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SUMMARY

The dissertation investigates asymptotic theory of decentralized sequential hypothesis test-

ing problems as well as asymptotic behaviors of the Sequential Minimum Energy Design

(SMED). The main results are summarized as follows.

1. We develop the first-order asymptotic optimality theory for decentralized sequential

multi-hypothesis testing under a Bayes framework. Asymptotically optimal tests are

obtained from the class of “two-stage” procedures and the optimal local quantizers

are shown to be the “maximin” quantizers that are characterized as a randomization

of at most M − 1 Unambiguous Likelihood Quantizers (ULQ) when testing M ≥ 2

hypotheses.

2. We generalize the classical Kullback-Leibler inequality to investigate the quantization

effects on the second-order and other general-order moments of log-likelihood ratios.

It is shown that a quantization may increase these quantities, but such an increase

is bounded by a universal constant that depends on the order of the moment. This

result provides a simpler sufficient condition for asymptotic theory of decentralized

sequential detection.

3. We propose a class of multi-stage tests for decentralized sequential multi-hypothesis

testing problems, and show that with suitably chosen thresholds at different stages,

it can hold the second-order asymptotic optimality properties when the hypotheses

testing problem is “asymmetric.”

4. We characterize the asymptotic behaviors of SMED algorithm, particularly the dense-

ness and distributions of the design points. In addition, we propose a simplified version

of SMED that is computationally more efficient.

viii



CHAPTER I

INTRODUCTION

This dissertation investigates two distinct topics: the decentralized sequential multi-hypothesis

testing problem and the sequential black-box design.

Sequential hypothesis testing has many important real-world applications such as tar-

get detection in multiple-resolution radar (Marcus and Swerling [23]), serial acquisition of

direct-sequence spread spectrum signals (Simon et al. [35]) and statistical pattern recog-

nition (Fu [6]). The centralized version, in which all observations are available at a single

central location, has been well studied in the statistics literature. For example, when test-

ing M = 2 hypotheses, a well-known optimal centralized test is the sequential probability

ratio test (SPRT) developed by Wald [44], also see Wald and Wolfowitz [45]. When test-

ing M ≥ 3 hypotheses, i.e., in the sequential multihypothesis testing problem, there is

no tractable closed-form expression for the optimal centralized sequential tests, although

various asymptotically optimal sequential tests have been proposed and investigated in the

literature, see, for example, Kiefer and Sacks [12], Lorden [21], Draglin, Tartakovsky and

Veeravalli [3, 4].

In recent years, the decentralized version of sequential hypothesis testing problems has

gained a great amount of attention and has been applied into a wide range of applications

such as military surveillance (Tenney and Sandell [38]), target tracking and classification

(Li et al. [16]), and data filtering (Ye et al. [47]). Under a widely used decentralized setting,

raw data are observed at a set of geographically deployed sensors, whereas the final decision

is made at a central location, often called the fusion center. The key feature here is that raw

observations at the local sensors are generally not directly accessible by the fusion center,

and the local sensors need to send quantized summary messages (generally belonging to a

finite alphabet set) to the fusion center. This is due to limited communication bandwidth

and requirements of high communication robustness.
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Decentralized sequential hypothesis testing problems are very challenging, and to the

best of our knowledge, existing research is restricted to testing two simple hypotheses on

the distributions of raw data, for example, see Veeravalli [41], Veeravalli, Basar and Poor

[43], Nguyen, Wainwright and Jordan [27], and Mei [25]. It has been an open problem to

find any sort of asymptotically optimal solutions for the decentralized sequential testing

problem when testing M ≥ 3 hypotheses. This is not surprising, because even in the

centralized version, it requires sophisticated mathematical and statistical techniques and

only asymptotic optimality results are available.

Chapter 2 of the dissertation offers the first family of decentralized sequential procedures

that is asymptotically optimal up to first-order when testing M ≥ 3 simple hypotheses. A

major challenge we face is to find the “optimal quantizers” that can best send quantized

summary sensor messages from the local sensors to the fusion center so as to lose as little

information as possible. Intuitively, such a quantizer should depend on the true distribution

of the raw data, which is unknown, and thus stationary quantizers are generally not optimal.

In addition, since a quantizer can be any measurable function as long as its range is in the

given finite alphabet set, it resides in an infinite dimensional functional space. Hence it

is essential to investigate the form of the “optimal quantizers” so that one can reduce

the infinite dimensional functional space to a finite-dimensional parameter space for the

purpose of theoretical analysis and numerical computation. Note that when testing M = 2

hypotheses, Tsitsiklis [40] and Veeravalli et al. [43] showed that the optimal quantizers can

be found from the family of monotone likelihood ratio quantizers (MLRQ), whose form is

defined up to a finite number of parameters. Unfortunately, such a result does not apply

to the case of testing M ≥ 3 hypotheses. To find the form of the optimal quantizers for

multi-hypotheses, we propose to combine three existing methodologies together: two-stage

tests in Stein [36] and Kiefer and Sacks [12] (or equivalently, tandem quantizers in Mei [25]),

unambiguous likelihood quantizers (ULQ) in Tsitsiklis [40], and randomized quantizers (see

Chernoff [2] for a closely related topic on randomized experiments).

Chapter 3 aims for providing a simpler sufficient condition for asymptotic optimality

theory in decentralized sequential detection problems. In the statistics literature, a standard

2



regularity condition often assumed is the finiteness of the second (or other higher) moments

of the log-likelihood ratios, and for decentralized sequential hypothesis testing, one often

need to verify that the second (or other higher) moments of the log-likelihood ratios of

quantized sensor messages are uniformly bounded for a class of quantization functions.

See, for example, the condition (5.9) of Kiefer and Sacks [12]. Unfortunately, it can be

analytically challenging or intractable to check this directly, even if the distributions of the

unobservable raw data are known to belong to some simple families of distributions, since

one may only have very limited knowledge about the quantization functions. To overcome

such a difficulty, it is natural to investigate whether the quantized sensor messages will

satisfy the regularity conditions regardless of the quantization functions as long as the raw

observations have certain properties. For that purpose, we investigate the quantization

effects on the second or other higher-order moments of the log-likelihood ratios, which is of

interest on its own.

Chapter 4 extends the first-order optimality theory in Chapter 2 to the second-order

optimality theory for certain scenarios of decentralized sequential hypothesis testing prob-

lems. The two-stage tests can hold the first-order asymptotic optimality properties, but

are not second-order asymptotically optimal, since they spend too many steps on their first

stage to get a preliminary guess. In order to improve the efficiency, we propose recur-

sively applying the two-stage procedure itself to the first stage. This motivates us to define

the multi-stage tests where the fusion center has more opportunities to correct inaccurate

guesses. It is shown that if the thresholds at each stage satisfy an easy-to-check condition,

then the multi-stage tests can achieve the second order asymptotic optimality properties

when the hypothesis testing problem is “asymmetric.”

In Chapter 5, we deal with the second topic of this dissertation: the sequential black-

box design. In a typical computer or laboratory experimental design problem, researchers

often want to find the global optimum of a black-box response function p(x) over a given

design region X , but one often has very little prior knowledge of the function p(x) which

can be thought of as the experimental yields. To find the global optimum the researchers

need to select a set of design points and evaluate the response function p(x) over them.

3



A good design should be able to approximate the global optimum accurately with as few

design points as possible, and one attractive design is the sequential minimum energy de-

sign (SMED) proposed in Joseph, Dasgupta and Wu [11] that selects the design points

sequentially by minimizing the potential energy. This research focuses on the asymptotic

theoretical properties of the SMED, particularly the denseness and the distribution laws

of the selected design points. Numerical simulation results are also reported to verify the

theoretical properties.

4



CHAPTER II

SEQUENTIAL DECENTRALIZED MULTIHYPOTHESIS TESTING

AND THE TWO-STAGE PROCEDURE

2.1 Sequential Mutihypothesis Testing with Sensor Network

By decentralized detection we mean to perform (statistical) detections by sensor network

systems. As illustrated in Fig. 1, in a widely used configuration, a sensor network consists

of K local sensors labeled by S1, . . . , SK and a fusion center which makes a final decision

when stopping taking observations. At each time step n = 1, 2, . . . , each local sensor

Sk observes raw data {Xk
n} and sends quantized summary messages {Ukn} to the fusion

center. Here the quantized messages {Ukn} are required to belong to a finite alphabet,

say, {0, 1, . . . , lk − 1}, due to limited communication bandwidth or requirements of high

communication robustness. In other words, the fusion center does not have direct access to

the raw data {Xk
n}, and has to utilize the quantized sensor messages {Ukn} to make a final

decision. If necessary, the fusion center can send feedback {V k
n } to the local sensors so as

to improve the system efficiency.

To be more rigorous, we need to further specify the form of the sensor message functions.

In this chapter, we focus on systems with full feedback, but local memories restricted to

past decisions, e.g., Case E of Veeravalli et al. [43]. Mathematically, at time n, for each

k = 1, 2, . . . ,K, the quantized sensor message at the kth local sensor is assumed to be of

Fusion Center

U1

n

Uk
n

UK
n

V 1

n

V k
n

V K
n

X1

n

Xk
n

XK
n S1

Sk

SK

Figure 1: A widely used configuration of sensor network
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the form

Ukn = φkn(Xk
n;V k

n−1) ∈ {0, 1, . . . , lk − 1} (1)

where the feedback V k
n−1 is defined by

V k
n−1 = ψkn(U1

[1,n−1], . . . , U
K
[1,n−1]) (2)

and Uk[1,n−1] = (Uk1 , . . . , U
k
n−1) denotes all past local sensor messages. That is, the quantizer

φkn is a function used by sensor Sk to map the local raw data Xk
n into {0, 1, . . . , lk− 1}, and

the choice of φkn can depend on the feedback V k
n−1 and can be a randomized function (to be

discussed later).

In decentralized sequential multihypothesis testing problems, there are M hypotheses

regarding the distribution P of the raw data {Xk
n}:

Hm : P = Pm, m = 0, 1, . . . ,M − 1. (3)

Under each Pm, the raw data Xk
n at local sensor Sk are i.i.d. with density fkm(·) with respect

to a common underlying measure, and the raw data {Xk
n} are assumed to be independent

across different sensors. Hence the distributions of the raw data under Pm are completely

determined by the K densities: f1
m,. . . , fKm . Below we simply state that the true state of

nature is m or Pm if the hypothesis Hm is true.

A decentralized sequential test δ consists of a rule to determine the sensor messages, a

stopping time N used by the fusion center and a final decision rule D ∈ {0, 1, . . . ,M − 1}

that chooses one of the M probability measures Pm’s based on the information up to time

N at the fusion center. As in Wald [44], Veeravalli et al. [43], and Veeravalli [41], let

c > 0 be the cost per time step until stopping, and let W (m,m′) be the loss of making

decision D = m′ when the true state is Pm. It is standard to assume that W (m,m) = 0 but

W (m,m′) > 0 for any m 6= m′, i.e., no loss occurs when a correct decision is made. Then

when the true state of nature is Pm, the expected cost of a decentralized test δ conditioned

on the m-th hypothesis is

Rc(δ;m) = cEm {N}+
∑
m′

W (m,m′)Pm{D = m′}

6



where Em is the expectation operator under Pm. In a Bayesian formulation, we assign prior

probabilities π = (π0, . . . , πM−1) to the M hypotheses H0, · · · , HM−1. Hence, the (total)

Bayes risk of the decentralized test δ is

Rc(δ) =

M−1∑
m=0

πmRc(δ;m). (4)

The Bayes formulation of the decentralized sequential multihypothesis testing problem can

then be stated as follows.

Problem (P1): Minimize the Bayes risk Rc(δ) in (4) among all possible decentralized se-

quential multihypothesis test procedures δ.

Denote by δ∗B(c) a Bayes solution to (P1 ). In Veeravalli et al. [43], δ∗B(c) is obtained

through dynamic programming for the simplest case of testing binary hypotheses, i.e.,

M = 2. Unfortunately, in a general multihypothesis setting when M ≥ 3, it is impractical

to find δ∗B(c) via dynamical programming, since the problem is intractable even for the

centralized version, see, for example, Dragalin, Tartakovsky and Veeravalli [3]. This prompts

us to adopt the following asymptotic optimization approach in which the cost c per time

step goes to 0.

Problem (P2): Find a family of decentralized sequential multihypothesis testing procedures

{δA(c)} that is asymptotically optimal of the first order in the sense that

lim
c→0
Rc(δ∗B(c))/Rc(δA(c)) = 1. (5)

Any procedure δA(c) which is a solution to Problem (P1) is refered to as having asymp-

totic optimality up to the first order.

In this chapter, we introduce a class of “two-stage” decentralized sequential tests in

which each local sensor uses two stationary (possibly randomized) local quantizers with at

most one switch between these two quantizers. This type of tests are useful because they

allows the fusion center to first make a preliminary guess about the true state of nature and

then optimize the procedure accordingly. However, before we get into the details of the two-

stage procedure, we need to first define the concepts of quantizers and their Kullback-Leibler

divergences.

7



2.2 Quantizers and Kullback-Leibler Divergence in Decentralized Se-
quential Detection

Now let us discuss the concepts of quantizers and their Kullback-Leibler (K-L) divergences,

both of which will be essential in our asymptotic optimality theory. A quantizer is either

a deterministic measurable function or a randomization of some (possibly infinitely many)

deterministic measurable functions that maps the raw data into a finite alphabet set, e.g.,

the function φkn in (1) is a quantizer. The quantizer is called a deterministic quantizer if

the corresponding measurable function is deterministic. At a given local sensor S (here and

below we miss the superscript k for simplicity), denote by Φ the set of all possible local

deterministic quantizers φ’s and let fm(·;φ) be the induced probability mass function of

quantized message Un = φ(Xn) when the raw observation Xn is distributed according to

fm(·) under Pm, i.e.,

fm(u;φ) = Pm(φ(Xn) = u), for u = 0, 1, . . . , l − 1. (6)

For the deterministic quantizer φ, it is easy to see that its K-L divergences are defined by

I(m,m′;φ) =
l−1∑
u=0

fm(u;φ) log
fm(u;φ)

fm′(u;φ)
(7)

for all m 6= m′. However, we need to be very careful when defining the K-L divergences of a

randomized quantizer φ̄ =
∑
pjφj that assigns probability masses {pj} onto some countable

subset of deterministic quantizers {φj} ⊂ Φ. On the one hand, one can directly substitute

the φ in (7) by φ̄, i.e.,

Ĩ(m,m′; φ̄) =
l−1∑
u=0

fm(u; φ̄) log
fm(u; φ̄)

fm′(u; φ̄)
(8)

where

fm(u; φ̄) = Pm(φ̄(X) = u), u = 0, 1, . . . , l − 1.

This type of the K-L divergence has been defined for randomized quantizers in the engi-

neering literature, e.g., Tsitsiklis [40]. On the other hand, one can also define the K-L

divergence of the randomized quantizer φ̄ by the weighted average of those of the determin-

istic quantizers it randomizes:

I(m,m′; φ̄) =
∑

pjI(m,m′;φj), 0 ≤ m 6= m′ ≤M − 1. (9)

8



By Jensen’s inequality, we have Ĩ(m,m′; φ̄) ≤ I(m,m′; φ̄), i.e., the K-L divergence defined

in (8) is dominated by that in (9), also see Section 2.7 for more discussion.

It turns out that the K-L divergence in (9) instead of that in (8) will play a central role in

our asymptotic theory, and to the best of our knowledge, the definition in (9) has not been

well studied in the literature (an exception is the paper by Nguyen, Wainwright and Jordan

[27]). The reason why our asymptotic theory involves the K-L divergence in (9) instead

of that in (8) is due to our novel way of implementing randomized quantizers to minimize

loss of information. Roughly speaking, when implementing randomized quantizers, it is

essential for the fusion center to know which specific deterministic quantizer is going to be

used at the local sensor at each time step, since otherwise randomization will only make

decision-making more challenging and less efficient. This issue will be discussed further

in Subsection 2.3.2. Also note that a deterministic quantizer can also be thought as a

randomized quantizer that assigns probability one to itself. Denote by Φ̄ the set of all

possible quantizers at the local sensor S, deterministic or randomized.

Throughout this chapter we make the following standard assumption to ensure the

finiteness of the expectation of the raw data’s log-likelihood ratios.

Assumption 1. For any two different states 0 ≤ m 6= m′ ≤M − 1 and local sensor Sk,

0 < Em

{
log

fkm(Xk
n)

fkm′(X
k
n)

}
<∞.

In the literature, researchers often assume a uniform bound on the second moments

of log fkm(uk;φ)

fk
m′ (u

k;φ)
, the log-likelihood ratio for quantized sensor messages, under Pm. See, for

example, Kiefer and Sacks [12] and Mei [25]. Here our assumption is much weaker, and

it turns out that it will be sufficient for the first-order asymptotic optimality under our

setting.

2.3 Two-Stage Test Procedures

In this section, we introduce a class of “two-stage” decentralized sequential tests in which

each local sensor uses two stationary (possibly randomized) local quantizers with at most

one switch between these two quantizers. This type of tests are useful because they allow

9



the fusion center to first make a preliminary guess about the true state of nature and then

optimize the procedure accordingly.

To highlight our main ideas, in the present and next sections we assume that the sensor

network system consists of a single local sensor, i.e., K = 1 and all quantized messages

are binary, i.e., Un ∈ {0, 1}. Extensions to general cases are presented in Section 2.5.

To simplify notation, we drop all the superscripts denoting the sensors. That is, in this

and next sections we assume that one observes raw data X1, X2, · · · , which are i.i.d. with

density fm(x) under the hypothesis Hm. The final decision is based on quantized messages

Un = φn(Xn;Vn−1) ∈ {0, 1} with the feedback Vn−1 = ψn−1(U1, · · · , Un−1). For a given

(randomized) quantizer φ, the K-L divergence of Pm′ from Pm is I(m,m′;φ) defined in (9).

2.3.1 Our Proposed Test

Our proposed two-stage test δ(c) can be defined as follows. In the first stage of δ(c), the local

sensor can use any “reasonable” stationary deterministic quantizer and the fusion center

needs to make a preliminary guess about the true state of nature. The only requirement is

that as the cost c → 0, the probabilities of making incorrect preliminary guess go to zero

but the time steps taken at this first stage become negligible as compared to those of the

overall procedure (or the second stage).

To be more concrete, let u(c) ∈ (0, 1/2) be a function of c such that u(c) → 0 and

log u(c)/ log c → 0 when c → 0, e.g., u(c) = 1/| log c|. Choose a deterministic quantizer φ0

such that I(m,m′;φ0) > 0 for any two states 0 ≤ m 6= m′ ≤M − 1, and let the local sensor

use the stationary quantizer φ0 to send i.i.d. sensor messages Un = φ0(Xn) to the fusion

center. Then the fusion center faces a classical sequential detection problem with the i.i.d.

sensor messages Un’s as inputs, and thus it is intuitively appealing to make a preliminary

decision based on posterior distributions. Specifically, at each time step n = 1, 2, 3, · · · ,

the fusion center updates recursively the posterior distribution (π0,n, π1,n, . . . , πM−1,n) as

follows:

πm,n =
πm,n−1fm(Un;φ0)∑M−1

m′=0 πm′,n−1fm′(Un;φ0)
(10)

with the initial value πm,0 = πm, the prior probability of the m-th hypothsis. Then the

10



fusion center will stop the first stage at time step

N0 = min{n ≥ 0 : max
0≤m≤M−1

{πm,n} ≥ 1− u(c)}

and when stopped, the fusion center makes a preliminary decision

D0 = arg max
0≤m≤M−1

πm,N0 .

Note that the preliminary decision D0 is well-defined because the maximum value of πm,N0

is attained at only one index m due to the definition of N0 and the fact that u(c) < 1/2. For

the purpose of practical implementation, the preliminary decision D0 can be transmitted to

the local sensor through a feedback of log2M bits and thus a one-shot log2M -bits feedback

will be sufficient.

In the second stage of our proposed test δ(c), the local sensor will switch to another

stationary (likely randomized) quantizer that may depend on the preliminary decision D0.

Without loss of generality, we assume that the local sensor uses the stationary quantizer φ̄m

when the preliminary decision at the first stage is D0 = m for m = 0, 1, . . . ,M − 1. Here we

put a bar over φ̄m to emphasize that it is likely a randomized quantizer when optimized, and

we will postpone the detailed discussion about how to implement randomized quantizers to

the next subsection.

Now at the second stage, the fusion center shall ignore the preliminary decision D0 and

continue to update the posterior distribution (π0,n, . . . , πM−1,n) with the sensor messages

generated from the new quantizer φ̄m when D0 = m (how to update will be discussed in

the next subsection). Then the fusion center will stop the second stage (hence the whole

procedure) at time step

N = min{n ≥ N0 : max
0≤m≤M−1

{πm,n} ≥ 1− c} (11)

and when stopped, the fusion center makes a final decision

D = arg max
0≤m≤M−1

πm,N .

From the asymptotic point of view, many other decision rules can also be used at the

fusion center. For instance, let rm,n =
∑

m′ 6=m πm′,nW (m′,m) be the average posterior cost

11



when making a decision m at time n, and then the fusion center can stop the second stage

at time

N ′ = min{n ≥ N0 : min
0≤m≤M−1

rm,n ≤ c}. (12)

When the costs W (m′,m) = I(m′ = m) are a simple 0− 1 cost function, the stopping time

N ′ in (12) becomes N in (11), and our experience suggests that N ′ in (12) is slightly better

than N in (11) for other cost functions in finite-sample numerical simulations. In addition,

when updating the posterior distribution at the second stage, we can also adopt a standard

approach by starting afresh as in those two-stage tests in the literature, see Section V of

Kiefer and Sacks [12] or Section IV of Mei [25]. In this chapter, we propose a new approach

by continuing to update the posterior distribution from the first stage so as to further

utilize information gathered from the first stage. This allows us to improve the efficiency in

finite-sample simulations, although it also means extra treatments in asymptotic arguments.

2.3.2 Implementing Randomized Quantizers and Updating Posterior Distri-
bution

When testing M ≥ 3 hypotheses, randomized quantizers are likely needed in the second

stage in order to develop the optimal two-stage tests, and thus it is necessary to determine

the appropriate approach to implement them as well as how to update posterior distributions

at the fusion center, especially during the second stage. Assume a randomized quantizer is

given by φ̄ =
∑
pjφj . The key requirements for randomization in our two-stage test is that

the fusion center must know which deterministic quantizer is picked to quantize the raw

observation, since otherwise the randomization can cause confusion when making decision at

the fusion center. The most straightforward (though practically infeasible) implementation

is to let the fusion center do the randomization directly. Specifically, at time step n the

fusion center will choose the deterministic quantizer φj with probability pj , say choosing the

deterministic quantizer φj(n). Through a feedback from the fusion center, the local sensor

will then use the chosen deterministic quantizer φj(n) at time step n to quantize the raw

observation. After receiving the quantized sensor message Un at time step n, the fusion
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center then update the posterior distribution as follows:

πm,n =
πm,n−1fm(Un;φj(n))∑M−1

m′=0 πm′,n−1fm′(Un;φj(n))
(13)

because the fusion center knows that Un comes from the deterministic quantizer φj(n) at

time step n.

In practice a more feasible implementation is to adopt “pseudo-randomization” to reduce

the communication from the fusion center to the local sensors. One approach is to let the

fusion center and the local sensor(s) use the same random-number generation mechanism

that can be initialized with the same seed. Another simpler approach is to adopt a “periodic

block design” at the local level (see Section V of Kiefer and Sacks [12]). To be specific,

suppose φ̄ randomizes a finite number (say i) of deterministic quantizers, and all pj ’s are

(or can be approximated by) rational numbers with b a common denominator. Then we

divide the time steps into blocks of size b, and within each block, the raw data are quantized

with deterministic quantizers {φ1, . . . , φi} following a fixed order such that each φj is used

for exactly pjb times. Under these pseudo-randomization implementations, the fusion center

again knows which deterministic quantizer is used at each time step, and thus can update

the posterior distribution as in (13).

We would like to point out that our implementation of randomized quantizers is very

different from those existing implementations in the literature (see Tsitsiklis [40]). In the

latter the randomization is done at the local level in the sense that the local sensor randomly

picks one of the deterministic quantizer φj ’s, and the fusion center will only get the quantized

message Un without knowing exactly which deterministic quantizer is used to generate Un.

In this case, to update the posterior distribution, the fusion center has to plug in φ̄ (instead

of φj(n)) into (13), i.e.,

πm,n =
πm,n−1fm(Un; φ̄)∑M−1

m′=0 πm′,n−1fm′(Un; φ̄)
.

Since our proposed implementation and the local randomization implementation lead to

different likelihood ratios, it is not surprising that there are two different K-L divergences

for the same randomized quantizer in Section 2.2: one defined in (8) and the other in (9).
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2.4 Main Results

In the present section, we show that a two-stage test can be an asymptotic optimal solution

to problem (P2) by carefully choosing the quantizers used in the second stage. We also

give characterizations of these optimal quantizers as well as the corresponding numerical

computation.

2.4.1 Maximin Quantizers and Asymptotic Theory

Let us begin with the definition of some useful information numbers. For a given (deter-

ministic or randomized) quantizer φ̄ ∈ Φ̄, define

I(m; φ̄) = min
m′ 6=m

I(m,m′; φ̄). (14)

for each state m = 0, 1, . . . ,M − 1. That is, I(m; φ̄) characterizes the least divergence from

the state m to other states.

The following theorem, whose proof is presented in Section 2.8, establishes the asymp-

totic properties of a two-stage test δ(c) as the cost c goes to 0.

Theorem 2.4.1. Let δ(c) be a two-stage test with {φ̄0, . . . , φ̄M−1} being the set of (possi-

bly randomized) quantizers used in its second stage. Assume each φ̄m randomizes a finite

number of deterministic quantizers, and suppose that the prior probabilities πm > 0 and

I(m; φ̄m′) > 0 for all states m = 0, 1, . . . ,M − 1 and m′ = 0, 1, . . . ,M − 1. Then as c→ 0,

the time step N taken by the two-stage test δ(c) satisfies

Em {N} = (1 + o(1))| log c|/I(m; φ̄m), m = 0, 1, . . . ,M − 1, (15)

and the final decision D of the two-stage test δ(c) satisfies

Pm {D 6= m} = O(c), m = 0, 1, . . . ,M − 1. (16)

Thus, the Bayes risk of the two-stage test δ(c) is

Rc(δ) = c| log c|(1 + o(1))

M−1∑
m=0

πm/I(m; φ̄m). (17)
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In light of Theorem 2.4.1, for the proposed test δ(c), the costs of making wrong decisions

become negligible as compared to the cost of the time step. Moreover, to asymptotically

minimize the Bayes risk within the class of two-stage tests, it is clear that one should

maximize the information numbers I(m; φ̄m) for m = 0, 1, . . . ,M − 1. This leads to a

natural definition of the optimal quantizers that we should use in the second stage:

Definition 2.4.1. For m = 0, 1, . . . ,M − 1, define the maximin quantizer with respect to

Pm as

φ̄max
m = arg sup

φ̄∈Φ̄

I(m; φ̄) = arg sup
φ̄∈Φ̄

min
m′ 6=m

I(m,m′; φ̄)

and define the corresponding maximin information number by I(m) = supφ̄∈Φ̄ I(m; φ̄).

As shown later in Theorems 2.4.3 and 2.5.1, the supremum of I(m, φ̄) is attainable,

and the maximin quantizers not only exist, but also can be realized as randomization of a

finite number of deterministic quantizers. Now we are ready to investigate the asymptotic

optimality properties of the two-stage test when the maximin quantizers are used in the

second stage. Denote by δA(c) such a two-stage test. Then by Theorems 2.4.1, we have

Rc(δA(c)) = (1 + o(1))c| log c|
M−1∑
m=0

πm/I(m). (18)

as c→ 0. What is surprising is that δA(c) is not only the best within the class of two-stage

tests, but also asymptotically optimal among all possible decentralized tests. A key step

in the proof is the following important theorem which establishes asymptotic lower bounds

on the expected time steps of any decentralized tests with “suitably small” probabilities of

making incorrect decisions.

Theorem 2.4.2. Assume that δ(c) is a decentralized (not necessarily a two-stage) test that

makes a final decision D and

Pm{D 6= m} = O(c| log c|), m = 0, 1, . . . ,M − 1,

as c→ 0. Then the time step N taken by δ(c) satisfies

Em {N} ≥ (| log c| − log | log c|+O(1))/I(m)
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= (1 + o(1))| log c|/I(m) (19)

for all m = 0, 1, . . . ,M − 1.

The proof of Theorem 2.4.2 is presented in Section 2.9. The first-order asymptotic

lower bound will be sufficient to prove the first-order asymptotic optimality of δA(c), and

the reason why we present a higher order lower bounds is due to its potential usefulness in

higher-order analysis in further research. By relation (18) and Theorem 2.4.2, we have

Corollary 2.4.1. The procedure δA(c) is first-order asymptotically Bayes.

Proof. Let δ∗B(c) be the Bayes procedure. By definition, Rc(δ∗B(c)) ≤ Rc(δA(c)). Using

the relation (18) and the definition of Bayes risk Rc(δ∗B(c)), the probabilities for the Bayes

procedure δ∗B(c) to make incorrect decisions are at most O(c log c). By Theorem 2.4.2, the

stopping time N∗c of the Bayes procedure δ∗B(c) satisfies (19). Now using the definition of

Bayes risk again, for any test, the cost of time steps taken to make the final decision is only

portion of the Bayes risk. In particular,

Rc(δ∗B(c)) ≥ c
M−1∑
m=0

πmEm {N∗c } ≥ (1 + o(1))c| log c|
M−1∑
m=0

πm/I(m).

Combining all arguments yields that Rc(δ∗B(c))/Rc(δA(c)) → 1 as c → 0, completing the

proof of the corollary.

It is useful to point out that the test δA(c) is asymptotic Bayes mainly because the

local sensor uses the maximin quantizers φ̄max
m ’s in the second stage. Since the maximin

quantizers do not depend on the prior distribution {πm}’s, it is easy to see from (15) and

(16) that the asymptotic optimality properties of δA(c) are actually robust with respect to

{πm} as long as all prior probabilities are positive. Likewise, the asymptotic optimality

properties still hold if the stopping times of δA(c) at the fusion center are replaced by other

efficient multi-hypotheses tests, e.g., those in Dragalin, Tartakovsky and Veeravalli [3, 4].

2.4.2 Characterizing the Maximin Quantizers.

In this subsection, we provide a deeper understanding of the maximin quantizers {φ̄max
m :

m = 0, 1, . . . ,M − 1} and also illustrate how to compute them explicitly when the sensor

messages are binary.
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Let us first introduce the Unambiguous Likelihood Quantizer (ULQ) which was first

proposed in Tsitsiklis [40] as a generalization of the Monotone Likelihood Ratio Quantizer

(MLRQ). For notational convenience, here we give the definition of ULQ only for the case

of binary sensor messages, and the general definition will be provided in Definition 2.5.1 in

Subsection 2.5.1.

Definition 2.4.2. A deterministic quantizer φ ∈ Φ is said to be an Unambiguous Likelihood

Quantizer (ULQ) if there exist real numbers {am : m = 0, . . . ,M − 1} such that

φ(X) =

 1, if
∑M−1

m=0 amfm(X) > 0

0, if
∑M−1

m=0 amfm(X) ≤ 0
(20)

and for any 0 ≤ m′ ≤M − 1, the set {am} satisfies the following condition

Pm′

{
M−1∑
m=0

amfm(X) = 0

}
= 0. (21)

When relation (21) holds for any set of {am} that are not simultaneous zero, the set of

pdf’s {fm} are said to be linearly independent. With the definition of ULQs, the following

theorem characterizes the form of the maximin quantizers φ̄max
m . The proof is very technical

and is deferred to Section 2.7.

Theorem 2.4.3. For each m = 0, 1, . . . ,M −1, the maximin quantizer φ̄max
m exists and can

be chosen as a randomization of at most M − 1 deterministic quantizers. Moreover, if the

pdf’s {fm} are linearly independent, then it can actually be chosen as a randomization of

at most M − 1 deterministic ULQ quantizers.

Clearly, when testing M = 2 simple hypotheses, the ULQs become MLRQs, and thus the

maximin quantizer in the second stage is just the deterministic MLRQ, which is consistent

with the corresponding results in Mei [25].

Note that Theorem 2.4.3 reduces the search of the maximin quantizers from an infinite

dimensional function space to a parameter space of dimension O(M2). To see this, fix

a state m and define M2 − 1 parameters as probability masses {pjm : 1 ≤ j ≤ M −

1, pjm ≥ 0,
∑M−1

j=1 pjm = 1}, and ULQ coefficients {ajm,m′ : 1 ≤ j ≤ M − 1, 0 ≤ m′ ≤
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M − 1,
∑M−1

m′=0(ajm,m′)
2 = 1}. Based on every combination of these parameters, define by φ̄

the quantizer randomizing M − 1 ULQs: φ̄ =
∑M−1

j=1 pjmφ
j
m, where

φjm(X) = I(

M−1∑
m′=0

ajm,m′fm′(X) > 0).

The maximin quantizer φ̄max
m can then be found as φ̄ that maximizes

min
l 6=m

I(m, l; φ̄) (22)

among all possible combinations of {pjm; ajm,m′}1≤j≤M−1,0≤m′≤M−1.

To numerically find the maximin quantizer φ̄max
m for a given state m, one can discretize

all parameters and then solve the optimization problem (22) in a brute force approach. Of

course, this still requires considerable computation power. To further reduce computational

complexity, we can apply the following lemma which provides a sufficient condition that a

deterministic MLRQ quantizer is the maximin quantizer.

Lemma 2.4.1. Fix a state m, for another state m′ 6= m, let φm,m′ be the deterministic

MLRQ quantizer that maximizes the K-L divergence of m′ from m, i.e.,

φm,m′ = arg sup
φ∈Φ

I(m,m′;φ) = arg sup
φ̄∈Φ̄

I(m,m′; φ̄).

If for any other state m′′ 6= m:

I(m,m′′;φm,m′) ≥ I(m,m′;φm,m′)

then φm,m′ is also the maximin quantizer for state m.

Proof. By our assumption,

I(m;φm,m′) = min
m′′ 6=m

I(m,m′′;φm,m′) = I(m,m′;φm,m′).

Take any φ̄ ∈ Φ̄,

I(m; φ̄) ≤ I(m,m′; φ̄) ≤ I(m,m′;φm,m′) = I(m;φm,m′)

and thus φm,m′ is the maximin quantizer for state m.
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To better understand this lemma, it is useful to imagine an extreme case that there is

only one state m′ that is very “close” to the given state m and all other states m′′ are very

far away from the state m. Then when the state m is the true state, the difficulty of testing

multiple hypotheses is mainly due to testing state m versus state m′, no matter whether

the decision making is based on raw observations and quantized sensor messages. Hence the

information number I(m; φ̄) in (14) becomes I(m,m′; φ̄), and finding a maximin quantizer

is equivalent to finding a quantizer that maximizes I(m,m′; φ̄), which is a deterministic

MLRQ as shown in Tsitsiklis [40].

2.5 Extensions

Section 2.4 deals with the simplest case when the network only has a single sensor with bi-

nary sensor messages. In this section, we extend our results to three more general scenarios:

1) the sensor messages belong to a finite alphabet (not necessarily binary); 2) there is more

than one sensor in the network (though observations are independent between different

sensors); and 3) the hypotheses are composite.

2.5.1 Sensor Messages Belonging to a Finite Alphabet

Suppose the network still consists of only one sensor, but now the sensor messages belong

to a finite alphabet, say, {0, 1, . . . , l− 1} with l ≥ 2. In this scenario, the definitions of two-

stage tests (Subsection 2.3.1) and maximin quantizers (Subsection 2.4.1) are still applicable,

and Theorem 2.4.1 and Theorem 2.4.2 also hold. The only change is Theorem 2.4.3, as we

need to consider the following general definition of ULQ, which was originally proposed in

Tsitsiklis [40] and includes Definition 2.4.2 as a special case.

Definition 2.5.1. When the sensor messages belong to a finite alphabet {0, 1, . . . , l− 1}, a

deterministic quantizer φ ∈ Φ is said to be an unambiguous likelihood quantizer (ULQ) if

and only if there exist real numbers {ai,m : 0 ≤ i ≤ l − 1, 0 ≤ m ≤M − 1} such that

φ(X) = arg min
0≤i≤l−1

M−1∑
m=0

ai,mfm(X) (23)

and the probability of a tie is zero under every Pm for m = 0, 1, . . . ,M − 1.
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With this definition, Theorem 2.4.3 can be generalized as follows.

Theorem 2.5.1. Suppose the sensor messages belong to a finite alphabet {0, 1, . . . , l − 1}

with l ≥ 2. Then for m = 0, 1, . . . ,M − 1, the maximin quantizer φ̄max
m can be realized

as a randomization of at most M − 1 deterministic quantizers. Moreover, for every m,

there exists quantizer {φ̄m} randomizing at most M − 1 ULQs that can approximate φ̄max
m

arbitrarily close.

The proof of Theorem 2.5.1 is presented in Section 2.7. Note that there is a significant

difference between Theorem 2.4.3 and Theorem 2.5.1. When the sensor messages are binary

(i.e., l = 2), we are sure that the maximin quantizers can be attained by randomizing M−1

ULQs if the pdfs f0,. . . , fM−1 are linearly independent. However, this is no longer true for

l ≥ 3, also see Section 2.7 for more explanations. Fortunately, since the maximin quantizers

can always be approximated as described in Theorem 2.5.1, the issue is not essential from

the viewpoint of numerical computation, as we can compute the maximin quantizers (or

their approximations) in the same way as in Subsection 2.4.2 except that each ULQ is now

associated with an l by M matrix A = {ai,m}.

Another benefit of Theorem 2.5.1 is that it can deal with the case of binary sensor

messages but with the pdf’s that are not linearly independent. Such a case was not addressed

by Theorem 2.4.3, and Theorem 2.5.1 shows that although the maximin quantizer φ̄max
m may

no longer be a randomization of at most M−1 ULQs, it can still be approximated arbitrarily

close by a quatizer φ̄m, randomizing at most M − 1 ULQs.

2.5.2 Multiple Sensors

We now assume that there are K ≥ 2 sensors in the system in which all raw observations

are independent from sensor to sensor conditioned on each Pm, m = 0, 1, . . . ,M − 1. In the

following notation, we use the superscripts to denote different sensors as in Section 2.2. For

simplicity, we assume the sensor messages are binary, since the extension to the scenario

with a finite alphabet sensor messages can be easily done as in Subsection 2.5.1. The key to

extend our results is to treat the quantizers in Sections 2.3 and 2.4 as vectors. Specifically,

a (deterministic) vector quantizer is ~φ = (φ1, . . . , φK), where each local sensor Sk uses the
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deterministic scalar quantizer φk to quantize the raw data. Denote by Φ(K) the set of all

(deterministic) vector quantizers, and define a randomized vector quantizer

~ϕ =
∑
j

pj~φj

where ~φj = (φ1,j , . . . , φK,j) ∈ Φ(K), and {pj} are the probability masses assigned to the

set of deterministic quantizer vectors {~φj} ⊂ Φ(K). Let the set of all (deterministic or ran-

domized) vector quantizers be Φ(K). The implementation of a randomized vector quantizer

~ϕ =
∑
pj~φj is the same as that in Subsection 2.3.2, i.e., the fusion center knows about

which deterministic vector quantizer is picked, either letting the fusion center conduct the

randomization directly or using the pseudo-randomization block design at the local sensor

level. Likewise, for a deterministic vector quantizer ~φ = (φ1, . . . , φK), the K-L divergence

of state m′ from state m is defined as

I(m,m′; ~φ) =

K∑
k=1

I(m,m′;φk) (24)

and for a randomized vector quantizer ~ϕ =
∑

j p
j~φj , the K-L divergence is a weighted

average as in Section 2.2:

I(m,m′; ~ϕ) =
∑
j

pjI(m,m′; ~φj) =
∑
j

K∑
k=1

pjI(m,m′;φk,j). (25)

Now the maximin vector quantizers {~ϕ max
m } and maximin information numbers {I(m)} for

vector quantizers can be defined in exactly the same way as in Subsection 2.4.1, and the

theory developed for single-sensor networks, i.e., Theorems 2.4.1-2.4.3, also holds for the

multiple sensor cases except replacing the scalar quantizers by vector quantizers.

A special case is when the sensors are homogeneous, i.e., when the observations are

independent and identically distributed across different sensors. In this case, the maximin

vector quantizer contains simple replicate of the maximin quantizers in the corresponding

single-sensor case. This result is summarized in the following proposition.

Proposition 2.5.1. Assume that f1
m = · · · = fKm = fm for m = 0, 1, . . . ,M −1. Fix a state

m, let φ̄0,max
m =

∑
j p

j
mφ

0,j
m be the maximin quantizer in the corresponding single sensor

case where the system has only one sensor and the raw data are distributed according to
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{fm}. Define randomized vector quantizer ~ϕ∗m =
∑

j p
j
m
~φjm with each ~φjm being a K-time

replication of φ0,j
m , i.e., ~φjm = (φ0,j

m , . . . , φ0,j
m ). Then φ̄∗m is a maximin quantizer vector for

the state m.

Proof. The proof follows from (24) and (25).

2.5.3 Composite Multihypothesis Testing

Our theory can also be extended to the scenario of composite hypothesis with finitely many

points. Suppose that there are B composite hypotheses, H0,. . . , HB−1, where

Hb = {Pib , Pib+1, . . . , Pib+1−1}

include ib+1 − ib points for b = 0, 1, . . . , B − 1, and i0 = 0. Without loss of generality,

let us assume M = iB. Then there are a total of iB = M simple hypotheses, and the

decision maker is required to pick one of the B hypotheses that most likely includes the

true state of nature Pm. We further assume that the prior for each simple hypothesis Pib is

known to be πib (we will not consider another scenario when the prior for Hb is given but

the priors for each simple hypothesis are unknown, since it is against the Bayesian spirit

and belongs to a semi-Bayesian approach). Hence, the problem formulation is the same as

that in Section II, except that the cost function W (m,m′) needs to be re-defined to reflect

composite hypotheses in the multihypothesis testing problem. To simplify our notation, for

m = 0, 1, . . . ,M − 1, denote by [m] the hypothesis that contains Pm, i.e., [m] = Hb if and

only if Pm ∈ Hb. In composite multihypothesis testing problem, the loss function W has

the form {W (m, [m′])}, where W (m, [m′]) indicates the loss caused by making a decision

D = [m′] when the state of nature is Pm. We assume W (m, [m′]) ≥ 0 and W (m, [m′]) = 0

if and only if m 6∈ [m′], i.e., no loss in making a correct decision.

As in Section 2.2, the total expected cost or risk of a test δ when the true state of nature

is m is:

Rc(δ;m) = cEm{N}+
∑
[m′]

W (m, [m′])Pm{D = [m′]}

and the Bayes risk of δ is

Rc(δ) =
∑
m

πmRc(δ;m) (26)
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where the prior probability of the hypothesis Hb is πib + . . .+ πib+1−1.

In the scenario of composite hypotheses, the definition of the two-stage tests is similar

except a slight modification of the stopping time N and the final decision D of the fusion

center in the second stage. For simplicity, let us consider the simplest case of the single-

sensor and binary sensor messages. At time step n in the second stage, the fusion center

computes

r[m],n =
∑

m′ 6∈[m]

πm′,nW (m′, [m])

which is the average loss if one makes a final decision D = [m]. Then the fusion center stops

at time N = min{N[m]}, where

N[m] = {n ≥ N0 : r[m],n ≤ c}

and N0 is the stopping time for the first stage. When stopped, the fusion center makes a

final decision D = [m] if N = N[m].

Note that we do not change the fusion center policy in the first stage, i.e., the preliminary

decision D0 at the fusion center still picks the most promising state among the M states

instead of picking one of the B hypotheses. When the preliminary decision at the first stage

is D0 = m ∈ {0, 1, . . . ,M − 1}, then the optimal quantizer at the second stage should be

chosen to maximize the information number

I(m; φ̄) = min
m′ 6∈[m]

I(m,m′; φ̄).

In other words, to find the asymptotically optimal tests among the two-stage tests, we

need to modify the definition of I(m; φ̄) by ignoring those states grouped into the same

hypothesis with m. With these new definitions, Theorems 2.4.1 and 2.4.2 remain valid, and

we can still use Theorem 2.4.3 to numerically compute each maximin quantizer φ̄max
m by

pretending [m] = {Pm}, i.e., by temporarily discarding other states in [m].

2.6 Examples

In this section we illustrate our theory via numerical simulations. Suppose we are interested

in testing the mean of a normal distribution with unit variance in a network with a single
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sensor and binary sensor messages. That is, the raw data observed at the local sensor follow

a normal distribution P ∼ N(θ, 1). In the hypothesis testing problem, we consider three

hypotheses regarding θ, say, H0 : θ = θ0, H1 : θ = θ1 and H1 : θ = θ2, and assign the prior

probability of 1/3 to each of these three hypotheses. In addition, as in Dragalin et al. [4],

we assume 0-1 loss for decision-making, i.e., W (m,m′) = 1 if m 6= m′ and = 0 if m = m′.

Two different scenarios will be considered:

1) Asymmetric (HT1): (θ0, θ1, θ2) = (−0.5, 0, 1).

2) Symmetric (HT2): (θ0, θ1, θ2) = (−0.5, 0, 0.5).

For our proposed asymptotic optimal decentralized test δA in these scenarios, it suffices

to determine the local quantizers. The stationary quantizer in the first stage of δA is easy,

as we can simply use φ0(X) = I(X ≥ 0), which satisfies the conditions in Subsection

2.3.1. It is a little more challenging to characterize the maximin quantizers used in the

second stage of δA. For the asymmetric case (HT1), it is straightforward to show from

Lemma 2.4.1 that the three maximin quantizers are all deterministic MLRQs. Numerical

computations illustrate that the three maximin quantizers are φ0 = I(X ≥ −0.3963), φ1 =

I(X ≥ −0.1037), φ2 = I(X ≥ 0.7941) and the corresponding maximin information numbers

are I0 = 0.0796, I1 = 0.0796, I2 = 0.3186, respectively.

The maximin quantizers of the symmetric case (HT2) are a little tricky. It is easy to

check that Lemma 2.4.1 can be applied to state m = 0 and m = 2, yielding two maximin

quantizers φ0 = I(X ≥ −0.1037) and φ2 = I(X ≥ 0.3963) with maximin information

numbers I0 = I2 = 0.07959. However, we need to pay special attention to the maximin

quantizer for the state m = 1 since the other two states m = 0 and m = 2 are symmetric

with respect to m = 1. Since the three pdfs are obviously linearly independent as defined

in Subsection 2.4.2, by Theorem 2.4.3, the maximin quantizer for state m = 1 can be

realized as a randomization of at most two ULQs. The following lemma, whose proof is

straightforward and thus is omitted, gives more convenient descriptions of the ULQs in

(HT2) when the observations are normally distributed.
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Lemma 2.6.1. For the symmetric case (HT2), up to a permutation of the values it takes,

a ULQ always takes one of the following two forms: I(X ≥ λ) or I(λ1 ≤ X ≤ λ2), where λ

and λ1 ≤ λ2 are real numbers.

This allows us to do numerical computation of the maximin quantizer for state m = 1

as in Subsection 2.4.2. Numerical computations show that the maximin quantizer for state

m = 1 is also the deterministic quantizer defined by φ1 = I(X > 0) up to the precision of

5 decimal digits, and I1 = 0.07928.

For each of the two scenarios, (HT1) and (HT2), we will consider two versions of our

proposed tests: one is δA(c) for the system with a single sensor, and the other is δ′A(c) for

the system with two independent and identical sensors. As a comparison of our proposed

tests, we also consider an asymptotically optimal centralized test δa proposed in Dragalin et

al. [3, 4] for the system with a single sensor (we omitted another family of asymptotically

optimal centralized test δb proposed in Dragalin et al. [3, 4], since its performance is similar

to that of δa). For δa, the fusion center updates the posterior distribution {πm,n} based on

the raw data {Xn} and its stopping time is defined as N(a) = min1≤m≤M Nm(a), where

Nm(a) = inf{n ≥ 1 : πm,n ≥ Am}. In other words, δa stops as soon as one of the posterior

probability πm,n passes the threshold Am, which can take different values for different m.

In the numerical simulation given in [4], the values of these thresholds are as follows. For

the asymmetric case (HT1), A0 = A1 = 1 − 3.99 × 10−3, A2 = 1 − 5.33 × 10−3, while for

the symmetric case (HT2), A0 = A1 = A2 = 1 − 3.99 × 10−3. These particular values for

the thresholds tune the overall probabilities of making incorrect decisions with test δa to

1.0± 0.1× 10−3.

In our simulations, the cost c = 3.6× 10−3, and the threshold u(c) at the first stage of

our proposed tests δA(c) and δ′A(c) is set as 0.1. Because of the selection of the parameters,

δA, δ′A, and δa have similar probabilities of making incorrect decisions, i.e., 1.0±0.1×10−3.

Thus it suffices to report the simulated expected time steps Em {N} under each of the three

hypotheses Hm for m = 0, 1, 2, as smaller values of Em{N} imply better performance of

the test (in the sense of smaller Bayes risks). These results are reported in Table 1.
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Table 1: Expected values of time steps taken for each of the three tests.
Em{N} δa δA(c) δ′A(c)

m = 0 46.48 73.5±0.9 36.8±0.7
Asymmetric (HT1) m = 1 48.39 77.7±0.9 38.9±0.7

m = 2 11.90 19.8±0.2 9.9±0.1

m = 0 46.59 73.4±0.9 37.8±0.6
Symmetric (HT2) m = 1 69.43 110.2±0.9 55.2±0.7

m = 2 46.60 73.4±0.9 37.8±0.6

The numerical results illustrate that the centralized test, δa, indeed performs bet-

ter than the decentralized test δA(c) that makes a final decision based on binary sensor

messages instead of raw normal observations. However, Table 1 demonstrates that for

(HT1) and (HT2), the loss of information is not so significant. As in Mei [24, 25], if

we define the efficiency of a decentralized test δ as compare to the centralized test δa by

e(δ) = min1≤m≤M Em {Na} /Em {N} , where N and Na are the respective stopping times

of δ and δa that satisfy a given probability of making incorrect decisions. In our simulation,

the efficiency of δA(c) is 60.1% in (HT1) and 63.0% in (HT2), respectively. This implies

that when more than one sensors provide information to the fusion center, we will need

1/e(δ) ≈ 1.6 as many sensors in order for the decentralized test to beat the centralized

test. This is consistent with the existing decentralized detection literature, also see Tar-

takovsky et al. [37]. In particular, our simulation result of δ′A(c) illustrate that if we have

two identical sensors the expected sample size Em {N} will be cut roughly into half, and a

decentralized test with two sensors can outperform a centralized test with a single sensor.

All these are consistent with our asymptotic analysis.

2.7 Proofs of Theorems 2.4.3 and 2.5.1

Since quantizers, especially randomized quantizers, play an important role in our theorems,

we will gather some useful results for quantizers in this section, including the proofs of

Theorems 2.4.3 and 2.5.1. Without loss of generality, we focus on the system with a single

sensor, and assume that the quantized messages belong to a finite alphabet, say, {0, 1, . . . , l−

1}. For a (deterministic or randomized) quantizer φ̄ ∈ Φ̄, define its distribution vector as a
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vector of length Ml:

q(φ̄) = (q(i;m, φ̄)) 0≤i≤l−1; 0≤m≤M−1

where q(i;m, φ̄) = Pm
{
φ̄(X) = i

}
. As in Tsitsiklis [40], the key observation is that while a

(randomized) quantizer φ̄ belongs to infinite dimensional functional space, its distribution

quantizer vector q(φ̄) not only belongs to a finite-dimensional space of dimension = Ml,

but also captures all (statistical) information of φ̄. Thus a crucial idea of deriving optimal

quantizers is to reduce the space dimension from infinite to finite by investigating the

properties of q(φ̄).

First, let us consider four subspaces induced by the distribution vectors q(φ̄) :

• Let Q be the set formed by the distribution vectors of all deterministic quantizers,

i.e., Q = {q(φ) : φ ∈ Φ};

• Let Q̄ = {q(φ̄) : φ̄ ∈ Φ̄} be the set formed by the distribution vectors of all quantizers,

deterministic or random;

• Denote by QU ⊂ Q the set of distribution vectors of all ULQs (see Definition 2.5.1);

• Denote by Qα the set of extreme points (or corners) of (the compact convex set) Q̄.

By Tsitsiklis [40], Q is compact and Q̄ is the compact convex hull of Q. By the Krein-

Milman theorem, the compact convex set Q̄ is also the convex hull of its extreme points

Qα. Thus it is useful to characterize Qα. Tsitsiklis [40] showed that QU ⊂ Qα ⊂ Q, and

QU is a dense subset of Qα. Moreover, it also studied in detail the case of testing M = 2

hypotheses. The case of M ≥ 3 hypotheses is clearly more challenging. Fortunately, below

we are able to show that Qα = QU for M ≥ 3 hypotheses under some reasonable additional

assumptions.

Lemma 2.7.1. If the sensor messages are binary (i.e., l = 2) and the pdf’s {f0, . . . , fM−1}

are linearly independent (as defined in Subsection 2.4.2), then Qα = QU .

Proof. Since QU is a subset of Qα, it is sufficient to show that if the 2M -dimensional

vector q0 = (q0
0m, q

0
1m)0≤m≤M−1 ∈ Qα (with q0

0m + q0
1m = 1), then q0 ∈ QU . Since QU is
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dense in Qα, there is a sequence of ULQs φj , say, φj(X) = I(
∑M−1

m=0 a
j
mfm(X) > 0) with∑M−1

m=0 (ajm)2 = 1, such that q(φj)→ q0, or equivalently, limj→∞ Pm
{
φj(X) = 1

}
= q0

1m for

each m.

By the Bolzano-Weierstrass theorem, each bounded sequence has a convergent subse-

quence. By passing to subsequences, we can simply assume that ajm converges to a0
m for

each state m. Then
∑M−1

m=0 (a0
m)2 = 1, and we can define two quantizers:

φ0(X) = I(

M−1∑
m=0

a0
mfm(X) > 0)

and

ϕ0(X) = I(
M−1∑
m=0

a0
mfm(X) ≥ 0).

By the dominated convergence theorem, for each m,

Em
{
φ0(X)

}
≤ lim inf

j→∞
Em

{
φj(X)

}
≤ lim sup

j→∞
Em

{
φj(X)

}
≤ Em

{
ϕ0(X)

}
.

Since the pdf’s are assumed to be linearly independent, φ0(X) is a ULQ, and Em
{
φ0(X)

}
=

Em
{
ϕ0(X)

}
. Thus, limEm

{
φj(x)

}
= Em

{
φ0(X)

}
and q0

1m = limPm
{
φj(x) = 1

}
=

Pm
{
φ0(X) = 1

}
for each m, since the sensor messages are binary. This implies that

q0 = q(φ0) ∈ QU , and the lemma is proved.

Second, we need to pass the definition of the K-L divergences from quantizer φ̄ to the

distribution vectors q(φ̄). Given q = q(φ̄) ∈ Q̄, denote qi,m = q(i;m, φ̄) = Pm
{
φ̄(X) = i

}
,

where i = 0, . . . , l − 1 and m = 0, . . . ,M − 1. For 0 ≤ m 6= m′ ≤ M − 1, define the K-L

divergence of the distribution vector q of state m′ from state m by

J(m,m′; q) =

l−1∑
i=0

qi,m log
qi,m
qi,m′

(27)

where as conventional 0 log 0
0 = 0.

Note that for a randomized quantizer φ̄, the definition of J(m,m′; q(φ̄)) is equivalent to

the K-L divergence defined in (8), and Tsitsiklis [40] investigated the corresponding optimal

quantization problems. However, in our context, the K-L divergence of a randomized quan-

tizer φ̄ is defined in (9), and thus the results of Tsitsiklis [40] are not directly applicable.
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Fortunately, the idea can be salvaged by introducing a new definition of K-L divergence.

To do so, let M̄ be the set of Borel probability measures on Q̄, for each µ ∈ M̄ and two

states 0 ≤ m 6= m′ ≤M − 1 define

J∗(m,m′;µ) =

∫
Q̄

J(m,m′; q)dµ(q) (28)

and

J∗(m;µ) = min
m′ 6=m

J∗(m,m′;µ). (29)

Then for a randomized quantizer φ̄ ∈ Φ̄, the K-L divergence defined in (9) is equivalent to

J∗(m,m′;µ) for some suitably chosen µ. To see this, note that φ̄ assigns probability masses

to a finite or countable subset of Φ, and thus induces a probability measure µ(φ̄) on Q.

Hence, I(m,m′; φ̄) = J∗(m,m′;µ(φ̄)) and

I(m; φ̄) = J∗(m;µ(φ̄)). (30)

Next, we need to investigate how to use the J∗(m;µ)’s in (29) to characterize the

maximin information number I(m) in Definition 2.4.1 in Subsection 2.4.1. Our next result

provides an alternative representation of I(m).

Lemma 2.7.2. The maximin information number

I(m) = sup
µ∈M

J∗(m;µ) = sup
µ∈M̄

J∗(m;µ),

where M⊂ M̄ is the set of probability measures supported on Q.

Proof. Denote by M0 and M̄0 the set of probability measures on Q and Q̄ that have at

most countable supports, respectively. By (30), supµ∈M0 J∗(m;µ) = I(m), and thus

I(m) ≤ sup
µ∈M

J∗(m;µ) ≤ sup
µ∈M̄

J∗(m;µ).

By Tsitsiklis [40], J(m,m′; q) is bounded and continuous as a function of q ∈ Q̄. Hence

J∗(m,m′;µ) and J∗(m;µ) are also continuous viewed as functions of µ ∈ M̄ (under weak-

convergence). Thus the lemma follows at once from the denseness of M0 (or M̄0) in

M (or M̄), provided that I(m) ≥ supµ∈M̄0 J∗(m;µ). Hence, it suffices to show that for
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each µ ∈ M̄0, there exists a µ′ ∈ M0 such that J∗(m,m′;µ) ≤ J∗(m,m′;µ′) for each

m′ 6= m. By linearity, we only need to prove it under the further assumption that µ ∈ M̄0

is supported on a single point q = q(φ̄) for a randomized quantizer φ̄ ∈ Φ̄. In this case

J∗(m,m′;µ) = J(m,m′; q) ≤ I(m,m′; φ̄). By our previous argument, φ̄ can be identified

to a probability measure µ′ = µ(φ̄) ∈ M0 with the property I(m,m′; φ̄) = J∗(m,m′;µ′).

Therefore J∗(m,m′;µ) ≤ J∗(m,m′;µ′), completing the proof of the lemma.

Finally, we are in a position to prove Theorems 2.4.3 and 2.5.1.

Proofs of Theorem 2.4.3 and Theorem 2.5.1. Note that Theorem 2.4.3 is a special case of

Theorem 2.5.1, and follows at once from Theorem 2.5.1 and Lemma 2.7.1 under the as-

sumption of binary sensor messages and linearly independent pdf’s in which QU = Qα. By

symmetry and the fact that QU is a dense subset in Qα, it is sufficient to show that under

the assumption of Theorem 2.5.1, for the state m = 0, there exists a maximin quantizer

which is a randomization of at most M −1 quantizers with their distribution vectors in Qα.

Define two sets in the M − 1 dimensional space, I = {(J(0, 1; q), . . . , J(0,M − 1; q)) :

q ∈ Q}, and Iα = {(J(0, 1; q), . . . , J(0,M − 1; q)) : q ∈ Qα}. Define the same for I ∗

and I ∗α when J(0,m; q) is replaced by J∗(0,m;µ) with µ ∈ M and µ ∈ Mα, respectively,

whereMα is the set of probability measures supported in Qα. As we have mentioned earlier,

J(0,m; q) is continuous if viewed as a function of q ∈ Q, so both I and Iα are compact.

Obviously, I ∗ and I ∗α are convex hulls of I and Iα, so they are compact as well. The

main idea of the proof is to relate the maximin information number I(0) with the set I ∗α .

First, we claim that I(0) = supJ∈I ∗α
h(J), where h(·) is a function on the M − 1 dimen-

sional space defined by h(x1, . . . , xM−1) = min{x1, . . . , xM−1}. By Lemma 2.7.2, we have

I(0) = supJ∈I ∗ h(J). Since I ∗α ⊂ I ∗, to prove the claim, we only need to show, for any

J ∈ I ∗, there exists J ′ ∈ I ∗α , such that each component of J is less than or equal to

the corresponding component of J ′. By linearity, it is sufficient to prove for J ∈ I , say,

J = (J(0, 1; q), . . . , J(0,M − 1; q)) for some q ∈ Q. Decompose q as a convex combination

of points in Qα: q =
∑
pjqj , then

J(m,m′; q) ≤
∑

pjJ(m,m′; qj), 0 ≤ m 6= m′ ≤M − 1.
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Let J ′ = (J∗(0, 1;µ), . . . , J∗(0,M − 1;µ)) with µ assigns probability mass pj to qj for each

j, and our claim is justified.

Second, we will show that

sup
J∈I ∗α

h(J) = min
1≤m≤M−1

J∗(0,m;µ0) (31)

for a probability µ0 ∈ Mα whose support includes at most M − 1 points. To see this,

note that I ∗α is a compact convex subset in M − 1 dimensional space. Thus h(·) attains its

maximum at a point J̃ on the surface of I ∗α and J̃ can be realized as a convex combination of

at most M−1 points in I ∗α , see, for example, Hormander [9]. Suppose that J̃ =
∑M−1

j=1 pj0J
j ,

where
∑
pj0 = 1 and J j ∈ I ∗α . For each j, let J j = (J(0, 1; qj0), . . . , J(0,M − 1; qj0)),

with qj0 ∈ Qα. Define µ0 ∈ Mα be a probability measure such that µ0(qj0) = pj0, for

j = 1, . . . ,M − 1, then (31) holds.

Finally, define the randomized quantizer φ̄0 as the one induced by the measure µ0 in

(31). Then I(0) = minm 6=0{I(0,m; φ̄0)} and φ̄0 can be rewritten as
∑M−1

j=1 pj0φ
j
0 where φj0

has qj0 as its distribution vector. Equivalently, φ̄0 is just the maximin quantizer φ̄max
0 , and it

can be taken as a randomization of at most M−1 quantizers with their distribution vectors

in Qα. This completes our proof.

As a final remark about maximum quantizers, the main difference between Theorem

2.4.3 and Theorem 2.5.1 is due to Lemma 2.7.1 that shows QU = Qα under the assumption

of binary sensor messages and linearly independent pdf’s. It is natural to ask whether we

can extend Lemma 2.7.1 beyond binary sensor messages? In other words, when the sensor

messages belong to a finite alphabet {0, 1, · · · , l− 1} with l ≥ 3, will we still have QU = Qα

for linearly independent pdf’s? Unfortunately, the answer is “No!” The following illustrates

why the proof of Lemma A.1 cannot go through when l = 3.

For l = 3, note that a ULQ of form φ(X) = arg min0≤i≤2

∑M−1
m=0 a

∗
i,mfm(X) can be

rewritten as

φ(X) =


0, if

∑M−1
m=0 a1,mfm(X) < 0 and

∑M−1
m=0 a2,mfm(X) < 0

1, if
∑M−1

m=0 a1,mfm(X) > max(0,
∑M−1

m=0 a2,mfm(X))

2, if
∑M−1

m=0 a2,mfm(X) > max(0,
∑M−1

m=0 a1,mfm(X))

,
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where ai,m = a∗0,m − a∗i,m. That is, without loss of generality, we can set
∑M−1

m=0 a
∗
i,mfm(X)

as the baseline and focus on the difference between these functions, which also leads to our

definition of ULQ in Definition 2.4.2 for binary sensor messages. For l ≥ 3, the normalization

constraint imposed the coefficients a1,m’s and a2,m’s is

M−1∑
m=0

(a1,m)2 +
M−1∑
m=0

(a2,m)2 = 1,

since we cannot normalize a1,m’s and a2,m’s individually. Now let us proceed as in Lemma

A.1 for l ≥ 3. Given an extreme point of quantizer q0 ∈ Qα and since QU is dense in Qα,

we have a sequences of ULQs φj , with coefficients aj1,m’s and aj2,m’s, such that q(φj)→ q0.

Again, by the Bolzano-Weierstrass theorem, without loss of generality, we can assume that

for each m, the sequences aj1,m and aj2,m converge to a0
1,m and a0

2,m, respectively, as j goes

to ∞. Denote by φ0(X) the “ULQ” defined by the limits a0
1,m’s and a0

2,m’s. In Lemma

A.1 we show that q0 = q(φ0) for binary sensor messages. When l ≥ 3, it can be shown

that this is still true except the following three “degenerate” cases: (i) a0
1,m’s are zero for

all m = 0, 1, . . . ,M − 1; (ii) a0
2,m’s are zero for all m; and (iii) a0

1,m = a0
2,m for all m. For

example, in the first degenerate case when a0
1,m’s are zero for all m, in general q0 6= q(φ0),

since Pm(φ0(X) = 1) = 0 as φ0(X) = 2 × 1{
∑M−1

m=0 a
0
2,mfm(X) > 0} is a ULQ for binary

messages of “0” and “2.” It is interesting to see that in this case, the extreme point q0 is not

a ULQ, but it can be written as a combination of two ULQ’s for binary sensor messages:

q0 =


0, if φ0(X) = 0 and ψ∗(X) = 0

1, if φ0(X) = 0 and ψ∗(X) = 1

2, if φ0(X) = 2

,

where φ0(X) = 2×1{
∑M−1

m=0 a
0
2,mfm(X) > 0} and ψ∗(X) = I{

∑M−1
m=0 a

∗0
1,mfm(X) > 0}. Here

we normalize the sequences aj1,m by

a∗j1,m =
aj1,m∑M−1
m=0 a

j
1,m

and assume that for each m, (some subsequence of) a∗j1,m converges to a∗01,m as j goes to

∞. The result can be extended to characterize the extreme quantizers that correspond to

extreme points of quantizers in the general case of l ≥ 3 in a recursive approach: all extreme
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quantizers for l sensor messages are either ULQs or a combination of extreme quantizers

for i < l sensor messages.

2.8 Proof of Theorem 2.4.1

The main idea in the proof of Theorem 2.4.1 is to condition on the preliminary decision D0

of the two-stage test δ(c). In the following we will focus on the proof of (15) to highlight the

associated technical mathematical problems that need special attention. Denote by N0 and

N1 the total time steps of the first and second stages of the two-stage test δ(c), respectively,

then the total time step N taken by δ(c) satisfies

Em {N} = Em {N0}+ Em {N1}

= Em {N0}+ Em {N1|D0 = m}Pm {D0 = m}+ Em {N11{D0 6= m}} .

Note that at the first stage of our proposed two-stage test δ(c), since the local sensor uses

stationary (deterministic) quantizers, the sensor messages Un’s are i.i.d. and the fusion

center essentially faces the classical centralized sequential multi-hypothesis testing problems.

Thus by standard arguments, the stopping boundary of 1−u(c) at the first stage guarantees

that Pm{D0 = m} = 1 − O(u(c)) and Em{N0} = O(| log u(c)|). Since u(c) → 0 satisfies

| log u(c)|/| log c| → 0, e.g., u(c) = 1/| log c|, we have Pm{D0 = m} = 1−o(1) and Em{N0} =

o(| log c|). Hence, equation (15) holds if we can further show that

Em{N1|D0 = m} = (1 + o(1))| log c|/I(m; φ̄m) (32)

Em{N11{D0 6= m}} = o(| log c|). (33)

To prove (32) and (33), note that at time n of the second stage of our proposed two-stage

test δ(c), the log-likelihood ratio statistic of the latest sensor message at the fusion center

is

∆Zn(m,m′;φj(n)) = log
fm(Un;φj(n))

fm′(Un;φj(n))
,

where φj(n) is the deterministic quantizer selected through the randomization at time step

n and Un = φj(n)(Xn) is the quantized sensor message. Hence, for our proposed two-stage
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test, the log-likelihood ratio statistic of sensor messages from the beginning of the second

stage to the time n of the second stage is

Zn(m,m′; φ̄) =
n∑
i=1

∆Zi(m,m
′;φj(i)). (34)

Furthermore, since φ̄ is assumed to be a randomization of a finite number of deterministic

quantizers, our implementation of randomized quantizers implies that {∆Zn(m,m′;φj(i)), n =

1, 2, . . . } is a sequence of i.i.d. random variables with mean I(m,m′; φ̄) in (9) and finite

variance (If we adopt periodic block design, then the arguments need some modifications

by letting Un represent each block).

To prove (32), let us focus on the “ ≤ ” part, as the “ ≥ ” part can be proved similarly

(or through the general result of Theorem 4.2 on lower bound). It is sufficient to prove the

following stronger result:

sup
~πN0

Em {N1|D0 = m,~πN0} ≤ (1 + o(1))| log c|/I(m; φ̄m)

where ~πN0 = (π0,N0 , . . . , πM−1,N0) denotes the posterior distribution at time N0. For a given

~πN0 , this relation follows at once from the fact that Zn(m,m′; φ̄)} is the sum of i.i.d. random

variables with mean I(m,m′; φ̄) in (9) and finite variance, but we need some extra work to

prove that it also holds uniformly regardless of the values of ~πN0 .

For that purpose, let Bc = | log c
1−c |+ | log(1−u(c))| and consider the following stopping

time:

T (Bc; φ̄m) = inf{n ≥ 1 : min
m′:m′ 6=m

Zn(m,m′; φ̄m) ≥ Bc} (35)

where Zn(m,m′; φ̄m) is the log-likelihood ratio in (34) except that the quantizer φ̄ is now

replaced by φ̄m, i.e., Zn(m,m′; φ̄m) is the log-likelihood ratio of sensor messages during the

time step N0 + 1 and N0 + n when conditioning on {D0 = m}. By (13), given the state m,

at time n of the second stage (i.e., at the time step N0 + n), the posterior probability

πm,n =
πm,N0

πm,N0 +
∑

m′ 6=m πm′,N0 exp(−Zn(m,m′, φ̄))
. (36)

Hence, at the time n∗ = T (Bc; φ̄m), we have

πm,n∗ ≥
πm,N0

πm,N0 + (1− πm,N0) exp(−Bc)
,
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where we use the fact that
∑

m′ 6=m πm′,N0 = 1 − πm,N0 . Now conditioning on Pm{·|D0 =

m,~πN0}, we have πm,N0 ≥ 1−u(c). By our choice of Bc, we have exp(−Bc) = c
1−c(1−u(c)) ≤

c
1−cπm,N0 . Hence,

πm,n∗ ≥
1

1 + (1− πm,N0)c/(1− c)
≥ 1

1 + c/(1− c)
= 1− c,

and thus N1 ≤ T (Bc; φ̄m). In other words, conditioning on Pm{·|D0 = m,~πN0}, the stopping

time N1 of our proposed two-stage test is dominated by T (Bc; φ̄m), which does not depend

on ~πN0 . By the law of large numbers, we have Em{T (Bc; φ̄m)}/Bc → 1/I(m; φ̄m), also see

Theorem 5.1 of Baum and Veeravalli [1]. Since log u(c) = o(| log c|) and Bc is the same

order as | log c|, the ≤ part of relation (32) is proved. The ≥ part of the relation can be

proved similarly and thus relation (32) holds.

The proof of (33) is more technically involved. It suffices to show that Em{N11{D0 =

m′}} = o(| log c|) for eachm′ 6= m. Now when {D0 = m′}, our proposed two-stage procedure

δ(c) uses the stationary (likely randomized) quantizer φ̄m′ at the second stage. Intuitively,

due to a wrong preliminary decision, a suboptimal quantizer φ̄m′ is used at the second stage

when the true state of nature is m. Recall that a key assumption of our theorem is that

I(m, φ̄m′) > 0, and thus when the true state of nature is m, this suboptimal quantizer

still brings in positive information in favor of making a correct final decision {D = m}. On

average the proposed two-stage test takes roughly N2 ≈ | log c|/I(m, φ̄m′) = O(| log c|) steps

at the second stage to increase the posterior probability πm,n from πm,N0 to πm,N (≥ 1− c).

The difficulty arises from the fact that πm,N0 can be truly small if the preliminary decision

{D0 = m′} is wrong, as πm′,N0 ≥ 1 − u(c) by definition, and we need to show that such

event is negligible (exponentially bounded).

To be more rigorous, as in (35), define a new stopping time (on the second stage)

T ∗ = inf{n ≥ 1 : min
m′′:m′′ 6=m

Zn(m,m′′; φ̄m′) ≥ B∗},

where Zn(m,m′′; φ̄m′) is defined as in (34) except that the stationary quantizer is given by

φ̄m′ , and

B∗ = | log
c

1− c
|+ | log πm,N0 |.
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As compared to T (Bc; φ̄m) in (35), T ∗ has a different quantizer φ̄m′ and a different thresh-

old B∗. By assumption, I(m; φ̄m′) = minm′′ 6=m I(m,m′′; φ̄m′) > 0 and thus Em{T ∗} =

(1 + o(1))B∗/I(m; φ̄m). Furthermore, it follows from (36) that conditioning on Pm{·|D0 =

m′, ~πN0}, the stopping time N1 of our proposed two-stage test is dominated by T ∗. Then

Em
{
N11{D0 = m′}

}
≤ Em

{
T ∗1{D0 = m′}

}
= Em

{
(1 + o(1))B∗1{D0 = m′}/I(m; φ̄m′)

}
= (1 + o(1))/I(m; φ̄m′)Em

{
B∗1{D0 = m′}

}
≤ O(1)Em

{
(| log

c

1− c
|+ | log πm,N0 |)1{D0 = m′}

}
= O(| log

c

1− c
|)Pm

{
D0 = m′

}
+O(1)Em

{
| log πm,N0 |1{D0 = m′}

}
= o(| log c|) +O(1)Em

{
| log πm,N0 ||1{D0 = m′}

}
,

where we use the fact that Pm {D0 = m′} = o(1). Thus, to prove (33), it remains to show

that Em {| log πm,N0 |1{D0 = m′}} = o(| log c|). Below we will prove a stronger statement

that

Em {| log πm,N0 |1{D0 6= m}} = o(1). (37)

To prove (37), it is sufficient to focus on the first stage of our proposed two-stage test.

Note that by our construction, when N0 = n (a finite time step), we have

1− πm,n
πm,n

=
∑
m′ 6=m

πm′

πm
exp(−Zn(m,m′, φ0)).

By definition, at time N0, if D0 = m′ then πm′,N0 ≥ 1− u(c) > 1/2. So πm,N0 < u(c) < 1/2

and for all L > 0,

Pm {| log πm,N0 | > L,D0 6= m}

≤ Pm

{
1− πm,N0

πm,N0

> eL/2, D0 6= m

}

≤ Pm

sup
n≥1

∑
m′:m′ 6=m

πm′

πm
exp{−Zn(m,m′;φ0)} > eL/2


≤ Pm

{
sup
n≥1

[1− πm
πm

max
m′:m′ 6=m

exp{−Zn(m,m′;φ0)}
]
> eL/2

}
= Pm

{
min

m′:m′ 6=m
inf
n≥1

Zn(m,m′;φ0) < −L+ log
2(1− πm)

πm

}
,
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where in the second to last relation, we replace each term by the maximum term and

then use the fact that
∑

m′ 6=m πm′ = 1 − πm. Assume for a moment that the minimum

Z∗ = minm′:m′ 6=m infn≥0 Zn(m,m′;φ0) is exponentially bounded in the sense that there

exists a constant C1 > 0 and 0 < ρ < 1 such that for any L > 0,

Pm {Z∗ ≤ −L} ≤ C1ρ
L. (38)

Then we have

Pm {| log πm,N0 | > L,D0 6= m} ≤ C2ρ
L

with the constant C2 = C1 exp(− log ρ log 2(1−πm)
πm

). Consequently,

Em {| log πm,N0 |1{D0 6= m}}

= Em {| log πm,N0 |1{D0 6= m, | log πm,N0 | ≥ | log u(c)|}}

≤ C2

∞∫
| log u(c)|

ρLdL

=
C2

| log ρ|
ρ| log u(c)|

which goes to 0 as c→ 0. Thus (37) is proved and the theorem holds.

It remains to prove (38). Note that such an exponential boundness is not surprising,

and it is instructive to look at a well-known result for Brownian motion. Let B(t) denote

standard Brownian motion with mean zero and variance parameter 1. Then for all positive

L, µ and σ,

P(inf
t≥0
{σB(t) + µt} ≤ −L) = exp(−2µσ−2L).

To prove (38), since the log-likelihood ratio statistic Zn(m,m′; φ̄) in (34) is the sum of i.i.d.

random variables with positive mean and finite variance under Pm, the minimum

Z∗m′ = inf
n≥0

Zn(m,m′; φ̄)

is a well-defined (non-positive valued) random variable under Pm. Moreover,

Pm {Z∗ ≤ −L} ≤
∑

m′:m′ 6=m
Pm {Z∗m′ ≤ −L} .
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Thus, to prove (38), it suffices to show that Z∗m′ is exponentially bounded for each m′.

Define a stopping time τ− = inf{n : Zn(m,m′; φ̄) < 0} and let Y1, Y2, . . . be i.i.d. random

variables, where Y1 = Zτ−(m,m′; φ̄) conditional on the event τ− <∞. Then it is well-known

that Z∗m′ has the same distribution as
∑Ñ

i=1 Yi, where Ñ is a geometric random variable

independent of Yi’s such that P (Ñ = n) = p(1− p)n with p = Pm{Z∗m′ = 0} > 0, see Klass

[13], or Lemma 11.3 and Remark 11.3 of Gut [7]. Now in our case, since Un is discrete and

φ̄ is randomization of a finite number of deterministic quantizer, ∆Zn(m,m′; φ̄) has a lower

bound, say −C for some C > 0. Thus Y1 = Zτ−(m,m′; φ̄) also has a lower bound −C. So

Pm {Z∗m′ ≤ −L} = P (
Ñ∑
i=1

Yi ≤ −L)

= P (Ñ ≥ L/C)

= (1− p)[L/C]

where the last relation uses the fact that Ñ is geometrically distributed. Hence Z∗m′ is

exponentially bounded and this completes the proof of the theorem.

2.9 Proof of Theorem 2.4.2

To prove Theorem 2.4.2, the main idea is to construct a martingale based on log-likelihood

ratios and then apply the optional stopping theorem and Wald’s inequalities. Denote by φ̃n

the quantizer used at the fusion center for decision making at time step n. Note that since

Theorem 2.4.2 deals with general decentralized sequential tests, randomized quantizers may

or may not be implemented as we proposed for the two-stage tests. For example, when a

randomized quantizer φ̄ =
∑
pjφj is implemented and the fusion center knows that the

deterministic quantizer φj(n) is picked at time step n, then φ̃n = φj(n). Meanwhile, if the

randomization is done at the local sensor and the fusion center has no access about which

deterministic quantizer is picked, then φ̃n = φ̄.

Let Un be the sensor message at time step n and let q(φ̃n) be the distribution vec-

tor of φ̃n. For n = 1, 2, . . . , define Fn−1 as the σ-algebra generated by U1, . . . , Un−1 and

q(φ̃1), . . . , q(φ̃n). In other words, Fn−1 is all the past information available to the fusion

center before the nth time step. Then at time step n, the log-likelihood ratio of state m

38



with respect to state m′ is Zn =
∑n

i=1 ∆Zi, where

∆Zi = log
fm(Ui|Fi−1)

fm′(Ui|Fi−1)

and fm(·|Fi−1) is the conditional probability mass function induced on Ui under Pm.

Since Ui depends on Fi−1 only through φ̃i, fm(·|Fi−1) is simply fm(·; φ̃) in (8), and thus

Em{∆Zi|Fi−1} = J(m,m′; q(φ̃i)) in (27). Therefore,

Mn =
n∑
i=1

[
∆Zi − J(m,m′; q(φ̃i))

]
= Zn −

n∑
i=1

J(m,m′; q(φ̃i))

forms a martingale under Pm with respect to {Fn}. Applying the optional stopping theorem

to the martingale {Mn;Fn}, for the stopping time N of a decentralized test δ(c), we have

Em(MN ) = 0, or equivalently,

Em {ZN} = Em

{
N∑
i=1

J(m,m′; q(φ̃i))

}
. (39)

Now let us go back to the proof of Theorem 2.4.2. Obviously, for a decentralized test

δ(c) satisfying the error probability assumption in Theorem 2.4.2, if the sample size N

satisfies Em {N} = ∞, then Theorem 2.4.2 holds. Thus we only need to consider the case

when Em {N} < ∞. To derive the asymptotic lower bound on Em {N} , we construct a

new test δ′(c) that accepts Hm if the final decision of δ(c) is D = m but accepts Hm′ (for

a given m′ 6= m) if D 6= m. Then this new test δ′(c) is a well-defined sequential test in the

problem of testing a simple hypothesis Hm against a simple alternative Hm′ . Moreover, the

assumption of Theorem 2.4.2 guarantees that both type I and type II errors of δ′(c) are less

than αc = Ac| log c|, where A > 0 is a constant. Hence, ZN represents the log-likelihood

ratio of the test δ′(c) when stopped and by Wald’s inequalities (also see Theorem 2.39 of

Siegmund [34]),

Em {ZN} ≥ (1− αc) log(
1− αc
αc

) + αc log(
αc

1− αc
)

≥ (1− αc)| logαc| − log 2

= | log c| − log | log c|+O(1)

as c→ 0, where the O(1) term depends only on A. Here the second inequality follows from

the facts that α log(1 − α)−1 is nonnegative and that (1 − α) log(1 − α) + α logα attains
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minimum value − log 2 when α = 1
2 . By (39), we have

Em

{
N∑
i=1

J(m,m′; q(φ̃i))

}
≥ | log c| − log | log c|+O(1). (40)

Now we claim that the left-hand side of (40) can be rewritten as J∗(m,m′;µm)Em {N}

for a suitably chosen probability measure µm on Q̄, where J∗(m,m′;µm) is defined as in

(28). Then the theorem follows at once from this claim, relation (40), and Lemma 2.7.2. It

remains to prove this claim. To do so, define µm as a convex combination of a sequence of

probability measures {µm,n,i : i ≤ n} as follows.

µm =
∞∑
n=1

n∑
i=1

Pm{N = n}
Em{N}

µm,n,i.

Then let µm,n,i be the distribution of q(φ̃i) under Pm and conditioned on the event N = n.

In other words, for any Borel set A ⊂ Q̄, µm,n,i(A) = Pm{q(φ̃i) ∈ A|N = n}. We have

Em {N} J∗(m,m′;µm)

= Em {N}
∞∑
n=1

n∑
i=1

Pm {N = n}
Em {N}

J∗(m,m′;µm,n,i)

=

∞∑
n=1

Pm {N = n}
n∑
i=1

Em

{
J(m,m′; q(φ̃i))

∣∣∣N = n
}

=

∞∑
n=1

n∑
i=1

Em

{
J(m,m′; q(φ̃i))1{N = n}

}
= Em

{
N∑
i=1

J(m,m′; q(φ̃i))

}
.
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CHAPTER III

A GENERALIZATION OF KULLBACK-LEIBLER INEQUALITY

In this chapter we extend the Kullback-Leibler inequality to investigate the quantization

effects on the second-order (or other general order) moments of likelihood ratios, thereby

simplifying our asymptotic arguments in decentralized sequential detection problems. We

devote this chapter to discuss this mathematical result, since it stands out by its own

importance.

3.1 Introduction

In Subsection 2.2, we already defined the Kullback-Leibler divergence for the distributions

of quantizers, which are discrete. In information theory and statistics, the K-L divergence

can be defined for two general distributions P0 and P1 of any random variable X and is

a fundamental quantity that characterizes the difference between them. Denote by f1(x)

and f0(x) the densities of P1 and P0 with respect to some common underlying probability

measure µ, then the Kullback-Leibler divergence from P0 to P1 is

I(f0, f1) =

∫
f0(x) log

f0(x)

f1(x)
dµ = E0{Z}

where Z is the log-likelihood ratio

Z = log
f0(X)

f1(X)

and E0 means taking the expectation over the distribution P0.

In some applications, the random variable X itself may be unobservable and what is

actually observed is another variable Y that is a quantization of X, or more generally,

a function of X, say Y = φ(X). Denote by P φi and fi(y;φ) the probability distribution

and probability mass (or density) function of Y when X has a distribution Pi. Then the

Kullback-Leibler divergence of the Y is

I(f0, f1;φ) = E0 {Zφ}
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where the log-likelihood ratio of Y = φ(X)

Zφ = log
dP φ0

dP φ1
(Y ) = log

f0(Y ;φ)

f1(Y ;φ)
.

Obviously, the theories of Subsection 2.2 just correspond to the case where φ is a quantizer,

i.e., a function taking value in a finite set.

An important property is that quantization cannot increase the Kullback-Leibler diver-

gence, that is,

Iφ(f1, f0) ≤ I(f1, f0) (41)

with equality if and only if Y = φ(X) is a sufficient statistics of X, see Theorem 4.1 of

Kullback and Leibler [14]. This is consistent with our intuition that Y = φ(X) is generally

less informative than the X itself. Note that the inequality (41), which will be referred as

Kullback-Leibler’s inequality below, deals with the expected value or first moment of the

log-likelihood ratio.

In this section, we extend the Kullback-Leibler inequality (41) to investigate the quan-

tization effects on the second or other higher moments of the log-likelihood ratio. Such a

result will be closely related to the decentralized sequential detection problem introduced

in Chapter 2. Specifically, it yields a uniform bound on the second moments of the log-

likelihood ratios over all allowable quantization function φ’s. With such a bound, many

results can be greatly improved and proofs can be simplified.

3.2 Second-order Moments

For the X and Y = φ(X), define their respective second moments of log-likelihood ratios as

V (f0, f1) = E0

{
Z2
}

= E0

{(
log

f0(X)

f1(X)

)2
}

and

Vφ(f0, f1) = E0

{
Z2
φ

}
= E0

{(
log

f0(Y ;φ)

f1(Y ;φ)

)2
}
,

where Z and Zφ are the log-likelihood ratios of X and Y.

Our main result is as follows.
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Theorem 3.2.1. For any measurable function φ, we have

Vφ(f0, f1) ≤ V (f0, f1) +
2

e
. (42)

Proof. Let L = eZ = f0(X)/f1(X) and Lφ = eZφ = f0(Y ;φ)/f1(Y ;φ) be the likelihood

ratios. To simplify notation, let E0{·|Y } denote the conditional expectation with respect

to a given value of the observed data Y = φ(X), then

E0

{
L−1

∣∣Y } = E0

{
f1(X)

f0(X)

∣∣∣∣Y} =
f1(Y ;φ)

f0(Y ;φ)
= L−1

φ .

Recall that in the proof of the Kullback-Leibler’s inequality (41), beside the above equality,

another key step is to observe that the function H(t) = − log t is convex when t > 0. Then,

by Jensen’s inequality, Zφ = logLφ = H(L−1
φ ) = H(E0(L−1|Y )) ≤ E0(H(L−1)|Y ), and

relation (41) is proved by taking expectations on both sides. Unfortunately, this approach

fails for the second moment case since the function H2(t) = (− log t)2 = (log t)2 is no longer

convex (nor is it concave). Fortunately, we can salvage this approach by finding a convex

function that is larger, but not too much larger, than H2(t). Specifically, for the function

H2(t) = (log t)2, taking derivatives leads to H
′
2(t) = 2 log t/t and H

′′
2 (t) = 2(1 − log t)/t2.

Thus H2(t) = (log t)2 is convex on t ≤ e but is concave on t ≥ e. Hence, if we consider the

following new function

H̃2(t) =


H2(t) = (log t)2 if 0 < t ≤ e

H2(e) +H
′
2(e)(t− e) = 2

e t− 1 if t > e

(43)

then H̃2(t) is a continuous convex function of t when t ≥ 0. Moreover, the concavity of

H2(t) on t ≥ e implies that H̃2(t) dominates H2(t), see Fig. 2.

To prove our theorem, by the definitions of H2(t), H̃2(t) and Vφ(f0, f1), we have

Vφ(f0, f1) = E1

{
H2(L−1

φ )
}

≤ E0

{
H̃2(L−1

φ )
}

= E0

{
H̃2

(
E0

{
L−1

∣∣Y })}
≤ E0

{
E0

{
H̃2

(
L−1

)∣∣Y }}
= E0

{
H̃2

(
L−1

)}
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Figure 2: Dominating Function H̃2(t)

where the first inequality follows from H2(t) ≤ H̃2(t), and the second inequality is to apply

Jensen’s inequality to the convex function H̃2(t).

Meanwhile, the difference between E0{H̃2

(
L−1

)
} and V (f0, f1) = E0{H2

(
L−1

)
} turns

out to be insignificant. By the definition of H̃2(t) on (43), we have

E0

{
H̃2

(
L−1

)}
= E0

{
H̃2

(
L−1

)
I
{
L−1 ≤ e

}}
+ E0

{
H̃2 (L) I

{
L−1 > e

}}
= E0

{
H2

(
L−1

)
I
{
L−1 ≤ e

}}
+ E0

{(
2

e
L−1 − 1

)
I
{
L−1 > e

}}
≤ E0

{
H2

(
L−1

)}
+

2

e
E0

{
L−1

}
− P0

{
L−1 > e

}
≤ V (f0, f1) +

2

e

where we use the fact that

E0{L−1} =

∫
(f1(x)/f0(x))f0(x)dµ =

∫
f1(x)dµ = 1.

Combining the above inequalities yields (42), completing the proof of the theorem.

It is useful to provide some comments to better understand our theorem. First, the dis-

crete version of the Kullback-Leibler’s inequality (41) is the well-known log-sum inequality:

for non-negative numbers a1, . . . , an and b1, . . . , bn, denote the sum of all ai’s by a and the
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sum of all bi’s by b, and then we have

a log
a

b
≤

n∑
i=1

ai log
ai
bi

with equality if and only if ai/bi are constant. Meanwhile, the discrete version of our main

result (42) becomes that

a
(

log
a

b

)2 ≤ n∑
i=1

ai
(

log
ai
bi

)2
+

2

e
b,

where the extra term on the right side is 2b/e instead of 2/e since we do not put any

normalization conditions on a or b.

Second, a comparison of (41) and (42) shows that we have an extra constant term 2/e

for the second moment case, and thus it is natural to ask whether or not the term can

be eliminated, i.e., whether it is always true that Vφ(f0, f1) ≤ V (f0, f1). The following

counterexample provides a negative answer. Suppose that the X takes three distinct values

0, 1, 2 with probabilities 29/36, 1/9, 1/12 under P0 and equal probabilities 1/3 under P1.

Let φ be a function with a binary range {0, 1} such that φ(0) = 0, φ(1) = φ(2) = 1. Then

it is easy to verify that V (f0, f1) = 0.9215 ≤ Vφ(f0, f1) = 0.9224. More generally, other

counterexamples can be easily found by choosing two distributions P0 and P1 of X, both

of which are supported on n + 1 (n ≥ 2) points x0, . . . , xn such that the likelihood ratio

L0 = f1(x0)/f0(x0) < e and Li = f1(xi)/f0(xi) > e for i = 1, . . . , n with L1, . . . , Ln being

n distinct values. Then if we consider a quantization function φ that maps all x1, . . . , xn to

a single point y1 but maps x0 to another point y0, then V (f0, f1) ≤ Vφ(f0, f1). To see this,

note that H2(t) = (log t)2 is strictly concave on t ≥ e, so

n∑
i=1

f0(xi)H2

(
f1(xi)

f0(xi)

)

< (1− f0(x0))H2

(
n∑
i=1

f0(xi)

1− f0(x0)

f1(xi)

f0(xi)

)

= f0(y1;φ)H2

(
f1(y1;φ)

f0(y1;φ)

)

45



and

V (f0, f1) =

n∑
i=0

f0(xi)H2

(
f1(xi)

f0(xi)

)
< f0(x0)H2

(
f1(x0)

f0(x0)

)
+ f0(y1;φ)H2

(
f1(y1;φ)

f0(y1;φ)

)
= Vφ(f0, f1).

In other words, unlike the case of Kullback-Leibler’s inequality (41), a quantization indeed

can increase the second moment of the log-likelihood ratio. Fortunately, our theorem shows

that such an increase is at most 2/e.

3.3 General Higher-order Moments

The technique we developed in proving Theorem 3.2.1 can be useful to deal with higher-

order moments of the log-likelihood ratios. To be specific, for a positive integer j = 1, 2, . . . ,

define

Wj(f0, f1) = E0

{
(Z)j

}
= E0

{(
log

f0(X)

f1(X)

)j}
(44)

and

Wφ,j(f0, f1) = E0

{
(Zφ)j

}
= E0

{(
log

f0(Y ;φ)

f1(Y ;φ)

)j}
. (45)

It turns out that we need to consider two different cases, depending on whether j is even

or odd. For the purpose of our theorem, let us define two sequence of constants. For any

integer j ≥ 1, define

Cj =
j(j − 1)j−1

ej−1

and when j is odd, further define C∗j to be the only real number x ≥ 0 that satisfies the

equation

x = (j − 1)j−1 − Cj exp(−x1/j). (46)

By convention we set 00 = 1, and thus C1 = 1 and C∗1 = 0.

The following theorem involves higher-order moments of the log-likelihood ratios, and

includes the Kullback-Leibler’s inequality (41) and relation (42) for second-order moment

as special cases.
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Theorem 3.3.1. For any measurable function φ and any integer j ≥ 1, we have

Wφ,j(f0, f1) ≤Wj(f0, f1) +B, (47)

where the constant B = Cj if j is even and B = C∗j if j is odd. Moreover, Wφ,j(f0, f1) and

Wj(f0, f1) have a lower bound 0 when j is even, and have a lower bound −j(j−1)j−1/ej−1−

(j − 1)j when j is odd.

We will prove Theorem 3.3.1 in two separate cases, depending on whether j is even or

odd. Let us begin with the case when j is even, and we will prove a more general result

on the α-moments of the absolute values of the log-likelihood ratios Z and Zφ for any real

number α ≥ 1. Specifically, define

W̃α(f0, f1) = E1 {|Z|α} = E0

{∣∣∣∣log
f0(X)

f1(X)

∣∣∣∣α}
and

W̃φ,α(f0, f1) = E1 {|Zφ|α} = E0

{∣∣∣∣∣log
dP φ0

dP φ1
(Y )

∣∣∣∣∣
α}

= E0

{∣∣∣∣log
f0(Y ;φ)

f1(Y ;φ)

∣∣∣∣α} .
Lemma 3.3.1. For any α ≥ 1,

W̃φ,α(f0, f1) ≤ W̃α(f0, f1) + Cα, (48)

where the constant Cα = α(α−1)α−1

eα−1 > 0 and C1 = 1 by convention that 00 = 1.

Proof. When α ≥ 1, the function Hα(t) = | log t|α is convex on 0 < t ≤ tα but is concave

on t > tα, where tα = eα−1 ≥ 1. Hence, the function Hα(t) = | log t|α is dominated by the

following convex function

H̃α(t) =


Hα(t) if 0 < t ≤ tα

Cαt− dα if t > tα(≥ 1)

,

where Cα = α(α−1)α−1

eα−1 > 0 and dα = (α − 1)α−1 ≥ 0. The remaining proof is identical to

those of Theorem 3.2.1 and thus omitted.

As in Theorem 3.2.1, it is generally not true that W̃φ,α(f0, f1) ≤ W̃α(f0, f1), and coun-

terexamples can be easily found by exploring the fact that for any α ≥ 1, the function
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Hα(t) is always strictly concave when t ≥ tα. In other words, the counterexamples can be

constructed by picking n + 1 (n ≥ 2) points x0, . . . , xn and two distributions P0 and P1

such that L0 = f1(x0)/f0(x0) < tα while Li = f1(xi)/f0(xi) > tα are n distinct values for

i = 1, . . . , n, and then proceeding as in the case of α = 2.

It is also interesting to compare the Kullback-Leibler’s inequality (41) with the case

α = 1 in Lemma 3.3.1: we have E0 {Zφ} ≤ E0 {Z} and E0|Zφ| ≤ E0|Z|+ 1. In other words,

while the first moment of the log-likelihood ratio always decrease after a mapping, the first

moment of its absolute value can indeed increase although such an increase is at most 1.

This is because the function − log t is convex on t > 0 but the function | log t| is not convex.

Now let us prove Theorem 3.3.1 when j ≥ 1 is odd. Fix the odd integer j ≥ 1, and the

key is to find a convex function that dominates H(t) = (− log t)j . By taking derivatives, it

is easy to see that H(t) = (− log t)j is convex on 0 < t ≤ 1 or t ≥ ej−1 but is concave when

1 ≤ t ≤ ej−1. Thus, if we let t0 = ej−1, then H(t) ≤ H(t0) + H ′(t0)(t − t0) = −Cjt + dj

when 1 ≤ t ≤ t0, where Cj = j(j−1)j−1

ej−1 > 0 and dj = (j − 1)j−1 ≥ 0. A simple calculation

shows that the line y = −Cjt + dj intersects the curve y = H(t) at two points: one of

them is t = t0 = ej−1 ≥ 1 and the other one is in the interval (0, 1] and denoted by

t∗ ≤ 1. Therefore, by our construction, the following function H̃(t) is convex on t > 0 and

dominates H(t) = (− log t)j :

H̃(t) =



H(t) = (− log t)j if 0 < t ≤ t∗(≤ 1)

−Cjt+ dj if t∗ ≤ t < t0 = ej−1

H(t) = (− log t)j if t ≥ t0(≥ 1)

.

Next, we claim that 0 ≤ H̃(t) − H(t) ≤ C∗j for all t > 0, where C∗j is defined in (46).

To prove this claim, first note that C∗j = H(t∗) ≥ 0 and it suffices to prove the claim when

t∗ ≤ t < t0, i.e., when H̃(t) is decreasing as it is a linear function with negative slope. The

proof needs to consider two scenarios, depending on whether t ≤ 1 or ≥ 1. If t∗ ≤ t ≤ 1, then

the claim clearly holds since H̃(t) ≤ H̃(t∗) = C∗j and H(t) ≥ 0. Meanwhile, if 1 ≤ t < t0,

then by taking derivatives, H̃(t)−H(t) is a decreasing function and thus

H̃(t)−H(t) ≤ H̃(1)−H(1) = H̃(1) ≤ H̃(t∗) = C∗j .
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Therefore, for all t > 0 we have 0 ≤ H̃(t)−H(t) ≤ C∗j , and our claim is proved.

For an odd integer j ≥ 1, relation (47) of Theorem 3.3.1 can then be easily proved

along the same line as in Theorem 3.2.1, and it remains to show that Wj(f1, f0) in (44)

and Wφ,j(f1, f0) in (45) are bounded below, since the random variables Zj or Zjφ may

take both positive and negative values. For any random variable X, let X+ = max{X, 0}

be the positive part of X and let X− = −min{X, 0} be the negative part of X. Then

X = X+ −X−, and it is evident that X ≥ −X−. The following lemma completes the proof

of Theorem 3.3.1.

Lemma 3.3.2. When j ≥ 1 is an odd integer,

E0

{(
Zj
)
−

}
≤ j(j − 1)j−1/ej−1 + (j − 1)j

where 00 = 1 by convention.

Proof. Fix the odd integer j ≥ 1, consider the function

ψ(t) = −min{0, (− log t)j} = max{0, (log t)j}. (49)

By taking derivatives, it is easy to see that as a non-decreasing function, ψ(t) is concave on

t ≥ t0, where t0 = ej−1. Thus

ψ(t) ≤


ψ(t0) if t ≤ t0

ψ(t0) + ψ′(t0)(t− t0) if t ≥ t0

or equivalently,

ψ(t) ≤ (j − 1)jI {t ≤ t0}+ (Cjt− dj)I {t > t0}

where Cj = j(j−1)j−1

ej−1 > 0 and dj = (j − 1)j−1 ≥ 0. Recall that L = eZ = f0(X)/f1(X) is

the likelihood ratio, and thus

E0

{(
Zj
)
−

}
= E0

{
ψ
(
L−1

)}
≤ (j − 1)jP0

{
L−1 ≤ t0

}
+ CjE0

{
L−1I {L > t0}

}
− djP0

{
L−1 > t0

}
≤ (j − 1)j + CjE0

{
L−1

}
= (j − 1)j + Cj ,

completing the proof of the lemma.
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3.4 Application into Decentralized Sequential Detection of Change Points

In this section we discuss the relation between the generalized K-L inequality as in Theorem

3.2.1 and decentralized sequential detection.

In Chapter 2 we proved the first order optimality of the two-stage procedure based on

the Assumption 1, which assumes that for any 0 ≤ m 6= m′ ≤ M − 1 and local sensor Sk,

the divergence

Em

{
log

fkm(Xk
n)

fkm′(X
k
n)

}
is positive and finite. For simplicity of notations let’s focus on the case of single quantizer

and drop the superscript k. Now define Itot as follows:

Itot = sup
φ̄∈Φ̄

max
m,m′

I(m,m′; φ̄)

then by the classic Kullback-Leibler inequality (41),

Itot <∞.

In other words, the Kullback-Leibler divergence I(m,m′; φ̄) is uniformly bounded w.r.t. the

set of quantizers φ̄. In the proof of Theorem 2.4.2, this fact is essential to the existence of

a common lower bound for expected time steps of any test procedures with accepted error

rates.

However, in many similar problems regarding decentralized detection, a stronger as-

sumption, namely a uniform upper bound for the second moments of the log-likelihood

ratios of the quantized data is necessary for any meaningful conclusions. As an example,

let’s consider the simplest version of decentralized quickest change detection problems with

the same configuration of sensor networks we introduced in Chapter 2. In particular, the

limited local memory and full feedback feature is assumed to hold. Now instead of doing the

hypothesis testing problem, we assume that initially the underlying probability distribution

of the raw data Xk
n is P0 (with density fk0 ). Then an event occurs to the network system

at some unknown time ν, and changes the measure to another given probability measure

P1 (with density fk1 ). Furthermore, we assume that the observations are independent over
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time and from sensor to sensor. The objective is to jointly optimize the policies at the local

sensors and fusion center levels so as to detect the change as soon as possible subject to a

constraint on the false alarm rate.

A crucial challenge in decentralized quickest change detection is which kind of local

quantizers should be used at each local sensor. On the one hand, this is easy if one fur-

ther assumes that each local sensor uses a stationary local quantizer, as the corresponding

problem reduces to the classical centralized case and various well-developed optimal or

asymptotic optimal theories are applicable, see for example Lorden [20], Moustakides [26],

Page [29], Pollak [30], Shiryayev [32] and [33], etc. In fact, it is not difficult to see that the

optimal stationary quantizer φ∗ for any local sensor Sk is the one that maximizes the local

Kullback-Leibler divergence I(fk1 , f
k
0 ;φ), and such an optimal quantizer φ∗ is a Monotone

Likelihood Ratio Quantizer (MLRQ) by our theories in Subsection 2.4.2.

On the other hand, the scenario becomes more complicated if the local quantizers are

allowed to be non-stationary. By comparing with Bayes procedures, Veeravalli [42] con-

jectures that the schemes based on the optimal stationary MLRQ φ∗ are asymptotically

optimal regardless whether the quantizers are stationary or not. While this conjecture

sounds reasonable as maximizing the Kullback-Leibler divergence seems to be natural to

construct optimal local quantizers, it is very challenging to prove or disprove it, partly be-

cause of the regularity conditions of the quantized observations. For example, a sequence

of non-stationary quantizers may outperform that of stationary quantizers when the second

order moments of the log-likelihood ratios of non-stationary quantizers can go to infinity.

Some sufficient conditions under which this conjecture holds are available in the litera-

ture. By Lai [15], this conjecture is true under the following sufficient condition:

lim
n→∞

sup
ν≥1

ess supP (ν)

{
max
t≤n

ν+t∑
i=ν

K∑
k=1

Zki,φ ≥ Itot(1 + δ)n

∣∣∣∣∣U1, . . . , Uν−1

}
= 0 (50)

where P (ν) is the probability measure when the change occurs at time ν, Zki,φ is the likelihood

ratio for the quantized data Uki , i.e.,

Zki,φ = log
fk1 (Uki ;φki )

fk0 (Uki ;φki )
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and Itot =
∑K

k=1 I
k
max with Ikmax = supφ I(fk1 , f

k
0 ;φ). Here fkm(u;φki ) is probability mass

function, i.e.,

fkm(u;φki ) = P km

{
φki (X

k
i ) = u

}
, m = 0, 1.

Unfortunately, condition (50) involves all possible non-stationary quantizers, and it is im-

possible to verify it directly. By using Kolmogorov’s inequality for martingales, Mei [24]

provides a stronger sufficient condition, and shows that the conjecture holds if there is a

uniform bound on the second moments of the log-likelihood ratios of quantized observations.

Specifically, Mei [24] showed that condition (50) holds if for all k = 1, . . . ,K,

sup
φ
V (fk1 , f

k
0 ;φ) <∞. (51)

Moreover, condition (51) holds when the quantized messages belong to binary sensor mes-

sages with l = 2 and when f0 and f1 belong to the same one-parameter exponential family

satisfying certain restrictions, see Theorem 2 of [24]. However, it is still an open problem

whether condition (51) holds in general or not, as the quantizers can have arbitrary forms

and belong to the infinite dimensional functional space.

Our main theorem allows us to tackle more general scenarios. Specifically, by Theorem

3.2.1, if for all k = 1, . . . ,K,

V (fk1 , f
k
0 ) =

∫ (
log

fk1 (x)

fk0 (x)

)2

fk1 (x)dx <∞, (52)

then condition (51) holds and so does (50). Note that condition (52) only deals with

the densities fki of raw observations and does not involve the stationary or non-stationary

quantizers. Moreover, it is a standard assumption in the statistical literature as a regu-

larity condition for the raw density functions. Therefore, condition (52) provides a simple

and reasonable sufficient condition under which the long-standing conjecture of asymptotic

optimality of the schemes with the optimal stationary MLRQ φ∗ is true regardless whether

the quantizers are stationary or not.

3.5 Generalization to Ali-Silvey Distance Measures

The K-L divergence is a special case of the general Ali-Silvey distance measure, which can

be defined as follows. Let H∗ be a general convex, continuous function with domain (0,∞)
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and

I∗(f1, f0) = E1

{
H∗
(
L−1

)}
as well as

I∗φ(f1, f0) = E1

{
H∗
(
L−1
φ

)}
.

By Jensen inequality and the convexity of H∗, it is easy to show that for any quantization

φ, I∗φ(f1, f0) ≤ I∗(f1, f0).

Parallel to the case of K-L divergence, for any integer j ≥ 1, define

W ∗j (f1, f0) = E1

{(
H∗
(
L−1

))j}
, W ∗φ,j(f1, f0) = E1

{(
H∗
(
L−1
φ

))j}
and for any real number α ≥ 1, define

W̃ ∗α(f1, f0) = E1

{∣∣H∗ (L−1
)∣∣α} , W̃ ∗φ,α(f1, f0) = E1

{∣∣∣H∗ (L−1
φ

)∣∣∣α} .
Then for the relation between W ∗j (f1, f0) and W ∗φ,j(f1, f0), we have

Theorem 3.5.1. Suppose exists A∗ > 0 such that we always have one of the following two

cases:

1. d2

dx2
(H∗(x))j ≥ 0 for any x ≥ A∗.

2. d2

dx2
(H∗(x))j ≤ 0 and H∗(x) > 0 for any x ≥ A∗.

Then exists constants B <∞, B′ > −∞ such that

W ∗φ,j(f1, f0) ≤W ∗j (f1, f0) +B

and

W ∗j (f1, f0) ≥ B′

and the constants B and B′ only depend on the form of H∗(x) and the number j, i.e., they

are uniform w.r.t. φ.

For the relation between W̃ ∗α and W̃ ∗φ,α,
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Lemma 3.5.1. Suppose exists A∗ > 0 such that when x ≥ A∗, we always have either

d2

dx2
(H∗(x))j ≥ 0 or d2

dx2
(H∗(x))j ≤ 0, then exists a constant B̃ <∞ such that

W̃ ∗φ,α(f1, f0) ≤ W̃ ∗α(f1, f0) + B̃

and the B̃ here only depends on the form of H∗(x) and α and is uniform w.r.t. φ.

The proof of Theorem 3.5.1 and Lemma 3.5.1 utilizes the convex domination method we

developed in Section 3.2 and Section 3.3. For convenience, we first summarize the essence

of such method in the following proposition in a more general form. The proof is omitted

because it can be done in the same way as Theorem 3.2.1.

Proposition 3.5.1. Let L or Lφ be defined as in Section 3.2, and G is any function defined

on (0,∞) such that E1

{∣∣G(L−1)
∣∣} <∞. Suppose that exists convex function G̃(x) defined

on (0,∞), and constants 0 < C <∞, 0 < A ≤ ∞ (note that A =∞ is allowed), such that

|G(x)− G̃(x)| ≤ C when x ≤ A

G̃(x) = B1x+B2 ≥ G(x)− C and G(x) ≥ 0 when x > A.

Then

E1

{
G(L−1

φ )
}
≤ E1

{
G(L−1)

}
+D

with D <∞ being a constant only depending on C, B1, B2.

Now we first provide the proof of Lemma 3.5.1 and then that of Theorem 3.5.1, because

when j is even, Theorem 3.5.1 is only a special case of Lemma 3.5.1.

Proof of Lemma 3.5.1. Let G(x) = |H∗(x)|α. We claim that exists δ > 0 such that on

(0, δ), G(x) is either bounded or positive convex with G(x) → +∞ when x → 0. Indeed,

because H∗(x) is convex, then either H∗(x) is bounded on an interval (0, δ) or H∗(x)→∞

on (0, δ). If the latter is the case, we can also assume that H∗(x) ≥ 0 on (0, δ) by choosing

δ small enough. Then if H∗(x) is bounded on (0, δ), so is G(x), if H∗(x) > 0 on (0, δ) and

H∗(x)→∞ when x→ 0, by taking second derivative of G(x), it is easy to see that G(x) is

convex on (0, δ) as well. Now we divide the remainder of the proof into four parts to deal

with the corresponding four cases of the behavior of G(x) around 0 and ∞.
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1. G(x) is convex on both x ≥ A∗ and x ≤ δ, and G(x)→∞ when x→ 0. In this case,

pick x1 = A∗ + 1, without loss of generality, suppose δ < x1. We claim that exists

x0 < δ such that G′(x0) ≤ G(x1)−G(x0)
x1−x0 ≤ G′(x1). If the claim is true, we can construct

a convex G̃(x) as follows:

G̃(x) =


G(x), if x ≤ x0 or x ≥ x1

G(x0) + G(x1)−G(x0)
x1−x0 (x− x0) otherwise.

Such a G̃(x) certainly satisfies the condition of Proposition 3.5.1 because G(x)− G̃(x)

is bounded on (0,∞). So it remains to prove the claim. First we can pick a x∗ < δ

such that

G(x1)−G(x∗)

x1 − x∗
≤ G′(x1)

if G′(x∗) ≤ G(x1)−G(x∗)
x1−x∗ , just pick x0 = x∗, if not, we can pick x0 as the unique point

in (0, x∗) such that

G(x1)−G(x0)

x1 − x0
=
G(x1)−G(x∗)

x1 − x∗

i.e., (x0, G(x0)) stay on the line connecting (x∗, G(x∗)) and (x1, G(x1)).

2. G(x) is bounded on (0, δ) but convex on (A∗,∞). Let x1 be defined as in first case,

and

G̃(x) =


G(x), if x ≥ x1

G(x1) +G′(x1)(x− x1) if x < x1.

3. G(x)→∞ when x→ 0 but concave on x ≥ A∗. Let x1 = A∗ + 1, because G(x) ≥ 0,

G′(x1) ≥ 0. As in first case, we can find x0 ≤ δ such that G′(x0) ≤ G(x1)−G(x0)
x1−x0 ≤

G′(x1), then define

G̃(x) =



G(x), if x ≤ x0

G(x0) + G(x1)−G(x0)
x1−x0 (x− x0) if x0 < x ≤ x1

G(x1) +G′(x1)(x− x1) if x > x1.
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4. G(x) is bounded when x ≤ δ and concave on x ≥ A∗. In this case, let

G̃(x) = G(x1) +G′(x1)(x− x1)

i.e., G̃(x) is linear.

Finally we are ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. We only need to prove the case that j is odd. It is easy to show

that when x→ 0, H∗(x) is either bounded or tends to∞, and so is G(x) = (H∗(x))j . Then

the dominant function G̃(x) can be constructed just as in the proof of Lemma 3.5.1, and

we only needs to show the lower bound B′ > −∞ exists. For that, if exists A∗ such that

H∗(x) ≥ 0 when x ≥ A∗ then H∗(x) or G(x) itself is lower bounded, and the claim must be

true. Otherwise, by the condition stated, we must have that exists A∗ s.t. G(x) is convex

when x ≥ x1 = A∗ + 1, which means that

G(x) ≥ Gl(x) = G(x1) +G′(x1)(x− x1) x ≥ x1

here Gl(x) is a linear function. Because G(x) is also lower bounded on (0, δ), there must

exists C such that

G(x) ≥ Gl(x)− C

for any x > 0. Hence

E1

{
G(L−1)

}
≥ E1

{
Gl(L−1)

}
= G(x1)−G′(x1)x1 − C > −∞.
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CHAPTER IV

MULTI-STAGE PROCEDURES FOR ASYMMETRIC

MULTIHYPOTHESIS TESTING

In this chapter, we extend our results in the previous chapters to develop decentralized

sequential tests that hold second-order asymptotic optimality properties under certain sce-

narios. Since it is very challenging to develop second-order optimality theory, here we will

focus on the case of a single sensor in the network system when testing simple hypotheses.

Extensions to multisensor network and composite hypothesis testing can be done in exactly

the same way as Section 2.5 and will be omitted here. Consequently, we will drop the

superscriptions denoting sensors as in Section 2.3.

4.1 Problem Statement and Background

Assume that there is K = 1 sensor in a system. At time n, the local sensor observes a raw

observation Xn and sends a quantized message Un = φn(Xn,Fn−1) to the fusion center,

where Fn−1 = (U1, · · · , Un−1) denotes the past messages. There are M hypotheses about

the distribution of Xn’s and the Xn’s are i.i.d. with density fm under hypothesis Hm, for

m = 0, 1, . . . ,M − 1. We consider a Bayes formulation: assign a prior density πm to each

hypothesis and assume the cost of making incorrect decision is 1 and the cost of each time

step is c. Then the Bayes risk of a decentralized test δ is

Rc(δ) =

M∑
m=0

πm[Em(N) + Pm(D 6= m)],

where N is the stopping time of δ and D is the final decision of δ.

The present chapter will address the following second order asymptotic optimization

problem.

Problem (P3): Find a family of decentralized sequential multihypothesis testing procedures

{δA(c)} that is asymptotically optimal up to second-order in the sense that

Rc(δA(c)) = Rc(δ∗B(c)) +O(c) (53)
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as c→ 0, where δ∗B(c) is the corresponding Bayes solution.

Our main results are that while a two-stage procedure can not achieve second order

optimality on its own, it can be modified in a “recursive” manner to become a multi-stage

procedure that leads to the solutions to Problem (P3) when the hypothesis testing problem

is of an “asymmetric” type (to be defined later).

To achieve the second or higher order asymptotic optimality, we require an assumption

that is stronger than Assumption 1. Throughout the present chapter, we make the following

assumption that is essential to our results regarding second order asymptotically optimal

procedures for testing M ≥ 3 hypotheses.

Assumption 2. There exists λ > 1 and ρ(λ) < ∞ such that for m = 0, . . . ,M − 1 and

m′ 6= m,

Em

{(
fm′(Xn)

fm(Xn)

)λ}
≤ ρ(λ)

or equivalently

Em

{
exp

{
λ log

(
fm(Xn)

fm′(Xn)

)}}
≤ ρ(λ).

When testing M = 2 hypotheses, Assumption 2 can be weakened to the following

Assumption 3.

Assumption 3. There exists V ∗ <∞ such that for m = 0, 1, and m′ 6= m

0 ≤ Em

{(
log

fm(Xn)

fm′(Xn)

)2
}
≤ V ∗.

Note that Assumptions 2 and 3 deal with the raw observation Xn’s. The following

lemma shows that similar results also hold for quantized messages Un’s.

Lemma 4.1.1. Under Assumption 2, let φ be any quantizer or general measurable function,

and denote by fm(·;φ) the probability mass function of Un = φ(Xn) when Xn has density

fm. Then

Em

{
exp

{
λ log

(
fm(Un;φ)

fm′(Un;φ)

)}}
≤ ρ(λ) <∞. (54)

If Assumption 3 holds, then

max
m,m′

Em

{(
log

fm(Un;φ)

fm′(Un;φ)

)2
}
≤ V ∗ +

2

e
. (55)
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Proof. By Jensen inequality, we have

Em

{
exp

{
λ log

(
fm(Un;φ)

fm′(Un;φ)

)}}
≤ Em

{
exp

{
λ log

(
fm(Xn)

fm′(Xn)

)}}
,

and then (54) follows directly from Assumption 2. Meanwhile, relation (55) follows at once

from our generalized Kullback-Leibler inequality, i.e., Theorem 3.2.1.

In the following let us first provide a background on two-stage procedure and illustrate

their shortcomings in the context of the second or higher-order optimality problem. Assume

that we are testing M = 2 hypothesis H0 and H1. Recall that a two-stage procedure δA(c)

that is asymptotically optimal up to first-order can be defined as follows. In the first stage,

δA(c) uses a preliminary quantizer φ0 and makes a preliminary decision D0 = m ∈ {0, 1}.

In the second stage, based on the preliminary decision, it switches to one of the maximin

quantizers φ0 and φ1 to do further refined test (these two quantizers will be deterministic

MLRQs when M = 2, and they are generally different due to asymmetry of K-L divergence).

To be more concrete and to facilitate our statements, let us define the stopping times of

δA(c) in terms of the log-likelihood ratios. For the simple hypothesis testing problem, let

Zn(0, 1) =
n∑
k=1

∆Zn(0, 1)

where

∆Zn(0, 1) = log
f0(Un;φ(n))

f1(Un;φ(n))

and φ(n) is the quantizer applied by the local sensor at time step n. It is easy to see that

the stopping policies of the two-stage procedures defined in Chapter 2 can be equivalently

stated in terms of Zn(0, 1) as follows:

Define by A0 = | log u(c)| and A1 = | log c| the thresholds for the first and second stages,

respectively. Recall that the only requirement of A0 is that A0 → ∞ while A0/A1 → 0

when c→ 0. Then the first stage will be stopped whenever

|Zn(0, 1)| > A0

and the preliminary decision D0 = 0 if Zn(0, 1) > A0 and D0 = 1 if Zn(0, 1) < −A0.

Meanwhile, the second stage stops (so does the whole test procedure) whenever

|Zn(0, 1)| > A1
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and the final decision D = 0 or 1, depending on whether Zn(0, 1) > A1 or < −A1 when

stopped.

Assume for a moment that m = 0 is the true state of nature. In the first stage, ∆Zn(0, 1)

becomes an i.i.d. with a positive mean I(0, 1;φ0), and thus it is most likely that the realized

log likelihood ratio Zn(0, 1) will hit A0 earlier than −A0, and on average the time step of

the first stage of the two-stage test δA(c) will be roughly A0/I(0, 1;φ0). This implies that

δA(c) most likely makes the preliminary decision D0 = 0 at the first stage, and if this is the

case then in the second stage, the fusion center will switch to the maximin quantizer φ0.

This makes ∆Zn(0, 1) again an i.i.d. sequence with mean I(0) > 0 in the second stage, and

in order for the realized log likelihood ratio Zn(0, 1) increase from A0 to A1 = | log c| > A0,

on average the time step of the second stage is roughly (| log c| − A0)/I(0). Hence, when

m = 0 is the true state, the expected sample size of the two-stage test δA(c) is roughly

E0 {N} ∼
A0

I(0, 1;φ0)
+
| log c| −A0

I(0)
=
| log c|
I(0)

+A0

( 1

I(0, 1;φ0)
− 1

I(0)

)
.

Likewise, when m = 1 is the true state,

E1 {N} ∼
A0

I(1, 0;φ0)
+
| log c| −A0

I(1)
=
| log c|
I(1)

+A0

( 1

I(1, 0;φ0)
− 1

I(1)

)
Let ε0 = 1/I(0, 1;φ0)− 1/I(0) ≥ 0 and ε1 = 1/I(1, 0;φ0)− 1/I(1) ≥ 0. Using the fact that

Pm {D 6= m} = O(c), the Bayes risk of the two-stage test δA(c) is roughly

Rc(δA(c)) ∼
( π0

I(0)
+

π1

I(1)

)
c| log c|+ cA0(π0ε0 + π1ε1). (56)

As we have stated before, we cannot have ε0 = 0 and ε1 = 0 simultaneously, and thus

π0ε0 + π1ε1 > 0 unless in some trivial cases when π0 or π1 is 0. Now A0 → ∞ as c →

0, the term cA0 will be much larger than O(c), and thus δA(c) will not be second-order

asymptotically optimal by the asymptotic lower bound in Theorem 2.4.2. In other words,

the two-stage procedure δA(c) takes too many steps in its first stage when the suboptimal

quantizer φ0 is used, and that causes extra large term in the risk function.

A natural reaction is to let A0 = O(1) when c → 0, i.e., we can choose A0 as a large

constant which does not change as c→ 0. Then on average the time steps in the first stage

is reduced to the order of O(1). Unfortunately, such an approach does not work, since it can
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be shown that Pm {D0 6= m} ∼ e−A0 and thus the probabilities of an incorrect preliminary

decision do not go to zero as c → 0. With a wrong preliminary guess, the fusion center

picks up a sub-optimal quantizer in the second (and major) stage, which causes the time

steps used to reach the final decision increase by an amount of order as | log c|. That is, if

A0 = O(1), then the two-stage test δA(c) does not even possess the first-order asymptotic

optimality. In the literature, a popular choice of A0 is A0 = log | log c|, which is a sufficient

condition for the first-order asymptotic optimality of the two-stage test δA(c).

It is clear that it is necessary to modify the two-stage test in order to develop second-

order asymptotically optimal tests, and some major modification to the first stage is needed

to accelerate the pace of the two-stage test δA(c). A key observation is that the first stage of

δA(c) is itself a decision making procedure just like the whole test itself. As we stated before,

as a “preliminary” stage, the first stage is of low efficiency because it uses a suboptimal

stationary quantizer for too long. Therefore, a natural idea is to apply the two-stage test

to the first-stage, thereby leading to the three-stage tests.

Specifically, to define a three-stage test δA,3(c), we can choose three thresholds 0 <

A0 < A1 < A2 = | log c| satisfying that A0 → ∞, A0 = o(A1), A1 = o(A2) as c → 0, e.g.,

A0 = log log | log c| and A1 = log | log c|. Then the three stages of δA,3(c) can be defined as

the first times when |Zn(0, 1)| passes A0, A1 and A2 = A, respectively. Denote by N0, N1

and N2 the time steps of these three stages. Compared with the two-stage test δA(c) with

A0 = log | log c|, this three-stage test allows the quantizers to be updated for an extra stage,

and it can be shown that the extra term cA0 in the risk is decreased from c log | log c| to

c log log | log c|.

While the three stage tests still cannot be second-order asymptotically optimal, we

can just keep on exploiting the idea of dividing the first stage via another two-stage test,

and this leads to a multi-stage test δMS(c) as follows. Given a sequence of thresholds

0 < A0 < A1 < · · · < AJ = | log c| such that A0 = O(1), Aj−1 = o(Aj) for j = 1, · · · , J,

where the total number J of thresholds may depend on c. For each j = 0, 1, . . . , J, we stop

the (j + 1)-th stage at the first time n whenever |Zn(0, 1)| cross the the threshold Aj and

when stopped, we will make a “preliminary” decision D = 0 or 1 depending on whether
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Zn(0, 1) > Aj or Zn(0, 1) < −Aj , and will optimize the local quantizers accordingly.

In the following we will show that by tuning these thresholds in the multi-stage test,

we can finally develop a test that reaches the second order asymptotic optimality, thereby

offering a solution to (P3). A feature of such a multi-stage procedure is that the total

number of stages J increases to ∞ as c decreases to 0. In addition, it turns out that the

thresholds can be quite flexible to ensure second order optimality, and a simple sufficient

condition is of the following form

J∑
j=1

Aje
−Aj−1 = O(1)

as c→ 0.

It is much more complicated to find a solution to (P3) when testing M ≥ 3 hypotheses.

The fundamental reason is that our asymptotic analysis utilizes the lower bound in Theorem

2.4.2, which may not be sharp for multihypothesis testing.

When testing M ≥ 3 hypotheses, in this thesis we will need to distinguish two different

cases: asymmetric and symmetric. For instance, when testing three hypotheses on a normal

mean, say, µ = 0, µ1, µ2, it is symmetric when µ1 = −µ2 but is asymmetric otherwise. A

more general definition of asymmetric and symmetric cases is based on Kullback-Leibler

information divergence as follows.

Suppose φ̄ be a possibly randomized quantizer, we say it is asymmetric w.r.t. the state

m if there is a unique state m′ 6= m that minimizes I(m,m′; φ̄), i.e., there is a single m′ 6= m

satisfying

I(m,m′; φ̄) = min
m′′ 6=m

I(m,m′′; φ̄)(= I(m; φ̄));

otherwise we say that φ̄ is symmetric w.r.t. the state m. Alternatively, let Igap(m; φ̄) be

the difference between the smallest two values of {I(m,m′; φ̄) : m′ 6= m}, i.e.,

Igap(m; φ̄) = min
m′′ 6=m,m′

I(m,m′′; φ̄)− I(m,m′; φ̄) ≥ 0,

where I(m,m′; φ̄) = I(m; φ̄). Then φ̄ is asymmetric w.r.t. state m if and only if Igap(m; φ̄) >

0. Note that Igap exists only when testing M ≥ 3 hypotheses.

Let φ̄max
m be the maximin quantizer w.r.t. a given state m (see Definition 2.4.1). Then we

say the multi-hypothesis testing problem is asymmetric w.r.t. state m if φ̄max
m is asymmetric
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w.r.t. statem. Otherwise the multi-hypothesis testing problem is said to be symmetric w.r.t.

state m. If the multi-hypothesis testing problem is asymmetric w.r.t. all states, then we

say the problem itself is asymmetric. Otherwise the multi-hypothesis testing problem is

symmetric if it is symmetric w.r.t at least one state m.

It turns out that we will be able to show that the multi-stage tests can still hold second-

order optimality properties for the asymmetric case in the multihypotheses testing problems,

although it is still an open problem to find a test that is second-order asymptotically optimal

for the symmetric case.

4.2 Definition of Multi-Stage Procedures

The purpose of this section is to define the multi-stage procedures for testing M ≥ 2

hypotheses more rigorously.

Denote by δMS(c) a multi-stage test when the cost of taking observations per time

step is c. To define it, we first need to specify the thresholds to stop stages: 0 = A−1 <

A0 < A1 < · · · < AJ = | log c|. Note that both J + 1, the number of the stages, and the

threshold values A0, . . . , AJ may depend on c. Next, we need to specify (at most) M + 1

different (possibly randomized) quantizers that will be used by δMS(c) when testing M ≥ 2

hypotheses, say, φ̄0, φ̄0, . . . , φ̄M−1. For our multi-stage test, quantizers are stationary within

each stage, with φ̄0 being used in the first or preliminary stage and one of the remaining M

quantizers used in each of the following J stages. Ideally, at the beginning of each stage,

the local quantizers will be optimized according to the decision at the previous stage. In

other words, φ̄0, . . . , φ̄M−1 are the M “maximin” quantizers and at the jth stage the local

quantizers will be switched to the maximin quantizer φ̄m if the decision at the (j − 1)-th

stage is {D = m}.

Now let us define the stopping rules of δMS(c) at different stages. At each time step n,

the fusion center updates the log-likelihood vector

Z̃n = (Zn(0), . . . , Zn(M − 1)),
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where for each m = 0, . . . ,M − 1,

Zn(m) =

n∑
i=0

∆Zi(m) = Zn−1(m) + ∆Zn(m)

and

∆Zi(m) = log fm(Ui;φ
(i)).

Here φ(i) is the deterministic quantizer applied by the local sensor to generate the sensor

message U ’s at time step i. For instance, in the first or preliminary stage of δMS(c), the

possibly randomized quantizer φ̄0 is used at the fusion center, then φ(i) is obtained from

randomization schemes described as in Subsection 2.3.2.

Then the first stage of δMS(c) is stopped at time

N0 = inf{n : max
1≤m≤M

min
m′ 6=m

(Zn(m)− Zn(m′)) ≥ A0}.

That is, the first stage stops if for some m, the difference between the log-likelihood Zn(m)

and the log-likelihood of the next most likely hypothesis crosses the threshold A0. To simplify

our notation below, for each j = 0, . . . , J , define stopping regions Oj =
⋃M−1
m=0 Omj ⊂ RM ,

where the sub-stopping region Omj is defined by

Omj = {z =
(
z0, . . . , zM−1

)
∈ RM : min

m′ 6=m
(zm − zm′) ≥ Aj}.

Under this new notation, the first or preliminary stage of δMS(c) stops at time

N0 = min{n : Z̃n ∈ O0}

and makes a preliminary decision D0 = m if Z̃N0 ∈ Om0 for some m ∈ {0, . . . ,M − 1}.

The other stages of δMS(c) can also be defined similarly except a change in local quan-

tizors. Specifically, for j = 1, . . . , J , if the intermediate decision from the j-th stage is

Dj−1 = m, then in the j + 1-th stage, the fusion center switches to a (likely randomized)

quantizer φ̄m and continue to update the vector Z̃n. The j+1-th stage of δMS(c) is stopped

at time

Nj = min{n ≥ Nj−1 : Z̃n ∈ Oj}

and makes a intermediate decision Dj = m if Z̃Nj ∈ Omj . The final stopping time for the

test is N = NJ with a final decision D = DJ at the fusion center.
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It is easy to see that the two-stage test defined in Chapter 2 corresponds to a special

case of multi-stage procedure with J + 1 = 2 stages (or J = 1), and the only difference is

that the stopping strategies of the two-stage test are expressed in terms of the posterior

probabilities in Chapter 2 instead of the log-likelihoods.

4.3 Asymptotic Properties When Testing Asymmetric Multihypotheses

Let us begin with the Bayes risk of the proposed multi-stage test δMS(c). This includes two

estimations: the probability of making incorrect decisions and the expected sample sizes

under each hypothesis Hm. The former is relatively easy and is summarized in the following

lemma.

Lemma 4.3.1. Given a multi-stage test δMS(c), for any state m = 0, . . . ,M − 1, we have

Pm {D 6= m} < Mc.

For the expected sample size of δMS(c), it is standard in the literature to derive the

asymptotic expression when the cost per time step c goes to 0. To do so, we need to make

additional assumptions on the thresholds Aj ’s, which may depend on the cost c: we assume

that the thresholds A0, . . . , AJ satisfy the constraint

lim sup
c→0

J∑
j=0

Aje
−Aj−1 ≤ A∗ (57)

for some finite constant A∗ and, as c→ 0,

lim
c→0

max
1≤j≤J

Aj−1/Aj = 0. (58)

Relation (58) means that Aj−1/Aj goes to zero uniformly as c→ 0.

Now we can summarize the asymptotic expression of the expected sample size of δMS(c)

in the following theorem when it is equipped with asymmetric quantizers.

Theorem 4.3.1. Given a multi-stage test δMS(c) equipped with possibly randomized quan-

tizers {φ̄m} and a preliminary quantizer φ̄0, and assume that the quantizer φ̄m is asymmetric

w.r.t. the state m for a given 0 ≤ m ≤ M − 1, i.e., Igap(φ̄m;m) > 0. Furthermore, we
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assume that the K-L divergences of the quantized data have a common positive lower bound

I∗ > 0, i.e.,

min
0≤m6=m′≤M−1

I(m,m′; φ̄) ≥ I∗, for any φ̄ ∈
{
φ̄0, φ̄0, . . . , φ̄M−1

}
.

If the thresholds Aj’s satisfy (57) and (58), then the expected sample size N of δMS(c)

satisfies

Em {N} = | log c|/I(m; φ̄m) +O(1) (59)

as c→ 0.

It is informative to comment on the uniformity of the O(1) term in (59) in the sense

that it holds regardless of specific choices of quantizers as along as the quantizers share a

common I∗ > 0 and a common lower bound Igap > 0 for the quantities Igap(m; φ̄m). For

that purpose, let A∗ratio be any common upper bound of the ratios {Aj−1/Aj} such that

max
1≤j≤J

Aj−1/Aj ≤ A∗ratio and lim
c→0

A∗ratio = 0. (60)

Then it can be shown in Section 4.5 that the O(1) term in (59) is related to the set of

quantizers,
{
φ̄0, φ̄0, . . . , φ̄M−1

}
, only through the lower bound of the K-L divergence I∗

and the gap Igap(m; φ̄m). In addition, other factors involved in the O(1) term in (59)

include: A∗ratio in (60), A∗ in (57), I∗ in Assumption 1, V ∗ in Assumption 3, λ and ρ(λ) in

Assumption 2.

In addition, it is worth emphasizing that the asymmetric assumption of φ̄m w.r.t. the

state m is a crucial condition for Theorem 4.3.1. If this condition is not satisfied, i.e., if φ̄m is

symmetric w.r.t. the state m, then we can only drive a weaker result, which is summarized

in the next theorem.

Theorem 4.3.2. Let δMS(c) be defined as in Theorem 4.3.1, however φ̄m is not necessarily

asymmetric w.r.t. state m, then when the thresholds A0, . . . , AJ satisfy

Aj−1/
√
Aj ≤ B1 <∞, Aje

−Aj−1 ≤ B2 <∞

then as c→ 0

Em {N} = | log c|/I(m; φ̄m) +O(
√
| log c|)
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where the O(
√
| log c|) can be made uniform for problems sharing common I∗, V

∗, B1 and

B2.

Now we are ready to derive the Bayes risk of the proposed multi-stage test δMS(c).

Combining Lemma 4.3.1 and Theorem 4.3.1 yields that if every quantizer φ̄m is asymmetric

w.r.t. the corresponding state m and relations (57) and (58) hold, then

Rc(δMS(c)) = c| log c|
M−1∑
m=0

πm/I(m; φ̄m) +O(c)

where the O(c) term can be made uniform w.r.t. groups of quantizers with common I∗ and

positive lower bound for
{
Igap(φ̄m;m)

}
. In particular, denote by δ∗MS(c) the multi-stage

test that is equipped with the maximin quantizers {φ̄max
m } and thresholds {Aj} satisfying

(57) and (58). Then if all states m’s are asymmetric, that is, each maximin quantizer φ̄max
m

is asymmetric w.r.t. the corresponding state m, then

Rc(δ∗MS(c)) = c| log c|
M−1∑
m=0

πm/I(m) +O(c). (61)

Next, the following theorem provides a lower bound for the Bayes risk of the Bayes

procedure.

Theorem 4.3.3. Let δ∗B(c) be the Bayes test procedure, with parameter c being the cost per

time step. Then as c→ 0,

Rc(δ∗B(c)) ≥ c| log c|
M−1∑
m=0

πm/I(m) +O(c).

Finally, by (61) and Theorem 4.3.3, it is clear that δ∗MS(c) is a solution to (P3), as it

achieves the asymptotic lower bound in Theorem 4.3.3.

Theorem 4.3.4. If every state m = 0, . . . ,M − 1 is asymmetric, then the multi-stage test

δ∗MS(c) is asymptotically optimal to the second order.

It is useful to add several remarks. First, condition (57) on the thresholds Aj is crucial

for the second order asymptotic optimality of δ∗MS(c). In order to satisfy this condition, the

thresholds Aj ’s should not increase too fast. There are many possible choices to satisfy (57).

As an illustration, let γ > 1 be a constant that do not depend on c, and a valid choice of Aj ’s
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can be constructed backward by setting J = [log log | log c|/γ] + 1 and defining AJ = | log c|

and Aj−1 = A
1
γ

j for j = J, J − 1, . . . , 1.

A notable choice that violates (57) is as follows. Let C > 0 be a constant and define

AJ = | log c| and Aj−1 = logAj recursively until 0 < A0 < C. In this case, J = min{j :

log(j) | log c| < C}. In this case, Aj = eAj−1 increases too fast, and
∑J

j=0Aje
−Aj−1 = J+A0,

which goes to ∞ as c → 0 (since J →∞ although extremely slowly). Thus condition (57)

does not hold in this case.

Second, in real-world application, a multi-stage test with a smaller number of stages

may be preferred. By Corollary 4.4.1, to reach the second-order asymptotic optimality

properties, the total number J of stages in a multi-stage test always tend to infinite when

c → 0. Since we can always choose {Aj} in a way that J increases very slowly, say, with

the recursive rule Aj−1 = A
1
2
j , we can have J increase to infinite by the extremely slow

rate of log log | log c|. Therefore, if the cost c per time step is only moderately small, then

the two-stage test, i.e., J = 1, is usually sufficient in many applications for the practical

purposes.

Third, the expansion (61) depends heavily on the asymmetric assumption of each max-

imin quantizer φ̄max
m . When one or more φ̄max

m is symmetric w.r.t. the corresponding state

m, (61) does not hold and the asymmetric lower bound in Theorem 4.3.3 is no longer sharp.

In this case, δ∗MS(c) only has the first-order asymptotic optimality properties, as the dif-

ference between its Bayes risk and the asymptotic lower bound on the Bayes risk increases

from O(c) to the order O(c
√
| log c|). It is useful to point out that a two-stage test can be

designed to enjoy similar properties as illustrated by the following theorem.

Theorem 4.3.5. Let δ∗II(c) be a two-stage test equipped with maximin quantizers {φ̄max
m }.

If A0 = O(
√
A1) as c→ 0, then the expected sample size N of δ∗II(c) satisfy

Em {N} = | log c|/I(m) +O(
√
| log c|)

and its Bayes risk is given by

Rc (δ∗II(c)) = c| log c|
M−1∑
m=0

πm/I(m) +O(c
√
| log c|).

Hence δ∗II(c) is asymptotically optimal up to first-order.
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4.4 Testing M = 2 Simple Hypotheses as a Special Case

In this section let us focus on the problem of testing M = 2 simple hypotheses. This is a

special case of multihypotheses testing and thus the theorems in Section 4.3 are applicable.

Because now there are only one null and one alternative hypotheses, the asymmetric as-

sumption of Theorem 4.3.1 is satisfied. Hence, the test δ∗MS(c) equipped with the maximin

quantizers is second-order asymptotically optimal.

Compared with the multihypotheses testing problem, a much stronger result can be

obtained for testing M = 2 hypothesis. First, the condition of Theorem 4.3.1 and Theorem

4.3.4 can be weakened.

Proposition 4.4.1. When testing M = 2 hypotheses, the conclusions of Theorem 4.3.1

and Theorem 4.3.4 remain valid with only Assumption 3 and without condition (58).

The proof is omitted because it can be done by following the same steps as in the proofs

of the original theorems regarding general multihypotheses testing.

By Theorem 4.3.1 or Proposition 4.4.1, in order for a multi-stage test to reach second

order asymptotic optimality, the threshold condition (57) is crucial. Indeed, in the case of

testing M = 2 hypotheses, (57) is not only sufficient as shown by Proposition 4.4.1, by also

necessary provided that the tests implement maximin quantizers.

Theorem 4.4.1. Assume φmax
0 6= φmax

1 , i.e., assume that there is no one single quantizer

φ̄max that maximizes I(0, 1; φ̄) and I(1, 0; φ̄) simultaneously. Consider a multi-stage proce-

dure using the maximin quantizers, i.e., φ̄m = φmax
m for m = 0, 1. Then in order for this

test to have second order asymptotic optimality, the thresholds {Aj} must satisfy condition

(57).

The proof of this theorem is presented in the next section. One may wonder whether the

second-order asymptotic optimality can also be obtained without the maximin quantizers.

In the case of testing M = 2 hypotheses, a negative answer can be obtained with a mild

regularity condition on {Aj}.
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Proposition 4.4.2. For testing M = 2 hypotheses, define a generalized multi-stage test

as follows. For each stage j = 1, . . . , J , a pair of quantizers φ̄
(j)
0 , φ̄

(j)
1 is prepared such

that after the log-likelihood ratio Zn crosses the boundary Aj or −Aj, quantizer φ̄
(j)
0 or

φ̄
(j)
1 will be used based on the intermediate decision Dj = 0 or Dj = 1. Suppose for each

j = 1, 2, . . . , Aj−Aj−1 goes to infinite as c→ 0, then for the generalized multi-stage test to

have second order asymptotic optimality, condition (57) for the thresholds has to be satisfied

and φ̄
(j)
m = φmax

m for any j and m = 0, 1.

The proof of Proposition 4.4.2 is similar to that of Theorem 4.4.1 and thus omitted.

Another consequence of Theorem 4.4.1 is that a two-stage test can never reach second-

order asymptotic optimality no matter how well the thresholds are set.

Corollary 4.4.1. When testing M = 2 hypotheses, if a multi-stage procedure δMS(c) has

second order asymptotic optimality, the total number of its thresholds, i.e., J + 1, must go

to infinite as c→ 0.

4.5 Proofs

4.5.1 Proofs for Section 4.3

Proof of Theorem 4.3.1. Without loss of generality, suppose the quantizer φ̄0 is asymmetric

w.r.t. state 0, and

I(0; φ̄0) = I(0, 1; φ̄0) < I(0,m; φ̄0), for any m 6∈ {0, 1}.

Now we reformulate the stopping criteria of the test in terms of the quantities Zn(0,m),

where m = 1, . . . ,M − 1. To do so, let x = (x1, . . . , xM−1) represent point in RM−1 and for

j = 0, . . . , J , define the region Õj =
⋃M−1
m=0 Õmj ∈ RM−1 with

Õ0
j =

M−1⋂
m′=0

{xm′ ≥ Aj}

and

Õmj =
M−1⋂
m′=0

{
xm
′ − xm ≥ Aj

}

70



for m 6= 0, where we set x0 = 0. Define the M − 1 dimensional random vector Z̃n =

(Zn(0, 1), . . . , Zn(0,M − 1)), then the stopping time Nj can be represented as

Nj = min
{
n : Z̃n ∈ Õj

}
and the decision Dj = m if Z̃Nj = Õmj .

When m = 0 is true, let’s define another stopping time N ′ as follows. N ′ = N if the

final decision D = 0. When D = m 6= 0, i.e., Z̃N stopps in the region ÕmJ , then let the

local sensor continue to sample the data and the fusion center continue to use the same

quantizer as it did at step N for quantization, and let the continued procedure stop at time

N ′ = min
{
n ≥ N : Z̃n ∈ Õ0

J

}
. Obviously N ′ ≥ N , and to prove Theorem 4.3.1, we only

needs to show as c→ 0

E0

{
N ′
}

= | log c|/I(0, 1; φ̄0) +O(1) (62)

and

E0

{
N ′ −N

}
= O(1) (63)

with both O(1) terms only depending on I∗, I
∗, V ∗, λ, ρ(λ), A∗ and AJ−1/AJ .

It is relatively easy to show (63). To do so, pick m 6= 0 and L ≥ AJ , by a change of

measure,

P0 {ZN (0,m) ≤ −L,D = m} = Em

{
eZN (0,m), D = m,ZN (0,m) ≤ −L

}
≤ e−L. (64)

When Z̃N ∈ ÕmJ , let a = −ZN (0,m) ≥ AJ , and define another stopping time N
′′

as

N
′′

= min

{
n ≥ N : min

1≤m′≤M−1

(
Zn(0,m′)− ZN (0,m′)

)
≥ AJ + a

}
.

Because for any m′ 6= m, Z(0,m′) > Z(0,m) on ÕmJ , so when DJ = m, N
′′ ≥ N ′. By

Lemma 4.5.3, when DJ = m,

E0

{
N
′′ −N

∣∣∣FN} ≤ C1(AJ + a+ 1).

Together with (64),

E0

{
N ′ −N,DJ = m

}
≤ C2AJe

−AJ ≤ C2 (65)
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with C2 a constant only depending on I∗, I
∗, V ∗.

Now it remains to prove (62). For n = 1, 2, . . . , denote the possibly randomized quantizer

chosen by the fusion center at time step n be φ̃n, where φ̃n ∈ {φ̄0, φ̄0, . . . , φ̄M−1}. By

definition, E0{∆Zn(0, 1)} = I(0, 1; φ̃n). Optional stopping theorem for margingales implies

that

E0 {ZN ′(0, 1)} = E0

{
N ′∑
n=1

∆Zn(0, 1)

}
= E0

{
N ′∑
n=1

I(0, 1; φ̃n)

}
.

By the definition of the multi-stage test δMS(c), we have

E0 {ZN ′(0, 1)} = I(0, 1; φ̄0)E0(N0) + I(0, 1; φ̄0)
J∑
j=1

E0 {Nj −Nj−1, Dj−1 = 0}

+

M−1∑
m=1

J−1∑
j=1

I(0, 1; φ̄m)E0 {Nj −Nj−1, Dj−1 = m}

+
M−1∑
m=1

I(0, 1; φ̄m)E0

{
N ′ −NJ−1, DJ−1 = m

}
= I(0, 1; φ̄0)E0

{
N ′
}

+
(
I(0, 1; φ̄0)− I(0, 1; φ̄0)

)
E0 {N0}

+
M−1∑
m=1

J−1∑
j=1

(
I(0, 1; φ̄m)− I(0, 1; φ̄0)

)
E0 {Nj −Nj−1, Dj−1 = m}

+
M−1∑
m=1

(
I(0, 1; φ̄m)− I(0, 1; φ̄0)

)
E0

{
N ′ −NJ−1, DJ−1 = m

}
With a similar argument as we obtain the estimate in (65), there exists constant C4

which only depending on I∗, I
∗, V ∗ such that for any m 6= 0,

E0 {N0} ≤ C4(A0 + 1)

E0 {Nj −Nj−1, Dj−1 = m} ≤ C4(Aj + 1)e−Aj−1 , j = 1, . . . , J − 1

E0

{
N ′ −NJ−1, DJ−1 = m

}
≤ C4(AJ + 1)e−AJ−1

so

E0 {ZN ′(0, 1)} = I(0, 1; φ̄0)E0

{
N ′
}

+O

 J∑
j=0

(Aj + 1)e−Aj−1

 = I(0, 1; φ̄0)E0

{
N ′
}

+O(1)

and the O(1) term only depends on I∗, I
∗, V ∗, λ, ρ(λ), A∗.

Therefore, to prove the theorem, we only need to show that at the stopping time N ′,

E0{ZN ′(0, 1) − AJ} = O(1) with the O(1) term only depending on I∗, I
∗, V ∗, λ, ρ(λ), A∗
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and AJ−1/AJ . To do so, define

ε =
Igap
4I∗

.

The definition of ε guarantees that for 2 ≤ m ≤M − 1

(1− ε)I(0,m; φ̄0)− I(0, 1; φ̄0) ≥ I∗
4I∗

Igap.

Let the positive constants C5 ≥ 1, C6, δ1 be as in Proposition 4.5.1 then when c is sufficiently

small such that C5AJ−1 ≤ εAJ , we have

P0

{
max

1≤m≤M−1

∣∣ZNJ−1
(0,m)

∣∣ ≥ L} ≤ C6e
−δ1L (66)

for any L ≥ εAJ .

When DJ−1 = 0 and max1≤m≤M−1 |ZNJ (0,m)| ≤ εAJ , define a stopping time

T = min

{
n ≥ NJ−1 : Zn(0, 1)− ZNJ−1

(0, 1) ≥ AJ − ZNJ−1
(0, 1),

min
2≤m≤M−1

(1− ε)(Zn(0,m)− ZNJ−1
(0,m)) ≥ AJ − ZNJ−1

(0, 1)

}
then because of the definition of ε, at time T , ZT (0, 1) ≥ AJ and min2≤m≤M−1 ZT (0,m) ≥

AJ . In other words, T ≥ N ′. By Lemma 4.5.3, when DJ−1 = 0 and max1≤m≤M−1 ZNJ−1
≤

εAJ

E {ZT (0, 1)−A| FN} ≤ C7

where C7 is a constant which only depends on Igap, I∗, I
∗, V ∗ and AJ−1/AJ . By Lemma

4.5.6,

E {ZN ′(0, 1)− ZT (0, 1)| FN ′} ≤ 1

so

E

{
ZN ′(0, 1)−AJ , DJ−1 = 0, max

1≤m≤M−1

∣∣ZNJ−1
(0,m)

∣∣ ≤ εAJ} ≤ C7 + 1.

Similarly, by using (75) of Lemma 4.5.3

E

{
ZN ′(0, 1)−AJ , DJ−1 = m′ 6= 0, max

1≤m≤M−1

∣∣ZNJ−1
(0,m)

∣∣ ≤ εAJ} ≤ C8e
−AJ−1(AJ + 1)

and for L ≥ εAJ ,

E0

{
ZN ′(0, 1)−AJ

∣∣∣∣ max
1≤m≤M

∣∣ZNJ−1

∣∣ = L

}
≤ C9(AJ + L)
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where C8, C9 are positive constants only depending on I∗, I
∗, V ∗. By (66),

E0

{
ZN ′(0, 1)−AJ , max

1≤m≤M

∣∣ZNJ−1

∣∣ ≥ εAJ} ≤ C10

with C10 > 0 a constant depending on I∗, I
∗, V ∗, λ, ρ(λ). Together we have

E0 {ZN ′ −AJ} ≤ C11

with C11 > 0 a constant depending on Igap, I∗, I
∗, V ∗, λ, ρ(λ) and AJ−1/AJ . This completes

our proof.

Lemma 4.5.1. Suppose in a test procedure, the fusion center always uses a stationary,

though possibly randomized quantizer φ̄ for data compression. Let the stopping time of the

procedure be

T = min

{
n ≥ 1 : min

1≤m≤M−1
Zn(0,m) ≥ A

}
where A > 0 is a threshold. Then if I(0; φ̄) ≥ I∗

E0 {T} = A/I(0; φ̄) +O(
√
A)

and the O(
√
A) term only depends on I∗, I

∗, V ∗.

Proof. Without loss of generality, suppose I(0, 1; φ̄) = I(0; φ̄). Let T ′ be the first time

Zn(0, 1) crosses the threshold A, then T ′ ≤ T . By optional stopping, E0 {T} ≥ E0 {T ′} ≥

A/I(0; φ̄). Therefore we only need to prove

E0 {T} ≤ A/I(0; φ̄) +O(
√
A).

To do so, first we prove the inequality for the case I(0,m; φ̄) = I(0; φ̄) for any 1 ≤ m ≤

M − 1. When this is the case, let n0 = A/I(0; φ̄). By Lemma 4.5.8,

P0

{
Zn0 {0,m} −A ≤ −a

√
A
}
≤ exp

{
V ∗/2− a/

√
I(0; φ̄)

}
so

P0

{
min

1≤m≤M−1
Zn0 {0,m} −A ≤ −a

√
A

}
≤ (M − 1) exp

{
V ∗/2− a/

√
I(0; φ̄)

}
.
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As before, let Fn be the σ-algebra generated by all the information available to the fusion

center up to time step n. For a > 0, by Lemma 4.5.3, exists constant C which only depends

on I∗, I
∗, V ∗ such that

E0

{
T − n0

∣∣∣∣Fn0 , min
1≤m≤M−1

Zn0(0,m)−A = −a
}
≤ C(a+ 1).

Together we have

E0 {T} ≤ A/I(0; φ̄) + C(M − 1) exp {V ∗/2}
√
I∗A+ C

completing the proof.

Proof of Theorem 4.3.2. By Lemma 4.5.2 and optional stopping, there exists constant C

which only depends on I∗, V
∗, λ, ρ(λ) such that

E0 {NJ−1} ≤ CAJ−1.

By Lemma 4.5.1,

E0

{
NJ −NJ−1

∣∣FNJ−1
, DJ−1 = 0

}
≤ AJ/I(0; φ̄0) + C1(

√
AJ + 1)

so

E0 {NJ −NJ−1, DJ−1 = 0} ≤ AJ/I(0; φ̄0) + C1(
√
AJ + 1).

By a change of measure, we can similarly show that

E0 {NJ −NJ−1, DJ−1 6= 0} ≤ C2AJe
−AJ−1 .

Combining them together the theorem is proved.

Proof of Theorem 4.3.3. In the proof we work with the Bayes test δ∗B(c). For state m =

0, . . . ,M−1, denote by m̃ one state satisfying I(m, m̃; φ̄∗m) = I(m; φ̄∗m). Also let Pm {D = m′} =

α(m,m′) and Pm {D 6= m} = α∗(m). Obviously, α∗(m) =
∑

m′ 6=m α(m,m′) = O(c log c).

By Wald’s likelihood ratio identity,

Em {ZN (m, m̃)} ≥ (1− α∗(m)) log
1− α∗(m)

α(m̃,m)
+ α∗(m) log

α∗(m)

1− α(m̃,m)
.
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When c→ 0,

E0 {ZN (m, m̃)} ≥ −(1− α∗(m)) logα(m̃,m) +O(1).

We claim that α∗(m) logα(m̃,m) → 0 when c → 0. If otherwise, there exists a sequence

ci → 0 but

−α∗(m; ci) logα(m̃,m; ci) ≥ b > 0.

Thus, when ci sufficiently small so that α∗(m; ci) ≤ 1/2, we have

Em {ZN (m, m̃)} ≥ b

2α∗(m; ci)
+O(1) ≥ b′

ci| log ci|
+O(1)

where b′ > 0 is another constant not depending on ci. However, by optional stopping,

Em{ZN (m, m̃)} ≤ I∗mEm{N}, therefore

Em{N} ≥
b′

I(m)ci| log ci|
+O(1)

which contradicts the optimality of δ∗B(c) because it requires that Em {N} = O(| log ci|),

and the claim is proved. Therefore

Em {ZN (m, m̃)} ≥ − logα(m̃,m) +O(1).

Denote α′(m̃,m; c) = α(m̃,m; c)/c, we claim that α′(m̃,m; c) = O(1) for any m. If the

claim is true, the theorem is proved because then for any m,

Em {ZN (m, m̃)} ≥ | log c|+O(1)

and

Em {N} ≥ | log c|/I(m) +O(1).

So it remains to prove the claim. Without loss of generality, we only need to prove

it for m = 0, suppose ci → 0 such that α′(0̃, 0; ci) → ∞, then by possibly going to a

subsequence, we can assume that for m = 1, . . . ,M − 1, α′(m̃,m; ci) either goes to infinite

or remains bounded. By changing the label of the state, we are free to suppose that exist

1 ≤M ′ ≤M such that for m = 0, . . .M ′−1, α′(m̃,m; ci)→∞ while for m = M ′, . . . ,M−1,

α′(m̃,m; ci) = O(1).
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Hence when the cost per step is ci → 0, for m = 0, . . . ,M ′ − 1,

Em {ZN (m, m̃)} ≥ | log ci| − logα′(m̃,m; ci) +O(1)

and

Em {N} ≥ | log c|/I(m)− logα′(m̃,m; ci)/I(m) +O(1)

while for m = M ′, . . . ,M − 1,

Em {N} ≥ | log c|/I(m) +O(1).

Consequently by definition

Rci(δ∗B(ci))

=
∑
m

πmEm {N}+
∑
m6=m′

πmW (m,m′)α(m,m′)

≥ ci| log ci|
M−1∑
m=0

πm/I(m) + ci

M ′−1∑
m=0

(
πm̃W (m̃,m)α′(m̃,m)− πm logα′(m̃,m)/I(m)

)
+O(ci).

For m = 0, . . . ,M ′ − 1, when ci → 0, α′(m̃,m)→∞, so

πm̃W (m̃,m)α′(m̃,m)− πm logα′(m̃,m)/I(m)→∞.

When ci is sufficiently small, we must have

Rci(δ∗B(ci)) > Rci(δ∗MS(c))

which is a contradiction. This completes our proof.

Lemma 4.5.2. Let m = 0 be the true state of nature, and µ > 0 be a constant such that

I(0,m; φ̄) ≥ µ for any m = 1, . . . ,M − 1 and φ̄ = φ̄0, φ̄0, . . . , φ̄M−1. Consider a procedure

which, for each time step n, the fusion center always chooses one quantizer from the set

{φ0, φ̄0, . . . , φ̄M−1} to implement and the choice is adaptive to Fn−1, i.e., the σ-algebra

generated by all the information at fusion center up to time n − 1. Let T be the first time

that, for each m = 1, . . . ,M−1, Zn(0,m) ≥ A, where A > 0 is a given constant. Then exist

positive constants C5 ≥ 1, C6, δ1 which only depending on I∗, V
∗ and λ, ρ(λ) in Assumption

2, such that for every L ≥ C5A

P0 {ZT (0,m) ≥ L} ≤ C6e
−δ1L, m = 1, . . . ,M − 1.
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Proof. Let λ > 0 and ρ(λ) as defined in Assumption 2. Then because E0 {∆Zn(0,m)} > 0

1 ≤ E0

{
eλ∆Zn(0,m)

∣∣∣Fn−1

}
≤ ρ(λ)

and {exp {λZn(0,m)} ,Fn} is a submartingale. So by Doob’s inequality, for any n ≥ 1,

P0

{
max
i≤n

Zi(0,m) ≥ L
}

= P0

{
max
i≤n

eλZi(0,m) ≥ eλL
}

≤ e−λLenρ(λ) = e−L(nρ(λ)/L−λ).

Take δ′1 = λ/2 and n0 = λL
2ρ(λ) , then

P0

{
max
i≤n0

Zi(0,m) ≥ L
}
≤ e−δ′1L. (67)

Meanwhile, the process {∆Zn(0,m),Fn} obviously satisfies the condition of Lemma 4.5.7

with I∗ = µ and V = V ∗ + 2/e. So exist positive µ∗ and δ3 only depending on I∗ and V ∗

such that for n = 1, 2, . . .

P0 {Zn(0,m) ≤ µ∗n} ≤ e−δ3n.

Consequently, for n ≥ A/µ∗

P0 {Zn(0,m) ≤ A} ≤ e−δ3n

and when L ≥ 2ρ(λ)A
µ∗λ

, with the n0 we just defined,

P0 {Zn0(0,m) ≤ A} ≤ e−δ′3L

where δ′3 = δ3λ
2ρ(λ) > 0. So

P0

{
min

1≤m≤M−1
Zn0(0,m) ≤ A

}
≤ (M − 1)e−δ

′
3L.

Hence

P0 {T ≥ n0} ≤ (M − 1)e−δ
′
3L (68)

because {T ≥ n0} ⊂ {min1≤m≤M−1 Zn0(0,m) ≤ A}. Let δ1 = min{δ′1, δ′3}, C5 = 2ρ(λ)
µ∗λ

, and

C6 = M , then because

{ZT (0,m) ≥ L} ⊂ {T ≥ n0}
⋃{

max
i≤n0

Zi(0,m) ≥ L
}

combining (67) and (68) we complete the proof of the lemma.
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Based on Lemma 4.5.2, we have the following estimation about Zn(0,m) at time n =

NJ−1, i.e., the time Z̃n reaches stopping region ÕJ−1.

Proposition 4.5.1. Exist positive constants C5 ≥ 1, C6, δ1 which only depending on I∗, I
∗, λ, ρ(λ)

such that for every L ≥ C5AJ−1,

P0

{
ZNJ−1

(0,m) ≥ L,D = 0
}
≤ C6e

−δ1L

for every L ≥ AJ−1,

P0

{
ZNJ−1

(0,m) ≤ −L,D = m
}
≤ e−L

and for L ≥ C5AJ−1, m′ 6= m

P0

{∣∣ZNJ−1
(0,m′)

∣∣ ≥ L,D = m
}
≤ 2C6e

−δ1L−AJ−1

So with possibly an adjustment of the constants C5, C6, δ1, we have that for any L ≥ C5AJ−1,

P0

{
|ZNJ−1

(0,m)| ≥ L
}
≤ C6e

−δ1L. (69)

4.5.2 Proofs for Section 4.4

Let L∗ = (V ∗ + 2/e)/I∗ <∞.

Proof of Theorem 4.4.1. For convenience, denote I(0, 1;φ0) = I0, I(0) = I(0, 1; φ̄∗0), I ′0 =

I(0, 1; φ̄∗1). Let’s suppose I0 < I(0), otherwise we only need to exchange state 0 with state

1. Because φ̄∗0 6= φ̄∗1, I ′0 < I(0).

Let Lj ≥ 0 be the overshoot over Aj or −Aj at time Nj , i.e., Lj = ZNj − Aj (Lj =

−ZNj − Aj ) when Dj = 0 (Dj = 1). Also define N ′j , N
′′
j be the first time after Nj−1 that

Zn cross the upper bound Aj or lower bound −Aj , respectively, if the local sensor did not

switch quantizer. Let L′j ≥ 0, L′′j ≥ 0 be the overshoots at time N ′j , N
′′
j . So when Dj = 0,

N ′j = Nj , L
′
j = Lj , and when Dj = 1, N ′′j = Nj , L

′′
j = Lj .

Like in the proof of Theorem 4.3.1, we have the following decomposation

E0 {ZN} = I∗0E0 {N} − (I∗0 − I0)E0 {N0} − (I(0)− I ′0)E0 {Nj −Nj−1, Dj−1 = 1} . (70)

Easy to show E0 {ZN} ≥ AJ − 1. To guarantee second order asymptotic optimality, we

need E0 {N0} = O(1). Because E0 {N0} ≥ (I0)−1A0, so A0 = O(1) when c→ 0.
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Similarly
J∑
j=1

E0 {Nj −Nj−1, Dj−1 = 1} = O(1). (71)

Next we try to estimate a lower bound for
∑J

j=1E0 {Nj −Nj−1, Dj−1 = 1}. For that, we

first obtain a lower bound for making incorrect intermediate decisions, i.e.,

P0 {Dj = 1} = e−AjE1

{
Dj = 1, e−Lj

}
By Jensen inequality,

E1

{
e−L

′′
j

}
≥ exp

{
−E1

{
L
′′
j

}}
≥ e−L∗

so

E1

{
e−Lj , Dj = 1

}
= E1

{
e−L

′′
j

}
− E1

{
Dj = 0, e−L

′′
j

}
≥ e−L∗ − P1 {Dj = 0} ≥ e−L∗ − e−Aj

and

P0 {Dj = 1} ≥ e−Aj−L∗ − e−2Aj . (72)

Now, on the event Dj−1 = 1,

E0

{
N ′j −Nj−1

∣∣FNj−1

}
≥ I ′0

−1
(Aj +Aj−1)

so

E0

{
N ′j −Nj−1, Dj−1 = 1

}
≥ I ′0

−1
(Aj+Aj−1)P0 {Dj−1 = 1} ≥ I ′0

−1
(Aj+Aj−1)(e−Aj−1−L∗−e−2Aj−1).

(73)

On the other hand,

E0

{
eLj−1 , Dj−1 = 1

}
= E1

{
e−Aj−1 , Dj−1 = 1

}
≤ e−Aj−1

(
1− e−Aj−1−L∗ + e−2Aj−1

)
≤ 2e−Aj−1 .

While on the event {Dj−1 = 1} ∪ {Dj = 1},

E0

{
N ′j −Nj

∣∣FNj} ≤ I ′0−1
(Lj + 2Aj + L∗).
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so on Dj−1 = 1

E0

{
N ′j −Nj , Dj = 1

∣∣FNj−1

}
≤ I ′0

−1
(2Aj + L∗)P0

{
Dj = 1| FNj−1

}
+ I ′0

−1
E0

{
Lj , Dj = 1| FNj−1

}
≤ I ′0

−1
(2Aj + L∗)e−Aj+Aj−1+Lj−1 + I ′0

−1
e−Aj+Aj−1+Lj−1E1

{
Dj = 1, Lje

−Lj
∣∣FNj−1

}
≤ 2I ′0

−1
e−Aj+Aj−1(Aj + L∗)eLj−1 .

Because N ′j = Nj when Dj = 0, consequently

E0

{
N ′j −Nj , Dj−1 = 1

}
≤ 2I ′0

−1
e−Aj+Aj−1(Aj + L∗)E0

{
eLj−1 , Dj−1 = 1

}
≤ 4I ′0

−1
e−Aj (Aj + L∗)

and together with (73)

E0 {Nj −Nj−1, Dj−1 = 1} ≥ (I ′0)−1(Aj+Aj−1)(e−Aj−1−L∗−e−2Aj−1)−4e−Aj (I ′0)−1(Aj+L
∗).

(74)

Summing up (74) for j = 1, . . . , J , and using the fact
∑J

j=1Aje
−Aj = O(1),

J∑
j=1

E0 {Nj −Nj−1, Dj−1 = 1} ≥ e−L∗(I ′0)−1
J∑
j=1

Aje
−Aj−1 +O(1).

Together with (71),
∑J

j=1Aje
−Aj−1 = O(1). This completes our proof.

4.5.3 Auxiliary Results.

Lemma 4.5.3. Let ∆X̃n =
(

∆X
(1)
n , . . . ,∆X

(M−1)
n

)
be a sequence of i.i.d. random vectors

w.r.t. time step n = 1, 2, . . . . Denote X̃n =
∑n

i=1 ∆X̃i and X
(m)
n =

∑n
i=1 ∆X

(m)
i . Suppose

exp
{
−∆X

(1)
n

}
= 1 and exist 0 < µ < µ̄ and V > 0 such that

µ ≤ min
m

E
{

∆X(m)
n

}
≤ max

m
E
{

∆X(m)
n

}
≤ µ̄

and

max
m

E

{(
∆X(m)

n

)2
}
≤ V.

Let A ≥ 0 be a constant, and stopping time

T = min
{
n : min

m
X(m)
n ≥ A

}
.
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Then exist positive constants C1 which only depends on µ, µ̄ and V such that

E
{
X

(1)
T

}
≤ C1(A+ 1) (75)

and

E {T} ≤ C1(A+ 1). (76)

Moreover, if for m = 2, . . . ,M − 1, exist δ > 0 such that

E
{

∆X(1)
n −∆X(m)

n

}
≥ δ (77)

then exists C2 > 0 which only depends on µ, µ̄, V and δ such that

E
{
X

(1)
T −A

}
≤ C2. (78)

Proof. Let’s first prove (78) under (77). For that, define

∆Y (m)
n = ∆X(1)

n −∆X(m)
n , m = 2, . . . ,M − 1

and

Y (m)
n =

n∑
i=1

∆Y (m)
n , m = 2, . . . ,M − 1.

Then for 2 ≤ m ≤M − 1,

δ ≤ E
{

∆Y (m)
n

}
≤ µ̄

and

E

{(
∆Y (m)

n

)2
}
≤ 4V.

Let T0 = 0 and

Tn = min

{
i ≥ Tn−1 : min

2≤m≤M−1
Y

(m)
i − Y (m)

Tn−1
> 0

}
.

Then {Tn − Tn−1} is a positive i.i.d. sequence. By Lemma 4.5.5, exists C4 > 0 which only

depends on δ, µ̄, V such that

1 ≤ E {Tn − Tn−1} ≤ E
{

(Tn − Tn−1)2
}
≤ C4.

Now
{
X

(1)
Tn
−X(1)

Tn−1

}
is also i.i.d. sequence with

X
(1)
T1
−X(1)

T0
=

T1∑
i=1

∆X
(1)
i .
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Hence

E
{
X

(1)
Tn
−X(1)

Tn−1

}
≥ E

{
∆X

(1)
1

}
≥ µ

and with µ(1) = E
{

∆X
(1)
n

}
,

E

{(
X

(1)
Tn
−X(1)

Tn−1

)2
}

= E


(

T1∑
i=1

∆X
(1)
i

)2


= E


(

T1∑
i=1

(
∆X

(1)
i − µ

(1)
)

+ T1µ
(1)

)2


≤ E


(

T1∑
i=1

(
∆X

(1)
i − µ

(1)
))2

+ 2(µ(1))2E
{
T 2

1

}
≤ 2E {T1}E

{(
∆X

(1)
1 − µ(1)

)2
}

+ 2(µ(1))2E
{
T 2

1

}
≤ 2E {T1}V + 2µ̄2E

{
T 2

1

}
≤ 2C4(V + µ̄2).

Define N = min
{
n : X

(1)
Tn
≥ A

}
, by Lorden [19],

E
{
X

(1)
TN
−A

}
≤
E

{(
X

(1)
Tn
−X(1)

Tn−1

)2
}

E
{
X

(1)
Tn
−X(1)

Tn−1

} ≤ 2C4

(
V + µ̄2

)
/µ.

By definition, for 2 ≤ m ≤M − 1, 0 < Y
(m)
TN

= X
(m)
TN
−X(1)

TN
, so

X
(m)
TN
≥ A, ,m = 1, . . . ,M

and T ≤ TN . By Lemma 4.5.6,

E
{
X

(1)
T −X

(1)
TN

}
≤ 1

so finally we have

E
{
X

(1)
T −A

}
≤ C3 = 1 + 2C4

(
V + µ̄2

)
/µ.

Now we prove (75) and (76). By optional stopping, (76) is a direct consequence if we can

prove (75). To do so, define C5 = 2µ̄/µ ≥ 1, and ∆X
′(m)
n = C5∆X

(m)
n for 2 ≤ m ≤M − 1.

Then

E
{

∆X ′(m)
n −∆X(1)

n

}
≥ µ̄/2 m = 2, . . . ,M − 1.
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Let X
′(m)
n =

∑n
i=1 ∆X

′(m)
n , define the stopping time

T ′ = min

{
n : X(1)

n ≥ C5A, min
2≤m≤M−1

X ′(m)
n ≥ C5A

}
.

By what we have just proved, exists constant C6 > 0 which only depends on µ, µ̄, V such

that

E
{
X

(1)
T ′ − C5A

}
≤ C6.

Hence

E
{
X

(1)
T ′

}
≤ C5A+ C6.

Meanwhile, because C5 ≥ 1, T ≤ T ′ and again by Lemma 4.5.6,

E
{
X

(1)
T −X

(1)
T ′

}
≤ 1

and

E
{
X

(1)
T

}
≤ C5A+ C6 + 1

completing our proof.

Lemma 4.5.4. Let ∆X1,∆X2, . . . be i.i.d. sequence with positive mean E {∆X1} = µ > 0

and Xn =
∑n

i=1 ∆Xi be the random walk. Define T = min{n : Xn > 0} be the first strong

ascending ladder epoch of Xn, then

E {T} ≤ E
{

∆X2
1

}
/µ2

and

E
{
T 2
}
≤ 4

E2
{

∆X2
1

}
µ4

.

Proof. By Theorem 1 of Lorden [19], E {XT } ≤ E
{

∆X2
1

}
/µ2. By optional stopping,

µE {T} = E {XT }, thus the first inequality follows.

To proof the second, for any random variable Y denote ‖Y ‖2 =
√
E {Y 2}. Note that

µ‖T‖2 = ‖XT − µT‖2 + ‖XT ‖2. By Lemma 1.8.1 of Gut [7],

‖XT ‖2 ≤ ‖∆XT ‖2 ≤
√
E {T}‖∆X1‖2.
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Meanwhile, use optional stopping to variance, we have

E
{

(XT − Tµ)2
}

= E {T}V ar {∆X1} ≤ E {T}E
{

∆X2
1

}
.

Hence

µ‖T‖2 ≤ 2
√
E {T}‖∆X1‖2

and

E
{
T 2
}
≤ 4E {T}E

{
∆X2

1

}
/µ2 ≤ 4

E2
{

∆X2
1

}
µ4

.

Lemma 4.5.5. Let ∆Xn = (∆X
(2)
n , . . . ,∆X

(M−1)
n ) be a seqence of i.i.d. random vectors,

and X
(m)
n =

∑n
i=1 ∆X

(m)
i for 2 ≤ m ≤ M − 1. Suppose exist µ > 0, µ̄ > 0, ν2 > 0 such

that for 2 ≤ m ≤M − 1, µ ≤ E {∆Xm
1 } ≤ µ̄ and E

{(
∆X

(m)
1

)2
}
≤ V . Define a stopping

time T as

T = min{n : min
2≤m≤M−1

X(m)
n > 0}.

Then

E {T} ≤ E
{
T 2
}
≤ C <∞

where C > 0 is a constant only depending on µ, µ̄, V .

Proof. Recursively use Lemma 4.5.4.

Lemma 4.5.6. Let ∆X1,∆X2, . . . be i.i.d. sequence with positive mean E {∆X1} > 0 and

E{e−∆X1} = 1. Let Xn =
∑n

i=1 ∆Xi be the random walk, then for any L ≥ 0,

P

{
min
n≥1

Xn ≤ −L
}
≤ e−L.

Proof. Let Fn = σ{∆X1, . . . ,∆Xn}, then {e−Xn ,Fn} is a martingale, and the conclusion

is a direct consequence of Doob’s inequality.

Lemma 4.5.7. Let ∆X1,∆X2, . . . be a sequence of random variables, and the σ-algebra

Gn = σ{∆X1, . . . ,∆Xn} for n = 1, 2, . . . . Denote Xn =
∑n

i=1 ∆Xi. Suppose that

E {exp (−∆Xn)| Gn−1} = 1
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and exist µ > 0 and V > 0 such that for any n,

E {∆Xn| Gn−1} ≥ µ, , E
{

∆X2
n

∣∣Gn−1

}
≤ V.

Then exist positive constants δ3 and µ∗ which only depend on µ and V such that

E {Xn ≤ µ∗n} ≤ e−δ3n.

Proof. For any n ≥ 1, consider the conditional moments generating function

ϕn(t) = E
{
e−t∆Xn

∣∣Gn−1

}
.

Then ϕn(t) is well defined and smooth for 0 ≤ t ≤ 1, with ϕn(0) = ϕn(1) = 1. Moreover,

we have that

ϕ′n(0) = E {−∆Xn| Gn−1} ≤ −µ

and for 0 ≤ t ≤ 1,

ϕ′′n(t) = E
{

∆X2
ne
−t∆Xn

∣∣Gn−1

}
≤ E

{
∆X2

n

∣∣Gn−1

}
≤ V.

Consequently, for 0 ≤ t ≤ 1,

ϕ′′n(t) ≤ 1− µt+ V t2/2.

Take τ = µ/V ,

µ∗ = − V
2µ

log(1−
µ2

2V
) > 0

and

δ3 = −1

2
log

(
1−

µ2

2V

)
> 0

then

E
{
e−τ(∆Xn−µ∗)

∣∣∣Gn−1

}
≤ e−δ3 .

As a result,

E
{
e−τXnenτµ∗

}
≤ e−δ3n

and

P {Xn − µ∗n ≤ 0} ≤ E
{
e−τXn+nτµ∗

}
≤ e−δ3n

with δ3 and µ∗ only depending on µ and V .
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Lemma 4.5.8. Let ∆X1,∆X2, . . . be a sequence of i.i.d. random variable such that E {∆X1} =

µ, E
{

∆X2
1

}
≤ V , and E

{
e−∆X1

}
<∞. Denote Xn =

∑n
i=1 ∆Xi. Then for any a > 0,

P
{
Xn − µn ≤ −

√
na
}
≤ e

V
2 e−a.

Proof. Without loss of generality, assume that µ = 0. Then ϕ(t) = e−t∆X1 is well defined

and smooth on 0 ≤ t ≤ 1. In particular, ϕ(0) = 1, ϕ′(0) = 0 and

0 ≤ ϕ′′(t) = E
{

∆X2
1e
−t∆X1

}
≤ V.

Hence for 0 ≤ t ≤ 1, ϕ(t) ≤ exp
{
V t2

2

}
. As a result, for n = 1, 2, . . . ,

E

{
exp

{
−Xn√

n

}}
≤ exp

{
V

2

}
and

P
{
Xn ≤ −

√
na
}

= P
{

exp
{
−Xn/

√
n
}
≥ ea

}
≤ E

{
exp

{
−Xn/

√
n
}}

e−a ≤ eV/2−a.
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CHAPTER V

SEQUENTIAL MINIMUM ENERGY DESIGN ALGORITHM

This chapter deals with a new topic on the theoretical properties of the sequential minimum

energy design (SMED) proposed in Joseph, Dasgupta and Wu [11].

5.1 Introduction and Background

In a typical computer or laboratory experimental design problem, experimenters aim at

finding the global optimum of a black-box response function p(x) over a given design region

X , where the function p(x) represents the experimental yields which experimenters often

have very little prior knowledge of. In order to find the global optimum, the experimenters

typically need to select a set of design points and evaluate the response function over them.

In many applications, the evaluation of p(x) over a single design point x ∈ X can be

expensive and time consuming, and some may need to run a computer simulation for weeks

for finite element models. Therefore, a good design should be able to estimate the global

optimum accurately with as few design points as possible. Below we will simply state that

we want as few runs as possible by referring a run as the evaluation of p(x) at a single

design point.

When the design region X is of low dimension, the selection of design points can be done

by traditional methods like fractional factorial designs and orthogonal arrays, see Wu and

Hamada [46]. When the dimension of X becomes slightly higher, say, 10, these methods

quickly become infeasible because they yield a prohibitively large number of runs. Other

more efficient space-filling designs include Latin hypercule designs (McKay, Beckman and

Conover [22]), uniform designs (Fang [5]), and scrambled nets (Owen [28]). Unfortunately,

these designs are still not efficient enough for many cases, mainly because they are fixed

designs and do not incorporate information obtained from previous evaluated points into

subsequent choice of test points.

To overcome such weakness it is better to adopt a sequential design that takes advantage
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of the knowledge obtained in already evaluated points. The most famous existing designs

of this sort are PI and EI algorithms. Interesting readers are referred to Jones [10] or

Zhigljavsky and Zilinskas [48] (Ch 4) for more details. It is shown that, under certain

conditions, both methods asymptotically attain the global optimum when the numbers of

runs tend to infinite, see for example Guttman [8], Torn and Zilinskas [39], Locateli [17] etc.

However, both PI and EI algorithms are still only “semi-sequential” in the sense that

they all include a “preliminary stage” where a fixed design is needed to pick up a promising

sub-region to be searched over. As a rule of thumb proposed by Loeppky, Sacks and Welch

[18], the sizes of such preliminary designs are as large as 10m, where m is the dimension

of the design region. When m ∼ 10, the sizes of the preliminary stages can be already

unaffordable to experimenters.

In Joseph, Dasgupta and Wu in [11], the authors proposed the Sequential Minimum

Energy Design (SMED), an innovative and nature-inspired sequential algorithm that ad-

dresses the problems stated above. In SMED, one visualizes the process of selecting design

points as laying down particles with positive charges related to the experimental yields p(x),

with particles in more promising regions receiving lower charges and vice versa. Optimum

design points are calculated by sequentially minimizing the potential energy generated by

the corresponding charged particles. As a result, it is very unlikely for the design points

to stay over-crowded. Indeed, because of the charge they carry, the design points have a

natural tendency to expel each other, thereby achieving good space-filling. More impor-

tantly, since the charges are related to the experimental yield p(x), design points tend to

gather in regions with higher yields. Because of these two features, the SMED automatically

incorporates the information obtained from evaluated points into subsequent steps.

To be more specific, in [11], the potential energy between two particles with unit charges

is defined as the inverse of their distance, and the experimental yield over each next design

point is predicted through inverse distance weighting extrapolation. In real applications,

the SMED algorithm can be used in combination with other efficient space filling designs

such as Latin hypercubes to avoid over-concentration in the corners of the design regions.

In [11], the SMED is applied to a nano-wires synthesis problem as well as the optimization
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of some specially designed test functions, and it illustrates that the SMED mostly hit global

optimums in much less number of runs as compared to the EI or PI algorithms.

There are still many open problems regarding the SMED algorithm. Specifically, we

know very little about its asymptotic behaviors, and it is desirable to know whether the

SMED design points eventually become dense in the design region. This was raised as an

unresolved conjecture in [11]. Furthermore, it is helpful to know the long term distribution

of the design points because it is directly related to the efficiency of the algorithm. In

addition, the algorithm itself can be improved or simplified. In [11], the response surface

p(x) need to be re-estimated at each step, this lowers the computational efficiency and we

wish to propose a simplified version without the re-estimations.

The aim of the present chapter is to tackles these open problems on the SMED algo-

rithm. We provide useful insights into the theoretical properties of SMED and propose

modifications to the algorithm itself to facilitate implementations. The organization of this

chapter is as follows. In Section 5.2, we provide a rigorous definition of the SMED algorithm

and introduce relevant notation. In Section 5.3, we investigate the asymptotic properties of

the SMED design points. In Section 5.4, we propose a simplification to SMED so that the

step-wise estimation of the response surface p(x) is no longer necessary. Then numerical

simulations are reported in Section 5.5.

5.2 Definition and Notation

To facilitate the discussion, we scale each design variable so that they all have the same

range [0, 1]. In other words, the experimental region under consideration is X = [0, 1]m,

where m is the dimension of the design region. Let the experimental yield (or response

surface) p(x) be a non-negative piecewise continuous function over X . Ideally, one would

like to find a design point xg ∈ X (in other words, a specific combination of experimental

variables) such that p(x) is globally maximized, i.e., xg = arg maxx∈X p(x). In practice,

we often select a set of test points x1, . . . , xN and evaluate the yield function p(x) over

them. Then the test point with the largest yield is chosen as an approximation of the global

optimum. Hence, the objective is to design an efficient scheme that assigns the test points
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in such a way that we can get as close to the true global optimum as possible. Moreover,

we want the total number of runs of the experiment to be minimized, since the evaluation

of p(x) over every single test point can be costly.

The basic idea of SMED is to visualize each selected point x as a particle with a non-

negative charge q(x) that will be defined later. Given the charge function q(x), the SMED

algorithm defines the potential energy between two charged particles at x and y as

E(x, y) =
q(x)q(y)

[d(x, y)]β
, (79)

where the β ≥ 1 is a pre-specified parameter and d(x, y) is the Euclidean distance between

the two points.

There are many different ways to define the charge function q(x) as long as q(x) is a

non-negative decreasing function of the experimental yield p(x). Below we focus on the one

proposed in [11]:

q(x) = (1− αp(x))γ (80)

where α and γ are two positive parameters to be determined. Note that the non-negative

assumption of the particle charges implies that

α ≤ 1

maxx p(x)
.

Hence, we may want to choose α ≤ 1/M if we know that M is a crude upper bound on

p(x).

Now let us describe the SMED algorithm from the viewpoint of sequential black-box

designs. Suppose that the initial points {x1, . . . , xn0} are chosen randomly or according to

certain efficient designs (e.g. Latin Hypercube or other space-filling designs), and assume

that n ≥ n0 design points have already been selected. Then the total potential energy for

the selected design points is

En =
∑

1≤i 6=j≤n
E(xi, xj) (81)

where E(·, ·) is defined as in (79). To select the next design point xn+1, the SMED algorithm

wants to minimize the increase to the total potential energy of the design points, i.e.,

xn+1 = arg min
x

∆En+1(x) = arg min
x

n∑
i=1

E(x, xi). (82)
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Unfortunately, ∆En+1(x) is unobservable since it involves the values of yield p(x) at unob-

served points. To overcome the difficulty, it is natural to substitute the unknown value p(x)

by a prediction based on the observed points. In [11], an inverse distance weighting method

(see Shepard [31]) is used to estimate p(x) based on first n evaluated points x1, . . . , xn :

p̂(n)(x) =

∑n
i=1 d

−2(x, xi)p(xi)∑n
i=1 d

−2(x, xi)
. (83)

Correspondingly, define q̂(n)(x) = (1−αp̂(n)(x))γ as the predicted charge function at step n

and let ∆Ên+1(x) be the estimation ∆En+1(x) by replacing the charge function q(x) with

q̂(n)(x). Then the SMED algorithm select the next design point xn+1 as follows.

xn+1 = arg min
x

∆Ên+1(x). (84)

5.3 Asymptotic Properties of SMED

In this section we discuss the asymptotic properties of SMED algorithm. That is, suppose

now that we run the algorithm without stopping and thus generate an infinite sequence of

design points E = {x1, x2, . . . }. The denseness and distributions of E will be explored in

the present section.

Let q = minx∈X q(x) and q̄ = maxx∈X q(x) be the lower and upper bounds of the charge

function. By definition 0 ≤ q ≤ q̄ ≤ 1. To eliminate singularities, we first assume q > 0,

which is equivalent to α < 1/p(xg). The boundaries also apply to the predicted charge

function q̂(n)(x), i.e., q ≤ q̂(n)(x) ≤ q̄.

To investigate the denseness of E , it turns out that the parameter β in (79) plays an

important rule. The following theorem shows that E is dense when β > m.

Theorem 5.3.1. If β > m, then E = X .

Proof. Suppose E is not dense in X , then exist x0 ∈ X and r0 > 0 such that for any x ∈ E ,

d(x, x0) > r0. Thus, at each step n, if x0 had been picked as the (n+ 1)th design point, the

potential energy increase would have been

∆Ên+1(x0) =

n∑
i=1

q(xi)q̂
(n)(x0)

dβ(x0, xi)
≤ nq̄2

rβ0
. (85)
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Take K ∈ N and evenly divide X into Km m-dimensional small boxes with the form

m∏
i=1

[
ki
K
,
ki + 1

K

]
, ki = 0, . . . ,K − 1.

For any N0 ∈ N, there must exist one small box X0 such that more than [N0/K
m] design

points in {x1, . . . , xN0} fall into it. Denote these points by xn1 , xn2 , . . . , xnj where j ≥

[N0/K
m] and n1 < n2 < · · · < nj . Therefore, when xnj is added into the set of design

points, the total potential energy is increased by

∆Ênj (xnj ) =

nj−1∑
i=1

q(xi)q̂
(nj−1)(xnj )

dβ(xi, xnj )
≥

j−1∑
i=1

q(xni)q̂
(nj−1)(xnj )

dβ(xni , xnj )
≥ m−β/2q2Kβ([N0/K

m]− 1).

Compared with (85), because xnj is required to minimize ∆Ênj (x),

m−β/2q2Kβ([N0/K
m]− 1) ≤ (nj − 1)q̄2/rβ0 ≤ N0q̄

2/rβ0

which yields

[N0/K
m]− 1 ≤ AN0/K

β (86)

where A = mβ/2q̄2

q2rβ0
is a finite constant. When β > m, pick N0 = K2β and when K become

sufficiently large, (86) will be violated. This completes the proof.

The problem of the denseness of E becomes much more challenging when β = m. The

following theorem shows that the conclusion of Theorem 5.3.1 still holds if β = m = 1.

When β = m > 1, it is still an open problem whether E is dense, although we will provide

a heuristic proof later.

Theorem 5.3.2. If q > 0 and β = m = 1 then E = X .

Proof. Now X = [0, 1]. If E 6= X , we can similarly find x0 ∈ X and r0 > 0 such that

|x− x0| > r0 for any x ∈ E . As in the proof of Theorem 5.3.1,

∆Êi(xi) ≤ ∆Êi(x0) ≤ (i− 1)q̄2

r0

and
n∑
i=2

∆Êi(xi) ≤
n2q̄2

2r0
. (87)
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Rearrange the first n design points x1, . . . , xn into an increasing sequence y1, . . . , yn such

that y1 ≤ y2 ≤ · · · ≤ yn. Define ai = yi+1 − yi ≥ 0 for i = 1, . . . , n − 1. Because q is the

lower bound of both the charge function and the predicted charge functions

n∑
i=2

∆Êi(xi) ≥ q2
∑

1≤i<j≤n

1

|xi − xj |
= q2

∑
1≤i<j≤n

1

|yi − yj |

Meanwhile

∑
1≤i<j≤n

1

|yi − yj |
=

n∑
k=1

(
1

a1 + · · ·+ ak
+

1

a2 + · · ·+ ak+1
+ · · ·+ 1

an−k+1 + · · ·+ an

)
.

For 1 ≤ k ≤ n and 1 ≤ j ≤ n − k + 1 let bj = aj + · · · + aj+k−1, then easy to see

b1 + · · ·+ bn−k+1 ≤ k and as a result

1

b1
+ · · ·+ 1

bn−k+1
≥ (n− k + 1)2

k

taking the sum for k = 1, . . . , n

∑
1≤i<j≤n

1

|yi − yj |
=

n∑
k=1

1

b1
+ · · ·+ 1

bn−k+1

≥
n∑
k=1

(n− k + 1)2

k
= n2

n∑
k=1

(
n− k + 1

n
)2 1

k

≥ n2

[n/2]∑
k=1

1

4k
≥ n2 log(n/2− 1)/4.

So
n∑
i=2

∆Êi(xi) ≥ q2n2 log(n/2− 1)/4.

Compared with (87),

q2n2 log(n/2− 1)/4 ≤ n2q̄2

2r0
.

The inequality will be violated when n becomes sufficiently large, which completes the

proof.

Finally, we provide some heuristic arguments on the asymptotic distribution of the

design points in E and the denseness of E when β = m > 1. Let us begin with a heuristic

assumption that is fundamental to our following up analysis.
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Assumption 4. The set E of SMED design points has a positive density function ρ(x) such

that for any open subset B ⊂ X the ratio of design points falling into B converges to the

integration of ρ(·) over B. To be more specific, let

cnt(B,n) =
n∑
i=1

I{xi ∈ B}.

Then

lim
n→∞

cnt(B,n)

n
=

∫
B

ρ(x)dx.

Assumption 4 itself is hard to prove rigorously but can be checked numerically via

simulations. Below we illustrate that Assumption 4 can lead to other useful conclusions.

We will consider two scenarios, depending on whether β > m or β = m.

The following heuristic property deals with the density ρ(x) for the SMED design points

when β > m, and it is consistent with the intuition that SMED algorithm puts more points

into regions with high yields, and the closer α is to p(xg), the more concentrated the design

points get around the global optimum xg.

Property 1. Under Assumption 4, when q > 0 and β > m, the density function ρ(x) is

proportional to q(x)
− 2m

β = (1− αp(x))
− 2mγ

β .

Heuristic Proof. First we argue heuristically that, using the predictor p̂(n)(x) to estimate

the yield function p(x) is irrelevant to the long term behaviour of E when β > m. That is,

even if we use the original definition (82) to search for the design points, the truthfulness

of a claim like Property 1 remains the same. The reason is that because when β > m the

set E is dense, after a large but finite amount of steps, such estimation eventually becomes

so precise that its difference from the true yield function p(x) can be safely ignored. Thus

we assume that in every step of SMED, the next design point is selected by (82) instead of

(84).

Let n be a large number. Suppose the (n + 1)th point is placed at position y. We

first make a heuristic estimation to ∆En+1(y). Pick δ > 0 as a small but fixed positive

number such that when ‖y − x‖ ≤ δ, the differences ρ(y) − ρ(x) and q(x) − q(y) are

negligibly small. By definition of ρ(y), the number of design points in the open neighborhood
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B(y; δ) = {x : ‖x− y‖ < δ} and selected before step n can be estimated as Cnρ(y)δβ where

C is the universal constant such that Cδβ gives the volume of B(y; δ). When n is large,

because these design points are distributed roughly evenly in this small region, their smallest

distance to point y can be heuristically estimated as

ε(y, n) ∼ (C1nρ(y))−
1
m . (88)

Here C1 is another positive constant. Now

∆En+1(y) =

n∑
i=1

q(xi)q(y)

‖xi − y‖β

∼
∑

1≤i≤n,xi∈B(y;δ)

q(y)2

‖xi − y‖β
+

∑
1≤i≤n,xi 6∈B(y;δ)

q(y)q(xi)

‖xi − y‖β
.

An upper bound of the second term is nq(y)q̄/δβ, and the first term can be estimated by

the following integration when n becomes large

∑
1≤i≤n,xi∈B(y;δ)

q(y)2

‖xi − y‖β
=

δ∫
ε(y,n)

q(y)2nρ(y)

rβ
mCrm−1dr

= C2n
β
m ρ(y)

β
m q(y)2 − C3

δβ−m
nρ(y)q(y)2.

Here C2 and C3 are both positive constants. When β > m and n → ∞, the first term

eventually dominates, so

∆En+1(y) ∼ C2ρ(y)
β
m q(y)2n

β
m .

Such heuristic estimation implies that to lower the overall potential energy, SMED must

put new design points to a place where ρ(x)
β
m q(x)2 is small. Eventually, when equilibrium

is reached, ρ(x)
β
m q(x)2 will be a constant over X , which means ρ(x) ∼ q(x)

− 2m
β .

Now let us consider our heuristic results for the case of β = m under Assumption 4.

Property 2. If Assumption 4 holds, then the set E is dense in X when β = m ≥ 1.

Furthermore, ρ(x) ∼ q(x)2.

Heuristic Proof. Here we only explain the denseness of E because the techniques for com-

puting ρ(x) are the same as in the heuristic proof of Property 1.
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Let’s suppose E 6= X . Then as in proof of Theorem 5.3.1, exist a point x0 6∈ E and

r0 > 0 such that for any x ∈ E , ‖x− x0‖ > r0. This implies that for any n ≥ 1

∆Ên+1(x0) ≤ nq̄2

rβ0
.

Pick y ∈ X such that ρ(y) > 0, δ > 0 and when ‖x − y‖ ≤ δ, ρ(x) − ρ(y) is negligibly

small. Then for any large N , exists n ≥ N such that ‖xn+1− y‖ < δ′ << δ. Let ε = ε(y, n)

as defined in (88). For such n,

∆Ên+1(xn+1) ∼ ∆Ên+1(y) ∼
∫

‖x−y‖≥ε

nρ(x)q(x)q(y)

‖x− y‖β
dx

≥
∫

ε≤‖x−y‖≤δ

nρ(x)q(x)q(y)

‖x− y‖β
dx ∼ C

δ∫
ε

nρ(y)q(y)2

rβ
rm−1dr

= Cnρ(y)q(y)2(log δ − log ε) ∼ Cnρ(y)q(y)2 (log n+ log ρ(y) + log δ) /m

∼ C1n log nρ(y)q(y)2 ≤ nq̄2

rβ0
= ∆Ên+1(x0)

when n gets sufficiently large, there is a contradiction.

It is interesting that such arguments can not be applied to the case β < m. The

fundamental reason is the curse of dimensionality. The basic idea of SMED is that when the

design points become very “crowded” in certain places, the potential energy they generate

will be sufficiently large to expel away any new points. However, when m > β, the volumes

of such crowed sub-regions are so small that, they actually contain relatively few design

points. Consequently, if the yields in these regions are sufficiently high, it is still optimum

for new design points to drop in. Meanwhile, in a sub-region with relatively low yields, it

may never be beneficial for SMED to select design points from it. The result is that the set

E may not be dense. This phenomenon can be observed via simulation.

The non-denseness of SMED design points can be viewed as either positive or negative.

Theoretically, if the points are not dense, then there are certain regions ignored by the

algorithm, which means that the method can be “biased”, i.e., it may never find the global

optimum in some circumstances. However, by our above analysis, the regions omitted by

SMED tend to be those with low yields. Unless there are high yield regions hiding in large
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chunks of low yield ones, which is uncommon in real applications, the non-denseness of

SMED makes it not waste time in non-promising regions, which is often desirable.

5.4 A Simplification of the SMED Algorithm

From Section 5.2 and Section 5.3, a complication in SMED algorithm is that the yield

function p(x) must be re-estimated at each step, which may increase the computational

complexity. In this section, we present a simplified algorithm (which we refer to as the ad-

justed SMED) where such prediction is not involved. We will refer to the original algorithm

as ordinary SMED.

There is only a small difference between the adjusted SMED and the ordinary SMED.

For n = n0, n0 + 1, . . . , when seeking for a position to lay down the design point xn+1, we

assign it the unit charge q = 1 instead of the position-dependent charge q(x). Then we

minimize the increase of total potential energy as before. Only after the optimal position is

found for the new point we restore its charge by evaluating the yield function at the chosen

place.

Specifically, if point x is added as the (n+ 1)th design point, define the increase of total

potential energy by

∆Ẽn+1(x) =

n∑
i=1

q(xi)

dβ(xi, x)
(89)

and let

xn+1 = arg min
x

∆Ẽn+1(x).

Compared with the ordinary SMED, the adjusted version never evaluates or estimates

p(x) at any untested points. The computational costly interpolation (83) is excluded from

the algorithm.

The adjusted SMED algorithm has very similar asymptotic properties with the ordinary

version. It is easy to see that Theorem 5.3.1 and Theorem 5.3.2 still apply. Indeed, for

ordinary SMED algorithm, the only property we used in proving the two Theorems is that

q ≤ q̂(n)(x) ≤ q̄, where q̂(n)(x) is the charge function we use when looking for the (n+ 1)th

design point. In adjusted SMED, the charge function we use is a constant q ≡ 1, and

actually we are free to choose any constant function as long as it takes a positive value.
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Therefore, suppose we use a constant charge function q ≡ C such that q ≤ C ≤ q̄, then the

same proofs go through.

For Property 1 and Property 2, we only need minor modifications for the adjusted

SMED.

Property 3. With the adjusted SMED algorithm, when β ≥ m ≥ 1 and q > 0, the density

function ρ(x) is proportional to q(x)
−m
β = (1− αp(x))

−mγ
β .

The heuristic proof is the same as that of Property 1 and thus omitted.

5.5 Simulation Study

In this section we validate the heuristic properties we proposed in Section 5.3 and Section

5.4 via numerical simulations. We focus on case where the design region X = [0, 1]× [0, 1]

is the two dimensional unit square, i.e., m = 2. We place the initial point x1 = (0.5, 0.5)

in the center. To simplify the computation, we evenly divide the region into 1000 × 1000

lattices and will pick each design point on a lattice point.

By Property 1 and Property 2, when β ≥ m, the design points are asymptotically

distributed according to a density function ρ(x) ∼ q(x)
− 2m

β = (1 − αp(x))
− 2mγ

β . To make

notation clear, let’s continue our presentation in terms of the charge function q(x) instead of

the yield function p(x). Therefore, for a constant charge q(x) ≡ 1, the design points should

distribute evenly. Note that in this case the ordinary SMED and the adjusted SMED are

equivalent. To verify this, we compute the first N = 104 design points with constant charge

and the parameter β = 2, 3. Then we construct a 2-dimensional histogram by dividing X

into 10 × 10 bins and count the number of design points falling into each of them. The

numerical results are reported in Table 2 and Table 3. Each item of the tables gives number

of design points falling into the corresponding bin.

From the histograms, when the charge functions are constant, the design points are

distributed fairly uniformly. Deviations from the uniform distribution are observed only

at bins along the boundaries. This is reasonable because a point close to a boundary is

surounded by much less other points if compared with center points. It can be predicted

that if we use a periodic boundary condition, such deviations will disappear. Indeed, this
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Table 2: Histogram: constant charge, β = 3,m = 2, N = 104

119 109 111 111 106 114 105 98 103 116

104 96 98 101 99 100 94 89 97 106

98 92 103 101 100 98 94 97 97 114

100 94 99 97 100 103 97 104 95 104

113 94 101 102 97 103 97 99 96 104

102 95 91 96 94 103 97 99 91 103

104 99 100 101 101 98 95 92 93 96

106 99 102 94 100 89 92 98 95 97

106 91 92 95 94 95 91 98 95 97

117 98 102 105 109 103 103 103 102 113

Table 3: Histogram: constant charge, β = 2,m = 2, N = 104

141 118 117 115 114 117 114 115 118 144

118 94 91 94 90 93 93 92 93 120

116 91 88 86 88 87 85 91 93 114

117 91 88 90 85 86 87 85 92 116

114 91 89 83 84 86 90 83 92 117

113 92 86 88 85 87 86 89 91 115

119 88 90 85 84 85 89 82 91 118

113 93 89 90 82 87 85 90 93 114

122 98 94 92 92 89 92 96 97 120

140 119 114 116 116 116 117 116 120 139
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Table 4: Histogram: constant charge, periodic boundary, β = 3,m = 2, N = 104

96 92 88 80 99 90 107 100 103 107

104 84 105 91 96 110 110 90 83 106

108 110 91 95 91 92 114 94 110 108

104 106 102 80 98 94 105 97 106 110

93 116 113 103 101 110 96 118 103 123

104 110 104 100 117 78 103 97 86 84

110 99 86 103 107 92 106 102 98 116

123 99 108 101 102 90 121 111 93 67

97 100 107 106 91 105 90 97 96 95

105 102 92 103 97 81 97 94 93 103

Table 5: Histogram: constant charge, periodic boundary, β = 2,m = 2, N = 104

104 96 87 92 114 78 93 98 110 101

102 95 90 107 103 99 111 111 90 103

116 94 102 87 92 116 107 103 107 98

107 93 103 93 130 109 108 100 114 97

96 110 103 84 96 99 85 111 96 98

97 118 91 105 108 102 120 94 98 100

116 85 102 97 79 100 118 86 87 117

92 109 98 107 72 68 107 99 100 91

84 99 104 105 117 113 102 103 93 96

95 87 112 88 110 88 113 92 108 90

can be seen from Table 4 and Table 5, which report the corresponding results with periodic

boundary conditions.

Next we check the distributions of design points as related to the charge functions. By

heuristic Property 1, Property 2, when β ≥ m, the density functions ρ(x) is proportional

to q(x)
− 2m

β . To check this, suppose we divide the 2-dim design region X into two parts, the

upper part y < 0.5 and the lower part y > 0.5. Then we assign a unit charge function to

any design point selected from the lower part, i.e., q2 = 1 but a constant positive charge

q1 6= 1 to the upper part. By Property 1 and Property 2, the distribution functions should

be constant in either of the two parts except along the boundaries. In fact, this feature can

be easily seen from the histogram presented below in Table 6 and Table 7, where q1 = 2,

β = 2, 3. Note that here we are presenting the simulation results for ordinary SMED, and

to reduce the computation complexity we do not predict the yield function but directly use

(82) to select the design points. As we argued in the heuristic proof of Property 1, this does
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Table 6: Histogram: two charges, q1 = 2, β = 3,m = 2, N = 104

64 61 59 61 61 58 60 55 60 63

59 54 52 55 55 53 53 57 52 62

61 54 52 51 53 55 55 53 56 57

61 56 56 51 54 53 52 54 53 62

55 46 51 50 50 47 48 51 49 53

151 150 138 143 146 159 159 149 143 150

144 145 139 139 150 155 141 137 132 142

157 141 137 141 147 141 137 134 136 149

154 139 141 142 135 138 137 137 144 150

157 150 153 147 143 140 143 149 157 159

Table 7: Histogram: constant charge, periodic boundary, β = 2,m = 2, N = 104

66 54 53 50 53 51 50 54 54 66

52 43 38 39 36 38 38 39 42 55

52 39 38 38 36 37 36 37 38 50

49 39 33 35 34 32 36 33 38 50

37 26 21 21 23 19 23 22 24 38

192 171 160 159 157 165 156 167 165 196

180 144 140 143 137 142 140 138 147 177

176 139 142 142 139 137 137 140 147 174

180 151 145 142 141 142 145 141 149 182

211 177 175 173 177 175 172 176 185 207

not affect the long term properties of the algorithm.

Let the densities of design points in this two sub-regions be ρ1 and ρ2, respectively. By

the law of distribution we developed in Property 1 and Property 2, we should have

log
ρ2

ρ1
=

2m

β
log

q1

q2
=

2m

β
log q1.

Therefore, one way to check the law is as follows. For different values of q1,i, do the simu-

lation and then calculate the log-ratio log ri = log
ρ2,i
ρ1,i

, and see if the points {(log q1,i, log ri)}

are aligned on a line with zero intercept and a slope close to 2m
β .

Fig. 3 depicts the relevant simulation results. For β = 3 and β = 2, the distribution

densities ρ1,i and ρ2,i are computed via counting the numbers of design points in each of the

two sub-regions. Then a line through the origin is fit with simulated {(log q1,i, log ri)} for

each case, the slopes of the fitted lines are reported and compared to 2m
β . From the figures,

it is clear that the points {(log q1,i, log ri)} align very well along the fitted lines with slopes

quite close to the theoretical values predicted by Property 1 and Property 2.
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Table 8: Histogram: high charge in the center, β = 1,m = 2, N = 104

313 183 166 158 155 152 160 163 184 314

183 81 69 69 64 67 68 70 82 182

164 69 58 76 80 84 76 59 70 166

159 70 75 0 0 0 0 75 69 160

155 63 82 0 0 0 0 83 62 154

153 64 85 0 0 1 0 84 66 154

160 69 75 0 0 0 0 76 68 160

164 68 60 76 80 84 76 59 70 166

183 82 70 69 64 67 67 69 83 183

314 182 166 160 152 157 161 165 182 314

For the adjusted SMED algorithm we can use the same method to check the validity of

Property 3. The result is shown by Fig. 4, which again supports our result.

Now we provide a simulated example to show that when β < m, it is indeed possible

that the set E of design points is not dense in X . To do so, we work with ordinary SMED

and m = 2, i.e., X = [0, 1]× [0, 1]. We set β = 1 and pick a charge function as follows.

q(x) =


2, if 0.3 < x < 0.7, 0.3 < y < 0.7

1, otherwise.

(90)

Now we run the simulation to lay down N = 104 design points, and report the histogram

in Table 8. Except the initial point, there’s not a single point dropping into the region with

high charge (thus low yield). This is a strong evidence that the design points E is not dense

in X .
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Figure 3: Distribution Law for Ordinary SMED
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