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SUMMARY

The first part of the thesis, consists on a result in the area of commutators. The

classic result by Coifman, Rochberg and Weiss [16], establishes a relation between a

BMO function, and the commutator of such a function with the Hilbert transform.

More precisely, given a function b, if H denotes the Hilbert transform, then

‖b‖BMO ∼ ‖[b,H]‖L2→L2 .

This equivalence of norms, has been carried over to different contexts, for example,

multi-parameter theory, multilinear theory and Sobolev spaces. The result obtained

for this thesis, is in the two parameters setting (with obvious generalizations to more

than two parameters) in the case where the BMO function is matrix valued.

The second part of the thesis corresponds to domination of operators by using a

special class called sparse operators. These operators are positive and highly localized,

and therefore, allows for a very efficient way of proving weighted and unweighted

estimates.

There are three main results regarding sparse operators, present in this thesis:

The first one, a joint work with Michael Lacey, is a sparse version of the celebrated

T1 theorem of David and Journé. We impose standard T1-type assumptions on a

Calderón-Zygmund operator T , and deduce that for bounded compactly supported

functions f, g there is a sparse bilinear form Λ so that

|〈Tf, g〉| . Λ(f, g).

The proof is short and elementary. The sparse bound quickly implies all the standard

mapping properties of a Calderón-Zygmund on a (weighted) Lp space.

The second result, in collaboration with Robert Kesler, considers the discrete

vii



quadratic phase Hilbert Transform acting on `2(Z) finitely supported functions

Hαf(n) :=
∑
m 6=0

eiαm
2
f(n−m)

m
.

We prove that, uniformly in α ∈ T, there is a sparse bound for the bilinear form

〈Hαf, g〉. The sparse bound implies several mapping properties such as weighted

inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

The last result, jointly with Michael Lacey and Maŕıa Carmen Reguera, expands

the sparse domination to the Bochner-Riesz multipliers. We show that these operators

satisfy a range of sparse bounds, for all 0 < δ < n−1
2

. The range of sparse bounds

increases to the optimal range, as δ increases to the critical value, δ = n−1
2

, even

assuming only partial information on the Bochner-Riesz conjecture in dimensions

n ≥ 3. In dimension n = 2, we prove a sharp range of sparse bounds. The method of

proof is based upon a ‘single scale’ analysis, and yields the sharpest known weighted

estimates for the Bochner-Riesz multipliers in the category of Muckenhoupt weights.
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CHAPTER 1

CHARACTERIZATION OF TWO PARAMETER MATRIX-VALUED

BMO BY COMMUTATOR WITH THE HILBERT TRANSFORM

1.1 Introduction

It is well known, by the work of R. Coifman, R. Rochberg, and G. Weiss [16], that

the space of functions of bounded mean oscillation (BMO) can be characterized by

commutators with the Hilbert transform (and in general, with the Riesz transforms).

Given b ∈ BMO, let Mb represent the multiplication operator Mb(f) = bf , if H

represents the Hilbert transform, defined as

Hf(x) = p.v
1

π

∫
R

f(y)

x− y
dy,

then we have

‖b‖BMO . ‖[Mb, H]‖L2→L2 . ‖b‖BMO.

The study of the norm of the commutator has several implications in the charac-

terization of Hankel operators, the problem of factorization and weak factorization

of function spaces and the div-curl problem. Several extensions and generalizations

have been made in different settings. In the two parameter version of this result, the

upper bound was shown by S. Ferguson and C. Sadosky in [29], while the lower bound

was proved by S. Ferguson and M. Lacey in [28]. The formulation in this case is the

following: If Hi represents the Hilbert transform in the i-th variable, then

‖b‖BMO . ‖[[Mb, H1], H2]‖L2→L2 . ‖b‖BMO.
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Here, we are considering the product BMO of S.Y. Chang and R. Fefferman [14].

These results were later extended to the multi-parameter case by M. Lacey and E.

Terwilleger [52].

The idea of the present work, is to obtain the same characterization in the two

parameter case, for a matrix-valued BMO function. In the one parameter setting, we

have the desired characterization due to S. Petermichl [66], and also F. Nazarov, G.

Pisier, S. Treil and A. Volberg [62].

Consider the collection D of dyadic intervals, that is

D :=
{

[k2−j, (k + 1)2−j) : j, k ∈ Z
}
,

and the collection of “shifted” dyadic intervals

Dα,r =
{
α + r[k2j, (k + 1)2j) : k, j ∈ Z

}
, α, r ∈ R.

Define the dyadic Haar function as hI := 1√
|I|

(1I− − 1I+), where I− and I+ rep-

resent the left and right half of the interval I, respectively. Denote also h1
J = 1I√

|I|

(non-cancellative Haar function). The family {hI : I ∈ D } (or I ∈ Dα,r), is an or-

thonormal basis for L2(R;Cd); here, for two Banach spaces X and Y , we use the

notation Lp(X;Y ) to denote the set
{
f : X → Y :

∫
X
‖f‖pY <∞

}
.

Define the dyadic Haar shift by Xα,r(hI) = 1√
2
(hI−−hI+), and extend to a general

function f by

Xα,r(f) =
∑
I∈Dα,r

〈f, hI〉Xα,r(hI) =
∑
I∈Dα,r

〈f, hI〉
1√
2

(hI− − hI+).

Note that Xα,r is bounded from L2(R;Cd) to L2(R;Cd), with operator norm 1.

As proven by Petermichl in [66], the kernel for the Hilbert transform can be written

2



as an average of dyadic shifts, in particular

K(t, x) = lim
L→∞

1

2 logL

∫ L

1/L

lim
R→∞

1

2R

∫ R

−R
Kα,r(t, x) dα

dr

r
.

Where Kα,r(t, x) =
∑

I∈Dα,r hI(t)X
α,r(hI(x)). Therefore, it is enough to prove

the upper bound for the commutator with the shift [MB,X] (the estimates don’t

depend on α or r).

Let B be a function with values in the space of d × d matrices. We consider the

commutator [MB, H] acting on a vector-valued function f by

[MB, H]f = BH(f)−H(Bf).

The result obtained by Petermichl is based on a decomposition in paraproducts,

and uses the estimates obtained by Katz [39], and Nazarov, Treil and Volberg [63]

independently. We have

‖[MB, H]‖L2(R;Cd)→L2(R;Cd) . log(1 + d)‖B‖.

Motivated by this result, we wish to find a generalization in a two parameter

setting, with the corresponding definition of the product BMO space (analogous to

the one given by Chang and Fefferman in [14]). The main result of the paper can be

stated as follows.

Theorem 1.1.1. Let B be a d×d matrix-valued BMO function on R2. If MB denotes

the operator “multiplication by B”, and Hi represents the Hilbert transform in the i-

th parameter, for i = 1, 2, then the norm of the iterated commutator [[MB, H1], H2]

satisfies

d−2‖B‖BMO . ‖[[MB, H1], H2]‖L2(R2,Cd)→L2(R2,Cd) . d3‖B‖BMO.

3



The paper is organized as follows. Section 2, contains the proof of the upper bound

for the norm of the commutator, using a decomposition in paraproducts. Section 3

contains the proof of the lower bound, that relies on the proof for the scalar case by

S. Ferguson and M. Lacey in [28]. Throughout the paper, we use the notation A . B

to indicate that there is a positive constant C, such that A ≤ CB.

1.2 Upper bound

Consider R = D×D, the class of rectangles consisting on products of dyadic intervals.

Given a subset E of R2, denote by R(E) the family of dyadic rectangles contained in

E.

Consider the wavelet wI constructed by Meyer in [57], and the two-parameters

wavelet vR(x, y) = wI(x)wJ(y) for R = I × J , with all its properties listed in [28].

We start by giving the definitions of product BMO and product dyadic BMO.

Definition 1.2.1 (BMO). A function B is in BMO(R2) if and only if there are

constants C1 and C2 such that, for any open set U ⊆ R2 we have

1.

 1

|U |
∑

R∈R(U)

〈B, vR〉 〈B, vR〉∗
1/2

≤ C1Id

2.

 1

|U |
∑

R∈R(U)

〈B, vR〉∗ 〈B, vR〉

1/2

≤ C2Id.

The inequalities are considered in the sense of operators, Id is the identity d×d matrix.

The BMO-norm is defined as the smallest constant, denoted by ‖B‖BMO, for which

the two inequalities are satisfied simultaneously. If we take the supremum only over

rectangles U , we obtain the rectangular BMO-norm, denoted by ‖B‖BMOrec .

If hI represents the Haar function associated to a dyadic interval I, define

hR(x, y) = hI(x)hJ(y), for R = I × J.

4



That is hR = hI ⊗ hJ . The family {hR}R∈R is an orthonormal basis for L2(R2,Cd).

We have the following definition of dyadic BMO. Note that it is the same definition,

but considering the Haar wavelet instead of the Meyer wavelet.

Definition 1.2.2 (Dyadic BMO). A matrix-valued function B is in BMOd(R2)

(dyadic BMO) if and only if, there are constants C1 and C2 such that for any open

subset U of the plane, we have

1.

 1

|U |
∑

R∈R(U)

〈B, hR〉 〈B, hR〉∗
1/2

≤ C1Id

2.

 1

|U |
∑

R∈R(U)

〈B, hR〉∗ 〈B, hR〉

1/2

≤ C2Id.

Where the inequality is in the sense of operators. And the corresponding norm

‖B‖BMOd is, again, the best constant for the two inequalities.

It is known that ‖B‖BMOd ≤ ‖B‖BMO; this fact can be found in [76]. In that

paper, the proof of the inequality is given in the multi-parameter setting, for Hilbert

space-valued functions, by means of the dual inequality ‖f‖H1 ≤ ‖f‖H1
d

(Estimate 2.3

in [76]). The duality in the dyadic case is discussed later, in the proof of Proposition

1.2.4. Using this fact, for the proof of the upper bound, it’s enough to consider the

dyadic version of BMO for the computations. For the rest of this section, we use

B̂(R) to denote the Haar coefficient of the function B, associated to the function hR,

that is

f̂(R) = 〈f, hR〉 =

∫
R2

f(x, y)hR(x, y) dx dy.

Since B̂(R)B̂(R)∗ is a positive semi-definite matrix, we have

√
1

|U |
∑

R∈R(U)

‖B̂(R)‖2 '

√√√√√Tr

 1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗



5



≤ Tr

√
1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗.

So, if we consider the two inequalities

√
1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗ ≤ CId,

√
1

|U |
∑

R∈R(U)

B̂(R)∗B̂(R) ≤ CId,

taking the trace on both sides, we get

√
1

|U |
∑

R∈R(U)

‖B̂(R)‖2 ≤ Cd. (1.2.1)

The initial computations are similar to the ones found in [24]. In this, we need

simplified versions, since we are dealing only with the biparameter Hilbert transform;

differences will arise when we deal with the various paraproducts that result from this

process, due to the BMO symbol being a matrix (which implies losing commutativity

and requiring the use of matrix norms). Similar computations are used in [49], and

this ideas can also be implemented in our case. Although we can use some equivalent

results from [60,61] to deal with the boundedness of the paraproducts, the ones arising

from our computations can be given self contained proofs of their boundedness.

The dyadic shift operator X(f) =
∑

I∈D f̂(I) 1√
2
(hI− − hI+) corresponds to the

operator S1,0 described by Dalenc and Ou in [24], given by

S1,0f =
∑
K∈D

(0)∑
I⊆K

(1)∑
J⊆K

aIJK〈f, hI〉hJ , aIJK =


1√
2
, if J = K−,

− 1√
2
, if J = K+.

Here, the symbol
∑(k)

I⊆J represents summing over those dyadic intervals I such that

I ⊆ J , and |I| = 2−k|J |. Let Ĩ represent the parent of the dyadic interval I, that is,

the unique dyadic interval containing I with |Ĩ| = 2|I|, then, the shift can also be

6



expressed in a simpler way by

X(f) =
∑
I∈D

aI f̂(Ĩ)hI , (1.2.2)

where aI = 1√
2

if I = Ĩ−, and − 1√
2

if I = Ĩ+.

If we write B =
∑

I∈D B̂(I)hI , and f =
∑

J∈D f̂(J)hJ , then we can write

Bf =
∑
I

∑
J

B̂(I)hI f̂(J)hJ .

Therefore the commutator

[MB,X](f) = MBX(f)−X(MBf) = BX(f)−X(Bf),

can be written as

[MB,X](f) =
∑
I,J

B̂(I)f̂(J)hIX(hJ)−
∑
I,J

B̂(I)f̂(J)X(hIhJ)

=
∑
I,J

B̂(I)f̂(J)[MhI ,X](hJ).

Note that the terms are non-zero, only when I ∩ J 6= ∅, also, if J ( I, we have

that hI is constant in I ∩ J , therefore, for every x ∈ I ∩ J , we have

[MhI ,X](hJ) = hI(x)X(hJ(x))−X(hI(x)hJ(x))

= hI(x)X(hJ(x))− hI(x)X(hJ(x)) = 0.

Then, the only non-trivial terms are those for which I ⊂ J .

We consider the two parameter commutator [[MB, H1], H2] acting on a vector-

7



valued function f by

[[MB, H1], H2]f =BH1(H2(f))−H1(B(H2(f)))

−H2(BH1(f)) +H2(H1(Bf)).

Where H1 and H2 represent the Hilbert transform, on the first and second variable

respectively. That is,

H1f(x, y) = p.v
1

π

∫
R

f(z, y)

x− z
dz, H2f(x, y) = p.v

1

π

∫
R

f(x, z)

y − z
dz.

The main result we want to prove in this section is the following

Theorem 1.2.3. Let B be a matrix-valued BMOd(R2) function and f in L2(R2;Cd),

then

‖[[MB, H1], H2]‖L2(R2;Cd)→L2(R2;Cd) . ‖B‖BMOd .

Proof: Let X1 and X2 represent the dyadic shift operator in the first and second

variable respectively, that is, X1(hR) = X(hI) ⊗ hJ , and X2(hR) = hI ⊗X(hJ),

for R = I × J , and extending to a function f by

Xj(f) =
∑
R∈R

f̂(R)Xj(hR), j = 1, 2.

Or in the notation of (1.2.2),

X1(f) =
∑
I,J∈D

aI f̂(Ĩ × J)hI ⊗ hJ , X2(f) =
∑
I,J∈D

aJ f̂(I × J̃)hI ⊗ hJ .

Again, due to the representation of H as an average of shifts, it is enough to prove

the result for the commutator [[MB,X1] ,X2]. By an iteration of the computation

for the one parameter case, using the Haar expansion of the functions B and f and

8



taking their formal product, we obtain that [MB,X1] (f) is equal to

∑
R,S∈R

B̂(R)f̂(S) (hRX1(hS)−X1(hRhS))

=
∑
R,S∈R

B̂(R)f̂(S) [MhR ,X1] (hS)

=
∑

I,J,K,L∈D

B̂(I × J)f̂(K × L) (hIX1hK −X1(hIhK))⊗ hJhL.

Repeating the same computations, we get that the two parameters commutator

[[MB,X1] ,X2] (f) is equal to

∑
I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)hIX1hK ⊗ hJX2hL

−
∑
I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)X1(hIhK)⊗ hJX2hL

−
∑
I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)hIX1hK ⊗X2(hJhL)

+
∑
I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)X1(hIhK)⊗X2(hJhL)

=T1f − T2f − T3f + T4f

=
∑
I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L) [MhI ,X1] (hK)⊗ [MhJ ,X2] (hL).

If either I ∩K = ∅, J ∩L = ∅, K ( I or L ( J , then we have that [MhI ,X1] (hK)⊗

[MhJ ,X2] (hL) = 0; therefore, the terms are non-trivial only when I ⊆ K and J ⊆ L.

We have four different cases, that can be analyzed independently for each term in

the sum. The computations for the four terms are similar, only the complete details

for the term T2 will be provided, and at the end of the proof of the proposition we

mention briefly how to deal with the other cases. Let T̃j represent Tj restricted to

9



the case I ⊆ K and J ⊆ L, then we have.

T̃2f = X1

(∑
K

∑
L

∑
I⊆K

∑
J⊆L

B̂(I × J)f̂(K × L)hIhK ⊗ hJX2hL

)
.

To analyze each of the four cases, we need the following proposition.

Proposition 1.2.4. Consider the following paraproducts

(i) P 1
B(f) =

∑
I,J∈D

±B̂(I × J̃) 〈f, hI ⊗ hJ〉h1
I ⊗ hJ |I|−1/2|J̃ |−1/2.

(ii) P 2
B(f) =

∑
I,J

±B̂(I × J̃)
〈
f, h1

I ⊗ hJ̃
〉
hI ⊗ hJ |I|−1/2|J̃ |−1/2.

(iii) P 3
B(f) =

∑
I,J∈D

B̂(I × J)
〈
f, h1

I ⊗ h1
J

〉
hI ⊗ hJ |I|−1/2|J |−1/2.

(iv) P 4
B(f) =

∑
I,J∈D

B̂(I × J)
〈
f, hI ⊗ h1

J

〉
h1
I ⊗ hJ |I|−1/2|J |−1/2.

(v) P 5
B(f) =

∑
I,J∈D

B̂(I × J)
〈
f, h1

I ⊗ hJ
〉
hI ⊗ h1

J |I|−1/2|J |−1/2.

We have that for i = 1, 2, 3, 4,

‖P i
B(f)‖L2(R2;Cd) . d‖B‖BMOd‖f‖L2(R2;Cd).

Proof of proposition: In the following computations, for simplification we will

write L2(Y ) = L2(R2;Y ), since all the functions that we consider are defined on R2.

(i) We make use of a well known result, which is discussed in [13] for the bidisc

case, but it is easily extended to the plane.

Theorem 1.2.5 (Carleson Embedding Theorem). Let {aR}R∈R be a sequence of non-

negative numbers, indexed by the grid of dyadic rectangles. Then the following are

equivalent:

(i)
∑

R∈R aR〈f〉2R ≤ C1 ‖f‖2
L2, for all f ∈ L2.
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(ii) 1
|U |
∑

R∈R(U) aR ≤ C2, for all connected open sets U ⊆ R2.

Moreover, C1 ' C2.

We have the following basic estimates

∣∣〈P 1
Bf, g

〉
L2

∣∣ =

∣∣∣∣∫
R2

〈
P 1
Bf, g

〉
Cd dx dy

∣∣∣∣
=

∣∣∣∣∣∣
∫
R2

〈∑
I,J

±B̂(I × J (1))f̂(I × J)1I |I|−1 ⊗ hJ |J̃ |−1/2, g

〉
Cd

dx dy

∣∣∣∣∣∣
=

∣∣∣∣∣
∫
R2

∑
I,J

〈
±B̂(I × J (1))f̂(I × J), g1I |I|−1 ⊗ hJ |J̃ |−1/2

〉
Cd
dx dy

∣∣∣∣∣
=

∣∣∣∣∣∑
I,J

∫
R2

〈
±B̂(I × J (1))f̂(I × J), g1I |I|−1 ⊗ hJ |J̃ |−1/2

〉
Cd
dx dy

∣∣∣∣∣
=

∣∣∣∣∣∑
I,J

〈
±B̂(I × J (1))f̂(I × J),

∫
R2

1√
2
g1I |I|−1 ⊗ hJ |J |−1/2 dx dy

〉
Cd

∣∣∣∣∣
=

1√
2

∣∣∣∣∣∑
I,J

〈
±B̂(I × J (1))f̂(I × J),

〈
g,1I |I|−1 ⊗ hJ |J |−1/2

〉〉
Cd

∣∣∣∣∣
≤ 1√

2

∑
I,J

∣∣∣〈±B̂(I × J (1))f̂(I × J),
〈
g,1I |I|−1 ⊗ hJ |J |−1/2

〉〉
Cd

∣∣∣
≤ 1√

2

∑
I,J

∥∥∥B̂(I × J (1))
∥∥∥∥∥∥f̂(I × J)

∥∥∥
Cd

∥∥〈g,1I |I|−1 ⊗ hJ |J |−1/2
〉∥∥

Cd

≤ 1√
2

∑
I,J

∥∥∥f̂(I × J)
∥∥∥
Cd

∥∥∥B̂(I × J (1))
∥∥∥ 〈‖g‖Cd〉I×J

≤ 1√
2

(∑
I,J

∥∥∥f̂(I × J)
∥∥∥2

Cd

) 1
2
(∑

I

∑
J

∥∥∥B̂(I × J (1))
∥∥∥2

〈‖g‖Cd〉
2
I×J

) 1
2

≤ 1√
2
‖f‖L2(Cd)

(∑
I,J

∥∥∥B̂(I × J (1))
∥∥∥2

〈‖g‖Cd〉
2
I×J

) 1
2

.‖f‖L2(Cd)d‖B‖BMOd‖‖g‖Cd‖L2(R) = d‖B‖BMOd‖f‖L2(Cd)‖g‖L2(Cd).

Here, we used the fact that since B ∈ BMOd, then by (1.2.1), the second condition in
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Theorem 1.2.5 is satisfied with aR =
∥∥∥b̂(R)

∥∥∥2

. Note, that we have a linear dependence

on the dimension of the matrix, due to the use of the trace. Note also that the same

computations allow us to replace each individual I and J for a parent or “great parent”

of I and J , in which case, the implied constant will depend also on complexity (level of

relation with its ancestor); we will use P 1
B to denote any of these kind of paraproducts.

(ii) A direct computation shows that (P 2
B)∗ is of the type P 1

B∗ , therefore, by the

symmetry of the definition of BMOd-norm, the boundedness for P 2
B follows from that

of P 1
B.

(iii) Denote by Sd2 the space of d× d complex matrices, equipped with the norm

derived from the inner product 〈A,B〉Tr = tr(AB∗), that is ‖A‖2
Sd2

= tr(AA∗). To

estimate the L2-norm of this operator, we compute 〈P 3
B(f), g〉.

=

∫
R2

〈∑
I,J

B̂(I × J)
〈
f, h1

I ⊗ h1
J

〉 hI ⊗ hJ
|I| 12 |J | 12

, g

〉
Cd

dx dy

=
∑
I,J

∫
R2

〈
B̂(I × J)

〈
f, h1

I ⊗ h1
J

〉
, g
hI ⊗ hJ
|I| 12 |J | 12

〉
Cd
dx dy

=
∑
I,J

〈
B̂(I × J)

〈
f, h1

I ⊗ h1
J

〉
, 〈g, hI ⊗ hJ〉

1

|I| 12 |J | 12

〉
Cd

=
∑
I,J

〈
B̂(I × J), 〈g, hI ⊗ hJ〉

〈
f, h1

I ⊗ h1
J

〉∗ 1

|I| 12 |J | 12

〉
Tr

=
∑
I,J

∫
R2

〈
BhI ⊗ hJ , 〈g, hI ⊗ hJ〉

〈
f, h1

I ⊗ h1
J

〉∗ 1

|I| 12 |J | 12

〉
Tr

dx dy

=

∫
R2

〈
B,
∑
I,J

〈g, hI ⊗ hJ〉
〈
f, h1

I ⊗ h1
J

〉∗ hI ⊗ hJ
|I| 12 |J | 12

〉
Tr

dx dy

=

〈
B,
∑
I,J

〈g, hI ⊗ hJ〉
〈
f, h1

I ⊗ h1
J

〉∗ hI ⊗ hJ
|I| 12 |J | 12

〉
L2(Sd2 )

= 〈B,Π1(f, g)〉 .

Define the space H1
d to be the space of d× d matrix-valued functions Φ such that
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‖Φ‖H1
d

= ‖SΦ‖L1 , where S is the square function defined by

S2Φ(x, y) :=
∑
I∈D

∑
J∈D

‖ 〈Φ, hI ⊗ hJ〉 ‖2
Sd2

1I(x)

|I|
1J(y)

|J |
.

Note that if Φ is inH1
d , then all of its components are in scalarH1, and for 1 ≤ i, j ≤ d,

we have ‖Φi,j‖H1 ≤ ‖Φ‖H1
d
. Also, if B is a matrix-valued BMOd function, then all

of its components are in scalar dyadic BMO, and an easy computation shows that

for 1 ≤ i, j ≤ d, ‖Bi,j‖BMO ≤ d‖B‖BMOd . Using these facts, we can easily verify the

following duality statement:

Lemma 1.2.6 (BMOd −H1
d duality). Let B in BMOd and Φ in H1

d , then

〈B,Φ〉L2(Sd2 ) . d3‖B‖BMOd‖Φ‖H1
d
.

Using this result, it is enough to prove that

‖Π1(f, g)‖H1
d
' ‖S(Π1(f, g))‖L1 . ‖f‖L2‖g‖L2 .

We compute [S(Π1(f, g))(x, y)]2 to get

=
∑
I,J

∥∥〈g, hI ⊗ hJ〉 〈f, h1
I ⊗ h1

J

〉∗ |I|−1/2|J |−1/2
∥∥2

Sd2

1I(x)1J(y)

|I||J |

=
∑
I,J

‖〈g, hI ⊗ hJ〉‖2
Cd

∥∥∥∥∥
〈
f,
hI ⊗ hJ
|I| 12 |J | 12

〉∥∥∥∥∥
2

Cd

1I×J(x, y)

|I × J |

≤ sup
(x,y)∈I×J

∥∥∥∥∥
〈
f,
hI ⊗ hJ
|I| 12 |J | 12

〉∥∥∥∥∥
2

Cd

∑
I,J

‖〈g, hI ⊗ hJ〉‖2
Cd
1I×J(x, y)

|I × J |

≤ sup
(x,y)∈I×J

〈
‖f‖Cd ,

hI ⊗ hJ
|I| 12 |J | 12

〉2∑
I,J

‖〈g, hI ⊗ hJ〉‖2
Cd
1I×J(x, y)

|I × J |

≤ [M(‖f‖Cd)(x, y)]2 [S(g)(x, y)]2.
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Here, M represents the strong maximal function. Using the L2-boundedness of the

maximal and square functions, we conclude

‖Π1(f, g)‖H1
d
. ‖S(Π1(f, g))‖L1 . ‖M(‖f‖Cd)S(g)‖L1 . ‖f‖L2‖g‖L2 .

(iv) As in the previous case, we compute 〈P 4
B(f), g〉

=

∫
R2

〈∑
I,J

B̂(I × J)
〈
f, hI ⊗ h1

J

〉 h1
I ⊗ hJ
|I| 12 |J | 12

, g

〉
Cd

dx dy

=
∑
I,J

∫
R2

〈
B̂(I × J)

〈
f, hI ⊗ h1

J

〉
, g
h1
I ⊗ hJ
|I| 12 |J | 12

〉
Cd
dx dy

=
∑
I,J

〈
B̂(I × J)

〈
f, hI ⊗ h1

J

〉
,
〈
g, h1

I ⊗ hJ
〉 1

|I| 12 |J | 12

〉
Cd

=
∑
I,J

〈
B̂(I × J),

〈
g, h1

I ⊗ hJ
〉 〈
f, hI ⊗ h1

J

〉∗ 1

|I| 12 |J | 12

〉
Tr

=
∑
I,J

∫
R2

〈
BhI ⊗ hJ ,

〈
g, h1

I ⊗ hJ
〉 〈
f, hI ⊗ h1

J

〉∗ 1

|I| 12 |J | 12

〉
Tr

dx dy

=

∫
R2

〈
B,
∑
I,J

〈
g, h1

I ⊗ hJ
〉 〈
f, hI ⊗ h1

J

〉∗ hI ⊗ hJ
|I| 12 |J | 12

〉
Tr

dx dy

=

〈
B,
∑
I,J

〈
g, h1

I ⊗ hJ
〉 〈
f, hI ⊗ h1

J

〉∗ hI ⊗ hJ
|I| 12 |J | 12

〉
L2(Sd2 )

= 〈B,Π2(f, g)〉 .

Therefore, by duality, it is enough to prove that

‖Π2(f, g)‖H1
d
. ‖f‖L2‖g‖L2 .

For this, we proceed again to find a pointwise estimate for the square function.
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We compute [S(Π2(f, g))]2

=
∑
I,J

∥∥∥∥∥〈g, h1
I ⊗ hJ

〉 〈
f, hI ⊗ h1

J

〉∗ 1

|I| 12 |J | 12

∥∥∥∥∥
2

Sd2

1I×J

|I × J |

=
∑
I,J

‖〈〈g, hJ〉〉I‖
2
Cd

1J

|J |
‖〈〈f, hI〉〉J‖

2
Cd

1I

|I|

≤
∑
I,J

〈‖〈g, hJ〉‖Cd〉
2
I

1J

|J |
〈‖〈f, hI〉‖Cd〉

2
J

1I

|I|

≤

(∑
I

(M2 ‖〈f, hI〉‖Cd)
2 1I

|I|

)(∑
J

(M1 ‖〈g, hJ〉‖Cd)
2 1J

|J |

)
.

Where M1 and M2 represent the maximal function in the first and second variable,

respectively. These last two factors are symmetric to each other, so it is enough to

prove the L2-boundedness for the operator

S̃f(x, y) =

(∑
I

(M2 ‖〈f, hI〉‖Cd (y))2 1I(x)

|I|

)1/2

.

But this is easy, since

∫
R2

(S̃f(x, y))2 dx dy =
∑
I

∫
R

(M2 ‖〈f, hI〉‖Cd (y))2 dy

.
∑
I

∫
R
‖〈f(·, y), hI(·)〉‖2

Cd dy = ‖f‖2
L2 .

(v) The computations are symmetric to those for (iv), exchanging the roles of I

and J . �

We proceed now to prove the upper bound for the four different cases. In each of

them, the idea is to reduce the term to an expression of the form X1◦P i
B ◦X2, there-

fore, by Proposition 1.2.4 and the boundedness of the shifts, we get the desired result.

The estimates for the rest of the terms are similar, since they are reduced to find an

upper bound for the norm of the four variants of paraproduct studied above. More
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specifically, they correspond to expressions of the form Xi(PB(Xjf)), Xi(Xj(PBf))

and Xi(Xj(PBf)), Xi(PBf), or duals of operators of the form Xi(PB∗(Xjf)),

Xi(Xj(PB∗f)), Xi(Xj(PB∗f)) and Xi(PB∗f).

Case I = K, J = L. In this case, using the definition of the shift, we have

X1

(∑
I

∑
J

B̂(I × J)f̂(I × J)h2
IhJX2hJ

)

=X1

(∑
I

∑
J

B̂(I × J̃)f̂(I × J̃)h2
I ⊗ hJ̃aJhJ

)
.

Since X2 〈f, hI〉 =
∑

L aLf̂(I × L(1))hL, then, 〈X2 〈f, hI〉 , hJ〉 = aJ f̂(I × J (1)).

So, the previous expression is equal to

X1

(∑
I

∑
J

B̂(I × J̃) 〈X2 〈f, hI〉 , hJ〉h2
I ⊗ hJ̃hJ

)

=X1

(∑
I

∑
J

±B̂(I × J̃) 〈X2 〈f, hI〉 , hJ〉1I |I|−1 ⊗ hJ |J̃ |−1/2

)

=X1

(∑
I

∑
J

±B̂(I × J̃) 〈X2f, hI ⊗ hJ〉h1
I ⊗ hJ |I|−1/2|J̃ |−1/2

)
.

X1(P 1
B(X2f).

Case I ( K,J ( L. Here we have

X1

(∑
K

∑
I(K

∑
L

∑
J(L

B̂(I × J)f̂(K × L)hIhK ⊗ hJX2hL

)

=X1

(∑
J,K

∑
I(K

B̂(I × J)hIhK ⊗

(∑
L)J

〈〈f, hK〉 , hL〉X2hL1J

)
hJ

)
.

By using the definition of the shift, and the known average identity
〈
f, h1

J

〉
|J |−1/2 =
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∑
I)J

f̂(I)hI1J , we have

∑
L)J

〈〈f, hK〉 , hL〉X2hL1J = X2

(∑
L)J

〈〈f, hK〉 , hL〉hL

)
1J

=
∑
L⊇J

aL 〈〈f, hK〉 , hL̃〉hL1J

= aJ 〈〈f, hK〉 , hJ̃〉hJ +
∑
L)J

aL 〈〈f, hK〉 , hL̃〉hL1J

=
〈
X2 〈f, hK〉 , h1

J

〉
|J |−1/2

1J + 〈X2 〈f, hK〉 , hJ〉hJ .

This divides the original sum into two sums S1 + S2. The first one, S1, is equal to

X1

(∑
K

∑
I(K

∑
J

B̂(I × J)
〈
X2 〈f, hK〉 , h1

J

〉
hIhK ⊗

hJ

|J | 12

)

=X1

(∑
I

∑
J

B̂(I × J)

(∑
K)I

〈〈
X2f, h

1
J

〉
, hK

〉
hK1I

)
hI ⊗

hJ

|J | 12

)

=X1

(∑
I

∑
J

B̂(I × J)
〈〈
X2f, h

1
J

〉
, h1

I

〉 hI ⊗ hJ
|I| 12 |J | 12

)

=X1

(∑
I

∑
J

B̂(I × J)
〈
X2f, h

1
I ⊗ h1

J

〉 hI ⊗ hJ
|I| 12 |J | 12

)
.

Which has the form X1(P 3
B(X2f)). And with similar computations, we get

S2 = X1

(∑
I

∑
J

B̂(I × J)
〈
X2f, h

1
I ⊗ hJ

〉
hI ⊗ h1

J |I|−1/2|J |−1/2

)

= X1(P 5
B(X2f)).

Case I = K,J ( L. In this case we get

X1

(∑
I

∑
L

∑
J(L

B̂(I × J)f̂(I × L)h2
I ⊗ hJX2hL

)
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= X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗

(∑
L)J

〈〈f, hI〉 , hL〉X2hL1J

)
hJ

)

= X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗

〈
X2 〈f, hI〉 , h1

J

〉
hJ |J |−1/2

)

+ X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗ 〈X2 〈f, hI〉 , hJ〉hJ

)

= S1 + S2.

Again, by the definition of the shift

S1 = X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗

〈
X2 〈f, hI〉 ,1J |J |−1

〉
hJ

)

= X1

(∑
I

∑
J

B̂(I × J)
〈
X2f, hI ⊗ 1J |J |−1

〉
1I |I|−1 ⊗ hJ

)

= X1

(∑
I

∑
J

B̂(I × J)
〈
X2f, hI ⊗ h1

J

〉
h1
I ⊗ hJ |I|−1/2|J |−1/2

)
.

Which has the form X1(P 4
B(X2f)). And similarly

S2 = X1

(∑
I

∑
J

B̂(I × J) 〈X2f, hI ⊗ hJ〉h1
I ⊗ h1

J |I|−1/2|J |−1/2

)

= X1((P 3
B∗)
∗(X2f)).

Case I ( K,J = L. last case we have

X1

(∑
K

∑
J

∑
I(K

B̂(I × J)f̂(K × J)hIhK ⊗ hJX2hJ

)

X1

(∑
I

∑
J

B̂(I × J)

(∑
K)I

〈〈f, hJ〉 , hK〉hK1I

)
hI ⊗ hJX2hJ

)

X1

(∑
I

∑
J

B̂(I × J)
〈
〈f, hJ〉 , h1

I

〉
hI |I|−1/2 ⊗ (hJ− − hJ+)|J |−1/2

)
.
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This is a sum of two terms of the form

X1

(∑
I

∑
J

±B̂(I × J̃)
〈
f, h1

I ⊗ hJ̃
〉 hI ⊗ hJ
|I| 12 |J̃ | 12

)
= X1(P 2

B(f)).

This concludes the proof of the estimate for the term T̃2.

1.2.1 Remark: Logarithmic estimate

Note that, because of (1.2.1), the previous estimates for the upper bound depend on

a dimensional constant. Using a slightly different ordering of the terms in the formal

Haar expansion of the product Bf , we obtain a decomposition in paraproducts of the

form

∑
R∈D2

〈
B, h

(0,0)
R

〉〈
f, h

(0,0)
R

〉
h

(1,1)
R +

∑
R∈D2

〈
B, h

(0,0)
R

〉〈
f, h

(0,1)
R

〉
h

(1,0)
R

+
∑
R∈D2

〈
B, h

(0,1)
R

〉〈
f, h

(0,0)
R

〉
h

(1,0)
R +

∑
R∈D2

〈
B, h

(1,0)
R

〉〈
f, h

(0,0)
R

〉
h

(0,1)
R

+
∑
R∈D2

〈
B, h

(1,0)
R

〉〈
f, h

(0,1)
R

〉
h

(0,0)
R +

∑
R∈D2

〈
B, h

(1,1)
R

〉〈
f, h

(0,0)
R

〉
h

(0,0)
R

+
∑
R∈D2

〈
B, h

(0,0)
R

〉〈
f, h

(1,0)
R

〉
h

(0,1)
R +

∑
R∈D2

〈
B, h

(0,0)
R

〉〈
f, h

(1,1)
R

〉
h

(0,0)
R

+
∑
R∈D2

〈
B, h

(0,1)
R

〉〈
f, h

(1,0)
R

〉
h

(0,0)
R

= (T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9)(f).

Here, h
(ε,δ)
R = hεIh

δ
J , with ε, δ ∈ {0, 1}, and h0

I = hI , h
1
I = |I|−1/2

1I . Then,

[[MB,X1] ,X2] (f) = [[T1,X1] ,X2] (f) + · · · [[T9,X1] ,X2] (f).

Therefore, to find an upper bound for the commutator, it suffices to find upper bounds

for the different paraproducts in the above expansion. By the previous section, this
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upper bound depends also on a dimensional constant, however, it is possible for the

terms T1, T6, and T8 (by duality), to find a better estimate of order log2(1 + d). This

is possible due to a generalization of the results obtained by Pisier in [69] for the one

parameter case, combined with the characterization by two index martingales given

by Bernard in [4].

With the rest of the terms, it’s still not clear how to find this improved dimen-

sional bound for the paraproduct, since we don’t have a representation in two-index

martingales in these cases, or the appropriate embedding theorem.

1.3 Lower bound

The lower bound can be proved by using the result in the scalar case (proved by

Ferguson and Lacey in [28]). That, is, there is a constant C > 0 such that

‖b‖BMO ≤ C‖[[Mb, H1], H2]‖L2→L2 ,

for all scalar functions b in BMO(R2). Let us recall the definition of BMO given in

1.2.1. The lower bound estimate in the matrix-valued setting is the following

Theorem 1.3.1 (Lower bound). Let B be a matrix-valued function on R2, then

d−2‖B‖BMO . ‖[[MB, H1], H2]‖L2(Cd)→L2(Cd) .

Proof: Denote by B̂(R) the wavelet coefficient 〈B, vR〉. Consider the functions

f, g ∈ L2(C). Let {~e 1, . . . ,~e d} represent the canonical basis of Rd, then, for 1 ≤

i, j ≤ d, the functions f̃ = f~e i and g̃ = g~e j both belong to L2(Cd). If B = (bij), an

easy computation shows that

〈
[[MB, H1], H2]f̃ , g̃

〉
L2(Cd)

=
〈
[[Mbji , H1], H2]f, g

〉
L2(C)
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Therefore, for every i, j ∈ {1, . . . , d}, we have

‖[[Mbji , H1], H2]‖L2(C)→L2(C) ≤ ‖[[MB, H1], H2]‖L2(Cd)→L2(Cd). (1.3.2)

Let {Eij : 1 ≤ i, j ≤ d} be the canonical basis for the d × d matrices, that is,

(Eij)kl = δikδjl. We can write B =
∑

i,j bijEij, and proceed to find an estimate for

the BMO norm of the matrices B̃ij = bijEij.

Note that ̂̃Bij(R) ̂̃Bij(R)∗ = ̂̃Bij(R)∗ ̂̃Bij(R) = b̂ij(R)Eij b̂ij(R)Eji = |̂bij(R)|2Eii.

Then, for any open set U ⊆ R2, we have

1

|U |
∑
R⊆U

̂̃Bij(R) ̂̃Bij(R)∗ =
1

|U |
∑
R⊆U

|̂bij(R)|2Eii

≤ 1

|U |
∑
R⊆U

|̂bij(R)|2Id ≤ ‖bij‖BMOId.

Using the one parameter result, and equation 1.3.2, we get

1

|U |
∑
R⊆U

̂̃Bij(R) ̂̃Bij(R)∗ . ‖[[Mbji , H1], H2]‖L2(C)→L2(C)Id

≤ ‖[[MB, H1], H2]‖L2(Cd)→L2(Cd).

That is, ‖B̃ij‖BMO . ‖[[MB, H1], H2]‖L2(Cd)→L2(Cd). Therefore,

‖B‖BMO ≤
∑
i,j

‖B̃ij‖BMO . d2‖[[MB, H1], H2]‖L2(Cd)→L2(Cd).

Which is the desired lower bound. �
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CHAPTER 2

INTRODUCTION TO THE SPARSE THEORY

2.1 Definitions and basic concepts

Definition 2.1.1. Let 0 < c < 1, a collection of cubes S (usually taken to be dyadic)

is said to be c-sparse (or just sparse, when the particular value of c is not relevant),

if for every cube S ∈ S there is a subset ES ⊆ S such that:

1. |ES| > c|S| for every S ∈ S.

2.
∥∥∑

S∈S 1ES
∥∥
∞ < c−1.

Here, |S| represents the Lebesgue measure of S. The second condition is often

made stronger by requiring that the sets ES are pairwise disjoint instead.

An equivalent formulation of a sparse collection, and the way in which most of the

times this collections are constructed, is the following: For a cube S ∈ S, let ChS(S)

to be the collection of maximal cubes in S that are strictly contained in S. For a

fixed 0 < c < 1, a collection S is said to be c-sparse if for every cube S ∈ S we have

∑
P∈ChS

|P | ≤ c|S|. (2.1.2)

Note that if for every cube S in S we consider the set ES = S\
⋃
P∈ChS(S) P , the

collection S satisfies the conditions of Definition 2.1.1.

Definition 2.1.3. A sparse operator, is an operator of the form

ΛSf(x) =
∑
S∈S

〈f〉S 1S(x) (2.1.4)
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Where S is a sparse collection, and 〈f〉S represents the average of |f | over S, that is

〈f〉S = |S|−1
∫
S
|f(x)| dx.

Related to the sparse operators, we also consider the following bilinear forms:

Definition 2.1.5. Let S be a sparse collection, and r, s ≥ 1 real numbers, we define

the sparse (r, s) form by

ΛS,r,s(f, g) =
∑
S∈S

〈f〉S,r 〈g〉S,s |S| (2.1.6)

Here, 〈f〉S,r = 〈|f |r〉)1/r
S . We say than an operator T is in Sparse(r, s) if there is a

sparse form ΛS,r,s such that for every f, g compactly supported, we have

〈Tf, g〉 . ΛS,r,s(f, g).

In a further chapter, this will be stated in terms of a sparse norm.

2.2 Boundedness of the sparse operators

By using a Calderón-Zygmund decomposition of the function f , it is straightforward

to prove that a sparse operator 2.1.4 satisfies a weak 1-1 inequality. These operators

are also (strongly) bounded on Lp, for p > 1: Let f ∈ Lp and g ∈ Lp′ , then,

〈ΛSf, g〉 =
∑
S∈S

〈f〉S 〈g〉S |S| ≤ c
∑
S∈S

〈f〉S 〈g〉S |ES| =
∫ ∑

S∈S

〈f〉S 〈g〉S 1ES(x) dx

≤ c

∫
sup
Q

(〈f〉Q 〈g〉Q 1Q(x))
∑
S∈S

1ES(x) dx ≤
∫

Mf(x) ·Mg(x) dx

≤ ‖Mf‖Lp‖Mg‖Lp′ . pp′‖f‖Lp‖g‖Lp′ .

Here, M represents the maximal function, which is known to be bounded in Lp, for

p > 1 and weakly bounded for p = 1. This dependence upon the index p is sharp.
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Note also, that from the very first line in the previous computation, it follows that

if and operator T is in Sparse(1, 1), then it is bounded on Lp for p > 1. By using

restricted weak type estimates, it can be proved that domination by a sparse bilinear

form implies weak 1-1 estimates; a proof of this fact can be found in [21].

In general, a modification of the previous computation can be used to prove that

if T is in Sparse(r, s) with 1 ≤ r < s′, then T is bounded on Lp for every p ∈ (r, s′).

2.2.1 Weighted inequalities

A function w is called a weight, if it is nonnegative and locally integrable. A weight

w is in the class Ap if

[w]Ap = sup
Q
〈w〉Q

〈
w1−p′

〉p−1

Q
<∞,

where the supremum is taken over all cubes Q in Rn. The quantity [w]Ap is called

the Ap characteristic of the weight w.

The space Lp(w) is defined as the space of functions f that satisfy

‖f‖pLp(w) =

∫
|f(x)|pw(x) dx <∞.

With a similar proof as in the unweighted case, we can verify that if an operator T is

in Sparse(r, s), for 1 ≤ r < s′, then, for every p ∈ (r, s′), then T is bounded on Lp(w),

for weights w belonging to an intersection of a special class Ap0 and a reverse-Hölder

class. For a more precise statement, and a detailed proof of this boundedness, the

reader can check section 6 in [5].
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CHAPTER 3

THE SPARSE T1 THEOREM

(Joint work with Michael Lacey)

3.1 Introduction

We recast the statement of the T1 theorem of David and Journé [25], replacing the

conclusion that the operator T admits a quantitative bound on its L2-norm, with the

conclusion that T admits a quantitative sparse bound. From the sparse bound, one

can quickly derive a wide range of (weighted) Lp type inequalities for T . That is,

the theory devoted to deriving these properties for T can be replaced by the much

simpler approach via sparse operators.

We say that an operator T is a Calderón-Zygmund operator on Rd if (a) it is

bounded on L2, (b) there is a kernel K(x, y) : Rd × Rd \ {(x, x) : x ∈ Rd} → R so

that for functions functions f, g smooth, compactly supported, have disjoint closed

supports,

BT (f, g) = 〈Tf, g〉 =

∫ ∫
K(x, y)f(y)g(x) dydy.

(c) For some constant KT , the kernel K(x, y) satisfies

|K(x, y)| ≤ KT

|x− y|
, x 6= y ∈ Rd, (3.1.1)

|K(x, y)−K(x′, y)| < KT
|x− x′|η

|x− y|d+η
, 0 < 2|x− x′| < |x− y|. (3.1.2)

And, the same condition with the roles of x and y reversed. Above, η > 0 is a fixed

small constant.

A sparse bilinear form Λ(f, g) is defined this way: There is a collection of cubes
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S, so that for each S ∈ S, there is an ES ⊂ S so that (a) |ES| > c|S|, and (b)

‖
∑

S∈S 1ES‖∞ ≤ c−1. Then, set

Λ(f, g) =
∑
S∈S

〈f〉S〈g〉S|S|,

where 〈f〉S = |S|−1
∫
S
f(x) dx. Here, we will not focus on the role of the constant

0 < c < 1, and remark that many times it is assumed that the sets ES being pairwise

disjoint, that is ‖
∑

S∈S 1ES‖∞ = 1.

Our generalization does not affect the outlines of the theory, and makes some

arguments somewhat simpler.

It is very useful to think of Λ(f, g) as a positive bilinear Calderón-Zygmund form.

In particular, all the standard inequalities can be quickly proved for Λ. And, for

weighted inequalities, it is easy to derive bounds that are sharp in the Ap character-

istic.

Our formulation of the T1 theorem considers the usual L1 testing condition on T ,

phrased in bilinear language.

Theorem 3.1.3. Suppose that T is a Calderón-Zygmund operator on Rd, and more-

over there is a constant T so that for all cubes Q and functions |φ| < 1Q, there holds

|BT (1Q, φ)|+ |BT (φ,1Q)| ≤ T|Q|. (3.1.4)

Then there is a constant C = C(KT ,T, d, η) so that for all bounded compactly sup-

ported functions f, g, there is a sparse operator Λ so that

|BT (f, g)| < CΛ(|f |, |g|). (3.1.5)

The proof is elementary, using (a) facts about averages and conditional expec-

tations; (b) random dyadic grids as a convenient tool to reduce the complexity of

26



the argument; (c) orthogonality of martingale transforms, and the most sophisticated

fact (d) a sparse bound for a certain bilinear square function, with complexity, de-

tailed in Lemma 3.4.6. In addition, the testing condition (3.1.4) appears solely in

the construction of the stopping times. The proof is carried out in §3.3. There are

many terms, organized so that there is one crucial term, in §3.3.2. Almost all of the

remaining cases use standard off-diagonal considerations, and the simple argument

to prove the sparse bound for a martingale transform. This is detailed in §3.4.

The consequences of the sparse bound (3.1.5) are:

1. The weak type (1, 1) inequality, and the Lp inequalities, for 1 < p <∞. These

hold with the sharp dependence upon p. To wit, using ‖M : Lp 7→ Lp‖ . p′ =

p
p−1

, we have

Λ(f, g) =

∫ ∑
S∈S

〈f〉S〈g〉S1S dx .
∫ ∑

S∈S

〈f〉S〈g〉S1ES dx

≤
∫
Mf ·Mg dx ≤ ‖Mf‖p‖Mg‖p′ . p · p′‖f‖p‖g‖p′ .

2. The weighted version of the same, relative to Ap weights. The dependence upon

the Ap characteristic is sharp, for 1 < p <∞, and the best known for the case

of p = 1. See the arguments in [54].

3. The exponential integrability results of Karagulyan [38,65].

Our statement of the T1 theorem follows the ‘testing inequality’ approach of the

Sawyer two weight theorems [70, 71], and the statement in Stein’s monograph [73].

Our approach is a descendant of the radically dyadic approach of Figuel [30], further

influenced by the martingale approach of Nazarov-Treil-Volberg [64]. (Also see [34].)

Our use of the stopping cubes follows that of the proof of the two weight Hilbert

transform estimate [51].

The bound by sparse operators has been an active and varied recent research
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topic. It had a remarkable success in Lerner’s approach to the A2 bound [54], which

cleverly bounded on the weighted norm of a Calderón-Zygmund by a the norm of a

sparse operator. The pointwise approach first established in [17], with a somewhat

different approach in [45]. The latter approach has been studied from several different

points of view [5, 26, 55, 78]. The form approach used here, is however successful in

settings where the pointwise approach would fail, most notably the setting of the

bilinear Hilbert transform [21], Bochner Riesz multipliers [3], and oscillatory singular

integrals [50]. The interested reader can consult the papers above for more information

and references.

This paper proves the sparse bound without appealing to any structural theory

of Calderón-Zygmund operators such as boundedness of maximal truncations, which

is the approach started in [45]. The other prominent structural fact one could use

is the Hytönen structure theorem [33]. This is the approach followed by Culiuc-Di

Plinio-Ou [22] also using bilinear forms. They show that this approach has further

applications to the matricial setting, avoiding difficulties for the pointwise approach

in this setting.

3.2 Random Grids

All the proofs here will use Hytönen’s random dyadic grids from [33]. Recall again,

that the standard dyadic grid in Rd is

D0 :=
⋃
k∈Z

Dk, Dk :=
{

2k
(
[0, 1)d +m

)
: m ∈ Zd

}
.

For a binary sequence ω := (ωj)j∈Z ∈
(
{0, 1}d

)Z
we define a general dyadic system by

Dω :=
{
Qu ω : Q ∈ D0

}
,
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where Q u ω = Q +
∑

j:2−j<`Q 2−jωj. We consider the standard uniform probability

measure on {0, 1}d, that is, it assigns 2−d to every point. We place on ω, the prob-

ability measure P, the corresponding product measure on
(
{0, 1}d

)Z
. This way, we

can see (Dω) as a collection of grids with a random set of parameters ω. For every ω,

these dyadic grids satisfy the required properties, namely

1. For P,Q ∈ Dω, P ∩Q ∈ {P,Q, ∅}.

2. For fixed k ∈ Z, the collection Dω
k =

{
Q ∈ Dω : `Q = 2−k

}
partitions Rd.

Definition 3.2.1 (Good-bad intervals). Let 0 < γ < 1 and a positive integer r such

that r ≥ (1− γ)−1. We say that Q ∈ Dω
k is r-bad, if there is an integer s ≥ r, and a

choice of coordinate, so that the vectors

ωk+b(1−γ)sc, ωk+b(1−γ)sc+1, . . . , ωk+s ∈ {0, 1}d,

all agree in that one coordinate. If Q is not r-bad, then it is called r-good.

From now on, we are going to omit the dependence on r, and we will refer to the

cubes as only good or bad. The following lemmas are well known.

Lemma 3.2.1. If Q is good, then for any cube P with 2r`Q < `P we have

dist(Q, ∂P ) & (`Q)γ(`P )1−γ,

where the implied constant is absolute.

Lemma 3.2.2. Fix 0 < γ < 1 and r > γ−1, then, there is a constant Cd such that

P(Q is good) ≥ 1− Cdγ−12−γr.

For an arbitrary dyadic grid Dω, every function f ∈ L2(Rd) admits an orthogonal
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decomposition

f =
∑
Q∈Dω

∆Qf.

Given a dyadic grid Dω, we define the good and bad projections as

P bad

ω f :=
∑
Q∈Dω
Q is bad

∆Qf, P good

ω f :=
∑
Q∈Dω

Q is good

∆Qf.

The following lemma says that in average, the bad projections tend to be small.

Lemma 3.2.3. For all 1 < p <∞ there is an εp > 0 such that for all 0 < γ < 1 and

r > γ−1 we have

Eω‖P bad

ω f‖pLp . 2−εpr‖f‖pLp .

Using this lemma, we can prove that it is enough to estimate bounds only for good

functions, in the following sense

Lemma 3.2.4. Let 1 < p <∞. If T : Lp 7→ Lp is a bounded operator. If 0 < γ < 1

is fixed and r > C(1 + log 1
γ
), then

‖T : Lp 7→ Lp‖ ≤ 4M,

where M is the best constant in the inequality

Eω| 〈TP good

ω f, P good

ω g〉 | ≤M‖f‖Lp‖g‖Lp′ .

3.3 The Proof of the Sparse Bound

As a consequence of Lemma 3.2.4, it is enough for the remainder of the argument to

show this: There is a choice of constant C > 1, so that for all f and g compactly
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supported, and almost all grids Dω, there is a sparse operator Λ = Λf,g,Dω , so that

|〈TP goodf, P goodg〉| ≤ CΛ(|f |, |g|). (3.3.1)

In view of the Lemma 3.4.9, the random sparse operator above can be replaced by a

deterministic one. Averaging over choices of grid will complete the proof.

Almost all random dyadic grids have the property that the functions f, g are

supported on a single good dyadic cube. And, hence, on a sequence of dyadic cubes

which exhaust Rn. This fact and goodness are the only facts about random grids

utilized, so we suppress the ω dependence below. The inner product in (3.3.1) is

expanded

〈TP goodf, P goodg〉 =
∑
P∈D

P is good

∑
Q∈D

Q is good

〈T∆Pf,∆Qg〉. (3.3.2)

We will further only consider the case of `P ≥ `Q, the reverse case being addressed

by duality. The fact that P and Q are good will be suppressed, but always referenced

when it is used. And, by Q b P we will mean that Q ⊂ P and 2r`Q ≤ `P . Goodness

of Q then implies that

dist(Q, skelP ) ≥ (`Q)ε(`P )1−ε, (3.3.3)

where skelP is the union of ∂P ′, where P ′ is a child of P . We will likewise suppress

the role of the dyadic grid in our notation.

As just mentioned, the two functions f, g are supported on a single good cube

P0 ∈ D, which we can take to be very large. Therefore, we can restrict the sum in

(3.3.2) to only cubes P,Q ⊂ P0. The bound we obtain will be independent of the
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choice of P0. The sum we consider is then broken into several subcases.

∑
P : P⊂P0

∑
Q : Q⊂P0
`P≥`Q

〈T∆Pf,∆Qg〉 (3.3.4)

=
∑

P : P⊂P0

∑
Q : QbP

〈T∆Pf,∆Qg〉 (inside) (3.3.5)

+
∑

P : P⊂P0

∑
Q : 2r`Q≤`P
Q⊂3P\P

〈T∆Pf,∆Qg〉 (near) (3.3.6)

+
∑

P : P⊂P0

∑
Q : `Q≤`P
Q∩3P=∅

〈T∆Pf,∆Qg〉 (far) (3.3.7)

+
∑

P : P⊂P0

∑
Q : `Q≤`P≤2r`Q

Q∩3P 6=∅

〈T∆Pf,∆Qg〉. (neighbors) (3.3.8)

3.3.1 Stopping Cubes

We define a sparse collection S of stopping cubes, and associated stopping values in

the following way: Add P0 to the collection S, and set σf (P0) = 〈|f |〉P0 , and similarly

for g. In the recursive stage of the construction, for minimal S ∈ S, define three sets

• F 1
S =

⋃
{S ′ ∈ D(S) : 〈|f |〉S′ > C0σf (S), S ′ maximal } .

• F 2
S =

⋃
{S ′ ∈ D(S) : 〈|g|〉S′ > C0σg(S), S ′ maximal } .

• F 3
S =

⋃
{S ′ ∈ D(S) : 〈|T1S|〉S′ > C0T, S

′ maximal } .

Let FS = F 1
S ∪ F 2

S ∪ F 3
S , and FS be the family of dyadic components of FS. The

weak-type bound for the dyadic maximal function and the testing condition (3.1.4)

implies that there exists C0 big enough, such that |FS| < 1
2
|S|. Recursively, add,

every FS to the collection S to form a sparse collection.

We set P σ to be the smallest stopping cube S that contains P . And we set Qτ to

be the smallest stopping cube S such that Q b S. The Haar projection associated to

S is ΠSg =
∑

Q : Qτ=S ∆Qg.
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3.3.2 The Inside Terms

We turn our attention to the main term, that of (3.3.5), for which there are three

subcases. The argument of T is ∆Pf , which we write as

∆Pf = ∆Pf1P\PQ + 1PQ∆Pf (3.3.9)

= ∆Pf1P\PQ + 〈∆Pf〉PQ ·


1S − 1S\PQ S = Qτ ⊃ PQ

1S + 1PQ\S S = Qτ ( PQ

(3.3.10)

where Q b P , and PQ is the child of P that contains Q.

First Subcase

Control the first term on the right in (3.3.10) by off-diagonal considerations. Central

to all of these off-diagonal arguments are the class of forms Bu,v defined in (3.4.1),

which are in turn bounded by Lemma 3.4.6.

Since Q is a good cube, the inequality (3.3.3) holds: That is Q is a long way from

the skeleton of P . By (3.4.12), we have

|〈T (∆Pf1P\PQ),∆Qg〉| . Pη(∆Pf1P\PQ)(Q)‖∆Qg‖1 (3.3.11)

. [`Q/`P ]η
′〈|∆Pf |〉P‖∆Qg‖1. (3.3.12)

Using the notation of (3.4.1), for integers v ≥ r, we have

∑
P

∑
Q : Q⊂P
2v`Q=`P

|〈T (∆Pf1P\PQ),∆Qg〉| . 2−η
′vB0,v(f, g)

and by Lemma 3.4.6, this is in turn dominated by a choice of sparse form. Sparse

forms are again dominated by a fixed form. We can sum this estimate over v ≥ r, so

this case is complete.
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Second Subcase

We turn attention to the second term in (3.3.10), in which we have 〈∆Pf〉PQ1S. This

is the most intricate step, in that we combine several elementary steps. The bound

we prove is uniform over a choice of S ∈ S. Namely,

∣∣∣ ∑
Q : Qτ=S

∑
P : QbP

〈T (∆Pf · 1S),∆Qg〉
∣∣∣ . 〈|f |〉S〈|g|〉S|S| (3.3.13)

This is the one point in the argument in which the implied constant depends upon

the testing constant T in (3.1.4).

For each cube Q with Qτ = S, define εQ by

εQ 〈|f |〉S :=
∑

P∈D, QbPQ

〈∆Pf〉PQ . (3.3.14)

By the first stopping condition, corresponding to the control of the averages of f ,

{εQ}Q∈D is uniformly bounded. In particular, this operator is a martingale transform.

Πε
Sg =

∑
Q : Qτ=S

εQ∆Qg.

We make the following observation about the second stopping condition, corre-

sponding to the control of the averages of g. Setting a conditional expectation on S

to be

E(φ | FS) =


φ(x) x ∈ S \ Fs

〈φ〉S′ x ∈ S ′, S ′ ∈ FS

Then, ‖E(g1S | FS)‖∞ . 〈|g|〉S. We also have Πε
Sg = Πε

SE(g1S | FS). Therefore, by

the L2 bound for martingale transforms,

‖Πε
Sg‖2 ≤ ‖E(g1S | FS)‖2 . 〈|g|〉S|S|1/2. (3.3.15)
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The point of our third stopping condition, corresponding to the control of the

average of T1S, is that E(T1S | FS) is bounded in L∞ by a constant multiple of T.

Collecting these observations, we can rewrite our sum as below, in which in the first

step we use the definition (3.3.14) to collapse the sum over P .

LHS of (3.3.13) = |〈|f |〉S〈T1S,Πε
Sg〉| (3.3.16)

= |〈|f |〉S〈T1S,E(Πε
Sg | FS)〉| (3.3.17)

= |〈|f |〉S〈E(T1S | FS),Πε
Sg〉| (3.3.18)

. 〈|f |〉S‖E(T1S | FS)‖2‖Πε
Sg‖2 . 〈|f |〉S〈|g|〉S|S|. (3.3.19)

This completes this case.

Third Subcase

We address the top alternative in (3.3.10), namely we bound

∑
S

∑
Q : Qτ=S

∑
P : QbP
PQ⊂S

〈∆Pf〉PQ〈T1S\PQ ,∆Qg〉 (3.3.20)

This is similar to the first subcase, since 1S\PQ is supported in (2Q)c, then the off-

diagonal estimates also imply

|
〈
T1S\PQ ,∆Qg

〉
| . Pη(1S\PQ)(Q)‖∆Qg‖1 .

[
`Q

`P

]η′
‖∆Qg‖1.

Holding the relative lengths of Q and P fixed, we then have for integers v ≥ r,

∑
S

∑
Q : Qτ=S

∑
P : QbP

PQ⊂S, 2v`Q=`P

|
〈
T (∆Pf1S\PQ),∆Qg

〉
| . 2−vη

′
B0,v(f, g).

We use the notation (3.4.1), and Lemma 3.4.6 to complete this case.
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Fourth Subcase

We address the bottom alternative in (3.3.10), namely the case in which S = Qτ ( PQ.

The point here is to gain geometric decay in the degree to which Q and PQ are

separated in the stopping tree S.

Given S ∈ S, let S = S(0) ( S(1) ( · · · ( P0 be the maximal chain of stopping

cubes which contain S, and continue up to P0. For each S0 ∈ S, and integer t ≥ 1,

we bound

∣∣∣ ∑
S : S(t)=S0

∑
P : S(t−1)bPQ⊂S0

〈∆Pf〉PQ〈T1PQ\S(t−1) ,ΠSg〉
∣∣∣ . 2−ct〈|f |〉S0〈|g|〉S0|S0|.

(3.3.21)

The point is to use the off-diagonal estimates, but there is a complication in that

the stopping cubes are not good. To address this, we let Q(S) be the maximal good

cubes with Qτ = S, and set

Π̃Q∗g =
∑

Q : Qτ=S,Q⊂Q∗
∆Qg, Q∗ ∈ Q(S).

The goodness of the cubes implies that dist(Q∗, ∂S(t−1)) ≥ (`Q∗)ε(`S(t−1))1−ε ≥

2t/2`Q∗, by (3.3.3).

The second point is that we have

∥∥∥ ∑
P : S(t−1)bPQ⊂S0

〈∆Pf〉PQ1PQ\S(t−1)

∥∥∥
∞
. 〈|f |〉S.

Combining these last two observations with (3.4.14), we see that for each Q∗ ∈ Q(S),

∣∣∣ ∑
S : S(t)=S0

∑
P : S(t−1)bPQ⊂S0

〈∆Pf〉PQ〈T1PQ\S(t−1) , Π̃Q∗g〉
∣∣∣ . 2−t/2〈|f |〉S0‖Π̃Q∗g‖1

. 2−t/2〈|f |〉S0〈|g|〉S|Q∗|.

36



Here we have used the stopping condition to dominate Π̃Q∗g. To conclude, we simply

observe that

∑
S : S(t)=S0

〈|g|〉S
∑

Q∗∈Q(S)

|Q∗| ≤
∑

S : S(t)=S0

〈|g|〉S|S| . 〈|g|〉S0|S0|.

Our proof of (3.3.21) is complete.

3.3.3 The Near Terms

We address the term in (3.3.6). Fix an integer v ≥ r, and consider Q ⊂ 3P \ P with

2v`Q = `P . The cube Q is good, so that by (3.3.3) and (3.4.12), we have

|〈T∆Pf,∆Qg〉| . 2−vη
′〈|∆Pf |〉P‖∆Qg‖1.

But, then, we have

|(3.3.6)| . 2−vη
′
B0,v(f, g),

where the latter bilinear form is defined in (3.4.1). It follows from (3.4.1) that the

near term is dominated by a sparse bilinear form.

3.3.4 The Neighbors

We bound the term in (3.3.8). For P , let P ′, P ′′ be choices children of P . There are

at most O(1) such choices. For integers 0 ≤ v ≤ r, we bound

∑
P : P⊂P0

∑
Q : `Q≤`P=2v`Q, Q∩3P 6=∅

〈T (∆Pf · 1P ′),1P ′′∆Qg〉. (3.3.22)

The case of P ′ 6= P ′′ is straight forward. The function ∆Pf · 1P ′ is constant, so

that the Hardy inequality immediately implies that

|〈T (∆Pf · 1P ′),1P ′′∆Qg〉| . |〈∆P 〉P ′ ||P ′|1/2‖1P ′′∆Qg‖2
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. |〈∆P 〉P ′ | · ‖∆Qg‖1.

And this can be summed to the bound we want. Namely, it is dominated by B0,v(f, g),

where the last term is defined in (3.4.1).

The case of P ′ = P ′′ reduces to the testing inequality, and we have the same

bound as above.

3.3.5 The Far Term

We address the terms in (3.3.7). For integers u, v ≥ 1, we impose additional re-

strictions on P and Q, and obtain a sparse bound with geometric decay in these

parameters. From this, the required bound follows. Namely, we have for

`P = `P ′, P ′ ⊂ 3u−1P, 2v`Q = `P, Q ⊂ 3u+1P \ 3uP, (3.3.23)

we have from (3.4.12) the estimate below.

|〈T∆P ′f,∆Qg〉| . 2−η
′(u+v)〈|∆P ′f |〉P ′‖∆Qg‖1.

Therefore, appealing to the definition in (3.4.1)

∑
P

∑
(P ′,Q)satisfy (3.3.23)

|〈T∆P ′f,∆Qg〉| . 2−η
′(u+v)Bu,v(f, g).

By Lemma 3.4.6, this case is complete.

3.4 Lemmas

We collect three separate groups of Lemma, (a) the sparse domination of a class of

dyadic forms; (b) standard off-diagonal estimates; and (c) a Hardy inequality.
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Sparse Domination

We define a class of (sub) bilinear forms that are basic to the proof. For a cube P ,

let iP = log2(`P ). Let Dkf =
∑

P : `P=2k ∆Pf , and define

Bu,v(f, g) =
∑
P

〈|DiP−uf |〉3P 〈|DiP−vg|〉3P |P | (3.4.1)

Above, u, v ≥ 0 are fixed integers, so that we are taking the martingale differences

that are somewhat smaller, over the triple of P . We comment that this is a dyadic

operator of complexity u+ v, in the language of [33].

We remark that a standard argument would write

Bu,v(f, g) =

∫ ∑
P

〈|DiP−uf |〉3P 〈|DiP−vg|〉3P1P (x) dx (3.4.2)

It is clear that we would dominate this last integral by a product of square functions∫
Suf · Svg dx, with the square functions defined by

(Suf)2 =
∑
P

〈|DiP−uf |〉23P1P . (3.4.3)

The deepest fact needed in our proof of the T1 theorem is this: The square functions

Su are weakly bounded, with constant linear in u.

Lemma 3.4.4. We have the inequality below, valid for all integers u ≥ 0

‖Suf : L1 7→ L1,∞‖ . (1 + u). (3.4.5)

Proof. The square function Su is bounded on L2, with constant independent of u, by

the orthogonality of martingale differences. To prove the weak-type inequality, we

take f ∈ L1, and apply the Calderón-Zygmund decomposition at height 1. Thus,
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f = g + b, where ‖g‖2 . ‖f‖1/2
1 , and we have

b =
∑
B∈B

bB,

where B consists of disjoint dyadic cubes with
∑

B∈B|B| . ‖f‖1, and bB is supported

on B, has integral zero, and ‖bB‖1 . |B|.

We do not estimate Suf on the set E =
⋃
B∈B 3B. And estimate

|{x 6∈ E : Suf(x) > 2}| ≤ |{Sug > 1}|+ |{x 6∈ E : Sub(x) > 1}|

The first term is controlled by the L2 bound and the fact that ‖g‖2
2 ≤ ‖f‖1.

Concerning the function b, observe that for P 6⊂ E, that we have 〈|DiP−uf |〉3P 6= 0

only if there is some B ∈ B with B ⊂ 3P , and 2u`B ≥ `P . For a fixed B, there are

only 3d(1 + u) such choices of P . Therefore, we will estimate

|{x 6∈ E : Sub(x) > 1}| .
∑

P : P 6⊂E

∫
P

|∆b| dx

.
u∑
v=1

∑
P : P 6⊂E

∑
B∈B : B⊂P

2v`B=`P

∫
P

|∆bB| dx

.
u∑
v=1

∑
P : P 6⊂E

∑
B∈B : B⊂P

2v`B=`P

|B| . u
∑
B∈B

|B| . u‖f‖1.

Our proof is complete.

The previous estimate is the principal tool in this sparse bound, which we use

repeatedly in our proof of the sparse result.

Lemma 3.4.6. For all u, v ≥ 0, all bounded compactly supported functions f, g, there

is a sparse collection S so that

Bu,v(f, g) . (1 + u)(1 + v)Λ(f, g).
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It is an easy corollary from the conclusion above for u, v = 0 that martingale

transforms satisfy a sparse bound. And, we also comment that the linear dependence

of the constant above presents no difficulty in application, as we will always have a

term that decreases geometrically in u+ v.

Proof. Note that from the equality for Bu,v in (3.4.2), we have

Bu,v(f, g) .
∫
Suf · Svg dx

with the square functions defined by (3.4.3). But, we localize this familiar argument.

Define

(Su,P0f)2 =
∑

P : P⊂P0

〈|DiP−uf |〉23P1P ,

we have for an absolute constant C, and all choices of u ≥ 0,

|{x ∈ 3P0 : Su,P0f > C(1 + u)〈|f |〉3P0}| ≤ 1
8
|P0|. (3.4.7)

Moreover, the set on the left is contained in P0.

We construct the sparse bound this way. Fix a large (non-dyadic) cube P0 that

1
2
P0 contains the support of both f and g. The sparse cubes outside of P0 can be

taken to 3kP0, for k ∈ N. We need to construct the sparse collection inside of P0.

Consider the restricted sum

I(P0) :=

∫ ∑
P : P⊂P0

〈|DiP−uf |〉3P 〈|DiP−vg|〉3P1P dx. (3.4.8)

Using (3.4.7), set

E0 = {Su,P0f > C(1 + u)〈|f |〉3P0} ∪ {Sv,P0g > C(1 + v)〈|g|〉3P0}.

This set is contained in P0, and has measure at most 1
4
|P0|. Let E0 be the maximal
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dyadic components of E0. We have by Cauchy-Schwartz and construction,

I(P0) ≤ C2〈|f |〉3P0〈|g|〉3P0|P0|+
∑
Q∈E0

I(Q).

The first term on the right is the first term in our sparse bound. We recurse on the

second terms. This completes the proof.

A very general fact about sparse forms is that they admit a ‘universal domination.’

Lemma 3.4.9. Given f, g, there is a sparse operator Λ0, and constant C > 1 so that

for any other sparse operator Λ, we have Λ(f, g) < CΛ0(f, g).

Proof. Recall that shifted dyadic grids are a collection G of at most 3d dyadic grids

G ∈ G, so that every cube Q ⊂ Rd can be approximated by some cube in a dyadic grid

G ∈ G. Namely, for each cube Q, there is a G and a cube P ∈ G so that 1
6
`(P ) ≤ `(Q)

and Q ⊂ 6P . See [35, Lemma 2.5] for an explicit proof.

Shifted grids permit us to construct a universal sparse operator for each grid

G ∈ G. We show this: For any dyadic grid G, let S ⊂ G be such that for S ∈ S, there

is a set ES ⊂ S so that |ES| > c|S| and ‖
∑

S∈S 1ES‖∞ ≤ c−1. Given non-negative f, g

bounded and compactly supported, we construct UG ⊂ G so that there are pairwise

disjoint exceptional sets {EQ : Q ∈ UG} so that EQ ⊂ Q and |EQ| ≥ 1
2
|Q|, and

moreover, ∑
S∈S

〈f〉S〈g〉S1S ≤ 16dc−2
∑
U∈UG

〈f〉U〈g〉U1U . (3.4.10)

To complete the proof of the Lemma, we remark that the collection {UG : G ∈ G}

is sparse. It dominates every sparse operator formed from some G ∈ G, hence is

universal for all sparse operators.

For integers k, let Uk be the maximal cubes Q ∈ G so that 〈f〉Q〈g〉Q ≥ 82dk.

Then, the product is at most 82dk+2d/3. The cubes Q ∈ Uk are pairwise disjoint, by

maximality. We check that the children are small in measure. Setting C(Q) = {P ∈
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Uk+1 : P ( Q}, we can write C(Q) = Cf (Q) ∪ Cg(Q), where P ∈ Cf (Q) if P ∈ C(Q)

and 〈f〉P > 4d〈f〉Q, and similarly for Cg(Q). But, then it is clear that

∑
P∈Cf (Q)

|P | ≤ 4−d|Q| ≤ 1
4
|Q|.

We set EQ = Q \
⋃
P∈C(Q) P . This set has measure at least 1

2
|Q|.

Set UG =
⋃
k Uk. The sets {EQ : Q ∈ U} are pairwise disjoint. Now, given the

sparse collection as above, provided 〈f〉S〈g〉S 6= 0, each S ∈ S has a parent Su ∈ U,

namely the smallest element of U that contains S. Then,

∑
S∈S

〈f〉S〈g〉S1S =
∑
U∈UG

∑
S∈S
Su=U

〈f〉S〈g〉S1S

≤ 16d
∑
U∈UG

〈f〉U〈g〉U
∑
S∈S
Su=U

1S ≤ 16dc−2
∑
U∈UG

〈f〉U〈g〉U1U .

This verifies (3.4.10), so completes the proof.

Off-Diagonal Estimates

We begin with the very common off-diagonal estimate. For η > 0 consider the

Poisson-like operator

PηΦ(Q) :=

∫
Rd

(`Q)ηΦ(y)

(`Q)d+η + dist(y,Q)d+η
dy.

Lemma 3.4.11 (Off-diagonal estimate). Let g be a function with
∫
g dx = 0, sup-

ported on a cube Q, and f ∈ L2 supported on (2Q)c, then we have

| 〈Tf, g〉 | . Pη|f |(Q)‖g‖1 ≤ Pη|f |(Q)|Q|1/2‖g‖2. (3.4.12)
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Proof: Let xQ be the center of Q, then we have

| 〈Tf, g〉 | =
∣∣∣∣∫
Q

∫
(2Q)c

K(x, y)f(y)g(x) dy dx

∣∣∣∣ =

∣∣∣∣∫
(2Q)c

∫
Q

(K(x, y)−K(xQ, y))f(y)g(x) dx dy

∣∣∣∣
≤ KT

∫
(2Q)c

∫
Q

|x− xQ|η

|x− y|d+η
|f(x)g(y)| dx dy . KTPη|f |(Q)‖g‖1.

And the second inequality follows from Cauchy-Schwarz.

Lemma 3.4.13. Suppose that Q b P and Q is good, then there is η′ = η′(η, γ) > 0,

such that

Pη1Rd\P (Q) .

[
`Q

`P

]η′
. (3.4.14)

Proof. Let λ = (`P/`Q)1−γ. By goodness of Q, Lemma 3.2.1 implies

Pη1Rd\P (Q) =

∫
Rd\P

(`Q)η

(`Q)d+η + dist(y,Q)d+η
dy

≤
∫
Rd

(`Q)η

((`Q)γ(`P )1−γ)d+η + dist(y,Q)d+η
dy

≤
[
`Q

`P

]η(1−γ)

Pη1Rd(λQ).

So, the result follows.

Hardy’s Inequality

This is the version of Hardy’s inequality that we need. It can be proved from the one

dimensional version. In point of fact, we only need this in the case where the function

f below is constant.

Lemma 3.4.15. For any cube, P , and 1 < p <∞, we have

∫
3P\P

∫
P

f(x)g(y)

|x− y|n
dxdy . ‖f‖p‖g‖p′ . (3.4.16)

44



CHAPTER 4

UNIFORM SPARSE BOUNDS FOR DISCRETE QUADRATIC PHASE

HILBERT TRANSFORMS

(Joint work with Robert Kesler)

4.1 Introduction

Let e(t) = e2πit and α ∈ T. We consider the operator Hα acting on finitely supported

functions f on Z, defined by

Hαf(n) :=
∑
m 6=0

e(αm2)f(n−m)

m
.

This can be regarded as a discrete oscillatory Hilbert transform with a quadratic

phase. As such it satisfies a range of `p estimates which are uniform in α. In particular,

the result below holds. Indeed, the work of Arkhipov and Oskolkov [1] in the case of

p = 2, and of Pierce [67] in the case of 1 < p <∞, prove much more than the result

below.

Theorem 4.1.A. For 1 < p <∞, there holds

sup
α
‖Hα : `p → `p‖ <∞.

In this paper we give a further quantification of the uniform boundedness of Hα,

by proving a sparse bound. We set notation for the sparse bound. Let a discrete

interval (or just an interval) be a set of the form I = Z∩ [a, b], for a, b ∈ R, and define

its length |I| as its cardinality. For 1 ≤ r <∞, the Lr-average of a function f on the
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interval I is defined by

〈f〉I,r :=

[
1

|I|
∑
x∈I

|f(x)|r
]1/r

.

A collection of intervals S is called ρ-sparse if for each S ∈ S, there is a subset ES

of S such that (a) |ES| > ρ|S|, and (b) ‖
∑

S∈S 1ES‖∞ ≤ ρ−1. For a sparse collection

S, a sparse bilinear form Λ is defined by

ΛS,r,s(f, g) :=
∑
S∈S

〈f〉S,r 〈g〉S,r |S|

When r = s, we write ΛS,r,s = ΛS,r. The dependence on ρ is not rel.evant, so it can

be omitted. We also omit sometimes the dependence on the sparse collection S and

just write Λr,s or Λr.

To simplify some of the arguments, we make use of the following definition: For

an operator T acting on finitely supported functions on Z, and 1 ≤ r, s < ∞ define

its sparse norm

‖T : Sparse(r, s)‖ = ‖T : (r, s)‖, (4.1.1)

as the infimum over the constants C > 0 such that for all finitely supported functions

f, g on Z we have

| 〈Tf, g〉 | ≤ C sup Λr,s(f, g).

Here, the supremum is taken over all sparse forms.

With this notation, we can state the main result of this paper as follows,

Theorem 4.1.2. There exists 1 < r < 2 such that

sup
α∈T
‖Hα : (r, r)‖ <∞.

Given the useful structure of the sparse forms, we can derive a variety of mapping

properties. For instance, we obtain the following immediate result
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Corollary 4.1.3. There exists 1 < r < 2 such that for all weights w that satisfy

w,w−1 ∈ A2 ∩RHr we have

‖Hα : `2(w) 7→ `2(w)‖ . 1.

The weights above are in the intersection of the the standard Muckenhoupt class

A2 and some Reverse Hölder class RHr. Here and through all the paper, the notation

A . B means that there is a constant C such that A ≤ CB; the dependence of the

constant will be indicated when necessary.

The domination by sparse operators has been an active topic initiated by Lerner

[54] in his simple proof of the A2 conjecture, by providing sparse control over the

norm of a Calderón-Zygmund operator. This was improved to a pointwise estimate

in [17] and following a stopping time argument in [45]. The latter approach has been

used in different contexts [5, 37, 55]. The sparse bilinear form approach that we use

here, has proven to be successful where the pointwise approach is not convenient or

to avoid the use of maximal truncations, for example, the bilinear Hilbert transform

[21], Bochner-Riesz multipliers [3] and oscillatory singular integrals [44,50].

The study of oscillatory singular integrals is motivated by the work of Stein, who

in [74] proves the boundedness on Lp, for 1 < p <∞, of the following operator,

sup
α∈R

∣∣∣∣∫
R
f(x− y)

e(αy2)

y
dy

∣∣∣∣ . (4.1.4)

In the setting of discrete norm inequalities it is important to mention the remark-

able work of Bourgain on ergodic theorems regarding polynomial averages [6,7]. More

recent results include the work of Krause [42] which have been extended in different

directions by Mirek, Stein and Trojan [58,59]. A first result in which similar discrete

operator can be controlled by sparse forms can be found in [23], and in the case of

random discrete operators in [44, 50], where the sparse bound follows from simpler
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arguments.

Our main result, and the proof, is a model case for a wider range of results in

the discrete setting. Some of the many possible extensions to the main result of this

paper are as follows.

1. Extend the result to a general polynomial and kernel. That is, given a polyno-

mial P and a Calderón-Zygmund Kernel K, find sparse bounds for the operator

TPf(n) =
∑
m 6=0

e(P (m))K(m)f(n−m),

that only depend on the degree of P and the kernel. More ambitious claims sug-

gest themselves, such as obtaining sparse bounds for discrete Radon transforms,

even in the quasi-translation invariant setting. See [67,68].

2. Sparse version of Krause and Lacey’s result [43], that is, find sparse bounds for

the following restricted maximal operator, for A satisfying a certain Minkowski

dimension condition,

sup
α∈A
|Hαf(n)| = sup

α∈A

∣∣∣∣∣∑
m 6=0

e(αm2)f(n−m)

m

∣∣∣∣∣ .
3. Sparse control over the maximal truncations of the operators above. This would

entail extra difficulties.

The paper is organized as follows: In §2, we provide some preliminary results

regarding sparse forms and specific operators bounded by them, that are key to our

proof. In §3, following techniques from the Hardy-Littlewood circle method, we give

a decomposition for the Fourier multiplier of the operator into major and minor arc

components, and obtain some estimates for the different parts. We prove the sparse

bounds for the minor and major arcs in §4 and §5 respectively to conclude the main
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theorem. Of particular interest is the method to bound the major arcs, as it depends

upon the sparse bound in Theorem 4.2.C.

4.2 Preliminaries

One useful fact about sparse operators is that, in some sense, they admit an universal

domination. A version of the following lemma can be found in [47] and has a similar

proof.

Lemma 4.2.1. Given finitely supported functions f, g and 1 ≤ r, s < ∞, there is a

sparse form Λ∗r,s and a constant C > 0 such that for any other sparse operator Λr,s

we have

Λr,s(f, g) ≤ CΛ∗r,s(f, g).

The Hardy-Littlewood maximal function is defined by

MHLf(n) := sup
N≥0

1

2N + 1

N∑
j=−N

|f(n− j)|, n ∈ Z. (4.2.2)

A well known result is the following.

Theorem 4.2.B. The Hardy-Littlewood maximal function satisfies (1, 1) sparse bounds.

That is,

‖MHL : Sparse(1, 1)‖ . 1.

If H is a Hilbert space, we extend the definition of sparse forms to vector valued

functions f , by setting 〈f〉I = |I|−1
∑

x∈I ‖f(x)‖H. It is then straightforward to

extend some sparse domination results to Hilbert space valued functions. One of

this results, in the continuous setting of oscillatory singular integrals, is the following

theorem, that is going to be an important part of our proof.

Theorem 4.2.C. [50] Let K be a Calderón-Zygmund kernel and P a polynomial of
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degree d on Rn. Define the operator

TPf(x) =

∫
R
e(P (y))K(y)f(x− y) dy.

For each 1 < r < 2 and compactly supported, Hilbert space valued functions f, g, there

is a constant C = C(K, d, n, r) and a bilinear sparse form Λr such that

‖TPf : Sparse(r, r)‖ ≤ C.

Recall that a Calderón-Zygmung kernel K : R\{0} → C satisfies

sup
y 6=0
|yK(y)|+

∣∣∣y2 d
dy
K(y)

∣∣∣ <∞,
and the corresponding convolution operator is L2(Rn)-bounded. In particular, we

are going to apply this result with the Hilbert Transform kernel K(y) = 1/y. It is

important to note that the previous estimate depends on the polynomial only through

its degree.

In the subsequent sections, ε > 0 will denote a small fixed constant. We use the

standard notations for the Fourier transform and its inverse:

f̂(β) = Ff(β) =
∑
n∈Z

f(n)e(−βn),

ǧ(n) = F−1g(n) =

∫
T
g(β)e(βn) dβ.
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4.3 Decomposition of the multiplier

The Fourier multiplier associated to the transformation Hα is

Mα(β) :=
∑
m 6=0

e(αm2 − βm)

m
. (4.3.1)

The goal of this section is to describe a decomposition of the multiplier Mα into

terms, with uniform control in the variable α. Let {ψj}j≥0 be a dyadic resolution of

the function 1
t
, with ψj(t) = 2−jψ(2−jt), and ψ is a odd smooth function satisfying

ψ(t) ≤ 1[1/4,1](|t|). Then, for |t| ≥ 1, we have 1
t

=
∑

j≥0 ψj(t), and in the support of

ψj, we have 2j−2 ≤ |t| ≤ 2j. Using this, we can decompose the multiplier as a sum of

terms of the form

Mα
j (β) :=

∑
m 6=0

e(αm2 − βm)

m
ψj(m).

That way, we can write Mα =
∑

jM
α
j .

For fixed s ∈ N, define

Rs :=
{(

A
Q
, B
Q

)
∈ T2 : A,B,Q ∈ Z, (A,Q) = (B,Q) = 1, 2s−1 ≤ Q ≤ 2s

}
.

Then, the rationals in the torus, can be written as
⋃
s∈NRs. Given (A

Q
, B
Q

) ∈ Rs, and

j ≥ s/ε, define the j-th major arc at (A
Q
, B
Q

) by

Mj(A/Q,B/Q) :=
{

(α, β) ∈ T2 : |α− A/Q| ≤ 2(ε−2)j, |β −B/Q| ≤ 2(ε−1)j
}
.

(4.3.2)

Collect the major arcs

Mj :=
⋃

(A,Q)=(B,Q)=1
0<Q≤26εj

Mj(A/Q,B/Q). (4.3.3)
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As proven in [43], the union above is over disjoint sets for ε small enough. For each

j, we define the minor arcs to be the complement of this union of the major arcs.

Let χ be a smooth even bump function, such that 1[−1/10,1/10] ≤ χ ≤ 1[−1/5,1/5].

For s, j ∈ N, set χs(t) := χ(10st), and define the multiplier

Lαj,s(β) :=
∑

(AQ ,
B
Q)∈Rs

S(A/Q,B/Q)Uj(α− A/Q, β −B/Q)χs(α− A/Q)χs(β −B/Q).

(4.3.4)

Here, Uj is a continuous analogue of the multiplier Mj,

Uj(x, y) :=

∫
R
e(xt2 − yt)ψj(t) dt, (4.3.5)

and S is the complete Gauss sum

S(A/Q,B/Q) :=
1

Q

Q−1∑
r=0

e(A/Q · r2 −B/Q · r). (4.3.6)

Consider also the following definitions.

Lαj (β) :=
∑
s≤εj

Lαj,s(β), j ≥ 1, (4.3.7)

Lα,s(β) :=
∑
j≥s/ε

Lαj,s(β), s ≥ 1, (4.3.8)

Lα(β) :=
∞∑
j=1

Lαj (β) =
∞∑
s=1

Lα,s(β), (4.3.9)

Eα
j (β) := Mα

j (β)− Lαj (β), j ≥ 1, (4.3.10)

Eα(β) :=
∞∑
j=1

Eα
j (β). (4.3.11)

The proof of the following lemmas can be found in [43]. The first one says that

on the major arcs, Mj is well approximated by its continuous analogue.
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Lemma 4.3.12. For 1 ≤ s ≤ εj, (A/Q,B/Q) ∈ Rs, and (α, β) ∈ Mj(A/Q,B/Q),

we have the approximation

Mα
j (β) = S(A/Q,B/Q)Uj(α− A/Q, β −B/Q) +O(2(3ε−1)j).

In the minor arcs we have the following estimates.

Lemma 4.3.13. There exists δ = δ(ε) such that uniformly in j ≥ 1,

|Mα
j (β)|+ |Lαj (β))| . 2−δj, (α, β) 6∈Mj(A/Q,B/Q)

Using these results, we obtain the following bounds.

Theorem 4.3.14. There is a choice of δ > 0 such that, uniformly in α ∈ T

|S(A/Q,B/Q)| . 2−δs, (A/Q,B/Q) ∈ Rs, s ≥ 1, (4.3.15)

‖Eα
j (β)‖∞ . 2−δj, j ≥ 1, (4.3.16)∥∥∥∥ ∂2

∂β2
Eα
j (β)

∥∥∥∥
∞
. 22j, j ≥ 1. (4.3.17)

The first estimate can be found in several places in the literature (see, for example,

[32]). Given that by construction Mα
j (β) = Lαj (β) + Eα

j (β), the second estimate is

a consequence of the previous two lemmas. The derivative estimate comes from

straightforward computations.

We prove the main Theorem by showing that there is a choice of 1 < r < 2 and

η > 0 such that for j, s ≥ 1 the following estimates hold, uniformly in α ∈ T

‖TĚαj : (r, r)‖ . 2−ηj (Minor arcs estimate) (4.3.18)

‖TĽα,s : (r, r)‖ . 2−ηs (Major arcs estimate) (4.3.19)

Since our operator can be written as Hα =
∑

j≥1 TĚαj +
∑

s≥1 TĽα,s , from the triangle
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inequality for the sparse norm it follows that

‖Hα : (r, r)‖ ≤
∑
j≥1

‖TĚαj : (r, r)‖+
∑
s≥1

‖TĽα,s : (r, r)‖ ≤
∑
j≥1

2−ηj +
∑
j≥1

2−ηs <∞.

Since these estimates are independent of α, the main theorem follows.

4.4 Minor Arcs estimate

Consider the multiplier Eα
j , defined in (4.3.10). The L∞ estimate (4.3.16) and the

derivative estimate (4.3.17) imply that

|F−1Eα
j (m)| . min

{
2−εj,

22j

1 +m2

}
. (4.4.1)

These bounds are independent of α, since the derivative estimates are. Write F−1Eα
j =

Ěα
j,1 + Ěα

j,2, where Ěα
j,1(m) = F−1Eα

j (m)1[−23j ,23j ](m). We first estimate for Ěj,2, for

this, consider the Hardy-Littlewood maximal function defined in (4.2.2), we have

|TĚαj,2f(x)| = |Ěα
j,2 ∗ f(x)| ≤

∑
y∈Z

|K2(y)f(x− y)| . 22j
∑
|y|≥23j

|f(x− y)|
1 + |y|2

= 22j
∑
|k|≥3j

∑
2k≤|y|<2k+1

|f(x− y)|
1 + |y|2

. 22j
∑
|k|≥23j

2−kMHLf(x) = 2−jMHLf(x).

Once again, this estimate is independent of α. Using Theorem 4.2.B we obtain the

result for Ěα
j,2.

For Ěα
j,1, we need to use the following result (Proposition 2.4 in [23]).

Proposition 4.4.2. Let TKf(x) =
∑

nK(n)f(x− n) be convolution with kernel K.

Assuming that K is finitely supported on the interval [−N,N ] we have the inequalities

‖TK : (r, s)‖ . N1/r+1/s−1‖TK : `r 7→ `s
′‖, 1 ≤ r, s <∞.
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To proof the sparse bound for TĚαj,1 , we use the proposition with N = 23j and

r = s, that is

‖TĚαj,1 : (r, r)‖ . 23j( 2
r
−1)‖TĚαj,1 : `r 7→ `r

′‖, 1 ≤ r <∞.

We just need to find an r such that the operator norm has a summable decay in

j. It is easy to check for the cases r = 1 and r = 2. For r = 1, we have by Young’s

inequality and (4.4.1)

∥∥∥TĚαj,1f∥∥∥∞ . ‖Ěα
j,1‖∞‖f‖1 . 2−δj‖f‖1

And for r = 2, we have by the L∞ estimate of the multiplier (4.3.16), and Plancherel,

∥∥∥TĚαj,1 : `2 7→ `2
∥∥∥ . 2−δj.

We can now interpolate and choose 1 < r < 2 such that 10(2/r− 1) < δ/2 to get the

desired decay. Combining this with the estimate over the norm of TĚαj,2 the proof of

(4.3.18) is complete.

4.5 Major Arcs estimate

We proceed now to prove the more complicated estimate (4.3.19). Recall the definition

of Uj, given by (4.3.5). For s ≥ 0, define U s to be

U s(x, y) =
∑
j≥s/ε

Uj(x, y).

Then, we can write the multiplier Lα,s defined in (4.3.8) as

Lα,s(β) =
∑

(AQ ,
B
Q)∈Rs

S(A/Q,B/Q)U s(α− A/Q, β −B/Q)χs(α− A/Q)χs(β −B/Q).
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Given that the support of χs is contained in [−2 · 10−s−1, 2 · 10−s−1], for fixed α ∈ T,

there is at most one rational αs = A/Q with (A,Q) = 1, 2s−1 ≤ Q ≤ 2s for which

χs(α − A/Q) is non zero. To simplify the notation, we make use of the following

definition

Rα
s = {B/Q ∈ T : (A/Q,B/Q) ∈ Rs, A/Q = αs } .

It is important to say that the subsequent analysis only depends upon the cardinality

of Rα
s , which is at most 22s, and not the value of α. We can rewrite Lα,s as

Lα,s(β) =
∑
B
Q
∈Rαs

S(αs, B/Q)U s(α− αs, β −B/Q)χs(α− αs)χs(β −B/Q).

As in [23], we will make use of a sparse bound for Hilbert space valued singular

integrals. For this, define for fixed α ∈ T the finite dimensional Hilbert space Hα
s =

`2(Rα
s ). Given f ∈ `2, if Modhf(x) = e(hx)f(x) represents the standard modulation

by h, set fs,h := F−1(χ
1/2
s ) ∗Mod−hf . Define the Hα

s -valued function fαs by

fαs :=
{
fs,B/Q : B/Q ∈ Rα

s

}
.

Note that the Fourier transforms f̂s,B/Q(β) = χ
1/2
s (β)f̂(β + B/Q) have disjoint sup-

ports, so by Bessel’s Theorem ‖fαs ‖`2(Hs) ≤ ‖f‖`2 . We have the following simplifica-

tions,

〈TĽα,sf, g〉 =
∑
B
Q
∈Rαs

∑
j≥s/ε

S(αs,
B
Q

)
〈
Uj(α− αs, · − B

Q
)χs(α− αs)χs(· − B

Q
)f̂(·), ĝ(·)

〉

=
∑
B
Q
∈Rαs

∑
j≥s/ε

S(αs,
B
Q

)
〈
Uj(α− αs, ·)χs(α− αs)χ1/2

s (·)f̂(·+ B
Q

), χ1/2
s (·)ĝ(·+ B

Q
)
〉

= χs(α− αs)
∑
B
Q
∈Rαs

∑
j≥s/ε

S(αs,
B
Q

)
〈
Uj(α− αs, ·)f̂s,B/Q, ĝs,B/Q

〉
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= χs(α− αs)
∑
B
Q
∈Rαs

S(αs,
B
Q

)
〈
TǓsfs,B/Q, gs,B/Q

〉
.

ForB/Q ∈ Rα
s , take λB/Q with unit norm and such that λB/Q

〈
TǓsfs,B/Q, fs,B/Q

〉
≥

0, and set f̃αs =
{
λB/Qfs,B/Q : B/Q ∈ Rα

s

}
, then, using the Gauss sum estimate

(4.3.15) and summing over j ≥ s/ε we have

| 〈TĽα,sf, g〉 | . 2−δs
〈
TǓs f̃

α
s , g

α
s

〉
.

Since ‖fαs ‖Hα
s

= ‖f̃αs ‖Hα
s
, then we can replace f̃αs by fαs in the inner product. The next

step is to find a sparse form Λ1 (on Hilbert space valued functions) that dominates

the last inner product. For this, first we write

U s(α− αs, β) =
∑
j≥s/ε

∫
R
e((α− αs)t2)e(−βt)ψj(t) dt =

∫
R
e((α− αs)t2 − βt)

∑
j≥s/ε

ψj(t) dt

The integrand above is supported on |t| ≥ 2bs/εc−2 and by explicit computation∑
j≥s/ε ψj(t) coincides with 1

t
for |t| ≥ 2bs/εc. Therefore, this kernel corresponds

to a Calderón-Zygmund kernel, and we can apply Theorem 4.2.C. As a consequence,

for any 1 < r1 < 2 there is a sparse bilinear form Λr1 such that

| 〈TǓsfαs , gαs 〉 | . Λr1(f
α
s , g

α
s ). (4.5.1)

The implied constant above does not depend on α.

To end the proof, we need the following result

Lemma 4.5.2. Let 1 ≤ r1 < 2 and δ > 0. Let Λr1 be a sparse form over a collection

of intervals all of which have length larger than 10s. Then there exists r satisfying
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r1 < r < 2 such that for all f, g there is a sparse form Λr for which

Λr1(f
α
s , g

α
s ) . 2δs/4Λr(f, g).

The proof of this lemma is a slight modification of the proof of the r1 = 1 result

given at the end of [23] (the value of α doesn’t affect the proof). Ensuring all the

sparse intervals in Λr1 have length at least 10s is achieved by taking ε > 0 small

enough. Combining the estimates, and letting η = 3δ/4, we have

| 〈TĽα,sf, g〉 | . 2−ηsΛr(f, g).

Which proves the major arcs estimate, and therefore, the main theorem.
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CHAPTER 5

SPARSE BOUNDS FOR BOCHNER-RIESZ MULTIPLIERS

(Joint work with Michael Lacey and Maŕıa Carmen Reguera)

5.1 Introduction

We study sparse bounds for the Bochner-Riesz multipliers in dimensions n ≥ 2. The

latter are Fourier multipliers Bδ with symbol (1− |ξ|2)δ+, for δ > 0. That is,

FBδf = (1− |ξ|2)δ+Ff,

where F is a choice of Fourier transform. At δn = n−1
2

, the multiplier is borderline

Calderón-Zygmund, and one has the very sharp bounds of Conde-Alonso, Culiuc, di

Plinio and Ou [18], which we recall in Theorem 5.2.F below. In this paper, we focus

on the super-critical range 0 < δ < n−1
2

, the study of which was initiated by Benea,

Bernicot and Luque [3]. We supply sparse bound for all 0 < δ < n−1
2

, and prove a

sharp range of estimates in dimension n = 2.

Sparse bounds are a particular quantification of the (weak) Lp-bounds for an oper-

ator, which in particular immediately imply weighted and vector-valued inequalities.

The topic has been quite active, with an especially relevant paper being that of Benea,

Bernicot and Luque [3], but also see [5, 18, 21, 36, 46, 47] for more information about

this topic. We set notation for the sparse bounds. Call a collection of cubes S in Rn

sparse if there are sets {ES : S ∈ S} which are pairwise disjoint, ES ⊂ S and satisfy

|ES| > 1
4
|S| for all S ∈ S. For any cube Q and 1 ≤ r <∞, set 〈f〉rQ,r = |Q|−1

∫
Q
|f |rdx.
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Then the (r, s)-sparse form ΛS,r,s = Λr,s, indexed by the sparse collection S is

ΛS,r,s(f, g) =
∑
S∈S

|S|〈f〉S,r〈g〉S,s. (5.1.1)

Given a sublinear operator T , and 1 ≤ r, s < ∞, we set ‖T : (r, s)‖ to be the

infimum over constants C so that for all bounded compactly supported functions f, g,

|〈Tf, g〉| ≤ C sup Λr,s(f, g), (5.1.2)

where the supremum is over all sparse forms. It is essential that the sparse form be

allowed to depend upon f and g. But the point is that the sparse form itself varies

over a class of operators with very nice properties.

The study of sparse bounds for the Bochner-Riesz multipliers was initiated by

Benea, Bernicot and Luque [3], who established sparse bounds for a restricted range

of parameters δ, r and s below. We extend their results, using an alternate, less

complicated method of proof, yielding results for all δ > 0. In two dimensions our

main result is as follows.

Theorem 5.1.3. Let n = 2, and 0 < δ < 1
2
. Let R(2, δ) be the open trapezoid with

vertices

v2,δ,1 = (1−2δ
4
, 3+2δ

4
), v2,δ,2 = (1+6δ

4
, 3+2δ

4
),

v2,δ,3 = (3+2δ
4
, 1+6δ

4
), v2,δ,4 = (3+2δ

4
, 1−2δ

4
).

(See Figure 5.1.) There holds

‖Bδ : (r, s)‖ <∞, (1
r
, 1
s
) ∈ R(2, δ). (5.1.4)

Moreover, the inequality fails for 1
r

+ 1
s
> 1, with (1

r
, 1
s
) not in the closure of R(2, δ).
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1
r

1
s

v3

v2

1
4

3
4

1
4

3
4

(1, 1)

Figure 5.1: The trapezoid R(2, δ) of Theorem 5.1.3. The Bochner-Riesz bounds are
sharp at the indices 1

p
= 3

4
, 1

4
, which corresponds to the Carleson-Sjölin bounds. The

sparse bounds for Bδ hold for all (1
r
, 1
s
) inside the dotted trapezoid, and fails outside

the trapezoid. We abbreviate v2,δ,2 = v2, and similarly for v3.

As δ increases to the critical value of δ = 1
2
, the trapezoid R(2, δ) increases to the

upper triangle with vertices (1, 0), (0, 1) and (1, 1). This is the full arrange allowed

for the case of δ = 1
2
, see Theorem 5.2.F.

In the next section, we give the full statement of the results in all dimensions.

The remainder of the paper is taken up recalling some details about sparse bounds,

the (short) proof of the main results, and then drawing out the weighted corollaries.

5.2 The Full Statement

In dimensions 3 and higher, we only have partial information about the Bochner-Riesz

conjecture. Nevertheless, we show that from this partial information one can obtain

sparse bounds as a consequence.

Conjecture 5.2.1. [Bochner-Riesz Conjecture] We have Bδ : Lp(Rn) 7→ Lp(Rn) if

n
∣∣1
p
− 1

2

∣∣ < 1
2

+ δ, δ > 0. (5.2.2)
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This has an equivalent formulation, in terms of ‘thin annuli,’ which is the form

we prefer. Let 1[−1/4,1/4] ≤ χ ≤ 1[−1/2,1/2] be a Schwartz function, and set Sτ to be

the Fourier multiplier with symbol χ((|ξ| − 1)/τ).

Conjecture 5.2.3. Subject to the condition n
∣∣1
p
− 1

2

∣∣ < 1
2
, there holds

‖Sτ‖Lp 7→Lp .ε 1, 0 < τ < 1. (5.2.4)

Above, we use the notation A(τ) .ε B(τ) to mean that for all 0 < ε < 1, there

is a constant Cε so that uniformly in 0 < τ < 1, there holds A(τ) ≤ Cετ
−εB(τ).

It is typical in these types of questions that one expects losses in τ that are of a

logarithmic nature at end points. This issue need not concern us.

The Theorem below takes as input partial information about the Bochner-Riesz

Conjecture and deduces a range of sparse bounds. For 0 < δ < n−1
2

, let R(n, p0, δ)

be the open trapezoid with vertexes

vn,δ,1 = ( 1
p0

(1− 2δ
n−1

), 1
p′0

+ 1
p0

2δ
n−1

), vn,δ,2 = ( 1
p0

+ 1
p′0

2δ
n−1

, 1
p′0

+ 1
p0

2δ
n−1

), (5.2.5)

vn,δ,3 = vn,p0,2, vn,δ,4 = vn,p0,1, where (a, b) = (b, a). (5.2.6)

Theorem 5.2.7. Assume dimension n ≥ 2. And let 1 < p0 < 2 be such that the

estimate (5.2.4) holds. Then, for 0 < δ < n−1
2

, the following sparse bound hold.

‖Bδ : (r, s)‖ <∞, (1
r
, 1
s
) ∈ R(n, p0, δ). (5.2.8)

Moreover, for the critical value of p = p(δ) given by n
pδ

= n+1
2

+δ, the inequality above

fails for 1
r

+ 1
s
> 1, with (1

r
, 1
s
) not in the closure of R(n, pδ, δ).

This Theorem contains Theorem 5.1.3, since the Bochner-Riesz conjecture holds

in dimension 2, as was proved by Carleson-Sjölin [11]. (Also see Córdoba [20].) In

dimensions n ≥ 3, the best results are currently due to Bourgain-Guth, [8], but also
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see Sanghyuk Lee [53]. We summarize the best known information in

Theorem 5.2.D. These positive results hold for the Bochner-Riesz Conjecture.

1. [11] In the case of n = 2, (5.2.2) holds.

2. [8, Thm 5] In the case of n ≥ 3, the condition (5.2.2) holds if q = max(p, p′)

satisfies

q >


24n+3

4n−3
n ≡ 0 mod 3

2n+1
n−1

n ≡ 1 mod 3

4(n+1)
2n−1

n ≡ 2 mod 3

(5.2.9)

Concerning sparse bounds for the Bochner-Riesz multipliers, the general result

of Benea, Bernicot and Luque [3] is a bit technical to state in full generality. We

summarize it as follows.

Theorem 5.2.E. These two results hold.

1. [3, Thm 1] In dimension n = 2, for δ > 1
6
, we have ‖Bδ : (6

5
, 2)‖ <∞.

2. [3, Thm 3] In dimensions n > 3, for all δ > 0, there is a 1 < p(δ) < 2 for

which we have ‖Bδ : (p(δ), 2)‖ < ∞. (Using our notation, the sparse bound

holds when the second coordinate of vn,δ,2 is 1
2
.)

Our result provides sparse bounds for the Bochner-Riesz multipliers, for all δ > 0,

and all p in a non-trivial interval around 2. It is a routine exercise to verify that a

consequence of Theorem 5.1.3 that we have

‖Bδ : (2, 6
5
)‖ <∞, n = 2, δ > 1

6
. (5.2.10)

Indeed, using the notation Theorem 5.1.3, we have v2,1/6,2 = (1
2
, 5

6
). This is the two

dimensional result of [3].
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The interest in sparse bounds, besides their quantification of Lp bounds, is that

they quickly deliver weighted and vector-valued inequalities. In many examples, these

estimates are sharp [5,18,45,56], or dramatically simplify existing proofs, and provide

weighted inequalities in settings where none were known before [44, 46, 50]. The

mechanism to do this is already well represented in the literature [5], and was initiated

by Benea, Bernicot and Luque [3] in the setting of Bochner-Riesz multipliers. We

point the interested reader there for more information about weighted estimates in

the Bochner-Riesz setting.

That our result and that of [3] coincide at the case of r = 2 is not so surprising.

They approach the problem by using sharp results about spherical restriction, as there

is a close connection between the Bochner-Riesz Conjecture and spherical restriction,

subject to an index in the restriction question being 2. Our approach is more direct,

working essentially with the ’single scale’ version of the Bochner-Riesz Conjecture

directly, through Conjecture 5.2.3. In both cases, we use the ‘optimal’ unweighted

estimates, and derive the sparse bounds.

Concerning the critical index δn = n−1
2

, it is well known that the Bochner-Riesz

operator is borderline Calderón-Zygmund. Hence one expects much better sparse

bounds. The best sharp bound is due to Conde-Alonso, Culiuc, di Plinio and Ou

[18]. It shows not only sparse bounds in the upper triangle of the (1
r
, 1
s
) plane, but

also a quantitative estimate at the vertex (1, 1).

Theorem 5.2.F. [18] In all dimensions n ≥ 2, we have

‖Bδn : (1, 1 + ε)‖ . ε−1, 0 < ε <∞.

Note that the trapezoid of our theorem increases to the upper triangle, as δ in-

creases to the critical index δn = n−1
2

. In that sense, our results ‘interpolates’ the

better bounds known in the critical case. We do not recover Theorem 5.2.F. Indeed
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we can’t as the proof is intrinsically multiscale, whereas ours is not.

The sparse bounds imply vector-valued and weighted inequalities for the Bochner-

Riesz multipliers. The weights allowed are in the intersection of certain Muckenhoupt

and reverse Hölder classes. The inequalities we can deduce are strongest at the vertex

vn,δ,2, using the notation of (5.2.5). Indeed, the weighted consequence is the strongest

known for the Bochner-Riesz multipliers. The method of deduction follows the model

of arguments in [3, §7] and [5, §6], and so we suppress the details.

We conclude with these remarks.

1. Seeger [72] proves an endpoint weak-type result for the Bochner-Riesz operators

in the plane. The sparse refinement of that is given Kesler and one of us in [40].

2. Extensions of these results to maximal Bochner-Riesz operators is hardly straight

forward. For relevant norm inequalities, see [9, 53,75].

3. Bak [2] proves endpoint estimates for negative index Bochner-Riesz multipliers.

(Also see Gutiérrez [31].) Aside from endpoint issues, it would be easy to derive

sparse bounds for these operators using the techniques of this paper. The Ap,q

weighted consequences would be new, it seems. The endpoint issues would be

interesting.

4. It is also of interest to obtain weighted bounds that more explicitly involve the

Kakeya maximal function, as is done by Carbery [9] and Carbery and Seeger

[10]. This would require substantially new techniques.

Acknowledgment. We benefited from conversations with Andreas Seeger and Richard

Oberlin, as well as careful readings by referees.
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5.3 Background on Sparse Forms

We collect some facts concerning sparse bounds. It is a useful fact that given bounded

and compactly supported functions, there is basically one form that controls all others.

Proposition 5.3.1. [47, §4] Given 1 ≤ r, s < ∞, and bounded and compactly sup-

ported functions f, and g, there is a single sparse form ΛS0,r,s for which

sup
S

ΛS,r,s(f, g) . ΛS0,r,s(f, g).

The implied constant is only a function of dimension.

Second, closely related sparse forms are also controlled by the sparse forms we

defined at the beginning of the paper. For a cube Q, and 1 ≤ r <∞, set a non-local

average to be

〈〈f〉〉Q,r =
[
|Q|−1

∫
|f(x)|r[1 + dist(x,Q)/|Q|]−(n+1)dx

] 1
r
. (5.3.2)

And then define a sparse form Λ′S,r,s using the non-local averages above in place of

〈f〉Q,r. These forms are not essentially larger.

Proposition 5.3.3. [23, Lemma 2.8] For bounded and compactly supported functions

f, g, and 1 ≤ r, s <∞, we have

sup
S

Λ′S,r,s(f, g) . sup
S

ΛS,r,s(f, g).

A central point is that the selection of the ’optimal’ sparse form in Proposi-

tion 5.3.1 is certainly non-linear. But at the same time, one would ideally like to

interpolate sparse bounds. We do not know how to do this in general, but the anal-

ysis of the operators Sτ , being ‘single scale’, places us in a situation where we can

interpolate.
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Using the notation of (5.3.2), for 0 < τ < 1, set

Λ̃τ,r,s(f, g) =
∑
Q∈D

1≤`Q≤ 1
τ1+η

〈〈f〉〉Q,r〈〈g〉〉Q,s|Q|, 0 < η < 1. (5.3.4)

Above, D denotes the dyadic cubes in Rn, and `Q = |Q| 1n is the side length of Q.

That is, the sum is over all dyadic subcubes with side length between 1 and 1/τ 1+η.

We have this interpolation fact.

Proposition 5.3.5. Let 1 ≤ rj, sj ≤ ∞ for j = 0, 1 and fix 0 < τ < ∞. Suppose

that for some linear operator T we have

|〈Tf, g〉| ≤ CjΛ̃τ,rj ,sj(f, g), j = 0, 1, (5.3.6)

for all smooth compactly supported functions f, g. Then, for 0 < θ < 1, we have

|〈Tf, g〉| ≤ Cθ
0C

1−θ
1 Λ̃τ,rθ,sθ(f, g), (5.3.7)

where 1
rθ

= θ
r0

+ 1−θ
r1

, and similarly for sθ.

The proof is a variant of Riesz-Thorin interpolation, but we include some details,

as the proposition is new in this context, as far as we know.

Proof. Let us recast the sparse bound in a slightly more general format. For cubes

Q, set

〈〈f〉〉λ,Q,r =
[ 1

|Q|

∫
|f(x)|r

(1 + dist(x,Q)/|Q|)n+1
dλ(x)

] 1
r
.

Above, λ is some Borel measure. Fix a finite collection of cubes Q, and consider a

‘sparse form’ given by

Br,s(f, g) = BQ,λ,w,r,s(f, g) =
∑
Q∈Q

w(Q){f}λ,Q,r{g}λ,Q,s. (5.3.8)
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Above w : Q 7→ (0,∞) is a non-negative function. The sparse forms that we consider

are special instances of these more general forms.

Appeal to Hölder’s inequality. Given r0 < r1 and s0 < s1, we have

Brθ,sθ(f, g) ≤ Br0,s0(f, g)θBr1,s1(f, g)1−θ, 0 < θ < 1

where 1
rθ

= θ
r0

+ 1−θ
r1

, and similarly for sθ.

Let us consider a bilinear form β for which we have

|β(f, g)| ≤ AjBrj ,sj(f, g), j = 0, 1.

By multiplying f , g and the measure λ by various constants, we can assume that

Brj ,sj(f, g) = 1, j = 0, 1.

For 0 < θ < 1, consider the holomorphic function F (s) = β(fs, gs), where

fs = sgn(f)|f |(1−s)
rθ
r0

+s
rθ
r1 ,

and similarly for gs. The function F (s) is of at most exponential growth in the strip

0 ≤ Re s ≤ 1. Namely,

|F (s)| ≤ Br1,s1(fs, gs) ≤ CeC|s|, 0 < Re s ≤ 1.

for some finite positive constant C. This is because f and g are bounded functions,

and we have a finite collection of cubes Q. Our deduced bounds are independent of

these a priori assumptions. It also holds that |F (j+ iσ)| ≤ Aj, for j = 0, 1. It follows

68



from Lindelöf’s Theorem that F is log-convex on [0, 1]. In particular,

|F (θ)| = |β(f, g)| ≤ Aθ0A
1−θ
1 .

From this, we conclude our proposition.

5.4 Proof of the Sparse Bounds

The connection between the Bochner-Riesz and the Sτ multipliers is well-known, and

central to standard papers in the subject like [9, 20]. We briefly recall it here. For

each 0 < δ < n−1
2

, we have

Bδ = T0 +
∞∑
k=1

2−kδ Dil1−2−k S2−k ,

where these conditions hold: First, T0 is a Fourier multiplier, with the multiplier being

a Schwartz function supported near the origin. The operator Dils f(x) = f(x/s) is a

dilation operator. And, each S2−k is a Fourier multiplier with symbol χk(2
k
∣∣|ξ| − 1

∣∣),
where the χk satisfy a uniform class of derivative estimates.

The point is then to show this result, in which we exploit the openness of the

condition we are seeking to prove.

Theorem 5.4.1. Assume dimension n ≥ 2. And let 1 < p0 < 2 be such that the

estimate (5.2.4) holds. Then, the following sparse bounds hold. For all (1
r
, 1
s
) ∈

R(n, p0, δ), there is a κ = κ(r, s) > 0 so that

‖Sτ : (r, s)‖ .ε τ−δ+κ, 0 < τ < 1. (5.4.2)

The papers of Córdoba [19,20] also proceeds by analysis of the operators Sτ . Also

see Duoandikoetxea [27, Chap 8.5]. Write Sτf = Kτ ∗ f . The basic properties of this

operator and kernel that we need are these.
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Lemma 5.4.3. For 0 < τ < 1
2
, these properties hold.

1. We have this estimate for the kernel Kτ . For all 0 < η < 1 and N > 1,

|Kτ (x)| . τ ·


[1 + |x|]−n−1

2 |x| < Cτ−1−η

|x| 1−n2 [τ |x|]−N otherwise.

(5.4.4)

The implied constants depend upon 0 < η < 1, and N > 1.

2. ‖Sτ‖17→1 . τ−
n−1
2 .

Proof. The second estimate follows from the first. The first is seen this way. Let σ

denote normalized Haar measure on the sphere Sn−1 ⊂ Rn. Then, recall [73, Chap

VIII.3], that the Fourier transform of σ has an expression in terms of Bessel functions

as follows.

d̂σ(x) =

∫
Sn−1

e−2πix·ξdσ(ξ) = 2π|x|
2−n
2 Jn−2

2
(2π|x|).

The Bessel function has an expansion [73, Chap VIII.1.4]

Jn−2
2

(s) =
√

2
πs

cos
(
s− π n−3

4

)
+O(s−3/2), s→∞.

It is preferable to write

Jn−2
2

(s) =
√

1
s
[e+isa+(s) + e−isa−(s)], s > 0 (5.4.5)

where ∣∣ dm
dsm

a±(s)
∣∣ . [1 + s]−m, m ∈ N, s > 0. (5.4.6)

This follows from the asymptotic expansion of the Bessel functions.

Turning to our estimates for Kτ (x), it is clear that |Kτ (x)| ≤ ‖χ(τ−1||x|−1|)‖1 .
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τ , since we are only estimating the volume of a thin annulus. Thus, we only need to

consider |x| & 1 below. In terms of the Bessel function, we have

Kτ (x) =

∫
χ(τ−1||ξ| − 1|) eix·ξ dξ

= n

∫
Sn−1

∫ 2

0

χ(τ−1|r − 1|) eirx·ξ dσ(ξ) rn−1 dr

= 2nπ|x|
2−n
2

∫ 2

0

χ(τ−1|r − 1|)r
n
2 Jn−2

2
(2πr|x|) dr

(5.4.7)

Using (5.4.5), this last expression is the sum of two terms, both of a similar nature.

The first term is

2nπ|x|
1−n
2

∫ 2

0

χ(τ−1|r − 1|)r
n−1
2 a+(r|x|)eir|x| dr.

The integral above is obviously dominated by τ , and this is the estimate that we use

for 1 ≤ |x| < τ−1−η. For |x| ≥ τ−1−η, we can employ the standard integration by

parts argument and the derivative conditions in (5.4.6).

The decay condition in (5.4.4) reveal that for fixed τ , we need not be concerned

with the full complexity of the sparse bound. We can rather work with this modified

definition. Recall the sparse form Λ̃τ,r,s defined in (5.3.4), where we restrict cubes to

have side length at least one, and no more than τ−1−η. And for which we have the

interpolation estimate of Proposition 5.3.5. We define ‖T : (r, s, τ)‖ to be the best

constant C in the inequality

|〈Tf, g〉| ≤ CΛ̃τ,r,s(f, g), (5.4.8)

the inequality holding uniformly over all bounded and compactly supported functions

f, g.

Lemma 5.4.9. Assume dimension n ≥ 2. And let 1 < p0 < 2 be such that the
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estimate (5.2.4) holds. These sparse bounds hold, for all 0 < τ, η < 1.

‖Sτ : (1, 1, τ)‖ . τ−
n−1
2
−nη, (5.4.10)

‖Sτ : (1,∞, τ)‖ . τ−
n−1
2
−nη, (5.4.11)

‖Sτ : (p0, p
′
0, τ)‖ . τ−η (5.4.12)

The implied constants depend upon 0 < η < 1.

Proof. It is in the last condition (5.4.12) that the hypothesis is important. Note

that if f, g are supported on a cube Q of side length τ−1−η, then we have from the

assumption that the Bochner-Riesz estimate (5.2.4) holds for p = p0,

|〈Sτf, g〉| . τ−ε‖f‖p0‖g‖p′0 .ε 〈f〉Q,p0〈g〉Q,p′0 |Q|.

In view of the decay beyond the scale τ−1−η in (5.4.4), and the global form of the

average in (5.3.4), we can easily complete the proof of the claimed bound. (And, we

only need to use the dyadic cubes of scale τ−1−η, rather than the full range of scales

in (5.3.4).)

In a similar way, if f and g are supported on a cube of side length τ−1−η, one can

use the kernel decay in (5.4.4) to see that

|〈Sτf, g〉| ≤ ‖Kτ (x)‖1‖f‖1‖g‖∞

. τ−
n−1
2
−nη‖f‖1‖g‖∞ . τ−

n−1
2
−nη〈f〉Q,1〈g〉Q,∞|Q|.

And from this, we see that (5.4.11) holds.

The case of (5.4.10) is a little more involved, and requires that we use all the

scales in our modified sparse operator (5.3.4), whereas the previous cases did not.

Very briefly, we can dominate Kτ by a positive Calderón-Zygmund kernel, with
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Calderón-Zygmund norm at most τ−
n−1
2
−nη. From this, and the known results for

sparse domination of Calderón-Zygmund operators, the bounds (5.4.10) follow. To

be more explicit, let ϕ = 1|x|<2, and set ϕk(x) = 2−knϕ(x2−k). Then, we have

|Kτ (x)1|x|<τ−1−η | . τ−
n−1
2

∑
k:1≤2k≤τ−1−η

ϕk(x).

Convolution with ϕk is an average on scale 2k, so that

∣∣∣∫ ∫ Kτ (x− y)1|x−y|<τ−1−ηf(y)g(x) dx dy
∣∣∣ . τ−

n−1
2 Λ̃τ,1,1(f, g).

But, the same bound holds for the remainder of the kernel Kτ , due to the decay

estimates in (5.4.4). This completes the proof.

Proof of Theorem 5.4.1. We in fact show that for 0 < δ < 1 and (1
r
, 1
s
) ∈ R(n, p0, δ),

‖Sτ : (r, s, τ)‖ . τ−δ−η, 0 < τ, η < 1. (5.4.13)

Above δ is fixed, but τ and η are allowed to vary. (The implied constant depends

upon η.) This proves our Theorem, since for fixed (1
r
, 1
s
) ∈ R(n, p0, δ), we have

(1
r
, 1
s
) ∈ R(n, p0, δ − κ), for a choice of 0 < κ(r, s) < δ.

The bounds in (5.4.13) are self-dual and can be interpolated, and so it suffices to

verify the bounds above at the vertexes v1 = vn,δ,1 and v2 = vn,δ,2 of R(n, p0, δ), as

defined in (5.2.5). But this is again an interpolation. To get the point v1, interpolate

between the sparse bound (5.4.12) and (5.4.10). For the point v2, use (5.4.12) and

(5.4.11). See Figure 5.2.
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1
r

1
s

0

1
p0

1
p′0

n−1
2 (1, 1)

n−1
2

v1 v2

Figure 5.2: The interpolation argument for the sparse bounds. We have the sparse
bounds ( 1

p0
, 1
p′0

), (1, 0), and (1, 1) as well as their duals. The sparse bound at ( 1
p0
, 1
p′0

)

is, up to logarithmic terms, uniformly bounded in 0 < τ < 1
2
, while the others are

bounded by τ−
n−1
2 . Interpolation, along the dotted lines, to the circles, yields sparse

bounds with growth τ−δ, for 0 < δ < n−1
2

.

5.5 Sharpness of the sparse bounds

We discuss sharpness of the sparse bounds in Theorem 5.2.7. Recalling that p(δ)

is the critical index for the Bochner-Riesz operator Bδ, we cannot have any sparse

bound (r, s), where 1 ≤ r < pδ, as that would imply the boundedness of Bδ on Lp,

for r < p < p(δ).

It remains to show sharpness of the (r, s) sparse bound when pδ < r, s < p′δ.

This follows from a standard example. We work in dimensions n ≥ 2, Consider the

rectangles R and R̃ defined by

R =
[−1
λ
, 1
λ

]
×
[
−c√
λ
, c√

λ

]n−1

; R̃ = R + 1
λ
(1, 0, . . . , 0).

Above 0 < c < 1 is a small dimensional constant. Define the functions

f(x) = ei|x|1R(x), g(x) = e−i|x|1R̃(x).
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Using well known asymptotic estimates for the Bochner Riesz kernel, we have

|〈Bδf, g〉| '
∣∣∣∫
R̃

∫
R

ei(|x−y|−|x|+|y|)

(1 + |x− y|)n−1
2

+δ
dy dx

∣∣∣ (5.5.1)

' |R|2λ
n−1
2

+δ ' λ−
n+1
2

+δ (5.5.2)

The kernel estimates we are referencing are analogs of (5.4.5), which has two expo-

nential terms in it. Above, one can directly verify that the phase function satisfies

∣∣|x− y| − |x|+ |y|∣∣ . c, x ∈ R̃, y ∈ R. (5.5.3)

This leads to the estimate above. There is a second exponential term with phase

function

−|x− y| − |x|+ |y| ' −2|x− y|, x ∈ R̃, y ∈ R. (5.5.4)

So, that term has substantial cancellation.

Recall that the largest value of sparse form ΛS,r,s(f, g) is obtained by a single

sparse form. For the functions f, g above, it is clear that this largest form is obtained

by taking S to consist of only the smallest cube Q that contains the support of both

f and g. That cube has `Q ' λ−1. And then,

|Q|〈f〉Q,r〈g〉Q,s ' λ−n+n−1
2

( 1
r

+ 1
s

). (5.5.5)

We see that the (r, s) sparse bound for Bδ implies that (5.5.2) should be less than

(5.5.5) for all small λ. By comparing exponents, we see that

−n+1
2

+ δ ≥ −n+ n−1
2

(1
r

+ 1
s
).

The case of equality above is the line that defines the top of the trapezoid R(n, p(δ), δ),

as is verified by inspection.
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5.6 Weighted Consequences

The sparse bounds imply vector-valued and weighted inequalities for the Bochner-

Riesz multipliers. The weights allowed are in the intersection of certain Muckenhoupt

and reverse Hölder classes. The inequalities we can deduce are strongest at the vertex

vn,δ,2, using the notation of (5.2.5). Indeed, the weighted consequence is the strongest

known for the Bochner-Riesz multipliers. The method of deduction follows the model

of arguments in [3, §7] and [5, §6], as well as [46, §6]. We tread lightly around the

details.

It is also of interest to obtain weighted bounds that more explicitly involve the

Kakeya maximal function, as is done by Carbery [9] and Carbery and Seeger [10].

We leave to the future to obtain sparse variants of these latter results.

Recall that a weight w is in the Muckenhoupt Ap class if it has a density w(dx) =

w(x)dx, with w(x) > 0, which is locally integrable, and σ(x) = w(x)−
1
p−1 is also

locally integrable, and

[w]Ap = sup
Q
〈w〉Q〈σ〉p−1

Q <∞, (5.6.1)

where w(Q) =
∫
Q
w(dx), and the supremum is over all cubes. We use the standard

extension to p = 1, namely

[w]A1 =
∥∥∥Mw

w

∥∥∥
∞

We set Aρp = {wρ : w ∈ Ap}.

We will set Bδ,p to be the class of weights w such that we have the inequality

‖Bδ‖Lp(w)7→Lp(w). (5.6.2)

Below, we will focus on qualitative results. All results can be made entirely quantita-

tive, but given the incomplete information that we have the Bochner-Riesz conjecture,

or even the full range of sparse bounds in two dimensions, we do not pursue the quan-
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titative bounds at this time.

The best known results concerning the weighted estimates for the Bochner-Riesz

multipliers in the category of Ap classes, are below. We emphasize that some of these

hold for the maximal Bochner-Riesz multiplier, which we are not considering in this

paper.

Theorem 5.6.G. 1. (Christ, [15]) We have the inclusion below valid in all n ≥ 2.

A
1+2δ
n

1 ⊂ Bδ,2,
n− 1

2(n+ 1)
< δ <

n− 1

2
. (5.6.3)

2. (Carro, Duoandikoetxea, Lorente [12]) We have the inclusion below, valid in all

dimensions n ≥ 2.

A
2δ
n−1

2 ⊂ Bδ,2. (5.6.4)

The second result is a consequence of the (1
2

+ 2δ
n−1

, 1
2

+ 2δ
n−1

) sparse bound. This

latter sparse bound can be deduced from the the (trivial) (2, 2, τ) and (1, 1, τ) sparse

bounds, as defined in Lemma 5.4.9. That is, (5.6.4) has little to do with the Bochner-

Riesz operators. (The authors of [12] note a similar argument.)

We are able to deduce this improvement of (5.6.3), in that it applies for all 0 <

δ < n−1
2

, and increases the integrability of the Bochner-Riesz bound. Finally, it

approximates the known estimate at the critical index, see Theorem 5.2.F, and the

earlier result of Vargas [77].

Theorem 5.6.5. In all dimensions n ≥ 2, using the notation of (5.2.5), write the

vertex vn,δ,2 = (1
r
, 1
s
). We have

A
s−p(s−1)

s
1 · A1− p

r
1 ⊂ Bδ′,p, 0 < δ < δ′ < n−1

2
, r < p < s′. (5.6.6)
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In particular, for n = 2, we have the explicit value v2,δ,2 = (1+6δ
4
, 3+2δ

4
), and

A
1−p 1−2δ

4
1 · A1−p 1+6δ

4
1 ⊂ Bδ′,p, 0 < δ < δ′ < 1

2
, 4

1+6δ
< p < 4

1−2δ
. (5.6.7)

This contrasts to [3, Theorem 14], which is restrictive in the range of 0 < δ < n−1
2

that are allowed. (See [3, Corollary 16] for an example of the kind of vector-valued

consequences that can be derived.) We use the vertex vn,δ,2, as it is the strongest sparse

bound we have. The proof is however elementary. We have this known proposition.

Proposition 5.6.8. If a linear operator T satisfies a (r, s) sparse bound, with 1 ≤

s < r, we then have

‖T : Lp(wρ) 7→ Lp(wρ)‖ <∞, w ∈ A
s−p(s−1)

s
1 A

1− p
r

1 , r < p < s′.

Proof of Theorem 5.6.5. It is a consequence of [5, Prop. 6.4], that the sparse bound

assumption implies that

‖T : Lp(w) 7→ Lp(w)‖ <∞, r < p < s′

provided the weight w is in

w ∈ A p
r
∩RH(s′/p)′ = A

1/(s′/p)′

1 · A1− p
r

1

Above, RHρ denotes the reverse Hölder class of weights of index 1 < ρ <∞, and the

equality above is classical. By direct calculation, 1/(s′/p)′ = s−p(s−1)
s

.
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