
AUTOMATICALLY PROVING THE TERMINATION OF
FUNCTIONAL PROGRAMS

A Dissertation
Presented to

The Academic Faculty

by

Daron Vroon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December, 2007

Copyright c© 2007 by Daron Vroon



AUTOMATICALLY PROVING THE TERMINATION OF
FUNCTIONAL PROGRAMS

Approved by:

Panagiotis Manolios, Advisor
College of Computing
Georgia Institute of Technology

Richard Lipton
College of Computing
Georgia Institute of Technology

Byron Cook
Microsoft Research, Cambridge Lab

J Strother Moore
Department of Computer Sciences
The University of Texas at Austin

Eric Feron
Department of Aerospace Engineering
Georgia Institute of Technology

Professor Santosh Pande
College of Computing
Georgia Institute of Technology

Date Approved: August 7, 2007



To my wife,

Julie,

for her tireless love and support.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Panagiotis Manolios. His guidance in

matters of research and life have been invaluable, and I am a better researcher and a richer

person for it. I also must thank him for his unwavering support for me from start to finish,

even when I declared my intention to follow a different career path. Without it, I would

not have finished this dissertation.

I would also like to thank J Moore and Matt Kaufmann, the authors of ACL2, for their

collaboration and support for this research. Their tireless efforts to improve ACL2 has made

it the award-winning system it is today, and their help was key in the implementation of my

own work in ACL2. I also would like to thank Mátyás Sustik for developing his Dickson’s
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SUMMARY

Establishing the termination of programs is a fundamental problem in the field of

software verification. For transformational programs, termination is used to extend partial

correctness to total correctness. For reactive systems, termination reasoning is used to

establish liveness properties. In the context of theorem proving, termination is used to

establish the consistency of definitional axioms and to automate proofs by induction. Of

course, termination is an undecidable problem, as Turing himself proved. However, the

question remains: how automatic can a general termination analysis be in practice?

In this dissertation, we develop two new general frameworks for reasoning about termi-

nation and demonstrate their effectiveness in automating the task of proving termination

in the domain of applicative first-order functional languages.

The foundation of the first framework is the development of the first known complete

set of algorithms for ordinal arithmetic over an ordinal notation. We provide algorithms

for ordinal ordering (<), addition, subtraction, multiplication, and exponentiation on the

ordinals up to ε0. We prove correctness and complexity results for each algorithm. We

also create a library for automating arithmetic reasoning over ε0 in the ACL2 theorem

proving system. This ordinal library enables new termination proofs that were previously

not possible in previous versions of ACL2.

The foundation of the second framework is an algorithm for fully automating termination

reasoning with no user assistance. This algorithm uses a combination of theorem proving

and static analysis to create a Calling Context Graph (CCG), a novel abstraction that

captures the looping behavior of the program. Calling Context Measures (CCMs) are then

used to prove that no infinite path through the CCG can be an actual computation of

the program. We implement this algorithm in the ACL2, and empirically evaluate its

effectiveness on the regression suite, a collection of over 11,000 user-defined functions from

a wide variety of applications.

xii



CHAPTER I

INTRODUCTION

In this work we defend the following thesis:

A highly automatic, general, interactive, and efficient termination analysis is

possible for feature-rich, first-order, purely functional programming languages.

The problem of proving program termination has one of the longest and richest histories

of any in the field of Computer Science. It was introduced as the “Printing Problem” and

proven to be uncomputable by Alan Turing in the same 1936 paper in which he introduced

Turing Machines and the concept of computability [113]. Despite the difficulty of the

problem, Turing recognized its importance, writing that “The checker has to verify that

the process comes to an end. Here again he should be assisted by the programmer giving a

further definite assertion to be verified” [115, 85].

The difficulty and importance of termination analysis is still recognized today as can be

seen in the terminology of the verification community. In the context of the verification of

transformational programs (i.e., programs that take a set of inputs, calculate an output, and

stop), the community refers to partial and total correctness. A program for which partial

correctness has been shown is guaranteed to give the correct answer if it terminates. A

program for which total correctness has been shown is partially correct and guaranteed to

terminate [1].

Termination is also an important concept in the context of reactive systems (i.e., pro-

grams that do not terminate, but engage in ongoing interactions with their environments)

such as operating systems and networking protocols. In this context, it is important to

show that desired responses to stimuli are not postponed forever. Such a property is known

as a liveness property.

A third context in which termination plays an important role is that of mechanical

theorem proving. Here, termination is used to show that axioms defining new functions

1



are consistent and conservative extensions of the current logical world. For example, in the

ACL2 theorem proving system [57, 56], all functions must be proven to terminate before

they will be admitted into the logic. This prevents the admission of function definitions

such as f(x) = ¬f(x), which would extend the current theory in an inconsistent way.

In this dissertation, we focus on proving termination in the domain of feature-rich, first-

order, purely functional programming languages, of which ACL2’s programming language

is an example. The challenges presented by this class of languages, are challenges that are

faced when reasoning about the termination of any modern programming language, and

include the following.

• Reasoning about a rich set of data-types including some that are not well-founded,

including complex rationals, rationals, and integers, and those that are non-algebraic,

such as lists and trees.

• Complex and general looping behaviors including non-algebraic loops —e.g., loops

over data structures such as graphs and trees, looping behavior that is non-linear and

non-polynomial —e.g., loops using modular arithmetic, absolute value, and minimum

and maximum functions.

• Arbitrarily complex mutual recursion and nested loops.

• Reasoning about the output of user-defined functions.

• Large and complex industrial-scale code bases, such as a nearly complete model of

the Java Virtual Machine [66], efficient executable models of hardware from AMD [82,

101, 102, 107], Motorola [17, 18], and Rockwell-Collins [47], a proof checker [79], and

a verified model checker for the µ-calculus [67].

The goal of this dissertation, then, is to overcome these challenges by developing novel

and general techniques for mechanically reasoning about termination in this domain. We

demonstrate these techniques to be highly automatic, general, interactive, and efficient by

implementing and empirically evaluating them in ACL2.

2



1.1 Contributions and Organization of this Dissertation

Here we outline the contributions and structure of this dissertation. Some of the results

that appear in this dissertation have appeared in previous conference proceedings and jour-

nals [70, 71, 72, 74, 75, 73, 54, 45, 46]. This work is divided into four parts.

In Part I, we present a core semantics for an applicative first-order functional language

and describe the “traditional” method for proving the termination of functions written in

such a language, based on the concept of measures. We also give a brief overview of the

ACL2 theorem proving system, in which our work is implemented and empirically evaluated.

In Part II, we present our general framework for reasoning about termination, which is

based on a constructive theory of ordinal arithmetic. We give the first known complete set of

algorithms for ordinal ordering, addition, subtraction, multiplication, and exponentiation on

the ordinals up to ε0. We develop efficient algorithms and prove correctness and complexity

results for each algorithm. We discuss the mechanical verification of the algorithms in

ACL2 which we accomplish by checking that they satisfy well-known properties of ordinal

arithmetic. We also describe the engineering of a powerful library for reasoning about

ordinal arithmetic that allows ACL2 users to verify termination-related results that were

previously beyond ACL2’s capabilities.

We discuss the challenges of fully integrating this work into ACL2’s logic by replacing

ACL2’s previous ordinal notation with the more succinct notation used in our algorithms.

We provide case studies that demonstrate that this new version of the ACL2 logic maintains

support for legacy ACL2 code while enabling new termination related results, and discuss

the lessons we learned while developing this framework. The result is a powerful framework

for mechanically reasoning about the algebraic properties of the ordinals.

In Part III, we present a new termination analysis based on calling context graphs

(CCGs) for a fully featured class of modern first-order functional programming languages.

These CCGs, constructed through a novel combination of theorem proving and static anal-

ysis, give a manageable but surprisingly accurate representation of the programs looping

behavior. The termination proof then involves assigning sets of calling context measures

(CCMs) over well-founded domains to the calls and showing that for every possible infinite

3



sequence there is a corresponding sequence of CCMs that is infinitely decreasing.

We present an algorithm based on CCGs and CCMs that can automatically reason about

any source of looping behavior in first order purely functional programming languages and

which can automatically handle a much larger class of programs than previous approaches.

We discuss the implementation of this algorithm, including a hierarchical approach which

attempts termination proofs using more lightweight versions of the CCG analysis, and only

resorts to the more powerful, but slower, full version of the CCG analysis when these faster

analyses fail. We present experimental results that demonstrate the effectiveness of our

analysis on a test-bed of over 11,000 functions, representing real user-submitted ACL2 code.

Our analysis can prove termination in over 98% of all cases, and is consistently over 20%

more effective than ACL2’s current analysis on non-trivial recursive function definitions.

Finally, we discuss the integration of our termination analysis into the ACL2 logic,

proving that it results in no change to the ACL2 logic, and can be engineered to interface

with ACL2’s automatic theorem prover.

Part IV of this dissertation is a discussion of future work and conclusions.
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PART I

Preliminaries



CHAPTER II

APPLICATIVE FIRST-ORDER FUNCTIONAL LANGUAGES

In this chapter, we describe the semantics of a standard applicative first-order functional

language, FL, which we use throughout the dissertation to develop our termination analy-

sis. As a starting point for thinking about the termination of programs written in such a

language, we present a well-known general termination proof technique for such languages

based on the notion of well-founded measures. Finally, we introduce the ACL2 theorem

proving system, which has a language similar to FL and is the testbed in which we imple-

ment our termination analyses.

2.1 Programming Language

As a programming language, FL can best be thought of as an applicative —side-effect free

or purely functional— subset of Lisp. Its semantics are given in Figure 1 on the next page.

These semantics are similar to what can be found in standard programming language texts.

Readers interested in the correctness proofs in Chapter 8 should take the time to understand

these semantics. Other readers may want to skim the remainder of this section initially,

returning as needed later.

We are concerned with proving the termination of well-formed function definitions

(members of the set Def ), which are of the form (defun f (xf
1 . . . xf

ar(f)) ef), where

f ∈ FName is a function name, xf
1 , . . . , x

f
ar(f) ∈ Var are the formals of f , and ef ∈ Expr ,

called the body of f , is an expression whose free variables are a subset of {xf
i | 1 ≤ i ≤ ar(f)}.

We use this notation throughout the dissertation, denoting the arity of a function definition,

f as ar(f), the ith formal of f as xf
i , and the body of f as ef .

We leave the universe of values, denoted Val , as undefined, but our examples throughout

the text use values of integer and list types. Since this is a first order language, functions

are not first class data objects, and are not included in Val . We use ⊥ (which is not in Val)

to denote non-termination, and Val⊥ = Val ∪ {⊥}. An environment maps variables (i.e.,
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d ∈ Def
f ∈ FName
x ∈ Var
e ∈ Expr
v ∈ Val
u ∈ Val⊥ = Val ∪ {⊥}
ε ∈ Env = Var → Val
φ ∈ Fun = Val∗ → Val⊥
ψ ∈ TFun = Val∗ → Val ⊆ Fun
h ∈ IHist = FName → Val∗ → Val⊥
H ∈ Hist = FName → Val∗ → Val ⊆ IHist

JeKh
ε : Expr × IHist × Env → Val⊥

str : Fun → Val∗⊥ → Val⊥
D JdKH : Def ×Hist → Fun+

fix : (Fun∗ → Fun∗)× Fun∗ → Fun∗

str (φ) 〈ui〉ni=1 =
{
⊥ if 〈∃i ∈ [1..n] :: ui = ⊥〉
φ〈ui〉ni=1 otherwise

fix ξ Φ = lim
j→ω

ξj Φ

JxKh
ε = ε.x , JvKh

ε = v

J(f e1 ...en)K
h
ε = str (h.f) 〈JeiK

h
ε〉ni=1

J(let ((x1 e1) . . . (xn en)) e)Kh
ε = str

(
λ〈vi〉ni=1 . JeKh

ε[xi 7→ vi]ni=1

)
〈JeiK

h
ε〉ni=1

J(if e1 e2 e3)K
h
ε = str

(
λ(v) .

{
Je2K

h
ε if v 6= nil,

Je3K
h
ε otherwise.

)
〈Je1Kh

ε〉

D

u

w
v

(defun f1 (xf1
1 . . . xf1

ar(f1)
) ef1)

. . .

(defun fk (xfk

1 . . . xfk

ar(f1)
) efk)

}

�
~H = fix (nextfs) 〈λ〈vj〉ar(fi)

j=1 . ⊥〉ki=1

where nextfs 〈φi〉ki=1 = 〈λ〈vi,j〉ar(fi)
j=1 . JeiK

H[fj 7→φj ]
k
j=1 [xi

j 7→ vi
j ]

ni
j=1〉

k
i=1

Figure 1: Partial semantics of a core of the ACL2 programming language.

members of Var) to values. The set of environments is denoted as Env .

Function definitions in FL denote mathematical functions, which can either be members

of the set Fun or TFun. Fun consists of a set of partial functions, which means that

for some inputs, functions in Fun may return ⊥, denoting non-termination. TFun is the

subset of Fun consisting of all the total (i.e., terminating) functions. A history (i.e., a

member of Hist) maps function names to total functions (of the appropriate arity) and an

intermediate history (i.e., a member of IHist) maps function names to partial functions (of

the appropriate arity).

The termination problem we consider is: given a history, H, and a set of mutually
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recursive definitions, d, show that the functions corresponding to the definitions in d are

terminating. To do this, we need to refer not only to H, but also to the (possibly partial)

functions corresponding to the definitions in d. This is accomplished by using an intermedi-

ate history, h, which is just H extended so that it includes the function names appearing in

d and their corresponding functions, as given by the semantics in Figure 1 on the preceding

page (and described in more detail in the next paragraph). We then attempt to prove

that the functions defined in d terminate, which implies that the intermediate history, h, is

actually a history. If so, we have a new history. Otherwise, we reject d, revert to H, and

report the problem to the user. This allows the user to incrementally define programs, as is

common in programming environments for functional languages, such as Lisp. Before the

user provides any new definitions, they are presented with a “ground-zero” history, that

defines basic operators such as and, or, not, iff, implies, +, -, /, *, and so on.

We use four functions to define the semantics of FL. The function JeKh ε defines how

to evaluate an expression, e, given an intermediate history, h, and an environment, ε. The

function str corresponds to strict application. As input, it takes a function and a vector

of values (possibly including ⊥, which indicates non-termination). It returns ⊥ if any of

the input values is ⊥; otherwise, it returns the result of applying the function to the values

(which could also be ⊥). The definitions of the semantic functions for variables, values,

function application, lets, and ifs are now straightforward.

Function definitions are handled with D JdKH, which defines what mathematical func-

tions (elements of Functs) correspond to a set of function definitions, d, given history H.

Its definition depends on the fix function, which is used to define the semantics of recursive

function definitions using the standard fixpoint approach. The fix function takes as input ξ,

a function from a vector of functions to a vector of functions, and a sequence of initial func-

tions, Φ, and returns the vector of functions obtained by taking the limit as j approaches

infinity of applying ξ to Φ j times. The definition of D JdKH uses fix along with another

function, nextfs, which “unrolls” the function definitions one time. The initial values given

to fix are functions that immediately return ⊥. The application of fix to these functions

then “unrolls” the bodies of the definitions an unbounded number of times, which results

7



in a vector of partial functions that corresponds to the semantics of the definitions.

Throughout the rest of this dissertation, unless otherwise specified, we assume a fixed

history, H and a set of syntactically correct, mutually-recursive function definitions, d,

such that none of the function names in d are the same as those in the domain of H.

The intermediate history h is obtained by extending H with the semantics of the function

definitions in d.

We provide the following definitions to help in reasoning about FL programs. Through-

out the rest of the dissertation, we denote the free variables of an expression, e, as free(e).

To talk precisely about subexpressions, we define positions, which tell us where within

an expression a given subexpression is located. This allows us to avoid confusion when

subexpressions at different positions are syntactically the same.

Definition 2.1.1. Given an expression, e, the set of positions of e, denoted Pos(e) is

defined recursively as follows:

• Pos((if e1 e2 e3)) = {ε} ∪
⋃3

i=1{ip | p ∈ Pos(ei)},

• Pos((let ((x1 e1) . . . (xn en)) en+1)) = {ε} ∪
⋃n+1

i=1 {ip | p ∈ Pos(ei)},

• Pos((f e1 . . . en)) = {ε} ∪
⋃n

i=1{ip | p ∈ Pos(ei)},

• Pos(v) = Pos(x) = ε

We use variable substitutions in the normal way to replace variables inside an expression

with an expression. More formally, we have the following.

Definition 2.1.2. A variable substitution is a function σ : V → Expr for some V ⊆ Var .

The application of σ to e, denoted eσ, is defined recursively as follows.

• vσ = v.

• xσ =

 σ.x if x ∈ Dom(σ)

x otherwise

• (f e1 . . . en)σ = (f e1σ . . . enσ).

• (let ((x1 e1) . . . (xn en)) en+1) = (let ((x1 e1σ) . . . (xn enσ)) en+1)
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• (if e1 e2 e3) = (if e1σ e2σ e3σ)

The reader may notice that this particular definition of variable substitution is simpler

than the standard definition and ignores the possible problem of variable capture. The

difference is with let expressions, for which the substitution is not applied to the body

of the let. This may cause problems if the body of the let contains free variables that

would normally be substituted by σ. We give this particular definition in order to simplify

our presentation. To avoid the previously mentioned pitfall, we assume that all of the free

variables in the body of the let are bound in the let expression itself. This is a reasonable

assumption, since any expression of the form (let ((x1 e1) . . . (xn en)) en+1) such that

{x′1, . . . x′m} = free(en+1 − {x1, . . . , xn} can be replaced with (let ((x1 e1) . . . (xn en)

(x′1 x′1) . . . (x′m x′m)) en+1), thereby binding every free variable in en+1 in the bindings

of the let expression.

Next, we define the notion of let-adjusted subexpressions, which are subexpressions with

all applicable let bindings applied statically.

Definition 2.1.3. The let-adjusted subexpression of e ∈ Expr at p ∈ Pos(e), denoted e|p,

is defined recursively as follows.

• e|ε = e.

• (if e1 e2 e3)|ip = ei|p.

• (let ((x1 e1) . . . (xnen)) en+1)|ip =

 ei|p if 1 ≤ i ≤ n

ei[xj 7→ ej ]nj=1|p otherwise

• (f e1 . . . en)|ip = ei|p

By σσ′ we mean the substitution

λx′.

 σ′.x′ if x′ ∈ Dom(σ′).

σ.x′ otherwise.

By [x 7→ e], we mean the substitution that maps x to e. Finally, by [xi 7→ ei]ni=1, we mean

[x1 7→ e1][x2 7→ e2] . . . [xn 7→ en]. We also extend this notation to apply substitutions to sets
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of expressions. Thus, Eσ = {eσ | e ∈ E}. We also define the following special substitution

related to function calls.

Definition 2.1.4. The call substitution of e =(f e1 e2 . . . en), denoted σe, maps xi to ei

for all 1 ≤ i ≤ n, where x1, x2, . . . , xn are the parameters of f .

Finally, we define the sets of governors and rulers guarding a subexpression e′ at position

p of e. The idea is to collect the conditions of the if statements in e containing e′, thereby

telling us the conditions under which e′ is reached when executing e. Our definitions are

synonymous with those in [59].

Definition 2.1.5. Given an expression e and p ∈ Pos(e), the governors of e|p is the set

gov(e, p) defined recursively as follows.

• gov(e, ε) = {},

• gov((if e1 e2 e3), 1q) = gov(e1, q),

• gov((if e1 e2 e3), 2q) = {e1} ∪ gov(e2, q),

• gov((if e1 e2 e3), 3q) = {(not e1)} ∪ gov(e3, q),

• For all other cases, gov(e, iq) = gov(e|i, q).

Rulers are a subset of the governors that represent only “top-level” if statements.

Definition 2.1.6. Given an expression, e, and p ∈ Pos(e), the rulers for p in e are defined

recursively as follows:

• rulers(e, ε) = {}.

• rulers(e, (n+ 1)p) = rulers(e|n+1, p)[xi 7→ ei]ni=1

when e = (let ((x1 e1) . . . (xn en)) en+1).

• rulers((if e1 e2 e3), 1q) = rulers(e1, q).

• rulers((if e1 e2 e3), 2q) = {e1} ∪ rulers(e2, q).

• rulers((if e1 e2 e3), 3q) = {(not e1)} ∪ rulers(e3, q).
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• rulers(e, p) = {} for all other e and p.

For example, in the expression (if p (if q 0 (+ (if r x y) z)) 0), the governors

of x are {p, (not q), r}, but the rulers are just {p, (not q)}. Governors therefore give a

more accurate picture of what conditions must hold for a subexpression to be executed.

When reasoning about governors and rulers, we want to know when they are all satisfied,

so we know when the corresponding subexpression is executed. We therefore define the more

general notion of when a set of expressions holds.

Definition 2.1.7. We say a set of expressions, E, holds for environment ε, denotedHh JEK ε,

if
∧

e∈E(JeKh ε /∈ {nil,⊥}).

2.1.1 Proving Termination with Measures

The standard method for proving termination of function definitions in a language such as

FL is based on the concept of well-foundedness. Informally, a relation, ≺ is well-founded

over a set, S, if there is no infinite sequence of decreasing values in S: s1 � s2 � . . ..

An example of this is the standard < relation over the natural numbers. A more formal

definition and discussion of well-foundedness will appear in Section 4.1.

Let d be a set of function definitions that we want to prove terminating, and F be

the names of the functions defined in d. Let m : F → Expr map each function, f , to an

expression over the parameters of f , as defined in d. Such a function is known as a measure

for d. Using this notion of a measure, termination can be proven by the following theorem.

Theorem 2.1.1. The functions of d are terminating, if there exists a set S and relation ≺

that is well-founded over S such that the following conditions hold.

• 〈∀f ∈ F, ε ∈ Env :: Jm(f)Kh ε〉 ∈ S.

• For all f ∈ F , ε ∈ Env, and p ∈ Pos(ef ) such that e = ef |p is a function call of the

form (g e1 . . . ear(g)) to a function, g ∈ F , the following is true: Hh
q
gov(ef , p)

y
ε⇒

Jm(f)Kh ε � Jm(g)σeKh ε.

In other words, we need to show that m maps each f ∈ F to an expression that always

evaluates to S, and that every time a recursive call is made, the measure goes down in value

11



(defun fact (x)
(if (zp x)

1
(* x (fact (-

x 1)))))

Figure 2: Simple termination example: fact.

by some well-founded relation, ≺. Recall that the recursive call is executed exactly when

the governors for that call hold. Therefore, we need to show that whenever the governors

hold, the measure decreases.

Consider, as an example, the recursive definition of fact, a function that returns the

factorial of its argument. Here, (zp x) is true when x is not a positive integer. Therefore,

the definition says that if x is not a positive integer, we return 1, otherwise, we multiply x

by the result of applying fact recursively to the result of subtracting 1 from x. Consider

the measure that maps f to (nfix x), which returns 0 if x is not a positive integer, and

the value of x otherwise. Note that (nfix x) always maps x to the set of natural numbers,

for which < is well-founded.

The set of governors of the recursive call to fact is {(zp x)}. So, our second proof obli-

gation is to show that, whenHh J{(zp x)}K ε is true, J(nfix x)Kh ε > J(nfix (- x 1))Kh ε.

When the governors hold, x is a positive integer, and therefore J(nfix x)Kh ε = JxKh ε and

J(nfix (- x 1))Kh ε = J(- x 1)Kh ε. But J(- x 1)Kh ε is trivially less than JxKh ε, which

completes our proof.

The ordinals play an important part in termination proofs such as this one. This is

because any set, S, with a well-founded ordering, ≺, can be embedded into the ordinals

in an order preserving way. This means that any measure can be expressed in terms of

the ordinals. In Part II of this dissertation, we develop a constructive theory of ordinal

arithmetic, and use it to create a library for automating proofs involving the ordinals. The

goal is to more fully automate measure-based termination proofs. Part III of this disser-

tation is concerned with developing a new termination analysis in order to fully automate

termination proofs. We implement both of these components in the ACL2 theorem proving

system, of which we now give an overview.
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2.2 ACL2

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” It is the name

of a programming language, a first-order mathematical logic based on recursive functions,

and a mechanical theorem prover for that logic. In this section, we give a brief overview

of the central features to ACL2 that are pertinent to this dissertation. A more thorough

description can be found in the following sources [56, 57, 55]. Those readers who are not

interested in the ACL2-specific aspects of this dissertation may wish to skip this section

and refer to it as necessary later.

2.2.1 Language

ACL2’s programming language can be thought of as a superset of FL (presented in Sec-

tion 2.1), or as an applicative subset of Common Lisp. ACL2 is executable: terms composed

entirely of defined functions and constants can be reduced to constants by Lisp calculation.

This is important to many applications. For example, ACL2 models of commercial floating-

point designs have been executed on millions of test cases to “validate” the models against

industrial design simulation tools, before subjecting the ACL2 models to proof [106]. ACL2

models of microprocessors have been executed at 90% of the speed of comparable C simu-

lation models [48].

The ACL2 programming language is a feature-rich and modern one, with many conve-

nient features – e.g., single-threaded objects, which are key to the fast execution mentioned

above. However, many of these features are extra-logical. That is, they are implemented

in such a way that the core language semantics are unaffected. Therefore, proving the

termination of ACL2 functions basically reduces to proving the termination of functions in

FL.

2.2.2 Logic

As a mathematical logic, ACL2 may be thought of as first-order predicate calculus with

equality, recursive function definitions, and mathematical induction. The primitives of ap-

plicative Common Lisp are axiomatized, as are the basic data types, including natural
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numbers, integers, rationals, complex rationals, ordered pairs, symbols, characters, and

strings. ACL2 includes a representation of the ordinals up to ε0 and the principle of math-

ematical induction, in ACL2, is stated as a rule of inference that allows induction up to ε0.

A principle of definition is also provided, by which the user can extend the axioms by the

addition of equations defining new function symbols. To admit a new recursive definition,

the principle requires the identification of an ordinal measure function and a proof that the

arguments to every recursive call decrease according to this measure, as presented in Sec-

tion 2.1.1. Only terminating recursive definitions can be so admitted under the definitional

principle. (However, “partial functions” can be axiomatized; see [68, 69].)

2.3 Theorem Prover

As a theorem prover, ACL2 is an industrial-strength version of the Boyer-Moore theorem

prover [13]. Of special note is its “industrial-strength,” e.g., it has been used to prove some

of the largest and most complicated theorems ever proved about commercially designed digi-

tal artifacts [83, 104, 103, 105, 106, 19, 49]. The theorem prover is an integrated system of ad

hoc proof techniques that include simplification, generalization, induction, and many other

techniques. Simplification is the main technique and includes: (1) the use of evaluation (i.e.,

the explicit computation of constants when, in the course of symbolic manipulation, certain

variable-free expressions, like (expt 2 32), arise), (2) conditional rewrite rules (derived

from previously proved lemmas), (3) definitions (including recursive definitions), (4) propo-

sitional calculus (implemented both by the normalization of if-then-else expressions and the

use of BDDs), (5) a linear arithmetic decision procedure for the rationals, (6) user-defined

equivalence and congruence relations, (7) user-defined and mechanically verified simplifiers

(meta-reasoning), (8) a user-extensible type system, (9) forward chaining, (10) an inter-

active loop for entering proof commands, and (11) various means to control and monitor

these features including heuristics, interactive features, and user-supplied functional pro-

grams. See [56, 55] or the documentation, source code and examples at the URL [57] for

details.
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2.4 The ACL2 Regression Suite

Another key feature of ACL2 with regard to this dissertation is a large and diverse collection

of user-submitted libraries known as the regression suite. This suite contains over 100

megabytes of code, including function definitions and theorems for reasoning about those

functions, all of which have been verified by ACL2. These libraries include submissions

from ACL2’s world-wide user base over the course of several decades. The regression suite

contains such diverse projects as:

• M5, which is a nearly-complete executable operational model of the Java Virtual

Machine [84, 77]. Included in the model are support for 138 bytecode instructions,

the creation and initialization of objects in the heap, the manipulation of static and

instance fields, static, special, and virtual method invocation, inheritance and method

resolution, multi-threading, and synchronization via thread monitors.

• A verified theorem prover based on the Otter prover [79]. A variant of Otter provided

the first proof of Robbins Problem [78], which was introduced in the early 1930s and

remained open until solved by McCune in the 1970s [50].

• Libraries used to verify the correctness of the floating point operations in AMD’s

flagship processors at the register-transfer level [82, 101, 102, 107].

• A large collection of algorithms for sorting lists and manipulating data structures.

For example, there is a library verifying an in-place quicksort algorithm [95]. There

is also a library verifying and analyzing the complexity of an efficient red-black-tree

implementation in ACL2 [41].

• A verified model checker for the µ-calculus [67].

• A sophisticated and efficient implementation of a unification algorithm using term

dags [99, 100].

• Sophisticated arithmetic libraries for reasoning about such topics as numerical arith-

metic [53, 62], matrix algebra [31], Euclidean domains [32].
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The regression suite, therefore, is a representative cross section of typical ACL2 usage.

It reflects the wide variety of work done using ACL2, including projects of industrial scope.

It is therefore a perfect testbed for new changes and additions to the ACL2 system, and

are used as such by the developers of ACL2. One of the contributions of this dissertation

is that we provide extensive experimental validation of our automatic termination analysis

by running it on the ACL2 regression suite.

2.5 Bibliographic Notes

More on ACL2 including tutorials and collections of papers related to ACL2 can be found on

the ACL2 website [57]. The book Computer-Aided Reasoning: An Approach [56] is another

excellent resource for learning how to use ACL2. For more on the applications of ACL2,

see Computer-Aided Reasoning: ACL2 Case Studies [55].

ACL2 is part of the Boyer-Moore family of theorem provers, for which ACL2’s authors

recently received the prestigious ACM Software System Award. Previous recipients of this

award include Unix, TCP/IP, TeX, and the World-Wide Web.

2.6 Summary

In this chapter, we have introduced the semantics of a core applicative first-order language,

which we call FL. We have discussed the traditional measure-based approach to proving

the termination of programs in this domain. We have also introduced the ACL2 theorem

proving system, in which the work of this dissertation is implemented and validated. We

discussed its programming language, logic, theorem prover, and regression suite.
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PART II

Ordinal Arithmetic



CHAPTER III

OVERVIEW

Despite the fact that ordinals have been studied and used extensively by various com-

munities for over 100 years, we have not been able to find a comprehensive treatment of

arithmetic on ordinal notations. The ordinal arithmetic problem for a notational system

denoting the ordinals up to some ordinal δ, is as follows: given α and β, expressions in the

system denoting ordinals < δ, is γ the expression corresponding to α?β, where ? can be any

of +,−, ·, exponentiation? Solving this problem amounts to defining algorithms for ordinal

arithmetic on the notation system in question. The practical implications of a solution to

the ordinal arithmetic problem is that it allows users of theorem proving systems such as

ACL2 to think and reason about ordinals algebraically. Algebraic reasoning is more conve-

nient and powerful than the previously available options, which required users to use the

underlying representation of ordinals to both define measure functions and to reason about

them.

In this part of the dissertation, we present a solution to the ordinal arithmetic problem

for a notational system denoting the ordinals up to ε0. We describe how we have used this

solution to create a powerful library of theorems for reasoning algebraically about these

ordinals.

We begin by reviewing the theory of the ordinals, including arithmetic operators and

notations for representing countable ordinals in Chapter 4. We present our ordinal arith-

metic algorithms in Chapter 5, along with a correctness proof and complexity analysis for

each algorithm.

In Chapter 6, describe how we have used these algorithms to build a powerful framework

for mechanically reasoning about the theory of ordinal arithmetic. We discuss our imple-

mentation of our algorithms in ACL2, using a new representation of the ordinals up to ε0

that is exponentially more succinct than ACL2’s previous notation. We present our work
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on mechanically verifying this implementation which we achieved by verifying that they

satisfy well-known algebraic properties of ordinal arithmetic. We have altered ACL2 to use

our ordinal notation, and show that our changes do not affect the soundness of the ACL2

logic by exhibiting a bijection between our ordinal representation and the previous ACL2

representation, using ACL2 version 2.7. These modifications appear in ACL2 starting in

version 2.8, which also includes a library of definitions and theorems that we engineered to

significantly automate reasoning involving the ordinals. With our library, users can ignore

representational issues and can work with the ordinals in an algebraic setting. We give two

case studies demonstrating that our ordinal arithmetic library gives adequate support for

legacy code while enabling users to more easily verify new ordinal-related results in ACL2.
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CHAPTER IV

PRELIMINARIES: THE ORDINALS

4.1 Set Theoretic Ordinals

We review the theory of ordinals, beginning with a brief overview of orderings.

Definition 4.1.1. A totally ordered set, or toset, is a pair 〈S,≺〉 where S is a set, and ≺ is

a binary relation on S for which the following properties hold.

• Irreflexivity (i.e., ¬(a ≺ a)),

• Asymmetry (i.e., if a ≺ b then ¬(b ≺ a),

• Transitivity (i.e., if a ≺ b and b ≺ c then a ≺ c),

• Comparability (i.e., for any a, b ∈ S such that a 6= b, either a ≺ b or b ≺ a.

In some texts, this is referred to as a strictly totally ordered set. Next, we define well-

foundedness, which is a central concept in reasoning about termination.

Definition 4.1.2. A well-founded relation, R, on a set, S, is a binary relation such that

there is no infinite sequence s1, s2, . . . of elements of S such that, for all i ≥ 1, si+1Rsi.

Definition 4.1.3. A well-ordered set, or woset, is a toset whose order is well-founded.

We now move to ordinals, which are a particular class of wosets defined entirely using

sets.

Definition 4.1.4. An ordinal is a woset, 〈X,≺〉, such that ∀x ∈ X,x = {y ∈ X | y ≺ x}

Notice that all of the elements of an ordinal are also ordinals by the same ordering, ≺.

Also, it follows from the definition that ≺ ≡ ∈ ≡ ⊂. That is, x ≺ y if and only if x ∈ y

if and only if x ⊂ y. For the rest of this dissertation, we use lower case Greek letters to

denote ordinals and < or ∈ to denote the ordering.
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Given two wosets, 〈X,≺〉 and 〈X ′, ≺′〉, a function f : X → X ′ is said to be an isomor-

phism if it is a bijection and for all x, y ∈ X, x ≺ y iff f.x ≺′ f.y. Two wosets are said to be

isomorphic if there exists an isomorphism between them. A basic result of set theory states

that every woset is isomorphic to a unique ordinal. Given a woset 〈X,≺〉, we denote the

ordinal to which it is isomorphic as Ord(X,≺). Note that every well-founded relation can

be extended in an order-preserving way to a woset. In this way, the theory of the ordinals

is the most general setting possible for proving termination.

Given an ordinal, α, we define its successor, denoted α′ to be α∪{α}. There is clearly a

minimal ordinal, ∅. It is commonly denoted by 0. The next smallest ordinal is 0′ = {0} and

is denoted by 1. The next is 1′ = {0, 1} and is denoted by 2. Continuing in this manner, we

obtain all the natural numbers. A limit ordinal is a non-zero ordinal that is not a successor.

The set of natural numbers, denoted ω, is the smallest limit ordinal.

4.2 Ordinal Arithmetic

In this section we define addition, subtraction, multiplication, and exponentiation for the

ordinals. After each definition, we list various well-known properties.

Definition 4.2.1. α + β = Ord(A,<A) where A = ({0} × α) ∪ ({1} × β) and <A is the

lexicographic ordering on A.

Ordinal addition satisfies the following properties.

α+ 1 = α′

(α+ β) + γ = α+ (β + γ) (associativity)

β < γ ⇒ α+ β < α+ γ (strict right monotonicity)

β < γ ⇒ β + α ≤ γ + α (weak left monotonicity)

Note that addition is not commutative, e.g., 1 + ω = ω < ω + 1.

Definition 4.2.2. α − β is defined to be 0 if α ≤ β, otherwise, it is the unique ordinal, ξ

such that β + ξ = α.

Definition 4.2.3. α ·o β = Ord(A,<A) where A = β × α and <A is the lexicographic

ordering on A.
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Ordinal multiplication satisfies the following properties.

0 < n < ω ⇒ n · ω = ω

(α · β) · γ = α · (β · γ) (associativity)

(0 < α ∧ β < γ) ⇒ α · β < α · γ (strict right monotonicity)

β < γ ⇒ β · α ≤ γ · α (weak left monotonicity)

α · (β + γ) = (α · β) + (α · γ) (left distributivity)

Note that commutativity and right distributivity do not hold for multiplication, e.g.,

2 · ω = ω < ω · 2, and (ω + 1) · ω = ω · ω < ω · ω + ω.

Definition 4.2.4. Given any ordinal, α, exponentiation is defined using transfinite recur-

sion: α0 = 1, αβ+1 = αβ · α, and for β a limit ordinal, αβ =
⋃

0<ξ<β α
ξ.

Ordinal exponentiation satisfies the following properties, where an additive principal

ordinal is an ordinal, β such that ∀α < β, α + β = β (such ordinals always have the form

ωγ for some ordinal, γ > 0).

1 < p < ω ⇒ pω = ω

αβ · αγ = αβ+γ

(αβ)γ = αβ·γ

α < ωβ ⇒ α+ ωβ = ωβ (additive principal property)

α, β < ωγ ⇒ α+ β < ωγ (closure of additive principal ordinals)

1 < α ∧ β < γ ⇒ αβ < αγ (strict right monotonicity)

β < γ ⇒ βα ≤ γα (weak left monotonicity)

Using the ordinal operations, we can construct a hierarchy of ordinals: 0, 1, 2, . . . , ω, ω+

1, ω+2, . . . , ω ·2, ω ·2+1, . . . , ω2, . . . , ω3, . . . , ωω, . . . , and so on. The ordinal ωωω...

is called

ε0, and it is the smallest ordinal, α, for which ωα = α; such ordinals are called ε-ordinals.

4.3 Representation

Our representation deals with the ordinals less than ε0. It is based upon the Cantor Normal

Form for ordinals, which we now define.
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Theorem 4.3.1. For every ordinal α 6= 0, there are unique α1 ≥ α2 ≥ · · · ≥ αn(n ≥ 1)

such that α = ωα1 + · · ·+ ωαn.

For every α ∈ ε0, we have that α < ωα, since ε0 is the smallest ε-ordinal. Thus, we can

add the restriction that α > α1 for these ordinals. This is essentially the representation of

ordinals used in ACL2. However, since ωα · k+ ωα = ωα · (k+ 1) and n ∈ ω, we can collect

like terms and rewrite the normal form as follows.

Corollary 4.3.1. (Cantor Normal Form) For every ordinal α ∈ ε0, there are unique n, p ∈

ω, α1 > · · · > αn > 0, and x1, . . . , xn ∈ ω − {0} such that α > α1 and α = ωα1x1 + · · · +

ωαnxn + p.

By the size of an ordinal under a representation, we mean the number of bits needed to

denote the ordinal in that representation.

Lemma 4.3.1. The ordinal representation in Cor. 4.3.1 is exponentially more succinct

than the representation in Thm. 4.3.1.

Proof. Consider ω · k: it requires O(k) bits with the representation in Thm. 4.3.1 and

O(log k) bits with the representation in Cor. 4.3.1.

We use nested triples to represent our ordinals. These triples are denoted by square

brackets, with commas delimiting the elements in the triple. Thus the triple containing a,

b, and c appears as [a, b, c]. CNF(α) denotes our representation of the ordinal α. If α ∈ ω,

then CNF(α) = α. Otherwise, α has a unique decomposition, α =
∑n

i=1 ω
αixi + p. When

this is the case,

CNF(α) = [CNF(α1), x1,CNF(
n∑

i=2

ωαixi + p)]

We now define several basic functions for manipulating ordinals in our notation. Some of

our functions are partial, i.e., they are not specified for all inputs. In such cases, we never

use them outside of their intended domain. finp(a) returns true if a is a natural number,

and false if it is an infinite ordinal. triplep(x) returns true if x is of the form [a, b, c]. fe,

fco, and rst return the first exponent, first coefficient, and rest of an ordinal, respectively.
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If finp(a), fe(a) = 0, fco(a) = a, and rst is not used on a. For an infinite ordinal of the

form [a, b, c], fe([a, b, c]) = a, fco([a, b, c]) = b, and rst([a, b, c]) = c.

4.4 Correctness and Complexity Concerns

In the following chapters, we define algorithms for ordinal arithmetic and analyze their

correctness and complexity. In this section, we provide a high-level overview and explain

what exactly is entailed and what assumptions we make.

Taken together, the correctness proofs establish that the structure consisting of the

set-theoretic ordinals up to ε0 with the usual arithmetic operations, is isomorphic to the

structure consisting of E0, the set of expressions corresponding to ordinals in our representa-

tion, along with the corresponding arithmetic operations (for which we provide algorithms).

The set-theoretic structure is 〈ε0, cmp,+,−, ·, exp〉, where exp is ordinal exponentiation and

cmp is a function that orders ordinals: given ordinals α and β, it returns lt if α < β, gt

if α > β and eq if α = β. The other structure is 〈E0, cmpo,+o,−o, ·o, expo〉, where the

intended meaning of the functions should be clear. Showing that the two structures are

isomorphic involves first exhibiting a bijection between ε0 and E0; a trivial consequence

of results in the previous section is that CNF is such a bijection. Secondly, the proof re-

quires showing that the corresponding functions are equivalent. To this end, we show that:

cmp(α, β) = cmpo(CNF(α),CNF(β)), CNF(α ? β) = CNF(α) ?o CNF(β), where ? ranges

over {+,−, ·}, and, lastly, CNF(exp(α, β)) = expo(CNF(α),CNF(β)).

Note that these proofs are not mechanically verified. To do so would require using a

theorem prover that can reason both about ACL2 and set theory. But, we implement the

algorithms in ACL2 and reason about the implementations. For example, we prove that

the implementations terminate and that they satisfy the numerous properties that their

set-theoretic counterparts satisfy. We also develop a powerful library for reasoning about

the ordinals. The details are in Chapter 6.

For our complexity analysis, we assume that integers require constant space and that

integer operations have constant running time. One can later account for the integer op-

erations by using the fastest known algorithms. This approach allows us to focus on the
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|a| {the length of a}
finp(a) : 0
true : 1 + |rst(a)|

#a {the size of a}
finp(a) : 1
true : #fe(a) + #rst(a)

Figure 3: The length and size functions used for complexity analysis.

interesting aspects of our algorithms, namely the aspects pertaining to the ordinal repre-

sentations. To make explicit that arithmetic operations are being applied to integers, we

refer to the usual arithmetic operations on integers as <w, +ω, −ω, ·ω, and expω.

The complexity of the ordinal arithmetic algorithms is given in terms of the functions

in Figure 3. In the figure, we use a sequence of condition : result forms to define functions:

the conditions should be read from top to bottom until a condition that holds is found and

then the corresponding result is returned. Note that the true condition always holds. We

use this format for definitions throughout this Volume.

4.5 Bibliographic Notes

Proofs of the properties listed in Section 4.2 can be found in texts on set theory [36, 63, 108].

The Cantor Normal Form for ordinals is discussed in [108]. A discussion of the ordinals in

ACL2 can be found in [56, 57].

4.6 Summary

In this chapter, we have given an overview of the set-theoretic ordinals. This included a

definition of ordinals and definitions of ordinal addition, subtraction, multiplication, and

exponentiation. We also presented Cantor’s Normal Form for ordinals and shown how to use

it to make a succinct notation for the ordinals less than ε0. Finally, we discussed what we

mean by correctness and complexity with regards to the analysis of our ordinal arithmetic

algorithms.
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CHAPTER V

ORDINAL ARITHMETIC: ALGORITHMS

In this chapter, we define algorithms to compare, recognize, add, subtract, multiply, and

raise to ordinal powers the ordinals in ε0.

5.1 Comparing Ordinals

In this section, we present functions that compare ordinals according to the standard total

ordering over the ordinals. These functions are given in Figure 4 on the following page.

In the sequel, the ordinals α and β have the following Cantor normal form decompo-

sitions α =
∑n

i=1 ω
αixi + p and β =

∑m
i=1 ω

βiyi + q; in addition, a, ai, b, and bj denote

CNF(α), CNF(αi), CNF(β), and CNF(βj), respectively, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We start with cmpo, the comparison function for ordinals corresponding to cmp. In

Figure 4 on the next page we also define <o, ≤o, and =o. These functions are not needed

and not used most of the time in our algorithms, where for efficiency reasons we use cmpo

most of the time. The definition of −o (page 30) provides a nice example of where this is

useful, as instead of computing both fe(a) <o fe(b) and fe(a) >o fe(b), we only compute

cmpo(fe(a), fe(b)). The reason for including <o, ≤o, and =o is to make the presentation

clearer, and we also use >o and ≥o where we find them useful.

Theorem 5.1.1. For all α, β ∈ ε0, cmpo(a, b) = cmp(α, β).

Proof. The proof is by induction on the sizes of a and b. The base case, where finp(a) or

finp(b) holds, is straightforward.

For the induction step, we have that #a, #b > 1 and for all γ, δ if #CNF(γ) < #a and

#CNF(δ) < #b, then cmpo(CNF(γ), CNF(δ)) = cmp(γ, δ). There are 3 cases.

In the first, cmpo(a1, b1) 6= eq. If cmpo(a1, b1) = lt, then by the induction hypothesis,

α1 < β1. Thus ωα1 < ωβ1 . Thus, since
∑n

i=2 ω
αixi < ωα1 , α < ωβ1 ≤ β by the closure of

additive principal ordinals under addition. Therefore, cmp(α,β) = lt = cmpo(a, b). By a
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cmpω(p,q) {ordering on naturals}
p <ω q : lt
q <ω p : gt
true : eq

cmpo(a,b) {ordering on ordinals}
finp(a) ∧ finp(b) : cmpω(a,b)
finp(a) : lt
finp(b) : gt
cmpo(fe(a),fe(b)) 6= eq : cmpo(fe(a),fe(b))
cmpω(fco(a),fco(b)) 6= eq : cmpω(fco(a),fco(b))
true : cmpo(rst(a),rst(b))

a <o b {< for ordinals}
cmpo(a,b) = lt : true
true : false

a ≤o b {≤ for ordinals}
cmpo(a,b) = gt : false
true : true

a =o b {= for ordinals}
cmpo(a,b) = eq : true
true : false

Figure 4: The ordinal ordering algorithms.

similar argument, cmpo(a1, b1) = gt ≡ cmp(α,β) = cmpo(a,b) = gt.

In the next case, we have that cmpo(a1, b1) = eq ∧ cmpω(x1, y1) 6= eq. By induction

hypothesis, α1 = β1. Suppose that cmpω(x1, y1) = lt. Again, we note that
∑n

i=2 ω
αixi <

ωα1 . Thus α < ωα1x1 + ωα1 , by the strict right monotonicity of ordinal addition. But then

we have

ωα1x1 + ωα1 = ωα1(x1 + 1) = ωβ1(x1 + 1) ≤ ωβ1y1

Hence, α < β, so cmpo(a1, b1) = lt = cmp(α, β). A similar argument establishes the case

where cmpω(x1, y1) = gt.

In the final case, we have that cmpo(a1, b1) = eq ∧ cmpω(x1, y1) = eq. By the

induction hypothesis, this means α1 = β1. If cmpo(rst(a), rst(b)) = eq, then by the

induction hypothesis,
∑n

i=2 ω
αixi + p =

∑n
i=2 ω

βiyi + q and we have cmp(α, β) = eq =

cmpo(a1, b1).

If cmpo(rst(a), rst(b)) = lt, then by the induction hypothesis,
∑n

i=2 ω
αixi + p <∑n

i=2 ω
βiyi + q; hence we have α < β. Therefore, cmp(α, β) = lt = cmpo(a1, b1). A
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op(a) {ordinal recognizer}
finp(a) : a ∈ ω
true : triplep(a)

∧ fco(a) ∈ ω
∧ 0 <ω fco(a)
∧ op(fe(a))
∧ op(rst(a))
∧ fe(rst(a)) <o fe(a)

Figure 5: The ordinal recognizer algorithm.

similar argument establishes the case where cmpo(rst(a), rst(b)) = gt.

Theorem 5.1.2. cmpo(a, b) runs in time O(min(#a,#b)).

Proof. In the worst case we simultaneously recur down a and b. In more detail, the com-

plexity of this function is bounded by the recurrence relation

T (a, b) =

 c, if finp(a) or finp(b)

T (a1, b1) + T (rst(a), rst(b)) + c, otherwise

for some constant value, c. It now follows by induction on the size of a and b that T (a, b) ≤

k ·min(#a,#b)− t for any constants, k, t, such that t ≥ c and k ≥ c+ t.

5.2 Recognizing Ordinals

In this section we present and analyze the function that recognizes ordinals in our notation.

The definitions are given in Figure 5.

The definition is a straightforward implementation of the Cantor Normal Form represen-

tation presented in Section 4.3. At first glance it seems that the complexity is quadratic as

op calls <o at every level of recursion. However, a closer examination reveals the following.

Theorem 5.2.1. op(a) runs in time O(#a(log #a)).

Proof. The running time is bounded by the (non-linear) recurrence relation

T (a) =

8><>: c, if finp(a)

T (a1) + T (rst(a)) + min(#a1, #rst(a)) + c, otherwise

for some constant, c, by Thm. 5.1.2. We show by induction on #a, that T (a) ≤ k(#a)(log #a)+

t where k, t are constants such that t ≥ c and k ≥ 3t. In the base case, we have T (a) = c ≤ t.
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a +o b {ordinal addition}
finp(a) ∧ finp(b) : a +ω b
fe(a) <o fe(b) : b
fe(a) =o fe(b) : [fe(a), fco(a) +ω fco(b), rst(b)]
true : [fe(a), fco(a), rst(a) +o b]

Figure 6: The ordinal addition algorithm.

For the induction step, let x = min(#a1,#rst(a)) and y = max(#a1,#rst(a)). Note that

x+ y = #a. We have:

T (a)

{Definition of T } = T (a1) + T (rst(a)) + x+ c

{ Induction Hypothesis } ≤ kx log x+ t+ ky log y + t+ x+ c

{ kx ≥ 2t+ x as k ≥ 3t } ≤ k(x log x+ y log y + x) + c

{Log } = k log(xxyy2x) + c

{ 〈∀z ∈ ω :: 2z ≤
(
2z
z

)
〉 } ≤ k log(xxyy

(
2x
x

)
) + c

{x ≤ y } ≤ k log(xxyy
(
x+y

x

)
) + c

{Binomial Theorem } ≤ k log ((x+ y)x+y) + c

{ t ≥ c, x+ y = #a } = k(#a) log(#a) + t

5.3 Ordinal Addition

The algorithm for ordinal addition is given in Figure 6. The main idea of the algorithm is

to traverse b until an exponent is found that is ≤ the first exponent of a. We now prove

the correctness of the algorithm and analyze its complexity.

Theorem 5.3.1. For all α, β ∈ ε0 CNF(α+ β) = a +o b.

Proof. The proof is by induction on α. The key insight (as it was for the proof of Thm. 5.1.1)

is that
∑n

i=2 ω
αixi < ωα1 .

If α, β ∈ ω, then CNF(α + β) = a +o b. Now suppose that β > ω and either α ∈ ω or

α1 < β1. Then:
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α+ β

{Definition of β, arithmetic } = α+ ωβ1(1 + y1 − 1) +
∑m

i=2 ω
βiyi + q

{Left distributivity } = α+ ωβ1 + ωβ1(y1 − 1) +
∑m

i=2 ω
βiyi + q

{Additive principal property } = ωβ1 + ωβ1(y1 − 1) +
∑m

i=2 ω
βiyi + q

{Definition of β } = β

Next, suppose that α, β > ω and α1 = β1. Then:

α+ β

{Definition of α } = ωα1x1 +
∑n

i=2 ω
αixi + p+ β

{Additive principal property } = ωα1x1 + β

{Definition of β, distributivity } = ωα1(x1 + y1) +
∑m

i=2 ω
βiyi + q

Note that CNF(ωα1(x1 + y1) +
∑m

i=2 ω
βiyi + q) = [a1, x1 +o y1, rst(b)], which matches

the definition of +o.

In the final case, we have that a1 <o b1 and ¬finp(a). Now, α+ β = ωα1x1 + δ, where

δ =
∑n

i=2 ω
αixi + p + β. Since

∑n
i=2 ω

αixi + p < ωα1 and β < ωα1 , δ < ωα1 . Letting∑k
i=1 ω

δizi + r be the Cantor normal form decomposition of δ, we see that CNF(α + β)

= CNF(ωα1x1+
∑k

i=1 ω
δizi+r), which by the induction hypothesis is [a1, x1, rst(a)+ob].

Theorem 5.3.2. a +o b runs in time O(min(#a, |a| ·#b1)).

Proof. The running time of a +o b is given by the recurrence relation

T (a, b) =

8><>: c, if finp(a)

T (rst(a), b) + k1 min(#a1, #b1) + c, otherwise

for some constants c and k1, using Thm. 5.1.2. We use induction to show that T (a, b) ≤

k · min(#a, |a| · #b1) + c, where k is a constant such that k ≥ k1 + c. In the base case,

T (a, b) = c = k · min(#a, |a| · #b1) + c, since |a| = 0. Otherwise, using the induction

hypothesis, we have:

T (a, b)

= {Definition of T }

T (rst(a), b) + k1 min(#a1,#b1) + c

≤ { Inductive Hypothesis }
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a −o b {ordinal subtraction}
finp(a) ∧ finp(b) ∧ a ≤ω b : 0
finp(a) ∧ finp(b) : a −ω b
fe(a) <o fe(b) : 0
fe(a) >o fe(b) : a
fco(a) <ω fco(b) : 0
fco(a) >ω fco(b) : [fe(a), fco(a) −ω fco(b), rst(a)]
true : rst(a) −o rst(b)

Figure 7: The ordinal subtraction algorithm.

k ·min(#rst(a), |rst(a)| ·#b1) + c+ k1 min(#a1,#b1) + c

≤ {Arithmetic, k ≥ k1 + c }

k ·min(#a1 + #rst(a), |rst(a)| ·#b1 + #b1) + c

= {Definition of # }

k ·min(#a, |a| ·#b1) + c

5.4 Subtraction

We now turn our attention to ordinal subtraction; our algorithm is given in Figure 7. Recall

that α − β is defined to be 0 if α < β and otherwise to be the unique ordinal, ξ such that

β + ξ = α. One must be careful to avoid silly mistakes when subtraction involves infinite

ordinals, e.g., note that (ω + 1)− 1 6= ω.

Theorem 5.4.1. For all α, β ∈ ε0, CNF(α− β) = a−o b.

Proof. It is easy to prove, using induction, that if α < β, then a−o b = 0.

When α ≥ β, the proof amounts to showing that b+o (a−ob) = a and a−ob is in proper

CNF form, and is by induction on #a and #b. If β = α this is trivial, since b+o(a−ob) = a.

We now focus on the case where β < α.

If finp(a) and finp(b), then b+o (a−ob) = a. If b1 < a1, then b+o (a−ob) = b+oa = a.

If b1 = a1 and y1 < x1, we have:
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a ∗o b {ordinal multiplication}
a = 0 ∨ b = 0 : 0
finp(a) ∧ finp(b) : a ·ω b
finp(b) : [fe(a), fco(a) ·ω b, rst(a)]
true : [fe(a) +o fe(b), fco(b), a ∗o rst(b)]

Figure 8: A first attempt at ordinal multiplication.

b +o (a−o b)

{Definition of −o } = b +o [a1, x1 − y1, rst(a)]

{Definition of +o } = [a1, x1 − y1 + y1, rst(a)]

{Arithmetic } = [a1, x1, rst(a)]

{Definition of a } = a

Also, note that op(a−o b) since op(a) and x1 > y1; hence, x1 − y1 > 0.

Finally, suppose b1 = a1 and y1 = x1; then rst(b) < rst(a). We now have:

b +o (a−o b)

{Definition of −o,+o } = [b1, y1, rst(b) +o (rst(a)−o rst(b))]

{ Ind. hypothesis, x1 = y1, a1 = b1 } = a

Theorem 5.4.2. a −o b runs in time O(min(#a,#b)).

Proof. The recursion relation for the complexity of this function is

T (a, b) =

8><>: c, if finp(a) or finp(b)

k1 · min(#a1, #b1) + T (rst(a), rst(b)) + c, otherwise

for some constants, k1, c. The proof that T (a, b) ≤ k ·min(#a,#b) is almost identical to

that of Thm. 5.1.2.

5.5 Ordinal Multiplication

A first attempt at defining multiplication is given in Figure 8. Later in this section we

derive a more efficient (and more complicated) algorithm, but its correctness depends on

the correctness of ∗o, which we now consider.

Lemma 5.5.1. For all α, β ∈ ε0, x, y ∈ ω such that β, x > 0, ωαx · ωβy = ωα+βy.

31



Proof. ωαx · ωβy = ωα(x · ωβ)y = ωα · ωβy = ωα+βy

Theorem 5.5.1. For all α, β ∈ ε0, CNF(α · β) = a ∗o b.

Proof. The proof is by (transfinite) induction on β. The case where α ∈ ω and β ∈ ω is

straightforward. The remainder of the proof consists of two cases: β < ω and β ≥ ω.

If β < ω, then β > 0 and α > ω. The base case, where β = 1 is straightforward. For

the induction step we have:

CNF(α · β)

{ Subtraction, distributivity } = CNF(α+ (α · (β − 1)))

{Thm. 5.3.1, induction hypothesis } = a +o (a ∗o CNF(β − 1))

{Definition of ∗o, β < ω } = a +o [a1, x1 ·ω (β −ω 1), rst(a)]

{Definition of +o } = [a1, x1 + (x1 ·ω (β − 1)), rst(a)]

{Distributivity of ·ω } = [a1, x1 ·ω β, rst(a)]

{Definition of ∗o } = a ∗o b

For the final case we have that β ≥ ω and α > 0. First, we note that α·ωβ1y1 = ωα1+β1y1:

α · ωβ1y1

{Weak left monotonicity of multiplication } ≤ ωα1(x1 + 1) · ωβ1y1

{Lem. 5.5.1 } = ωα1+β1y1

{Lem. 5.5.1 } = ωα1x1 · ωβ1y1

{Weak left monotonicity of multiplication } ≤ α · ωβ1y1

Finally, we have:

CNF(α · β)

{Distributivity } = CNF(ωα1+β1y1 + (α ·
∑m

i=2 ω
βiyi))

{Thm. 5.3.1 } = CNF(ωα1+β1y1) +o CNF(α ·
∑m

i=2 ω
βiyi)

{Def. of CNF, ind. hyp. } = [CNF(α1 + β1), y1, 0] +o a ∗o CNF(
∑m

i=2 ω
βiyi)

{Def. of rst, Thm. 5.3.1 } = [a1 +o b1, y1, 0] +o a ∗o rst(b)

{ fe(a ∗o rst(b)) <o a1 + b1 } = [a1 +o b1, y1, a ∗o rst(b)]

{Definition of ∗o } = a ∗o b
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dropn(a,n) {n is a natural number}
n = 0 : a
true : dropn(rst(a),n-1)

c1(a,b) {finds the index of the first exponent of a that is ≤ b1}
fe(a) >o fe(b) : 1 +ω c1(rst(a),b)
true : 0

c2(a,b,n) {skips over the first n elements of a and then calls c1}
true : n + c1(dropn(a,n),b)

padd(a, b, n) {skips over the first n elements of a and adds the rest
to b}

n = 0 : a +o b
true : [fe(a), fco(a), padd(rst(a),b,n - 1)]

pmult(a,b,n) {pseudo-multiplication}
a = 0 ∨ b = 0 : 0
finp(a) ∧ finp(b) : a ·ω b
finp(b) : [fe(a), fco(a) ·ω b, rst(a)]
true : [padd(fe(a),fe(b),m),

fco(b),
pmult(a,rst(b),m)]

where m = c2(fe(a),fe(b),n)

a ·o b {quicker ordinal multiplication}
true : pmult(a,b,0)

Figure 9: An efficient algorithm for ordinal multiplication.

The problem with this definition is its running time. Note that this algorithm walks

down b, adding a1 to each exponent of b. This is equivalent to adding some ordinal, c to a

decreasing sequence of ordinals (d1, d2, . . . , dn). Using the addition algorithm, we find that

for each di, fe(di) is compared to each exponent of c until the first exponent of c such that

fe(di) is ≥ this exponent is found. But since the di’s are decreasing, we know that fe(di) ≥

fe(di+1). Therefore, if the jth exponent of c is > fe(di), we know that it is > fe(di+1). This

means that simply adding each element of the decreasing sequence to c is inefficient. If we

can keep track of how many exponents of c we went through before adding di, we can just

skip over those when we add di+1. These observations lead to the definitions in Figure 9,

which provide a quicker way to compute multiplication.

Lemma 5.5.2. d <o b ⇒ c1(a, b) ≤ c1(a, d).

Proof. The proof is by induction on c1(a,b). If c1(a, b) = 0, then this is trivially true since
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c1 always returns a natural number. In the induction step, we have that c1(a, b) > 0 and

d <o b. Thus, fe(d) ≤o b1 <o a1 by the definitions of <o and c1. Finally, by the induction

hypothesis, c1(a, b) = 1 + c1(rst(a), b) ≤ 1 + c1(rst(a), d) = c1(a, d).

Lemma 5.5.3. n ≤ c1(a, b) ⇒ c1(a, b) = c2(a, b, n).

Lemma 5.5.4. padd(a, b, c1(a, b)) = a +o b.

Proof. The proof is by induction on c1(a,b). If c1(a, b) = 0, b1 ≤o a1, so the lemma is

clearly true. In the induction step, c1(a, b) > 0, so b1 <o a1 by the definition of c1. Hence,

c1(rst(a), b) < c1(a, b). By the induction hypothesis, we know that padd(d, b, c1(d, b)) =

d +o b for all d <o a. Thus

a +o b

{Definition of +o } = [a1, x1, rst(a) +o b]

{ Induction Hypothesis } = [a1, x1,padd(rst(a), b, c1(rst(a), b))]

{Definition of c1 } = [a1, x1,padd(rst(a), b, c1(a, b)− 1)]

{Definition of padd } = padd(a, b, c1(a, b))

Theorem 5.5.2. n ≤ c1(a1, b1) ⇒ pmult(a, b, n) = a ∗o b.

Proof. The proof is by induction on |b|. If finp(b), then this is clearly true. For the

induction step, we know ¬(finp(b)). The induction hypothesis tells us that for all d such

that |d| < |b|, n ≤ c1(fe(d), b1) ⇒ pmult(d, b, n) = d ∗o b. Suppose n ≤ c1(a1, b1). Then

if we let m = c2(a1, b1, n), we have that m = c1(a1, b1) by Lem. 5.5.3. Therefore, we also

know that m ≤ c1(a1, fe(rst(b))) by Lem. 5.5.2. Thus, by the Induction Hypothesis we

have the following.

pmult(a, b, n)

{Definition of pmult } = [padd(a1, b1,m), y1,pmult(a, rst(b),m)]

{Lem. 5.5.4 } = [a1 +o b1, y1,pmult(a, rst(b),m)]

{ Induction hypothesis } = [a1 +o b1, y1, a ∗o rst(b)]

{Definition of ∗o } = a ∗o b
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Corollary 5.5.1. For all α, β ∈ ε0, CNF(α · β) = a ·o b.

Proof. Follows directly from Theorems 5.5.1 on page 32 and 5.5.2 on the preceding page.

We now turn our attention to complexity issues. For the next lemmas and theorem, let

a1 = [d1, z1, [d2, z2, . . . [dk, zk, r] . . .]].

Lemma 5.5.5. c1(a, b) takes time O(
∑c1(a,b)+1

i=1 min(#ai,#b1)).

Proof. In the worst case, we traverse a, comparing ai with b1. By Thm. 5.1.2, this takes

O(
∑c1(a,b)+1

i=1 min(#ai,#b1)) time.

Lemma 5.5.6. c2(a, b, s) takes time O(s+
∑c1(a,b)+1

i=s+1 min(#ai,#b1)).

Lemma 5.5.7. padd(a, b, s) runs in time O(min(#fe(dropn(a, s)),#b1) + s) when s ≥

c1(a, b).

Proof. Note that fe(dropn(a, s)) ≤ b1 since the exponents of a are decreasing and s ≥

c1(a,b). Hence, dropn(a, s)+ob requires one comparison and creates an answer in constant

time. Therefore, by Thm. 5.1.2, padd takes O(min(#fe(dropn(a, s)),#b1) + s) time.

Theorem 5.5.3. pmult(a, b, s) runs in time O(|a1||b| + #dropn(a1, s) + #b) if s ≤

c1(a1, b1).

Proof. Let m = c2(a1, b1, s); then m = c1(a1, b1) by Lem. 5.5.3. Thus, using Lemmas 5.5.6

and 5.5.7, we can construct the following recurrence relation to bound the running time of

pmult:

T (a, b, s) =


d, if finp(b) ∨ a= 0

T (a, rst(b),m) + k1(s+
∑m+1

i=s+1 min(#di,#fe(b1)))

+k2(min(#fe(dropn(a1,m)),#b1) +m) + d, otherwise

for some constants k1, k2, and d. We use induction on |b| to show that T (a, b, s) ≤ k ·

(|a1||b|+#dropn(a1, s)+#b) where k ≥ k1 +k2 +d. This is true in the base case, because

#b = 1 and k ≥ d. For the induction step, we first note the following.
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expto(a,b) {ordinal exponentiation}
b = 0 : 1
a = 0 : 0
finp(b) : a ·o expto(a,b −ω 1)
finp(a) ∧ fe(b) = 1 : [fco(b), 1, 0] ·o expω(a,rst(b))
finp(a) : [[fe(b) −o 1, fco(b), 0], 1, 0] ·o expto(a,rst(b))
true : [fe(a) ·o [fe(b), fco(b), 0], 1, 0] ·o expto(a,rst(b))

Figure 10: A first attempt at ordinal exponentiation.

k1[s+
∑m+1

i=s+1 min(#di,#fe(b1))] + k2[min(#fe(dropn(a,m)),#fe(b1)) +m] + d

≤ {Arithmetic, m ≥ s }

k1(m+
∑m

i=s+1 #di + #fe(b1)) + (k2 + d)(#fe(b1) +m)

≤ { k ≥ k1 + k2 + d }

k(m+
∑m

i=s+1 #di + #fe(b1))

Combining this with the recurrence relation and using the induction hypothesis, we

have:

T (a, b, s)

≤ {Definition of T , earlier reasoning }

T (a, rst(b),m) + k(m+
∑m

i=s+1 #di + #fe(b1))

≤ { Induction Hypothesis }

k(|a1||rst(b)|+ #dropn(a1,m) + #rst(b) +m+
∑m

i=s+1 #di + #fe(b1)) + d

≤ {Arithmetic, m ≤ |a1| }

k(|a1||b|+ #dropn(a1,m) +
∑m

i=s+1 #di + #rst(b) + #fe(b1)) + d

= {Definitions of #, dropn }

k(|a1||b|+ #dropn(a1, s) + #rst(b) + #fe(b1)) + d

< {#fe(b1) < #b1 }

k(|a1||b|+ #dropn(a1, s) + #b) + d

Corollary 5.5.2. a ·o b runs in time O(|a1||b|+ #a1 + #b).
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5.6 Ordinal Exponentiation

As with ordinal multiplication, we begin with a relatively simple but inefficient definition for

ordinal exponentiation. This algorithm is given in Figure 10 on the previous page. Before

proving the correctness of this algorithm, we present the following two lemmas.

Lemma 5.6.1. ∀k, x ∈ ω, α ∈ ε0 such that α > 0, x > 0, and k > 1, kωαx = ωωα−1x

Proof. kωαx = kω1+α−1x = kω·ωα−1x = (kω)ωα−1x = ωωα−1x

Lemma 5.6.2. For all α, ξ, z ∈ ε0 such that a ≥ ω and ξ > 0, αωξz = ωα1ωξz.

Proof. αωξz ≤ (ωα1+1)ωξz = ω(α1+1)ωξz = ωα1ωξz = (ωα1)ωξz ≤ αωξz

Using these lemmas, we prove the main correctness result.

Theorem 5.6.1. For all α, β ∈ ε0, expto(a, b) = CNF(αβ)

Proof. The proof is by transfinite induction on β. For the base case, if β = 0, the proof

is straightforward. The same is true when α = 0, so assume that α > 0. If β is finite, we

have:

CNF(αβ)

{Property of exponentiation } = CNF(α · αβ−1)

{Cor. 5.5.1 } = CNF(α) ·o CNF(αβ−1)

{ Induction Hypothesis } = a ·o expto(a, b−ω 1)

{Definition of expto } = expto(a, b)

Next, suppose that β = ω1y + q and α < ω. In this case,

CNF(αβ)

{Current hypotheses } = CNF(αω1y+q)

{Lem. 5.6.1 } = CNF(ωy · αq)

{Cor. 5.5.1 } = [fco(b), 1, 0] ·o expω(a, rst(b))

{Definition of expto } = expto(a, b)

Now suppose that β =
∑m

i=1 ω
βiyi + q, β1 > 1, and α < ω. Then
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CNF(αβ)

{Current hypotheses } = CNF(α
Pm

i=1 ωβiyi+q)

{Property of exponentiation } = CNF(αωβ1k1 · α
Pm

i=2 ωβiyi+q)

{Lem. 5.6.1 } = CNF(ωωβ1−1k1 · α
Pm

i=2 ωβiyi+q)

{Cor. 5.5.1 } = [[fe(b)−o 1, fco(b), 0], 1, 0] ·o CNF(α
Pm

i=2 ωβiyi+q)

{ Induction Hypothesis } = [[fe(b)−o 1, fco(b), 0], 1, 0] ·o expto(a, rst(b))

{Definition of expto } = expto(a, b)

Finally, consider the case where β, α > ω. In this case, we have the following.

CNF(αβ)

{Current hypotheses } = CNF(α
Pm

i=1 ωβiyi+q)

{Property of exponentiation } = CNF(αωβ1k1 · α
Pm

i=2 ωβiyi+q)

{Lem. 5.6.2 } = CNF(ωα1·ωβ1k1 · α
Pm

i=2 ωβiyi+q)

{Cor. 5.5.1 } = [fe(a) ·o [fe(b), fco(b), 0], 1, 0] ·o CNF(α
Pm

i=2 ωβiyi+q)

{ Induction Hypothesis } = [fe(a) ·o [fe(b), fco(b), 0], 1, 0] ·o expto(a, rst(b))

{Definition of expto } = expto(a, b)

The efficient definition for ordinal exponentiation is more complex than that for ordinal

multiplication, and in an effort to increase clarity, we define exponentiation (expo) using

four helper functions: exp1, exp2, exp3, and exp4. We introduce them one at a time,

proving the correctness and complexity of each before moving on to the next. The correct-

ness and complexity of expo come at the end and follow directly from the results proved for

the helper functions. Before reading further, the reader may want to try a few examples; a

particularly revealing class of examples is (ω + 1)ωω+k, where k ranges over the naturals.

The first helper function, exp1, is defined in Figure 11 on the following page, and it is

used to raise a positive integer to an infinite ordinal power. We proceed by proving that it

is correct and analyzing its complexity.

Lemma 5.6.3. ∀k ∈ ω, α ∈ ε0 such that α > 0 and k > 1, kα = (ω
Pn

i=1 ωαi−1xi)kp
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exp1(k,a) {raising a positive integer to an infinite ordinal power}
fe(a) =o 1 : [fco(a), expω(k,rst(a)), 0]
finp(rst(a)) : [[fe(a) −o 1, fco(a), 0], expω(k,rst(a)), 0]
true : [[fe(a) −o 1, 1, fe(c)], fco(c), 0]

where c = exp1(k,rst(a))

Figure 11: Ordinal exponentiation: raising a positive integer to an infinite power.

Proof. Recall that the Cantor normal form decomposition of α is
∑n

i=1 ω
αixi +p. The proof

follows from Lem. 5.6.1.

Theorem 5.6.2. For all k ∈ ω, α ∈ ε0 such that α ≥ ω and k > 1, CNF(kα) = exp1(k, a).

Proof. The proof is by induction on α. If α1 = 1, then α = ω · x1 + p for some x1, p ∈ ω.

Thus, we have:

CNF(kα)

{Definition of α } = CNF(kω·x1+p)

{Property of exponentiation } = CNF(kω·x1 · kp)

{Lem. 5.6.1 } = CNF(ωx1 · kp)

{Cor. 5.5.1 } = CNF(ωx1) ·o kp

{Definitions of CNF,expω } = [x1, 1, 0] ·o expω(k, p)

{Definition of ·o } = [x1, expω(k, p), 0]

{Definition of exp1 } = exp1(k, a)

Likewise, if α1 > 1 and finp(rst(a)), then α = ωα1x1 + p for some α1 ∈ ε0, x1, p ∈ ω.

We now have:

CNF(kα)

{Definition of α } = CNF(kωα1x1+p)

{Property of exponentiation } = CNF(kωα1x1 · kp)

{Lem. 5.6.1 } = CNF(ωωα1−1x1 · kp)

{Cor. 5.5.1 } = CNF(ωωα1−1x1) ·o kp

{Definitions of CNF,expω } = [[a1 −o 1, x1, 0], 1, 0] ·o expω(k, p)

{Definition of ·o } = [[a1 −o 1, x1, 0], expω(k, p), 0]

{Definition of exp1 } = exp1(k, a)
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exp2(a,k) {raising a limit ordinal to a positive integer}
true : [fe(a) ·o (k - 1), 1, 0] ·o a

natpart(a) {returns the natural part of an ordinal}
finp(a) : a
true : natpart(rst(a))

limitp(a) {returns true if a represents a limit ordinal}
true : op(a) ∧ ¬finp(a) ∧ natpart(a) = 0

limitpart(a) {returns the greatest ordinal, b, such that limitp(b) and
b <o a}

finp(a) : 0
true : [fe(a), fco(a), limitpart(rst(a))]

Figure 12: Ordinal exponentiation: raising a limit ordinal to a positive integer.

In the final case ¬finp(rst(a)) holds and by the induction hypothesis ∀ξ < α, CNF(kξ)

= exp1(k, CNF(ξ)). Now, letting c = exp1(k, rst(a)), we have:

CNF(kα)

{Lem. 5.6.3 } = CNF((ω
Pm

i=1 ωαi−1xi)kp)

{Ordinal arithmetic } = CNF(ωωα1−1x1(ω
Pm

i=2 wαi−1xi)kp)

{Lem. 5.6.3, ·o } = CNF(ωωα1−1x1) ·o CNF(k
Pm

i=2 wαixi+p)

{ Ind. hyp., CNF } = [[a1 −o 1, x1, 0], 1, 0] ·o exp1(k, rst(a))

{ c= [fe(c), fco(c), 0] } = [[a1 −o 1, x1, 0], 1, 0] ·o [fe(c), fco(c), 0]

{Definition of ·o } = [[a1 −o 1, x1, 0] +o fe(c), fco(c), 0]

{ a1 −o 1 > a2 −o 1 } = [[a1 −o 1, x1, fe(c)], fco(c), 0]

{Definition of exp1 } = exp1(k, a)

Theorem 5.6.3. exp1 runs in time O(|a|).

Proof. Note that by Thm. 5.4.2, computing a1 −o 1 takes constant time. The proof is now

straightforward.

We now consider the second helper function, exp2, which is shown in Figure 12 and is

used to raise a limit ordinal to a positive integer.

40



Lemma 5.6.4. For all a, b such that op(a), op(b), natpart(b) = 0 and ¬finp(a), a ·o b =

[a1, 1, 0] ·o b.

Proof. The proof is by induction on |b|. If finp(b), then b = 0 and a ·o b = 0 = [a1, 1, 0] ·o b.

For the induction step we have:

a ·o b

{Definition of ·o } = [a1 + b1, y1, a ·o rst(b)]

{ Induction Hypothesis } = [a1 + b1, y1, [a1, 1, 0] ·o rst(b)]

{Definition of ·o } = [a1, 1, 0] ·o b

Theorem 5.6.4. For all α ∈ ε0, k ∈ ω such that α ≥ ω, limitp(a), and k > 1, CNF(αk) =

exp2(a, k).

Proof. The proof is by induction on k. If k = 2, then CNF(αk) = CNF(α2) = CNF(α ·α) =

a ·o a. Applying Lem. 5.6.4, we get [a1, 1, 0] ·o a = exp2(a, k). For the induction step we

have:

CNF(αk)

{Ordinal arithmetic, Cor. 5.5.1 } = a ·o CNF(αk−1)

{ Induction hypothesis } = a ·o exp2(a, k − 1)

{Definition of exp2 } = a ·o [a1 ·o (k − 2), 1, 0] ·o a

{Definition of ·o } = [a1 +o (a1 ·o (k − 2)), 1, 0] ·o a

{Distr., Thm. 5.3.1, Cor. 5.5.1 } = [a1 ·o (k − 1), 1, 0] ·o a

{Definition of exp2 } = exp2(a, k)

Theorem 5.6.5. exp2(a, k) runs in time O(|a1||a|+ #a)

Proof. Note that a1 ·o (k − 1) takes constant time, since k − 1 is of size 1. Also, note that

#(a1 ·o (k− 1)) = #a1 and |a1 ·o (k− 1)| = |a1|. So, by Cor. 5.5.2, we have that the running

time is O(|a1||a|+ #a).
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exp3h(a,p,n,k) {helper function for exp3}
k = 1 : (a ·o p) +o p
true : padd(exp2(a,k) ·o p, exp3h(a,p,n,k-1), n)

exp3(a,k) {raising an infinite ordinal to a positive integer
power}

k = 1 : a
limitp(a) : exp2(a,k)
true : padd(exp2(c,k),

exp3h(c,natpart(a),n,k-1),
n)

where c = limitpart(a) and n = |a|

Figure 13: Ordinal exponentiation: raising an infinite ordinal to a positive integer power.

The third helper function, exp3, is defined in Figure 13. It is used to raise an infinite

ordinal to a positive integer power. The complexity analysis of exp3 will reveal that the

running time depends on the positive integer power, i.e., it is exponential in the number

of bits needed to represent the integer. As a result, the complexity of our algorithm for

exponentiation is exponential. We will show at the end of this section that we cannot do

much better.

Lemma 5.6.5. For all a such that op(a) and α ≥ ω, exp3h(c, p, |a|, k) = (
∑k−1

i=0 exp2(c, k−

i) ·o p) +o p where c = limitpart(a) and p = natpart(a) (the summation is with respect to

+o).

Proof. Let c = limitpart(a) = [a1, x1, [a2, x2, . . . [an, xn, 0] . . .]]. The proof is by induction

on k. Clearly, by the definition of ·o, the lemma holds when k = 1. For the induction step

we have:

exp3h(c, p, n, k)

= {Definition of exp3h }

padd(exp2(c, k) ·o p, exp3h(a, p, n, k − 1), n)

= { Induction hypothesis, arithmetic }

padd(exp2(c, k) ·o p, (
∑k−1

i=1 exp2(c, k − i) ·o p) +o p, n)

= { See immediately below }

(
∑k−1

i=0 exp2(c, k − i) ·o p) +o p

We justify the last step of the above proof by noting that:
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exp2(c, k) ·o p = [a1 ·o x+o a1, x1 · p, [a1 ·o x+o a2, x2, . . . [a1 ·o x+o an, xn, 0] . . .]]

where x = k−1. That is, by the definition of exp3h, we have that fe(exp3h(a, p, n, k−1))

= (a1 ·o (k − 1)); thus, every exponent in exp2(c, k) ·o p is greater than the first exponent

of exp3h(a, p, n, k − 1).

Theorem 5.6.6. For all α ∈ ε0, k ∈ ω such that α ≥ ω and k > 0, CNF(αk) = exp3(a, k).

Proof. Recall that α =
∑n

i=1 ω
αixi + p and let δ =

∑n
i=1 ω

αixi. Note that CNF(δ) =

limitpart(a). The case where k = 1 or p = 0 follows from Thm. 5.6.4. Otherwise, with the

aid of Lem. 5.6.5, we can show that exp3(a, k) = CNF(δk + (
∑k−1

j=1 δ
k−j)p + p) and what

remains is to show that αk = δk + (
∑k−1

j=1 δ
k−j)p + p for all k > 0. We do so by induction

on k; note that the base case has already been addressed. For the induction step we have

the following, where γ =
∑k−2

j=1 δ
k−1−j and ξ = δk−1 + γp+ p.

αk

{Exponentiation } = αk−1 · α

{ Induction hypothesis, def. of δ } = ξ(δ + p)

{Distributivity } = ξδ + ξp

{Lem. 5.6.4, def. ξ } = δk−1δ + (δk−1 + γp+ p)p

{ δk−1 > γp, additive principal property } = δk + δk−1p+ γp+ p

{Distributivity, def γ } = δk + (
∑k−1

j=1 δ
k−j)p+ p

We now analyze the complexity of exp3.

Lemma 5.6.6. exp3h(a, p, n, k) runs in time O(k(|a1||a|+#a)) when ¬finp(a), limitp(a),

p ∈ ω, n = |a|, and 0 < k < ω.

Proof. Note that for any c, the following hold: c ·o p takes O(1) time (by the definition of

pmult); c +o p takes O(|c|) time (by Thm. 5.3.2); |exp2(c, k) ·o p| = |c| (see Thm. 5.6.5);

and #(exp2(c, k) ·o p) = #c (again, see Thm. 5.6.5). Now, exp3h gets called O(k) times

and each call requires O(|a1||a|+ #a + |a|) time. Therefore, by Thm. 5.6.5 and the above

observations, the total time is O(k(|a1||a|+ #a)).
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exp4(a,b) {raising an infinite ordinal to an infinite power}
true : [fe(a) ·o limitpart(b), 1, 0] ·o exp3(a,natpart(b))

expo(a,b) {ordinal exponentiation (raises a to the b power)}
b = 0 ∨ a = 1 : 1
a = 0 : 0
finp(a) ∧ finp(b) : expω(a,b)
finp(a) : exp1(a,b)
finp(b) : exp3(a,b)
true : exp4(a,b)

Figure 14: The ordinal exponentiation algorithm.

Theorem 5.6.7. exp3(a, k) runs in time O(k · (|a1||a|+ #a)).

Proof. This is a straightforward consequence of Lem. 5.6.6 and Thm. 5.6.5.

The fourth and final helper function, exp4, and expo are defined in Figure 14. We use

exp4 to raise an infinite ordinal to an infinite power. The exponentiation function, expo, is

now simple to define, as all that is required is to invoke the appropriate helper function. We

start by showing the correctness of exp4, after which the correctness of expo is immediate.

We end the section by analyzing the complexity of exp4 and expo, and we show that even

though the complexity of expo is exponential, it is of the same order as the size of the

resulting ordinal.

Theorem 5.6.8. For all α, β ∈ ε0, such that α, β ≥ ω, CNF(αβ) =

exp4(a, b).

Proof. We note the following sequence of equalities.

CNF(αβ)

{Def. of β } = CNF(α
Pm

i=1 ωβiyi+q)

{Ordinal arithmetic } = CNF(
∏m

i=1α
ωβiyi · αq)

{Lem. 5.6.2 } = CNF(
∏m

i=1ω
α1·ωβiyi · αq)

{Property of exponentiation } = CNF(ωα1·
Pm

i=1 ωβiyi · αq)

{Thm. 5.6.6, Cor. 5.5.1 } = [a1 ·o limitpart(b), 1, 0] ·o exp2(a, q)

{Definition exp4 } = exp4(a, b)
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Theorem 5.6.9. For all α, β ∈ ε0,CNF(αβ) = expo(a, b).

Proof. The proof follows from Theorems 5.6.2 on page 39, 5.6.6 on page 43, and 5.6.8 on

the preceding page.

Lemma 5.6.7. #(a +o b) ≤ #a + #b

Proof. The proof is by induction on #a.

Lemma 5.6.8. limitp(b) ⇒ |a ·o b| = |b|

Proof. The proof is by induction on |b|.

Lemma 5.6.9. limitp(b) ⇒ #(a ·o b) ≤ #a1|b|+ #b

Proof. The proof is by induction on the size of b.

Theorem 5.6.10. exp4(a, b) runs in time O(natpart(b)[|a||b|+|a1||a|+#a]+#fe(a1)|b|+

#b).

Proof. There are 3 operations that exp4 calls that take more than constant time. The

first is exp3(a,natpart(b)), which we showed runs in time O(natpart(b) · (|a1||a|+ #a)).

The second is a1 ·o limitpart(b), which takes time O(|fe(a1)||b| + #fe(a1) + #b). The

final operation is [a1 ·o limitpart(b), 1, 0] ·o exp3(a,natpart(b)). If we let c = [a1 ·o

limitpart(b), 1, 0] and d = exp3(a,natpart(b)), we obtain a time bound of O(|fe(c)||d|+

#fe(c) + #d). By Lemmas 5.6.8 and 5.6.9, among others, we have that |fe(c)| = |b|,

#fe(c) = #fe(a1)|b|+ #b, |d| = |a| · natpart(b), and #d = #a · natpart(b).

Hence, the complexity of this operation is O(|b|(|a|natpart(b))+#fe(a1)|b|+#b+#a ·

natpart(b)), which gives an overall complexity for the algorithm of

O( natpart(b) · (|a1||a|+ #a)

+ |fe(a1)||b|+ #fe(a1) + #b + |b|(|a|natpart(b))

+ #(fe(a1))|b|+ #b + #a · natpart(b))

By gathering like terms and noting that #(fe(a1))|b| > |fe(a1)||b|, we obtain a time bound

of O(natpart(b)[|a||b|+ |a1||a|+ #a] + #fe(a1)|b|+ #b).
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Theorem 5.6.11. expo(a, b) runs in time O(natpart(b)[|a||b|+|a1||a|+#a]+#fe(a1)|b|+

#b).

Proof. This follows directly from Theorems 5.6.3 on page 40, 5.6.7 on page 44, and 5.6.10

on the previous page.

An obvious question is whether we can improve the exponential running time of expo.

Given our representation of the ordinals, the answer is no, as the following class of examples

shows. Fix a to be [1, 1, 1], which corresponds to the ordinal ω + 1 and let bk be [[1, 1,

1], 1, k], which corresponds to the ordinal ωω + k. For this infinite class of examples,

#expo(a, bk) is exactly equal to the complexity of expo. That is, simply constructing the

ordinal corresponding to expo(a, bk) takes as long as this function takes to run in the worst

case. Therefore, this algorithm is as efficient as can be expected.

5.7 Bibliographic Notes

The ordinal numbers were introduced by Cantor over 100 years ago and are at the core

of modern set theory [21, 22, 23]. They are an extension of the natural numbers into the

transfinite and are an important tool in logic, e.g., after Gentzen’s proof of the consistency

of Peano arithmetic using the ordinal number ε0 [42], proof theorists routinely use ordinals

and ordinal notations to establish the consistency of logical theories [108, 112]. To obtain

constructive proofs, constructive ordinals notations are employed. The general theory of

ordinal notations was initiated by Church and Kleene [24] and is recounted in Chapter 11

of Roger’s book on computability [96].

An early use of the ordinals for proving program termination is due to Alan M. Turing,

who in 1949 wrote the following [115, 85].

The checker has to verify that the process comes to an end. Here again he

should be assisted by the programmer giving a further definite assertion to be

verified. This may take the form of a quantity which is asserted to decrease

continually and vanish when the machine stops. To the pure mathematician

it is natural to give an ordinal number. In this problem the ordinal might be
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Table 5: Ordinal Arithmetic Complexity Results

Function Complexity
(ocmp a b) O(min(#a,#b))
(o-p a) O(#a(log #a))
(o+ a b) O(min(#a, |a| ·#fe(b)))
(o-a b) O(min(#a,#b))
(o* a b) O(|fe(a)||b|+ #fe(a) + #b)
(o^ a b) O(natpart(b)[|a||b|+ |fe(a)||a|+ #a] + #fe(fe(a))|b|+ #b)

(n− r)ω2 + (r − s)ω + k.1

Partial solutions to the ordinal arithmetic problem appear in various books and pa-

pers [108, 35, 40, 80, 109, 112], e.g., it is easy to find a definition of < for various ordinal

notations, but we have not found any statement of the problem nor any comprehensive solu-

tion in previous work. One notable exception is the dissertation work of John Doner [39, 38].

Doner and Tarski (his adviser) study hierarchies of ordinal arithmetic operations. They give

a transfinite recursive definition for binary operations Oγ for any ordinal γ. The operation

O0 corresponds to addition, O1 corresponds to multiplication, O2 corresponds to exponen-

tiation (for the most part), and so on. Using this hierarchy of operations, Doner and Tarski

define a generalization of the Cantor normal form. However, Doner and Tarski stop short of

defining an ordinal notation. They give pseudo-algorithms for O1, O2, and O3, but it is not

immediately clear how to apply these to an ordinal notation to obtain algorithms. This was

not within the scope of their work, as they were studying operations on the set-theoretic

ordinals, not on ordinal notations.

5.8 Summary

In this chapter, we presented algorithms for comparing (ordering) ordinals, recognizing

ordinals in our notation, as well as performing ordinal addition, subtraction, multiplication,

and exponentiation. For multiplication and exponentiation, we presented two separate

1Readers familiar with the ordinals may suspect that Turing’s measure function is not quite right, as
(i)ωj = ωj when i and j are positive integers. This seems to be purely a notational issue, e.g., Turing uses
the same convention in a paper on logics based on ordinals [114]. Using modern conventions, the measure
function is written ω2(n − r) + ω(r − s) + k.
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algorithms each, one which is relatively simple but inefficient, and one that is efficient but

more complicated. We proved the correctness of all the algorithms and analyzed their

complexity. The complexity results are summarized in Table 5 on the preceding page.
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CHAPTER VI

ORDINAL ARITHMETIC: MECHANIZATION

In this chapter, we utilize the results of Chapter 5 to create a framework for mechanically

reasoning about the ordinals algebraically. We do this by implementing our ordinal nota-

tion and algorithms in the ACL2 theorem proving system, mechanically verifying them by

proving that the algorithms share well-known properties with the set-theoretic functions

they implement, and engineering a powerful library of theorems in ACL2 for automati-

cally reasoning about the ordinals. We describe these steps in Sections 6.1, 6.2, and 6.3,

respectively.

In addition, we have permanently altered ACL2’s logic, replacing its original framework

for reasoning about the ordinals with our own, as described in Section 6.4. The result is that

ACL2 has become a more powerful tool for reasoning about the ordinals, and therefore about

the termination of functions. This is demonstrated in Section 6.5, in which we empirically

evaluate the effectiveness of our framework for reasoning about the ordinals by examining

two case studies from the ACL2 regression suite.

Finally, we reflect on lessons we learned developing and integrating our new framework

into ACL2 in Section 6.6, which we hope will be useful to others who may be interested in

integrating new reasoning frameworks into ACL2.

6.1 Definitions

We begin by defining our ordinal notation in Figure 15 on the next page. The finp function

corresponds to finp, and recognizes when an ordinal is finite. In our ACL2 notation,

ordinals are infinite if and only if they are lists. Therefore, finp simply returns whether its

argument is an atom. The infp macro simply expands to the negation of finp, and therefore

recognizes if an ordinal is infinite. Infinite ordinals are constructed using the make-ord

function. The ordinal it creates can be thought of as a linked list whose nodes contain

exponent-coefficient pairs, and whose last element is a natural number (the natpartof the
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(defun o-finp (x)
(atom x))

(defmacro o-infp (x)
‘(not (o-finp ,x)))

(defun make-ord (fe fco rst)
(cons (cons fe fco) rst))

(defun o-first-expt (x)
(cond ((o-finp x) 0)

(t (caar x))))

(defun o-first-coeff (x)
(cond ((o-finp x) x)

(t (cdar x))))

(defun o-rst (x) (cdr x))

Figure 15: Ordinal Constructors and Destructors

ordinal). So, ω32 + 1 is represented as ((3 . 2) . 1), ω23 + ω4 + 5 is ((2 . 3) (1 .

4) . 5), and ωω23 + ω45 + 6 is ((((2 . 3) . 0) . 1) (4 . 5) . 6). The remaining

three functions are the ordinal destructors; o-first-expt, o-first-coeff, and o-rst

correspond to fe, fco, and rst, respectively.

Using these functions to perform basic manipulations of infinite ordinals, we define

the ordinal arithmetic functions in ACL2. Here we present the definition of the ordinal

multiplication function, which appears in Figure 16 on the following page. Not all the

functions used in this figure are defined there. These include dropn, which, given a natural

number, n, returns the last m − n elements of a list of length m. Also not defined here is

o+, which is a macro that applies the binary ordinal addition function to any number of

arguments.

For the most part, these definitions should look familiar from Chapter 5. However, there

are some ACL2-specific features of interest being used in these examples. The first is the

declaration of guards. A guard does not affect the logical definition of the function, but tells

ACL2 the intended domain of the function, which allows ACL2 to use smarter compilation

methods to ensure faster execution times. Throughout the ordinal function definitions, we

use guards for this purpose.

Another way we use guards is in conjunction with ACL2’s defexec feature, which allows

users to attach an executable to a logical definition. When using defexec, the user is

obligated to prove that, when the guard conditions on the function parameters are satisfied,

ACL2 will use the executable definition to execute the functions, rather than the logical
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(defun count1 (x y)

(declare (xargs :guard (and (o-p x) (o-p y))))

(cond ((o-finp x) 0)

((o< (o-first-expt y) (o-first-expt x))

(+ 1 (count1 (o-rst x) y)))

(t 0)))

(defun count2 (x y n)

(declare (xargs :guard (and (o-p x) (o-p y) (natp n))))

(+ n (count1 (dropn n x) y)))

(defun padd (x y n)

(declare (xargs :guard (and (o-p x) (o-p y) (natp n) (<= n (count1 x y)))))

(if (or (o-finp x) (zp n))

(o+ x y)

(make-ord (o-first-expt x) (o-first-coeff x) (padd (o-rst x) y (1- n)))))

(defun pmult (x y n)

(declare (xargs :guard (and (o-p x) (o-p y) (natp n)

(<= n (count1 (o-first-expt x)

(o-first-expt y))))))

(let* ((fe-x (o-first-expt x))

(fe-y (o-first-expt y))

(fco-x (o-first-coeff x))

(fco-y (o-first-coeff y))

(m (count2 fe-x fe-y n)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (o-finp x) (o-finp y)) (* x y))

((o-finp y)

(make-ord fe-x (* fco-x fco-y) (o-rst x)))

(t

(make-ord (padd fe-x fe-y m)

fco-y

(pmult x (o-rst y) m))))))

(defexec ob* (x y)

(declare (xargs :guard (and (o-p x) (o-p y))))

(mbe :logic (let ((fe-x (o-first-expt x)) (fe-y (o-first-expt y))

(fco-x (o-first-coeff x)) (fco-y (o-first-coeff y)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (o-finp x) (o-finp y)) (* x y))

((o-finp y)

(make-ord fe-x

(* fco-x fco-y)

(o-rst x)))

(t (make-ord (o+ fe-x fe-y)

fco-y

(ob* x (o-rst y))))))

:exec (pmult x y 0)))

(defmacro o* (&rest rst)

(cond ((null rst) 1)

((null (cdr rst))

(car rst))

(t (xxxjoin ’ob* rst))))

Figure 16: ACL2 definitions of ordinal multiplication.
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definition [45]. This allows the user to have different definitions in the logical and executable

worlds that are guaranteed to be equivalent. Note that we use this feature when defining

the binary ordinal multiplication function, ob*. Here, we attach the efficient algorithm

for multiplication, corresponding to ·o to the simpler, but less efficient logical definition,

corresponding to ∗o. The result is a multiplication function that is both efficient and

relatively easy to reason about. We similarly define o^, using its simpler and more efficient

definitions.

Another feature of note is the macro, o*, defined at the end of the figure. This macro

calls the xxxjoin function, which, when given a binary function symbol and a list, returns

the expression applying the function to the list of arguments in a right-associated manner.

So, for example, (o* a b c d), becomes (ob* a (ob* b (ob* c d))). This allows us

to create polyadic versions of our binary functions. To improve readability, ACL2 can be

instructed to print ob* in terms of o* with the command (add-binop o* ob*). Thus, users

are under the illusion that they are reasoning about polyadic functions, while all reasoning

is really with respect to the binary functions. This helps to simplify the interface between

theorem prover and user.

6.2 Mechanical Verification

The mechanical verification of the ordinal arithmetic algorithm implementations involved

proving three different classes of theorems, beyond the guard conjectures and termination

proofs mentioned in Section 6.1. The first class deals with the algebraic properties of

the operations. We proved that each function has the same algebraic properties as its

corresponding set-theoretic operation. Almost all of the following well-known properties

appear as theorems in our library on ordinal representations. The four properties marked

with a “†” do not appear in the library, but the proofs are simple consequences the theorems

we do prove.
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The ordering relation on ordinals satisfies the following properties.

¬(α < α) (irreflexivity)

β < α⇒ ¬(α < β) ∧ ¬(α = β)

α < β ∧ β < γ ⇒ α < γ (transitivity)

¬(α < β) ∧ ¬(α = β)⇒ β < α (totality)

Ordinal addition and subtraction satisfy the following properties.

α+ 0 = α

0 + α = α

α < α+ 1

† α+ 1 = α′

α < β ≡ α+ 1 ≤ β

α < β + 1 ≡ α ≤ β

α ≤ β + α

α ≤ α+ β

(α+ β) + γ = α+ (β + γ) (associativity)

(β < γ) ⇒ α+ β < α+ γ (strict right monotonicity)

(β ≤ γ) ⇒ β + α ≤ γ + α (weak left monotonicity)

(α < ωβ) ⇒ α+ ωβ = ωβ (additive principal property)

† (α, β < ωγ) ⇒ α+ β < ωγ (closure of additive principal ordinals)

α− α = 0

α− β ≤ α

α ≤ β ⇒ α+ (β − α) = β

α+ γ = β ⇒ β − α = γ

α+ β = α+ γ ≡ β = γ
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Ordinal multiplication satisfies the following properties.

α0 = 0

0α = 0

α1 = α

1α = α

† n ∈ ω ∧ n > 0 ⇒ n · ω = ω

(α · β) · γ = α · (β · γ) (associativity)

(β < γ) ⇒ α · β < α · γ (strict right monotonicity)

(β ≤ γ) ⇒ α · β ≤ α · γ (weak right monotonicity)

(β ≤ γ) ⇒ β · α ≤ γ · α (weak left monotonicity)

α · (β + γ) = (α · β) + (α · γ) (left distributivity)

Ordinal exponentiation has the following properties.

α0 = 1

α1 = α

0 < α⇒ 0α = 0

1α = 1

αβ · αγ = αβ+γ

(αβ)γ = αβ·γ

(β < γ) ⇒ αβ < αγ (strict right monotonicity)

(β ≤ γ) ⇒ βα ≤ γα (weak left monotonicity)

† (p ∈ ω) ⇒ pω = ω

Limit ordinals satisfy the following properties

lim.β ⇒ α < β ≡ α+ 1 < β

lim.β ∧ α < ωβ ⇒ 〈∃γ :: α < γ ∧ γ < ωβ〉

In addition to these theorems, we created counterexamples to the following conjectures
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in ACL2.

α+ β = β + α fails when α = 1, β = ω

β < γ ⇒ β + α < γ + α fails when α = ω, β = 1, and γ = 2

(α+ β)− γ = α+ (β − γ) fails when α = ω + 1, β = 1, and γ = 2

αβ = βα fails when α = 2, β = ω

(β + γ)α = βα+ γα fails when α = ω, β = 1, and γ = 1

β < γ ⇒ βα < γα fails when α = ω, β = 1, and γ = 2

(αβ)γ = αγβγ fails when α = 2, β = 2, and γ = ω

(β < γ)⇒ βα < γα fails when α = ω, β = 2, and γ = 3

The second class of theorems are about the notation and involve helper functions, such

as make-ord, o-first-expt, o-first-coeff, and o-rst, and how they interact with the

algebraic functions. An example of this is the following theorem.

(defthm o+-fe-1
(implies (o< (o-first-expt a)

(o-first-expt b))
(equal (o-first-expt (o+ a b))

(o-first-expt b))))

The third class of theorems demonstrates an isomorphism between the ordinals in our

notation and those in ACL2’s original notation. More precisely, let Oc be the set of objects

that correspond to ordinals in our representation, and let Oa be the set of objects repre-

senting the original ACL2 ordinals. The purpose of this class of theorems is to show that

Oc is isomorphic to Oa. To this end, we created two functions: ctoa, which maps Oc to Oa,

and atoc, which Oa to Oc. To show that our representation is isomorphic to the ordinals

in ACL2, we show the following.

First, ctoa is well defined. That is, x ∈ Oc ⇒ (ctoa x) ∈ Oa. Translating this to

ACL2 gives us:

(implies (o-p x)
(e0-ordinalp (ctoa x)))

We also proved the equivalent theorem for atoc:

(implies (e0-ordinalp x)
(o-p (ctoa x)))
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Second, we show that ctoa is surjective. By definition, this means 〈∀x ∈ Oa :: 〈∃y ∈

Oc :: (ctoa y) = x〉〉. We prove this by showing that atoc is the inverse of ctoa. Thus,

given x ∈ Oa, we have that (ctoa (atoc x)) = x. In ACL2, this becomes:

(implies (e0-ordinalp x)
(equal (ctoa (atoc x))

x))

We also proved the equivalent theorem for atoc:

(implies (o-p x)
(equal (atoc (ctoa x))

x))

Third, we show that ctoa is injective, i.e., 〈∀x, y ∈ Oc :: (ctoa x) = (ctoa y)⇒ x =

y〉. In ACL2:

(implies (and (o-p x)
(o-p y))

(equal (equal (ctoa x) (ctoa y))
(equal x y)))

We also proved the equivalent theorem for atoc:

(implies (and (e0-ordinalp x)
(e0-ordinalp y))

(equal (equal (atoc x) (atoc y))
(equal x y)))

Finally, we show that ctoa is homomorphic with respect to o< and e0-ord-<. That is,

x, y ∈ Oc such that (o< x y)⇒ (e0-ord-< (ctoa x) (ctoa y). In ACL2, this is:

(implies (and (o-p x)
(o-p y))

(equal (e0-ord-< (ctoa x)
(ctoa y))

(o< x y)))

and equivalently for atoc

(implies (and (e0-ordinalp x)
(e0-ordinalp y))

(equal (o< (atoc x)
(atoc y))

(e0-ord-< x y)))
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Note that these theorems deal with ordinal notations and the implementations in ACL2

of the ordinal arithmetic algorithms. That is, we do not mechanically establish any connec-

tion with the set-theoretic definitions on which our algorithms are based, as our goal was

not to formalize set-theory in ACL2. Instead, we focused on using our results about arith-

metic on ordinal notations to extend ACL2’s ability to reason about termination. However,

many of the “paper and pencil” proofs from Chapter 5 turned out to be quite useful, as

they provided the key insights required to complete the ACL2 proofs.

6.3 Library Design

Enabling ACL2 to effectively and automatically reason about the ordinals and termination

requires more than proving the correctness of the implementations, the topic of the previ-

ous section. It requires carefully constructing a library that makes effective and efficient

use of the various types of mechanisms that ACL2 provides to control the way in which

theorems are used. In this section, we discuss a few important considerations that went

into engineering a useful library.

6.3.1 Rule Classes

The first consideration involves a concept in ACL2 known as “rule classes.” When ACL2

proves a theorem, it gets entered into a database so that it can be used in subsequent

proof attempts. By default, theorems are entered as rewrite rules. Rewrite rules can be

conditional and are triggered when a goal contains an expression matching the left hand size

of the rule’s consequent. When this happens, ACL2 attempts to establish the antecedents

of the rule via backchaining, and if successful, it rewrites the expression, using the right

hand side of the rewrite rule. For example, consider the following rule.

(defthm |∼(a=0) /\ b>1 <=> a < ab|
(implies (and (o-p a)

(o-p b))
(equal (o< a (o* a b))

(and (not (equal a 0))
(not (equal b 0))
(not (equal b 1))))))
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After proving this theorem, ACL2 enters it into the database of rules as a rewrite

rule. Subsequently, when ACL2 sees an expression of the form (o< e1 (o* e1 e2)),

where e1 and e2 are arbitrary ACL2 expressions, it will try to determine if e1 and e2

are o-ps. If so, ACL2 will rewrite (o< e1 (o* e1 e2)) to (and (not (equal e1 0))

(not (equal e2 0)) (not (equal e2 1))). Notice that although (o< e1 (o* e1 e2))

is smaller in size than (and (not (equal e1 0)) (not (equal e2 0)) (not (equal e2

1))), it contains o< and o*, which are relatively complex functions. It is important to orient

rewrite rules so that they reduce expressions containing complex functions into expressions

containing simpler functions. It is also important to take into account how much effort will

be expended trying to discharge the hypotheses, and rules should be written in a way that

forces expressions into “canonical” forms.

While rewrite rules are the most widely used rule class, there are other types of rules,

e.g., forward chaining rules are triggered when all of the antecedents are known to be true.

When this happens, the consequent is added to the “context,” the collection of known facts.

As one can imagine, a large collection of theorems with varying rule classes such as those

in the ordinal library can interact in subtle and complex ways. This makes finding sources

of inefficiency difficult. For example, we originally had the following rule.

(defthm fe-o-p
(implies (o-p a) (o-p (o-first-exp a)))
:rule-classes ((:forward-chaining)))

Once this rule is admitted, ACL2 will add (o-p (o-first-exp a)) to the context, the

set of things it knows, when (o-p a) appears in the context. Note that this will not cause

an infinite loop since ACL2 has heuristics for applying forward chaining rules that avoid

this. Therefore, this seemed like a harmless rule to us. However, when combined with other

forward chaining rules triggered by (o-p (o-first-exp a)), this rule gave us a significant

slowdown in the verification of our books. In order to fix this, we changed the theorem to

this.

(defthm fe-o-p
(implies (o-p a) (o-p (o-first-exp a)))
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:rule-classes ((:forward-chaining
:trigger-terms ((o-first-exp a)))
(:rewrite :backchain-limit-lst (5))))

The new trigger term insures that (o-first-exp a) is mentioned somewhere in the

context before the rule is used. This significantly cuts down on the number of times this

rule, and the rules that are triggered by it, are used. We also tagged this theorem to be

used as as rewrite rule, but only if the hypothesis can be proved in 5 or less steps. Profiling

—i.e., using proof analysis tools provided by ACL2 to find sources of inefficiency in proof

attempts— is a crucial part of engineering an effective library of theorems. We therefore

carefully profiled our library, and the result was an order of magnitude improvement in

performance.

6.3.2 Choosing Theorems to Export

It is also important to distinguish between the theorems that one wants to export versus the

intermediate lemmas that are used to prove such theorems. For example, to prove the left

distributive property of multiplication over addition, we had to prove several lemmas which

correspond to special cases of the theorem. The distributive property theorem should be

exported (made visible when the library is loaded into ACL2), but the supporting lemmas

should not. This is accomplished with ACL2’s local form. Sometimes a lemma can also

cause problems within a library and in this case, one can use the encapsulate form, which

provides a way of hiding local theorems from the rest of the library (and much more).

6.3.3 Functions versus Macros

Another concern is deciding when to use macros and when to use functions. In ACL2

macros are simply syntactic sugar and are expanded away before theorem proving begins.

Thus, ACL2 does not reason about macros. In addition to using macros to define polyadic

versions of our binary functions (see Section 6.1), we also use them simplify the class of

theorems needed to reason about the ordinals. For example, we made o<= a macro such

that (o<= a b) expands to (not (o< b a)). This greatly simplified our library, because

we did not need to develop rewrite rules to reason about expressions involving o<=. The
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ordinal-exponentiation

limits

ordinal-basic-theorems

Figure 17: The Ordinal Library.

problem with this approach is that the output generated by ACL2 is with respect to o<,

so we used the macro aliases table in ACL2 to force it to print (o<= a b) instead of (not

(o< b a)). This leads to improved readability.

6.3.4 Library Structure

The final consideration we address here is the structure of the library. The library is divided

into files of ACL2 theorems and definitions, called “books.” Dividing the theorems properly

between the books adds logical coherence and modularity to the library. This maximizes

efficiency through code reuse and makes the books easier for users to understand. The

structure of this library is illustrated in Figure 17, where the rectangles represent books,

and the arrows represent the dependencies between books. For example, the arrow from

ordinal-isomorphism to e0-ordinal indicates that the results of e0-ordinal rely on the
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Table 6: The Ordinal Library.

Book Description
top-with-meta A link to the arithmetic books
natp-posp Theorems about natp and posp
ordinal-definitions The function definitions
ordinal-total-order Theorems about the behavior of o<
ordinal-basic-thms Basic theorems about the helper functions
ordinal-addition Theorems about o+ and o-
ordinal-multiplication Theorems about o*
ordinal-exponentiation Theorems about o^
ordinal-isomorphism Proof of isomorphism of our ordinals & ACL2’s
e0-ordinal Exports major results of ordinal-isomorphism
limits Theorems about limit ordinals
ordinal-counter-examples Counter-examples, e.g., commutativity
ordinals-without-arithmetic Exports ordinal thms without integer arithmetic
ordinals Exports ordinal thms with integer arithmetic
proof-of-well-foundedness Part of proof of well-foundedness of our ordinals
lexicographic-ordering Proves well-foundedness of a lexicographic order

results of ordinal-isomorphism. A short description of the contents of the books can be

found in Table 6. The total size of the books is 181K and they consist of about 5,455 lines

of definitions, theorems, and comments.

To use the ordinal library, the user loads either the ordinals-without-arithmetic

or the ordinals book, depending on whether she wishes to include results about integer

arithmetic. The integer arithmetic book, top-with-meta, was essential for the creation of

the library, but can sometimes interfere with other books.

6.4 Integration with ACL2

After creating the ordinal arithmetic library, we decided to modify ACL2, replacing its

ordinal representation by our own, so that it could take full advantage of our work. The

modifications included updating the documentation and modifying the ACL2 sources and

consisted of about 1,750 lines of code and documentation. We submitted the changes to

Kaufmann and Moore, the authors of ACL2, and they have incorporated the changes into

the ACL2 version 2.8 and all subsequent releases [57].

It is worth noting that our changes do not affect the soundness of the ACL2 logic. In
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the ordinal-isomorphism book of our library, we exhibit a bijection between our ordinal

representation and the previous ACL2 representation (see Corollary 4.3.1 on page 22). This

proof was carried out in ACL2 version 2.7, thus guaranteeing that soundness is not affected.

We now discuss some of the issues we confronted in modifying ACL2. First, the ordinals

are needed in ACL2’s ground-zero theory, the initial theory encountered when starting an

ACL2 session. Proving theorems, defining functions, including books, etc. all result in

extensions to the ground-zero theory, and we wanted to keep it as clean and simple as

possible. Therefore, we did not want to add our entire library of definitions and theorems

to the ground-zero theory. Instead, we included only the basic constructors and destructors

(make-ord, o-first-expt, o-first-coeff, o-rst), the functions necessary for o-p and

o< (natp, posp, infp, finp, o<, o-p), and a few macros based on o< (o>, o<=, o>=). The

arithmetic functions and theorems remain in the library.

Next, by examining ACL2’s regression suite, we discovered that many books defined

their own versions of natp or posp, and decided that ACL2 could benefit from additional

reasoning about these functions. We therefore moved our natp-posp book from the ordi-

nal library to ACL2’s existing arithmetic library. This is a collection of theorems about

arithmetic over the integers, rationals, and complex rationals. The result is an arithmetic

module with better support for reasoning about natural numbers and positive integers.

After replacing the old ordinals with our new representation, we had to deal with legacy

issues, including backward compatibility for the books included with ACL2, as many of

these books referenced the old ordinal representation. The key to fixing these references

was the theorems proved in the ordinal-isomorphism and e0-ordinal books. The main

result in the books is a proof that there exists a bijection between the new and old ordinal

representations. This result allowed us to switch the well-founded relation used by ACL2

to the version 2.7 relation (for the admission of the troublesome books only). This fixed

most of the problems. However, some books used the old ordinals to prove more than just

termination. Again, by using the bijection proof, we were able to transfer results about the

old ordinals to the new ordinals, which resolved the remaining problems. We discuss this

technique in more detail in Section 6.5.1.
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6.5 Using the New Ordinals : Two Case Studies

In this section we provide two case studies illustrating the use of our ordinal library in ACL2.

The first demonstrates how existing libraries making significant use of the ordinals in the

old representation can easily be altered to use our new representation. The second case

study illustrates how other users have used our ordinal arithmetic library to mechanically

prove complex termination arguments.

6.5.1 Legacy Books: Multiset Case Study

ACL2’s multiset ordering library [98] makes significant use of the ordinals. A multiset is a

set in which items can appear more than once. For example, {1, 3, 2, 2, 4} is a multiset over

the natural numbers which contains two 2’s. Given a set, A, with an order <, the multiset

order, <mul, of multisets over A is defined as follows. N <mul M iff there exist multisets

X and Y (over A), such that ∅ 6= X ⊆ M , N = (M −X) ∪ Y , and ∀y ∈ Y , ∃x ∈ X such

that y <A x. If we restrict ourselves to finite sets, then if <A is well-founded, it can be

shown that so is <mul. The multiset library provides a macro called defmul which, given a

well-founded relation over a set and a recognizer for that set, automatically generates the

corresponding multiset relation and proves it to be well-founded.

The defmul macro depends on results proved in another book, called multiset, which

provides useful lemmas about multisets, and uses ACL2’s encapsulate feature to prove in

general that a multiset extension of a well-founded relation is well-founded (See Figure 18 on

the following page). The encapsulated code hides the details of the functions from the rest

of the book. All that is known outside the encapsulate is that mp and rel return Boolean

values, fn returns an ordinal in the old representation, and rel has been proved to be well-

founded on the set recognized by mp using the embedding fn. Following this encapsulate,

there are a number of lemmas about these functions based only on that information, which

culminate in the proof of the well-foundedness of the multiset extension of rel.

There are two problems in certifying this book using the new version of ACL2. The

first is that the original theorem declaring the well-foundedness of rel is no longer a proof

of well-foundedness. The embedding, fn must return an ordinal in the new representation
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(encapsulate ((mp (x) booleanp)
(rel (x y) booleanp)
(fn (x) e0-ordinalp))

...

(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (e0-ordinalp (fn x)))

(implies (and (mp x) (mp y) (rel x y))
(e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation))

...

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x)

(e0-ordinalp (map-fn-e0-ord x)))
(implies (and (mp-true-listp x)

(mp-true-listp y)
(mul-rel x y))

(e0-ord-< (map-fn-e0-ord x)
(map-fn-e0-ord y))))

:rule-classes :well-founded-relation)

Figure 18: Original Multiset Results

in an order-preserving way. The second problem is that the final theorem about the well-

foundedness of the multiset extension must also be altered to use our new ordinals.

The solution is relatively simple, and relies on the results of our e0-ordinal book.

Using our conversion functions, ctoa and atoc, we transferred the results of the multiset

book to results about the new ordinal notation. First, we altered the encapsulate so that

fn and the well-foundedness result were in terms of the new ordinals. This simply required

replacing e0-ordinalp and e0-ord-< by o-p and o<, respectively.

Next, we added the following macro.

(defmacro fn0 (x) ‘(ctoa (fn ,x)))

This simply converts the ordinal in the new notation given by fn into the corresponding

ordinal in the old representation. The theorems involving fn were changed to use fn0

instead. After the final result (which we renamed and re-tagged as a rewrite rule), we

added the following lines of code to convert the results into a valid well-founded-relation

64



argument using the new ordinal notation.

(defun map-fn-op (x)
(atoc (map-fn-e0-ord x)))

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x) (o-p (map-fn-op x)))

(implies (and (mp-true-listp x)
(mp-true-listp y)
(mul-rel x y))

(o< (map-fn-op x) (map-fn-op y))))
:rule-classes :well-founded-relation)

Finally, we changed the defmul macro so that it uses the new theorem and function

names. With this approach, we did not have to alter the lemmas about the old ordinals

in multiset. Doing so would have required essentially modifying the entire book. This

“wrapping” method can be used to quickly and easily update old libraries so that they can

be certified using the new ordinals.

6.5.2 New Results: Dickson’s Lemma Case Study

Our library was used by Sustik to give a constructive proof of Dickson’s Lemma [110]. This

is a key lemma in the proof of the termination of Buchberger’s algorithm for finding a

Gröbner basis of a polynomial ideal, and is therefore an important step toward the larger

goal of formalizing results from algebra in ACL2 [76]. Sustik made essential use of the

ordinals and our library, as his proof depends heavily on the ordinals and could not have

been proved in older versions of ACL2 without essentially building up a theory of ordinal

arithmetic similar to our own. Our library was able to automatically discharge all the proof

obligations involving the ordinals.

Dickson’s Lemma states that, given an infinite sequence of monomials, m0,m1,m2, . . .,

there exists i, j ∈ N such that i < j and mi divides mj . Sustik’s argument involves mapping

initial segments of the monomial sequence into the ordinals such that if no such i and j

exist, the ordinal sequence will be decreasing. Thus, the existence of an infinite sequence

of monomials such that no monomial divides a later monomial implies the existence of an

infinite decreasing sequence of ordinals, which is not possible due to the well-foundedness

of the ordinals.
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This proof relies heavily on ordinal addition and exponentiation. For example, sets of

monomials, which are represented as lists of tuples of natural numbers, are mapped to the

ordinals by the following function.

(defun tuple-set->ordinal-partial-sum (k S i)
(cond ((or (not (natp k)) (not (natp i))) 0)

((zp k) 0)
((equal k 1)
(tuple-set-min-first S))
((<= (tuple-set-max-first S) i)
(o^ (omega) (o+ (tuple-set->ordinal-partial-sum

(1- k) (tuple-set-projection S) 0)
1)))

(T (o+ (o^ (omega)
(tuple-set->ordinal-partial-sum
(1- k) (tuple-set-filter-projection S i) 0))

(tuple-set->ordinal-partial-sum k S (1+ i))))))

Key lemmas about this function therefore required sophisticated reasoning about the be-

havior of ordinal addition and exponentiation. One such lemma is as follows.

(defthm map-lemma-3.2
(implies (and (tuple-setp k A) (natp k) (< 1 k) (natp i))

(o< (o^ (omega) (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-filter-projection A i)
0))

(tuple-set->ordinal-partial-sum k A i))))

This and other similar theorems require results about ordinal arithmetic including the

following: (1) α < β ⇒ γ +α < γ + β, (2) α ≤ β ⇒ α+ γ ≤ β + γ, (3) α ≤ β ∧ γ ≤ δ ⇒

α+ γ ≤ β + δ, (4) α < β ⇒ γα < γβ , and (5) α ≤ β ⇒ αγ ≤ βγ .

Initially, Sustik used a preliminary version of our library, and he needed 26 additional

theorems about ordinal arithmetic for his proof. After streamlining our library, no additional

ordinal arithmetic lemmas were required, and the results specific to Dickson’s Lemma, such

as those above, were discharge twice as quickly. The overall result was a 70.5% speedup

in the verification of the Dickson’s Lemma library. This is an example of the kind of

termination proof that would be quite difficult to fully automate.
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6.6 Lessons Learned

During this project we learned several lessons that we believe will be of benefit to users

working on large projects in ACL2 and similar systems. These include lessons about the

features and shortcomings of ACL2, as well as lessons about effectively designing and im-

plementing large projects in ACL2. Here, we share some of these lessons.

One invaluable feature of ACL2 is its regression suite. This large collection of books in-

cludes the formalization of many mathematical theories and industrial case studies, making

it a valuable testbed for new features. Running the regression suite on our altered version

of ACL2 stressed our library and helped us maximize its efficiency and effectiveness. Along

the way we learned two valuable lessons. The first is that it is important to have a general

way of integrating results into the regression suite. In our case, we used the ordinal iso-

morphism results, as we illustrate in Section 6.5.1, to transfer results about the old ordinals

to the new ordinals; this saved us from having to understand the details of existing books.

The second lesson we learned is that the regression suite can reveal patterns in the use

of ACL2 that can inspire new improvements. For example, we did not originally plan on

integrating our results about natp and posp with the arithmetic module. However, when

working with the regression suite, we found that many libraries contained functions similar

to natp and posp, and this prompted us to create a separate book that we added to the

arithmetic module.

Another feature of ACL2 is its extensive documentation [57]. It describes each ACL2

feature and function in detail, and an important part of integrating our work into ACL2

was updating the documentation. This included describing our functions, but, more im-

portantly, it required us to reason at the meta-level, providing a hand-written proof of the

well-foundedness of our ordinal notation (which does not appeal to the ordinals), in order

to demonstrate the soundness of our new additions to ACL2. Thus, updating the documen-

tation is important both for keeping users up-to-date with the current features of ACL2

and for arguing at a meta-level about the soundness of the ACL2 logic.

As we mentioned earlier, profiling was a crucial step in making our library more efficient.

What we found is that this is actually difficult to do in ACL2. There is a mechanism called
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accumulated-persistence that allows the user to gauge the performance of each individual

rule. However, many performance problems come from the interaction among the rules, not

from each rule’s individual performance. We think that ACL2users would benefit from a

mechanism for analyzing this interaction. For example, one can imagine having a mechanism

for reporting the amount of time spent on rules of each class (e.g., forward chaining rules

versus rewrite rules). Since rules of one class often trigger other rules of the same class, this

could prove to be useful.

Another shortcoming of the ACL2 system is the naming scheme, which it has borrowed

from Lisp. Namespace collisions can be avoided in ACL2 by creating new packages. For

example, we could have created a package called ORD, and defined all our functions in that

package (e.g., ORD::o<). In fact, this would have been useful for us, since we found functions

called op (the original name of our predicate function) and natp in several libraries in the

regression suite. However, referring to one package from another involves either prefixing

symbols with package names or importing symbols into the current package (thus causing

namespace issues again). It usually takes several iterations to determine which symbols a

package should import, but the ACL2 implementation requires restarting ACL2 for every

such change. In the end, we found it easier to rename our predicate function to o-p and to

rename or delete the natp functions found in other books. ACL2 users would benefit from

a better mechanism for dealing with namespace issues.

Our use of algebraic specifications to deal with make-ord, o-first-expt, o-first-coeff,

and o-rst sped up our books, but it took several iterations to discover where abstraction

should be used. We found that algebraic specifications are often more trouble than they are

worth. When in doubt, we recommend starting with little or no abstraction, and adding

more based on how functions are being used in proof attempts. If the theorem prover seems

to be struggling with the underlying representation, then perhaps abstraction can help.

6.7 Bibliographic Notes

The automated reasoning community has studied the problem of formalizing the ordinals

(as opposed to ordinal notations), focusing on proving known results. Dennis and Smaill
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studied higher-order heuristic extensions of rippling. They used ordinal arithmetic as a case

study, which was implemented in λClam, a higher order proof planning system for induction.

They were able to successfully plan standard undergraduate textbook problems using their

system [33]. Paulson and Grabczewski have mechanized a good deal of set theory, including

the proof that for any infinite cardinal, κ, we have κ ⊗ κ = κ, most of the first chapter

of Kunen’s excellent book on set theory [63], and the equivalence of eight forms of the

well-ordering theorem [92]. More recently, Paulson has mechanized the proof of the relative

consistency of the axiom of choice and has proved the reflection theorem [91, 90]. Paulson

and Grabczewski’s efforts required reasoning about the ordinals and were carried out with

the Isabelle/ZF system [87, 89]. A version of the reflection theorem was also proved by

Bancerek, using Mizar [4]. Another line of work is by Belinfante, who has used Otter to

prove elementary theorems of ordinal number theory [5, 6, 7]. There is much more work

that can be mentioned, but we end by listing some of the theorem proving systems for which

there exists support for the ordinals: Nqthm [13], ACL2 [56], Coq [11], PVS [86], HOL [44],

Isabelle [88], and Mizar [97].

For a complete discussion of the defexec feature and its applications (including this

one), see [45], and for more details, see [46]. This and other features of ACL2 mentioned in

this chapter can be found on the ACL2 homepage [57]. The details of the multiset ordering

books described in Section 6.5.1 can be found in [98].

Dickson’s lemma was introduced in [37], while Buchberger’s algorithm for finding Gröbner

bases first appeared in [20]. More detail on Sustik’s constructive proof is given in [110].

6.8 Summary

In this chapter, we described the creation of a framework for mechanically reasoning about

the ordinals algebraically. We discussed the implementation and mechanical verification

of our ordinal notation and arithmetic algorithms (see Chapter 5) in the ACL2 theorem

proving system. We also gave an overview of the issues involved in the creation of a well-

engineered library for reasoning about ordinal arithmetic in ACL2, and the modification

of ACL2 to use our ordinal representation by default. We explored two case studies that
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demonstrate the effectiveness of our ordinal reasoning framework, and considered some

lessons we learned in the process of designing and building this framework.

Finally, we presented lessons we learned while working on a big project in ACL2. We

have noticed through past experience that users (including us) often make the same mistakes

repeatedly. They have to rediscover ways to improve their libraries or avoid pitfalls. Having

a record of these tips, tricks, and lessons can potentially be a valuable time-saver when

working on new projects. They are also valuable for finding difficulties with ACL2 such as

the ones we presented here, which can be used to improve the theorem-proving system and

may provide insight that will help developers of other theorem proving systems as well.
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PART III

Automation of Termination Proofs



CHAPTER VII

OVERVIEW

In this part of the dissertation, we present a new algorithm for automatically proving the

termination of programs written in first-order purely-functional programming languages.

This algorithm is general, as it can be used to reason about any and all looping behaviors

allowed by programs written in this class of languages. It does so by using a novel combi-

nation of theorem proving and static analysis to abstract the program into a manageable

but surprisingly accurate representation, which we call a calling context graph (CCG). By

annotating the CCG with expressions we call calling context measures (CCMs), and using

the theorem prover to reason about the values of these CCMs, we can show that the pro-

grams represented by the CCG are terminating on all inputs. We describe this algorithm

in Chapter 8.

In addition, we describe an implementation of the CCG algorithm that is based on a

hierarchical model, in which lightweight versions of the CCG algorithm are used to prove

the termination of simpler programs, while the slower full CCG algorithm is employed only

when the simpler methods fail. The details of this implementation are given in Chapter 9.

Chapter 10 presents the results of running our algorithm on the entire ACL2 regression

suite. The results demonstrate that our analysis can automatically prove termination for

over 96% of terminating functional definitions, including over 79.90% of the most difficult

1.5% of all function definitions, even when using only the ACL2’s ground-zero theory and

definitional axioms. Under the same circumstances, ACL2 can only prove termination of

59.93% of the difficult problems, demonstrating the significant improvement of our analysis

over ACL2’s.

Finally, we discuss the issues involved in integrating our CCG-based termination analy-

sis into the ACL2 logic. We begin by proving that the formal notion of CCG admissibility,
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which involves proving termination using CCGs in ACL2, implies ACL2’s current termi-

nation condition, known as measure admissibility. This proves that the integration of the

CCG algorithm into ACL2 would be a conservative extension of ACL2’s current logic. We

also discuss the practical challenges of integrating the CCG analysis with ACL2’s theorem

prover. This is done in Chapter 11.
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CHAPTER VIII

TERMINATION ANALYSIS ALGORITHM

In this chapter, we present our automatic termination analysis algorithm. We begin by

giving an example.

8.1 An Example

Consider the code in Figure 19. It is taken verbatim from the M5 model of the Java

Virtual Machine, written in ACL2 [84, 77]. These two particular functions create a multi-

dimensional array, and add it to the heap. It calls code to create a new JVM state, create

new heaps, and bind addresses to values in the heap. It relies on over 800 lines of previous

code in the JVM model. The two functions defined in the figure, called mma2 and mma are

mutually recursive. mma2 calls itself and mma, and mma calls mma2. We walk through our

CCG analysis to give a high level overview of how it works before giving the details.

First, notice that there is a significant amount of code that does not factor into the

looping behavior. For example, in mma, there is 7 lines of code that comprise the “base

case” of the function. That is, if the if test, (<= (len c) 1) is true, there are no recursive

calls. Likewise, the last 7 lines of the function take the value returned by the recursive

call to mma2, and construct the return values from it. It turns out that this is also not

relevant to the termination argument. This is because all looping behavior in applicative

first-order functional languages is modeled using recursion. So all we need to know is that

the functions in question do not recur infinitely.

To determine this, we need three pieces of information from each recursive callsite. The

first is the function in which the call occurs. The second is the governors under which

the call is made (see Section 2.1). The third is the call itself. The triple containing this

information is known as a precise calling context. The precise contexts for mma2 and mma

appear in Figure 20(a) on page 75. For the purposes of presentation, we abreviate the final

two arguments to the second context as e and e′.
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(mutual-recursion

; mma2 :: num, counts, s, ac --> [refs]
(defun mma2 (c1 c2 s ac)
(declare (xargs :measure (cons (len (cons c1 c2))

(natural-sum (cons c1 c2)))))
(if (zp c1)

(mv (heap s) ac)
(mv-let (new-addr new-heap)

(mma c2 s)
(mma2 (- c1 1)

c2
(make-state (thread-table s)

new-heap
(class-table s))

(cons (list ’REF new-addr) ac)))))

; mma :: [c], s --> addr, new-heap
(defun mma (c s)
(declare (xargs :measure (cons (+ 1 (len c))

(natural-sum c))))
(if (<= (len c) 1)

; "Base case" Handles initializing the final dimension
(mv (len (heap s))

(bind (len (heap s))
(makearray ’T REF

(car c)
(init-array ’T REF (car c))
(class-table s))

(heap s)))

; "Recursive Case"
(mv-let (heap-prime lst-of-refs)

(mma2 (car c)
(cdr c)
s
nil)

(let* ((obj (makearray ’T REF
(car c)
lst-of-refs
(class-table s)))

(new-addr (len heap-prime))
(new-heap (bind new-addr obj heap-prime)))

(mv new-addr new-heap)))))
)

Figure 19: Example from an ACL2 model of the Java Virtual Machine. The code in this
example creates a multi-dimensional array and returns a new heap with containing the new
arrays as well as a reference to the top level array.
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1. 〈mma2, {(not (zp c1))}, (mma c2 s)〉

2. 〈mma2, {(not (zp c1))}, (mma2 (- c1 1) c2 e e′)〉

3. 〈mma, {(< 1 (len c))}, (mma2 (car c) (cdr c) s nil)〉

(a) Precise calling contexts.

?>=<89:;1
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(b) CCG.

Figure 20: Precise Calling Contexts and CCG for mma and mma2.

The first context tells us that the corresponding callsite occurs in the body of mma2,

under the condition that (not (zp c1)) is true, and is the expression (mma c2 s). The

zp function returns true if c1 is not a positive integer, so since the negation is true, c1 is a

positive integer when this call is made. The second context also occurs in the body of mma2

under the same conditions. It corresponds to a call to mma2. The third context corresponds

to a call in mma under the condition that the length of c is more than 1. The call, (mma2

(car c) (cdr c) s nil), splits c in two. By the condition, we know that c is a list with

more than 1 element. The function car returns the first element in the list, and cdr returns

the list resulting in removing the first element.

It turns out that the information contained in these contexts is enough to prove termi-

nation (See Theorem 8.3.1 on page 86). Notice that we have effectively eliminated 40 lines

of code from our termination analysis, allowing us to focus on those parts of the code that

directly relate to the termination analysis.

The next step in our analysis is to build the Calling Context Graph (CCG), which is a

labeled directed graph that overapproximates the recursive behavior of the functions. The

vertices of the graph are the calling contexts, and an edge from one context to the next

signifies that if control reaches the callsite corresponding to the first context, it may reach

the context corresponding to the second callsite in the next recursive step. The CCG for

our example is given in Figure 20(b).

Consider context 1. It is a call to mma, so it will not be able to immediately lead to the

execution of contexts 1 or 2, because these occur in the body of mma2. However, it may

lead to an execution of context 3. To be sure, consider the conditions of contexts 1 and 3.

Context 1 is executed when c1 is a positive integer. The call passes c2 as parameter c of

75



1. 〈mma2, {(not (zp c1)), (< 1 (len c2))}, (mma2 (car c2) (cdr c2) s nil)〉

2. 〈mma2, {(not (zp c1))}, (mma2 (- c1 1) c2 e e′)〉

?>=<89:;1
(( ** ?>=<89:;2jj hh

Figure 21: Absorbed Calling Contexts and CCG for mma and mma2.

mma and s as the parameter s. So, context 3 will be executed in the next recursive step if

c2 is a list whose length is greater than 1. Since the conditions of context 1 do not tell us

anything about c2, it is entirely possible that c2 is a list whose length is greater than 1.

Therefore, it may be possible to execute the third context immediately after the first, so we

add an edge from context 1 to context 3. The reasoning for the other edges is similar.

The key property of CCGs is that any potential infinite sequence of recursive calls is a

path through the CCG. Therefore if we can rule out any infinite path through the CCG as

an actual execution of our functions, we will have proven termination. Before discussing

how this is done, we first demonstrate how the CCG can be manipulated to further simplify

the termination analysis.

Notice that in our example, context 1 can only lead to context 3. Also, context 3 can

only be reached from context 1. Because of this, we can consider this to be 1 step instead

of 2. We do this by using absorption (See Section 8.5). In this case, we absorb context 1

into the graph by merging it with context 3, combining their conditions and substituting

c2 for c, in the call of context 3, since the call of context 2 passes c2 for parameter c. The

resulting contexts and CCG are given in Figure 21.

Notice that by merging contexts 1 and 3, we have further simplified the termination

analysis. Now there are only two contexts, and no mention of the function mma at all. We

have reduced a mutually recursive pair of functions to a termination argument involving

just one function. Now we discuss how we prove that no infinite path through the CCG

corresponds to an actual execution of the system.

The key to proving this property is the concept of Calling Context Measures (CCMs)

(see Definition 8.4.1 on page 89), which are simply expressions that map the function

parameters of the parent function of a context into some set with a well-founded ordering.
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c1 c1

(len c2)
> //(len c2)

c1
> //c1

(len c2)
≥

//(len c2)

Figure 22: CCMF for mma and mma2.

The goal, then, is to show that along every infinite path of the CCG, some CCM will

decrease infinitely.

In our example, consider the value of (len c2), which is the length of c2. In the

recursive call of mma2 for context 2, we pass (cdr c2) for parameter c2. Since c2 is a

list of length greater than 1, we know that the length of the cdr of c2 will be 1 less than

the length of c2. Since the length is a natural number, we know that it cannot decrease

infinitely. Note also that in context 2, c2 is passed to parameter c2, so the value remains

the same.

Consider also the value of c1 at context 2. We know that if we reach the callsite, c1

is a positive integer. That means that (- c1 1), the result of decrementing c1 by 1 is

less than c1. Since c1 and (- c1 1) are both natural numbers, we know that c1 cannot

decrease forever. Note that for context 1, we pass (car c2) to parameter c1. Since there is

no information about how (car c2) compares to c1, we do not know how these two values

relate.

Putting all this information together we get local information on how the values of

(len c2) and c1 change across each recursive call. We gather this information in Calling

Context Measure Functions (CCMFs) (see Definition 8.4.3 on page 89), which we represent

graphically in Figure 22.

Using this information, we do an analysis of the infinite paths of of the CCG. If every

infinite path results in an infinite decrease in some CCM, then it cannot be an actual

execution of our functions, because the CCMs are compared using a well-founded relation,

which has no infinite decreasing sequences.

For our example, consider first any path that visits context 1 infinitely. For such a

path, the length of c2 is never increasing, since it stays the same across the recursive call

in context 2. Also, it is infinitely decreasing, since we visit context 1 infinitely often, and
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context 1 causes a decrease in the length of c2. Therefore, no such path can be an actual

computation.

Next consider any path where context 1 is not visited infinitely often. In this case, we

will stop visiting context 1 after some finite prefix of the path in question. After this point,

we will visit only context 2, which causes the value of c1 to decrease every time. Therefore,

no such path can be an actual computation of our functions.

We have therefore proven the termination of mma and mma2. It is worth noting that the

authors of these functions did prove them terminating in ACL2 using ACL2’s measure-based

method. The measure they used required an infinite ordinal. For mma, the measure was

ω(+ 1 (len c)) + (natural-sum c), and the measure for mma2 was ω(+ 1 (len (cons c1 c2)) +

(natural-sum (cons c1 c2)), where cons adds c1 onto the front of list c2, and natural-sum

is a function defined by the authors of mma and mma2 specifically for the purpose of proving

the termination of these functions. It returns the sum of all the natural number elements

of its argument.

There are two things to notice here. First, our analysis can prove these functions

terminating with no user assistance, unlike ACL2’s measure-based termination analysis,

which requires the users to provide a measure in this case. Second, note that our analysis

did not require infinite ordinals or the natural-sum function to prove termination. It did

so with only c1 and (len c2). One of the strengths if this analysis, then, is that it breaks

down the termination problem into simpler components that can be solved with simpler

measures than the ones required to prove termination using ACL2’s current analysis.

In the remainder of this chapter, we present our termination analysis based on CCGs

and CCMs in more detail.

8.2 Classifying Non-Termination

We give useful lemmas for reasoning about the core semantics of FL given in Section 2.1,

culminating in a theorem that classifies non-termination in applicative first-order functional

languages such as FL. We begin with a lemma that demonstrates that syntactic substitution
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and semantic environments are synonymous when the expressions in question are terminat-

ing.

Lemma 8.2.1. Let e ∈ Expr, n ∈ ω, 〈ei〉ni=1 ∈ Exprn, 〈xi〉ni=1 ∈ V arn, ε ∈ Env map every

x ∈ ((free(e) − {xi | 1 ≤ i ≤ n}) ∪
⋃n

i=1 free(ei)) to a value, and h ∈ IHist map every

function called in e and all the ei to a function of the appropriate arity. Then 〈∀1 ≤ i ≤

n :: JeiKh ε 6= ⊥〉 ⇒ JeKh ε[xi 7→ JeiKh ε]ni=1 = Je[xi 7→ ei]ni=1K
h ε.

Proof. Let vi = JeiKh ε for all 1 ≤ i ≤ n. The proof is by induction on the syntactic size of

e.

e ∈ Val :

Then JeKh ε[xi 7→ vi]ni=1 = e = JeKh ε = Je[xi 7→ ei]ni=1K
h ε

e ∈ Var − {xi}ni=1 :

Then JeKh ε[xi 7→ vi]ni=1 = ε[xi 7→ vi]ni=1(e) = ε(e) = JeKh ε = Je[xi 7→ ei]ni=1K
h ε.

e = xi for some 1 ≤ i ≤ n :

Then JeKh ε[xi 7→ vi]ni=1 = ε[xi 7→ vi]ni=1(e) = vi = JeiKh ε = Je[xi 7→ ei]ni=1K
h ε.

e = (let ((y1 e′1) . . . (ym e′m)) e′) :

By the induction hypothesis,
r
e′j

zh
ε[xi 7→ vi]ni=1 =

r
e′j [xi 7→ ei]ni=1

zh
ε for all 1 ≤ j ≤

m. Let uj denote this value for each j. If any ui = ⊥ for any 1 ≤ i ≤ m, then

JeKh ε[xi 7→ vi]ni=1 = Je[xi 7→ ei]ni=1K
h ε = ⊥ by definition. Otherwise we have

JeKh ε[xi 7→ vi]ni=1

{ Semantics of let } = Je′Kh ε[xi 7→ vi]ni=1[yi 7→ uj ]mj=i

{All x ∈ free(e′) bound in let } = Je′Kh ε[yi 7→ uj ]mj=i

{ Semantics of let, Def. of substitution } = Je[xi 7→ ei]ni=1K
h ε

e = (if e′1 e′2 e′3) : By the induction hypothesis, we have that
r
e′j

zh
ε[xi 7→ vi]ni=1 =

r
e′j [xi 7→ ei]ni=1

zh
ε for 1 ≤ j ≤ 3. The result then follows from the semantics of if.

e = (g e′1 . . . e′m) By the induction hypothesis,
r
e′j

zh
ε[xi 7→ vi]ni=1 =

r
e′j [xi 7→ ei]ni=1

zh
ε

for 1 ≤ j ≤ m. The result then follows from the semantics of function calls.
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The following corollary is directly applicable to let expressions, and says that the syn-

tactic let substitutions correspond in some way to the semantic execution of let expressions.

Corollary 8.2.1. Let e = (let ((y1 e1) . . . (yn en)) en+1) ∈ Expr, ε ∈ Env map every

x ∈ free(e) to a value, and h ∈ IHist map every function called in e to a function of the

appropriate arity. Then 〈∀1 ≤ i ≤ n :: JeiKh ε 6= ⊥〉 ⇒ JeKh ε = Je|n+1Kh ε.

Proof. The results follow directly from Lem. 8.2.1 and the semantics of let.

Another direct result of Lem. 8.2.1 is the following, which we will use later when rea-

soning about function calls.

Corollary 8.2.2. Let e ∈ Expr, n ∈ ω, 〈ei〉ni=1 ∈ Exprn, {xi | 1 ≤ i ≤ n} ⊇ free(e),

ε ∈ Env, and h ∈ IHist map every function called in e and all the ei to a function of

the appropriate arity. Then 〈∀1 ≤ i ≤ n :: vi = JeiKh ε 6= ⊥〉 ⇒ JeKh [xi 7→ vi]ni=1 =

Je[xi 7→ ei]ni=1K
h ε.

Proof. Follows directly from Lem. 8.2.1.

For the next lemma and theorem, we need the concept of let-adjusted depth of an ex-

pression e. Intuitively, this is the depth of the expression resulting from applying all of the

let substitutions suggested by e. More formally,

Definition 8.2.1. The let-adjusted depth of an expression, e is defined recursively as follows:

• lad(x) = lad(v) = 0

• lad(e) = 1 + max{lad(e|i) | 〈∃q :: iq ∈ Pos(e)〉}.

The first lemma gives a sufficient condition for non-termination.

Lemma 8.2.2. Let h ∈ IHist, ε ∈ Env, and e ∈ Expr. If there exists q ∈ Pos(e) such that

Hh Jgov(e, q)K ε and Je|qKh ε = ⊥, then JeKh ε = ⊥.
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Proof. Suppose that there exists q ∈ Pos(e) such that Hh Jgov(e, q)K ε and Je|qKh ε = ⊥. We

refer to this as the original hypothesis. We prove that JeKh ε = ⊥ by induction on q.

For the base case, if q = ε, the theorem holds trivially.

For the induction step, suppose that q = ip ∈ Pos(e). Consider the following cases.

e = (g e1 . . . em) : By definition, ei|p = e|ip and gov(ei, p) = gov(e, ip). Therefore, by the

original hypothesis, Hh Jgov(ei, p)K ε and Jei|pKh ε = ⊥. By the induction hypothesis,

this means that JeiKh ε = ⊥. Therefore, JeKh ε = ⊥ by the semantics of function calls.

e = (let ((x1 e1) . . . (xmem)) em+1) : Then consider the following two cases:

i 6= m+ 1 : Then by definition, e|ip = ei|p and gov(e, ip) = gov(ei, p). Therefore,

by the original hypothesis, Hh Jgov(ei, p)K ε and Jei|pKh ε = ⊥. By the induction

hypothesis, this means that JeiKh ε = ⊥. Therefore, JeKh ε = ⊥ by the semantics

of let.

i = m+ 1 : By definition, e|(m+1)p = em+1|p. Also, by definition, gov(e, (m+ 1)p) =

gov(em+1, p). Therefore, Hh Jgov(em+1, p)K ε and Jem+1|pKh ε = ⊥. By the induc-

tion hypothesis, this means that Jem+1Kh ε = ⊥. By Lem. 8.2.1, Jem+1Kh ε[xj 7→

JejKh ε]mj=1 = ⊥. Therefore, JeKh ε = ⊥ by the semantics of let.

e = (if e1 e2 e3) : Let q = ip. Consider the following three cases:

i = 1 : Then by definition, e|ip = ei|p and gov(e, ip) = gov(ei, p). Therefore, by

the original hypothesis, Hh Jgov(ei, p)K ε and Jei|pKh ε = ⊥. By the induction

hypothesis, this means that JeiKh ε = ⊥. Therefore, JeKh ε = ⊥ by the semantics

of if.

i = 2 : Then by definition, e|ip = ei|p and gov(e, ip) = {e1} ∪ gov(ei, p). Since

gov(ei, p) ⊆ gov(e, ip), Hh Jgov(e, p)K ε ⇒ Hh Jgov(ei, p)K ε. Therefore, by the

original hypothesis, Hh Jgov(ei, p)K ε and Jei|pKh ε = ⊥. By the induction hy-

pothesis, this means that JeiKh ε = ⊥. Therefore, JeKh ε = ⊥ by the semantics of

if.
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i = 3 : Then by definition, e|ip = ei|p and gov(e, ip) = {(not e1)} ∪ gov(ei, p).

Since gov(ei, p) ⊆ gov(e, ip), Hh Jgov(e, p)K ε ⇒ Hh Jgov(ei, p)K ε. Therefore,

Hh Jgov(ei, p)K ε and Jei|pKh ε = ⊥. By the induction hypothesis, this means

that JeiKh ε = ⊥. Therefore, JeKh ε = ⊥ by the semantics of if.

The following theorem strengthens the previous lemma into a necessary and sufficient

condition for termination in FL. It basically says that the execution of an expression with

a given history and environment is non-terminating exactly when the execution of that

expression reaches a sub-expression that is a non-terminating function call.

Theorem 8.2.1. Let h be an intermediate history and ε be an environment. Then for any

expression e, JeKh ε = ⊥ if and only if there is a position, q ∈ Pos(e), such that e|q =(f e′1

. . . e′n), Hh Jgov(e, q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and Je|qKh ε = ⊥.

Proof. We prove the two directions separately.

(⇐): This direction follows directly from Lemma 8.2.2 on page 80.

(⇒): Suppose that JeKh ε = ⊥. We refer to this as the original hypothesis. We prove that

there exists q ∈ Pos(e) as described in the theorem. The proof is by induction on the lad(e).

Consider the following cases.

e = (g e1 . . . em) : If ∃1 ≤ j ≤ m such that JejKh ε = ⊥, then by the induction hy-

pothesis, there exists q ∈ Pos(ej) such that ej |q =(f e′1 . . . e′n), Hh Jgov(ej , q)K ε,

Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and Jej |qKh ε = ⊥. By definition, ej |q = e|jq and

gov(e, jq) = gov(ej , q). Therefore, e|jq =(f e′1 . . . e′n), Hh Jgov(e, jq)K ε, Je′iK
h ε 6= ⊥

for all 1 ≤ i ≤ n, and Je|jqKh ε = ⊥.

Otherwise the theorem trivially holds for ε ∈ Pos(e).

e = (let ((x1 e1) . . . (xmem)) em+1) : Then consider the following two cases.

∃1 ≤ j ≤ m such that JejKh ε = ⊥ : Then by the induction hypothesis, there exists

q ∈ Pos(e), such that ej |q =(f e′1 . . . e′n), Hh Jgov(ej , q)K ε, Je′iK
h ε 6= ⊥ for
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all 1 ≤ i ≤ n, and Jej |qKh ε = ⊥. By definition, ej |q = e|jq and gov(e, jq) =

gov(ej , q). Therefore, e|jq =(f e′1 . . . e′n), Hh Jgov(e, jq)K ε, Je′iK
h ε 6= ⊥ for all

1 ≤ i ≤ n, and Je|jqKh ε = ⊥.

∀1 ≤ j ≤ m, JejKh ε 6= ⊥ : Let e′ = e|m+1. Then

Je|m+1Kh ε

{Def. of e|m+1 } = Jem+1[xi 7→ ei]Kh ε

{Cor. 8.2.1 } = Jem+1Kh ε[xi 7→ JeiKh ε]mi=1

{ Semantics of let } = JeKh ε

{ original hypothesis } = ⊥

By the induction hypothesis, there exists q ∈ Pos(e|m+1), such that (e|m+1)|q =

(f e′1 . . . e′n), Hh Jgov(e|m+1, q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and also

J(e|m+1)|qKh ε = ⊥. By definition, e|(m+1)q = (e|m+1)|q and gov(e, (m + 1)q) =

gov(e|m+1, q). Therefore, e|(m+1)q =(f e′1 . . . e′n),Hh Jgov(e, (m+ 1)q)K ε, Je′iK
h ε

6= ⊥ for all 1 ≤ i ≤ n, and
q
e|(m+1)q

yh
ε = ⊥.

e = (if e1 e2 e3) : Consider the following three cases:

Je1Kh ε = ⊥ : Then by the induction hypothesis, there exists q ∈ Pos(e1) such that

e1|q =(f e′1 . . . e′n), Hh Jgov(e1, q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and

Je1|qKh ε = ⊥. By definition, e1|q = e|1q and gov(e, 1q) = gov(e1, q). There-

fore, e|1q =(f e′1 . . . e′n), Hh Jgov(e, 1q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and

Je|1qKh ε = ⊥.

Je1Kh ε /∈ {⊥, nil} : Then by our original hypothesis and the semantics of if, Je2Kh ε =

⊥. By the induction hypothesis, there exists q ∈ Pos(e2) such that e2|q =(f e′1

. . . e′n), Hh Jgov(e2, q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and Je2|qKh ε = ⊥.

By definition, e2|q = e|2q, and gov(e, 2q) = {e1} ∪ gov(e2, q). Since Je1Kh ε /∈

{⊥, nil} by the current case hypothesis, and Hh Jgov(e2, q)K ε, we know that

Hh Jgov(e, 2q)K ε. Therefore, e|2q =(f e′1 . . . e′n), Hh Jgov(e, 2q)K ε, Je′iK
h ε 6= ⊥

for all 2 ≤ i ≤ n, and Je|2qKh ε = ⊥.
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Je1Kh ε = nil : Then by our original hypothesis and the semantics of if, Je3Kh ε = ⊥.

By the induction hypothesis, there exists q ∈ Pos(e3) such that Je3Kh q =(f e′1

. . . e′n), Hh Jgov(e3, q)K ε, Je′iK
h ε 6= ⊥ for all 1 ≤ i ≤ n, and Je3|qKh ε = ⊥. By def-

inition, e3|q = e|3q, and gov(e, 3q) = {(not e1)}∪gov(e3, q). Since Je1Kh ε = nil

by the current case hypothesis, and Hh Jgov(e3, q)K ε, Hh Jgov(e, 3q)K ε. There-

fore, e|3q =(f e′1 . . . e′n), Hh Jgov(e, 3q)K ε, Je′iK
h ε 6= ⊥ for all 2 ≤ i ≤ n, and

Je|3qKh ε = ⊥.

By this theorem, we can see that non-termination in our target class of programming

languages occurs exactly when there is infinite recursion, i.e., when there is an infinite

sequence of recursive calls that never “bottoms out” and returns a value. Therefore, if we

can prove that every sequence of recursive calls eventually reaches a base case, we will prove

termination.

8.3 Calling Context Graphs

In this section, we introduce calling context graphs (CCGs) and related notions. We also

show how CCGs can be used reason about program termination.

Definition 8.3.1. A calling context is a triple, 〈f , G, e〉, where f is the name of a function

defined in d, G is a set of expressions whose free variables are all parameters of f , and e is

a call of a function in d whose free variables are all parameters of f . This is a semi-precise

calling context for callsite ef |p if e = ef |p for some p ∈ Pos(e), where ef is the body of f and

〈∀ε ∈ Env :: Hh
q
gov(ef , p)

y
ε〉 ⇒ Hh JGK ε〉. It is a precise calling context for callsite ef |p

if it is semi-precise for ef |p and 〈∀ε ∈ Env :: Hh
q
gov(ef , p)

y
ε ≡ Hh JGK ε〉 The elements of

the triple, f , G, and e are referred to as the function, conditions, and call of the context,

respectively.

We sometimes refer to a calling context simply as a context. Intuitively, the condi-

tions of a precise context can be thought of as the governors of the call in the func-

tion body, and the conditions of a semi-precise context can be thought of as a subset
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(defun f (x)
(cond ((or (not (integerp x))

(= x 0))
0)

((< x 0) (f (+ x 1)))
(t (f (- x 1)))))

1. 〈f, {(integerp x), (< x 0)}, (f (+ x 1))〉

2. 〈f, {(integerp x), (> x 0)}, (f (- x 1))〉

?>=<89:;1
(( ?>=<89:;2 hh

Figure 23: Definitions, contexts, and minimal complete CCG for f

(defun dec (n)
(if (zp n)

255
(- n 1)))

(defun foo (i j)
(if (= i 1)

(if (= j 1)
0

(foo (dec j)
(dec j)))

(foo (dec i) j)))

1. 〈foo, {(= i 1), (not (= j 1))}, (foo (dec j) (dec j))〉

2. 〈foo, {(not (= i 1)}, (foo (dec i) j)〉

?>=<89:;1
** ?>=<89:;2jj hh

Figure 24: Definitions, contexts, and minimal complete CCG for foo.

of the governors. We use the less restrictive notation in the definition to allow us to

simplify the governors when appropriate. Definitions and precise contexts for two ex-

amples are given in Figures 23 and 24. Note that we already include some simplifica-

tion of the conditions. For example, the governors for the first call of f are actually

{(not (or (not (integerp x)) (= x 0))), (< x 0)}.

Definition 8.3.2. A set of calling contexts, C, is said to be (semi-)complete for d there is

a surjection, f , from the recursive callsites of d to C such that, for all callsites, s, f(s) is

(semi-)precise for s.

Since d is fixed throughout this chapter, we sometimes refer to a set of contexts that

is (semi-)complete for d as just being (semi-)complete. We now introduce the notion of a

well-formed sequence of contexts, a notion that is strongly related to termination in FL.

Definition 8.3.3. Let c = 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉〉i be a sequence of calling

contexts and ~v ∈ Valar(f1). Then c is a well-formed sequence of calling contexts with witness

~v if there exists a sequence of environments, 〈ε~vc,i〉i such that ε~vc,1 = [xf1
i 7→ vi]

ar(f1)
i=1 and for

all i, the following conditions hold:
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1. for all 1 ≤ j ≤ ar(fi), Jei,jKh ε~vc,i 6= ⊥,

2. Hh JGiK ε~vc,i, and

3. ε~vc,i+1 = [xfi+1

j 7→ Jei,jKh ε~vc,i]
ar(fi+1)
j=1 .

We just say that c is well-formed to mean that c is well-formed with some unspecified

witness.

We use the notation ε~vc,i introduced in the above definition throughout the paper. If the

sequence of calling contexts is clear from the context, we use ε~vi . Termination in FL can be

expressed in terms of well-formed sequences, as we see in the next theorem.

Theorem 8.3.1. If every well-formed sequence of a semi-complete set of contexts, C, is

finite, then the functions of d terminate on all inputs.

Proof. We prove this theorem by proving the contrapositive. Suppose h.f1~v = ⊥. By our

initial hypothesis and the semantics of our language,
q
ef1

yh
ε~v1 = ⊥. By Theorem 8.2.1

on page 82, there is a position, p ∈ Pos(ef1), such that ef1 |p = (f2 e1,1 . . . e1,ar(f2)),

Je1,iKh ε~v1 6= ⊥ for all 1 ≤ i ≤ ar(f2), andHh
q
gov(ef1 , p)

y
ε~v1. By our initial hypothesis, there

exists a semi-precise context for ef1 |p, 〈f1, G1, (f2 e1,1 . . . e1,ar(f2))〉. By the definition

of semi-precise and the fact that Hh
q
gov(ef1 , p)

y
ε~v1, we have Hh JG1K ε~v1, Therefore, by

definition, 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉〉1i=1 is a well-formed sequence of semi-precise

contexts with witness ~v such that the last function call evaluates to ⊥.

Now we show that if 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉〉ki=1 is a well-formed sequence of

the contexts of C with witness ~v such that
q
fk+1(ek,1, . . . ,ek,ar(fk+1))

yh
ε~vk = ⊥, it can be

extended to such a sequence of length k + 1 with the same witness.

By the semantics of our language and our inductive hypothesis,
q
efk+1

yh
ε~vk+1 = ⊥.

By Theorem 8.2.1 on page 82, there is p ∈ Pos(ef1), such that efk+1 |p is an expression

of the form (fk+2 ek+1,1 . . . ek+1,ar(fk+2)), Jek+1,iKh ε~vk+1 6= ⊥ Hh
q
gov(efk+1 , p)

y
ε~v1 for all

1 ≤ i ≤ ar(fi+2), and
q
efk+1 |p

yh
ε~v1 = ⊥. By the initial condition, there exists a context in C

of the form 〈fk+1, Gk+1, (fk+2 ek+1,1 . . . ek+1,ar(fk+2))〉 that is semi-precise for efk+1 |p, By

the definition of a semi-precise context, and the fact thatHh
q
gov(efk+1 , p)

y
ε~v1, we know that
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Hh JGk+1K ε~v1. Therefore, by definition, the sequence 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉〉k+1
i=1

is a well-formed sequence of semi-precise contexts with witness ~v such that the last function

call evaluates to ⊥.

Theorem 8.3.2. If C is a complete set of contexts, then the functions of d terminate on

all inputs iff every well-formed sequence of the contexts of C are finite.

Proof. We prove each direction of the proof separately.

(⇐): We start with the backward direction, which follows from Theorem 8.3.1 on the

previous page and the fact that every precise calling context is semi-precise.

(⇒): For the forward direction, we prove the contrapositive.

Let d = 〈(defun f1 (xf1
1 . . . xf1

ar(f1)) e1)〉ni=1, and nextfsd be defined for d as in Fig-

ure 1 on page 6. Let φ0
i (~v) = ⊥ for all 1 ≤ i ≤ n, and 〈φj+1

i 〉ni=1 = nextfsd 〈φj
i 〉ni=1. Finally,

for all 0 ≤ j, let hj = H[fi 7→ φj
i ]

n
i=1. Note that h = limj∈ω hj .

Let W = {〈~v, 〈fi, Gi, ei〉ωi=1〉 | 〈fi, Gi, ei〉ωi=1 is well-founded with witness ~v}. We induc-

tively prove that, for all i ≥ 0, (hi.f1)~v = ⊥ for all 〈~v, 〈fi, Gi, ei〉ωi=1〉 ∈W .

Base Case: By definition, h0.f~v = ⊥ for all 〈~v, 〈fi, Gi, ei〉ωi=1〉 ∈W .

Induction Step: Suppose that the condition holds for i. We show that it holds for

i + 1. Let 〈~v1, 〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉ωi=1〉 ∈ W and ~v2 = 〈Je1,kKhi ε~v1
1 〉

n1
k=1. Then

by definition, 〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉ωi=2 is well-formed with witness ~v2, and so

〈~v2, 〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉ωi=2〉 ∈ W . Therefore, by the induction hypothesis,
q
(fi+1 ei,1 . . . ei,ar(fi+1))

yhi ε~v1
1 = ⊥.

By the semantics of function calls, hi+1.f1(~v1) =
q
ef1

yhi ε~v1
1 . Since C is complete, there

exists p ∈ Pos(ef1) such that ef1 |p = (fi+1 ei,1 . . . ei,ar(fi+1)) and Hh Jgov(e, p)K ε~v1
1 ≡

Hhi JG1K ε~v1
1 , which is true by the definition of well-formed sequences. Therefore, by Theo-

rem 8.2.1 on page 82, hi+1.f1(~v1) = ⊥.

This concludes the inductive proof. By this fact and the semantics of function definition

in our language, if there is an infinite sequence of precise contexts, the functions of d do not

terminate for all inputs.

We now define the notion of a calling context graph and show that it is a conservative
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approximation of the well-formed sequence of contexts.

Definition 8.3.4. A calling context graph (CCG), is a directed graph, G = (C,E), where

C is a set of calling contexts, and for any pair of contexts c1, c2 ∈ C, if the sequence (c1, c2)

is well-formed, then 〈c1, c2〉 ∈ E. If C is a (semi-)complete set of contexts, then G is called

a (semi-)complete CCG of d.

A minimal complete CCG for function f in Figure 23 on page 85 is shown in the same

figure. Note that there is no edge between the two contexts. This is because if x is a positive

integer, then decrementing x by 1 will not lead to a negative integer. Likewise, adding 1 to

x if it is a negative integer cannot produce a positive integer. Notice that this mirrors the

looping behaviors of the function. Figure 24 on page 85 contains a minimal complete CCG

for function foo. Notice that if the first context of foo is reached, foo calls itself, passing

in (dec j) for both arguments. Since (dec j) cannot simultaneously be both equal to 1

and not equal to 1, it is impossible to immediately reach context 1 again. However both

contexts can reach context 2, and context 2 can reach context 1. We now prove that CCGs

are conservative approximations of well-formed sequences of calling contexts.

Lemma 8.3.1. Given a CCG, G = (C,E), every well-formed sequence of calling contexts

of C is a path in G.

Proof. Suppose 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ni+1)〉〉i is a well-formed sequence of contexts with

witness ~v. Clearly, the sequence 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ni+1)〉〉2i=1 is well-formed with

witness ~v. Therefore, there is an edge between the first two contexts of the sequence in

the callgraph. For any 1 ≤ i, let ~vi = 〈Jei,jKh ε~vi 〉
ni+1

i=1 . Then by definition, ε~vk = ε~vi
i−k+1 for

all k > i. This makes ~vj the witness for the sequence 〈〈fi, Gi, (fi+1 ei,1 . . . ei,ni+1)〉〉j+2
i=j+1

making this an edge in our context graph for all j ≥ 1. Thus, the original sequence,

〈〈fi, Gi, (fi+1 ei,1 . . . ei,ni+1)〉〉i is a path in the context graph.

Note that the converse of the above lemma does not hold. This is because the definition

of a CCG only requires local reachability whereas a well-formed sequence of contexts requires

that the entire sequence correspond to a single computation. As a result, a CCG is an
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abstraction of the actual system. We use CCGs to perform a local analysis which, if

successful, can determine that the definitions terminate. To do this, we start by assigning

calling context measures to contexts in the CCG.

8.4 Calling Context Measures and Termination

Definition 8.4.1. Given a calling context, c = 〈f,G, e〉, and a set S ⊆ Val , the set of

calling context measures (CCMs) for c over S, denoted CCM c
S is the set {e ∈ Expr | 〈∀ε ∈

Env : Hh JGK ε : free(e) ⊆ {xf
1 , . . . x

f
ar(f)} ∧ JeKh ε ∈ S〉}.

CCMs simply map the parameters of a function into some set. We annotate CCGs with

CCMs using a CCM annotation.

Definition 8.4.2. Given a set of calling contexts, C, and a set, S ⊆ Val , a CCM annotation

for C over S is a function m : C → P(Expr) such that 〈∀c ∈ C :: m(c) ⊆ CCM c
S〉.

Now we create a mechanism for comparing the CCM of two adjacent contexts in a CCG.

Definition 8.4.3. Let G = (C,E) be a CCG with e = 〈c1, c2〉 ∈ E, such that c1 =

〈f1, G1, e1〉 and c2 = 〈f2, G2, e2〉, where e1 = (f2 e1,1 . . . e1,ar(f2)). Let 〈S,≺〉 be a well-

founded structure, and m : C → P(Expr) be a CCM annotation for C over S. Then a CCM

function (CCMF) for e with annotation m and order ≺ is a function φc1
c2 : m(c1)×m(c2)→

{>,≥,×} such that φ(s1, s2) = > only if 〈∀ε ∈ Env : 〈∀i : 1 ≤ i ≤ ar(f2) : Je1,iKh ε 6=

⊥〉 ∧ Hε JG1 ∪G2σe1K : Js1Kh ε � Js2σe1K
h ε〉 and φ(s1, s2) = ≥ only if 〈∀ε ∈ Env : 〈∀i :

1 ≤ i ≤ ar(f2) : Je1,iKh ε 6= ⊥〉 ∧ Hε JG1 ∪G2σe1K : Js1Kh ε � Js2σe1K
h ε〉.

We represent CCM functions for 〈c1, c2〉 graphically with a box containing the CCMs

for c1, c2 on the left and right, respectively. An edge is drawn from s1, a left CCM, to s2, a

right CCM, with the label φ(s1, s2) iff it is > or ≥. If φ(s1, s2) is ×, no edge is drawn.

We now consider some examples. For the function f in Figure 23 on page 85, we use

the acl2-count function in Figure 25 on the next page applied to f’s parameter, x, as the

only CCM for both contexts. The range of acl2-count is the set of natural numbers, and

the function is designed to mirror common induction schemes, e.g., induction on the size

of a list. Notice that for each context in our example, the CCM decreases for all values
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(defun acl2-count (x)
(cond ((consp x)

(+ 1 (acl2-count (car x))
(acl2-count (cdr x))))

((integerp x)
(integer-abs x))
((rationalp x)
(+ (integer-abs (numerator x))

(denominator x)))
((complex-rationalp x)
(+ 1 (acl2-count (realpart x))

(acl2-count (imagpart x))))
((stringp x) (length x))
(t 0)))

Figure 25: Definition of acl2-count

φ1 : 1 → 1, φ2 : 2 → 2

(acl2-count x)
> //(acl2-count x)

(a) CCM function for f.

φ1 : 1 → 2

(dec i) (dec i)

(dec j)

> 66mmmmmmm > //(dec j)

φ2 : 2 → 1, φ3 : 2 → 2

(dec i)
> //(dec i)

(dec j)
≥ //(dec j)

(b) CCM functions for foo

Figure 26: Example CCMs

of x that satisfy the governors of the context. The resulting CCM functions are shown in

Figure 26(a). For the function foo in Figure 24 on page 85, we use different CCMs. Namely,

we apply dec to the arguments; note that dec always returns a natural number, which is a

well-founded domain under the < relation. The result is shown in Figure 26(b).

We use CCM functions to show that certain infinite paths are not feasible and also to

show that CCGs correspond to terminating functions.

Definition 8.4.4. Given a CCG, G = (C,E) and a well-founded structure, a set of CCM

functions for G, {φc
c′ | 〈c, c′〉 ∈ E}, with annotation m and ordering ≺ is well-founded if,

for all infinite paths c1, c2, . . ., in G, there exists i0 ≥ 1 and infinite sequence si0 , si0+1, . . .

such that, for all i ≥ i0, si ∈ m(ci) ∧ φci
ci+1

(si, si+1) 6= ×, and for infinitely many i ≥ i0,

φci
ci+1

(si, si+1) =>.

In other words, a set of CCMFs is infinitely decreasing if they reveal that any infinite

path through the CCG would cause a value in a well-founded set to never increase and

infinitely decrease.
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(defun ack (x y)
(if (or (not (integerp x)) (<= x 0))

1
(if (or (not (integerp y) (<= y 0)))

(if (= x 1) 2 (+ x 2))
(ack (ack (- x 1) y) (- y 1)))))

?>=<89:;1
(( **?>=<89:;2jj hh

φ1 : 1→ 1,
φ2 : 1→ 2

x
> // x

y
≥ //y

φ3 : 2→ 1,
φ4 : 2→ 2
x x

y
> //y

1. 〈ack, {(integerp x),(< 0 x),(integerp y),(< 0 y)}, (ack (-x 1) y)〉

2. 〈ack, {(integerp x),(< 0 x),(integerp y),(< 0 y)}, (ack (ack (- x 1) y) (- y 1))〉

Figure 27: Ackermann’s function.

Definition 8.4.5. We say that a CCG, G = (C,E) is well-founded if there exists a well-

founded structure, an annotation mapping into that structure, and a well-founded set of

CCMFs using that annotation and well-founded relation.

It is important to note here that we do not need to fix a CCM for each context in order

to satisfy the CCM predicate. Rather, we can select from any of the CCMs for a given

context each time it appears in a sequence. For example, consider Ackermann’s function,

given in Figure 27. Here, if a sequence contains context 2 infinitely often, then y decreases

infinitely, and if it does not, then there is an infinite suffix of the sequence that is just context

1, which means that x decreases infinitely often. It is possible to create one measure that

decreases in both cases, but this measure requires a well-founded structure more powerful

and complex than the natural numbers.

Lemma 8.4.1. If a CCG, G = (C,E), is well-founded, then there is no infinite well-formed

sequence of the contexts of C.

Proof. We prove the contrapositive. Let c = 〈ci〉ωi=1 be an infinite well-formed sequence of

contexts with witness ~v, such that ci = 〈fi〉Giei and ei = fi+1(ei,1 . . . ei,ar(fi+1)) for all

i ≥ 1. Then c is a path in G.

Suppose that G were well-founded. Then there exists a well-founded structure, 〈S,≺〉,

CCM annotation m, and a well-founded set of CCMs, {φc
c′ | 〈c, c′〉 ∈ E}. By definition, this

means that there exists i0 ≥ 1 and a sequence 〈si〉ωi=i0
, such that, for all i ≥ i0, si ∈ m(ci)

and φci
ci+1

(si, si+1) 6= ⊥ and for infinitely many i ≥ i0, φci
ci+1

(si, si+1) =>.
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By definition, it is the case that for all i ≥ i0, Hh JGiK ε~vi , and Jei,jKh ε~vi 6= ⊥ for all

1 ≤ j ≤ ar(fi+1). By Corollary 8.2.2 on page 80, Jgi+1Kh ε~vi+1 = Jgi+1σeiK
h ε~vi for all i ≥ i0.

Therefore, Hh JGi+1σeiK ε~vi , which means that Hh JGi ∪Gi+1σeiK ε~vi for all i ≥ i0. By the

same argument, Jsi+1σeiK
h ε~vi = Jsi+1Kh ε~vi+1 for all i ≥ i0.

By the definition of CCMF and the fact that φci
ci+1

(si, si+1) is never × and is > for

infinitely many i ≥ i0, this means that JsiKh ε~vi � Jsi+1σeiK
h ε~vi = Jsi+1Kh ε~vi+1 for all i ≥ i0,

and JsiKh ε~vi � Jsi+1σeiK
h ε~vi Jsi+1Kh ε~vi+1 for infinitely many i ≥ i0. Therefore, 〈JsiKh ε~vi 〉ωi=i0

is an infinitely decreasing sequence, which contradicts the fact that ≺ is well-founded over

S. Therefore, G cannot be well-founded.

It turns out that we only need to consider maximal SCCs (strongly connected compo-

nents) to establish termination.

Theorem 8.4.1. Let G = (C,E) be a CCG, where C is a complete set of contexts for d. If

every maximal SCC of G is well-founded, then all functions of d terminate on all inputs.

Proof. By Theorem 8.3.2 on page 87, the functions of d all terminate on all inputs if and

only if every well-formed sequence of C is finite. By Lemma 8.3.1 on page 88, every such

sequence is a path through G.

Every infinite path through G ends with an infinite suffix in one maximal SCC G. This

is because, by the definition of maximal SCC, if a path leaves an SCC it cannot reach it

again (since we could then make a larger SCC). Since there are only a finite number of

SCCs, an infinite path must enter one SCC and never leave it.

Therefore, if we show that there can be no infinite well-formed sequences through each

SCC, we have proven that there are no infinite well-formed sequences. But since every SCC

is well-founded, this is true by Lemma 8.4.1 on the previous page.

8.5 Context Absorption

Notice that the converse of Theorem 8.4.1 does not hold because the paths of a CCG are a

superset of the well-formed sequences of contexts. For example, notice that when we split

function f from Figure 24 on page 85 into several functions, as is the case for the definitions
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(defun g (x) (f (+ x 1)))
(defun h (x) (f (- x 1)))
(defun f (x)
(cond ((or (not (integerp x))

(= x 0))
0)

((< x 0) (g x))
(t (h x))))

1. 〈g, {}, (f (+ x 1))〉

2. 〈h, {}, (f (- x 1))〉

3. 〈f, {(integerp x), (< x 0)}, g(x)〉

4. 〈f, {(integerp x),(<= 0 x)}, (h x)〉

?>=<89:;1
**

��

?>=<89:;3jj

?>=<89:;4
**?>=<89:;2jj

TT

Figure 28: Altered version of function defined in Figure 24 on page 85

(defun f (x)
(cond ((or (not (integerp x))

(<= x 1))
1)

((= (mod x 2) 1)
(f (+ x 1)))

(t
(+ 1 (f (/ x 2))))))

?>=<89:;1
**?>=<89:;2jj hh

φ1 : 1→ 2
size(x) size(x)

φ2 : 2→ 1, φ3 : 2→ 2

size(x)
> //size(x)

1. 〈f, {(integerp x), (< 1 x), (= (mod x 2) 1)}, (f (+ x 1))〉

2. 〈f, {(integerp x), (< 1 x), (not (= (mod x 2) 1))}, (f (/ x 2))〉

Figure 29: Example of the abstraction inherent in the infinite CCM relation.

given in Figure 28, all the contexts now appear in the same SCC. Why? Consider the

function, g. Note that g(2) results in the call f(3), which leads to context 4. A similar

situation arises for h. Thus 1, 4, 2, 3, 1, 4, 2, 3, . . . is a valid path through any CCG, even

though it is not a well-formed sequence of contexts. Each time through the loop 1, 4, 2, 3,

the value of x stays the same, hence, the termination analysis presented so far fails.

Another source of imprecision is due to the local analysis used in determining if a CCG

is well-founded. If a value decreases over several steps, but increases for one of those steps,

the termination analysis presented so far will fail. Consider the example in Figure 29. When

x is odd, 1 is added to x and when it is even, x is divided by 2. This continues until x is 1

(or not a positive integer). This results in an overall decrease of the value of x despite the

initial increase.

In order to gain more accuracy and overcome many of the problems caused by the local

nature of our analysis, we introduce the idea of context merging. This essentially enables
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us to broaden the scope of our local analysis.

Definition 8.5.1. Let c1 and c2 be calling contexts such that c1 = 〈f1, G1, e1〉 and c2 =

〈f2, G2, e2〉. The result of merging c1 and c2, denoted c1; c2, is the set {〈f1, G, e2σe1〉 | 〈∀ε ∈

Env :: Hh JGK ε ≡ Hh JG1 ∪G2σe1K ε〉}.

Again, the conditions of any context in the merging can be thought of as being G1 ∪

G2σe1 . The weaker definition is to allow for simplification when appropriate. As an example,

note that contexts 1 and 2 of Figure 24 on page 85 are members of the results of merging

contexts 3 and 1 and contexts 4 and 2 from Figure 28 on the preceding page, respectively.

This makes sense as the example in Figure 28 on the previous page was obtained by splitting

f into several functions and merging essentially recombines the contexts.

We now use merging to define the notion of absorption and show that given a CCG, we

can define an infinite sequence of CCGs such that if we can prove that at least one CCG

in the sequence terminates, then so does the original CCG. This can greatly extend the

applicability of our analysis.

Definition 8.5.2. Given a CCG, G = (C,E), and c ∈ C the result of absorbing c into G

is a CCG G′ = (C ′, E′) where C ′ = C − {c} ∪ {cc ∈ c; c′ | 〈c, c′〉 ∈ E}, and 〈∀〈c1, c2〉 ∈ E :

c1 6= c : 〈c1, c2〉 ∈ E′〉

Lemma 8.5.1. Let G = (C,E) be a CCG such that if there are no infinite well-formed

sequences of the contexts of C then the functions in d are terminating for all inputs. Let

c ∈ C, and G′ = (C ′, E′) be the result of absorbing c into G. Then there exists an infinite

well-formed sequence of the contexts of C if and only if there exists an infinite well-formed

sequence of the contexts of C ′.

Proof. We begin by defining the following two functions. The first is ψ : C ′ω × ω → Cω:

ψ(〈c′i〉j≥1, i) =


〈〉 if i = 0

ψ(〈c′i〉j≥1, i− 1) @ 〈c, c′〉 if c′i ∈ c; c′ for some c′

ψ(〈c′i〉j≥1, i− 1) @ 〈c′i〉 otherwise
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where @ appends two sequences. Let Ψ : C ′ω → Cω be defined by Ψ(cs′) = limi→ω ψ(cs′, i).

Then Ψ is a bijection, due to the fact that c cannot appear in any sequence in C ′ω. Now

we define φ : C ′ω × ω → ω:

φ(〈c′j〉j≥1, i) =


i if i ∈ {0, 1}

φ(〈c′j〉j≥1, i− 1) + 2 if c′i−1 ∈ c; c′ for some c′

φ(〈c′j〉j≥1, i− 1) + 1 otherwise

Suppose that cs′ = 〈c′j〉j≥1 ∈ C ′ω and cs = 〈cj〉j≥1 = Ψ(cs′). Then note that, for all

i ≥ 1 such that c′i ∈ c; c′ for some c′, cφ(cs′,i) = c and cφ(cs′,i)+1 = c′. For all other i ≥ 1,

c′i = cφ(cs′,i). Now we prove that cs is well-formed if and only if cs′ is well-formed.

(⇒): Let cs = 〈ci〉i≥1 ∈ Cω be well-formed with witness ~v, where, for all i ≥ 1, ci =

〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉. Next, let cs′ = 〈c′i〉i≥1 = Ψ−1(cs), where, for all i ≥ 1,

c′i = 〈f ′i , G′
i, (f

′
i+1 e′i,1 . . . e′i,ar(f ′i+1))〉. Then we prove this direction of the theorem by

proving the following stronger statement:

〈∀k ∈ ω :: 〈c′i〉1≤i≤k is well-formed with witness ~v and ε~vcs,φ(cs′,k+1) = ε~vcs′,k+1〉

We prove this by induction.

Base Case: i = 0. The first 0 elements of cs′ are vacuously well-formed. By our

definitions of cs and cs′, f1 = f ′1, so by the definition of witness, we have ε~vcs,1 = [xf1
i 7→

v1,i]
ar(f1)
i=1 = [xf ′1

i 7→ v′1,i]
ar(f ′1)
i=1 = ε~vcs′,1.

Induction Step: Suppose our statement is true for k − 1. We prove that it is then

true for k. Note that by the induction hypothesis, 〈c′i〉
k−1
i=1 is well-formed, so we only need

to prove that the conditions for well-formedness are satisfied for c′k to show that 〈c′i〉ki=1 is

well-formed. Consider the following two cases.

For the first case, suppose that c′k /∈ c; c′ for any c′ ∈ C. Then as we noted earlier,

c′k = cφ(cs′,k). Therefore, since ε~vcs′,k = ε~vcs,φ(cs′,k) by the induction hypothesis, and the

fact that cs is well-formed, it is clearly the case that c′k fulfills the requirements of well-

formedness, and ε~vcs′,k+1 = ε~vcs,φ(cs′,k+1).

For the second case, suppose that c′k ∈ c; c′ for some c′ ∈ C. Then as we noted earlier,

cφ(cs′,k) = c and cφ(cs′,k)+1 = c′. Therefore, by the definition of merging, Hh JG′
kK ε

~v
cs,φ(cs′,k) if
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and only ifHh
r
Gφ(cs′,k) ∪Gφ(cs′,k)+1σeφ(cs′,k)

z
ε~vcs,φ(cs′,k), which, by the definition of holding,

is equivalent to Hh
q
Gφ(cs′,k)

y
ε~vcs,φ(cs′,k) ∧ Hh

r
Gφ(cs′,k)+1σeφ(cs′,k)

z
ε~vcs,φ(cs′,k). For all

e ∈ Gφ(cs′,k), we have

JeKh ε~vcs′,k

{ Induction Hypothesis } = JeKh ε~vcs,φ(cs′,k)

{ cs well-formed } /∈ {⊥, nil}

For all e ∈ Gφ(cs′,k)+1, we have
r
eσeφ(cs′,k)

zh
ε~vcs′,k

{ Induction Hypothesis } =
r
eσeφ(cs′,k)

zh
ε~vcs,φ(cs′,k)

{Cor. 8.2.2, cs is well-formed } = JeKh ε~vcs,φ(cs′,k)+1

{ cs well-formed } /∈ {⊥, nil}

Therefore, Hh JG′
kK ε

~v
cs′,k.

Next consider e′k,i, for any 1 ≤ i ≤ ar(fk). We have that
r
e′k,i

zh
ε~vcs′,k

{Def. of merging } =
r
e′φ(cs′,k)+1σeφ(cs′,k)

zh
ε~vcs′,k

{ Induction Hypothesis } =
r
e′φ(cs′,k)+1σeφ(cs′,k)

zh
ε~vcs,φ(cs′,k)

{Cor. 8.2.2, cs well-formed } =
r
e′φ(cs′,k)+1

zh
ε~vcs,φ(cs′,k)+1

From this, we know that
r
e′k,i

zh
ε~vcs′,k 6= ⊥, since by the definition of witness, we know that

r
e′φ(cs′,k)+1

zh
ε~vcs,φ(cs′,k)+1 6= ⊥. We also know from this that ε~vcs′,k+1 = ε~vcs,φ(cs′,k+1) by the

definitions of φ and witnesses, as well as the fact that f ′k+1 = fφ(cs′,k+1). This relieves all

the proof obligations for this case, proving the induction, and therefore this direction of the

proof.

(⇐): Suppose that cs′ = 〈c′i〉i≥1 is well-formed with witness ~v, where for all i ≥ 1, c′i =

〈f ′i , G′
i, (f

′
i+1 e′i,1 . . . e′i,ar(f ′i+1))〉. Now suppose that there is no well-formed sequence of

the contexts of C. We refer to this as the Contradiction Hypothesis. We will use it to draw

a contradiction, thereby proving that there is such a sequence.

Note that by the hypotheses of this theorem, all the functions of d must terminate on

all inputs. Therefore, by Thm. 8.2.1, every expression is terminating.
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Let cs = 〈ci〉i≥1 ∈ Cω = Ψ(cs′), where ci = 〈fi, Gi, (fi+1 ei,1 . . . ei,ar(fi+1))〉 for all

i ≥ 1. We prove the following result that contradicts our assumption that there is no

well-founded sequence of contexts of C:

〈∀k ∈ ω :: 〈ci〉1≤i<φ(cs′,k+1) is well-formed with witness ~v, and ε~vcs,φ(cs′,k+1) = ε~vcs′,k+1〉

We prove this by induction on k.

Base Case: i = 0. Then the sequence containing the first 0 elements of cs is vacuously

well-formed, and f ′1 = f1, so ε~vcs,1 = [xf1
i 7→ v1,i]

ar(f1)
i=1 = [xf ′1

i 7→ v′1,i]
ar(f ′1)
i=1 = ε~vcs′,1.

Induction Step Suppose our statement is true for k− 1. We prove that it is then true

for k. Note that by the induction hypothesis, 〈ci〉φ(cs′,k−1)
i=1 is well-formed. Consider the

following two cases.

For the first case, suppose that c′k /∈ c; c′ for any c′ ∈ C. Then as we noted earlier,

c′k = cφ(cs′,k). Also, φ(cs′, k+1) = φ(cs′, k)+1. Therefore, since 〈ci〉φ(cs′,k)−1
i=1 is well-formed,

we only need to prove that cφ(cs′, k) satisfies the requirements of well-foundedness in order

to prove that 〈ci〉φ(cs′,k+1)−1
i=1 is well-founded. Since ε~vcs′,k = ε~vcs,φ(cs′,k) by the induction

hypothesis, and the fact that cs′ is well-formed, it is clearly the case that cφ(cs′,k) fulfills the

requirements of well-formedness, and ε~vcs′,k+1 = ε~vcs,φ(cs′,k+1).

For the second case, suppose that c′k ∈ c; c′ for some c′ ∈ C. Then as we noted earlier,

cφ(cs′,k) = c and cφ(cs′,k)+1 = c′. Also, φ(cs′, k + 1) = φ(cs′, k) + 2. Therefore, we have to

prove that both cφ(cs′,k) and cφ(cs′,k)+1 fulfill the requirements of well-formedness. By the

Contradiction Hypothesis and Thm. 8.2.1, we know that
q
eφ(cs′,k),i

yh
ε~vcs,φ(cs′,k),i 6= ⊥ for

any 1 ≤ i ≤ ar(fφ(cs′,k)). Also, for any e ∈ Gφ(cs′,k), we know that e ∈ G′
k, by the definition

of merging. Therefore,

JeKh ε~vcs,φ(cs′,k),i

{ Induction Hypothesis } = JeKh ε~vcs′,k

{ cs′ is well-founded } /∈ {⊥, nil}

Likewise, for every e ∈ Gφ(cs′,k)+1, eσeφ(cs′,k),i
∈ G′

k by the definition of merging. There-

fore,
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JeKh ε~vcs,φ(cs′,k)+1

{Cor. 8.2.2 } =
r
eσeφ(cs′,k),i

zh
ε~vcs,φ(cs′,k)

{ Induction Hypothesis } =
r
eσeφ(cs′,k),i

zh
ε~vcs′,k

{Def. witness } /∈ {⊥, nil}

Finally, for every 1 ≤ i ≤ ar(fφ(cs′,k)+1),

q
eφ(cs′,k)+1,i

yh
ε~vcs,φ(cs′,k)+1

{Cor. 8.2.2 } =
r
eφ(cs′,k)+1,iσeφ(cs′,k),i

zh
ε~vcs,φ(cs′,k)

{ Induction Hypothesis } =
r
eφ(cs′,k)+1,iσeφ(cs′,k),i

zh
ε~vcs′,k

{Def. merging } =
r
e′k,iσeφ(cs′,k),i

zh
ε~vcs′,k

From this, we know that
r
e′φ(cs′,k)+1

zh
ε~vcs,φ(cs′,k)+1 6= ⊥, since by the definition of witness,

r
e′k,i

zh
ε~vcs′,k 6= ⊥. We also know that ε~vcs′,k+1 = ε~vcs,φ(cs′,k+1) by the definitions of φ and

witness, as well as the fact that f ′k+1 = fφ(cs′,k+1). This relieves all the proof obligations for

this case, proving the induction.

Therefore, cs is a well-formed sequence of the contexts of C, contradicting our hypothesis

that there is no such sequence. Therefore, the theorem is proved.

Corollary 8.5.1. Let C0, C1, C2, . . . be a sequence of sets of calling contexts such that C0

is a semi-complete set of contexts for d, and for all i ≥ 0, Ci+1 is obtained from Ci by

absorbing a context in Ci. Then for all i ≥ 0, an infinite well-formed sequence of contexts

in Ci exists only if an infinite well-formed sequence of contexts in C0 exists.

Proof. The proof is a simple inductive argument on i, using Lemma 8.5.1 on page 94.

Note, however, that the converse of this corollary is not true. That is, absorption can

result in more precise analysis, e.g., the code in Figure 28 on page 93. Therefore, by

analyzing a set of contexts resulting from a sequence of absorption, we are more likely to

prove termination.

Theorem 8.5.1. Let G0,G1, . . . be a sequence of CCGs such that G0 is a semi-complete

CCG of d, and Gi+1 is obtained from Gi by absorbing a context. If for some i, every maximal

SCC of Gi is well-founded, then every function in d terminates on all inputs.
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Proof. By Corollary 8.5.1 on the preceding page, there is an infinite well-founded sequence

of contexts in Ci if and only if there is an infinite sequence of precise contexts. The theorem

then directly follows from Theorem 8.4.1 on page 92.

8.6 Bibliographic Notes

Due to the overlap in bibliographic data between this and then next two chapters, we

postpone discussion to Section 10.2.

8.7 Summary

We introduced the notion of calling contexts and Calling Context Graphs (CCGs) for rep-

resenting the recursive behavior of functions. We proved via the concept of well-formed

sequences of contexts that calling contexts are in some sense complete with regards to

termination, and that CCGs are a conservative approximation with regards to termination.

We also introduced Calling Context Measures (CCMs), and showed how to annotate a

CCG with them in order to prove termination. This is done by building CCM functions

that accurately compare the values of CCMs across single transitions of the CCG, and then

used transitivity to show that some CCMs decrease infinitely through every infinite path of

the CCG.

Finally, we gave an improvement to the basic CCG-based termination algorithm in the

form of absorption, which allows us to combine adjacent contexts and thereby consider

the behavior of the CCG and CCMs over multiple transitions at once. This is similar to

composing the transition relation, except that absorption allows us to compose a small

portion of the transition relation instead of composing it in its entirety.
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CHAPTER IX

IMPLEMENTATION

In this chapter, we provide details on our implementation of the CCG-based termination

analysis algorithm. We begin in Section 9.1 by giving the straightforward algorithms sug-

gested by the definitions given in Chapter 8. We continue in Section 9.2, by giving a hier-

archical analysis, which improves efficiency and provides heuristics for choosing CCMs and

employing absorption. This is the algorithm used in our experimental evaluation (presented

in Chapter 10).

9.1 General Algorithm

The termination theory presented in Chapter 8 and culminating in Theorem 8.5.1 on page 98

is undecidable in general. In fact, just determining if an edge belongs in a context graph

is an undecidable problem. What we present here is an algorithm using a theorem prover

that is a conservative approximation of the method described in the last two sections. We

begin with a set of helper functions and macros as defined in Figure 30 on the next page.

Note that V (G) and E(G) are the vertices and edge of graph G, respectively.

9.1.1 Building the Contexts and Context Graph

The algorithm for obtaining a (semi-)complete set of contexts from a set of function

definitions is given in Figure 31. The cs function takes the names of the functions being

defined (F ), the name of the function whose contexts are being computed (f), the governors

at the current position in the body of f (C), the expression at the current position (e), and

the substitutions suggested by the let expressions that are parents of e in ef .

If e is an if expression, we analyze each of its sub-expressions with the appropriate

governor added to the set of governors, and union the results together. If it is a let

expression, we recursively analyze the bound expressions and union them together with

the contexts for the body. Note that in the recursive analysis of the body, we update the
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andset({s1, . . . , sn}) = (and s1 . . . sn)
callee((f e1 e2 . . . en)) = f
succ(c,G) = {c′ | 〈c, c′〉 ∈ E(G)}
pred(c,G) = {c′ | 〈c′, c〉 ∈ E(G)}

fn(〈f,G, e〉) = f
conds(〈f,G, e〉) = G
call(〈f,G, e〉) = e

Figure 30: Helper functions and macros.

cs(F, f, C, e, σ)
1: if e = (if e1 e2 e3) then

2: X :=

 cs(F, f, C, e1, σ) ∪
cs(F, f, {e1σ} ∪ C, e2, σ) ∪
cs(F, f, (not e1)σ ∪ C, e3, σ)


3: else if e = (let ((x1 e1) . . . (xn en)) e′) then

4: X :=
( ⋃n

i=1 cs(F, f, C, ei, σ) ∪
cs(F, f, C, e′, [xi 7→ eiσ]ni=1)

)
5: else if e = (g e1 . . . en) then
6: X ←

⋃n
i=1cs(F, f, C, ei, σ)

7: if g ∈ F then
8: X := X ∪ {〈f, C, eσ〉}
9: end if

10: else
11: X := ∅
12: end if
13: return X

contexts(d)
1: F := {f | f defined in d}.
2: return

⋃
f∈F cs(F, f, ∅, ef , [])

Figure 31: Algorithm for building contexts

substitution as suggested by Definition 2.1.3 on page 9. If e is a function call, we recursively

gather the contexts of the arguments. If e is a call to one of the functions in F , we add the

precise context for e. The only other cases in our language are when e is a variable or a

value, in which case there are no contexts for e.

The contexts function calls the cs with the appropriate initial values for each function

defined in a set of definitions, d.

The algorithm for constructing a CCG out of a set of contexts is given in Figure 32 on

the next page. This is the first place where theorem proving is used. Given an intermediate

history, h, let prove(e) take an expression, e, and return whether the theorem prover can

prove that, for all possible environments, ε, JeKh ε /∈ {nil,⊥}. When building the graph,

we need to be sure that we do not omit an edge that should be there. If we do, we cannot

be sure that every well-formed sequence of contexts is a path through the graph. We
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edge?(c1, c2)
1: e :=call(c1)

2: return ¬prove
(

(not (and andset(conds(c1))
andset(conds(c2))σe)))

)

CCG(C)
1: E ← ∅
2: for all c1 ∈ C do
3: for all c2 ∈ C do
4: if (callee(fn(c1)) = fn(c2) ∧ edge?(c1, c2)) then
5: E := E ∪ {〈c1, c2〉}
6: end if
7: end for
8: end for
9: return SCCs((C,E))

Figure 32: Algorithm for building a context graph.

therefore attempt to prove for each pair of contexts that we do not need to add an edge

between them. If this proof fails, we add the edge. In other words, given two contexts,

〈f1, G1, e1〉 and 〈f2, G2, e2〉, such that e1 is a call to f2, we want to prove that, for all ε,

¬(Hh JG1K ε) ∨ ¬(Hh JG2σe1K ε). By the semantics of our language, this is equivalent to

proving that J(not (and andset(G1) andset(G2)σe1))K
h ε is not nil or ⊥.

The algorithm, then, is simply to attempt to prove this expression for every possible

edge, and add an edge if the theorem fails.

9.1.2 Absorption

The algorithms to perform merging and absorption are given in Figure 33 on the follow-

ing page. The merging algorithm is a straightforward implementation of Definition 8.5.1 on

page 94.

For the absorption algorithm, we begin by creating V ′, which will contain the updated

vertex set, and C ′, which will contain pairs of the form 〈c′, c; c′〉. We set V ′ to the vertex set

of G without c, and initialize C ′ to the empty set. We then create c; c′ for each successor,

c′, of c, and add the appropriate values to V ′ and C ′. At the end of the loop, V ′ contains

the new set of contexts.

The rest of the algorithm computes the edges for the new CCG. We want to avoid having

to reconstruct the entire CCG from scratch. To do this, we use the fact that the merged
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merge(c, c′)
1: e :=call(c)
2: return 〈fn(c), conds(c) ∪ {pσe | p ∈conds(c′)}, call(c′)σe〉

absorb(c,G)
1: V ′ := V (G)− {c}
2: C ′ := {}
3: for all c′ ∈ succ(c,G) do
4: cc := merge(c, c′)
5: C ′ := C ′ ∪ {〈c′, cc〉}
6: V ′ := V ′ ∪ {cc}
7: end for
8: E′ := E(G)− ({〈c, s〉 ∈ E(G)} ∪ {〈p, c〉 ∈ E(G)})
9: for all 〈c′, cc〉 ∈ C ′ do

10: for all s ∈ succ(c′,G) do
11: if s = c then
12: for all 〈c′′, cc′〉 ∈ C ′ do
13: if edge?(cc, cc′) then
14: E′ := E′ ∪ {〈cc, cc′〉}
15: end if
16: end for
17: else if edge?(cc, s) then
18: E′ := E′ ∪ {〈cc, s〉}
19: end if
20: end for
21: for all p ∈ pred(c,G)− {c′} do
22: if edge?(p, cc) then
23: E′ := E′ ∪ {〈p, cc〉}
24: end if
25: end for
26: end for
27: return SCCs((V ′, E′))

Figure 33: Algorithm for compaction.

context’s conditions are stronger than those of either of the contexts that were merged to

make it. Therefore, a context will be a predecessor of c; c′ only if it is a predecessor of c,

and will be a successor of c; c′ only if it is a successor of c′. We therefore start with the

original set of edges from the CCG with the edges involving c removed. For each pair,

〈c′, c; c′〉, in C ′, we cycle through the successors of c′ and predecessors of c, removing any

edges that can be safely removed. Note that we skip c′ when we examine the predecessors

of c. This is because the edge 〈c′, c〉 would have already been examined when we processed

the successors of c′.

9.1.3 CCM Function Construction
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CCMF(c1, c2, S1, S2,≺)
1: Let φc1

c2
: S1 × S2 → {>,≥,×}

2: e1 := call(c1)
3: hyps := conds(c1) ∪ {pσe1 | p ∈ conds(c2)}
4: for all s1 ∈ S1 do
5: for all s2 ∈ S2 do
6: if prove((implies andset(hyps) (≺ s2σe1 s1))) then
7: φc1

c2
(s1, s2) := >

8: else if prove((implies andset(hyps) (� s2σe1 s1))) then
9: φc1

c2
(s1, s2) := ≥

10: else
11: φc1

c2
(s1, s2) := ×

12: end if
13: end for
14: end for
15: return φc1,c2

CCMFs(G,m,≺)
1: S := ∅
2: for all c1 ∈ V (G) do
3: for all c2 ∈ V (G) s.t. 〈c1, c2〉 ∈ E(G) do
4: S := S ∪ CCMF(c1, c2,m(c1),m(c2),≺)
5: end for
6: end for
7: return S

Figure 34: Algorithm for constructing CCM functions

The algorithm for constructing CCM functions is given in Figure 34. It takes a CCG,

G, a function mapping contexts to sets of CCMs, m, and an ordering, ≺, and returns the

set of CCM functions for the contexts in G. We use the theorem prover again in this step

in order to determine what value to map a given pair of value expressions to. If the prover

cannot determine that the value should be >, it attempts to prove that it should be ≥. If

it cannot prove that either of these, it sets the value to ×. The resulting CCM function

therefore returns > only if the actual value function returns >. Likewise, it only returns

≥ if the actual CCM function returns > or ≥. Thus, when we construct the infinite CCM

relation, we will not find an infinite sequence of CCMs that is infinitely decreasing if there

is no such sequence. The rest of the algorithm is straight-forward. A CCM function is

constructed for each pair of contexts that are adjacent in the approximation of the context

graph. All the functions are accumulated in S and returned.
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9.1.4 Well Foundedness

The final component of the analysis is demonstrating that a set of CCMFs for a given

CCG are well-founded (See Definition 8.4.4 on page 90). This problem is equivalent to the

complete Size-Change Termination (SCT) property (see Section 11.3 for a more detailed

explanation). There are two well-known algorithms for deciding SCT [65], either of which

may be used to decide if a set of CCMFs are well-founded.

9.2 The Hierarchical Algorithm

In this section, we provide a full algorithm for implementing the CCG analysis. It is on

this algorithm that our ACL2 implementation is based. In addition to discussing how we

choose CCMs and employ absorption, we develop a hierarchy of termination analyses that

applies lightweight analyses first, and resorts to slower but more powerful analyses only

when the faster ones fail. This hierarchy is designed to maximize reuse of information from

one stage in the hierarchy to the next. That is, each analysis has the potential to discover

new information that is relevant to the termination proof even if it fails to completely

prove termination. Rather than dispose of this information, our hierarchical analysis reuses

and adds to that information at each stage. The result, as we will see in the empirical

evaluation presented in Chapter 10, is an analysis that more efficient than a straightforward

implementation of the CCG analysis, but just as powerful.

9.2.1 Choosing CCMs

We describe the heuristics we use for annotating calling contexts with measures. In most

termination analyses, this is the most critical and difficult step in the analysis. One measure

must be found that decreases with each step of the program. One of the strengths of the

CCG analysis is that this is no longer necessary. Instead, we can use simple heuristics

to choose candidate measures. Then, the rest of the analysis, which can be completely

automated with the help of a theorem prover, determines if some combination of these

measures can be used to construct a termination proof. Through experimentation and

analysis of failed CCG proof attempts, we have determined that the following heuristics
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(defun upto (i max)
(if (and (integerp i)

(integerp max)
(<= i max))

(+ 1 (upto (+ 1 i) max))
0))

Figure 35: The upto function.

work well in practice for ACL2.

9.2.1.1 Formal Sizes

For each function formal, xf
i , of the function containing a context, c, (acl2-count xf

i ) is

included in the CCMs of c (see Figure 25 on page 90 for the definition of acl2-count).

For the majority of functions, these CCMs suffice for proving termination. Many simple

functions simply walk down a list formal until it ends, or decrease the absolute value of an

integer formal until it is 0. Using these CCMs, such functions are easily proven terminating.

Even for more complex recursive functions, such CCMs are often sufficient. For example,

the ack function from Figure 27 on page 91 is easily proven terminating by our analysis

using the CCMS (acl2-count x) and (acl2-count y).

9.2.1.2 Shrinking Differences

If the conditions for a calling context, c, contain an expression of the form (< e e′) or (not

(< e′ e)), where e and e′ are any expressions, then we add (acl2-count (+ 1 (- e′ e)))

to the CCMs of c. This CCM is especially helpful when analyzing functions that mimic the

behavior of for-loops. An example of this is the upto function, defined in Figure 35. Here,

i is a counter that is increased until it surpasses max. This loop is proven terminating using

the CCM (acl2-count (- max i)).

9.2.1.3 Natural numbers and Integers

A third heuristic for choosing CCMs is to add (acl2-count e) to the CCMs of c when

(not (zp e)) is a condition of c. Likewise, when (not (zip e)) is a condition of c, we

add (acl2-count e) as a CCM for c. Recall that the zp function returns true when

its argument is not a positive integer. Likewise, the zip function returns true when its
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(defun upto0 (i max)
(upto i max))

(defun upto (i max)
(if (and (integerp i)

(integerp max)
(<= i max))

(+ 1 (upto0 (+ 1 i) max))
0))

Figure 36: A new definition for upto.

argument is not a non-zero integer (i.e., if it is zero or not an integer). These two functions

are used in functions whose intended domains are either natural numbers or integers. Such

functions often decrease some natural number or integer magnitude until it reaches 0. In

order to create a total function that behaves in this manner, such functions often default to

the base case when a value outside the intended domain is given. Again, the ack function

from Figure 27 on page 91 is an example of where zp would be useful. The two base cases

occur when x or y are not positive integers. Instead of (or (not (integerp x)) (<= x

0)), most users would instead simply say (zp x). Since these functions are so popular for

use in rulers and governors, it makes sense to use them as a hint that the expression they

contain is a valid CCM.

9.2.1.4 Lists

The list equivalents to zp are (atom x), (endp x), and (not (consp x)). These three

are logically synonymous, and return true if x is not a non-empty list. Many functions

walk through or manipulate lists until they are empty. For such functions, one of the

three expressions listed above are applied to the list to determine when a base case is

reached. Therefore, if (not (atom e)), (not (endp e)), or (consp e)) are expressions

in the conditions of c, we add (acl2-count e) to the CCMs of c.

9.2.1.5 CCM propagation

Consider the alternate definition of the upto function given in Figure 36. Here, we have split

the definition of upto into two functions. The upto0 function does nothing but call upto,

107



and upto calls upto0 recursively. Now suppose that we used the heuristics listed so far to

choose CCMs for the contexts of these functions. Both would include (acl2-count i) and

(acl2-count max). However, the context for the call to upto0 in the body of upto would

also include (acl2-count (- max i)), while the other context would not. Now consider

the CCG termination analysis using these CCMs. The value of (acl2-count max) is non-

increasing across both contexts. The value if (acl2-count i) is non-increasing across the

call to upto, and increasing across the other call. Finally, there is not enough information

to compare the CCM (acl2-count (- max i)) with either CCM from the other context.

Therefore, the CCG analysis fails.

The problem in this scenario is that we did not realize that (acl2-count (- max i))

should also be a CCM for upto0. When a loop contains more than one context, we need to

keep track of the CCMs throughout the loop to see how they change from one iteration to

the next.

To accomplish this, we use CCM propagation. An algorithm for this is given in Figure 37

on the next page. The idea is to do a backward breadth-first-search through the CCG,

propagating the CCM back from the successor by applying the call substitution of the

current context to the CCM of the successor. The result is a CCM that is provably equivalent

to the next one along that edge. We only do this once for each context to avoid a blow-up in

the number of CCMs. In our example, this will result in (acl2-count (- max i)) being

added to the CCMs for the context representing the call to upto in the body of upto0. Now

we know that the value of (acl2-count (- max i)) is non-increasing across this call, and

decreasing across the call to upto0 in the body of upto.

9.2.2 Invoking the Prover

Theorem proving plays a critical role in our implementation of the CCG analysis. We use

it to minimize CCGs and boost the accuracy of the CCMFs. In this section, we discuss the

issues involved in integrating theorem prover calls with the overall CCG algorithm.

Recall that an edge must exist from context c = 〈f,R, e〉 to context c = 〈f ′, R′, e′〉 if

e is a call to f ′ and ¬Hh JR ∪R′σeK ε for all ε ∈ Env . For CCMs s and s′ for c and c′,
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Require: G = (C,E) a CCG, c ∈ C, s a CCM for c
1: {Initialize the visited list}
2: for all c′ ∈ C do
3: visited(c′) := false
4: end for
5: visited(c) := true
6: {Visit the initial context}
7: Let queue be an empty queue.
8: ccm(c) := s
9: for all 〈c′, c〉 ∈ E do

10: if ¬visited(c′) then
11: Add 〈c′, c〉 to queue
12: visited(c′) := true
13: end if
14: end for
15: {Visit other contexts in backwards breadth-first order}
16: while queue is not empty do
17: Let 〈c′′, c′〉 be the next element of queue
18: Let e be the call of c′′

19: ccm(c′′) := ccm(c′)σe

20: for all 〈c′′′, c′′〉 ∈ E do
21: if ¬visited(c′′′) then
22: visited(c′′′) := true
23: end if
24: end for
25: end while
26: return ccm

Figure 37: CCM propagation algorithm.

respectively, φc
c′(s, s

′) => when Hε JR ∪R′σeK ⇒ s′σe ≺ s. Likewise, φc
c′(s, s

′) =≥ when

Hε JR ∪R′σeK ⇒ s′σe � s. The more accurately we can determine that an edge can be

eliminated from a CCG or that a CCM is decreasing or non-increasing, the more effective

our analysis will be.

Recall that by definition, Hh JEK ε means that for all e ∈ E, JeKh ε /∈ {⊥, nil}. Since all

the functions inH have been proven terminating, the only way that JeKh ε = ⊥ is if e contains

a call to a function of d that is non-terminating. Since we have yet to determine if the func-

tions of d terminate on all inputs, trying to determine whether the rulers are non-terminating

leads to circular reasoning. So, we substitute the following weaker prover query for determin-

ing if an edge can be eliminated from the CCG:
q
(not (and r1 . . . rn r′1σe . . . r′n′σe))

yh
ε 6=
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nil, where R = {r1, . . . , rn} and R′ = {r′1, . . . , r′n}.

We take a similar approach for the CCMF conditions. That is, we set φc
c′(s, s

′) to >

when the theorem prover can show that

q
(implies (and r1 . . . rn r′1σe . . . r′n′σe) (≺ s s′))

yh
ε 6= nil

and similarly for setting φc
c′(s, s

′) to ≥. In our implementation, ≺ will be o<.

In addition to formulating the proofs, interacting with the theorem prover presents

its own challenges. These stem from the differences in the interactions with the prover

intended by the developers of ACL2 and those required by our analysis. The theorem

prover is designed primarily as a tool for verification. That is, given a formula that the

user believes to be true, ACL2 by default uses all of the proof techniques at its disposal to

verify that the formula is in fact a theorem. For example, when proving termination, the

user provides a measure (or one is guessed using static analysis), and the theorem prover

attempts to prove that the functions are measure admissible using that particular measure.

The prover is therefore not designed to give up in a timely manner or at all if it can continue

to make some kind of progress on the suggested query.

Contrast this to our own intended use of the theorem prover. We desire a “yes” or “no”

response. Either the query can be proven true in a “reasonable” amount of time, or it can

not, in which case we proceed with a conservative analysis. We expect some, and in many

cases most, of our queries to be unprovable or even false. For example, when pruning the

CCG, we will ask the theorem prover if we can remove each edge, fully expecting that in

most cases, we will not.

One possible solution that we explored was the use of a new time-out feature for ACL2.

The feature, called with-prover-time-limit is given a rational time limit in seconds and

an expression that requires theorem proving. If the prover cannot complete the proof

within the specified time limit, it fails. This solution is problematic for two reasons. First,

choosing a “reasonable” time limit for prover queries depends on the context. Some theories

are relatively simple and can prove the necessary queries quickly, while others are complex

leading to longer proofs and slower prover performance. Secondly, using time limits could
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(or (and (length-exceedsp (car id) i) ;;limit the induction
(endp (cdadr id))
(= (cddr id) 0)
’(:computed-hint-replacement t :do-not-induct :otf-flg-override))

(and (> (cddr id) 20) ;; avoid infinite loops
’(:computed-hint-replacement t
:do-not (eliminate-destructors eliminate-irrelevance

generalize fertilize)
:in-theory nil)))

Figure 38: The computed hint used to enforce termination.

result in the unfortunate consequence of making termination provable on some computers

and unprovable on others. That is, if someone using a new, relatively fast computer proves

a function terminating, it could still be the case that the theorem prover would time out

on the same problem for a user who is using an older and slower machine.

The other solution, and the one we have ultimately implemented, is to enforce the timely

termination of the theorem prover by regulating the proof techniques that it is allowed to

use, causing the prover to give up if it cannot prove the given query with a reasonable

amount of effort. This is done using a computed hint, which is a user-supplied hint to the

theorem prover that is triggered by context as the theorem prover works on a proof attempt.

The computed hint used for this purpose is given in Figure 38. It is parameterized by

a number, i, which is used to specify the number of inductions allowed. The hint consists

of two parts. The first conjunct tells ACL2 to stop performing induction after the ith

induction. For example, if i is 0, and ACL2 wants to perform an induction on a subgoal, it

will instead give up. If i is 1, and ACL2 is processing an induction subgoal (i.e., the base

case or an induction step of an inductive proof), then it will give up if it wants to perform

another induction. This is a valuable rule, since ACL2 uses induction as a “last resort”. If

it cannot prove a goal using any of its other proof techniques it uses induction if possible.

This part of the hint will limit that behavior. In practice, we use an i of 0 or 1.

The second conjunction in the computed hint turns off all proof techniques if a given

subgoal has been worked on for 20 steps without proving it. This subgoal is necessary

because there are other prover techniques other than induction that are not guaranteed to
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terminate. Most goals are proven within fewer than 20 steps if they are going to be proven

at all. Therefore, 20 is a “reasonable” limit to the prover’s efforts.

In addition to this computed hint, there is one simple and fast prover technique that

can be used by itself to obtain an incredibly lightweight prover analysis. Users of ACL2

will notice that when proving termination using ACL2’s current measure-based termination

analysis, the prover will occasionally say “The admission of F is trivial...”. This message

is given when the termination proof is verified using a technique known as built-in clauses.

This is a simple pattern-matching technique that matches against well-known recursive be-

haviors. For example, one built-in clauses states that (implies (zp x) (o< (acl2-count

(- x 1)) (acl2-count x))). Therefore, if any measure goal contains (zp e) in the hy-

potheses and (o< (acl2-count (- e 1)) (acl2-count e))) as the goal, it will immedi-

ately recognize the goal as a theorem using built-in clauses. The exclusive use of built-in

clauses gives us a lightweight but surprisingly effective termination analysis. For example,

the ack function from Figure 27 on page 91 can be solved using only this technique, since

the CCMF theorems needed to prove termination match the built-in clause just given. That

is, recognizing that x decreases in the inner recursive call and that y decreases on the inner

recursive call only requires realizing that the acl2-count of x (or y) is larger than that

of (- x 1) (or (- y 1)) when (zp x) (or (zp y)) is one of the rulers. The result is an

extremely fast termination proof for ack, which takes on the order of milliseconds.

9.2.3 Minimizing Prover Time

As we will see in more detail in Chapter 10, the running time for the CCG analysis is

dominated by the time taken by the theorem prover. In order to minimize running time

while maintaining the accuracy of the analysis, we introduce two heuristics for minimizing

the number of calls made to the theorem prover during successful termination proof.

9.2.3.1 Per-Context CCMFs

The first heuristic involves computing CCMFs on a “per-context” basis instead of a “per-

edge” basis. In the full implementation of the CCG analysis, CCMs are assigned to each

context separately, and the CCMF is created for each edge, using the conditions of the two
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adjacent contexts to determine if a > or ≥ value can be assigned to a given pair of CCMs.

This means the construction of as many as |C|2 CCMFs, where C is the set of contexts in

the CCG.

Now suppose that all the contexts from a given function were assigned the same set of

CCMs. Now suppose that, for each context, c = 〈f,R, e〉, such that e is a call to function

f ′, we compare each CCM s for function f with each CCM s′ for function f ′ using only

the conditions of c. That is, we prove that Hh JRK ε ⇒ s′σe ≺ s or Hh JRK ε ⇒ s′σe � s to

determine which value to assign to φc(s, s′). Clearly, this implies the conditions for assigning

the values of φc(s, s′) for each edge 〈c, c′〉 in the CCG. However, this results in the creation

of only |C| distinct CCMFs. For the majority of functions that can be proven terminating

using our analysis, this simpler and more efficient method for computing CCMFs is enough.

Consider once again the ack example from Figure 27 on page 91. For the full analysis

using “per-edge” CCMFs, the CCMs (acl2-count x) and (acl2-count y) must each

be compared against each other, resulting in 4 proof attempts per CCMF. The CCG is

complete, so there are 4 edges. This results in 16 proof attempts. On the other hand, the

necessary CCMs can be proven non-increasing and decreasing using “per-context” CCMFs.

This results in 8 proofs, effectively halving the time spent by the theorem prover. For

problems where the “per-context” analysis fails, we can then refine each CCMF with the

full information from each edge.

9.2.3.2 CCM Comparison Hierarchy

A second heuristic for minimizing the prover time is to put in place a hierarchy for comparing

CCMs in CCMFs. Suppose we are constructing a CCMF for the CCMs of c = 〈f,R, e〉 and

c = 〈f ′, R′, e′〉. The hierarchy provides rules for when we attempt the proofs for determining

the value of φc
c′(s, s

′) (or φc(s, s′)). The levels of the hierarchy are as follows:

1. ACROSS If f = f ′, attempt the proofs for s and s′ if s = s′. If f 6= f ′, resort to the

EQUAL level of the hierarchy.

2. EQUAL Attempt the proofs for s and s′ when free(s) = free(s′σe).
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3. ALL Attempt the proofs for s and s′ when free(s) ⊆ free(s′σe).

4. SOME Attempt the proofs for s and s′ when free(s) ∩ free(s′σe) 6= ∅.

5. NONE Always attempt the proofs for s and s′.

The intuition is that if CCMs mention the same variables, they are more likely to be

related. For example, CCMs s = (acl2-count x) and s′σe = (acl2-count (- x 1))

would get analyzed in the first round of the hierarchy. CCMs s = (acl2-count x) and

s′σe = (acl2-count (- x y)) would get analyzed in the next. The last round would

analyze CCMs such as s = (acl2-count x) and s′σe = (acl2-count y), which are far less

likely to be provably non-increasing or decreasing.

To effectively use the hierarchy, all the CCMF values are computed at each hierarchy

level, with checks for well-foundedness interspersed. So, in the ack example from Figure 27

on page 91, the analysis would be able to compute all the necessary CCMF values in the

ACROSS stage, resulting in only 4 proofs when using “per-context” CCMFs, as opposed

to 8 if all values were compared.

9.2.4 Absorption

Absorption is a powerful tool, as it allows us to consider how the program behaves over

several steps at certain points in the program without composing the entire transition

relation, which can result in a quadratic increase in the size of the CCG. We use absorption in

a conservative manner, avoiding increases in the size of the CCG. This is done by absorbing

in the following two cases:

1. We absorb a context c if 〈c, c〉 is not an edge in the CCG and every successor of c has

only one predecessor (i.e., c itself).

2. We absorb a context c that has only one successor c′ such that 〈c′, c′〉 is not an edge

in the CCG.

These two rules are illustrated in Figure 39 on the following page. Note that in both

cases, the number of contexts is actually decreased. This means that, in addition to provid-

ing a more accurate representation of program behavior, this absorption heuristic has the
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?>=<89:;c2 //

// ?>=<89:;c1
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//
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?>=<89:;c3 //
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//
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""E
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""EE
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E

// ?>=<89:;c1 // ?>=<89:;c2 //
<<yyyyy

⇒
%%JJJJJ

// ONMLHIJKc1; c2 //
99ttttt

Figure 39: Illustrating the two absorption heuristics.

added benefit of decreasing the number of prover queries required in our analysis.

9.2.5 Proving Well-Foundedness

The well-foundedness analysis reduces to the size-change problem, whose solution is given

in [65] (see Section 11.3 for a more detailed explanation), where they prove that the problem

is PSPACE complete. However, a polynomial algorithm has been found which solves most

size-change problems in practice [8]. While the full analysis tends to run quickly, it is still

exponential in the worst case. We therefore use the polynomial algorithm and resort to the

full algorithm when the polynomial algorithm fails.

9.2.6 Putting It All Together: Hierarchical CCG Analysis

Using all of the techniques of this chapter, we build a hierarchical CCG analysis algorithm

that avoids unnecessary work whenever possible. In addition to the other observations made

throughout this chapter, it is important to note that, even with these speed improvements,

the CCG analysis still tends to be slower than ACL2’s current analysis on those problems

for which both can prove termination. We therefore allow ACL2 to attempt a termination

proof using its current measure-based analysis early in the algorithm, with hints to limit

ACL2 to a “reasonable” amount of work proving termination before we proceed with our

own algorithm.

The entire algorithm is given in Figure 40 on the next page. We begin by building

the näıve CCG for the given definitional axiom. That is, the resulting CCG will have an
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1: SCCs := (SCC(Build-Näıve-CCG(d))
2: SCCs := Perform-Absorption(SCCs)
3: Annotate(SCCs)
4: Per-Context-CCMFs(SCCs)
5: SCCs := SCP(SCCs)
6: if SCCs = ∅ then
7: return terminating
8: end if
9: if Measure-Admissible(d) then

10: return terminating
11: end if
12: Refine-CCMFs(SCCs, T, 0, ACROSS)
13: SCCs := SCP(SCCs)
14: if SCCs = ∅ then
15: return terminating
16: end if
17: for all CH ∈ {ACROSS,EQUAL,ALL,SOME,NONE} do
18: Refine-CCMFs(SCCs, T, 1, CH)
19: SCCs := SCP(SCCs)
20: if SCCs = ∅ then
21: return terminating
22: end if
23: end for
24: SCCs := Prune-CCGs(SCCs)
25: for all CH ∈ {ACROSS,EQUAL,ALL,SOME,NONE} do
26: Refine-CCMFs(SCCs, NIL, 1, CH)
27: SCCs := SCP(SCCs)
28: if SCCs = ∅ then
29: return terminating
30: end if
31: end for
32: SCCs := SCT(SCCs)
33: if SCCs = ∅ then
34: return terminating
35: end if
36: return failed

Figure 40: Hierarchical CCG algorithm.
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edge from c to c′ when the call of c is a call to the function containing c′. This CCG is

immediately broken into SCCs. Next, we perform absorption on each SCC as described in

Section 9.2.4. The SCCs are then annotated by assigning CCMs to each context so that

all the contexts from a given function have the same CCMs, as described in Section 9.2.1.

The CCMFs for the SCCs are then built per context as described in Section 9.2.3.1, using

only built-in clauses for the proofs. The SCCs are then analyzed using SCP, which applies

the polynomial size-change algorithm to each SCC, returning only those SCCs for which

the analysis failed to prove well-foundedness. If it returned no SCCs, we have proven

termination, and we stop. Otherwise, we use ACL2 to try to prove termination using its

measure-based analysis, limited to one induction. If this succeeds, we stop.

In the next step, we call Refine-CCMFs, which take the annotated SCCs, a value indi-

cating whether to use per-context CCMFS (T for yes, NIL for no), a maximum number of

inductions to use, and a CCM comparison hierarchy as given in Section 9.2.3.2. In this case,

we continue to use per-context CCMFs, and refine with 0 inductions using the ACROSS

level of the comparison hierarchy. We then attempt the polynomial size-change analysis

again.

In the next stage of the analysis, we cycle through the CCM comparison hierarchies,

refining the CCMFs using per-context CCMs, and 1 induction. We call the polynomial

size-change analysis after each refinement step.

If this fails, we prune the SCCs using 1 induction to determine when it is safe to remove

an edge. We then repeat the previous loop, this time with per-edge CCMFs. If all else fails,

we attempt to prove termination using the full exponential size-change algorithm, which we

call SCT here. If this fails, the algorithm stops in failure.

9.3 Bibliographic Notes

Due to the overlap in bibliographic data between this and the next chapter, we postpone

discussion to Section 10.2.
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9.4 Summary

We presented a detailed algorithm for the CCG analysis that is hierarchical in nature.

Beginning with lightweight versions of the CCG analyses, we add more power as needed,

until the full CCG analysis is applied when all else fails. Techniques for creating these

lightweight analyses include

• Computing CCMFs on a per-context basis instead of a per-edge basis.

• Following a hierarchy for comparing CCMs when computing CCMFs that allow us to

focus first on those CCMs that are most likely to be helpful to the analysis.

• Using lightweight theorem proving techniques such as built-in clauses, and limiting

the number of inductions allowed during proof attempts.

• Using the polynomial algorithm approximating the size-change analysis to determine

well-foundedness whenever possible.

The resulting algorithm allows for efficient solving of simpler termination problems, while

maintaining the full power of the CCG analysis. In addition, we presented heuristics for

guessing and propagating CCMs, and performing absorption on CCGs in such a way as to

avoid increasing the size of the CCG.
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CHAPTER X

EMPIRICAL EVALUATION

In this chapter, we empirically evaluate the theory of Calling Context Graphs introduced

in Chapter 8, as well as the hierarchical implementation of the CCG termination analysis

presented in Chapter 9. We have implemented the hierarchical algorithm in ACL2 and run

it over the entire ACL2 regression suite (for a description of the regression suite, refer to

Section 2.4). Recall that every function in the regression suite has been proven to terminate

in ACL2 using its traditional measure-based analysis. In many cases, ACL2 could not

automatically prove termination, and human guidance was required. Therefore, in order

to accurately judge the effectiveness of our analysis to automatically prove termination, we

need to factor out this assistance. We distinguish two forms of guidance.

The first is explicit guidance, in which the user provides the measure or gives explicit

hints to the theorem prover on how to prove termination. This form of assistance is easy to

factor out, as we can simply ignore the measure and prover hints. For example, here is a a

function from the regression suite that specifies an explicit measure: an ordinal constructed

using ordinal multiplication (o*), ordinal addition (o+), the first infinite ordinal ((omega)),

and several auxiliary functions (e.g., tuple-set-max-first).

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs

:measure (o+ (o* (omega) (nfix k))
(nfix (- (tuple-set-max-first S) i)))))

(cond ((or (not (natp k)) (not (natp i))) 0)
((zp k) 0)
((equal k 1)
(tuple-set-min-first S))
((<= (tuple-set-max-first S) i)
(o^ (omega) (o+ (tuple-set->ordinal-partial-sum

(1- k) (tuple-set-projection S) 0)
1)))

(T (o+ (o^ (omega)
(tuple-set->ordinal-partial-sum
(1- k) (tuple-set-filter-projection S i) 0))
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(tuple-set->ordinal-partial-sum k S (1+ i))))))

Our system automatically proves that the above function terminates without the mea-

sure information provided by the user. It does so using the CCMs (acl2-count k), which

is always included as a CCM by default, and (acl2-count (- (tuple-set-max-first S)

i)), which is included by our heuristics, since (<= (tuple-set-max-first S) i) is one

of the guards.

The other form of guidance is implicit guidance, which is given when users prove aux-

iliary lemmas which help ACL2 to complete the termination proof. While it is difficult to

identify the theorems used solely to prove termination, it is clear that many termination

proofs require auxiliary lemmas and substantial human effort.

Factoring out implicit guidance is more difficult than factoring out explicit guidance.

Ideally, we would like to ignore all the auxiliary lemmas required for termination proofs,

while leaving the rest of the lemmas and theorems which comprise the theory being de-

veloped by the user. However, it is impossible to tell exactly which lemmas were added

specifically for termination proofs, and which were added as part of the overall theory being

developed. In order to estimate the performance of our termination analysis, we therefore

designed two experiments to capture the two “extremes” of implicit guidance. In the first,

we ignore all theorems and enable all definitions that occur beyond the ground-zero theory.

That is, the only parts of the theory we are allowed to use are the definitions and exe-

cutable counterparts (for evaluating ground terms) of functions, along with the bare-bones

theory provided by ACL2 on start-up. This ensures that all implicit guidance has been

factored out and then some, giving us a lower bound on our tools performance in “typical”

circumstances. The other experiment uses the entire current theory when proving termina-

tion. Any theorems and definitions that are enabled in the theory at the point of definition

are used to prove termination. This gives us an upper bound on our tool’s performance,

as it includes any implicit guidance provided by the user the first time around. In both

experiments, no explicit guidance is given, ACL2’s current analysis is run under the same

conditions as the CCG analysis, and a 150 second time limit is given to both ACL2 and the

120



Table 7: Result summary when theorems are disabled

Problems Total CCG ACL2
Non-Trivial 1763 1329 (75.38%) 1056 (59.89%)
Recursive 4349 3915 (90.02%) 3642 (83.74%)
All 11303 10869 (96.16%) 10596 (93.74%)

CCG algorithm.

A summary of the results from the first experiment, in which all the theorems were

disabled and all the theorems enabled, is given in Table 7. The results are broken down

into three classes of functions. The first, and most interesting category are the “non-trivial”

functions. Recall from Section 9.2.2, that ACL2 begins its termination proof by using the

extremely lightweight prover technique using built-in clauses, which matches simple but

widely used recursive behaviors. For example, these include subtracting 1 from a natural

number until it is 0, walking down a list one element at a time until reaching the end.

Such functions are trivially proven terminating, and do not provide much information on

the relative effectiveness of both termination analyses. Factoring all such functions out,

we find that our analysis can solve over 75% of the remaining 1,762 functions, while ACL2

can solve about 60% of them. This is a 15% improvement when dealing with moderate

to difficult functions. The second line reports the results for all recursive functions, both

trivial and non-trivial. Even with the trivial functions thrown in, there is a significant 6.25%

improvement. The final line reports the results for all functions, including non-recursive

functions, and is included for completeness.

In order to gauge the effectiveness of the hierarchical implementation of the CCG al-

gorithm, we present the in-depth results from our first experiment in Table 8 on the next

page. Here, the results are reported for each level of the hierarchy, including timing results.

The CPN header denotes if the CCMFs are computed per-context (see Section 9.2.3.1. BIC

specifies that all the prover queries used only built-in clauses, and no call to the full theorem

prover (see Section 9.2.2). The CH column indicates what level of the CCM comparison

hierarchy was used (see Section 9.2.3.2). The Ind header specifies the number of inductions

allowed in each proof (see Section 9.2.2). Num indicates the number of problems solved
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Table 8: Detailed results when theorems are disabled

CPN BIC CH Ind Num PTime WFTime ACL2 ATime CTime
T T NONE N/A 3245 .006 0 3072 .001 .003

*ACL2 w/ 1 induction* 564 .204 0 564 .151 .204
T NIL ACROSS 0 86 8.923 0 0 0 0
T NIL ACROSS 1 9 10.032 .002 3 .436 .970
T NIL EQUAL 1 0 0 0 0 0 0
T NIL ALL 1 0 0 0 0 0 0
T NIL SOME 1 0 0 0 0 0 0
T NIL NONE 1 0 0 0 0 0 0

NIL NIL ACROSS 1 10 2.629 0 0 0 0
NIL NIL EQUAL 1 0 0 0 0 0 0
NIL NIL ALL 1 0 0 0 0 0 0
NIL NIL SOME 1 1 38.010 .010 0 0 0
NIL NIL NONE 1 0 0 0 0 0 0

Using Exponential Alg. 0 0 0 0 0 0
CCG Failed 434 63.389 .001 3 .993 55.110

by that stage of the hierarchical analysis. PTime is the average time spent theorem prov-

ing for problems solved at that level. WFTime presents the average time spent doing the

well-foundedness analysis. The ACL2 column gives the number of problems solved at this

level that were also solved by ACL2. The ATime and CTime columns give the average time

spent proving termination by ACL2 and the CCG analysis, respectively, for those problems

that both ACL2 and the current level of the hierarchical analysis solved.

Unsurprisingly, given the number of functions reported as “trivial” in Table 7 on the

preceding page, a large number of problems are solved using only built-in clauses. Such

problems are solved in .005 seconds on average. Note that there were 173 problems that the

CCG analysis could solve using this extremely lightweight analysis, that ACL2 could not

solve at all. An example of such a problem is the ack example, as we noted in Section 9.2.2.

Many of the rest of the problems are solved using ACL2’s termination analysis, limited to

one induction, in the second step of the analysis. Such problems are also proven quickly,

taking only .204 seconds on average. However, there are still 106 that are handled by later

stages of the analysis, only 3 of which can be proven terminating in ACL2 with no user

guidance. The third and fourth stages, using the ACROSS level of the comparison hierarchy
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are significantly slower than the first two stages, but still relatively fast and effective. Note

that no functions are proven terminating using the EQUAL, ALL, SOME, or NONE levels of

the comparison hierarchy. While this may indicate that stages 5, 6, and 7 can be removed

from the algorithm, we prefer to keep them in, since using per-context CCMFs leads to

better measured subsets (See Section 11.4). In the last stage, given in the second-to-the-

last row of the table, we use the full exponential algorithm. But note that there were no

problems that could not be handled by the polynomial approximation that could be handled

by the full exponential algorithm.

The last column gives the failed CCG analysis attempts. We examined these failures

to ascertain why the CCG analysis failed. We found that in 53 of these cases, the failures

were due to ACL2’s lack of theorems for reasoning about the floor and mod functions in

the ground-zero theory. In all of these cases, reasoning about these functions played an

integral role in the surrounding theory, and would have been there even if these functions

could be proven terminating without it. In other words, in typical ACL2 usage, these

functions would have been proven terminating by the CCG analysis. Another 62 of these

functions could not be proven because they involved encapsulated functions for which the

full definition was not available. Recall that the encapsulate feature of ACL2 allows users to

admit constrained functions into the theory without admitting the full definition. Without

the theorems constraining these functions’ behavior, no analysis would be able to reason

about these functions in order to prove termination. The remainder of the failures seemed

to be legitimate failures. The reasons varied from cases in which the necessary measures

were too complex to guess with our heuristics, to cases in which the termination proof

seemed to require implicit guidance. However, factoring out the failures due to floor, mod,

and encapsulation, we find that our analysis would actually be able to solve at least 1444

or 81.90% of the non-trivial termination problems, a 5.52% better performance than the

numbers for this experiment imply.

A summary of the results for the second experiment, in which the entire current theory

is used to prove termination, is given in Table 9 on the next page. Note that the advantage

of 15% for our analysis over ACL2’s has grown to 20% in this experiment. Also, note that
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Table 9: Result summary when theorems are enabled

Problems Total CCG ACL2
Non-Trivial 1762 1535 (87.11%) 1180 (66.96%)
Recursive 4346 4119 (94.77%) 3764 (86.60%)
All 11295 11068 (97.99%) 10713 (94.84%)

Table 10: Detailed results when theorems are enabled

CPN BIC CH Ind Num PTime WFTime ACL2 ATime CTime
T T NONE N/A 3240 .006 0 3071 .001 .003

*ACL2 w/ 1 induction* 689 .099 0 689 .066 .099
T NIL ACROSS 0 175 2.680 0 0 0 0
T NIL ACROSS 1 4 6.222 0 1 .870 9.070
T NIL EQUAL 1 0 0 0 0 0 0
T NIL ALL 1 0 0 0 0 0 0
T NIL SOME 1 0 0 0 0 0 0
T NIL NONE 1 0 0 0 0 0 0

NIL NIL ACROSS 1 10 .903 0 0 0 0
NIL NIL EQUAL 1 0 0 0 0 0 0
NIL NIL ALL 1 0 0 0 0 0 0
NIL NIL SOME 1 1 26.250 .020 0 0 0
NIL NIL NONE 1 0 0 0 0 0 0

With Ruler Rewriting 0 0 0 0 0 0
Using Exponential Alg. 0 0 0 0 0 0

CCG Failed 227 45.503 .001 3 .873 48.576

the overall effect of enabling theorems is a 11.73% improvement in performance for these

problems.

The detailed results from the second experiment are given in Table 10. Much of this

data looks similar to that from the previous experiment. However, there is a significant

decrease in the running time. In typical ACL2 usage, users build up theories about function

definitions, and then disable those definitions. The result is that the theorem prover spends

less time reasoning about definitions and re-proving already proven results. As a result,

proof attempts are faster, resulting in the significant speed-ups observed here.
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Table 11: Results when analyzing examples from the PolyRank distribution.

1 2 3 4 6
O 0.30 † 0.05 † 0.11 † 0.50 † 0.10 †
P 1.42 X 0.82 X 1.06 † 2.29 † 2.61 †

PR 0.21 X 0.13 X 0.44 X 1.62 X 3.88 X
T 453.23 X 61.15 X T/O - T/O - 75.33 X

CCG 4.69 X 1.20 X T/O - T/O - 120.01 X

7 8 9 10 11 12
O 0.17 † 0.16 † 0.12 † 0.35 † 0.86 † 0.12 †
P 1.28 † 0.24 † 1.36 X 1.69 † 1.56 † 1.05 †

PR 0.11 X 2.02 X 1.33 X 13.34 X 174.55 X 0.15 X
T T/O - T/O - T/O - T/O - T/O - 10.31 †

CCG 19.83 X 37.79 X 365.97 † T/O - T/O - T/O -

10.1 Comparisons with Other Tools

In this section, we empirically contrast our tools to several state-of-the-art termination

analyses.

This is a difficult task, as several current state-of-the-art analyses are designed and

implemented for different domains. These include nondeterministic algebraic transition

systems, C programs, and Term Rewriting Systems (TRSs). Because of these different do-

mains, large-scale experimental comparisons are infeasible. Instead, we provide comparisons

using hand-translated examples.

We compare our analysis empirically with four existing analyses: OctaTerm and Poly-

Term [9], PolyRank [14], and Terminator [27]. The benchmarks and performance of these

four tools is from [9]. There are two sets of examples. Unfortunately, we were unable to

recreate the original experimental data, so we present the data from the original paper here

for these four analyses, and add results for our own CCG analysis. OctaTerm, PolyTerm,

and PolyRank were run on a 2GHz AMD64 processor using Linux 2.6.16, while Terminator

was run on a 3GHz Pentium 4 using Windows XP SP2. Our own analysis was run on a

dual 2.8GHz Intel Xeon machine running Linux 2.6.9. Our analysis does not make use of

the multiple processors.
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The first set of examples are distributed with the PolyRank tool. They were encoded by

the PolyRank authors, and represent simply stated but “tricky” arithmetic loops. Included

are two different GCD algorithms, and one that computes the McCarthy 91 function. It is

important to note here that the McCarthy 91 encoding is not reflexive, as is the traditional

encoding of McCarthy 91, but is a loop that is semantically equivalent. This is an important

distinction as the difficulty of proving McCarthy 91 terminating lies mainly in its reflexive

nature.

The results for these examples are listed in Table 11 on the previous page. Here O is

OctaTerm, P is PolyTerm, PR is PolyRank, T is Terminator, and CCG is our own analysis.

The numbers indicate the time of the analysis in seconds. A timeout of 500 seconds was

used. A X indicates a successful termination proof, ∅ signifies that the analysis correctly

labeled the example as non-terminating, and † indicates a failure to prove a terminating

example to be terminating.

PolyRank analyzes non-deterministic polynomial loops over the reals. Since ACL2 does

not have a representation for the reals, we restricted our analysis to the rationals. Non-

determinism is modeled using an encapsulated function whose exact definition is hidden

from the CCG analysis. Our heuristics for choosing CCMs are designed to be effective for

typical code written by ACL2 users. Since these examples do not fall into that category, we

altered one of our heuristics: the shrinking differences heuristic described in Section 9.2.1.2.

When one of the context conditions is of the form (< e e′) or (not (< e′ e)), we add

(nfix (floor (+ 1 (- e′ e)) 1)) to the list of CCMs. Here (nfix x) returns x if x is

a natural number, and 0 otherwise. The expression (floor x y) returns the floor of the

value of x divided by y. We also loaded an existing library for reasoning about rational

numbers in ACL2.

Not surprisingly, PolyRank performs the best, proving all the examples terminating. Of

the remaining tools, our CCG analysis performs the best, proving 5 of the 11 benchmarks

terminating. Terminator and PolyTerm prove 3 terminating, and OctaTerm fails on all

examples.

The other set of examples are taken from Windows device drivers, which are the domain
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Table 12: Results when analyzing examples taken from Windows device drivers

1 2 3 4 5
O 1.42 X 1.67 ∅ 0.47 ∅ 0.18 X 0.06 X
P 4.66 X 6.35 ∅ 1.48 ∅ 1.10 X 1.30 X

PR T/O - T/O - T/O - T/O - T/O -
T 10.22 X 31.51 ∅ 30.65 ∅ 4.05 X 12.63 X

CCG 0.66 X 90.15 ∅ 33.94 ∅ 0.65 X 0.44 X

6 7 8 9 10
O 0.53 X 0.50 X 0.32 X 0.14 ∅ 0.17 X
P 1.60 X 2.65 X 1.89 X 2.42 ∅ 1.27 X

PR T/O - T/O - T/O - T/O - 0.31 X
T 67.11 X 298.45 X 444.78 X T/O - 55.28 X

CCG 0.67 X 0.15 X 0.15 X 21.73 ∅ 2.69 X

for which Terminator is designed and implemented. These results are given in Table 12.

PolyRank is unable to prove termination for all but one of these examples. However, the

other analyses correctly analyze all the benchmarks, with the exception of benchmark 9, for

which Terminator times out. While drawing conclusions about timing is difficult given that

the analyses have been run in different machines, it is still clear that our analysis seems

to be competitive with OctaTerm and PolyTerm on all but 3 examples (2, 3, and 9), and

outperforms Terminator by one or more orders of magnitude on 8 of the 10 examples.

10.2 Bibliographic Notes

Termination is one of the oldest problems in computing science and it has received a signifi-

cant amount of attention. Here we will briefly review recent work on automating termination

analysis.

One of the most often cited techniques for the proving termination of programs is called

the size change principle [65]. This method involves using a well-order on function parame-

ters, analyzing recursive calls to label any clearly decreasing or non-increasing parameters.

Then, all infinite paths are analyzed to ensure that some parameter never increases and

infinitely decreases over each path. We use this path analysis in step 7 of our algorithm.
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The size change principle has several limitations, e.g., it does not show how to take gov-

ernors into account and it does not provide any method for determining the sizes of the

outputs of user-defined functions. Both of these considerations are almost always important

for establishing termination in realistic programming languages.

Much work has gone into developing termination analyses for term rewriting systems and

logic programs, e.g., [2, 43, 25]. However, these methods do not scale to the complexity of

total functional programming languages. For example, the authors of the AProVE tool [43],

winner of the termination competition for TRSs, provided us with a version of AProVE

specifically tweaked to prove the termination of TRSs obtained by hand-translating ACL2

functions. However, this tool was unable to prove the termination of the following trivial

function definition in ACL2:

(defun f (x)
(if (zp x)

0
(+ 1 (f (- x 1)))))

There has been a significant amount of work on proving the termination of algebraic

loops, i.e., loops whose behavior is governed by arithmetic over the integers, rationals, or

reals. One of the interesting questions in this domain is: for what classes of algebraic loops

is the termination question decidable? Podelski and Rybalchenko found a class of loops with

linear behaviors and no nesting for which the question of whether a linear ranking function

exists is decidable [93]. Tiwari found another class of linear loops for which termination is

decidable even if no linear ranking function exists [111]. Recently, this result was generalized

to a larger class of linear loops [16].

Recently, there has been work asking similar decidability questions about loops involving

lists [12]. What was found is that both safety properties and termination are decidable for

a restricted form of non-nested loops involving singly-linked lists of integers. Such a result

is especially applicable to loops that sort or reverse lists.

The problem of finding solvable subsets of the termination problem is an interesting and

useful one. Such results can be used in general termination analyses to prove termination

of individual loops that match one of these solvable classes. As we shall see shortly, the
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Terminator termination analysis does this. However, such tools do not satisfy our need for

a general analysis that can be used in the presence of any looping behavior. None of these

analyses, for example, can deal with trees, graphs, or complex numbers.

In addition to linear algebraic loops, several analyses have been developed to perform

termination analysis on loops with polynomial behaviors [15, 29]. As we saw in Section 10.1,

such tools are not complete but are effective at proving the termination of some kinds of

polynomial loops.

The Terminator, to which we empirically compare our analysis in Section 10.1, is due to

Cook, Podelski, and Rybalchenko. At the heart of the Terminator algorithm is a result by

Podelski and Rybalchenko which states that a program is terminating if there is some finite

set of well-founded relations whose union contains the transitive closure of the transition

relation of the program [94]. In other words, if every valid path through the program

can be shown to be well-founded by one of the well-founded relations contained in the

finite set, the program is terminating. This leads to an abstraction-refinement framework

for termination [26]. The core algorithm, presented in [27], begins with an empty set of

well-founded relations, W . A new program is built based on the one being analyzed that

maintains history variables to keep track of previous variable values, and contains error

states that are entered when the current and previous variable values do not satisfy any

of the relations in W . A safety checker is used to check the property that the error state

is never entered (and therefore that the transitive closure of the transition relation is in

W ). If the safety checker fails, it returns a counter-example, which is used to generate a

new ranking function using a complete method for finding linear ranking functions for loops

with linear semi-algebraic behavior [93]. That ranking function is added to W , and the

process is repeated until no counter-example is found by the safety checker. At this point,

the program has been proven terminating. Recent improvements to the algorithm include

a method for proving termination in the presence of shape-shifting heaps [10] and in the

presence of multiple threads [28].

As we saw in Section 10.1, our analysis compares well with Terminator on our hand-

translated examples. We are able to identify a program as terminating or non-terminating
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main () {
int n = nondet();
int x = nondet();
int y = nondet();

if (n >= 0) {
while (x = 0) {

if (y <= 0) {
y = n;
if (x < 0)
x = -1 - x;

else
x = 1 - x;

} else {
y--;
if (x < 0)
x = x + 1;

else
x = x - 1;

}
}

}
}

(defun main (n x y)
(cond ((or (zp n)

(not (integerp x))
(= x 0))

y)
((zp y)
(if (< x 0)

(main n (- -1 x) n)
(main n (- 1 x) n)))

(t
(if (< x 0)

(main n (+ x 1) (- y 1))
(main n (- x 1) (- y 1))))))

Figure 41: An example illustrating a fundamental difference between Terminatior and
CCG analysis.

on every problem Terminator correctly analyzes, plus three more.

As an example of the kinds of problems that our CCG analysis can handle but Termi-

nator cannot, consider the code in Figure 41. The definition in C on the left and the ACL2

code on the right have the same looping behavior: the integer x gets closer to 0 with every

step, but every n steps, x is also negated. So, x keeps switching between being positive

and negative, but always approaches x. Terminator cannot prove this program terminat-

ing. The problem is that there is no linear ranking function that decreases when y is 0

and x is non-zero. This is when x switches between being positive and negative. The CCG

analysis proves this terminating automatically, using the absolute value of x as a CCM for

all contexts. In other words, the CCG analysis can prove termination of functions that the

Terminator cannot handle by using non-linear measures.

Perhaps more interestingly, the CCG analysis can prove termination using only the linear
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CCMs x and (- x). This is because the CCG analysis can compare different measures as

well as comparing a measure to itself. This is something that the Terminator framework

can not do, since it must match each loop to a single ranking function. It would need a

rank finding algorithm that could suggest the absolute value of x as a ranking function.

This suggests a difference between the CCG framework and Terminator framework at

a more fundamental level that is independent of the techniques used to guess measures or

ranking functions. One of the keys to the automation provided by Terminator and our CCG

analysis is that, instead of having to construct one ranking function that decreases over every

transition, these frameworks break the problem into smaller pieces so that simpler ranking

functions or measures can be found for each piece. What this example suggests is that for

certain instances, the CCG algorithm can prove termination using simpler measures than

those required by Terminator to prove termination for that same program. Specifically, this

appears to be true when termination can be proven by comparing the values of multiple

measures with each other, rather than using one ranking function per loop.

Efficiency is another significant difference between Terminator and the CCG analysis.

As we saw in Section 10.1, our analysis often outperforms Terminator. In addition, using

our hierarchical algorithm, we can prove the termination of the function for calculating the

nth Fibbonacci number and for Ackermann’s function (see Figure 27 on page 91) in 0.05

seconds apiece. Terminator takes 300 and 600 seconds, respectively, to prove termination

for these two problems. As we saw in Chapter 10, our CCG analysis provides impressive

results even when limited to 150 seconds. We explore two possible reasons for this time

difference.

The first is that Terminator uses the SLAM safety checker [3] to perform its safety

checks. SLAM is designed to check that device drivers interface properly with operating

system APIs through the use of model checking, theorem proving, and predicate abstraction.

It uses heuristics specifically geared toward the efficient analysis of device drivers for these

types of properties. These heuristics are not designed to find termination related errors,

which may significantly slow down Terminator’s performance. In contrast, our analysis

uses static analysis and theorem proving to immediately abstract away information that
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is irrelevant to the termination analysis. This is the purpose of the calling context graph.

Doing this analysis up front allows us to simplify the analysis, leading to better runtimes.

One of the strengths of Terminator is its use of counter-example guided abstraction

and refinement (CEGAR) to analyze and learn from failures. However, Terminator begins

its analysis with no well-founded relations ensuring that every loop will fail to be proven

terminating on the first iteration of the CEGAR loop. Since each failure leads to the

generation of a ranking function designed for a single loop, this can lead to several iterations

of the CEGAR loop to find ranking functions that might be found using simple up-front

analyses. The CCG analysis does the opposite. It uses heuristics to find candidate CCMs

up front that work well in practice, but does not use refinement to learn from failures. An

interesting question is whether these two techniques could be effectively combined, so that

simple ranking functions or CCMs could be found with lightweight heuristic analyses, and

more difficult analyses could be used to analyze failed loops and find new CCMs or ranking

functions.

A new class of termination analyses based on the same general principle as Terminator

were recently developed in [9]. Among these are the OctaTerm and PolyTerm analyses

with which we compared our analysis in Section 10.1. This work provides a framework for

using invariant analyses to reason about termination. The idea is to find the invariant at

the beginning of a loop, seed it with history variables, and ask for the loop invariant. The

resulting invariant describes the change in values after any number of iterations through the

loop. This invariant can then be fed to a well-foundedness analysis to determine if the given

invariant describes a well-founded relation between the history variables and the current

state. If the invariants for all the loops in a program can be determined to be well-founded,

then by the previously mentioned result by Podelski and Rybalchenko [93], the program is

terminating.

The OctaTerm and PolyTerm analysis use this framework along with the Octagonal [81]

and the New Polka Polyhedra library [52] invariant analyses, respectively. As the experi-

mental results of this chapter show, our analysis compares favorably to these two analyses.

As with terminator, we correctly analyze more examples than either of these analyses. In
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addition, these analyses are limited to the domain of their underlying invariance analysis.

In the cases of OctaTerm and PolyTerm, these analyses are limited to algebraic programs,

and can not handle data structures, as our analysis can.

Another instantiation of the previously mentioned framework for using invariant analyses

to prove termination uses the Sonar heap analysis, which analyzes the shape and size of

data structures on the heap. Such a termination analysis can therefore reason about the

changing sizes of data structures, which are helpful when walking through a list, tree, or

graph. Such analyses have been used in ACL2 to prove termination since its inception.

The difference is that ACL2 has a built-in notion of such data structures, as opposed to

C, where they must be built using structures and pointers. Sonar is therefore not of use

to our CCG analysis currently, as the size and shape of data structures can be determined

in applicative first-order functional languages without a heap analysis. However, such an

analysis would be helpful should we decide to adapt the CCG analysis to a language such

as C.
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CHAPTER XI

ACL2 INTEGRATION

In this chapter, we explore the issues involved in integrating the CCG analysis with ACL2.

Our primary obligation is to ensure that if ACL2 uses our analysis, it will not alter the logic.

To do this, we more formally describe ACL2’s current termination requirement, known as

measure admissibility, propose the concept of CCG admissibility in Section 11.2, and prove

that CCG admissibility implies measure admissibility in Section 11.3. This result ensures

that the integration of the CCG analysis into ACL2 would result in no change to the ACL2

logic.

In Section 11.4, we turn to the engineering challenges involved in integrating the CCG

analysis with the theorem prover in such a way so that the heuristics and algorithms used

by the prover are not negatively affected.

11.1 Preliminaries: Measure Admissibility in ACL2

In order to demonstrate that our analysis does not change the ACL2 logic, we need a more

formal understanding of how ACL2 deals with termination. In ACL2, all functions must be

proven to be terminating using measures, in a way similar to that described in Section 2.1.1.

However, ACL2 has additional requirements that ensure that the function or functions are

provably terminating in the ACL2 logic. We therefore begin by reviewing several important

concepts in first-order logic for understanding ACL2’s logic.

The set of function symbols occurring in a set, F , of formulas is called the language of

F . A theory is a set, T , of formulas that are first-order derivable from a set of axioms, F ,

whose extra-logical symbols all occur in F . These formulas are often called theorems of F

or of T . A theory, T1, is a conservative extension of a theory, T0, if T0 ⊆ T1 and for every

theorem, φ ∈ T1 such that φ is in the language of T0, φ is a theorem of T0.

The primitives of applicative Common Lisp are axiomatized in ACL2, as are the basic

data types, including natural numbers, integers, rationals, complex rationals, ordered pairs,
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symbols, characters, and strings. These form the initial axioms of ACL2. Upon start-

up, ACL2 provides the user with a conservative extension of these axioms, known as the

ground-zero theory, GZ. Included in this theory as of version 2.8, is the representation of

the ordinals up to ε0 presented in Section 4.3. They are recognized by the function o-p

That is, (o-p v) is true if and only if v is an ordinal in ACL2’s representation. The ordering

relation on the ordinals in ACL2’s representation is o<. That is, if (o-p v1) and (o-p v2),

then (o< v1 v2) would return true if and only if v1 represented an ordinal less than that

represented by v2.

ACL2 provides techniques for extending a given theory. Two of these are deriving

new theorems from T and by adding new definitional axioms. A theorem is is simply an

expression, e, in the ACL2 language for which it is first-order derivable that for all valuations

of free(e), e evaluates to a non-nil value. A definitional axiom is given by a set of defun

statements, d, as defined in Section 2.1. The new theory created is

T ′ = T ∪ (
∧

1≤i≤k

(fi x
fi
1 . . . xfi

ar(fi)
) = efi)

However, not just any function definition can be added as an axiom to ACL2. The goal is

to ensure that T ′ is a consistent and conservative extension of T . For example, the defini-

tion (defun f (x) (not (f x))) should not be allowed since it leads to an inconsistency.

Therefore, ACL2 has the notion of a definitional principle, which governs when a defini-

tional axiom is safe to add to a theory. The following are used to define the definitional

principle.

Definition 11.1.1. A measure for d defined over a theory, T , associates each fi with a

first-order definable function, mfi
with respect to T of the same arity as fi.

For the remainder of this section, we assume a fixed measure as denoted in the pre-

vious definition. We now define the parallel notion of well-founded structures in ACL2.

Rather than reasoning directly about possibly infinite sets, ACL2 uses predicates that de-

cide whether or not an object from the ACL2 universe is in a given set. Also, since the

ordinals up to ε0 form the basis of well-founded reasoning in ACL2, we must demonstrate

an embedding from our well-founded structure into ε0 that preserves the ordering. In the
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following definition, we show how this is done using a predicate, mp, an ordering, mr, and

a mapping from the set recognized by mp into the ordinals, mm.

Definition 11.1.2. 〈mp,mr〉 ∈ Fun2 are T -well-founded if mp is a unary function in the

language of T , mr is a binary function in the language of T , and there exists a binary

function, mm in the language of T such that the following is a theorem in T :

(and (implies (mp x) (o-p (mm x)))
(implies (and (mp x1) (mp x2)

(mr x1 x2))
(o< (mm x1) (mm x2))))

Definition 11.1.3. Let 〈mp,mr〉 ∈ Fun2 be T -well-founded. Then d is measure admissible

in logic T if, for all 1 ≤ i ≤ k, the following conditions hold:

• (mp (mfi
xfi

1 . . . xfi

ar(fi)
)) is a theorem of T .

• For all p ∈ Pos(efi) such that e = efi |p is a function call of the form (fj e1 . . .

ear(fj)) to a function, fj , defined in d, and R =(and r1 . . . rn) where rulers(efi , p) =

{r1, . . . , rn}, then (implies R (mr (mfj
e1 . . . ear(fj)) (mfi

xfi
1 . . . xfi

ar(fi)
))) is

a theorem of T .

The definitional principle states that a function must be measure-admissible before it is

admitted into the logic.

11.2 CCG Admissibility

In the same vein as the previous section, we develop the notion of CCG Admissibility,

which provides a new condition under which to admit new definitional axioms. Let T be

a fixed theory and d be the new definitional axioms. We begin with the concept of ruler

semi-complete calling contexts, which mirror the callsites and their rulers.

Definition 11.2.1. The set of ruler semi-complete calling contexts for d is the semi-

complete set of contexts whose conditions are the rulers of the call in the body of the

function in which the call appears.
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Using ruler semi-complete contexts, we build a CCG as follows.

Definition 11.2.2. A semi-complete T -CCG for d is a CCG, G = (C,E) such that C is

the set of ruler semi-complete calling contexts of d and for every pair 〈c, c′〉 ∈ C2 where c =

〈f, {r1, r2, . . . , rn}, e〉 and c′ = 〈f ′, {r′1, r′2, . . . r′m}, e′〉 such that e is a call to f ′, 〈c, c′〉 ∈ E

unless T ` (not (and r1 r2 . . . rn r′1σe . . . r′mσe)).

For the CCM annotation, we need to be sure that it is first-order provable that the

expressions always map into a given set. We do this by requiring that there be a first-order

definable function mp that recognizes the elements of some set, and that we can prove in

theory T that the CCMs of the CCG always satisfy mp.

Definition 11.2.3. Given a semi-complete T -CCG,G = (C,E), and mp ∈ Fun a unary

function in the language of T , a mapping m : C → P(Expr) is a T -expressible mp CCM

annotation, if for all c ∈ C, for all s ∈ m(c), s is an expression over the language of T and

T ` (mp s)

In practice, we want mp to recognize elements in some woset. We therefore need the

concept of T -well-orderedness, which mirrors the previously defined concept of T -well-

foundedness. In addition, we will require that mp be embeddable into some ordinal strictly

less than ε0.

Definition 11.2.4. A pair 〈mp,mr〉 ∈ Fun2 is T -well-ordered if there exists mm such that

the following is a theorem in T :

(and (implies (mp x) (o-p (mm x)))
(implies (and (mp x) (mp y) (mr x y))

(o< (mm x) (mm y)))
(implies (and (mp x) (mp y))

(or (mr x y) (mr y x) (equal x y))))

Further, 〈mp,mr〉 is T -ordinal-bound by v ∈ Val such that the following is a theorem

in T :

(and (o-p v)
(not (equal v 0))
(implies (mp x)

(o< (mm x) v)))
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Note that it is first-order provable in T that if 〈mp,mr〉 is T -well-ordered, it is T -well-

founded. Now consider the CCMFs we construct for our CCG. Again, we must be able to

prove that they are safe using theory T .

Definition 11.2.5. Given a semi-complete T -CCG, G = (C,E), 〈mp,mr〉 ∈ Fun2 that

is T -well-founded, a T -expressible mp CCM annotation, m, and 〈c, c′〉 ∈ E such that c =

〈f, {r1, . . . , rn}, e〉 and c′ = 〈f ′, {r′1, . . . , r′m}, e′〉, a CCMF, φc
c′ , for m is T -compatible, if, for

all s ∈ m(c), s′ ∈ m(c′), the following conditions hold:

• (φc
c′(s, s

′) =>)⇒ (T ` (implies (and r1 . . . rn r′1σe . . . r′mσe) (mr s′σe s)))

• (φc
c′(s, s

′) =≥)⇒

(T ` (implies (and r1 . . . rn r′1σe . . . r′mσe) (not (mr s s′σe))))

Putting these concepts together, we obtain the notion of CCG admissibility.

Definition 11.2.6. A definitional axiom, d is CCG admissible in theory T if there exists

a semi-complete T -CCG, G = (C,E), 〈mp,mr〉 ∈ Fun2 that is T -well-ordered and T -

ordinal-bounded by some v ∈ Val , a T -expressible mp CCM annotation, m, and CCMF set

Φ = {φc
c′ | 〈c, c′〉 ∈ E ∧ φc

c′ is T compatible}, such that Φ is well-founded.

11.3 Compatibility With the ACL2 Logic

We show that CCG admissibility implies measure admissibility. Our proof relies on a result

by Lee [64] which he uses to prove the existence of a ranking function when size-change

termination analysis succeeds. We begin with a quick proof outline to give some intuition

as to where we are heading.

In order to leverage Lee’s result, we must formalize the connection between our concept

of well-founded CCMFs and the concept of size-change graphs that satisfy the size-change

termination condition (SCT). We begin by giving a quick overview of size-change graphs

and the size-change termination condition, as well as a statement of the result from Lee’s
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paper. This result, while not explicitly giving a ranking function, implies the existence

of one that can be proven decreasing for each step of computation using only information

collected from the size-change graphs that satisfy SCT. This ranking function will map

parameters to tuples of parameters and constants.

We then demonstrate how to convert CCMFs into size-change graphs in such a way that

a set of CCMFs are well-founded if and only if the corresponding size-change graphs satisfy

the size-change termination condition. Using this result, we transfer Lee’s result about SCT

to a result about CCMFs.

Using this result about well-founded CCMFs we will demonstrate the existence of a

“per-context” measure —i.e., an expression that is first-order provably decreasing from one

context to the next in the CCG. This measure will map the parameters of the function of

a context to lists of the CCMs of the context and contants.

Finally, we will show how to combine the “per-context” measures of all the contexts of

a given function into a traditional ACL2 measure that will be provably decreasing across

every function call. In fact, we will derive two such measures. One will be simpler, and will

be applicable only when CCG admissibility is proven using only “per-context” CCMFs as

described in Section 9.2.3.1, and one that will be more complex, but apply in all cases when

the function definitions are CCG admissible.

11.3.1 Background: Size-Change Termination and Ranking Functions

We begin with a review of size-change termination and Lee’s result about the existence of

ranking functions.

Definition 11.3.1. Let F ⊂ Fun be a finite set of function names. For each f ∈ F , we

write Parf ⊆ Var+ to denote a set of distinct finite set of variables, called the parameters of

f . A size-change graph, G, from f ∈ F to f ′ ∈ F , denoted G : f → f ′ is a labeled bipartite

directed graph, G = (Parf ∪ Parf ′ , E) such that E ⊆ {〈x, γ, x′〉 | x ∈ Parf ∧ x′ ∈

Parf ′ ∧ γ ∈ {>,≥}}, and ¬(〈x,>, x′〉 ∈ E ∧ 〈x,≥, x′〉 ∈ E). We denote the fact that

G contains the edge 〈x, γ, x′〉 by x
γ−→G x′.
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The full size change analysis takes as input a set of functions and constructs a size-

change graph, G : f → f ′ for each recursive call to f ′ in f . The edges of G reflect the

relationship between the values of the parameters of f and the values being passed to f ′

in the call. However, for our purposes we do not need to formalize the connection between

the language semantics and size-change graphs.

We now define what it means for a set of size-change graphs to be size change termi-

nating.

Definition 11.3.2. A sequence of size-change graphs, G1 : f1 → f ′1, G2 : f2 → f ′2, . . . is

control-flow legal if, for all i, f ′i = fi+1.

G satisfies size-change termination (SCT), if for any control-flow legal sequence of

size-change graphs, G1 : f1 → f ′1, G2 : f2 → f ′2, . . ., there exists i0 ≥ 1 and a sequence

xi0 , xi0+1, . . ., such that, for all i ≥ i0, xi ∈ Parfi
and there exists γi ∈ {>,≥}, and for

infinitely many i ≥ i0, γi =>.

Note the similarity between size-change graphs and CCMFs, and between the SCT

condition for size-change graphs and the well-foundedness condition for CCMFs. This is

why we can use the SCT algorithm as the back end to our CCG analysis.

We now present definitions that culminate in the result from Lee’s paper that is key to

our argument that CCG admissibility implies measure admissibility.

Notation 11.3.1. By (i)〈S,≺〉, where i ∈ ω, we mean the unique element, v ∈ S, such that

|{u ∈ S | u ≺ v}| = i (note that this is a unique element since S is well-ordered by ≺).

Let Parf,n = Parf ∪ {(i)〈S,≺〉 | 0 ≤ i ≤ n}, and Park
f,n denote k-tuples of the elements of

Parf,n.

If G : f → f ′ is a size-change graph, n ∈ ω−{0}, z ∈ Parf,n, and z′ ∈ Parf ′,n, then we

write z′ <G z if z′ ∈ Parf ′, z ∈ Parf , and z >−→G z′, or if z′, z ∈ S and z′ ≺ z. We write

z′ ≤G z if z′ ∈ Parf , z ∈ Parf ′, and z ≥−→G z′, or if z′, z ∈ S and z′ � z, or if z′ = (0)〈S,≺〉

and z ∈ Parf .

Definition 11.3.3. Given a size-change graph G : f → f ′, ~z = 〈zi〉ki=1 ∈ Park
f,n, and

~z′ = 〈z′i〉ki=1 ∈ Park
f ′,n, we write ~z′ <G ~z if k > 0 and one of the following conditions hold:
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• z′1 <G z1 or

• both of the following conditions hold

– z′1 ≤G z1 and

– 〈zi〉ki=2 <G 〈z′i〉ki=2

Notice that <G defines a kind of static lexicographic order. The central result, para-

phrased in the following theorem, is the main result of Lee’s paper for our purposes [64].

Theorem 11.3.1. Let F ⊂ Fun be finite, and G be a set of size-change graphs from

functions in F to functions in F . Then if G satisfies SCT, there exists k, n ∈ ω, and

{Sf ⊆ (P(Park
f,n) − {∅}) | f ∈ Fun}, such that, for all G : f → f ′ ∈ G and Z ∈ Sf , there

exists z ∈ Z, and Z ′ ∈ Sf ′ such that, for all z′ ∈ Z ′, z′ <G z.

11.3.2 CCMFs and Size-Change Graphs

In order to apply Theorem 11.3.1 to our CCG analysis, we must describe how to reduce the

problem of determining if a CCG is well-founded to the problem of determining if a set of

size-change graphs satisfy SCT. We begin by fixing the following values.

Notation 11.3.2. Let T be a theory, and d be a definitional axiom. Let 〈mp, m<〉 ∈ Fun2 be

T -well-ordered, and T -ordinal-bounded by v ∈ Val. Let G = (C,E) be a ruler semi-complete

T -CCG for d, and m be a T -expressible mp CCM annotation. Finally, let {Re ∈ Expr | e ∈

E} and Φ = {φc
c′ | 〈c, c′〉 ∈ E} be a set of CCMFs for G such that, for all c = 〈f,R, e〉c′ =

〈f ′, R′, e′〉 ∈ C such that 〈c, c′〉 ∈ E, φc
c′(s, s

′) => implies that T ` (implies R〈c,c′〉 (m<

s′σe s)) and φc
c′(s, s

′) =≥ implies that T ` (implies R〈c,c′〉 (not (m< s s′σe))).

We denote {v ∈ Val | T ` (mp v)} as M and {〈v, v′〉 | T ` (m< v v′)} as ≺M.

Fix these values for the remainder of the section. Note that if all the φc
c′ ∈ Φ are T -

compatible, we can choose R〈c,c′〉 to be the conjunction of the rulers of c and c′ (with the

call-substitution for c applied to the rulers of c′). Also, note that 〈M,≺M〉 is a well-ordered

structure.

We now give a method for constructing size-change graphs from CCMFs.
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Notation 11.3.3. For each c ∈ C, let fc ∈ Fun denote a function name that does not appear

in T . We denote the CCMs for c, m(c), as sc
1, . . . s

c
|m(c)|, and Parfc as {xc

1, . . . x
c
|m(c)|}.

Definition 11.3.4. Let φc
c′ ∈ Φ. Then the size-change graph for φc

c′ , is G : fc → fc′ , such

that, for all xc
i ∈ Parfc and xc′

j = inParfc′ , x
c
i

≥−→G xc′
j iff φc

c′(s
c
i , s

c′
j ) =≥, and there is an

edge xc
i

>−→G xc′
j iff φc

c′(s
c
i , s

c′
j ) =>. We denote the set of size-change graphs for the CCMFs

of Φ to be GΦ.

Using this transformation, we get the following theorem.

Theorem 11.3.2. Φ is well-founded if and only if GΦ satisfies SCT.

Proof. Follows directly from the definitions of the well-foundedness of CCMFs, SCT, and

GΦ.

11.3.3 Constructing the Per-Context Measure

We now show how to use the previous result to construct a per-context measure.

Definition 11.3.5. For every c ∈ C, let CCMc = m(c), CCMc,n = CCMc ∪ {(i)〈M,≺M〉 |

1 ≤ i ≤ n}, and CCMk
c,n = {(list e1 . . . ek) | ∀1 ≤ i ≤ k, ei ∈ CCMc,n} ⊆ Expr . Also,

for each c ∈ C, let ϕc : Park
fc,n → CCMk

c,n be defined as ϕc(〈zi〉ki=1) = (list e1 . . . ek)

where, for all 1 ≤ i ≤ k, ei = zi if zi ∈M, and ei = sc
i if zi = xc

i .

Figure 42 on the following page gives the definitions of lmp and l<, which recognize

tuples of values that satisfy mp and compute the lexicographic ordering on tuples that are

the same size, respectively. Tuples are stored as lists, which are tuples of values that satisfy

mp if they are empty (representing 0-tuples), or if their first element satisfies mp and the

rest of the list represents such a tuple. The ordering function, l< firsts tests if the tuples

are of the same size (len returns the length of a list), and then calls d<, which returns true

either if the first element of x is less than that of y by m<, or they are equal and the rest of

x is less than the rest of y.

Given that 〈mp, m<〉 is T -well-ordered and T -ordinal-bound, it is the case that 〈lmp, l<〉

is also T -well-ordered. Also, both m< and l< are transitive on their respected domains.
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(defun lmp (x)
(if (endp x)

(eq x nil)
(and (mp (car x))

(lmp (cdr x)))))

(defun d< (x y)
(and (consp x)

(or (m< (car x) (car y))
(and (equal (car x) (car y))

(d< (cdr x) (cdr y))))))

(defun l< (x y)
(and (= (len x) (len y))

(d< x y)))

Figure 42: Defining mp tuples in ACL2

We have verified these properties in ACL2 version 3.2.1. We note the following connection

between Park
fc,n and lmp.

Lemma 11.3.1. Let c ∈ C, k, n ∈ ω, and ~z ∈ Park
fc,n. Then T ` (lmp ϕc(~z))

Proof. Proof is by induction on k. If k is 0, then clearly (lmp (list)) is a theorem, since

(list) returns the empty list.

Otherwise, suppose that the lemma is true for k− 1. Let ~z = 〈zi〉ki=1 and ϕc(~z) =(list

e1 . . . ek). Then

T ` (lmp (list e1 . . . ek))

≡ {Axioms of lmp, car, cdr, list }

T ` (and (mp e1) (lmp (list e2 . . . ek)))

≡ {Boolean reasoning }

T ` (mp e1) ∧

T ` (lmp (list e2 . . . ek))

≡ { Induction Hypothesis }

T ` (mp e1)

At this point, there are two cases. One is that e1 = (i)〈M,≺M〉 for some 1 ≤ i ≤ n. In

this case T ` (mp e1) by the definition of M. Otherwise, e1 ∈ CCMc = m(c). Since, m is

a T -expressible mp CCM annotation, T ` (mp e1) by definition.

A similar connection exists between <G and l<.

Lemma 11.3.2. Let φc
c′ ∈ Φ, G : c→ c′ be the size-change graph for φc

c′, ~z ∈ Park
fc,n, and

~z′ ∈ Park
fc′ ,n

. Then if ~z′ <G ~z, T ` (implies R〈c,c′〉 (l< ϕc′(~z′)σe ϕc(~z))).

Proof. Let ~z = 〈zi〉ki=1, ~z
′ = 〈z′i〉ki=1, ϕc(~z) =(list e1 . . . ek), and ϕc′(~z′) =(list e′1 . . .

e′k), Note that, by the definition of l< and len, and the fact that both lists are of length

k, l< is equivalent to d<. Therefore, we prove that T ` (implies R〈c,c′〉 (d< ϕc′(~z′)σe

ϕc(~z))).

The proof is by induction on k. If k is 0, then ¬(~z′ <〈c,c′〉 ~z), and the lemma is vacuously

true. there are three cases.
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In the first case, z1 ∈ Parfc = m(c), z′1 ∈ Parfc′ , and z1
>−→G z′1. By the definition of

GΦ, this means that φc
c′(e1, e

′
1) =>. By the definition of φc

c′ in Notation 11.3.2 on page 141,

this means that T ` (implies R〈c,c′〉 (m< e′1σe e1)). Therefore, by the definition of d <,

T ` (implies R〈c,c′〉 (d< ϕc′(~z′)σe ϕc(~z))).

In the second case, 〈z′i〉ki=2 <〈c,c′〉 〈zi〉ki=2 and one of the following three cases hold: either

z1 ∈ Parfc,n and z′1 = (0)〈M,≺M〉, or z1, z′1 ∈ Parfc,n and z1
≥−→G z′1, or z1 = z′1 ∈M.

If z1 ∈ Parfc,n and z′1 = (0)〈M,≺M〉, then T ` (implies R〈c,c′〉 (not (m< e1 e′1))).

Since 〈mp, m<〉 is T -well-ordered, this is equivalent to T ` (implies R〈c,c′〉 (or (equal

e′1 e1) (m< e′1 e1))). In either case, T ` (implies R〈c,c′〉 (d< ϕc′(~z′)σe ϕc(~z))) by the

definition of d< and the induction hypothesis.

If z1, z′1 ∈ Parfc,n and z1
≥−→G z′1 then φc

c′(z1, z
′
1) =≥. By the definition of φc

c′

in Notation 11.3.2 on page 141, this means that T ` (implies R〈c,c′〉 (not (m< e′1σe

e1))). Therefore, by the same argument as in the previous case, T ` (implies R〈c,c′〉

(d< ϕc′(~z′)σe ϕc(~z))).

Finally, if z1 = z′1 ∈ M. Then e1 = z1 and e′1 = z′1. Then we have that T `

(equal e1 e′1). Therefore, T ` (implies R〈c,c′〉 (d< ϕc′(~z′)σe ϕc(~z))) by the definition

of d<.

Now we apply Lee’s result (Theorem 11.3.1 on page 141) to the original CCG problem.

Lemma 11.3.3. If Φ is well-founded, there exist k, n ∈ ω and {Sc ⊆ (P(CCMk
c,n)− {∅} |

c ∈ C} such that, for all c = 〈f, {r1, . . . , rm}, e〉, c′ = 〈f ′, {r′1, . . . , r′m}, e′〉 ∈ C such that

〈c, c′〉 ∈ E and S ∈ Sc, there exists s ∈ S and S′ ∈ Sc′ such that, for all s′ ∈ S′, T `(implies

R〈c,c′〉 (l< s′σe s)).

Proof. If Φ is well-founded, then by Theorem 11.3.2 on page 142, GΦ satisfies SCT. There-

fore, by Theorem 11.3.1 on page 141, there exists k, n ∈ ω, and {Sfc ⊆ (P(Park
f,n)− {∅}) |

c ∈ C}, such that, for all G : fc → fc′ and Z ∈ Sfc , there exists z ∈ Z, and Z ′ ∈ Sfc′ such

that, for all z′ ∈ Z ′, z′ <G z.

But if z′ <G z, then by Lem 11.3.2 on the preceding page, T ` (implies R〈c,c′〉 (l<

ϕc′(z′)σe ϕc(z))). Therefore, if we let Sc = {{ϕc(z) | z ∈ Z} | Z ∈ Sfc} for each c ∈ C,
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(defun min-l< (lst)
(cond ((endp lst) nil)

((endp (cdr lst)) (car lst))
(t
(let ((min (min-l< (cdr lst))))
(if (l< (car lst) min)

(car lst)
min)))))

(defun max-l< (lst)
(cond ((endp lst) nil)

((endp (cdr lst)) (car lst))
(t
(let ((max (max-l< (cdr lst))))
(if (l< (car lst) max)

max
(car lst))))))

(defun max-l<-lst (lst)
(if (endp lst)

nil
(cons (max-l< (car lst))

(max-l<-lst (cdr lst)))))

Figure 43: min-l<, max-l<, and max-l<-lst functions.

then the theorem holds for these values.

11.3.4 Measure Admissibility

Now we must consolidate these sets of sets of expressions into a single measure for each

function. The first step in doing this is to create a single expression for each context that

is provably decreasing along each edge of the CCG. To do this we use the functions in

Figure 43. The first of these, min-l< takes a list and returns the minimum value in the list

according to the ordering l<. The second, max-l<, is similar, but returns the maximum

value of the list. Finally, max-l<-lst takes in a list of lists, (l1 . . . ln) and returns the list

(e1 . . . en) such that ei is the maximum value in li by ordering l< for all 1 ≤ i ≤ n.

For the remainder of the section, define L for each c ∈ C to be {e ∈ Expr | T `

(lmp e). As we have seen, L includes CCMk
c,n for all k. Further, let Lk be {e ∈ L | T `

(equal (len e) k). Also, given a set, listof (S) be the set of lists whose elements are
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members of S. We begin by showing that max-l< and min-l< preserve types.

Lemma 11.3.4. If e ∈ listof (Lk) for some k ∈ ω, then (max-l< e) ∈ Lk.

Proof. Proof is by induction over the length of e.

Lemma 11.3.5. If for some k ∈ ω, e ∈ listof (listof (Lk)), then (min-l< (max-l<-lst

e))∈ Lk.

Proof. Proof is by induction over the length of e.

Next, we tie the functions of Figure 43 on the preceding page to the conditions of

Lemma 11.3.3 on page 144 using the following four lemmas.

Lemma 11.3.6. Let 〈c, c′〉 ∈ E, R ∈ Expr, s ∈ Lk and non-empty S′ = {s′i | 1 ≤ i ≤ r} ⊆

Lk. Then 〈∀s′ ∈ S′ :: T ` (implies R (l< s′σe s))〉, if and only if T ` (implies R (l<

(max-l< (list s′1 . . . s′r))σe s)).

Proof. The proof is by a simple inductive argument on r.

Lemma 11.3.7. Let 〈c, c′〉 ∈ E, R ∈ Expr, s ∈ Lk and non-empty S′ = {s′i | 1 ≤ i ≤ r} ⊆

Lk
c′. Then 〈∃s′ ∈ S′ :: T ` (implies R (l< s′σe s))〉, if and only if T `(implies R (l<

(min-l< (list s′1σe . . . s′rσe)) s)).

Proof. The proof is by a simple inductive argument on r.

Lemma 11.3.8. Let c = 〈f, {r1, . . . , rm}, e〉, c′ = 〈f ′, {r′1, . . . , r′m′}, e′〉 ∈ C such that

〈c, c′〉 ∈ E. Let R ∈ Expr, non-empty S = {si | 1 ≤ i ≤ r} ⊆∈ Lk and s′ ∈ Lk
c′ such

that. Then 〈∃s ∈ S :: T ` (implies R (l< s′σe s))〉, if and only if T ` (implies R (l<

s′σe (max-l< (list s1 . . . sr)))).

Proof. The proof is by a simple inductive argument on r

Lemma 11.3.9. Let c = 〈f, {r1, . . . , rm}, e〉, c′ = 〈f ′, {r′1, . . . , r′m′}, e′〉 ∈ C such that

〈c, c′〉 ∈ E. Let R ∈ Expr, non-empty S = {si | 1 ≤ i ≤ r} ⊆ Lk
c and s′ ∈ Lk

c′. Then

〈∀s ∈ S :: T ` (implies R (l< s′σe s))〉, if and only if T ` (implies R (l< s′σe

(min-l< (list s1 . . . sr)))).
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Proof. The proof is by a simple inductive argument on r.

Lemma 11.3.10. If Φ is well-founded, there exist k ∈ ω and {mc ∈ Lk | c ∈ C} such that,

for all c ∈ C, T `(lmp mc) and, for all 〈c, c′〉 ∈ E, T `(implies R〈c,c′〉 (l< mc′σe mc))

Proof. By Lemma 11.3.3 on page 144, there exist k, n ∈ ω and {Sc ⊆ (P(CCMk
c,n)− {∅} |

c ∈ C} such that, for all c = 〈f, {r1, . . . , rm}, e〉, c′ = 〈f ′, {r′1, . . . , r′m}, e′〉 ∈ C such that

〈c, c′〉 ∈ E and S ∈ Sc, there exists s ∈ S and S′ ∈ Sc′ such that, for all s′ ∈ S′, T `(implies

R〈c,c′〉 (l< s′σe s)).

Denote each Sc as {Sc
1, . . . , S

c
nc
} where for all 1 ≤ i ≤ nc, Sc

i = {sc
i,1, . . . , s

c
i,nc

i
}. Then

for each c ∈ C, let Lc =(list Lc
1 . . . Lc

nc
) where for all 1 ≤ i ≤ nc, Lc

i =(list sc
i,1 . . .

sc
i,nc

i
). Finally, let mc =(min-l< (max-l<-lst Lc)).

The first part of the theorem, that for all c = 〈f, {r1, . . . , rm}, e〉 ∈ C, T ` (lmp mc)

follows directly from Lemma 11.3.5 on the previous page.

Consider the second claim. Let e = 〈c, c′〉 ∈ E. Then,

〈∀Sc
i ∈ Sc :: 〈∃sc

i,j ∈ Sc
i , S

c′
a ∈ Sc′ :: 〈∀sc′

a,b ∈ Sc′
a :: T ` (implies Re (l< sc′

a,bσe sc
i,j))〉〉〉

≡ {Lem. 11.3.6 }

〈∀Sc
i ∈ Sc :: 〈∃sc

i,j ∈ Sc
i , L

c′
a ∈ Lc′ :: T ` (implies Re (l< (max-l< Lc′

a )σe sc
i,j))〉〉

≡ {Lem. 11.3.8 }

〈∀Lc
i ∈ Lc :: 〈∃Lc′

a ∈ Lc′ :: T ` (implies Re (l< (max-l< Lc′
a )σe (max-l< Lc

i)))〉〉

≡ {Lem. 11.3.7, Def. of max-l<-lst }

〈∀Lc
i :: T ` (implies Re (l< (min-l< (max-l<-lst Lc′

a σe)) (max-l< Lc
i)))〉

≡ {Lem. 11.3.9, Def. of max-l<-lst }

T ` (implies Re (l< (min-l< (max-l<-lst Lc′))σe) (min-l< (max-l<-lst Lc)))

≡ {Def. of mc }

T ` (implies Re (l< mc′σe mc))

So now we have a single expression for each context that provably decreases along every
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edge of G. Now we must combine these “context measures” into a single measure for each

function. While the ultimate goal is to do this for T -compatible CCMFs, we first note the

following, which will be useful when dealing with “per-context” CCMFs as discussed in

Section 9.2.3.1.

Theorem 11.3.3. Suppose that Φ is well-founded. For all c ∈ C, let mc be as described in

Lemma 11.3.10 on the preceding page. For each f defined in d, let Cf = {cfi | 1 ≤ i ≤ nf}

be the contexts whose function is f , and mf = (max-l< (list m
cf
1
. . . m

cf
nf

)).

Then if, for every c = 〈f, {r1, . . . , rn}, e〉, c′ = 〈f ′, {R′}, e′〉 ∈ C such that e is a call to

f ′, 〈c, c′〉 ∈ E and R〈c,c′〉 = (and r1 . . . rn), then d is measure admissible by the measure

that maps each f defined in d to mf .

Proof. We have two obligations.

The first is to show that T ` mf . But this follows directly from Lemma 11.3.4 on

page 146 and the properties of each mc as given in Lemma 11.3.10 on the preceding page.

Our second obligation is to show that, for all f defined in d and p ∈ Pos(ef ) such that

e = ef |p is a call to function f ′ and R =(and r1 . . . rm) where rulers(ef , p) = {r1, . . . , rm},

it is the case that T `(implies R (m< mf ′σe mf)). Since G is ruler semi-complete, there

exists c = 〈f, {r1, . . . , rm}, e〉 ∈ Cf . Also, by the hypotheses of our theorem, for all c′ ∈ Cf ′ ,

〈c, c′〉 ∈ E. Therefore, by Lemma 11.3.4 on page 146 and the hypotheses of this theorem,

T ` (implies R (m< mc mc′)) for every c′ ∈ Cf ′ . Therefore, by Lemmas 11.3.6 on

page 146 and 11.3.9 on page 146, T ` (implies R (m< mf ′σe mf)).

For the more general case, where all the φc
c′ are T -compatible, the proof of measure

admissibility is a bit more difficult. To construct the measure, we take the maximum of the

context measures whose contexts’ conditions are satisfied. In ACL2, this expression is of

the form

(let* ((m (list v0))
(m (if R1 (cons (cons (1)〈M,≺M〉 mc1) m) m))
. . .
(m (if Rr (cons (cons (1)〈M,≺M〉 mcn) m) m)))

(max-l< m)))
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where v0 is the minimal element of the k + 1 tuples of M, the Ri are the conjunction of

the conditions of each context of the function, and the mi are the context measures of

the contexts of the given function. The inclusion of v0 in the list is to ensure that m is

non-empty even in the base case (when none of the Ri are true). The mi are all prefixed

with the second-to-the-least element of M to ensure that the measure decreases when the

measure for the next step is v0. Note that this expression potentially violates one of the

requirements of measures. The problem is that measures should be expressible over T ,

which does not include functions of d, while this measure may mention the functions of d,

which might appear in the callsite rulers. After much discussion with one of the developers

of ACL2, we determined that this requirement is not necessary to maintain soundness, and

therefore can be loosened to allow calls to the functions of d. We may therefore proceed to

show that the original functions defined in d are measure admissible by this measure. We

begin by showing that the measure is always provably recognized by mp.

Lemma 11.3.11. Let c1, . . . , cr ∈ C, and e1, e2, . . . , er ∈ Expr, 〈∀1 ≤ i ≤ r :: ei ∈ Lk〉.

Further, let {ri,1, . . . , ri,mi} be the conditions of ci, and Ri =(and ri,1 . . . ri,mi). Finally,

let v0 ∈ Val is the list of length k + 1 whose elements are all (0)M,≺M. Then the following

is a theorem of T :

(lmp (let* ((m (list v0))
(m (if R1 (cons (cons (1)〈M,≺M〉 e1) m) m))
. . .
(m (if Rr (cons (cons (1)〈M,≺M〉 er) m) m)))

(max-l< m))

Proof. Let e′i denote (cons (1)〈M,≺M〉 ei) for each 1 ≤ i ≤ r. Then, using the previous

result, note the following.

T ` (lmp (max-l< (if Ri (cons e′i m) m)))

≡ {Boolean Reasoning }

T ` (implies Ri (lmp (max-l< (cons e′i m)))) ∧

T ` (implies (not Ri) (lmp (max-l< m)))

≡ {Def. of max-l<, Axioms of car, cdr }
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T ` (implies Ri (lmp (if (l< e′i (max-l< m)) m e′i))) ∧

T ` (implies (not Ri) (lmp (max-l< m)))

≡ {Boolean Reasoning }

T ` (implies (and Ri (not (l< e′i (max-l< m))) (lmp e′i))) ∧

T ` (implies (and Ri (l< e′i (max-l< m))) (lmp m))) ∧

T ` (implies (not Ri) (lmp (max-l< m)))

⇐ {Boolean Reasoning, Def. of l<, e′i }

T ` (implies (and Ri (not (l< e′i (max-l< m))) (lmp ei))) ∧

T ` (lmp m))

≡ {Def. of L}

T ` (lmp m)

Now on to the main result. For the sake of brevity, let bi =(if Ri (cons (cons

(1)〈M,≺M〉 ei) m)) for 1 ≤ i ≤ r. The proof is by induction on r.

If r = 0, this is trivially true by the definitions of e0 and Lemma 11.3.4 on page 146.

Otherwise, let m′ =(let* ((m (list e0)) (m b1) . . . (m br−1)) m). Then

T ` (lmp (let* ((m (list e0)) (m b1) . . . (m br)) (max-l< m)))

≡ {Language Semantics }

T `

 (lmp (let* ((m (list e0)) (m b1) . . . (m br−1))

(max-l< (if Rr (cons (cons (1)〈M,≺M〉 er) m)))))


≡ {Language Semantics }

T ` (lmp (max-l< (if Rr (cons (cons (1)〈M,≺M〉 er) m′) m′)))

⇐ {Previous Result }

T ` (lmp (max-l< m′))

≡ {Language Semantics }

T ` (lmp (let* ((m (list e0)) (m b1) . . . (m br−1)) (max-l< m)))

≡ { Induction Hypothesis }

true
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Next, we prove the following lemma which will be helpful in proving that the measure

decreases across each recursive call.

Lemma 11.3.12. Let c = 〈f, {r1, . . . , rn}, e〉, where e is a call to f ′, and let Cf ′ = {ci =

〈f ′, {ri
1, . . . r

i
ni
}, ei〉|1 ≤ i ≤ m} be a subset of the contexts of C whose function is f ′. Also,

let R =(and r1 . . . rn) and for all 1 ≤ i ≤ m, let Ri =(and ri
1 . . . ri

ni
). Finally, let

mc ∈ Lk and for all 1 ≤ i ≤ m, mci ∈ Lk such that T `(implies (and R Riσe) (l< mci

mc)) for all 1 ≤ i ≤ m. Then the following is a theorem of T :

(implies R
(l< (let ((m (list v0))

(m (if R1 (cons (cons (1)〈M,≺M〉 mc1) m) m))
. . .
(m (if Rm (cons (cons (1)〈M,≺M〉 mcm) m) m)))

(max-l< m))σe

(cons (1)〈M,≺M〉 mc))

where v0 ∈ Val is the list of length k + 1 whose elements are all (0)M,≺M.

Proof. The proof is by induction on m. If m = 0, then this is equivalent to T `(implies R

(l< v0 (cons (1)〈M,≺M〉 mc))) which is clearly true since T `(m< (0)〈M,≺M〉 (1)〈M,≺M〉).

Now suppose that m > 0. Let m′
c =(cons (1)〈M,≺M〉 mc) and for 1 ≤ i ≤ m, let

m′
ci

=(cons (1)〈M,≺M〉 mci) For 1 ≤ i ≤ m, let bi =(if Ri (cons m′
ci

m) m). Also, let

s =(let ((m (list v0)) (m b1) . . . (m bm−1)) m). Then

T `


(implies R (l< (let ((m (list v0)) (m b1) . . . (m bm−1))

(max-l< m))

m′
c))


≡ {Language Semantics }

T ` (implies R (l< (max-l< (if Rm (cons m′
cm

s) s))σe m′
c))

≡ {Def. of substitution }

T ` (implies R (l< (max-l< (if Rmσe (cons m′
cm
σe sσe) sσe)) m′

c))

≡ {Boolean Reasoning } T ` (implies (and R Rmσe) (l< (max-l< (cons m′
cm
σe sσe)) m′

c)) ∧

T ` (implies (and R (not Rmσe)) (l< (max-l< sσe) m′
c))


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≡ {Def. of max-l<, Boolean Reasoning }

T ` (implies (and R Rmσe (l< m′
cm
σe (max-l< sσe))) (l< m′

cm
σe m′

c)) ∧

T `

 (implies (and R Rmσe (l< m′
cm
σe (max-l< sσe)))

(l< (max-l< sσe) m′
c))

 ∧

T ` (implies (and R (not Rmσe)) (l< (max-l< sσe) m′
c))


≡ { Induction Hypothesis }

T ` (implies (and R Rmσe (l< m′
cm
σe (max-l< sσe))) (l< m′

cm
σe m′

c))

≡ {Def. of l<, m′
c m

′
cm
}

T ` (implies (and R Rmσe (l< mcmσe (max-l< sσe))) (l< mcmσe m′
c))

≡ { Initial Hypothesis }

true

Finally, we obtain the main result.

Theorem 11.3.4. If every φc
c′ ∈ Φ is T -compatible and Φ is well-founded, then d is measure

admissible.

Proof. By Lemma 11.3.10 on page 147, there exists k ∈ ω and {mc ∈ Lk|c ∈ C} such that,

for all c = 〈f, {r1, . . . , rm}, e〉 ∈ C, T `(implies (and r1 . . . rm) (lmp mc)) and, for all

c = 〈f, {r1, . . . , rm}, e〉, c′ = 〈f ′, {r′1, . . . , r′m}, e′〉 ∈ C such that 〈c, c′〉 ∈ E, the following is

a theorem of T :

(implies (and r1 . . . rm r′1σe . . . r′m′σe)
(l< mc′σe mc))

Let F be the names of the functions defined in d, and for each f ∈ F , let Cf = {cfi =

〈f, {rf
i,1, . . . , r

f

i,nf
i

}, efi 〉 | 1 ≤ i ≤ |Cf |} be the contexts of C whose function is f . For all

f ∈ F and 1 ≤ i ≤ |Cf |, let Rf
i =(and rf

i,1 . . . rf

i,nf
i

) and m′
cf
i

=(cons (1)〈M,≺M〉 mcf
i
).

Also, let v0 ∈ Val is the list of length k+ 1 whose elements are all (0)M,≺M . Then for each

f ∈ F , let mf be the following expression.

(let ((m (list v0))
(m (if Rf

1 (cons m′
cf
1

m) m))
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. . .
(m (if Rf

n (cons m′
cf
n
m) m)))

(max-l< m))

We will show that d is measure admissible by the measure mapping each f ∈ F to mf

and 〈lmp, l<〉.

By Lemma 11.3.11 on page 149, T ` (lmp mf). So, our only remaining obligation is to

show that the measure decreases for every recursive call. Let f ∈ F , p ∈ Pos(ef ) such that

e = ef |p is a function call, and let R =(and r1 . . . rn) where rulers(ef , p) = {r1, . . . , rn}.

But note that, by construction, there exists cfi = 〈f, {rf
i,1, . . . , r

f

i,nf
i

}, efi 〉 ∈ Cf . Such that

rulers(ef , p) = {rf
i,1, . . . , r

f

i,nf
i

} and e = efi . Therefore R = Rf
i . Let f ′ be the function called

by e. So, we need to prove that T `(implies R (l< mf ′σe mf)). We do this by proving

the stronger result that, for every j ≥ i, T ` (implies Rf
i (l< mf ′σef

i
(max-l< (if Rf

j

(cons m′
cf
j

m′) m′)))), where m′ is the following expression:

(let ((m (list v0))
(m (if Rf

1 (cons m′
cf
1

m) m))
. . .
(m (if Rf

j−1 (cons m
cf
j−1

m) m)))

(max-l< m))

We prove this by induction on j − i. If j = i, then

T ` (implies Rf
i (l< mf ′σef

i
(max-l< (if Rf

j (cons m′
cf
j

m′) m′))))

≡ { i = j, Language Semantics }

T ` (implies Rf
i (l< mf ′σef

i
(max-l< (cons m′

cf
j

m′))))

≡ {Def. of max-l<, Boolean Reasoning } T ` (implies (and Rf
i (not (l< m′

cf
j

(max-l< m′)))) (l< mf ′σef
i
m′

cf
j

)) ∧

T ` (implies (and Rf
i (l< m′

cf
j

(max-l< m′))) (l< mf ′σef
i
(max-l< m′)))


≡ {Lem. 11.3.12, Transitivity of l< }

true

Now suppose that j > i. Then,

T ` (implies Rf
i (l< mf ′σef

i
(max-l< (if Rf

j (cons m′
cf
j

m′) m′))))
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≡ {Boolean Reasoning } T ` (implies (and Rf
i (not Rf

j )) (l< mf ′σef
i
(max-l< m′))) ∧

T ` (implies (and Rf
i Rf

j ) (l< mf ′σef
i
(max-l< (cons m′

cf
j

m′))))


≡ { Induction Hypothesis, Language Semantics }

T ` (implies (and Rf
i Rf

j ) (l< mf ′σef
i
(max-l< (cons m′

cf
j

m′))))

≡ {Def. of max-l<, Boolean Reasoning } T ` (implies (and Rf
i (not (l< m′

cf
j

(max-l< m′)))) (l< mf ′σef
i
m′

cf
j

)) ∧

T ` (implies (and Rf
i (l< m′

cf
j

(max-l< m′))) (l< mf ′σef
i
(max-l< m′)))


≡ { Inductive Hypothesis, Language Semantics, Transitivity of l< }

true

This gives us the result we have been after.

Corollary 11.3.1. If d is CCG admissible, then it is measure admissible.

11.4 Measured Subsets, Books, and Encapsulation

In this section, we explore the challenges of integrating our analysis with the theorem prover.

The first issue involves the concept of measured subsets of function formals. In tradi-

tional measure-based termination proofs in ACL2, this refers to the subset of the function

formals that appear in the measure used to prove measure admissibility. This information

is used by the theorem prover in its heuristics for choosing induction schemes. While a

complete discussion of these heuristics is beyond the scope of this dissertation, an example

will help illustrate the role that measured subsets play.

Consider the ACL2 events in Figure 44 on the next page. Here, in is a function that

returns a non-nil value if and only if a is in list b. It is easily shown to be measure admissible

using the measure (acl2-count b). The del function removes a from list b. It is measure

admissible by the same measure. The function perm returns true if list x is a permutation

of list y, i.e., every element of x appears in list y the same number of times. It is also

154



(defun in (a b)
(cond ((atom b) nil)

((equal a (car b)) t)
(t (in a (cdr b)))))

(defun del (a b)
(cond ((atom b) nil)

((equal a (car b)) (cdr b))
(t (cons (car b) (del a (cdr b))))))

(defun perm (x y)
(cond ((atom x) (atom y))

(t (and (in (car x) y)
(perm (cdr x)

(del (car x) y))))))

(defthm perm-reflexive
(perm x x))

Figure 44: Definition of permutation predicate in ACL2

easily proven terminating, using measure (acl2-count x). The measured subset for perm

is therefore {x}, since this is the only variable that appears in the measure.

Finally, consider the theorem perm-reflexive, which states that any element, x is a

permutation of itself. This theorem is proven automatically in ACL2 by using an induction

scheme based on perm:

(and (implies (and (not (atom x))
(not (in (car x) x)))

(perm x x))
(implies (and (not (atom x))

(in (car x) x)
(perm (cdr x) (cdr x)))

(perm x x))
(implies (atom x) (perm x x)))

If we can prove all three of the formulas in this conjunction, then the original formula is

proved by the principle of induction. Now suppose that, instead of {x}, the measured subset

for perm were {x, y}. In this case, ACL2 cannot find an appropriate induction scheme, and

therefore cannot automatically prove perm-reflexive. The problem is that ACL2 believes

that we need both x and y to justify the induction scheme for perm, but such an induction
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scheme cannot be instantiated using just the one variable, x, that appears in (perm x x).

In order to integrate our CCG analysis with the ACL2 theorem prover, we needed to

provide measured subsets in much the same way that ACL2 does. The requirement is that

there must be a measure that can be built using only the formals in the measured subset

that can be used to demonstrate measure admissibility of the definitional axioms. It is

always sound to simply return the entire list of formals as the measured subset. However,

as we have seen, this can adversely affect theorem prover performance. In order to come

up with a “reasonable” measured subset, we turn to Theorem 11.3.3 on page 148 as well as

Theorem 11.3.4 on page 152. These were the two theorems used to prove that CCG admis-

sibility implies measure admissibility. Recall that this was accomplished by demonstrating

that a measure exists that can be used to prove measure admissibility. Theorem 11.3.3 on

page 148 does so when the CCG is proven well-founded using per-context CCMFs. Theo-

rem 11.3.4 on page 152 does so for the general case. The solution, then, is to return the

formals mentioned in these measures.

For the general case, this includes all the measures mentioned in the rulers for the

recursive calls, plus all the CCMs needed to prove termination. For the per-context case,

all we need are the CCMS that were needed to prove termination. While our heuristics

for choosing CCMs result in the appearance of all of the formals in the CCMs for each

function, there are documented algorithms for removing CCMs that are not useful for the

well-foundedness proof [8].

In addition, our hierarchical algorithm helps keep unnecessary information about de-

creasing and non-increasing CCMs to a minimum. Consider, for example, the perm func-

tion. Using the full power of the CCG analysis, we discover that both x and y decrease

with every step. However, in the hierarchical method, we realize that x decreases using only

built-in clauses. This is enough to prove termination, and therefore we can return {x} as

our measured subset.

But this causes another difficulty, related to ACL2 events. An event is an expression

in ACL2 that changes the logical world which is the database ACL2 uses to keep track

of information regarding the the theory and theorem prover settings. Examples of events
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include definitional axioms and defthm, which defines a new theorem to be added to the

theory. Other events include encapsulate and include-book, which are the sources of the

aforementioned difficulties.

Encapsulation is a feature in ACL2 that, among other things, allows users to hide

lemmas. For example, it is commonly the case that a lemma, lem, is needed to prove a

theorem, thm, but lem is not useful in general. In fact, in some cases, lem may actually

slow down or otherwise cause problems in future proofs. In such a case, lem and thm can

be placed inside an encapsulate event and lem can be declared local to the encapsulation.

Then lem does not exist in the theory resulting from the admission of the encapsulation

form, while the main goal, thm, is. The way this is implemented in the theorem prover

is that ACL2 makes two passes over the encapsulated code. On the first pass, all proofs

are executed to verify the soundness of the encapsulated events. On the second pass, local

events are skipped, but non-local events are admitted into the logical world without proof.

Books work in a similar way, but at the file level. Users organize theorems, definitions,

and other events into books. These books can then be certified using ACL2, which involves

verifying all the necessary proofs. They can then be included, or reloaded without repeating

the proofs. Again, users can declare lemmas or other events local to a book, in which case

they will not appear in the theory resulting from loading the book in the future.

For measure admissibility, these features do not cause a problem. Measures are either

provided by the user, or guessed using a static analysis that requires no proofs. In either

case, once the measure admissibility obligations are proven in the first pass, the proofs can

be skipped in the second pass, and the measured subset can be computed using the measure

provided or guessed by ACL2 when the function is admitted. CCG admissibility, however,

presents a unique challenge, in that prover queries are necessary to compute the measured

subset. Therefore, we cannot skip the proofs and still provide this information to the prover.

A first pass at a solution would be to ignore ACL2’s directive to skip proofs on the

second pass, and simply repeat all the proofs to compute the measured subset. However,

there is a problem with this solution that is caused by local events. Because of this feature,

the theory in which termination is proved on the first pass may be different than that of the
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second pass. For example, suppose some local lemma, lem in a book is critical in order to

prove CCG admissibility for some non-local function, f in the book. Then when including

the book, lem would be skipped, and the proof of the termination of f would fail.

The solution to this problem is provided by a new ACL2 feature called make-event.

The idea behind this feature is that it allows users to compute events. That is, based on the

current environment, a new event is made. An important feature of make-event is that the

new event is computed once and then saved. Thus if ACL2 makes a second pass over the

make-event in a different environment, the same new event is created. This alleviates the

problem caused by the two pass system employed by ACL2 for encapsulation and books.

To use this feature to our advantage, we alter ACL2’s built in definitional utility, defun,

so that it can be told explicitly which CCMs are important to the termination analysis.

Then, when given a definition without this hint, we run the CCG-based analysis, compute

the relevant CCMs, and use make-event to create a new defun in which the these CCMs

are explicitly given as a hint. Then, when loading a book or making a second pass over an

encapsulation, ACL2 can forgo the CCG analysis and use the CCMs given to calculate the

measured subset for the function. More information on make-event may be found in the

ACL2 documentation [57] starting with Version 3.0.

11.5 Summary

In this chapter we have discussed the challenges of integrating the CCG termination analysis

into the ACL2 logic and theorem prover. We introduced the notion of CCG admissibility,

which provides logical conditions under which the CCG analysis produces termination proofs

that can, in theory, be verified by ACL2 using measure admissibility. This was proven

in detail, culminating in the result that CCG admissibility implies measure admissibility.

Therefore, the full integration of the CCG analysis into ACL2 would not affect the soundness

or power of ACL2’s logic, even while improving the theorem prover’s ability to automatically

prove termination.

We have also discussed the engineering concerns that arise when integrating the CCG

termination analysis with ACL2’s theorem prover. These revolve around the notion of
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measured subsets, which naturally derive from ACL2’s measured admissibility analysis,

but which are more challenging to derive from the CCG analysis. This leads to further

challenges brought about by ACL2’s treatment of encapsulation and book certification. We

showed how to use ACL2’s new make-event mechanism to overcome these challenges to

provide sound and useful measured subset information to the theorem prover.
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PART IV

Future Work and Conclusions



CHAPTER XII

FUTURE WORK

We discuss possible avenues of future work.

One direction would be to extend our ordinal arithmetic algorithms to notations over

larger ordinals than ε0. For example, it has been shown that the ordinal Γ0, which is much

larger than ε0, is needed to prove termination for some term rewriting systems [34]. Despite

its magnitude, Γ0 is still countable and there exists a well-known notation for representing

the ordinals less than Γ0 [40]. By extending our algorithms to Γ0, and integrating this

ordinal representation into ACL2, we would strengthen ACL2’s logic, allowing it to reason

about the termination of systems currently beyond its capabilities.

A second future direction relating to the ordinal arithmetic work is to implement new

arithmetic algorithms for ε0. These could include ordinal division and logarithms. Also,

there exist operations known as “natural addition” and “natural multiplication” that are

distinct from the standard addition and multiplication operations presented in this disserta-

tion, and which enjoy the properties of commutativity, associativity, and distributivity [51].

Because of these properties, these operations may be more intuitive for people who are new

to ordinal reasoning.

Given the power of our ordinal arithmetic library, another interesting future direction

is to integrate this work with existing tools for guessing ranking functions or proving ter-

mination, and using ACL2 to mechanically verify the termination proofs. The result would

be a ranking function generator that can be highly trusted and used for the most critical

termination and liveness proofs.

Several interesting questions prompted by the CCG analysis experiments in Chapter 10

suggest interesting future directions.

For example, a significant number of the problems that failed when disabling the sur-

rounding theory could easily be solved by including a basic arithmetic or data structures
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library. However, including such libraries was not possible in our experiments due to theory

conflicts. There has been an ongoing conversation in the ACL2 community about includ-

ing these basic results in ACL2’s ground-zero theory. Currently, few of these results are

included, and users must either design their own theory or choose from multiple existing

libraries to use such reasoning. The result is that different libraries use different theo-

ries, causing incompatibilities between the books. Possible solutions to this problem are

to include such results in the ground-zero theory, or to officially advocate the use of one

particular library for each of these basic theories. Another option would be to develop a

mechanism of “reflexive” book loading. In such a system, ACL2 would check if a library

for reasoning about a given topic is already included. If it is, ACL2 does nothing. If not,

ACL2 includes a default library requested by the user.

Another class of problems that the CCG analysis had problems with are functions with

similar looping behaviors that all require the same set of CCMs to prove termination,

which the CCG analysis is not able to guess with existing heuristics. In such a situation, it

would be useful to provide the user with a mechanism for creating their own CCM guessing

heuristics. This would allow the user to provide a one-time hint to the CCG analysis that

could be used in multiple future proof attempts to automatically prove termination.

Another useful interface enhancement for the CCG analysis would be a mechanism for

reporting failed termination proofs for which the CCG analysis still made some progress.

For example, if a program has multiple looping behaviors, and the CCG analysis is able to

show that all but one of the loops will always terminate, it could use this loop to create

a new function definition that mimics the behavior of this single loop and present it to

the user as a simplified version of the termination proof whose solution would imply the

termination of the original function. This would enhance the interactive nature of the CCG

analysis, and allow it to help users prove termination even when it cannot automatically

complete such a proof.

Longer-term projects related to the CCG analysis include adapting it to other domains

such as higher order functional languages and imperative languages. In the domain of

high order languages, Haskell would be an interesting target for the CCG analysis, given
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that it is purely-functional, like our current domain. Interesting challenges in this domain

include reasoning about high order functions, and reasoning about strongly typed programs.

An imperative language of interest to us is Java. Since there is already an almost-complete

model of the JVM implemented in ACL2 [66], we could continue to leverage ACL2’s theorem

proving support in our implementation and immediately focus on the challenges of reasoning

about destructive updates and object oriented code.
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CHAPTER XIII

CONCLUSION

The purpose of this dissertation has been to defend the following thesis statement:

A highly automatic, general, interactive, and efficient termination analysis is

possible for feature-rich, first-order, purely functional programming languages.

We have done this by developing novel and general techniques for mechanically reasoning

about termination in this domain. We have demonstrated these techniques to be highly

automatic, general, interactive, and efficient by implementing and empirically evaluating

them in ACL2.

The first of these techniques is a powerful library of theorems designed to automate

reasoning algebraically about the ordinals up to ε0. The foundation of this work is the

development of the first known complete set of algorithms for ordinal comparison, addition,

subtraction, multiplication, and exponentiation. We presented these algorithms with de-

tailed proofs of their correctness and complexity. We implemented the algorithms in ACL2

and mechanically verified them by proving that they satisfy well-known algebraic properties

of the ordinals. We then created a library that significantly automates mechanical reason-

ing about the algebraic properties of the ordinals up to ε0 and demonstrated through case

studies that this library supports legacy results while enabling users to prove new results

that were intractably difficult to prove in ACL2 previously.

Our second termination analysis technique is a new automatic termination analysis.

The core of this analysis is the calling context graph (CCG), a manageable but surprisingly

accurate abstraction of the looping behavior of a program. We have implemented the CCG

analysis in ACL2 using a hierarchical algorithm that uses lightweight techniques to prove the

termination of simpler programs, while using the full power of the CCG analysis for more

difficult termination proofs. The result is an efficient and effective termination analysis,
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as we demonstrate in our empirical evaluation. The ACL2 implementation of our CCG

analysis can prove termination for 96% of functions, including 79.9% of the most difficult

1.5% of function definitions, using only ACL2’s ground-zero theory and function definitions.

We have shown that the CCG termination analysis represents a conservative extension to

the ACL2 logic, and can be integrated with ACL2 in a sound and effective manner.

The result of integrating these two termination analysis techniques in ACL2 is a pow-

erful framework for reasoning about termination. This framework can automatically prove

termination of all but the most difficult of functions. It is efficient, completing its termina-

tion analysis in 1 to 3 seconds on average. It is general, and can be used to reason about

any looping behavior allowed in our chosen class of languages. It is interactive, allowing

users to work with the theorem prover to find new termination proofs when the automatic

analysis fails.
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