
ARCHITECTURAL ENHANCEMENTS FOR EFFICIENT 

OPERAND TRANSPORT IN MULTIMEDIA SYSTEMS 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Hongkyu Kim 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Electrical and Computer Engineering 

 
 
 
 
 
 
 

Georgia Institute of Technology 
May, 2007 

 
 



ARCHITECTURAL ENHANCEMENTS FOR EFFICIENT 

OPERAND TRANSPORT IN MULTIMEDIA SYSTEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by: 
 
 
 

  

Dr. D. Scott Wills, Advisor 
School of Electrical and Computer 
Engineering 
Georgia Institute of Technology 

 Dr. Linda M. Wills, Advisor 
School of Electrical and Computer 
Engineering 
Georgia Institute of Technology 

   
Dr. Hsien-Hsin S. Lee  
School of Electrical and Computer 
Engineering 
Georgia Institute of Technology 

 Dr. Jeffrey A. Davis 
School of Electrical and Computer 
Engineering 
Georgia Institute of Technology 

   
Dr. Allen R. Tannenbaum  
School of Electrical and Computer 
Engineering 
Georgia Institute of Technology 

 Dr. Gabriel H. Loh  
College of Computing 
Georgia Institute of Technology 

   
  Date Approved: December 18, 2006 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my grandmother, forever on my mind 
 

We never had a chance to say goodbye to each other and 
I never really had a chance to thank her for all she had done for me. 

This is my tribute to her. Thank you, Grandma! 
  
 



 iv

ACKNOWLEDGEMENTS 

 

This dissertation could not be completed without the support of many people I 

had to express my gratitude. I would like to thank Dr. Scott Wills, my advisor, for his 

continuous encouragement and advice throughout my Ph.D. study. Dr. Linda Wills, my 

co-advisor, has also supervised and guided this research with her kind advice and 

attention to detail. It has been a great pleasure to have you, Scott and Linda, as my 

advisors during my stay at Georgia Institute of Technology. 

I thank my committee members, Dr. Hsien-Hsin Lee, Dr. Jeffrey Davis, Dr. Allen 

Tannenbaum, and Dr. Gabriel Loh for their time, efforts, and suggestions. Their 

constructive comments have improved the quality of this research. 

I wish to extend my thanks to all PICA and EASL research group members, both 

alumni and current, for their helps and friendship: Dr. Santithorn Bunchua, Dr. Peter 

Sassone, Dr. Soojung Ryu, Dr. Jongmyon Kim, Krit Athikulwongse,  Cory Hawkins, 

Senyo Apewokin, Nidhi Kejriwal, and Brian Valentine, in no particular order. 

I am indebted to my beloved parents, Moonam Kim and Youngsuk Kim, who 

have provided me with their dedicated love and sacrifices for my life. I also give my 

special thanks to my brother Hongjoon and his wife for their understanding. 

Finally, I cannot fail to thank my lovely wife, Minah Cho, for her love, friendship, 

patience, and understanding through the final moment of my study. Without her unselfish 

devotion and endless support, e.g. lunch boxes, this dissertation could not have been 

accomplished.   



 v

 TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES viii 

LIST OF FIGURES ix 

SUMMARY xi 

CHAPTER 1. INTRODUCTION 1 

1.1 Problem Statement 1 

1.2 Research Approach Summary 4 

1.3 Overview of Content 7 

CHAPTER 2. CHARACTERIZATION AND MODELING OF OPERAND USAGE 
AND TRANSPORT 9 

2.1 Introduction 9 

2.2 Methodology 10 

2.3 Empirical Analysis of Operand Usage and Transport 14 

2.3.1 Operand Locality Characteristics 14 

2.3.2 Evaluating Impact of Architectural Techniques on Operand Transport 18 

2.4 Conclusion 26 

CHAPTER 3. TRAFFIC-DRIVEN OPERAND BYPASS NETWORK 28 

3.1 Introduction 28 

3.2 Related Research 30 

3.2.1 Variations of Operand Bypass Networks 31 

3.2.2 Resource Partitioning: Clustered Architecture 33 

3.3 Methodology 36 

3.3.1 Technology Modeling and Transport Cost Prediction 36 



 vi

3.3.2 Design Customization Process for Operand Bypass Networks 40 

3.4 Analysis of Bypass Traffic in ILP Processors 46 

3.5 Experimental Results 50 

3.5.1 Operand Transport Cost Results 54 

3.5.2 Performance and Cost Results 58 

3.6 Conclusion 61 

CHAPTER 4. DYNAMIC INSTRUCTION CLUSTERING 63 

4.1 Introduction 63 

4.2 Related Research 65 

4.2.1 Solutions for Reducing Operand Transport Complexity 65 

4.2.2 Solutions for Multimedia Processing 68 

4.3 Methodology 70 

4.3.1 Basic Instruction Clustering Concept 70 

4.3.2 Extended Instruction Clustering for Loop-Oriented Applications 72 

4.4 Operand Traffic Control for ILP Processing 75 

4.4.1 Microarchitectural Support for the Instruction Clustering Mechanism 75 

4.4.2 Experimental Results 80 

4.5 Operand Traffic Control for DLP Processing 85 

4.5.1 Microarchitectural Support for Dynamic SIMDization 85 

4.5.2 Experimental Results 90 

4.6 Conclusion 96 

CHAPTER 5. CONCLUSION AND FUTURE WORK 99 

5.1 Summary of Results 100 

5.1.1 Characterization and Modeling of Operand Usage and Transport 100 

5.1.2 Traffic-driven Operand Bypass Network 101 



 vii

5.1.3 Dynamic Instruction Clustering Mechanism 102 

5.2 Future Research Directions 103 

REFERENCES 105 

 



 viii

LIST OF TABLES 

 

Table 1: MediaBench application programs. 12 

Table 2: Execution model details for operand transport analysis. 19 

Table 3: Comparison of dynamic clustered architectures. 36 

Table 4: Common parameters and GENESYS results. 50 

Table 5: Simulation model configurations. 51 

Table 6: Operand buffer time of the simulation models [cycle/operand]. 57 

Table 7: Simulation model configurations. 80 

Table 8: Simulation model configurations. 90 

Table 9: IMGLIB test programs. 91 
 



 ix

LIST OF FIGURES 

 

Figure 1: Delays for gate and wires versus feature size [62]. 2 

Figure 2: Simulation environment using Simplescalar toolset. 11 

Figure 3: Observed operand temporal locality characteristics: (a) degree of use, (b) 
operand age, and (c) operand lifetime distribution. 15 

Figure 4: Observed operand spatial locality characteristics: (a) degree of functionality and 
(b) transport pattern distribution. 17 

Figure 5: Execution model block diagrams: (a) baseline model and (b) baseline plus local 
storage and fully-connected bypass network. 20 

Figure 6: Impact of the local storage, bypass network, and lifetime detection on operand 
transport rates: (a) operand read transport rate, (b) operand write transport rate, and 
(c) bypassed read transport rate. 23 

Figure 7: New execution model equipped with selective direct data forwarding paths. 25 

Figure 8: Impact of the direct operand forwarding on operand transport rates: (a) operand 
read transport rate and (b) operand write transport rate. 26 

Figure 9: GENESYS system hierarchy. 37 

Figure 10: Workflow for system analysis. 38 

Figure 11: An operand transport model captures both the distance traveled and buffer 
time required. 39 

Figure 12: Selective point-to-point path assignment algorithm. 42 

Figure 13: Dependence detection mechanisms: (a) input dependences and (b) output 
dependences. 44 

Figure 14: Average number of produced operand per instruction which were broken 
down by transport media. 47 

Figure 15: Percentage distribution of dynamic operand transport patterns: (a) between 
functional unit types, and (b) between functional units. 49 

Figure 16: Estimated the execution gate and the longest bypass wire delays for the 
simulation models. 53 



 x

Figure 17: Operand transport distance of the simulation models: (a) Accumulative 
distribution of the transport distance and (b) average transport distance. 56 

Figure 18: Estimated perforamnce and cost for the simulation models: (a) Instruction 
throughput and (b) normalized wiring cost and efficiency. 59 

Figure 19: Basic instruction clustering example based on data flow graph of a basic block 
from MediaBench JPEG encode: (a) assembly source code and (b) dataflow graph 
and instruction clustering. 71 

Figure 20: Extended instruction clustering example based on the dataflow graph of an 
innermost loop from IMGLIB convolution code. 73 

Figure 21: Basic organization of clustering mechanism and its pipeline stages. 75 

Figure 22: The function of the cluster queue and cluster scheduling logic: (a) organization 
of the cluster queue and (b) instruction issue and mapping. 78 

Figure 23: Cluster execution unit example:  network ALUs. 79 

Figure 24: Dependence edge type distribution and dynamic instruction coverage: (a) 
average number of dependence and (b) instruction coverage. 82 

Figure 25: Percentage distribution of operand transport path. 83 

Figure 26: Instruction clustering performance result (IPC speedup over the baseline 
model). 84 

Figure 27: Block diagram of the dynamic SIMD architecture. 86 

Figure 28: Cluster scheduling example. 88 

Figure 29: Basic organization of single PE in SIMD array. 89 

Figure 30: Percentage of dynamic instructions covered by the instruction clustering 
mechanism for dynamic SIMDization. 92 

Figure 31: Performance results of ILP increase and SIMD extension over the baseline. 93 

Figure 32: Percentage distribution of dynamic operand transport: (a) clustered ILP and 
(b) dynamic SIMD architecture. 95 

Figure 33: Performance results of ILP increase and SIMD extension including 
consideration of the operand transport latency. 97 

 



 xi

SUMMARY 

 

Multimedia applications pose new challenges to computer architecture.  Their 

tremendous communication demands severely burden the interconnect between 

functional units, which has become a bottleneck in high performance architectures.  This 

dissertation addresses the critical challenge in multimedia processors: to efficiently 

transport operands among computational and storage components. It provides 

architectural enhancements that enable the high bandwidth, low latency communication 

demanded by multimedia applications. 

This research analyzes multimedia workloads to characterize the communication 

patterns that occur in the execution of standard multimedia benchmarks. This empirical 

analysis indicates that most operands exhibit strong locality, enabling several 

optimizations of transport mechanisms, particularly to operand transport networks, 

storage structures, and instruction steering algorithms. This empirical study shows that an 

eight-entry local buffer with approximate information on operand lifetime is sufficient to 

suppress 81% of operand writes. In addition, chaining selected pairs of FUs based on 

producer-consumer information allows 50% of reads to be accessed through the shortest 

path.  

These results guide the design and development of two efficient operand transport 

mechanisms: (i) a traffic-driven operand bypass network and (ii) a dynamic instruction 

clustering.  The traffic-driven operand bypass network is designed using a novel, 

systematic design customization process for wide-issue architectures. It is driven by a 

technology model-based evaluation methodology on different execution engines, 



 xii

resulting in a low cost, high performance bypass network targeted for multimedia 

applications. This technique places microarchitectural components exploiting the 

transport communication patterns, reorganizes each of the bypass paths based on the 

traffic rate, and maps inter-instruction communication on the local paths. The reduction 

in operand transport latency combined with a faster clock cycle achieves an instruction 

throughput gain of 2.9x over the broadcast bypass network at 45nm. In addition, the 

instruction throughput gain over a typical clustered architecture is 1.3x. 

Dynamic instruction clustering groups dependent instructions into clusters during 

instruction execution, detects the operand lifetime, performs intra- and inter-cluster 

operand transport pattern analysis, and maps the clustered instructions to an efficient 

cluster execution unit. Two cluster execution unit implementations are explored: network 

ALUs and a dynamically-scheduled SIMD PE array. In the network ALUs, intermediate 

values within the inner loops are propagated among ALUs without distribution through 

global bypass buses. The reduction in operand transport latency results in a 35% IPC 

speedup over a conventional ILP processor. The dynamically-scheduled SIMD PE array 

supports DLP processing of the innermost loops in image processing applications. Data-

parallel operations combined with localized operand communication produce an IPC 

speedup of 2.59x over a 16-way, four-clustered microarchitecture. 

 

 



 1

CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

Traditionally, computer builders have focused primarily on the design of 

individual functional units (FUs) and storage components, since these elements 

consumed the majority of implementation resources (typically transistors). With advances 

in integrated circuit technology over the past few decades, transistor feature size (i.e., the 

minimum dimension of a transistor) has been continuously scaled down, making 

transistors both smaller and faster. This technology trend supports higher clock rates and 

increased integration of computational elements. Over the same period, advances in on-

chip interconnect have not matched device improvements. Demands for faster clocks, 

larger chips, and increased transistor counts are contributing to an interconnect bottleneck 

in system performance [42]. 

Semiconductor industry projections (shown in Figure 1) from the International 

Technology Roadmap for Semiconductor (ITRS) [62] indicate a growing disparity 

between wire and gate delays as feature size shrinks; wire delay will contribute a growing 

fraction of signal delay and become a dominant component in processor cycle time. 

Interconnect issues are currently a dominant concern in the design of next-generation 

processors. 

ITRS trends suggest the need to focus less on “transistor-centric” design and more 

on “interconnect-centric” techniques [18]. A focus on new interconnect organization and 

technology is yielding new techniques for high-performance interconnects. Examples 



 2

include 3D integrations, optical or radio frequency interconnects, and polylithic 

integrations [42]. Though these techniques are promising, the architectural response to 

these changes in technology is limited by the required compatibility with decades-old 

instruction set architectures (ISAs) that emphasize sequentially specified operations and a 

restricted register file-based operand namespace. New software-compatible architectures 

are needed that introduce novel interconnect strategies to deliver increased system 

performance. 

R
el

at
iv

e 
de

la
y

Process technology node [nm]

1

10

100

0.1
250 180 130 90 65 45 42

 

Figure 1: Delays for gate and wires versus feature size [62]. 
 

Computer architecture should also address application needs since it links 

applications and technologies. As workload requirements change, computer architects 

must produce innovative systems that can deliver needed performance and cost 

effectiveness [1]. Multimedia workloads have become increasingly important in general-

purpose computing as well as embedded systems. It is predicted that media processing 



 3

will become the dominant force in computer architecture and microprocessor design in 

the near future [21]. 

Media-centric applications pose new challenges to processor architecture. 

Symbolic applications (e.g., office worksuites) that have dominated desktop and laptop 

computing are characterized by complex control flow, limited inherent parallelism, scalar 

processing of integer data types, and short data dependence distances. In contrast, 

multimedia-centric applications have several distinguishing characteristics: (i) real-time 

processing of continuous media data streams composed of large collections of small data 

elements, (ii) rich fine-grained parallelism (both instruction-level parallelism (ILP) and 

data-level parallelism (DLP)), (iii) high instruction reference locality in a small number 

of loops, and (iv) computationally intensive routines with highly predictable branches 

[17]. 

Multimedia processors exploit higher levels of application parallelism by 

employing large numbers of FUs and associated operand communication mechanisms. 

This exacerbates the interconnect problem in current processor architectures. Techniques 

to support parallel execution such as operand bypassing and instruction wakeup/select 

require a large number of non-local interconnects. Since they typically employ poorly 

scaling broadcast buses to distribute operands, these mechanisms are expensive to 

implement and often limit performance [50]. The critical challenge in multimedia 

processors is to efficiently transport operands among computational and storage 

components. 



 4

1.2 Research Approach Summary 

This dissertation presents approaches to reduce the latency associated with 

operand movement within a parallel datapath, especially for multimedia applications. 

This research shifts the microarchitectural focus from operand computation to operand 

transport, which addresses the delivery of operands to FUs that require them. It 

specifically concentrates on the operand transport network, which carries operands 

between hardware resources. 

The research approach exploits the unique properties of operand movement 

typically found in multimedia applications. In particular, these applications typically 

consist of the uniform processing of stream-oriented input data. In addition, execution is 

dominated by a small number of complex but deterministic data flow patterns within loop 

bodies. Loop kernels typically span tens (and occasionally hundreds) of instructions that 

are iterated over hundreds or thousands of times. 

This research develops and evaluates dynamic execution techniques that 

recognize and exploit regular operand distribution patterns in multimedia applications to 

reduce the latency, storage requirements, and interconnect demands of operand transport. 

Additionally, this research develops lower cost transport mechanisms than traditional 

bypass networks for multimedia applications by converting global communication needs 

to local transport, exposing opportunities for lower latency. Cost analysis is performed 

with respect to expected VLSI implementations by evaluating the mechanisms across a 

range of future technology points using technology modeling. 

 

  



 5

Contribution 1: Characterization and modeling of operand usage and transport 

To develop efficient operand transport mechanisms for existing ISAs, this 

research begins by studying the characteristics of operands in the execution of standard 

multimedia application benchmarks from MediaBench [39]. Recognition and 

understanding of operand usage and transport properties are important to efficiently 

control operand traffic. This research contribution strives to characterize the distributions 

and modes of operand movement between storage and FUs during the execution of 

application programs. Of particular interest are the temporal locality and spatial locality 

of operands. 

Architectural techniques that exploit these operand transport characteristics are 

implemented and their effectiveness in reducing operand traffic is evaluated. These 

techniques include transport network configuration, storage organization, lifetime 

detection, and instruction steering strategy. Results of this contribution [34] show that (i) 

25% of operand reads are accessed through the shortest paths with eight-entry local 

storage and bypass paths; (ii) 81% of operand writes to global storage are eliminated by 

applying dynamic register operand lifetime detection; and (iii) 50% of operands are read 

directly from local storage by adding dedicated bypass paths between heavily trafficked 

resources and by applying a novel instruction mapping scheme based on operand 

consumer information. 

Operand transport characteristics extracted from this empirical analysis are the 

key to developing novel communication mechanisms. Two architectural techniques are 

presented in the following contributions. 

 



 6

Contribution 2: Customizing operand bypass network 

This architectural contribution explores improved operand bypass networks. The 

bypass networks of ILP processors are targeted since their wiring demands are 

particularly high and the forwarding path delay of conventional broadcast-style buses is a 

limiting factor of processor performance. Technology modeling techniques for 

architectural evaluation are combined with cycle-accurate simulation to measure the 

operand transport cost in interconnect and buffering when representative platforms 

execute multimedia benchmark programs. Using technology modeling and operand 

characteristics from workload analysis, this technique provides a lower cost, higher 

performance bypass network, especially for multimedia applications. 

Our technique places microarchitectural components to exploit the transport 

communication patterns, reorganizes each of the bypass paths based on the traffic rate, 

and maps inter-instruction communication on the local paths [35]. The reduction in 

operand transport latency combined with a faster clock rate achieves an instruction 

throughput gain of 2.9x over the broadcast bypass network using 45 nm technology. The 

total length of the bypass wires can be kept within 24% that of the broadcast bypass 

network. In addition, the instruction throughput gain over a typical clustered architecture 

is 1.3x with only 50% of the total bypass wire length of the clustered architecture. 

Contribution 3: Dynamic instruction clustering 

This architectural contribution is a dynamic execution mechanism that extracts 

more parallelism and reduces operand transport latency based on the operand transport 

pattern analysis. It exploits the regular operand transport patterns and the plentiful 

parallelism of multimedia applications to achieve greater instruction throughput. This 



 7

dynamic execution technique (i) dynamically groups data-dependent instructions into 

clusters, (ii) detects operand lifetime, (iii) recognize of intra- and inter-cluster operand 

access patterns, and (iv) maps the clustered instructions to a specialized cluster execution 

unit. 

Two cluster execution unit implementations are presented and evaluated: network 

arithmetic and logic units (ALUs) and a dynamically scheduled single-instruction, 

multiple-data (SIMD) processing element (PE) array. In the network ALUs, intermediate 

values are transported among ALUs using local, dedicated paths rather than global 

bypass buses. The reduction in operand transport latency results in a 35% instruction per 

cycle (IPC) speedup over a conventional ILP processor [36]. The SIMD PE array 

supports data-parallel processing dynamically. It also exposes opportunities to lower 

operand transport latency by converting global communication into local transport and by 

removing unnecessary communication. The resulting latency reduction combined with 

increased parallelism of additional FUs produces an IPC speedup of 2.59x over a 16-way, 

four-clustered microarchitecture [37]. 

1.3 Overview of Content 

The architectural community is responding to the interconnect problem with a 

variety of approaches, including new microarchitectures and instruction sets, better 

compilation techniques, and improved run-time mechanisms. This research addresses the 

interconnect problem using current ISAs and compilers, minimizing the transition cost 

for new processor designs. A major contribution of this dissertation is the development of 

efficient operand transport mechanisms, especially focusing on multimedia applications.  

It includes a study of operand characteristics, an evaluation of bypass network 



 8

architectures, and the development of dynamic execution techniques to efficiently control 

the operand movement within a datapath.  

This dissertation is organized as follows. Chapter 2 characterizes the operand 

usage and transport properties for multimedia applications. Chapter 3 presents a traffic-

driven operand bypass network for dynamically scheduled architectures to reduce the 

wire delay latency. Chapter 4 introduces the concepts of a dynamic instruction clustering 

mechanism and operand transport pattern recognition technique. Two implementations 

are presented as examples of efficient cluster execution units: network ALUs for standard 

multimedia applications and a SIMD PE array targeting for image processing 

applications. Finally, Chapter 5 presents a summary of results and suggestions for future 

research. 



 9

CHAPTER 2 

CHARACTERIZATION AND MODELING OF OPERAND USAGE 

AND TRANSPORT 

 

2.1 Introduction   

Technology advances in the past decade have created opportunities for processors 

to support higher degree of parallelism inherent in the applications. With smaller and 

faster transistors, computer designers can integrate a large number of FUs and a high 

volume of storage to meet the required performance. This is particularly true for 

multimedia architectures since the multimedia applications are typically computation-

intensive, require high throughput, and contain abundant parallelism. However, 

increasing wire delay make achieving higher parallelism difficult. An efficient operand 

transport mechanism is a critical challenge in processor design, which is optimized for 

the required operand communication.  

Knowledge of data communication is the key to designing and making efficient 

use of communication structures. Toward this end, this research analyzes multimedia 

application workloads to understand the communication needs that occur in the execution 

of standard multimedia benchmarks. This involves modeling the usage and transport 

properties of the operands. The purpose of the analysis to characterize how operands 

move around, how often and where they are used, and what accounts for the majority of 

communication needs between FUs and storage during execution of application programs. 

Particularly, two aspects of operand locality properties are addresses: temporal locality 

and spatial locality. 



 10

Architectural techniques that exploit these operand transport characteristics are 

implemented and their effectiveness in reducing operand traffic is evaluated. These 

techniques include transport network configuration, storage organization, lifetime 

detection, and instruction steering strategy. Results that (i) 25% of operand reads are 

accessed through the shortest paths with eight-entry local storage and bypass paths; (ii) 

81% of operand writes to global storage are eliminated by applying dynamic register 

operand lifetime detection; and (iii) 50% of operands are read directly from local storage 

by adding dedicated bypass paths between heavily trafficked resources and by applying a 

novel instruction mapping scheme based on operand consumer information [34]. 

The rest of this chapter is organized as follows. Section 2.2 introduces the 

empirical study by defining terms and metrics. It also presents our research methodology 

to analyze the operand usage and transport properties. Data on the operand locality 

properties and results of an empirical study of the operand traffic appear in Section 2.3. 

Section 2.4 summarizes conclusions. 

2.2 Methodology 

This section describes the methodology used in the empirical study of operand 

usage and transport properties in multimedia applications. Figure 2 shows the simulation 

environment based on the Simplescalar simulator [4] with the PISA (Portable Instruction 

Set Architecture) – a MIPS-like instruction set. The sim-safe implementation of the 

Simplescalar is extended to handle operand-based operations instead of traditional 

register-based operations, i.e., a unique operand identifier is allocated to each new 

instance of a register name and a memory location. All data are measured from a trace-

driven simulation of a dynamic instruction stream. 



 11

The MediaBench [39] suite with default inputs is used as our set of benchmarks. 

Each benchmark program is simulated until completion, but the dynamic instruction 

window is limited to 100,000 instructions to complete the simulation in a reasonable 

amount of time. Table 1 briefly describes the applications in our test suite and lists the 

characteristics of the programs, including the total number of instructions executed in 

millions, the operand production rate (NPROD), and the operand consumption rate (NCONS) 

– the number of operands produced/consumed (respectively) per instruction.  

simplescalar simulator

Execution Platform

application code
(C source)

gcc (simplescalar)

PISA binary

Instructions with original 
register name

Register coloring

Trace with generic 
operand name

Functional Unit 
Configuration
Storage Unit 
Configuration

Interconnection 
Configuration

Configuration 
parameters

Operand 
Analyzer

Operand 
characteristics
(e.g. usage, 
transport)

Simulator inputs Simulator outputs

 

Figure 2: Simulation environment using Simplescalar toolset. 
 

In this research, an operand is defined as a value in a register or a memory 

location. An operand is created or produced when an instruction generates a new value or 

an instruction accesses a value in a memory location for the first time. In addition, an 

operand is consumed or used when an instruction accesses a value from ISA-visible 

registers or memory locations. The operand production and consumption depend on the 

given ISA and the distribution of the executed instructions. When a typical two-input, 

one-output RISC instruction set is assumed, the operand production rate is just below one 



 12

and the operand consumption rate is between one and two as shown in Table 1. These 

rates give a measure of the total amount of operand traffic in the execution model. 

Table 1: MediaBench application programs. 

Name Description 
Total 

executed 
inst. 

NPROD NCONS 

rawcaudio 6.6 1.22 0.67 

rawdaudio 

adaptive differential pulse code modulation of 
audio coding/decoding 5.4 1.18 0.63 

epic 52.7 1.49 0.85 

epicun 

an experimental image compression/ decompre- 
ssion utility based on a bi-orthogonal critically 
sampled dyadic wavelet decomposition and a 
combined run-length/Hoffman entropy coder 6.7 1.34 0.65 

g721decode 274.8 1.21 0.70 

g721encode 
reference implementations of the CCITT G.721 
voice compression/decompression 267.6 1.21 0.69 

gsmencode 234.7 1.42 0.87 

gsmdecode 

European GSM 06.10 provisional standard for 
full-rate speech transcoding (encoding/decodi- 
ng) 75.8 1.22 0.60 

cjpeg 15.5 1.33 0.64 

 djpeg 
a standardized compression/decompression 
method for full-color and gray-scale images 4.6 1.53 0.80 

mpeg2encode 1134.2 1.56 0.84 

mpeg2encode 
a standard for high-quality digital video 
transmission (encoding/decoding) 171.2 1.55 0.89  

 

To understand the nature of the operand traffic that takes place in a benchmark 

program, two kinds of characteristics are analyzed: (i) which instructions consume or use 

operands after they are produced (operand temporal locality property), and (ii) from/to 

which FU are operands moved in the execution model (operand spatial locality property). 

• Metrics for temporal locality properties 

Temporal locality metrics defined by Franklin and Sohi [26] are adopted, but they 

are applied to memory as well as register operands. The temporal locality of each 

operand is determined by three metrics: degree of use, operand lifetime and operand age. 



 13

The degree of use indicates the number of times an operand is consumed. The operand 

lifetime is the distance in number of instructions between an operand creation and its last 

consumption. It determines how long the operands should be held in some form of 

storage, such as local register, global register, or memory location. The operand age is the 

distance in number of instructions between an operand production and its first 

consumption, which determines the minimum amount of time that the operand has to be 

kept in storage. 

• Metrics for spatial locality properties 

The following metrics have been defined to determine the spatial locality of 

operands: degree of functionality, operand read transport rate (Trd), and operand write 

transport rate (Twr). The degree of functionality is the number of FU types that use an 

operand; the higher degree of functionality an operand has, the more it needs to be 

communicated among FUs. The operand read transport rate and operand write transport 

rate are defined as follows. 

∑
∑

∑
∑

==

trace

trace
wr

trace

trace
rd writeoperand

writedtransporte
T

readoperand

readdtransporte
T ,  (1)

Note that the operand read transport rates are evaluated on each interconnect where the 

operands pass through, while the operand write transport rates are measured on each 

storage component where the operands reside. 

While the temporal property metrics are determined only by the instruction 

sequences in the trace, the spatial property metrics depend not only on the instruction 

sequence, but also on the configurations of the execution model. The configurations may 

include the functionalities of each FU, the number of FUs, storage models, and transport 



 14

network models. In addition, architectural techniques, such as instruction mapping 

strategy and operand write scheme, also affect the transport rates. For example, when two 

levels of operand storage hierarchy are assumed (global buffers and local buffers attached 

to each FU), the most efficient place to read (write) an operand is the nearest buffer to the 

FU that consumes (produces) an operand – its own local buffer. An operand read 

transport occurs when an operand required by a FU is read from the local buffer of 

another FU or from global storage. A transported operand write occurs when the 

producer’s local buffer is full and an operand needs to be written back to the global 

storage. 

2.3 Empirical Analysis of Operand Usage and Transport 

Our empirical analysis studies operand usage and communication patterns in the 

execution of standard multimedia application programs (e.g., MediaBench). The 

observed characteristics are then exploited to devise architectural techniques that localize 

operand communication. After the execution model is built based on FUs for operand 

computation, storage elements for buffering, and a communication network for operand 

transport, we explore the impact of several architectural techniques on operand transport. 

Our empirical study reveals how much local storage and what kind of additional 

information is needed to improve operand transport. 

2.3.1 Operand Locality Characteristics   

Figure 3 shows data on the observed temporal locality characteristics for the 

MediaBench application programs. Each graph represents the percentage distribution of 

the degree of use (Figure 3(a)), the operand age (Figure 3(b)), and the operand lifetime 



 15

(Figure 3(c)) described in Section 2.2. The x-axis denotes the benchmark programs and 

the right most bar represents the average over all MediaBench programs. 

0%

20%

40%

60%

80%

100%
ra

w
da

ud
io

ra
w

ca
ud

io

ep
ic

un

ep
ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

dj
pe

g

cj
pe

g

m
pe

g2
de

co
de

m
pe

g2
en

co
de

av
er

ag
e

=5
4
3
2
1
0

 

0%

20%

40%

60%

80%

100%

ra
w

da
ud

io

ra
w

ca
ud

io

ep
ic

un

ep
ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

dj
pe

g

cj
pe

g

m
pe

g2
de

co
de

m
pe

g2
en

co
de

av
er

ag
e

0 1
2 3~5
6~10 11~40
41~100 >100

(a) (b) 

0%

20%

40%

60%

80%

100%

ra
w

da
ud

io

ra
w

ca
ud

io

ep
ic

un

ep
ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

dj
pe

g

cj
pe

g

m
pe

g2
de

co
de

m
pe

g2
en

co
de

av
er

ag
e

0 1
2 3~5
6~10 11~40
41~100 >100

 

(c)  

Figure 3: Observed operand temporal locality characteristics: (a) degree of use, (b) 
operand age, and (c) operand lifetime distribution. 

 

From Figure 3, we can observe that (i) operands tend to be used only a small 

number of times – on average 94.7% of operands are used at most three times, (ii) most 

operands are first consumed just after they are produced – 82.5% of operands are 

consumed within five dynamic instructions, and (iii) most operands have short lifetimes – 

75.8% of operands are dead within a dynamic instruction window of size ten. 



 16

Interestingly, although the lifetimes of most operands are very short, average lifetime is 

extremely long – 451 dynamic instructions, which means a very small number of 

operands, typically memory operands, are long-lived. In fact, 68.7% of long-lived 

operands defined as operands living longer than 100 dynamic instructions are classified 

as memory operands. 

The locality properties are evaluated in the space domain as well as in the time 

domain. Figure 4 depicts data on the observed spatial locality properties. Each bar in 

Figure 4(a) represents percentage distribution of the degree of functionality. The number 

in the index indicates the number of FU types that consume an operand. In this analysis 

five FU types are assumed – memory unit (Mem), branch unit (Branch), integer ALU 

(IALU), integer multiplier (IMUL), and floating-point unit (FALU). In the graph, N* 

denotes that the number of consumer FU types are N in which the producer type is 

included and N** denotes N FU types excluding the producer type. The inclusion of the 

producer FU type must be differentiated since each operand transport can be optimized 

based on the different strategies. For example, if an operand is consumed by the same FU 

type as the producer, both instructions can be mapped to the same resource, removing the 

communication. However, when it is used by different FU types, a transport from the 

producer to its consumer cannot be avoided. In this case, special care should be taken for 

the transport such as assigning both instructions on the nearest resources connected by a 

local, dedicated path. 

Looking at the data presented in Figure 4(a), a large number of operands in all 

benchmark programs are used by only one FU type. For example, on average, 52.3% of 



 17

operands are used by only the same FU type as the producer and 30.5% of operands are 

consumed by only one different FU type from the producer. 

0%

20%

40%

60%

80%

100%

ra
w

da
ud

io

ra
w

ca
ud

io

ep
ic

un

ep
ic

g7
21

de
co

de

g7
21

en
co

de

gs
m

de
co

de

gs
m

en
co

de

dj
pe

g

cj
pe

g

m
pe

g2
de

co
de

m
pe

g2
en

co
de

av
er

ag
e

0 1* 1** 2*
2** 3* 3** =4

 
(a) 

Branch to branch
1.48%

etc
2.80%

IALU to IALU
45.44%

FALU to FALU
8.77%

Mem to Mem
10.92%

IALU to Mem
9.57%

IALU to Branch
11.19%

Mem to IALU
7.16%

Branch to IALU
2.68%

 
(b) 

Figure 4: Observed operand spatial locality characteristics: (a) degree of 
functionality and (b) transport pattern distribution.  

 

Figure 4(b) depicts percentage distribution of operand transport between FUs. The 

data represent the average distribution over all MediaBench programs. The result in 



 18

Figure 4(b) shows that the transport pattern is not evenly distributed spatially – certain 

paths are more heavily trafficked than others. For example, about 45% of operands are 

communicated between integer ALUs since a significant amount of integer ALU 

operations and data dependences between integer ALU instructions are found in the 

MediaBench program sequences. Note that a considerable amount of operand traffic 

occurs from integer ALU to branch unit caused by predicate value manipulations; and 

between integer ALU and memory unit caused by memory reference and spilling. 

We can infer from the observations in Figure 3 and Figure 4 that most operands 

exhibit high degrees of temporal locality and spatial locality. Based on these properties, 

the complexity of operand transport can be reduced by shortening the transport distance. 

The key strategies are (i) to hold instruction’s result in local storage attached to FUs, (ii) 

to directly forward them to their consumers without broadcasting or passing through the 

global storage, and (iii) to allocate the consumer instructions to a FU nearest to the 

producer. The next section explores and evaluates the architectural techniques that 

optimize operand transport in detail. 

2.3.2 Evaluating Impact of Architectural Techniques on Operand Transport  

The operand temporal locality properties imply that the local storage in the 

execution unit, which buffers the results of the last instructions, reduces the operand 

traffic. Operand reads can be reduced from the short operand age property and operand 

writes can be suppressed given the short operand lifetime property. Distributed register 

files [5][11] or reservation stations in modern processors are the examples of local 

storage. The bypass network [9], originally introduced to eliminate pipeline data hazards, 

also helps operand communication by forwarding the results to their targets, bypassing 



 19

the global storage when multiple FUs are assumed. Though infinite local storage is ideal, 

it is too expensive and requires long access latency. In this analysis, we attempt to 

quantitatively evaluate the impact of the size of local storage on the operand transport 

rates and to determine what kind of additional structure and information are needed. 

To measure the impact of each architectural technique, instruction execution 

models are built. Details of the execution model are listed in Table 2. A two-level storage 

hierarchy is assumed: a global storage and local storage attached to each FU. The local 

storage holds input and output operands of the recently executed instructions. Simulations 

are run with variable sized local buffers. The global storage serves as infinitely sized 

repository where all operands can reside. 

Table 2: Execution model details for operand transport analysis. 
Pipeline stage Description 

Front-end Assume perfect branch prediction 

Dispatch Round-robin FU scheduling for multiple, homogeneous FUs 

Read Operand 

if (the operand is in the consumer’s local buffer) { 
 read the consumer’s local buffer; 
} else if (the operand is in the other local buffer) { 
 read the other local buffer; 
 copy the operand to the consumer’s local buffer; 
 read the consumer’s local buffer; 
} else { 
 read the global buffer; 
 copy the operand to the consumer’s local buffer; 
 read the consumer’s local buffer; 
} 

Execution 
FU Configuration:  
1 memory unit, 1 branch unit, 4 integer ALUs,  
2 integer multipliers, 2 floating point units 

Write back 

if (local buffer is not full) { 
write the result in the producer’s local buffer; 

} else { 
 write back the oldest entry to the global buffer; 
 // replacement algorithm = LRU 

 write the result in the producer’s local buffer; 
}  

 



 20

Figure 5 depicts block diagrams of the execution models. As shown in Figure 

5(a), we assume a baseline model in which all operands are only communicated through 

the global storage, for comparison. The operand read and operand write transport rates of 

the baseline model are set to one as a basis. Recall that the read transport rate is measured 

on the paths between FUs and the global storage while the write transport rate is 

calculated only in the global storage. Figure 5(b) shows an execution model equipped 

with local storage and a fully-connected bypass network that links all resources. In this 

model, the operand read transport rate is measured at two points: (i) a path between the 

global storage and the bypass network (Trd_global), and (ii) a path between the bypass 

network and the local storage (Trd_bypass).  

Global Storage

FU

Twr
(100%)

Trd_global
(100%)

FU

FU

FU

FU

FU

FU

FU

FU

FU

Global Storage

Fully-Connected Bypass Network

Twr

Trd_global

Trd_bypass

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

FU

Local 
Storage

(a) (b) 

Figure 5: Execution model block diagrams: (a) baseline model and (b) baseline plus 
local storage and fully-connected bypass network. 

 

In the execution models, the operands are read from the nearest buffer, i.e., it 

attempts to access the operand first from its own local storage, then from one of other 

local storage buffers through the bypass network, and finally from the global storage. 



 21

Similarly, an operand is written to producer’s local storage buffer by default. If the local 

storage is full, the oldest entry in the storage is written back to the global storage, 

incurring an operand write transport. The transportation cost is the highest when the 

global storage is accessed since it is the farthest location away from the producer and 

contention for its limited multiple read/write ports may cause long access times. 

An important consideration in reducing operand communication caused by 

operand writes is operand lifetime detection. Even with the local buffers and the bypass 

network, the write to the global storage cannot be avoided because of the limited size of 

the local storage buffers. After the local buffers are filled up, an instruction that produces 

a value always has to spill out a value from the local to the global storage. However, most 

of the operand writes are useless since they are unnecessarily written after the operand’s 

lifetime is expired. Thus, if the lifetime of each operand is known, the write transport rate 

can be reduced significantly.  

Figure 6(a) and Figure 6(b) present the operand read and write transport rates for 

the execution model shown in Figure 5(b). Figure 6(c) depicts a bypassed transport rate 

that is calculated by the operand read from the bypass network over the total transported 

read. The data represent the average over the MediaBench application programs. Total 

read transport rate, i.e., the summation of Trd_global and Trd_bypass, is depicted in Figure 6(a). 

The x-axis denotes the number of local buffer entries assigned to each FU and y-axis 

denotes the percentage of the transported operands. Note the offset of the y-axis in Figure 

6(a). 

As shown in Figure 6(a), the read transport rate decreases as the size of the local 

storage increases since the required operands are more likely to be found in the local 



 22

storage. For example, the average read transport rate with an eight-entry local buffer is 

about 80% of the baseline.  However, the read transport rates are saturated even if the 

size of local storage goes to infinite – 64.5% of the baseline. Figure 6(c) illustrates that 

with a small amount of local storage, a significant number of operands are read from 

global storage because of the limited local buffer size. However, as the size of local 

storage increases, a large number of operands are accessed through the bypass network 

instead of from global storage. For example, with a 64-entry local buffer, less than 5% of 

operands are read from global storage. The read transport rates are dominated by the 

bypassed transport when a sufficient number of local storage buffers is provided. 

Though the local storage and the bypass network can reduce the operand read 

traffic, the traffic caused by the operand writes remains high even though the size of the 

local storage increases. Even with a 256-entry local buffer, over 99% of operands are 

written back to the global storage. This indicates that local storage alone cannot reduce 

the write traffic. If the lifetime of each operand is known at compile-time, the write 

transport rate can be reduced drastically as shown in Figure 6(b). The compiler marks the 

last instance of each operand. Operand write is suppressed if the operand is kept only in 

the local buffer – not written back to the global storage – after the marked instruction is 

issued. In this case, write demands are decreased suddenly with small local buffers. For 

example, with a 256-entry local buffer, less than 1% of operands need to be written. This 

corresponds with the short lifetime property discussed in Section 2.3.1. The results in 

Figure 6(b) demonstrate that lifetime information is critical for reducing the write 

transport rate. 

 



 23

60%

70%

80%

90%

100%

0 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

number of local storage entries per FU

T r
d=

T r
d_

gl
ob

al
+T

rd
_b

yp
as

s

0%

20%

40%

60%

80%

100%

0 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

number of local storage entries per FU

T w
r

(a) (b) 

0%

20%

40%

60%

80%

100%

0 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

number of local storage entries per FU

Tr
d_

by
pa

ss
/(T

rd
_g

lo
ba

l +
Tr

d_
by

pa
ss

)

local storage only

local storage with dynamic
lifetime detection
local storage with static
lifetime detection

 

 

(c)  

Figure 6: Impact of the local storage, bypass network, and lifetime detection on 
operand transport rates: (a) operand read transport rate, (b) operand write 
transport rate, and (c) bypassed read transport rate. 

 

If compile-time lifetime detection is not available, the lifetime can be estimated at 

run-time. One way to approximate the operand lifetime at run-time is to detect a new 

instance for registers and memory locations. It is easy to find a new register instance 

since an instruction refers to registers by their names. Register renaming techniques in 

modern dynamically scheduled processors, originally developed to eliminate write-after-

write hazards, can be used for run-time lifetime detection of register-based operands.  



 24

However, it is hard to detect a new memory instance since memory addresses are 

computed at run-time and there are too many locations for memory operands.  

An operand write is suppressed if an instruction that creates a new instance for the 

same register is issued before the operand is written-back to global storage. Even though 

this technique has its limitations – it can be only applied to the register operand and the 

new instance could occur far after the operand’s real lifetime - it works well, as shown in 

Figure 6(b). For example, with only eight-entry buffers per FU, about 80% of operand 

writes can be removed. The gap between the ideal compile-time lifetime detection and 

the run-time register lifetime detection arises mainly from the memory operands. 

Fortunately, our preliminary analysis results in Section 2.3.1 show that the lifetimes of 

most memory operands are extremely long and detecting their lifetimes does not 

significantly reduce the total write transport rate. The lifetime detection techniques also 

slightly reduce the read transport rates, since more free entries are available after local 

buffer entries are released on lifetime expiration. 

The results in Figure 6(a) indicate that the read transport cannot be reduced only 

by attaching local storage and by linking them through the bypass network. Even with an 

infinite amount of local storage, we can attain at most 35.5% reduction in operand reads. 

Most read transports are caused by data movement between FUs. This type of transport 

can be reduced by exploiting the common operand transport patterns and by directly 

forwarding the values from the producer to the consumer based on the extracted patterns. 

Our preliminary results on the transport patterns shown in Figure 4(b) suggest that 

the direct forwarding paths between integer ALUs; an integer ALU and a memory unit; 

an integer ALU and a branch unit; and floating-point units would be effective. Figure 7 



 25

depicts a new execution model chaining pairs of FUs together based on the common 

transport patterns. In this model, each FU writes the result to the local buffer of the 

chained FUs instead of its own local buffer. It is assumed that the consumer of each 

operand is known at compile-time and instructions are issued to the designated FUs based 

on the extracted consumer information.  

Global Storage

Fully-Connected Bypass Network

IALU

Local 
Storage

Local 
Storage

IALU

IALU

Local 
Storage

Local 
Storage

Branch

IALU

Local 
Storage

Local 
Storage

Mem

IMUL

Local 
Storage

Local 
Storage

IMUL

Twr

Trd_global

Trd_bypass

FALU

Local 
Storage

Local 
Storage

FALU

 

Figure 7: New execution model equipped with selective direct data forwarding 
paths. 

 

Figure 8 presents the effect of the chained FUs connected by direct operand 

forwarding paths on the operand read and write transport. Compared to the model in 

Figure 5(b), the new model replaces a significant amount of bypass network traffic with 

accesses of the nearest local buffer, as shown in Figure 8(a). For example, with an eight-

entry local storage, direct forwarding paths converts 28.5% of the read transport to the 

nearest local buffer accesses. As expected, the execution model in Figure 7 shows a 

slightly less write transport rate than the model without dedicated paths when the number 



 26

of local storage is small. This is because the results are directly moved to the target 

instead of residing in the producer’s local buffer.   

40%

50%

60%

70%

80%

90%

100%

0 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K

number of local storage entries per FU

T r
d=

(T
r d

_g
lo

ba
l+

T r
d_

by
pa

ss
)

 

0%

20%

40%

60%

80%

100%

0 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K

number of local storage entries per FU

T w
r

local storage with static 
lifetime detection

local storage with static
lifetime detection and
direct forwarding

(a) (b) 

Figure 8: Impact of the direct operand forwarding on operand transport rates: (a) 
operand read transport rate and (b) operand write transport rate. 

 

2.4 Conclusion 

Recognizing and understanding the nature of operand communication is valuable 

in the development of alternate low cost, low latency operand transport mechanisms that 

efficiently control the operand traffic. This research analyzes the operand usage and 

transport characteristics during execution of multimedia application programs, focusing 

on the operand temporal and spatial localities. 

Our empirical analysis shows that most operands exhibit a high degree of locality; 

95% of operands are used at most three times, 83% of operands are consumed within five 

dynamic instructions, 76% of operands are dead within a ten dynamic instruction window, 

and 83% of operands are used by only one FU type. 



 27

Architectural techniques that exploit these locality properties are implemented 

and their effectiveness in reducing operand transport is evaluated. Our results show that 

(i) 25% of operands are read through the nearest local path with eight-entry local storage 

and a fully-connected bypass network; (ii) 81% of operand writes to global storage are 

eliminated by applying dynamic register operand lifetime detection; and (iii) 50% of 

operands are read directly from local storage by adding dedicated bypass paths between 

heavily trafficked resources and by applying a novel instruction mapping scheme based 

on operand consumer information. These results are used to devise novel communication 

mechanisms in the following chapters.  

 



 28

CHAPTER 3 

TRAFFIC-DRIVEN OPERAND BYPASS NETWORK 

 

3.1 Introduction 

As computation-intensive multimedia workloads have become increasingly 

important in general-purpose computing, modern processors have evolved to deliver 

needed performance. The continuing trend in processor architecture design is to integrate 

more parallel computing resources and to increase clock frequency with the goal of 

achieving higher throughput. This trend is fueled by the ever increasing availability of 

fast transistor devices enabled by the growth in semiconductor technologies. However, as 

semiconductor feature size decreases, interconnect has become the limiting resource in 

processor implementations [42] and interconnect delay dominates processor cycle time. 

The operand bypass networks of ILP processors are a critical example. They employ 

poorly scaling broadcast buses to distribute operands and are particularly demanding of 

wiring resources. Forwarding path delays are increasing relative to execution unit delays, 

resulting in a negative impact on performance by reducing the clock speed or by 

introducing extra latencies [60]. 

This chapter explores a lower cost, more efficient operand bypass network than 

traditional bypass networks. It exploits common operand communication patterns in 

multimedia applications to reduce the latency, storage requirements, and interconnect 

demand of operand transport. 

Our exploration is strongly tied to the anticipated VLSI implementations, 

necessitating an approach based on accurate technology modeling. Toward this, we 



 29

define a model of data transport and buffering based on technology models and we 

provide a workflow for predicting the transport cost, based on the operand movement and 

storage demands. Our approach combines technology modeling techniques for 

architectural evaluation with cycle accurate simulation to explore a range of 

microarchitectural configurations and to quantitatively predict their performance. The 

communication patterns in the execution of the application programs are also analyzed. 

Combining the technology-based modeling methodology and the operand characteristics 

from the workload analysis, we present and evaluate an improved operand bypass 

network. This is targeted specifically for multimedia applications, which have 

tremendous operand communication demands associated with processing high volume 

data streams. 

Our approach consists of three phases. It places microarchitectural components to 

exploit the transport communication patterns between them (traffic-based FU placement), 

configures each bypass path based on the traffic rate under a given wiring budget 

(selective point-to-point bypassing), and maps inter-instruction communication on the 

local paths (geometry-aware instruction steering) [35]. Our technique improves the 

instruction throughput performance by increasing the clock rate and by reducing global 

communication. It also reduces the demand for interconnect resources. This technique 

produces a 26% instruction throughput gain over a conventional clustered architecture at 

45nm technology while reducing 50% of the total bypass wire length. 

The rest of this chapter is organized as follows. Section 3.2 overviews prior work. 

Section 3.3 provides a research methodology for predicting the transport cost using 

technology and architecture models. It also describes the approach to implement an 



 30

improved bypass network in detail. The empirical analysis of forwarded operand traffic 

and transport patterns is presented in Section 3.4. Details of the experimental setup and 

results are given in Section 3.5. Section 3.6 summarizes conclusions. 

3.2 Related Research  

An operand transport network is defined as a set of mechanisms that link the 

operands and operations to enact the computation specified by a program. These 

mechanisms include physical interconnection as well as an operation-operand matching 

system that coordinates values to a coherent computation [69]. An execution unit and 

storage form the simplest transport network, e.g., an arithmetic logic unit (ALU) and a 

register file. Though it is simple and straightforward (values are only communicated 

through a register file), it cannot avoid hazard-induced stalls in pipelined processors. 

Bypassing, first introduced in the IBM Stretch [9], is a simple, powerful, and 

widely used method for eliminating certain data hazards in pipelined processors. With 

bypassing, additional datapaths and control logics are implemented so that an operation’s 

result is available for subsequent operations before it is written to an architectural register. 

The number of bypass paths in a scalar processor increases linearly with the number of 

cycles between execution and the last stage of register file write-back. 

The introduction of multiple ALUs creates an additional demand on the bypass 

network. As pointed out in [2], if IW is the issue width (or the number of ALUs), and if 

there are S pipeline stages after the first result producing stage, a fully-bypassed design 

would require (2xIW2xS) bypass paths assuming two-input ALUs. The number of bypass 

paths grows quadratically with the issue width. 



 31

According to the Sankaralingam’s model [57], a fully-connected bypass network 

is classified as a broadcast (the output of an ALU is sent to all ALUs), single-hop (an 

operand is sent directly from the output of an ALU to the input of another ALU) network.  

A broadcast, single-hop bypass network allows any ALU to read its inputs from any of 

the subsequent pipeline stages. However, as architectures get wider, the complexity of the 

bypass network, such as the number of bypass paths and the distance of the ALU-register 

execution core, also increases. This demands a significant amount of wiring resources 

and area. In addition, logic paths including bypassed data put pressure on the cycle time 

around an ALU because of the wire delay, multi-driver buses, and wide input 

multiplexers. For instance, the Alpha 21064 has 45 separate bypass paths [41]. The 

Itanium processor spends half of the execution cycle on ALU computation and half on 

bypassing [25]. This section summarizes architectural techniques developed to reduce the 

complexity of the operand bypass networks. 

3.2.1 Variations of Operand Bypass Networks 

Several techniques have been proposed to reduce the forwarding delay of the 

operand bypass networks. Many researchers have studied incomplete bypass networks 

that remove selective bypass paths. Ahuja et al. [2] show that certain bypass paths are 

rarely used and these buses can be removed without a great performance loss. They have 

attempted to exploit the bypass patterns in in-order pipelines of a scalar processor. Brown 

and Patt [10] have studied the effect of limited bypasses on pipelined functional units and 

multi-cycle register files. Their results demonstrate that one level of bypass paths in a 

multi-level bypass network can be removed with little loss in IPC (less than 3% 

compared to a fully-connected bypass network). 



 32

Other studies have focused on the bypass networks of VLIW processors. Cohn et al. 

[16] have studied a partial bypass configuration of the iWarp VLIW processor, 

concluding that the partial bypass helps reduce the cost with negligible reduction in 

performance. On the VIPER VLIW microprocessor [28], each FU has bypass paths to 

only itself and its closest FU to reduce the bypass network complexity. Fan et al. [23] 

have explored the utilizations of each bypass path. They have synthesized an application-

specific VLIW processor that has a customized incomplete bypass network. However, 

these approaches require extensive compiler support for instruction scheduling and FU 

assignment. 

An alternative technique is to add prioritized bypass paths between highly trafficked 

datapaths, based on the communication patterns of the application. Buss has proposed a 

pipelined clustered VLIW architecture with additional bypass interconnections between 

two datapaths in distinct clusters to reduce the number of copy operations using global 

copy buses [12]. Sassone and Wills [59] have studied transient operands, which are 

produced values that have only one consumer, and efficiently executes small groups 

instructions that are linked by transient operands (called strands). In this scheme, the 

execution targets are the normal ALUs with a self-bypassing mode using a closed-loop 

bypass. Dynamically detected strands are steered to the target, resulting in fast 

forwarding. These approaches expend additional wiring overhead for the prioritized paths. 

Our approach is in some ways similar to the incomplete bypassing approach in that 

it attempts to reduce the interconnect burden based on common operand transport 

patterns. However, there are important differences. While the incomplete network for 

clustered VLIW architectures uses a compiler to pre-schedule instructions, our approach 



 33

applies dynamic scheduling to maintain binary compatibility. More importantly, we build 

a bypass network by placing communicating resources as near as possible and by 

reorganizing each of the bypass paths based on the traffic rate to efficiently utilize 

interconnect resources. On the contrary, others remove entire less trafficked paths 

maintaining the broadcasting nature of bypass wires. 

3.2.2 Resource Partitioning: Clustered Architecture 

Clustering, partitioning some of the critical components into simpler structures, is 

becoming widely recognized as an effective method for overcoming scaling and 

complexity problems. This technique is implemented commercially on the Alpha 21264 

processor, which has two identical pipelines with distinct register files, bypass networks, 

and issue logic [33]. In the clustered microarchitecture, each cluster is formed by a set of 

FUs, a register file, and an intra-cluster data transfer network. The clusters are connected 

by an inter-cluster data transfer network. Intra-cluster signals are still propagated through 

fast and efficient interconnects while inter-cluster communication uses global wires that 

are long and slow. Therefore, a key issue for reducing operand transport complexity in 

the clustered mechanisms is to assign operations to the clusters, called instruction 

steering, to minimize the inter-cluster communication. 

The assignment can be carried out statically by the compiler or assembly 

programmer (static clustered architecture) or it can be accomplished dynamically during 

run-time (dynamic clustered architecture). There have been many academic endeavors to 

propose and evaluate the static clustered architectures [24][63][68]. Sohi proposes the 

Multiscalar architecture [63] in which each cluster independently fetches the instructions 

assigned to it. The instruction distribution is based on information in the binary. The 



 34

Multicluster [24] architecture is similar to the Multiscalar architecture, except that the 

instruction distribution is based on the architectural registers named by each instruction 

and it shares a common instruction fetch stream. In general, these static approaches share 

a common need for good static scheduling by a smart compiler. 

Dynamic clustering approaches initially experimented with a decoupled or 

heterogeneous cluster implementation. Many commercial processors, such as MIPS 

R10000 [29], SUN UltraSparc [30], and AMD K5 [65], have been developed using the 

decoupling structure. They comprise a common fetch unit and two subsystems: one set of 

units and registers for addressing and integer computation and the other set for floating-

point computation. The drawback of the heterogeneous clustering is that when an integer 

program or integer-intensive portion of a floating-point program is executing, the 

floating-point resources are idle. Many dynamic instruction steering mechanisms have 

been investigated and attempts have been made to optimize the trade-off between inter-

cluster communication penalty and workload balance [13][51].  

Over the past few years, more general approaches that distribute the same resources 

to each cluster have been proposed. These uniform cluster configurations can eliminate 

the instruction steering restriction resulting from the structural hazards. In recent 

literature, the prevailing philosophy is to assign instructions to a cluster based on data 

dependence and workload balance [7][11][32][38][50]. The precise methodology varies 

according to the underlying architecture and execution cluster characteristics.  

Instruction-level distributed processing (ILDP) [38] defines a new accumulator-

based instruction set exposing dependences and local value communication patterns to 

the microarchitecture. It uses this information to steer chains of dependent instructions to 



 35

the same processing elements. Though new compilers or new ISAs can recognize the 

dependences and allocate a dependence chain to the same execution cluster, binary 

compatibility must be dealt with through virtual machine software or on-the-fly hardware 

translation.  

Palacharla’s dependence-based clustered architecture [50] and Kemp’s parallel 

execution windows (PEWs) [32] replace the centralized issue window with smaller, 

distributed windows. The key idea is to exploit the natural dependences among 

instructions since dependent instructions cannot be executed in parallel. Depending on 

the availability of an instruction’s operands, the instruction is steered to a new first-in 

first-out buffer (FIFO) when all the required operands are already residing in the resister 

file or in the FIFO where the source instruction(s) is residing. By allocating dependent 

instructions to the same windows dynamically during the dispatch (or issue) stage, 

communication localities are exploited, thereby minimizing global communication. 

Bunchua and Wills [11] have proposed a fully distributed register file where 

broadcast transport is replaced by an explicit on-demand local bypass at the cost of longer 

inter-ALU latency. In general, the dispatch (or issue) time instruction assignment does 

not scale well since dependence analysis is an inherently serial process. To eliminate 

critical latency from the front end of the pipeline, the clustered trace cache processor 

(CTCP) [7] assigns instructions at the commit (retire) stage by physically reordering 

instructions within a trace cache line so that they are issued directly to the desired clusters. 

Table 3 summarizes important qualitative and quantitative characteristics of the dynamic 

clustered architectures described in this section. Note that Alpha 21264 decouples integer 

and floating units, and integer units are further separated into two uniform clusters. 



 36

Though clustering is an effective technique for reducing the impact of wire delays 

and the complexity of microarchitecture, it runs into the inter-cluster communication 

latency and wiring resource overhead problems as semiconductor feature sizes decrease. 

Our research approach achieves a similar effect as clustering, but reduces the wiring 

overhead while sustaining the performance at deep sub-micron technologies. 

Table 3: Comparison of dynamic clustered architectures. 

Architecture Cluster 
Configuration 

Number of 
Clusters 

Instruction 
Allocation Stage 

Inter-cluster 
Communication 

MIPS R10000 Heterogeneous 2 Dispatch Register move 
instruction 

Sun UltraSparc Heterogeneous 2 Dispatch Register move 
instruction 

Alpha 21264 Heterogeneous* 3 Execution Dedicated path to 
register file 

CTCP Uniform 4 Retire Point-to-point 
multi hop 

Palacharla’s 
model Uniform 2 Dispatch/Execution Bus-based 

ILDP Uniform 8 Dispatch Bus-based 

PEWs Uniform 8 Dispatch Point-to-point 
multi hop 

* Two uniform integer cluster and a floating-point cluster 
  

3.3 Methodology 

This section describes a methodology for predicting the transport cost using 

technology and architectural models. In addition, architectural techniques are presented, 

which exploit the operand distribution patterns to reduce the transport latency, storage 

requirements, and interconnect demands of the operand bypass networks.  

3.3.1 Technology Modeling and Transport Cost Prediction 

The cost and performance of a processing system is a product of architecture and 

implementation technology. While the Semiconductor Industry Association’s 



 37

International Technology Roadmap for Semiconductors [62] provides detailed 

expectations for future CMOS technology, feature-based scaling of an existing design is 

often inaccurate as detailed constraints within the technology are taken into account. The 

Generic System Simulator (GENESYS) is an analytical modeling tool developed by the 

gigascale integration group at Georgia Tech [22] (Figure 9). GENESYS integrates a 

hierarchical set of models that captures key limits (fundamental, material, device, circuit, 

and system), introduced in [43]. It accepts early design parameters from an architectural 

block and combines model results from across this hierarchy to predict parameters, such 

as area, cycle time, wire delay, dynamic energy, and static power for a specified 

technology. 

System Architecture
On-chip Cache, IPC

Package Technology
Single-Chip Module

Multilevel Interconnects
Number of Wiring Levels

Circuit Configurations
Static CMOS

Device Structures
Surface-Channel MOSFET

Material Properties
Si, Poly, Al, Cu, Oxide, Polymide

Fundamental Constraints

GENESYS
Models

Outputs
Power,

Operating
Frequency,

Size,
Energy,

Interconnect
Architecture,
Throughput

 

Figure 9: GENESYS system hierarchy. 
 

GENESYS is less accurate than circuit simulators, such as HSPICE, where design 

variations that affect performance and efficiency are captured (e.g., circuit design style, 

clocking strategies, and layout techniques). However, GENESYS requires a far more 

flexible analysis tool, requiring less developed design specifications. In this research, the 



 38

primary outputs are module area, gate delay, and interconnect delay predictions based on 

architectural configurations. To access the accuracy of these predictions, GENESYS has 

been used to predict similar qualities of commercial microprocessors for which actual 

implementation details are known [15]. 

Figure 10 shows the workflow for system analysis, combining application 

simulation and technology modeling to predict interconnect and buffering demand. 

Architectural parameters from the architectural configuration file are combined with FU 

and storage models in the configuration builder to generate a hierarchical input file for 

GENESYS. A FU is defined by a gate count, gate depth, Rent’s parameters, and bus 

connections. GENESYS estimates unit speed, area, and transfer latency. It also assembles 

the units in a user-defined floorplan. The delay builder computes expected delays for 

operand transport and supplies them to a modified version of Simplescalar. 

Model 
Library

Architecture 
Configuration

Application 
Programs

Configuration 
Builder

Simplescalar
(modified)

GENESYS Delay Builder Cost 
Analysis

Performance, area, 
and transport efficiency  

Figure 10: Workflow for system analysis. 
 



 39

The application suite is then simulated and execution statistics are passed to the cost 

analysis module, where interconnect and storage cost model are generated based on the 

physical distance that operands must travel and the buffer time required before operands 

are used. As shown in Figure 11, the overall cost of transport is determined by two 

parameters: transport distance (DOP) and buffer time (TBUF), defined below. 

1 1{max( , , , ) min( , , , )}OP P C Cn P C Cn
operand

P

Ci

D P P P P P P

where P is the physical position of operand producer and
P is the physical position of operand consumers

= −∑ K K

 (2)

( )BUF issue written
operand

issue

written

T T T

where T time when the instruction is issued and
T time when the operand is written to a reservation station

= −

=
=

∑
 (3)

 

Using results of GENESYS and Simplescalar, estimates of resources required for 

operand transport and storage are predicted. Once a model is constructed, parameters of 

the execution configuration are adjusted to improve the execution performance, cost 

and/or efficiency. The cost analysis module provides the feedback (shown with dashed 

line in Figure 10) to the architecture configuration and configuration builder that can 

enhance execution. 

FU
(Producer)

FU FU FUFU
(Consumer)

Buffer

Transport Distance
Buffer time

 
Figure 11: An operand transport model captures both the distance traveled and 
buffer time required. 



 40

3.3.2 Design Customization Process for Operand Bypass Networks 

This section describes a design exploration methodology for a low cost, high 

performance operand bypass network in wide-issue architectures. It is driven by the 

technology model-based evaluation methodology described in Section 3.3.1. Central to 

this work is a set of architectural techniques aimed at reducing operand transport cost.  

The operand bypass network is implemented along three phases. Initially, 

conventional broadcasting result buses are assumed to be connected to all FU outputs. 

First, a microarchitectural placement based on transport pattern distribution between 

components is applied (traffic-based FU placement) [35]. For local bypassing, a few 

carefully chosen paths between highly trafficked datapaths are replaced with point-to-

point bypass paths to reduce the transport latency. The remaining paths are converted to 

low-cost shared buses to reduce the interconnect cost measured in the total length of 

bypass wires (selective point-to-point bypassing). After the bypass network is 

implemented, a new FU assignment algorithm is applied, which tries to map inter-

instruction dependences on the local bypass path (geometry-aware instruction steering). 

These approaches mainly benefit from shortening the transport distance by exploiting 

common operand communication patterns. They are discussed in the following sections 

in more detail. 

3.3.2.1 Traffic-based FU placement and Selective Point-to-Point Bypassing 

A cycle accurate simulation is performed to measure the amount of traffic 

between FUs for given application programs. The area of each FU is also estimated using 

GENESYS, based on a processor model. After the traffic and area information is 

collected, each FU is assigned in a sub-block which is defined as a collection of FUs 



 41

placed together and the position of each FU is determined at the current iteration. The 

cost of each placement is calculated by following equation:  

( , )

(| | | |)ij i j i j
i j E

x x y yα
∈

− + −∑  
(4)

In this equation, E denotes a set of directed edges, where (i,j) represents a edge 

from FUi (producer) to FUj (consumer). The parameter αij is the statistical traffic rate on 

edge (i,j) (the summation of αij is equal to one). Finally, (xi,yi) denotes the position of the 

center of FUi in two-dimensional space. Thus, the cost is defined as the traffic-weighted 

sum of edges between FUs. All permutations of FUs sequences are explored, from which 

the minimum cost are determined.  

Interconnect wires in the operand bypass networks are classified along two axes: 

the ownership and the range of distribution. The ownership indicates whether a wire is 

driven by an exclusive (dedicated) source, or whether it is shared by multi-sources. The 

range of distribution indicates whether an operand is to be broadcast by default to all 

possible targets; it is propagated only to the subset of the resources (multicast); or it is 

sent point-to-point. According to these classifications, the conventional bypass network 

of ILP processors is made up of a set of exclusive-broadcast wires. 

To minimize the forwarding wire delay latency that is taking a dominant fraction 

of the total transport delay, the length of the bypass path should be kept as short as 

possible. At the same time, the total length of the bypass wires should be held within a 

given wiring budget. After the traffic-based FU placement, selective point-to-point 

bypassing is performed to reorganize each of the bypass paths between FUs based on the 

traffic rate. It assigns dedicated, point-to-point (p2p) or multicast wires to heavily 

trafficked paths (the first-level network) while operand transport between low trafficked 



 42

resources are accomplished through shared-broadcast wires (the second-level network). 

The detailed wiring resource assignment process is described in Figure 12. 

POP =operand transport pattern distribution in descending order; 
TotalWireLength = 0.0; 
N = number of shared-broadcast buses; 
 
// Put the  2nd  level shared buses 
add (shared-broadcast, N); 
TotalWireLength += N*length_of(shared-broadcast bus); 
 
// Put the  1st level p2p or multicast paths 
for_all CurPat(FUi,FUj,αij)   POP 
    if (TotalWireLength < TotalWireBudget) 
 if (∃ dedicated-broadcast from FUi ) remove(dedicated-broadcast, FUi); 
 if (∃ dedicated-p2p  from FUi) 
     add(dedicated-p2p, FUi, FUj); 
     for_all (FUi,FUk )  ∀dedicated-p2p from FUi 

  remove(dedicated-p2p, FUi, FUk); 
      add(dedicated-multicast, FUi, FUk); 
  TotalWireLength -= length_of(FUi, FUk); 
     end for_all 
     TotalWireLength += length_of(max(FUi, FUk1 ,..,FUkn)-min(FUi, FUk1 ,..,FUkn)); 
 else 
     add(dedicated-p2p, FUi, FUj); 
     TotalWireLength += length_of(FUi, FUj); 
 end if 
    end if 
end for_all 

Figure 12: Selective point-to-point path assignment algorithm. 
 

In this process, POP denotes a set of the operand transport patterns, in which each 

entry consists of a producer (FUi), a receiver (FUj), and the transport rate between them 

(αij); and the entries are arranged in descending order. The second-level bypass network 

is comprised of shared-broadcast buses which can be accessed by all resources. The 

number of shared-broadcast buses and total wiring budget are adjusted as architectural 

parameters at the architecture configuration module in Figure 10. After the second-level 

bypass network is established, the first-level network is added on the edge (FUi, FUj) 



 43

until the given wiring budget is reached. The edges linked by p2p wires are marked in the 

path tables to be consulted by the instruction steering logic. By allocating short, dedicated 

wires only on high trafficked paths, the traffic-based FU placement can be fully exploited 

and the transport wire delay can be kept short without increasing the total wiring 

overhead. 

3.3.2.2 Geometry-aware instruction steering 

To benefit from the underlying bypass network configuration, the most important 

decision is to determine the FUs where the instructions are executed. We are interested in 

the dynamic steering that is performed during the instruction dispatch. Several dynamic 

steering heuristics have been explored to assign instructions for the clustered 

architectures [5][13], and the dependence-based method [50] is known to be efficient to 

reduce the communication-induced stalls. It uses natural dependences between 

instructions and attempts to assign a given instruction to a cluster that possesses most of 

the required operands. 

We apply the dependence-based method on a fully decentralized dispatch window 

in which each FU has its own dispatch queue, but extend it to exploit the underlying 

transport network configuration, called geometry-aware instruction steering. Two types 

of dependence information, the input and the output dependence, are used in conjunction 

with resource connectivity information.  

The input dependence detection is achieved with a small structure called the 

operand mapping table (OMT) and the resource path table (RPT), as shown in Figure 

13(a). The OMT is indexed using physical register designators after register renaming. 

This structure has one entry per physical register, containing the valid bit and the 



 44

producer index. The valid bit indicates whether the register operand is accessed from the 

register file (0) or directly from the producer through the bypass network (1). The RPT is 

a predefined two-dimensional table where each entry indicates the connectivity of the 

first-level bypass network between resources. The row and column denotes the indexes of 

the source and the destination resources of a path, respectively. If the valid bits of the 

input operands are set, the row of the RPT that is designated by the producer index field 

is activated. Then, each column adds the activated rows (gray boxes) to calculate the 

number of available operand which can be transported through the first-level paths. 

1 0

0 -

Valid Prod. 
index

R0

R1

1 7Rn

1 6R2

1 1 0 0 1 0 0 1

1 1 0 0 0 1 0 1

0 0 1 1 0 0 1 0

1 0 0 1 0 0 1 0

0 1 0 1 1 0 0 0

1 0 0 0 0 1 0 1

0 1 1 0 0 0 1 0

1 0 0 0 0 0 0 1

destination resource index
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1 3R3

2 1 0 1

Operand Mapping Table (OMT) Resource Path Table (RPT)

from 
register 

renaming
so

ur
ce

 re
so

ur
ce

 in
de

x

 
(a) 

1 00101

0 -

Valid Funcionality

0 -

1 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1

0 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0

0 1 0 1 1 0 0 0

source resource index
0 1 2 3 4 5 6 7

0

1

2

3

4

1 1 1 2

Consumer Functionality Cache (CF Cache) Functionality Path Table (FPT)

dispatch 
instruction 
address

fu
nc

tio
na

lit
y 

in
de

x0x7f40

-

-

1 100000x6938

0 --

Tag

 
(b) 

Figure 13: Dependence detection mechanisms: (a) input dependences and (b) 
output dependences. 

 



 45

Figure 13(a) shows the example entries in the OMT and the RPT. In this example, 

two source operands are produced or will be produced by the instructions dispatched to 

FU0 and FU3, respectively. FU0 is selected as a candidate resource since it has local paths 

both from FU0 and FU3. Note that only resources that can execute the current instruction 

type are considered (from FU0 to FU3 in this example). 

As shown in Figure 13(b), the output dependence detection mechanism is similar 

to the input dependence detection in that it refers to a path table and calculates the 

number of available local paths wired to a given resource. However, there are important 

differences. Since the output dependences are determined in instruction sequences after 

the current instruction, they can be checked when the instruction committed. If a 

sufficiently large instruction window is provided, most output dependences can be 

observed during the instruction retirement from the operand locality properties [34]. 

The output dependence detection logic checks the potential consumer’s 

functionalities of the current instruction and stores them in the consumer functionality 

cache (CF cache). During instruction dispatch, the CF cache is accessed by the 

instruction address. Then, the rows of the functionality path table (FPT), in which the 

corresponding functionality bit in the CF cache is set, are activated. For example, row 0 

and row 2 are activated since the bit position 0 and 2 are set as shown in Figure 13(b). It 

is noted that FPT is indexed by the functionality since the consumer(s) are not assigned to 

the specific resources yet.  

The geometry-aware instruction steering algorithm begins with a check for a free 

entry of the instruction queue in each resource. If several resources have free entries, the 

one that has most of the input operands wired through the dedicated paths (from the input 



 46

dependence detection) is chosen. If multiple resources have the same maximum number 

of connections, a resource that has most of the potential consumers possibly transported 

by the first-level bypass network (from the output dependence detection) is selected. Note 

that the input dependence has priority over the output one since the former is 

deterministic while the later may be speculative. The final tie-breaking rule is to select a 

resource with the lightest load (the resource that has minimum number of the occupied 

queue) to reduce the potential issue stalls. 

3.4 Analysis of Bypass Traffic in ILP Processors 

This section explores the operand communication patterns in the execution of 

standard multimedia application benchmarks. It focuses on the usage of the operand 

bypass network and the operand traffic between components in dynamically scheduled 

ILP processors. In this analysis, the same architectural configuration parameters are used 

as Table 4 in Section 3.5. 

Empirical analysis [34] of operand usage and communication properties for 

MediaBench programs has revealed that operands tend to be used only a small number of 

times (about 95% of all operands are used at most three times), are usually consumed 

shortly after they are produced (on average 83% of operands are consumed within five 

dynamic instructions), and a large number of operands are used by only one consumer 

type (52% of operands are used only by the same type of FU as producer and 31% of 

operands are used only by one different type from producer).  

The temporal locality properties imply that most operands are transported through 

the bypass network in the current ILP architectural model when a sufficiently large 

instruction window is provided. Figure 14 shows the prevalence of bypassed operands 



 47

with 128-entry instruction window during the execution of MediaBench application 

programs. In this graph, the height of each bar indicates the average number of produced 

operands per instruction, which gives a measure of the total amount of operand traffic. It 

also presents the distribution of transport media types through which operands are 

communicated. If a consumer instruction is dispatched into the instruction queue before 

the required operand is written to the register file, it is passed through the bypass 

network. If not, it is communicated through the register file. 

0.0

0.2

0.4

0.6

0.8

1.0

cj
pe

g

dj
pe

g

ep
ic

ep
ic

un

g7
21

de
co

de

g7
21

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

pe
gw

itd

pe
gw

ite

ra
w

ca
ud

io

ra
w

da
ud

io

av
er

ag
e

O
pe

ra
nd

 p
ro

du
ct

io
n 

ra
te

written to register file
bypassed

92
.6

%

90
.6

%

79
.8

%

82
.6

%

87
.5

%

89
.8

%

94
.0

%

92
.3

%

98
.0

%

96
.4

%

77
.9

%

79
.4

%

88
.4

%

 
Figure 14: Average number of produced operand per instruction which were 
broken down by transport media. 

 

Across all applications, about 80% of dynamic instructions produce operands and 

88.4% of the produced operands are transported through the bypass network. Only the 

remaining 11.6% of operands are sent directly to the register file for future uses. The 

results imply that the majority of inter-instruction communication needs are resolved by 



 48

the bypass network and that its transport performance and efficiency will be a key issue 

in future processor design. 

Figure 15 shows the percentage distribution of the operand transport pattern based 

on the true data dependences between instructions. The transport patterns are classified 

according to the functionality of producer-consumer pairs (Figure 15(a)) and according to 

the particular FU pairs (Figure 15(b)), respectively. 

The data represent the average across MediaBench application programs. As 

expected from the operand spatial locality properties, the results in Figure 15 show that 

the traffic is not evenly distributed; certain paths are more heavily trafficked than others. 

For example, about 47% of operands are transported between integer ALUs (iALU), 

while almost no operands are passed through some paths, such as paths from floating-

point ALUs (fpALU) to integer ALUs. Note that the distribution within the same type of 

FUs depends on the instruction distribution heuristics that determine the resource where 

an instruction is executed. The distribution patterns between specific FUs can be 

exploited to reorganize the bypass network as described in the previous section. 

Though the operand traffic is not even, all operands are treated alike in current 

architectural models; they contribute to the same amount of traffic congestion on the fully 

connected broadcast bypass buses. The results in Figure 14 and Figure 15 highlight the 

traffic bottleneck through the bypass network and reveal a huge potential for alleviating 

the communication burden by exploiting the temporal locality and spatial locality 

characteristics. 

 



 49

iALU  to iALU
46.50%

iALU  to Mem
19.24%

Mem  to iALU
13.14%

iALU to 
Branch
11.46%

Mem  to Mem
2.84%

iALU  to iMUL
1.34%

Branch
1.22%

else
4.26%

 
(a) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1

2
3

4
5

6
7

8
9

10
11

12
13

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Tr
an

sp
or

t p
at

te
rn

 d
is

tri
bu

tio
n

source resource index

destination 
resource indexiALU

iMUL
Mem

Branch

fpMUL
fpALU

iALU

iMUL

Mem

Branch

fpALU

fpMUL

 
(b) 

Figure 15: Percentage distribution of dynamic operand transport patterns: (a) 
between functional unit types, and (b) between functional units.  



 50

3.5 Experimental Results 

Benchmarks from MediaBench [39] are simulated using the Simplescalar 

simulator [4] with the PISA instruction set. The default MediaBench inputs are enlarged 

to lengthen their execution. For each simulation, 500 million committed instructions are 

executed. The first 100 million instructions, consisting mainly of common initialization 

code, are skipped. Table 4 enumerates the parameters common to all architectural models 

evaluated in this section. It also summarizes the results of the delay and area estimations 

from GENESYS. 

Table 4: Common parameters and GENESYS results.  

Architectural configuration parameters 

Fetch/decode/issue/commit width 8 

Total number of FUs 14 

iALU/iMUL/Mem/Branch/fpALU/fpMUL 4/2/2/2/3/1 

Issue queue size (per FU) 4 entries 

Reorder buffer size 128 entries 

Load/store queue size 32 entries 

Branch predictor Combined bimodal/gshare, 4K-entry BHT, 4-
way 2K-entry BTB, 10 cycle branch penalty 

Cache system 64K 2-way IL1, 64K 2-way DL1, 1024 16-way 
unified L2 

Main memory Infinite size 

Technology configuration parameters from GENESYS results 

Feature size [nm] 100 65 45 

Total execution engine area [mm2] 1.317 0.5566 0.2663 

FU width [um] 339.0 220.3 152.5 

Execution gate delay [ns] 0.2953 0.1523 0.1054  
 

To evaluate the effect of technology, three different technology models, i.e. 100, 

65, and 45nm, are used by GENESYS. The area of the FUs and the total execution engine 

are estimated based on an R10000 processor model [73] for each technology level. It is 



 51

assumed that the microarchitectural implementation has the FU heights reported in [50]. 

A two-dimensional layout geometry for the execution engine is also assumed.  

The bypass network configurations of simulation models are shown in Table 5. 

An eight-way ILP processor with a broadcast bypass network is modeled as a baseline 

(base). Two different versions of typical clustered configurations are implemented for 

comparison: (i) a decoupled implementation which divides FUs into two sub-blocks, one 

for integer FUs and the other for floating-point FUs (CL1) and (ii) a homogeneous 

clustered microarchitecture which further partitions the integer sub-block into two 

identical clusters (CL2). In the clustered models, the inter-cluster data transport network 

is assumed to be formed by a set of shared-broadcast buses to reduce the wiring burden. 

To minimize the inter-cluster communication, the dependence-based instruction steering 

heuristic is applied to the CL2 model. 

Table 5: Simulation model configurations.  
Model 
name Bypass path configuration Instruction 

steering heuristic 
Microarchitectural 

placing 

base exclusive-broadcast first-fit N/A 

CL1 
integer and floating-point decoupled 
exclusive-multicast (intra), 
 shared-broadcast (inter) 

first-fit N/A 

CL2 
two-clustered 
exclusive-multicast (intra), 
shared-broadcast (inter) 

dependence-based N/A 

TM0 exclusive-p2p dependence-based max-place 

TM1 exclusive-p2p dependence-based min-place 

TM2 exclusive-p2p/multicast (selected paths), 
shared-broadcast (other paths) dependence-based min-place 

TM3 exclusive-p2p/multicast (selected paths), 
shared-broadcast (other paths) geometry-aware min-place 

 
 

To evaluate the impact of the bypass network optimization techniques on the 

operand transport cost, fully-connected point-to-point bypass networks are initially 



 52

assumed. Two physical FU placements (max-place and min-place) are studied. All 

permutations of FU sequences are explored, from which the minimum and the maximum 

cost placements are determined from Equation (4) in Section 3.3.2.1. They are referred as 

TM0 and TM1, respectively. By default, the dependence-based instruction steering [5] is 

assumed. The initial minimum cost model is modified to be equipped with selective 

point-to-point wires and shared-broadcast buses according to the traffic rate (TM2). The 

detailed reorganization process is described earlier in Section 3.3.2.1. The total wiring 

budget is set to 0.25, which means the total length of the bypass wires must be within 

25% of the baseline. Finally, the geometry-aware instruction steering is applied, replacing 

the dependence-based steering (TM3). Note that multi-level bypass paths are assumed for 

CL1, CL2, TM2, and TM3 models: the first-level paths for fast, local transport and the 

second-level paths for global transport.  

The gate delay of the execution unit and the delays of the bypass wires for each 

simulation model are shown in Figure 16. The delays are measured at three process 

generations by GENESYS. For multi-level bypass networks, the wire delay of the longest 

first-level path is presented. Actual cycle times of the models are estimated by adding the 

gate delay and the longest bypass wire delay since the execute/bypass stage(s) determine 

the machine clock frequency assuming that the other pipeline stages can be pipelined [60]. 

The delays of the second-level paths are estimated from the delay of base and they are 

converted to extra cycles according to the cycle time of the simulation models. 

As expected, it is observed that the interconnect wire delay does not scale across 

process generations compared to the significant reduction in the gate delay. This trend 

demonstrates that the bypassing delay dominates the cycle time when broadcast 



 53

bypassing is applied. For example, base spends about 68% of the cycle time in bypassing 

at 45nm while it consumes about 43% at 100nm. The multicast wires implemented in the 

clustered microarchitectures shorten the length of the bypass wires, resulting in 

significant reduction of wire delays. The wire delay fraction of the cycle time in CL1 and 

CL2 is reduced to 31.1% and 7.6% at 45nm, respectively. Also expected is that the 

exclusive-p2p paths achieve shorter wire delays – 25.3% and 2.6% of total cycle time in 

the fully-connected models (TM0 and TM1) and in the partially-connected models (TM2 

and TM3) at 45nm, respectively. 

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

base CL1 CL2 TM0 TM1 TM2 TM3

gate
delay

longest bypass wire delay

D
el

ay
 [n

s]

100nm
65nm
45nm

 
Figure 16: Estimated the execution gate and the longest bypass wire delays for the 
simulation models. 

 

It is important to note that the partial connections shorten the cycle time with the 

expense of the extra forwarding latency caused by broadcasting the operands. This occurs 

when the operands cannot be delivered by the first-level network. For instance, if the 

operands need to be communicated among different clusters in CL2, they must be 



 54

delivered through the inter-cluster broadcasting buses. The extra cycles directly translate 

into additional buffer times and IPC drops. Thus, the amount of traffic on the 

broadcasting buses is the key issue for the multi-level bypass networks. The fully-

connected point-to-point bypass networks can send the operands to all possible targets 

directly without the extra cycle penalties. However, the additional connections increase 

the interconnect demand. This wiring overhead may have a negative impact on the cycle 

time by increasing the fan-out gate delay or by increasing the physical wiring distance 

caused by routing constraints [57]. 

3.5.1 Operand Transport Cost Results  

The operand transport costs are measured in terms of the transport distance and 

buffer time as defined in Section 3.3.1. The transport distance results for the simulation 

models are shown in Figure 17. The plots in Figure 17(a) represent cumulative 

distribution of operand transport distance and the height of each bar in Figure 17(b) 

indicates the average transport distance per operand. The results are averaged across all 

evaluated MediaBench programs. Note that the x-axis in Figure 17(a) denotes the 

transport distance normalized to the length of a broadcast bus of base. The step shapes in 

Figure 17(a) indicate that the remaining operands are routed on the second-level 

broadcast buses. With decreased feature size, all simulation models experience the same 

level of reduction in the average transport distance as shown in Figure 17(b). 

The decoupling (CL1) can effectively reduce the distance with only 2% of the 

second-level transport – the average transport distance is about 49% of base. This is 

mainly because (i) most MediaBench programs do not have floating-point operations - 

only epic encode/decode and mpeg2 encode/decode have some floating-point codes, and 



 55

(ii) the interaction between integer and floating-point codes is very small even if there 

exist floating-point operations. The average transport distance is further reduced to 46% 

of base as the resources are divided into the clusters (CL2). Interestingly, the impact of 

the clustering on the distance is offset by the significant amount of inter-cluster 

communication (about 20% of the total communication), even with the dependence-based 

cluster assignment. 

Ideally, the transport distance can be minimized by the traffic-based FU 

placement technique and fully-connected dedicated paths (TM1). In this model, the 

shortest paths are always taken to deliver the operands and the average distance reduces 

to 8.8% of base. Across all models, it exhibits the lowest transport distance. Considering 

partially-connected paths by removing the lightest trafficked paths and by adding shared 

result buses (TM2), the average distance is slightly increased to 15.8% of base, incurred 

by 6.5% of the second-level bypassing. As seen in Figure 17(a), it keeps track of the 

transport distance of the TM1 until the second-level bypassing is used. When the 

geometry-aware instruction steering is applied, the transport distance is slightly decreased 

to 14.9% of base. An interesting observation is that the TM3 model exhibits a slightly 

higher cumulative rate that uses the first-level paths though the initial transport distance 

rate of the TM3, i.e. zero distance, is lower than that of the TM2. This result demonstrates 

that the geometry-aware instruction steering is effective in reducing global 

communication. 

 



 56

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Transport distance (normalized to broadcast length)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

ra
te

base
CL1
CL2
TM0
TM1
TM2
TM3

 
(a) 

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

base CL1 CL2 TM0 TM1 TM2 TM3

Simulation models

A
ve

ra
ge

 tr
an

sp
or

t d
is

ta
nc

e 
[m

] 100nm
65nm
45nm

 
(b) 

Figure 17: Operand transport distance of the simulation models: (a) 
Accumulative distribution of the transport distance and (b) average transport 
distance. 

 

Table 6 presents the buffer time sensitivity as the feature size decreases. In 

general, the average buffer time increases as the technology shrinks due to the extra 



 57

bypass cycle, except in the base, TM0, and TM1 models. In these models, all data 

forwarding is accomplished during the instruction execution stage (no explicit bypass 

stages) so the buffer time does not change. As seen in Table 6, the amount of inter-cluster 

communication through the shared-broadcast buses translates into the buffer time 

increases since the extra transport latency incurs additional waiting of the operand that is 

already available in storage. The buffer times continue to grow as the gap between FU 

gate delay and wire delay increases though the amount of inter-cluster communication 

remains the same. For instance, the CL2 takes an average buffer time of 1.27x and 1.52x 

of base at 100nm and 45nm, respectively. 

Table 6: Operand buffer time of the simulation models [cycle/operand].  

Technology node Model 
name 100nm 65nm 45nm 

base 1.1914 1.1914 1.1914 

CL1 1.2537 1.2537 1.3406 

CL2 1.5109 1.8149 1.8149 

TM0 1.1914 1.1914 1.1914 

TM1 1.1914 1.1914 1.1914 

TM2 1.4783 1.5964 1.5964 

TM3 1.2855 1.4073 1.4073  
 

On the other hand, the TM3 model can minimize the amount of the global 

communication by exploiting operand transport characteristics. It suppresses the 

increases of the buffer time within 7.9% of base at 100nm. Furthermore, it can be held to 

only 18.1% until the feature sizes reach 45nm. The data in Table 6 also show that the 

TM3 can achieve shorter buffer time than the conventional clustered implementation 

(CL2) – 15% and 22% reduction in buffer time at 100nm and 45nm, respectively. These 



 58

results demonstrate that our approach can be an ideal implementation candidate for 

highly parallel ILP processing due to efficient operand transport.  

3.5.2 Performance and Cost Results  

This section presents the impact of the architectural techniques on the execution 

performance for the benchmarks. In addition, the implementation cost of each bypass 

network configuration is also presented. Figure 18 shows execution performance and 

wiring cost for the simulation models. Instruction throughput, measured by dividing IPC 

by the cycle time, determines the execution rate performance as shown in Figure 18(a). 

The figure also indicates the sensitivity of the performance to technology migration. 

Total wire length of the bypass networks normalized to base model determines 

implementation cost as shown in Figure 18(b). It also depicts the wiring efficiency, which 

is calculated by dividing the simulated instruction throughput by the total wire length. 

The results in Figure 18(a) show that total execution throughput increases 

significantly with technology advances, except in the base model. The performance 

bottleneck of base is the wire delay latency of the broadcast buses as previously 

identified in Figure 16. The traffic-driven transport network without the geometry-aware 

instruction steering (TM2) outperforms base by 1.67x, 2.16x, and 2.76x for each 

technology point, respectively. It also outperforms the typical clustered implementation 

(CL2) by 1.07x, 1.18x, and 1.20x, respectively. When the geometry-aware instruction 

steering is factored in, the TM3 model produces the highest instruction throughput. 

Moreover, the performance gap increases as the technology shrinks. It achieves higher 

performance than the dependence-based instruction assignment – 5.1% instruction 



 59

throughput gain over the TM2 at 45nm. This result demonstrates the effectiveness of the 

geometry-aware instruction steering in the performance of the operand transport network.  

0.0

3.0

6.0

9.0

12.0

15.0

18.0

base CL1 CL2 TM0 TM1 TM2 TM3

Simulation models

In
st

ru
ct

io
n 

th
ro

ug
hp

ut
 [B

IP
S

] 100 nm
65 nm
45 nm

 
(a) 

0%

50%

100%

150%

200%

250%

base CL1 CL2 TM0 TM1 TM2 TM3

Simulation models

N
or

m
al

iz
ed

 w
iri

ng
 c

os
t

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

E
ffi

ci
en

cy
 [B

IP
S

/m
]

100nm
65nm
45nm

 
(b) 

Figure 18: Estimated perforamnce and cost for the simulation models: (a) 
Instruction throughput and (b) normalized wiring cost and efficiency. 



 60

An important consideration when designing an operand transport network is 

interconnect cost since the primary goal of this study is to reduce the complexity of the 

operand bypass network. Though actual wiring cost incorporates the physical VLSI 

design constraints of wire routing which is in turn, a function of several factors, such as 

routing strategy, this is beyond the scope of this research. Instead, we simply measures 

the wiring cost in terms of the total wire length of the bypass network that is calculated 

by adding the lengths of all bypass paths. The results in Figure 18(b) indicate that 

partitioning broadcast result buses into a set of multicast buses reduces the wiring costs. 

For example, the CL1 and CL2 models consume only 75.2% and 48.5% of the wiring cost 

of base, respectively. Similar trends are observed when partially-connected, dedicated 

networks (TM2 and TM3) are implemented by removing low traffic paths from fully-

connected, dedicated networks (TM0 and TM1). Interestingly, though the TM0 and TM1 

achieve similar instruction throughput performance as the CL2, they demand about four 

times the interconnect. Therefore, the wiring cost efficiency should be measured to form 

the basis of comparison.  

The lines in Figure 18(b) represent the calculated wiring cost efficiency. Higher 

efficiency means better utilization of the interconnect resource which is projected to be 

the limiting resource in future semiconductor fabrication. As shown in the graphs, both 

dividing the broadcast buses into multiple multicast buses and introducing the incomplete 

bypass networks increase the cost efficiency considerably. In addition, the technology 

advances also improves efficiency since the total wire lengths are shorten and the 

instruction throughput performance increases. By using the traffic-driven bypass network 

configuration, a 2.41x cost efficiency is achieved over the typical clustering at 45nm. 



 61

When the geometry-aware instruction steering is applied in addition, the efficiency gap is 

increased to 2.54x. These results demonstrate our techniques are efficiently utilizing the 

given wiring resources. 

3.6 Conclusion 

Operand transport is becoming a bottleneck in improving the performance of 

modern processors. Current operand transport design, which mainly utilizes an operand 

bypass network, demands a high volume of long interconnects. This wire-dominated 

structure creates a critical wire delay problem in processor design in future technology. 

To address this problem, the operand bypass networks are explored, especially for 

multimedia applications. 

Technology modeling techniques for architectural evaluation are combined with 

cycle accurate simulation to measure the operand transport cost in transport distance and 

buffer time. Based on the technology-based methodology and operand characteristics 

from workload analysis, we present and evaluate a lower cost, higher performance bypass 

network than traditional bypass networks.  

Our systematic design customization process for the bypass networks is a set of 

three techniques aimed at reducing the operand transport cost and maintaining 

performance scalability. It first determines the physical position of the resources based on 

the transport distribution pattern of the application programs. Then, each of the bypass 

paths are configured according to the traffic rate. Finally, dependent instructions are 

assigned to adjacent computing resources connected by the local paths. 

Our results show that the overall instruction throughput gain over the 

conventional broadcast bypass network is 2.9x for a wide range of multimedia 



 62

applications in 45nm technology. The total length of wires can be kept within 24% of the 

broadcast bypass network. In addition, the instruction throughput gain over typical 

clustered architecture is 1.3x only with 50% of the bypass wire length. Most performance 

benefits come from increasing the clock speed and reducing the amount of the global 

transport. 

 

   



 63

CHAPTER 4 

DYNAMIC INSTRUCTION CLUSTERING 

 

4.1 Introduction 

Multimedia applications contain abundant data-level (DLP) and instruction-level 

parallelism (ILP), demanding tremendous computational throughput. In pursuit of higher 

performance, modern processors that employ dynamic techniques to exploit ILP are 

integrating an ever greater number of computing resources and larger instruction 

windows. However, this approach is nearing its limit due to interconnect delay. Inter-

instruction communication latency is a critical example [50]. This chapter explores a 

more efficient operand bypass network along with an instruction scheduling mechanism 

to reduce the communication latency. 

Alternatively, the plentiful DLP inherent in multimedia applications has 

motivated the development of multimedia extensions on general-purpose processors 

[21][49][53][54]. While significant performance improvements have been demonstrated, 

the primary stumbling issue is software compatibility; these extensions rely on software 

support, such as compiler and retargeting techniques [6][66]. Communication between 

multimedia FUs and ILP units is also problematic [14]. To address these issues, this 

chapter presents an execution mechanism that dynamically forms and executes data-

parallel operations while maintaining binary compatibility. 

Our technique exposes opportunities to lower operand transport latency within a 

specialized execution unit. First, it converts global communication into local transport. 

Second, it removes unnecessary communication. It also detects opportunities for data-



 64

parallel execution based on the identification of regular data access patterns. This 

dynamic execution technique groups data-dependent instructions into clusters during 

instruction execution, detects the operand lifetime, streamlines intra- and inter-cluster 

operand transport patterns, and maps the clustered instructions to an efficient cluster 

execution unit. 

Two cluster execution unit implementations are presented and evaluated: network 

ALUs and a dynamically-scheduled SIMD PE array. In the network ALUs, intermediate 

values within the inner loops of multimedia applications are propagated among ALUs 

without distribution through global bypass buses. The reduction in operand transport 

latency results in a 35% IPC speedup over a conventional ILP processor [36]. 

The dynamically-scheduled SIMD PE array supports DLP processing of the 

innermost loops in image processing applications. Data-parallel operation on SIMD PEs 

can be achieved by predicting stride values between loop iterations. In addition, operand 

communication is localized from the observed operand characteristics (e.g., the range of 

distribution). These techniques produce an IPC speedup of 2.59x over a 16-way, four-

clustered microarchitecture [37]. 

The rest of this chapter is organized as follows. Section 4.2 summarizes 

background information. Section 4.3 introduces an instruction clustering and operand 

transport pattern recognition mechanisms. Two possible implementations of the cluster 

execution units along with their operand transport networks are given in Section 4.4 and 

Section 4.5. Finally, conclusions are drawn in Section 4.6. 



 65

4.2 Related Research 

This section summarizes previous approaches to enhance the performance of 

multimedia applications and architectural techniques to reduce operand transport 

complexity.  

4.2.1 Solutions for Reducing Operand Transport Complexity 

The architectural community is responding to the operand transport problem with 

a variety of execution approaches, including new microarchitectures, new ISAs, better 

compilers, and improved run-time mechanisms. 

With the growing concern in wire delay caused by operand communication, many 

researchers have proposed new architectures focusing on communication-aware 

execution. The RAW architecture [75] and grid processor architecture (GPA) [46] 

propose network-connected tiles of distributed processing elements running new ISAs 

that expose the underlying parallel hardware organization. 

The GPA uses a grid of ALUs to remove the global transport path, though ALU 

assignment is done statically by a two-dimensional VLIW compiler. It maps blocks of 

statically-scheduled instructions to the ALU array and executes them dynamically in 

dataflow order. The strategy is to localize inter-instruction communication by forwarding 

temporary values generated inside a code block directly from the producers to their 

consumers. The key advantage of GPA is that instructions can be executed without 

broadcasting results. Communication can take place along short, point-to-point wires. 

The general philosophy of the RAW processor is to build an architecture by 

replicating a simple tile, each with its own instruction stream. Each tile contains a simple 

RISC-like pipeline and is connected with other tiles over a pipelined, point-to-point 



 66

network. The RAW processor also integrates a statically scheduled router, which 

eliminates the need for dynamic arbitration for the shared router and wire resources. 

Unlike a current superscalar processor, it does not bind register-renaming or dynamic 

instruction issue logic into hardware. The RAW processor simplifies instruction 

scheduling hardware and exposes it to the compiler with a new ISA. While RAW 

implements a static transport and the GPA uses a dynamic transport, both perform 

compile-time optimizations for instruction scheduling and localize the communication 

through direct dedicated forwarding paths.  

Corporaal and Arnold [19] propose a novel transport-triggered architecture, 

called MOVE, which is programmed by explicitly specifying data transport. It directly 

forwards operands between FUs and reduces the latency of the bypass network by 

eliminating the associative hardware. All bypassing is done in software under compiler 

control. Pattern detection techniques have been developed [3] to synthesize new ISAs but 

they are software-based. In general, these static approaches require extensive compiler 

support. 

An alternative approach is to reduce operand traffic dynamically. Hardware-based 

instruction optimization is a recent research area, moving some of the compiler’s burden 

on-chip. The idea of reforming instructions in hardware and caching them has been 

introduced in [44] using a fill unit to achieve high bandwidth instruction delivery. Some 

methods use the fill unit to dynamically retarget a scalar instruction stream into pre-

scheduled instruction groups [8][47][74]. The idea is to do as much work as possible on a 

small number of trace instructions, mainly focusing on alleviating the burden of 

instruction scheduling. The fill unit approach is extended by Friendly [27] to arrange 



 67

instructions within the trace segment (hyperblock) to minimize the impact of the operand 

transport latencies in a clustered microarchitecture. RePLay [52] forms hyperblock 

regions (called frames) in a similar fashion, but guarantees atomicity in its frames. 

Though it improves the performance through aggressive intra- and inter-block 

optimization, such as dead code elimination, common sub-expression removal, and 

reassociation, a huge, long latency (the authors assume between 100 and 10,000 cycles)  

embedded hardware optimization engine is required.  

While previous dynamic mechanisms target general applications, such as SPEC 

benchmarks, the empirical analysis results [34] in our research show that similar benefits 

can be achieved with simpler techniques, which exploit specific characteristics of 

multimedia applications. The inner loops of multimedia applications can be covered by a 

small number of deterministic, computation-intensive dataflow graphs (e.g., the DCT 

routine in MediaBench’s JPEG encoder contains 151 RISC-type instructions). 

Additionally, a large number of operands exhibit temporal locality and spatial locality. 

These properties make our mechanism far less complex to implement.  

Other researchers have studied dynamic collapsing on a multi-input execution unit. 

This technique combines dependences among multiple instructions into a single entry and 

maps the entry to special hardware that can efficiently execute it [61]. This technique 

increases the efficiency of the issue queue and reorder buffer. It also removes operand 

transport within the collapsed dependence strings. Collapsing for specific instances of 

floating-point operations, with the addition of new instructions such as multiply-add, has 

been implemented in a number of processors [45]. A general collapsing scheme involving 

fixed point arithmetic and logical operations has been proposed in [40], and a subset of 



 68

this proposal is implemented in a commercial processor POWER 2 [77]. Sazeides 

explores the potential of instruction dependence collapsing on 3-1 and 4-1 (three and four 

inputs respectively, with one output) ALUs [61]. Our approach is similar to dependence 

collapsing in that both group dependent instructions and focus on transporting the 

intermediate values through the fast paths. However, there are important differences: (i) 

our mechanism maintains the original instruction atomicity while the dependence 

collapsing replaces a set of instructions into an atomic macro instruction, and (ii) unlike 

our general instruction grouping, the dependence collapsing can only group restricted 

instruction combinations supported by the execution unit. 

Sassone’s dynamic strand [59] similarly groups dependence chains of at most 

three integer ALU instructions joined by transient operand, with no fan out, and steers 

them to the self-bypassing ALUs. It works well over a variety of applications since the 

linear form of a dependence graph (e.g., pointer manipulation for memory accesses and 

branch predicate calculation) is popular. For multimedia applications, we present a 

technique to form larger and more general clusters of instructions (e.g., by lifting the 

restriction on fanout) to accommodate a broader class of operand distribution patterns 

inherent in these applications. 

4.2.2 Solutions for Multimedia Processing 

To address the demand for data-parallel processing, general-purpose architectures 

employing SIMD functionality have been developed. Examples include Intel’s SSE [54], 

AMD’s 3DNow! [49], and Motorola’s AltiVec [20]. Digital signal processors (DSPs) and 

media processors, such as TigerShark [70] and Trimedia [72], have followed the trend. 

They incorporate SIMD functionality typically at subword level, i.e. they operate 



 69

concurrently on multiple narrow data types, e.g., eight-bit or 16-bit in a 64-bit register. 

While significant speedups have been demonstrated for multimedia kernels and 

applications, they have created a need for software support to develop and port 

applications. Examples include compiler/automatic retargeting technology and hand 

optimization using in-line assembly code, intrinsic functions, or library routines. Another 

challenge is scalability. An option to exploit more parallelism is to add more multimedia 

FUs next to ILP units and to increase issue width. However, this incurs critical 

communication problems between computing resources [14]. 

An alternative approach is to implement scalable processors and to take advantage 

of available FUs. The most commonly suggested method is clustering [24][48] – dividing 

a processor’s resources into logical groups. Recently, there has been interest in modulo 

scheduling for the clustered architectures, which overlaps successive iterations of a loop 

and uses the same schedule to optimize resource utilization [56]. Previously described tile 

architectures, such as the TRIPS architecture based on grid processor cores [58] and the 

RAW architecture [68], can be configured to support data-parallelism. Network-

connected tiles are filled with unrolled innermost loops of streaming applications. They 

achieve high performance by leveraging the technology scalable PEs connected by fast 

operand communication networks in a static environment. 

Our approach complements the large body of previous research that focuses on 

detecting independent computations that can be performed in parallel through the 

definition of new ISAs and additional software support. In contrast, we focus on 

improving the performance of regular patterns of dependent instructions, which are 

inherently sequential, in the dynamic execution environment. 



 70

4.3 Methodology 

This section describes the instruction clustering mechanism in detail, addressing 

efficient operand traffic control and data-parallelism detection.  

4.3.1 Basic Instruction Clustering Concept 

Our empirical analysis [34] of operand usage and communication properties for 

multimedia programs has revealed that operands tend to be used only a small number of 

times (95% of all operands are used at most three times), are usually consumed shortly 

after they are produced (83% of operands are consumed within five dynamic instructions), 

and have short lifetimes (76% are dead within ten dynamic instructions). Yet, in current 

architectural models, all operands are treated alike; these intermediate, short-lived 

operands consume the same storage as long-lived operands and contribute greatly to 

traffic congestion among the FUs, register file, and broadcast buses. Local operands, 

which are values produced within a code block and consumed by an instruction within 

the same block, form the building blocks of our instruction clusters. These values often 

connect critical dependent instructions but may not be committed to the architectural state 

of the machine. 

Figure 19 illustrates the basic concept of instruction clustering on the data flow 

graph generated from the color conversion basic block in the MediaBench JPEG encode 

program. Each node represents an instruction (gray nodes denote memory instructions, 

e.g., load or store, and white nodes denote ALU instructions) and each edge represents a 

true data dependence. 

During the instruction clustering, dependence edges are classified according to the 

producer-consumer relationship: (i) external (solid line): an operand which is produced 



 71

by previous blocks or may be consumed by subsequent blocks; (ii) memory (dotted line): 

an operand which is produced by a load as data read or consumed by a store instruction 

as data to be written; and (iii) local (gray line): an operand which is produced and 

consumed within the current block by instructions that perform integer computations. 

Note that some operands are local, memory, and/or external at the same time since they 

may be consumed in the current block as well as by instructions in subsequent blocks. 

These are indicated by multiple edges fanning out of an output port, for example, gray 

lines to local consumers and a solid black line pointing out of the dataflow graph. 

0: lbu r4, 0(r9) 19: addu r2, r2, r3
1: lbu r5, 1(r9) 20: lw r3, 5120(r6)
2: lbu r6, 2(r9) 21: addu r7, r15, r8
3: sll r4, r4, 0x2 22: addu r2, r2, r3
4: addu r4, r4, r10 23: sra r2, r2, 0x10
5: sll r5, r5, 0x2 24: sb r2, 0(r7)
6: addu r5, r5, r10 25: lw r2, 5120(r4)
7: lw r2, 0(r4) 26: lw r3, 6144(r5)
8: lw r3, 1024(r5) 27: addiu r9, r9, 3
9: sll r6, r6, r10 28: addu r2, r2, r3
10: addu r6, r6, r10 29: lw r3, 7168(r6)
11: addu r2, r2, r3 30: addu r7, r12, r8
12: lw r3, 2048(r6) 31: addiu r8, r8, 1
13: addu r7, r25, r8 32: addu r2, r2, r3
14: addu r2, r2, r3 33: sra r2, r2, 0x10
15: sra r2, r2, 0x10 34: sb r2, 0(r7)
16: sb r2, 0(r7) 35: sltu r2, r8, r16
17: lw r2, 3072(r4) 36: bne r2, r0, 0x412188
18: lw r3, 4096(r5)

0 1 2

3 5 9

4 6 10

177 25 188 26 2012 29

11

14

15 13

16

19

22

2321

24

28

32

33 30

34

27

31

35

36

Instruction
cluster

(a) (b) 

Figure 19: Basic instruction clustering example based on data flow graph of a basic 
block from MediaBench JPEG encode: (a) assembly source code and (b) dataflow 
graph and instruction clustering. 

 

An instruction cluster is defined as a connected subgraph of instructions that are 

joined by local operands. The input fringe (top) of a cluster consists of instructions for 

which no register sources are local; the output fringe (bottom) consists of instructions that 

generate no output or whose outputs are the sources of only memory or external edges. 



 72

The most important aspect of the cluster formation is the assignment of the 

dependence edges to local and global communication paths. Local operands are allowed 

to be delivered through local communication paths and to be safely discarded, while 

external operands should be assigned to a global path for future use. This separation 

guarantees fast transport of local operands [36].  

4.3.2 Extended Instruction Clustering for Loop-Oriented Applications 

Most multimedia applications, especially image processing applications, are 

characterized by predictable loop-based control flow with large iteration counts [67]. 

Moreover, empirical analysis has revealed that most operands have good locality 

properties as described earlier. This section introduces an extended instruction clustering 

mechanism, which targets data-parallelism detection as well as efficient operand traffic 

control based on the application characteristics. 

Typically, image processing algorithms involve heavy usage of multiply nested 

loops (commonly “for” loops in C source code). We focus on innermost loops since they 

are the elementary blocks of the multi-level loops and dominate overall processing time. 

Figure 20 illustrates the concept of the extended instruction clustering mechanism on the 

dataflow graph generated from the innermost loop of the image convolution code in the 

Texas Instruments (TI) IMGLIB [71] suite. 

It forms the instruction clusters in the same manner as Figure 19 (In the graph, ICi 

represents the instruction cluster i). The key differences are the region where the 

instruction clustering is performed and the additional classification of the external 

operands. While the former clustering mechanism focuses on the deterministic (non-

speculative) producer-consumer relationship within a basic block, the later one applies it 



 73

to an innermost loop body that may consist of multiple basic blocks. This is because the 

innermost loops exhibit the most primitive level of data-parallelism in general [37]. 

  for (i=0;i<3;i++) {
    pix1  = IN1[i]; 
    pix2  = IN2[i];
    pix3  = IN3[i];
    mask1 = mask[i]; 
    mask2 = mask[i+3]; 
    mask3 = mask[i+6];
    sum0 = pix1*mask1; 
    sum1 = pix2*mask2; 
    sum2 = pix3*mask3;
    sum += sum0 + sum1 + sum2;
  }

r2

IC0

   0: addu r2, r11, r8     11: addu r7, r13, r8
   1: lbu r4, 0(r2)     12: lbu r3, 0(r7)
   2: addu r6, r15, r8     13: lb r2, 6(r6)
   3: lb r2, 0(r6)     14: mult r3, r2
   4: mult r4, r2     15: mflo r3
   5: mflo r4     16: addiu r8, r8, 1
   6: addu r3, r10, r8     17: addu r4, r4, r5
   7: lbu r5, 0(r3)     18: addu r4, r4, r3
   8: lb r2, 3(r6)     19: addiu r9, r9, r4
   9: mult r5, r2     20: slti r2, r8, 3
   10: mflo r5     21: bne r2, r0, 0x400258

0

1

r11

2

3

r8 r15

8 13

4

5

6

7

r10

9

10

11

12

r13

14

15

16

20

21

17 18 19

r9

r3r4r5r6 r7r9 r8

IC1

IC2 IC3

IC4

IC5

 external-input = {r10, r11, r13, r15}
 external-output = {r2, r3, r4, r5, r6, r7}
 external-updated = {r8, r9}

 p-clusters = {IC0, IC1, IC2, IC3}
np-clusters = {IC4, IC5}

 
Figure 20: Extended instruction clustering example based on the dataflow graph 
of an innermost loop from IMGLIB convolution code. 

 

To determine the scope of the external operands, they are further classified 

according to the input-output relationship of the loop body: (i) external-input: an operand 

which only serves as input to a loop iteration; (ii) external-output: an operand which only 

serves as output; and (iii) external-updated: an operand which serves as both input and 

output. The bottom box in Figure 20 shows an example of this classification. This allows 



 74

the operands to move only to the targets that require them. The local operands and the 

input edges of the external-updated operands are only used during the current iteration 

while the output edges of the external-updated operands are only consumed by the next 

iteration. The external-inputs are consumed by all iterations. Finally, all external-outputs 

except the last iteration have no consumers. Given range of distribution, operand traffic 

can be bounded to the pre-defined targets and unnecessary communication can be 

removed. 

Another key feature is the detection of data-parallelism based on sequential 

dataflow representations. The instruction clusters that produce the external-updated 

operands are analyzed since they form critical loop-carried dependences. Once the 

operand transport patterns (from edges) and specific computations (from nodes) are 

recognized and identified, the stride values between loop iterations are predicted. 

Typically, they are chains of a small number of instructions connected by a simple 

operand transport pattern. From the example in Figure 20, the instruction 16 in IC4 and 

instruction 19 in IC5 produce the external-updated operand r8 and r9 respectively. The 

constant stride value comes from the immediate source of instruction 16 for r8; that is, r8 

values for subsequent loop iterations can be easily computed by accumulating the 

identified stride. However, the stride for r9 cannot be predicted. The next r9 value is 

computed by a complex combination of operations and unknown memory operands in 

IC5. The attribute of stride predictability is assigned to each external-updated output and 

propagated to its counterpart (external-updated input). It determines parallelism of the 

instruction clusters. A detailed explanation is presented in Section 4.5.1. 



 75

4.4 Operand Traffic Control for ILP Processing 

This section describes the overall microarchitectural support for the instruction 

clustering mechanism presented in Section 4.3.1. The detailed experimental results of our 

mechanism on dynamically scheduled ILP processors are also presented. 

4.4.1 Microarchitectural Support for the Instruction Clustering Mechanism 

Figure 21 shows the basic organization of our instruction clustering mechanism 

and its corresponding pipeline stages. There are three new major components (gray 

boxes): cluster formation logic and cache; cluster queue and scheduling logic; and cluster 

execution unit. Each component is discussed in turn. Note that compatibility with the 

existing code is maintained because no changes are needed at the instruction set 

architecture level. 

WB
Commit

Basic Block Cache

Cluster Cache

Cluster 
Formation 

Logic

instructions

cluster

enable

ALUs Cluster 
Execution

Instruction 
Queue

Cluster 
Queue

Register File

Fetch/Decode

Rename

Instruction address

cluster

Broadcast bypass 
buses

 
Figure 21: Basic organization of clustering mechanism and its pipeline stages. 



 76

Cluster formation logic and cache: As instructions are retired from the pipeline, they 

are collected by the cluster formation unit and combined into traces similar to a trace 

cache fill unit [27]. Each trace is segmented at basic block boundaries and then explicitly 

annotated with dependence information. By default, all output ports of non-memory 

instructions are initially considered to be sources of external edges. However, they are 

removed when the associated registers are overwritten by subsequent instructions within 

the trace, since the operand lifetime is expired. Each instruction is then checked to see if 

it connects to an existing instruction cluster through a local operand. If it does, the cluster 

formation unit appends the instruction to that cluster; otherwise, a new cluster is begun. 

After the clusters are formed, each instruction in the cluster is assigned a 

dependence depth that is the number of instructions in the longest dependence chain from 

the input fringe of the cluster to the input of the instruction. This attribute information is 

used to steer the instruction to a specific ALU. 

The basic block cache keeps track of basic block statistics, such as the number of 

times the blocks have been seen, and is indexed by the start address of each block. When 

a basic block is committed a second time, the cluster formation is activated and the 

abstracted cluster information is stored in the cluster cache. This guarantees infrequent 

cluster formation since many multimedia applications have a high degree of code locality. 

Each cluster cache entry holds instruction addresses and attribute bits such as 

source/destination operand locality bits and dependence depth bits. 

Cluster queue and scheduling logic: The dispatch/renaming logic is responsible for 

checking the address of the instruction stream, locating the matching cluster to the cluster 

queue, and removing the individual instructions from the stream if the instruction address 



 77

finds a matching entry in the cluster cache. Figure 22(a) illustrates the cluster queue. The 

gray and black boxes indicate the occupied entries, i.e., the black boxes represent issued 

instructions and the gray boxes to-be-issued instructions. The contents of the cluster 

queue are similar to the conventional instruction queue (e.g., register update unit (RUU) 

[64]) except for the following: (i) multiple dependent instructions (an instruction cluster) 

reside within a single entry, shown as a column in Figure 22(a); (ii) the ready flags of 

local operands are automatically set to one, which means they are ready when the 

instruction is dispatched; and (iii) each queue has a pointer to the instruction to be issued 

next. 

Each instruction in the cluster, once source operands are ready, is issued to one of 

the network ALUs in the cluster execution unit. The outputs of the ALU array in a row 

are connected to all inputs of the ALU array in the next row. Figure 22(b) illustrates how 

the clustered instructions (IC0 in Figure 22(a)) are mapped to the network ALUs. The 

depth bits are used to determine the row of the ALU. They guide the dependent 

instructions to back-to-back rows and guarantee that inter-instruction communication is 

resolved through the local inter-ALU paths. Note that the depth wraps around when it is 

greater than or equal to the number of rows (e.g., I6 is steered to row 0). 

Cluster execution unit: The network ALUs are the core of the cluster execution unit. As 

shown in Figure 23, this unit consists of a set of ALUs that are arranged in two-

dimensional space, with wire connections between rows of ALUs and between the 

input/output ports and the ALU within each column. Some of the individual ALUs in the 

execution engine are converted to network ALUs which handle the clustered instructions 



 78

(we use four, which is the maximum limit of fully-connected bypassing with no penalties 

[36]). 

IC0:I0 IC1:I0 IC2:I0

IC0:I1 IC1:I1 IC2:I1

IC0:I2 IC1:I2

IC1:I3

Head Tail
width

de
pt

h

06 1Issue 
pointer

IC0:I3

IC0:I4

IC0:I5

IC0:I6

* ICi:Ij denotes instruction j in instruction cluster i

Cluster queue

 
(a) 

I1I0

I2

I3

I4

I5

I6

0

row 0

row 1

row 2

row 3

col 0 col 1 col 2 col 3

I0 I1 I6

I2 I4

I3

I5

Instruction cluster (IC0) Network ALU

Depth

1

2

3

4

 
(b) 

Figure 22: The function of the cluster queue and cluster scheduling logic: (a) 
organization of the cluster queue and (b) instruction issue and mapping. 

 

The operands can move along three paths: (i) a local path (fully-connected 

dedicated wires between consecutive rows of ALUs) when dependent instructions are 



 79

safely mapped to consecutive rows; (ii) an input/pass-through path (shared buses 

connecting an input port and the ALUs in the same column) when the required operands 

come from the register file or one of the conventional ALUs through a global broadcast 

bus, or if operands needs to be passed-through two or more rows in the cluster execution 

unit (for example, I1 to I3 in Figure 22(b)); and (iii) an output path (shared buses 

connecting an output port and the ALUs in the same column) to transport 

memory/external operands to the other parts of the processor. 

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

ALU

Buffer

Local path

Input/pass-through path

Output path

Input ports

Output ports  
Figure 23: Cluster execution unit example:  network ALUs. 

 

Input/output ports of the cluster execution unit are connected to the global 

broadcast buses. Note that the wire delay latency of broadcast bypass remains constant 

when the cluster execution unit replaces the conventional ALUs. The total number of 

input and output ports of the execution unit does not change though the number of 

available FUs increases. 



 80

4.4.2 Experimental Results 

The effectiveness of our instruction clustering mechanism is measured in an ILP 

processing environment. The simulation models are implemented based on the detailed 

out-of-order processor model provided with Simplescalar (sim-outorder) [4]. Both eight- 

and 16-way machine configurations are simulated with parameters as shown in Table 7. 

Benchmarks from MediaBench [39] are used for analysis. The default MediaBench 

inputs are enlarged to lengthen their execution. For each simulation, we execute 500 

million committed instructions after skipping the first 100 million instructions 

(initialization routines). 

Table 7: Simulation model configurations. 

 8-way 16-way 

Queues 
24 instruction queue, 

8 cluster queue, 
16 load/store queue 

48 instruction queue, 
16 cluster queue, 

32 load/store queue 
4 integer ALUs, 

1 (4x4) network ALU 
8 integer ALUs, 

2 (4x4) network ALUs Computing 
resources 2 integer MULs, 2 floating ALUs,  

1 floating MUL, 2 memory ports 
Operand transport 

network 
(latency) 

local (0), 
path-through (1), 
global (up to 1) 

local (0), 
path-through (1), 
global (up to 3) 

Memory system 
(latency) 

64K 2-way IL1(3), 64K 2-way DL1(3), 1024K 16-way 
unified L2(8), main memory (160) 

Branch Combined bimodal/gshare, 4K-entry BHT, 4-way 2K-
entry BTB, 10 cycle branch penalty 

 
 

In Table 7, the operand transport latencies are estimated from the wire delays 

calculated by GENESYS [43]. The delays are measured at the 100nm technology point 

and the areas of the computing resources are estimated based on the R10000 processor 

model [73]. The global wire latency varies according to physical transport distance from 



 81

the operand producer to its consumer. This emulates the resource partitioning (hardware 

clustering) technique. The baseline models are configured by setting the size of 

instruction queue to the number of instruction queue plus the number of cluster queue and 

by replacing network ALUs to their normal counterparts (four individual ALUs).  

To determine the scope for cluster formation, we initially characterize the type of 

dependence edges in the instruction window. Figure 24(a) shows the prevalence of 

dependence edges with a 64-entry instruction window. It also presents the distribution of 

dependence edge types. In the graph, each bar denotes the average number of edges into 

instructions in the window, which gives a measure of the total amount of operand traffic 

currently passing through the expensive global bypass mechanism. On average, about 

40% of dependence edges are classified as local, exposing a huge potential for 

exploitation. Interestingly, about 42% of edges are memory type – effective address 

transport from ALU to load/store queue, and data to be stored to memory or to be loaded 

from memory. The other 18% of edges pass through the control boundary. We preclude 

the external edges since they may be incorrect when instructions are grouped across a 

mispredicted branch. 

Figure 24(b) shows the percentage of dynamic instructions that are grouped into 

clusters with various cluster cache sizes. Each line represents a benchmark program. The 

more instructions are executed as a cluster, the more operands can be transported through 

the local paths. But the coverage itself may not be directly proportional to the 

performance benefit since the criticality of instructions varies. Also the coverage itself 

cannot be directly correlated to the rate of local edges as shown in Figure 24(a). In 

general, the number of local edges depends on the application program itself. Across all 



 82

benchmarks, 45~76% of total instructions can be clustered using a 1024-entry cache. The 

saturation points occur at very different points for each benchmark. The target cache size 

must be carefully chosen with several factors in mind, such as the target coverage rate, 

cache access time and area cost, the size of cluster queue, and dimension of network 

ALUs. The rest of this section assumes a 256-entry cache. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
cj

pe
g

dj
pe

g

ep
ic

ep
ic

un

g7
21

de
co

de

g7
21

en
co

de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
w

ca
ud

io

ra
w

da
ud

io

av
er

ag
e

av
er

ag
e 

de
pe

nd
en

ce
 e

dg
e 

pe
r i

ns
t. external

memory
local

42
.5

%

51
.1

%

28
.4

%

32
.1

%

41
.6

%

42
.1

%

34
.2

%

42
.5

%

40
.8

%

62
.2

%

52
.4

%

34
.4

%

52
.3

%

6.0% 8.1%

9.4% 15.6%

24
.0

%

25
.5

%

14.5%

27
.0

%

48
.4

%

50
.7

%

24
.4

%

22
.4

%

27
.3

%

49
.3

%
23

.7
%

27
.0

%

24
.7

%

39
.7

%
42

.3
%

18.0%

 
(a) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

32 64 128 256 512 1K

Number of cluster cache entries

cl
us

te
re

d 
in

st
./t

ot
al

 c
om

m
ite

d 
in

st
.

 
(b) 

Figure 24: Dependence edge type distribution and dynamic instruction coverage: 
(a) average number of dependence and (b) instruction coverage. 



 83

Figure 25 shows the percentage distribution of the actual operand transport paths. 

Note that the percentage of operands transported within the cluster execution unit (local 

plus pass-through transport) is slightly higher than that of local edges in Figure 24(a). 

Some inter-cluster communications, which are classified as external in Figure 24(a), can 

be done within the network ALUs when multiple clusters are mapped and executed 

simultaneously. On average, about 30% and 32% of total dependence edges are mapped 

on the fastest local path for eight-way and 16-way respectively. The pass-through 

transports occur due to the program structure (as shown in Figure 22(b)) or instruction 

mapping failure caused by contention at the target row. For example, high instruction 

coverage and highly prevalent dependence edges in cjpeg and djpeg cause a considerable 

amount of pass-through transport – 26% and 30% of the total transport for eight-way 

respectively.  

0%

20%

40%

60%

80%

100%

cj
pe

g
dj

pe
g

ep
ic

ep
ic

un
g7

21
de

co
de

g7
21

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
ra

w
ca

ud
io

ra
w

da
ud

io
av

er
ag

e
cj

pe
g

dj
pe

g
ep

ic
ep

ic
un

g7
21

de
co

de
g7

21
en

co
de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
w

ca
ud

io
ra

w
da

ud
io

av
er

ag
e

8-way 16-wayPe
rc

en
ta

ge
 d

is
tr

ib
ut

io
n 

of
 o

pe
ra

nd
 tr

an
sp

or
t p

at
hs

global
pass-through
local

29.5%

11.0%
59.5%

57.8%

10.6%

31.5%

26.3%

29.9%

 
Figure 25: Percentage distribution of operand transport paths. 



 84

Figure 26 presents the IPC speedup of our instruction clustering mechanism 

compared to the baseline models. By being able to deliver the required operands to the 

target ALUs immediately, the dependent instructions on the critical path can be executed 

in consecutive cycles. In addition, the enhanced ILP mechanism, supported by a virtually 

larger window of pre-scheduled in-flight instructions and more parallel computing 

resources, offers more opportunities to discover independent instructions to be issued 

simultaneously. On average, the resulting speedups are 16% and 35% for eight-way and 

16-way configurations, respectively. The higher speedups for 16-way configuration 

compared to those of the eight-way machine demonstrate that our mechanism is efficient 

for wide architectures.  

0%
10%
20%

30%
40%
50%
60%

70%
80%

cj
pe

g
dj

pe
g

ep
ic

ep
ic

un
g7

21
de

co
de

g7
21

en
co

de
m

pe
g2

de
co

de
m

pe
g2

en
co

de
ra

w
ca

ud
io

ra
w

da
ud

io
av

er
ag

e
cj

pe
g

dj
pe

g
ep

ic
ep

ic
un

g7
21

de
co

de
g7

21
en

co
de

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
w

ca
ud

io
ra

w
da

ud
io

av
er

ag
e

8-way 16-way

IP
C

 s
pe

ed
up

 
Figure 26: Instruction clustering performance result (IPC speedup over the 
baseline model). 

 

Several programs, such as cjpeg and djpeg, show significant speedup since many 

of their dependence edges are converted to local transport. Interestingly, a few programs, 



 85

such as epic, epicun, and mpeg2encode show little speedup. In the first two cases, the 

bypass latency has little effect on the performance. Even with free bypassing (zero 

latency), the speedups are only 15~17% for the eight-way. The mpeg2encode benchmark 

has a small amount of local transport as shown in Figure 25. Note that in the superscalar 

execution, several run-time conditions can contribute to slack in the normal execution 

pipeline, such as mispredicted branches and cache misses. This slack can hide the effect 

of our mechanism and reduce the amount of speedup our mechanism achieves.  

4.5 Operand Traffic Control for DLP Processing 

This section provides the details for a dynamic execution mechanism for loop-

oriented applications, called dynamic SIMDization. We describe the microarchitecture 

and present the experimental results. 

4.5.1 Microarchitectural Support for Dynamic SIMDization 

The microarchitecture for the dynamic SIMDization technique is shown in Figure 

27. It is based on a dynamic optimization mechanism using trace-cache techniques [31]. 

Three new hardware components (darkly shaded blocks in Figure 27) are introduced next 

to the existing superscalar out-of-order pipeline: loop analysis logic and cache, SIMD 

instruction queue, and SIMD PE array. An overview of the additional hardware is 

discussed in the following. 

Loop analysis logic and cache: The loop analysis logic observes the instructions being 

committed and updates the loop cache. It finds the innermost loop regions, analyzes 

operand transport patterns in the loop trace, and caches them for future use. The loop 

detection is achieved with a small structure, called a loop register, which is composed of 



 86

a loop start address, a loop end address, and a loop counter. It checks every direct 

conditional branch which has a backward target address (a candidate loop). When the 

same branch occurs consecutively, it marks the branch as an innermost loop. The 

contents of the loop register are cached in the loop cache to determine the boundary of 

the loop and its iteration count. 

 

SIMD PE

Fetch/Decode

Rename

Scalar instruction queue SIMD instruction 
queue

Central register file

Bypass logic

Integer 
Units

Floating 
Units

Memory 
Units Integer 

Unit
Memory 

Unit

Local registers

Loop cache

Sc
al

ar
 in

st
ru

ct
io

n 
is

su
e

S
IM

D
 in

st
ru

ct
io

n 
is

su
e

Instruction trace

Instruction address
Loop analysis logic

 
Figure 27: Block diagram of the dynamic SIMD architecture. 

 

The loop analysis logic watches the address of committed instructions. Once the 

address of the committed instruction matches the loop start address in the cache, the 

cluster formation is activated and the subsequent instructions are collected in a trace until 

the corresponding loop end address is seen. It forms the instruction clusters in the same 

manner as the cluster formation unit in Figure 21: the dependence edge classification and 

the cluster number assignment. Then, the external input register set (Ein) and output 



 87

register set (Eout) are collected to further classify the external edges as input, output, and 

updated. They are identified by computing Ein–Eout, Eout–Ein, and Ein∩Eout, respectively. 

These processes are simply implemented by mask operations. 

The cluster analysis logic keeps track of operations and operand connections in 

the clusters to look for value prediction opportunities. If a stride of an external-updated 

operand is identified as predictable, the predicted stride values are computed and stored 

in the stride predictor tables in the PEs. For instance, the stride value for r8 in Figure 20 

is predicted as one. Each PE stores zero, one, two, and three for r8, respectively, when 

four PEs are assumed. In this way, all instructions in PEs which require r8 as a source can 

receive the value upon the arrival of r8 for the first PE (other PEs use predicted r8 values). 

Based on the predictability of the external-updated operands, our mechanism 

separates the parallelizable and non-parallelizable regions in the loop body. For example, 

the IC0 ~ IC3 in Figure 20 are marked as p-cluster. A p-cluster is defined as an instruction 

cluster that produces no external-updated output and that has no unpredictable external-

updated inputs. They can be issued and executed in the PE array in SIMD fashion. The 

others are declared as np-clusters and handled using conventional ILP processing 

mechanisms.  

SIMD instruction queue: Each instruction, after being decoded, is sent to the dispatch 

engine. The dispatch logic checks the address of the instruction stream and maps the 

instruction clusters to the SIMD instruction queue when the instruction address matches 

an entry in the loop cache. An entry in the SIMD instruction queue represents instructions 

of multiple loop iterations (equal to the number of PEs). It has a single instruction address 

and opcode, but keeps track of multiple versions of flags such as ready and instruction 



 88

status. The cluster information and transport type for input and output operands are also 

appended to control data communication. 

The instructions in the p-cluster and np-cluster are scheduled in different ways. 

The arrival of the last required operand for the first PE triggers the issue of a p-cluster 

instruction to all PEs. The stride prediction mechanism makes it possible for PEs to 

execute the instructions with predicted values. On the other hand, the np-cluster 

instructions are always issued one-by-one when corresponding operands are ready. 

Figure 28 depicts a possible scheduling of a p-cluster (IC1) and an np-cluster (IC4) in the 

example of Figure 20. In this example, it is assumed that SIMD array contains four PEs 

and no structural hazard occurs during execution. The x-axis represents relative timing. 

The number in the box represents the instruction id and a subscript is attached to identify 

the target PE. 

20

21

22

23

30

31

32

33

160

161

162

163

0 1 2 t 0 1 2 3 4 t

PE0

PE1

PE2

PE3

p-clusters np-clusters

8[0:3] 13[0:3]

200 210

201 211

202 212

203 213

4

 
Figure 28: Cluster scheduling example. 

 

It is important to note that the instructions in the p-clusters (except those in PE0) 

are executed speculatively; that is, a recovery process is required when the prediction 



 89

fails. Furthermore, loop-carried dependences caused by memory operands may exist. In 

both cases, the local results in a PE that has a mispredicted value or a memory 

dependence are discarded and the correct processor state is recovered. 

SIMD PE array: The execution target for the dynamic SIMDization is a SIMD PE array 

that connects nearest neighbors in a one-dimensional mesh. A PE consists of a small 

number of fine-grained FUs and a local register file to store temporary values. The 

operand transport network facilitates communication within a PE, between PEs, and 

between a PE and scalar resources. It provides alternative routes for each communication. 

Figure 29 shows the basic organization of a single PE having two FUs.  

FU0

MUX MUX

Local register file

FU1

MUX MUX

Global broadcast buses

Local bypass buses

Stride 
predictor 

table

add

from 
previous PE

Global broadcast buses

to 
next PE

 
Figure 29: Basic organization of single PE in SIMD array. 

 

By default, an operand produced within a PE is written to its local register file. It 

is also forwarded to all FUs within the PE through the fully-connected local bypass 

buses. The external-input operands directly come from the global broadcast buses. 

Typically, the external-updated operands are passed through the dedicated neighboring 



 90

network. However, special hardware support is provided for the predictable external-

updated values. A dedicated adder along with the stride predictor table computes 

predicted external-updated values for each PE. Among the results of the last PE, those 

marked as external are passed to the global broadcast buses. 

4.5.2 Experimental Results 

To evaluate the effects of the dynamic SIMDization mechanism, we implemented 

our structures and algorithms on the cycle-accurate Simplescalar simulator. As baselines 

for comparison, dynamically-scheduled ILP processors are simulated at three different 

superscalar widths. Simulation model configurations are shown in Table 8. 

Table 8: Simulation model configurations. 

baseline ILP increase SIMD extension 
Feature 

base4 base8 base16 base4+ 
SIMD4 

base4+ 
SIMD8 

Fetch/decode/ 
issue width 4 8 16 4 4 

Scalar resources 
(integer) 

4 ALUs, 
1 Mult 

8 ALUs, 
2 Mults 

16 ALUs, 
4 Mults 

4 ALUs, 
1 Mult 

4 ALUs, 
1 Mult 

Scalar resources 
(floating) 2 floating ALUs and 1 floating Mult/Div/Sqrt 

Vector resources 
(SIMD) - - - 4 ALUs 8 ALUs 

Memory ports 2 4 8 4 8 

Reorder buffer 
size (slots) 64 128 128 128 128 

Memory system 
(latency) 

64K 2-way IL1(3), 64K 2-way DL1(3), 1024K 16-way unified L2(8), 
and main memory(160) 

Branch 
prediction 

Combined bimodal/gshare, 4K-entry BHT, 4-way 2K-entry BTB, 10 
cycle branch penalty  

 
 

Our test suites consist of a number of image processing applications taken from 

the TI IMGLIB library [71]. Table 9 lists the application programs in our test suite. Each 



 91

benchmark is compiled using gcc 2.95.3 with O2 optimizations. A quarter common 

intermediate format (QCIF) input image is assumed. We focus on measuring two benefits 

of our work: the IPC gain from the data-parallel execution of the instruction clusters and 

the reduction of IPC penalty caused by the global operand transport. 

Table 9: IMGLIB test programs. 

Benchmark Description Applications 

conv_3x3 Convolution of image with a 3x3 filter 
mask Noise removal, image smoothing 

equalizer Histogram equalization to improve 
contrast of image Image quality enhancement 

fdct_8x8 8x8 forward discrete cosine transform Image compression 

mad_8x8 8x8 minimum absolute distance Video compression 

pix_sat All pixels above threshold value set to 
maximum value Image dilation/erosion 

quantize Quantize pixel values to a smaller 
range of discrete values Image compression 

sobel Object edge detection Object detection/recognition 

wave_ver Computing vertical wavelet transform Image compression (JPEG2000) 

wave_hor Computing horizontal wavelet 
transform Image compression (JPEG2000) 

color Color space conversion from YCrCb to 
RGB Display of digital video data 

 
 

Figure 30 shows the percentage of dynamic instructions that are recognized as the 

retargetable innermost loop region. The bars also show how many of these instructions 

are analyzed to be p-cluster (gray bars) and np-cluster instructions (black bars). On 

average over all benchmarks, 88% of dynamic instructions are covered by our loop 

detection mechanism. Specifically, about 79% of them can be replaced to SIMD 

operations (p-clusters). The remaining 9% of instructions are observed in the non-data-

parallel region (np-clusters) though they are still handled in the SIMD PE array. The 



 92

results demonstrate that most image processing applications exhibit a high degree of DLP 

at the innermost loop level and they can be easily detected dynamically. This reveals a 

huge potential for enhancing performance from our dynamic SIMDization mechanism.  

0%

20%

40%

60%

80%

100%

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l

w
av

e_
ve

r

w
av

e_
ho

r

co
lo

r

av
er

ag
e

cl
us

te
re

d 
in

st
./t

ot
al

 c
om

m
itt

ed
 in

st
.

np-cluster
p-cluster

 
Figure 30: Percentage of dynamic instructions covered by the instruction 
clustering mechanism for dynamic SIMDization. 

 

Figure 31 presents the IPC speedup obtained when adding our dynamic 

SIMDization mechanism to a four-wide ILP processor (base4). The results are compared 

to eight-wide and 16-wide ILP architectures. The right-most bars represent the harmonic 

means of the speedups across all benchmarks. As shown in the left bars, the performance 

of ILP processors increases moderately with wider pipelines. Additional resources raise 

the potential to detect independent instructions and to issue them together. In some 

programs, such as conv_3x3, quantize, and wave_ver, the conventional ILP mechanism 

benefits from the program properties. In these programs, single control flow of the 

innermost loop spans tens and sometimes hundreds of instructions and they are repeated a 

large number of times. Most of the speedup is from aggressive ILP execution exploiting 

the long deterministic control flow. However, if the innermost loops were made up of 



 93

multiple basic blocks (e.g., “if” statements in the loops), a mispredicted branch affects the 

subsequent iterations of the loop. This incurs a pipeline flush even if the subsequent 

iterations are independent of the result of the mispredicted branch. The innermost loops 

of mad_8x8, pix_sat, sobel, and color programs consist of three or more basic blocks and 

the results show that the ILP mechanism alone does not improve performance.  

1.0

2.0

3.0

4.0

5.0

6.0

7.0
co

nv
_3

x3
eq

ua
liz

er
fd

ct
_8

x8
m

ad
_8

x8
pi

x_
sa

t
qu

an
tiz

e
so

be
l

w
av

e_
ve

r
w

av
e_

ho
rz

co
lo

r
ha

rm
ea

n
co

nv
_3

x3
eq

ua
liz

er
fd

ct
_8

x8
m

ad
_8

x8
pi

x_
sa

t
qu

an
tiz

e
so

be
l

w
av

e_
ve

r
w

av
e_

ho
rz

co
lo

r
ha

rm
ea

n

ILP ILP+dynamic SIMD

IP
C

 s
pe

ed
up

base8
base4+SIMD4
base16
base4+SIMD8

 
Figure 31: Performance results of ILP increase and SIMD extension over the 
baseline. 

 

The bars to the right in Figure 31 represent the performance of our dynamic 

SIMDization mechanism. In most benchmarks, it outperforms conventional ILP 

architectures. Most of this speedup comes from exploiting data parallelism as well as 

instruction parallelism. For example, the average speedup of base4+SIMD4 over base4 is 

2.53 while that of base8 is 1.36. Interestingly, the performance of base4+SIMD4 shows 

less speedup than base8 in quantize where the loop count is extremely high (in our 

simulation, it is 1200). In this benchmark, the benefit from wider pipeline structures, 



 94

including fetch, decode, issue, and commit width, is more dominant than that from data-

parallel execution. 

The performance scales well as the size of SIMD PE array increases, which 

directly translates to more data parallelism. On the other hand, the performance of the 

ILP architecture is saturated due to the limited instruction parallelism. For example, while 

the ILP extension from base8 to base16 improves the average performance about 16%, 

the increase in the number of PEs from four (base4+SIMD4) to eight (base4+SIMD8) 

yields 32% speedup. An exception is conv3x3 which shows no IPC gain. Its loop iteration 

count is three which is less than the number of PEs so the additional resources have no 

effect on the performance. 

An important consideration when architectures become wider is the operand 

transport complexity. Wide architectures complicate operand communication due to 

interconnect wire delays. To evaluate the impact of operand transport on the performance, 

we analyzed the operand traffic as shown in Figure 32. The resource partitioning 

technique (e.g., the clustered microarchitecture) is applied to the ILP models. The 

dependence-based instruction steering heuristic is also used to minimize the amount of 

expensive inter-cluster communication. 

Figure 32(a) presents the percentage distribution of operand transport types for 

the clustered architecture. As expected, it is observed that the amount of inter-cluster 

communication increases as the cluster count increases. On average, the two-cluster 

model configured from base8 incurs about 22% of inter-cluster communications. The 

amount is increased to 32% in the four-cluster model configured from base16. 



 95

0%

20%

40%

60%

80%

100%

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
rt

w
av

e_
ho

rz
co

lo
r

av
er

ag
e

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
rt

w
av

e_
ho

rz
co

lo
r

av
er

ag
e

8-way, 2-cluster 16-way, 4-cluster

D
is

tri
bu

tio
n 

of
 o

pe
ra

nd
 tr

an
sp

or
t t

yp
e

inter-cluster
intra-cluster

 
(a) 

0%

20%

40%

60%

80%

100%

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
rt

w
av

e_
ho

rz
co

lo
r

av
er

ag
e

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
rt

w
av

e_
ho

rz
co

lo
r

av
er

ag
e

base4+SIMD4 base4+SIMD8

D
is

tri
bu

tio
n 

of
 o

pe
ra

nd
 tr

an
sp

or
t t

yp
e

intra-ILP ILP-SIMD
intra-PE next PE

 
(b) 

Figure 32: Percentage distribution of dynamic operand transport: (a) clustered 
ILP and (b) dynamic SIMD architecture. 

 

The operand transports in the dynamic SIMDization mechanism are divided into 

four groups based on producer-consumer relationship: intra-ILP (produced by a scalar 

resource and only consumed within the scalar resources), ILP-SIMD (produced by a 

scalar resource and consumed in PEs and vice versa), intra-PE (produced by a PE and 

only consumed by the same PE), and next PE (produced by a PE and only consumed by 



 96

the next PE). The percentage distribution results are shown in Figure 32(b). All except 

ILP-SIMD can be communicated with no extra penalty since they are local transports. 

For base4+SIMD4 model, only 10% of dynamic operands are transported between ILP 

processor and SIMD array on average. Of interest is that this drops to about 6% when the 

width of the SIMD PE array increases to eight. Some ILP-SIMD transports are converted 

into the next PE transports. This implies that our mechanism can minimize the impact of 

operand movement, reducing performance degradation.  

Figure 33 presents the results of the IPC speedup, including operand transport 

latencies. The exact delay based on the technology model is beyond the scope of this 

research. We simply apply one-cycle penalty for the global transports, such as inter-

cluster transports and ILP-SIMD transports. The operand transport latency directly 

translates to IPC drops as shown in Figure 33 compared to Figure 31. The average IPC 

drops of the resource partitioning are 13.8% and 18.3% for two-cluster and four-cluster 

models respectively. Much lower IPC drops are observed for our dynamic SIMD 

architectures: 3.4% and 0.9% for base4+SIMD4 and base+SIMD8 models, respectively. 

The results demonstrate the efficiency of our operand transport mechanism. 

4.6 Conclusion 

For multimedia processing, the performance of modern ILP processors is 

restricted due to the limited instruction parallelism existing in applications [76][78] and 

the operand communication latency. To address these problems, a dynamic execution 

mechanism is presented and evaluated. It improves performance by performing data-

parallel operations and by reducing IPC penalties caused by global communication. Our 

mechanism effectively groups dependent instructions into a cluster, recognizes the 



 97

operand range of distribution, detects data-parallelism from the analysis of intra- and 

inter-cluster operand transport patterns, and maps the clustered instructions to an efficient 

cluster execution unit. Two implementations are explored as examples of efficient cluster 

execution units: the network ALUs and SIMD PE array. 

1.0

2.0

3.0

4.0

5.0

6.0

7.0

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
r

w
av

e_
ho

rz
co

lo
r

ha
rm

ea
n

co
nv

_3
x3

eq
ua

liz
er

fd
ct

_8
x8

m
ad

_8
x8

pi
x_

sa
t

qu
an

tiz
e

so
be

l
w

av
e_

ve
r

w
av

e_
ho

rz
co

lo
r

ha
rm

ea
n

ILP (resource clustering) ILP+dynamic SIMD

IP
C

 s
pe

ed
up

2-cluster base4+SIMD4
4-cluster base4+SIMD8

 
Figure 33: Performance results of ILP increase and SIMD extension including 
consideration of the operand transport latency. 

 

The network ALUs are shown to improve the performance over a wide range of 

multimedia applications (MediaBench) – the average IPC speedups over the conventional 

ILP mechanism are 16% for eight-way and 35% for 16-way configurations respectively. 

This mainly benefits from significant reduction in global communication – 28% and 30% 

of inter-instruction communication residing in the instruction queue can be converted to 

local transport on eight- and 16-way configurations. The effectiveness of our mechanism 

is more obvious in the SIMD PE array that aims at loop-oriented applications. For image 

processing applications (IMGLIB), the results show that the overall performance gains 



 98

over the conventional ILP processors are 2.1x for eight-way and 2.6x for 16-way 

respectively. Most of the speedup comes from exploiting more parallelism (shown as IPC 

increases) and reduction in global communication (shown as reduction in IPC penalty). 

 



 99

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

This dissertation has addressed architectural issues combining with technology-

level issues to provide efficient operand transport mechanisms in executing multimedia 

application programs. In particular, this dissertation focused on reducing inter-instruction 

communication latencies caused by wire delays of operand transport networks. As the 

number of parallel computing resources increases to meet the required performance, a 

conventional design requires a complex, long-latency operand transport network since all 

operands are delivered to all operations ready to be executed through poorly scaling 

broadcasting wires.  

To reduce latency associated with operand movement, this research first explored 

data access patterns and data movement occurring during execution of multimedia 

applications. Based on the recognized operand characteristics and properties, two 

architectural enhancements that efficiently control operand traffic at run-time have been 

developed and evaluated: (i) a traffic-driven operand bypass network and (ii) a dynamic 

instruction clustering technique for multimedia architectures. Unlike typical broadcasting 

bypass networks used in conventional processors, the traffic-driven operand bypass 

network significantly reduces the physical distance required to deliver data while 

maintaining the wiring cost of the transport network low. Additionally, the dynamic 

instruction clustering technique supports efficient operand traffic control by exploiting 

the recognized operand distribution patterns and locality properties. It has been explored 



 100

in the context of dynamically scheduled ILP and SIMD execution mechanisms. The 

following sections conclude our investigations and suggest future research directions. 

5.1 Summary of Results 

In this section, experimental results obtained from the topics studied in this 

dissertation are summarized. 

5.1.1 Characterization and Modeling of Operand Usage and Transport 

This research analyzes the operand usage and transport characteristics in 

executing multimedia programs. Exploiting common operand distribution patterns and 

prevalent locality properties observed from the empirical analysis is essential in the 

design of alternate low cost and low latency operand transport mechanisms. 

Our empirical analysis shows that most operands in multimedia applications 

exhibit a high degree of locality temporally as well as spatially. In the time domain, we 

observed that 95% of operands are used at most three times, 83% of operands are first 

consumed within five dynamic instructions, and 76% of operands are dead within a 

dynamic instruction window of size ten. It is also shown that there are regular patterns of 

operand transport in the spatial domain. Some are simple passing of intermediate, 

transient values from an FU to another, usually of the same type (52% of operands). 

Some are common traffic patterns among certain pairs of FUs (31% of operands).   

 This research also explores the impact of architectural techniques, which are 

aiming at localizing the operand communication, on the operand transport. Our results 

show that (i) 25% of operands are read through the nearest local path with eight-entry 

local storage and a fully-connected bypass network; (ii) 81% of operand writes to global 

storage are eliminated by applying dynamic register operand lifetime detection; and (iii) 



 101

50% of operands are read directly from local storage by adding dedicated bypass paths 

between heavily trafficked resources and by applying a novel instruction mapping 

scheme based on operand consumer information. The effectiveness of these techniques is 

the key to designing efficient operand transport mechanisms.  

5.1.2 Traffic-driven Operand Bypass Network 

This research presents a technology-based methodology to evaluate the operand 

transport designs by predicting transport cost. Based on the methodology, a lower cost, 

high performance bypass network, called traffic-driven operand bypass network, is 

presented and evaluated, especially for multimedia applications. Unlike a conventional 

fully-connected broadcast bypass network, the traffic-driven operand bypass network 

reorganizes each of bypass paths based on the operand transport patterns. It achieves 

substantial instruction throughput performance by reducing the operand transport latency 

and by increasing the clock speed. It also reduces the complexity of the bypass network 

by reducing the interconnect demand. 

Our results show that the overall instruction throughput gain over a conventional 

broadcast bypass network is 1.76x, 2.27x, 2.89x for a wide range of multimedia 

applications at 100, 65, 45nm technology, respectively. The interconnect demand, which 

is measured in the total length of the bypass wires, can be kept within 24% of the 

broadcast network. The traffic-driven bypass network also achieves average instruction 

throughput gains of 1.12x, 1.24x, 1.26x over a typical clustered mechanism at 100, 65, 

45nm technology, respectively. The interconnect demand is only 50% of the clustered 

mechanism. These results demonstrate that the traffic-driven operand bypass network is 



 102

an lower cost, higher performance candidate for multimedia application than traditional 

operand bypass mechanisms in future technology. 

5.1.3 Dynamic Instruction Clustering Mechanism 

This research present a dynamic optimization mechanism, called dynamic 

instruction clustering. It improves the performance of multimedia applications by 

performing data-parallel operations and by reducing the operand transport latency. Our 

instruction clustering mechanism is evaluated on two execution platforms: network ALUs 

and a dynamically-scheduled SIMD PE array. They share some common hardware 

structures such as cluster formation logic and cluster queues, yet detail implementations 

are tuned to the specific targets. 

The network ALUs are shown to improve the performance over a wide range of 

multimedia applications. The average IPC gains over conventional ILP mechanism are 

16% for eight-way and 35% for 16-way respectively. The key to their substantial 

performance gains lies in significant reduction in global communication. 28% and 30% 

of inter-instruction communication residing in the instruction queue are bypassed through 

the local path instead of long-latency global buses. The dynamically-scheduled SIMD PE 

array supports data-parallel processing of the innermost loops in image processing 

applications. The results shows that the overall performance gains over the conventional 

ILP processors are 1.87x for eight-way and 2.14x for 16-way by exploiting more 

parallelism. It also benefits from lowering operand transport latency. It converts global 

communication into local transport and removes unnecessary communication. When 

operand transport latencies are factored in, it produces 2.09x for eight-way and 2.59x for 

16-way, compared to the clustered microarchitectures. 



 103

5.2 Future Research Directions 

The research presented in this dissertation is the first attempts to explore and 

evaluate operand transport for multimedia with dynamic execution techniques. In this 

section, a number of future research directions are outlined. 

Design of Operand Transport Networks 

• Enhance dynamic instruction assignment and scheduling algorithm with accurate 

implementation cost and operating frequency predictions. This will involve 

developing instruction pre-scheduling mechanisms to map a group of instructions 

on the computing resources instead of individual instruction.  

• Analyze the operand traffic from/to the storage elements and provide an efficient 

storage configurations as well as the operand transport network. 

Dynamic Instruction Clustering for ILP Processing 

• Extend the instruction clustering idea to support for larger blocks (e.g., a 

hyperblock which is a set of basic blocks stitched together) based on the branch 

prediction and speculative execution. 

• Evaluate various types of operand storage configurations (e.g., distributed register 

files and FU’s local storage) that permit efficient operand transport. 

• Develop methodology to evaluate the optimum inter-ALU network configurations 

(FU composition, local storage size, dimension of ALUs, the number of 

input/output ports) for standard and specific multimedia application domains.   

Dynamic Instruction Clustering for DLP Processing 



 104

• Extend the instruction clustering concept to support for the innermost loops that 

contains multiple control flows. This will be performed with dynamically 

determining the conditionally executed instructions and efficiently controlling 

their resulting operands. 

• Perform an in-depth analysis of multimedia applications and adaptively apply the 

optimum instruction clustering technique according to the characteristics of 

specific code regions. Given the information about primary types of parallelism 

for certain code sections, specific optimization techniques can be selected and 

applied during run-time. 



 105

REFERENCES 

 

[1] T. Agerwala and S. Chatterjee, “Computer architecture: challenges and 
opportunities for the next decade,” IEEE Micro, vol. 25, no. 3, pp. 58-69, May 
2005. 

[2] P. Ahuja, D. Clark, and A. Rogers, “The performance impact of incomplete 
bypassing in processor pipelines,” Proceedings of the 28th International Symposium 
on Microarchitectures, pp. 36-45, November 1995. 

[3] M. Arnold and H. Corporaal, “Automatic detection of recurring operation Patterns,” 
Proceedings of the 7th International Workshop on Hardware/Software Co-Design, 
pp. 22-26, May 1999. 

[4] T. Austin, et al., SimpleScalar: “An infrastructure for computer system modeling,” 
IEEE Transactions on Computers, vol. 35, no. 2, pp. 259-67, February 2002. 

[5] A. Baniasadi and A. Moshovos, “Instruction distribution heuristics for quad-cluster, 
dynamically scheduled, superscalar processors,” Proceedings of the 33rd 
International Symposium on Microarchitectures, December 2000.   

[6] L. Baumstark and L. Wills, “Retargeting sequential image-processing programs for 
data-parallel execution,” IEEE Transactions on Software Engineering, vol. 31, no. 
2, pp. 116-136, February 2005. 

[7] R. Bhargava and L. John, “Improving dynamic cluster assignment for clustered 
trace cache processors,” Proceedings of the 30th International Symposium on 
Computer Architecture, June 2003. 

[8] B. Bishop, R. Owens, and M. Irwin, “Aggressive dynamic execution of multimedia 
kernel traces,” Proceeding of the International Symposium on Parallel and 
Distributed Processing, pp. 640-646, April 1998. 

[9] E. Bloch, “The engineering design of the stretch computer,” Proceedings of the 
Eastern Joint Computer Conference, pp. 48-59, 1959. 

[10] M. Brown and Y. Patt, “Using internal redundant representations and limited 
bypass to support pipelined adders and register files,” Proceedings of the 
International Symposium on High Performance Computer Architecture, pp. 289-
298, February 2002. 

[11] S. Bunchua, D. Wills, and L. Wills, “Reducing operand transport complexity of 
superscalar processors using distributed register files,” Proceedings of the 21st 
International Conference on Computer Design, pp. 532-535, October 2003. 



 106

[12] M. Buss, R. Azevedo, P. Centoducatte, and G. Araujo, “Tailoring pipeline 
bypassing and functional unit mapping to application in clustered VLIW 
architectures,” Proceedings of the International Conference on Compilers, 
Architecture and Synthesis for Embedded Systems, pp. 141-148, 2001. 

[13] A. Canal, J. Parcerisa, and A. Gonzalez, “Dynamic cluster assignment 
mechanisms,” Proceedings of the 6th International Symposium on High 
Performance Computer Architecture, pp. 132-142, January 2000. 

[14] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff, “The CSI multimedia 
architecture,” IEEE Transactions on VLSI Systems, vol. 13, no. 1, pp. 1-13, 
January 2005.  

[15] L. Codrescu, S. P. Nugent, J. D. Meindl, and D. S. Wills, “Modeling technology 
impact on cluster microprocessor performance,” IEEE Transactions on VLSI 
Systems, vol. 11, no. 5, pp. 909-920, October 2003. 

[16] R. Cohn, T. Gross, M. Lam, and P. Tseng, “Architecture and compiler tradeoffs for 
a long instruction word processor,” Proceedings of the 3rd International Conference 
on Architecture Support for Programming Languages and Operation Systems, pp. 
2-14, April 1989. 

[17] T. Conte, P. Dubey, M. Jennings, R. Lee, A. Peleg, S. Rathnam, M. Schlansker,  P. 
Song, A. Wolfe, “Challenges to combining general-purpose and multimedia 
processing,” IEEE Computer, vol. 30, no. 12, pp. 33-37, December 1997. 

[18] J. Cong, “An interconnect-centric design flow for nanometer technologies,” 
Proceedings of the IEEE, vol. 89, no. 4, pp. 505-528, April 2001.  

[19] H. Corporaal, “TTAs: Missing the ILP complexity wall,” Journal of System 
Architectures, vol. 45, no. 12, pp. 949-973, 1999. 

[20] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scale, “AltiVec extension to 
PowerPC accelerates media processing,” IEEE Micro, vol. 20, no. 2, pp. 85-95, 
March/April 2000. 

[21] K. Diefendorff and P. Dubey, “How multimedia workloads will change processor 
design,” IEEE Transactions on Computers, vol. 30, no. 9, pp. 43-45, September 
1997. 

[22] J. Eble, V. De, D. Wills, and J. Meindl, “A Generic System Simulator (GENESYS) 
for ASIC technology and architecture beyond 2001,” Proceedings of the 9th Annual 
International ASIC conference, pp. 193-196, September 1996. 

[23] K. Fan, N. Clark, M. Chu, K. Manjunath, R. Rajiv, M. Smelyanskiy, and S. Mahlke,  
“Systematic register bypass customization for application-specific processors,” 



 107

Proceedings of the Application-Specific Systems, Architectures, and Processors, pp. 
64-74, June 2003. 

[24] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The Multicluster architecture: 
reducing cycle time through partitioning,” Proceedings of the 30th International 
Symposium on Microarchitectures, pp. 149-159, December 1997. 

[25] E. Fetzer, et al., “A fully-bypassed 6-issue integer datapath and register file in 
Itanium-2 microprocessor,” IEEE Journal of Solid State Circuits, vol. 37, no. 11, pp. 
1433-1440, November 2002. 

[26] M. Franklin and G. Sohi, “Register traffic analysis for streaming inter-operation 
communication on find-grain parallel processors,” Proceedings of the 25th 
International Symposium on Microarchitectures, pp. 236-245, December 1992. 

[27] D. Friendly, S. Patel, and Y. Patt, “Putting the fill unit to work: Dynamic 
optimization for trace cache microprocessors,” Proceedings of the 31st International 
Symposium on Microarchitectures, pp. 173-181, November 1998. 

[28] J. Gray, A. Naylor, A. Abnous, and N. Bagherzadeh, “VIPER: A VLIW integer 
microprocessor,” IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1377-
1383, December 1993. 

[29] L. Gwennap, “MIPS R10000 uses decoupled architecture,” Microprocessor Report, 
vol. 8, no. 14, October 1994. 

[30] L. Gwennap, “Ultrasparc unleashes SPARC performance,” Microprocessor Report, 
vol. 8, no. 13, October 1994. 

[31] Q. Jacobson and J. Smith, “Instruction pre-processing in trace processors,” 
Proceedings of the 5th International Symposium on High Performance Computer 
Architecture, pp. 125-129, January 1999. 

[32] G. Kemp and M. Franklin, “PEWs: A decentralized dynamic scheduler for ILP 
processing,” Proceedings of the International Conference on Parallel Processing, 
pp. 239-246, August 1996. 

[33] R. Kessler, “The Alpha 21264 microprocessor,” IEEE MICRO, vol. 19, no. 2, pp. 
24-36, March 1999. 

[34] H. Kim, D. Wills, and L. Wills, “Empirical analysis of operand usage and transport 
in multimedia applications,” Proceedings of the International Workshop on System-
on-Chip for Real-Time Applications, pp. 168-171, July 2004. 

[35] H. Kim, D. Wills, and L. Wills, “Technology-based architectural analysis of 
operand bypass network for efficient operand transport,” Proceedings of the 
International Parallel and Distributed Processing Symposium, April 2005.  



 108

[36] H. Kim, D. Wills, and L. Wills, “Reducing operand communication overhead using 
instruction clustering for multimedia applications,” Proceedings of the 
International Symposium on Multimedia, pp. 345-352, December 2005.  

[37] H. Kim, D. Wills, and L. Wills, “Optimizing operand transport using dynamic 
SIMDization in multimedia systems,” Proceedings of the International Workshop 
on Multimedia Signal Processing, October 2006.  

[38] H. Kim and J. Smith, “An instruction set and microarchitecture for instruction level 
distributed processing,” Proceedings of the 29th International Symposium on 
Computer Architecture, pp. 71-81, May 2002. 

[39] C. Lee, et al., “MediaBench: A tool for evaluating multimedia and communications 
systems,” Proceedings of the 30th International Symposium on Microarchitectures, 
pp. 40-51, December 1997. 

[40] N. Malik, “Interlock collapsing ALU for increased instruction-level parallelism,” 
Proceedings of the 25th International Symposium on Microarchitectures, pp. 149-
157, September 1992. 

[41] E. McLellan, “The Alpha AXP architecture and 21064 processor,” IEEE MICRO 
vol. 13, no. 3, pp. 36-47, June 1993. 

[42] J.D. Meindl, “Interconnect opportunities for gigascale integration,” IEEE MICRO, 
vol. 23, no. 4, pp.28-35, May/June 2003. 

[43] J. D. Meindl, “Low power microelectronics: Retrospect and prospect,” Proceedings 
of IEEE, vol. 84, no. 4, pp. 619-635, April 1995. 

[44] S. Melvin, M. Shebanow, and Y. Patt, “Hardware support for large atomic units in 
dynamically scheduled machines,” Proceedings of the 21st International Symposium 
on Microarchitecture, pp. 60-63, December 1988. 

[45] R. Montoye, E. Hokenek, and S. Runyon, “Design of the IBM RISC system/6000 
floating-point execution unit,” Proceedings IBM Journal of Research and 
Development, vol. 34, no. 1, pp. 59-70, January 1990. 

[46] R. Nagarajan, K. Sankaralingam, D. Burger, S. Keckler, “A design space evaluation 
of GRID processor architectures,” Proceedings of the 34th International Symposium 
on Microarchitectures, pp. 40-51, December 2001. 

[47] R. Nair and M. Hopkins, “Exploiting instruction level parallelism in processors by 
caching scheduled groups,” Proceedings of the 24th International Symposium on 
Computer Architecture, pp. 13-25, 1997. 

[48] E. Nystrom and A. Eichenberger, “Effective cluster assignment for modulo 
scheduling,” Proceeding of the 31st International Symposium on Microarchitecture, 
pp. 103-114, December 1998.  



 109

[49] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technology: Architecture and 
implementations,” IEEE Micro, vol. 19, no. 2, pp. 37-48, March/April 1999. 

[50] S. Palacharla, “Complexity-effective superscalar processors,” PhD dissertation, 
University of Wisconsin-Madison, 1997. 

[51] S. Palacharla and J. Smith, “Decoupling integer execution in superscalar 
processors,” Proceedings of the 28th International Symposium on 
Microarchitectures, pp. 285-290, November 1995. 

[52] S. Patel and S. Lumetta., “rePLay: A hardware framework for dynamic 
optimization,” IEEE Transactions on Computers, vol. 50, no. 6, pp. 300-318, June 
2001. 

[53] A. Peleg and U. Weiser, “MMX technology extension to the Intel architecture,” 
IEEE Micro, vol. 16, no. 4, pp. 51-59, August 1996. 

[54] S. Raman, V. Pentkovski, and J. Keshava, “Implementing streaming SIMD 
extensions on the Pentium III processor,” IEEE Micro, vol. 20, no. 4, pp. 47-57, 
July/August 2000. 

[55] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image and video 
processing with general-purpose processors and media ISA extensions,” 
Proceedings of the 26th International Symposium on Computer Architecture, pp. 
124-135, May 1999. 

[56] B. Rau and C. Glaeser, “Some scheduling techniques and an easily schedulable 
horizontal architecture for high performance scientific computing,” Proceeding of 
the 14th Workshop on Microprogramming, pp. 183-198, October 1981. 

[57] K. Sankaralingam, V. Singh, S. Keckler, and D. Burger, “Routed inter-ALU 
networks for ILP scalability and performance,” Proceedings of the 21st 
International Conference on Computer Design, pp. 170-177, October 2003. 

[58] K. Sankaralingam, et al., “Exploiting ILP, TLP, and DLP with polymorphous 
TRIPS architecture,” Proceeding of the 30th International Symposium on Computer 
Architecture, pp. 422-433, June 2003. 

[59] P. Sassone and D. Wills, “Dynamic strands: Collapsing speculative dependence 
chains for reducing pipeline communication,” Proceedings of the 37th International 
Symposium on Microarchitecture, December 2004. 

[60] P. Sassone and D. Wills, “Multicycle broadcast bypass: Too readily overlooked,” 
Proceedings of the International Workshop on Complexity Effective Design, June 
2004. 



 110

[61] Y. Sazeides, S. Vassiliadis, and J. Smith, “The performance potential of data 
dependence speculation and collapsing,” Proceedings of the 29th International 
Symposium on Microarchitectures, pp. 238-247, December 1996. 

[62] Semiconductor Industry Association, “The international technology roadmap for 
semiconductors,” 2003, available at http://public.itrs.net, October 2006. 

[63]  G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” Proceedings of 
the 22nd International Symposium on Computer Architecture, pp.414-425, June 
1995. 

[64]  G. Sohi and S. Vajapeyam, “Instruction issue logic for high-performance, 
interruptible, multi functional unit pipelined computers,” IEEE Transactions on 
Computers, vol. 39, no. 3, pp.349-359, March 1990. 

[65] M. Slater, “AMD’s K5 designed to outrun Pentium,” Microprocessor Report, vol. 
8, no. 14, October 1994. 

[66] N. Sreraman, R. Govindarajan, “A vectorizing compiler for multimedia 
extensions,” International Journal of Parallel Programming, vol. 28, no. 4, pp. 
363-400, August 2000. 

[67] D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia processing with 
SIMD style extensions and architectural enhancements,” IEEE Transactions on 
Computers, vol. 52, no. 8, pp. 1015-1031, August 2003. 

[68] M. Taylor, et al., “Evaluation of the Raw microprocessor: An exposed-wire-delay 
architecture for ILP and streams,” Proceedings of the 31st International Symposium 
on Computer Architecture, pp. 2-14, June 2004. 

[69] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar operand networks: 
On-chip interconnect for ILP in partitioned architectures,” Proceedings of the 9th 
International Symposium on High Performance Computer Architecture, pp. 341-
353, February 2003. 

[70] Tigershark, available at http://www.analog.com/processors/tigersharc/index.html, 
September 2006. 

[71] TMS320C62x image/video processing library programmer’s reference, Texas 
Instruments Literature Number SPRU400, March 2000. 

[72] Trimedia tm-1300, available at http://www.tm1300.com/trimedia, October, 2006. 

[73] N. Vasseghi, K. Yeager, E. Sarto, and M. Seddighnezhad, “200-MHz superscalar 
RISC microprocessor,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 
1675-1685, November 1996. 



 111

[74] S. Vajapeyam and T. Mitral, “Improving superscalar instruction dispatch and issue 
by exploiting dynamic code sequences,” Proceedings of the 24th International 
Symposium on Computer Architecture, pp. 1-12, June 1997. 

[75] E. Waingold, et al., “Baring it all to software: Raw machine,” IEEE Transactions 
on Computers, vol. 30, no. 9, pp. 86-93, September 1997. 

[76] D. Wall, “Limits of instruction-level parallelism,” Proceedings of the 4th 
International Conference on Architectural Support for Programming Languages 
and Operating Systems, pp. 176-188, April 1991. 

[77] S. Weiss and J. Smith, Inside IBM Power and PowerPC, Morgan Kaufmann 
Publishers Inc., San Mateo, CA, 1994. 

[78] L. Wills, T. Taha, L. Baumstark, and S. Wills, “Estimating potential parallelism for 
platform retargeting,” Proceedings of the 9th International Working Conference on 
Reverse Engineering, pp. 55-64, October 2002. 


