
ASSESSING FUNDAMENTAL INTRODUCTORY
COMPUTING CONCEPT KNOWLEDGE

IN A LANGUAGE INDEPENDENT MANNER

A Dissertation
Presented to

The Academic Faculty

by

Allison Elliott Tew

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Interactive Computing
Georgia Institute of Technology

December 2010

Copyright c© 2010 by Allison Elliott Tew



ASSESSING FUNDAMENTAL INTRODUCTORY
COMPUTING CONCEPT KNOWLEDGE

IN A LANGUAGE INDEPENDENT MANNER

Approved by:

Mark Guzdial, Committee Chair
School of Interactive Computing
Georgia Institute of Technology

Sally A. Fincher
School of Computing
University of Kent

Amy Bruckman
School of Interactive Computing
Georgia Institute of Technology

W. Michael McCracken
School of Computer Science
Georgia Institute of Technology

Stephen Cooper
Department of Computer Science
Stanford University

Date Approved: August 20, 2010



To my parents,

who have always encouraged me to follow my dreams.

And to John,

who has dared to dream along with me.

iii



ACKNOWLEDGEMENTS

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
. . .
I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Robert Frost

Most people will readily admit that I have taken the scenic, less traveled, path to

complete my degree. However, this has enabled me to be surrounded by an incredible

group of friends, family, colleagues and mentors along the way.

I’d like to begin by thanking my advisor, Mark Guzdial, who has been my mentor

and colleague for over 15 years. He has led me to great successes and stuck with me

through my many failures. All along the way he has inspired me with his passion,

enthusiasm, and undying optimism. Mike McCracken started me on this journey

many, many years ago by introducing me to research as an undergraduate student

and prodding me to consider applying to PhD programs—the first time around. Amy

Bruckman was a strong ally for the start of a Computer Science Education research

group at Georgia Tech. She always believed that the field was important and sup-

ported my work even as it diverged from her interests and expertise.

My external committee members, Sally Fincher and Steve Cooper, are two mentors

I discovered while participating in the Scaffolding Research in Computer Science

Education project. Sally gave me a crash course in how to do high quality computing

education research, but more importantly turned the light back on. My research

iv



career today is thanks in no small part to Josh Tenenberg and to her. They showed

me the way and inspired me to want to participate in and contribute to the research

endeavor again. Sally and Josh continue to provide outstanding counsel, and I am

forever indebted and grateful. Steve Cooper was one of the earliest proponents of my

thesis project. His support, advice, and proselytizing have continued to help shape

my work through today.

This research would not have been possible without the generous cooperation of

the many faculty and students who have allowed me into their classrooms. I would like

to thank the faculty who taught the introductory courses at Georgia Tech (Kristin

Marsicano, Cedric Stallworth, Jay Summet, and David Smith), the University of

Georgia (Julia Couto and Chris Plaue), and the University of British Columbia (Kurt

Eiselt), as well as AP teachers in Atlanta area high schools. In addition, I would like to

thank my collaborators on this project, John Kim, Dannon Baker, David Joyner, and

Bobby Matthews. This work was made possible and funded in part by the National

Science Foundation (CISE #0306050, CCLI-ASA #0512213, CPATH CB #0829601,

BPC-A #0634629).

A Ph.D. is an oddly solitary path, yet one that cannot possibly be traversed

alone. I am indebted to friends and colleagues both inside and outside of Georgia

Tech who have walked beside me along the way. While it is impossible to mention

the contributions of everyone here, I count myself blessed to have been surrounded

by such a wonderful and diverse group of individuals. Thanks to Leigh Waguespack,

Jimmy Yang, Jason Wright, James Shamiyeh, Jay Dolce, and Sam Panchal for being

there and understanding when I couldn’t be. Colleen Kehoe, Annie Anton, and Brad

Topol, my colleagues and lab-mates from before, have waited patiently too many

years to count for me to finish. Thanks for your support, advice, and encouragement

– back when we shared cube walls and again now as I entered the home stretch. To

my colleagues from my “former life,” thanks for letting me leave to pursue this degree

v



and for sticking with me through all these years. I hope I have made you proud. To

my fellow students in the Contextualized Support for Learning Lab and the Learning

Sciences and Technology Group, past and present, thanks for welcoming me into the

fold, teaching me the ropes, and helping me focus my ideas and clarify my thoughts.

Brian Landry, Brian O’Neill, Sarita Yardi, Jill Dimond, and Tammy Clegg, you have

each brought me joy, laughter, and happiness, and for that I thank you.

Tracy Westeyn and Briana Morrison, two dear friends that I made along the way,

thank you for all of your support, encouragement, and advice. I hope I was able to

give as much as I received. To my “Allison”, Kurt Eiselt — I have been guided by

your hand and a part of your family for so long, I don’t know any other way. Thank

you for being the voice of reason, the older brother I’ve always wanted, and a truly

great friend. To my intellectual soul mate, Brian Dorn, thanks for everything. My

work has been made infinitely better, I have remained sane, and I have even enjoyed

my time as a grad student because of you. I would not have survived the program

without each of you; your friendship has been an invaluable resource in my journey.

Finally, I would like to thank my family and friends for your support and encour-

agement throughout the process. I appreciate your patience and understanding as I

continued to pursue this dream, and words cannot begin to express how grateful I am

that you were with me for this final milestone. I want to thank my father for giving

me such big shoes to fill but always holding my hand to show me the way. My mother

has always patiently encouraged me to pursue my own dreams, even when they were

slow to come to fruition or even harder to understand.

And to John — thanks for standing by my side along the way, always believing

that it was possible, and daring to jump off the cliff with me now. May we always

chose new adventures and encourage each other to dream big.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Method for Developing a Validated CS1 Assessment Instrument 4

1.2.2 Programming Language Independence . . . . . . . . . . . . 8

1.2.3 Establishing Validity . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 11

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . 12

2.1 Assessment in STEM Disciplines . . . . . . . . . . . . . . . . . . . 12

2.1.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Concept Inventories . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Assessment Practices in Computing . . . . . . . . . . . . . . . . . . 16

III METHOD FOR DEVELOPING A VALIDATED CS1 ASSESSMENT IN-
STRUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Adapting Standard Assessment Development Practices . . . . . . . 20

3.2 Defining Conceptual Content . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Test Specification and Question Development . . . . . . . . . . . . 27

3.3.1 Study 1 Findings and Contributions . . . . . . . . . . . . . 30

vii



3.4 Pilot Validity Study . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Participants and Recruitment . . . . . . . . . . . . . . . . . 31

3.4.2 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Study 2 Findings and Contributions . . . . . . . . . . . . . 33

IV VERIFYING PROGRAMMING LANGUAGE INDEPENDENCE . . . 34

4.1 Open-ended FCS1 Questions Study . . . . . . . . . . . . . . . . . . 35

4.1.1 Participants and Recruitment . . . . . . . . . . . . . . . . . 35

4.1.2 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.4 Study 3 Findings and Contributions . . . . . . . . . . . . . 40

4.2 Pseudo-code Design . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Think-Aloud Interview Study . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Participants and Recruitment . . . . . . . . . . . . . . . . . 41

4.3.2 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Study 4 Findings and Contributions . . . . . . . . . . . . . 49

4.4 FCS1 Assessment Study . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Participants and Recruitment . . . . . . . . . . . . . . . . . 50

4.4.2 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.4 Study 5 Findings and Contributions . . . . . . . . . . . . . 63

V ESTABLISHING VALIDITY . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Study Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Student Think Aloud Interview Responses . . . . . . . . . . 67

5.2.2 Item Response Theory . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Correlation with Student Exam Scores . . . . . . . . . . . . 78

viii



5.2.4 Validity Argument . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Study 6 Findings and Contributions . . . . . . . . . . . . . . . . . 82

VI CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 84

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX A ASSESSMENT INSTRUMENT . . . . . . . . . . . . . . . 88

APPENDIX B STUDY 3 DETAILED DATA . . . . . . . . . . . . . . . . 89

APPENDIX C PSEUDO-CODE GUIDE . . . . . . . . . . . . . . . . . . . 95

APPENDIX D ITEM RESPONSE THEORY ANALYSIS . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ix



LIST OF TABLES

1 Significant Differences in Pre-Test Concepts – Spring 2005 . . . . . . 2

2 Summary of Research Questions & Studies . . . . . . . . . . . . . . . 5

3 Common Fundamental CS1 Concepts . . . . . . . . . . . . . . . . . . 25

4 Pilot Validity Study Correlation Coefficients by Concept . . . . . . . 32

5 Summary of Participants in Open-Ended FCS1 Questions Study . . . 36

6 Common Incorrect Answers to Closed-Form Question Q8 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Common Incorrect Answers to Short Answer Question Q11 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Summary of Participants in Think Aloud Study . . . . . . . . . . . . 42

9 Coding Rubric for Think Aloud Interview Data . . . . . . . . . . . . 43

10 Think Aloud Interview Rubric Scoring Data . . . . . . . . . . . . . . 45

11 Summary of Participants in FCS1 Assessment Study . . . . . . . . . 51

12 FCS1 Assessment Final Data Set by Counterbalanced Participant Groups 52

13 Summary of Graded Pseudo-code Version of FCS1 Assessment . . . . 55

14 Summary of Graded Language Specific Version of FCS1 Assessment 57

15 Average Scores on the FCS1 Assessment by Counterbalanced Groups 59

16 Significant Pearson Correlations between Pseudo-code and CS1 Lan-
guage Versions of the FCS1 Assessment . . . . . . . . . . . . . . . . 61

17 Average Scores on the FCS1 Assessment by Quartile . . . . . . . . . 63

18 Post Hoc Comparisons with Bonferroni Correction . . . . . . . . . . . 63

19 Estimated Item Parameters and Information on FCS1 Assessment . . 75

20 Estimated Item Parameter Means and Standard Deviations . . . . . . 76

21 Significant Pearson Correlations of FCS1 Assessment . . . . . . . . . 80

22 Common Incorrect Answers to Closed-Form Question Q2 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 90

23 Common Incorrect Answers to Closed-Form Question Q5 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



24 Common Incorrect Answers to Closed-Form Question Q14 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 92

25 Common Incorrect Answers to Closed-Form Question Q17 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 93

26 Common Incorrect Answers to Closed-Form Question Q23 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 94

27 Common Incorrect Answers to Closed-Form Question Q26 Ranked by
Frequency of Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



LIST OF FIGURES

1 Example Definitional Question . . . . . . . . . . . . . . . . . . . . . . 28

2 Example Tracing Question . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Example Code Completion Question . . . . . . . . . . . . . . . . . . 29

4 Scatterplot of Scores for Correlation of Pseudo-code and Language Ver-
sions of FCS1 Assessment . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Item Characteristic and Information Curves for Question 3 . . . . . . 72

6 Item Characteristic Curve for Question 12 . . . . . . . . . . . . . . . 76

7 Item Characteristic Curve for Question 2 . . . . . . . . . . . . . . . . 77

8 Item Characteristic and Information curves for Question 6 . . . . . . 78

9 Scatterplot of Scores for Correlation of FCS1 Assessment Score and
CS1 Final Exam Score . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xii



SUMMARY

Measuring student learning is fundamental to any educational endeavor. A

primary goal of many computer science education projects is to determine the extent

to which a given instructional intervention has had an impact on student learning.

However, the field of computing lacks valid and reliable assessment instruments for

pedagogical or research purposes. Without such valid assessments, it is difficult to

accurately measure student learning or establish a relationship between the instruc-

tional setting and learning outcomes. The goal of assessment research in computer

science is to have valid ways of measuring student conceptions of fundamental topics,

which will enable both research into how understanding of knowledge in the domain

develops as well as enable curricular innovation and reform grounded in this knowl-

edge.

My dissertation work focused on three questions regarding assessment of intro-

ductory concepts in computer science. How can existing test development methods

be applied and adapted to create a valid assessment instrument for CS1 conceptual

knowledge? To what extent can pseudo-code be used as the mechanism for achiev-

ing programming language independence in an assessment instrument? And to what

extent does the language independent instrument provide a valid measure of CS1

conceptual knowledge?

I developed the Foundational CS1 (FCS1) Assessment instrument, the first assess-

ment instrument for introductory computer science concepts that is applicable across

a variety of current pedagogies and programming languages. I applied methods from

educational and psychological test development, adapting them as necessary to fit the

disciplinary context. I conducted think aloud interviews and a large scale empirical
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study to demonstrate that pseudo-code was an appropriate mechanism for achieving

programming language independence. Student participants were able to read and

reason in the pseudo-code syntax without difficulty and were able to transfer con-

ceptual knowledge from their CS1 programming language to pseudo-code. Finally, I

established the validity of the assessment using a multi-faceted argument, combining

interview data, statistical analysis of results on the assessment, and exam scores.

The contributions of this research are: (1) An example of how to bootstrap the pro-

cess for developing the first assessment instrument for a disciplinary specific design-

based field. (2) Identification that although it may not be possible to correlate scores

between computer science exams created with different measurement goals, the va-

lidity claims of the individual assessments are not diminished. (3) A demonstration

that novice computing students, at an appropriate level of development, can transfer

their understanding of fundamental concepts to pseudo-code notation. (4) A valid

assessment of introductory computing concepts for procedurally-based introductory

computing courses taught in Java, Matlab, or Python at the university level.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Measuring student learning is fundamental to any educational endeavor. Many sci-

ence, technology, engineering and mathematics (STEM) disciplines have standard

validated assessment tools that allow educators and researchers to accurately mea-

sure student learning and evaluate curricular innovations (e.g., (Hestenes, Wells, &

Swackhamer, 1992; Crouch & Mazur, 2001; Libarkin & Anderson, 2005)). However,

computer science does not have a similar set of validated assessment tools, and prac-

titioners and researchers must often devise their own instruments when they want to

investigate student learning.

Consider the following recent studies of student programming ability with carefully

designed assessment plans.

A well-cited study by McCracken, et al asked students to write a program, in a

laboratory setting, to build a simple calculator (McCracken et al., 2001). Students

performed much worse than expected, earning an average of only 20.8% of the possible

points on the assessment. The researchers concluded that students did not possess the

basic programming skills expected at the end of the introductory sequence. They rea-

soned that the students lacked problem solving ability and had difficulty abstracting

a potential solution from the problem description.

Lister, et al explored an alternative hypothesis for the students’ poor performance

in the McCracken study. They assessed students’ code comprehension and tracing

ability, claiming these were prerequisite skills to problem solving (Lister et al., 2004).

The assessment consisted of twelve multiple choice questions (MCQs) focusing on ar-

rays and iteration. Overall, an average of 60% of the students answered the questions

1



Table 1: Significant Differences in Pre-Test Concepts – Spring 2005

Concept
% Correct

α
‘Computing’ ‘Engineering’

Iteration 25% 44% 0.025
Conditional 18% 46% 0.001

Binary Search Tree 84% 69% 0.05
Array 58% 30% 0.001

Sorting 36% 21% 0.025

correctly, and the researchers concluded that students struggled with the preliminary,

basic skills of reading and analyzing code.

In previous work, I investigated the impact of alternative approaches to introduc-

tory computing by considering the questions of what students bring to their second

class in computing and how the outcomes differ depending on the students alternative

first course (Tew, McCracken, & Guzdial, 2005). A set of pre- and post-test multiple

choice question (MCQ) instruments was developed to evaluate students understanding

of common CS1 topics, adapted from a similar approach used in an ITiCSE working

group (Lister et al., 2004).

Participants from an engineering CS1 course and participants from a traditional

CS1 course for majors had similar overall scores on the pre-test, with students, on av-

erage, answering 42.3% of questions about the introductory material correctly. How-

ever, on the pre-test there were statistically significant differences in understanding

on 5 concepts (See Table 1 for details). Students who had completed the engineering

introductory course demonstrated significantly better understanding of the iteration

and conditional topics while students in the computing group demonstrated signifi-

cantly better understandings of the binary search tree, array, and sorting topics.

A comparable1 MCQ assessment was given to students at the end of a common

second computing course. Students demonstrated improved understanding on almost

1Comparable forms of assessment are very similar in content, but the statistical similarly has not
yet been proven (American Educational Research Association, American Psychological Association,
& National Council on Measurement in Education, 1999).
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all of the topics when compared to their pre-test levels, with an average score of

61.53%. Analysis of the post-test results revealed that after the common second course

there was no longer a significant difference. Student understanding had converged and

their performance was no longer distinguishable based upon their CS1 course.

The results of this study suggest that there are detectable differences in student

understanding of introductory computer science concepts when students complete a

first course using different pedagogical approaches. However, repeating the study in

subsequent semesters with comparable student populations and course content that

remained essentially unchanged did not return similar results.

So, despite using best practices in computing education today, of locally devel-

oped measures augmented by content validity review, a plausible explanation is that

the measurement instrument themselves are flawed. A common theme among these

studies is that students are not performing as well as we would expect and are not

demonstrating mastery of fundamental material, often considered to be some of the

most basic ideas covered in the introductory curriculum. Rather than providing a

clear consensus or direction, these studies raise a number of questions. Do students

comprehend the computing concepts we cover in our introductory courses? Are stu-

dents able to demonstrate programming problem solving ability? Is code comprehen-

sion a prerequisite skill for other programming activities? Perhaps the study results

are more indicative of our lack of precise measures, rather than an accurate measure

of students’ ability and knowledge.

Valid measures would enable us to confirm student mastery of course concepts and

completion of learning objectives. Accurate measures permit direct investigation of

curricular innovations to evaluate whether or not the changes produced the intended

outcomes. Measurement might also allow for the comparison of different pedagog-

ical approaches enabling faculty to make decisions about curriculum and pedagogy

informed by educational research. Computing education and research suffer from the
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lack of such instruments.

The aim then is to have valid ways of measuring student conceptions of fundamen-

tal computer science topics, which will enable both research into how understanding

of knowledge in our domain develops as well as enable curricular innovation and re-

form grounded in this knowledge. My dissertation will explore the development of an

assessment instrument for introductory computer science concepts that is applicable

across a variety of current pedagogies and programming languages.

1.1 Thesis Statement

It is possible to construct an assessment of fundamental computer science concepts

that

(a) is widely applicable across a wide variety of current pedagogical approaches and

paradigms;

(b) tests conceptual knowledge independently of the programming language used

in the students’ CS1 course; and

(c) is a valid measure of students’ knowledge as demonstrated through think aloud

interviews, empirical analysis of assessment results, and correlation with CS1

exam scores.

1.2 Research Questions

To address this thesis, I pose three broad research questions, which will be investigated

across six studies. Table 2 summarizes the research questions and the corresponding

studies that address each question. I describe the questions in the remaining sections

of this chapter.
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Table 2: Summary of Research Questions & Studies

Research Question Study
RQ1: How can existing test development
methods be applied and adapted to create a
valid assessment instrument for CS1 concep-
tual knowledge?
RQ1.1: How can a framework of common CS1
conceptual content be defined?

S1: Document analysis study of
CS1 textbooks

RQ1.2: To what extent can validity of the as-
sessment instrument be demonstrated by cor-
relating with other valid instruments testing
related content?

S2: Pilot validity study

RQ2: To what extent can pseudo-code be used
as the mechanism for achieving programming
language independence in an assessment in-
strument?
RQ2.1: Is students’ demonstration of funda-
mental CS1 conceptual knowledge, in closed-
book examination questions, differentiated by
programming language of instruction?

S3: Open-ended question study

RQ2.2: To what extent are students able
to demonstrate their understanding of funda-
mental CS1 concepts in a pseudo-code assess-
ment instrument?

S4: Think aloud interview study

RQ2.3: To what extent are students able to
transfer their understanding of fundamental
CS1 concepts from their introductory pro-
gramming language of instruction to pseudo-
code?

S5: FCS1 Assessment study

RQ3: To what extent does the language inde-
pendent instrument provide a valid measure
of CS1 conceptual knowledge?

S6: Validity study

5



1.2.1 Method for Developing a Validated CS1 Assessment Instrument

The fields of education and psychology have developed a rich history in develop-

ing and validating measurement instruments for a variety of purposes (Lindquist,

1951; American Educational Research Association et al., 1999). However, the field of

computing does not currently have any validated assessment instruments of CS1 con-

ceptual knowledge for pedagogical or research purposes. I applied these established

methods and practices for developing valid measures, adapting them where necessary

for the field of computer science.

RQ1: How can existing test development methods be applied and adapted to create

a valid assessment instrument for CS1 conceptual knowledge?

Traditional test development follows an iterative process beginning with specifica-

tion and verification of the content and purpose of the exam. A test bank of questions

is then created and refined through a series of pilot studies. After the final candidate

questions have been selected, empirical studies are used to establish the validity and

reliability of the exam.

To create an assessment instrument for CS1, the Foundational CS1 (FCS1) Assess-

ment, I adopted the methods from educational and psychological test development

with two proposed adaptations. The first methodological change centered around

creating an exam focused on concepts not programming language syntax, so the as-

sessment can be as widely applicable as possible. The method requires the addition

of a step to verify the programming language independence of the exam and to en-

sure that students are able to demonstrate their understanding adequately in the new

language independent exam.

The second change is required because the standard methods for validating the

instrument against existing valid measures do not apply to this exam, which will be

the first of its kind in the field of computing. So the validity argument was crafted

using a combination of think aloud interviews and statistical analysis techniques. In

6



sum, the data provided sufficient evidence that the assessment was indeed measuring

the intended constructs.

RQ1.1: How can a framework of common CS1 conceptual content be defined?

One of the first steps in developing a validated assessment instrument is to specify

the particular topics in a domain or area that are to be covered by the exam. For this

research question, I explored ways to identify a framework of foundational comput-

ing concepts that CS1 courses, regardless of programming language or pedagogical

paradigm, have in common. I conducted a document analysis of widely adopted CS1

textbooks, as an external representation of course content, while also being guided

by the current ACM/IEEE curriculum guidelines (The Joint Task Force on Comput-

ing Curricula, 2001). The findings outlined a set of foundational CS1 concepts that

were common across a wide variety of current pedagogical approaches and paradigms.

Further these concepts were recognized and validated by experts to be representative

of computing knowledge in an introductory computer science course.

Most CS1 courses share a set of learning goals for students to understand ba-

sic computing concepts and to be able to demonstrate use of those concepts in the

execution of programming skill. For the FCS1 Assessment, I focused on the identifi-

cation and measurement of common concepts. This learning goal is more amenable

to standardized testing formats and to establishing the reliability and validity of the

resulting instrument. In addition, there are wide variations in the skill level of pro-

grammers (Sackman, Erikson, & Grant, 1968), and developing a test to accurately

measure that ability would suffer from the enormous disparity.

RQ1.2: To what extent can validity of the assessment instrument be demonstrated

by correlating with other valid instruments testing related content?

Normally new assessment instruments are validated by correlating participants’

scores on the new measure with their score on an existing validated measure of the

same or very similar content (American Educational Research Association et al.,
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1999). However, since the field of computing does not have such measures, this

research question explored the feasibility of collecting validity evidence through a

correlation study. Specifically, I conducted a pilot validity study with a version of

the FCS1 Assessment, rewritten in the Java programming language, and the MCQ

portion of the 2004 CS Subject Advanced Placement exam. I investigated whether

participant scores on these two exams, with my version of the assessment specifically

constructed to be as close a match as possible, showed evidence of a positive correla-

tion. However, the results demonstrated that the content and/or purpose of existing

validated computer science assessment measures are too dissimilar to the goals and

content of the FCS1 Assessment. Thus existing measures of CS knowledge will not

serve as useful tools in providing validation evidence.

1.2.2 Programming Language Independence

The goal of the FCS1 Assessment instrument is to have a widely applicable measure of

fundamental CS1 concepts that is unbiased by any particular programming language.

The broad research question examined was as follows:

RQ2: To what extent can pseudo-code be used as the mechanism for achieving

programming language independence in an assessment instrument?

My aim is to develop a programming language independent assessment instrument,

using pseudo-code as the method for achieving language independence, and I posit

three questions to investigate the feasibility of this approach.

RQ2.1: Is students’ demonstration of fundamental CS1 conceptual knowledge, in

closed-book examination questions, differentiated by programming language of instruc-

tion?

The first step in investigating the feasibility of a programming language inde-

pendent exam was to determine whether students’ conceptions and misconceptions

on the common CS1 concepts identified in Study 1 are significantly influenced by
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the syntactic constructions of the programming language used in their introductory

course. I gave students, who are completing a CS1 course in Java, Matlab, or Python,

open-ended versions of the FCS1 Assessment questions. I examined the students’ an-

swers looking for patterns in the responses provided, particularly among the errors

students make. Common incorrect responses across the programming language par-

ticipant groups were identified, which suggested that students conceptual errors are

similar regardless of their syntactic expression. These common errors provided a basis

for the distractors in the multiple-choice version of the assessment instrument.

After the feasibility of a language independent exam was established, a pseudo-

code for expressing the CS1 conceptual questions was used as the mechanism to

achieve language independence. Two subsequent questions arise — are students able

to demonstrate their conceptual understanding in this pseudo-code language and

does the understanding students developed in their CS1 course transfer into this new

approach?

RQ2.2: To what extent are students able to demonstrate their understanding of

fundamental CS1 concepts in a pseudo-code assessment instrument?

I investigated this question by conducting think-aloud interviews with students

completing the FCS1 Assessment. Participants were selected from introductory courses

taught in three different programming languages (Java, Matlab, and Python) and

across ability groupings (high, medium, low). I used qualitative analysis techniques

on the interview transcripts to investigate students’ ability to read and reason in

pseudo-code. The majority (83.70%) of student responses demonstrated successful

use of the pseudo-code syntax to read and reason about the relevant computing con-

cepts.

RQ2.3: To what extent are students able to transfer their understanding of fun-

damental CS1 concepts from their introductory programming language of instruction

to pseudo-code?

9



The final test of programming language independence is whether students were

able to demonstrate comparable levels of conceptual understanding in pseudo-code as

in their “native” programming language. To investigate this question, I ran a large

scale empirical study comparing student performance on the FCS1 Assessment to a

comparable version of the assessment instrument written in the students’ CS1 pro-

gramming language. Empirical evidence showed a strong positive correlation (Pear-

son’s r = .572) between participant scores on the pseudo-code version and the lan-

guage version of the assessment, and that the strong positive correlation held for each

programming language participant sub-population. In addition, the findings show

that students of higher ability levels demonstrated greater aptitude for transferring

knowledge of CS1 concepts into pseudo-code.

1.2.3 Establishing Validity

After the assessment instrument has been piloted and revised, the final step in the

development process was to establish the validity of the exam. Validity is a measure

of “how well the test serves the purpose for which it is used” (Lindquist, 1951, p.

621). In other words, validity is the evidence that assures us that questions about a

particular concept are indeed measuring that concept. For instance, a question about

arrays should require a student to have knowledge about arrays, but should not require

knowledge about another concept, such as recursion. In addition, it is important that

the question cannot be answered correctly without knowledge of arrays.

RQ3: To what extent does the language independent instrument provide a valid

measure of CS1 conceptual knowledge?

Given the position of this exam as the first of its kind in the field, I developed

a three-pronged approach to establishing the validity of the assessment instrument.

First, the think-aloud interviews allowed investigation into student reasoning while

they were answering the questions on the exam. Analysis of these transcripts (Study
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4) provided evidence whether students were answering questions based on their knowl-

edge of the conceptual content. Secondly, statistical analysis techniques and item

response theory (IRT) of responses to individual questions in the FCS1 Assessment

Study (Study 5) provided evidence that the items are indeed measuring the desired

constructs, rather than something more or less than intended. And lastly, I correlated

students’ scores on the assessment instrument with their exam scores in their CS1

course. Students’ exam scores were used as a measure of their level of understand-

ing of CS1 content as defined by external faculty teaching the course. By recruiting

students from multiple institutions, I was able to mitigate the bias of correlating to

a particular definition of the content of CS1.

The results and analysis show that the Foundational CS1 Assessment instrument

does provide a valid measure of foundational CS1 content for procedurally-based CS1

courses taught in Java, Matlab, and Python. Further, there is a strong positive

correlation between student CS1 final exam scores and the scores on the assessment.

1.3 Overview of Dissertation

The remainder of this document outlines the six studies that comprise my thesis work.

Chapter 2 provides a review of relevant literature. Chapter 3 outlines the method

for developing a validated language independent assessment of CS1 concepts and the

associated studies used to evaluate the proposed method. Chapter 4 details the study

designs used to evaluate the language independent nature of the assessment. Chapter

5 discusses the plans to determine the validity of the exam, and finally Chapter 6

provides a summary of the research contributions and a discussion of future work.
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CHAPTER II

BACKGROUND AND RELATED WORK

This chapter begins with an overview of prior work and research in the field of assess-

ment in the science, technology, engineering, and mathematics (STEM) community

at large. I then then look at assessment efforts in computer science and differenti-

ate my work from these existing attempts as a programming language independent

assessment of conceptual knowledge for pedagogical and research use.

2.1 Assessment in STEM Disciplines

The STEM community has a rich tradition of educational research investigating teach-

ing and learning across a wide variety of disciplines. Researchers in these fields

have posited models of student development of knowledge, compared pedagogical ap-

proaches, and developed validated assessment tools and techniques to measure student

understanding.

STEM assessment tools generally focus on either student attitudes or perceptions

towards a discipline (e.g., Colorado Learning Attitudes about Science Survey (Adams

et al., 2006)) or student mastery of the knowledge or skills in a discipline (e.g.,

Mechanics Baseline Test (Hestenes & Wells, 1992)). While attitude and motivation

is a significant factor in student learning (Pintrich & Schunk, 2002), attention is

focused on the concept-based assessments and how they might inform the design and

development of the Foundational CS1 Assessment.

Researchers at the University of Wisconsin have created the Field Tested Learn-

ing Assessment Guide (FLAG) (College Level One Team, n.d.), an online resource for

assessment across STEM disciplines. FLAG contains tested assessment instruments

indexed by both the discipline and the technique (e.g., attitude survey, concept test,
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MCQ), as well as articles guiding the adoption and adaptation of the techniques. Ci-

tations to relevant theory and study results are included for each instrument included

in the repository. (The only instruments currently listed under Computer Science are

general attitude surveys of science, textbooks, and writing. While these instruments

certainly can be used in computing classes, they are not specific inquiries into the

nature of the discipline.) Although a wide variety of disciplines have assessments

included in the repository, from Agriculture to Engineering, a review of the research

and development in assessment in two areas, Mathematics and Physics, is presented

here as exemplars of the larger STEM community.

2.1.1 Mathematics

The mathematics education research community is perhaps the most well established

disciplinary research community having been established in the 1960s as a collabo-

ration between mathematicians, psychologists, and mathematics educators. In 1970

the first issue of the long-running Journal for Research in Mathematics Education

was published by the National Council of Teachers of Mathematics (NCTM).

As a result of this history, the field of mathematics has a number of assessment

instruments available to researchers and practitioners at the K-12 and university

level. Measuring Up (Mathematical Sciences Education Board & National Research

Council, 1993) provides a set of example assessment tools, and scoring rubrics, for

fourth grade math students based upon the NCTM standards . The authors stress

the importance of creating measures according to the standards and having clear

grading criteria. Similar to the CS curriculum guidelines outlined in CC2001 (The

Joint Task Force on Computing Curricula, 2001), the NCTM established a set of

standards for assessment but did not prescribe or suggest any particular strategy

for meeting those guidelines. The Balanced Assessment in Mathematics Program at

the Harvard Graduate School of Education (Schwartz & Kenney, 2008) responded
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by providing a specification of elementary and secondary mathematics and a set of

assessment tasks and scoring rubrics that align with the original goals. Further, the

mathematics community has embraced the challenges of aligning learning objectives,

classroom activities, and assessment practices by providing professional development

and training for teachers (Driscoll & Bryant, 1998).

The field of mathematics also has assessments designed for the collegiate level.

The Basic Skills Diagnostic Test (Epstein, 1997) is an assessment of algebra knowl-

edge and skills often used as a diagnostic of the level of preparedness for college level

mathematics. The Calculus concept inventory is being developed to test basic prin-

ciples of differential calculus – functions and derivatives. (Concept inventories are a

specific form of concept-based assessment that will be discussed in greater detail in

the following section, Section 2.2). Research studies using these assessment instru-

ments showed that students did not perform as well as expected on pre-tests, nor

did they show meaningful learning gains after a entire course covering these concepts

(Epstein, 2006).

2.1.2 Physics

The Force Concept Inventory (FCI) (Hestenes et al., 1992) is the first concept in-

ventory to be widely adopted and remains one of the most widely used and cited

across all STEM disciplines. Hestenes, Halloun, and Wells designed the FCI to assess

student understanding of the Newtonian concepts of force and were initially criticized

for creating questions that were deemed too simple by many university faculty. How-

ever, studies showed that nearly every single student (n = 478) showed evidence of

non-Newtonian thinking and that these misconceptions were resistant to instruction

(Halloun & Hestenes, 1985b, 1985a).

Measurements with the instrument show the student’s initial qualitative,

common sense beliefs about motion . . . has a large effect on performance
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in physics, but conventional instruction induces only a small change in

those beliefs. (Halloun & Hestenes, 1985b, p. 1043)

Harvard Physics professor, Richard Hake, contributed to the adoption of the FCI

across the academic physics community when he gave the instrument to his students

and was surprised to get similar results – students were reasoning using “common

sense” theories of physics and these theories persisted after a semester of univer-

sity physics. Hake then began an investigation into whether there were pedagogical

techniques that would lead to meaningful conceptual knowledge gains (Hake, 1998).

Data was collected from students in 62 physics courses across the country (n = 6542).

Analysis showed that “interactive engagement” techniques, usually involving hands

on activities, resulted in nearly double the gain as traditional lecture-based meth-

ods. These findings have led to a research agenda in the physics education research

community around active learning and student engagement (Crouch & Mazur, 2001).

Due to the success of the FCI, many other areas and disciplines have created simi-

lar instruments. Examples of other concept inventories in use across STEM disciplines

include:

• Brief Electricity & Magnetism Assessment (BEMA) (Ding, Chabay, Sherwood,

& Beichner, 2006)

• Light and Spectroscopy Concept Inventory (LSCI) (Prather, Rudolph, Bris-

senden, & Schlingman, 2009)

• Genetics Concept Assessment (GCA) (Smith, Wood, & Knight, 2008)

• Geoscience Concept Inventory (Libarkin & Anderson, 2005)

2.2 Concept Inventories

A concept inventory is a particular form of concept-based assessment, specifically de-

signed to probe a person’s understanding of a specific set of narrowly defined concepts.
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For example, the FCI was not designed to explore students’ knowledge of introduc-

tory physics, but rather just their understanding of forces. Concept inventories use

a multiple-choice question (MCQ) format for objective scoring, but the formulation

of both the question stem and distractors are a result of extensive research based

on models of concept understanding and misconceptions surrounding that concept.

The resulting concept questions present both the correct answer as well as distractors

formulated from commonly held misconceptions.

The research and design of the assessment is explicitly built around elicitation of

students’ ways of thinking and expressing their understanding rather than relying on

expert opinion or assumption. As a result, student responses to a concept inventory

inform understanding about student thinking and provide researchers and teachers

with evidence to the ideas, misconceptions, and knowledge gaps that students bring

to a classroom. Again using the FCI as the example, researchers began with a prelim-

inary mechanics diagnostic test, using short answer, open-ended questions, given to

more than 1000 introductory physics students over three years (Halloun & Hestenes,

1985b). A taxonomy of common sense concepts that conflict with Newtonian theory

was compiled from this data (Halloun & Hestenes, 1985a), which was then used to

create a detailed model of instruction and student learning for introductory physics

(Hestenes, 1987). This model of student knowledge development and the corpus of

misconceptions were used to develop the FCI.

Unlike natural sciences, computer science knowledge has no real world analog.

Thus it is likely that a majority of student misconceptions are a result of instruction

in CS rather than based upon a set of common, naive understandings they bring to

the topic from their experience in the world. Further, as a relatively new disciplinary

educational research community, we do not know how students come to learn about

CS or introductory programming topics, know what topics should be pre-requisites

to others, or have a model of development of computing knowledge. Due to these
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limitations, I chose to adapt the model of a standardized, concept-based assessment

instrument, relying on a framework of common conceptual content to define the scope

of the concepts to be assessed.

2.3 Assessment Practices in Computing

Current assessment practices in computing have a number of limitations which ulti-

mately restricts the availability of instruments for pedagogical or research purposes.

There are two types of assessment efforts in computing – existing validated exams

which are developed, owned, and administered by national/international examining

boards and CS education research projects. Program assessment of computer science

programs, usually done for accreditation purposes (Rogers, n.d.), is a peer-review

process focused on institutional assessment of student learning. Due to the focus on

high-level programmatic objectives, I exclude these types of assessments from further

discussion.

Two validated instruments focus on the introductory sequence in computing. The

CS Advanced Placement exam is one of the most popular validated assessment in-

struments in computing. This high school exam, usually taken in the junior or senior

year, is typically used to earn credit for a CS1 course in college. The AP exam is

currently written in the Java programming language and has been criticized for re-

lying too heavily on syntactic level details rather than programming concepts. The

United Kingdom also offers a high school level exam, the Advanced Level General

Certificate of Education (A-level) in Computing. The goal of this assessment is to

demonstrate mastery of course content and the instrument uses a short answer and

practice problem format. This format requires extensive training and workload for

examiners to achieve reliable scoring.

The remaining two validated instruments are designed for students completing

their computer science degree programs. The Major Field Test for Computer Science
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is designed to measure student progress and evaluate end of program outcomes. De-

signed to assess mastery of an entire degree program, the scope of the exam is fairly

broad, including systems, theory and programming. The GRE Computer Science

Subject Test, also taken by students completing their degree, is designed to predict

success in graduate school. The exam is similarly scoped and includes software sys-

tems, computer organization, and theory.

The CS education community has shown growing interest in assessment research,

and two related projects are underway. In dissertation work, Decker (2007) designed

an assessment for an introductory sequence of programming courses (CS1 and CS2)

in the Java programming language. The short-answer format instrument was devel-

oped and tested at a single institution, and therefore its validity claims cannot be

generalized beyond that context.

Craig Zilles and colleagues have received funding (NSF-CCLI #0618589) to de-

velop a set of concept inventories for computing, in discrete math, digital logic design,

and programming fundamentals. The researchers have elicited the set of troublesome

concepts from educational experts (Goldman et al., 2008) and are conducting think-

aloud interviews to capture student misconceptions (Herman, Kaczmarczyk, Loui, &

Zilles, 2008; Kaczmarczyk, Petrick, East, & Herman, 2010). The work is preliminary

and the instruments are still being developed. However, progress reports (Herman,

Loui, & Zilles, 2010) suggest that the process and resulting assessment are going to

be much more closely aligned with a traditional standardized assessment instrument

than a concept inventory.

The existing assessment instruments in computing suffer from one or more of

the following issues. If an assessment instrument is tied to a particular programming

language, its applicability is limited since it cannot be used across different approaches

or courses using other programming languages. Similarly, some instruments focus on

syntactic programming language details, rather than the higher order concepts that
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are more aligned with traditional course learning objectives. Finally, some tests have

psychometric or predictive aims, so do not focus specifically on assessing learning and

should not be used for those purposes.

My work differs from these efforts in that I aim to create a rigorously validated

exam that could be widely adopted and used in any introductory CS course. The

goal is to create an exam to measure understanding of fundamental computing con-

cepts, independent of programming language, that would not be overly biased by any

particular pedagogical paradigm.

In this chapter I have motivated the need to create a validated, language in-

dependent assessment of introductory programming concepts. I described current

approaches to assessment in the STEM education, and explained how current assess-

ment efforts in the CS education research community are not sufficient to meet the

needs of the research or practitioner communities.

The chapter that follows outlines the method I used to develop the Foundational

CS1 Assessment. Chapter 3 also describes the research questions and studies as-

sociated with adapting and applying the general purpose educational methods of

assessment research and development into a specific disciplinary context.
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CHAPTER III

METHOD FOR DEVELOPING A VALIDATED CS1

ASSESSMENT INSTRUMENT

Psychology and education have a strong tradition of creating validated assessments

and exams for a wide variety of purposes (Lindquist, 1951; American Educational Re-

search Association et al., 1999). Since computing does not currently have any of these

instruments that are applicable for educational research, I applied these established

methods and practices for developing valid measures, adapting them where necessary

for the field of computer science (Tew & Guzdial, 2010).

3.1 Adapting Standard Assessment Development Practices

As introduced in Chapter 1, the primary research question here was methodological.

RQ1: How can existing test development methods be applied and adapted to create a

valid assessment instrument for CS1 conceptual knowledge?

The method designed is based upon standard educational test development guide-

lines, summarized below (American Educational Research Association et al., 1999).

The first step in test development is to establish the purpose and definition of the test

— what is to be measured and what the scores mean. The test specification includes

the definition of the conceptual content, or constructs, that is to be measured, the

format of the questions, and the scoring procedures. The test specification should be

reviewed by a panel of experts to provide content validity evidence and ensure that

all constructs are adequately represented and extraneous constructs are not included.
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After the test specification has been developed and verified, a test bank of ques-

tions should be developed to cover all constructs identified in the specification. Pi-

loting of the questions then takes place. Pilot tests examine the suitability of the

questions, allowing necessary revisions to be made prior to the selection of the final

candidate questions. The last stages of test development are empirical studies of in-

dividual responses to establish validity and reliability. Validity testing ensures that

the test is measuring the intended constructs, and reliability testing verifies that the

results are consistent over repeated examinations, and thus are dependable.

To create the Foundational CS1 Assessment, two adaptations were required. The

first methodological change centered around creating an exam focused on concepts

not programming language syntax, so the assessment can be as widely applicable as

possible. The method required the addition of a step to verify the programming lan-

guage independence of the exam. To achieve language independence for a CS1 exam,

I utilized a verbose pseudo-code as the exam programming language. I evaluated the

effectiveness of this approach using a combination of think aloud and pilot studies.

(See Chapter 4 for more details). These studies were required to ensure students

are able to appropriately transfer understanding from their programming language of

instruction to pseudo-code and to ensure that students are able to demonstrate their

understanding adequately in the new language independent exam.

The second change is required because the standard methods for validating the

instrument against existing valid measures did not apply to this exam, which is the

first of its kind in the field of computing. So a validity argument was crafted using

a combination of think aloud interviews and statistical analysis techniques. In sum,

the data should provide sufficient evidence that the assessment is indeed measuring

the intended constructs. (See Chapter 5 for more details).

In order to achieve language independence, I augmented the standard development

procedures with an additional step. The steps in the resulting process are outlined
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below:

1. Define Conceptual Content

2. Expert Review of Test Specification

3. Build Test Bank of Questions

4. Verify Language Independence

5. Pilot Questions

6. Establish Validity

7. Establish Reliability

The first three steps in this process will be discussed in the remaining sections of

this chapter. The research questions and studies associated with steps 4 and 5 are

explained in Chapter 4. The process of establishing validity (step 6) is addressed in

Chapter 5. The data collected will allow preliminary analysis of the internal reliability

of the exam. However, full-scale reliability testing (step 7) is beyond the scope of this

dissertation.

3.2 Defining Conceptual Content

Given the goal of developing a widely applicable CS1 assessment, the strategy for

defining content was to identify concepts that a wide variety of introductory courses

and approaches had in common. The research question and hypotheses addressed by

this study were:

RQ1.1: How can a framework of common CS1 conceptual content be defined?

H1: A set of concepts that are amenable to testing across CS1 languages and paradigms

can be identified.
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H2: The concepts will be recognized by a panel of experts to be representative of

foundational CS1 knowledge.

3.2.1 Study Method

To identify a set of common conceptual content, I conducted a document analysis of

both introductory textbooks and CS curriculum guidelines. The document analysis

had four phases: an analysis of the table of contents of widely adopted CS1 textbooks;

scoping using current ACM/IEEE CS curriculum guidelines (The Joint Task Force

on Computing Curricula, 2001); refinement using canonical introductory textbooks

representative of common pedagogical approaches; and synthesis using a thematic

analysis to identify the final list of concepts. This iterative approach allowed the

concepts to be derived from resources that emphasized both top-down and bottom-

up approaches to specifying course content. Details of the analysis are provided in

the following sections.

3.2.2 Data Analysis

I began by conducting a document analysis of the table of contents of the two most

widely adopted CS1 textbooks as identified by each of the major publishers of com-

puting textbooks (Addison Wesley, Thomson/Course Technology, Franklin Beedle &

Associates, McGraw Hill, Prentice Hall, Wiley & Sons)—12 books in total (Cohoon

& Davidson, 2006; Deitel & Deitel, 2005; Horstmann, 2005, 2006; Lewis & Loftus,

2005; Malik, 2004, 2006; Mercer, 2002; Savitch, 2005a, 2005b; Wu, 2006; Zelle, 2004).

Topics listed in the table of contents were aggregated into a list, noting which

concepts were covered by which texts. The goal of this bottom-up approach was

to identify the set of topics most commonly covered in CS1 courses, as specified by

the textbooks faculty chose to adopt. However with the increasing breadth in intro-

ductory textbooks, the topic list quickly became unwieldy with over 400 concepts,
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ranging from low level concepts such as byte code and computer architecture to ad-

vanced topics traditionally covered later in the curriculum (e.g., relational databases

and multi-threaded processes).

I used the framework of the Computer Science volume of Computing Curricula

2001 (The Joint Task Force on Computing Curricula, 2001) to revise the initial list

of topics. CC2001 provides guidelines for the conceptual content to be covered in the

introductory year sequence of computing courses. By providing a variety of models

and pedagogical approaches to achieve these goals, the guidelines do not designate any

concepts specific to the first or second CS course. Although a list of CS1 topics is not

specified, the framework did enable revisions by providing a high level organization

for the concepts identified in the first phase of analysis. I eliminated any concepts

outside of the scope of the introductory sequence and further narrowed the intended

scope of the assessment by concentrating on the identified concepts that were in the

programming fundamentals (PF1, PF3, and PF4) and object-oriented programming

(PL6) areas while removing categories such as discrete structures, algorithms and

complexity, and software engineering.

Unfortunately, the resulting list of 188 concepts was still too large to be practical

for test development. The next phase in my analysis was to focus on canonical

texts representing each of the common introductory approaches (objects-first (Lewis

& Loftus, 2005; Deitel & Deitel, 2005), functional-first (Felleisen, Findler, Flatt, &

Krishnamurthi, 2001), and imperative-first (Zelle, 2004)). By conducting a document

analysis of these texts, I was able to focus the topic list on the set of concepts that

are included by a variety of CS1 approaches, but avoided dilution by including too

many data points in the process. A concept was included in this step of revision if it

was covered by all of the texts or excluded by only one of the canonical texts. The

list of fundamental computing concepts common across languages and pedagogical

approaches is listed in Table 3.
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Table 3: Common Fundamental CS1 Concepts

Concept Lewis
&

Loftus

Deitel
&

Deitel

Felleisen
et al

Zelle

Variable x x x x

Simple I/O x x x

Recursion x x x x

EXPRESSIONS

Mathematical
Operators

x x x x

Relational
Operators

x x x x

Logical
Operators

x x x x

Assignment x x x x

CONTROL STRUCTURES

Selection
Statement
(if/else)

x x x

Definite Loop
(for)

x x x x

Indefinite Loop
(while)

x x x

Nested Loops x x x

FUNCTIONS/METHODS

Definition x x x x

Parameters -
Pass by Value

x x x x

Return Values x x x x

DATA TYPES & STRUCTURES

Primitive Data
Types

x x x x

Integer x x x x

Floating Point x x x

Boolean x x x x

String x x x x

Array x x x x

Tree x x x

OBJECT-ORIENTED PROGRAMMING

Object/Class x x x x

Constructor x x x x

Instance/Local
Variables

x x x x

Accessor
Methods

x x x

Mutators
Methods

x x x

Encapsulation x x x x

Inheritance x x x

Polymorphism x x x
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The topics in Table 3 have been refined to a scope that fits within the material

traditionally covered in CS1. However it is impractical to sufficiently evaluate student

knowledge of each of these 29 concepts in a single test setting. I therefore performed

additional thematic analysis (Braun & Clarke, 2006) and synthesis with the aim of

generating a small handful of constructs that were amenable to testing. A number

of basic concepts were combined into one fundamentals construct that includes all of

the basic semantic topics (e.g., variables, assignment, mathematical expressions). The

primitive data type concepts (e.g., integer, boolean, string) provide useful information

for the kinds of data commonly available for manipulation in test questions, but I

chose not to dedicate separate questions to these topics. Procedures for processing

simple input and output are often very language specific, so this topic was removed

over concern for generalizability across languages and paradigms. Finally, in order

to avoid biasing a particular paradigm and to limit the scope of constructs to those

most fundamental and widely applicable across any introductory approach, the object

construct was limited to the basics of class definitions and method calls.

The final list of constructs which serve as the basis of the test specification for the

FCS1 Assessment are as follows:

• Fundamentals (variables, assignment, mathematical expressions)

• Logical Operators

• Selection Statement (if/else)

• Definite Loops (for)

• Indefinite Loops (while)

• Arrays

• Function/method parameters
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• Function/method return values

• Recursion

• Object-oriented Basics1 (class definition, method calls)

3.3 Test Specification and Question Development

A test specification is a detailed description of the instrument that specifies the per-

centage of questions dedicated to each construct, the question format, and the scoring

procedures (American Educational Research Association et al., 1999).

For the FCS1 Assessment, each construct is weighted equally with 10% of the

questions devoted to each topic, and the questions are in a multiple-choice question

(MCQ) format. MCQs, when constructed carefully, can provide the same informa-

tion about conceptual knowledge as short answer or open response questions with

significant advantages in test administration and scoring (Haladyna, 2004; Lukhele,

Thissen, & Wainer, 1994). Test scores should be criterion-referenced, interpreted

based on individual performance and not rated relative to the performance of peers.

A group of experts in CS education was empaneled to review the test specifica-

tion. Specifically they provided feedback on the list of constructs to be tested, the

standardized multiple-choice question format, and the scoring method to be used.

An initial draft of sample questions was provided to help concretize the testing con-

structs. Based on their feedback, the operational definitions for the constructs were

finalized and question development began.

In order to evaluate different kinds of conceptual understanding, three different

1Due to the distinct syntax mechanisms different programming languages use to express object-
oriented notation, I opted not to include questions about object-orientation on the first iteration of
the FCS1 Assessment.
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Q12. 

 

Consider the following code segment. 

 
  x = 0 

  y = 1 

 

  x = 3 * y 

 

During code execution, which of the following statements are always true?  

 

I. x is a declared variable. 

II. y is a declared variable. 

III. The value of x depends on the value of y. 

 

 

A. I only 

B. III only 

C. I and II 

D. I and III 

E. I, II, and III 

Figure 1: Example Definitional Question

 

 Consider the following code segment. 

 
flag1 =  False AND (True OR False) 

flag2 = (False AND True) OR (False AND False) 

flag3 = (False OR True) OR False 

flag1 = (flag1 OR (NOT flag2)) AND flag3 

 

 After the above code is executed, which of the following statements are true? 

 
I. flag1 == True 

II. flag2 == True 

III. flag3 == True 

 

 

A. I only 

B. II only 

C. III only 

D. I and III 

E. I, II, and III 

 

 

Figure 2: Example Tracing Question
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types of questions about each construct were developed. Definitional questions ex-

plore the student’s general understanding of a construct. A sample definitional ques-

tion is shown in Figure 12. (A more detailed analysis and discussion of this question,

Q12, appears in Section 4.3.) Tracing questions examine a student’s ability to predict

execution of code using a particular concept (e.g. the value of a variable after a loop

completes execution). Code completion questions are fill-in-the blank type questions

to evaluate a student’s ability to write code. See Figures 2 and 3 for an example of

each. For each construct, I built multiple versions of each type of question for the

test bank to allow for the evaluation and selection of the best questions. Test con-

struction, followed established heuristics for writing multiple-choice questions (Miller,

Linn, & Gronlund, 2009a). Some of the guidelines are as follows:

• The item stem should include as much information as possible and should avoid

irrelevant material.

• An item should contain only one correct or clearly best answer.

• All distractors should be plausible.

• The relative length of the alternatives should not provide a clue to the correct

answer.

• The correct answer should appear in each of the alternative positions an equal

number of times but in random order.

• Use sparingly special alternatives such as “None” or “All of the Above”.

2The example questions included are representational of the kinds of questions that were asked
on the FCS1 Assessment. However, publication is only possible because they have been discarded
from the test bank after pilot testing.
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Given the equation for computing the surface area of a cylinder: 

 

    surface_area = 2πr
2 

+ 2πrh 

 

Which of the following code segments can be used to complete the equation for computing 

the surface area of a cylinder?  

 
  surface_area = _________?__________ 

 

 

A. 2πrr + 2πrh 

B. (2 * 3.14 * (r * r)) + (2 * 3.14 * r * h) 

C. (2 * π * (r * r)) + (2 * π * r * h) 

D. 2(3.14 * (r * r)) + 2(3.14 * r * h) 

E. (2 * (3.14 * r) * (3.14 * r)) + (2 * 3.14 * r * h)  

 

 

Figure 3: Example Code Completion Question

3.3.1 Study 1 Findings and Contributions

• A set of foundational CS1 concepts that are common across a wide variety of

current pedagogical approaches and paradigms. (H1, confirmed)

• While not an exhaustive list, the specification of concepts was validated by

experts to be representative of foundational CS1 knowledge. (H2, confirmed)

3.4 Pilot Validity Study

Validity of a new assessment is normally established by correlating participant scores

on the new instrument with scores on an existing test of similar content that has

already been validated (American Educational Research Association et al., 1999).

The validity argument is as follows – if the scores on the new instrument correlate

with scores on a previous instrument that has been shown to accurately measure the

concepts, then the test must also accurately measure the intended concepts. However,

since computer science does not have an existing validated instrument that measures

the same content, I studied the feasibility of collecting validity evidence through a

correlation study using a best-case scenario. The research questions and hypothesis

investigated in this study were:
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RQ1.2: To what extent can validity of the assessment instrument be demonstrated

by correlating with other valid instruments testing related content?

H3: The content and/or purpose of existing validated computer science assessment

measures are too dissimilar to the CS1 assessment instrument to be useful tools

in establishing validity.

Specifically, I conducted a pilot validity study with a version of the FCS1 Assess-

ment, rewritten in the Java programming language, and the MCQ portion of the 2004

CS Subject Advanced Placement exam. I investigated whether participant scores on

these two exams, with my version of the assessment specifically constructed to be as

close a match as possible, showed evidence of a positive correlation.

3.4.1 Participants and Recruitment

Participants were recruited from high school computer science advanced placement

(AP) courses in the greater Atlanta area during Spring Semester 2009. AP computer

science teachers were asked to provide class time for participation and encouraged to

use the study instruments as practice exams before the students took the AP exam

in May. This population was selected because data could be collected under testing

conditions as the students were motivated to prepare for the upcoming AP exam.

Further the content of the CS AP curriculum is standardized and published which

allows for direct comparison of the topics covered by the CS1 assessment. Students

and their parents were provided informational fliers about the study and then signed

assent and consent forms if they agreed to participate. Seven high schools, both

public and private, participated yielding a total of 63 student participants.
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3.4.2 Study Method

The study3 consisted of two assessment exams given under testing conditions – no

questions were permitted and collaboration was not allowed. Teachers were asked to

administer the tests at least one week apart and to provide the same amount of time to

complete each test. To ensure adequate AP test preparation, the high school teachers

first gave the 40 question MCQ portion of the 2004 AP Exam. In a subsequent class

period, students were given the 27 question CS concept assessment written in Java.

Participant scores were coded by a unique identifier so their scores on the two exams

could be correlated.

3.4.3 Data Analysis

Data analysis occurred in two stages: the first stage searched for correlations in the

data set between participant scores on the two assessment exams, and the second stage

probed the FCS1 Assessment assessment data in greater to detail to seek evidence of

correlations by concept area.

Before the initial analysis could be completed, the AP data set was filtered. Five

questions pertained to a case study for which current students had not prepared,

since they were preparing for the current year’s case study. There were also thirteen

questions on software engineering and object-oriented programming, which were not

covered by the CS1 assessment. Data for these questions were removed resulting in

a 22 question data set.

A Pearson’s product moment correlation coefficient was computed to assess the

relationship between the participant score on the AP exam and participant score on

the FCS1 Assessment. Overall, there was a weak positive correlation between the

two variables, (Pearson’s r(63) = 0.159, p = 0.215.) Subsequent analysis focused

on whether there were stronger correlations when participant scores by particular

3Institutional Review Board approval was obtained for all protocols involving human subjects.
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Table 4: Pilot Validity Study Correlation Coefficients by Concept

Concept r p
Fundamentals -.048 .707

Logical Operators -.073 .567
Selection Statement -.019 .882

Definite Loops .051 .691
Indefinite Loops -.114 .376

Arrays .040 .754
Recursion .197 .122

concept areas were examined, rather than the overall score. The AP exam questions

are classified into categories mapping to seven of the concepts previously identified in

Section 3.2: basics, logical operators, selection statements, definite loops, indefinite

loops, arrays and recursion. Pearson correlation coefficients were computed for each

of these topics and resulted in topic correlations ranging from -11% – 20%. (See

Table 4 for the details of each correlation.) While recursion exhibited the strongest

correlation, no finding was significant.

The results from our data analysis have a number of implications. First, the Java

focus of the AP exam may skew the evaluation of some of the questions towards

programming language details rather than semantic concepts. For example, there are

questions that investigate runtime and/or compilation errors, and there are questions

that examine the correct syntax for method calls. Further some of the AP questions

are explicitly designed to cover multiple concepts, so it is not feasible to tease out

individual concept mappings. The weak correlations suggest that existing valid in-

struments are not going to prove useful in constructing the validity argument for the

FCS1 Assessment instrument. Even in the best case scenario, with the assessment

rewritten in the Java programming language and extraneous questions removed from

the AP exam data set, there were no significant or strong correlations.
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3.4.4 Study 2 Findings and Contributions

• Existing validated exams in CS have test specifications that are sufficiently

different than the FCS1 Assessment in either content, format or objectives.

• Correlation studies, using existing validated CS instruments, will not provide

useful evidence for establishing validity of the FCS1 Assessment. (H3, con-

firmed)

In this chapter I have designed a method for developing the FCS1 Assessment,

specified a set of common foundational CS1 concepts, and piloted a method for estab-

lishing validity of the new exam. In so doing, I have addressed research questions RQ1,

1.1, and 1.2 and presented evidence confirming hypothesis H1, H2, and H3. The next

chapter discusses the research questions and studies used to verify the programming

language independence of the FCS1 Assessment.
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CHAPTER IV

VERIFYING PROGRAMMING LANGUAGE

INDEPENDENCE

The goal of the Foundational CS1 Assessment is to have a widely applicable measure of

introductory CS1 concepts that is unbiased by any particular programming language.

So I developed a programming language independent assessment instrument, and this

chapter will discuss the questions I posed to investigate this approach. The broad

research question examined here is as follows:

RQ2: To what extent can pseudo-code be used as the mechanism for achieving pro-

gramming language independence in an assessment instrument?

The first step in exploring the possibility of a programming language indepen-

dent exam was to determine whether students’ conceptions and misconceptions on

the CS1 concepts included in the FCS1 Assessment were significantly influenced by

the syntactic constructions of the programming language used in their introductory

course. After the feasibility of a language independent exam had been established, I

explored using pseudo-code as the language to express the CS1 conceptual questions.

Two subsequent questions arose - Are students able to demonstrate their conceptual

understanding in this pseudo-code language? And are students able to demonstrate

comparable levels of understanding in this pseudo-code and the programming lan-

guage used in their introductory course?
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4.1 Open-ended FCS1 Questions Study

There are many different programming languages used to teach CS1 today, and some

of the most popular include C++, Java, Python, and Scheme. While Study 1 demon-

strated that there were common semantic concepts that could be identified across

these approaches, this research explores the degree to which novices express their

understanding in common patterns. Is novices’ knowledge representation, both cor-

rect and incorrect, so deeply rooted in syntax such that the errors are localized to a

particular programming language? Or are the mistakes identifiable across the popula-

tion of novices, regardless of their introductory programming language? The research

question and hypothesis being addressed by this study were:

RQ2.1: Is students’ demonstration of fundamental CS1 conceptual knowledge, in

closed-book examination questions, differentiated by programming language of

instruction?

H4: Trends and common conceptual responses across the introductory programming

languages and paradigms will be identified among the student responses.

4.1.1 Participants and Recruitment

Participants, from four different universities, were recruited as they were completing

their first course in computer science. The courses were taught in Java, Matlab,

and Python. Open-ended versions of the FCS1 Assessment questions were given to

students in scheduled examination sessions, as a portion of their regular course. While

the examinations were a required portion of the students’ course grade, their data

was only included in the study if they volunteered to participate. There were a total

of 304 participants who were enrolled in a CS1 in Matlab (n = 125), Python (n = 76),

or Java (n = 103).
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Table 5: Summary of Participants in Open-Ended FCS1 Questions Study

College Programming Language Testing Condition n
U1 Matlab Extra-credit 125
U1 Python Extra-credit 76
U2 Java Recitation Quiz 33
U3 Java Pop Quiz 70

4.1.2 Study Method

In cooperation with CS1 faculty at each institution, open-ended versions of the FCS1

Assessment questions were placed into examinations. Faculty were asked to give the

questions under testing conditions but were allowed flexibility as how to incorporate

them. Two chose to use them as extra-credit questions on exams, one chose to use

them as in-class pop-quiz questions, and one chose to use them as practice quizzes

given in recitation before an upcoming exam. Student answers were collected anony-

mously, although the responses were coded by institution to capture the programming

language and testing context. A summary of data collection appears in Table 5.

4.1.3 Data Analysis

Student answers were analyzed, looking for patterns in the responses provided, par-

ticularly among the errors students made. These common incorrect answers provided

a basis for the distractors in the final draft of the multiple-choice version of the FCS1

Assessment. For the purpose of data analysis, the questions were divided into two

types. Closed-form questions had clearly identifiable, concise answers (e.g., What

is the value of the variable ‘i’ after loop execution?). Short answer questions were

those that required students to provide brief explanations or to write portions of code.

Seven questions on the test were of the closed-form and were analyzed using statis-

tical techniques. Qualitative analysis techniques were used to analyze data from the

remaining 20 short answer questions.

Student responses were first aggregated looking for common responses within the

three programming language populations, Java, Matlab, and Python. Syntactic errors
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were ignored, and an answer was only recorded into the dataset when it was identified

by more than one participant. After common answers were identified, responses were

compared across the populations. Exemplars from data analysis are presented here.

(See Appendix B for details on the data collected in Study 3.)

4.1.3.1 Closed-form Exemplar

Question 8, an example of a closed-form question, asked students to trace the values

stored in 3 integer variables (x, y, and z) through a set of nested selection (if)

statements. The participants were able to easily trace the values of x and y with

over 80% of the students providing correct responses. However, the variable z proved

much more difficult. Only 40.7% of the participants were able to correctly trace

its execution. The common incorrect answers identified for each participant group,

ranked in order of its frequency of occurrence, are shown in Table 6. There were no

common incorrect answers in the Java participant group for the y variable, so the

analysis focuses on the remaining variables. While few participants gave incorrect

answers to the value of x, the error of printing the value of x = 25 was made by all

participant groups. However, since the majority of errors were made tracing the final

variable, those results may be a better overall predictor of student understanding.

The most common answer overall and in each participant group was z = 49.

Students showed very little desk-work or interim variable values, choosing merely

to provide the final answer at the bottom of the page. So, even in open-ended form,

these questions and analysis provide little insight into why the errors were made.

However, this is initial evidence that students with training in different introductory

programming languages do answer closed-form questions similarly, and that there are

common errors made across the languages for these types of questions.

The majority of the questions on the FCS1 Assessment are of the short answer form

and the data for these questions cannot be meaningfully analyzed using statistical
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Table 6: Common Incorrect Answers to Closed-Form Question Q8 Ranked by Fre-
quency of Occurrence

variable: x, 85.63% correct
Java Matlab Python

Value n Value n Value n
1st x = 25‡ 4 error/nothing 4 x = 25‡ 5
2nd x = 25‡ 2

variable: y, 86.23% correct
Java Matlab Python

1st y = 2 9 y = 4 3
2nd error/nothing 4

variable: z, 47.90% correct
Java Matlab Python

1st z = 49‡ 24 z = 49‡ 32 z = 49‡ 24
2nd error/nothing 4 z = 3 2
3rd z = 14 2
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but answer ap-

peared in all groups.
� Trend identified across two languages.

techniques. The short answer questions can be further subdivided into two sub-types.

Explanatory questions ask students to define or describe a concept or to summarize

the execution of a short piece of code. Coding questions require students to write

lines of code to create a method that satisfies a stated condition (e.g., write code to

fill in the blanks to complete an acronym function).

Qualitative data analysis of the aggregated student responses proceeded in an it-

erative fashion. In an effort to focus on semantic constructs, the first pass through

the data set was to correct for any obvious syntactic errors (e.g. omitting the re-

turn/newline at the end of a print statement). Student responses that were identical,

except for these small syntactic errors, were sorted into the same response category.

Student responses were then coded by the error that was made, allowing comparison

of responses across programming languages. Other trends can be identified when the

errors are analyzed in the context of the semantic concept. The individual program-

ming languages enable the students to express errors in slightly different syntactic
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Table 7: Common Incorrect Answers to Short Answer Question Q11 Ranked by
Frequency of Occurrence

Java Matlab Python
1st REVERSE!‡ REVERSE!‡ REVERSE!‡

2nd E! E‡ E‡

E! SE SE
E! RSE RSE
E! ERSE ERSE
E! VERSE VERSE
E! EVERSE EVERSE
E! REVERSE REVERSE

3rd E‡ E! E!
SE
RSE
ERSE
VERSE
EVERSE
REVERSE!

4th E!� ! !
ES!
ESR!
ESRE!
ESREV!
ESREVE!
ESREVER!

5th E! E!�

S! ES!
R! ESR!
E! ESRE!
V! ESREV!
E! ESREVE!
R! ESREVER!

‡ Trend identified across all three languages.
∗ Trend identified across two languages, but an-

swer appeared in all groups.
� Trend identified across two languages.

ways. The final stage of data analysis will identify these trends, independent of how

the error is expressed.

4.1.3.2 Short Answer Exemplar

Question 11 was an explanatory question that asked students to predict the outcome

of a segment of code focused on nested for loops. The nested loops printed the

characters of the array in reverse order, one step at a time. Students struggled to

correctly predict the output, with only 26% doing so. Students provided a wide
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variety of responses to the question. The top five common incorrect answers from

each participant group are shown in Table 7. The most common error “REVERSE!”,

most likely made by following intuition about the purpose of the function rather than

carefully tracing the nested loops, was made by all participant groups. The Java

and Python participant groups share a common error of incorrectly computing the

array index (the 4th and 5th most common errors respectively.) Abstracting away

from syntactic expression, a common error identified in the last stage of analysis was

incorrectly placing the command to print the “!” character outside of the scope of

the nested loops (Java error 3, Matlab error 2, Python error 2).

The variety of responses to the open-ended question does limit the number of pat-

terns that could be identified across the answers. But there is evidence that students

are providing similar conceptual answers, even when their syntactic expressions may

be different. The goal of this study and analysis is not to evaluate all student er-

rors, but to identify a set of common conceptual errors that can be used as plausible

distractors in the FCS1 Assessment. Results from data analysis on the remaining

questions is presented in Appendix B.

4.1.4 Study 3 Findings and Contributions

• Evidence that common responses across the programming language participant

groups can be identified from student data. (H4, confirmed)

4.2 Pseudo-code Design

I proposed using pseudo-code as the mechanism to express the FCS1 Assessment con-

ceptual questions in a programming-language independent manner. The pseudo-code

uses a very verbose style adapted from guides for beginning programmers published

by Whitfort (n.d.) and Shackelford (1997). To help students learn the new language,

syntax is kept to a minimum (e.g., no semi-colons or curly braces), reserve words are
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capitalized, and program blocks are closed with specific end commands (i.e., END-

FOR) (Sime, Green, & Guest, 1976). A overview of the constructs of the language

was developed to include both the definition of the syntax as well as examples and

sample code.

The design of the pseudo-code and the 2-page guide underwent formative evalua-

tion by students enrolled in a variety of degree programs at Georgia Tech. Revisions

were made to make the syntax more consistent and to clarify the guide. The definition

of the pseudo-code language is included in Appendix C.

4.3 Think-Aloud Interview Study

After confirming the hypothesis of common student responses, I conducted two studies

to investigate using pseudo-code to achieve programming language independence. The

first of these studies explored students’ ability to demonstrate their understanding

of the FCS1 Assessment concepts in the new pseudo-code language. The research

question under investigation was as follows:

RQ2.2: To what extent are students able to demonstrate their understanding of fun-

damental CS1 concepts in a pseudo-code assessment instrument?

H5: Students will be able to read and reason in pseudo-code.

H6: The majority of errors made by students will be conceptual, rather than syntac-

tic, in nature.

4.3.1 Participants and Recruitment

Participants were recruited from introductory courses taught in three different pro-

gramming languages (Java, Matlab, and Python) and across ability groupings (high,

medium, low). Faculty were asked to divide their course roster into thirds based

upon students’ midterm averages. A listing of the students grouped by ability will be

provided, but they will not be identified by the specific ability grouping to which they
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Table 8: Summary of Participants in Think Aloud Study

Ability Bin Java Matlab Python
1 J1, J3 M7 P1
2 J2, J4 M1, M3, M5
3 J5 M4, M6 P2

belong. My goal was to capture a cross-section of student abilities in each program-

ming language participant group and try to mitigate the bias of higher achievement

levels often found in volunteers. The ability groupings are needed to ensure that

students from a diverse set of skill levels are able to read and reason in the pseudo-

code. I recruited 14 students, planning for some participant attrition, although only

one participant (P2) failed to complete the study. See Table 8 for a summary of the

participants according to their relative ability level in their introductory course.

4.3.2 Study Method

The study was a two-part think aloud interview conducted while participants were

completing the FCS1 Assessment. Participants were given the overview of the pseudo-

code and were given 5 minutes to familiarize themselves with the new syntax. They

were then given the first 13 questions of the assessment and asked to think-aloud

while completing the exam. The participants were given 1.5 hours to complete this

portion of the exam. Participants then returned for a second think-aloud interview

where they were asked to answer the remaining 14 questions in a similar 1.5 hour

session. Participants were compensated at a rate of $10 an hour for their time.

Audio recordings of the think-aloud interviews were made and coded according to

the CS1 programming language of the participant and the ability bin (1, 2, 3).

4.3.3 Data Analysis

The interview data was transcribed and content analysis (Neuendorf, 2002) was used

to analyze the participant responses. Specifically, I looked for correctness of the

answers, errors that were made, and evidence of reasoning using the new pseudo-code
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Table 9: Coding Rubric for Think Aloud Interview Data

Code Description %
1 Participant answered question correctly by reasoning about in-

tended construct.
49.63%

2 Participant answered question incorrectly by following common
misconception or using faulty logic about construct.

34.07%

3 Participant answered question correctly even though they had in-
correct reasoning about construct.

5.92%

4 Participant answered question correctly, however the correct an-
swer was reached by reasoning about other conceptual content.

0.00%

5 Participant answered question incorrectly due to reasoning about
other constructs.

4.44%

6 Participant answered question incorrectly. The wording of the
question led to confusion/incorrect answer.

5.18%

7 Participant answered question incorrectly. Difficulty with or inap-
propriate transfer from programming language to pseudo-code lead
to confusion/incorrect answer.

0.74%

8 Participant answered question incorrectly. The reasoning was inco-
herent and difficult to assign to any particular concept/construct.

0.00%

language syntax. A coding rubric was developed to capture whether participants were

answering the question correctly and what factors contributed to their reasoning. The

rubric is presented in detail in Table 9.

The first two codes capture the scenarios of a participant reasoning about the

question concept and answering the question correctly (code 1) or incorrectly (code

2). The third code recognizes situations in which the participant has a misconception

or misunderstanding about the concept, but due to the multiple choice format of the

exam, is still able to guess the answer correctly. The middle set of codes (4 & 5) mark

situations where the participants’ answer choice was driven by their reasoning about

a construct other than the primary conceptual focus of the question. The last set

of codes identify problematic areas with the exam. Code 6 designates a scenario in

which the wording of the question causes confusion and leads to an incorrect answer.

Code 7 is used to mark areas where the pseudo-code language caused difficulty, either

in reasoning about the language itself or through inappropriate transfer from their

CS1 programming language to pseudo-code. The last code (code 8) was designed to

capture situations in which a participant’s logic was incomprehensible, and it was

44



difficult to tie their reasoning to any particular conceptual construct.

The interview participants FCS1 Assessment exams were graded for correctness,

and then study participants were randomly sampled from the data set making sure

to have a high and low scoring participant from each programming language group.

(Since only one participant in the Python group completed the think aloud interview

study, participant P1 was automatically included in the data set.) A total of 5

participants were selected to have their interview data coded according to the scoring

rubric. Responses to each question were coded independently by two researchers.

Discrepancies in the coding were resolved collaboratively with a goal of clarifying the

rubric’s definition and ensuring a consistent application of the rubric across the entire

data set. The results of the coding are presented in Table 10.
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To investigate students ability to demonstrate their understanding in the pseudo-

code assessment, the analysis will focus specifically on the instances of codes 1, 2,

6, and 7. The first two codes are clear mappings to students ability to reason with

the pseudo-code and answer the questions correctly or incorrectly based upon their

understanding of the concept. Codes 6 and 7 represent situations where the question

itself, either in its wording or the expression of the code in the pseudo-code syntax,

may have confused the student participant. Codes 4 and 5 contribute to an evaluation

of the validity of the exam, and will be discussed in Chapter 5. Participant responses

for all of the questions followed a reasoned, but not necessarily correct, logic about

particular constructs, so the last item in the rubric (code 8) was not identified in the

data set.

The majority of the participants answers (83.70%) were judged to be category 1 or

2, a score that indicates the participant was reading and reasoning with the pseudo-

code as intended. The following excerpt from participant M7 demonstrates a correct

reasoning and understanding of a while loop, expressed in pseudo-code, but without

the index variable incremented in the body of the loop, thus creating an infinite loop.

M7 : Looking at this while loop, the number i, or variable i is never

incremented, so i will always be less than 10 so the while loop will run

endlessly. And because i is never incremented, and it always wants to

print number and then concatenated with i it will always print number

one, number one, etc, um so that would be C.

However, participant M3 assumed that the index variable was incremented, per-

haps automatically as in the definition of for loops, and expressed common miscon-

ceptions in their1 reasoning.

1The word “they”, often called the singular they, will be used to indicate a gender neutral
pronoun.
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M3 : When i is less than 10, print i = number 1 + i. So then it would

be number 2 and then number 3, all the way to number 9. This seems

correct. . . .

i is always equal to 1, which is less than 10. That’s incorrect because you

add i to it every time. i is always equal to 1, which is less than 10; so

print i is a finite [sic] number of times. . . . That’s also incorrect, because

well the answer has 10 in it and it’s saying it goes an infinite number of

times and it will stop after i gets to 9, so it will not continue to go.

There was no noticeable difference between participants of high and low ability on

this metric. High ability participants had an average of 22.5 questions rated in the top

two categories, and low ability participants had an average of 22.67 questions in these

categories. While the high ability participants did score better on the assessment, and

thus were more likely to receive 1’s for answering the question correctly, there was no

measurable difference in the participants ability to reason with the pseudo-code.

The remaining answers were divided among the rest of the rubric scoring codes.

However, there is another small cluster of scores (code 3, 5.92%) that appeared as

an artifact of the testing format. In these questions, participants expressed clear

misconceptions or incorrect logic about a concept, but the multiple-choice question

format of the exam, allowed them to guess and select the correct answer.

In a few instances (n = 7, 5.18%), the wording of the question contributed to

participant error. For three questions, the English phrases that were used to describe

program behavior led to confusion. One student was confused by the specific term

“increment” applied to the behavior of changing the index variable in a loop (Q1),

correctly noting that the index variable does not have to be incremented in all for

loops. Another student, when reasoning about execution of an if statement (Q6),

inferred the phrase “always print” to imply a loop, rather than the intended meaning

of being outside the body of the if statement.
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P1 : If I understand this right, I think A is saying always print “Going

on!” like infinitely many times, which its not in the loop so I don’t know

why it would do that.

When evaluating a recursive function call (Q14), one student was not clear whether

the term “final result” implied the return value after the first call to the function or

the value after the recursion was complete.

The wording of the stem in question 12 was problematic in multiple ways. Some

participants did not notice the use of the phrase “always true” when evaluating the

answer choices, and the term “declared variable” was not language independent and

especially problematic for Java participants.

The student participants had little difficulty reading and reasoning with the pseudo-

code syntax. Two areas in the pseudo-code definition suffered from ambiguity, but

there was only one instance where the syntax of the pseudo-code was the source of

the participant’s misunderstanding. Students were occasionally confused about the

declaration and initialization of variables. Java students seemed particularly troubled

by the lack of explicit type declarations, and the method for declaring an array was

inadvertently omitted from the pseudo-code guide. Participant P1 talks here about

their uncertainty about arrays.

P1 : So A is going to turn into - I think, I can’t really remember. I think

it’s like four zeros in a list.

However, as this excerpt demonstrates, except in one case, participants uniformly

made correct assumptions about the pseudo-code behavior and proceeded to reason

about the item construct.

Question 25 was the one instance where the pseudo-code syntax seemed to dis-

tract the student. Q25 asked students to write a math equation in programming

syntax. Participant J4 struggled with how to express “π” and debated what other

programming languages allowed.
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J4 : Well you don’t have pi – pi is not just some magic number that we

have here so I’m going to assume that we have to actually use 3.14 ‘cause

you can’t just put the letter or the Greek letter pi in. I don’t think. . . .

I’m not sure if I can actually use just pi ‘cause I know in Java we can’t

just put in the symbol pi. . . . So maybe the pi thing was right. . . . I don’t

know if you can do that ‘cause it’s so inaccurate to use 3.14, but I don’t

know if I can use pi either. . . .

I really don’t like this ‘cause we can never use pi in Java and I’m trying to

remember for the little bit of stuff I’ve done in Python if – I don’t know

if you can use pi. I don’t know if I ever did anything with math for that.

. . . So I’ll leave that one as C even though I don’t like using pi.

The think aloud interview data does confirm that students are able to express

their understanding of introductory computing concepts in pseudo-code. However,

the claim that the majority of errors made would be conceptual, rather than syntactic

in nature, is unresolved. The pseudo-code has been designed to mitigate against a

difficult syntax learning curve. However, data gathered in this study was insufficient

to investigate this hypothesis, and it is unclear whether it would be possible to collect

reliable measures of this phenomenon. Computing concepts are expressed using pro-

gramming language notation, and syntax inherently embodies conceptual constructs.

Concepts and syntax are integral components of programming knowledge, therefore

it would be difficult to find evidence that would directly link the error to either a

specific conceptual or syntactical mistake.

4.3.4 Study 4 Findings and Contributions

• Design of a pseudo-code that is accessible to novice students from a variety of

programming language backgrounds.

50



• Evidence that students are able to read and reason about FCS1 Assessment

concepts in the pseudo-code language. (H5, confirmed)

4.4 FCS1 Assessment Study

The final test of programming language independence is whether students were able

to demonstrate comparable levels of conceptual understanding in pseudo-code and in

their “native” programming language. The research question being investigated was

as follows:

RQ2.3: To what extent are students able to transfer their understanding of funda-

mental CS1 concepts from their introductory programming language of instruc-

tion to pseudo-code?

H7: Students’ ability to transfer their conceptual understanding from their introduc-

tory programming language of instruction to pseudo-code will be demonstrated

by a positive correlation between scores on the pseudo-code and language ver-

sions of the FCS1 assessment.

H8: An aptitude-treatment interaction will influence the degree of transfer exhibited,

with higher ability students demonstrating a higher degree of transfer.

I conducted a large scale empirical study comparing student performance on the

FCS1 Assessment to a comparable version of the assessment instrument written in the

students’ CS1 programming language. Participants were selected at the end of CS1

courses taught in Java, Matlab, or Python. Statistical analysis techniques enabled

me to look for correlations in student performance between the two exams.

4.4.1 Participants and Recruitment

Participants were recruited as they were completing CS1 courses taught in Java,

Matlab, and Python. In particular, I recruited participants from four different in-

troductory courses taught at two universities by four separate faculty members, so
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Table 11: Summary of Participants in FCS1 Assessment Study

CS1 Programming Language University CS1 Approach n
Java C1 Traditional 80

Matlab C2 Engineering 250
C2 Engineering 270

Python
C2 CS-Based 71
C2 Media 139
C2 Media 142

that the definition and understanding of CS1 knowledge was not tied to a particular

faculty member or institution. (See Table 11 for a summary of participant recruit-

ment.) There were a total of 952 participants who were enrolled in a CS1 course in

Java (n = 80), Matlab (n = 520), or Python (n = 352).

4.4.2 Study Method

The study consisted of two assessment exams given under testing conditions – no

questions were permitted and collaboration was not allowed. Participants completed

the FCS1 Assessment and a comparable version of the FCS1 Assessment rewritten

in the programming language used in their introductory CS course. The comparable

version was created using the alternate questions for each concept in the test bank.

A counterbalanced quasi-experimental design was used to reduce bias from order-

ing effect. Random assignment of participants to treatment groups is not feasible in

this setting, so class sections and test administrations were assigned to the experi-

mental conditions. The FCS1 Assessment was administered as a regularly scheduled

course activity during normally scheduled course times (i.e., lecture or recitation sec-

tion) for the Java and Python participant groups, with students electing to have their

data considered for inclusion in the study. Students in the Matlab participant group

were also invited to participate in the study, but due to scheduling constraints, the

exam was administered outside of normal class meeting times. All students earned

extra credit in their CS1 course for their participation.

Approximately half of the students in each programming language participant
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Table 12: FCS1 Assessment Final Data Set by Counterbalanced Participant Groups

CS1 Programming First Pseudo-code Language
Language Exam n n

Java Pseudo-code 41 37
Java 38 37

Matlab Pseudo-code 295 277
Matlab 219 214

Python Pseudo-code 202 156
Python 136 129

group received the pseudo-code language assessment first. After an interval of 1 week,

they received the CS1 programming language version of the exam. The other half of

students completed the assessments in reverse order, receiving the CS1 programming

language exam first. (See Table 12.)

4.4.3 Data Analysis

Two kinds of statistical data analysis techniques were used to evaluate the claims of

this study. Correlation studies were used to investigate whether students demontrated

comparable levels of conceptual knowledge in the pseudo-code FCS1 Assessment and

in the CS1 programming language versions of the exam. At the end of a first course in

computing, the student participants should have learned enough abstract conceptual

information to be able to transfer that knowledge into the new pseudo-code syntax.

In addition, analysis of variance techniques were used to investigate whether students’

ability in CS1 is a predictor of their success on the the FCS1 Assessment.

4.4.3.1 Preparing Data for Analysis

Before data analysis could begin, outliers from the data set that would bias or skew

the results were removed. The first set of anomalous data came from participants

who did not take the assessment seriously and were only participating to earn the

extra credit points. An objective set of rules for exclusion was developed and applied

to the data. The following conditions were evidence of an incomplete exam that was

thus removed from the data set.
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• Participant finished quiz in in less than 15 minutes, allowing approximately 30

seconds or less per question.

• Participant filled in the answer sheet following a clear pattern visually on the

page, commonly referred to as “christmas tree-ing” the exam.

• Participant provided the same answer, including blank, to 10 or more questions

in a row.

• Participant left 15 or more of the exam questions blank, over half of the exam.

A total of 21 exams were excluded under these conditions, 17 of which were the

pseudo-code version of the exam. An external researcher verified the rules for exclu-

sion and independently reviewed all of the exams that were removed from the data

set to confirm that they met one or more of the exclusionary criteria. A total of 95

participants only completed the CS1 language version of the FCS1 Assessment, and

were also removed from the data set. While data about the pseudo-code version of the

exam can be useful to analyze without a corresponding language exam, the language

exam score and information is only relevant in comparative analysis to the pseudo-

code version. After this initial pass to sanitize the data, there were a total of 931

participants who completed the pseudo-code version of the exam and 850 of those

also completed the CS1 language version. Table 12 describes the final participant

counts, by programming language participant group.

4.4.3.2 Overview of FCS1 Assessment Scoring Data

The pseudo-code and CS1 language versions of the FCS1 Assessment were graded,

awarding a 1 for a correct answer and a 0 for an incorrect answer. (Any question

left blank was not scored.) During grading, an error was discovered in question

13 in the pseudo-code exam. The pseudo-code syntax used in the question stem

and distractors was not correctly formed. Responses to this item were discarded,
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the question was corrected, and the remaining participants were given the modified

version of the question. Similarly three questions (Q19, Q25, and Q26) on the first

administration of the Matlab version of the assessment had syntax errors, largely

stemming from attempting to create equivalent versions of the language specific exam

in three different programming languages. Again the responses were discarded, the

errors were remedied, and the second half of the Matlab participants received correctly

formatted questions.
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Student participants answered an average of 8.82 (33.78%, σ = 3.649) questions

correctly on the pseudo-code version of the FCS1 Assessment. The maximum score

was a 23, and the minimum score was a 1. A summary of the graded assessment,

organized by question number, is shown in Table 13. This analysis is not intended to

compare results across programming language populations, particularly since the dif-

ferent CS1 courses cover and emphasize different material with respect to the concepts

included in the assessment. However, there are a number of questions that appear as

the least and most difficult overall and in each programming language population.

Questions focused on introductory concepts were most frequently answered cor-

rectly. Questions 23 and 25, that asked students to trace and write statements using

the basics of variables, assignment statements, and mathematical operators, were an-

swered correctly by over half of the participants (62.61% and 54.85%, respectively).

Questions 6 and 21 were among the easiest on the exam, answered correctly over 55%

of the time. These questions had students tracing and predicting the outcome of a

series of nested if statements.

One question (Q12) was clearly the most difficult on the exam, with almost no one

answering the question correctly, only 1.94% of the participants did so. The question

was intended to explore students fundamental notions of variables and assignment

statements. However, as discovered in the think aloud interviews, the wording of

the question stem was problematic and confusing for most students. Students also

struggled with the questions about returning values from functions (Q5 and Q11)

with less than 10% of these questions being answered correctly. Correctly tracing a

parameterized function call (Q27, 16.00%) and a recursive function (Q24, 15.90%))

also proved challenging for the students.
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Student participants were more successful answering questions on the CS1 lan-

guage specific exam. An average of 13.13 (48.61%, σ = 4.195) questions were an-

swered correctly, and the minimum and maximum score both increased by two points

to 3 and 25, respectively. A summary of the language-specific graded assessment is

shown in Table 14. While the overall scores were higher on this version of this exam,

similar concepts appear among those identified as least and most difficult across the

populations. However, there is less consensus across the programming language pop-

ulations, likely due to the nature of the syntax of the programming languages and

how they enable or hinder expression of particular concepts (Weinberg, 1971).

Questions about math operators and if statements were again among the most

commonly answered correctly, with over 80% of the participants answering these ques-

tions correctly. Two of the questions were the analogous versions of the questions that

had appeared in the list of the least difficult items in the pseudo-code exam. Ques-

tion 14 (81.98%) asked students to write a mathematical equation in programming

language syntax, while question 5 (87.04%) asked students to write a series of nested

if statements. Students also found the concept understanding questions about both

if statements (Q8) and for loops (Q2) to be among the easiest on the exam.

The programming constructs related to function parameters, function return val-

ues, and recursion were the most difficult questions on the language specific version

of the FCS1 Assessment. Less than 30% of the students were able to correctly answer

questions about the behavior of parameterized functions, Q9 and Q27. Question 27

(25.33%), which asked about the values of the parameters during and after a function

call, was analogous to Q27, a difficult question from the pseudo-code version of the

exam. Another comparable question, Q3 (9.89%), exploring students understanding

of function return statements, also appeared as one of the most difficult types of

questions on both versions of the exam. Writing code to correctly complete a recur-

sive function to evaluate a string (Q10) was the final concept to be among the most
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Table 15: Average Scores on the FCS1 Assessment by Counterbalanced Groups

Pseudo-code Version
Order n Mean σ

1st 538 8.65 3.619
2nd 388 8.98 3.597

CS1 Language Version
Order n Mean σ

1st 375 12.55 3.875
2nd 470 13.52 4.345

difficult across all the programming language populations.

After scoring of the exams was complete, additional analysis was conducted to

evaluate the effectiveness of the counterbalancing strategy and to measure the equiv-

alence of the divided populations. On the pseudo-code version of the FCS1 Assess-

ment, students who sat for this exam first answered an average of 8.65 questions

correctly, and their counterparts who took this version of the exam second averaged

8.98 questions correct (see Table 15). An independent samples t-test was conducted

to compare the mean number of correct questions between the testing conditions and

yielded no significant difference. This analysis was repeated for the CS1 language

specific exam.

Student participants who sat for the CS1 language specific exam first earned an av-

erage score of 12.55. Students who took the language exam second, after having com-

pleted the pseudo-code version of the exam, earned an average score of 13.52. There

was a significant difference in the mean scores for the language exam; t(843) = 3.382,

p = 0.001.

These results suggest that a small learning effect (<= 1 point) was evident in

the data. Students taking both versions of the exam second, having seen analogous

questions written in a different programming language syntax, did better than their

colleagues who completed that version of the exam first. The size of the learning

effect is within acceptable limits, and counterbalancing is an appropriate strategy to

mitigate any bias introduced by such an effect (Bradley, 1958).
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Figure 4: Scatterplot of Scores for Correlation of Pseudo-code and Language Versions
of FCS1 Assessment

4.4.3.3 Correlation with CS1 Programming Language Version

To investigate whether students were able to transfer their understanding of funda-

mental computing concepts from their CS1 programming language to pseudo-code,

a correlation analysis was conducted to look for evidence of a positive correlation

between the overall scores, i.e. the number of questions answered correctly, for each

participant on both versions on the FCS1 Assessment.

A Pearson product-moment correlation coefficient was computed to assess the re-

lationship between the score on the pseudo-code version and the score on the language

specific version of the assessment. There was a positive correlation between the two

variables, Pearson’s r(850) = .572, p <= 0.001. A scatterplot summarizes the results

(Figure 4). Overall for the total participant population, there was a strong, positive

correlation between the score on the pseudo-code and CS1 language version of the

FCS1 Assessment.
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Table 16: Significant Pearson Correlations between Pseudo-code and CS1 Language
Versions of the FCS1 Assessment

Population df r p
Total 850 .572 <= 0.001
Java 74 .665 <= 0.001

Matlab 491 .547 <= 0.001
Python 285 .415 <= 0.001

CS-Python 43 .615 <= 0.001
Media-Python 242 .372 <= 0.001

Having found a positive correlation, which meets the guidelines for large effect size

in the social sciences (Cohen, 1988), subsequent analyses focused on correlating exam

scores for each CS1 programming language population. Were students from each of

the CS1 programming languages examined – Java, Matlab, and Python – able to

transfer their understanding to pseudo-code? Or is the syntax of the pseudo-code

too distinct from what the participants have learned to facilitate the expression of

conceptual understanding in a new programming language?

Pearson product-moment correlation coefficients were computed to assess the rela-

tionship between the score on the pseudo-code version and the score on the language

specific version of the assessment for each programming language participant group

(see Table 16). There was a strong, positive correlation between the scores on the

pseudo-code and language versions of the assessment for each of the programming

languages studied. Participants from the CS1 taught in Java had the strongest cor-

relation, Pearson’s r(74) = .665, p <= 0.001. Although the pseudo-code syntax had

more elements in common with Python than the other programming languages stud-

ied, the Python participant group had the lowest correlation coefficient, Pearson’s

r(285) = .415, p <= 0.001. The Python population was comprised of students, nor-

mally students from STEM majors, enrolled in an introductory computing course2 as

2The introductory computing course for CS majors described here covers traditional computer
science concepts but is taught in the context of robotics using materials from the Institute for
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well as students who were enrolled in a non-traditional media computation course de-

signed for liberal arts students. A Pearson’s correlation coefficient was also computed

for each of these subpopulations of the Python participant group. There was a strong

positive correlation, (Pearson’s r(43) = .615, p <= 0.001), for students enrolled in

the CS-based python CS1 course that was similar to the strength of the correlation

found in the Java and Matlab populations. While the effect size for the media-based

Python course was smaller, r = .372, there was still a strong positive correlation.

Overall the results demonstrate that there was a strong, positive correlation be-

tween the scores on the pseudo-code and CS1 language versions of the FCS1 Assess-

ment for both traditional and non-traditional pedagogical approaches to CS1.

4.4.3.4 Degree of Transfer to Pseudo-code

The last hypothesis under investigation is whether student ability will significantly

impact the degree to which they are able to transfer understanding of fundamental CS

concepts from an introductory programming language into pseudo-code. Participant

scores on the FCS1 Assessment were re-examined looking for evidence of an aptitude-

treatment interaction (Snow, 1989) between a students’ success in computer science

and the level of transfer exhibited in the assessment.

Given the strength of findings from the the correlation studies, student success

in CS was operationalized to be the score on the pseudo-code version of the FCS1

Assessment. The participants in each language population were divided into quartiles:

Q1 contains all of the scores in the bottom 25%, Q2 contains scores between the 25th

and 50th percentile, Q3 contains scores between the 50th and 75th percentile, and

Q4 contains scores in the top 25%. A student’s ability to transfer was calculated as

the difference between the score on the CS1 language version of the exam and the

score on the pseudo-code version of the exam.

Personal Robotics in Education (Summet et al., 2009).
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Table 17: Average Scores on the FCS1 Assessment by Quartile

Quartile n Mean ∆ σ
4 203 2.31 3.649
3 231 3.76 3.313
2 226 4.81 3.495
1 190 6.20 3.671

Table 18: Post Hoc Comparisons with Bonferroni Correction

Quartile Quartile Mean Difference p
4 3 −1.456 .000

2 −2.504 .000
1 −3.895 .000

3 2 −1.048 .006
1 −2.438 .000

2 1 −1.390 .000

A one-way between subjects ANOVA was conducted to compare the effect of

student ability on the ability to transfer (the difference in scores between the CS1

language and pseudo-code versions of the FCS1 Assessment) across the quartile con-

ditions. There was a significant effect of student ability on the difference in scores at

the p < .05 level for the four quartiles [F (3,846) = 46.381, p <= 0.001], see Table 17.

Post hoc comparisons using the Bonferroni correction indicate that the mean differ-

ence in scores for each of the quartiles was significantly less than the next quartile,

Q4 < Q3 < Q2 < Q1 (Table 18). That is students of higher ability have scores on

the two versions of the exam that are more similar than students of lower ability.

These results indicate that student ability does have an effect on the degree of

transfer, with higher ability students better able to transfer from their CS1 program-

ming language to the pseudo-code syntax.

4.4.4 Study 5 Findings and Contributions

• Empirical evidence that students are able to express their understanding of

FCS1 Assessment concepts in a language independent assessment. (H7, con-

firmed)
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• Empirical evidence that students across a range of ability levels are able to

transfer understanding of FCS1 Assessment concepts from a language specific

programming language to pseudo-code. Further, the transfer is influenced by

the students ability level, with high ability students demonstrating a higher

degree of transfer. (H8, confirmed)

The research evaluating the feasibility of using pseudo-code to achieve a program-

ming language independent exam for introductory CS1 concepts was presented in

this chapter. I designed a pseudo-code as the mechanism to express concepts without

being tied to a particular CS1 language and conducted a set of studies to evaluate

the effectiveness of the pseudo-code as a language for students to express their un-

derstanding of CS1 concepts. In so doing, I have addressed research questions RQ 2,

2.1, 2.2, and 2.3, and have presented evidence confirming H4, H5, H7, and H8. The

research questions and investigations used to validate the FCS1 Assessment will be

discussed in the next chapter.
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CHAPTER V

ESTABLISHING VALIDITY

After the Foundational CS1 Assessment was piloted, the final step in the development

process is to establish the validity of the exam. In general, there are two classes of

evidence used to support validity claims. Content related evidence ensures that the

assessment’s content appropriately operationalizes the constructs it is intended to

measure. A test designed to assess CS1 knowledge would therefore identify a number

of topics to be measured, and its content validity would be determined by whether

the set of topics is a reasonable operationalization of CS1. Construct related evidence

provides the second set of support for validity. A construct is “the concept or the

characteristic that a test is designed to measure” (Lindquist, 1951, p. 173). Empirical

analysis of responses to individual questions provides evidence that the items in the

assessment are indeed measuring the desired constructs, rather than something more

or less than intended. Together, content and construct validity enable a test developer

to provide evidence that the instrument is measuring student knowledge as intended.

Content validity for the FCS1 Assessment was previously established by expert

panel review at the end of Study 1. Construct validity is the focus of the research

question and hypotheses in this study.

RQ3: To what extent does the language independent instrument provide a valid mea-

sure of CS1 conceptual knowledge?

H9: There will be a positive correlation between student exam scores and their score

on the FCS1 Assessment.

H10: The FCS1 Assessment will provide a valid measure of introductory CS1 content
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for procedurally-based CS1 courses taught in Java, Matlab, or Python.

Given the position of this exam as the first of its kind in the field, the standard

correlation methods for establishing validity do not apply (Study 2). Since construct

validation is dependent on inferences drawn from a variety of data (Kane, 2006; Miller,

Linn, & Gronlund, 2009b), I propose a three-pronged approach to establishing the

validity of the assessment instrument. Using a combination of think-aloud interview

data (Study 4), statistical analysis of student responses in the FCS1 Assessment

Study (Study 5), and correlation with exam scores, empirical evidence will be used to

argue that the assessment provides an accurate measure of students’ understanding

of introductory CS1 topics.

5.1 Study Method

The validity study, using the participants and data collection processes previously dis-

cussed in Chapter 4, was comprised of three parts. First, the think-aloud interviews

(Study 4) allowed investigation into student reasoning while they are answering the

questions on the exam. Second, statistical analysis of responses to individual ques-

tions in the FCS1 Assessment Study (Study 5) using both the correlation data and

item response theory provides evidence that the items are indeed measuring the de-

sired constructs, rather than something more or less than intended. And lastly, an

additional study correlating students’ scores on the FCS1 Assessment and students’

exam scores in their CS1 course. Students’ exam scores were used as a measure of

their level of understanding of CS1 content as defined by external faculty teaching

the course. By recruiting students from multiple institutions, I was able to mitigate

the bias of correlating to a particular definition of the content of CS1.
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5.2 Data Analysis

The validity evidence is three-fold: think aloud interview data, student responses to

the FCS1 Assessment, and student CS1 exam scores. Each of these data sources was

analyzed to construct the validity argument for the exam as a whole.

Qualitative analysis of the think aloud transcripts (Study 4) provides evidence

whether students were answering questions based on their knowledge of the concep-

tual content. The goal of the analysis was to determine whether students were using

knowledge about a concept to answer the question. Alternatively, additional infor-

mation could be required to correctly answer the question or other cues could be

enabling correct responses without knowledge of the construct.

The FCS1 Assessment study data and analysis provides a quantitative argument

towards construct validity. The Pearson correlation analysis (Study 5) demonstrated

that students have a comparable knowledge to that measured in a language specific

version of the exam. Item response theory and analysis (Baker, 2001) provides em-

pirical evidence towards the quality of the questions themselves. If the questions are

shown to be “good” questions (i.e., of appropriate difficulty and discrimination) and

students demonstrate comparable knowledge to a language specific exam, then the

argument is made that this is an accurate representation of students’ understanding

of the topics.

Student exam scores provide the final piece of evidence for construct validity.

Pearson’s correlation analysis was used to investigate whether student scores on the

FCS1 Assessment can be positively correlated with their scores on CS1 exams.

5.2.1 Student Think Aloud Interview Responses

Participant responses to the FCS1 Assessment items in a think aloud interview setting

were analyzed for evidence of how students derived their answers. Specifically, I was

looking for whether students were reasoning about the intended construct or whether
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other concepts or cues were causing them to get the questions correct or incorrect.

Eleven questions (40.74%) were answered using valid reasoning (code 1 or 2) about

the intended concept by all of the sampled participants. An additional 12 questions

(44.44%) had only one participant answer caused by reasoning about another concept

or a miscue from the question itself (codes 3 - 7). (See Table 10 for more details).

However, there were four items (Q12, Q15, Q17, and Q25) where multiple participants

had difficulty reaching valid conclusions based upon the information provided in the

question.

Question 12, which has been previously identified as difficult and problematic for

students, was frequently coded with the wording of the question as the source of the

reasoning error. Questions 15 and 17 saw errors in logic made by reasoning about

concepts outside those of the primary focus of the question (code 5). These errors

will be discussed in more detail below. A mixture of correct guessing with incorrect

logic (code 3) and difficulty reasoning with the pseudo-code (code 7) were included

in participant answers for Question 25.

To evaluate validity claims, the analysis will focus on codes 3, 4 and 5, instances

where participants are getting the questions right or wrong for some reason other than

their understanding of the concept. Overall there were only 10.37% of the answers

that were recorded in one of these categories. Codes 1 and 2, previously discussed in

Section 4.3, represent valid measures of student understanding. In these instances,

student participants are reasoning with the pseudo-code about the intended construct

to arrive at a correct or incorrect response. The remaining rubric scores (code 6 and 7)

represent issues with the questions or syntax that lead to student error or confusion.

These situations confound the expression of understanding and whether a question is

accurately measuring the participant’s knowledge is inconclusive.

The results of the rubric scoring show eight (5.92%) instances where participants

held some misconception or reasoned incorrectly about a concept, yet due to MCQ
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format, were able to correctly guess the answer (code 3). This data represents cases

where despite not fully understanding a concept, a participant was able to record a

correct answer. Therefore these were not valid measures of their understanding of

that construct. In most cases (88.89%), the other items about that construct were

valid measures, so interpreting across all the questions about a topic should lead to

a better understanding of student knowledge.

A common error made by participants appeared in Question 25. When asked to

express a mathematical formula in pseudo-code syntax, participants did not notice

that distractor D was incorrect because it was missing a multiplication operator.

It expressed the formula as commonly seen in mathematics, e.g. , 2(x + y) rather

than including the operator explicitly required in programming language notation,

2 ∗ (x + y). Participant M7 demonstrates this error and then goes on to explain

selecting their answer based on perceived elegance of the solutions presented.

M7 : Now what is the difference between B and D? B, two is included

inside the parenthesis and D two is excluded. It’s outside. Hmmm. Well,

if you just follow order of operations, then it all actually works out to be

the same two pi r squared for both of them. . . . Whereas D, I might have

missed something. But still they both seem to work. And I might be just

mistaken on this order of operations thing. But I’ll pick B. It’s simpler

and more likely to be correct.

Logical operators were the source of repeated confusion. Individual students

struggled on all three boolean logic questions, Q2, Q10, and Q26. Two participants

struggled to evaluate basic logical expressions (e.g. True AND False AND True),

expressing little understanding of basic truth tables. The other participant who

struggled with this concept demonstrated inconsistent reasoning when working with

boolean operators.
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On other questions, Q8 and Q16, the student being interviewed made errors but

did not recognize the error or know how to correct it. However, the testing format

allows them to just guess. On question 8, which focused on tracing nested FOR loops,

participant M3 incorrectly computed the array index from the loop index variables i

and j to be −1. They recognized that this value could not be correct, did not know

how to resolve the tracing error, so resorted to guessing instead.

M3 : All right, so this one writes in reverse and this one does not. . . . this

j loop has to carry it out to the sequence before it goes back into the i

loop, which makes me think it’ll write out the word, but what order it

writes it out in, I do not know. So I’d have to guess between these two.

I’m going to guess E, because it seems logical they would put it back in

the right order. I got −1’s, so that makes me think it’s going to flip the

order of the array of name or something like that.

The final error in this category is made by participant J4, who cannot decide what

the correct statement is for the base case in a recursive function. After waffling back

and forth, they ultimate selecting the correct answer while admitting that it was a

complete guess.

Interview codes 4 and 5 were used to represent cases where the correct or in-

correct response was reached, not due to a participant’s reasoning about the item

construct. Rather, reasoning about some other topic led to their response. There

were no instances in the data set where a correct answer was caused by reasoning

about concepts other than the focus of the question (code 4), and there were only

6 (4.44%) instances where reasoning about a concept other than the primary focus

caused a participant to select an incorrect answer choice.

Question 15 was intended to measure participants knowledge about return values.
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Stub code was prepared that parsed the input string into an acronym, and the ex-

aminees were asked to fill in missing code to return the appropriate values depending

on the input string. Two participants were confused about how to determine if the

string only contained one word, the conditional clause in the IF statement. Their

inability to successfully navigate this problem, confusing the length of the string and

the number of words in the string, led to the error.

The modulus operator, %, was the source of difficulty for two participants on

question 17. The question focused on how to assign values in arrays of odd or even in-

tegers, but difficulty in understanding this mathematical operator prevented students

from correctly reasoning about arrays. This excerpt from participant P1 expresses

confusion about the output and evaluation of the operator.

P1 : If numList[i], which i equals zero, divided by two equals one, then

it’s odd. . . . Okay, if numList[i] divided by two is greater than zero, it

doesn’t address anything. If numList[i] divided by two is not zero, which

means it’s one, then it’s going to be odd, which is also even. . . .

So. Hmmm. I’m not really sure how to do this one. . . . I feel like these

[C & E] are both the same and like as in they’re just like opposites. They

both can’t be right. So I guess A is the right answer.

The majority of questions, an average of 22.6 out of 27, were answered using sound

logic and reasoning about the intended construct and thus were valid measures of

participant understanding. The results indicated a small percentage of false positives

expected in a multiple-choice format, and a small number of cases (10.37%) where

something other than reasoning about the intended construct led to an incorrect

response. Overall, the data suggests that items are generally measuring knowledge of

the construct, not something more or less than intended.
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5.2.2 Item Response Theory

Having found strong positive correlations between the pseudo-code and language spe-

cific versions of the FCS1 Assessment, I investigated the quality of the questions them-

selves. If the questions are representative measures of knowledge in CS1 programming

language, then validity of the exam is contingent upon the questions themselves. Are

the questions of appropriate difficulty and can they adequately distinguish between

students of varying ability levels? Item response theory is the statistical analysis

technique employed to make this validity claim.

Item response theory (IRT), by focusing on the question as the unit of analysis,

discerns the strength and weakness of each item in a test. The item characteristic

function or item characteristic curve (ICC) gives the probability that a person with

a given ability, Θ, will answer a question correctly. Using a three-parameter logistic

model (3PL) (Hambleton, Swaminathan, & Rogers, 1991), the probability of a correct

response to an item i is expressed as:

Pi(Θ) = ci + (1− ci)
eDai(Θ−bi)

1 + eDai(Θ−bi)

Pi(Θ) is the probability that a participant answers question i correctly. Examinees

with higher ability are more likely to get the question correct, and as ability level

increases the probability of answering the question correctly increases. The item

parameters (ai, bi, ci) are computed using the function and determine the shape of

the item curve.

Parameter bi is referred to as the item difficulty parameter. It represents the point

where the probability of a correct response is 50% and the item response function has

it maximum slope. In the example ICC shown in Figure 5a, bi = 0.378 which indi-

cates the item is of medium difficulty. The parameter ai represents the discriminating

power of an item — the higher the value the greater the capacity to discriminate be-

tween participants at different ability levels. The ai parameter is characterized by the
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(a) Item characteristic curve (b) Item information curve

Figure 5: Item Characteristic and Information Curves for Question 3

maximum slope of the curve, which is at point bi. The example curve shows an item

with a high level of discrimination, ai = 0.933. The curve is steep, with substantial

changes in probability of a correct response just a short distance to the left and right

of the middle of the curve.

The ci parameter, the pseudo-chance level or guessing parameter, calculates the

probability that a low-ability participant answers the item correctly. In multiple-

choice assessments it is used to measure the effect of guessing on the probability of

a correct response. In a five-option MCQ, there is a 20% chance of a correct guess

randomly, so ci would be approximately 0.20. In the example shown in Figure 5a,

ci = 0.132 and is indicated by the horizontal line at that position. D is a constant

equal to 1.7 (Birnbaum, 1968).

In addition, the item information function, Ii(Θ), plays an important role in test

development by computing how much each item contributes to distinguishing an

examinees ability. The function (Birnbaum, 1968) is expressed as:

Ii(Θ) =
[P
′
i (Θ)]2

[Pi(Θ)][1− Pi(Θ)]
=

2.89a2
i (1− ci)

[ci + eDai(Θ−bi)][1 + e−Dai(Θ−bi)]2

The item parameters (ai, ci, ci) play a role in determining the information pro-

vided by item i. An example item information curve (IIC) is shown in Figure 5b.
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Information is higher when the ai parameter is higher, therefore the contribution

depends greatly on an item’s discriminating power. Information also increases as

guessing (ci) decreases and when bi is close to Θ, that is difficulty approaches ability.

The place where an item provides maximum information is denoted Θmax.

Taken together, item parameters ai, bi, and ci and item information, Ii(Θ), provide

a basis for distinguishing good and bad items on an assessment instrument. Item

response theory, using the 3PL model, was used to analyze the participant responses

to the questions in the FCS1 Assessment.

Overall, most (24 of 27) questions displayed strong item discrimination, adequate

difficulty, and low guessing probability (see Table 19). Therefore, they showed ideal

shapes in their item characteristic and item information curves, see Figure 5. Three

questions (Q4, Q6, and Q25) had relatively low item information values, and thus

were not making significant contributions to the determination of the student’s ability

level. Since ci was generally low, the point of maximum information, Θmax, for all

questions was less than 0.50 away from the item’s difficulty level, bi. However, due to

the overall difficulty level of the exam, the point of maximum information for 40.74%

of the questions was at a high ability level, Θ. That is, the exam questions provided

more information about the ability level of high ability students than those of lower

ability levels.

Two questions, Q12 and Q13, were too difficult. That is bi > 3, which implies

that less than 10% of the examinees had a 50% probability of answering the question

correctly, see Figure 6. The difficulty item parameter bi was 3.979 and 3.473 for Q12

and Q13 respectively. Issues with the wording of question 12 have been discussed

previously in Section 4.3 and question 13 was only answered by participants in the

Java programming language participant group1. It is possible that a larger sample

1An error in typesetting Q13 for the Matlab and Python participant groups removed this question
from the data set for those populations.
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Table 19: Estimated Item Parameters and Information on FCS1 Assessment

Item Discrimination Difficulty Guessing Maximum Information Point of
(ai) (bi) (ci) (I) maximum I

Q01 0.892 1.234 0.101 0.473 1.339
0.159 0.122 0.033 0.1401 0.1238

Q02 1.554 1.598 0.442∗ 0.723 1.767
0.649 0.167 0.026 0.4337 0.1929

Q03 0.933 0.378 0.132 0.488 0.501
0.155 0.135 0.053 0.1237 0.1265

Q04 0.491 2.272 0.295 0.099+ 2.690
0.157 0.443 0.054 0.0453 0.4939

Q05 1.564 2.370 0.055 1.587 2.406
0.523 0.200 0.010 1.0344 0.2090

Q06 0.436 -0.468 0.251 0.0848+ -0.045
0.082 0.404 0.099 0.0263 0.3658

Q07 1.427 2.180 0.245 0.920 2.307
0.575 0.219 0.019 0.6351 0.2511

Q08 0.546 1.415 0.274 0.127 1.773
0.147 0.311 0.067 0.0457 0.3037

Q09 0.823 1.462 0.221 0.320 1.667
0.218 0.179 0.044 0.1286 0.1876

Q10 0.800 0.865 0.237 0.293 1.087
0.180 0.195 0.060 0.0888 0.1773

Q11 1.603 2.472 0.052 1.678 2.505
0.605 0.220 0.009 1.2396 0.2288

Q12 1.130 3.979‡ 0.021 0.886 3.999
0.587 1.082 0.005 0.9167 1.0912

Q13 0.938 3.473‡ 0.256 0.389 3.672
0.450 1.210 0.052 0.3240 1.2500

Q14 0.789 0.559 0.130 0.350 0.704
0.134 0.151 0.054 0.0906 0.1438

Q15 1.258 1.450 0.108 0.928 1.528
0.260 0.105 0.023 0.3400 0.1095

Q16 0.687 1.172 0.127 0.267 1.335
0.135 0.169 0.047 0.0814 0.1687

Q17 0.866 2.255 0.295 0.307 2.492
0.299 0.303 0.029 0.1671 0.3499

Q18 0.969 2.938 0.229 0.437 3.117
0.401 0.494 0.019 0.3141 0.5477

Q19 0.802 1.544 0.213 0.309 1.749
0.199 0.184 0.042 0.1164 0.1900

Q20 1.230 2.315 0.139 0.837 2.412
0.411 0.226 0.017 0.5131 0.2475

Q21 0.927 0.560 0.309 0.342 0.787
0.216 0.201 0.065 0.0999 0.1759

Q22 0.834 2.003 0.269 0.300 2.233
0.254 0.237 0.033 0.1425 0.2685

Q23 0.700 -0.210 0.173 0.254 -0.007
0.107 0.206 0.075 0.0630 0.1912

Q24 1.142 1.691 0.065 0.830 1.748
0.206 0.113 0.017 0.2753 0.1170

Q25 0.496 1.465 0.390 0.083+ 1.958
0.150 0.424 0.070 0.0311 0.4166

Q26 1.011 1.507 0.237 0.468 1.682
0.232 0.157 0.034 0.1672 0.1607

Q27 1.594 2.297 0.138 1.407 2.372
0.643 0.214 0.014 1.0589 0.2342

‡ Item exceeds recommended difficulty.
∗ Item exceeds recommended guessing probability.
+ Item fails to provide adequate information.
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Table 20: Estimated Item Parameter Means and Standard Deviations

Parameter Mean Standard Deviation
ai 0.975 0.348
bi 1.746 1.018
ci 0.195 0.102

is needed to fully evaluate the difficulty of this item, but the analysis indicated that

both questions need to be revised before being included in future versions of the

assessment.

Overall, the items on the exam showed adequate levels of discrimination. No

values of the ai item parameter were 2 or more standard deviations from the mean,

(ai = 0.975, σ = 0.348). (See table 20). Four questions (Q4, Q6, Q8, and Q25) were

greater than 1 standard deviation from the mean and thus could possibly be improved

to be better discriminators. In general, due to the overall high level of difficulty of

the exam, the test shows better discrimination among those of higher ability (Θ > 1)

than those with lower ability (Θ < −1).

Question 2 displayed a guessing probability that exceeded recommended limits.

The guessing item parameter, ci = 0.442, a probability of a low ability participant

guessing the question correctly over 40% of the time. (See Figure 7). Two other

questions, Q21 and Q25, had guessing parameter values that were elevated but were

within one standard deviation of the expected value of ci =0.20 for a 5 item multiple-

choice question.

Three questions (Q4, Q6, Q25) had low item information values, less than 0.25,

and therefore contributed little to the overall ability level of the student participant.

The item information curve for question 6 is included in Figure 8b. (Item charac-

teristic and information curves for the remaining questions are included in Appendix

D.)

Overall, IRT analysis identified four questions, Q2, Q12, Q13, and, Q25 that need

to be revised or dropped from the exam. Question 2 has a high guessing probability,
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Figure 6: Item Characteristic Curve for Question 12

Figure 7: Item Characteristic Curve for Question 2
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(a) Item characteristic curve (b) Item information curve

Figure 8: Item Characteristic and Information curves for Question 6

questions 12 and 13 are too difficult, and question 25 has a relatively high guessing

probability and provides low information. In addition questions 4 and 6 are can-

didates for improving discriminating ability, which will subsequently improve item

information.

A natural source for question revision is the alternate versions of the questions

that are included in the test bank that have already undergone formative testing,

in the language specific format in the FCS1 Assessment study (Study 5). Questions

6, 13, and 25 can be replaced with the questions from the test bank that piloted

at better difficulty and discrimination levels in each of the programming language

populations. Question 12, due to its high level of difficulty and problems identified

in the question wording, can also be replaced with the alternate question from the

test bank. Although the alternate may need further refinement based upon its initial

pilot testing. The current versions of questions 2 and 4 will need to be revised as the

test bank questions fared worse in pilot testing.
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5.2.3 Correlation with Student Exam Scores

To investigate whether the FCS1 Assessment was measuring student understanding

similarly to existing definitions and measures used in CS1 courses, I conducted a

correlation analysis. The analysis looked for evidence of a positive correlation between

the overall score on the assessment and participant exam grades in their introductory

course.

A Pearson product-moment correlation coefficient was computed to assess the

relationship between the score on the FCS1 Assessment and the score on the final

exam in CS1. There was a positive correlation between the two variables, Pearson’s

r(931) = .499, p <= 0.001. A scatterplot summarizes the results (Figure 9). Overall

for the total participant population, there was a strong, positive correlation between

the score on the pseudo-code and CS1 language version of the FCS1 Assessment. Fur-

ther there were significant, yet weaker, correlations between scores on the assessment

and scores on individual midterm exams (see Table 21). Exam scores on midterm 1

and 2 were weakly correlated (r <= .150), while mid-term 3 showed evidence of a

moderately strong correlation (Pearson’s r(931) = .309, p <= 0.001).

Having found a strong positive correlation, subsequent analyses focused on cor-

relating exam scores with each CS1 programming language population. Pearson

product-moment correlation coefficients were computed to assess the relationship be-

tween the score on the pseudo-code version of the assessment and the final exam score

for each programming language participant group (see Table 21). There was a strong,

positive correlation between the scores on the assessment and the final exam for each

of the programming languages studied. Participants from the CS1 taught in Java had

the strongest correlation with final exam score, Pearson’s r(79) = .511, p <= 0.001.

The Python population was again comprised of students in CS and media compu-

tation versions of CS1. A Pearson’s correlation coefficient was computed for each

of these subpopulations of the Python participant group. There was the strongest
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Figure 9: Scatterplot of Scores for Correlation of FCS1 Assessment Score and CS1
Final Exam Score

positive correlation, (Pearson’s r(69) = .679, p <= 0.001), for students enrolled in

the CS-based python CS1 course. The effect size for the media-based Python course

was smaller, r = .262, yet there was still a significant positive correlation.

Pearson correlation coefficients were also computed for each midterm score for

each programming language participant group (see Table 21). There was a strong,

positive correlation between the scores on the assessment and midterm exam scores

for all CS1 courses in Java, Matlab, or Python except the non-traditional media com-

putation approach. Participants from the CS-based Python course had the strongest

correlations with each midterm exam score. The strongest correlation coefficient was

for midterm 1, Pearson’s r(69) = .719, p <= 0.001. The correlation between as-

sessment score and midterm exam scores for the media-based Python course showed

significant correlations with medium effect size. For comparison, the correlation co-

efficient for midterm 1 in the media Python population was Pearson’s r(269) = .246,

p <= 0.001.
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Overall the results demonstrate that there was a strong, positive correlation be-

tween the scores on the FCS1 Assessment and final exam scores for both traditional

and non-traditional pedagogical approaches to CS1. In addition there was a strong

positive correlation with individual midterm exam scores for traditional approaches

to CS1 taught in Java, Matlab, and Python.

5.2.4 Validity Argument

Two issues are central to construct validation of an assessment instrument: construct

under-representation and construct-irrelevant variance (Miller et al., 2009b). These

issues are explored by the following questions: (1) Does the assessment adequately

operationalize the intended construct? and (2) Is performance on the assessment

influenced by factors that are ancillary to the construct?

The matter of construct under-representation was resolved by the panel of expert

reviewers confirming an adequate definition of fundamental CS1 concepts included

in the test specification. Further, item response theory analysis indicated that a

majority (24 out of 27) of the items on the assessment provide adequate information

about student participant ability. Thus, overall the definition and measurement of

the constructs specified are appropriate for the FCS1 Assessment.

A variety of metrics were used to identify potential sources of construct-irrelevant

variance, with most measures providing evidence to the contrary. Think aloud in-

terviews with participants revealed that students were able to provide valid answers

about the intended construct on over 85% of the questions. Scores on the pseudo-code

version of the assessment had a strong positive correlation with scores on the CS1

language specific version of the exam. When combined with IRT results that demon-

strate that 85.18% of the questions were of appropriate difficulty and discrimination,

it is appropriate to infer that the FCS1 Assessment is a reasonable measure of CS1

knowledge.
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Overall the validity studies provide evidence that students are reading and reason-

ing with the pseudo-code to answer questions in the manner intended. In addition,

there is empirical evidence of the quality of the questions used to measure under-

standing that further correlates with external faculty definitions and measures of

CS1 knowledge.

5.3 Study 6 Findings and Contributions

• Empirical evidence of a positive correlation between student CS1 exam scores

and scores on the Foundational CS1 Assessment. (H9, confirmed)

• The Foundational CS1 Assessment provides a valid measure of introductory

CS1 content for declarative programming languages, Python, Matlab, and Java.

(H10, confirmed)

In this chapter, I have proposed a method for constructing the validity argument

for the FCS1 Assessment. A combination of evidence was used – think aloud in-

terviews, statistical analysis of student responses, and correlation with exam scores.

This study addressed research question RQ3 and presented evidence confirming hy-

pothesis H9 and H10. A summary of findings and contributions and a brief discussion

of future work is presented in the next chapter.

84



CHAPTER VI

CONCLUSION AND FUTURE WORK

The goal of assessment research in computer science is to have valid ways of measuring

student conceptions of fundamental topics, which will enable both research into how

understanding of knowledge in the domain develops as well as enable curricular inno-

vation and reform grounded in this knowledge. This thesis focused on three research

questions regarding assessment of introductory concepts in computer science.

RQ1: How can existing test development methods be applied and adapted to create a

valid assessment instrument for CS1 conceptual knowledge?

RQ2: To what extent can pseudo-code be used as the mechanism for achieving pro-

gramming language independence in an assessment instrument?

RQ3: To what extent does the language independent instrument provide a valid mea-

sure of CS1 conceptual knowledge?

As was demonstrated across the six studies, classical test development methods

can be adapted and applied to a disciplinary specific field, such as computer science,

to create a valid assessment instrument. Modifications to the recommended process

may be necessary due to specific domain or notational constraints, but the standard

guidelines (American Educational Research Association et al., 1999) provide a solid

foundation for starting development on a new assessment instrument. For computer

science, two adaptations were necessary. Given the goal of creating an exam that

would be as widely applicable as possible, an additional step was needed to verify

that pseudo-code was an appropriate mechanism for achieving programming language

independence. The method for establishing the validity of the instrument also had
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to be supplemented with additional evidence beyond traditional correlation studies,

since the exam was the first of its kind in the field.

The think aloud interview and FCS1 Assessment studies demonstrated that pseudo-

code was an appropriate mechanism for assessing fundamental CS1 concepts in a pro-

gramming language independent manner. Students, regardless of the programming

language used in their introductory course, expressed similar conceptual errors on

open-ended questions, and these errors informed the design of the distractors in the

multiple-choice format questions. In think aloud interviews, examinees displayed the

ability to read and reason in the pseudo-code syntax without difficulty. In a large-

scale empirical study, students were successfully able to transfer conceptual knowledge

from their CS1 programming language to pseudo-code.

Finally, validity of the assessment for students enrolled in a procedurally-based in-

troductory computing course taught in Java, Matlab, or Python was established using

a multi-faceted argument. Think aloud interviews confirmed that student participants

were answering questions based on their knowledge of the conceptual content. Item

response theory validated the quality of the questions used in the correlation study,

and the FCS1 Assessment scores positively correlated with external faculty definitions

and measures of CS1 content.

6.1 Contributions

In answering these research questions, this research makes several contributions to

the field of computer science education. First, I have provided an example of how to

bootstrap the process for developing the first assessment instrument for a disciplinary

specific design-based field. Through the validation studies, I have identified that as

in other fields, computer science assessment instruments specify different kinds of

knowledge to be examined and for different purposes. Therefore it may not be possible

to correlate scores between exams created with different measurement goals, yet that
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does not necessarily diminish the validity claims of the individual assessments.

I have also demonstrated that novice computing students, at an appropriate level

of development, can transfer their understanding of fundamental concepts to pseudo-

code notation. This ability enables assessment across and comparison of pedagogical

approaches. Lastly, I have built a valid assessment of introductory computing con-

cepts for procedurally-based introductory computing courses taught in Java, Matlab,

or Python at the university level.

6.2 Future Work

Research and development on the Foundational CS1 Assessment can continue along

a number of paths. This research has focused on establishing the validity of the exam

for a limited number of constructs with a focused population of university students

studying common introductory CS1 programming languages. Natural extensions of

this work include adding the tenth common topic identified in Study 1, object-oriented

basics; establishing the reliability of the exam; and implementing the test on-line to

reduce the resources required for data collection and test administration. I would also

like to explore the applicability and validity of using the FCS1 Assessment for mea-

suring student knowledge across different pedagogical paradigms and programming

languages, such as graphical or functional approaches. For example, will students

who learn to program in a graphical drag and drop interface, such as Alice (Dann,

Cooper, & Pausch, 2006), be able to transfer their conceptual understanding to the

pseudo-code syntax? Hundhausen, Farley, and Brown (2009) found evidence of early

transfer from direct manipulation interfaces to textual programming which suggests

this approach may be feasible.

The availability of a valid assessment instrument to measure student understand-

ing of CS1 concepts enables a variety of directions for CS education research involving

the FCS1 Assessment. Two of particular interest are discussed here.
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A programming language independent assessment instrument permits the com-

parison of pedagogical approaches in ways that were not previously available. In

particular, it is now possible to investigate whether there are identifiable and persis-

tent differences in student understanding of fundamental computer science concepts

based upon the pedagogical approach or programming language used in the first

course. When combined with other research methods, it would be possible to begin

to identify which of the many factors in a CS1 learning environment (e.g., the teacher,

programming language, integrated development environment (IDE), pedagogical ap-

proach, student motivation) are the levers that drive student mastery of computing

concepts.

The Foundational CS1 Assessment, as a programming language independent mea-

sure of conceptual knowledge, also starts to permit the comparison of programming

languages used for novices. Given a carefully constructed study, the assessment could

be used to investigate which concepts a particular programming language elucidates

for beginning programmers and which concepts are more difficult to learn in a lan-

guage (Kelleher & Pausch, 2005). The assessment could also be used in the design and

evaluation of claims about new programming languages and environments specifically

designed for novice programmers.

Assessment is an important piece of the computer science education research

agenda. Moss, Girard, and Haniford (2006) remind us of the broader implications:

we must recognize that assessment practices do far more than provide

information, they also shape people’s understanding about what is im-

portant to learn, what learning is, and who learners are. (p. 111)

Valid measures of computing concepts for pedagogical and research purposes enable

inquiry into the nature of learning in the discipline and help us move closer to being

able to identify and predict successful models for developing domain expertise.
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APPENDIX A

ASSESSMENT INSTRUMENT

Unfortunately for the validity and reliability of the assessment instrument, exam

questions must remain private and cannot be published. This prevents potentially

biasing participants involved in the validation studies. Paper copies of the questions

were made available to committee members, and exemplars were provided at the

defense.

89



APPENDIX B

STUDY 3 DATA - OPEN ENDED FCS1 QUESTIONS

STUDY

This appendix contains the data from the analysis of the open-ended versions of the

FCS1 Assessment questions presented in Chapter 4.
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Table 22: Common Incorrect Answers to Closed-Form Question Q2 Ranked by Fre-
quency of Occurrence

variable: first, 75.6% correct
Java Matlab Python

Value n Value n Value n

1st 0‡ 4 0‡ 8 0‡ 3
2nd 2∗ 2 6 5 3� 3
3rd 4∗ 2 2∗ 2 4∗ 3
4th 18� 2 3� 2 8 2
5th 18� 2
variable: previous, 80.2% correct

Java Matlab Python
Value n Value n Value n

1st 2∗ 4 0‡ 8 1‡ 5
2nd 0‡ 3 1‡ 3 2∗ 5
3rd 1‡ 2 6 2 0‡ 2
4th 4 2
variable: final, 75.6% correct

Java Matlab Python
Value n Value n Value n

1st 0‡ 6 0‡ 8 0‡ 6
2nd 2‡ 3 2‡ 4 1 3
3rd 3‡ 2 3‡ 3 2‡ 3
4th 3‡ 2
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but

answer appeared in all groups.
� Trend identified across two languages.
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Table 23: Common Incorrect Answers to Closed-Form Question Q5 Ranked by Fre-
quency of Occurrence

variable: answer1, 87.13% correct
Java Matlab Python

Value n Value n Value n

1st false‡ 6 false‡ 8 false‡ 2
2nd error 2 true and false 2
variable: answer2, 91.76% correct

Java Matlab Python
Value n Value n Value n

1st true‡ 7 true‡ 3 true‡ 2
2nd error 2
variable: answer3, 75.6% correct

Java Matlab Python
Value n Value n Value n

1st true‡ 11 true‡ 10 true‡ 5
2nd error/neither∗ 5 error/neither∗ 4
3rd true and false∗ 2 true and false∗ 3
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but answer appeared in

all groups.
� Trend identified across two languages.
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Table 24: Common Incorrect Answers to Closed-Form Question Q14 Ranked by Fre-
quency of Occurrence

variable: i, 39.35% correct
Java Matlab Python

Value n Value n Value n

1st 5∗ 7 9� 15 1‡ 12
2nd 8 7 1‡ 13 0� 4
3rd 0� 2 5∗ 6 10� 3
4th 1‡ 2 4 3
5th 9� 2 7 3
6th 10� 3
variable: even, 44.08% correct

Java Matlab Python
Value n Value n Value n

1st 4� 8 0‡ 11 1∗ 13
2nd 0‡ 5 4� 9 0‡ 7
3rd 5� 2 5� 7
4th 1∗ 4
5th 2 4
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but an-

swer appeared in all groups.
� Trend identified across two languages.
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Table 25: Common Incorrect Answers to Closed-Form Question Q17 Ranked by Fre-
quency of Occurrence

variable: x, 5.71% correct
Java Matlab Python

Value n Value n Value n

1st 12‡ 49 12‡ 59 12‡ 18
2nd 0 3 6∗ 4 14 3
3rd 6∗ 2 7 2 x + 2 3
4th 15 2 s 2 x + length(y) 3
variable: y, 5.92% correct

Java Matlab Python
Value n Value n Value n

1st spiderman‡ 47 spiderman‡ 54 spiderman‡ 23
2nd 9 2 n 3 y + “man”∗ 5
3rd man� 2 0 2 man� 2
4th spider 2 y + “man”∗ 2 y + 2 2

variable: s, 72.73% correct
Java Matlab Python

Value n Value n Value n

1st 12‡ 13 12‡ 20 12‡ 6
variable: n, 60.40% correct

Java Matlab Python
Value n Value n Value n

1st spiderman‡ 20 spiderman‡ 18 spiderman‡ 9
2nd 6 2 5 2
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but answer appeared in all

groups.
� Trend identified across two languages.
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Table 26: Common Incorrect Answers to Closed-Form Question Q23 Ranked by Fre-
quency of Occurrence

variable: array1, 59.64% correct
Java Matlab Python

Value n Value n Value n

1st [1,2,3,4,4]‡ 7 [1,2,3,4,4]‡ 4 [1,1,3,4,5] 5
2nd [0,2,3,4,5] 4 [1,2,3,4,9] 3 [1,2,3,4,4]‡ 3
3rd [1,2,4,4,5]‡ 4 [1,2,4,4,5]‡ 2 [1,2,4,4,5]‡ 2
4th [1,2,3,4,3] 2 [1,3,5,7,9] 2
5th [1,2,5,4,4] 2
variable: array2, 52.73% correct

Java Matlab Python
Value n Value n Value n

1st [9,14,5,6,8]∗ 8 [8,12,3,6,8] 7 [9,14,5,6,8]∗ 5
2nd [9,12,4,6,8] 2 [5,12,3,6,8] 4 [0,2,4,6,8] 2
3rd [9,13,4,6,8]� 2 [9,3,3,6,8] 3
4th [9,14,4,6,8] 2 [9,11,3,6,8] 3
5th [9,13,4,6,8]� 3
‡ Trend identified across all three languages.
∗ Trend identified across two languages, but answer appeared

in all groups.
� Trend identified across two languages.

Table 27: Common Incorrect Answers to Closed-Form Question Q26 Ranked by Fre-
quency of Occurrence

variable: returnvalue, 50.55% correct
Matlab Python

Value n Value n

1st 4 4 tryMe(′ississippi′,′ i′, 2)‡ 4
2nd 11 3 2‡ 2
3rd tryMe(′ississippi′,′ i′, 2)‡ 3
4th 2‡ 2
5th 22 2
6th 44 2
‡ Trend identified across all languages.
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APPENDIX C

PSEUDO-CODE GUIDE

This appendix contains the pseudo-code overview that was provided to participants

for the FCS1 Assessment studies described in Chapter 4.
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Pseudo-code Guide 

Syntax Examples 

Statements 

variable = expression 

Math Operators: +, -, *, /, % 

Relational Operators: ==, <, <=, >, >=, != 

Conditional Operators: AND, OR, NOT 

Booleans: True/False 

total = 0 

x = 4 * 3 

name = “John Smith” 

flag = True 

answer = 1 AND (1 OR 0) 

Print 

# print without new line 

PRINT value, value 

# print value with new line 

PRINTLN value 

                                Output 

PRINT “Hello”                Hello World 

PRINTLN “World” 

PRINTLN “Hello”,“World”     Hello World               

 

If Statement (Conditional) 

IF condition THEN 

    statement(s) 

    ………………… 

ELSE IF condition THEN 

    statement(s) 

ELSE 

    statement(s) 

ENDIF 

IF testScore >= 90 THEN 

    grade = „A‟ 

ELSE IF testScore >= 80 THEN 

    grade = „B‟ 

ELSE IF testScore >= 70 THEN 

    grade = „C‟ 

ELSE 

    grade = „F‟ 

ENDIF 

For Loop (Definite) 

# counter from start-value up to but not       

# including end-value 

FOR counter = start-value TO end-value BY # DO 

    statement(s) 

    ………………… 

ENDFOR 

FOR x = 1 to 5 BY 1 DO          Output 

    xSquared = x * x             1 1 

    PRINTLN x, xSquared          2 4 

ENDFOR                           3 9 

                                 4 16 

While Loop (Indefinite) 

WHILE condition DO 

    statement(s) 

    ………………… 

ENDWHILE 

count = 5                       Output 

WHILE count < 9 DO                5 

    PRINTLN count                 6 

    count = count + 1             7 

ENDWHILE                          8                                

Functions 

DEFINE function-name(parameter, parameter, …) 

    statement(s) 

    ………………… 

RETURN value 

ENDDEF 

DEFINE findMax(num1, num2) 

    IF num1 >= num2 THEN 

        maxNum = num1 

    ELSE 

        maxNum = num2 

    ENDIF 

RETURN maxNum 

ENDDEF 
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Pseudo-code Guide 

Classes and Objects 

CLASS class-name 

 

    #constructor used to initialize values 

    DEFINE initialize class-name() 

        variable = initial value 

    ENDDEF 

     

    DEFINE function-name(parameter, …) 

        statement(s) 

    ENDDEF 

ENDCLASS 

 

Creating Objects: 

object-name = new class-name 

Method calls: 

object-name.function-name() 

CLASS Car 

    DEFINE initialize Car() 

        wheels = 4 

        currentSpeed = 100 

    ENDDEF 

 

    DEFINE speedUp(newSpeed) 

        currentSpeed = newSpeed 

    ENDDEF 

ENDCLASS  

 

Creating Objects: 

car1 = new Car() 

 

Method calls: 

car1.speedUp(200) 

String and Arrays/Lists 

 

#length of string 

length(string_variable)  

 

#convert to uppercase/lowercase 

string_variable.upper()  

string_variable.lower() 

 

#find index of 1st instance of substring 

string_variable.find(substring) 

#return number of substrings in string 

string_variable.count(substring) 

 

# string splicing, exclusive 

# include indexes of string from start up to, 

# but not including, end 

string_variable.substring(start : end) 

 

list_variable = [item1, item2, item3, …] 

 

#length of array/list 

length(list_variable)  

 

# access the first element 

list_variable[0]  

 

#add/delete element at position index 

add(list_variable[index], value)  

del(list_variable[index]) 

 

 

 

name = “John Smith”             Output 

length(name)                      10 

 

 

name.upper()                  JOHN SMITH 

name.lower()                  john smith 

 

 

 

name.find(„Sm‟)                    5 

name.count(„h‟)                    2 

 

 

name.substring(2 : 6)           “hn S” 

 

 

sports = [„soccer‟,„football‟,„hockey‟] 

                                 

                                Output 

length(sports)                    3 

 

 

sports[0]                      „soccer‟ 

 

 

add(sports[3], „baseball‟) 

 

sports = [„soccer‟,„football‟,„hockey‟, 

„baseball‟] 

 

del(sports[2]) 

sports = [„soccer‟,„football‟, 

„baseball‟] 
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APPENDIX D

ITEM RESPONSE THEORY ANALYSIS

This appendix contains the item characteristic curves (ICC) and item information

curves (IIC) for the FCS1 Assessment questions, as discussed in Chapter 5.
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