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SUMMARY

The objective of this dissertation is to develop diarization algorithms for LENA data and

study its application to compute language behavior statistics for individuals with autism.

LENA device is one of the most commonly used devices to collect audio data in autism and

language development studies.

LENA child and adult detector algorithms were evaluated for two different datasets: i)

older children dataset consisting of children already diagnosed with autism spectrum disor-

der and ii) infants dataset consisting of infants at risk for autism. I-vector based diarization

algorithms were developed for the two datasets to tackle two scenarios: a) some amount of

labeled data is present for every speaker present in the audio recording and b) no labeled

data is present for the audio recording to be diarized. Further, i-vector based diarization

methods were applied to compute objective measures of assessment. These objective mea-

sures of assessment were analyzed to show they can reveal some aspects of autism severity.

Also, a method to extract a 5 minute high child vocalization audio window from a 16

hour day long recording was developed, which was then used to compute canonical babble

statistics using human annotation.

x



CHAPTER 1

INTRODUCTION AND BACKGROUND

Autism Spectrum Disorder (ASD) is now one of the most prevalent developmental dis-

orders among children in US. This is shown by the US Center for Disease Control and

Prevention (CDC)’s Autism and Developmental Disabilities Monitoring Network (ADDM)

report published in 2018, which concludes that ASD was prevalent among 1 in every 59

children aged 8 years in 2014 [1]. ASD refers to a group of neurodevelopmental disor-

ders characterized by difficulties with social communication and interaction, and repetitive

patterns of behavior. These include social impairment and communication issues such as

difficulties with communication with people which involves mutual give-and-take, avoid-

ing eye contact, limited verbal abilities, delayed speech and language abilities, difficulties

understanding non-verbal cues such as gestures and body language. Some of the repetitive

or unusual behaviors include flapping of their arms, rocking from side to side, or twirling.

Monitoring language and other acoustical behavior of infants at risk for autism, and

of older children diagnosed with autism, could be useful, for early diagnosis in the first

case, and for monitoring treatment changes in the second. In order to meet objectives of

early diagnosis, and of tracking efficacy of treatments for individuals already diagnosed,

it is crucial that automatic methods of monitoring language behavior are established for

both controlled clinic conditions and for naturalistic home conditions . Accurate automatic

methods would enable research studies with large number of participants, which in turn

should enable more definitive conclusions about the hypothesis of any research study. If

such automatic methods are accurate in natural home conditions, then, potentially, orders

of more magnitude of audio data could be analyzed per participant, as there is a limit on

the amount of data that can be collected in controlled settings. The limit exists because

a) the participant will be willing to do only a certain number of visits to a clinic, and b)
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data collection during every clinic visit is resource intensive. Another advantage is that

the role of caregivers in language development can be investigated because computation of

language behavior measures based on interactions between caregivers and children would

be possible. Thus, accurate automatic characterization of language and acoustical behav-

ior of children in natural home conditions is of high significance to the autism research

community.

The types of language and acoustic behavior measures that might be of interest in an

autism research study depends upon its goals and hypothesis. For example, research studies

involving infants might be interested in paralinguistic events such as crying, laughing, and

screaming; canonical babble detection and characterization; quantity and quality of moth-

erese etc. While, studies involving older children might be interested in the quantity and

quality of child vocalizations, characterization of adult-child interactions using measures

like conversational turns, response of children to adult questions etc. Automatic compu-

tation of these measures will help investigate their role in meeting the objectives of early

diagnosis and monitoring treatment changes. To compute these measures, it is crucial that

to be able to accurately determine when the child and adult are vocalizing in a given audio

recording. The problem of who is speaking when is known as “Speaker Diarization” in the

speech processing community. The current state of the art speaker diarization techniques

are based on i-vector methods. These methods have performed well in traditionally stud-

ied domains in speaker recognition and diarization research such as telephony, broadcast

news and meeting data. These domains usually have very large curated labeled databases

available for training speaker recognition or diarization systems. However, the audio data

for our studies is a lot more “in the wild” since it is collected in natural home environments

using a single-channel recording device (LENA) attached to the clothing of children under

study. Another challenge compared to the traditionally studied domains is that we have

significantly less labeled data for training speaker recognition or diarization systems.

As mentioned earlier, the audio recordings that are to be investigated in the proposed
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research, were collected by a device called LENA, shown in Figure 1.1. It has recently

become the primary method of collecting audio recordings for autism research studies. It

is compact, light-weight, has a digital recording capacity of 16 hours, and affords 16 hours

of battery life [2]. It is small enough to be worn even by infants, but is suitable for all

ages given proper accommodations designed into clothing. One of its limitations is that it

only makes a single-channel recording, which precludes the use of 2-channel methods for

enhancing the signal. The supplier of the device also provides software to perform auto-

mated analysis of the audio recordings. The analysis software does segmentation based on

speaker boundaries, classifies them into segments such as child vocalization, adult vocal-

ization, silence etc., and uses this information to compute statistics. The set of analyses

are very rich and go from low-level features, such as identifying when child and adult vo-

calizations occur, to high-level statistics, such as identifying the number of conversational

turns and adult word count in an audio recording. However, these analyses are not accurate

enough for meaningful analysis of data to be investigated in the proposed research.

Figure 1.3 shows the pipeline for automatic computation of language and acoustic mea-

sures from LENA data. The primary focus of this thesis is to develop methods to do di-

arization of LENA data for both older children and infants. Another focus of the research

is to show that developed i-vector based diarization methods can be used to compute some

of the language behavior statistics listed in stage 2 of the research pipeline 1.3. A detailed

computation of all the statistics listed in stage 2 of the research pipeline and investigating

their role in early detection of autism and monitoring treatment changes is beyond the scope

of this work.

The thesis is organized as follows. Chapter 2 describes the datasets analyzed in this

work and GUI toolkit developed for annotation. It also evaluates the accuracy of LENA

software for these datasets and shows that they are not not accurate for these datasets.

Chapter 3 describes the development of i-vector based diarization methods for two scenar-

ios: 1) development of semi-supervised i-vector based diarization for the scenario when

3



Figure 1.1: LENA Device

LENA Recording Audio Segmentation
Classification into

Child, Adult Female,
Adult Male, and Other Segments

Figure 1.2: Diarization Steps for a LENA recording

some amount of labeled data is available for speakers present in the audio recording to be

analyzed, and 2) development of unsupervised i-vector based diarization method for the

scenario when no labeled data is available for speakers present in the audio recording to be

analyzed. Chapter 4 describes the application of semi-supervised child detectors to com-

pute a metric called utterance rate, analyze its reliability across a period of 3 weeks and

check if it can reveal some measure of autism severity. A method to obtain 5 minute high

child vocalization audio window from 16 hour day long audio recording is described and

computation of canonical babble ratio from this 5 minute audio window is shown. Chapter

5 describes the contributions of thesis and illustrates possible future directions of research.
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Audio
Snippet

Diarized
Output Child Adult Other Child Other Adult

Diarization Stage of Research Pipeline

Diarized Output

Amount of Child Vocalizations
Conversational Turns
Response to Adult Questions
Amount of Child Directed Speech
etc.

Amount of Crying, Laughing,
Screaming
Canonical Babbling
Motherease
etc.

For
Older
Children

For
Infants

Language Behavior and Acoustic Characterization Stage of Research Pipeline

Figure 1.3: Pipeline for Automatic Computation of Language and Acoustic Measures
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CHAPTER 2

DATASETS DESCRIPTION, ANNOTATION AND ANALYSIS OF LENA

SOFTWARE

The child’s acoustic environment in studies investigated in this work was recorded using

a well engineered device called LENA. It is compact, light-weight, has a digital recording

capacity of 16 hours, and affords 16 hours of battery life [2]. It is small enough to be

worn even by infants, but is suitable for all ages given proper accommodations designed

into clothing. One of its limitations is that it only makes a single-channel recording, which

precludes the use of 2-channel methods for enhancing the signal. LENA device has become

the primary instrument for collecting audio data in autism and other language development

studies [3–15]. The list of papers cited is not exhaustive, but illustrates the wide usage of

LENA device in autism and other language development studies. The supplier of the device

also provides software to perform automated analysis of the audio recordings. The analysis

software does segmentation based on speaker boundaries, classifies them into segments

such as child vocalization, adult vocalization, silence etc., and uses this information to

compute statistics. The set of analyses are very rich and go from low-level features, such

as identifying when child and adult vocalizations occur, to high-level statistics, such as

identifying the number of conversational turns and adult word count in an audio recording.

This chapter describes a) usage of LENA device and software in autism and language

development studies, b) datasets investigated in this work, c) annotation method devel-

oped for datasets under investigation, and d) analyzes the accuracy of LENA software for

datasets studied in this work.
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2.1 Usage of LENA Device and Software in Autism and Language Development

Studies

As mentioned earlier, LENA device has become one of the primary instruments for collec-

tion of audio data in autism research studies. [6] was one of the first studies to use automatic

measures from LENA software for analysis. It concluded that it is feasible to compute sta-

ble automatic measures of vocal development from single day recordings. In [7], associa-

tions between the Adult World Count (AWC) measure, generated by LENA software and

cognitive ability of preschoolers with ASD was analyzed. The study had 67 participants

and data was collected during morning classroom routines. Results indicated that AWC was

positively correlated with children’s cognitive ability. In [8], quantitative and qualitative

characterization of the school and home environments of 10 preschool children with ASD

was carried out. Language samples were collected at 3-month intervals over the course of

one year using LENA. For every sample, 15 minute segments were selected and transcribed

using Systematic Analysis of Language Transcripts (SALT). These segments were then an-

alyzed using LENA’s AWC measure and SALT transcriptions. It concluded that there were

significant differences between school environment and home environment for both AWC

measure and for SALT transcription. However, no analysis was carried out to compare

AWC measure with SALT transcriptions. In [10], stability and validity of two automatic

methods of computing vocal development was tested. One method was the commercially

available LENA software, while the other method was described as currently in develop-

ment. The paper concluded that the vocal development measures computed by current

LENA software are stable but do not correlate with future spoken vocabulary. However,

their development software measures were stable and according to them, predicted future

spoken vocabulary to a degree that was non-significantly different from the index derived

from conventional communication samples. The study concluded that automated vocal

analysis is a valid and reliable alternative to time intensive conventional manual methods
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of computing vocal measures. In [9], analysis of child-adult interaction during naturalis-

tic day long LENA recordings of children with and without autism aged 8 to 48 months

was carried out. It was shown that for both typically developing and children with autism,

there exists a social feedback loop in which, adults are more likely to respond to child’s

speech like vocalizations than to child’s non-speech like vocalizations. Also, it was shown

that a child’s vocalization was more likely to be speech related if child’s previous speech

like vocalization received an immediate adult response. The differences in social feedback

mechanism between typically developing and children with autism were highlighted. It

concluded that that such differences will influence language development over time.

LENA device is now also commonly used in non-autism language development re-

search studies. In [4], examination of how audible and intelligible educator talk influenced

infants under 2 year olds, who attended early childhood education and care (ECEC), was

done. In [5], language experience was measured from home audio recordings of 36 chil-

dren aged 4-6 years from diverse socioeconomic status. The study concluded that during

a story-listening functional Magnetic Resonance Imaging (MRI) task, children who had

experienced more conversational turns with adults exhibited greater left inferior frontal

(Broca’s area) activation, which significantly explained the relation between children’s lan-

guage exposure and verbal skill. In [11], relationships between the amount of language

input and neural responses in English monolingual and Spanish-English bilingual infants

was analyzed. In [12], influence of child-directed speech in two languages on language de-

velopment of bilingual children was studied. In [13], investigation of whether children and

caregivers modulate the prosody of their speech as a function of their interlocutor’s speech

was done. The study found small, but significant, effects of mothers and their children

influencing each other’s speech, particularly in pitch measures.

The above studies show that LENA is widely used as a means of collecting audio data

for autism research studies and other language development studies. The above studies

show that automatic computation of language and other acoustic behavior measures is ac-
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tively researched as a tool for early autism detection and treatment monitoring for ASD.

However, the current automatic tool in the form of LENA software is not accurate

enough for children of all age groups. In particular, it is shown in this chapter that the

LENA software is not accurate for two datasets, namely Older Children Dataset and Infants

Dataset studied in this work.

2.2 Datasets Investigated in this work

This section describes the two datasets for which i-vector based diarization methods were

developed and applied to compute language behavior statistics for dataset 1. Dataset 1

termed as Older Children Dataset for the remainder of this dissertation had children with

aged 5 to 13 years old. Dataset 2 termed as Infants Dataset had audio collected for infants

at 9 month and 15 month age.

2.2.1 Older Children Dataset: Weill Cornell Study

Thirty-seven families were recruited through the Center for Autism and the Developing

Brain (CADB) in White Plains, NY to participate in a study examining novel outcome

measures. Participants (target-child) were 5-17 years old (31 boys), see Table 2 for partic-

ipant demographics. The language level of the target-child varied from two to three word

phrases to fluent speech. Weill Cornell Medicines IRB approved the study. Caregivers gave

written consent; when possible, children 7 years and above assented. A diagnosis of ASD

was confirmed prior to participation by a licensed clinician at CADB using the Autism Di-

agnostic Observation Schedule (ADOS-2, Modules 13) or the Adapted ADOS Module 1.

CSS for SA and RRBs were calculated. IQ scores were calculated from developmentally

appropriate cognitive testing [16].

The target-child and their caregiver completed either a 1-week or an 8-week study that

involved coming to the CADB clinic on one occasion (1-week protocol) or three sepa-

rate occasions (8-week protocol) and completing study procedures in their home. Briefly,
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during the first clinic visit, caregivers were trained on operating the LENA DLP. The target-

child wore a t-shirt that contained a pocket for the LENA DLP located on the chest during

data collection. All participants completed recordings with the LENA device placed in the

t-shirt. In the clinic, the target-child completed a series of standardized assessments while

wearing the LENA device for 5̃0 min. The assessments included a modified version of the

Brief Observation of Social Communication Change [17], as well as the Purdue Pegboard

task for 10 min, playing a puzzle game on an iPad for 10 min and watching a series of Pixar

short movies on the iPad for 10 min. In the home, caregivers were instructed to record their

childs speech for 3 days a week up to 1.5 hr per day during week 1 (for both the 1-week and

8-week protocol), as well as weeks 4 and 8 (8-week protocol only). They were encouraged

to record their childs speech during times when the child would likely to be talking with

them (e.g., dinner time).

2.2.2 Infants Dataset: IBIS Study

Infant Brain Imaging Study (IBIS) is a large and unique prospective longitudinal ongoing

study of the Autism Centers of Excellence (ACE) Network, funded by the National In-

stitute of Health, USA. This study was started in 2007 and has so far enrolled 7̃00 infant

siblings at high familial risk for autism. The data has been collected through two separate

waves (IBIS-1 between 2007-2012 and IBIS-2 from 2012-2017). The third wave (IBIS-

SA) which began in 2018 focuses on following these children into school age. Clinical

data collection occurs at four sites the University of North Carolina (UNC), Childrens

Hospital of Philadelphia, University of Washington (UW, Seattle), and Washington Uni-

versity in St. Louis (WUSTL). Data from all sites are maintained by a Data Coordination

Center at the Montreal Neurological Institute. The study includes both neuroimaging and

behavioral assessments of high-risk infant siblings and low risk infants at different time

points from birth through 3 years of age and later into school age.

Among many modalities of data collected for children in the IBIS study, one was audio
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collected using the LENA device in the child’s natural home environment at 9 month and

15 month of ages respectively. Audio data of a small subset of children available in the

study was annotated using the GUI based annotation toolkit developed. This small subset

of children is the main object of study in this work with regard to the IBIS study. We term

this dataset as the infants dataset.

2.3 GUI Based Annotation Toolkit

Since, existing tools for annotating this data were deemed too slow for our limited appli-

cation, a more efficient system was employed. A GUI based annotation toolkit was devel-

oped, which provided audio segments for listeners to annotate based on the segmentation

of LENA system. The segments were presented to human listeners who were asked to label

them into one of the following broad categories: a) child vocalization, b) adult vocalization,

c) silence, d) environmental noise or e) multiple speakers. We also allowed finer-grained

labels of child vocalizations which included child laughing, child whining, child crying, or

child speaking.

A GUI based annotation software was developed by us to label audio segments based on

LENA segmentation. The software takes the LENA raw audio files and CSV files generated

by ADEX software as the input and generates a CSV file which contains human annotated

labels. This software can be used to label very small portion of audio to train speaker

models for a completely new LENA recording. It can also be used to label a completely

new dataset for a new study in which we do have have any human annotated labels. The

amount of human annotation required for a particular study depends upon the goals and

requirements of the study. For most studies, a small subset of all data would be labeled for

training and testing purposes.

Features and Requirements of annotation software

• The software is designed for Windows based machines.
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Figure 2.1: Annotation Software Interface
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Table 2.1: Comparison of LENA Annotation with Manual Annotation for Older Children
Dataset

LENA Labels

Adult Child OVER Other OTCH
Adult 10490 549 3486 3053 1263

Ground Child 6400 10629 2124 1314 2557
Truth OVER 3903 981 6217 965 591
Labels Other 1505 1779 4765 43744 1527

OTCH 212 285 439 332 1217

Table 2.2: Comparison of LENA Annotation with Manual Annotation for Infants Dataset
LENA Labels

Child Adult OVER Other OTCH
Child 1396 54 587 111 156

Ground Adult 105 684 291 96 80
Truth OVER 474 424 1036 42 133
Labels Other 135 57 285 460 67

OTCH 84 35 122 39 202

• Its an easy GUI based application, in which the user clicks on a button to play audio

and selects a label from a drop down list.

• The software can be easily modified to include labels according to the requirements

of a study.

• The software only requires that MATLAB runtime version 8.4 (R2014b) is installed

on the deployment machine.

2.4 Accuracy of LENA Software

In this section, accuracy of LENA software is evaluated for older children and infants

datasets.
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Table 2.3: Individual Child DetectorPrecision and Recall Statistics for 36 Subjects
Child Id Recall Precision

SANCOS 40.11 90.8
CAMPJU 65.9 86.36
NECHJE 33.09 60.0
SIMMJA 60.07 73.39
STERRA 27.77 70.18
DONOMA 32.65 64.0
TARARA 64.37 80.91
KOTBAN 57.79 72.89
NASIMA 46.76 55.86
SCOXED 43.89 72.48
HJIASO 36.33 80.4
MCDOLU 49.39 67.33
HJIATO 56.51 81.28
RIKOGA 43.21 64.71
KESMAB 44.21 72.5
JABLNI 3.41 17.07
HUGGOR 61.0 65.92
RIKOSA 28.96 67.26
BELMPE 0.0 0.0
ACEVNA 14.91 72.6
PEYSO 41.92 65.98
ARNOBO 13.58 60.42
KATXEL 24.47 46.29
WRAXSY 49.34 82.43
PELLDA 37.89 62.74
TENOJA 45.03 85.05
ZAGARU 6.83 38.0
BEHPAN 62.36 80.11
WEXXYU 21.24 49.55
SIMXMO 49.28 69.44
BAIXLU 71.59 86.54
MCGRFI 53.73 83.53
LEWICA 46.45 90.31
GRIFSP 71.39 92.31
STEIJO 39.73 72.95
KANDLI 54.73 62.7
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2.4.1 Accuracy of LENA software for Older Children dataset

The LENA child detectors were trained using speech from children aged 12 months to 48

months. Here, we analyze if the LENA algorithms are accurate enough for older children

aged 5 to 17 years old.

Table 2.1 shows the confusion matrix of LENA labels versus human annotation. The

manually annotated labels in the table are deemed to be the ground truth. Two trained

research assistants used the GUI based annotation toolkit to label roughly 1500 audio seg-

ments from clinic conditions and another 1500 from home conditions for every subject’s

audio recording.“Child” and “Adult” are self-explanatory and mean audio segments which

had child and adult utterances respectively. Label “OVER” includes segments which were

marked as multiple speakers and overlap by human annotators. The LENA software label

“OVER” denotes audio segments in which there is an actual overlap between two speakers.

Note, there is no LENA label which corresponds to “multiple speakers. Label “Other” in-

cludes TV noise, environmental noise and silence. Label “OTCH” refers to another child.

The overall recall and precision for child detection across the 36 subjects was 46.16%

and 74.73% respectively, while the overall recall and precision for adult detection was

55.67% and 46.6 % respectively. As noted, label “OVER” included segments in which

adult and child speakers spoke one after the other and actual overlap during which adult

and child speakers were speaking at the same time (cross-talk). The situation when adult

and child speakers spoke one after the other was an anomaly of segmentation software.

However, only 11.47% of all utterances were labeled as “OVER.” The recall for LENAs

child detector was 46.16% which means more than half of all child utterances were missed

from a detection point of view. Among the child segments that were missed, the most

common confusion was child utterances being misclassified as adult utterances (roughly

52% of all child utterance mis-classifications were this). The LENA detector models often

confuse older children (aged 5-17 years) as being adults. This behavior is not surprising

since LENA child models were trained using children that were younger than those in the
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present study. The Child detector precision of 74.73% makes it useful in calculating cer-

tain statistics. Since we are 75% sure that a detected child utterance is really a child, other

observations can be made, such as voice characteristics or conversational turn likelihoods.

However, this relatively higher precision comes at the cost of low recall, which make it

difficult to estimate absolute counts, such as number of utterances or number of conver-

sational turns. As noted earlier, a significant number of child utterances are misclassified

as adult utterances (roughly 28%). This observation further makes useful computation

of conversation-based language behavior statistics difficult. The adult detector precision

(46.6%) and recall (55.67%) values are not high enough to be able to compute accurate

conversation based language behavior statistics. A high precision value could have been

useful in obtaining some parts of audio in which adult is surely speaking. This in turn can

then be used to analyze child’s response to the obtained adult speech. For this study, the

presence of another child in the audio was very low (2.25% of all segments). However, its

important to note that precision for detecting another child was 17.01%. One reason for

such a low precision value was that only 11.1% of all primary child utterances were clas-

sified as another child. This was the second most common error among all child utterance

misclassification.

Table 2.3 shows the individual recall and precision of child detectors across all the 36

subjects. The recall for child detection across all 36 subjects was low. The maximum recall

observed across all the subjects was 71.59 %. However, only 7 out of 36 subjects had a

recall rate of greater than 60%, which suggests that the LENA child detectors miss a lot

of audio segments that have child utterances. The maximum precision observed across all

the subjects was 92.3% which is very accurate, however 24 subjects out of the 36 subjects

analyzed had a precision rate less than 80%.
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Table 2.4: Individual Child Detector Precision and Recall Statistics for 12 Subjects
Child Id Recall Precision

1 41.96 58.02
2 49.1 81.95
3 47.55 65.97
4 68.53 52.69
5 58.45 78.28
6 47.86 69.07
7 58.65 30.35
8 49.62 65.02
9 38.9 95.35
10 35.37 33.33
11 45.95 85.0
12 56.07 47.62

2.4.2 Accuracy of LENA software for Infants dataset

Experiments performed on the older children dataset suggests that the LENA software is

not accurate enough for meaningful analysis for older children age group. Since, the LENA

software was designed using acoustic data from children aged 12 months - 48 months, it

is expected that LENA acoustic models do not generalize to children of other age groups.

In this section, the accuracy of LENA software for infants dataset described before is ana-

lyzed. The acoustic data for children in this dataset was collected either at 9 month stage

of their development or at the 15 month stage of their development.

The LENA audio data for the 12 infants present in the infants dataset was annotated by

2 annotators using the GUI annotation toolkit described before. In order to compute the

accuracy of LENA software compared to human annotators, only audio segments which

both the annotators agreed were considered for analysis.

Table 2.4 shows the individual child detector precision and recall statistics for the 12

infants present in the infants dataset. The maximum recall of child segments observed over

all infants was only 68.53%. The average recall rate over all 12 infants was only 49.83%,

meaning on an average the LENA child detector only detected about 50% of true child
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segments. The precision rate observed across 12 infants showed a lot of variation. For

Child ID’s 2,5,9, and 11 the precision rate observed was about 80% or more. However, on

the other spectrum, the precision rate observed for Child Id’s 4,7,10, and 12 the precision

rate observed was around 50% or less. This shows, that the child detector precision values

are not consistent across all the subjects. The average precision rate observed across 12

infants was 63.55%, which is too low for meaningful analysis.

2.5 Summary and Discussion

The comparison of LENA software with human annotation for both older children dataset

and infants dataset suggests that the accuracy of LENA detectors is not high enough. There

are possibly many different factors contributing to this phenomenon. One contributing

factor is probably the fact that the age group (5-17 years) of the children present in the

older children dataset is significantly different to the age group (12 months - 48 months)

on which the LENA software was trained and was probably intended to have been used

for. Even the children present in the infants dataset (9 months) either do not fall in the age

group on which the LENA software was trained or are at the extreme end (15 months) of

the age group on which the LENA software was trained. The audio data corresponding to

8 of the 12 infants present in the infants dataset (Child ID’s 1,4,5,6,7,8,9, and 10) was col-

lected at 15 months. The LENA child detectors as seen from table 2.4 were very inaccurate

for this group of 8 infants (Average Recall Rate: 49.9%, Average Precision Rate: 60.23%)

and in fact, show no improvement compared to the group of 4 infants whose audio data

was collected at 9 month stage. (Average Recall Rate: 49.67%, Average Precision Rate:

70.13%). This observation, even though the number of children present in the analysis is

low suggests that the LENA child detector does not do well at the lower extreme end of

age group (near 12 months) on which it was trained. Another probable contributing factor

is that LENA detection models use variation of Gaussian Mixture Model (GMM) based

methods, which perform significantly worse than current state of the art methods, partic-
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ularly i-vector methods on most speaker identification and diarization tasks. In addition

to the two possible reasons mentioned, another major contributing factor is that LENA

speaker detector models are completely subject independent. Ideally, it is desirable to have

highly accurate subject independent speaker detector methods, as they would not require

any new annotation for training. However, if the subject independent models are not ac-

curate enough for meaningful analysis, development of methods which do some form of

speaker dependent training is required. In this work, semi-supervised i-vector methods and

unsupervised i-vector methods are developed, which are shown to be accurate for the two

datasets analyzed in this work. The first method called the semi-supervised i-vector based

diarization uses some small amount of data (2 minutes of speech) to train speaker specific

models present in the audio recording, while the second method called the unsupervised

i-vector based diarization uses no labeled data to diarize a given audio recording. The

development and analysis of these methods is described in chapter 3.
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CHAPTER 3

AUDIO DIARIZATION FOR LENA DATA

As was described in chapter 2, the accuracy of LENA acoustic detectors is not good enough

for meaningful analysis and development of applications such as design of objective mea-

sures to track treatment methods, early diagnosis of autism spectrum disorder related symp-

toms etc. In order to do accurate audio diarization, i-vector based diarization methods were

developed for two scenarios: 1) Some amount of labeled data is available for all the speak-

ers present in the given LENA audio recording and 2) No labeled data is available for any

of the speakers present in the given LENA audio recording. The methods developed for the

first scenario are termed as semi-supervised i-vector based diarization, while the methods

developed for the second scenario are termed as unsupervised i-vector based diarization

methods in this work.

This chapter describes a) general theory and practice of i-vector based methods b) de-

velopment of semi-supervised methods for older children and infants dataset, and c) devel-

opment of unsupervised i-vector based diarization methods for older children and infants

dataset.
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Figure 3.1: Steps in MFCC feature extraction

3.1 MFCC Feature Extraction and Universal Background Models

In order to understand i-vector based diarization methods developed in this work, it is

essential to first know the basics of general feature extraction pipeline followed in speech

and audio processing tasks.

Any digital audio recording is just a stream of real-valued numbers encoded using some

encoding standard with some precision sampled at some sampling rate (eg. LENA audio

is encoded as signed integer PCM with 16 bit precision at 16 kHz sampling rate). So,

any audio utterance or segment is then just a set of numbers. In most speech and audio

processing tasks, the initial feature extraction of a speech utterance or segment involves

dividing the audio utterance into overlapping intervals of fixed size called as “frames”.

Typically, these frames are of 20-30 ms duration with an overlap of 10-15 ms. In this work,

20 ms frames (a set of 320 numbers) with 10 ms overlap were used. The raw digital audio

per frame is passed through a window function, generally hamming window [18]. Then,

some fixed dimensional acoustic feature vector is extracted per frame.

3.1.1 MFCC Coefficients

In speaker recognition and diarization, mel-frequency cepstral coefficients (MFCC’s), along

with their deltas, and delta-deltas are the typical choice of feature representation per frame.

Figure 3.1 shows the basic steps involved in the computation of MFCC features. After
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passing the audio data through the windowing function (typically Hamming), the higher

frequencies of the data are amplified via a linear “pre-emphasis” filter and the discrete

spectrum is computed using the fast Fourier transform (FFT). The spectral representation

of the audio data in the form of FFT is passed through a pyschoacoustically motivated mel-

frequency filterbank. Each of the filters in the filterbank is triangular and computes the

energy average around the center frequency of each triangle. The center frequencies of the

filterbank are linearly spaced on the mel-frequency scale, which was designed to approx-

imate the behavior of the human auditory system. Finally, the discrete cosine transform

(DCT) is used to reduce the correlation between the filters. For speaker recognition and

diarization applications, typically coefficients 1-19 as well as the log of the energy of the

audio signal is used, giving a 20 dimensional vector. In order to incorporate some temporal

information to the features extracted, estimates of the first-order and second-order temporal

derivatives are obtained, known as delta and delta-delta coefficients, respectively. Thus, a

60 dimensional acoustic feature vector is obtained per frame of the audio data.

3.1.2 Universal Background Models

Before the advent of i-vector based methods, the most popular technique for speaker recog-

nition and diarization problems was based on Gaussian Mixture Models (GMM’s), intro-

duced in [19–21]. An important notion in GMM based speaker identification and diariza-

tion approaches is that of Universal Background Models, generally referred to as UBMs.

The front-end of I-vector based methods, as would be shown later are build on top of

UBMs.

A Universal Background model is a generative speaker-independent model which is

used to capture the variability encountered in the frame-wise acoustic feature vectors. It is

modeled using a GMM with a large number of mixture components. For a given GMM, let

C be the number of components in the mixture. Let, x be an F-dimensional feature vector,

and µi and Σi be the mean and covariance matrix of the ith mixture component of sizes F
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andF×F respectively. Let,wi represent the weight of the ith mixture component. Suppose,

λ = {wi, µi,Σi}i=C
i=1 represents the parameter set of the GMM. Then, the probability of x

given λ is

P (x|λ) =
i=C∑
i=1

wiN (x;µi,Σi) (3.1)

where,

N (x;µi,Σi) =
1

(2π)
F
2 |Σi|

1
2

exp−1

2
(x− µi)

TΣ−1i (x− µi) (3.2)

which is the standard multi-dimensional gaussian.

In an ideal sense, a UBM can be interpreted as the background model for all speakers.

That is, this model should capture the acoustic feature variation among all the speakers that

it is going to encounter. Thus, in order to achieve high accuracy on speaker recognition

and diarization tasks for both traditional GMM-UBM approaches and i-vector based ap-

proaches, it is essential that the the distribution of acoustic feature vectors used to train the

UBM model is similar to the distribution of acoustic feature vectors during testing.

The parameter set λ of the UBM is trained using an Expectation-Maximization (EM)

algorithm [19–22]. Suppose, X = {x1, x2, x3, x4, ..., xN} is the set of acoustic feature

vectors from all the speakers available for training the UBM. Then, the log-likelihood of

the acoustic feature vectors for a parameter set λ is given by

log(P (X|λ) =
N∑
i=1

P (xi|λ) (3.3)

During the EM algorithm, it is guaranteed that the log likelihood described by equation

3.3 increases after every iteration. Let, λ = {wi, µi,Σi}i=C
i=1 be the current value of the

parameter set of the UBM at during EM training. Let, λ′ = {w′i, µ′i,Σ′i}i=C
i=1 be the updated

values of the parameter set of the UBM after one iteration of EM training. Then, the
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updated values of the parameter set are given as

w′i =
1

N

N∑
t=1

P (i|xt, λ) (3.4)

µ′i =

∑N
t=1 P (i|xt, λ)xt∑N
t=1 P (i|xt, λ)

(3.5)

Σ′i =

∑N
t=1 P (i|xt, λ)(xt − µ′)(xt − µ′)T∑T

t=1 P (i|xt, λ)
(3.6)

An important thing to note is that UBM training does not require any labeling informa-

tion. In practice, the number of mixture components chosen is a large number, generally

1024 or 2048. There are no explicit reasons for choosing exactly these numbers, it has just

become a matter of tradition in the speaker recognition and diarization community. Any

number of the mixture components of the same order should work equally well.

In traditional GMM-UBM based approaches for speaker recognition and diarization,

the speaker model for a specific speaker is again modeled using a GMM. Since, the amount

of data available per speaker might be less, a maximum aposteriori (MAP) adaptation is

done to adapt the specific speaker model to the UBM [21]. Generally, only the means of

the UBM are adapted. Let s be some specific speaker for whom a speaker detector is to be

designed. Let,GMMs be the speaker model for s after MAP-adapting the UBM parameters

to s using the training data for speaker s. Then, the goal is to determine if speaker s is

present in some audio utterance Y . Let, audio utterance Y be a set of acoustic feature

vectors Y = {y1, y2, y3, ..., yM} corresponding to M frames. Then, the log-likelihood that

Y belongs to from GMMS compared to UBM is evaluated. Let, this be represented by
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L(Y ). It is given by,

L(Y ) = log
P (Y |GMMs)

P (Y |UBM)
=

t=M∑
t=1

logP (yt|GMMs)− logP (yt|UBM) (3.7)

Then, L(Y ) is tested against some pre-trained threshold θ. If, L(Y ) > θ, then Y is said

to have been uttered by speaker s.

In i-vector based speaker recognition and diarization approaches, an important step

during the front-end training, as will be seen in section 3.2 is training of a Universal Back-

ground Model. Section 3.2 will describe the basic theory of i-vector based methods. The

semi-supervised and unsupervised methods developed for LENA audio data, and described

in sections 3.3 and 3.4 are built on i-vector methods.

3.2 Basic theory of i-vector Methods

Until very recently, i-vector based methods with probabilistic linear discriminant analysis

(PLDA) as back-end were the state of the art methods [23–26] for speaker recognition and

diarization tasks. These methods have largely been deployed in traditionally well studied

domains of application like telephony, broadcast news, and meeting room data. These

domains have large curated datasets with significant amount of labeled data available. The

US National Institute of Standards and Technology (NIST) conducts a speaker recognition

evaluation (SRE) periodically to enable progress for speaker recognition research [27–29].

The domain mainly studied in SRE evaluations is telephony speech with conversational

telephone speech being the focus of the current SRE 2019 evaluation [29].

The front-end of i-vector based methods consist of representing an audio utterance into

a fixed-dimensional vector which captures the speaker and channel characteristics of the

audio utterance. The important thing to note is that audio utterances of different durations

are mapped to vectors of the same dimension.
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3.2.1 I-vector Modeling and Training

Let, S be a speaker space, where points in S represent different speakers. The assump-

tion in most Speaker ID techniques is that S is a low dimensional manifold embedded in

some higher dimensional space [20, 21, 30–33]. Usually, this higher dimensional space

is supervector space, in which, a supervector for some speaker s is obtained by adapting a

Universal Background Model (UBM) for s.

In most previous techniques, such as Joint Factor Analysis (JFA), a low dimensional

speaker representation is computed directly from supervector space i.e channel compensa-

tion is assumed directly into the model. However, in the i-vector model, a low dimensional

representation of an audio utterance is assumed which has both speaker and channel char-

acteristics. Channel compensation is performed at the back-end using techniques such as

Linear Discriminant Analysis (LDA), Probabilistic Linear Discriminant Analysis (PLDA)

[24].

A Universal Background Model (UBM) is trained to model variability in acoustic fea-

ture vectors computed from acoustic data comprising of many different speakers. For an

audio utterance, mel-frequency cepstral coefficients (MFCC) features along with deltas and

delta-deltas are computed for every acoustic frame. A Gaussian Mixture Model (GMM) is

trained as the UBM.

Terminology and Setup

Let, U be a Universal Background Model modeled as a F dimensional Gaussian Mixture

Model (GMM) with C mixture components.

Supervector: It refers to the CF dimensional vector obtained by concatenating the

F -dimensional mean vectors corresponding to an utterance GMM.

The assumption, in almost all speaker ID techniques is that, the utterance supervectors

lie in a low dimensional space and hence, can be represented by small number of parameters
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i.e if m andB represent the mean and covariance matrix of supervectors of utterances, then

B is of low rank. For the i-vector method, the speaker and channel dependent supervector

M is modeled as

M = m+ Tw (3.8)

where m is the speaker and channel independent supervector, T is a rectangular matrix of

low rankR, andw is a random vector with standard normal distributionN (0, I). Therefore,

M is normally distributed with mean m and covariance matrix TT ∗.

Let M(u) represent a supervector associated with an utterance u. For each mixture

component c, defineMc(u) as the subvector ofM(u) which corresponds to it. It is assumed

that there is a covariance matrix Σc, such that for any utterance u, acoustic observation

vectors associated with the mixture component are normally distributed with mean Mc(u)

and covariance matrix Σc. Let Σ denote the CF × CF block diagonal matrix whose

diagonal blocks are Σ1, Σ2, Σ3, ..., ΣC .

Let X(u) be the acoustic feature vectors associated with utterance u. Baum-Welch

statistics are extracted from X(u).

γt(c) = P (c|Xt, UBM) (3.9)

Then, let

Nc(u) =
L∑

t=1

γt(c) (3.10)

Fc(u) =
L∑

t=1

γt(c)(Xt − µc) (3.11)

Sc(u) =
L∑

t=1

γt(c)(Xt − µc)(Xt − µc)
∗ (3.12)

Let,N(u) be theCF×CF block diagonal matrix whose diagonal blocks areN1(u)I ,N2(u)I ,...,NC(u)I ,

27



where I is the F ×F identity matrix. Let F (u) be the CF × 1 vector obtained by concate-

nating F1(u),F2(u),...,FC(u). Let, S(u) be theCF× block diagonal matrix whose diagonal

blocks are S1(u), S2(u),...,SC(u).

The new vectors w are a low dimensional representation of M and are referred as i-

vectors.

EM Steps

The main computation that needs to be done for estimating T and Σ and for MAP adapta-

tion for utterance u is to calculate the posterior distribution of w(u) given utterance data.

For each utterance, let l(u) be a R×R matrix given as

l(u) = I + T ∗Σ−1N(u)T

Then, for each utterance u, the posterior distribution of w(u) given X(u), T , and Σ is

Gaussian with mean

l−1(u)T ∗Σ−1F (u) and covariance matrix l−1(u).

The E steps consists of computing E[w(u)] and E[w(u)w(u)∗] given current estimates

of T and Σ. This has a nice analytic solution.

In the M step, let T and Σ be new estimates of the model parameters. Then, T is the

solution of

∑
u

N(u)TE[w(u)w(u)∗] =
∑
u

F (u)E[w∗(u)] (3.13)

and, for each component c,

Σc =
1

nc

(
∑
u

Sc(u)− Zc) (3.14)

where nc =
∑

cNc(u).
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The new estimates of T and Σ are guaranteed to increase the log likelihood of all data.

The details of computation can be found in [30].

Once, T and Σ are trained, then for any utterance u, the mean of the posterior distribu-

tion of w(u), given acoustic frames corresponding tou is computed. This mean is termed

as the i-vector.

3.2.2 PLDA

Probabilistic linear discriminant analysis (PLDA) is the back-end which is typically used

to compute a likelihood if two i-vectors belong to the same speaker in speaker recognition

and diarization systems.

In PLDA scheme, it is assumed that the i-vector w(u) corresponding to utterance u can

be modeled as

w(u) = µ+ V x+ ε(u) (3.15)

Here, µ + V x can be viewed as the speaker-specific part which captures the identity

of the speaker and does not depend on the particular utterance u and ε(u) can be viewed

as the utterance dependent channel component. ε(u) is assumed to be gaussian with zero

mean and a covariance matrix W . µ is a global parameter independent of the mean, while

V is the speaker subspace model and x is a latent speaker identity vector that has a standard

gaussian prior. The parameters {µ, V,W} are trained using an EM algorithm. The details

of EM training and computation can be found in [24].

Once, {µ, V,W} are trained, for any two i-vectors w1 and w2, the likelihood that the

two i-vectors share the same latent speaker identity is computed.
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Figure 3.2: Semi Supervised I-vector based Annotation System
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3.3 Semi-Supervised I-vector based Diarization

The LENA audio data which is the focus area of this work is more challenging compared

to domains like telephony, broadcast news, and meeting room data. There are three main

challenges compared to the traditional studied domains:

• LENA audio is very noisy as the microphone is attached to the clothing of child.

• LENA audio is single-channel data.

• The amount of labeled data for training models is very less compared to traditional

studied domains in speaker recognition and diarization tasks.

Compared to training speaker recognition and diarization systems for traditional sys-

tems, there are fewer unique speakers present in the datasets that are studied here. How-

ever, there is lot of speech data present for all speakers in LENA recordings. In the semi-

supervised method, this property for this dataset is exploited. These methods are developed

for the scenario in which some amount of labeled data is present for every speaker present

in the audio recording. Initially using the limited amount of labeled data (here 2 minutes of

speech per speaker), an initial subject specific i-vector model is constructed. Using these

initial models and an initial estimate of the PLDA model, unlabeled audio utterances are

tested against these models and then these unlabeled audio utterances are used to update

the subject-specific speaker models.

The semi-supervised algorithm is illustrated in figure 3.2, in the first stage, i-vector

extractor training is done which does not use any labeled data. In the second stage, 2

minutes of speech is used to compute initial speaker models. In the third stage, data from

unlabeled audio is used to update the subject-specific speaker models.
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Algorithm 1 Semi-Supervised I-vector Training Algorithm
Initial Training: 1) Train UBM and I-vector extractor (T) matrix 2) Use labeled infor-
mation to train initial i-vector speaker models Smodels and PLDA scorer

for fixed number of iterations do
while parse through unlabeled audio segments do

Choose audio segments for update using current Smodels and PLDA
end while
Update Smodels and PLDA

end for

3.3.1 System Development and Data Analysis

In this section, we describe the development of our semi-supervised i-vector based diariza-

tion system. To this end, we will show that it is possible to detect child, adult female, and

adult male segments with high accuracy for a LENA recording. We term the developed

system “semi-supervised” because it uses unlabeled data to update or retrain speaker and

PLDA models. Figure 3.2 illustrates the various stages involved in system development.

We trained i-vector based vocalization detectors for clinic and home environments. The

LENA audio data was single channel data sampled at 16 kHz. We used Kaldi toolkit [34]

to run our experiments. A total of 20 MFCC features plus deltas and delta deltas were

extracted based on 20 milliseconds (ms) Hamming windowed data with a frame rate of

100/second. A basic energy based voice activity detection (VAD) system was used to select

voice only frames.

Stage 1: Parameter Training Using No Labeled Information

A 1024 Gaussian Mixture Model (GMM) using around 20 hours of data was trained as

a Universal Background Model (UBM). An i-vector extractor was trained to generate a

400 dimensional i-vector for a given audio segment. Therefore, every audio segment was

mapped into a 400 dimensional i-vector. No labeling information was required to train

UBM and i-vector extractor.
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Table 3.1: System Parameter Values Used in the i-vector system
Parameter Name Value

Acoustic Features 20 dimensional MFCC’s
Frame Length 20 ms (Hamming Window Used)
Frame Rate 100 frames/sec (Frame Shift 10 ms)
Universal Background Model 1024 Gaussians
i-vector dimensionality 400

Stage 2: Initial Speaker and PLDA Models

The initial subject specific speaker models for every child and adult were computed using 2

minutes of speech per speaker. To be precise, for any given speaker a set of audio segments

was chosen such that the cumulative amount of speech after being processed though VAD

in these segments was approximately 2 minutes. The mean of the i-vectors corresponding

to these segments was deemed to be the speaker model for that speaker. For child speakers,

separate models were formed in clinic and home conditions.

The data used to train speaker models i.e., 2 minutes of speech per speaker, was used to

train the initial PLDA back-end scorer. We used additional data of 2 minutes comprised of

toys, TV, environmental noise, silence from every recording. The underlying assumption

specific to our data (due to the nature of annotation process) during the training of PLDA

scorers is that all female labels in a given recording correspond to the same speaker. The

same is assumed for child and male speakers. Another assumption is that speakers of one

recording are distinct from speakers of another recording. However, all the interactions

with the children in clinic were done by two research assistants. Therefore, at most, data

from 2 recordings could have been used for training the PLDA. At the time of running

the experiments, information about which research assistant interacted with a particular

child was not available. Hence, training a PLDA scorer for a recording corresponding to

a particular child used data from all child and adult speakers in the home environment, all

child speakers from the clinic environment, and only one adult which interacted with the

particular child.
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3.3.2 Stage 3: Speaker and PLDA Models Update

We used unlabeled data to retrain our initial speaker and PLDA model updates. The i-

vectors corresponding to unlabeled audio segments were tested against subject specific

trained models trained in stage 2 using PLDA scorer trained in stage 2. The likelihood

scores obtained were used to choose the most likely utterances for update. The speaker

models and the PLDA back-end were then retrained using the limited labeled audio seg-

ments and the newly obtained most likely utterances.

Trials Generation

In order to test the accuracy of our i-vector based vocalization detectors, we created trials

in which the speaker models were tested against i-vectors obtained from segments not used

in training the speaker models and PLDA scorers. For example, let Child 1clinic denote the

speaker model of Child 1 child in clinic conditions. Then, Child 1clinic was tested against

i-vectors corresponding to child segments, female segments, toy segments, noise segments,

and silence segments from Child 1’s LENA recording in clinic conditions, which were not

used in any training. The PLDA scorers computed the likelihood that a given test i-vector

belongs to Child 1clinic speaker model.

An i-vector based diarization system with front end similar to our system, for LENA

recordings of children aged 2.5 to 5 years, recorded in a childcare center was presented

in [35] and had an accuracy of 69%. Our system, however, used PLDA metric as the back-

end for scoring, in contrast to [35], which used a Support Vector Machine (SVM) based

scoring as the back-end. Another distinction was that our system does scoring against sub-

ject specific speaker models, obtained using two minutes of speech per speaker, while the

system in [35] does subject independent supervised classification of primary child, sec-

ondary child (other children with which the primary child interacts at the childcare center)

and adult vocalizations.
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Table 3.2: Accuracy of semi-supervised i-vector based child detectors in clinic conditions
for older children

Child Id Number of Trials EER

KATXEL 710 0.0
MCGRFI 636 11.0919
RIKOGA 725 12.2102
BEHPAN 685 8.3189
BAIXLU 646 8.2
GRIFSP 678 5.1836
DONOMA 672 11.6427
MCDOLU 622 11.0727
STERRA 553 12.1086
ACEVNA 639 16.3907
LEWICA 572 20.4819
HJIASO 684 14.8532
SANCOS 654 15.8182
JABLNI 514 7.5594
WEXXYU 634 12.2995
HJIATO 637 10.0694
WRAXSY 660 17.8218
TENOJA 708 28.9568
PELLDA 733 7.2327
CAMPJU* 739 15.24

3.3.3 Results for Older Children

The accuracy of the i-vector based vocalization detectors was tested using Equal Error Rate

(EER)%. The equal error rate corresponds to the operating point of a detector at which the

false rejection rate and false acceptance rate are equal. Tables 3.2 and 3.3 describe the

accuracy of child and female vocalization detectors in clinic conditions. From table 3.7, the

mean EER for child detectors in clinic conditions was 12.17%, which is highly accurate.

The EER rates were less than 20% for almost all child speakers in the clinic conditions,

which suggests that the methods are consistently accurate. The mean EER for female

detectors in clinic conditions was 19.53% which is quite accurate, but not as accurate as

female detectors in home conditions where the mean EER rate was 15.43%. The main

reason we suspect is the fact that for training the PLDA scorer, two minutes of speech
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Table 3.3: Accuracy of semi-supervised i-vector based female detectors in clinic conditions
for older children

Child Id Number of Trials EER

BEHPAN 685 20.7071
SANCOS 654 21.0953
ACEVNA 639 13.7405
STERRA 553 28.3843
CAMPJU 632 19.4561
BAIXLU 646 24.1176
HJIATO 637 16.3534
MCGRFI 636 22.7477
WEXXYU 634 20.9924
GRIFSP 678 20.7436
MCDOLU 622 14.5455
DONOMA 672 11.1517
LEWICA 572 23.8482
HJIASO 684 22.7848
WRAXSY 660 13.933
JABLNI 514 25.1244
PELLDA 733 22.4961
RIKOGA 725 9.5159
TENOJA 708 32.8358
KATXEL 710 6.051
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Table 3.4: Accuracy of semi-supervised i-vector based child detectors in home Conditions
for older children

Child Id Number of Trials EER

PELLDA 411 8.3799
SANCOS 720 6.3618
BEHPAN 677 9.6931
HJIASO 482 12.8358
GRIFSP 620 5.1625
JABLNI 504 7.2261
LEWICA 628 10.8527
HJIATO 630 9.188
KATXEL 564 14.1717
BAIXLU 497 14.0212
WRAXSY 654 16.3551
STERRA 402 6.9638
RIKOGA 510 17.8571
MCGRFI 701 8.5455
ACEVNA 452 12.9477
MCDOLU 554 9.5785
TENOJA 534 17.4468
CAMPJU* 304 8.55
WEXXYU* 536 19.96
DONOMA* 267 4.98
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Table 3.5: Accuracy of semi-supervised i-vector based female detectors in home Condi-
tions for older children

Child Id Number of Trials EER

CAMPJU 210 9.0909
BEHPAN 677 17.5768
ACEVNA 452 15.427
HJIATO 630 11.9247
LEWICA 628 22.2846
MCGRFI 701 14.8021
JABLNI 504 21.9089
MCDOLU 554 10.4592
BAIXLU 497 9.6096
STERRA 402 19.0104
RIKOGA 510 12.3737
WRAXSY 654 11.7647
TENOJA 534 16.8016
HJIASO 482 13.1098
DONOMA 211 10.8911
WEXXYU 490 29.7921

Table 3.6: Accuracy of semi-supervised i-vector based male detectors in home Conditions
for older children

Child Id Number of Trials EER

SANCOS 720 5.8333
STERRA 402 6.1972
GRIFSP 620 5.4054
KATXEL 564 8.4091
MCGRFI 701 7.0203

Table 3.7: Summary of Accuracy of semi-supervised i-vector based detectors for older
children

Detector Type Mean EER

Child Clinic 10.98
Female Clinic 16.64
Child Home 9.71
Female Home 12.35
Male Home 6.51
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Table 3.8: Summary of Accuracy of semi-supervised i-vector based detectors for infants
Detector Type Mean EER

Child Home 13.73
Female Home 18.97
Male Home 16.48

corresponding to female speakers was used from each recording in home conditions, while

data from only one recording from clinic could be used. Another reason which might have

negatively impacted the results could be that the time used to setup the interaction process

with the child was also recorded and annotated. Multiple speakers spoke during the setup

time but all were marked as the same label, which is adult female. The mean EER for

child detectors in home conditions was 11.03%, which again is highly accurate. The EER

rates for all child speakers was less than 20% for all child speakers, which again shows that

the child detection was consistently accurate. The mean EER for male speakers in home

conditions was 6.57%. The detectors were accurate in detecting both male and female

speech, however the accuracy in males was much greater than females. The most likely

reason for such behavior is that since the age of the children for our study was from five to

fourteen years old, their voices were more similar to female voices than male voices.

3.3.4 Results for Infants

Similar to experiment conducted for older children, trials were generated for infants to

test the accuracy of the semi-supervised i-vector based detectors. Figure 3.8 shows the

EER values for child, female, and male detectors. In the infants study, acoustic data was

only collected from the natural home environment. As was observed in the case of older

children dataset, the mean equal error rate across all infants was less than 20%. The mean

equal error rate for children was 13.73%, for female speakers it was 18.97%, and for male

speakers it was 16.48 %.
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3.4 Unsupervised I-vector Based Diarization

In this section, we describe the development of an unsupervised i-vector based diarization

system that does not require any labeled data from the recording under investigation. To this

end, we will show that it is possible to detect child, adult female, and adult male segments

with high accuracy for a completely unlabeled LENA recording.

These methods were developed for the scenario in which no labeled data is present for

speakers present in the audio recording. In this scenario, universal older children models,

universal infant models, universal female models, and universal male models are used to

choose utterances to construct initial subject-specific models. Once these initial subject-

specific models are built, semi-supervised recipe is followed.

Algorithm 2 Unsupervised I-vector Training Algorithm
Initial Training: 1) Train Universal Child, Female and Male Models.
1. Use universal models to choose child, female, and male segments which have very
high likelihood.
2. Use these chosen segments to train speaker-specific models Smodels and updated
PLDA.

for fixed number of iterations do
while parse through unlabeled audio segments do

Choose audio segments for update using current Smodels and PLDA
end while
Update Smodels and PLDA

end for

3.4.1 Feature Extraction; UBM Training; I-vector Extractor Training

We used the Kaldi toolkit [34] to perform all our experiments. In the initial step, 20

mel frequency cepstrum coefficients (MFCC’s) along with their deltas and delta-deltas are

computed for every frame of an audio segment at the frame rate of 100/sec. An energy

based voice activity detector (VAD) is used to remove frames whose average signal energy

is below a threshold. Then, we train a Gaussian Mixture Model of 1024 Gaussians as our
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Table 3.9: System Parameter Values Used in the i-vector system
Parameter Name Value

Acoustic Features 20 MFCC+20 delta+20 delta-deltas
Frame Length 20 ms (Hamming Window)
Frame Rate 100 frames/sec
Universal Background Model 1024 Gaussians
i-vector dimensionality 400

Universal Background Model. Finally, an i-vector extractor is trained such that it maps an

audio segment of arbitrary duration into an i-vector of dimension 400.

3.4.2 Universal Child, Adult Female, and Adult Male Detector Models; PLDA1 Training

Universal child, adult female, and adult male detector models were used to select audio

segments from an unlabeled audio recording to train subject specific speaker models for

that recording. Ideally, one would want to train these models over a significant number

of speakers. For our data, we had 20 different patients. So, to detect child, adult female,

and adult male segments for an unlabeled audio recording, we used labeled data from other

19 patients to train our universal child, female, and male detector models. The universal

models were computed as the mean of i-vectors obtained from audio segments from the

19 patients. For example, suppose ivec1j , ivec
2
j , ..., ivec

Nj

j are the i-vectors obtained from

child audio segments from patient j. Then, the universal child model is given as

UniversalChild =

∑19
i=1

∑Ni

k=1 ivec
k
i∑19

i=1Ni

(3.16)

Similarly, universal adult female and adult male models were computed.

In order to compute a numerical score to determine the likelihood against universal

child, adult female and adult male models, PLDA1 scorer was trained. PLDA1 computes

the score of two i-vectors ivec1 and ivec2 in the following manner :

Score(ivec1, ivec2) =
P (ivec1, ivec2|H1)

P (ivec1|H0)P (ivec2|H0)
(3.17)
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where H1 is the hypothesis that both i-vectors come from child audio segments or adult

female audio segments or adult male audio segments or other audio segments and H0 is the

hypothesis that they do not come from the same audio type (i.e, child, adult female, adult

male, or other).

3.4.3 Subject Specific Speaker Models; PLDA2 Training

For every unlabeled audio recording, we used the universal child, adult female, and adult

male detector models to select audio segments with high likelihood when tested using

PLDA1. For example, for computing subject specific child model, we selected segments

in the decreasing order of likelihood, starting with the audio segment with the highest like-

lihood, until the cumulative amount of speech from these selected segments was approxi-

mately 1 minute and then computed the mean of these i-vectors. Suppose, audio segments

which corresponded to ivec1, ivec2, ..., ivecN i-vectors were selected using universal child

model. Then, the subject specific child model was computed as

Subject SpecificChild =

∑N
i=1 iveci
N

(3.18)

Similar procedure was performed to compute subject specific female and male models.

One assumption which holds true for our dataset is that there is not more than one female or

male speaking in the audio recording. Another point to note is that even in the presence of

another child, the selected 1 minute segments almost always comprised of audio segments

belonging to the primary child. Our methods can be extended to the most general case,

when there are multiple female or multiple male speakers by introducing a check for the

number of clusters present in the selected female or selected male segments, respectively.

PLDA2 was trained using labeled data from 19 patients and audio segments selected

from unlabeled audio recording to compute subject specific speaker models. PLDA2 com-
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Table 3.10: Average EER Values in Clinic Conditions
Detector Type EER

Child 14.16
Female 17.63

Table 3.11: Average EER Values in Home Conditions
Detector Type EER

Child 13.98
Female 15.56
Male 6.78

putes score of two i-vectors ivec1 and ivec2 similar to PLDA1 in the following manner :

Score′(ivec1, ivec2) =
P (ivec1, ivec2|H ′)1

P (ivec1|H ′0)P (ivec2|H ′0)
(3.19)

where H ′1 is the hypothesis that both i-vectors come from the same speaker and H ′0 is

the hypothesis that they do not come from the same speaker.

3.4.4 Results for Older Children

In order to test the accuracy of our i-vector based vocalization detectors, we created trials

in which the subject specific speaker models were tested against i-vectors obtained from

segments not used in training the speaker models and PLDA2 model. The accuracy of

the i-vector based vocalization detectors was tested using Equal Error Rate (EER)%. The

equal error rate corresponds to the operating point of a detector at which the false rejection

rate and false acceptance rate are equal. For clinic conditions, we did not have any male

speakers. We see from the tables that the average equal error rates for all detector types in

both clinic and home conditions is less than 20%, which suggests accurate child, female

and male detection. These results are not as good as the semi-supervised case, where some

amount of labeled data is used to train subject specific models, but they are still close

enough for actual use.
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Table 3.12: Summary of Accuracy of unsupervised i-vector based detectors for infants
Detector Type Mean EER

Child Home 16.34
Female Home 19.97
Male Home 19.21

3.4.5 Results for Infants

Similar to experiment conducted for older children, trials were generated for infants to test

the accuracy of the unsupervised i-vector based detectors. Figure 3.8 shows the EER values

for child, female, and male detectors. In the infants study, acoustic data was only collected

from the natural home environment. As was observed in the case of older children dataset,

the mean equal error rate across all infants were less than 20%. The mean equal error rate

for children was 16.34%, for female speakers it was 19.97%, and for male speakers it was

19.21 %

3.5 Summary and Discussion

In this chapter, development of accurate i-vector based diarization methods for LENA au-

dio recordings was done. To this end, two methods to perform accurate diarization were

developed. In the first method called as semi-supervised method, 2 minutes of speech was

used per speaker to develop initial speaker models and back-end PLDA model. These ini-

tial models were then used to annotate unlabeled data. Among unlabeled audio segments,

the audio segments which were classified with very high likelihood were chosen to update

the initial models. This process was iterated for some small fixed number of iterations

to obtain final speaker models and labels. In the second method called as unsupervised

method, universal speaker models for child speakers, female speakers, and male speakers

were computed. For a completely new unlabeled LENA audio recording, these universal

speaker models were used to annotate labels as child, female and male speakers. Among

these newly labeled audio segments, a small set of audio segments which were classified
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into child, female, and male speakers with a very high likelihood were used to compute

speaker specific models and then the semi-supervised diarization recipe was followed.

The methods were tested in both clinic conditions where research assistants would inter-

act which children while they were performing a fixed set of tasks, and in home conditions

where they were in their natural home environment interacting with their care-givers. In

both these conditions, the semi-supervised methods and unsupervised methods were very

accurate for all classes of speakers.
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CHAPTER 4

APPLICATION OF DIARIZATION METHODS TO COMPUTE LANGUAGE

BEHAVIOR AND PRE-LANGUAGE BEHAVIOR STATISTICS

In chapter 3, development of accurate i-vector diarization methods specific to LENA data

was described. The main motivation as has been outlined earlier to do accurate diarization

is to be come up with language behavior objective measures that can determine if a par-

ticular treatment or behavioral intervention is effective for children already diagnosed with

autism, and develop pre-language behavior statistics for infants to help diagnose autism

early.

In this chapter, a) desirable characteristics of an objective measure, b) computation of

utterance rate and its effective in determining autism severity, and d) extracting 5 minute

high vocalization window for computing canonical babble statistics for infants is described.
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4.1 Need for Objective Measures of Assessment and their Characteristics

One of the main goals in the autism research community is to develop automatic objective

measures which can track the efficacy of various treatments. Accurate automatic objective

measures, by definition would eliminate subjectivity associated with current methods of

assessment based on clinician and caregiver reports. If such measures are computable in

home environments, then much more data compared to controlled clinic settings will be

available for analysis, enabling more robust estimation of child’s language behavior.

Let M denote an objective measure of assessment. Then, any such M should have the

following properties:

• Non-Intrusive (NI): The sensors used to collect data from an individual diagnosed

with ASD to compute M should be as non-intrusive as possible. They should not in-

trude with individual’s normal functioning and should cause minimum inconvenience

to the individual.

• Computable in home environments (H): M should be computable in naturalistic

home conditions. Development of objective measures in naturalistic home condi-

tions would enable analysis of more data for a particular participant than is feasible

in controlled clinic settings.

• Reliable (R):M should be reliable i.e if the child behavior is similar at any two times

t1 and t2, then, M measured at t1 and t2, denoted byMt1 andMt2 respectively, should

be similar.

• Reveals some aspect of autism severity (AS): Another important property that any

proposed M should have is that it should be able to determine some aspect of autism

severity. This could be the overall autism severity score or some specific aspect of

social communication or repetitive behavior symptom measures.
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Table 4.1: Parameters of semi-supervised i-vector system
Parameter Name Parameter Value

Acoustic features 20 MFCC + 20 delta + 20 delta-deltas
Frame length 20 ms (Hamming Window)
Frame rate 100 frames/sec
UBM 1024 Gaussians
i-vector dimensionality 400
Average child detector EER 9.71

4.2 Utterance Rate Computation and Analysis

4.2.1 Definition

Utterance Rate: Suppose a speaker segmentation algorithm segments an audio recording

with multiple speakers into N different segments, separated by speaker boundaries. Let M

be the number of segments identified by a child detector to contain child utterances. Then,

utterance rate, denoted by U is defined as

U =
M

N

In this study, we used LENA’s segmentation algorithm to segment the audio record-

ing based on speaker boundaries. Semi-supervised i-vector based child detector models

introduced in [36] were used to accurately detect child segments.

4.2.2 Semi-supervised i-vector based child detectors and utterance rate computation

Figure 1.2 shows the steps involved in computation of utterance rate statistic. As described

in the definition of utterance rate, a segmentation algorithm should be used to obtain audio

segments. In this work, we used LENA’s segmentation algorithm. The human annotators

found that there were quite a few segments which had the child and an adult speaking one

after the other in the same audio segment. This is an anomaly of the segmentation algo-

rithm. We plan to develop improved segmentation algorithm for our future work. Semi-
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supervised i-vector based methods were developed to do child and adult voice detection.

I-vector based methods have been extensively shown to be the state of the art methods for

speaker recognition and diarization tasks in other domains such as telephony, broadcast

news, and conversational meetings. Any i-vector based speaker recognition or diarization

system has two sub-systems. A front-end which maps an audio utterance of arbitrary du-

ration into a fixed low dimensional vector (usually 100-1000) called as an i-vector which

captures both speaker and channel characteristics [23], and a back-end which gives a like-

lihood score if two i-vectors belong to the same speaker. We used probabilistic linear

discriminant analysis (PLDA) scorer as our back-end [24].

Algorithm 3 Semi-Supervised I-vector Training Algorithm
Initial Training: 1) Train UBM and I-vector extractor (T) matrix 2) Use labeled infor-
mation to train initial i-vector speaker models Smodels and PLDA scorer

for fixed number of iterations do
while parse through unlabeled audio segments do

Choose audio segments for update using current Smodels and PLDA
end while
Update Smodels and PLDA

end for

For every subject, we had small amount of labeled data for speakers present in the

audio recording. The LENA audio data was single channel data sampled at 16 kHz. We

used Kaldi toolkit [34] to run our experiments. A total of 20 MFCC features plus deltas

and delta deltas were extracted based on 20 milliseconds (ms) Hamming windowed data

with a frame rate of 100/second. A basic energy based voice activity detection was used to

select voice only frames. A 1024 Gaussian Mixture Model (GMM) using around 20 hours

of data was trained as a Universal Background Model (UBM). An i-vector extractor was

trained to generate a 400 dimensional i-vector for a given audio segment. Therefore, every

audio segment was mapped into a 400 dimensional i-vector. No labeling information was

required to train UBM and i-vector extractor. This is step 1) of initial training part of the

algorithm described.
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The initial subject specific speaker models for every child and adult were computed

using 2 minutes of speech per speaker. To be precise, for any given speaker a set of audio

segments was chosen such that the cumulative amount of speech after being processed

though VAD in these segments was approximately 2 minutes. The mean of the i-vectors

corresponding to these segments was deemed to be the speaker model for that speaker. The

data used to train speaker models i.e., 2 minutes of speech per speaker, was used to train

the initial PLDA back-end scorer. We used additional data of 2 minutes comprised of toys,

TV, environmental noise, silence from every recording. This is step 2) of initial training

part of the algorithm described.

We used unlabeled data to retrain our initial speaker and PLDA model updates. The

i-vectors corresponding to unlabeled audio segments were tested against initial subject spe-

cific trained models trained in step 2) of the initial training using PLDA scorer trained in

step 2) of the initial training. Utterances which had very likelihood scores were chosen for

updating speaker models and PLDA. The speaker models and the PLDA back-end were

then retrained using the initial limited labeled audio segments and the newly chosen utter-

ances for update. This step was repeated for a fixed number of iterations to obtain final

subject specific speaker models and PLDA scorer.

In order to test the accuracy of our i-vector based detectors, we created trials in which

the speaker models were tested against i-vectors obtained from segments not used in train-

ing the speaker models and PLDA scorers. For example, let Child1 denote the speaker

model of some subject. Then, Child1 clinic was tested against i-vectors corresponding to

child segments, adult segments, toy segments, noise segments, and silence segments from

that subject’s LENA recording, which were not used in any training. The detection accu-

racy for child speaker detectors was measured by equal error rate (EER). The mean EER

value for all child subjects was 9.71%. In order to compute M in the definition of utterance

rate, for every audio segment present in the set of N audio segments, the likelihood of au-

dio segment having a child utterance is computed by testing the i-vector corresponding to
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Figure 4.1: Week 1 versus Week 2 Utterance Rate Comparison

the audio segment against the trained i-vector child speaker model. This likelihood score is

then compared to a threshold, obtained from testing on small amount of labeled data, and

then, a decision is made if the audio segment has a child utterance.

4.2.3 Results and discussion

In sections 4.1 and 4.2, we defined utterance rate and described an i-vector based method

to compute it. In this section, we show that utterance rate has the described characteristics

NI , H , R, and AS of an objective measure.

The LENA device used to collect audio data is easily accommodated in children’s cloth-

ing, causing minimal interference to child’s normal functioning. Thus, utterance rate com-

puted from this audio data has property NI . In general, for audio-based measures to have
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Figure 4.2: Week 2 versus Week 3 Utterance Rate Comparison

the NI property, recording microphones must either be placed near children or be placed

on the child clothing without causing much hindrance. For computing utterance rate, no

special cues from parents are necessary. As in, it is computed from natural interactions

between children and parents. Thus, utterance rate has property H and it can be estimated

over more data than measures which can be computed only from special kinds of interac-

tions, such as interactions when parents are instructed to ask specific questions.

As was outlined before, audio data was collected across 3 different weeks, 1stweek,

4thweek, and 8th week respectively over a period of 8 weeks. For the rest of discussion, we

refer to 1st by week 1, 4th week by week 2, and 8th week by week 3 respectively. This is the

typical period for which a drug trial lasts. No explicit treatment was administered as part

of this study, therefore there is no reason to predict that language behavior should differ
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Figure 4.3: Week 3 versus Week 1 Utterance Rate Comparison

across the 8 week period. In order to check if utterance rate has property R, we computed

utterance rate for week 1, week 2, and week 3 for all 20 subjects. Figures 4.1, 4.2, and 4.3

show the comparison of utterance rate across different weeks for all 20 subjects. We can

infer from figures 4.1, 4.2, and 4.3 that utterance rate is relatively consistent across three

different instances of measurement. The Pearson correlation coefficient (ρ) between week

1 and week 2 was 0.79, between week 2 and week 3 was 0.77, and between week 3 and

week 1 was 0.70 respectively. Thus, utterance rate has property R.

The subjects in this investigation as noted earlier were diagnosed with autism spec-

trum disorder ASD. The amount of autism severity, however, varied from one participant

to another. The amount of autism severity was measured by ADOS-CSS (autism diagnos-

tic observation schedule calibrated severity score) as well as CSS-SA (calibrated severity
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Figure 4.4: Comparison of utterance rate with ADOS CSS scores

score social affect) score which is specifically targeted towards atypical communication

symptoms of autism [37]. These scores are discrete-valued from 0 − 10 with 10 being

the highest severity level and are computed from raw ADOS scores after examination by

a licensed clinician. These measures are derived from clinical judgment. These measures

capture many different aspects of social communication deficits in ASD including gaze,

and gestures in addition to language challenges. There were 6 different ADOS-CSS and

CSS-SA (4,6,7,8,9,10) values in our sample. Figures 4.4 and 4.5 show the comparison of

mean utterance rate computed with ADOS CSS scores and CSS SA scores respectively.

Figure 4.4 shows that utterance rate can possibly classify subjects into two classes: Class

a) subjects with high ADOS CSS score (8,9,10) and Class b) subjects with low ADOS

score (4,6,7). However, within a particular class, let’s say of high ADOS CSS scores, it
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Figure 4.5: Comparison of utterance rate with CSS SA scores

does not have the capability to distinguish between 8,9, and 10 ADOS CSS scores. The av-

erage utterance rate for subjects with low ADOS CSS score was 0.2877 while for subjects

with high ADOS CSS score was 0.199, suggesting it can be used to determine if a subject

belongs to the higher autism severity class or lower autism severity class. Thus, utterance

rate can reveal some information about autism severity and has property AS.

One possible improvement is development of language based measures which factor

in child-parent interaction. These might be more descriptive in revealing autism severity.

Also, more measurements of utterance rate or any proposed objective measure per subject

will make it possible to study the distribution of that statistic and study its dynamics over

time if any treatment is administered. Another improvement could be increased number of

subjects. This will enable a more rigorous analysis of a proposed objective measure.
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4.3 Extraction of 5 Minute High Vocalization Child Window for Canonical Babble

Estimation

One of the main goals of autism research as has been highlighted before, is to diagnose

autism spectrum disorder at an early age. The present clinical diagnostic tools for autism

spectrum disorder can diagnose autism earliest at the age of 24 months. The current con-

sensus among autism researchers is that if diagnosis of ASD could be done at an earlier

stage, then, treatments and behavioral intervention could be more effective.

In order to enable early diagnosis of ASD, it is therefore important to be able to charac-

terize pre-language development and paralinguistic behavior of children before 24 months.

Some possible measures of characterizing pre-language child development and paralinguis-

tic behavior are canonical babble ratio; paralinguistic behavior such as crying, laughing,

screaming; and motherese. In this section, a method is described to compute canonical

babble ratio using human intervention for day-long naturalistic audio recordings.

4.3.1 Canonical Babble Ratio

Canonical Babbling (CB) is an important speech-language milestone in the first year of a

child’s life. It comprises of canonical syllables, defined as fully articulated sound sequences

with a consonant-like and vowel-like sound, with a rapid transition between them [38],

eg. ba-ba-ba, ga-ga-da-ba etc. It is observed in typically developing infants between 7-

10 months [39–41]. Analysis of canonical syllables produced by infants is of interest

because canonical syllable production has been shown to relate to later speech-language

abilities [42, 43]. It is conjectured that CB may serve as an early developmental marker in

differentiating neurodevelopmental disorders [44, 45]. A canonical syllable consists of all

of the following elements:

1. a mature and clear vowel-like sound.

2. a mature and clear super-glottal consonant-like sound.
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3. coupling of 1 and 2 in a time manner, i.e rapid transition between consonant-like

sound and vowel-like sound.

4. high speech-like quality.

Non-canonical syllables (Non-CS) consist of only vowel-like sounds or vowel-like

sounds with unclear consonant-like sounds or isolated consonants (eg. mmmmmm). Veg-

etative sounds like burping, sneezing, coughing; raspberries or trills eg. (brrr); cooing,

gurgling, comfort sounds; crying, whining, screaming; squealing (vocalizations at high

pitch); growling; and breathing sounds are not considered child vocalizations.

Canonical Babble Ratio (CBR): Suppose, an audio window consisting of N1 canonical

syllables and N2 non-canonical syllables is given. Then, the canonical babble ratio (CBR)

is given by

CBR =
N1

N1 +N2

(4.1)

Here, N1 +N2 are the total number of child vocalizations. For canonical babble ratio to

be a reliable measure, it should stabilize after some threshold number of child vocalizations.

That is, if x ∈ N is number of child vocalizations, then, CBR(x) should more or less be

constant, for x > M , where M is the threshold number of child vocalizations.

Previous studies which analyzed short video clips used 5 minute of audio window to

compute the canonical babble ratio (CBR) [46, 47]. Currently, there are no automatic

accurate methods to determine if a given child vocalization is a canonical syllable or not.

So, human annotation is the only way to analyze them.

LENA audio recordings in the IBIS dataset are 16 hour day long recordings. The distri-

bution of child vocalizations is not uniform across the 16 hour period. For example, there

are large periods of time in the 16 hour recording when no child vocalizations are recorded

(eg. the child is sleeping). An important problem therefore is to extract an audio window

from the 16 hour recording which has significant number of child vocalizations. Since, the
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previous studies [46, 47] used 5 minutes of audio window to compute CBR, the problem

is: given a 16 hour LENA recording, extract a 5 minute audio window which has high

number of child vocalizations.

Algorithm 4 Algorithm to extract 5 minute high child vocalization window from 16 hour
day long recording

Given: 16 hours audio recording AR and a diarization scheme D
1. Run D on AR.
2. Divide AR into contiguous regions of approximately 5 seconds. Maintain speaker
boundaries from D when dividing AR into contiguous regions.
3. Compute number of child segments per contiguous region.
4. Sort the contiguous regions according to number of child segments present in de-
scending order.
5. Select the top 60 contiguous regions.

Ideally, i-vector based diarization scheme should have been used in Algorithm 3. to

extract the 5 minute high child vocalization audio window. However, the CBR experiments

were performed before the development of i-vector based diarization scheme for IBIS data.

Therefore, LENA diarization output was used to illustrate how a diarization scheme can

be used to obtain 5 minute high child vocalization audio window from 16 hour day long

recordings using Algorithm 3. Since, LENA diarization is not accurate as shown in chapter

2, there most likely exist other 5 minute audio windows during the 16 hour recordings

which have a higher number of child vocalizations. But, since the 5 minute audio window is

going to be hand annotated for computing canonical syllables and non-canonical syllables,

as long as there are enough child vocalizations, a reliable CBR can be computed.

Table 4.2: Canonical Babble Ratio
HR-ASD HR-Neg LR

N=11 (8 males) N=35 (22 males) N=26 (15 males)
Mean (SD) Mean (SD) Mean (SD)

Canonical Babble Ratio 0.49 (0.32) 0.53 (0.38) 0.67 (0.45)
Canonical Babble Syllables 62.73 (50.44) 58.51 (40.26) 74.15 (53.98)
Child Vocalization Counts 120.45 (47.92) 114.51 (29.68) 107.88 (24.76)

For a total of 72 subjects in the IBIS dataset, canonical babble ratio was computed.

Among the 72 children, 11 were high-risk-ASD (HR-ASD), 35 were high-risk-negative
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(HR-Neg), and 26 were low risk. The 5 minute audio window was provided to human an-

notators using a modified version of the GUI annotation toolkit described in chapter 2. For

every audio segment, annotators had to annotate if a child speech like vocalizations, child

non-speech sounds, or other child sounds were present. If child speech like vocalizations

were present, then, they were further labeled as canonical syllables or non-canonical sylla-

bles. The number of child vocalizations in both the cases was recorded. Additionally, the

exact child vocalization was transcribed in case of canonical syllables.

Table 4.2 shows the computed values of canonical babble ratios for the 72 subjects. The

mean CBR for the HR-ASD group was the lowest (0.49), while mean CBR for the LR was

the highest (0.67). However, the group differences are not significant. This suggests that

a more deeper analysis of canonical babble ratio is required to deduce whether canonical

babble ratio can act as an early marker for diagnosing ASD. Some possible lines of in-

vestigation could be to track the trajectory of canonical syllable production longitudinally

over time. These trajectories might reveal more insight rather than an estimate of canonical

babble ratio at a specific time in the early-language development stage.

4.4 Summary and Discussion

In this chapter, the need for objective measurements of assessment for children diagnosed

with ASD was addressed. A formal list of properties that an objective measure of assess-

ment should have was introduced. An objective measure of assessment called utterance

rate was developed using the semi-supervised i-vector child detectors described in chap-

ter 3. It’s reliability was analyzed across 3 weeks and it was shown that it has potential

to differentiate between subjects with high ADOS CSS score (8,9,10) and subjects with

low ADOS CSS score (4,6,7). Finally, a method to extract a high child vocalization audio

window of 5 minutes from 16 hr day long recording was developed and its application to

computing canonical babble statistics was studied.
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CHAPTER 5

CONCLUSIONS

5.1 Thesis Contributions

1. LENA device has become one of the most widely used devices to collect audio

recordings for autism research studies. The LENA device comes with a software

which does automatic computation of many language behavior statistics based on

diarization. Many autism research studies use these statistics at face-value without

critically evaluating whether these statistics are accurate enough for the dataset which

is being studied in the research study. In this work, LENA algorithms were evaluated

and it was shown that they are not accurate for older children (aged 5-17 years) as

well infants (aged 9 months and 15 months).

2. Two accurate i-vector based diarization algorithms were developed for LENA data.

One called the semi-supervised i-vector based diarization for the scenario in which

small amount of labeled data was available per speaker, and second, called the un-

supervised i-vector based diarization for the scenario in which no label data was

available for the LENA audio recording to be diarized.

3. Semi-supervised i-vector diarization was applied to compute a possible objective

measurement called the utterance rate. It was shown to be reliable across 3 different

weeks and could differentiate between subjects with high ADOS CSS score (8,9,10)

and subjects with low ADOS score CSS (4,6,7). A method to extract 5 minutes of

high child vocalization audio window from a 16 hour day recording was shown and

canonical babble ratio computed.
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5.2 Possible Future Research Directions

There are many possible directions in which the work can be extended. Some of them are

listed below:

1. Develop a more accurate segmentation algorithm than LENA’s segmentation. This

would require labeling of segment boundaries at the order of frame wise annotation,

to train and test algorithms.

2. Use of deep neural network based generative models to generate fixed dimensional

speaker embeddings instead of i-vector factor analysis framework to generate low

fixed-dimensional representation of audio utterances.

3. Development of automatic speech recognition (ASR) methods for LENA data. ASR

is a well studied problem in other domains and therefore, availability of accurate

transcribed LENA data should lead to development of ASR methods. A less well

studied problem is to automatically characterize development of pre-language for

infants over time. This would lead to automatic estimation of canonical and non-

canonical syllables.

4. Development of automatic methods for motherese or child-directed speech for in-

fants.
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