin,

mineral and electrolyte requirements were provided to all subjects to meet or exceed

recommended allowances. Ad libitum intake of water was provided to ensure urine

output of at least 700 ml during each 24-h urine collection. All subjects received on
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a daily basis 1) one multivitamin-multimineral capsule with iron (One-A-Day; Miles

Inc., Elkhart, IN); 2) three potassium tablets (K-LYTE;20 meq each, generic); 3) four

calcium tablets (TUMS; SKB Corp., Pittsburgh, PA); 4) two sodium chloride tablets

(1 gram tablets; Eli Lilly and Co., Indianapolis, IN); 5) two choline capsules (250-

mg; Lee Nutrition Inc., Cambridge, MA), and 6) one magnesium oxide tablet (400

mg tablet). All supplements were administered on a regular schedule by the GCRC

research nurses. Body weights were determined daily and vital signs were obtained

every 8 h. Low-level activity was allowed and restricted to walking on the GCRC.

4.3.1.4 1H NMR Spectroscopy

Plasma samples were thawed (600 ml) and mixed with 66 ml of deuterium oxide (D2O)

containing DSS [3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (C6H15NaO3SSi,

1% w/w)]. 1H NMR spectra were measured at 600 MHz on a Varian INOVA 600 spec-

trometer with water presaturation at 25◦C. The samples were maintained at 25◦C in

the magnet at least 10 minutes before measurement in order to ensure temperature

stability. All spectra were referenced to the internal standard, DSS, and corrected

for phase and baseline to standardize the data after Fourier transform. NMR spectra

were measured with 64 scans into 19,802 data points over a spectral width of 6600.7

Hz, which resulted in an acquisition time of 2.55 s per sample (d1=0, pulse=5 ms,

presaturation=1 s , acquisition = 1.5 s). To check the reproducibility of the NMR

analysis, the plasma was purchased to run NMR on multiple time points (1.5 h, 3h,

4h and 6h). The correlation and coefficients of spectra were 0.96, 0.93, 0.97, and 0.97.

Spectral data from blood samples of 5 subjects are categorized into two groups:

Data of the depletion period are considered as group -SAA while data of the repletion

period are considered as +SAA. However, data taken at 8:30 AM of the first day of
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the depletion period is put in group +SAA and data taken at 8:30 AM of the first

day of the repletion period is put in group -SAA. Among the 158 spectral samples 85

samples are in group -SAA and 73 are in group +SAA.

4.3.1.5 Data Preprocessing

The preprocessing of the spectral data includes binning, baseline correction, and nor-

malization, which are based on the procedures in Ressom el al. [132, 131].

(1) Binning:

First we bin the raw spectral data to reduce the noise as well as the dimensionality

of the data. We choose the range of chemical shift values which are contained in all

spectra and then bin the data with bin size 11. In each bin the mean of the 11 corre-

sponding intensities represents the intensity of this bin. After binning, each spectrum

has 1486 features.

(2) Baseline correction:

We perform baseline correction to reduce the effect of background noise. The baseline

(background value) of each spectrum is estimated by using shifting windows. Shifting

windows are calculated every 30 bins with window size 100 bins. That is, the shifting

windows are overlapping. The baseline at every window is estimated by taking the

10% quantile value. The spline function in MATLAB is used to do spline approxima-

tion (cubic spline interpolation). The regressed baseline is then subtracted from the

spectrum.

(3) Normalization:

We perform normalization to reduce variation in intensity of chemical shift between
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Table 4.3.1: First classification results on SAA

Ten-fold cross-validation
-SAA +SAA -SAA +SAA

-SAA 50 4 0.9259 0.0741
+SAA 2 44 0.0435 0.9565
Overall accuracy: 0.9400

Blind prediction
-SAA +SAA -SAA +SAA

-SAA 28 3 0.9032 0.0968
+SAA 1 26 0.0370 0.9630
Overall accuracy: 0.9310

spectra. The intensities are scaled by (i) dividing by the total intensities of the spec-

trum (i.e. the area under the curve) and (ii) multiplying 107.

4.3.2 Results

We randomly select 100 spectral samples for training by 10-fold cross-validation and

use the remaining 58 samples for blind prediction. We apply PSO/DAMIP to select

10 features and we are able to discriminate the two groups with accuracy greater than

90% in both 10-fold cross-validation and blind prediction. Here we show two selected

feature sets and the corresponding results. The ten selected features (chemical shift

values) in the first result are [ 9.7631, 8.9280, 7.3762, 6.8442, 6.0904, 4.7677, 4.0509,

2.7503, 2.6247, 0.8955 ]; the ten selected features in the second result are [ 8.6694,

7.3614, 7.1102, 6.0165, 2.8759, 2.5212, 2.1517, 1.9744, 1.5827, -0.2647 ]. Table 4.3.1

and 4.3.2 show the classification accuracies. Figure 4.3.1 and 4.3.2 show the selected

features plotted on the spectra.
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Figure 4.3.1: Selected features from the first result on the spectra. (a) -SAA samples,
(b) +SAA samples.

Figure 4.3.2: Selected features from the second result on the spectra. (a) -SAA

samples, (b) +SAA samples.

152



Table 4.3.2: Second classification results on SAA

Ten-fold cross-validation
-SAA +SAA -SAA +SAA

-SAA 50 4 0.9259 0.0741
+SAA 4 42 0.0870 0.9130
Overall accuracy: 0.9200

Blind prediction
-SAA +SAA -SAA +SAA

-SAA 30 1 0.9677 0.0323
+SAA 2 25 0.0741 0.9259
Overall accuracy: 0.9483

Our classification model is able to discriminate the 1H NMR spectra of blood

plasma samples which relate to no-SAA-intake diets and multiple-SAA-intake diets.

The results demonstrate that our model can help for metabolomics study.
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4.4 CpG Islands

4.4.1 Background

DNA (deoxyribonucleic acid) is the hereditary material in humans and almost all

organisms which contains the genetic instructions to construct other components of

cells, such as proteins. DNA consists of two strands of repeated units called nu-

cleotides. A nucleotide is composed of a nucleobase, a five-carbon sugar, and one to

three phosphate groups. The order of the nucleotides, or nucleobases, determines the

information of DNA. The four kinds of DNA nucleobases, simply called bases, are

adenine, thymine, cytosine, and guanine, abbreviated as A, T, C, and G, respectively.

The two strands of DNA form a spiral called a double helix. A DNA strand can

only be synthesized in vivo in a particular direction: from 5’-end to 3’-end. By con-

vention, a single DNA strand is written in the 5’-3’ direction. In a double helix, the

directions of the two strands are opposite to each other; the 5’-end in one strand is

paired with the 3’-end in the other strand. Furthermore, the binding bases of the

two strands are paired: (1) A paired with T and (2) C paired with G. That is, AT

and CT are the two types of DNA base pairs. Base pair, abbreviated as bp, is also a

measurement of the length of a DNA sequence. Figure 4.4.1 illustrates two strands of

DNA with some bases; the base sequence ‘ATTG’ on strand 1 has its complementary

base sequence ‘CAAT’ on strand 2. (Note that a sequence is read in the 5’-3’ direction

by convention.)

CpG islands are short stretches of DNA enriched for the dinucleotide, 5’-CpG-3’,

which is the substrate for methylation. The letter ‘p’ indicates that C and G are

connected by a phosphodiester bond. Although most CpG islands remain unmethy-

lated in normal adult cells, they can become methylated de novo in human cancer

cells. This aberrant methylation of CpG islands plays a critical role in the initiation
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Figure 4.4.1: Example of base pairs on DNA.

Table 4.4.1: Categorization of CpG islands

Category of CpG islands Range of methylation frequency Number of sequences
methylation-prone methy. freq. ≥ 10 69

methylation-sporadic 1 ≤ methy. freq. ≤ 9 68
methylation-resistent methy. freq. = 0 143

and progression of cancer. We are interested in looking for sequence signatures which

are capable of distinguish between methylation-prone and methylation-resistant CpG

islands [31, 32].

4.4.2 Data Description

The input sequences consist of 280 CpG islands with length ranging from 500 to 6118

bps. Each sequence is associated with a methylation frequency, ranging from 0 to 24.

A sequence is categorized into methylation-prone, sporadic, or resistant according to

its methylation frequency. The range of methylation frequency and the number of

sequences for each type of CpG islands are listed in Table 4.4.1.

Initially, we are interested in identifying patterns to discriminate methylation-

prone versus methylation-resistant. Besides having CpG islands, we also have the

sequences outside the CpG islands, specifically 1000 bps on each side of the CpG

islands. In our analysis, we look for discriminatory patterns using the following three
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regions of DNA sequences:

1. CpG islands: The sequences of CpG islands.

2. Extended: The sequences of CpG islands plus 1000 bps on each side of the CpG

islands.

3. Outer: The sequences on each side of the CpG islands, 1000 bps on each side.

These three cases are treated independently.

4.4.3 Pattern Search, Feature Selection, and Classification

A pattern is a short sequence of letters, including A, T, C, G, or others, which is

the attribute that we are looking for to discriminate between methylation-prone and

methylation-resistant CpG islands. We allow the letter to be not only A, T, C, and G

(called a match letter) but also other ones which represent two or more bases (called

a wild letter). Table 4.4.2 lists all letters and their meanings, i.e., possible bases, and

Table 4.4.3 lists the letters and their complements.

We also consider the reverse complement of a pattern. That is, we look for pat-

terns together with their reverse complements. For example, ‘ATTG’ and ‘CAAT’

are treated together as one pattern, as shown in Figure 4.4.2.

Figure 4.4.2: Example of patterns and their reverse complements on DNA.
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Table 4.4.2: Letters and their meanings

Letter Meaning
A A
T T
C C
G G
R G A
Y T C
M A C
K G T
S G C
W A T
H A C T
B G T C
V G C A
D G A T
N A T C G

Table 4.4.3: Complements of letters

Letter A T C G R Y M K S W H B V D N
Complement T A G C Y R K M S W D V B H N
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4.4.3.1 Methodology

We derive procedures for searching patterns that will discriminate methylation-prone

and methylation-resistant CpG islands. The algorithm consists of five steps:

1. Apply pattern search algorithms to generate possible patterns.

2. Filter the massive amount of possible patterns and generate some pattern pools

by certain criteria.

3. On each pattern pool, apply feature selection and classification methods to

select 1 to 20 discriminating patterns.

4. Aggregate patterns which have good classification results from Step 3. These

patterns are supposed to be the ones we are looking for. We generate pattern

pools again from these “good” patterns.

5. Apply the feature selection and classification methods on the pattern pools to

validate the discriminating power of the patterns found in Step 4.

Given a pattern, for example, ‘ATBG’, we calculate how many times it appears

in each sequence of CpG islands; the number of appearance is called the occurrence

frequency of this pattern. Besides using the occurrence frequency, we can also use the

normalized occurrence frequency, where the occurrence frequency is divided by the

length of the sequence in the unit of 1000 bps.

We use three fourth of the data for training (159 sequences) and the rest for blind

prediction, with the pattern search being applied only to the training set.

Step 1: Generate Possible Patterns
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We first generate all possible patterns which have fixed numbers of match and wild

letters such that the sum of the (non-normalized or normalized) occurrence frequen-

cies of this pattern in the training sequences is greater than or equal to a frequency

threshold. Ten is a frequency threshold to first exclude patterns that appear infre-

quently among all training sequences. We choose the numbers of match letters from

3 to 15 and the numbers of wild letters from 0 to 2.

First we show the structure of the loops of the pattern generating algorithm, and

then we describe the details of (a), (b), (c), (d), and (e) in the looping structure.

Given the numbers of match and wild letters

loop for all sequences

loop for all positions (a)

loop for all possible patterns with respect to wild letters (b)

if pattern has not been visited (c)

store the pattern and its reverse complement (c)

calculate the occurrence frequencies in all sequences (d)

output the calculation if threshold is met (e)

end if

end loop

end loop

end loop

(a): Given a sequence i, the loop goes from the first position of sequence i to

the last possible position to include a pattern. For example, suppose the numbers of

match and wild letters are 8 and 2, respectively, and the length of sequence i is 1000

bps, then loop (a) goes from the 1st to the 991th position of sequence i.

(b): Given a (starting) position of sequence i, we have the original pattern, then

we loop for all possible patterns with respect to wild letters. For example, suppose
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the numbers of match and wild letters are 3 and 1, respectively; suppose the original

pattern with length four read from a certain position of sequence i is ATTG. Based on

the original pattern ATTG, loop (b) goes through all possible patterns which consist

of 3 match letters and 1 wild letter such that the original pattern is an instance of

those possible patterns. In this example, ATTR, ATTB, ATYG, ANTG, HTTG, etc.,

and many other ones are all possible patterns derived from ATTG. Note that we do

not allow N, the wild letter which represents all four cases, to appear in the first or

last position of a pattern. In this example, we do not look for patterns NTTG and

ATTN. Patterns with letter N in the ends (first and last positions) are exactly the

shorter patterns without the N’s.

(c): Given a pattern generated in loop (b), for example, ATTR, if it has been

visited, we do nothing here; otherwise we will store both this pattern and its reverse

complement, YAAT, in a hash table. This allows us to use a hash function to map

a number to each pattern. We assign 0, 1, 2, 3 to A, T, C, G, respectively, and we

define the hash function such that it maps the first seven match letters of a pattern to

a quaternary number. For example, ATTR, ATTY, ATMT, ATKT, AHTT, ANTT,

BATT are all mapped to 011, which represents the first match letters ATT. In an-

other example, AATTCCGGNM, AATTCCGANM, RAATVTCCGT are all mapped

to 0011223, which represents the first seven match letters. We use the chaining strat-

egy for the hash table: Each slot of the array is a pointer to a linked list containing

the patterns which have the same hash function values. That is, a pattern is inserted

into the end of a particular linked list based on the hash function value, and it can

be searched in the time linear to the length of the linked list.

(d): Given a pattern generated in loop (b) that has not been found, for example,

ATTR, we count and add up the occurrence frequencies of ATTR and its reverse
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complement YAAT in a sequence. Non-normalized and normalized frequencies are

both stored. We do the same thing for all sequences.

(e): Given a pattern, if the sum of the occurrence frequencies in all sequences is

greater than or equal to the threshold frequency, this pattern together with its reverse

complement and the occurrence frequencies are output into the file.

Step 2: Generate Pattern Pools I

Any subsets of patterns found in Step 1 can be candidate patterns in our feature

selection and classification model. Further, we can use patterns with certain length

or with certain number of wild letters. However, the number of patterns remains

very large, in the order of millions. To reduce the numbers, we screen the patterns

by some criteria. Specifically, we put together all the patterns with different lengths,

and screen the patterns using the following criteria to generate pattern pools:

1. Use or not use wild letters. Denoted by W or no-W.

2. Occurrence frequencies are non-normalized or normalized. Denoted by non-N

or N.

3. The sum of occurrence frequencies in the training sequences is greater than or

equal to a pre-specified threshold, denoted by TH1.

4. The correlation coefficient between methylation frequency and occurrence fre-

quency is greater than or equal to a threshold (a positive value), denoted by

TH2.

5. The absolute value of the correlation coefficient between methylation frequency

and occurrence frequency is greater than or equal to a threshold (a positive
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value), denoted by TH3.

In our analysis, either Criterion 4 or 5 is being used. When we use Criterion

4, we look for patterns such that the methylation frequency and pattern occurrence

frequency are positively correlated. On the other hand, Criterion 5 screens for pat-

terns in which the methylation frequency and pattern occurrence frequency are both

positively and negatively correlated.

Step 3: Feature Selection and Classification

On each pattern pool, we apply feature selection and classification methods de-

scribed in Chapter 3 to select 1 to 20 discriminating patterns.

Step 4: Generate Pattern Pools II

After feature selection and classification is performed in Step 3, we obtain sets of

patterns which have good classification accuracies for both groups in both training

and blind prediction. Patterns are aggregated for those that result in accuracies that

are greater than or equal to a certain level, for CpG islands, extended, outer, and all

of the three.

To validate that these aggregated patterns are discriminating, we calculate the

occurrence frequencies and normalized occurrence frequencies of these aggregated

patterns, and generate several pattern pools to perform feature selection and classi-

fication again. Pattern pools are generated according to (1) thresholds of accuracies

in the results of Step 3 (80% and 75%), and (2) parts of the results (CpG islands,

extended, outer, and all three of them). If a pattern pool is obtained from the results

of, for example, CpG islands, then the occurrence frequencies are calculated only in
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the part of CpG islands and the classification is done for the CpG island part. On the

other hand, if a pattern pool is obtained from the results of CpG island, extended,

and outer, then the occurrence frequencies are calculated separately in three parts

and the classification is done separately in three parts.

Step 5: Feature Selection and Classification

We apply the feature selection and classification methods described in Chapter 3

on the pattern pools to validate the discriminating power of the patterns found in

Step 4.

4.4.4 Results

Results of Step 1: Generate Possible Patterns

Table 4.4.4 shows the number of patterns found in Step 1. Here we consider the

number of match letters from 1 to 15 and the number of wild letters from 0 to 2. The

length of a pattern is the sum of the numbers of match and wild letters. Partly due

to the strenuous computational effort, less number of wild letters will be considered

when the number of match letters becomes larger. Further, longer patterns appear

less frequently in the sequences, and thus will be excluded by the frequency threshold

(TH1). Empirically, 15 appears to be an appropriate length.

Results of Step 2: Generate Pattern Pools I

Table 4.4.5 shows the number of patterns screened under the five criteria: wild or

non-wild, normalized or non-normalized, TH1 (threshold on the sum of occurrence
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Table 4.4.4: Number of patterns under fixed numbers of match and wild letters

#Match #Wild Length CpG islands Extended Outer
non-N N non-N N non-N N

1 2 3 640 640 640 640 640 640
2 1 3 254 254 254 254 254 254
2 2 4 5330 5330 5330 5330 5330 5330
3 0 3 32 32 32 32 32 32
3 1 4 1344 1344 1344 1344 1344 1344
3 2 5 35936 35936 35936 35936 35936 35936
4 0 4 136 136 136 136 136 136
4 1 5 6808 6808 6808 6808 6808 6808
4 2 6 218624 218624 218624 218624 218624 218624
5 0 5 512 512 512 512 512 512
5 1 6 32768 32768 32768 32768 32768 32765
5 2 7 1233878 1231291 1233920 1233094 1233667 1228586
6 0 6 2076 2043 2080 2059 2072 2021
6 1 7 152027 140257 153677 147010 150906 139606
7 0 7 6826 4513 8051 5721 6815 5596
7 1 8 459415 246268 658705 310923 517281 346788
8 0 8 9150 3476 21709 3122 12752 3742
8 1 9 502586 170024 1394844 118666 631741 117181
9 0 9 5717 1552 15372 673 3621 468
10 0 10 2315 386 4771 146 747 199
11 0 11 590 74 1379 60 449 142
12 0 12 146 14 631 44 353 108
13 0 13 41 4 395 28 291 78
14 0 14 15 3 314 15 243 64
15 0 15 10 3 263 9 207 53
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Table 4.4.5: Number of patterns under specific criteria

Pool Criteria Number of patterns
index Wild letter Normalized TH1 TH2 TH3 CpG islands Extended Outer

0 W non-N 50 0.15 na 82549 111152 75427
1 W non-N 50 0.20 na 14698 21942 19561
2 W non-N 50 0.25 na 1812 3225 3643
3 W non-N 50 na 0.15 94413 154992 140516
4 W non-N 50 na 0.20 16028 29091 31611
5 W non-N 50 na 0.25 1907 3898 4835
6 W N 50 0.15 na 33958 59669 56664
7 W N 50 0.20 na 6375 12334 13800
8 W N 50 0.25 na 779 1919 2334
9 W N 50 na 0.15 69601 132619 114882
10 W N 50 na 0.20 11897 25742 24843
11 W N 50 na 0.25 1273 3248 3473
12 no-W non-N 10 0.10 na 4375 7454 3028
13 no-W non-N 10 na 0.10 6225 12746 6610
14 no-W non-N 10 na na 27566 55645 28230
15 no-W non-N 30 na na 8533 17041 8670
16 no-W N 10 0.10 na 1381 1461 1404
17 no-W N 10 na 0.10 2637 3071 3261
18 no-W N 10 na na 12748 12557 13151
19 no-W N 30 na na 4105 3982 4030

frequencies), TH2 (threshold on correlation coefficient), and TH3 (threshold on the

absolute value of correlation coefficient). We generate 20 pattern pools using different

parameters for the criteria.

Results of Step 3: Feature Selection and Classification

For each pattern pool (pool 0 ∼ 19), feature selection and classification is per-

formed to select from 1 to 20 features to form the discriminatory sets. To filter the

results, accuracy threshold is applied to the classification accuracies of Group 1 and

Group 2 in both ten-fold cross validation and blind prediction.
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Table 4.4.6: Number of patterns in pattern pools for CpG islands

Pool index Source of patterns Normalized Number of patterns
0 80%, CpG, extended, outer non-N 2710
1 N
2 80%, CpG non-N 2352
3 N
4 75%, CpG, extended, outer non-N 41287
5 N
6 75%, CpG non-N 27480
7 N
8 75%, CpG, #appearnace≥20 non-N 3444
9 N
10 75%, CpG, #appearnace≥50 non-N 1724
11 N
12 75%, CpG, #appearnace≥100 non-N 935
13 N

Results of Step 4: Generate Pattern Pools II

Table 4.4.6, 4.4.7, and 4.4.8 show the way we obtain each pattern pool and the

number of patterns in each pool in CpG island, extended, and outer, respectively.

Note that in the case of CpG islands, we have 27,480 patterns from the results of

75%; we generate further pattern pools from these where the number of appearance

of each pattern is greater than 20, 50, or 100. The pattern pool formed by more

frequently appeared patterns are expected to be more discriminating.

Results of Step 5: Feature Selection and Classification

For each pattern pool, we run feature selection and classification to select 3 to 10

patterns. Compared to pattern pools obtained from Step 2, the pools from Step 4

contain more discriminating patterns, thus the results here are much better.
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Table 4.4.7: Number of patterns in pattern pools for extended

Pool index Source of patterns Normalized Number of patterns
0 80%, CpG, extended, outer non-N 2710
1 N
2 80%, extended non-N 136
3 N
4 75%, CpG, extended, outer non-N 41287
5 N
6 75%, extended non-N 7803
7 N

Table 4.4.8: Number of patterns in pattern pools for outer

Pool index Source of patterns Normalized Number of patterns
0 80%, CpG, extended, outer non-N 2710
1 N
2 80%, outer non-N 235
3 N
4 75%, CpG, extended, outer non-N 41287
5 N
6 75%, outer non-N 8307
7 N
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Table 4.4.9: Classification results on CpG islands, selecting nine fea-
tures: (ANGGCHA, TDGCCNT), (BGSAA, TTSCV), (CCCBGTK, MACVGGG),
(AACCBBA, TVVGGTT), (AAGTVAV, BTBACTT), (AGMGTTR, YAACKCT),
(CAHGWTG, CAWCDTG), (CGCCCGCGC, GCGCGGGCG), (GTCGCDD,
HHGCGAC)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 46 6 0.8846 0.1154

methylation-resistent 12 95 0.1121 0.8879
Overall accuracy: 0.8868

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 16 1 0.9412 0.0588

methylation-resistent 5 31 0.1389 0.8611
Overall accuracy: 0.8868

We list some of the classification results of Step 5 in which the overall and group

accuracies in cross-validation training and blind prediction are greater than or equal

to 85%. Table 4.4.9 and 4.4.10 are for CpG islands, Table 4.4.11 and 4.4.12 are for

extended, and Table 4.4.13 and 4.4.14 are for outer.
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Table 4.4.10: Classification results on CpG islands, selecting ten features: (AG-
CYAGS, SCTRGCT), (CGGCGGASG, CSTCCGCCG), (AAGTMAV, BTKACTT),
(AHYTACC, GGTARDT), (TANGTNA, TNACNTA), (CAGAWTD, HAWTCTG),
(HCKGTGA, TCACMGD), (BATCSAA, TTSGATV), (CASWAGG, CCTWSTG),
(AKTDGAA, TTCHAMT)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 45 7 0.8654 0.1346

methylation-resistent 12 95 0.1121 0.8879
Overall accuracy: 0.8805

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 15 2 0.8824 0.1176

methylation-resistent 4 32 0.1111 0.8889
Overall accuracy: 0.8868

Table 4.4.11: Classification results on Extended, selecting ten features: (CAH-
TAGK, MCTADTG), (GVCTKTA, TAMAGBC), (AGGTDTV, BAHACCT),
(CAMTAGB, VCTAKTG), (CSCACCCCC, GGGGGTGSG), (ACGTAVM, KB-
TACGT), (ABTCCYA, TRGGAVT), (CGGHANA, TNTDCCG), (BAGGTKC,
GMACCTV), (BTACAGY, RCTGTAV)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 45 7 0.8654 0.1346

methylation-resistent 12 95 0.1121 0.8879
Overall accuracy: 0.8805

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 15 2 0.8824 0.1176

methylation-resistent 3 33 0.0833 0.9167
Overall accuracy: 0.9057
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Table 4.4.12: Classification results on Extended, selecting ten features:
(GGCABTD, HAVTGCC), (AVGGCWA, TWGCCBT), (DGCTGCAA,
TTGCAGCH), (ACACAGVG, CBCTGTGT), (CAMTAGB, VCTAKTG), (CSCAC-
CCCC, GGGGGTGSG), (AACTRRG, CYYAGTT), (CGGHAHA, TDTDCCG),
(GGCTGGAA, TTCCAGCC), (GGGAGAAA, TTTCTCCC)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 45 7 0.8654 0.1346

methylation-resistent 9 98 0.0841 0.9159
Overall accuracy: 0.8994

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 15 2 0.8824 0.1176

methylation-resistent 5 31 0.1389 0.8611
Overall accuracy: 0.8679

Table 4.4.13: Classification results on Outer, selecting ten features: (GAWSGAC,
GTCSWTC), (AVCTGGCC, GGCCAGBT), (CDGTYG, CRACHG), (RCCGANA,
TNTCGGY), (AGATNGS, SCNATCT), (AHGHTAG, CTADCDT), (CAHTAGK,
MCTADTG), (CTTWRAC, GTYWAAG), (CDAACCD, HGGTTHG), (KATC-
CAM, KTGGATM)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 46 6 0.8846 0.1154

methylation-resistent 16 91 0.1495 0.8505
Overall accuracy: 0.8616

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 16 1 0.9412 0.0588

methylation-resistent 5 31 0.1389 0.8611
Overall accuracy: 0.8868
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Table 4.4.14: Classification results on Outer, selecting ten features: (GAWSGAC,
GTCSWTC), (CDGTYG, CRACHG), (RCCGANA, TNTCGGY), (ATAMGCH,
DGCKTAT), (ATGMTAG, CTAKCAT), (AGATNGS, SCNATCT), (CAHTAGK,
MCTADTG), (CTTWRAC, GTYWAAG), (CDAACCD, HGGTTHG), (KATC-
CAM, KTGGATM)

Ten-fold cross-validation
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 46 6 0.8846 0.1154

methylation-resistent 11 96 0.1028 0.8972
Overall accuracy: 0.8931

Blind prediction
methylation methylation methylation methylation

-prone -resistent -prone -resistent
methylation-prone 15 2 0.8824 0.1176

methylation-resistent 5 31 0.1389 0.8611
Overall accuracy: 0.8679
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