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SUMMARY

The information-theoretic foundation of multiple-input multiple-output (MIMO) sys-

tems was laid out by Foschini, Gans, and Telatar [21, 74], who have showed that multi-

ple antennas at the transmitter and the receiver provide significant capacity enhancement

over single-antenna systems. Spatial diversity provided by multiple antennas enhances the

throughput and reliability of wireless communications [83]. To exploit the enhanced spec-

tral efficiency, space-time coding has been designed to achieve a specific tradeoff between

diversity and multiplexing [23,72,73]. Most work on space-time coding deals with the case

where no knowledge of the forward channel is available to the transmitter.

In a MIMO system, if the transmitter has perfect knowledge of the underlying chan-

nel state information (CSI), power allocation to the right singular subspace of the channel

matrix can be used to achieve a higher channel capacity compared to transmission without

CSI [27]. When reciprocity of the wireless channel does not hold, as in frequency-division

duplex (FDD), perfect CSI at the transmitter requires a high-rate feedback channel, which

may not be practical, particularly in fast time-varying environments. Thus, the identifica-

tion and utilization of partial CSI at the transmitter are important issues.

Much work has been devoted to identifying the benefits of partial CSI at the transmitter

and the design of optimal transmission schemes to exploit it. For example, when only

the statistics of the channel state are available at the transmitter, an optimal transmit

covariance matrix can be designed to achieve higher capacity than transmission without any

CSI [76,85,86]. Techniques for attaining partial CSI have also been proposed [44,53,54].

This thesis is focused on partial CSI acquisition and utilization techniques for MIMO

channels. The nature of the CSI feedback problem is a quantization of the underlying matrix

channels. We propose a feedback algorithm for tracking the dominant channel subspaces

for MIMO systems in a continuously time-varying environment. We exploit the correlation

between channel states of adjacent time instants and quantize the variation of channel states.

xi



Specifically, we model a subspace as one point in a Grassmann manifold, treat the variations

in principal right singular subspaces of the channel matrices as a piecewise-geodesic process

in the Grassmann manifold, and quantize the velocity matrix of the geodesic.

As a demonstration of optimal transmitter design given partial CSI feedback, we de-

sign a complexity-constrained MIMO OFDM system where the transmitter has knowledge

of channel correlations. The transmitter is constrained to perform at most one inverse

Discrete Fourier Transform (IDFT) per OFDM symbol on the average. We show that

in the multiple input, single output case, time domain beamforming can be used to do

two-dimensional eigen-beamforming. For the MIMO case, we derive design criteria for the

transmitter beamforming and receiver combining weighting vectors and show some subop-

timal solutions.

Most previous papers on CSI feedback did not consider uncertainties in the feedback

process, such as unexpected delay or error in the feedback channel. Such uncertainties exist

in reality and ignoring them results in suboptimal algorithms. We consider channel mean-

feedback with an unknown delay and propose a broadcast approach that is able to adapt

to the quality of the feedback.

Having considered CSI feedback problems where the receiver tries to convey its attained

CSI to the transmitter, we turn to a different problem; namely, noncoherent coding design

for fast fading channels, where the receiver does not have reliable CSI. Unitary space-time

codes [31,82] and training based schemes [16] have been proposed historically. We propose a

data-dependent superimposed training scheme to improve the performance of training based

codes. The transmitter is equipped with multiple training sequences and dynamically selects

a training sequence for each data sequence to minimize channel estimation error. The set of

training sequences are optimized to minimize pairwise error probability between codewords.

xii



CHAPTER I

INTRODUCTION

1.1 MIMO Wireless Communications

The biggest challenge for a reliable wireless communication system is to combat multipath

fading. Spatial diversity introduced by deploying multiple antennas at the transmitter

and/or the receiver is an effective technique to overcome the fading effect. In addition

to reliability improvement through diversity, a MIMO system can also increase system

throughput by transmitting multiple data streams. The result of improved reliability and/or

throughput [83] is enhanced spectral efficiency and higher channel capacity.

The information-theoretic foundation of MIMO systems was laid out by Foschini, Gans,

and Telatar [21, 74], who have shown that multiple antennas at the transmitter and the

receiver provide significant capacity enhancement over single-antenna systems. To exploit

MIMO channel capacity, space-time coding has been designed to achieve a specific tradeoff

between diversity and multiplexing [23,72,73].

Figure 1: Diagram of a MIMO system.

Fig. 1 illustrates a MIMO channel. The complex baseband equivalent of a flat-fading

MIMO channel with Nr receive antennas and Nt transmit antennas can be expressed as

y = Hx + n, (1)

where H is an Nr ×Nt complex channel transfer matrix, x and y are the Nt×1 and Nr ×1

1



transmit and receive vectors, respectively. The vector n is an Nr × 1 additive noise vector,

distributed as CN (0, σ2I), i.e., complex Gaussian with zero-mean and covariance matrix

σ2I. The noise is independent of the transmit signal.

As shown by Telatar [74], if the receiver has perfect CSI, for fixed H, among all input

distributions with a given covariance matrix Q, the Gaussian distribution x ∼ CN (0, Q)

maximizes the mutual information between x and y, which is given by

log det

(
I +

1

σ2
HQHH

)
, (2)

where A ∼ B means that A is distributed as B.

For Rayleigh fading rich scattering channels, the entries of channel matrix H are inde-

pendent and identically distributed (i.i.d.) Gaussian random variables with zero-mean. The

ergodic capacity for random channel matrices is

Cerg = E

{
log det

(
I +

1

σ2
HQHH

)}
, (3)

where the expectation is with respect to the channel matrices. Information theoretic results

[21] have shown that the ergodic capacity increases linearly as the minimum of the number

of receive and transmit antennas at high signal-to-noise ratios.

1.2 OFDM Systems

In a wideband wireless system, the channel shows frequency-selectivity, and the delay spread

of the channel impulse response causes intersymbol interference (ISI), which is a challenge

for the designers of single carrier communication systems. Orthogonal frequency division

multiplexing (OFDM) [3] is a promising technology for high rate data transmission in wide-

band wireless systems, because it can mitigate the effects of frequency selectivity and ISI.

OFDM systems achieve this mitigation by transmitting data symbols on parallel mutually

orthogonal subchannels in the frequency domain. OFDM has been adopted as the basis

of several wireless LAN standards such as ETSI-BRAN HIPERLAN/2, IEEE 802.11a, and

IEEE 802.11n. OFDM is also being considered as a promising candidate for future genera-

tion high-speed digital communication systems such as IEEE 802.16e (Mobile WiMAX) [77].
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Multiple antennas can be used with OFDM to improve system performance [38]. Tra-

ditionally, subcarrier based beamforming and combining are used [60]. Since the MIMO

channels on different subcarriers are different, beamforming and combining vectors are dif-

ferent on each subcarrier. Consequently, each antenna requires a separate DFT or IDFT

operation, resulting in great system complexity, especially when the number of deployed

antennas is large.

1.3 Closed-Loop MIMO Systems

Most work on space-time coding deals with the case where no knowledge of the forward

channel is available to the transmitter. But, if the transmitter has perfect CSI, power

allocation to the right singular subspace of the channel matrix can be used to achieve a

higher channel capacity compared to transmission without CSI [27].

To illustrate the benefit of perfect CSI, we first consider the following multiple-input

single-output (MISO) channel,

y = hx + n, (4)

where the received signal y and noise sample n are scalars, and the channel becomes a

row vector h. If the transmitter has no CSI, Telatar [74] showed that the optimal input

covariance matrix is proportional to an identity matrix, i.e., Q = P/NtI, where P is a

constraint on the total transmit power. From (2), the corresponding channel capacity is

given by

log det

(
1 +

P

Ntσ2
hhH

)
= log

(
1 +

P‖h‖2

Ntσ2

)
. (5)

On the other hand, if the transmitter has perfect CSI, it is apparent that the optimal

transmitter is a beamformer. The optimal transmit covariance matrix is Q = P
‖h‖2

hHh,

and the corresponding channel capacity is given by

log det

(
1 +

P‖h‖2

σ2

)
. (6)

Equations (5) and (6) show that a transmitter with perfect CSI achieves an Nt-fold signal-

to-noise ratio (SNR) gain compared to a transmitter without CSI in a MISO channel.
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Next we consider a MIMO channel where the transmitter has more transmit antennas

than receive antennas. Let the singular value decomposition (SVD) of the channel matrix

be

H = UΛV H , (7)

where Λ has on its main diagonal the singular values λi; i = 1, 2, . . . , Nt; of H. When

Nt ≥ Nr, H has at most Nr nonzero singular values. The mechanism of this MIMO

system is illustrated in Fig. 2. If the transmitter has no CSI, we can see from Fig. 2 that

signal components along the directions corresponding to zero singular values are nulled by

the channel and can never reach the receiver. The power of these signal components is

wasted. On the other hand, when the transmitter has perfect CSI, it can transmit along

the directions corresponding to nonzero singular values without suffering any signal loss.

Figure 2: Illustration of a MIMO channel through SVD of the channel matrix.

Although CSI is valuable for transmitters with multiple antennas, perfect CSI is not

always available at the transmitter. When reciprocity of the wireless channel does not hold,

as in FDD, perfect CSI at the transmitter requires a high-rate feedback channel, which may

not be practical, particularly in fast time-varying environments. These cases motivate our

research for effective acquisition and utilization of partial CSI at the transmitter in practical

MIMO systems.

1.4 Noncoherent Communication Systems

Reliable digital communication over fast time-varying wireless channels is becoming more

and more important in view of the rapid growth of cellular and personal communications

4



systems. If the fading is too fast for the receiver to obtain reliable CSI, the system becomes

a noncoherent one because coherent decoding at the receiver can no longer be done.

Information theoretically optimal noncoherent coding for block fading channels was

considered in [31,82]. At high SNR, the optimal codewords are shown to be so-called unitary

space-time codes, and, therefore, are unstructured. At the receiver, decoding can only be

done through an exhaustive search through the codebook. The optimal signal distribution

at medium ranges of SNR remains an open problem. Codebook construction for frequency-

selective fading channels from a pairwise error probability (PEP) viewpoint was proposed

in [12, 65]. Because of the complexity of codeword optimization, only binary phase-shift

keying (BPSK) modulated binary codes were designed in [12, 65]. Such codebooks are

obviously not optimal at high SNR, where higher order modulation than BPSK is required

to achieve capacity.

Considering decoding complexity, training based schemes are attractive. Another name

for such schemes is pilot symbol aided modulation (PSAM). Traditionally, training symbols

are multiplexed with data symbols. For example, in flat-fading channels, pilot symbols

are time-division multiplexed (TDM) with data symbols. In frequency-selective channels,

pilot symbols are frequency-division multiplexed (FDM) with data symbols and modulate a

selected set of subcarriers in OFDM systems. In multiuser CDMA systems, pilot symbols

modulate a dedicated spreading code and are code-division multiplexed (CDM) with data

symbols. The receivers in a training based system can first estimate the channel using

training sequences and then do the decoding coherently, using the channel estimate as if

it is the true channel. One such training based scheme has been shown to be superior to

unitary space-time codes in certain situations [16].

As a generalization of CDM training, superimposing pilot symbols with data symbols

has been proposed [20,47,84]. By adding pilot symbols and data symbols together, a higher

information rate can be possibly achieved compared to TDM or FDM training, because su-

perimposed training does not occupy separate dimensions in the time or frequency domain.

However, a rigorous comparison of error rates achievable by superimposed training and

TDM or FDM training was never done. As we will show in Section 6.4, an inappropriately

5



designed superimposed training sequence may result in very high error probability if the

channel coherence time is very short. Another drawback of superimposed training is that

the channel estimate is not as accurate as in TDM or FDM training, because data symbols

appear as high variance noise to the channel estimator. Improvement upon superimposed

training schemes is another focus point of our research.

1.5 Thesis Outline

Chapter 2 gives an extensive review of closed-loop MIMO techniques, including CSI feedback

techniques and transmitter designs given partial CSI. Additionally, a brief description of

the geometry of Grassmann manifold is given in Section 2.3.

The new contributions of this thesis are presented in detail in the next four chapters.

• In Chapter 3, several new partial CSI acquisition algorithms are proposed for per-

formance improvement on the Grassmannian subspace packing scheme, including a

one-bit feedback scheme and a vector quantization (VQ) scheme.

• In Chapter 4, we design a complexity-constrained MIMO OFDM system where the

transmitter has the knowledge of channel correlations. Transmitter beamforming and

receiver combining are performed in the time domain, and only one (I)DFT per OFDM

block is needed at either the transmitter or the receiver.

• In Chapter 5, we consider a CSI feedback channel with an unknown delay, which makes

the CSI at the transmitter arbitrarily unreliable. We propose a broadcast strategy to

adapt reliably transmitted information rate to the quality of CSI.

• In Chapter 6, we propose a data-dependent superimposed training scheme to improve

the performance of training based codes. The transmitter is equipped with multiple

training sequences and dynamically selects a training sequence for each data sequence

to minimize channel estimation error. The set of training sequences are optimized to

minimize pairwise error probability between codewords.

A complete list of acronyms and mathematical notations can be found in Appendix C.
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CHAPTER II

CLOSED-LOOP MIMO SYSTEMS

In a MIMO channel where the reciprocity of uplink and downlink does not hold, the trans-

mitter cannot derive CSI for the downlink from the received uplink signal. In this case,

for the system to achieve a higher capacity than that achievable by transmission without

CSI, the downlink receiver has to feedback CSI to the transmitter. Perfect CSI feedback

usually requires a high-rate feedback channel, which may not be practical, particularly in

fast time-varying environments. Thus, the feedback and utilization of partial CSI become

important issues.

The data transmission in the downlink and CSI feedback through the uplink constitute

a closed-loop system, as depicted in Fig. 3. Vector f is a representation of the partial

CSI. The feedback channel may introduce delays or errors to the partial CSI, making f ′,

a possibly unreliable copy of partial CSI, available to the transmitter. Lots of interesting

problems arise from this closed-looped system model, including

1. What partial CSI should be fed back?

2. What is the most efficient way to represent the partial CSI?

3. How to design transmitters given partial CSI?

4. How to deal with unreliable CSI caused by delays or errors in the feedback channel?

Chapter 3 is related to questions 1 and 2 above, Chapter 4 is related to question 3, and

Chapter 5 tries to answer question 4.

In this chapter, we review closed-loop MIMO systems, including existing CSI feedback

techniques and optimal transmitter designs given partial CSI. Additionally, a brief descrip-

tion of the geometry of Grassmann manifold is given in Section 2.3, which is a necessary

mathematical preparation for Chapter 3.
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2.1 Transmitter Design with Partial CSI

As shown in Fig. 3, the downlink transmitter receives partial CSI feedback f ′ from the

receiver. The true channel matrix, which the transmitter does not fully know, can be

modeled as a Gaussian random matrix (or vector) whose mean and covariance is given in

the feedback. This section reviews the design of the optimal transmitter in a MISO channel,

described in (4), where the transmitter knows that the channel vector is distributed as

CN (µ,Σ).

Figure 3: Feedback system model.

The problem is, for h ∼ CN (µ,Σ), to find the input distribution p(x) that maximizes

the mutual information between x and y, subject to a power constraint E‖x‖2 ≤ P . For

the case of a fixed channel, the optimal input distribution is zero-mean Gaussian. The

optimization problem is now one of finding the optimal choice of covariance matrix Q of x

maximizing the mutual information between x and y averaged over h with power constraint

P :

max
Q,trace(Q)=P

Eh log

(
1 +

hQhH

σ2

)
, (8)

where Eh denotes expectation with regard to the distribution of h.

The transmission strategy is completely characterized by the covariance matrix Q. The

strategy consists of transmitting independent complex Gaussian symbols along the direc-

tions specified by the eigenvectors of Q, with the corresponding eigenvalues specifying the

powers allocated to each direction.
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Presently, the general solution to the optimization problem in (8) for the general form

of h ∼ CN (µ,Σ) is not known. Visotsky and Madhow [76] gave solutions for the following

two cases.

• Mean feedback. In this case the channel is modeled at the transmitter as h ∼

CN (µ, αI), where the mean µ can be interpreted as an estimate of the channel given

the feedback, and α can be interpreted as the variance of the estimate. Mean feedback

also models the time-division duplex case, where the transmitter estimates the uplink

channel and uses the estimate as the mean of the downlink channel. The variance

arises from the delay between the channel estimation time and the time when such

CSI is used for transmission.

• Covariance feedback. In this case, the channel known to the transmitter is h ∼

CN (0,Σ). This models a situation in which the channel may be varying too rapidly

for the feedback to give an accurate estimate of the current channel value. The

covariance matrix models the geometry of the propagation path, which changes more

slowly.

Next we list the solutions of the above two cases. Let Q0 be the optimal covariance

matrix of x, and let Q0 = U0Λ0U0H be the SVD of Q0. The optimum solution of mean

feedback is to use µ/‖µ‖ as one of the singular vectors of Q0, and arbitrary orthonormal

vectors as the remaining singular vectors. The power allocation among the directions is

given by water-filling. For covariance feedback, the optimal U0 is the same as the singular-

vector matrix of Σ, and the singular values are given by water-filling.

As mentioned before, when the transmitter has no CSI, the optimal transmit covariance

matrix is proportional to the identity matrix. Space-time coding has been designed for

this case to spread transmit power across multiple independently fading transmit/receive

antenna paths [23, 72, 73]. Given the feedback of partial CSI in the forms of either mean

feedback or covariance feedback, the optimal transmit covariance matrix is no longer white,

but space-time coding can still be used. As shown by [36, 85, 86], each eigen-direction

characterized by one singular vector of the optimal transmit covariance matrix can be
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treated as one transmit antenna, and existing space-time coding can be applied over these

directions.

2.2 Acquisition of Partial CSI at the Transmitter

When the wireless channel is not reciprocal, i.e., when the uplink and downlink channels

cannot be inferred from each other, as is the case in FDD, the receiver needs to feedback

the downlink channel to the transmitter. Because the feedback channel is a scarce resource,

the receiver needs to find an efficient way to represent the channel. Basically, this is a

quantization problem. The difference from traditional quantization problems is that the

distortion measure here is not mean-square error but the capacity penalty resulting from

using non-perfect CSI instead of perfect CSI at the transmitter.

We review the channel quantization schemes in the literature. Without loss of generality,

we consider i.i.d. MIMO Rayleigh flat-fading channels.

2.2.1 Unstructured Quantization

The early methods for quantizing channels were heuristic and coarse, and mostly focused

on one-dimensional beamforming. The design criterion was similar for both MIMO and

MISO, and we use MISO as an example. Following channel model (4), the channel model

here is given by

y = hwd + n, (9)

where the unit-norm w is the beamforming vector to be designed, and d is the data symbol.

When the transmitter has perfect CSI, the optimal (in terms of maximizing both mutual

information and received SNR) beamforming vector is simply hH/‖h‖, where (·)H denotes

Hermitian transpose. This solution is called maximum-ratio transmission, similar to the

maximum-ratio combining in diversity receivers.

Now the problem becomes that of how to quantize the beamforming vector w, or,

equivalently, the channel vector h. One example of the early techniques is transmit antenna

selection [7, 29, 48], where the receiver informs the transmitter to use a subset of antennas

that have larger gains than the remaining. A white covariance matrix is applied to the
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selected subset of transmit antennas. Another example is quantized equal-gain transmission

[42], which uniformly quantizes the phases of the channel vector without considering the

amplitudes. Better quantization performance was achieved by Narula et al [54], using the

quantized maximum ratio transmission, where the optimal one-dimensional beamforming

vector was quantized. The beamforming codebook was obtained using the Lloyd algorithm

and a specific codebook design methodology was not developed.

2.2.2 Packing in the Grassmann Manifold

A systematic design of quantized beamforming vectors was given by [44] and [53]. The

problem solved here is to quantize the unit-norm beamforming vectors. Let the codebook

of unit-norm beamforming vectors be W̃ = {w̃1, w̃2, . . . , w̃N}. The quantizer at the receiver

QgW
: C

1×Nt → {w̃1, w̃2, . . . , w̃N} is a function that selects the element of the codebook

that maximizes the equivalent channel gain. Thus,

QgW
(h) = arg max

1≤i≤N
|hw̃i|2. (10)

Since the distortion defined by the capacity penalty is hardly tractable, the measure of

distortion in [44] was defined as

D(W̃ ) = Eh{‖h‖2 − |hQgW
(h)|2}. (11)

By minimizing an upper bound of D(W̃ ), the criterion of designing the codebook W̃ became

maximization of

δ(W̃ ) = min
1≤k<l≤N

√
1 − |w̃H

k w̃l|2. (12)

The expression
√

1 − |w̃H
i w̃j |2 is the chordal distance [11] between two one-dimensional

subspaces represented by the vectors w̃i and w̃j . The problem becomes one of finding the

set, or packing, of N lines in C
Nt that has maximum minimum distance between any pair of

lines. The mathematical name for such a problem is Grassmannian line packing [11]. The

complex Grassmann manifold Gm,n is the set of all n-dimensional subspaces of the space

C
m. Therefore, the Grassmannian line packing problem is finding a set of N points in GNt,1

that have maximum minimum distance.
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Once the beamforming quantization problem is formulated as a Grassmannian packing

problem, the good packings that have already been found can be used as beamforming

quantization codebooks. The geometrical properties of the Grassmann manifold can be

used to analyze the performance of quantized beamforming [50,51].

The one-dimensional Grassmannian line packing has been extended to multi-dimensional

beamforming for MIMO channels [43], where the channel model becomes

y = Hx + n = HWd + n. (13)

In the above equation, d is a vector of coded message symbols, and W is the beamforming

matrix that maps the data vector d to the transmitted signals x. We assume that the

covariance matrix of d is proportional to an identity matrix whose trace equals to the

power constraint P . Let the SVD of H be H = UΛV H . Clearly, if the transmitter has

perfect CSI, columns of W should be proportional to columns of V and possibly power-

loaded. If the system designer prefers to use a beamforming matrix with rank Ns such that

Ns < Nt, W should contain right singular vectors corresponding to the Ns largest singular

values of H. Therefore, the beamforming matrix W acts as valid CSI to quantize and

feedback. This is exactly the problem considered in [43].

Let W =

(
w1 w2 . . . wNs

)
be a quantized beamforming matrix for channel H. The

effective received power in each direction specified by a column wk, k = 1, . . . , Ns, is given

by ‖Hwk‖2. Since W is quantized and not very accurate, ‖Hwk‖2, k = 1, . . . , Ns might

not be very different from each other, or their difference might not be as significant as the

difference between singular values of H. Therefore, the power loading on the column vectors

of W can be ignored. This way, a valid codebook for quantizing W could be a set of Nt×Ns

matrices with orthonormal columns. Also, the order of columns inside W is not important.

In other words, each codeword represents a subspace spanned by its column vectors. It is

the subspaces that we want to quantize, not the specific orthonormal basis (comprised of

column vectors of a codeword) spanning these subspaces. According to [43], codebook design

becomes the finding of a set of N points in the Grassmann manifold GNt,Ns such that the

minimum chordal distance between any two codewords is minimized. This problem is called
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Grassmannian subspace packing. Again, good constructions of Grassmannian subspace

packing can be used as codebooks for quantizing the beamforming matrices.

2.2.3 Stochastic Gradient Methods

The Grassmannian line/subspace packing schemes quantize the channel without consider-

ing its history. However, the channel states of adjacent time instants are almost always

correlated. Therefore, the knowledge of previous channel states at the transmitter provides

some prior information for the current channel state. If the transmitter knows the pre-

vious channel states, then only the variation of the channel states needs to be fed back.

Banister and Zeidler proposed a gradient sign feedback algorithm to track the variation of

the channel’s dominant right singular subspaces [4, 5]. Their algorithm is summarized in

the following. Since the algorithm deals with channel variation with time, we introduce a

discrete-time variable n in the channel model (13):

y[n] = H[n]x[n] + n[n] = H[n]W [n]d[n] + n[n], (14)

where W [n] is the beamforming matrix used by the transmitter at time n.

The orthonormal precoding matrix W [n] that resides in the principal right singular

subspace of H[n] can be obtained [4] by maximizing the cost function

J [n] = ‖H[n]W [n]‖2
F , (15)

which is the received power at discrete time n, subject to the constraint that W H [n]W [n] =

INs . In this way, the feedback problem was posed as an optimization problem in [4].

The cost function maximization can be carried out adaptively. One of the most im-

portant methods used in the optimization literature is known as gradient descent, which

involves adaptive convergence to a point in a vector space corresponding to the global min-

imum of a cost function defined on the space. At each iteration of the adaptation, an

estimate of the gradient of the cost function is formed, and the estimate of the optimal

vector is revised to move in the direction of the gradient vector. The most widely used

gradient search technique is the stochastic gradient search. In the case under examination,
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the adaptation has to take place at the transmitter. However, feedback of the entire gra-

dient vector (or matrix) over the reverse link is not practical. The perturbation algorithm

in [4] is a method of providing an approximation to the gradient of the cost function to

the transmitter with minimal feedback. The approach is similar to simultaneous perturba-

tion stochastic approximation approaches [68]. At each iteration, the effect of a stochastic

perturbation on the cost function is studied, and, based on this effect, the estimate of the

optimal vector is moved toward or away from the direction of the perturbation vector.

In [4], the current weight matrix W [n] is perturbed as

W +[n] = W [n] + β∆W ,

W−[n] = W [n] − β∆W ,

(16)

where β is a step size, and ∆W contains i.i.d. Gaussian entries, which, for example, can be

generated by synchronized pseudo-random number generators at the transmitter and the

receiver. The effect of perturbation is estimated as

s[n + 1] = ‖H[n + 1]W +[n]‖2 − ‖H[n + 1]W−[n]‖2. (17)

It can be shown that

E{s[n + 1]∆W } ∝ HH [n + 1]H[n + 1]W [n + 1], (18)

where the right hand side is the gradient of the cost function (15). Furthermore, it is

sufficient to have only the quantity sign(s[n]) instead of s[n] in the left hand side of (18),

and sign(s[n]) can be deemed as a highly quantized form of s[n]. The adaptation of the

weight matrix is given by the iteration

W [n + 1] = G(W [n] + s[n + 1]β∆W ), (19)

where G(·) is the Gram-Schmidt column orthonormalization of the input matrix.

Contrary to the stochastic perturbation in [4], a deterministic perturbation was proposed

in [59]. This approach uses a set of predetermined vectors for the perturbation and cycles

through them. Any orthonormal set of vectors that form a basis for C
Nt can be used to form

a perturbation set. The expectation of the product of the sign-feedback and the perturbation
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vectors was shown to also be proportional to the gradient vector. The simulation result

in [59] showed that the deterministic approach actually has better initial convergence, but

more variance after it reaches its final state. Also, the deterministic approach has the

possibility of converging to a local minimum. Since the performance of stochastic and

deterministic perturbation is similar, the stochastic perturbation in [4] serves as the major

reference in the following chapter.

2.3 Grassmann Manifolds

In this section we summarize some properties of the geometry of Grassmann manifolds used

in this thesis [19]. For details concerning Grassmann manifolds, the readers are referred

to standard texts such as [9]. A complex Grassmann manifold GNt,Ns contains all Ns-

dimensional subspaces of C
Nt . As mentioned previously, since the transmit beamforming

matrix can be any orthonormal Nt × Ns matrix that forms an orthonormal basis for the

principal right singular subspace of the MIMO channel, the Grassmann manifold is a natural

description of the domain of the transmit beamforming matrices.

We introduce all necessary notations using time instant 0 as an example. The Nt × Ns

orthonormal transmit weight matrix at time 0 is W [0]. Denoted as 〈W [0]〉, a point in the

Grassmann manifold is an equivalent class

〈W [0]〉 = {W [0]QNs
: QNs

is any Ns × Ns unitary matrix}, (20)

i.e., a point in the Grassmann manifold is the set of all Nt×Ns orthonormal matrices whose

columns span the same subspace as spanned by the columns of W [0]. W [0] is an arbitrary

basis of 〈W [0]〉. We sometimes refer to W [0] as a subspace or a point of the Grassmann

manifold, in the sense that W [0] is a basis of such a point. Let Q[0] = (W [0] |Z[0]), where

Z[0] contains as columns an orthonormal basis of the orthogonal complement of 〈W [0]〉.

In other words, Q[0] is a square unitary matrix.

A geodesic is the curve of shortest length between two points on a manifold. We will

model the stochastic process in the Grassmann manifold starting at 〈W [n − 1]〉 and end-

ing at 〈W [n]〉 induced by channel variation as along a geodesic. Therefore, we need an
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explicit description of the geodesics in GNt,Ns . Geodesics in GNt,Ns starting from W [0] are

parameterized by [19]

W (t) = Q[0] exp(tB[0])INt,Ns , (21)

where t ∈ R is the time variable. It can be verified that W (0) = W [0]. As t varies

along the real axis, (21) parameterizes the basis of subspaces along a geodesic curve in the

Grassmann manifold that passes 〈W [0]〉 at time t = 0. The skew Hermitian matrix B[0] is

further restricted to be of the form

B[0] =




0 −AH [0]

A[0] 0


 , A[0] ∈ C

(Nt−Ns)×Ns . (22)

We denote the point reached by the geodesic at time t = 1 as W [1], therefore,

W [1] = W (1) = Q[0] exp(B[0])INt,Ns . (23)

The complex dimensionality of the Grassmann manifold GNt,Ns is (Nt − Ns)Ns [9]. Given

〈W [0]〉, the degrees of freedom of 〈W [1]〉 are embodied by the matrix A[0] in the lower-left

corner of B[0]. The matrix A[0] determines the point W [1] uniquely given W [0]. Recall

that for a point x on the unit circle in Euclidean space C
1, xejwt is the parametrization of a

piece of arc of the unit circle, and w is called the angular velocity that brings x to y = xejw

in unit time. Recognizing the similarity of this parametrization to (21) and noticing the

redundant structure of B[0] in (22), we define A[0] as the velocity that takes W [0] to W [1]

in unit time. In the MIMO subspace tracking context, 〈W [0]〉 is the outdated knowledge of

the transmit subspace at the transmitter, and 〈W [1]〉 is the current transmit subspace that

we want to be as close as possible to the principal right singular subspace of the current

channel matrix. The essence of the proposed algorithms in the next chapter is to quantize

A[0] instead of W [1] itself.

Here, we summarize the interrelationship among W [0], W [1], A[0], and B[0] [22]. Let

0 ≤ θ1 ≤ . . . ≤ θNs ≤ π/2 be the principal angles [28] between the subspaces 〈W [0]〉

and 〈W [1]〉. Let U1CV H
1 be an SVD of the Ns × Ns matrix W [0]HW [1], where C is a
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diagonal matrix with elements cos θk, 1 ≤ k ≤ Ns, on the diagonal. The following Cosine-

Sine Decomposition [28] defines a key relationship:




W H [0]W [1]

ZH [0]W [1]


 =




U1 0 0

0 U2 U3




︸ ︷︷ ︸
U




C

S

0




V H
1 , (24)

where S is a diagonal matrix with elements sin θk on the diagonal, Ũ2 = [U2 |U3] is an

(Nt − Ns) × (Nt − Ns) unitary matrix, and U2 has Ns columns. It turns out that one

possible choice for the velocity matrix is

A[0] = U2ΘUH
1 , (25)

where Θ = diag(θ1, θ2, . . . , θNs), and (25) happens to be an SVD of A[0]. Denoting U =

diag(U1, Ũ2), it can be shown that

exp(B[0]) = URUH , (26)

where

R =




C −S 0

S C 0

0 0 INt−2Ns




. (27)

Given W [0] and A[0], an SVD of A[0] can be performed, and then W [1] is easily computed

using (26) without performing matrix exponentials.

Having reviewed the state-of-the-art of partial CSI feedback techniques and optimal

transmitter designs given channel statistics, we are now ready to present our contributions

in this area, starting in the next chapter. We will propose a new partial CSI feedback scheme

in Chapter 3 that utilizes both time-domain correlation of channel states and intrinsic

properties of variation between subspaces, as discussed in this section.
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CHAPTER III

TRANSMISSION SUBSPACE TRACKING FOR MIMO

SYSTEMS WITH LOW RATE FEEDBACK

3.1 Introduction

Consider a MIMO system with Nt transmit antennas and Nr receive antennas where the

receiver tries to quantize an Ns-dimensional principal right singular subspace and feed it

back to the transmitter. When Nt ≥ Ns ≥ Nr, Banister and Zeidler [4] showed that trans-

mission within Ns-dimensional principal subspace of the channel matrix has a power gain

of precisely Nt/Ns over transmission without CSI. They also showed that the performance

penalty of equal power allocation among dimensions within the principal subspace relative

to water filling is minor, especially at high signal-to-noise ratios (SNRs). Therefore, we

focus on quantization of the principal subspace and equal power allocation in this chapter.

The Grassmannian subspace packing scheme in [43] quantizes the channel without con-

sidering its history. However, the channel states of adjacent time instants are almost always

correlated. Therefore, the knowledge of previous channel states at the transmitter provides

some prior information for the current channel state. If the transmitter knows the previous

channel states, then only the variation of the channel states needs to be fed back. Quan-

tization schemes proposed in [4, 49, 61] fit into this context. In [49], Mondal et al. showed

an adaptive quantization scheme that adapts to a time-varying distribution of the chan-

nel. In [61], the orthonormal precoding matrix is parameterized using a series of Givens

rotations, and scalar quantization based on adaptive Delta modulation is used for each pa-

rameter. A gradient sign feedback algorithm for tracking the dominant transmit subspaces

in MIMO systems was proposed in [4]. The scheme in [4] utilizes the correlation between

adjacent channel states and tracks the channel variation. However, it does not exploit any

intrinsic property of subspace variation.
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Here, a new partial CSI acquisition algorithm is proposed. Similar to [43], we con-

sider the transmit subspaces as points in a complex Grassmann manifold. The difference

from [43] is that we quantize the variation between subspaces. Specifically, based on a recent

model proposed for conventional subspace tracking [69], we model the variations between

the dominant subspaces of channels at adjacent time instants to be along geodesics in the

Grassmann manifold. Instead of quantizing the subspaces themselves, we propose to quan-

tize the geodesic trajectory connecting two subspaces. More specifically, we quantize a key

entity that characterizes a geodesic arc: the velocity matrix, which can be considered to be

a generalization of angular speed in a one-dimensional complex space. A one-bit feedback

scheme, essentially an approximate stochastic gradient algorithm, is utilized to indicate the

preferred sign of a randomly generated velocity matrix of the geodesic. The number of

entries in the velocity matrix is smaller than the transmit precoding matrix itself, resulting

in reduced variance in the gradient estimate and faster convergence compared to [4]. The

expected direction of this geodesic at the starting point is approximately proportional to

the gradient of the same cost function as in [4] but defined on the Grassmann manifold.

A VQ scheme that quantizes the velocity matrix using a Gaussian codebook is also pro-

posed. The performance of the Gaussian VQ is better than that of Grassmannian subspace

packing for a fairly large range of Doppler frequencies. Compared to [43] and [4], our algo-

rithms utilize time-domain channel correlation and intrinsic properties of the variation of

subspaces. Compared to [61], our schemes have a VQ nature and quantize a smaller number

of parameters ((Nt − Ns)Ns vs (2Nt − 1 − Ns)Ns).

The difference between this work and [49] is more subtle. In the language of vector

quantization literature, the schemes proposed in this chapter fall into the category of pre-

dictive VQ. Here the current CSI serves as a prediction of CSI for the next time instant,

and the difference is quantized out of a fixed codebook. A vector quantizer is adaptive if the

codebook or the encoding rule is changed in time in order to match observed local statistics

of the input sequence [24], which is the case for the switched codebook VQ in [49]. The

word “adaptive” is usually associated with systems where the codebook changes slowly with

respect to the vector rate rather than changing substantially with each successive vector.
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Therefore, predictive VQ is not categorized in the research literature as being adaptive [24].

Nonetheless, we do expect similar performance between this work and [49] in certain cir-

cumstances.

We emphasize that the problem at hand has little to do with the conventional subspace

tracking literature. The purpose of conventional subspace tracking is to obtain good es-

timates of principal subspaces from noisy observations. Our purpose is to approximate a

MIMO channel with its principal right singular subspace and to reduce the rate of infor-

mation that is fed back by quantizing the variation between subspaces. Here, we assume

that the channel estimation, and hence the subspace estimation, at the receiver is almost

perfect. Tracking here is used to convey the variation of a subspace stochastic process to

the transmitter. In other words, the nature of the subspace tracking problem in [69] is

estimation, while the nature of our problem is quantization. All that we take from the

subspace tracking literature is a model for the subspace stochastic process recently adopted

in [69].

The outline of this chapter is as follows. The problem setting is given in Section 3.2.

Assumptions taken in this chapter are listed in Section 3.3. The one-bit feedback algorithm

is demonstrated in Section 3.4 [80], and its convergence analysis is provided in Section 3.5.

The VQ scheme is described in Section 3.6. Numerical examples are shown in Section 3.7,

and Section 3.8 concludes this chapter.

Notation: Bold upper (lower) letters denote matrices (column vectors).

3.2 Problem Setting

3.2.1 Partial CSI

We consider a flat-fading MIMO channel with Nr receive antennas and Nt transmit antennas

characterized by the discrete-time input-output relationship

y[n] = H[n]x[n] + n[n], (28)
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where H[n] is an Nr ×Nt complex channel transfer matrix and n[n] is an Nr ×1 zero-mean

complex Gaussian noise vector with covariance matrix N0I. The SVD of H[n] is defined as

H[n] = U [n]Λ[n]V H [n], (29)

where Λ[n] has on its main diagonal the singular values of H[n] in descending order. The Ns-

dimensional principal right singular subspace of H[n] is spanned by the first Ns columns of

V [n], which we denote as Ṽ [n]. Note that Ṽ [n] is an orthonormal matrix, i.e., Ṽ
H

[n]Ṽ [n] =

INs .

Given perfect knowledge of H[n] at the transmitter, the capacity maximizing transmis-

sion is along the directions specified by the column vectors of the matrix V [n]. However,

perfect knowledge of H[n] is usually costly to obtain. It has been discussed in [4, 43, 61]

that feeding back the principal subspace spanned by the first several columns of V [n] is a

good tradeoff between performance and feedback bandwidth requirement. We also take this

approach. When there exists considerable correlation between channel matrices at adjacent

time instants, it is conceivable that the principal right singular subspaces of these channel

matrices also have time-domain correlation. Conditioned on the principal channel subspaces

of previous time instants, the subspace of the current time instant has a non-uniform proba-

bility mass. This correlation can be utilized to reduce the amount of feedback. The optimal

quantization codebook will no longer be uniform, and codewords will be denser in regions

where the probability mass of the subspaces is high.

The objective of the proposed algorithm is to track an Nt × Ns orthonormal complex

weight matrix W [n] that maps an Ns × 1 complex vector d of coded message symbols to

the transmitted signals

x[n] = W [n]d[n]. (30)

The tracking attempts to extract the principal right singular subspace, giving

W [n]W H [n] = Ṽ [n]Ṽ
H

[n]. (31)

As discussed in [4], when Nt ≥ Nr = Ns, an orthonormal precoding matrix W [n] satisfying

(31) is asymptotically capacity maximizing at high SNR. It has also been shown by Scaglione
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et al. [62] that the precoding matrix W [n] as in (31) minimizes the mean-squared error of

the symbol estimate for a linear receiver subject to a maximum singular value constraint

on the precoder. For both of the above two optimality criteria, an optimal W [n] remains

optimal if it is replaced by W [n]U where U is an arbitrary Ns × Ns unitary matrix. In

other words, the optimal linear precoding matrix could be any orthonormal matrix whose

columns span the same subspace as the columns of Ṽ [n] do. Clearly, the subspace spanned

by the column vectors of Ṽ [n] should be fed back, instead of the orthonormal matrix Ṽ [n]

itself. The mathematical modeling of subspaces can be expressed in terms of the Grassmann

manifold. Therefore, we are now faced with a problem of quantization of a stochastic process

in the Grassmann manifold.

Note that if Ns > Nt/2, we only need to track the orthogonal complement of Ṽ [n].

Therefore, without loss of generality, we assume that Ns ≤ Nt/2.

3.3 Assumptions

Before elaboration of the algorithm, we list our assumptions. First of all, we make assump-

tions on the joint distribution of the entries of the velocity matrix A[n]. Exact modeling

of the statistical properties of A[n] is difficult, because A[n], the velocity matrix that takes

the last quantized subspace to the new channel principal subspace in unit time, depends not

only on the stochastic process formed by H[n], but also on quantization errors on subspaces

of previous time instants. In this chapter, we assume that the entries of the velocity matrix

A[n] are i.i.d. CN (0, a2), where a is a parameter depending on the Doppler frequency.

Conceptually, this corresponds to a first-order Markov model on the process formed by the

principal right singular subspaces W [n] [75]. Other models are possible depending on the

application. For example, in the context of subspace tracking, Srivastava and Klassen [69]

assume a first-order Markov model on the velocity process and, therefore, a second-order

Markov model on the subspace process.

In situations where the feedback channel is of a very low rate, the batch of bits describing

the forward channel takes some time to get through the feedback channel. Consequently, the

receivers usually need channel prediction, and it is the predicted channel that is quantized.

22



We assume that the receiver channel estimation error manifests itself as additive white

Gaussian noise added to the true channel matrix. Denoting the channel estimate at time n

as H̃[n], we have

H̃[n] = H[n] + n1[n], (32)

where n1[n] denotes the estimation error with i.i.d. CN (0, N1) entries.

Future channel values can be predicted with a linear predictor. If the fading processes

for the entries of H[n] are i.i.d., prediction for a future channel value between a transmitter-

receiver antenna pair can be done without regard to other antenna pairs. Let Np be the

length of the predictor filter, and p(ij) = [p
(ij)
0 , p

(ij)
1 , . . . , p

(ij)
Np−1]

T be the coefficients of the

predictor for the channel between transmitter antenna j and receiver antenna i. Denote

the predicted channel matrix as Ĥ[n]. Denote the entries on the ith row and jth column

of matrices H[n], H̃[n], and Ĥ[n] as hij [n], h̃ij [n], and ĥij [n], respectively. Suppose that

at time n the receiver predicts the MIMO channel values Q time instants ahead. With the

notation h̃ij [n] = [h̃ij [n], h̃ij [n − 1], . . . , h̃ij [n − Np + 1]]T , the channel coefficient at time

n + Q can be predicted as

ĥij [n + Q] =

Np−1∑

p=0

p(ij)∗
p h̃ij [n − p] = p(ij)H h̃ij [n]. (33)

The channel predictor that minimizes the mean-squared error E{|ĥij [n+Q]−hij [n+Q]|2}

is given by [37]

p(ij) =
(
E
{

h̃ij [n]h̃
H
ij [n]

})−1
E
{

h∗
ij [n + Q]h̃ij [n]

}

= R−1r,

(34)

where R = E
{

h̃ij [n]h̃
H
ij [n]

}
is the covariance matrix of h̃ij [n] and r = E

{
h∗

ij [n + Q]h̃ij [n]
}

is the correlation between h∗
ij [n + Q] and h̃ij [n]. Assuming the channel is time-varying

according to Jakes’ model with Doppler frequency FD, it is well-known that E{h∗
ij [n +

m]hij [n]} = J0(2πFD|m|Ts), where J0(·) is the zeroth order Bessel function of the first kind

and Ts is the symbol period. Thus, we have

[R]p,q = J0(2π|p − q|FDTs) + N1δ(p − q), (35)

[r]p = J0(2π|Q + p|FDTs), (36)
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where δ(·) is the Kronecker delta function and the subscripts, p and q, start from 0. Finally,

we can see that the predictor coefficients p(ij) are the same for any i and j.

For the proposed one-bit feedback algorithm, we assume that channel estimation at the

receiver, feedback, and computation of the transmit weight matrix at the transmitter do

not consume time and occur instantly. The frequency of these operations is the same as the

feedback bit rate. Similarly, for the Grassmannian subspace packing scheme or Gaussian

VQ scheme with a codebook of size 2N , we assume that the channel at time n + 3
2(N − 1)

(which is the midpoint of the interval in which this codeword will be used as the transmit

beamforming matrix) is predicted by the receiver at time n, and the N-bit codeword is fed

back at times n, n+1, . . . , n+N −1. The dequantized beamforming matrix for time n−1

is held constant at the transmitter for times n − 1, n, . . . , n + N − 2. For the purposes of

quantization and precoding, we assume that channel prediction at the receiver is perfect,

and no optimization of the quantization and precoding schemes is done with regard to

estimation or prediction errors.

3.4 One-Bit Feedback Algorithm

For each feedback period, the random velocity A[n] is generated with i.i.d. CN (0, a2)

entries. We assume that the transmitter and the receiver have common knowledge of the

value of A[n] at any time instant. A[n] can be conveyed from the transmitter to the receiver

multiplexed with data symbols [4], or synchronously generated by identical pseudo-random

number generators at the transmitter and the receiver.

With each instance of the random matrix A[n], we approximate the new transmit sub-

space as one point in the Grassmann manifold reached by a geodesic in unit time, starting

from the current transmit subspace and using A[n] as the velocity matrix. Using the param-

eterized geodesic in (21), with one bit of ambiguity, the new transmit subspace W [n + 1]

can be either Q[n] exp(B[n])INt,Ns or Q[n] exp(−B[n])INt,Ns . The binary feedback s is

determined as

s[n + 1] = sign(‖H[n + 1]Q[n] exp(B[n])INt,Ns‖2
F − ‖H[n + 1]Q[n] exp(−B[n])INt,Ns‖2

F ).

(37)
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The decision defined by (37) is binary encoded and provided as feedback from the receiver

to the transmitter. This way, the feedback decision selects which sign-direction is preferable

in terms of maximizing received power, as the result of an advancement along the geodesic.

The weight matrix update at the transmitter is given by

W [n + 1] = Q[n] exp(s[n + 1]B[n])INt,Ns . (38)

Since W [n+1] is orthonormal, it serves as the new transmit matrix directly and no further

orthonormalization is necessary, as opposed to the algorithm in [4], where a Gram-Schmidt

QR factorization is required. The tracking algorithm is summarized in Table 1.

The parameter a controls the average length of the geodesic arc. To see this, first

introduce a matrix Aw[0] with i.i.d. CN (0, 1) entries such that A[0] = aAw[0], for a > 0.

The arc length distance between W [0] and W [1] is derived from the intrinsic geometry of

the Grassmann manifold and defined in terms of the principal angles between 〈W [0]〉 and

〈W [1]〉 as in [19]

d(W [0], W [1]) =

(
Ns∑

i=1

θ2
i

)1/2

. (39)

Note that

‖A[0]‖2
F = tr(A[0]AH [0]) = tr(U2ΘUH

1 U1Θ
HUH

2 ) = tr(ΘΘH) =

Ns∑

i=1

θ2
i . (40)

Therefore, the arc length d(W [0], W [1]) = ‖A[0]‖F = a‖Aw[0]‖F , i.e., the parameter a is

proportional to the average arc length of the geodesic. Intuitively, the arc length of the

geodesic traversed in unit time for high Doppler frequencies is larger than for low Doppler

frequencies. Therefore, the parameter a should be chosen monotonically with Doppler

frequency.

3.5 Gradient Extraction

In this section, we analyze the convergence behavior of this algorithm assuming that H is

static and non-random, and, thus, we eliminate the discrete-time index from the notation

of H. We will show that the expectation of the direction of the geodesic is approximately

proportional to the gradient of the cost function J defined in (15) when the norm of A[0]

is small, which is the case when 〈W [0]〉 is not far from 〈Ṽ 〉.
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Table 1: Tracking algorithm summary

Initialize:

W [0] =

(
INs

0

)
(transmitter and receiver)

for n = 0 : ∞
A[n]=common realization of Gaussian random matrix (transmitter and receiver)
Compute Z[n] such that Q[n] = (W [n]|Z[n]) is unitary (transmitter and receiver)
Compute s[n + 1] using (37) (receiver)
W [n + 1] = Q[n] exp(s[n + 1]B[n])INt,Ns (transmitter and receiver)

We first simplify the expression of s in (37). When the norm of A[0] is small, the values

of the θks are small, too. In this case, a first-order approximation gives

C ≈ I and S ≈ Θ. (41)

With this approximation, it is shown in Appendix A.1 that

s[1] ≈ sign trℜ(W H [0]HHHZ[0]A[0]). (42)

We now show that the expectation of the direction of this random geodesic is the same

as the gradient of the cost function J . Differentiation of W (t) in (21), deeming t as the

only variable, and with the sign feedback s explicitly written, gives

Ẇ (t) = s[1]Q[0] exp(tB[0])B[0]INt,Ns . (43)

The chosen direction for one bit feedback at time t = 0 is equal to

Ẇ (0) = s[1]Q[0]B[0]INt,Ns = s[1]Z[0]A[0]. (44)

The expectation of this direction is

E{Ẇ (0)} = Z[0]E{s[1]A[0]}. (45)

It can be shown that

E{Ẇ (0)} = a
1√
π

Z[0]ZH [0]HHHW [0]

‖ZH [0]HHHW [0]‖F

, (46)

as proved in Appendix A.2. At the point W [0], the gradient of the cost function J defined

on the Grassmann manifold is given by [19]

(I − W [0]W H [0])JW [0], (47)
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where
[
JW [0]

]
ij

= ∂J [0]

∂[W [0]]
ij

. With J [0] defined in (15), JW [0] = 2HHHW [0]. Noticing

that I − W [0]W H [0] = Z[0]ZH [0], we have that the gradient of J at point W [0] is equal

to

2Z[0]ZH [0]HHHW [0]. (48)

Comparing with (46), we see immediately that the expected direction of the geodesic is

proportional to the gradient. Among all tangential directions, this gradient points in the

direction of maximum increase of the cost function defined on the Grassmann manifold.

In contrast, the expected direction of the subspace updating in [4] is proportional to the

gradient in the Euclidean sense.

To consider the variance of the error in the gradient estimate, we define the error matrix

E = Ẇ (0)−E{Ẇ (0)}. Under the same approximation in (41) that is valid when the norm

of A[0] is small, it follows straightforwardly that

E{EHE} = a2
(
(Nt − Ns)I − 1

π

W H
0 HHHZ0Z

H
0 HHHW 0

‖ZH
0 HHHW 0‖2

F

)
. (49)

One measurement of the estimation error is related to the second moment of the error

matrix through

tr(E{EHE}) = a2 ((Nt − Ns)Ns − 1/π) . (50)

While for the subspace updating of [4], the estimation error embodied by a similarly defined

error matrix E [4, Eq. (60)] is given by

tr(E{EHE}) = 2β2 (NtNs − 1/π) , (51)

where β is an adaptation parameter controlling the step size. Note that the term (Nt−Ns)Ns

in (50) is the number of degrees of freedom of A[0], while the term NtNs in (51) is the number

of degrees of freedom of the random perturbation in [4]. It can be seen that the degrees of

freedom do manifest themselves in the variance of the gradient estimate. Simulation results

will show the advantage of our one-bit algorithm over [4].

It should be pointed out that the exact expectation of the direction of the geodesic

is usually not proportional to the gradient of the cost function J . This discrepancy is
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prominent when entries of A[0] are large enough so that the approximation (41) is no

longer valid.

To converge to the principal subspace Ṽ of a static matrix, one might expect a fully-

adaptive algorithm to decrease the amplitude of the entries of the velocity matrix as the

solution approaches Ṽ . We acknowledge that more theoretical analysis is required to fully

characterize the convergence behavior of the one-bit algorithm starting from an arbitrary

point in the Grassmann manifold. However, given the better performance of the quantiza-

tion scheme presented in the next section, such effort will be deferred to future research.

3.6 Gaussian VQ

The one-bit quantization scheme updates the transmission weight subspace in a stochastic

gradient manner. Our primary purpose in introducing that technique was to show the

performance improvement achieved by doing perturbation to the velocity matrices instead

of the weight matrices themselves. The performance of the one-bit quantization algorithm is

limited by its sequential nature. A more general approach would be to quantize the velocity

matrix with more than one bit at a time. In this section, we use such a vector quantization

scheme and deterministically quantize the velocity matrix [79]. This VQ scheme will be

shown to have much better performance than the one-bit quantization scheme.

Because of the i.i.d. Gaussian assumption on the velocity matrices, the problem has now

become one of quantization of i.i.d. Gaussian sources. The variety of VQ techniques is quite

large [24, 30]. When designing a quantization scheme for a specific source, considerations

include complexity and performance in terms of closeness to the rate/distortion bound [13].

Approaching the rate/distortion bound usually requires quantization on asymptotically long

blocks of source vectors. Such an approach is not applicable to situations with a strict delay

constraint, which is our case. The receiver cannot buffer several velocity matrices together

and perform a long VQ, because the channel state information would become outdated.

In practice, numerous structured VQs have been proposed to achieve a good complexity-

performance tradeoff. Examples of good VQ schemes for i.i.d. Gaussian sources include

lattice quantizers and shape-gain quantizers. However, most of these quantization schemes
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only approach their optimality in high resolution/high rate cases. In contrast, this chapter

is mainly concerned with low rate quantization with a rate of much less than 1 bit/sample

because of the feedback bandwidth constraints. With low-rate VQ and, therefore, a small

VQ codebook, the search complexity in the quantization procedure is not much of a concern.

Based on the above considerations, we take a very basic approach to designing the VQ

for velocity matrices: the LBG algorithm [40]. The Gaussian VQ codebook was trained

with 2 × 105 i.i.d. Gaussian vectors with N (0, 1) entries. The codebook training process

involved a distance measure between two vectors (one training vector and one codeword).

Choosing which distance measure to use posed an interesting problem. One possibility was

to use the distance between the subspaces reached by the geodesics using the two vectors as

velocity matrices starting from a fixed subspace. However, such a codebook would probably

depend on the average geodesic length and, therefore, the Doppler frequency. To avoid over-

complicating the problem, mean-squared error was used in the codebook training process.

An optimal average geodesic length a versus Doppler frequency was utilized to scale the

codewords in the Gaussian codebook to minimize the mean tracking error. Blind search was

utilized to perform this optimization. Specifically, for each integer-valued Doppler frequency

in the range of 1 to 400 Hz, simulations were performed for a taking values from a grid with

small step size. Then an eighth-order polynomial was fit to the curve. The resultant values

of a2 versus Doppler frequency, FD, are shown in Fig. 4. The corresponding polynomial

coefficients are listed in Appendix A.3.

Let Dk, k = 0, 1, . . . , 2N − 1 be the codewords in the scaled VQ codebook. At time

n + 1, the codeword chosen by the receiver is defined by

arg max
k

∥∥∥∥∥∥∥
H[n + 1]Q[n] exp




0 −DH
k

Dk 0


 INt,Ns

∥∥∥∥∥∥∥

2

F

(52)

using the criterion of maximizing the received power. As mentioned in Section 2.3, the

matrix exponentials can be efficiently computed using SVDs of the matrices {Dk}. Com-

puting the SVD of each codeword at run-time can be avoided by storing the SVDs of the

codewords at the receiver. The aforementioned scaling only needs to be performed on the

singular values (not singular vectors) of the codeword matrices.
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3.7 Numerical Results

A Monte Carlo simulation was run to test the performance of the proposed transmit sub-

space tracking algorithms in the setting of Ns = Nr = 2 and Nt = 8. The channel estimation

error was 20 dB below the channel power in the following numerical examples. The feed-

back channel was free of error. The channel model was independent Rayleigh flat fading

with time correlation generated by Jakes’ method. The relationship between the Doppler

frequency FD and the feedback rate FFB was captured by the ratio FFB/FD.

The numerical results were compared with the feedback schemes in [4, 43]. For the

gradient sign algorithm [4], an optimal step size β was utilized, which was determined

through numerical search.

In the figure legends, geodesic denotes our one-bit quantization algorithm and N-bit

Gaussian VQ denotes the VQ quantization in Section 3.6 with a 2N -sized codebook. Re-

garding the figure legends for the other techniques, ideal denotes ideal subspace tracking,

gradient sign stands for the gradient sign algorithm of [4], N-bit Grassmann 26 (50) stands

for Grassmannian subspace packing as presented in [43] with linear predictor length 26 (50)

and a codebook size of 2N , and no CSI stands for transmission without CSI. The length of

the linear prediction filter for Gaussian VQ is always 50.

The average convergence performance for the tracking of constant channels is illustrated

in Fig. 5, where the mean values of cost function J from Eq. (15) are shown in dB relative

to the cost of ideal subspace tracking. As can be seen, larger values of a and β resulted

in faster convergence but larger stable-state error. Our one-bit feedback algorithm showed

faster convergence and smaller stable-state error than the gradient sign algorithm.

The ergodic capacities achieved by different algorithms are given in Fig. 6 for FFB/FD =

100 and 1000. The capacity of the subspace tracking algorithms is given by [4]

E

(
log det

(
I +

Es

NsN0
H[n]W [n]W [n]HH[n]H

))
, (53)

while the capacity of transmission without CSI is given by [4]

E

(
log det

(
I +

Es

NtN0
H[n]H[n]H

))
, (54)
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where Es is the total transmission energy per symbol from all transmit antennas. Our one-

bit quantization algorithm shows a 2-3 dB gain over the gradient sign algorithm across the

medium-to-high SNR range. For the case FFB/FD = 1000, representing high rate feedback

or low Doppler frequency, both our one-bit feedback algorithm and the gradient sign feed-

back outperform the Grassmannian subspace packing algorithm. When FFB/FD = 100,

the one-bit feedback algorithm is slightly worse than the Grassmannian subspace packing

algorithm.

The comparison of the tracking performance in terms of the cost function J is shown in

Fig. 7, where the results are normalized to the performance of ideal subspace tracking (Jopt).

Our one-bit feedback algorithm performs uniformly better than the gradient sign feedback,

and is better than the Grassmannian subspace packing algorithm for FFB/FD larger than

110. For the range of parameters in these simulations, the Gaussian VQ algorithm is

always better than the one-bit quantization algorithm. It can be verified that in the current

setting, Jopt[n] = ‖H[n]‖2
F . While for transmission without CSI, J [n] = Ns

Nt
‖H[n]‖2

F , and

J [n]/Jopt[n] = Ns

Nt
= 0.25 regardless of the Doppler frequency. Therefore, all the feedback

techniques in these simulations are better than transmission without CSI.

Finally, we compare the Gaussian VQ algorithm and Grassmannian subspace packing

with different codebook sizes in Fig. 8, where the feedback frequency is fixed to be 6000

Hz and the Doppler frequency varies. Fig. 8 (a) shows the average J/Jopt for every time

instant, as in Fig. 7. The Gaussian VQ with a codebook size of 32 always performs better

than the Grassmannian subspace packing with 1024 codewords, and performs better than

32-codeword Grassmannian subspace packing until FFB/FD = 20. Fig. 8 (b) shows the

performance of only those time instants that are predicted and quantized, without count-

ing the time instants when the transmit subspace is held constant before a new feedback

codeword arrives. It can be seen that the 10-bit Grassmannian subspace packing eventually

performs worse than the Gaussian VQ technique in high Doppler frequencies because its

feedback interval is too long. Though 5-bit Grassmannian subspace packing outperforms

5-bit Gaussian VQ when FD > 230 Hz, the advantage was almost canceled by the time

instants when the transmit subspace is held constant. We also plotted bit error rate (BER)
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performance of Gaussian VQ, Grassmannian subspace packing, and transmission without

CSI in Fig. 9 for every time instant. The data vector d[n] uses 16-QAM constellation for

each entry. For a fair comparison, the transmitter without CSI uses arbitrarily chosen two

transmit antennas. The simulated system is uncoded. The maximum likelihood detector

is employed at the receiver. Transmission without CSI shows a fixed BER regardless of

Doppler frequency. The behaviors of Gaussian VQ and Grassmannian subspace packing

codebooks are similar to those observed in Fig. 8. Figs. 8 and 9 bring up interesting

questions regarding the optimal size of a codebook versus Doppler frequency and what the

transmission subspace should be before the new codeword arrives.
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Figure 4: Numerically optimized a2 versus FD.

3.8 Conclusion

A low rate feedback algorithm for transmission subspace tracking has been introduced. By

treating the variation of the transmit weight matrix as a piece-wise geodesic process in

Grassmann manifolds, the tracking algorithms feedback the quantized velocity matrix. The

proposed one-bit quantization algorithm tracks fewer parameters than the gradient sign
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Figure 5: Convergence rate of the received power for the geodesic and gradient sign
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Figure 6: Ergodic capacity versus SNR. (a) FFB/FD = 1000; (b) FFB/FD = 100.
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Figure 7: Normalized mean cost function versus FFB/FD.

algorithm and, consequently, achieves better performance. Numerical results show that

the performance of this adaptive algorithm approaches that of ideal subspace tracking for

feedback rates on the order of 1000 times the channel Doppler frequency. Compared with a

Grassmannian subspace packing quantization algorithm, our one-bit algorithm has better

performance at low-to-medium Doppler frequencies and does not incur the complexity of

quantization and long-range channel prediction, while the Gaussian VQ always performs

better than the one-bit algorithm. The subspace tracking approach was shown to provide

significant capacity gains over transmission without CSI.

35



0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

F
D

 (Hz)

J/
J op

t

5−bit Gaussian VQ
10−bit Grassmann 50
5−bit Grassmann 50

(a)

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

F
D

 (Hz)

J/
J op

t

5−bit Gaussian VQ
10−bit Grassmann 50
5−bit Grassmann 50

(b)

Figure 8: Normalized mean cost function versus FD with FFB=6000 Hz. (a) Average
performance of all time instants; (b) Average performance of predicted time instants only.
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CHAPTER IV

LOW COMPLEXITY OFDM MIMO SYSTEM BASED ON

CHANNEL CORRELATIONS

In this chapter, we investigate transmitter design given partial CSI feedback in the con-

text of MIMO OFDM. Traditionally, for a transmitter with perfect CSI, frequency-domain

beamforming and combining are used [60]. Since MIMO channels on different subcarriers

are different, beamforming and combining vectors are different on each subcarrier, implying

that each antenna requires an (I)DFT operation.

Some techniques to reduce the number of DFT blocks were recently proposed [33, 34,

56,67]. [56,67] deal with the Single Input Multiple Output (SIMO) case, where the receiver

uses time domain combining followed by a single DFT. These works are extended in [33]

to the MIMO case, where the transmitter also uses a single IDFT followed by time domain

beamforming. It was shown that considerable diversity gain can still be achieved with

the time domain beamforming and/or combining. [34] trades off 3 dB power gain with the

reduced number of DFT blocks.

Most previous works on closed-loop MIMO OFDM systems assume that the transmitter

has full knowledge of the underlying channel. When the channel varies rapidly, it is costly

to keep the channel knowledge at the transmitter up-to-date. However, the statistics of the

channel is time-invariant as long as the channel stays stationary.

In this chapter, we investigate a complexity-constrained OFDM MIMO system, where

the transmitter has channel covariance information [78]. The transmitter and the receiver

are constrained to use a single (I)DFT per OFDM block (on the average), and the beam-

forming or combining is performed in the time domain. We show that in the MISO case,

under the given channel model, time domain two-dimensional (2-D) beamforming does not

incur any performance loss. For the MIMO case, we derive design criteria for the trans-

mitter beamforming and receiver combining weighting vectors. Due to analytic complexity,
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Figure 10: Block diagram of the MIMO OFDM system. (a) Transmitter; (b) Receiver.

only suboptimal solutions are given. The performance of the low-complexity OFDM system

is asymptotically analyzed.

4.1 System Model

We consider a MIMO OFDM system as shown in Fig. 10. The numbers of transmit and

receive antennas are Nt and Nr, respectively. Denote the time-domain multipath MIMO

channel matrix as Gl, l = 0, 1, . . . , L−1, where the Nr×Nt random matrix Gl represents the

lth tap of the discrete-time MIMO fading channel impulse response, L is the total number

of resolvable multipaths. We focus on the downlink case, i.e., the base station and the

subscriber unit (SU) assume the roles of transmitter and receiver, respectively. Assuming

that the channel decays to zero within the length of cyclic prefix, the MIMO frequency

response is given by the DFT of the Gl’s:

Hk =
L−1∑

l=0

Gle
−j 2π

N
lk, k = 0, 1, . . . , N − 1, (55)
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where N is the total number of subcarriers and Hk is the flat-fading MIMO channel on the

kth subcarrier. Organizing the transmitted data symbols into vectors

dk =

[
d

(0)
k d

(1)
k . . . d

(Nt−1)
k

]T

with d
(i)
k denoting the data symbol transmitted from the ith antenna on the kth subcarrier

and ()T standing for transpose, it can be shown that

rk = Hkdk + nk, (56)

where rk denotes the Nr × 1 received data vector for the kth subcarrier, and nk is additive

noise. Denote the kth row of Gl as gl,k, and the mth entry of it as gl,k,m. We adopt the

following assumptions regarding the channel:

A-I. The elements of the Gl’s are zero-mean circularly symmetric complex Gaussian ran-

dom variables, implying E{g2
l,k,m} = 0;

A-II. Different multipath taps are assumed to be uncorrelated, that is,

E{gl1,k1,m1g
∗
l2,k2,m2

} = 0

for l1 6= l2;

A-III. Different rows of each Gl are uncorrelated, that is, E{gl,k1,m1g
∗
l,k2,m2

} = 0 for k1 6=

k2;

A-IV. The row gl,k ∼ CN (0, Rl), where Rl = E{gH
l,kgl,k}, which is independent of k, i.e.,

the fading statistics are the same for all the receive antennas; Besides, the Rl’s are

known to the transmitter;

A-V. nk is zero-mean additive white Gaussian noise that satisfies E{nkn
H
l } = σ2

nINrδ[k−

l], and is independent of both the channel and the data symbols.

In the above, INr is an Nr × Nr identity matrix and δ is Kronecker’s delta function. A-II

follows from the assumption that each multipath tap (or each Gl) corresponds to multipaths

emanated from a distinct scatterer cluster, and the fading of different scatterer clusters is
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independent [8]. A-III is reasonable because we assume the SU is surrounded by local

scatterers so that fading at the SU antennas is spatially uncorrelated.

Relative to the transmitter, each scatterer cluster has a mean angle of departure θ̄l and

an angle spread δl. The distribution of the actual angle of departure θl of the lth path cluster

is modeled as Gaussian: N (θ̄l, σ
2
θl

), where the variance σ2
θl

is proportional to the angular

spread δl. It was shown in [8] that with a uniform linear array at both the transmitter and

the receiver, for small angular spread, the covariance matrix can be approximated as

[Rl]m,n ≈ ej2π(n−m)d cos(θ̄l)/λe−0.5(2π(n−m)d sin(θ̄l)σθl
/λ)2 , (57)

where [Rl]m,n denotes the entry of Rl on the mth row and nth column, d is the spacing

between adjacent transmit antennas, and λ is the wavelength of the radio-frequency signal.

Factoring the Nt × Nt covariance matrix Rl as Rl = R
1
2
l R

1
2
l , it can be shown that

Gl ∼ Gw,lR
1
2
l , (58)

where Gw,l is an Nr ×Nt matrix with independent and identically distributed (i.i.d.) circu-

larly symmetric CN (0, 1) entries.

Similar to the approach in [8], it can be shown that all the subcarrier MIMO channels

have the same distribution. Specifically, with the definition R =
∑L−1

l=0 Rl, we have

Hk ∼ Hw,kR
1
2 , k = 0, 1, . . . , N − 1, (59)

where Hw,k is an Nr × Nt matrix with i.i.d. circularly symmetric CN (0, 1) entries.

4.2 Time-Domain MISO Eigen-Beamforming

In this section, we show that an optimal 2-D eigen-beamformer combined with Alamouti

space-time block coding (STBC) can be implemented using one IDFT per block (on the

average) at the transmitter for the MISO channels. The system model (56) can be rewritten
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as r = Hd + n, where

r =

[
rT

0 rT
1 . . . rT

N−1

]T

,

d =

[
dT

0 dT
1 . . . dT

N−1

]T

,

n =

[
nT

0 nT
1 . . . nT

N−1

]T

,

H = diag

(
H0 H1 . . . HN−1

)
,

and diag() is a (block) diagonal matrix with the given entries on the diagonal. Note that in

the MISO case, all the Gl’s and Hk’s degenerate to row vectors. From [74], to maximize the

mutual information between d and r, d should be circularly symmetric complex Gaussian.

With Q = E{ddH}, the corresponding mutual information is

I (d; (r, H)) = E

{
log

∣∣∣∣I +
1

σ2
n

HQHH

∣∣∣∣
}

, (60)

where |.| denotes matrix determinant. Note that Q has a block structure with Qi,j =

E{did
H
j } as composing components.

Lemma 1. The Q that maximizes the mutual information is block diagonal, i.e., Qi,j =

0, i 6= j.

Proof. Note that (I + 1
σ2

n
HQHH) is positive definite. With any given H and Q, from

Hadamard’s inequality [32],

∣∣∣∣I +
1

σ2
n

HQHH

∣∣∣∣

≤
∏

k

(
1 +

1

σ2
n

HkQk,kH
H
k

)

=

∣∣∣∣I +
1

σ2
n

H diag

(
Q0,0 Q1,1 . . . QN−1,N−1

)
HH

∣∣∣∣ .

(61)

Following (60) and (61),

I (d; (r, H)) =
N−1∑

k=0

E{log(1 +
1

σ2
n

HkQk,kH
H
k )}. (62)

42



Now we find the optimal Qk,k’s that maximize (62). Since all Hk’s have the same distri-

bution (59), the optimal Qk,k’s should all be equal, and

I (d; (r, H)) = NE{log(1 +
1

σ2
n

H0Q0,0H
H
0 )}. (63)

Therefore, this model is as if we are dealing with a single flat fading channel, and all the

analysis and designs in [35,36,54,64,76,87] are applicable here. Specifically, [35,64,76] imply

the following result on Qk,k, which we state without proof. Let the eigen-decomposition of

Qk,k be Qk,k = UdΛdU
H
d , where Ud contains the eigenvectors, and the diagonal matrix

Λd has the eigenvalues on its diagonal. Similarly, let the eigen structure of R be R =

URΛRUH
R . Then we have

Theorem 1. With assumptions A-I through A-V, the channel capacity-achieving distri-

bution of dk is circularly symmetric complex Gaussian with zero mean, and the ordered

eigenvectors of its covariance matrix are the same as the ordered eigenvectors of R, i.e.,

Ud = UR. The eigenvalues of Qk,k are determined by a water-filling process.

Theorem 1 implies that if the transmitter is constrained to use one-dimensional (1-

D) beamforming, dk is proportional to the dominant eigenvector of R. Since the optimal

1-D beamforming vector is common to all subcarriers, optimal 1-D beamforming can be

implemented using one IDFT per OFDM block, and the beamforming can be done in the

time domain.

Combination of 2-D eigen-beamforming and Alamouti STBC [2] can achieve better

performance than 1-D eigen-beamforming [87], and can also be implemented using one IDFT

per OFDM block on the average. To see this, let D1 and D2 be the matrices containing

time-domain symbols transmitted in two consecutive OFDM blocks, each row of which

contains time-domain symbols transmitted from one antenna, then 2-D eigen-beamforming
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with Alamouti STBC can be represented as

D1 = U2




f1 0

0 f2







d1,0 d1,1 . . . d1,N−1

d2,0 d2,1 . . . d2,N−1


F T , (64)

D2 = U2




f1 0

0 f2







d∗2,0 d∗2,1 . . . d∗2,N−1

−d∗1,0 −d∗1,1 . . . −d∗1,N−1


F T , (65)

where the beamforming matrix U2 consists of the two dominant eigenvectors of R, f1 and f2

are the power loading factors of the two eigen-beams, dm,k’s are i.i.d. transmitted symbols

on the mth eigen-beam and the kth subcarrier, and F is the IDFT matrix. To transmit D1,

two IDFT’s are performed. To transmit D2, no more IDFTs are required because the IDFT

of

[
d∗m,0 d∗m,1 . . . d∗m,N−1

]
can be obtained from the IDFT of

[
dm,0 dm,1 . . . dm,N−1

]
by

conjugation and shifting [34]. Therefore, for the MISO channel and with the given channel

model, combined optimal eigen-beamforming and Alamouti STBC can be implemented with

the average complexity of one IDFT per OFDM block.

4.3 Time-Domain Eigen-Beamforming for MIMO Chan-

nels

4.3.1 Beamforming and Combining Vectors

In this section, we find transmission strategies for MIMO channels given the constraint

that the average complexity is one (I)DFT per OFDM block, at both the transmitter and

the receiver. At the transmitter, the best we can do is still 2-D eigen-beamforming, which

subsumes 1-D eigen-beamforming as a special case [87]. At the receiver, a time-domain

combining is performed before the DFT operation (Fig. 10(b)).

Let the Nt×2 matrix C =

[
c1 c2

]
contain the power-loaded eigen-beamforming vectors.

Let y1,k and y2,k be the output of the kth subcarrier at the receiver after the DFT in two

consecutive OFDM blocks, then

y1,k = wHHkc1d1,k + wHHkc2d2,k + wHn1,k, (66)

y2,k = wHHkc1d
∗
2,k − wHHkc2d

∗
1,k + wHn1,k, (67)

where w is the Nr × 1 receiver combining vector and is constrained to have unit norm, and

n1,k and n2,k are additive noise on the kth subcarrier. In (66), dm,k denotes the source
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symbol transmitted from the mth eigen-beam on the kth subcarrier. A standard Alamouti

combining gives the following equivalent channel model:




r1,k

r2,k


 =

√
wHHkCCHHH

k w




d1,k

d2,k


+




n1,k

n2,k


 ,

where the noise components

[
n1,k n2,k

]T

∼ CN (0, σ2
nI).

Now the task is to design the combining vector w given perfect channel knowledge at

the receiver, and the beamforming vectors C given second-order statistics of the channel.

The joint design of w and C turns out to be hardly tractable. We take the approach to

design them separately. To design C, we assume that w is a fixed unit-norm vector. Since

Hk ∼ Hw,kR
1
2 , it can be shown that wHHk ∼ hw,kR

1
2 , where hw,k is a 1 × Nt row

vector with i.i.d. CN (0, 1) entries. Therefore, by treating w as a fixed vector, we obtain an

MISO channel model for each subcarrier, whose second-order statistics are known to the

transmitter. The conclusion in Theorem 1 can then be applied to design C.

The combining vector w can be designed to maximize capacity or minimize bit error

rate. However, these are not trivial tasks. Therefore, we resort to maximizing the total

SNR of all the subcarriers:

max
w,C

N−1∑

k=0

SNRk. (68)

One justification of this criterion was given in [33,56], where it was assumed that a repetition

code is used across evenly spaced subcarriers, and it was shown that the maximal-ratio

combined SNR of each symbol is proportional to
∑N−1

k=0 SNRk, if the number of subcarriers

used to transmit one symbol is larger than the channel span L. The SNR of the kth

subcarrier output is

SNRk =
wHHkCCHHHw

σ2
n

. (69)

It is easy to show that

N−1∑

k=0

SNRk =
1

σ2
n

wH
N−1∑

k=0

(
HkCCHHH

k

)
w

=
N

σ2
n

wH
L−1∑

l=0

(
GlCCHGH

l

)
w.

(70)
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Define H =
∑L−1

l=0

(
GlCCHGH

l

)
. With the constraint that ‖w‖ = 1, we can immediately

get that the optimal w is the dominant eigenvector of the matrix H, and the resultant total

SNR is Nλ1(H)/σ2
n, where λ1(H) is the largest eigenvalue of H.

4.3.2 Performance Analysis

From (58), and with A-I, it can be shown that

λ1(H) ∼ λ1(
L−1∑

l=0

Gw,lR
1
2
l CCHR

1
2
l GH

w,l). (71)

To write the above summation in a matrix form, first define

R̃
1
2 = diag

(
CHR

1
2
0 CHR

1
2
1 . . . CHR

1
2
L−1

)
, (72)

G =

[
Gw,0 . . . Gw,L−1

]H

. (73)

Then, we have
L−1∑

l=0

Gw,lR
1
2
l CCHR

1
2
l GH

w,l = GHR̃
1
2
H

R̃
1
2 G. (74)

Therefore, the following holds true:

λ1(H) ∼ λ1(G
HR̃

1
2
H

R̃
1
2 G) = λ1(R̃

1
2 GGHR̃

1
2
H

). (75)

The 2L ×Nr matrix R̃
1
2 G has i.i.d. columns, and each column is distributed as CN (0, R̃),

where

R̃ = R̃
1
2 R̃

1
2
H

= diag

(
CHR0C . . . CHRL−1C

)
. (76)

Matrix R̃
1
2 GGHR̃

1
2
H

has a (pseudo) Wishart distribution.

Exact comparison of the performance of the low-complexity OFDM system with a usual

system which performs Nr DFT’s per block is difficult. We hereby give an asymptotic

argument. For fixed L and Nt and as Nr gets large, it follows from the law of large numbers

that (1/Nr)GGH → ILNt . Hence, in the large Nr limit,

N−1∑

k=0

SNRk =
N

σ2
n

Nrλ1(R̃). (77)
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In contrast, when the combining is performed on each subcarrier separately, then it can be

shown that

N−1∑

k=0

SNRk =
1

σ2
n

N−1∑

k=0

λ1(HkCCHHH
k )

∼ 1

σ2
n

N−1∑

k=0

λ1(Hw,kR
1
2 CCHR

1
2 HH

w,k)

=
1

σ2
n

N−1∑

k=0

λ1(C
HR

1
2 HH

w,kHw,kR
1
2 C)

→ N

σ2
n

Nrλ1(C
HRC)

(78)

as Nr gets large. To gain a rough idea of how these two cases compare with each other,

consider when Rl = I, l = 0, 1, . . . , L − 1 and C has orthonormal columns. In this case,

λ1(R̃) = 1, and λ1(C
HRC) = L. Thus, the low-complexity OFDM system has roughly an

L-fold power penalty compared with the usual OFDM system, in the asymptote of a large

number of receive antennas. However, the number of DFT operations per OFDM block of

these two systems is 1 v.s. Nr, a considerable difference when Nr is large.

4.4 Numerical Results

The BER performance of the time domain combining and 2-D eigen-beamforming scheme

is evaluated in an OFDM system with 64 subcarriers and a QPSK modulation scheme.

The discrete-time channel is modeled as quasi-static fading and has two taps, spaced one

OFDM sample apart. To show the effect of partial channel knowledge at the transmitter,

we first compare with Alamouti STBC performed on each subcarrier, for the case Nr = 1

and Nt = 2. The BER performance is shown in Fig. 11. The two channel taps have a

power ratio of 16:1, mean angles of departure of 0 and 3π/7, and zero angle spread, giving

a highly correlated channel. Here, the SNR is defined as SNR = P tr(R)/(Ntσ
2
n), where

P is the total transmitted power and tr() denotes the trace of a matrix. This quantity is

equal to the ratio of the total received signal power to the total noise power given that the

transmitted signal is i.i.d.. It is shown that the 2-D eigen-beamforming performs uniformly

better than the Alamouti code, which does not use any knowledge of the channel.
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Figure 11: Comparison of 2-D eigen-beamforming with the Alamouti space-time block
code.

In Fig. 12, we show the BER performance of time domain combining and 2-D beamform-

ing for MIMO channels, and compare with the receiver-end frequency domain combining.

The two channel taps have equal power, mean angles of departure of −π/14 and 3π/7, and

zero angle spread. We use repetition coding to collect multipath diversity, where each sym-

bol is transmitted on two subcarriers, separated by half of the system bandwidth. Similar

schemes are used in [33, 56]. As shown in Fig. 12, generally the diversity order increases

as the number of transmit or receive antennas increases. Encouragingly, the diversity order

achieved by time-domain combining is almost the same as frequency domain combining,

although the frequency domain combining requires as many as Nr DFT operations per

OFDM block.

4.5 Conclusion

In this chapter, we analyzed a low-complexity MIMO OFDM system where the transmitter

has information of the channel correlation. In the low complexity system, the transmitter

beamforming and receiver combining are performed in the time domain; thus, only one DFT
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Figure 12: BER performance of time domain and frequency domain combining in MIMO
channels

is required. For the MISO case, we show that the optimal 2-D transmit beamforming can

be implemented using the low-complexity time domain beamforming. For the MIMO case,

we formulate a suboptimal solution of beamforming and combining vectors. Asymptotic

analysis shows that the low-complexity combining suffers a power loss. Numerical simulation

of a repetition-coded OFDM system demonstrates that the diversity order increases as the

number of transmit or receive antennas increases. The time domain combining is able

to collect the majority part of the diversity order that the frequency domain combining

schemes enjoy, yet with a much smaller complexity.
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CHAPTER V

A BROADCAST APPROACH FOR MISO CHANNELS

WITH UNCERTAINTY IN THE PARTIAL STATE

INFORMATION

5.1 Introduction

Most previous papers on channel mean feedback have not considered uncertainties in the

feedback process, such as unexpected delay or error in the feedback channel. Such uncer-

tainties exist in reality and ignoring them results in suboptimal algorithms. In this chapter,

we consider mean-feedback with an unknown delay. For channels where the CSI has un-

certainty, the transmitter does not know how large an information rate can be reliably

transmitted through the underlying channel. We are interested in a scheme that is able

to adapt to the quality of the feedback. Ideally, the transmission scheme would work like

beamforming, if the CSI is accurate, and would work like transmission without CSI, if the

feedback quality is extremely bad. A broadcast approach is one way to deal with such

uncertainty.

A broadcast approach for a single user can be developed from a multiuser broadcast

channel [13], where a single transmission is directed to a number of receivers, each with

possibly different channel conditions, reflected by their SNRs. For a degraded broadcast

channel [13], such as a Gaussian broadcast channel with a single antenna at the transmitter,

layered coding can be used to achieve the boundary of the capacity region. A receiver can

decode all the layers corresponding to receivers having a worse SNR than itself and subtract

them before decoding its own code layer [13, Sec. 14.1.3].

Cover [14] originally discussed broadcasting for the single user compound channel. A

compound channel is a possibly infinite collection of channel transfer functions. The re-

alization of a compound channel, or the index in the collection, is determined by nature
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and is unknown to the transmitter [6, 14]. When the transmitter has no CSI, the fading

channel can be viewed as a compound channel with the channel gain as a parameter of the

compound channel. A broadcast approach for a single user where the transmitter has no

CSI was first proposed by Shamai and Steiner [63]. In this broadcast approach, the receiver

consists of a continuum of ordered users, each corresponding to a specific fading channel

condition. The transmitter sends layered coded information. Each of the imaginary users

at the receiver decodes a code layer if its channel realization allows. The maximum number

of layers successively decoded is dictated by the fading channel realization. This single

user broadcast strategy facilitates reliable transmission rates adapted to the actual channel

conditions. Liu et al. [41] showed that two-layer superposition coding is adequate to achieve

most of the throughput gain achievable by an infinite number of layers. All previous papers

on broadcast approaches [41,63,70] are for channels where the transmitter has no CSI. We

extend the broadcast approach to a mean-feedback MISO channel with uncertainties. Here,

the unknown delay is the parameter of the compound channel.

In reality, the delay of the feedback channel is likely within a limited range. Our approach

with the assumption that the delay is unknown serves as a lower bound in terms of achievable

rate compared to the real life case.

The system model is given in Section 5.2, and the outage approach is shown in Section

5.3. Section 5.4 presents a two-layer coded broadcast approach. Numerical results on

achievable rates and conclusions are given in Sections 5.5 and 5.6, respectively.

5.2 The Model

We assume a block fading model in which the fading is fixed during each transmission of a

codeword. However, the channel may vary during the CSI feedback process. The complex

baseband equivalent model of a flat fading MISO channel with a single receive antenna and

Nt transmit antennas can be expressed as

y = hHx + n,

where h is an Nt × 1 channel transfer vector, x is an Nt × 1 transmit vector, y is the

received signal, and n is an additive noise sample distributed as CN (0, 1). We assume that
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the constraint on the total transmitted power is NtP , where P denotes the average SNR per

transmit antenna. As shown by [74], for a given instantiation of h, if the receiver knows the

channel, among all input distributions with a given covariance matrix PQ, where tr(Q) =

Nt, the Gaussian vector x ∼ CN (0, PQ) maximizes the mutual information between x and

y, which is given by

I((y, h); x) = log(1 + hHPQh). (79)

In the mean-feedback model, the transmitter knows that

h ∼ CN (g, α2I) (80)

given the feedback g. With this channel distribution and input covariance matrix PQ, Eq.

(64) of [52] gives

I((y, h); x) =

∫ ∞

0

e−y

y


1 −

exp
(
−gH

(
QPy

I+α2QPy

)
g
)

det(I + α2QPy)


 dy. (81)

Visotsky and Madhow [76] proved that to maximize the mutual information in (81), the

optimal Q satisfies the following lemma.

Lemma 2. The dominant eigenvector of Q points in the direction of g. All non-dominant

eigenvalues are equal to each other. Non-dominant eigenvectors are arbitrarily chosen,

except for the restriction that all eigenvectors are orthonormal.

Let the largest eigenvalue be q0 and all other eigenvalues be equal to q, where q0 +(Nt−

1)q = Nt, then (81) can be rewritten as [52]

I((y, h); x) =

∫ ∞

0

e−
y

α2P

y


1 −

exp
(
− γq0y

1+q0y

)

(1 + q0y)(1 + qy)Nt−1


 dy, (82)

where γ =
‖g‖2

α2 is a measure of feedback quality. The optimal values of q0 and q can be

determined through numerical optimization.

Let h(t) be a first-order autoregressive random process with forgetting factor c, h(t) =

ch(t−1)+w(t), where w(t) is an Nt×1 vector of i.i.d. circularly symmetric Gaussians, each

of variance σ2
w. The marginal distribution of h(t) is CN (0, α2I) for any t, where α2 = σ2

w

1−c2
.
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At time t, the receiver feeds back g = h(t) to the transmitter. Assuming a delay d in the

feedback channel, Visotsky and Madhow [76] showed that conditioned on g, the distribution

of true channel vector h is given by

h ∼ CN (ηg, (1 − η2)α2I), (83)

where η = cd. When the delay d is unknown, the transmitter may assume that η is uniformly

distributed in [0, 1] without loss of generality.

The validity of (83) is not limited to first-order autoregressive channels. Zhou et al. [85]

showed that when the variation of each channel coefficient follows Clarke’s two-dimensional

isotropic scattering model [71], (83) also holds true. Although we formulate the uncertainty

in the channel mean feedback problem as an unknown delay, the broadcast approach pro-

posed in this chapter can be similarly applied to other types of uncertainties in channel

mean feedback. For example, the variance α2 in (80) can be used to model quantization

errors [85]. Uncertainty in the variance of quantization errors arises when the law of channel

variation changes while the quantization codebook is fixed at the receiver. In those cases,

the description of uncertainty is not necessarily the same as (83).

We observe in (83) that CSI deteriorates from a deterministic g to CN (0, α2I) as d varies

from 0 to infinity. If η is deemed as the parameter of a compound channel, a broadcast

approach can be used to adapt to the particular realization of η without knowing it at the

transmitter.

5.3 An Outage Approach

With an unknown delay, the most straightforward approach would be to choose a trans-

mission rate and a corresponding outage probability such that the expected throughput is

maximized. For each fixed η, the rate achievable by an optimal input covariance matrix Q

satisfying Lemma 2 is given by

R′
O(η) =Eh∼CN (ηg,(1−η2)α2I) log(1 + hHPQh)

=

∫ ∞

0

e
− y

(1−η2)α2P

y


1 −

exp
(
− η2‖g‖2q0y

α2(1−η2)(1+q0y)

)

(1 + q0y)(1 + qy)Nt−1


 dy.

(84)

53



The probability that this rate can be supported is 1 − η. The outage rate, defined as the

expected throughput, is therefore (1 − η)R′
O(η) for a given transmit covariance matrix. To

maximize the outage rate, we need to optimize jointly over η and q0:

RO = maximize
η,q0

(1 − η)R′
O(η). (85)

5.4 Two-Layer Broadcast Approach

We consider a two-layer coded broadcast approach with two imaginary users at the receiver.

Although the broadcast channel in which different users are defined by different values of

η in (83) is not necessarily a degraded one, predetermined ordering of the users can still be

achieved because a code layer decodable with CSI of a certain quality can also be decoded

at better CSI, and layered coding and decoding can still be applied.

Let user 1 be associated with lower-quality CSI than user 2. Each of the two users has

to decode at a fractional rate. For some realization of η, only the first user can decode its

fractional rate R1. With CSI that has a better quality (larger η), the second user decodes

initially the interference of rate R1 and then subtracts the codeword for the first user from

the received signal and decodes its own at rate R2. Hence, the total achievable rate for a

realization of η is either R1 or R1 + R2.

Let PQ1 and PQ2 be the covariance matrices of the two code layers, where the power

constraint requires that tr(Q1 +Q2) = Nt. For the transmission of user 1 always to be able

to get through the channel, user 1 has to assume CSI of CN (0, α2I). Since user 2 is always

an interference to user 1, the achievable rate of user 1 is equal to

R1 = Eh∼CN (0,α2I){log[1 + PhH(Q1 + Q2)h] − log(1 + PhHQ2h)}. (86)

For a better channel condition h ∼ CN (ηg, (1 − η2)α2I), the achievable rate of user 2 is

equal to

R2 = Eh∼CN (ηg,(1−η2)α2I) log(1 + PhHQ2h). (87)

The probability that only R1 can get through the channel is η. The probability that R2 can

also get through the channel is 1−η. The expected throughput is ηR1 +(1−η)(R1 +R2) =

R1 + (1 − η)R2.
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Table 2: Covariance matrices for two code layers
Q1 Q2

WW βI ξI

WB βI NtξggH/‖g‖2

BB NtβggH/‖g‖2 NtξggH/‖g‖2

We have to design the optimal covariance matrices for the two layers to maximize the

throughput. Numerical examples in [76] showed that the rate achieved by the optimal

covariance matrix in mean-feedback is either very close to that achieved by beamforming or

very close to that achieved by a white covariance matrix that is proportional to an identity

matrix, depending on the quality of CSI. Based on this observation, we take a suboptimal

approach by permitting the covariance matrices of both layers to be either beamforming or

white. Thus, there are four combinations in total. We denote the case where both layers

use white covariance matrices as WW, the case where user 1 uses a white covariance matrix

while user 2 uses beamforming as WB, the case where both users use beamforming as BB.

The remaining case where user 1 uses beamforming and user 2 uses a white covariance

matrix is not considered because user 2 always enjoys CSI of a better quality than user 1.

Confined to the above three cases, we only need to optimize the power allocation between

the two code layers. Let tr(Q1) = Ntβ, and tr(Q2) = Ntξ, then we have β + ξ = 1. When

Q1 is white, Q1 = βI; when user 1 uses beamforming, Q1 = NtβggH/‖g‖2. Similarly,

Q2 = ξI when it is white and Q2 = NtξggH/‖g‖2 when it is beamforming. The covariance

matrices for the three cases are summarized in Table 2. For each of WW, WB, and BB,

the throughput can be maximized by jointly optimizing η and β:

maximize
β,η

R1 + (1 − η)R2. (88)

Finally, a maximum can be chosen among the three cases. Denote the achievable rates of

each of the three cases as RWW , RWB, and RBB, respectively. The analytic expressions of

(88) for each of the three cases are given in Appendix B.
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5.5 Numerical Results

From (82), we see that the mutual information is a function of γ = ‖g‖2/α2 and α2P .

Without loss of generality, we set α = 1. We also define P as SNR. We performed numerical

optimizations (85) for the outage approach and (88) for each of the three cases of broadcast

approach in a range of γ and SNR. Since these are non-convex problems, standard line

search algorithms with multiple random initial points were utilized.

Experiments showed that WW is better than WB when γ is small. BB is better than

WB when γ is large and the SNR is small. But the maximum value of RWW −RWB is merely

1.7764 × 10−15 bits/channel use, and the maximum of RBB − RWB is just 1.3015 × 10−5

bits/channel use, which are negligible. Therefore, WB is optimal among the three two-layer

coding schemes across almost all of the simulated ranges of γ and SNR.

The achievable rates of outage approach and the two-layer broadcast approach WB are

shown in Fig. 13 for the case γ = 21 dB. An SNR gain of more than 6 dB is evident in

the high SNR region. As a holistic picture, Fig. 14 shows the difference RWB − RO for a

range of γ and SNR. The optimized values of RWB, β, and η for WB are shown in Fig.

15. The optimized values of RO, q0, and η for the outage approach are shown in Fig. 16.

From Fig. 16 (b), we see that the optimal covariance matrix for the outage approach is

either beamforming (q0 = 4) or white (q0 = q = 1), which further validates our choice of

covariance matrices for the broadcast approach in Section 5.4.

5.6 Conclusion

We studied increasing the throughput of the mean-feedback MISO channel with an unknown

delay in the feedback channel. We used a two-layer broadcast approach where the first layer

has a white covariance matrix and the second layer performs beamforming. Significant gain

was observed relative to the outage approach in some regions of feedback quality and SNR.
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Figure 13: Achievable rates for the outage approach and two-layer coding when γ = 21
dB.
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Figure 14: The difference between the achievable rates of two-layer coding and the outage
approach.
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Figure 15: Optimization results for the two-layer broadcast approach where the first layer
uses a white covariance matrix and the second layer uses beamforming. (a) RWB; (b)
Optimal β versus γ and SNR; (c) Optimal η versus γ and SNR.
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Figure 16: Optimization results for the outage approach. (a) RO; (b) Optimal q0 versus
γ and SNR; (c) Optimal η versus γ and SNR.
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CHAPTER VI

DATA-DEPENDENT SUPERIMPOSED TRAINING FOR

NONCOHERENT CHANNELS

6.1 Introduction

In systems considered in previous chapters, the receivers are assumed to have perfect CSI or

accurate estimates of CSI. This situation is only part of the panorama of high speed mobile

communications, because such an assumption is only reasonable when the channel fading

is slow and the coherence time is long relative to the symbol duration. On the other hand,

reliable digital communication over fast time-varying wireless channels is becoming more

and more important in view of the rapid growth of cellular and personal communications

systems. Such systems are called noncoherent systems because the transmitter and the

receiver do not have channel state information.

Information theoretically optimal noncoherent coding for block fading channels was

considered in [31, 82]. At high SNR, the optimal codewords were shown to be so-called

unitary space-time codes and, therefore, are unstructured. At the receiver, decoding can

only be done through an exhaustive search through the codebook. Considering decoding

complexity, training based schemes are attractive. Besides, a training based scheme has

been shown to be superior to unitary space-time codes in certain situations [16].

If the coherence time in a block-fading channel is very long, TDM training together

with Gaussian codes are asymptotically (in coherence time) optimal. Therefore, superim-

posed training is more of interest in fast fading channels. For a continuously time-varying

fast fading channel, Dong and Tong [18] showed that, if linear minimum mean-square error

(LMMSE) channel estimators are used at the receiver, superimposed training results in bet-

ter channel estimates than TDM training, although the power allocation between training

symbols and data symbols was not optimized there. In fast fading channels, lots of training
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symbols are required to get an accurate estimate of the channel. A TDM training system

has to insert frequent training symbols and leaves few time slots for data transmission. On

the other hand, superimposed training may be suitable for fast fading channels, because

every symbol contains a training component. For superimposed training systems, despite

the universal presence of training symbols, it is imaginable that channel estimation accuracy

is harmed by the data symbols because the data symbols act as high-variance noise for the

channel estimator.

In this chapter, we improve the performance of superimposed training systems for fast

fading channels by proposing a data-dependent1 superimposed training scheme. The trans-

mitter is equipped with multiple candidate training sequences. Given a block of data, the

training sequence that minimizes the channel estimation error is selected and added to-

gether with the data sequence to form the transmitted codeword. The channel estimation

error is expected to be reduced compared to traditional superimposed training because of

this dynamic selection of training sequences, assuming the receiver knows which training

sequence is used at the transmitter. To reduce the probability that the receiver makes

a wrong decision regarding which training sequence is actually used by the transmitter,

the set of training sequences are designed to minimize the PEP between the transmitted

codewords consisting of combined data and training. We show through simulations that, if

the receiver employs a close-to-optimal detector, the data-dependent superimposed training

scheme has better performance than TDM training and traditional superimposed training.

The remainder of this chapter is organized as follows. The channel model and tra-

ditional training schemes are outlined in Section 6.2. We discuss the design of multiple

training sequences in Section 6.3. Design examples and performance comparison between

our proposed scheme and traditional training schemes are given in Section 6.4. Finally,

Section 6.5 draws conclusions and provides some discussion.

1The notion of data-dependent training was first used by the authors of [25,26]. Despite the notion, the
nature of that scheme is fixed FDM training for frequency-selective channels.
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6.2 Channel Models and Training Schemes

6.2.1 Channel Models

Without loss of generality, we consider a system with a single receive antenna. The scalar

signal received by the receiver at time t is modeled as

y(t) = x(t)h + n(t), t = 0, 1, . . . , N − 1, (89)

where N is the number of time samples of a space-time codeword, h = [ h0 h1 . . . hNt−1 ]T

is a column vector of channel coefficients, and x(t) is a row vector of transmitted signal

values. The noise samples n(t) are assumed to be i.i.d. additive white Gaussian noise

(AWGN) distributed as CN (0, σ2
n). The channel coefficients are assumed constant over the

transmission of one codeword, but are allowed to vary independently between blocks. We

assume that the channel is i.i.d. Rayleigh fading, and each coefficient hk, k = 0, 1, . . . , Nt−

1 is distributed as CN (0, 1). Moreover, we assume that each signal entry in x(t) has average

power of P and define the channel SNR as

SNR =
P

σ2
n

. (90)

Stacking all N samples into a single column vector, the above set of equations can be written

as

y = Xh + n, (91)

where

y = [ y(0) y(1) . . . y(N − 1) ]T (92)

X = [ xT (0) xT (1) . . . xT (N − 1) ]T (93)

n = [ n(0) n(1) . . . n(N − 1) ]. (94)

Matrix X is called a codeword transmitted during a channel coherence interval.

Both flat fading and frequency-selective fading channels with a single transmit antenna

can be described by (89). For a flat fading channel with a single transmit antenna, the

channel vector h degrades to a scalar h, and signal vector x(t) degrades to a scalar signal
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x(t). Therefore, the channel model (91) becomes

y = xh + n, (95)

where x = [ x(0) x(1) . . . x(N − 1) ]T .

In the case of a frequency-selective fading channel with a single transmit antenna,

{h0, h1, . . . , hNt−1} are the channel coefficients of a tapped-delay-line model. Assuming

that there is a protection gap or trailing zeros between the transmission of codewords,

inter-block interference can be ignored. For a frequency-selective channel with a single

transmit antenna and trailing zeros, the codeword matrix X has the following form:

X =




x(0) 0 0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

x(N − Nt) . . . x(0) 0 . . . 0

0 x(N − Nt) . . . x(0)
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 x(N − Nt) . . . x(0)

...
. . .

. . .
. . .

. . .
...

0 0 0 . . . 0 x(N − Nt)




. (96)

6.2.2 Training Schemes

When the receiver does not have knowledge of the channel, training based schemes can be

used in which pilot symbols known by the receiver are transmitted to help with channel

estimation. In TDM training schemes, training symbols are periodically inserted between

data symbols [18]. Without loss of generality, we consider fast fading where only one training

symbol can be put into each codeword. Then, in the flat fading case, a codeword has the

form

x = [ xτ xd(0) xd(1) . . . xd(N − 2) ]T , (97)

where xτ is the training symbol, and {xd(k), k = 0, 1, . . . , N − 2} are data symbols.

Since we assume a pseudo-static block fading channel, the position of the training symbol

inside the codeword does not matter. For frequency-selective channels, to avoid intersymbol
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interference (ISI) between training symbols and data symbols, a strict-sense TDM training

scheme has to put trailing zeros after the training symbol [1], resulting in the codeword

X =




xτ 0 0 0 . . . 0

0 xτ 0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

0 0 0 . . . 0 xτ

xd(0) 0 0 0 . . . 0

...
. . .

. . .
. . .

. . .
...

xd(N − 2Nt) . . . xd(0) 0 . . . 0

0 xd(N − 2Nt) . . . xd(0)
. . .

...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 xd(N − 2Nt) . . . xd(0)

...
. . .

. . .
. . .

. . .
...

0 0 0 . . . 0 xd(N − 2Nt)




. (98)

Clearly, only N − 2Nt +1 data symbols can be transmitted in TDM training because of the

trailing zeros after the training symbol.

For superimposed training, each symbol in the codeword is the summation of a training

component and a signal component:

x(t) = xτ (t) + xd(t). (99)

The vector channel model (91) can be written as

y = Xh + n = (Xτ + Xd)h + n, (100)

where Xτ and Xd are comprised of xτ (t) and xd(t), respectively, formed in the same way

as X is formed.

For superimposed training, the average power per training symbol is defined as

Pτ = E|xτ (t)|2. (101)

Similarly, the average power per data symbol is

Pd = E|xd(t)|2. (102)
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Naturally, the total transmit power per symbol is P = Pτ + Pd.

For our data-dependent superimposed training, the selection of training sequences is

dependent upon data sequences. Therefore, strictly speaking, the training sequence and

the data sequence are not statistically independent. However, as the number of training

sequences is small compared to the data sequences, and each training sequence is still asso-

ciated with a large number of data sequences, statistical independency holds approximately,

and so does the following relationship:

E|x(t)|2 = Pτ + Pd. (103)

The parameter Pτ/Pd and the set of training sequences are to be designed for the data-

dependent superimposed training scheme. For TDM training, the power of the training

symbol is defined as

Pτ = |xτ |2, (104)

and is the only parameter that needs to be optimized. Note that the transmit power of

TDM training in an ISI channel should be properly scaled to account for the effect of trailing

zeros.

6.2.3 Detectors

We assume that the channel coefficients are unknown both at the transmitter and at the

receiver. However, when dealing with ISI channels, we assume that the channel span Nt

is known or correctly upper-bounded. In this chapter, we consider an uncoded system

and assume that the data symbols {xd(t)} are chosen i.i.d. from a pulse amplitude mod-

ulation (PAM) or QAM constellation. Equivalently, we can think of the data-dependent

superimposed training system as a rate-1 coding without adding any redundancy.

Without any channel state information at the receiver, conditioned on the transmitted

signal matrix X, the received signal y is distributed as complex Gaussian with zero-mean

and covariance matrix Λ = XXH + σ2
nI. Therefore, the probability density function (pdf)

of received signal y conditioned on X is given by [46]

p(y|X) =
exp(−yHΛ−1y)

πN det(Λ)
. (105)
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Let the size of the data symbol constellation be Γ, and the number of codewords in the

codebook be K. In the example of the flat fading channel (95), K = ΓN . In the remainder of

this section we use the general channel model (91). Denote the codewords as {Xj}, j ∈ J ,

where J = {0, 1, . . . , K − 1} is the index set of the codewords. Denote the decision on the

codeword at the receiver as X̂.

For the channel in (91), the maximum likelihood (ML) decoder at the receiver makes a

decision on the index of the transmitted codeword by

ĵ = arg max
j∈J

p(y|Xj), (106)

which requires knowledge of statistics of the channel coefficients and also the noise variance

σ2
n.

Another well-known receiver that does not require knowledge of channel statistics is

the generalized likelihood ratio test (GLRT) receiver [10, 66]. This receiver maximizes the

likelihood of the received signal conditioned on the fading coefficients h and transmitted

signal Xj , first over the fading coefficients and subsequently over the transmitted signal,

yielding

ĵ = arg max
j∈J

yHXj(X
H
j Xj)

−1XH
j y. (107)

Since Xj(X
H
j Xj)

−1XH
j is the projection matrix onto the jth signal’s subspace, the detector

compares the energy of the received signal in the signals’ subspaces. The GLRT decoder

is known to be simpler than the ML decoder and suffers a slight performance degradation

compared to the ML decoder.

A simpler yet suboptimal decoder for the training based schemes is to first obtain an

estimate of the channel ĥ based on the received signal and pilot symbols, and then perform

coherent detection assuming that ĥ is the true channel. If the noise is AWGN, this detector

is equivalent to the following minimum distance detector

ĵ = arg min
j∈J

‖y − Xjĥ‖F . (108)

The purpose of training symbols is to help the receiver obtain channel state informa-

tion. Therefore, for training based schemes, the coherent detector (108) following channel

66



estimation seems to be the only reasonable thing to do. However, we can also think of the

training scheme as an inner code, and usually there is another outer code in a communi-

cation system. The code might be iteratively decoded starting from the decisions given by

(108). During the decoding process, the channel can also be iteratively estimated using

hard decisions [15,39,55] or soft decisions [57,81] on the data symbols. If the outer code is

properly designed, the iterative decoding can approach the performance of an ML decoder.

Based on these considerations, we consider the performance of ML decoders when designing

the inner training codes.

6.3 Design of Data-Dependent Training Sequences

6.3.1 Channel Estimation and Training Sequence Selection

6.3.1.1 Flat Fading

We first consider the flat fading channel (95). We next find an LMMSE estimate of channel

h based on y and xτ . Denoting the channel estimation filter (vector) as c, the linear channel

estimate is given by ĥ = cy. The LMMSE criterion minimizes

E|h − ĥ|2 = E|h − cy|2. (109)

It follows straightforwardly that c = E{hyH}E{yyH}−1. Assume that the data compo-

nents {xd(t)} are i.i.d. with zero mean. From (100), we have E{hyH} = E{hh∗}xH
τ = xH

τ ,

and

E{yyH} = E{(xτ + xd)hh∗(xτ + xd)
H} + σ2

nI

= Exd
Eh|xd

{(xτ + xd)hh∗(xτ + xd)
H} + σ2

nI

= Exd
{(xτ + xd)(xτ + xd)

H} + σ2
nI

= xτx
H
τ + (Pd + σ2

n)I.

(110)
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It follows that

c = xH
τ

[
xτx

H
τ + (Pd + σ2

n)I
]−1

(111)

=
1

Pd + σ2
n

xH
τ [I − xτ (Pd + σ2

n + xH
τ xτ )

−1xH
τ ] (112)

=
1

Pd + σ2
n

xH
τ (I − 1

Pd + σ2
n + PτN

xτx
H
τ ) (113)

=
1

Pd + σ2
n

(xH
τ − xH

τ xτ

Pd + σ2
n + PτN

xH
τ ) (114)

=
1

Pd + σ2
n + PτN

xH
τ , (115)

where (112) follows from the Sherman-Morrison-Woodbury formula [28, Eq. (2.1.4)], and

(113) and (115) follow from the fact that xH
τ xτ = PτN .

To clearly see the effect of data sequence xd on the channel estimation error, we need

to evaluate the channel estimation error deeming the data sequence as deterministic. The

expectation of the squared channel estimation error with respect to channel h and noise n

is given by

Eh,n{(cy − h)(cy − h)H}

=Eh,n{[c(xτ + xd) − 1]h + cn}{[c(xτ + xd) − 1]h + cn}H

=[c(xτ + xd) − 1][c(xτ + xd) − 1]H + σ2
nccH

=

[
1

Pd + σ2
n + PτN

xH
τ (xτ + xd) − 1

] [
1

Pd + σ2
n + PτN

xH
τ (xτ + xd) − 1

]H

+ σ2
n

1

(Pd + σ2
n + PτN)2

xH
τ xτ

=

[
xH

τ xd

Pd + σ2
n + PτN

− Pd + σ2
n

Pd + σ2
n + PτN

] [
xH

τ xd

Pd + σ2
n + PτN

− Pd + σ2
n

Pd + σ2
n + PτN

]H

+
σ2

nPτN

(Pd + σ2
n + PτN)2

.

(116)

To gain more insight into the relationship between data sequences and channel estimation

MMSE, we consider an asymptotically long codeword. From (116), we can show that

lim
N→∞

Eh,n{(cy − h)(cy − h)H} =
‖xH

τ xd‖2
F

(PτN)2
. (117)

This result shows that as the codeword length increases, the squared inner product between

the training sequence and the data sequence is the dominant term in the channel estimation
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error. Therefore, for the purpose of helping the receiver obtain a better channel estimate, a

transmitter can be supplied with multiple candidate training sequences. Given a sequence

of data symbols, the transmitter should select a training sequence that is most orthogonal

to the data sequence. Although this orthogonality criterion is only asymptotically accurate

at long codeword lengths, we adopt this criterion even if the codeword is short for simplicity

reasons.

To describe the training sequence selection procedure, let M be the number of training

sequences available at the transmitter. Denote the set of training sequences as

{xτ1, xτ2, . . . , xτM}.

Given a data sequence xd, the transmitter chooses the mth training sequence if

m = arg min
l

‖xH
τlxd‖2

F . (118)

The mapping from a data sequence to the final transmitted codeword is defined as

x = x(xd) = xτm + xd, where m is given by (118). (119)

6.3.1.2 Frequency-Selective Fading

For a general superimposed training scheme, the training part of the codeword Xτ has

exactly the same form as X in (96). However, it is hard to obtain any insight and a simple

matching rule between the data and training sequences. Moreover, as will be shown in

Section 6.4.3, our effort at optimizing the single training sequence to minimize the PEP

resulted in a training sequence that is nonzero only in the first entry. Motivated by these

factors, we apply the constraint that the training symbols be free from ISI caused by other

training symbols, i.e., Nt−1 trailing zeros be inserted between two training symbols. Under

this constraint, Xτ will be in the form of stacked identity matrices, each of which is scaled
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by a training symbol. For example,

Xτ =




xτ (1) 0 0

0 xτ (1) 0

0 0 xτ (1)

xτ (2) 0 0

0 xτ (2) 0

0 0 xτ (2)

...
...

...




, (120)

if Nt = 3.

Similar to the flat fading case, we design an LMMSE channel estimator C to minimize

the channel estimation error

E‖h − Cy‖2
F . (121)

The optimal C can be shown to be

C = XH
τ

(
XτX

H
τ + E{XdX

H
d } + σ2

nI
)−1

. (122)

The data covariance matrix E{XdX
H
d } is a diagonal matrix but is not proportional to

an identity matrix because of the Toeplitz structure of Xd. However, if the codeword

is long enough, the effect of boundary components on the diagonal can be ignored, and

E{XdX
H
d } ∼= NtPdI. Under this simplification,

C = XH
τ

(
XτX

H
τ + (NtPd + σ2

n)I
)−1

=
1

NtPd + σ2
n

XH
τ

(
I − 1

NtPd + σ2
n + PτN/Nt

XτX
H
τ

)

=
1

NtPd + σ2
n + PτN/Nt

XH
τ ,

(123)

where we used [28, Eq. (2.1.4)], and repeatedly used the fact that XH
τ Xτ = PτN/NtI,

which holds if N is an integer multiple of Nt.

Now we can examine the effect of the data sequence on the channel estimation error
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deeming the data sequence as deterministic. The covariance matrix of the channel estima-

tion error vector is given by

E(Cy − h)(Cy − h)H

=E{[C(Xτ + Xd) − I]h + Cn}{[C(Xτ + Xd) − I]h + Cn}H

=[C(Xτ + Xd) − I][C(Xτ + Xd) − I]H + σ2
nCCH

=

(
1

NtPd + σ2
n + PτN/Nt

XH
τ Xd −

NtPd + σ2
n

NtPd + σ2
n + PτN/Nt

I

)

(
1

NtPd + σ2
n + PτN/Nt

XH
τ Xd −

NtPd + σ2
n

NtPd + σ2
n + PτN/Nt

I

)H

+ σ2
nCCH .

(124)

The total variance of the channel estimation error is just the trace of the above covariance

matrix:

E‖h − Cy‖2
F

=tr E[(Cy − h)(Cy − h)H ]

= tr

[(
1

NtPd + σ2
n + PτN/Nt

XH
τ Xd −

NtPd + σ2
n

NtPd + σ2
n + PτN/Nt

I

)

(
1

NtPd + σ2
n + PτN/Nt

XH
τ Xd −

NtPd + σ2
n

NtPd + σ2
n + PτN/Nt

I

)H ]
+σ2

n tr(CCH).

(125)

Similarly to the flat fading case, we consider asymptotically long codewords, and we have

lim
N→∞

tr E[(Cy − h)(Cy − h)H ] =
‖XH

τ Xd‖2
F

(PτN/Nt)2
. (126)

So, under the constraint that each training symbol is followed by Nt−1 trailing zeros, we get

a similar asymptotic result in the frequency-selective fading case as in the flat fading case.

Therefore, the mapping between training sequences and data sequences can be defined

similarly to (118) and (119), i.e., for each Toeplitz matrix formed by a data sequence,

choose the training sequence whose Toeplitz construction (120) is most orthogonal to the

data matrix.

6.3.2 Design of the Set of Training Sequences

Although the transmitter can dynamically select a training sequence to minimize the MMSE

of the channel estimate, the receiver has to figure out which training sequence is used
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through a decision process in order to achieve this gain of better channel estimation. Ob-

viously, errors can happen in this decision process, and a different set of training sequences

probably leads to a different error probability. Therefore, we need to design the set of

training sequences to minimize the probability that the receiver erroneously makes a deci-

sion about which training sequence is used by the transmitter. This probability is the error

probability between one set of codewords and another set of codewords. Another interesting

quantity is the intra-set error probability, which should also be minimized. Therefore, we

take the approach of minimizing the overall error probability under the mapping defined in

(119).

Analytical assessment of the overall error probability seems intractable. Therefore, we

resort to using a bound on the error probability as the design criterion. As a common

practice, we employ the union bound for this purpose, which is known to be tight at high

channel SNRs [58].

The codeword error probability can be upper-bounded using the union bound according

to

Pe =
1

K

∑

i∈J

Pr(X̂ 6= Xi|Xi transmitted)

≤ 1

K

∑

i∈J

∑

j∈J ,j 6=i

pj|i,

(127)

where pj|i is the PEP between codewords Xi and Xj conditioned on Xi being transmitted.

The form of pj|i depends on the detection algorithms utilized by the receivers. As

mentioned before, we consider ML decoder performance in this chapter. The expression of

PEP for ML decoders in a noncoherent channel was derived in [10]. A Chernoff bound on

this PEP was given in [17]. Since the Chernoff bound of PEP has a simpler form and is

easier to evaluate than the PEP itself, we chose to use the Chernoff bound on PEP as our

performance metric when designing the training codes. We cite the Chernoff bound result

in [17, Eq. (3.12)] in the following.

Lemma 3. At asymptotically high SNR, the Chernoff upper bound of PEP (127) for the
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channel model (91) is given by

P i,j
CB(λ) =

1

2

det(XH
i Xi)

λ det(XH
j Xj)

1−λ

det







λI

(1 − λ)I




1
2



XH
i

XH
j



(

Xi Xj

)



λI

(1 − λ)I




1
2




. (128)

In (128), λ is a parameter that can be optimized to minimize the Chernoff bound and

make it tight. The value of λ = 1/2 is optimal for various cases [17], for example, the

so-called equal energy case, where XH
i Xi = XH

j Xj . For more general cases, λ = 1/2 is

not optimal and the Chernoff bound P i,j
CB(1/2) is less tight. However, P i,j

CB(1/2) still serves

as an upper bound and is used in this chapter as a performance metric. P i,j
CB(1/2) has the

following expression

P i,j
CB(1/2) =

1

2

det(XH
i Xi)

1
2 det(XH

j Xj)
1
2

det


1

2




XH
i

XH
j



(

Xi Xj

)



(129)

and will be denoted as P i,j
CB from now on. By observation, the roles played by Xi and Xj

in P i,j
CB are symmetric. Therefore, the union bound in (127) has become

Pe ≤
1

K(K − 1)/2

K−2∑

i=0

K−1∑

j=i+1

P i,j
CB. (130)

At this point, the design problem can be stated. Given a signal constellation and

a channel model with a specific coherence interval, we want to design a set of training

sequences so that under the mapping of (119) at the transmitter, the Chernoff upper bound

on the union bound is minimized.

To design the multiple training sequences, we first consider properties these training se-

quences should have, because a structured set can make the numerical optimization efforts

easier. For the flat fading channel, we will empirically reason that from the channel esti-

mation point of view, if M ≤ N , the training sequences should be chosen to be orthogonal.

Recall that we assumed that the data symbols are picked i.i.d. from a QAM or PAM con-

stellation, it follows that the data sequences are evenly spaced in an N -d Euclidean space.

Since the criterion of matching data sequences with training sequences is orthogonality, the
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training sequences should also be placed evenly in the space. When the number of training

sequences is less than the dimension of the space, the most even way to place them in the

space is to make them orthogonal. For frequency-selective fading, with a similar argument,

we can show that when the training sequences have the form stated in (120), and under the

condition that M ≤ N/Nt, the non-zero-padded training sequences should be orthogonal to

each other.

Now that we have shown the training sequences should be orthogonal to each other, we

also constrain that all training sequences have equal power. If we define T to be the matrix

whose column vectors are the training sequences, then T is a scaled orthonormal matrix be-

cause T HT = NPτIM . The optimization problem has become one with an orthonormality

constraint. Various gradient descent types of numerical optimization algorithms exist for

problems with an orthogonality constraint [19,45]. Since we do not have analytical expres-

sions for the gradient of the sum PEP with respect to training sequences and the training

power allocation, we chose to parameterize the orthonormal matrices, thereby change the

problem into one without orthonormal constraints, and then optimize these parameters

utilizing a line search algorithm implemented using the MATLAB function fmincon.

A natural modeling of orthonormal matrices is the Stiefel manifold [9], in which each

point is an orthonormal matrix. The number of degrees of freedom of an N×M orthonormal

complex matrix, where N ≥ M , is less then NM . An N × M orthonormal matrix has the

following parametrization

exp




A BH

B 0


 IN,M , (131)

where B is an arbitrary (N −M)×M complex matrix and A is an M ×M skew Hermitian

matrix, which means that AH = −A. The matrix A can be further parameterized by its

upper triangular or lower triangular components including the main diagonal.

The optimization of the set of training sequences for the flat fading channel are sum-

marized as following, and optimization for frequency-selective channels can be similarly

inferred:

• Training sequences have equal power;
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• If M ≤ N , training sequences should be orthogonal to each other;

• The matrix having normalized training sequences as columns can be parameterized

as in (131);

• The parameters from (131) and the power allocation between data and training se-

quences are optimized to minimize the Chernoff upper bound on the union bound

(130), through a line search algorithm.

6.4 Numerical Examples

In this section, we compare our proposed data-dependent superimposed training with TDM

training and traditional superimposed training with a single training sequence. For TDM

training, we optimized the power allocation between the training symbol and data symbols.

For superimposed training schemes, we optimize both the power allocation embodied by

Pτ/Pd and the training sequences. The receiver uses a GLRT receiver because it performs

similarly to ML receivers but is slightly simpler.

We first point out that if the training sequence is not properly designed for the traditional

superimposed training with a single training sequence, the noncoherent system may not

work at all. For example, consider BPSK modulated data symbols. Since we consider very

short coherence intervals and codeword length, the data sequences {−1, −1, . . . , −1} and

{1, 1, . . . , 1} can happen. In this case, if the training sequence is a repetition of some

symbol, say xτ , then the resultant codewords would be {−1 + xτ , −1 + xτ , . . . , −1 + xτ}

and {1 + xτ , 1 + xτ , . . . , 1 + xτ}. These two sequences cannot be discerned at the receiver

by the GLRT receiver (107) because the projection matrices onto the signal subspace are

exactly the same. Therefore, for fast fading, the single superimposed training sequence

should be optimized, which has seldom been done before.

In the figures’ legends, TDM denotes TDM training. An integer in the legend indicates

the number of orthogonal training sequences used when constructing the codebook. In all of

the following figures, the curves inside the same figure correspond to the same information

rate for fairness.
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6.4.1 Flat Fading, N = 2, QPSK vs 16-QAM

In the first example, we consider a flat-fading channel with coherence interval N = 2. For

TDM training, the first symbol is a training symbol and the second symbol is picked from

a 16-QAM constellation. For superimposed training, data symbols are QPSK modulated.

For a single training sequence, the optimized Pτ = 0.3178P , and the normalized training

sequence is

xτ =




0

0.2064 + 0.9785i


 .

Interestingly, the superimposed training sequence is only nonzero in one of the two entries.

For a system with two training sequences, Pτ = 0.1134P , and the normalized optimized

training sequences are written as columns of the following matrix




−0.3054 − 0.6376i −0.6376 + 0.3059i

−0.3059 + 0.6376i −0.6376 − 0.3054i


 .

For TDM training, the optimized Pτ = 0.4718P . The performance comparison in terms

of codeword error probability is shown in Fig. 17. Note that, although we plot the per-

formance across a range of SNRs, the optimization was only performed for asymptotically

high SNRs. We can see that two training sequences offer about 1 dB gain compared to a

single superimposed training sequence and also offer some gain relative to TDM training.

6.4.2 Flat Fading, N = 4, 4-PAM vs 6-PAM

In this example, we consider a real channel with coherence interval N = 4. The superim-

posed training systems utilize a 4-PAM data constellation, while the TDM training system

uses 6-PAM. For a single superimposed training sequence, Pτ = 0.0311P , and the normal-

ized training sequence is

(−0.6015 −0.3694 0.7083 −0.0006 )T .
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Figure 17: Codeword error rate example with N = 2. The TDM training scheme uses
16-QAM data symbols, and the superimposed training schemes use QPSK data symbols.

For the case of four superimposed training sequences, Pτ = 0.6087P , and the normalized

training sequences are columns of




−0.5823 −0.7477 0.1199 0.2958

0.3660 −0.1701 −0.7092 0.5780

−0.6222 0.6386 −0.1181 0.4372

−0.3739 −0.0649 −0.6846 −0.6224




.

For TDM training with a single training symbol placed at the beginning of the codeword,

Pτ = 0.2081P .

We first compare the codeword error probability between TDM training and four-

sequence superimposed training in Fig. 18. Note that in the setting of this example,

the rate of superimposed training is more than that of TDM training. Therefore, for Fig.

18, we sequentially removed those codewords that have largest PEP with other codewords,

until the number of codewords is equal to that of TDM training. This process is not optimal

in any sense and is disadvantageous for four-sequence superimposed training. Even so, we
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can see from Fig. 18 that four-sequence superimposed training has more than 1 dB gain

over TDM training.
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Figure 18: Codeword error rate example with N = 4. The TDM training scheme uses
6-PAM data symbols, and the superimposed training scheme uses 4-PAM data symbols.

The performance between four-sequence and a single sequence superimposed training in

terms of codeword error rate and bit error rate is compared in Fig. 19. Here the mapping

between bits and 4-PAM symbols is the Gray code [58]. The four-sequence superimposed

training has a large gain over the single training sequence case in terms of bit error rate.

The LMMSE channel estimation error of various schemes is plotted in Fig. 20. Note

that the LMMSE channel estimate only relies on the training sequence or symbol and the

variance of data symbols and noise samples. For the multiple training sequences case, the

channel estimation is performed using the correct training sequence associated with each

codeword. We observed that the four-sequence system has a much better channel estimation

performance than the single superimposed training sequence system. This gain comes not

only from the orthogonality criterion in the mapping (119), but also from the fact that a

larger percentage of the total power is allocated to the training part in this example. We
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Figure 19: Error rates for superimposed training with N = 4 and 4-PAM data symbols.
(a) Codeword error rate; (b) Bit error rate.
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also observe that TDM training benefits from high SNR, while the superimposed training

has an error floor at high SNR because the data symbols appear as high-variance noise to

the channel estimator.
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Figure 20: MMSE of channel estimates with N = 4. TDM training scheme uses 6-PAM
data symbols, and superimposed training schemes use 4-PAM data symbols.

6.4.3 Frequency-Selective Fading, N = 6, Nt = 3, QPSK vs 256-QAM

As a last example, we consider a complex frequency-selective fading channel with Nt = 3

symbol-spaced taps and a coherence interval of N = 6. While the superimposed training

system can transmit four symbols followed by two trailing zeros, the TDM training system

can only transmit one training symbol followed by two trailing zeros, and then one data

symbol followed by two trailing zeros. If the superimposed training system uses QPSK

modulation for the data, the TDM system has to use 256-QAM to get the same information

rate. For single sequence superimposed training, Pτ = 0.0644, and the normalized training

sequence without accounting for the last two trailing zeros is

( 0.6676 − 0.7445i 0 0 0 )T .

80



This is an interesting result because the optimization process was initiated from a general

length-4 sequence but ended with only one nonzero entry. This partly motivated our con-

straint (120) on the structure of other multiple training sequences. For two superimposed

training sequences, Pτ = 0.0873P , and the training sequences are the columns of




0.3982 + 0.0013i 0.6456 − 0.6517i

0 0

0 0

−0.6536 − 0.6436i 0.3981 − 0.0062i




,

without accounting for the last two trailing zeros. The optimized TDM training has

Pτ = 0.5287P . The codeword error performance is shown in Fig. 21. The superimposed

training systems have a large gain compared to TDM training, most likely because of the

high modulation order of data symbols in the TDM training setting. The two-sequence

superimposed training has a modest gain relative to the single sequence case.
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Figure 21: Codeword error rate example with N = 6. The TDM training scheme uses
256-QAM data symbols, and the superimposed training schemes use QPSK data symbols.
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6.5 Conclusion and Discussion

We considered the design of a data-dependent superimposed training system for a fast fading

noncoherent channel. Given a data codeword at the transmitter, a training codeword that

is most orthogonal to the data codeword is selected and added to the data to form the

final codeword. The training sequences are designed to minimize the Chernoff upper bound

on the union bound of codeword error rate. For GLRT receivers in a frequency-selective

channel, the superimposed training systems show great performance gain over the TDM

training system. For flat fading channels, data-dependent superimposed training system

shows about 1 dB gain over TDM training. The performance improvement for multiple

training sequences over the single training sequence is more prominent in flat fading channels

rather than frequency-selective channels.

We only considered the analytic Chernoff bound on pairwise error probability for a max-

imum likelihood receiver in this chapter. Other criteria can be used, for example, packet

error rate or bit error rate. We can also optimize the set of training sequences for other de-

tection schemes, for example, a suboptimal and simpler one that first estimates the channel

and then performs coherent detection taking the channel estimate as the true channel. We

envision a structure with multiple parallel channel estimation/data detection branches, each

for a training sequence, followed by a final decision device. Since analytical expressions of

these error probabilities are unlikely to exist, simulation based optimization methods may

be necessary [68]. Extending the current work to multiple transmit antennas would also

be interesting. Besides channel estimation, the superimposed training scheme may also be

helpful for frequency and timing synchronization purposes because of the universal presence

of the training sequence.
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CHAPTER VII

CONCLUSIONS

Wireless communication systems equipped with multiple transmit and receive antennas are

able to achieve higher throughput and/or reliability than single antenna systems without

increasing bandwidth. The spectral efficiency of a MIMO system can be further improved

if the transmitter has access to channel state information. Perfect CSI at the transmitter

is hard to acquire in FDD systems. For the transmitter to achieve better performance than

transmission without CSI in such cases, the receiver has to feedback partial channel state

information to the transmitter.

Grassmannian subspace packing based vector quantization is a strong candidate for CSI

feedback codebook design in pseudo-static block fading channels. For continuous fading,

which is more realistic, Grassmannian packing based VQ scheme does not exploit the time-

domain correlation of channel states. In Chapter 3, we proposed new codebook design

and CSI feedback schemes that utilize both time-domain channel correlation and intrinsic

properties of the variation of subspaces. Instead of quantizing the subspaces themselves, we

proposed to quantize the geodesic trajectory connecting two subspaces. More specifically, we

quantize a key entity that characterizes a geodesic arc: the velocity matrix. Our schemes

achieved significant performance improvement compared to the gradient sign algorithm,

because we compactly represent the source using piecewise geodesic modeling and quantize

a smaller number of parameters. For slow fading and strong time-domain correlation,

our scheme is also better than Grassmannian subspace packings. Our perspective of CSI

feedback codebook design based on channel Doppler frequency is also novel.

We designed a MIMO OFDM transmitter with partial CSI at the transmitter under

special complexity constraints in Chapter 4. To limit the number of (I)DFTs per OFDM

symbol to be one, time-domain beamforming and combining are performed at the trans-

mitter and the receiver, respectively. The performance penalty is analyzed relative to a
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full-complexity system that requires as many (I)DFTs as the number of antennas.

Imperfections in the CSI feedback channel have rarely been treated in the literature.

We considered an arbitrary delay in the feedback channel in Chapter 5 and proposed a

broadcast approach to adapt the reliably decodable information rate to the quality of CSI.

This is achieved by transmitting a first layer that has a white covariance matrix and a

second layer along the direction as stated by the CSI. Power allocation between the two

layers as well as information rates were optimized to maximize the expected throughput.

Significant throughput gain was observed in some regions of CSI quality and SNRs.

Finally, we relaxed the assumption that the receiver always has perfect CSI and con-

sidered noncoherent training codes for fast fading channels in Chapter 6. Training based

schemes are more attractive than unstructured unitary space-time codes for complexity

considerations because training symbols help the receiver obtain an estimate of the channel

and initiate further decoding processes. We generalized the idea of superimposed train-

ing to multiple training sequences. For each data sequence, the transmitter dynamically

matches the data with a training sequence that is most orthogonal to it. This mapping re-

duces channel estimation error if the receiver knows which training sequence is used by the

transmitter. To reduce the probability that the receiver assumes a wrong training sequence,

the set of training sequences was optimized to minimize the Chernoff bound on sum PEPs.

The superimposed training schemes showed significant gain over TDM training schemes for

fast fading frequency-selective channels. Multiple training sequence codes showed better

performance than single training sequence codes in all cases, but the gain varies depending

on the setting.

In future research, effective CSI feedback schemes for MIMO OFDM systems can be

considered. This problem is more challenging than flat fading channels because each sub-

carrier has a different MIMO channel matrix. However, in a MIMO OFDM system, the

power-delay profile varies more slowly than time-domain taps. The correlation of chan-

nel matrices on different subcarriers, as determined by the power-delay profile, also varies

slowly. Proper utilization of this prior information constitutes interesting research topics.

Another interesting area is optimal transmitter design given partial CSI in the setting of
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multiuser downlink channels, where the transmitter tries to transmit independent informa-

tion to multiple receivers simultaneously.

In terms of training codes, future research can probe into training sequence design for

suboptimal but simpler receivers that perform channel estimation followed by coherent

detection. With the existence of an outer code, the receiver structure and the convergence

behavior of an iterative detector/channel estimator can be investigated.
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APPENDIX A

SUPPLEMENTARY FOR CHAPTER III

A.1

From (26),

Q[0] exp(B[0])INt,Ns

=( W [0] Z[0] )




U1CUH
1

U2SUH
1




=W [0]U1CUH
1 + Z[0]U2SUH

1 .

(132)

Similarly,

Q[0] exp(−B[0])INt,Ns = W [0]U1CUH
1 − Z[0]U2SUH

1 . (133)

Using (132) and (133), the terms inside the signum function in (37) can be expanded as

‖HQ[0] exp(B[0])INt,Ns‖2
F − ‖HQ[0] exp(−B[0])INt,Ns‖2

F

=tr(IH
Nt,Ns

exp(B[0])HQH [0]HHHQ[0] exp(B[0])INt,Ns)

− tr(IH
Nt,Ns

exp(−B[0])HQH [0]HHHQ[0] exp(−B[0])INt,Ns)

=4 trℜ(U1CUH
1 W H [0]HHHZ[0]U2SUH

1 ).

(134)

The binary decision s[1] is simply the sign of the above expression

s[1] = sign trℜ(U1CUH
1 W H [0]HHHZ[0]U2SUH

1 ). (135)

Substituting C ≈ I and S ≈ Θ into (135), we have

s[1] ≈sign trℜ(W H [0]HHHZ[0]U2ΘUH
1 )

=sign trℜ(W H [0]HHHZ[0]A[0]).

(136)

A.2

Here we cite one result of Appendix A of [4].
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Lemma 4. Let G be a non-random complex matrix, and P be a random matrix, having

the same dimensions as G, with CN (0, 1) entries. If

Z ≡ [sign trℜ(GHP )]P , (137)

then

E{Z} =
1√
π

G

‖G‖F
. (138)

Now substitute P in Lemma 4 with A[0] = aAw[0] and G with ZH [0]HHHW [0], and

then (46) follows straightforwardly.

A.3

a2 = p1FD
8 + p2FD

7 + p3FD
6 + p4FD

5 + p5FD
4 + p6FD

3 + p7FD
2 + p8FD

1 + p9. (139)

p1 1.7258e-20

p2 -2.9536e-17

p3 2.0865e-14

p4 -7.8741e-12

p5 1.7062e-9

p6 -2.0741e-7

p7 1.0147e-5

p8 0.0012022

p9 -0.0029007
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APPENDIX B

SUPPLEMENTARY FOR CHAPTER V

B.1

RWW =Eh∼CN (0,α2I){log[1 + PhH(βI + ξI)h] − log(1 + PhHξIh)}

+ (1 − η)Eh∼CN (ηg,(1−η2)α2I) log[1 + PhHξIh]

=

∫ ∞

0

e−
y

α2P

y

[
1 − 1

(1 + y)Nt

]
dy −

∫ ∞

0

e
− y

α2ξP

y

[
1 − 1

(1 + y)Nt

]
dy

+ (1 − η)

∫ ∞

0

e
− y

(1−η2)α2ξP

y


1 −

exp
(
− η2‖g‖2y

α2(1−η2)(1+y)

)

(1 + y)Nt


 dy.

(140)

RWB =Eh∼CN (0,α2I){log[1 + PhH(βI + Ntξ
ggH

gHg
)h] − log(1 + PhHNtξ

ggH

gHg
h)}

+ (1 − η)Eh∼CN (ηg,(1−η2)α2I) log[1 + PhHNtξ
ggH

gHg
h]

=

∫ ∞

0

e−
y

α2P

y

[
1 − 1

(1 + (β + Ntξ)y)(1 + βy)Nt−1

]
dy −

∫ ∞

0

e
− y

α2NtξP

1 + y
dy

+ (1 − η)

∫ ∞

0

e
− y

(1−η2)α2P

y


1 −

exp
(
− η2‖g‖2Ntξy

α2(1−η2)(1+Ntξy)

)

1 + Ntξy


 dy.

(141)

RBB =Eh∼CN (0,α2I){log[1 + PhH(Ntβ
ggH

gHg
+ Ntξ

ggH

gHg
)h] − log(1 + PhHNtξ

ggH

gHg
h)}

+ (1 − η)Eh∼CN (ηg,(1−η2)α2I) log[1 + PhHNtξ
ggH

gHg
h]

=

∫ ∞

0

e−
y

α2P

y

[
1 − 1

1 + Nty

]
dy −

∫ ∞

0

e
− y

α2ξP

y

[
1 − 1

1 + Nty

]
dy

+ (1 − η)

∫ ∞

0

e
− y

(1−η2)α2ξP

y


1 −

exp
(
− η2‖g‖2Nty

α2(1−η2)(1+Nty)

)

1 + Nty


 dy.

(142)
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APPENDIX C

ACRONYMS

Acronyms Description

A ∼ B A is distributed as B

AWGN Additive white Gaussian noise

BER Bit-error rate

BPSK Binary phase-shift keying

CDM Code-division multiplexed

CDMA Code-division multiple access

CSI Channel state information

DFT Discrete Fourier Transform

FDD Frequency-division duplex

FDM Frequency-division multiplexed

GLRT Generalized likelihood ratio test

IDFT Inverse Discrete Fourier Transform

i.i.d. Independent and identically distributed

ISI Intersymbol interference

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

ML Maximum likelihood

n-D n-dimensional

OFDM Orthogonal frequency division multiplexing

PAM Pulse amplitude modulation

PEP Pairwise error probability

QAM Quadrature Amplitude Modulation

QPSK Quadrature phase-shift keying
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Acronyms Description

SIMO Single input multiple output

SNR Signal-to-noise ratio

STBC Space-time block coding

SU Subscriber unit

SVD Singular value decomposition

TDM Time-division multiplexed

VQ Vector quantization

C
n n-dimensional complex space

CN (µ, σ2) The complex Gaussian distribution with mean µ and variance σ2

CN (µ, Q) The complex Gaussian vector distribution with mean µ and

covariance matrix Q

diag(x) A (block) diagonal matrix with x on its diagonal

E{·} Expectation

EA∼B{·} Expectation with regard to A that is distributed as B

I Identity matrix

In n × n identity matrix

INt,Ns Matrix Containing the first Ns columns of INt

ℜ{·} Real part of complex entries

sign(·) Signum function

tr{·} Trace of a matrix

(·)∗ Conjugation

(·)H Hermitian transpose

‖ · ‖F Frobenius norm of a matrix

[ · ]p The pth entry of a vector

[ · ]p,q The (p, q)th entry of a matrix

0 All-zero vector or matrix

0m×n m × n all-zero matrix
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