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CHAPTER I

INTRODUCTION

1.1 Orthogonal polynomials

The analysis of orthogonal polynomials associated with general weights is a major

theme in classical analysis. The applications are rich, reaching different fields of

mathematics, physics and engineering such as approximation theory, special functions,

differential and integral equations, random matrix theory, number theory, quantum

mechanics, statistics and image analysis.

The setting is the following: Given a weight function w on an interval (a, b), finite

or infinite, such that the moments

cn =

∫ b

a

xnw(x)dx, n = 0, 1, 2, . . .

exist and are finite, we say that the set of real polynomials {pn}∞n=0, with pn := pn(w; ·)

of strict degree n, is orthogonal over [a, b] with respect to the weight w if∫ b

a

pn(x)pm(x)w(x)dx = 0, m 6= n.

The theory of orthogonal polynomials has its roots in Stieltjes’ work on continued

fractions. In his monumental final paper [53] he introduced the Stieltjes integral and

used it to solve the classical moment problem, which asks whether a given weight w

(or a more general measure dµ) can be represented by its moments {cn}∞n=0 and vice

versa. The moment problem is historically important because it gave rise to important

tools in modern analysis. Among others, M. Riesz gave a proof and his techniques

were later used to prove the well known Hahn-Banach theorem of functional analysis.

In the first half of the 20th century, the Hungarian mathematician Gábor Szegő

had a profound influence on the theory of orthogonal polynomials and related fields.
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His monograph [54] from 1939 still serves as the single most important reference in

the field. He determined the asymptotic behavior of pn(w; ·) as n −→ ∞ for a large

class of weights w on [−1, 1], characterized by the Szegő condition∫ 1

−1

logw(x)√
1− x2

dx > −∞. (1.1)

He was the first to consider orthogonal polynomials with respect to weights on arbi-

trary curves in the complex plane. An important case are orthogonal polynomials on

the unit circle, which have applications in linear prediction and filtering theory, and

are used extensively in spectral theory for certain linear operators, including discrete

Schrödinger operators. Significant new developments due to B. Simon and his collab-

orators [45, 46] for orthogonal polynomials on the unit circle have major implications

for weights on [−1, 1].

Motivated by applications from approximation theory, particularly Padé approx-

imation and weighted polynomial approximation, problems concerning the asymp-

totics of orthogonal polynomials with respect to weights with support on the whole

real line, have been in the spotlight since the school of G. Freud in the 1960’s [15, 36].

Freud and P. Nevai considered weights of the form w = W 2 = exp(−2Q), where Q

is even, convex and of smooth polynomial growth at infinity. Such weights are often

called Freud weights. Particular examples are

w(x) = W 2
α(x) = exp(− |x|α), α > 0.

E. Levin and D.S. Lubinsky (see the monograph [21] and the surveys [22, 25]) have

done extensive work on orthogonal polynomials with respect to exponential weights.

In the 1980’s, potential theory advanced as a vital tool in the development of

orthogonal polynomials associated with weights on the real line. It is especially useful

for investigating nth root asymptotics and zeros of orthogonal polynomials, see the

monograph [44] of E.B. Saff and V. Totik. A breakthrough emerged in independent

papers of E.A. Rakhmanov [41] and Mhaskar and Saff [29]: For Q even and convex,
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the authors defined what is now referred to as the Mhaskar-Rakhmanov-Saff number

an, the positive root of the equation

n =
2

π

∫ 1

0

antQ
′(ant)√

1− t2
dt.

It turns out that pn(W 2, x) behaves on [−an, an] much like an orthonormal polynomial

for a Szegö weight on [−1, 1], and this allowed the authors to establish nth root

asymptotics for pn(W 2, ·).

Following the results on the nth root asymptotics, Lubinsky, Mhaskar and Saff

[26] determined ratio asymptotics for orthogonal polynomials with weights on the real

line, an in particular solved the Freud conjectures. The ratio asymptotics were quickly

followed by strong (or Szegö) asymptotics, established independently by Lubinsky

and Saff [27], and Rakhmanov [42]. In the various types of asymptotics, weighted

polynomial approximation played an essential role. For more details, see Totik’s

excellent seminal lecture notes [55].

In the 1990’s a new powerful approach was developed to analyse the asymptotics of

orthogonal polynomials. First Fokas, Its and Kitaev [14] showed that you can look at

polynomial orthogonality as a Riemann Hilbert problem. Through this approach De-

ift and Zhou [11] developed the powerful so-called non-linear steepest descent method.

Via the Riemann-Hilbert techniques of Deift, Kriecherbauer, McLaughlin [9, 10], re-

markably precise asymptotics have been obtained for orthogonal polynomials associ-

ated with weights on the real line.

Random matrix theory (see Mehta [28]) is a field that has gained a large following

in recent years, and indeed is the main motivation for the Riemann-Hilbert approach

for orthogonal polynomials. It has rich applications, such as nuclear physics, number

theory, statistics, financial correlation, and the theory of integrable systems. Its

usefulness becomes apparent when applied in modeling large samples with equally

large population, take for example the world’s wireless communication system. In

many cases, important statistical properties of the modeled system can be deduced
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from exploring the behavior of the eigenvalues of the random matrix as the size of the

matrix grows. Orthogonal polynomials come into play since some natural systems

can be well modeled using random matrices on probability spaces constructed via so-

called Gaussian unitary ensembles. In that case the growth of the eigenvalues can be

determined from the asymptotic behavior of the associated orthogonal polynomials.

A. Kuijlaars [19] and P. Miller [30] have both written excellent lecture notes on the

subject. One of the most important statistics in random matrix theory relates to

the associated correlation functions. As the size of the matrix grows, these essentialy

behave identically for different weights and this phenomena has been refered to as

the universality law. Using smoothing techniques, Lubinsky, in his landmark paper

[23], has proved universality for very general weights on [−1, 1].

1.2 Müntz polynomials

One of the fundamental theorems of functional analysis and approximation theory

is Weierstrass’s Theorem, proved in 1885 [57], which states that every continuous

function on [0, 1] (or any closed bounded interval) can be approximated arbitrarily

closely by polynomials under the uniform norm. In other words, the space span{xn :

n = 0, 1, 2, . . . } is dense in C[0, 1]. In 1912, S. Bernstein conjectured [3] that more

generally the result holds if the exponents of x (the natural numbers) are replaced

with an increasing sequence 0 ≤ λ0 < λ1 < λ2 < · · · of real numbers that satisfy

∞∑
k=1

1

λk
=∞.

In the case of the algebraic polynomials this is the harmonic series
∑∞

k=1
1
k

= ∞, so

Weierstrass’s Theorem is a special case. Two years later the conjecture was proved

(with λ0 = 0) by the German mathematician Herman Müntz in his paper [34] (see a

short biography in [40]). Since then this result has been generalized and numerous

proofs have emerged. A recent research monograph [16] is devoted to ramifications

of this theorem and further questions regarding density and different types of Müntz
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theorems are discussed in [1, 7]. The version that is most relevant to the topics of

this text is the following:

Theorem 1.1 (Müntz’s Theorem) Let {λk}∞k=0 be a sequence of real numbers such

that infk λk > −1/2. Then span{xλ0 , xλ1 , . . . } is dense in L2[0, 1] if and only if

∞∑
k=0

1

λk + 1
2

=∞. (1.2)

This result is especially beautiful since it connects a topological property (the density

of the space) to an arithmetic property (divergence of the series).

Following the considerations above, it is natural to ask further questions about

these generalized polynomials, which have the form

n∑
k=0

ckx
λk .

We call them Müntz polynomials. It turns out that these functions share many of the

basic properties of their algebraic polynomial cousins. They can be orthogonalized in

a natural way on L2[0, 1], and they form a Chebyshev system on (0,∞). These two

properties give rise to applications in approximation theory. Using the substitution

x = e−t, we can alternatively look at the Müntz polynomials as exponential sums of

the form
n∑
k=0

cke
−λkt,

which are important in non-linear approximation, particularly for decay processes.

A large part of the classic text of P. Borwein and T. Erdélyi [7] is devoted to

Müntz spaces, and important questions involve Markov-Bernstein inequalities, Remez

inequalities, the rate of approximation by Müntz polynomials and the distribution

of their zeros. Müntz rational functions are also explored, and in [6], the authors

investigate the corresponding Christoffel functions, which in a way provide a measure

of the density of the space. Furthermore, in [7, Appendix 2], Müntz orthogonality

is used to reproduce Apéry’s proof of the irrationality of ζ(3). A Müntz-type of
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Gauss-Jacobi quadrature has been developed by G.V. Milovanović and A.S. Cvetković

[32, 33], especially with a view to numerical integration of functions with endpoint

singularities. Furthermore, the zero distribution of the extremal Müntz polynomials

has been investigated by Lubinsky and Saff [24].

1.3 Overview

The goal of this research is to determine asymptotic properties of the Müntz or-

thogonal polynomials with respect to Legendre and Jacobi weights in L2[0, 1]. An

important special case is when the Müntz exponents {λk} are asymptotic to an arith-

metic progression, i.e.

lim
n→∞

n

λn
= ρ

for some constant ρ > 0. Some of the classical orthogonal polynomials (e.g. Legen-

dre, Jacobi with α = 0, and Laguerre with α = 0) can indeed be written in terms

of the Müntz orthogonal polynomials, and our results yield new representations for

these functions which in turn gives rise to new proofs for their asymptotic behav-

ior. Furthermore, orthogonal exponential sums on (0,∞), as well as certain multiple

orthogonal systems, can be represented by Müntz orthogonal polynomials, and our

results apply to these as well.

In Chapter 3 we introduce a representation for the Müntz orthogonal polynomials

as a real oscillatory integral, which holds for x ∈ (0, 1), i.e. on the interval of or-

thogonality. The formula holds for general real exponents {λk} and it is quite special

that we get the same critical path for the pure oscillatory behavior of these elements,

independent of the λk’s. This allows us to determine the asymptotics inside the inter-

val under very mild conditions on the λk’s using standard asymptotic analysis, and

this is the topic of Chapter 4. We also consider endpoint asymptotics, as well as the

behavior of the associated Christoffel functions for special cases. This is the first time

that such asymptotics have been determined for general exponents λk.
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Building on these results, we devote Chapter 5 to studies of the zeros of the

Müntz orthogonal polynomials. We get a global bound for the smallest zero on the

interval and asymptotically determine the position of the largest zeros. Moreover we

determine the asymptotics of the spacing of the zeros in the bulk of the interval.

In Chapter 6, we turn our attention to asymptotics outside the interval of or-

thogonality. There, we don’t have a nice formula as for x ∈ (0, 1), but using the

method of steepest descent allows us to establish asymptotics for x > 1. In Chapter

7, we determine the asymptotic behavior of the Müntz-Christoffel functions at the

endpoints x = 0 and 1. These functions can be written explicitly in terms of the

Müntz orthogonal polynomials, which take on a simple form at the endpoints.

1.4 Notation

The notation for the asymptotic relations used throughout this dissertation are given

in Table 1. Similar notation applies to sequences. We shall sometimes write “locally

uniformly for x in U” when we mean “uniformly for x on compact subsets of U .”

Table 1: Notation for asymptotic relations. Here, f and g are positive functions.

Notation Relation
f(x) = o(g(x)) limx→∞ f(x)/g(x) = 0
f(x) = O(g(x)) f ≤ Ag for some constant A
f(x) ∼ g(x) limx→∞ f(x)/g(x) = 1
f(x) � g(x) A1g ≤ f ≤ A2g for some constants A1, A2

We use the Kronecker-delta notation:

δn,m =

 1 if n = m,

0 if n 6= m.

The set of real polynomials of degree at most n is denoted by Pn and we let P =⋃∞
n=0Pn denote the set of all real polynomials. We define the space of continuous
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functions on [a, b] by

C[a, b] := {f : [a, b] −→ R : f continuous}

and denote the supremum norm over [a, b] by ‖f‖[a,b] := supt∈[a,b] |f(t)|. We let

L∞[a, b] := {f : [a, b] −→ R : f measurable and ‖f‖∞ <∞} .

and for each 1 ≤ p <∞,

Lp[a, b] :=

{
f : [a, b] −→ R : f measurable and ‖f‖p =

(∫ b

a

|f(t)|pdt
)1/p

<∞

}
.

We shall frequently use the notation

λ∗ := λ+
1

2
(1.3)

for each real number λ, and similarly for sums, we sometimes write

∗
n∑
k=0

ak :=
n−1∑
k=0

ak +
1

2
an. (1.4)

For a given sequence {λk}∞k=0, let

Sn := ∗
n∑
k=0

λ∗k =
n−1∑
k=0

λ∗k +
1

2
λ∗n,

σn :=
Sn

λ∗n
2 ,

and also let Σn := 2Sn =
∑n−1

k=0(2λk+1)+(2λn+1)/2 for each n. Furthermore, define

Tn := ∗
n∑
k=0

1

λ∗k
=

n−1∑
k=0

1

λ∗k
+

1

2λ∗n
, (1.5)

and note that the growth of Tn determines the denseness condition (1.2).
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CHAPTER II

BACKGROUND

2.1 Orthogonal polynomials

Let µ(x) be a non-decreasing function with infinitely many points of increase on an

interval (a, b) (finite of infinite) and assume that the moments are finite, that is∫ b

a

|x|ndµ(x) <∞, n = 0, 1, 2, . . .

Then a set of real polynomials {pn}∞n=0, with

pn(x) := pn(µ;x) = γnx
n + · · · ∈ Pn \ Pn−1, n = 0, 1, 2, . . .

is said to be orthogonal over (a, b) with respect to the measure µ if∫ b

a

pn(x)pm(x)dµ(x) = 0, m 6= n. (2.1)

The elements {pn}∞n=0 can be obtained by applying the Gram-Schmidt process to the

monomials 1, x, x2, x3, . . . . They can be made uniquely determined by imposing some

additional conditions on pn, such as fixing the value of pn at either one of the endpoints

or taking the leading coefficients γn as positive and requiring the polynomials to be

orthonormal with respect to µ, i.e.∫ b

a

pn(x)pm(x)dµ(x) = δn,m, m, n = 0, 1, 2, . . .

If µ is absolutely continuous, then we can write dµ(x) = w(x)dx, where the

weight function w(x) is non-negative and Lebesgue measurable with positive measure

on (a, b). Given the condition (2.1), in this case we say that {pn}∞n=0 is orthogonal

with respect to the weight w(x).
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In this setup, {pn}∞n=0 is linearly independent and every polynomial Qn ∈ Pn

can be uniquely written as a linear combination of p0, p1, . . . , pn. Then from (2.1) it

follows that ∫ b

a

pn(x)xkdµ(x) = 0, k = 0, 1, . . . , n− 1.

The following property characterizes orthogonal polynomials and is the source of

many important applications [7, 15, 45, 54]:

Theorem 2.1 Each set of orthonormal polynomials (take γn > 0 for all n) satisfies

a three-term recurrence relation of the form

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), n = 0, 1, 2, . . . (2.2)

where p−1 := 0, a−1 = 0, an = γn/γn+1 > 0, and bn ∈ R.

A converse to this result is given by Favard’s Theorem: given sequences {an} and {bn}

of real numbers with an > 0 for all n, if we define a set of polynomials recursively via

(2.2), then there exists a measure µ with respect to which the polynomials form an

orthogonal set.

Another fundamental result, with obvious connections to approximation theory,

is the following extremal property [12, 15, 54]:

Theorem 2.2 The polynomial

Qn(x) =
1

γn
pn(µ;x) = xn + · · ·

is the unique monic polynomial of degree n of minimal L2(µ)-norm; that is, Qn solves

the extremal problem

min
xn+···∈Pn

∫ b

a

|xn + · · · |2dµ(x).

The zeros of orthogonal polynomials play an important role in interpolation theory,

Gauss-Jacobi quadrature, spectral theory and the design of digital filters [43, 44]. The

following property is basic:
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Theorem 2.3 The zeros of each member of a set of orthogonal polynomials are real,

simple, and lie in (a, b).

Given a set of orthonormal polynomials {pn}∞n=0 associated with the measure µ

on (a, b), define the associated reproducing kernel by

Kn(x, y) =
n∑
k=0

pk(x)pk(y)

The name given to Kn(x, y) is drawn from its most fundamental property: for each

polynomial Qn ∈ Pn,

Qn(x) =

∫ b

a

Kn(t, x)Qn(t)dµ(t). (2.3)

The classical nth Christoffel function associated with µ is defined by

λn(µ;x) := λ(Pn, µ;x) := inf
Qn∈Pn
Qn(x)=1

∫ b

a

|Qn(t)|2dµ(t). (2.4)

It turns out that the reproducing kernel solves this minimizing problem, and conse-

quently we can write the Christoffel function in terms of the orthogonal polynomials

[15]:

Theorem 2.4 Let {pn(x)}∞n=0 be the orthonormal polynomials with respect to the

measure µ on (a, b). Then

λn(µ;x)−1 = Kn(x, x) =
n∑
k=0

|pk(x)|2.

Using the three term recurrence relation (2.2), one can prove [54] the Christoffel-

Darboux formula

Kn(x, y) =
γn
γn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
, x, y ∈ R.

By taking the limit as y −→ x, this yields the identity

Kn(x, x) =
γn
γn+1

[
p′n+1(x)pn(x)− p′n(x)pn+1(x)

]
.
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The Christoffel-Darboux formula can be used to prove the Gauss-Jacobi quadra-

ture formula [15, 54]: for each polynomial Q2n−1 of degree at most 2n− 1,∫ b

a

Q2n−1(x)dµ(x) =
n∑
k=1

λk,nQ2n−1(xk,n),

where x1,n > x2,n > · · · > xn,n are the (fixed) zeros of the orthogonal polynomial

pn(µ;x), and the Cotes numbers (or Christoffel numbers) λk,n := λk,n(µ) are given in

terms of the Christoffel functions as

λk,n = λn(µ;xk,n), k = 1, 2 . . . , n,

and they only depend on the measure µ.

Christoffel functions have proved to be important tools in the theory of orthog-

onal polynomials and approximation theory. They have been applied to problems

involving quadrature formulas, interpolation theory, zeros of polynomials, polyno-

mial inequalities and the moment problem [15, 36]. Furthermore, there is a close

connection to the circular unitary ensemble of random unitary matrices, a field that

has drawn a great deal of attention in recent years and has underlined the importance

of orthogonal polynomials [19, 28, 30, 45].

2.2 Classical polynomials and their asymptotic properties

Here we introduce the classical polynomials (see Table 2.2), which are of importance

in applied mathematics and numerical analysis. We shall look at some of their asymp-

totic properties, especially those that are important in the scope of this thesis. Indeed,

some of the results of our research gives a new approach in establishing these classic

asymptotics. Furthermore, we will look at the asymptotic behavior of the associated

Christoffel functions.

The strong asymptotics are well known from Szegő’s monograph [54]. For each

case, there are two problems to consider. One is the behavior of the orthogonal

polynomials pn(x) as n −→ ∞ for x outside the interval of orthogonality (real or

12



Table 2: Classical orthogonal polynomials, following Szegő [54]

Type Weight Leading
coefficient

Normalization

Legendre poly. Pn(x) w(x) = 1 on [−1, 1] (2n)!
2n(n!)2

Pn(1) = 1

Jacobi poly. P
(α,β)
n (x) w(x) = (1 − x)α(1 + x)β

on [−1, 1] for α, β > −1

1
2n

(
2n+α+β

n

)
P

(α,β)
n (1) =

(
n+α
n

)
Laguerre poly. L(α)

n (x) w(x) = e−xxα on [0,∞)
for α > −1

(−1)n

n!
L(α)
n (0) =

(
n+α
n

)
Hermite poly. Hn(x) w(x) = e−x

2
on R 2n

complex) and the other for x on the interval of orthogonality. In general, the second

problem is more difficult, since there the elements exhibit an oscillatory behavior.

The classic approach is to apply the method of steepest descent (see [38, 54]) to a

contour integral representation for the respective orthogonal polynomials. The results

can also be obtained by examining the second order linear differential equations they

satisfy, or via the associated generating function.

The following asymptotic formulas for the Legendre polynomials Pn(x) are well

known, see Szegő [54, p. 194]:

Theorem 2.5 (Formula of Laplace) For each θ ∈ (0, π),

Pn(cos θ) =

√
2

πn sin θ
cos

((
n+

1

2

)
θ − π

4

)
+O

(
n−3/2

)
. (2.5)

The bound for the error term holds uniformly for θ in compact subsets of (0, π).

Theorem 2.6 (Formula of Laplace-Heine) If x ∈ C \ [−1, 1], then as n→∞,

Pn(x) ∼ 1√
2πn

[
x+ (x2 − 1)1/2

]n+1/2

(x2 − 1)1/4
. (2.6)

Here (x2 − 1)1/4, (x2 − 1)1/2 and
[
x+ (x2 − 1)1/2

]n+1/2
are real and positive if x is

real and greater than 1. This formula holds uniformly in the exterior of an arbitrary

closed curve which encloses the segment [−1, 1].
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G. Darboux, see [8] and [54, p. 196], was able to extend the results above to the

Jacobi polynomials.

Theorem 2.7 For each θ ∈ (0, π),

P (α,β)
n (cos θ) =

1√
πn

cos
([
n+ α+β+1

2

]
θ − (α+1/2)π

2

)
[sin(θ/2)]α+1/2[cos(θ/2)]β+1/2

+O
(
n−3/2

)
. (2.7)

The bound for the error term holds uniformly for θ in compact subsets of (0, π)

Theorem 2.8 Let α, β > −1. If z /∈ [−1, 1], real or complex, then as n→∞,

P (α,β)
n (z) ∼

[
(z + 1)1/2 + (z − 1)1/2

]α+β [
z + (z2 − 1)1/2

]n+1/2

(2πn)1/2(z − 1)α/2(z + 1)β/2(z2 − 1)1/2
(2.8)

and this formula holds uniformly in the exterior af an arbitrary closed curve which

encloses the segment [−1, 1]. The determination of the multivalued functions is obvi-

ous.

An important consequence of this result is the nth root asymptotics for the Legendre

and Jacobi polynomials: For z /∈ [−1, 1],

lim
n→∞

|P (α,β)
n (z)|1/n = |z + (z2 − 1)1/2|.

The function ϕ(z) = z + (z2 − 1)1/2 that appears on the right hand side is the well

known conformal mapping that maps the cut plane C \ [−1, 1] onto the exterior of

the unit circle.

The endpoint limit asymptotics are also important, and the main result is the

following [54, p. 192].

Theorem 2.9 (Formula of Mehler-Heine) Let α, β > −1/2. Then uniformly for

z in C,

lim
n−→∞

P (α,β)
n

(
cos

z

n

)
= lim

n−→∞
P (α,β)
n

(
1− z2

2n2

)
=

(
2

z

)α
Jα(z), (2.9)

where Jα is the Bessel function

Jα(z) =
∞∑
n=0

(−1)n(z/2)α+2n

n!Γ(n+ α + 1)
. (2.10)
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This gives the asymptotics as we approach the endpoint x = 1, and the asymptotics

close to the left endpoint x = −1 follow directly via the identity [54, Section 4.1]

P
(α,β)
n (x) = (−1)nP

(β,α)
n (−x).

We can now proceed and obtain asymptotic formulas for the Christoffel functions.

First we deal with the endpoints, and the result can be proved directly from Theorem

2.4 since the function values of P
(α,β)
n (−1) are well known [37, p. 85].

Theorem 2.10 The Christoffel functions associated with the Jacobi weights w(α,β)(x) =

(1− x)α(1 + x)β satisfy the following asymptotic relations at the endpoints,

lim
n→∞

n2α+2λn(w(α,β), 1) = (α + 1)2α+β+1Γ(α + 1)2,

lim
n→∞

n2β+2λn(w(α,β),−1) = (β + 1)2α+β+1Γ(β + 1)2.

The following result gives the asymptotics on the interval of orthogonality [37, p.

85].

Theorem 2.11 For each x ∈ (−1, 1), we have

lim
n→∞

nλ(w(α,β), x) = π(1− x)α+1/2(1 + x)β+1/2.

For x outside the interval we have the following result:

Theorem 2.12 Let α, β > −1. If x /∈ [−1, 1], real or complex, then

λ(w(α,β);x) ∼ 2α+β+1π|(x2 − 1)(x− 1)α(x+ 1)β|
|(x+ 1)1/2 + (x− 1)1/2|2(α+β)

1− |φ(x)|−2

|φ(x)|2n+1
, (2.11)

where φ(x) := x + (x2 − 1)1/2. This formula holds uniformly in the exterior af an

arbitrary closed curve which encloses the segment [−1, 1].

Finally, we recall the asymptotics of the Laguerre polynomials on and outside the

interval of orthogonality.
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Theorem 2.13 (Formula of Fejér) Let α ∈ R. For each x > 0, as n −→∞,

L(α)
n (x) =

ex/2√
πx1/4+α/2n1/4−α/2 cos

(
2
√
nx− απ

2
− π

4

)
+O

(
nα/2−3/4

)
, (2.12)

and this holds uniformly for x in compact subsets of (0,∞).

Theorem 2.14 Let α ∈ R. Then uniformly for bounded z ∈ C,

lim
n→∞

n−αL(α)
(y
n

)
= y−α/2Jα(2y1/2). (2.13)

Theorem 2.15 (Formula of Perron) Let α ∈ R. For each x ∈ C \ [0,∞), as

n −→∞,

L(α)
n (x) =

ex/2

2
√
π(−x)1/4+α/2n1/4−α/2 e

2(−nx)1/2
[
1 +O

(
n−1/2

)]
, (2.14)

and this holds locally uniformly for x in C \ [0,∞). For x < 0, (−x)1/4+α/2 and

(−x)1/2 must be taken real and positive.

2.3 Müntz polynomials

In the introduction of this thesis, we saw how the density of the Müntz polynomials

n∑
k=0

ckx
λk (2.15)

in L2[0, 1] is related to the growth of the exponents Λ = {λk}. The celebrated

Theorem of Müntz [1, 7, 16] in one of its most general form asserts that if the λk’s

are distinct real numbers greater than −1/p, p ∈ [1,∞), then the functions (2.15) are

dense in Lp[0, 1] if and only if

∞∑
k=0

λk + 1
p(

λk + 1
p

)2

+ 1
=∞. (2.16)

If we assume that infk≥0{λk} > −1/p, condition (2.16) is equivalent to

∞∑
k=0

1

λk + 1
p

=∞. (2.17)
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Furthermore, assuming that the constant functions are included (i.e. λ0 = 0), and

infk≥1 λk > 0, (2.17) is also equivalent to the denseness of (2.15) under the supremum

norm in C[0, 1].

A system of the form (xλ0 , xλ1 , . . . ) is called a Müntz system, and we denote the

corresponding Müntz space by

M(Λ) :=
∞⋃
n=0

Mn(Λ) = span{xλ0 , xλ1 , . . . },

where we let Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn} for each n = 0, 1, 2, . . . .

2.4 Müntz orthogonal polynomials

The nth Müntz-Legendre polynomial associated with Λ is defined by

Ln(x) := Ln(Λ;x) :=
1

2πi

∫
Γ

n−1∏
k=0

t+ λk + 1

t− λk
xt

t− λn
dt, (2.18)

where the simple contour Γ surrounds all the zeros of the denominator of the inte-

grand. In the case when the Müntz sequence Λ satisfies the conditions

λn > −1/2, n = 0, 1, . . . , and λk 6= λj, j 6= k, (2.19)

a straight-forward application of the Residue Theorem shows that the Müntz-Legendre

polynomials are indeed elements of the corresponding Müntz space and for each

n = 0, 1, 2, . . . ,

Ln(Λ;x) =
n∑
k=0

ck,nx
λk (2.20)

with the coefficients

ck,n =

∏n−1
j=0 (λk + λj + 1)∏n
j=0
j 6=k

(λk − λj)
, k = 0, 1, . . . , n.

The Müntz-Legendre polynomials are orthogonal in L2[0, 1] with respect to the

Legendre weight. For the sake of completeness, we give a proof here [7]:
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Theorem 2.16 Let Λ = {λk} be a sequence of real numbers greater than −1/2. For

all n,m = 0, 1, 2, . . . , ∫ 1

0

Ln(Λ;x)Lm(Λ;x)dx =
δn,m

(2λn + 1)
. (2.21)

Proof. It suffices to prove this for distinct λk’s; if they are non-distinct we can use

the fact that Ln(Λ;x) is uniformly continuous with respect to individual λk’s for x in

compact subsets of (0, 1) and therefore treat this case using a limit argument.

Without loss of generality, we can assume that m ≤ n. Since λk > −1/2 for all k,

we can choose the contour Γ in (2.18) so that Re(t) ≥ −1/2 for all t on Γ. Then for

each t on Γ, Re(t + λm) > −1 and
∫ 1

0
xt+λmdx = (t + λm + 1)−1. Applying Fubini’s

Theorem then yields∫ 1

0

Ln(Λ;x)xλmdx =
1

2πi

∫
Γ

n−1∏
k=0

t+ λk + 1

t− λk
dt

(t− λn)(t+ λm + 1)
.

If m < n, then the new factor t+λm + 1 in the denominator can be cancelled and we

have no new pole. Therefore we can change the contour Γ to |t| = R > max0≤j≤n λj

and let R −→∞, and the integral then clearly vanishes. If however m = n, the factor

t + λm + 1 gives a new pole at t = −λn − 1 < −1/2. Using the same treatment as

above the only change is that we get a contribution when Γ passes through the new

pole. The Residue theorem gives∫ 1

0

Ln(Λ;x)xλndx = −
n−1∏
k=0

−λn + λk
−λn − λk − 1

1

−λn − λn − 1

=
1

(2λn + 1)cn,n
,

where cn,n is the leading coefficient from (2.20). It follows that∫ 1

0

Ln(x)Lm(x)dx = cm,m

∫ 1

0

Ln(x)xλmdx =
δn,m

(2λn + 1)
.

�
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It immediately follows that the functions

L∗n := (2λn + 1)1/2Ln (2.22)

are orthonormal in L2[0, 1].

From the definition in (2.18) it is clear that the ordering of the first n− 1 Müntz

exponents does not make a difference, i.e.

Ln({λσ(0), λσ(1), . . . , λσ(n−1), λn};x) = Ln(Λ;x), (2.23)

holds for all x and every permutation σ on {0, 1, 2, . . . , n− 1}.

The following identity is proved in [6] and will come of good use:

Theorem 2.17 Let Λ = {λn}∞n=0 a sequence of distinct real numbers greater than

−1/2. Then the associated Müntz-Legendre polynomials Ln(x) = Ln(Λ; ) satisfy

xL′n(x) =
n−1∑
k=0

(2λk + 1)Lk(x) + λnLn(x)

for every x ∈ (0, 1] and every n = 0, 1, 2, . . .

It turns out that the Müntz-Legendre polynomials are always 1 at x = 1 [6]:

Lemma 2.18 For the Müntz-Legendre polynomials defined in (2.18) we have Ln(1) =

1 and L′n(1) =
∑n−1

k=0(2λk + 1) + λn for all n = 0, 1, 2, . . .

We can extend the definition of the Christoffel functions (2.4) by taking more

general function spaces. Here we are interested in examining the nth Christoffel

function associated with the Müntz space Mn(Λ) over the Legendre weight w(x) = 1

on [0, 1], namely

λ(Mn(Λ);x) := inf
Q∈Mn(Λ)
Q(x)=1

∫ 1

0

|Q2(t)|dt. (2.24)

In the same way as for the case of algebraic polynomials, one can show that

λ(Mn(Λ);x)−1 =
n∑
k=0

|L∗k(x)|2, (2.25)
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where the L∗k’s are the orthonormal Müntz polynomials (2.22).

The Müntz-Christoffel functions have been used by Borwein and Erdélyi [6, 7]

in establishing Markov-Bernstein inequalities, and they have been connected to the

denseness of the corresponding Müntz-space:

Theorem 2.19 Let Λ = {0 = λ0 < λ1 < λ2 < · · · } be a sequence of integers. Then

the following statements are equivalent:

(i) M(Λ) is not dense in C[0, 1] in the uniform norm,

(ii)
∑∞

k=1 λ
−1
k <∞,

(iii) There is an x ∈ [0, 1), such that
∑∞

k=0 |L∗k(x)|2 <∞,

(iv)
∑∞

k=0 |L∗k(x)|2 <∞ converges uniformly on [0, 1− ε] for every 0 < ε < 1.

For parts (iii) and (iv), note that
∑∞

k=0 |L∗k(x)|2 = limn→∞ λn(M(Λ);x)−1.

We can also define the analogue of the Jacobi polynomials. For the weights

w(β)(x) = xβ, β > −1, the nth Müntz-Jacobi polynomial is defined by

L(β)
n (x) := L(β)

n (Λ;x) :=
x−β/2

2πi

∫
Γ

n−1∏
k=0

t+ λk + β/2 + 1

t− λk − β/2
xt

t− λn − β/2
dt, (2.26)

where the contour Γ encloses the zeros of the denominator of the integrand. They

satisfy the orthogonality condition∫ 1

0

L(β)
n (x)L(β)

m (x)xβdx =
δn,m

2λn + β + 1
.

Note that w(β)(x) corresponds to the classical Jacobi weight w(0,β)(x) = (1 + x)β on

[−1, 1], and this can be seen by mapping [0, 1] to [−1, 1]. It is easy to see that for

each n,

L(β)
n (Λ;x) = x−β/2Ln(Λ + β/2;x), (2.27)

so our result for the Müntz-Legendre polynomials also applies for this class of func-

tions.
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We pause here to emphasize an important aspect of the nature of Müntz-Legendre

polynomials. The orthogonality in (2.21) is only with respect to the trivial Lebesgue

measure w(x) = 1, which at first might appear highly restrictive. However, instead of

looking at differents weights, here we have the freedom of manipulating the exponents

{λk}. A simple demonstration is (2.27), where we have absorbed the Jacobi weight

into the exponents of the Müntz-Legendre polynomial on the right hand side. We can

also consider Müntz polynomials of the form

n∑
k=0

ckx
ρn,

for some constant ρ. Here λn = ρn, and using the substitution t = xρ in the orthog-

onality condition (2.21) yields

δn,m
(2λn + 1)

=
1

ρ

∫ 1

0

Ln(Λ; t1/ρ)Lm(Λ; t1/ρ)t1/ρ−1dt.

Clearly Ln(Λ; t1/ρ) ∈ Pn and it is easy to see that indeed, Ln(Λ; t1/ρ) = L
(1/ρ−1)
n ({k}; t).

In Section 2.4.2 we shall see that the Müntz-Legendre polynomials cover a large

class of orthogonal systems, including orthogonal polynomials associated with differ-

ent weights. Among these are many of the classical polynomials, orthogonal expo-

nential sums and generalized Legendre polynomials. Our results on the asymptotic

behavior of the Müntz-Legendre polynomials therefore also apply to these special

cases.

2.4.1 Zeros of Müntz orthogonal polynomials

In their paper [6], Borwein, Erdélyi and Zhang study the zeros of the Müntz-Legendre

polynomials. They discuss their interlacing and lexicographical properties and uni-

versally estimate the smallest and largest zeros through the zeros of Laguerre poly-

nomials. Given (2.19), the Müntz polynomials form a Chebyshev system on (0,∞),

so any nonzero element
∑n

k=0 ckx
λk has at most n zeros in (0, 1]. The following are

basic properties.
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Theorem 2.20 Let Λ = {λn}∞n=0 satisfy (2.19). Then for every n = 0, 1, 2, . . .

(i) Ln(Λ; ·) has exactly n zeros in (0, 1).

(ii) The zeros of Ln−1(Λ; ·) and Ln(Λ; ·) strictly interlace.

We denote these zeros by

0 < ln,n < ln−1,n < · · · < l2,n < l1,n < 1. (2.28)

In [7, pp. 136-137] a global estimate for the zeros is given: If we let λ
(n)
min :=

min{λ0, . . . , λn} and λ
(n)
max := max{λ0, . . . , λn} then

exp

(
−2

2n+ 1

2λ
(n)
min + 1

)
< ln,n < · · · < l1,n < exp

(
−j2

1

2(2n+ 1)(2λ
(n)
max + 1)

)
(2.29)

where j1 is the smallest positive zero of the Bessel function J0 defined in (2.10).

D.S. Lubinsky and E.B. Saff [24] have determined the zero distribution of the

Müntz extremal polynomials Tn,p(Λ) with respect to the Lp norm, which satisfy

‖Tn,p(Λ)‖Lp[0,1] = min
c0,...,cn−1

∥∥∥∥∥xλn −
n−1∑
j=0

cjx
λj

∥∥∥∥∥
Lp[0,1]

.

Indeed, if

lim
n→∞

λn
n

= α

for some α > 0, then the normalized zero counting measure of Tn,p(Λ) converges

weakly to

α

π

tα−1√
tα(1− tα)

dt. (2.30)

If α = 0 or ∞, the limiting measure is a Dirac delta at 0 or 1 respectively. In the

case when p = 1, we have the (monic) Müntz-Legendre polynomials.

2.4.2 Examples of Müntz orthogonal polynomials

Classical polynomials. If we let λn = n for all n and map [0, 1] to [−1, 1] via

x 7→ 2x− 1, we can write the Legendre polynomials in terms of the Müntz-Legendre
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polynomials; indeed we have

Pn(x) = Ln

(
N0;

x+ 1

2

)
(2.31)

and if we take x = cos θ ∈ [−1, 1], θ ∈ [0, π] then Pn(cos θ) = Ln (cos2 (θ/2)).

Similarly, if we let λn = n + β/2 for all n, then the Jacobi polynomials with

respect to the weight w(0,β)(x) = (1 + x)β on [−1, 1] satisfy

P (0,β)
n (x) = L(β)

n

(
N0;

x+ 1

2

)
(2.32)

=

(
x+ 1

2

)−β/2
Ln

(
N0 +

β

2
;
x+ 1

2

)
where we use (2.27) in the last identity. It follows that

P (0,β)
n (cos θ) =

Ln
(
N0 + β

2
; cos2 (θ/2)

)
cosβ (θ/2)

for all θ ∈ [0, π].

In [6, pp. 525-526], an interesting identity is proved: If we let λn = λ, a constant,

for all n, then we get the Laguerre polynomials via the formula

Ln(Λ;x) = xλLn(−(2λ+ 1) log x).

In particular if we let λ = 0 and y = − log x, we can write

Ln(y) = Ln({0}; e−y). (2.33)

Exponential sums. For a given sequence Π = {µj} of positive real numbers, con-

sider the class of exponential sums of the form

n∑
k=0

ake
−µkt

which have applications in non-linear approximation, particularly for decay processes.

We define En(Π; t) ∈ span{e−µ0t, e−µ1t, . . . , e−µnt} via the orthogonality condition∫ ∞
0

En(Π; t)Em(Π; t)dt =
δn,m√
2µn

, n,m = 0, 1, 2, . . . (2.34)
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Using the substitution x = e−t in the orthogonality condition (2.21) for the Müntz-

Legendre polynomials Ln(Λ;x) associated with the sequence Λ = {λk}, we can write

δn,m√
2λn + 1

=

∫ ∞
0

Ln(Λ; e−t)Lm(Λ; e−t)e−tdt

=

∫ ∞
0

[
Ln(Λ; e−t)e−t/2

] [
Lm(Λ; e−t)e−t/2

]
dt.

Then since Ln(e−t)e−t/2 is of the form
∑n

k=0 ake
−(λk+1/2)t, we see that by letting

µn = λn + 1/2 for each n, we have

En (Π; t) = Ln(Λ; e−t)e−t/2. (2.35)

In our results below, we introduce a formula (3.2) for the Müntz-Legendre polynomials

Ln(Λ;x). We shall see that the formula takes an especially nice form if written in

terms of the orthogonal exponential sums En(Π; t).

Generalized Legendre polynomials. Consider the Müntz system obtained by

letting

λ2k = λ2k+1 = k, k = 0, 1, 2, . . . .

When orthogonalizing this system in the Müntz sense (2.21), one should interpret

this by setting λ2k = k, λ2k+1 = k + ε and then letting ε −→ 0. The associated

(2n+ 1)st Müntz-Legendre polynomial is

Gn(x) := L2n+1(x) =
1

2πi

∫
Γ

∏n−1
k=0(t+ k + 1)∏n
k=0(t− k)2

(t+ n+ 1)xtdt,

where Γ encloses t = 0, 1, . . . , n. Since each pole is double, and d
dt
xt = (log x)xt, it

follows from the residue theorem that for each n, we can write

Gn(x) = pn(x) log x+ qn(x),

for some algebraic polynomials pn, qn ∈ Pn of degree n. It follows that [7, p. 373]∫ 1

0

Gn(x)xkdx = 0, k = 0, 1, . . . , n,
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and ∫ 1

0

Gn(x)(log x)xkdx = 0, k = 0, 1, . . . , n− 1.

Therefore, the functions Gn(x) generalize the Legendre polynomials in the sense of

multiple orthogonal polynomials of type II (see Aptekarev [2] for detailed definitions).

In [7, Appendix 2], these elements are used to reproduce Apéry’s proof of the irra-

tionality of ζ(3).

Naturally, we can do this more generally: For a given natural number q, if we

define the sequence Λ = {λk} such that

λqk+r = k, r = 0, 1, . . . , q − 1, k = 0, 1, . . . ,

then similarily we get orthogonal functions of the form

Gn(x) =

q−1∑
k=0

p(k)
n (x)(log x)k,

where p
(k)
n (x) ∈ Pn and∫ 1

0

Gn(x)(log x)jxkdx = 0, k = 0, 1, . . . , n− j.

for all j = 0, 1, . . . , q − 1.
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CHAPTER III

A NEW REPRESENTATION FOR MÜNTZ

ORTHOGONAL POLYNOMIALS

In this chapter we present a formula which, for x ∈ (0, 1) on the interval of orthog-

onality, expresses the Müntz-Legendre polynomials as a real oscillatory integral on

[0,∞). The formula involves a simple “measure” of the spacing of the exponents {λk}

in a form of a Riemann-like sum and is an actual mid-point Riemann sum in the case

of the classical Legendre polynomials.

In particular, the formula gives a new expression for the classical Legendre, Jacobi

and Laguerre polynomials (with α = 0) on their respective intervals of orthogonality.

Furthermore, since the representation is in the form of a Lebesgue-type oscillatory

integral, this provides a direct way to obtain their asymptotics for x inside the interval

of orthogonality. The result is published in the paper [48], “Asymptotic behavior of

Müntz orthogonal polynomials.”

3.1 Main Result

The formula is introduced here.

Theorem 3.1 Let Λ = {λk} be a sequence of real numbers. For all n and x ∈ (0, 1),

we have the representation

Ln(Λ;x) =
1

π
√
x

∫ ∞
0

sin[Φn(s)− s log x]√
λ∗n

2 + s2
ds, (3.1)

where

Φn(s) = 2
n−1∑
k=0

arctan

(
λ∗k
s

)
+ arctan

(
λ∗n
s

)
and λ∗k = λk + 1/2, for all k.
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When determining the asymptotic behavior of Ln(Λ;x) it will be useful to use a

different scaling in the integral, and therefore we state an alternative representation.

Corollary 3.2 Let Λ = {λk} be a sequence of real numbers. For all n and x ∈ (0, 1),

we have the representation

Ln (Λ;x) =
1

π
√
x

∫ ∞
0

sin
(
2λ∗n

[
Rn(t)− t

2
log x

])
√

1 + t2
dt, (3.2)

where

Rn(t) =
1

λ∗n

{
n−1∑
j=0

arctan
λ∗j
λ∗nt

+
1

2
arctan

1

t

}
,

and λ∗k = λk + 1/2, for all k.

Remarks (1) Using the identity arctan(1/t) = π/2 − arctan t, it is easy to see that

we can also write

Ln (Λ;x) =
(−1)n

π
√
x

∫ ∞
0

cos
(
λ∗n

[
2R̂n(t) + t log x

])
√

1 + t2
dt, (3.3)

where

R̂n(t) =
1

λ∗n

{
n−1∑
j=0

arctan
λ∗n
λ∗j
t+

1

2
arctan t

}
.

(2) By introducing the probability counting measure

νn(s) =
1

n∗

 ∑
λ∗j/λ

∗
n<s

1 +
1

2
δ{1}(s)

 ,

it is easy to see that we can write

2λ∗nRn(t) = (2n+ 1)

∫ 1

0

arctan
s

t
dνn(s).

The proof of the formula above is similar to an approach of Milovanović’s in his

paper [31]. However our main observation is the simple fact that on the critical line

Re(z) = −1/2, the modulus of the product of the integrand in (2.18) is 1. This is

true for all real sequences of exponents Λ and it is quite remarkable that we have the

same critical path for this large class of functions. This allows us to write the Müntz

orthogonal polynomials as a real integral over the positive real line.
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3.2 Special cases

In the case of the classical Legendre polynomials Pn we have λn = n for all n and we

saw in (2.31) that

Pn(x) = Ln

(
N0;

x+ 1

2

)
.

What is interesting in this case is that the phase function Rn in (3.2) is precisely a mid-

point Riemann sum with partition {0, 1/n∗, 2/n∗, . . . , n/n∗, 1}, where each interval

has length 1/n∗ except the last one which has length 1/(2n∗). Then for each t, as

n −→∞,

Rn(t) =

∫ 1

0

arctan
u

t
du+O

(
1

n2

)
= arctan

1

t
− t

2
log

(
1 +

1

t2

)
+O

(
1

n2

)
.

Therefore, and we shall do this rigorously in Chapter 4, as n grows we can replace

Rn(t) with the function arctan(t−1) − (t/2) log (1 + t−2). Using the substitution t =

cotu we see that Pn(cos 2θ) = Ln (N0; cos2 θ), θ ∈ (0, π/2), will have the behavior of

1

π cos θ

∫ π/2

0

sin
(
(2n+ 1)

[
u+ cotu log cosu

cos θ

])
sinu

du.

The phase function p(u) = u+cotu log (cosu/ cos θ) has a simple monotone derivative

p′(u) = − csc2 u log (cosu/ cos θ), and hence the unique stationary point u = θ. Thus

a simple application of Kelvin’s method of stationary phase (see Olver [38]) gives a

new simple proof of the Formula of Laplace of Theorem 2.5.

Similarly, we get new proofs for the asymptotics of the Jacobi polynomials and

Laguerre polynomials via (2.32) and (2.33) respectively. Indeed, for y ∈ (0,∞), via

our formula (3.2), the Laguerre polynomials can be written in the simple form

Ln(2y) =
ey

π

∫ ∞
0

sin
(
(2n+ 1) arctan 1

t
+ ty

)
√

1 + t2
dt,

and standard asymptotic analysis yields Fejér’s formula of Theorem 2.13.

28



Using the identity (2.35), it is easy to see that for the orthogonal exponential

sums En({µk};x) on the space span{e−µ0t, e−µ1t, . . . , } defined in (2.34), the formula

yields

En({µk}; y) =
1

π

∫ ∞
0

sin (Ψn(t) + ty)√
µ2
n + t2

dt,

with Ψn(t) = 2
∑n−1

j=0 arctan (µj/t) + arctan (µn/t).

3.3 A proof of the formula

The main ingredient in our recipe for the formula for Ln(Λ;x) is the simple fact that

on the line Re(t) = −1/2, the product of the integrand in the definition (2.18) has

modulus 1; i.e. for all n and t = −1/2 + is, s ∈ R,∣∣∣∣∣
n−1∏
k=0

t+ λk + 1

t− λk

∣∣∣∣∣ =
n−1∏
k=0

∣∣∣∣ (λk + 1/2) + is

− (λk + 1/2) + is

∣∣∣∣ = 1. (3.4)

Hereafter, let Γ be the closed half-circle consisting of the line segment from −1/2−iR

to −1/2 + iR, and the semi-circle CR = {−1/2 + Reiθ; θ ∈ [−π/2, π/2]} with R >

λn + 1/2 (see Figure 1). From now on we write λ∗k = λk + 1/2 for all k.

Figure 1: The contour Γ chosen in (2.18). We then let R −→∞.
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First we prove a lemma (see a similar result in [31]):

Lemma 3.3 We have∫
CR

n−1∏
j=0

t+ λj + 1

t− λj
xt

t− λn
dt −→ 0, R −→∞.

Proof. Denote the integral above by In(x). Then we can write

In(x) =
1√
x

∫ π/2

−π/2

n−1∏
j=0

λ∗j +Reiθ

−λ∗j +Reiθ
eRe

iθ log x

−λ∗n +Reiθ
iReiθdθ.

By writing∣∣∣∣∣
n−1∏
j=0

λ∗j +Reiθ

−λ∗j +Reiθ
1

−λ∗n +Reiθ

∣∣∣∣∣ =
1

R

n−1∏
j=0

∣∣∣∣∣1 +
λ∗j
R
e−iθ

1− λ∗j
R
e−iθ

∣∣∣∣∣ 1∣∣∣1− λ∗n
R
e−iθ

∣∣∣ ,
it is clear that for a sufficiently large R, there exists a constant M > 1 such that for

all θ ∈ [−π/2, π/2], ∣∣∣∣∣
n−1∏
j=0

λ∗j +Reiθ

−λ∗j +Reiθ
1

−λ∗n +Reiθ

∣∣∣∣∣ ≤ M

R
.

Hence if we let c := − log x > 0, we obtain

|In(x)| ≤ 2M√
x

∫ π/2

0

e−cR cos θdθ,

and the result now follows from Lebesgue’s Dominated Convergence Theorem. �

Proof of Theorem 3.1. According to the lemma, the contour integral in (2.18)

can be evaluated along the line L : Re(t) = −1/2. We saw in (3.4) that for every

t = −1/2 + is, we can write the product in the integrand as

wn(s) :=
n−1∏
j=0

λ∗j + is

−λ∗j + is
,

with |wn(s)| = 1 for all n and s ∈ R. We can write

wn(s) = (−1)neiθn(s),
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where θn(s) = 2
∑n−1

j=0 arctan
(
s/λ∗j

)
∈ R. Furthermore, we have

wn(s)

−λ∗n + is
=

(−1)n+1eiΘn(s)√
λ∗n

2 + s2
,

where

Θn(s) = θn(s) + arctan

(
s

λ∗n

)
= 2

n−1∑
j=0

arctan

(
s

λ∗j

)
+ arctan

(
s

λ∗n

)
.

Then if we let c = − log x > 0 we can write (2.18) as (the negative sign comes from

reversing the orientation)

Ln(Λ;x) =
−1

2π
√
x

∫ ∞
−∞

wn(s)

−λ∗n + is
e−icsds =

(−1)n

2π
√
x

∫ ∞
−∞

ei[Θn(s)−cs]√
λ∗n

2 + s2
dt.

Since s 7→ Θn(s)− cs is odd, it follows that

Ln(Λ;x) =
(−1)n

π
√
x

∫ ∞
0

cos[Θn(s)− cs]√
λ∗n

2 + s2
ds. (3.5)

Using the relation arctanx = π/2− arctan(1/x) we can write

Θn(s) = (2n+ 1)
π

2
−

(
2
n−1∑
j=0

arctan
λ∗j
s

+ arctan
λ∗n
s

)
= (2n+ 1)

π

2
− Φn(s).

The result now follows from the identity cos(Θn(s)−cs) = sin
(
(2n+ 1)π

2

)
sin(Φn(s)+

cs) = (−1)n sin(Φn(s)− s log x). �

Proof of Corollary 3.2. The representation in (3.2) is arrived at by using the substi-

tution s = λ∗nt in (3.1) and letting Rn(t) = Φn(λ∗nt)/(2λ
∗
n) for all n. �
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CHAPTER IV

ASYMPTOTICS ON THE INTERVAL OF

ORTHOGONALITY

Most of the results of this chapter appear in “Asymptotic behavior of Müntz orthogo-

nal polynomials” [48] and “Endpoint limit asymptotics of Müntz-Legendre polynomi-

als” [49]. We shall use the representation (3.2) to determine the asymptotic behavior

of the Müntz orthogonal polynomials for x ∈ (0, 1) on the interval of orthogonality.

First we present a result on the endpoint limit asymptotics close to the endpoint

x = 1 under very weak conditions on the exponents. This generalizes the Formula of

Mehler-Heine in Theorem 2.9 and the Formula of Fejér in Theorem 2.13 for the case

α = 0 and we believe the proof flows quite naturally from the perspective of Müntz

orthogonality.

Next we prove strong asymptotics of Ln(Λ;x) for x inside (0, 1). The formula (3.2)

holds for all real exponents Λ = {λk} and it turns out that the density condition

∞∑
k=0

1

λk + 1
2

=∞ (4.1)

(this is condition (2.17) in Müntz’s Theorem for L2[0, 1]) appears in a very natural

way in the analysis of the phase function of (3.2), along with the sum of the exponents∑n
j=0 (2λj + 1). Essentially we only need to assume (4.1), apart from when we are very

close to being non-dense, in which case we need to impose the very weak regularity

condition

lim
n→∞

1

2λn + 1

n∑
k=0

(2λk + 1) =∞. (4.2)

We shall in particular look at the case when the Müntz exponents are asymptotic
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to an arithmetic progression, i.e. such that

lim
n→∞

n

λn
= ρ, (4.3)

for some constant ρ > 0. In particular, this provides a new proof for the asymptotic

properties of the classical Legendre, Jacobi and Laguerre (α = 0) polynomials inside

their respective intervals of orthogonality.

Finally for special cases we get immediate corollaries for the asymptotic behavior

of the associated Müntz-Christoffel functions on the interval.

4.1 Main results

We start with the endpoint limit asympotics as we approach x = 1. Here we don’t

need to assume the density condition (4.1).

Theorem 4.1 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers and

let Σn =
∑n−1

k=0(2λk + 1) + (2λn + 1)/2. If Λ satisfies the regularity condition (4.2)

(i.e. Σn/(2λn + 1) −→∞), then uniformly for bounded y ≥ 0,

lim
n→∞

Ln

(
e−y

2/4Σn
)

= lim
n→∞

Ln

(
1− y2

4Σn

)
= J0(y),

where J0 is the Bessel function of order 0 as defined in (2.10). The error term is

O
(√

(2λn + 1)/Σn

)
as n −→∞.

Remarks Let us discuss the analogy to the classic results (2.9) and (2.13). The

quality of the error term in Theorem 4.1 implies that the scaling with Σn is the

“correct” one.

(1) It follows from (2.32) that we can write

P (0,β)
n

(
1− y2

2n2

)
=

(
1− y2

4n2

)−β/2
Ln

({
k +

β

2

}∞
k=0

;

(
1− y2

4n2

))
.

where P
(0,β)
n is the nth Jacobi polynomial with α = 0. For λk = k + β/2 we have

Σn = n2 + (β + 1) (n+ 1/2) which of course grows like n2. Thus (2.9) for α = 0 is a

special case of Theorem 4.1.
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(2) We saw in (2.33) that if we let λn = 0 for all n we get the Laguerre polynomi-

als L := L(0). Here Σn = n+ 1/2 and we can write L(y/n∗) = Ln({0}; e−y/n∗). Then

it is easy to see that (2.13) (for α = 0) follows from our result.

Before we give the strong asymptotics for fixed x, we give a name to the phase

function that appears in the formula for Ln(Λ;x) in (3.2), namely we let

hn(t) := hn(t, x) := Rn(t)− t

2
log x, t > 0, x ∈ (0, 1).

The following result is the most general one, where we only assume the denseness

condition Tn −→∞, as n −→∞, and the regularity condition (4.2).

Theorem 4.2 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers

that satisfies the Müntz condition (4.1) and the regularity condition (4.2). Then for

each x ∈ (0, 1), as n −→∞,

Ln(Λ;x) =
cos
(
2λ∗n

[
Rn(tn)− tn

2
log x

]
− π/4

)√
πxλ∗nR

′′
n(tn)(1 + t2n)

+ o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)
,

where tn = tn(x) ∈ (0,∞) is the unique stationary point of hn(t) = hn(t, x), i.e. such

that R′n(tn) = 1
2

log x. The result holds uniformly for x in compact subsets of (0, 1).

Remarks (1) The regularity condition (4.2) is weak: Even having λ∗n ≤ Cλ∗n−mn

for some increasing unbounded sequence {mn} and a positive constant C would be

stronger.

(2) Note that using (2.23), we can relax the monotonicity condition of the expo-

nents, and only require that the λk’s are eventually non-decreasing.

In the case when λn ∼ n/ρ, for some constant ρ > 0, and the rate of convergence is

strong enough, the stationary point tn converges, as well as hn(tn) = Rn(tn)− tn
2

log x

and R′′n(tn). However, in order to replace the phase hn(tn) in Theorem 4.2, we need

an accuracy of order o (1/n). In Theorems 4.3 and 4.4, the asymptotics are explicit.
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Theorem 4.3 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers,

and let ρ > 0 and θ ∈ (0, π/2).

(i) If λn = (n+ β/2) /ρ + o (1), as n −→ ∞, for some constant β > −1, then as

n −→∞,

Ln(Λ; cos2ρ θ) =
cos ([2n+ β + ρ]θ − π/4)√

πn sin θ cos2ρ−1 θ
+ o

(
1√
n

)
.

(ii) If λn = n/ρ+ o(
√
n), then, as n −→∞,

Ln(Λ; cos2ρ θ) =
cos ([2λn + 1]hn(cot θ)− π/4)√

πn sin θ cos2ρ−1 θ
+ o

(
1√
n

)
,

where hn(t) = Rn(t)− t log (cos θ).

The results hold uniformly for θ in compact subsets of (0, π/2).

The following theorem is a more general version of Theorem 4.3. Since tn is not

explicit, but hn is, it is computationally practical to use successive approximations

from the limit point cot θ of tn. We demonstrate this using a type of Newton iteration.

Theorem 4.4 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers

such that λn = n/ρ+ o
(
n1−δ) for some constant ρ > 0 and 0 < δ < 1. Then for each

θ ∈ (0, π/2), as n −→∞,

Ln(Λ; cos2ρ θ) =
cos ([2λn + 1]hn(γN,n)− π/4)√

πn sin θ cos2ρ−1 θ
+ o

(
1√
n

)
,

where hn(t) = Rn(t)− t log (cos θ), and γN,n is defined recursively by

γ0,n = γ0 = cot θ, γk+1,n = γk,n −
h′n(γk)

h′′n(γk)
, k = 0, 1, 2, . . . , N − 1,

and N is the smallest integer such that 1/2N+1 ≤ δ. The result holds uniformly for θ

in compact subsets of (0, π/2).
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Remarks (1) These results can easily be transferred to the Müntz-Jacobi polynomials

via equation (2.27).

(2) Under the assumptions of Theorem 4.4, limn→∞ tn = cot θ and limn→∞ hn(tn) =

ρθ.

(3) The classical results of Theorem 2.5 and Theorem 2.7 (with α = 0) are special

cases of Theorem 4.3, part (i).

The following result is a direct consequence of Theorem 4.2. Here we assume that

limn→∞ σn =∞, which covers all the cases λn = o(n) as n −→∞.

Theorem 4.5 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers

that satisfies

lim
n→∞

1

(2λn + 1)2

n∑
j=0

(2λj + 1) =∞.

Then for each x ∈ (0, 1), as n −→∞,

Ln(Λ;x) =
cos (2λ∗nhn(tn)− π/4)√

πx| log x|1/4

(
n∑
j=0

(2λj + 1)

)− 1
4

+o

( n∑
j=0

(2λj + 1)

)− 1
4

 (4.4)

where tn = tn(x) ∈ (0,∞) is the unique stationary point of hn(t) = Rn(t) − t
2

log x.

The result holds uniformly for x in compact subsets of (0, 1).

In Theorem 4.5, tn = tn(x) is not explicit. In the next result we make a stronger

assumption for which hn(tn) can be explicitly written in the phase. This includes

all cases when λn = o
(
n1/3

)
, and a special case are the asymptotics of the Laguerre

polynomials (2.12) (recall the relation (2.33) we obtain by letting λk = 0 for all k).

Theorem 4.6 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers

that satisfies

lim
n→∞

1

(2λn + 1)4

n∑
j=0

(2λj + 1) =∞.
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Then for each x ∈ (0, 1), as n −→∞,

Ln(Λ;x) =
cos
(

2
√

Σn| log x| − π/4
)

√
πx (Σn| log x|)1/4

+ o

(
1

Σ
1/4
n

)
where Σn =

∑n
j=0(2λj+1)+(2λn + 1)/2. The result holds uniformly for x in compact

subsets of (0, 1).

In the following result, we state the asymptotic bounds obtained from Theorem

4.2 and summarize the bounds from the special cases above. Note that we don’t

have an explicit bound for the case σn −→ 0, n −→ ∞ (then we are close to being

non-dense), since then it is more difficult to estimate the stationary point tn.

Corollary 4.7 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of real numbers

that satisfies (4.1). Then uniformly for x in compact subsets of (0, 1),

|Ln(Λ;x)|2 = O
(

1

λ∗ntn

)
, n −→∞,

where tn = tn(x) ∈ (0,∞) is the unique stationary point of hn(t) = Rn(t)− t
2

log x.

In particular, if σn −→∞, then

|Ln(Λ;x)|2 = O

( n∑
j=0

(2λj + 1)

)− 1
2

 , n −→∞,

and if λn � n as n −→∞, then

|Ln(Λ;x)|2 = O
(
n−1
)
, n −→∞.

In some cases we can use the asymptotics of the Müntz orthogonal polynomi-

als to determine the asymptotics of the associated Christoffel functions, which were

presented in (2.24). The following result is a consequence of Theorem 4.3 (i).

Theorem 4.8 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence that satisfies

λn = (n+ β/2) /ρ + o (1) as n −→ ∞. Then uniformly for x in compact subsets of

(0, 1),

lim
n→∞

nλ (Mn(Λ);x) = ρπ
√
x2−1/ρ(1− x1/ρ).
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We also get uniform bounds:

Theorem 4.9 Let a ∈ (0, 1] and let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence

that satisfies λn � na as n −→∞. Then uniformly for x in compact subets of (0, 1),

λ (Mn(Λ);x)−1 = O
(
n
a+1
2

)
, n −→∞.

It is worth mentioning that we always have∫ 1

0

λ (Mn(Λ);x)−1 dx =

∫ 1

0

Kn(x, x)dx = n,

and therefore, in the case a < 1, Theorem 4.9 implies that the growth of the Christoffel

functions is concentrated at the endpoints. The asymptotic behavior of the Müntz-

Christoffel functions at the endpoints is addressed Chapter 7.

4.2 Proof for endpoint limit asymptotics

Here we present a proof of Theorem 4.1. For notational convenience, we use the sum

Sn = Σn/2 defined in (1.5) instead of Σn. We define a sequence of real numbers {bn}

by letting

bn :=

(
Sn
λ∗n

)1/2

, n = 0, 1, 2, . . . (4.5)

By hypothesis Sn/λ
∗
n −→∞ as n −→∞, and therefore bn −→∞ as n −→∞ and

lim
n→∞

λ∗nbn
Sn

= 0. (4.6)

With x = e−y
2/2Sn , (3.2) becomes

Ln

(
Λ; e−y

2/2Sn
)

=
ey

2/4Sn

π

∫ ∞
0

sin
(

Θn(t) + λ∗ny
2

2Sn
t
)

√
1 + t2

dt, (4.7)

where Θn(t) = 2λ∗nRn(t) = 2
∑n−1

j=0 arctan
λ∗j
λ∗nt

+ arctan 1
t
.

We need to analyse the integral

Iy(n) =

∫ ∞
0

exp i
(

Θn(t) + λ∗ny
2

2Sn
t
)

√
1 + t2

dt.
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From Lemma 4.19 it follows (here c = −1
2

log x = y2/4Sn) that tn � Sn/λ
∗
n as

n −→ ∞ uniformly for y bounded. We will show that the main contribution will

come from the part of the integral on [bn,∞). We can write

Iy(n) =

∫ ∞
bn

exp i
(

2Sn
λ∗nt

+ λ∗ny
2

2Sn
t
)

t
dt+ δ0(n) + δ1(n) + δ2(n) (4.8)

where

δ0(n) =

∫ bn

0

exp i
(

Θn(t) + λ∗ny
2

2Sn
t
)

√
1 + t2

dt

δ1(n) =

∫ ∞
bn

exp i
(

2Sn
λ∗nt

+ λ∗ny
2

2Sn
t
)

√
1 + t2

[
exp i

(
Θn(t)− 2Sn

λ∗nt

)
− 1

]
dt

δ2(n) =

∫ ∞
bn

exp i

(
2Sn
λ∗nt

+
λ∗ny

2

2Sn
t

)[
1√

1 + t2
− 1

t

]
dt.

We first estimate the error terms.

Lemma 4.10 Uniformly for real bounded y, δ0(n) = O
(√

λ∗n/Sn

)
as n −→∞.

Proof. First we take out the linear part of the phase function that appears in δ0(n)

and write

δ0(n) =

∫ bn

0

eiΘn(t)

√
1 + t2

dt+ ε0(n),

where

ε0(n) =

∫ bn

0

eiΘn(t)

√
1 + t2

[
ei
λ∗ny

2

2Sn
t − 1

]
dt.

According to (4.6), we have λ∗nt/2Sn = o(1) for t ≤ bn, so this yields

|ε0(n)| ≤ λ∗ny
2

2Sn

∫ bn

0

t√
1 + t2

dt ≤ y2λ
∗
nbn

2Sn
= o(1).

The function Θn(t) is monotone on [0,∞) so we can make the substitution u = Θn(t).

Then using integration by parts gives∫ bn

0

eiΘn(t)

√
1 + t2

dt = i

(
eiΘn(bn)pn(bn)− eiΘn(0)pn(0)−

∫ bn

0

p′n(t)eiΘn(t)dt

)
(4.9)
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where we have defined pn(t) := −1/Θ′n(t)
√

1 + t2, a non-negative function. The

derivative of pn(t) is

p′n(t) =
(1 + t2)Θ′′n(t) + tΘ′n(t)

[Θ′n(t)]2(1 + t2)3/2
.

Since−Θ′n(t) = 2
∑n−1

j=0

λ∗j/λ
∗
n

(λ∗j/λ
∗
n)2+t2

+ 1
1+t2

and Θ′′n(t) = 2t

(
2
∑n−1

j=0

λ∗j/λ
∗
n

[(λ∗j/λ∗n)2+t2]
2 + 1

[1+t2]2

)
,

we have

(1 + t2)Θn(t) + tΘ′n(t) = t

2
n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2

 2(1 + t2)(
λ∗j
λ∗n

)2

+ t2
− 1

+
1

1 + t2


= t

2
n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2

2−
(
λ∗j
λ∗n

)2

+ t2(
λ∗j
λ∗n

)2

+ t2
+

1

1 + t2

 .

Since λ∗j/λ
∗
n ≤ 1 it follows that p′n(t) > 0 for all t > 0. Hence we can estimate (4.9)

by ∣∣∣∣∫ bn

0

eiΘn(t)

√
1 + t2

dt

∣∣∣∣ ≤ |pn(bn)|+ |pn(0)|+
∫ bn

0

|p′n(t)|dt

≤ pn(bn) + pn(0) + pn(bn)− hn(0)

≤ 3pn(bn).

Using the inequality |Θ′n(t)| ≥ (2Sn/λ
∗
n)/(1 + t2) and the hypothesis bn −→ ∞, this

yields ∣∣∣∣∫ bn

0

eiΘn(t)

√
1 + t2

dt

∣∣∣∣ ≤ 3

|Θ′n(bn)|
√

1 + b2
n

= O
(
λ∗nbn
Sn

)
and the result now follows since bn = (Sn/λ

∗
n)1/2. �

Lemma 4.11 Uniformly for real bounded y, δ1(n) = O
(√

λ∗n/Sn

)
as n −→∞.

Proof. Using the inequality | arctanx − x| ≤ |x|3/3 for |x| < 1 we see that for
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t ≥ bn � 1,∣∣∣∣Θn(t)− 2Sn
λ∗nt

∣∣∣∣ ≤ 2
n−1∑
j=0

∣∣∣∣arctan
λ∗j
λ∗nt
−

λ∗j
λ∗nt

∣∣∣∣+

∣∣∣∣arctan
1

t
− 1

t

∣∣∣∣
≤ 1

3t3

(
2
n−1∑
j=0

(
λ∗j
λ∗n

)3

+ 1

)

≤ 1

3t3
2Sn
λ∗n

,

where in the last step we have used λ∗j/λ
∗
n ≤ 1 for all j = 0, 1, . . . , n. It follows that

|δ1(n)| ≤ 2Sn
3λ∗n

∫ ∞
bn

dt

t3
√

1 + t2
= O

(
Sn
λ∗nb

3
n

)
,

and (4.5) then gives |δ1(n)| = O
(

(λ∗n/Sn)1/2
)

as n −→∞. �

Lemma 4.12 Uniformly for real bounded y, δ2(n) = O (λ∗n/Sn) as n −→∞.

Proof. We trivially have

|δ2(n)| ≤
∫ ∞
bn

√
1 + t2 − t
t
√

1 + t2
dt = O

(
1

b2
n

)
,

and the result follows since bn = (Sn/λ
∗
n)1/2. �

By using the substitution v = λ∗nty/2Sn in (4.8) and applying Lemmas 1-3, we

have established that

Iy(n) =

∫ ∞
λ∗nbn
2Sn

y

exp iy
(

1
v

+ v
)

v
dv +O

((
λ∗n
Sn

)1/2
)

(4.10)

as n −→∞. To complete the proof of Theorem 4.1 we need the following estimate:
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Lemma 4.13 Uniformly for real bounded y,∫ λ∗nbn
2Sn

y

0

exp iy
(

1
v

+ v
)

v
dv = O

((
λ∗n
Sn

)1/2
)
, n −→∞.

Proof. Using the substitution s = 1/v we can write∫ λ∗nbn
2Sn

y

0

exp iy
(

1
v

+ v
)

v
dv =

∫ ∞
2Sn
λ∗nbn

1
y

exp iy
(
s+ 1

s

)
s

ds

=

∫ ∞
2Sn
λ∗nbn

1
y

eiys

s
ds+

∫ ∞
2Sn
λ∗nbn

1
y

eiys

s

[
eiy

1
s − 1

]
ds

=

∫ ∞
2Sn
λ∗nbn

eis

s
ds+O

(∫ ∞
2Sn
λ∗nbn

1
y

ds

s2

)
(4.11)

= O
(
λ∗nbn
Sn

)
,

where the estimate for the first integral in (4.11) follows by using integration by parts,∫ ∞
2Sn
λ∗nbn

eis

s
ds = −i e

is

s

∣∣∣∣∞
2Sn
λ∗nbn

− i
∫ ∞

2Sn
λ∗nbn

eis

s2
ds.

�

Proof of Theorem 4.1. Recall that

Ln(Λ; e−y
2/2Sn) =

e−y
2/4Sn

π
Im[Iy(n)]

and trivially e−y
2/4Sn = 1 + O (1/Sn) = 1 + O

(√
λ∗n/Sn

)
as n −→ ∞. Then (4.10)

and Lemma 4.13 give

Ln(Λ; e−y
2/2Sn) =

1

π

∫ ∞
0

sin
(
y
[

1
v

+ v
])

v
dv +O

(√
λ∗n
Sn

)
(4.12)

as n −→∞ and this holds uniformly for bounded y > 0.

If we replace x = e−y
2/2Sn with x = 1− y2/2Sn and repeat the treatment above,

the estimates for the error terms are the same, but the main term in (4.10) becomes

∫ ∞
λ∗nbn
2Sn

y

exp iy
(

1
v
− v 2Sn

y2
log
(

1− y2

2Sn

))
v

dv
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We have (2Sn/y
2) log (1− y2/2Sn) = −1 + O (S−2

n ) as n −→ ∞ and this holds uni-

formly for bounded y. For any Nn −→∞,∣∣∣∣∣∣
∫ Nn

λ∗nbn
2Sn

y

exp iy
(

1
v

+ v
)

v
dv −

∫ Nn

λ∗nbn
2Sn

y

exp iy
(

1
v
− v 2Sn

y2
log
(

1− y2

2Sn

))
v

dv

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ Nn

λ∗nbn
2Sn

y

eiy(
1
v

+v)

v

[
1− e

−iyv
(

1+ 2Sn
y2

log

(
1− y2

2Sn

))]
dv

∣∣∣∣∣
≤ Nny

(
1 +

2Sn
y2

log

(
1− y2

2Sn

))
= O

(
Nn

S2
n

)
.

Just as in the proof of Lemma 4.13 we can show that

∫ ∞
Nn

exp iy
(

1
v
− v 2Sn

y2
log
(

1− y2

2Sn

))
v

dv = O
(

1

Nn

)
.

By choosing Nn = Sn, we then have

∫ ∞
λ∗nbn
2Sn

y

exp iy
(

1
v
− v 2Sn

y2
log
(

1− y2

2Sn

))
v

dv =

∫ ∞
λ∗nbn
2Sn

y

exp iy
(

1
v

+ v
)

v
dv +O

(
1

Sn

)

as n −→∞, and it follows that Ln(Λ; e−y
2/2Sn)−Ln(Λ; 1− y2/2Sn) = O

(√
λ∗n/Sn

)
.

To complete the proof we make the substitution v = es in the main term in (4.12)

which gives

1

π

∫ ∞
0

sin
(
y
[

1
v

+ v
])

v
dv =

2

π

∫ ∞
0

sin (2y cosh s)

s
ds.

This is a well known representation for the Bessel function J0(2y) (see [39]). The case

when y = 0 is trivial since Ln(1) = 1 = J0(0) (see [6] for the first identity). Finally,

we note that Σn = 2Sn. �
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4.3 Proofs for strong asymptotics; general results

4.3.1 Estimates for the phase function and its stationary point

In our formula (3.2) for the nth Müntz-Legendre polynomial, a key role is played by

the function

hn(t) = hn(t, x) = Rn(t) + tc,

where we have fixed c = −1
2

log x > 0 for our analysis below, and

Rn(t) =
1

λ∗n

(
n−1∑
j=0

arctan
λ∗j
λ∗nt

+
1

2
arctan

1

t

)
.

Note that hn(t) > 0 for all t ≥ 0. Also h′n(t) = R′n(t) + c where

R′n(t) = − 1

λ∗n

n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2
+

1

2

1

1 + t2

 (4.13)

and therefore

h′n(0) = −

(
n−1∑
j=0

1

λ∗j
+

1

2λ∗n

)
+ c = −Tn + c

where Tn is the sum defined in (1.5). Hence if we assume the Müntz condition

Tn −→∞, then h′n(0) < 0 for n large enough. Furthermore

lim
t−→∞

h′n(t) = c > 0,

and the second derivative

h′′n(t) = R′′n(t) =
2t

λ∗n


n−1∑
j=0

λ∗j
λ∗n[(

λ∗j
λ∗n

)2

+ t2
]2 +

1

2

1

[1 + t2]2

 (4.14)

is positive for all t > 0. Hence we have the following result:

Lemma 4.14 If the Müntz condition
∑∞

k=0
1
λ∗k

= ∞ is satisfied, then for all n large

enough, the phase function hn(t) has a unique stationary point tn in (0,∞).

Recall the notation (1.5), (1.5), (1.5) for Sn, σn and Tn respectively. Hereafter we

assume that the sequence Λ = {λk} is non-decreasing.
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Lemma 4.15 For all n and t > 0 we have −Tn < R′n(t) < 0 and

1

1 + t2
≤ |R

′
n(t)|
σn

<
1

t2
.

Proof. From (4.13) we see that 0 > R′n(t) ≥ R′n(0) = −Tn. Furthermore,

|R′n(t)| < 1

λ∗n

(
n−1∑
j=0

λ∗j
λ∗n

1

t2
+

1

2

1

t2

)
=
σn
t2
,

and since λ∗j/λ
∗
n ≤ 1 for all j = 0, 1, . . . , n,

|R′n(t)| ≥ 1

λ∗n

(
n−1∑
j=0

λ∗j
λ∗n

1

1 + t2
+

1

2

1

1 + t2

)
=

σn
1 + t2

.

�

Lemma 4.16 For all n and t > 0,

2t

1 + t2
≤ R′′n(t)

|R′n(t)|
<

2

t
.

Proof. From (4.14), we obtain

R′′n(t) <
2t

λ∗n
· 1

t2

n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2
+

1

2

1

1 + t2

 =
2

t
|R′n(t)|,

and using λ∗j/λ
∗
n ≤ 1 for all j = 0, 1, . . . , n,

R′′n(t) ≥ 2t

λ∗n

n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2
· 1

1 + t2
+

1

2

1

1 + t2
· 1

1 + t2

 =
2t

1 + t2
|R′n(t)|.

�

Combining the results of the previous two lemmas yields the following corollary:

Corollary 4.17 For all n and t > 0,

t

[1 + t2]2
≤ R′′n(t)

2σn
<

1

t3
.
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Lemma 4.18 For all n and t > 0,

|R(3)
n (t)| ≤ 3

t
R′′n(t).

Proof. First, we have

R(3)
n (t) =

2

λ∗n


n−1∑
j=0

λ∗j
λ∗n

(
λ∗j
λ∗n

)2

− 3t2[(
λ∗j
λ∗n

)2

+ t2
]3 +

1

2

1− 3t2

[1 + t2]3

 .

Here, for all r ∈ [0, 1],
∣∣∣ r2−3t2

r2+t2

∣∣∣ =
∣∣∣−3 + 4r2

r2+t2

∣∣∣ ≤ 3, so

|R(3)
n (t)| ≤ 3

2

λ∗n


n−1∑
j=0

λ∗j
λ∗n[(

λ∗j
λ∗n

)2

+ t2
]2 +

1

2

1

[1 + t2]2

 =
3

t
R′′n(t).

�

In the following results we give restrictions on the growth of the stationary point

tn = tn(x) as n grows:

Corollary 4.19 Assume the Müntz condition (4.1). Then for all n,

t2n <
σn
c
< t2n + 1,

and

t2n
t2n + 1

<
tnR

′′
n(tn)

2c
< 1.

Proof. This follows directly from Lemmas 4.15 and 4.16, using |R′n(tn)| = c for all

n. �
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Lemma 4.20 Suppose the sequence Λ = {λj} satisfies (4.1). Then, uniformly for x

in compact subsets of (0, 1), tnλ
∗
n −→ ∞ as n −→ ∞. Furthermore, if the regularity

condition

lim
n→∞

1

λ∗n

n−1∑
j=0

λ∗j =∞ (4.15)

is satisfied, then uniformly for x in compact subsets of (0, 1),

lim
n−→∞

λ∗nt
2
nR
′′
n(tn) =∞.

Proof. Assume tn < 1. Then for some l = l(n) ≤ n, we have

λ∗l−1 < tnλ
∗
n ≤ λ∗l .

First we have

2c = −2R′n(tn) =
2

λ∗n

n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ t2n

+
1

2

1

1 + t2n


>

1

(tnλ∗n)2

∑
λ∗
j
λ∗n
<tn

λ∗j +
∑

tn≤
λ∗
j
λ∗n
<1

1

λ∗j
(4.16)

>
1

λ∗l
2

l−1∑
j=0

λ∗j +
n−1∑
j=l

1

λ∗j
. (4.17)

Then since
∑n−1

j=l
1
λ∗j
≤ 2c while Tn =

∑n−1
j=0

1
λ∗j

+ 1
2λ∗n
−→∞, it follows that

Tl(n) =
l−1∑
j=0

1

λ∗j
∼ Tn, n −→∞,

and this clearly also implies that l(n) −→∞ as n −→∞. This holds uniformly for x

in compact subsets of (0, 1) since c = −1
2

log x � 1 in such sets. Using the first sum

in (4.16) gives

2ct2nλ
∗
n

2 >
∑
λ∗
j
λ∗n
<tn

λ∗j > λ∗0
2
∑
λ∗
j
λ∗n
<tn

1

λ∗j
∼ λ∗0

2Tn,

and the first result follows from our assumption Tn −→∞, n −→∞.
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The same way as in (4.16), we obtain the inequality

2tnR
′′
n(tn) =

4t2n
λ∗n


n−1∑
j=0

λ∗j
λ∗n[

t2n +
(
λ∗j
λ∗n

)2
]2 +

1

2

1

t2n + 1


>

4t2n
λ∗n

∑
λ∗
j
λ∗n
<tn

λ∗j
λ∗n

[t2n + t2n]2

=
1

t2nλ
∗
n

2

∑
λ∗
j
λ∗n
<tn

λ∗j . (4.18)

Therefore,

2λ∗nt
2
nR
′′
n(tn) >

1

tnλ∗n

∑
λ∗
j
λ∗n
<tn

λ∗j ≥
1

λ∗l

l−1∑
j=0

λ∗j =
Sl
λ∗l
,

and since l = l(n) −→∞, the result follows from our assumption (4.15).

If tn ≥ 1, then use l = n above and the result is trivial. �

Corollary 4.21 If λn ∼ n, then tn � 1 as n −→ ∞, uniformly for x in compact

subsets of (0, 1).

Proof. Using the proof from Lemma 4.20, we see from (4.17), that in the case λn ∼ n,

2c >
n−1∑
j=l

1

λ∗j
∼ log n− log l(n),

since l(n) −→ ∞. Note that c = −1
2

log x � 1 for x in compact subsets of (0, 1) so

l(n) −→ ∞ uniformly of x in such sets. This implies that l(n) ∼ n, so the first sum

in (4.17) gives

2ct2n >
1

λ∗n
2

l−1∑
j=0

λ∗j ∼
l(n)2

λ∗n
2 � 1.

The upper bound for t2n follows from Corollary 4.19 since σn � 1 as n −→∞. �
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4.3.2 Some technical lemmas

We will need the following lemmas:

Lemma 4.22 If ξn ∼ tn, as n −→ ∞, then uniformly for x in compact subsets of

(0, 1),

R′′n(ξn) ∼ R′′n(tn), n −→∞.

Proof. First let ξn = tn + ηn, with ηn = o(tn), and for each j = 0, 1, . . . , n let

rj := rj,n := λ∗j/λ
∗
n. Recall that R′′n(t) is given by (4.14). The factors of the terms of

R′′n(ξn)−R′′n(tn) that depend on ξn and tn are

ξn
[r2
j + ξ2

n]2
− tn

[r2
j + t2n]2

= tn

(
1

[r2
j + ξ2

n]2
− 1

[r2
j + t2n]2

)
+

ηn
[r2
j + ξ2

n]2

= (t2n − ξ2
n)

tn
[r2
j + t2n]2

r2
j + t2n + r2

j + ξ2
n

[r2
j + ξ2

n]2
+

ηn
[r2
j + t2n]2

(
r2
j + t2n
r2
j + ξ2

n

)2

=
ηn
tn

[
−tn(tn + ξn)

r2
j + ξ2

n

r2
j + t2n + r2

j + ξ2
n

r2
j + ξ2

n

+

(
r2
j + t2n
r2
j + ξ2

n

)2
]

tn
[r2
j + t2n]2

, (4.19)

where in the last step we use t2n − ξ2
n = −ηn(tn + ξn).

If ηn ≥ 0, i.e. ξn ≥ tn, then tn(tn+ξn)

r2j+ξ2n
≤ ξn(ξn+ξn)

ξ2n
= 2,

r2j+t2n
r2j+ξ2n

≤ 1, and
r2j+t2n+r2j+ξ2n

r2j+ξ2n
≤

2 for all j = 0, 1, . . . , n. If however ηn < 0, i.e. ξn < tn, then tn(tn+ξn)

r2j+ξ2n
≤ 2 t

2
n

ξ2n
,

r2j+t2n
r2j+ξ2n

≤ t2n
ξ2n

, and
r2j+t2n+r2j+ξ2n

r2j+ξ2n
= 2+ t2n−ξ2n

r2j+ξ2n
≤ 2+ t2n−ξ2n

ξ2n
= t2n+ξ2n

ξ2n
≤ 2t2n

ξ2n
for all j = 0, 1, . . . , n.

Then from (4.19) and (4.14) it follows that

|R′′n(ξn)−R′′n(tn)| =
2

λ∗n

∣∣∣∣∣
n−1∑
j=0

rj

(
ξn

[r2
j + ξ2

n]2
− tn

[r2
j + t2n]2

)
+

1

2

(
ξn

[1 + ξ2
n]2
− tn

[1 + t2n]2

)∣∣∣∣∣
≤ ηn

tn
· 5 ·max

{
1,
t2n
ξ2
n

}2

R′′n(tn),

and since ηn = o(tn) and ξn ∼ tn as n −→∞, we have

|R′′n(ξn)−R′′n(tn)| = o (R′′n(tn)) .

The proof is completed by noting that the x dependence of tn = tn(x) comes from

the factor c = −1
2

log x which is uniformly continuous in compact subsets of (0, 1). �
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Lemma 4.23 Let q(t) = (1 + t2)−1/2. For all 0 < t 6= tn,

d

dt

(
q(t)

h′n(t)

)
< 0.

Proof. The derivative is

d

dt

(
q(t)

h′n(t)

)
=
q′(t)h′n(t)− q(t)h′′n(t)

h′n(t)2
. (4.20)

We have q(t)h′′n(t) > 0 and q′(t) = −t/(1 + t2)3/2 < 0 for all t > 0 so the result

is trivial for the case when t > tn, since there h′n(t) > 0 holds, ensuring a negative

numerator above.

Now consider the case 0 < t < tn, for which h′n(t) < 0. According to Lemma

4.16, we have (1 + t2)h′′n(t) = (1 + t2)R′′n(t) > 2t|R′n(t)| = −2tR′n(t), and thus

th′n(t) + (1 + t2)h′′n(t) > th′n(t)− 2tR′n(t)

= −th′n(t) + 2tc

> 0,

where in the last step, we use h′n(t) < 0 and c = −1
2

log x > 0. Since q′(t) =

−t(1 + t2)−3/2, it follows that the numerator in (4.20) satisfies

q′(t)h′n(t)− q(t)h′′n(t) = − 1

(1 + t2)3/2

[
th′n(t) + (1 + t2)h′′n(t)

]
< 0,

and we are done. �

The following is a standard integral (see [38, p. 97]).

Lemma 4.24 ∫ ∞
0

eis
2

ds =

√
π

2
ei
π
4 .
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4.3.3 Estimation of the integral

The formula (3.2) can be written as

Ln(Λ;x) =
1

π
√
x

Im

[∫ ∞
0

ei2λ
∗
nhn(t,x)

√
1 + t2

dt

]
, (4.21)

where hn(t, x) = Rn(t)− t
2

log x, so we need to estimate the integral

Ix(n) :=

∫ ∞
0

ei2λ
∗
nhn(t,x)

√
1 + t2

dt.

Here, we shall assume the Müntz condition
∑∞

j=0
1
λ∗j

=∞, in which case Lemma 4.14

states that hn(t, x) has a unique stationary point tn ∈ (0,∞) for all n large enough.

We split the integral Ix(n) up in three parts; a central integral around tn and the two

integrals on each side of the point.

Recall from Lemma 4.20 that locally uniformly for x in (0, 1), λ∗nt
2
nR
′′
n(tn) −→∞

as n −→ ∞ if (4.2) is satisfied. For a given Müntz space M(Λ), define the sequence

(well defined for all n large enough)

ηn =

[
log (λ∗nt

2
nR
′′
n(tn))

λ∗nR
′′
n(tn)

]1/2

. (4.22)

Then we have

η2
n

t2n
=

log (λ∗nt
2
nR
′′
n(tn))

λ∗nt
2
nR
′′
n(tn)

,

and hence

ηn = o(tn), n −→∞. (4.23)

Furthermore, we have

ηn
√
λ∗nR

′′
n(tn) =

√
log (λ∗nt

2
nR
′′
n(tn)) −→∞, n −→∞. (4.24)

We note that the estimates below will hold uniformly for x in compact subsets of

(0, 1). We mention this here, but neglect to repeat it in the proofs. This is trivial

when we have explicit bounds, but otherwise it follows from the uniform continuity

of c = −1
2

log x on such sets.

First we consider the central integral:
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Lemma 4.25 Let Λ = {λj} be a sequence of numbers such that the Müntz condition∑∞
j=0

1
λ∗j

=∞ and (4.2) are satisfied. Then as n −→∞,

∫ tn+ηn

tn−ηn

ei2λ
∗
nhn(t)

√
1 + t2

dt ∼
√

π

λ∗nR
′′
n(tn)(1 + t2n)

ei[2λ
∗
nhn(tn)+π/4],

where tn is the unique stationary point of hn(t) = hn(t;x) and ηn is defined in (4.22).

This holds locally uniformly for x in (0, 1).

Proof. We expand the phase function hn(t) about tn and write (recall h
(r)
n = R

(r)
n

for r = 2, 3, . . . )

hn(t) = hn(tn) +
R′′n(tn)

2
(t− tn)2 +

R
(3)
n (ξn)

3!
(t− tn)3, (4.25)

with ξn = ξn(t) between tn and t. First we have∫ tn+ηn

tn

ei2λ
∗
nhn(t)

√
1 + t2

dt =
1√

1 + t2n

∫ tn+ηn

tn

ei2λ
∗
nhn(t)dt+ ε(n),

where

ε(n) =

∫ tn+ηn

tn

[
1√

1 + t2
− 1√

1 + t2n

]
ei2λ

∗
nhn(t)dt.

Then using the expansion (4.25), we can go on and write∫ tn+ηn

tn

ei2λ
∗
nhn(t)

√
1 + t2

dt =
ei2λ

∗
nhn(tn)√
1 + t2n

∫ tn+ηn

tn

eiλ
∗
nR
′′
n(tn)(t−tn)2dt+ δ(n) + ε(n), (4.26)

where

δ(n) =
1√

1 + t2n

∫ tn+ηn

tn

ei2λ
∗
nhn(t)

[
1− eiλ∗n

R
(3)
n (ξn)

3
(t−tn)3

]
dt,

and ξn = ξn(t) is between tn and tn + ηn for all t. Using the substitution s =√
λ∗nR

′′
n(tn)(t− tn), we can write the main contribution term as

∫ tn+ηn

tn

eiλ
∗
nR
′′
n(tn)(t−tn)2dt =

1√
λ∗nR

′′
n(tn)

∫ ηn
√
λ∗nR

′′
n(tn)

0

eis
2

ds

=
1√

λ∗nR
′′
n(tn)

[√
π

2
ei
π
4 + o(1)

]
, (4.27)
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where in the last step, we have used Lemma 4.24 and (4.24). To summarize, combining

(4.26) and (4.27) we have∫ tn+ηn

tn

ei2λ
∗
nhn(t)

√
1 + t2

dt =

√
π

2

ei[2λ
∗
nhn(tn)+π/4]√

λ∗nR
′′
n(tn)(1 + t2n)

[1 + o(1)] + δ(n) + ε(n).

It remains to show that δ(n) and ε(n) are o
(

[λ∗nR
′′
n(tn)(1 + t2n)]

−1/2
)

as n −→∞.

First we estimate ε(n):

|ε(n)| ≤
∫ tn+ηn

tn

∣∣∣∣∣ 1√
1 + t2

− 1√
1 + t2n

∣∣∣∣∣ dt ≤ ηn

√
1 + (tn + ηn)2 −

√
1 + t2n√

(1 + (tn + ηn)2)(1 + t2n)
.

Then using ηn = o(tn) and the inequality
√

1 + (a+ η)2 −
√

1 + a2 ≤ η, we see that

|ε(n)| = O
(

η2
n

1 + t2n

)
= O

(
log (λ∗nt

2
nR
′′
n(tn))

λ∗nR
′′
n(tn)(1 + t2n)

)
Then, using the inequalities [R′′n(tn)(1 + t2n)]−1 ≤ [2ctn]−1 and tnR

′′
n(tn) < 2c from

Corollary 4.19, we obtain

[
λ∗nR

′′
n(tn)(1 + t2n)

]1/2 |ε(n)| = O

(
log (λ∗nt

2
nR
′′
n(tn))√

λ∗nR
′′
n(tn)(1 + t2n)

)

= O

(
log (λ∗ntn)√

λ∗ntn

)
= o(1),

as required. In the last step we have used the fact that λ∗ntn −→ ∞ as n −→ ∞, as

shown in Lemma 4.20.

Now we estimate the error term δ(n). We have

|δ(n)| ≤ 1√
1 + t2n

∫ tn+ηn

tn

∣∣∣∣1− eiλ∗n R(3)
n (ξn)

3
(t−tn)3

∣∣∣∣ dt
≤ 1√

1 + t2n

λ∗n
3

∫ tn+ηn

tn

|R(3)
n (ξn)(t− tn)3|dt

=
1√

1 + t2n
λ∗nη

4
n

1

12

∣∣R(3)
n (νn)

∣∣ ,
for some νn ∈ [tn, tn + ηn]. Applying Lemmas 4.18 and 4.22 (note νn ∼ tn since
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ηn = o(tn)) gives
∣∣∣R(3)

n (νn)/3
∣∣∣ ≤ R′′n(νn)/νn ∼ R′′n(tn)/tn as n −→∞, and hence

|δ(n)| = O

(
1√

1 + t2n
λ∗nη

4
n

R′′n(tn)

tn

)

= O

(
λ∗n√
1 + t2n

R′′n(tn)

tn

[
log (λ∗nt

2
nR
′′
n(tn))

λ∗nR
′′
n(tn)

]2
)

= O

(
1√

1 + t2n

[log (λ∗nt
2
nR
′′
n(tn))]

2

tnλ∗nR
′′
n(tn)

)
.

Therefore,

[
λ∗nR

′′
n(tn)(1 + t2n)

]1/2 |δ(n)| = O

(
[log (λ∗nt

2
nR
′′
n(tn))]

2√
λ∗nt

2
nR
′′
n(tn)

)
= o(1),

and thus δ(n) = o
(

[λ∗nh
′′
n(tn)(1 + t2n)]

−1/2
)

, as needed.

The proof is completed by noting that we can treat the left side of the central

integral on (tn − ηn, tn) the same way, and the same estimates hold. �

It remains to estimate the tail integrals, which are dealt with in the following two

lemmas.

Lemma 4.26 Let Λ = {λj} be a sequence of numbers such that the Müntz condition

(4.1) is satisfied. Then, as n −→∞,∫ ∞
tn+ηn

ei2λ
∗
nhn(t)

√
1 + t2

dt = O

(
1

λ∗nh
′
n(tn + ηn)

√
1 + t2n

)
,

and ∫ tn−ηn

0

ei2λ
∗
nhn(t)

√
1 + t2

dt = O

(
1

λ∗n|h′n(tn − ηn)|
√

1 + t2n

)
,

where tn is the unique stationary point of hn(t) and ηn is defined in (4.22). This holds

locally uniformly for x in (0, 1).

Proof. Let An = tn + ηn and q(t) = (1 + t2)−1/2. Recall that h′n(t) > 0 for t > tn,

and h′′n(t) > 0 for all t. Hence on (tn,∞), hn(t) has an inverse function and we can
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use the change of variables s = hn(t), ds = h′n(t)dt. Then using integration by parts,

we can write∫ ∞
An

ei2λ
∗
nhn(t)

√
1 + t2

dt =

∫ ∞
An

ei2λ
∗
nhn(t)q(t)dt

=
ei2λ

∗
nhn(t)

i2λ∗n

q(t)

h′n(t)

∣∣∣∣∞
An

− 1

i2λ∗n

∫ ∞
An

d

dt

{
q(t)

h′n(t)

}
ei2λ

∗
nhn(t)dt

=
iei2λ

∗
nhn(An)

2λ∗n

q(An)

h′n(An)
+

i

2λ∗n

∫ ∞
An

d

dt

{
q(t)

h′n(t)

}
ei2λ

∗
nhn(t)dt, (4.28)

where we have used

lim
t→∞

q(t)

h′n(t)
=

1

c
lim
t→∞

1√
1 + t2

= 0.

By Lemma 4.23, we have

d

dt

(
q(t)

h′n(t)

)
< 0, (4.29)

for all t 6= tn, so∫ ∞
An

∣∣∣∣ ddt
{
q(t)

h′n(t)

}∣∣∣∣ dt = −
∫ ∞
An

d

dt

{
q(t)

h′n(t)

}
dt =

q(An)

h′n(An)
. (4.30)

Then, from (4.28), we deduce the estimate∣∣∣∣∫ ∞
An

ei2λ
∗
nhn(t)

√
1 + t2

dt

∣∣∣∣ ≤ 1

2λ∗n

(
q(An)

h′n(An)
+

∫ ∞
An

∣∣∣∣ ddt
{
q(t)

h′n(t)

}∣∣∣∣) =
q(An)

λ∗nh
′
n(An)

,

and the first result follows.

Now consider the second tail integral, and let Bn = tn − ηn. On the interval

(0, Bn), we have h′n(t) < 0, so we can proceed as in the proof above and write∫ Bn

0

ei2λ
∗
nhn(t)

√
1 + t2

dt =

∫ Bn

0

ei2λ
∗
nhn(t)q(t)dt

=
ei2λ

∗
nhn(t)

i2λ∗n

q(t)

h′n(t)

∣∣∣∣Bn
0

− 1

i2λ∗n

∫ Bn

0

d

dt

{
q(t)

h′n(t)

}
ei2λ

∗
nhn(t)dt

=
1

i2λ∗n

[
q(Bn)ei2λ

∗
nhn(Bn)

h′n(Bn)
− ei2λ

∗
nhn(0)

h′n(0)
−
∫ Bn

0

d

dt

{
q(t)

h′n(t)

}
ei2λ

∗
nhn(t)dt

]
.

The same way as in (4.30), we have∫ Bn

0

∣∣∣∣ ddt
{
q(t)

h′n(t)

}∣∣∣∣ dt = −
∫ Bn

0

d

dt

{
q(t)

h′n(t)

}
dt =

1

h′n(0)
− q(Bn)

h′n(Bn)
,
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and this yields the estimate∣∣∣∣∫ Bn

0

ei(2λn+1)hn(t)

√
1 + t2

dt

∣∣∣∣ ≤ 1

2λ∗n

[
q(Bn)

|h′n(Bn)|
+

1

|h′n(0)|
+

∫ Bn

0

∣∣∣∣ ddt
{
q(t)

h′n(t)

}∣∣∣∣ dt]
=

1

λ∗n

[
q(Bn)

|h′n(Bn)|
+

1

|h′n(0)|

]
= O

(
1

λ∗n|h′n(Bn)|
√

1 + t2n

)
,

where in the last step we use

1

|h′n(0)|
=

q(0)

|h′n(0)|
≤ q(Bn)

|h′n(Bn)|
,

which follows from (4.29). �

It turns out that the conditions of Lemma 4.25, for the central integral, are

precisely the ones that we need in order for the tail integrals to be insignificant

relative to the main term.

Lemma 4.27 Let Λ = {λj} be a sequence of numbers such that the Müntz condition∑∞
j=0

1
λ∗j

=∞ and (4.2) are satisfied. Then as n −→∞,

∫ ∞
tn+ηn

ei(2λn+1)hn(t)

√
1 + t2

dt = o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)
.

and ∫ tn−ηn

0

ei(2λn+1)hn(t)

√
1 + t2

dt = o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)
,

where tn is the unique stationary point of hn(t) and ηn is defined in (4.22). This holds

locally uniformly for x in (0, 1).

Proof. We can expand h′n(t) about the stationary point tn and write

h′n(tn + ηn) = h′n(tn) + h′′n(ξn)ηn = R′′n(ξn)ηn,
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with ξn between tn and tn + ηn. According to (4.24), we have η−1
n = o

(√
λnR′′n(tn)

)
,

so using the result of the previous lemma yields∫ ∞
tn+ηn

ei(2λn+1)hn(t)

√
1 + t2

dt = o

( √
λ∗nR

′′
n(tn)

λ∗nR
′′
n(ξn)

√
1 + t2n

)

= o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

R′′n(tn)

R′′n(ξn)

)

Since ηn = o(tn), Lemma 4.22 gives R′′n(tn)/R′′n(ξn) = O(1) as n −→∞, and the first

result follows. The estimate for the second tail integral is proved in the same way. �

4.3.4 General results on asymptotics

At this point, we can prove our most general result on the asymptotics of the Müntz

orthogonal polynomials.

Proof of Theorem 4.2. The result follows directly from combining the results of

Lemmas 4.25 and 4.27 and using the identity (4.21):

Ln(Λ;x) =
1

π
√
x

Im

[√
π

λ∗nR
′′
n(tn)(1 + t2n)

ei[2λ
∗
nhn(tn)+π/4] (1 + o(1))

]
=

sin (2λ∗nhn(tn) + π/4)√
πxλ∗nR

′′
n(tn)(1 + t2n)

+ o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)

=
cos (2λ∗nhn(tn)− π/4)√
πxλ∗nR

′′
n(tn)(1 + t2n)

+ o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)
.

�

Using our estimates for tn and R′′n(tn) as n −→ ∞, we can now prove Theorems

4.5 and 4.7.
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Proof of Theorem 4.5. First note that σn ≤ Tn and σn ≤ λ∗0
−1(Sn/λ

∗
n) for all n,

so if σn −→ ∞, then both (4.1) and (4.2) are satisfied. Hence Theorem 4.2 applies.

Also Corollary 4.19 gives t2n ∼ 2σn/| log x| and tnR
′′
n(tn) ∼ | log x| as n −→ ∞, and

therefore

R′′n(tn)(1 + t2n) ∼ tnR
′′
n(tn) · tn ∼

√
2| log x|σn.

Since λ∗n
√
σn =

√
Sn, the result now follows from Theorem 4.2. �

Proof of Theorem 4.6. Here we assume that Sn/λ
∗
n

4 = σn/λ
∗
n

2 −→∞ so in particular

limn→∞ σn = ∞. This is therefore a special case of Theorem 4.5, so (4.4) holds.

Therefore, we only need to show that

2λ∗nhn(tn) = 2λ∗nRn(tn) + λ∗ntn| log x| =
√

2Sn| log x|+ o(1) (4.31)

as n −→ ∞ (recall Σn = 2Sn). We know from Corollary 4.19 that in this case,

t2n ∼ 2σn/| log x|. The same corollary gives the inequality

2σn
t2n + 1

≤ | log x| ≤ 2σn
t2n
.

Since 2σn/t
2
n − 2σn/(t

2
n + 1) = 2σn/t

2
n(1 + t2n), this implies that∣∣∣∣2σnt2n − | log x|
∣∣∣∣ ≤ 2σn

t2n(1 + t2n)
= O

(
1

σn

)
.

Multiplying through by (λ∗ntn)2 then yields

∣∣2Sn − (λ∗ntn)2 | log x|
∣∣ = O

(
(λ∗ntn)2

σn

)
= O

(
λ∗n

2
)
. (4.32)

Therefore

λ∗ntn| log x| −
√

2Sn| log x| = | log x| (λ∗ntn)2 | log x| − 2Sn

λ∗ntn| log x|+
√

2Sn| log x|

= O
(
λ∗n

2

√
Sn

)
.

This takes care of the second term in (4.31).
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Now we look at 2λ∗nRn(tn). Since tn −→∞ and λ∗j/λ
∗
n ≤ 1 for each j = 0, 1, . . . , n,

we get the estimate

2Sn
λ∗ntn

− 2λ∗nRn(tn) = 2
n−1∑
j=0

(
λ∗j
λ∗ntn

− arctan
λ∗j
λ∗ntn

)
+

(
1

tn
− arctan

1

tn

)

≤ 2

3

n−1∑
j=0

(
λ∗j
λ∗ntn

)3

+
1

3

(
1

tn

)3

≤ 1

3t3n

Sn
λ∗n

= O
(
λ∗n

2

√
Sn

)
where in the last step we used t3n �

(
Sn/λ

∗
n

2
)3/2

. Also, using (4.32) gives

2Sn
λ∗ntn

− λ∗ntn| log x| =
2Sn − (λ∗ntn)2 | log x|

λ∗ntn

= O
(
λ∗n

2

√
Sn

)
.

Combining the estimates above and using the hypothesis λ∗n
4/Sn = o(1) confirms

(4.31). �

Proof of Corollary 4.7. By Corollary 4.19, (1+ t2n)R′′n(tn) > 2ctn for all n, so we have

1

λ∗nR
′′
n(tn)(1 + t2n)

= O
(

1

λ∗ntn

)
, n −→∞. (4.33)

If σn −→ ∞, then t2n � σn according to Corollary 4.19, and the second bound then

follows from (4.33) using λ∗n
√
σn =

√
Sn for all n. If λn � n as n −→∞, then tn � 1

by Corollary 4.21 and (4.34) below, and thus Ln(Λ;x) = O
(
λ∗n
−1/2

)
= O

(
n−1/2

)
. �

4.4 Proofs for the case λn ∼ ρn, ρ > 0

Here we consider the special case when the sequence Λ = {λj} asymptotically satisfies

an arithmetic progression, i.e. such that

lim
n→∞

n

λn
= ρ,

59



for some constant ρ > 0. First we will see how it will be sufficient to examine the

case when ρ = 1. Let Π = {µj}, with µj = ρλj for all j, so that

lim
n→∞

n

µn
= 1.

Then, in (2.21), using the change of variables t = uρ yields

1

2λn + 1
=

∫ 1

0

Ln(Λ; t)2dt = ρ

∫ 1

0

Ln(Λ;uρ)2uρ−1du,

and thus

1

2µn + ρ
=

∫ 1

0

Ln(Λ;uρ)2uρ−1du.

Then, since Ln(Λ;uρ) ∈Mn(Π), it follows that

Ln(Λ; t) = L(ρ−1)
n (Π; t1/ρ), t ∈ (0, 1],

where L
(ρ−1)
n (Π;x) is the nth Müntz-Jacobi orthogonal polynomial associated with Π

and the weight xρ−1, as defined in (2.26). Then according to (2.27), for all t ∈ (0, 1],

Ln(Λ; t) =
(
t1/ρ
)− 1

2
(ρ−1)

Ln

(
Π +

1

2
(ρ− 1); t1/ρ

)
= t

1
2

(1/ρ−1)Ln

(
Π +

1

2
(ρ− 1); t1/ρ

)
, (4.34)

and µn + (ρ− 1)/2 ∼ n as n −→∞. Hence it suffices to look at the case when ρ = 1.

When λn ∼ n as n −→∞, we expect that Rn(t) should behave like

R(t) =

∫ 1

0

arctan
u

t
du = arctan

1

t
− t

2
log

(
1 +

1

t2

)
, (4.35)

for which the first two derivatives are

R′(t) = −
∫ 1

0

u

u2 + t2
du = −1

2
log

(
1 +

1

t2

)
,

R′′(t) = 2t

∫ 1

0

u

(u2 + t2)2
du =

1

t(1 + t2)
.

Lemma 4.28 Let x = cos2 θ, θ ∈ (0, π/2), and γθ = cot θ > 0. Then

hn(γθ) = θ + (Rn −R)(γθ),

h′n(γθ) = (R′n −R′)(γθ),

h′′n(γθ) = tan θ sin2 θ + (R′′n −R′′)(γθ).

60



Proof. First, we have

1

2
log x+

1

2
log

(
1 +

1

γ2
θ

)
=

1

2
log

[
cos2 θ

1

cos2 θ

]
= 0.

Hence, using the formulas above, we can write

hn(γθ) = Rn(γθ)−
γθ
2

log x

= Rn(γθ)−R(γθ) +

(
arctan

1

γθ
− γθ

2
log

(
1 +

1

γ2
θ

))
− γθ

2
log x

= arctan(tan θ) +Rn(γθ)−R(γθ)

= θ + (Rn −R)(γθ).

Moreover,

h′n(γθ) = R′n(γθ)−
1

2
log x

= R′n(γθ)−R′(γθ)−
1

2
log

(
1 +

1

γ2
θ

)
− 1

2
log x

= R′n(γθ)−R′(γθ),

and finally

h′′n(γθ) = R′′n(γθ)

= R′′n(γθ)−R′′(γθ) +
1

cot θ(1 + cot2 θ)

= tan θ sin2 θ +R′′n(γθ)−R′′(γθ).

�

Lemma 4.29 Let {λk} be an increasing sequence of real numbers such that limn→∞ n/λn =

1, and let f ∈ C2[0, 1] with f(x) = O (x) as x −→ 0. Then for each constant β, as

n −→∞, ∣∣∣∣∣
∫ 1

0

f(x)dx− 1

λ∗n

[
n−1∑
j=0

f

(
λ∗j
λ∗n

)
+

1

2
f(1)

]∣∣∣∣∣
= O

(
1

n2

n−1∑
j=0

|j + β − λj|+
|n+ β − λn|

n

)
+O

(
1

n2

)
.
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Proof. Let Kr := sups∈[0,1] |f (r)(s)| for r = 1, 2. First we look at the midpoint

Riemann sum for the integral with partition {0, 1/n∗, 2/n∗, . . . , n/n∗, 1}. For each

j = 0, 1, . . . , n− 1, j∗/n∗ is the midpoint of [j/n∗, (j + 1)/n∗], so∣∣∣∣∣
∫ j+1

n∗

j
n∗

f(x)dx− 1

n∗
f

(
j∗

n∗

)∣∣∣∣∣ =

∣∣∣∣∣
∫ j+1

n∗

j
n∗

[
f(x)− f

(
j∗

n∗

)
− f ′

(
j∗

n∗

)(
x− j∗

n∗

)]
dx

∣∣∣∣∣
≤ K2

2

∫ j+1
n∗

j
n∗

(
x− j∗

n∗

)2

dx

=
K2

24n∗3
.

The interval [n/n∗, 1] is of length 1/2n∗, so∣∣∣∣∣
∫ 1

n
n∗

f(x)dx− 1

2λ∗n
f (1)

∣∣∣∣∣ ≤
∫ 1

n
n∗

|f(x)− f(1)| dx ≤ K1

8n∗2
.

It follows that∣∣∣∣∣
∫ 1

0

f(x)dx− 1

n∗

[
n−1∑
j=0

f

(
j∗

n∗

)
+

1

2
f(1)

]∣∣∣∣∣ = O
(

1

n2

)
, n −→∞. (4.36)

For each j = 0, 1, . . . , n− 1, we have

1

n∗
f

(
j∗

n∗

)
− 1

λ∗n
f

(
λ∗j
λ∗n

)
=

1

n∗

[
f

(
j∗

n∗

)
− f

(
λ∗j
n∗

)]
+

1

n∗

[
f

(
λ∗j
n∗

)
− f

(
λ∗j
λ∗n

)]
+ f

(
λ∗j
λ∗n

)[
1

n∗
− 1

λ∗n

]
=

f ′(ξj,n)

n∗2
(j − λj) +

f ′(τj,n)

n∗2λ∗n
(λn − n)λ∗j + f

(
λ∗j
λ∗n

)
λn − n
n∗λ∗n

,

for some ξj,n, τj,n ∈ (0, 1). We also have f(1)/2n∗ − f(1)/2λ∗n = f(1)(λn − n)/2n∗λ∗n,

and it follows that∣∣∣∣∣ 1

n∗

[
n−1∑
j=0

f

(
j∗

n∗

)
+

1

2
f(1)

]
− 1

λ∗n

[
n−1∑
j=0

f

(
λ∗j
λ∗n

)
+

1

2
f(1)

]∣∣∣∣∣
≤ K1

n∗2

n−1∑
j=0

|j − λj|+
K1|λn − n|
λ∗nn

∗2

n−1∑
j=0

λ∗j +
|λn − n|
λ∗n

1

n∗

(
n−1∑
j=0

f

(
λ∗j
λ∗n

)
+

1

2
f(1)

)

= O

(
1

n2

n−1∑
j=0

|j − λj|+
|λn − n|

n

)
.
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In the steps above one can easily replace j with j + β, for any constant β. Then the

Riemann sum partition above becomes{
β

(n+ β)∗
,

1 + β

(n+ β)∗
,

2 + β

(n+ β)∗
, . . . ,

n+ β

(n+ β)∗
, 1

}
so one needs to verify that on the interval [0, β/(n+ β)∗] in (4.36), we get∫ β

(n+β)∗

0

f(x)dx = O
(

1

n2

)
,

which holds since f(x) = O(x) as x −→ 0 (similar if β < 0 since f (β∗/(n+ β)∗) /n∗ =

O (1/n2)). �

Combining the two lemmas above yields the following result:

Corollary 4.30 Let x = cos2 θ, γθ = cot θ, for θ ∈ (0, π/2), and suppose λn ∼ n as

n −→ ∞. Then hn(γθ) −→ θ, h′n(γθ) −→ 0 and h′′n(γθ) −→ tan θ sin2 θ, as n −→ ∞,

and for all the limits, the rate of convergence is

O

(
1

n2

n−1∑
j=0

|j + β − λj|+
|n+ β − λn|

n

)
+O

(
1

n2

)
for each constant β > −1/2.

Proof. For a fixed t > 0, the integrand in each of the integrals in R(t), R′(t) and

R′′(t), namely arctan(u/t), u/(u2 + t2) and u/(u2 + t2)2, are O(u) as u −→ 0, so the

result of the previous lemma holds in each case. Then the result follows directly from

Lemma 4.28. �

Lemma 4.31 Let x = cos2 θ, θ ∈ (0, π/2), and suppose that λn ∼ n as n −→ ∞.

Then h′′n(tn) = tan θ sin2 θ + o(1), and moreover, if λn = n + β + o(n1− 1

2N+1 ) for

some integer N and constant β, then hn(tn) = hn(γn,N) + o (1/n) as n −→∞, where

γn = γn,N is defined recursively by

γ0 = cot θ, γk = γk−1 −
h′n(γk)

h′′n(γk)
, k = 1, 2, . . . , N.
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If λn = n+ β + o(1), then hn(tn) = θ + o (1/n) as n −→∞.

Proof. For all n, we have

h′n(γ0) = h′n(tn) + h′′n(ηn)(γ0 − tn) = h′′n(ηn)(γ0 − tn),

where ηn is between γ0 and tn. By Corollary 4.21, the condition λn ∼ n ensures that

tn is bounded above and below. Then according to Corollary 4.17, h′′n(ηn) is bounded

above and below, and thus

|tn − γ0| � |h′n(γ0)|, n −→∞. (4.37)

Expanding h′′n about tn then yields

h′′n(γ0)− h′′n(tn) = h(3)
n (νn)(γ0 − tn) = O (|h′n(γ0)|) , (4.38)

where we have used the fact that h
(3)
n (t) is bounded above for t bounded above (Lemma

4.18). The first result now follows from |h′n(γ0)| = o(1).

Using the expansion h′n(t) = h′n(γ0) + h′′n(γ0)(t− γ0) + h
(3)
n (ξn)(t− γ0)2/2 yields

tn − γ0 = −h
′
n(γ0)

h′′n(γ0)
− h

(3)
n (ξn)

2h′′n(γ0)
(tn − γ0)2 = −h

′
n(γ0)

h′′n(γ0)
+O

(
|h′n(γ0)|2

)
,

where we have used (4.37) (and again h′′n(t) is bounded above and below and by

Corollary 4.17 for t bounded and thus also h
(3)
n (t) is bounded above by Lemma 4.18).

We can rewrite this as tn − γ1 = O (|h′n(γ0)|2), where γ1 = γ0 − h′n(γ0)/h′′n(γ0). Now

expanding the same way about γ1 then yields

tn − γ1 = −h
′
n(γ1)

h′′n(γ1)
+O

(
|h′n(γ0)|4

)
, n −→∞,

and continuing this way gives

tn − γN = O
(
|h′n(γ0)|2N

)
, n −→∞,
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for each N ∈ N. Then we obtain the following estimate:

hn(γN)− hn(tn) = h′n(tn)(γN − tn) +
h′′n(νn)

2
(γN − tn)2

= O
(
|h′n(γ0)|2N+1

)
,

and since |h′n(γ0)| = O
(∑n−1

j=0 |j + β − λj|/n2 + |n+ β − λn|/n
)

+O (1/n2), we have

hn(γN)− hn(tn) = o (1/n) if λn − n− β = o
(
n1−2−N−1

)
.

If λn−n−β = o(1), then we have hn(γ0)−hn(tn) = O(|h′n(t0)|2) = o (1/n2), and by

Corollary (4.30), hn(γ0)−θ = O
(∑n−1

j=0 |j + β − λj|/n2 + |n+ β − λn|/n
)

= o (1/n),

and the last statement of the lemma holds. �

We are now ready to prove Theorems 4.3 and 4.4.

Proof of Theorem 4.4. We are assuming that λn ∼ n/ρ, as n −→ ∞. Define the

sequence Π = {µn} by letting

µn = ρλn +
1

2
(ρ− 1), n ∈ N0.

Then from (4.34), we have (note that this is not the same Π as in (4.34))

Ln(Λ; cos2ρ θ) = (cos θ)ρ(1/ρ−1)Ln
(
Π; cos2 θ

)
= (cos θ)1−ρLn

(
Π; cos2 θ

)
, (4.39)

for each θ ∈ (0, π/2).

In the following, we put Λ and Π in the superscript, to indicate which sequence

we are using. Since µ∗n = ρλ∗n for all n, we have h
(Π)
n (t) = h

(Λ)
n (t)/ρ for all t. By

hypothesis, µn = n + o
(
n1−δ) = n + o

(
n1−2−N−1

)
, and thus according to Theorem
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4.2 and using Lemma 4.31,

Ln
(
Π; cos2 θ

)
=

cos
[
2µ∗nh

(Π)
n (tn)− π/4

]
cos θ

√
πµ∗nh

′′(Π)
n (tn)(1 + t2n)

+ o

(
1√

µ∗nh
′′
n(tn)(1 + t2n)

)

=
cos
[
2ρλ∗n

1
ρ
h

(Λ)
n (γN)− π/4

]
cos θ

√
πn tan θ sin2 θ(1 + cot2 θ)

+ o

(
1√
n

)

=
cos
[
2λ∗nh

(Λ)
n (γN)− π/4

]
√
πn sin θ cos θ

+ o

(
1√
n

)
,

as n −→∞. The result now follows from (4.39). �

Proof of Theorem 4.3. (i) Using the same notation as in the proof above, if λn =

(n+ β/2)/ρ+ o(1), then µn = n+ (β + ρ− 1)/2 + o(1) as n −→∞. Then, according

to Lemma 4.31, h
(Π)
n (tn) = θ+ o (1/n) and we can follow the proof above to reach the

conclusion.

(ii) This is a special case of Theorem 4.4, with δ = 1/2 and N = 0. �

4.5 Proofs for the Müntz-Christoffel function

Proof of Theorem 4.8. We know from Theorem 4.3 (i), that locally uniformly for θ

in (0, π/2),

Ln(Λ; cos2ρ θ) =
cos ([2n+ β + ρ]θ − π/4)√

πρλ∗n sin θ cos2ρ−1 θ
+ o

(
1√
n

)
as n −→ ∞. Using the identities (2.25) and (2.22), we can write the nth Müntz-

Christoffel function as

λ−1
n (Λ;x) =

n∑
k=0

|L∗k(Λ;x)|2 = 2
n∑
k=0

λ∗k|Lk(Λ;x)|2.
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Using the trigonometric identities 2 cos2 φ = 1 + cos 2φ and cos(φ − π/2) = sinφ, it

follows that

λ(Mn(Λ); cos2ρ θ)−1 = 2
n∑
k=0

(
cos2 ([2k + β + ρ]θ − π/4)

πρ sin θ cos2ρ−1 θ
+ o(1)

)
=

1

πρ sin θ cos2ρ−1 θ

n∑
k=0

(1 + cos (2[2k + β + ρ]θ − π/2)) + o(n)

=
1

πρ sin θ cos2ρ−1 θ

(
n+ 1 +

n∑
k=0

sin ([2k + β + ρ]2θ)

)
+ o(n). (4.40)

We have

n∑
k=0

ei2θ(2k+β+ρ) = ei2θ(β+ρ)

n∑
k=0

(
ei4θ
)k

= ei2θ(β+ρ) e
i4θ(n+1) − 1

ei4θ − 1

= ei2θ(β+ρ−1) e
i4θ(n+1) − 1

2i sin 2θ
,

and therefore
∑n

k=0 sin ([2k + β + ρ]2θ) = O(1) uniformly for θ in compact subsets of

(0, π/2). Thus (4.40) yields

lim
n→∞

nλ(Mn(Λ); cos2ρ θ) = πρ sin θ cos2ρ−1 θ,

and the result follows by letting x = cos2ρ θ. �

Proof of Theorem 4.9. If λn � na, then Sn � na+1, and thus it follows from Corollary

4.7 that λ∗nLn(Λ;x)2 = O
(
λ∗nS

−1/2
n

)
= O

(
n(a−1)/2

)
. It follows that

λ−1
n (Λ;x) = 2

n∑
k=0

λ∗k|Lk(Λ;x)|2

= O

(
n∑
k=0

k(a−1)/2

)
= O

(
n(a+1)/2

)
.

�
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CHAPTER V

ZERO SPACING ASYMPTOTICS AND ESTIMATES FOR

THE SMALLEST AND LARGEST ZEROS

Using our formula (3.2), in this chapter we introduce new estimates for the largest and

smallest zeros of the Müntz-Legendre polynomials. The endpoint limit asymptotics of

Theorem 4.1 give us the exact asymptotics of the largest zeros. We also obtain a sharp

lower bound for the smallest zero. Furthermore, we determine the asymptotic behav-

ior of the spacing of consecutive zeros of the Müntz-Legendre polynomials Ln(Λ;x)

via the strong asymptotics obtained in Chapter 4. In Theorems 4.2, 4.4 and 4.5, the

error limits hold uniformly for x in compact subsets of (0, 1) and this implies that

the zeros of Ln(Λ;x) can be approximated by the zeros of the main asymptotic term.

The results are from the papers [51] “Zero spacing of Müntz orthogonal polynomials”

and [50] “On the smallest and largest zeros of Müntz-Legendre polynomials.”

5.1 Main results

Recall from Theorem 2.20 that the nth Müntz-Legendre polynomial Ln(Λ;x) has

precisely n zeros on (0, 1). Let ln,n < ln−1,n < · · · < l1,n denote these zeros.

First we get a global bound for the smallest zero.

Theorem 5.1 Let Λ = {λn}∞n=0 be a sequence of real numbers greater than −1
2
. Then

exp

(
−2

n−1∑
j=0

1

λj + 1
2

− 1

λn + 1
2

)
< ln,n,

Remark This considerably improves the lower bound in (2.29) as can be seen from

the inequality
n−1∑
j=0

1

λj + 1
2

+
1

2

1

λn + 1
2

≤
n+ 1

2

λ
(n)
min + 1

2

.
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An important corollary is that for non-dense Müntz spaces, Ln(Λ;x) has no zeros

close to 0 (compare to [7, Section 6.2, E.2]).

Corollary 5.2 Let Λ = {λk}∞k=0 be a sequence of real numbers greater than −1/2

such that

T :=
∞∑
k=0

1

λk + 1/2
<∞.

Then the smallest zero of Ln(Λ;x) for all n is greater than

exp(−2T ) > 0.

Next we obtain the asymptotic behavior of the largest zeros.

Theorem 5.3 Let Λ : −1/2 < λ0 < λ1 < λ2 < · · · be a sequence of real numbers and

let

Σn :=
n−1∑
k=0

(2λk + 1) +
2λn + 1

2
. (5.1)

If Λ satisfies the regularity condition limn→∞Σn/(2λn + 1) =∞ then for fixed k ≥ 1,

lim
n→∞

Σn| log lk,n| =
(
jk
2

)2

where jk denotes the kth positive zero of the Bessel function J0 as defined in (2.10).

The error term is O
(√

(2λn + 1)/Σn

)
as n −→∞.

Remark Theorem 5.3 gives l1,n ∼ exp (−j2
1/4Σn) which, in the asymptotic sense,

improves the upper bound in (2.29). We trivially have

2Σn ≤ (2n+ 1)(2λ(n)
max + 1).

We now turn our attention to the bulk of the zeros and consider their spacings.

For the general case when the Müntz space is dense, the zero spacing of the Müntz

orthogonal polynomials Ln(Λ;x) depends nicely on the stationary point tn(x) of the

phase function Rn(t)− t
2

log x of the representation (3.2).
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Theorem 5.4 Let Λ be a sequence as in Theorem 4.2, and let tn(x) be the unique

number that satisfies R′n(tn(x)) = 1
2

log x. If locally uniformly for x, y in (0, 1),

tn(x) � tn(y), n −→∞,

then locally uniformly for zeros lk,n, lk+1,n of Ln(Λ;x) in (0, 1),

lim
n→∞

λ∗ntn(lk,n)

πlk,n
(lk,n − lk+1,n) = 1.

If λn ∼ αn as n −→ ∞, then Rn(t) is asymptotic to a mid-point Riemann sum,

and the stationary point tn(x) converges as n −→∞.

Theorem 5.5 Let Λ : −1
2
< λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of numbers such that

lim
n→∞

λn
n

= α

for some α > 0. Then locally uniformly for zeros lk,n, lk+1,n of Ln(Λ;x) in (0, 1),

lim
n→∞

α

π

n (lk,n − lk+1,n)√
l2−αk,n (1− lαk,n)

= 1.

It is interesting to compare this result to the zero distribution given in (2.30).

The next result covers all cases when λn = o(n) as n −→ ∞. Then we know the

asymptotic growth of tn(x) as n −→∞.

Theorem 5.6 Let Λ : −1
2
< λ0 ≤ λ1 ≤ λ2 ≤ · · · be a sequence of numbers such that

lim
n→∞

1

(2λn + 1)2

n∑
k=0

(2λk + 1) =∞.

Then locally uniformly for zeros lk,n, lk+1,n of Ln(Λ;x) in (0, 1),

lim
n→∞

1

π

(
n∑
j=0

(2λj + 1)

)1/2
lk,n − lk+1,n

lk,n| log lk,n|1/2
= 1.
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Note that the result of Theorem 5.6 is essentially the case when α −→ 0 in

Theorem 5.5. If λn ∼ αn as n −→∞, then
(∑n

j=0(2λj + 1)
)1/2

∼
√
αn as n −→∞,

and furthermore we have for x ∈ (0, 1),

lim
α→0

(
x2−α(1− xα)

α

)1/2

= x| log x|1/2.

In Figure 2 we graph the limit functions of the zero spacing asymptotics for different

cases. Recall from (2.30) that if α −→ 0 or ∞, then the zero probability distribution

is Dirac delta at x = 0 and 1 respectively.

Figure 2: The graphs show the limit functions for the scaled spacing of consecutive
zeros for different cases. This means that we show the graph of f(x) for which

limn→∞
1
π

(∑n
j=0(2λj + 1)

)1/2

(lk,n − lk+1,n) = f(lk,n). In the case of Theorem 5.5,

f(x) =
√
x2−α(1− xα)/α and if λn = o(n) (or α −→ 0) we have f(x) = x

√
| log x|.
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Figure 3: The same as for Figure 2 but for large values of α. As we know from
Corollary 5.2 there are no zeros close to 0 when α −→∞, hence the spacing diverges.

5.2 Proofs on smallest and largest zeros

Proof of Theorem 5.1. Recall that for each n we let λ∗n := λn + 1/2 and Tn :=∑n−1
k=0

1
λ∗k

+ 1
2λ∗n

. We choose any Rn ≥ Tn, and let xn = e−2Rn so that xn ∈ (0, e−2Tn ].

We need to show that Ln(Λ;xn) 6= 0.

According to (3.5), we can write

Ln(Λ;xn) =
(−1)neRn

π

∫ ∞
0

cos pn(t)(
λ∗n

2 + t2
)1/2

dt (5.2)

where

pn(t) = 2Rnt− Φn(t).

The first two derivatives of pn are p′n(t) = 2Rn − Φ′n(t) and p′′n(t) = −Φ′′n(t) where

Φ′n(t) = 2
n−1∑
k=0

λ∗k
λ∗k

2 + t2
+

λ∗n
λ∗n

2 + t2
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and

Φ′′n(t) = −2t

(
2
n−1∑
k=0

λ∗k[
λ∗k

2 + t2
]2 +

λ∗n[
λ∗n

2 + t2
]2
)
.

Since Φ′n(0) = 2Tn, we therefore have p′n(0) = 2(Rn−Tn) ≥ 0 and p′′n(t) > 0 for t > 0.

It follows that pn is a strictly increasing function on [0,∞) which maps [0,∞) onto

[0,∞) (note that Φn(t) ≤ πn+ π/2)

We can therefore use the substitution u = pn(t) in integral of (5.2), and this gives∫ ∞
0

cos pn(t)(
λ∗n

2 + t2
)1/2

dt =

∫ ∞
0

cosu

qn(u)
du (5.3)

where qn(u) is determined by

qn(u) =
(
λ∗n

2 + t2
)1/2

p′n(t)

Then qn(0) = 2λ∗n(Rn − Tn) and since limt→∞ p
′
n(t) = 2Rn we have

lim
u→∞

qn(u) = lim
t→∞

(
λ∗n

2 + t2
)1/2

p′n(t) =∞.

We show that qn(u) is strictly increasing: The chain rule gives

p′n(t)q′n(u) =
d

dt

((
λ∗n

2 + t2
)1/2

p′n(t)
)

=
tp′n(t) +

(
λ∗n

2 + t2
)
p′′n(t)(

λ∗n
2 + t2

)1/2
,

and since p′n(t), p′′n(t) > 0 for t > 0 it follows that q′n(u) > 0 for u > 0.

Using a standard argument we can write (5.3) as an alternating series
∑∞

k=0(−1)kak

with ak > ak+1 > 0 and ak −→ 0, and the alternating series test shows that∫∞
0

cosu
qn(u)

du 6= 0. The result follows. �

Before we prove Theorem 5.3, we need two lemmas. First we define the function

fn(y) := Ln

(
e−y

2/4Σn
)
, y ≥ 0.

Then according to Theorem 4.1, uniformly for bounded y ≥ 0,

fn(y)− J0(y) = O

(√
λ∗n
Σn

)
= o(1), n −→∞. (5.4)
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For each n and k = 1, 2, . . . , n, we can write the zeros of Ln(x) on the form

lk,n = e−r
2
k,n/4Σn

for some 0 < r1,n < r2,n < · · · < rn,n. These are precisely the zeros of fn, i.e.

fn(rk,n) = 0, k = 1, 2 . . . , n. (5.5)

Below, let ‖ · ‖[0,y] denote the supremum norm over [0, y].

Lemma 5.7 For each n and y ≥ 0,

‖f ′n‖[0,y] ≤
y

2
sup
k
‖fk‖[0,y] <∞.

Proof. We recall the identity from Theorem 2.17,

xL′n(x) = λnLn(x) +
n−1∑
k=0

(2λk + 1)Lk(x).

It follows that

f ′n(y) = − y

2Σn

e−y
2/4ΣnL′n(e−y

2/4Σn)

= − y

2Σn

[
λnLn(e−y

2/4Σn) +
n−1∑
k=0

(2λk + 1)Lk(e
−y2/4Σn)

]

= − y

2Σn

[
λnfn(y) +

n−1∑
k=0

(2λk + 1)fk

(
y
√

Σk/Σn

)]
. (5.6)

Therefore, since 0 ≤ y
√

Σk/Σn ≤ y for all k = 0, 1, . . . , n,

|f ′n(y)| ≤ y

2Σn

[
λn +

n−1∑
k=0

(2λk + 1)

]
max

0≤k≤n
‖fk‖[0,y]

≤ y

2
sup
k
‖fk‖[0,y].

Since fk is continuous on [0, y] for each k, and fn(t) −→ J0(t) uniformly for t bounded,

it follows from the inequality ‖fk‖[0,y] ≤ ‖J0‖[0,y] + ‖fk − J0‖[0,y] = 1 + ‖fk − J0‖[0,y]

that

sup
k
‖fk‖[0,y] <∞.
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The result now follows from the trivial inequality t
2

supk ‖fk‖[0,t] ≤ y
2

supk ‖fk‖[0,y] for

each t ≤ y. �

Lemma 5.8 For each n and y ≥ 0, we have

‖f ′′n‖[0,y] ≤
1

2

(
1 +

y2

2

)
sup
k
‖fk‖[0,y] <∞.

In particular, the family {f ′′n} is uniformly bounded on bounded sets [0, y].

Proof. Using the identity (5.6) for f ′n(y), we obtain

f ′′n(y) = − 1

2Σn

[
λnfn(y) +

n−1∑
k=0

(2λk + 1)fk

(
y

√
Σk

Σn

)]

− y

2Σn

[
λnf

′
n(y) +

n−1∑
k=0

(2λk + 1)

√
Σk

Σn

f ′k

(
y

√
Σk

Σn

)]

=
f ′n(y)

y
− y

2Σn

[
λnf

′
n(y) +

n−1∑
k=0

(2λk + 1)

√
Σk

Σn

f ′k

(
y

√
Σk

Σn

)]

If we let A := 1
2

supk ‖fk‖[0,y], then since 0 ≤ y
√

Σk/Σn ≤ y for all n and k =

0, 1, . . . , n, the lemma above gives∣∣∣∣∣f ′k
(
y

√
Σk

Σn

)∣∣∣∣∣ ≤ y

2

√
Σk

Σn

sup
k
‖fk‖[0,y

√
Σk/Σn]

≤ Ay.

It follows that

|f ′′n(y)| ≤ A+
y

2
·
λn +

∑n−1
j=0 (2λj + 1)

Σn

Ay

≤
(

1 +
y2

2

)
A.

The result now follows from the trivial inequality supk ‖fk‖[0,t] ≤ supk ‖fk‖[0,y] = 2A

for each t ≤ y. �

Proof of Theorem 5.3. Let 0 < j1 < j2 < · · · denote the zeros of J0 on the positive

axis. According to the interlacing property of the zeros, for fixed k, {rk,n}n is a
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decreasing sequence bounded below by 0, and thus has a limit. Then from (5.4) it is

clear that for each k,

lim
n→∞

rk,n = jm

for some integer m = m(k) ≥ 1. By the intermediate value theorem, for n large

enough, fn has a zero close to each jk. Therefore, its smallest zero r1,n necessarily

has j1 as limit.

We need to show that r2,n does not approach j1 as well. Suppose to the contrary

that

lim
n→∞

r2,n = j1.

Then by the mean value theorem, there exists some cn ∈ (r1,n, r2,n) such that

f ′n(cn) = 0 (5.7)

and of course by hypothesis cn −→ j1 as n −→∞.

Define a point

an = j1 + δn

where the error δn is chosen so that

√
λ∗n/Σn = o(δn) = o(1)

(say δn = log (λ∗n/Σn)). Then, since fn(y) −→ J0(y) uniformly for bounded y with

error O (λ∗n/Σn), and J0(j1) = 0, we have for some ξn between j1 and an,

fn(an) = J0(an) + fn(an)− J0(an)

= J ′0(ξn)(an − j1) +O

(√
λ∗n
Σn

)
= J ′0(j1)δn[1 + o(1)] (5.8)

as n −→ ∞ (it is well known, see Olver [Section §7.6]), that the zeros the Bessel

functions are simple, so J ′0(ξn) −→ J ′0(j1) 6= 0). On the other hand, using (5.4) again
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with J0(j1) = 0 yields

fn(an) = fn(j1) + f ′n(νn)(an − j1)

= O

(√
λ∗n
Σn

)
+ f ′n(νn)δn. (5.9)

for some νn between j1 and an. Expanding f ′ about the point cn from (5.7) gives

f ′n(νn) = f ′′n(ηn)(νn − cn)

for some ηn between νn and cn, and according to Lemma 5.8, since cn, νn −→ j1 as

n −→ ∞, we have f ′n(νn) = o(1) as n −→ ∞. Therefore, (5.9) gives fn(an) = o(δn),

which contradicts (5.8). Hence limn→∞ r2,n 6= j1.

Since fn has a zero close to j2 for n large enough, it follows that r2,n −→ j2. Now

we can repeat the proof for r3,n and so on, and we have established that limn→∞ rk,n =

jk for each fixed k. The result now follows from −4Σn log lk,n = r2
k,n.

As for the error, a linear approximation yields

J0(rk,n) = J0(rk,n)− J0(jk) = J ′0(ξn)(rk,n − jk),

for some ξk,n between rk,n and jk, and thus since the zeros of J0 are simple, (5.4) and

(5.5) yield

rk,n − jk = O (J0(rk,n)) = O

(√
λn∗
Σn

)
, n −→∞.

�

5.3 Proofs on zero spacing asymptotics

In Theorem 4.2, we determined the asymptotic behavior of the Müntz orthogonal

polynomials Ln(Λ;x) for x ∈ (0, 1) when n −→∞ under some mild conditions on the

sequence of exponents {λk}. Here we are interested in the zeros of Ln(Λ;x) on the

interval, so we look at the phase function that appears in the main asymptotic term
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as a function of x. Namely if we let

ϕn(x) := 2λ∗nRn(tn(x))− λ∗ntn(x) log x, (5.10)

then we have

Ln(Λ;x) =
cos
(
ϕn(x)− π

4

)√
xπλ∗nR

′′
n(tn)(1 + t2n)

+ o

(
1√

λ∗nR
′′
n(tn)(1 + t2n)

)
, (5.11)

where

Rn(t) =
1

λ∗n

[
n−1∑
j=0

arctan
λ∗j
λ∗nt

+
1

2
arctan

1

t

]
,

and tn(x) ∈ (0,∞) is the unique point such that R′n(tn(x)) = 1
2

log x, i.e. it is

determined implicitly by

− log x = | log x| = 2

λ∗n

n−1∑
j=0

λ∗j
λ∗n(

λ∗j
λ∗n

)2

+ tn(x)2

+
1

2

1

1 + tn(x)2

 . (5.12)

We recall from (4.19) that for all n and x ∈ (0, 1),

(λ∗ntn)2(x) <
2Sn
| log x|

< (λ∗n)2(tn(x)2 + 1), (5.13)

where Sn =
∑n−1

j=0 λ
∗
j + λ∗n

2
.

The most important and beautiful aspect of the asymptotic analysis in Chapter

4 is that the slope of the phase function Rn(t) at the left endpoint satisfies

−R′n(0) =
n−1∑
k=0

1

λ∗k
+

1

2λ∗n
=: Tn (5.14)

which determines (2.17) and hence the denseness of the space (and the existence of

the stationary point tn(x) for all x ∈ (0, 1)). Also we saw in (4.14) that the second

derivative R′′n(t) is a strictly positive function.

Let us now look at the function tn(x). Taking the derivative of R′n(tn(x)) = 1
2

log x

with respect to x gives

t′n(x)R′′n(tn(x)) =
1

2x
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and since R′′n(t) is positive, this shows that tn(x) is an increasing function of x ∈ (0, 1).

Also it is clear from (5.12) that

lim
x→1−

tn(x) =∞, (5.15)

and since R′n(tn(e−2Tn)) = 1
2

log e−2Tn = −Tn, it follows from (5.14) that

tn
(
e−2Tn

)
= 0.

It turns out that the first derivative of the phase function ϕn(x) from (5.10) is

surprisingly simple: Using R′n(tn(x)) = 1
2

log x we obtain

ϕ′n(x) = λ∗n

[
2t′n(x)R′n(tn(x))− t′n(x) log x− tn(x)

x

]
= −λ∗n

tn(x)

x
. (5.16)

Since tn(x) > 0, this shows that ϕn(x) is strictly decreasing on (0, 1). We’ve seen

that tn(e−2Tn) = 0, so

ϕn(e−2Tn) = 2λ∗nRn(0) = πn∗ = πn+
π

2
,

and (5.15) gives

lim
x→1−

ϕn(x) = lim
x→1−

λ∗ntn(x)| log x| = lim
x→1−

(λ∗ntn)2(x)| log x|
λ∗ntn(x)

= 0,

where in the last step we have used that (λ∗ntn)2(x)| log x| is bounded with respect to

x, as seen in (5.13). This gives the following:

Lemma 5.9 The phase function ϕn(x) defined in (5.10) maps [e−2Tn , 1) bijectively

onto
(
0, πn+ π

2

]
.

The zeros of the main term in (5.11) are the solutions of the equations

ϕn(x) = πk − π

4
,
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for some integer k. Lemma 5.9 shows that there exists a unique solution xk,n for

each k = 1, 2, . . . , n. For two consecutive zeros xk+1,n < xk,n, using first order Taylor

approximation, we have

π = ϕn(xk+1,n)− ϕn(xk,n) = −ϕ′n(ξk,n)(xk,n − xk+1,n),

for some ξk,n ∈ (xk+1,n, xk,n). Then using (5.16), we can write

xk,n − xk+1,n =
πξk,n

λ∗ntn(ξk,n)
. (5.17)

Assuming the Müntz condition (2.17), Lemma 4.20 yields

0 < 1− xk+1,n

xk,n
<

π

(λ∗ntn)(xk+1,n)
= o(1), (5.18)

for xk+1,n, xk,n in compact subsets of (0, 1). It follows that locally in (0, 1),

xk+1,n ∼ xk,n n −→∞.

Hence, asymptotically, we can replace ξk,n with xk,n in the denominator of (5.17),

but we also need to show that tn(ξk,n) ∼ tn(xk,n). For that purpose, we first need the

following lemma:

Lemma 5.10 For 0 < x < y < 1, we have

R′′n(tn(y))

tn(y)
≤ log y − log x

t2n(y)− t2n(x)
≤ R′′n(tn(x))

tn(x)

Proof. For each j = 0, 1, . . . , n, let rj := rj,n := λ∗j/λ
∗
n. Then using (5.12) and the

notation (1.4), we can write

log
y

x
= − log x+ log y

=
2

λ∗n
∗
n∑
k=0

rk
r2
k + t2n(x)

− 2

λ∗n
∗
n∑
k=0

rk
r2
k + t2n(y)

=
2

λ∗n
∗
n∑
k=0

rk

(
1

r2
k + t2n(x)

− 1

r2
k + t2n(y)

)
=

[
t2n(y)− t2n(x)

] 2

λ∗n
∗
n∑
k=0

rk
[r2
k + t2n(x)] [r2

k + t2n(y)]
.
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Recalling that

R′′n(t) =
2t

λ∗n
∗
n∑
k=0

rk

[r2
k + t2]

2 ,

and using tn(x) < tn(y), we get

[
t2n(y)− t2n(x)

] R′′n(tn(y))

tn(y)
≤ log

y

x
≤
[
t2n(y)− t2n(x)

] R′′n(tn(x))

tn(x)
.

�

Lemma 5.11 Assume the hypothesis of Lemma 4.20, and furthermore that locally

uniformly for x, y in (0, 1),

tn(x) � tn(y), n −→∞.

Then, if xn − yn = O (1/λ∗ntn(xn)) for xn, yn locally uniformly in (0, 1),

tn(xn) ∼ tn(yn), n −→∞.

Proof. According to Lemma 5.10, we have

∣∣t2n(xn)− t2n(yn)
∣∣ ≤ max

{
tn(xn)

R′′n(tn(xn))
,

tn(yn)

R′′n(tn(yn))

} ∣∣∣∣log
xn
yn

∣∣∣∣
By hypothesis we have |1− xn/yn| = O (1/λ∗ntn(xn)) = O (1/λ∗ntn(yn)), so∣∣∣∣1− t2n(yn)

t2n(xn)

∣∣∣∣ = O
(

max

{
1

λ∗nt
2
n(xn)R′′n(tn(xn))

,
1

λ∗nt
2
n(yn)R′′n(tn(yn))

t2n(yn)

t2n(xn)

})
.

If xn, yn ∈ [a, b] ⊂ (0, 1), then tn(yn)/tn(xn) ≤ tn(b)/tn(a) = O(1), and since

λ∗nt
2
nR
′′
n(tn) −→ ∞ locally uniformly in (0, 1) by Lemma 4.20, this gives tn(xn) ∼

tn(yn) as n −→∞. �

Given the assumptions of the lemma above, since xk,n − xk+1,n = O (1/λ∗ntn) by

(5.17), we have

xk,n − xk+1,n ∼
πxk,n

λ∗ntn(xk,n)
, n −→∞, (5.19)
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for xk+1,n, xk,n on compact subsets of (0, 1). It remains to be shown that we can

replace xk,n with lk,n, where ln,n < ln−1,n < · · · < l2,n < l1,n are the actual zeros of

Ln(Λ;x) on (0, 1).

Lemma 5.12 Assume the hypothesis of Lemma 4.20, and furthermore that locally

uniformly for x, y in (0, 1),

tn(x) � tn(y), n −→∞.

Then locally uniformly for xk,n in (0, 1),

lk,n − xk,n = o

(
1

λ∗ntn(lk,n)

)
, n −→∞,

and it follows that lk,n − lk+1,n ∼ xk,n − xk+1,n as n −→∞.

Proof. According to Lemma 4.20, locally uniformly for x in (0, 1), we have λ∗ntn(x) −→

∞ as n −→∞. Let {δn} be a sequence of numbers such that

δn = o

(
1

λ∗ntn

)
= o(1), n −→∞ (5.20)

(by hypothesis tn(x) � tn(y) for x, y on compact subsets of (0, 1) so we can simply

write tn instead of tn(x)).

For each k = 1, 2, . . . , n, xk,n is determined by ϕn(xk,n) = πk−π/4, and therefore

cos
(
ϕn(xk,n)− π

4

)
= 0,

sin
(
ϕn(xk,n)− π

4

)
= (−1)k−1.

We can write

ϕn(xk,n + δn) = ϕn(xk,n) + ϕ′n(νk,n)δn

for some νk,n between xk,n and xk,n+δn. Using the double angle formula cos(α+β) =

cosα cos β − sinα sin β, and the identity (5.16) for ϕ′n, we obtain

cos
(
ϕn(xk,n + δn)− π

4

)
= cos

(
ϕn(xk,n)− π

4
+ ϕ′n(νk,n)δn

)
= − sin

(
ϕn(xk,n)− π

4

)
sin (δnϕ

′
n(νk,n))

= (−1)k−1 sin

(
δn
λ∗ntn(νk,n)

νk,n

)
.
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Given (5.20), we trivially have xk,n ∼ xk,n + δn locally uniformly for xk,n in (0, 1)

and by Lemma 5.11, tn(xk,n + δn) ∼ tn(xk,n) locally uniformly in (0, 1). According to

Lemma 4.22, we also have R′′n(tn(xk,n+δn)) ∼ R′′n(tn(xk,n)) locally uniformly in (0, 1).

Then, using the asymptotics formula of Theorem 4.2, we obtain locally uniformly for

xk,n ± δn in (0, 1),

Ln(xk,n ± δn) =
cos
(
ϕn(xk,n ± δn)− π

4

)√
π(xk,n ± δn)λ∗nR

′′
n(tn(xk,n ± δn))(1 + t2n(xk,n ± δn))

+o

(
1√

λ∗nR
′′
n(tn(xk,n ± δn))(1 + t2n(xk,n ± δn))

)

=
cos
(
ϕn(xk,n ± δn)− π

4

)√
πxk,nλ∗nR

′′
n(tn(xk,n))(1 + t2n(xk,n))

+o

(
1√

λ∗nR
′′
n(tn(xk,n))(1 + t2n(xk,n))

)

=
(−1)k−1√

πxk,nλ∗nR
′′
n(tn)(1 + t2n)

[
± sin

(
δn
λ∗ntn(ν±k,n)

ν±k,n

)
+ εn(x)

]

where the error term εn(x) is o(1) as n −→ ∞ locally uniformly for x in (0, 1).

According to (5.20),

sin

(
δn
λ∗ntn(ν±k,n)

ν±k,n

)
∼ δnλ

∗
ntn(xk,n)

xk,n
= o(1), n −→∞.

We still have the freedom of choosing the rate of convergence for δn in (5.20) and we

can choose {δn} such that

εn(x) = o(δnλ
∗
ntn(x)) = o

(
sin

(
δn
λ∗ntn(ν±k,n)

ν±k,n

))

as n −→∞, locally uniformly for x in (0, 1). Then by the intermediate value theorem,

there is a zero lk,n of Ln(Λ;x) that lies between xk,n − δn and xk,n + δn. It follows

that lk,n ∼ xk,n locally uniformly in (0, 1). The same holds for xk+1,n and this yields

lk,n − lk+1,n = xk,n − xk+1,n + (lk,n − xk,n)− (lk+1,n − xk+1,n)

= xk,n − xk+1,n +O (δn) .
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According to (5.17), xk,n − xk+1,n � 1/λ∗ntn(xk,n), and it follows from (5.20) that

lk,n − lk+1,n ∼ xk,n − xk+1,n as n −→∞. �

Proof of Theorem 5.4. The result follows from replacing xk,n with lk,n in (5.19),

which is justified by Lemmas 5.11 and 5.12. �

Theorems 5.5 and 5.6 can now be proved with little effort by determining the

behavior of the stationary point tn(x). In both cases we shall use the quantity

σn =
1

λ∗n
2

(
n−1∑
k=0

λ∗k +
λ∗n
2

)
.

In the first result we assume that σn � 1, and in the second σn −→∞ as n −→∞.

Proof of Theorem 5.5. First assume that α = 1, so λn ∼ n as n −→∞. Then Tn �

log n −→ ∞ so (2.17) is satisfied. In Corollary 4.21 we showed that if λn ∼ n, then

tn(x) � 1 as n −→∞ locally uniformly for x in (0, 1). Furthermore
(∑n

j=0 λ
∗
j

)
/λ∗n �

n as n −→∞, so the conditions of Theorem 5.4 are satisfied. Define

R(t) :=

∫ 1

0

arctan
s

t
ds = arctan

1

t
− t

2
log

(
1 +

1

t2

)
.

ThenR′(t) = −1
2

log (1 + t−2), so if we let γ0 = (x/(1− x))1/2, thenR′(γ0) = 1
2

log x =

R′n(tn). Using linear approximation then yields

(Rn −R)′(γ0) = R′n(γ0)−R′n(tn) = R′′n(ξn)(γ0 − tn), (5.21)

for some ξn between γ0 and tn. Then since tn � σn � 1 and

t

[1 + t2]2
<
R′′n(t)

2σn
<

1

t3
,

(see Corollary 4.17), R′′n(ξn) is bounded above and below. In Lemma 4.31 we showed

that for λn ∼ n, we have (Rn − R)′(γ0) = o(1) as n −→ ∞, and it now follows from
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(5.21) that

tn = γ0 + o(1) =

(
x

1− x

)1/2

+ o(1), n −→∞.

Now consider the general case λn ∼ αn with α > 0. Then if we define the sequence

Π = {µn} by letting µn = λn/α for each n, then µn ∼ n, and the corresponding phase

functions are related via

R(Λ)
n (t) =

1

α
R(Π)
n (t).

Then R
(Π)
n (γ0) = 1

2
log x, where γ0 = (x/(1− x))1/2 was determined for the α = 1

case above. Then

R(Λ)
n (γ0) =

1

α

1

2
log x =

1

2
log x1/α,

so we can replace γ0 with γ
(Λ)
0 = (xα/(1− xα))1/2. It follows from Theorem 5.4 that

λ∗n
π

(lk,n − lk+1,n) ∼ lk,n
tn(lk,n)

∼ lk,n

(
1− lαk,n
lαk,n

)1/2

=
√
l2−αk,n (1− lαk,n).

�

Proof of Theorem 5.6. Here the hypothesis σn −→∞ ensures that the conditions of

Theorem 5.4 are satisfied, since σn ≤ Tn and λ∗nσn ∼
(∑n−1

k=0 λ
∗
k

)
/λ∗n, and furthermore

Lemma 4.19 shows that t2n � σn locally uniformly for x in (0, 1). More accurately,

Lemma 4.19 gives t2n(x) ∼ 2σn/| log x|, which yields

(λntn)2(x) ∼ 2

| log x|

n∑
k=0

λ∗k, n −→∞.

Therefore we get

lk,n − lk+1,n

πlk,n
∼ 1

λ∗ntn(lk,n)
∼ | log lk,n|1/2

(
2

n∑
k=0

λ∗k

)−1/2

.

�
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CHAPTER VI

ASYMPTOTICS OUTSIDE THE INTERVAL OF

ORTHOGONALITY

In this chapter we turn our attention to the asymptotic behavior of Ln(Λ;x) as

n −→ ∞, for x > 1 outside the interval of orthogonality. There, we don’t have a

nice formula as in the case for x ∈ (0, 1), so the approach here is not as clear-cut.

However, given the standard form and revealing nature of the representation (3.2), we

can emulate the manipulation of the contour integral definition (2.18) we performed

in Chapter 3 to arrive at the “true” phase function for x /∈ (0, 1). We then apply

the method of steepest descent to determine the behavior of the Müntz orthogonal

polynomials, and we present both strong asymptotics and root asymptotics. Again,

we assume that the density condition

∞∑
k=0

1

λk + 1/2
=∞

is satisfied and we especially look at the cases when λn = o(n) as n −→∞ and

lim
n→∞

λn
n

= α.

The results below appear in the manuscript [47], “Asymptotic behavior of Müntz-

Legendre polynomials for x > 1.”

6.1 Main results

Our most general result on the asymptotics of Ln(Λ;x), stated in Theorem 6.10 below,

requires a regularity condition on the Müntz exponents Λ and the asymptotic term

depends on an implicit stationary point. For more special cases, which are presented

here, the asymptotics are more explicit.

86



Theorem 6.1 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ . . . be a sequence of real numbers

that satisfies

λn =
1

ρ

(
n+

β

2

)
+ o(1), n −→∞,

for some constants ρ > 0 and β > −1. Then locally uniformly for x in (1,∞), as

n −→∞,

Ln(Λ;xρ) ∼ 1

2
√
πn

[
x1/2 + (x− 1)1/2

]2n+β+ρ

x(2ρ−1)/4(x− 1)1/4
.

Theorem 6.2 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ . . . be a sequence of real numbers

that satisfies

lim
n→∞

n

λn
= ρ > 0.

Then locally uniformly for x in (1,∞),

lim
n→∞

Ln(Λ;xρ)1/n =
[
x1/2 + (x− 1)1/2

]2
.

Note that these results can easily be mapped to the Müntz-Jacobi polynomials

L
(β)
n (x) via (2.27).

The following result covers the cases when λn = o(n) as n −→∞.

Theorem 6.3 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ . . . be a sequence of real numbers

that satisfies

lim
n→∞

1

(2λn + 1)2

n∑
k=0

(2λk + 1) =∞.

Then locally uniformly for x in (1,∞), as n −→∞,

Ln(Λ;x) ∼ xρn

2
√
π(log x)1/4

(
n∑
k=0

(2λk + 1)

)−1/4 n∏
k=0

ρn + λk + 1

ρn − λk
,

where ρn = ρn(x) > λn is determined by the identity

log x = 2
n−1∑
k=0

λ∗k
ρ∗n

2 − λ∗k
2 +

λ∗n
ρ∗n

2 − λ∗n2 .

and grows according to ρ2
n log x ∼

∑n
k=0(2λk + 1).
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Here the stationary point ρn = ρn(x) is implicitly determined. In the following

we reveal the root asymptotics in the same case, which does not depend on ρn.

Theorem 6.4 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ . . . be a sequence of real numbers

that satisfies

lim
n→∞

1

(2λn + 1)2

n∑
k=0

(2λk + 1) =∞.

Then locally uniformly for x in (1,∞), as n −→∞,

lim
n→∞

Ln(Λ;x)1/
√

Σn = e2(log x)1/2 ,

where Σn =
∑n

k=0(2λk + 1) + (2λn + 1)/2 for each n.

6.2 Proofs

6.2.1 Setup and basic estimates

In the following we fix x > 1 and let

c := log x > 0.

We start making the change of variables t = λ∗nu− 1
2

in (2.18) which yields

Ln(Λ;x) =
1

2πix1/2

∫
Γ∗

n−1∏
k=0

u+ rk
u− rk

xλ
∗
nu

u− 1
du, (6.1)

where Γ∗ encloses all the zeros of the denominator, and we let rk := rk,n := λ∗k/λ
∗
n

for all n and k = 0, 1, . . . , n.. Let log z and z1/2 denote the principal brances of the

logarithmic and square root functions, respectively. Note that since the λk’s are real,

u, u+ rk and u− rk all lie in the same upper/lower half plane of C, and if Re(u) > 0,

then (u + rk)(u − rk) as well. If Re(u) > 0, since | arg(u − rk)| > | arg(u + rk)|, it is

easy to see that

(u2 − r2
k)

1/2 = (u+ rk)
1/2(u− rk)1/2 and

(
u+ rk
u− rk

)1/2

=
(u+ rk)

1/2

(u− rk)1/2
.
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Then in the right half plane, and off the interval (0, 1], we can write the integrand in

(6.1) as

n−1∏
k=0

u+ rk
u− rk

xλ
∗
nu

u− 1
=

n−1∏
k=0

u+ rk
u− rk

(
u+ 1

u− 1

)1/2
eλ
∗
nuc

(u2 − 1)1/2

=
eλ
∗
n[Θn(u)+uc]

(u2 − 1)1/2
, (6.2)

where c = log x and (see the definition for ∗
∑

in (1.4))

Θn(u) =
1

λ∗n
∗
n∑
k=0

log
u+ rk
u− rk

.

We then have

Θ′n(u) = − 2

λ∗n
∗
n∑
k=0

rk
u2 − r2

k

,

and since d
du

[Θn(u) + uc] = Θ′n(u) + c, the stationary points for the phase function

Θn(u) + uc are the roots of the equation

2

λ∗n
∗
n∑
k=0

rk
u2 − r2

k

= c.

Remark Making the substitution u = is in (6.2), we can write Θn as a sum of inverse

tangent functions. In the case x ∈ (0, 1), with some manipulations, this yields the

representation in (3.2). Since log x < 0 in that case, the stationary points lie on the

imaginary axis, u = ±iρ∗n.

Since

lim
u→1+

[−Θ′n(u)] =∞, lim
u→∞

[−Θ′n(u)] = 0,

and

Θ′′n(u) =
4u

λ∗n
∗
n∑
k=0

rk

(u2 − r2
k)

2

is strictly positive for u > 1, we see that there exists a unique stationary point

τn = τn(x) in (1,∞) of the phase function Θn(u) + uc, i.e. τn satisfies

2

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

= c = log x. (6.3)

For the following lemma, recall the definition for σn in (1.5).
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Lemma 6.5 (a) For all x > 1 and n, we have

τn
2 − 1 ≤ 2σn

c
≤ τn

2.

(b) We have λ∗nτn & S
1/2
n −→ ∞ as n −→ ∞, locally uniformly for x in (1,∞).

In particular, if σn −→∞, then τn
2 ∼ 2σn/c as n −→∞.

Proof. Since 0 < rk ≤ 1 for all k = 0, 1, . . . , n, we have

c =
2

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

<
2

λ∗n
∗
n∑
k=0

rk
τ 2
n − 1

=
2σn
τ 2
n − 1

,

and similarly c > 2σn/τ
2
n. Recalling that Sn = λ∗n

2σn, we can write the latter inequal-

ity as c(λ∗nτn)2(x) ≥ 2Sn. Since Sn is independent of x and c = log x is uniformly

bounded above and below for x in compact subsets of (1,∞), the result follows. �

Lemma 6.6 (a) For all x > 1 and n, we have

1 ≤ τnΘ′′n(τn)

2c
≤ τ 2

n

τ 2
n − 1

,

(b) We have λ∗nτ
2
nΘ′′n(τn) & λ∗nτn & S

1/2
n −→∞ as n −→∞, locally uniformly for

x in (1,∞). In particular, if σn −→∞, then τnΘ′′n(τn) ∼ 2c as n −→∞.

Proof. By writing

τnΘ′′n(τn) =
4τ 2
n

λ∗n
∗
n∑
k=0

rk
(τ 2
n − r2

k)
2

=
4

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

τ 2
n

τ 2
n − r2

k

,

the first inequalities follow from the identity (6.3) and the trivial inequalities τ 2
n−1 ≤

τ 2
n−rk ≤ τ 2

n. It follows from Lemma 6.5 that λ∗nτ
2
nΘ′′n(τn) > 2cλ∗nτn & S

1/2
n −→∞. �

Applying Cauchy’s Integral Theorem we can choose Γ∗ to be the closed half circle

{is : −τn ≤ s ≤ τn} ∪ Cn, where Cn is the arc parametrized with γn(s) = τne
is,

s ∈ (−π/2, π/2). Then we can write (6.1) as

2πix1/2Ln(x) = i(−1)n
∫ τn

−τn

n−1∏
k=0

rk − is
rk + is

e−iλ
∗
nsc

1 + is
ds+

∫
Cn

eλ
∗
n[Θn(u)+uc]

(u2 − 1)1/2
du. (6.4)
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We estimate three parts of this integral. We split the integral over Cn up in two parts,

one close to the stationary point τn + i0, where we have the main contribution, and

the other away from the point. Then we get a simple estimate for the part on the

line segment {is : −τn ≤ s ≤ τn}.

Below, we shall assume that τ 2
n(x) − 1 is bounded below away from 0, locally

uniformly for x in (1,∞). This will ensure that the estimates and limits hold uniformly

for x in compact subsets of (1,∞), but for the sake of brevity, we shall fail to mention

this in every step. The key is that c = log x is uniformly bounded above and below

in compact subsets of (1,∞).

6.2.2 Contribution near the stationary point

Here we look at the second integral on the right hand side of (6.4), over the arc Cn,

and restrict to a part close to the stationary point τn + i0. Define εn > 0 such that

ε2
n =

log(λ∗nτn)

λ∗nτn
, n ≥ 0. (6.5)

In what follows, we assume that τ 2
n−1 is bounded below away from 0, locally uniformly

for x in (1,∞), so according to Lemma 6.5, εn = o(1). We define the integral

Ix(εn) =

∫
C(εn)

eλ
∗
nFn(u)

(u2 − 1)1/2
du, (6.6)

where Fn(u) = Fn(u;x) = Θn(u) + uc and C(εn) is the arc parametrized by

γεn(s) = τne
is = αn(s) + iβn(s), s ∈ (−εn, εn).

Here we let αn(s) = τn cos s and βn(s) = τn sin s for simplification, and furthermore

we write the real and imaginary parts of the phase function as

hn(s) = Re [Fn(γεn(s))] and kn(s) = Im [Fn(γεn(s))] .

For u = γεn(s), we have

u+ rk
u− rk

=
(u+ rk)(u− rk)
|u− rk|2

=
(τn

2 − r2
k)− i2rkβn(s)

τ 2
n + r2

k − 2rkαn(s)
,
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and thus ∣∣∣∣u+ rk
u− rk

∣∣∣∣2 =
(τn

2 − r2
k)

2 + (2rkβn)2

[τ 2
n + r2

k − 2rkαn]2
=
τ 2
n + r2

k + 2rkαn
τ 2
n + r2

k − 2rkαn

and

arg

(
u+ rk
u− rk

)
= − arctan

2rkβn(s)

τn2 − r2
k

.

It follows that (dropping the s-dependence of αn and βn from the notation)

hn(s) = αnc+
1

2λ∗n
∗
n∑
k=0

log
τ 2
n + r2

k + 2rkαn
τ 2
n + r2

k − 2rkαn
(6.7)

and

kn(s) = βnc−
1

λ∗n
∗
n∑
k=0

arctan
2rkβn
τn2 − r2

k

. (6.8)

First we show that the imaginary part kn(s) is insignificant for εn small enough.

Lemma 6.7 If uniformly on (1,∞), τ 2
n(x) − 1 is bounded below away from 0, then

for |s| ≤ εn,

kn(s) = O
(
ε3
n

τn

)
, n −→∞.

and this holds locally uniformly for x in (1,∞).

Proof. Recall that for |x| ≤ 1, we have the alternating series expansion arctanx =

x− x3/3 + x5/5− · · · , and thus |x− arctanx| ≤ |x3|/3. By hypothesis,

τn
τ 2
n − 1

� 1

τn
≤ 1,

and it follows that∣∣∣∣2rkβn(s)

τn2 − r2
k

∣∣∣∣ ≤ 2τn| sin s|
τn2 − 1

≤ 2τn
τn2 − 1

εn = O (εn) = o(1)

as n −→∞, for all k = 0, 1, . . . , n. Thus we get the following bound for (6.8),

|kn(s)| ≤ |βn(s) |

[
c− 2

λ∗n
∗
n∑
k=0

rk
τn2 − r2

k

]
︸ ︷︷ ︸

=0

+
(2|βn(s)|)3

3λ∗n
∗
n∑
k=0

(
rk

τn2 − r2
k

)3

≤ 4τ 3
n|s|3

3

1

(τ 2
n − 1)2

2

λ∗n
∗
n∑
k=0

rk
τn2 − r2

k︸ ︷︷ ︸
=c

= O
(

τ 3
n

(τ 2
n − 1)2

ε3
n

)
,
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and the result follows since τ 4
n/(τ

2
n − 1)2 � 1 as n −→ ∞, locally uniformly for x in

(1,∞). �

Using the parametrization γεn in (6.6), we can write

Ix(εn) = iτn

∫ εn

−εn

eλ
∗
nhn(s)eiλ

∗
nkn(s)

(τ 2
ne

2is − 1)1/2
eisds

=
iτn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds+ δ1(εn) + δ2(εn) + δ3(εn),

where we have introduced the error terms

δ1(εn) = iτn

∫ εn

−εn

eλ
∗
nhn(s)eiλ

∗
nkn(s)

(τ 2
ne

2is − 1)1/2

[
eis − 1

]
ds

δ2(εn) = iτn

∫ εn

−εn
eλ
∗
nhn(s)eiλ

∗
nkn(s)

[
1

(τ 2
ne

2is − 1)1/2
− 1

(τ 2
n − 1)1/2

]
ds

δ3(εn) =
iτn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)

[
eiλ
∗
nkn(s) − 1

]
ds

Using the inequalities |τ 2
ne

2is − 1| ≥ |τ 2
n − 1| and |eis − 1| ≤ |s|, for all s, we get

|δ1(εn)| ≤ εn
τn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds.

By (6.5), we have∣∣∣∣ τ 2
n

τ 2
n − 1

[
e2iεn − 1

]∣∣∣∣ ≤ 2τ 2
n

τ 2
n − 1

εn = o(1), n −→∞,

and thus since |(1 + w)1/2 − 1| = O(|w|) if |w| = o(1) we get the estimate

|δ2(εn)| ≤ max
|s|≤εn

∣∣∣∣1− (τ 2
ne

2is − 1)1/2

(τ 2
n − 1)1/2

∣∣∣∣ τn
(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds

= O
(

τ 2
n

τ 2
n − 1

εn

)
τn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds.

We are assuming that τ 2
n − 1 is bounded below and since εn = o(1), we have

δ1(εn), δ2(εn) = o

(
τn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds

)
, n −→∞.

As for δ3(εn), we apply Lemma 6.7, and get

|δ3(εn)| = O
(

λ∗nτ
3
n

(τ 2
n − 1)2

ε3
n

)
τn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds.
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Since τ 4
n/(τ

2
n − 1)2 � 1 as n −→∞, and recalling (6.5), we have

λ∗nτ
3
n

(τ 2
n − 1)2

ε3
n �

λ∗n
τn
ε3
n =

λ∗n
τn

[log(λ∗nτn)]3/2

(λ∗nτn)3/2

=
[log(λ∗nτn)]3/2

(λ∗nτn)1/2

1

τ
3/2
n

≤ [log(λ∗nτn)]3/2

(λ∗nτn)1/2

= o(1),

as n −→∞, and this holds locally uniformly for x in (1,∞). To summarize, we have

shown that

Ix(εn) =
iτn

(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds [1 + o(1)] , n −→∞. (6.9)

To deal with the main term in (6.9), we need to look at the function hn(s), defined

in (6.7), in more detail. The first two derivatives are

h′n(s) = −βn

[
c+

2

λ∗n
∗
n∑
k=0

rk(τ
2
n + r2

k)

(τ 2
n − r2

k)
2 + (2rkβn)2

]
(6.10)

and

h′′n(s) = −αn

[
c+

2

λ∗n
∗
n∑
k=0

rk(τ
2
n + r2

k)
(τ 2
n − r2

k)
2 − (2rkβn)2

[(τ 2
n − r2

k)
2 + (2rkβn)2]2

]
. (6.11)

We note that (recall αn(0) = τn and βn(0) = 0) h′n(0) = 0,

hn(0) = τnc+
1

λ∗n
∗
n∑
k=0

log
τn + rk
τn − rk

= τnc+ Θn(τn)

= Fn(τn)

and

h′′n(0) = −τn

[
c+

2

λ∗n
∗
n∑
k=0

rk
τ 2
n + r2

k

(τ 2
n − r2

k)
2

]

= −4τ 3
n

λ∗n

n−1∑
k=0

rk
(τ 2
n − r2

k)
2

= −τ 2
nΘ′′n(τn),
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and here we have used the identity (6.3). Thus expanding hn(s) about s = 0 yields

hn(s) = hn(0) + h′n(0)s+
h′′n(0)

2
s2 + · · ·

= Fn(τn)− τ 2
nΘ′′n(τn)

2
s2 +

h
(3)
n (ξn,s)

6
s3,

where ξn,s is between 0 and s. Then we can write∫ εn

−εn
eλ
∗
nhn(s)ds = eλ

∗
nFn(τn)

∫ εn

−εn
e
λ∗n

[
− 1

2
τ2
nΘ′′n(τn)s2+ 1

6
h
(3)
n (ξn,s)s3

]
ds

= eλ
∗
nFn(τn)

∫ εn

−εn
e−

1
2
λ∗nτ

2
nΘ′′n(τn)s2ds+ δ4(εn),

where

δ4(εn) = eλ
∗
nFn(τn)

∫ εn

−εn
e−

1
2
λ∗nτ

2
nΘ′′n(τn)s2

[
e
λ∗n
6
h
(3)
n (ξn,s)s3 − 1

]
ds.

Recall from Lemma 6.6, that if τ 2
n − 1 is bounded below, then locally uniformly for x

in (1,∞), τnΘ′′n(τn) � 1 as n −→∞. Therefore using (6.5), we get

λ∗nτ
2
nΘ′′n(τn)ε2

n � λ∗nτnε
2
n = log(λ∗nτn)

and by Lemma 6.5, λ∗nτn −→∞, locally uniformly for x in (1,∞). It follows that

lim
n→∞

εn
√
λ∗nτ

2
nΘ′′n(τn) =∞. (6.12)

Then using the substitution v =
√
λ∗nτ

2
nΘ′′n(τn)s yields

∫ εn

−εn
e−

1
2
λ∗nτ

2
nΘ′′n(τn)s2ds =

1√
λ∗nτ

2
nΘ′′n(τn)

∫ √λ∗nτ
2
nΘ′′n(τn)εn

−
√
λ∗nτ

2
nΘ′′n(τn)εn

e−
1
2
v2dv

=
1√

λ∗nτ
2
nΘ′′n(τn)

∫ ∞
−∞

e−
1
2
v2dv [1 + o(1)]

=

√
2π

λ∗nτ
2
nΘ′′n(τn)

[1 + o(1)] ,

and the limits hold uniformly for x in compact subsets of (1,∞). It remains to

estimate the error term δ4(εn), and for that purpose we need an estimate for the

third derivative h
(3)
n (s).
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Lemma 6.8 If uniformly on (1,∞), τ 2
n(x) − 1 is bounded below away from 0, then

for |s| ≤ εn,

|h(3)
n (s)| = O (τnεn) , n −→∞,

and this holds locally uniformly for x in (1,∞).

Proof. From (6.11), and using α′n(s) = −βn(s), we get

h(3)
n (s) = βnc−

2

λ∗n
∗
n∑
k=0

rk(τ
2
n + r2

k)
d

ds

[
αn

(τ 2
n − r2

k)
2 − (2rkβn)2

[(τ 2
n − r2

k)
2 + (2rkβn)2]2

]
. (6.13)

Letting ak,n = τ 2
n − r2

k for each n and k = 0, 1, . . . , n, and using d
ds

(2rkβn)2 =

2(2rk)
2αnβn, we compute

d

ds

[
αn

a2
k,n − (2rkβn)2

[a2
k,n + (2rkβn)2]2

]
= −βn

a2
k,n − (2rkβn)2

[a2
k,n + (2rkβn)2]2

+αn
−2(2rk)

2αnβn[a2
k,n + (2rkβn)2]−

[
a2
k,n − (2rkβn)2

]
2 · 2(2rk)

2αnβn

[a2
k,n + (2rkβn)2]3

=
−βn

a2
k,n + (2rkβn)2

(
a2
k,n − (2rkβn)2

a2
k,n + (2rkβn)2

+
2(2rkαn)2

a2
k,n + (2rkβn)2

3a3
k,n − (2rkβn)2

a2
k,n + (2rkβn)2

)
.

Since
∣∣∣a2
k,n−(2rkβn)2

a2
k,n+(2rkβn)2

∣∣∣ ≤ 1,
∣∣∣3a2

k,n−(2rkβn)2

a2
k,n+(2rkβn)2

∣∣∣ ≤ 3 and ak,n = τ 2
n − r2

k ≥ τ 2
n − 1 this yields∣∣∣∣∣ dds

[
αn

a2
k,n − (2rkβn)2

[a2
k,n + (2rkβn)2]2

]∣∣∣∣∣ ≤ |βn|
(τ 2
n − r2

k)
2

(
1 +

2(2τn)2

(τ 2
n − 1)2

3

)
≤ |βn|

(τ 2
n − r2

k)
2

(
1 +

24τ 2
n

(τ 2
n − 1)2

)
.

Using the identity (6.3), and |βn| = τn| sin s| ≤ τnεn, (6.13) yields

|h(3)
n (s)| ≤ τnεn

[
c+

2

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

τ 2
n + r2

k

τ 2
n − r2

k

(
1 +

24τ 2
n

(τ 2
n − 1)2

)]

≤ τnεnc

[
1 +

τ 2
n + 1

τ 2
n − 1

(
1 +

24τ 2
n

(τ 2
n − 1)2

)]
.

If τ 2
n − 1 is bounded below, then

τ 2
n + 1

τ 2
n − 1

(
1 +

24τ 2
n

(τ 2
n − 1)2

)
= O(1), n −→∞,
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and the result follows. �

The lemma above gives

max
0≤r,s≤εn

∣∣∣eλ∗n6 h
(3)
n (r)s3 − 1

∣∣∣ = O
(
λ∗nτnε

4
n

)
,

and using (6.5) and Lemma (6.5) yields λ∗nτnε
4
n = [log(λ∗nτn)]2/λ∗nτn = o(1). If follows

that

δ4(ε) = o

(
eλ
∗
nFn(τn)

∫ εn

−εn
e−

1
2
λ∗nτ

2
nΘ′′n(τn)s2ds

)
,

and this holds uniformly for x in compact subsets of (1,∞).

To conclude, combining this with (6.9), the main contribution is

1

2πi
Ix(εn) ∼ 1

2π

τn
(τ 2
n − 1)1/2

∫ εn

−εn
eλ
∗
nhn(s)ds

∼ 1

2π

τn
(τ 2
n − 1)1/2

eλ
∗
nFn(τn)

√
2π

λ∗nτ
2
nΘ′′n(τn)

=
eλ
∗
nFn(τn)√

2πλ∗n(τ 2
n − 1)Θ′′n(τn)

. (6.14)

6.2.3 Estimate of the integral on the arc away from the stationary point

Here using the same εn as in the section above, we estimate the integral

Jx(εn) =

∫
Cn\C(εn)

eλ
∗
nFn(u)

(u2 − 1)1/2
du

= iτn

∫ −εn
−π/2

eλ
∗
nhn(s)eiλ

∗
nkn(s)

(τ 2
ne

2is − 1)1/2
eisds+ iτn

∫ π/2

εn

eλ
∗
nhn(s)eiλ

∗
nkn(s)

(τ 2
ne

2is − 1)1/2
eisds

Since (τ 2
n−1)1/2 ≤ |(τ 2

ne
2is−1)1/2| and hn(s) is even about s = 0 (since αn(s) = τn cos s

is), we have

|Jx(εn)| ≤ 2τn
(τ 2
n − 1)1/2

∫ π/2

εn

eλ
∗
nhn(s)ds. (6.15)

Lemma 6.9 For s ∈ [εn, π/2],

1

|h′n(s)|
= O

(
1

τnεn

)
, n −→∞,

and this holds locally uniformly for x in (1,∞).
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Proof. From (6.10) we recall that

h′n(s) = −τn sin s

[
c+

2

λ∗n
∗
n∑
k=0

rk(τ
2
n + r2

k)

(τ 2
n − r2

k)
2 + (2rkτn sin s)2

]
.

Then using sin s ≥ sin εn ≥ εn
2

and the identity (6.3) we get

|h′n(s)| ≥ τnεn
2

[
c+

2

λ∗n
∗
n∑
k=0

rk(τ
2
n + r2

k)

(τ 2
n − r2

k)
2 + (2rkτn)2

]

=
τnεn

2

[
c+

2

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

τ 2
n − r2

k

τ 2
n + r2

k

]

≥ τnεn
2

[
c+ c

τ 2
n − 1

τ 2
n + 1

]
= τnεnc

τ 2
n

τ 2
n + 1

.

The result follows from noting that τ 2
n/(τ

2
n + 1) � 1 as n −→∞. �

Since h′n(s) is negative for s > 0, hn(s) is monotone on [εn, π/2], and we can use

the substitution v = hn(s), dv = h′n(s)ds in (6.15). Then using hn(εn) ≤ hn(0) =

Fn(τn) and the result of Lemma 6.9 yields

|Jx(εn)| ≤ 2τn
(τ 2
n − 1)1/2

eλ
∗
nhn(εn) − eλ∗nhn(π/2)

λ∗n mins∈[εn,π/2] |h′n(s)|

= O
(

τn
(τ 2
n − 1)1/2

eλ
∗
nhn(0)

λ∗nτnεn

)
= O

(
eλ
∗
nFn(τn)√

λ∗n(τ 2
n − 1)Θ′′n(τn)

(
τnΘ′′n(τn)

λ∗nτnε
2
n

)1/2
)
.

According to Lemma 6.6, if τ 2
n(x)−1 is unformly bounded away from 0 on (1,∞), then

τnΘ′′n(θn) � 1, and using (6.5) and Lemma 6.5, we see that λ∗nτnε
2
n = log(λ∗nτn) −→∞

as n −→∞. It follows that

Jx(εn) = o

(
eλ
∗
nFn(τn)√

λ∗n(τ 2
n − 1)Θ′′n(τn)

)
, n −→∞.

6.2.4 Estimate of the integral on the line segment

It remains to determine the contribution of the part of the integral in (6.4) that lies

on the imaginary axis. We denote it by lx(n). Using |rk − is|/|rk + is| = 1 for all k
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and s ∈ R, and c = log x ∈ R we get

lx(n) =

∣∣∣∣∣
∫ τn

−τn

n−1∏
k=0

rk − is
rk + is

e−iλ
∗
nsc

1 + is
ds

∣∣∣∣∣
≤

∫ τn

−τn

ds

|1 + is|
= 2

∫ τn

0

ds√
1 + s2

= 2 log
(
τn +

√
1 + τ 2

n

)
= O (τn) ,

where in the last step we have used our assumption that τn is bounded below away

from 1. Recall that the main contribution term is eλ
∗
nFn(τn)/

√
2πλ∗n(τ 2

n − 1)Θ′′n(τn).

First, since Θn(τn) > 0, we have the basic estimate

λ∗nFn(τn) ≥ λ∗nτn log x.

According to Lemma 6.6, (τ 2
n − 1)Θ′′n(τn) � τn, and it follows that

τn
eλ
∗
nFn(τn)√

λ∗n(τ2
n−1)Θ′′n(τn)

= O

(
τn
√
λ∗nτn

eλ∗nτn log x

)
= O

(
(λ∗nτn)3/2

xλ∗nτn
1

λ∗n

)
.

Then since x > 1 and λ∗nτn(x) −→∞ locally uniformly for x in (1,∞), it follows that

lx(n) = o (Ix(εn)).

6.2.5 Proofs of main results

In (6.4), we wrote 2πix1/2Ln(Λ;x) = Ix(εn) + Jx(εn) + lx(n). According to the treat-

ment above, recalling the main contribution in (6.14); if uniformly on (1,∞), the

stationary point τn = τn(x) > 1 of the phase function Fn(t;x) = Θn(t) + t log x is

bounded below from 1, then we have

L(Λ;x) ∼ eλ
∗
nFn(τn;x)√

2πxλ∗n(τ 2
n − 1)Θ′′n(τn)

, n −→∞. (6.16)

The following result will give these asymptotics, and we to find general conditions on

the sequence Λ, under which the requirement that τ 2
n − 1 is bounded below holds.
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Theorem 6.10 Let Λ : −1/2 < λ0 ≤ λ1 ≤ λ2 ≤ . . . be a sequence of real numbers

such that

(i) lim
n→∞

n−1∑
k=0

λ∗k
λ∗n

2 − λ∗k
2 =∞

(ii)
1

λ∗n
2

n∑
k=0

λ∗k is bounded below away from zero as n −→∞

(iii) If εn = o(1), then
1

λ∗n
2

∑
λ∗k<λ

∗
n(1−εn)

λ∗k = o

 ∑
λ∗k<λ

∗
n(1−εn)

λ∗k
λ∗n

2 − λ∗k
2

.
Then locally uniformly for x in (1,∞), as n −→∞,

L(Λ;x) ∼ 1

2

(
2πρ∗n ∗

n∑
k=0

λ∗k
ρ∗n

2 − λ∗k
2

)−1/2 n−1∏
k=0

ρn + λk + 1

ρn − λk
xρn

ρn − λn
,

where ρn > λn is uniquely determined by

log x = 2
n−1∑
k=0

λ∗k
ρ∗n

2 − λ∗k
2 +

λ∗n
ρ∗n

2 − λ∗n2 .

Proof. We need to show that conditions (i), (ii) and (iii) ensure that τ 2
n(x) − 1 is

uniformly bounded below for x in compact subsets of (1,∞). If τ 2
n − 1 ≥ 1, then

there is nothing to prove, so we assume that τ 2
n − 1 < 1. Then we have

τ 2
n − r2

k = (1− r2
k) + (τ 2

n − 1) ≤

 2(1− r2
k), if τ 2

n − 1 ≤ 1− r2
k

2(τ 2
n − 1), if τ 2

n − 1 ≥ 1− r2
k.

and it is easy to see from (6.3) that,

log x =
2

λ∗n

∑
1−r2k≥τ2

n−1

rk
τ 2
n − r2

k

+
2

λ∗n

∑
0<1−r2k<τ2

n−1

rk
τ 2
n − r2

k

+
1

λ∗n

1

τ 2
n − 1

≥ 1

λ∗n

∑
1−r2k≥τ2

n−1

rk
1− r2

k

+
1

λ∗n

∑
0<1−r2k<τ2

n−1

rk
τ 2
n − 1

+
1

λ∗n

1

τ 2
n − 1

=
∑

1−r2k≥τ2
n−1

λ∗k
λ∗n

2 − λ∗k
2 +

1

λ∗n
2(τ 2

n − 1)

∑
0≤1−r2k<τ2

n−1

λ∗n. (6.17)

If we assume to the contrary that τ 2
n − 1 = o(1) as n −→∞, then the bound

log x ≥ 1

λ∗n
2(τ 2

n − 1)

∑
0≤1−r2k<τ2

n−1

λ∗n
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yields

1

λ∗n
2

∑
0≤1−r2k<τ2

n−1

λ∗n = o(1),

and the condition (ii) then implies that

1 .
1

λ∗n
2

n∑
k=0

λ∗k ∼
1

λ∗n
2

∑
1−r2k≥τ2

n−1

λ∗n.

Letting εn = τ 2
n − 1, we can rewrite 1 − r2

k ≥ τ 2
n − 1 as λ∗k ≤ λ∗n

√
1− εn, so we can

apply (iii) and then the bound
∑

1−r2k≥τ2
n−1 λ

∗
k/
(
λ∗n

2 − λ∗k
2
)
≤ log x from (6.17) then

yields

1 = o

 ∑
1−r2k≥τ2

n−1

λ∗k
λ∗n

2 − λ∗k
2

 = o(1),

a contradiction. Hence τ 2
n−1 is bounded below away from 0, and this holds uniformly

for x in compact subsets of (1,∞) since log x is bounded above and below on such

sets.

It follows that (6.16) holds. Letting ρ∗n = λ∗nτ
∗
n for each n, we can write

λ∗n(τ 2
n − 1)Θ′′n(τn) = (τ 2

n − 1)4τn ∗
n∑
k=0

rk
(τ 2
n − r2

k)
2

= 4(ρ∗n
2 − λ∗n

2)ρ∗n ∗
n∑
k=0

λ∗k
(ρ∗n

2 − λ∗k
2)2
.

Then writing out the phase function

λ∗nΘn(τn) =
n−1∑
k=0

log
τn + rk
τn − rk

+
1

2
log

τn + 1

τn − 1
=

n−1∑
k=0

log
ρ∗n + λ∗k
ρ∗n − λ∗k

+
1

2
log

ρ∗n + λ∗n
ρ∗n − λ∗n

yields

Ln(Λ;x) ∼ xρ
∗
n√

2πx · 4(ρ∗n
2 − λ∗n2)ρ∗n ∗

∑n
k=0

λ∗k
(ρ∗n

2−λ∗k
2)2

n−1∏
k=0

ρ∗n + λ∗k
ρ∗n − λ∗k

(
ρ∗n + λ∗n
ρ∗n − λ∗n

)1/2

∼ 1

2

(
2πρ∗n ∗

n∑
k=0

λ∗k
ρ∗n

2 − λ∗k
2

)−1/2 n−1∏
k=0

ρn + λk + 1

ρn − λk
xρn

ρn − λn
.

�
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We are now ready to explore the special cases.

Proof of Theorem 6.3. Here we assume that σn −→∞ as n −→∞, so according to

Lemmas 6.5 and 6.6, we have (λ∗nτn)2 ∼ 2Sn/log x and τnΘn(τn) ∼ 2 log x. Therefore,

λ∗n(τ 2
n − 1)Θ′′n(τn) ∼ (λ∗nτn)(τnΘn(τn)) ∼ 2(2Sn log x)1/2,

as n −→∞. Then writing out the phase function

λ∗nFn(τn;x) = λ∗nΘn(t) + λ∗nτn log x = ∗
n∑
k=0

log
τn + rk
τn − rk

+ λ∗nτn log x

in (6.16) and letting ρ∗n = λ∗nτn yields

Ln(Λ;x) ∼ xλ
∗
nτn√

2πx · 2(2Sn log x)1/2

n−1∏
k=0

τn + rk
τn − rk

(
τn + 1

τn − 1

)1/2

∼ xρn

2
√
π (2Sn log x)1/4

n∏
k=0

ρ∗n + λ∗k
ρ∗n − λ∗k

,

and here we have used (τn + 1)/(τn − 1) ∼ 1 as n −→ ∞ since τn −→ ∞. The

result now follows from Sn =
∑n−1

k=0 λ
∗
k +λ∗n/2 ∼

∑n
k=0 λ

∗
k, which is guaranteed by our

assumption λ∗n
2/
∑n

k=0 λ
∗
k = o(1). �

Proof of Theorem 6.4. As in Theorem 6.3, we assume that σn −→ ∞, so τn −→ ∞

by Lemma 6.5. Then we get

Θ∗n(τn) =
1

λ∗n
∗
n∑
k=0

log

(
1 +

2rk
τn − rk

)
=

1

λ∗n
∗
n∑
k=0

2rk
τn − rk

[1 + o(1)]

=
2τn
λ∗n

∗
n∑
k=0

rk
τ 2
n − r2

k

[1 + o(1)]

= τn log x [1 + o(1)] ,

where in the last step we use the identity (6.3). Therefore we have Fn(τn;x) =

Θn(τn) + τn log x = 2τn log x[1 + o(1)]. Using (λ∗nτn)2 ∼ 2Sn/log x then yields

λ∗nFn(τn;x)

(2Sn)1/2
∼ 2λ∗nτn log x

λ∗nτn(log x)1/2
= 2(log x)1/2.
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We saw in the proof of Theorem 6.3 that the denomiator in (6.16) behaves like

2
√
π (2Sn log x)1/4 and it follows that

Ln(Λ;x)(2Sn)−1/2 ∼
[
eλ
∗
nFn(τn;x)

](2Sn)−1/2

∼ e2(log x)1/2 .

The proof is completed by noting that Σn = 2Sn. �

Now we turn to the case when λn ∼ αn for some constant α > 0. If α = 1 we

expect the phase function Fn(t;x) = Θn(t) + t log x = 1
λ∗n
∗
∑n

k=0 log t+rk
t−rk

+ t log x to

behave like the function

F (t) =

∫ 1

0

log
t+ u

t− u
du+ t log x

= log
t+ 1

t− 1
+ t

[
log

t2 − 1

t2
+ log x

]
.

Then

F ′(t) = log
t2 − 1

t2
+ log x, F ′′(t) =

2

t(t2 − 1)
.

If we let γ0 = (x/(x− 1))1/2, i.e. x = γ2
0/(γ

2
0 − 1), then F ′(γ0) = 0 and

F (γ0) = log
γ0 + 1

γ0 − 1
= log

x1/2 + (x− 1)1/2

x1/2 − (x− 1)1/2
= log

[
x1/2 + (x− 1)1/2

]2
,

which yields eλ
∗
nF (γ0) =

[
x1/2 + (x− 1)1/2

]2λn+1
. Furthermore

F ′′(γ0) =
2(x− 1)3/2

x1/2
.

If we let Θ(t) =
∫ 1

0
log t+u

t−udu, so that F (t) = Θ(t) + t log x, then we have

Fn(γ0) = log
[
x1/2 + (x− 1)1/2

]2
+ (Θn −Θ)(γ0) (6.18)

F ′n(γ0) = (Θn −Θ)′(γ0) (6.19)

F ′′n (γ0) =
2(x− 1)3/2

x1/2
+ (Θn −Θ)′′(γ0). (6.20)

Now we recycle Lemma 4.29 from Chapter 4. This gives the following:
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Lemma 6.11 If λn ∼ n as n −→∞, then

Fn(γ0) = log
[
x1/2 + (x− 1)1/2

]2
+ o(1)

F ′n(γ0) = o(1)

F ′′n (γ0) =
2(x− 1)3/2

x1/2
+ o(1),

where the rate of convergence for all the o(1) errors is

O

(
1

n2

n−1∑
j=0

|j + β − λj|+
|n+ β − λn|

n

)
+O

(
1

n2

)
for each constant β.

Proof. This follows directly from (6.18), (6.19) and (6.20) using Lemma 4.29 and the

fact that the integrands in the integral representations of Θ(t), Θ′(t) and Θ′′(t) are

log ((t− s)/(t+ s)), s/(t2 − s2) and s/(t2 − s2)2, respectively, and they are all O(s)

as s −→∞. �

We also need the following results to ensure that in this case, (6.16) indeed holds,

and that have τn ∼ γ0 as n −→∞.

Lemma 6.12 If λn ∼ n as n −→ ∞, then τ 2
n(x) − 1 � 1, and this holds locally

uniformly for x in (1,∞).

Proof. If λn ∼ n, then σn � 1 as n −→ ∞, so τ 2
n − 1 = O(1) by Lemma 6.5. If

τ 2
n−1 ≥ 1, then we are done. Otherwise, since τ 2

n−r2
k = (τ 2

n−1)+(1−r2
k) ≤ 2(1−r2

k)

if τ 2
n − 1 ≤ 1− r2

k, we have the bound

log x =
2

λ∗n
∗
n∑
k=0

rk
τ 2
n − r2

k

≥ 2

λ∗n

∑
1−r2k≥τ2

n−1

rk
1− r2

k

,

and since λn ∼ n, this yields

log x & 2

∫ √1−(τ2
n−1)

0

s

1− s2
ds = −

∫ τ2
n−1

1

du

u
= − log(τ 2

n − 1).
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Hence, τ 2
n−1 is bounded below away from 0. Since log x is bounded above and below

on compact subsets of (1,∞), the result follows. �

Lemma 6.13 If λn ∼ n as n −→∞, then

τn − γ0 = o(F ′n(γ0)),

Fn(τn)− Fn(γ0) = o(F ′n(γ0)2),

F ′′n (τn)− F ′′n (γ0) = o(F ′n(γ0)),

Proof. Expanding F ′n(t) about the stationary point t = τn yields

F ′n(γ0) = F ′n(τn) + F ′′n (ξn)(γ0 − τn) = F ′′n (ξn)(γ0 − τn), (6.21)

where ξn is between γ0 and τn. We have the basic estimate

F ′′n (t) =
4t

λ∗n
∗
n∑
k=0

rk
(t2 − r2

k)
2
≥ 4t

λ∗n
∗
n∑
k=0

rk
t4

=
4σn
t3
,

and since σn � 1 as n −→∞, τn is bounded above by Lemma 6.5, and thus

F ′′n (ξn) ≥ 4σn
min{γ0, τn}

& 1, n −→∞.

It follows from (6.21) that γ0 − τn = O (F ′n(γ0)).

Now we expand Fn(t) about t = τn and get

Fn(γ0)− Fn(τn) =
Fn(νn)

2
(γ0 − τn)2,

for some νn between τn and γ0. Note that for t ≥ 1,

F ′′n (t) ≤ 4tσn
(t2 − 1)2

,

so according to Lemma 6.12 we have F ′′n (νn) = O(1) as n −→ ∞. It follows that

|Fn(γ0)− Fn(τn)| = O (|γ0 − τn|2) = O (F ′n(γ0)2) .
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The treatment above shows that F ′′n (τn) and F ′′n (γ0) are bounded above and below.

Thus, the same way as above, F ′′n (τn)− F ′′n (γ0) = O (γ0 − τn) follows if we can show

that F
(3)
n (t) is bounded above when t is between τn and γ0. This is clear since

F (3)
n (t) = − 4

λ∗n
∗
n∑
k=0

rk
3t2 + r2

k

(t2 − r2
k)

3

so for t > 1,

|F (3)
n (t)| ≤ 4σn

3t2 + 1

(t2 − 1)3
.

�

Before we give the proofs for Theorems 6.1 and 6.2, we recall how the case n/λn ∼

ρ can be mapped to the case when ρ = 1. For a given sequence Λ = {λn} define

Π = {µn} by letting

µn = ρλn +
1

2
(ρ− 1) ,

or equivalently, µ∗n = ρλ∗n for each n. Then as shown in (4.34)

Ln(Λ;uρ) = Ln(Π;u)u
1
2

(1−ρ). (6.22)

Proof of Theorem 6.1. First assume that ρ = 1. Then Lemma 6.12 ensures that

(6.16) holds in this case. If λn = n+ β/2 + o (1) as n −→∞, then

1

n2

n−1∑
j=0

∣∣∣∣j +
β

2
− λj

∣∣∣∣+
|n+ β/2− λn|

n
= o

(
1

n

)
,

so we have F ′n(γ0) = o (1/λ∗n) as n −→ ∞ according to Lemma 6.11. Then Lemma

6.13 gives Fn(τn)− Fn(γ0) = o (1/λ∗n), τn ∼ γ0 and F ′′n (τn) ∼ F ′′n (γ0) so (6.16) yields

Ln(Λ;x) ∼ eλ
∗
nFn(γ0)√

2πxn(γ2
0 − 1)F ′′n (γ0)

.

Then Lemma 6.11 and γ2
0 − 1 = 1/(x− 1) yield

Ln(Λ;x) ∼ eλ
∗
n log[x1/2+(x−1)1/2]

2√
2πxn 1

x−1
2(x−1)3/2

x1/2

=

[
x1/2 + (x− 1)1/2

]2λ∗n
2
√
πnx1/4(x− 1)1/4

,
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and by noting that 2λ∗n = 2n+ β + 1 + o(1), the proof is complete for this case.

Now assume that λn = (n+ β/2) /ρ + o(1) and define Π = {µn} by letting

µ∗n = ρλ∗n so that µn = n + (β + ρ− 1)/2 + o(1) as n −→ ∞. Then according to

(6.22), and the proof for the special case ρ = 1 above,

Ln(Λ;xρ) = Ln(Π;x)x
1
2

(1−ρ)

∼
[
x1/2 + (x− 1)1/2

]2µ∗n
2
√
πnx1/4(x− 1)1/4

x
1
2

(1−ρ)

∼
[
x1/2 + (x− 1)1/2

]2n+β+ρ

2
√
πnx(2ρ−1)/4(x− 1)1/4

.

This completes the proof. �

Proof of Theorem 6.2. This follows from the proof of Theorem 6.1; the only differ-

ence is that since we are taking the nth root it suffices that Fn(τn) − F (γ0) = o(1),

and this holds if λn ∼ n/ρ according to Lemmas 6.11 and 6.13. �
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CHAPTER VII

ASYMPTOTIC BEHAVIOR OF MÜNTZ-CHRISTOFFEL

FUNCTIONS AT THE ENDPOINTS

This chapter is built on results from the paper [52]. At the endpoints x = 0 and 1,

we compare the asymptotic behavior of Christoffel functions associated with differ-

ent Müntz systems, for which the respective sequences of exponents are asymptotic.

Along with the known asymptotics for the algebraic polynomials, we use this to es-

tablish the asymptotic behavior of the Christoffel functions in the case when the

exponents are asymptotic to an arithmetic progression, i.e. such that

lim
k→∞

λk
k

= ρ,

for some ρ > 0. We utilize the fact that the Christoffel functions can be written

in terms of the Müntz-Legendre polynomials, which take on a simple form at the

endpoints x = 0 and x = 1. Our main results are Theorems 4.1 and 4.2 below.

7.1 Lemmas

7.1.1 Asymptotics in polynomial spaces with Jacobi weights

Recall that on the interval [−1, 1], the classical Jacobi weights are defined as

w(α,β)(x) := (1− x)α(1 + x)β, x ∈ [−1, 1],

for given real numbers α, β > −1. In order to use these weights with the Müntz

systems, we need to shift them to the interval [0, 1], where the Müntz polynomials

are well defined. Using the mapping [−1, 1] 3 x 7→ (x+ 1)/2 ∈ [0, 1] we obtain Jacobi

weights on [0, 1] as

u(α,β)(x) := (1− x)αxβ, x ∈ [0, 1]. (7.1)
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Note that u(α,β)(x) = w(α,β)(2x− 1)/2α+β, for all x ∈ [0, 1].

Lemma 7.1 Under the Jacobi weights u(α,β) on [0, 1], the Christoffel functions over

the algebraic polynomials satisfy the following asymptotic behavior at the endpoints,

lim
n→∞

n2α+2λn(u(α,β), 1) = (α + 1)Γ(α + 1)2, (7.2)

lim
n→∞

n2β+2λn(u(α,β), 0) = (β + 1)Γ(β + 1)2. (7.3)

Proof. We know from Theorem 2.10, that the Christoffel functions over the algebraic

polynomials with respect to the Jacobi weights on [−1, 1] satisfy

lim
n→∞

n2α+2λn(w(α,β), 1) = (α + 1)2α+β+1Γ(α + 1)2,

lim
n→∞

n2β+2λn(w(α,β),−1) = (β + 1)2α+β+1Γ(β + 1)2.

Then using the substitution t = 2x− 1 and letting Qn(t) = Pn((t+ 1)/2), we obtain

λn(u(α,β), c) = inf
Pn(c)=1

∫ 1

0

P 2
n(x)u(α,β)(x)dx

= inf
Pn(c)=1

∫ 1

−1

P 2
n

(
t+ 1

2

)
w(α,β)(t)

2α+β

dt

2

=
1

2α+β+1
inf

Qn(2c−1)=1

∫ 1

−1

Q2
n(t)w(α,β)(t)dt

=
1

2α+β+1
λn(w(α,β), 2c− 1),

and it follows that λn(w, 1) = 2α+β+1λn(u, 1) and λn(w,−1) = 2α+β+1λn(u, 0). �

Now let λ0, λ1, λ2, . . . and µ0, µ1, µ2, . . . be sequences of real numbers with Λn =

{λk}nk=0 and Πn = {µk}nk=0, and define the corresponding Müntz systems M(Λn) and

M(Πn) on [0, 1]. Here, we wish to compare the Christoffel functions of the two spaces

at the endpoints x = 0 and x = 1. First, for the right endpoint we have, according

to equation (2.25) and Lemma 2.18,

1

λ(Mn(Λ); 1)
− 1

λ(Mn(Π); 1)
=

n∑
k=0

[(2λk + 1)− (2µk + 1)] = 2
n∑
k=0

(λk − µk),
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or equivalently,

λ(Mn(Π); 1)

λ(Mn(Λ); 1)
= 1 + 2λ(Mn(Π); 1)

n∑
k=0

(λk − µk). (7.4)

A simple consequence of this identity is the following lemma on monotonicity.

Lemma 7.2 Let Λn := {λ0, λ1, λ2 . . . , λn} and Πn := {µ0, µ1, µ2 . . . , µn} be sequences

of positive real numbers such that λk ≤ µk for all k = 0, 1, . . . , n, with strict inequality

for at least one index. Then

λ(M(Λn); 1) > λ(M(Πn); 1).

As for the other endpoint, x = 0, we assume that λ0 = µ0 = 0, so the Müntz-

Legendre polynomials take the values Lm(Λ; 0) = cΛ
0,m and Lm(Π; 0) = cΠ

0,m, where

cΛ
0,m and cΠ

0,m are the coefficients from (2.20), for the respective systems. Then

|cΠ
0,m|
|cΛ

0,m|
=

1
µm

∏m−1
j=1

µj+1

µj

1
λm

∏m−1
j=1

λj+1

λj

=
λm
µm

m−1∏
j=1

(
1 + 1

µj

)
(

1 + 1
λj

)
and since

λ(Mn(Λ); 0)

λ(Mn(Π); 0)
=

∑n
m=0(2µm + 1)|cΠ

0,m|2∑n
m=0(2λm + 1)|cΛ

0,m|2

the following monotonicity lemma follows directly:

Lemma 7.3 Let Λn := {λ0, λ1, λ2 . . . , λn} and Πn := {µ0, µ1, µ2 . . . , µn} be sequences

of positive real numbers such that λ0 = µ0 = 0, and λk ≤ µk for all k = 0, 1, . . . , n,

with strict inequality for at least one index. Then

λ(M(Λn); 0) < λ(M(Πn); 0).

7.2 A Comparison Theorem

Here, we wish to compare the Christoffel functions for two different Müntz systems,

at the endpoints of [0, 1].
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Theorem 7.4 Consider two sequences Λ = {λk} and Π = {µk} of distinct non-

negative real numbers such that λk, µk −→∞ and

lim
k→∞

λk
µk

= 1.

For each n, let Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn} and Mn(Π) := span{xµ0 , xµ1 , . . . , xµn}

be the corresponding Müntz spaces on [0, 1]. Then,

(i)

lim
n→∞

λ(Mn(Λ); 1)

λ(Mn(Π); 1)
= 1.

(ii) and if λ0 = µ0 = 0, and the limit

α := lim
n→∞

n∏
k=1

λk
µk

µk + 1

λk + 1
(7.5)

exists and is finite, then

lim
n→∞

λ(Mn(Λ); 0)

λ(Mn(Π); 0)
= α2.

Proof. (i) At the endpoint x = 1, it follows from equation (7.4) that∣∣∣∣λ(Mn(Π); 1)

λ(Mn(Λ); 1)
− 1

∣∣∣∣ ≤ 2λ(Mn(Π); 1)
n∑
k=0

|λk − µk|.

Since λk/µk −→ 1 and µk −→∞, we have

n∑
k=0

|λk − µk| =
n∑
k=0

µk

∣∣∣∣λkµk − 1

∣∣∣∣ = o

{
n∑
k=0

(2µk + 1)

}
,

and the result follows from λ(Mn(Π); 1)−1 =
∑n

k=0(2µk + 1).

(ii) Now, we turn our attention to the endpoint x = 0. For each l ∈ N define the

number

αl =
l∏

j=1

λj(µj + 1)

µj(λj + 1)
.

Then, since we assume here that λ0 = µ0 = 0, we have

|cΠ
0,m|
|cΛ

0,m|
=

1
µm

∏m−1
j=1

µj+1

µj

1
λm

∏m−1
j=1

λj+1

λj

=
λm
µm

αm−1.
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Therefore, we can write

1

λ(Mn(Π); 0)
=

n∑
m=0

(2µm + 1)|cΠ
0,m|2

=
n∑

m=0

(2µm + 1)
λ2
m

µ2
m

|cΛ
0,m|2α2

m−1

=
n∑

m=0

λm
µm

(
2λm +

λm
µm

)
|cΛ

0,m|2α2
m−1.

Then, since λk/µk −→ 1, αk −→ α and λk −→∞ as k −→∞, it follows that

λ(Mn(Π); 0)−1 ∼
n∑

m=0

(2λm + 1)|cΛ
0,m|2α2 = α2λ(Mn(Λ); 0)−1,

as n −→∞, and we are done. �

Remark The condition in (7.5) can be replaced by requiring convergence of the series

∞∑
k=1

∣∣∣∣ 1

λk
− 1

µk

∣∣∣∣ .
We see this by noticing that

n∏
k=1

λk
µk

µk + 1

λk + 1
=

n∏
k=1

(
1 +

λk − µk
µk(λk + 1)

)
≤

n∏
k=1

(
1 +

∣∣∣∣λk − µkµkλk

∣∣∣∣) ,
and recalling that

∏
(1 + ak) and

∑
ak converge simultaneously for ak ≥ 0.

7.3 Asymptotic behavior of the Müntz-Christoffel function
at the endpoints

7.3.1 Müntz systems with {µk} = {kρ}

Here we consider the simple case when the powers of the Müntz basis elements satisfy

an arithmetic progression, that is we assume that there exists a positive number ρ

such that

µk = kρ, for all k ≥ 0.

Let Mn,ρ be the span of (1, xρ, . . . , xnρ), and note that for each element S(x) =∑n
k=0 ckx

kρ we can write

S(x) = P (xρ),
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where P (x) =
∑n

k=0 ckx
k is a polynomial of degree n. Then, using the change of

variables u = tρ, the Christoffel function over the Lebesque measure on [0, 1] can be

written as

λ(Mn,ρ;x) = inf
S∈Mn,ρ

∫ 1

0
S2(t)dt

|S(x)|2
= inf

P∈Pn

∫ 1

0
P 2(tρ)dt

|P (xρ)|2

=
1

ρ
inf
P∈Pn

∫ 1

0
P 2(u)u1/ρ−1du

|P (xρ)|2

=
1

ρ
· λ(Pn, u(0,1/ρ−1);xρ),

where u(0,1/ρ−1) is the Jacobi weight u(0,1/ρ−1)(x) = u1/ρ−1 on [0, 1] with α = 0 and

β = 1/ρ− 1 in (7.1). Then, using (7.2), we obtain

lim
n→∞

n2λ(Mn,ρ; 1) =
1

ρ
· Γ(1)2 =

1

ρ
, (7.6)

and since β + 1 = 1/ρ, equation (7.3) yields

lim
n→∞

n2/ρλ(Mn,ρ; 0) =
1

ρ
· 1

ρ
Γ (1/ρ)2 =

(
Γ (1/ρ)

ρ

)2

. (7.7)

7.3.2 Müntz systems with {µk} asymptotic to {kρ}

From the comparison theorem in section 3, the following theorems are direct conse-

quences of (7.6) and (7.7).

Theorem 7.5 Let Π = {µk} be a sequence of real numbers such that

lim
k→∞

µk
k

= ρ,

for some constant ρ > 0. If we let Mn(Π) := span{xµ0 , xµ1 , . . . , xµn} for each n, then

lim
n→∞

n2λ(Mn(Π); 1) =
1

ρ
.

Theorem 7.6 Let Π = {µk} be a sequence of distinct real numbers such that

lim
k→∞

µk
k

= ρ,
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for some constant ρ > 0, and such that the limit

α := lim
n→∞

n∏
k=1

µk
kρ

kρ+ 1

µk + 1

exists and is finite. If we let Mn(Π) := span{xµ0 , xµ1 , . . . , xµn} for each n, then

lim
n→∞

n2/ρλ(Mn(Π); 0) =
α2Γ (1/ρ)2

ρ2
.
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CHAPTER VIII

FUTURE WORK

8.1 Random matrix theory: Müntz ensembles

8.1.1 Biorthogonal ensembles

In [35], K. A. Muttalib argued that for certain physical systems with two-body in-

teractions, the standard random matrix model does not provide sufficient accuracy.

He, and Borodin [5] did this more generally, proposed using ensembles built out of

biorthogonal systems [17]. They turn out to have several of the same properties as

their orthogonal ensemble cousins; most importantly the correlation functions also

have determinantal form, so important statistics can be derived from the behavior

of the biorthogonal functions themselves. Recently, a Riemann-Hilbert problem was

formulated for biorthogonal polynomials by Kuijlaars et al. [20].

A biorthogonal ensemble is a probability density function of the form

P(x1, . . . , xn) =
1

Zn
det [fi(xj)]

n
i,j=1 det [gi(xj)]

n
i,j=1 ,

where f1, . . . , fn and g1, . . . , gn are two given sequences of functions and the normal-

izing constant

Zn =

∫
· · ·
∫

det [fi(xj)]
n
i,j=1 det [gi(xj)]

n
i,j=1 dx1 · · · dxn

is defined such that P(x1, . . . , xn) is indeed a probability density function.

Suppose that the systems (f1, . . . , fn) and (g1, . . . , gn) can be biorthogonalized

with respect to each other. This means that we can find functions φ1, . . . , φn in the

span of f1, . . . , fn and ψ1, . . . , ψn in the span of g1, . . . , gn such that∫
φj(x)ψk(x)dx = δj,k.
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Then the biorthogonal ensemble is a determinantal point process with correlation

kernel

Kn(x, y) =
n∑
j=0

φj(x)ψk(x), (8.1)

which means that we can write

P(x1, . . . , xn) =
1

n!
det [Kn(xi, xj)]

n
i,j=1 .

It follows that for every k = 1, 2, . . . , n, we can write the conditional probabilities

(correlation functions) as∫
· · ·
∫
P(x1, . . . , xn)dxk+1 · · · dxn =

(n− k)!

n!
det [Kn(xi, xj)]

k
i,j=1 .

Therefore, just as in the case of orthogonal ensembles, the correlation kernel (8.1) is

written in terms of the orthogonal functions and is a key element in examining the

statistics of the biorthogonal ensembles. For the biorthogonal case however, we don’t

have an analogue of the Christoffel-Darboux formula, and this makes the treatment

different from the standard case.

8.1.2 Müntz ensembles

The biorthogonal ensembles described above include a special case considered by

Borodin [5]: here the biorthogonal functions are Müntz biorthogonal polynomials, i.e.

the orthogonal elements obtained by orthogonalizing the systemsM(Λ) = span{xλn}∞n=0

and M(Π) = span{xµn}∞n=0 with respect to each other. Indeed, Müntz biorthogonal

polynomials can be obtained by slightly altering the definition for the Müntz orthog-

onal polynomials (2.18): if we define

ϕn(ΛΠ;x) =
1

2πi

∫
Γ

n−1∏
k=0

t+ µk + 1

t− λk
xt

t− λn
dt, (8.2)

and ϕn(ΠΛ;x) in an analogous way, then (if the sequences consist of distinct entries)

ϕn(ΛΠ; ·) ∈Mn(Λ), ϕn(ΠΛ; ·) ∈Mn(Π) and∫ 1

0

ϕn(ΛΠ;x)ϕm(ΠΛ;x)dx =
δn,m

λn + µm + 1
.
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Since Müntz biorthogonal polynomials have a contour integral representation which

is similar to (2.18), one can hope that the approach used in this thesis can be applied

to determine the asymptotic behavior of the elements (8.2). For example: is there an

equation like (3.1) for Müntz biorthogonal polynomials?

Borodin [5] considered very special cases, namely λk = k and µk = θk for all

k, where θ is some constant, for the classical weights. This is a one parameter

deformation of the standard random matrix model. His approach involved writing

the correlation kernel (8.1) as

Kn(x, y) =
∑

1≤i,j≤n

c
(n)
i,j x

λiyµj

and estimating the coefficients c
(n)
i,j as n −→∞.

It would be interesting to see whether we can apply the results in this thesis

to shed light on the Müntz ensembles for more general λj and µj or obtain more

accurate asymptotics for cases where λj and µj have regular growth (one important

special case is discussed in the next section). Of course, when λj = µj for all j,

then we have Müntz orthogonal polynomials. The following question is important: is

there an analogue to the Christoffel-Darboux formula for Müntz biorthogonal (or just

orthogonal) polynomials? We were able to obtain an asymptotic formula (Theorem

4.8) for Kn(x, x) in the cases when λn = (n+ β/2) /ρ+ o(1) as n −→∞. Otherwise,

we only have the uniform bounds in Theorem 4.9.

8.1.3 Biorthogonal Müntz polynomials as multiple orthogonal polynomi-
als of mixed type

Multiple orthogonal polynomials (see Aptekarev [2] for detailed definitions) have ap-

plications in number theory and approximation theory, and have recently been con-

nected to certain models in random matrix theory [4, 18]. Asymptotic results for

special cases [13] have been obtained through a Riemann Hilbert problem for multi-

ple orthogonal polynomials, formulated by Van Assche, Geronimo and Kuijlaars [56].
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Here we show that a certain class of multiple orthogonal polynomials can be written

in terms of (non-multiple) Müntz orthogonal polynomials.

Let β be a real number greater than −1/2 and define the sequence Λ = {λk} by

letting

λ2k = k and λ2k+1 = k + β

for all k = 0, 1, 2 . . . . Then each associated Müntz polynomial can be written in the

form

p(x) + q(x)xβ,

where p, q are algebraic polynomials. Therefore it is easy to see that the corresponding

Müntz-Legendre polynomials are precisely the multiple orthogonal polynomials of

type I with respect to the Jacobi weights w1(x) = 1 and w2(x) = xβ on [0, 1]. If we

let β −→ 0, then (see [7, Appendix 2]) we get multiple orthogonal polynomials of

type I with respect to the weights w1(x) = 1 and w2(x) = log x.

More generally if we fix distinct numbers β0, β1, . . . , βr−1 > −1/2, and for each

j = 0, 1, 2, . . . , r − 1, let

λrk+j = k + βj, k = 0, 1, 2, . . . ,

then each Müntz polynomial associated with λ = {λn} is of the form

r−1∑
k=0

pk(x)wk(x),

where pk(x) are algebraic polynomials and wk(x) = xβk for all k = 0, 1, . . . , r − 1.

If we write the orthonormal nth Müntz-Legendre polynomial in this form with pk

of degree nk − 1 and n = n0 + n1 + · · · + nr−1, then they satisfy the orthogonality

condition

∫ 1

0

(
r−1∑
k=0

pk(x)wk(x)

)
xjdx =

 0 for j = 0, 1, . . . n− 2

1 for j = n− 1
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and this is precisely the definition for the multiple orthogonal polynomials of type I

with respect to the weights wk(x), k = 0, 1, . . . , r − 1 on [0, 1]. By equating some of

the βk’s we can more generally get weights of the form xβ(log x)m, m ∈ N0.

8.2 Müntz-Christoffel functions

In Section 2.4, we introduced the Müntz-Christoffel functions λ(Mn(Λ);x) associated

with Λ = {λk} and just as in the algebraic polynomials case it can be written in

terms of the reproducing kernel as

λ(Mn(Λ);x)−1 = Kn(x, x) =
n∑
k=0

|L∗k(x)|2 ,

where L∗k(x) is the kth orthonormal Müntz-Legendre polynomial (2.22). The Müntz-

Christoffel functions have been used in relation to Müntz-type of Gauss-Jacobi quadra-

ture [32], density questions [6] and, as described above, the reproducing kernels are

the key functions for determinantal processes that arise in random matrix theory.

Using our formula (3.1), we can write the reproducing kernel as a double integral,

namely

Kn(x, y) =
n∑
k=0

2λ∗kLk(x)Lk(y)

=
2

π2
√
xy

n∑
k=0

λ∗k

∫ ∞
0

sin (Ψk(t)− λ∗kt log x)√
1 + t2

dt

∫ ∞
0

sin (Ψk(s)− λ∗ks log y)√
1 + s2

ds

=
2

π2
√
xy

∫ ∞
0

∫ ∞
0

1√
1 + t2

√
1 + s2

×
n∑
k=0

λ∗k sin (Ψk(t)− λ∗kt log x) sin (Ψk(s)− λ∗ks log y) dtds.

where Ψn(t) = 2
∑n−1

j=0 arctan
λ∗j
λ∗nt

+ arctan 1
t
. Letting c = − log x and using a trigono-

metric sum-to-product identity, we can write

π2xKn(x, x) =

∫ ∞
0

∫ ∞
0

1√
1 + t2

√
1 + s2

n∑
k=0

λ∗k cos (Ψk(t)−Ψk(s) + λ∗kc(t− s))

−
∫ ∞

0

∫ ∞
0

1√
1 + t2

√
1 + s2

n∑
k=0

λ∗k cos (Ψk(t) + Ψk(s) + λ∗kc(t+ s))
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Can we look at this as a type of Christoffel-Darboux identity? For special cases, can

we simplify this expression and obtain asymptotic formulas for Kn(x, x) (or Kn(x, y))

via the asymptotics obtained in this thesis for the Müntz orthogonal polynomials?
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bres,” Journal de Mathématiques, vol. 4, pp. 35–56, 1878.

[9] Deift, P., Orthogonal polynomials and random matrices: a Riemann-Hilbert
approach. New York Univ. Courant Inst., 2000.

[10] Deift, P., Kriecherbauer, T., and McLaughlin, K., “New results on the
equilibrium measure for logarithmic potentials in the presence of an external
field,” J. Approx. Theory, vol. 95, no. 3, pp. 388–475, 1998.

[11] Deift, P. and Zhou, X., “A steepest descent method for oscillatory Riemann-
Hilbert problems,” Bull. Amer. Math. Soc., vol. 26, no. 1, pp. 119–123, 1992.

[12] DeVore, R. and Lorentz, G., Constructive approximation. New York:
Springer, 1993.

[13] Duits, M. and Kuijlaars, A., “Universality in the two matrix model: a
Riemann-Hilbert steepest descent analysis,” Comm. Pure Appl. Math., vol. 62,
pp. 1076–1153, 2009.

121



[14] Fokas, A., Its, A., and Kitaev, A., “The isomonodromy approach to matric
models in 2D quantum gravity,” Comm. Math. Phys., vol. 147, no. 2, pp. 395–
430, 1992.

[15] Freud, G., Orthogonal polynomials. Oxford, New York: Pergamon Press, 1971.

[16] Gurariy, V. I. and Lusky, W., Geometry of Müntz spaces and related ques-
tions. Lecture Notes in Mathematics, Berlin, New York: Springer, 2005.

[17] Konhauser, J. D. E., “Some properties of biorthogonal polynomials,” Journal
of Mathematical Analysis and Applications, vol. 11, pp. 242–260, 1965.

[18] Kuijlaars, A. B. J., “Multiple orthogonal polynomial ensembles.” to appear
in Contemporary Mathematics.

[19] Kuijlaars, A. B. J., “Lecture notes on Riemann-Hilbert Problems and Ran-
dom Matrices,” June 2009.

[20] Kuijlaars, A. B. J. and McLaughlin, K. T.-R., “A Riemann-Hilbert prob-
lem for biorthogonal polynomials,” J. Comput. Appl. Math., vol. 178, pp. 313–
320, 2005.

[21] Levin, A. L. and Lubinsky, D. S., Orthogonal polynomials for exponential
weights. CMS books in mathematics 4, New York: Springer, 2001.

[22] Lubinsky, D. S., “Asymptotics of orthogonal polynomials: Some old, some
new, some identities,” Acta Appl. Math., vol. 61, no. 1-3, pp. 207–256, 2000.

[23] Lubinsky, D. S., “A new approach to universality limits involving orthogonal
polynomials,” Annals of Mathematics, vol. 170, pp. 915–939, 2009.

[24] Lubinsky, D. S. and Saff, E. B., “Zero distribution of müntz extremal poly-
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x > 1.” Manuscript.
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