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SUMMARY

The Markov Chain Monte Carlo (MCMC) method has been widely used in practice

since the 1950’s in areas such as biology, statistics, and physics. However, it is only in the

last few decades that powerful techniques for obtaining rigorous performance guarantees

with respect to the running time have been developed. Today, with only a few notable

exceptions, most known algorithms for approximately uniform sampling and approximate

counting rely on the MCMC method. This thesis focuses on algorithms that use MCMC

combined with an algorithm from optimization called simulated annealing, for sampling

and counting problems.

Annealing is a heuristic for finding the global optimum of a function over a large search

space. It has recently emerged as a powerful technique used in conjunction with the MCMC

method for sampling problems, for example in the estimation of the permanent and in

algorithms for computing the volume of a convex body. We examine other applications of

annealing to sampling problems as well as scenarios when it fails to converge in polynomial

time.

We consider the problem of randomly generating 0-1 contingency tables. This is a

well-studied problem in statistics, as well as the theory of random graphs, since it is also

equivalent to generating a random bipartite graph with a prescribed degree sequence. Previ-

ously, the only algorithm known for all degree sequences was by reduction to approximating

the permanent of a 0-1 matrix. We give a direct and more efficient combinatorial algorithm

which relies on simulated annealing. An interesting aspect of the annealing algorithm we

define is that the high temperature distribution for the annealing is defined algorithmically.

Simulated tempering is a variant of annealing used for sampling in which a tempera-

ture parameter is randomly raised or lowered during the simulation. The idea is that by

extending the state space of the Markov chain to a polynomial number of progressively

smoother distributions, parameterized by temperature, the chain could cross bottlenecks in
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the original space which cause slow mixing. The conventional wisdom is that tempering

could speed up the convergence time exponentially, or at worst, it could be slower by at

most a polynomial in the number of distributions. We first show that simulated tempering

mixes torpidly for the 3-state ferromagnetic Potts model on the complete graph. The torpid

mixing is caused by a first order phase transition, a fundamental difference in the behavior

of this model from the Ising model, for which simulated tempering is known to converge at

all temperatures. Moreover, we disprove the conventional belief and show that simulated

tempering can converge at a rate that is slower than the algorithm at a fixed temperature

by at least an exponential factor.
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CHAPTER I

INTRODUCTION

Counting problems arise naturally in mathematics as well as computer science. Counting

the number of primes less than a number n and counting the number of partitions of n

into positive integers are two well-studied problems in number theory [41]. In enumerative

combinatorics, counting problems from different areas of discrete mathematics are studied

and the goal is to obtain closed form expressions or asymptotics for the number of objects

of a given size that satisfy a certain property [81]. Algorithms for counting problems can

be useful when there is no closed form expression known.

One of the aims of theoretical computer science is to classify the computational com-

plexity of algorithmic tasks. In this setting, a counting problem is a particular type of

computational problem where the objective is to count the number of objects satisfying

a given property. We are interested in efficient algorithms for counting that run in time

that is polynomial in the size of the objects, even though the number of objects may be

exponential in the size. There is a large body of ongoing work dedicated to understanding

the complexity of counting problems. A well-studied problem in combinatorics and com-

puter science is that of estimating the permanent of a 0-1 matrix, which is equivalent to the

problem of counting perfect matchings in a bipartite graph, #Bip-Perfect-Matching.

This problem has played a pivotal role in our understanding of the complexity of counting

problems [87].

Computational counting problems arise naturally from many different areas. Given a

graphG, what is an algorithm for the problem #Perfect-Matching, counting the number

of perfect matchings G contains? In a continuous setting, natural problems that arise in

geometry include computing the volume of a convex body (#Volume) and integrating a

multidimensional function. In statistical mechanics, computing an average over energies of

configurations of particles (a function of “microscopic” interactions between particles) as a
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function of temperature gives information about “macroscopic” thermodynamic properties

of the system. Examples of problems studied in this context include computing the partition

function of the Ising model [46], computing the number of “dimer coverings” or perfect

matchings of a lattice [32], or counting the number of self-avoiding walks in a lattice [63].

For a large class of natural problems, Jerrum, Valiant and Vazirani [48] demonstrated there

is a close connection between the complexity of counting and sampling algorithms.

1.1 The Computational Complexity of Counting

Formally, a counting problem aims to compute a function f : Σ∗ → N from strings over

an alphabet Σ to the natural numbers. We can ask whether polynomial time counting

algorithms exist for counting problems whose decision version is solvable in polynomial time.

Over 150 years ago, Kirchoff [55] showed that the number of spanning trees of a graph is

given by the determinant of its Laplacian, a matrix related to the adjacency matrix of the

graph (see [90] for a proof). This formulation gives a polynomial time algorithm for counting

the number of spanning trees, since the determinant can be computed in polynomial time by

Gaussian elimination. In 1961, Fisher, Kasteleyn and Temperley [31, 53, 84] independently

gave a polynomial time algorithm for computing the number of perfect matchings of a lattice.

Their technique generalizes to counting the number of perfect matchings of any planar

graph. Interestingly, both these problems can be reduced to the problem of computing a

determinant.

Unfortunately, these are among the few problems for which exact counting algorithms

are known. An explanation for this is given by Valiant’s theory of #P-completeness [87].

Valiant defined the counting class #P to be the class of counting problems f where f

is the number of accepting computations of a non-deterministic polynomial time Turing

Machine. The class #P includes #Sat, the problem of computing the number of satisfying

assignments to a SAT formula. A problem is said to be #P-complete if it is in #P and if

every problem in #P is polynomial time reducible to it (see [71] for more details). Valiant

showed that #Perfect-Matching, whose decision version is in P, is #P-complete. Thus

an algorithm for #Perfect-Matching would imply an algorithm for #Sat. Since the
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latter is at least as hard as Sat, one does not expect an efficient algorithm for #Perfect-

Matching, or indeed for any #P-complete problem.

Many natural problems with decision versions in P, such as computing the number of

matchings of all sizes (#Matchings), counting the number of independent sets (#IS),

or #Volume, are #P-complete. Often the problems remain #P-complete even when re-

stricted to natural classes of graphs, such as #Matchings for lattices or bipartite graphs

[42, 44]. Therefore, much of the algorithmic work on counting problems has focused on

obtaining efficient approximations.

1.1.1 Counting by Sampling

One very successful approach to obtaining efficient approximation algorithms has been

through the connection between approximate counting and approximately uniform sampling

established by Jerrum, Valiant and Vazirani [48]. They showed that for “self-reducible”

problems (explained below), approximating the size of the set Ω can be reduced to sam-

pling elements of Ω approximately uniformly at random, and vice-versa. Informally, a

self-reducible function is one which can be expressed in terms of the same function for

a smaller input. For example, #Sat is self-reducible since the number of satisfying as-

signments to a SAT formula is the sum of the number of assignments to the smaller SAT

instances obtained by setting the first variable to 1 and then to 0. A formal treatment of

self-reducibility as well as the equivalence between approximate counting and sampling can

be found in [80].

In general, the equivalence can be phrased in the language of partition functions. In

statistical mechanics, one objective is to study the behavior of large collections of interacting

particles. The particles can be in certain allowed configurations, and each configuration has

an associated weight. Let Ω be a set of allowable configurations, and let the weight of x ∈ Ω

be w(x). The weight can be a function of a temperature parameter. The partition function

is defined to be the sum

Z =
∑
x∈Ω

w(x). (1)

If all the weights are 1, then the partition function is just |Ω|. The partition function
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is significant for physical systems because thermodynamic properties of the system such

as specific heat and heat capacity are functions of the derivatives of log(Z) [35]. We are

interested in efficient algorithms for approximating the partition function of a system.

Definition 1.0.1. A fully polynomial time randomized approximation scheme or FPRAS,

for computing f : Σ∗ → N is a randomized algorithm A(·) which on input x ∈ Σ∗ outputs a

number f̂ such that

(1− ε)f(x) ≤ f̂ ≤ (1 + ε)f(x)

with probability at least 1− δ and runs in time that is polynomial in n, ε−1 and log(δ−1).

Definition 1.0.2. A fully polynomial approximately uniform sampler or FPAUS for sam-

pling from Ω with distribution π, is a randomized algorithm A(·) which takes as input x and

outputs an element of Ω according to some distribution whose variation distance1 from π is

at most ε and takes time that is polynomial in n and ε−1.

Theorem 1.1 ([48]). For self-reducible functions, almost uniform generation and random-

ized approximate counting can be reduced to one another.

As an example, suppose that Ω is the set of all independent sets of a graph G = (V,E).

Recall that an independent set I ⊆ V in graph is a subset of the vertices such that no two

vertices in I are adjacent. For a parameter λ > 0, the weight of an independent set I is

defined to be w(I) = λ|I|. The partition function is

ZG(λ) =
∑
I∈Ω

λ|I|.

When λ = 1, ZG(λ) counts the number of independent sets in the graph.

The equivalence between approximate counting and approximate sampling implies an

FPRAS for ZG(λ) if we have an FPAUS for sampling from Ω according to the distribution

π where π(I) is proportional to w(I). For the partition function ZG(λ), self-reducibility

means that ZG(λ) can be expressed as a sum of partition functions for smaller graphs as

follows

ZG(λ) = ZG\v(λ) + λZG\{v∪N(v)}(λ).

1This measure of distance between distributions is defined in Section 1.3.
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The first term on the right hand side corresponds to the independent sets not containing v,

which are exactly the independent sets of the graph G \ v, the graph obtained by deleting v

and the edges containing it, from G. The second term corresponds to the independent sets

containing v, which are the independent sets of the graph where v and its neighbors N(v)

are deleted.

The equivalence between approximate counting and approximate sampling is more gen-

eral, and is known to hold for a variety of problems which are not self-reducible, such as

#Volume, or the problem of counting the number of k-colorings of a graph.

Thus, the problem of obtaining efficient approximate counting algorithms for many

problems of interest can be reduced to designing an approximate sampling algorithm. One

of the most powerful techniques we have for approximate sampling from a set is to use a

randomized algorithm based on simulating a Markov chain on the set of objects.

1.2 Markov Chains

Markov chains were first studied in 1906 by the Russian mathematician Andrey Markov,

who was interested in the extension of the law of large numbers to dependent events. A

Markov chain is a sequence of random variables X0, X1, · · · taking values in a finite set Ω

satisfying the “Markov property”, meaning that conditioned on the current state at time t,

the state at t+ 1 is independent of the state at time t− 1 and all previous times. Markov

chains can be used to model a variety of stochastic phenomena such as Brownian motion,

birth-death processes, gambling problems, shuffling decks of cards and queuing processes.

They are applied in several areas of computer science and in other disciplines such as biology

and statistical physics. For instance, the web-search algorithm employed by Google can be

viewed as a Markov chain on an appropriately defined graph of web-pages [13]. In biology,

genetic mutations, genome rearrangement and population processes are typically modeled

as Markov chains [25].

The classical theory of Markov chains did not include a consideration of the rate of

convergence, and it turns out that this plays an important role in the design of efficient

sampling algorithms. Much of the theoretical analysis of Markov chains in computer science
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has been on the Markov chain Monte Carlo (MCMC) method for randomly generating com-

binatorial objects. The idea is to construct a graph called the Markov kernel whose vertices

are the states in Ω and whose edges are determined by defining a neighborhood structure for

each state. Often, a natural choice for the kernel is to connect two combinatorial objects if

one is a small perturbation of the other. The Markov chain performs a random walk on the

Markov kernel, by choosing a random neighbor to move to from the current state according

to fixed transition probabilities.

We are interested in designing efficient MCMC algorithms for sampling from the space

Ω according to a distribution π. At a high level, this means that the number of steps

required for the Markov chain to output a sample from a distribution that is “close” to π

is polylogarithmic in the size of Ω.

1.2.1 Markov Chain Basics

Let M = (Xt)∞t=0 be a stochastic process on the finite space Ω. Let P be a non-negative

stochastic transition matrix of size |Ω| × |Ω| where the rows and columns are indexed by

the states of Ω. That is, it satisfies the constraint that

∑
xj∈Ω

P (xi, xj) = 1 for every xi ∈ Ω.

The stochastic process M is a Markov chain if for every time t, and states x0, · · · , xt

P[Xt = xt|Xt−1 = xt−1, · · · , X0 = x0] = P[Xt = xt|Xt−1 = xt−1] = P (xt−1, xt).

We will consider only Markov chains which are time homogeneous, so that for any time t0

and pair of states x, x′,

P[Xt0+1 = x|Xt0 = x′] = P (x, x′).

Together with the Markov property, time-homogeneity implies that the t-step transition

probabilities are given by

P[Xt0+t = x|Xt0 = x′] = P t(x, x′).

A Markov chain is ergodic if it satisfies the following two technical conditions:
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i) Irreducibility: For every x, x′ ∈ Ω, there exists a time t such that P t(x, x′) > 0.

ii) Aperiodicity: For every x ∈ Ω, gcd(t : P t(x, x) > 0) = 1.

A distribution π on Ω is stationary if πP = π.

Theorem 1.2 (Fundamental Theorem of Markov Chains, [30]). An ergodic Markov

chain on a finite space Ω has a unique limiting stationary distribution π, that is,

lim
t→∞

P t(x, x′) = π(x′) for every x, x′ ∈ Ω.

A distribution µ is reversible with respect to the transition matrix P of a Markov chain

if for every x, x′ ∈ Ω,

µ(x)P (x, x′) = µ(x′)P (x′, x). (2)

Then the following can easily be verified.

Theorem 1.3. If the distribution µ is reversible with respect to P , then it is a stationary

distribution.

We can use the above fact to define a Markov chain with the desired stationary distri-

bution. This is the principle of the Metropolis-Hastings Markov chain [70]. Let P and µ be

the transition matrix and stationary distribution of an irreducible Markov chain on Ω. We

can construct a transition matrix Q with stationary distribution π on Ω as follows. Define

Q(x, y) =

 P (x, y) min
(
π(y)P (y,x)
π(x)P (x,y) , 1

)
if y 6= x

1−
∑

z 6=x P (x, z) min
(
π(z)P (z,x)
π(x)P (x,z) , 1

)
if y = x

Then, it can be checked that π is reversible with respect to Q and hence is a stationary

distribution.

Suppose we wish to sample weighted independent sets in G with parameter λ according

to the distribution π(I) ∝ w(I). The heat bath Glauber dynamics Markov chain MIS is given

as follows. Let It denote the independent set at time t.

1. Choose v ∈ V uniformly at random.
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2. With probability λ
1+λ attempt to add v to It. If It ∪ v is an independent set, set

It+1 = It ∪ v, otherwise, set It+1 = It.

3. With probability 1
1+λ , set It+1 = It.

Theorems 1.2 and 1.3 imply that MIS will converge in the limit to the distribution π.

Heat bath Glauber dynamics is a general Markov chain used for sampling in a class of

models called spin systems which we introduce next.

1.2.2 Spin Systems and Glauber dynamics

In statistical mechanics, spin systems are used to model the behavior of finite collections of

interacting particles. We are interested in sampling from configurations of the spin system

to understand the properties of “typical” configurations. A spin system consists of an

underlying graph G = (V,E) and a set of q spins. The set of configurations is Ω ⊆ [q]V and

each x ∈ Ω satisfies some local constraints at each vertex. Each configuration has a weight

and the objective is to sample from the configurations with probabilities proportional to

these weights. We illustrate below with some examples. The third example, the q-state

Potts model, will be the focus of Chapter 4.

Independent Sets: The set of spins is {0, 1}, and q = 2. A vertex is assigned 1 if it is

in the independent set and 0 if not. The local constraint is that for each edge (i, j) ∈ E,

x(i) + x(j) ≤ 1. The weight of a configuration x is given by w(x) =
∑

i∈V x(i). We wish to

sample from the distribution π on Ω given by

π(x) =
λw(x)

ZG(λ)
.

The parameter λ is also referred to as the activity or fugacity.

Ising Model: The Ising model was first defined in the 1920’s to study ferromagnetism

in solids. It is now studied in a much broader context [17]. The set of spins is {−1,+1}

corresponding to the magnetic moment of an atom of the solid. The set of states Ω is an

assignment of spins to each vertex of G. In the case without any external magnetic field,

the Hamiltonian of a configuration x is given by

H(x) =
∑

(i,j)∈E(G)

x(i) · x(j).
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Define the inverse temperature to be β = 1
kT , where k is Boltzmann’s constant. The Gibbs

distribution at inverse temperature β is given by

πβ(x) =
eβH(x)

Z(β)
,

where Z(β) =
∑

y∈{±1}n e
βH(y), the normalizing factor, is the partition function.

Note that when β > 0, configurations with a large number of edges with the same spin

on both endpoints are favored in the stationary distribution. For large values of β, a typical

configuration will have large components of vertices of the same spin with small clusters of

the opposite spin. At small values of β the spins in a typical configuration will look fairly

independent.

q-state Potts Model: The q-state Potts model was defined by R.B. Potts in 1952 [72], and

generalizes the Ising model to more than two spins. It models particles of a crystalline solids

and was defined in order to understand the behavior of ferromagnetism and other solid-state

phenomenon. The set of spins is {1, · · · , q}. The space Ω of the q-state ferromagnetic Potts

model is the set of all qn q-colorings of G. The Hamiltonian of a configuration x is given by

H(x) =
∑

(i,j)∈E(G)

J · δ(x(i), x(j)),

where δ is the Kronecker-δ function that takes the value 1 if its arguments are equal and

zero otherwise. When J > 0 the model corresponds to the ferromagnetic case where neigh-

bors prefer the same color, while J < 0 corresponds to the anti-ferromagnetic case where

neighbors prefer to be differently colored. The Gibbs distribution at inverse temperature β

is given by

πβ(x) =
eβH(x)

Z(β)
,

where Z(β) =
∑

y∈[q]n e
βh(y) is the partition function. Note that when J < 0, in the limit

as β →∞, the distribution tends to the uniform distribution over proper q-colorings of G.

In each of these cases, there is a natural way to define a neighborhood structure on states.

Two independent sets are adjacent if they differ by exactly one vertex. Configurations of

the Ising and Potts model are adjacent if the spin at exactly one vertex differs. Glauber

dynamics is a random walk on the graph of configurations defined by these adjacencies.
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The heat bath Glauber dynamics Markov chain can be defined for sampling from the

distribution π for a spin system as follows. Let Xt denote the configuration at time t.

1. Choose i ∈ V uniformly at random.

2. ChooseXt+1 with the conditional distribution π(·|Xt(j) j 6= i) conditioned onXt+1(j) =

Xt(j) for every j 6= i.

The fundamental theorem of Markov chains (Theorem 1.2) guarantees that Glauber

dynamics will converge to the Gibbs distribution in the limit. Although the above exposition

focused on sampling from the Gibbs distribution for spin systems, in fact, by the general

principle used in the Metropolis-Hastings algorithm, we can construct a Markov chain which

converges to the desired stationary distribution in the limit. However, from an algorithmic

perspective this is not sufficient. We would like to bound the number of steps the Markov

chain must be run until we obtain samples from a distribution which is a good approximation

to the stationary distribution and this can vary significantly for different Markov chains.

The algorithmic issues are made precise below.

1.3 Markov Chain Monte Carlo - Algorithmic Considera-
tions

In order to get efficient algorithms for sampling and counting, we need to guarantee that the

Markov chain reaches, or gets “close” to the stationary distribution in a reasonable amount

of time. By reasonable, we mean that the time should grow at most polylogarithmically in

|Ω|. Typically, |Ω| is exponentially large in the size of the object we wish to generate. For

instance, the number of independent sets can be an exponential in the number of vertices of

the graph but we would like the mixing time to be bounded by a polynomial in the number

of vertices. The rate of convergence of the Markov chain to the stationary distribution is

quantified by the mixing time, as defined below.

The total variation distance (or variation distance) between two distributions µ, ν on Ω

is given by

dtv(µ, ν) =
1
2

∑
x∈Ω

|µ(x)− ν(x)|.

10



The mixing time from the starting state x, τx(δ) is given by

τx(δ) = min{t ≥ 0 | dtv(P t(x, ·), π) ≤ δ}

If the mixing time τx(δ) from any starting point is bounded by a polynomial in n and

ln δ−1, then the chain is rapidly mixing. If the mixing time from any state is bounded from

below by an exponential in nε for any ε > 0, the chain is torpidly mixing. The requirement

that the mixing time be polynomial has resulted in an extensive study of the mixing rate

of Markov chains, producing a wide array of techniques for proving both rapid and torpid

mixing (See the survey by Randall [73] and the monograph by Jerrum [43] for a comprehen-

sive introduction). There is now a large body of work on methods for bounding the mixing

time of a Markov chain such as coupling, spectral gap characterization, conductance and

isoperimetry, multicommodity flows, comparison, and decomposition. Some of these which

are used in the work in this thesis are explained in more detail in Chapter 2.

These techniques have been applied with great success to the analysis of the mixing time

for natural Markov chains for many central problems including computing the partition

function for the ferromagnetic Ising model [46], computing the volume of a convex body

[28], sampling k-colorings of a graph when the maximum degree is large [88] and estimating

the permanent of a 0-1 matrix [47]. On the negative side, it has been shown that there

are instances where Markov chains such as Glauber dynamics, which make “local” updates,

will mix torpidly [12, 27, 67, 74, 85].

1.3.1 Torpid Mixing of Local Markov Chains

Torpid mixing for Glauber dynamics is a feature of systems which exhibit phase transitions

(see Section 4.1.1) where there is an abrupt change in what typical configurations look like.

For example, in the Ising model, at low temperatures, typical configurations are “ordered”,

with most of the spins of the same kind. As the temperature is increased, at a critical point

most of the weight of the Gibbs distribution is on configurations that are “disordered,”

where the spins appear independent. In the ordered phase, there may be multiple classes of

configurations that dominate in the Gibbs measure. In the Ising model at low temperature,

one type of configuration that dominates the measure is when most of the vertices have spin
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+1 (the other type being when most spins are −1). In this scenario, Glauber dynamics mixes

torpidly. At a high level, this is because for the Markov chain to go from configurations that

are predominantly +1 to those that are predominantly −1, it must pass through balanced

configurations that are highly unlikely in the distribution [67, 85].

Other examples of this phenomenon include the torpid mixing of Glauber dynamics

for independent sets of the lattice Z2 for large enough λ [74], independent sets and the

q-state Potts model on the lattice Zd in a region around certain critical values of λ and

β respectively [12], Glauber dynamics for sampling independent sets of the d-dimensional

hypercube for large enough λ [34], and Glauber dynamics for sampling independent sets in

graphs of maximum degree at least 6 [27].

From the perspective of rapid mixing, what these examples have in common is that there

is a “bottleneck” or “cut” in the distribution over the space. Roughly, there are two or more

regions in the space containing most of the probability mass of the stationary distribution,

separated (in the sense that deleting these states from the Markov kernel would disconnect

it) by a region with exponentially small measure. Local Markov chains fail to cross this

cut in the state space in polynomial time. This intuition can be formalized by using the

fact that the minimum cut in the state space in fact characterizes the mixing time. The

conductance Φ (see Chapter 2 for precise definitions) is the minimum over all subsets S ⊆ Ω

of the probability of the Markov chain leaving the set conditioned on being in S. Jerrum

and Sinclair [49] showed that the mixing time of a reversible Markov chain is polynomial if

and only if the conductance is at least inversely polynomial. To prove torpid mixing, it is

sufficient to show that the conductance is smaller than any inverse polynomial.

It can be shown that if Ω can be partitioned into three disjoint sets S1, S2, S3 such that

states of S1 and S3 are connected by the Markov chain only through states of S2, then the

conductance Φ is bounded by

max
(
π(S2)
π(S1)

,
π(S2)
π(S3

)
.

Consider the case of independent sets of a bipartite graph. In [27] it is shown that

there are bipartite graphs of degree 6 for which any chain that adds and deletes at most

some constant fraction of the vertices will mix torpidly. We present a simplified argument
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here, showing that there are bipartite graphs of some constant degree for which MIS mixes

torpidly.

The idea is that in a dense bipartite graph, large independent sets will have most vertices

in one bipartition or the other. The independent sets which are roughly balanced will have

to be small in size by the assumption on density. The following theorem shows that there

exist constant degree bipartite graphs that are sufficiently dense.

Theorem 1.4 ([75]). For every 0 < δ < 1 and sufficiently large n, there is a bipartite

graph ([n], [n], E) of degree O(δ−1poly(log(δ−1))) such that for every pair of subsets A ⊆

[n], B ⊆ [n] of the two partitions, if |A| ≥ δn or |B| ≥ δn, there is at least one edge in the

graph induced by A ∪B.

The above theorem follows by a probabilistic argument.

Theorem 1.5. There exists 0 < δ < 1 such that for sampling independent sets of the graph

above with the parameter δ, the Glauber dynamics Markov chain MIS has exponentially

small conductance.

Proof. We define a cut with exponentially small conductance as follows: Let S1 be the

independent sets with greater than δn vertices in the left bipartition. The set S2 consists of

independent sets where the left bipartition has exactly δn vertices. We set S3 = Ω \S1 \S2.

Note that S2 contains no independent sets with more that δn vertices in the right bipartition.

To reach such an independent set from S1, the Markov chain must pass through S2.

We can bound the sizes of these sets as follows. Then,

|S2| ≤
(
n

δn

)2

≤
(e
δ

)2δn

and S1, S3 ≥ 2n. Hence, for δ sufficiently small,

Φ ≤ |S2|
min(|S2|, |S3|)

≤ e−Ω(n).

Thus, in order to make effective use of the counting-sampling paradigm for such prob-

lems, one needs to either design Markov chains which modify the states in a non-local
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fashion, or to modify the existing local sampling scheme so that it can overcome the bottle-

necks which cause it to mix torpidly. Simulated annealing, a heuristic for optimization, as

well as simulated tempering, a Markov chain algorithm are methods that attempt to take

this latter approach.

1.4 Annealing and Simulated Tempering

Simulated annealing is a heuristic for optimization over a large search space that attempts

to improve on local search which can get trapped in local optima [15, 56]. Annealing uses a

temperature parameter so that at high temperatures, with some non-zero probability, the

algorithm makes unfavorable moves that allow it to move out of local optima. The annealing

starts at high temperature and gradually the temperature is lowered so that unfavorable

moves become less and less likely.

We first define the annealing algorithm in the context of optimization and then in the

context of MCMC algorithms for sampling.

1.4.1 Annealing in Optimization

Let H be a function defined over the finite search space Ω. In an optimization problem, we

would like to find x ∈ Ω such that H(x) = maxy∈ΩH(y). Let P be the transition matrix of a

Markov chain defined on Ω. Let Tt denote the temperature at time t. The sequence (Tt)∞t=1

is a cooling schedule if lim
t→∞

Tt = 0. Let β = 1/T be an inverse temperature parameter. The

transition probabilities at temperature β are given by

Pβ(x, y) =

 P (x, y) min
(

1, e
βH(y)

eβH(x)

)
if y 6= x

1−
∑

z 6=x Pβ(x, z) if y = x

The simulated annealing algorithm is defined as follows. Start at an arbitrary point x0 in

Ω. For each time t = 1, · · ·T,

i) Let β = 1/Tt the inverse temperature as defined by the cooling schedule.

ii) From the current point xt−1, choose the point Xt according to the distribution on states

given by Pβ(xt−1, ·).
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The algorithm thus defines a random sequence of states (Xt)∞t=1. When T is large, the

moves are made with less regard for improvement in the function, but as T decreases, unfa-

vorable moves become less likely. At the high temperature, the dynamics converges to the

uniform distribution over Ω. As the temperature becomes lower, the limiting distribution

of the dynamics becomes more biased towards the optimal states. Let

Ω̂ = {x : H(x) = max
y

H(y)}

be the set of global maxima. The simulated annealing algorithm is convergent if

lim
t→∞

P[Xt ∈ Ω̂] = 1.

A heuristic justification given for annealing is that performing unfavorable moves with

some probability will allow the local algorithms to cross the barriers that cause it to get

trapped at local optima at low temperatures. There are only a few settings where the

convergence of the algorithm has been analyzed [40, 54, 51], although for the graph bisection

problem studied in the last work, it was shown by Carson and Impagliazzo [14] that local

search also suffices and annealing is not required.

1.4.2 Annealing in the MCMC Framework

A relatively recent development has been the analysis of algorithms using annealing in con-

junction with MCMC for sampling and counting problems. Two examples are the simulated

annealing algorithm of Jerrum, Sinclair and Vigoda for estimating the permanent [47] and

the algorithm of Lovász and Vempala for computing the volume of a convex body [59],

which is currently the fastest algorithm for that problem.

Suppose that we wish to sample from Ω at an inverse temperature β∗ so that π(x) ∝

eβ
∗H(x). If the Markov chain on Ω is symmetric, i.e., P (x, y) = P (y, x), then the Markov

chain with transition matrix Pβ∗ as defined above will converge to π. The annealing algo-

rithm is defined as before, that is, at each time, we take a step from the current state using

the transition probabilities at the temperature specified by the cooling schedule. In this case

we say the simulated annealing algorithm converges if starting with an initial distribution
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x0 over states

lim
t→∞

x0Pβ1 × · · · × Pβt = πβ∗ .

The following toy example illustrates how annealing can help overcome bottlenecks for

local Markov chains. Let Ω = [n] and for each 1 ≤ i ≤ n−1, let i be adjacent to i+1 in the

Markov kernel. Suppose for some β∗ we are interested in sampling from the distribution

πβ∗(i) =


eβ
∗n

(n−1)eβ∗n+1
if i 6= n/2

1
(n−1)eβ∗n+1

if i = n/2.

We can abstract out the important ideas by thinking of just 3 points on a line, where

the stationary probabilities of the end points are eβn

2eβn+1
while the stationary probability of

the middle point is 1
2eβn+1

.

Suppose that at temperature β∗ > 0, we start with the probability mass entirely on one

endpoint so that x0 = (1, 0, 0). If we apply the transition matrix Pβ∗ repeatedly to x0, we

find that the time taken for the distribution to come within 1/4 in variation distance of the

stationary distribution is exponentially large. This corresponds to the fact that starting

at the endpoint with exponentially large mass, we would have to wait for exponential time

before a move to the middle point is accepted.

We define an annealing algorithm for the sampling problem. The cooling schedule

consists just of two temperatures, 0 and β∗. For some constants C1, C2, the schedule is

given by βt = 0 for t ≤ C1n
2 and βt = β∗ for C1n

2 < t ≤ C2n
2.

Theorem 1.6. The simulated annealing algorithm converges to within ε of the distribution

πβ∗ in time O(n2 ln ε−1).

A sketch of the proof is as follows. The transition matrix Pβ of the chain at temperature

β is given by 
1− α α 0

1/3 1/3 1/3

0 α 1− α

 ,

where α = 1
3eβn

.
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After first N = C1n
2 steps, the distribution is uniform over each of the points, since

the transition matrix at β = 0 is just the reflecting random walk on the line. Now, if we

iterate the matrix Pβ∗ , it can be calculated that the variation distance from the stationary

distribution decreases at the rate of roughly 1/3 in each step. Thus in O(ln ε−1) steps we

would be within ε of the stationary distribution. Going back to the line on n points, taking

into account that it takes O(n2) time to mix on either half of the line, we get that after

O(n2 ln ε−1) steps of running the chain at β∗ the distribution is at most ε in distance away

from πβ∗ . In this case, the speedup in the convergence time was because annealing at β = 0

gave us a good starting distribution for the Markov chain at β∗.

1.4.3 Simulated Tempering

The simulated tempering Markov chain [65] is a variant of annealing where the temperature

is chosen randomly in each time step. Suppose that we wish to sample from the distribution

πM at a temperature βM . To use simulated tempering, we define a sequence of distributions

πM−1, · · · , π0, parameterized by inverse temperatures βM−1, · · · , β0 = 0. The state space

of the tempering chain is Ω× [M ], a tuple consisting of a state and a temperature. Suppose

that we are in the state (x, i). At each step of the chain, either the temperature is kept

fixed at βi and the first co-ordinate, i.e., the state is randomly updated or we attempt to

randomly change the temperature to βi+1 or βi−1 keeping the state fixed. We describe the

transitions of the chain precisely in Section 4.2.1 of Chapter 4.

The heuristic justification for this Markov chain is that by extending to a polynomial

number of smoother distributions at lower inverse temperatures, the Markov chain may be

able to cross bottlenecks at low temperatures without paying a large penalty in the running

time.

Annealing and tempering provide a generic framework that can be applied in principle

to any sampling problem. However, issues such as how to choose the distributions for tem-

pering or how to choose the cooling schedule are not addressed and depend on the specifics

of the problem at hand. Nevertheless, such techniques have been successfully applied to

the estimation of the permanent [47] and the computation of volume [59]. These methods
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are also popular in practice and this strongly suggests the need for a better understanding

of the power and limitations of these techniques. In particular, we would like to answer

questions of the following kind:

1. For which problems can annealing and tempering speed up the mixing rate of a Markov

chain?

2. Can one apply these techniques to any torpidly mixing chain and hope that we will

only do better with regard to mixing time, or not worse by more than a polynomial

in the number of temperatures?

1.5 Contributions of This Thesis

In this thesis we address the questions above and the contributions are two-fold. On the

positive side, we demonstrate the power and flexibility of the annealing method by applying

it to the problem of sampling and counting labeled bipartite graphs with given degrees. Un-

like previous approaches, the annealing algorithm required a careful choice of the starting

distribution for annealing. The main novelty was that the starting distribution was found

using a combinatorial algorithm. Our algorithm bypasses the reduction to computing the

permanent thus improving on the previously best known running time. Finally, our algo-

rithm can be extended to the case of sampling subgraphs with given degrees of an input

graph. This work appears in Chapter 3 and is based on joint work with Ivona Bezáková and

Eric Vigoda and appeared in Random Structures and Algorithms, 2007 [7]. A preliminary

version appeared in Proceedings of the Symposium on Discrete Algorithms, 2006.

On the negative side, we disprove the belief that these heuristics can always be tried in

practice since they can only improve the mixing time of fixed temperature algorithms, or

at worst slow them down by a polynomial factor. We show that the mixing time for the

simulated tempering Markov chain for sampling from configurations of the 3-state ferro-

magnetic Potts model on the complete graph is exponentially large. Our analysis reveals

that the torpid mixing is due to a first order phase transition in the system, at a critical

inverse temperature. Moreover, simulated tempering will mix exponentially slowly regard-

less of the intermediate temperatures chosen to define the tempering algorithm. Finally,
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the mixing rate is actually slower by an exponential factor compared to the mixing time of

the Metropolis algorithm at a fixed temperature. This work appears in Chapter 4 and is

based on joint work with Dana Randall and appeared in the Proceedings of the Symposium

on Discrete Algorithms, 2004 [9].
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CHAPTER II

MARKOV CHAIN BACKGROUND

In this chapter we state some of the now classical techniques for bounding the mixing time

of a Markov chain. These will be the main tools we use in the analysis of the Markov chains

we study subsequently.

2.1 Eigenvalue Gap

The inverse of the spectral gap of the transition matrix of a Markov chain characterizes the

mixing time. Let λ0, λ1, . . . , λ|Ω|−1 be the eigenvalues of an ergodic reversible Markov chain

with transition matrix P , so that 1 = λ0 > |λ1| ≥ |λi| for all i ≥ 2. Let the spectral gap be

Gap(P ) = λ0 − |λ1|.

Theorem 2.1 ([1, 24]). For δ > 0,

i) τx(δ) ≤ 1
Gap(P ) ln

(
1

π(x)δ

)
.

ii) max
x

τx(δ) ≥ |λ1|
2Gap(P )

ln
(

1
2δ

)
.

However, in general, the eigenvalue gap is not easy to compute since the size of the

transition matrix is large.

2.2 Conductance

The conductance, introduced by Jerrum and Sinclair, provides a measure of the mixing rate

of a chain [49]. The conductance is in fact related to the spectral or eigenvalue gap (see for

example [80]), a connection which was studied independently by Lawler and Sokal [57]. A

similar relationship between the second largest eigenvalue and the “expansion” of a graph

was established by Alon [2] and Alon and Milman [3].

Bounding the conductance often gives an easier means for bounding the gap, in order
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to bound the mixing time. For S ⊂ Ω, let

ΦS =
FS
CS

=

∑
x∈S,y/∈S

π(x)P (x, y)

π(S)
.

Then, the conductance is given by

Φ = min
S:π(S)≤1/2

ΦS .

Jerrum and Sinclair [49] showed that the conductance upper and lower bounds the

mixing time.

Theorem 2.2. For any reversible Markov chain with conductance Φ

1− 2Φ
2Φ

ln ε−1 ≤ max
x

τx(δ) ≤ 2
Φ2

(
ln δ−1 + ln

1
πmin

)
where πmin = min

x∈Ω
π(x). Thus, to lower bound the mixing time it is sufficient to show

that the conductance is small.

2.3 Multicommodity Flow

The multicommodity flow method for bounding the mixing rate of Markov chain M was

introduced by Sinclair in [79]. Multicommodity flow is roughly a dual notion to the conduc-

tance and it characterizes rapid mixing as well. Here we state the upper bound on mixing

time in terms of the congestion of the multicommodity flow. Let K denote the Markov

kernel underlying M so that T = (M,M ′) is an edge of K if P (M,M ′) > 0. Let PIF be

the set of all directed paths from I to F in K. A flow in the Markov kernel is a function

g :
⋃

I,F∈Ω,I 6=F
PIF → R

+
0 such that

∑
p∈PIF g(p) = π(I)π(F ). The congestion of the flow g

is defined as:

ρ(g) = `(g) max
T=(M,M ′)

 1
π(M)P (M,M ′)

∑
p3T

g(p)


where `(g) is the length of the longest path p such that g(p) > 0. Note, the summation

is over all p ∈ ∪I,FPIF , and T is restricted to be an edge of the Markov kernel so that

P (M,M ′) > 0.

This implies the following bound on the mixing time, from [79],

τx(δ) ≤ ρ(g)(log π(x)−1 + log δ−1).
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Multicommodity flow is a generalization of the canonical paths method [24, 79] where

all the flow between two states is sent along a single path.

Two auxiliary techniques we make use of are Comparison and Decomposition, which are

methods for bounding the spectral gap of one Markov chain in terms of the spectral gap of

related Markov chains.

2.4 Comparison

The comparison theorem of Diaconis and Saloff-Coste [23] is useful in bounding the mixing

time of a Markov chain when the mixing time of a related chain on the same state space is

known.

Let M1 and M2 be two Markov chains on Ω. Let P1 and π1 be the transition matrix

and stationary distributions of M1 and let P2 and π2 be those of M2. Let E(P1) = {(x, y) :

P1(x, y) > 0} and E(P2) = {(x, y) : P2(x, y) > 0} be sets of directed edges. For x, y ∈ Ω

such that P2(x, y) > 0, define a path γxy, a sequence of states x = x0, · · · , xk = y such that

P1(xi, xi+1) > 0. Let Γ(z, w) = {(x, y) ∈ E(P2) : (z, w) ∈ γxy} denote the set of endpoints

of paths that use the edge (z, w).

Theorem 2.3. (Diaconis and Saloff-Coste [23])

Gap(P1) ≥ 1
A
·Gap(P2),

where

A = max
(z,w)∈E(P1)

 1
π1(z)P1(z, w)

∑
Γ(z,w)

|γxy|π2(x)P2(x, y)

 .

2.5 Decomposition

Decomposition theorems are useful for breaking a complicated Markov chain into simpler

chains that are easier to analyze [62, 66, 50]. Let M be a Markov chain with transition

matrix P . Let Ω1, · · · ,Ωm be a disjoint partition of Ω. For each i ∈ [m], define the Markov

chain Mi on Ωi whose transition matrix Pi, the restriction of P to Ωi is defined as

• Pi(x, y) = P (x, y), if x 6= y and x, y ∈ Ωi;
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• Pi(x, x) = 1−
∑

y∈Ωi,y 6=x
Pi(x, y), ∀x ∈ Ωi.

The stationary distribution of Mi is πi(A) = π(A∩Ωi)
π(Ωi)

. Define the projection P to be the

transition matrix on the state space [m]:

P (i, j) =
1

π(Ωi)

∑
x∈Ωi,y∈Ωj

π(x)P (x, y).

The decomposition theorem says that the spectral gap of the chain M is at least one

half the product of the spectral gap of the projection chain and the spectral gap of the

slowest restriction chain.

Theorem 2.4. (Martin and Randall [66])

Gap(P ) ≥ 1
2
Gap(P )

(
min
i∈[m]

Gap(Pi)
)
.
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CHAPTER III

A SIMULATED ANNEALING ALGORITHM FOR

RANDOMLY GENERATING BINARY CONTINGENCY

TABLES

3.1 Introduction and Motivation

Given a pair of non-negative integer sequences r = r1, . . . , rn and c = c1, . . . , cm, a binary

contingency table satisfying the sequences r, c is a 0-1 matrix where the i-th row sums to

ri and the j-th column sums to cj , for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. We can also think of

the binary contingency table as the adjacency matrix of a bipartite graph G = U ∪ V with

vertex set U = {u1, . . . , un} indexing the rows and V = {v1, . . . , vm} indexing the columns.

Then the vertices ui have degree ri and the vertices vj have degree cj . We will use the

matrix and graph views interchangeably throughout.

Gale and Ryser gave a necessary and sufficient condition on the row and column sums

for such a matrix to exist. For 0 ≤ k ≤ max(n,m) = M , let c∗k be the number of column

sums that are at least as large as k.

Theorem 3.1 ([33, 76]). There is a binary contingency table with row sums r1 ≥ · · · ≥ rn

and column sums c1 ≥ · · · ≥ cn if and only if for each 1 ≤ k ≤M ,

k∑
i=1

ri ≤
k∑
i=1

c∗i (3)

where ri or ci are 0 if i ≥ n or m respectively.

Clearly this condition can be checked in time that is polynomial in n and m. It is well

known that a simple greedy algorithm can be used to construct a matrix with the given

row and column sums (if one exists) in polynomial time. In his paper, Ryser remarks that

a more difficult problem is to determine the number of such matrices N(r, c). Interestingly,

it is not known to be #P-hard to compute N(r, c). However, at this time, all algorithms
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for computing N(r, c) obtain only approximations to it, and are randomized. Thus it may

very well be that there is a deterministic algorithm for computing N(r, c) exactly which has

so far eluded us. In addition to computing N(r, c), we are also interested in the problem of

generating a uniformly random bipartite graph with a given degree sequence.

Counting and sampling the number of binary contingency tables satisfying given marginals

is an important problem in statistics [21, 22]. The number of binary contingency tables sat-

isfying given marginals can be used to analyze the dependence between variables in the

data that the table represents [77, 6]. In the theory of random graphs, an algorithm for

generating a random graph with given degrees is useful if one wants to make a statement

about typical properties of such graphs [54].

3.2 Previous Algorithmic Work

There have been two broad approaches to randomly generating bipartite graphs with a

given degree sequence. In the Markov chain Monte Carlo approach, the idea is to define a

Markov chain on the space of desired graphs so that after running the chain a sufficiently

long time, we generate graphs with the required degrees almost uniformly at random.

The second approach has focused on defining efficient algorithms for generating a graph

with the required degrees with exactly uniform probabilities. For example, a naive method,

which is far from efficient, is to randomly, with equal probability choose each entry in the

matrix to be 0 or 1 and reject the matrices which violate the required marginals. Clearly,

every matrix is generated with the same probability.

Both the above methods have been applied to the problem of randomly generating graphs

with a given degree sequence, i.e., without the bipartiteness restriction. In most cases there

is a natural extension of the algorithm to the case when we restrict to bipartite graphs, so

for simplicity, we only state the results for graphs.

Jerrum and Sinclair use a Markov chain approach in [45] to generate graphs with given

degrees approximately uniformly at random. The Markov chain M1 they defined (a weighted

version of which will be the basis of our algorithm, see Section 3.6) uses auxiliary states

which are graphs with degrees close to the required degrees. They show that if the degree
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sequence is stable, that is, under small perturbations of r, c, the number of graphs does not

change by more than a polynomial in the number of vertices, then M1 mixes in polynomial

time. The same arguments can be extended to the bipartite graph sampling problem. There,

examples of stable degree sequences include regular degrees, when for all i, j, ri = cj ; and

“bounded” sequences, when for all i, j, ri, cj ≤
√
n. In fact the regularity condition for

bipartite graphs can be relaxed to the degrees being regular in one bipartition, but not

necessarily the other.

A second Markov chain M2 can be defined on the space of binary contingency tables,

which chooses two columns and two rows and attempts to add the matrix 1 −1

−1 1


to the 2× 2 matrix defined by the chosen rows and columns. This is known as the Diaconis

or “switch” Markov chain. It can be shown that these moves connect the space of all the

tables with the given marginals. Kannan, Tetali and Vempala [52] showed that M2 mixes

in polynomial time for regular sequences; for sequences where ri = cj = d and m = n, the

mixing time of the chain is bounded by O∗(n13d13), neglecting logarithmic factors.

Observe that in the bipartite graph corresponding to a 0-1 table, moves of M2 pick

two vertices in each of the bipartitions, say i1, i2 and j1, j2 and attempt to add the edges

(i1, j1), (i2, j2) and delete the edges (i1, j2), (i2, j1). The move succeeds if and only if there

are exactly two edges in the induced subgraph, and it “switches” how the vertices are

connected. Cooper, Dyer and Greenhill [19] show that the analogous Markov chain on

graphs with the required degree sequence that performs switches of pairs of edges mixes in

polynomial time. They obtain a mixing time of O∗(n9d16) for the Markov chain.

The first polynomial time algorithm for approximating N(r, c) was given by Jerrum,

Sinclair and Vigoda in [47], where they give an FPRAS for estimating the permanent of

a 0-1 matrix. It is known by a reduction due to Tutte [86] that computing N(r, c) can

be reduced to computing the permanent of a 0-1 matrix. The basis of their algorithm is a

Markov chain which can also be used to approximately uniformly generate random bipartite

graphs with the given degree sequences. The reduction from a degree sequence of size n+m
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results in a permanent computation for a matrix of size O(n2 +m2). Combined with recent

improvements for the running time of the permanent algorithm in [8], this results is a mixing

time of O∗(n14).

The mixing times of the above Markov chains are large polynomials and would have to

be tightened much more before there is any hope of practical MCMC algorithms. Next, we

discuss two alternative methods of random generation, using the configuration model and

importance sampling, both of which usually have very reasonable running times.

3.2.1 The Configuration Model

Consider the following simple algorithm of Bender and Canfield and Bollobás [5, 11] for

generating a random regular graph with degree d. Clone each vertex into d copies and take

a random perfect matching on the resulting nd vertices. Next, shrink all the clones into

one vertex, resulting in a multigraph. It is not difficult to see that all simple graphs can be

constructed in an equal number of ways. If we reject the sample if the graph is not simple,

this would give the correct distribution over graphs. Unfortunately, the probability of the

graph being simple is bounded by e−d
2/4, so the sampling algorithm would be polynomial

only if d = O(ln1/2(n)).

To go beyond the low degree barrier, Steger and Wormald [82] defined a modification

to the configuration model which builds the random matching one edge at a time, avoiding

loops and multiple edges. For this algorithm, the difficulty is in showing that the distribution

over simple graphs obtained is uniform. Steger and Wormald showed that the distribution

was uniform for degrees d = o(n1/28). Kim and Vu [54] improved this and demonstrated

that for d = o(n1/3) the distribution is asymptotically uniform. They conjecture that the

distribution is uniform even beyond o(n1/3). The running time of this algorithm is only

O(nd2). These arguments can usually be extended to the case of non-regular degrees,

though the analysis becomes complicated and there may be restrictions on the deviations of

the degrees from the average. This approach for random generation also has the attraction

that it can be used to prove properties of random regular graphs, which is not the case for

MCMC algorithms.
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3.2.2 Importance Sampling

Importance sampling is a general purpose technique that is used to reduce the variance of

an estimator for a quantity [58]. Suppose that our objective is to estimate the expectation

of a function f on Ω with respect to the distribution π. The expectation is given by

f = Eπ[f ] =
∑
x∈Ω

f(x)π(x)

and can be estimated by taking samples x1, · · · , xn drawn according to the distribution π

and computing

n∑
i=1

f(xi)π(xi).

In the limit, as the number of samples n → ∞, the above quantity will converge to the

expectation f . However, the number of samples that must be taken in order to approximate

f depends on the variance of the estimator.

Instead, suppose we draw the xi according to another distribution µ on Ω. Then, f ·π
µ is

an estimator for f since

Eµ

[
f · π
µ

]
=
∑
x∈Ω

f(x) · π(x)
µ(x)

µ(x) = f

A guideline for choosing µ is to put more weight where π is concentrated and f is also

large. For example, if µ had the same shape as f · π, then the variance of the estimator

would be zero. In practice, importance sampling with a distribution µ may also be useful if

it is not known how to generate samples according to the distribution π, but we still wish

to estimate f .

If the function f over the space of binary contingency tables is uniform and takes value

1/N(r, c), then its expectation is just the number of tables N(r, c). In order to estimate

N(r, c), Chen et al., [16] proposed a sequential importance sampling algorithm where the

columns are filled in sequentially according to a distribution given by asymptotics for the

number of 0-1 contingency tables [38] (the resulting distribution over tables is the im-

portance sampling distribution). Subsequently Blanchet [10] analyzed the proposed algo-

rithm and showed that it can be used to generate uniformly random bipartite graphs with
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dmax = o(D1/4) in time O(D2), where D is the number of edges in the graph. Bayati,

Kim and Saberi [4] give a very efficient importance sampling algorithm when the maximum

degree is dmax = O(D1/4−ε). The expected running time of their algorithm is O(Ddmax).

Importance sampling is used widely in practice, often without rigorous guarantees and

Bezáková et al., in [8], show that examples can be constructed which violate the regular-

ity conditions above, where importance sampling will require exponentially many trials to

produce a good estimate of N(r, c).

Our emphasis is on algorithms that are provably efficient for arbitrary degree sequences.

More precisely, we are seeking an FPRAS for N(r, c). Until now, the only method known

for approximating N(r, c) was by reducing the problem to approximating the permanent

[47, 45]. We present a new algorithm for binary contingency tables with arbitrary degree

sequences, by directly exploiting the combinatorial structure of the problem. The resulting

algorithm is faster than permanent-based algorithms, although it is still far from practical.

3.3 High Level Description of the Algorithm

Our algorithm is very much inspired by the permanent algorithm of Jerrum, Sinclair, and

Vigoda [47], but requires an interesting algorithmic twist. The new algorithmic idea relies

on a combinatorial property of bipartite graphs satisfying a given degree sequence.

The basis of our algorithm is a Markov chain which walks on bipartite graphs with the

desired degree sequence and graphs with exactly two deficiencies. We say a graph has a

deficiency at vertices ui and vj if they have degree r(i) − 1 and c(j) − 1, respectively, and

all other vertices have the desired degree. The number of graphs with the desired degree

sequence might be exponentially fewer than the number of graphs with two deficiencies (see

[52] for an explicit example). Thus, we need to weight the random walk defined by the

Markov chain so that graphs with the desired degree sequence are “likely” in the stationary

distribution.

Let w(i, j) denote the ratio of the number of graphs with the desired degree sequence

versus the number of graphs with deficiencies at ui and vj . It turns out that given rough

approximations to w(i, j), for all i, j, the Markov chain weighted by these ratios quickly
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reaches its stationary distribution, and samples from the stationary distribution can then

be used to get arbitrarily close estimates of w(i, j). This type of bootstrapping procedure

for recalibrating the ratios w(i, j) was central to the algorithm for the permanent.

For the permanent there is an analogous Markov chain on perfect matchings and match-

ings with at most two unmatched vertices (or holes) where the corresponding ratios, denoted

as ŵ(i, j), are the number of perfect matchings divided by the matchings with holes at ui, vj .

In the case of the permanent, a bootstrapping algorithm for computing the ratios ŵ yields

a natural simulated annealing algorithm. Consider an unweighted bipartite graph G that

we wish to compute the number of perfect matchings of. In the complete bipartite graph,

denoted as G0, it is trivial to exactly compute the ratios ŵ(i, j) for every i, j. From G0, we

then slightly decrease the weight of edges not appearing in G, constructing a new weighted

graph G1. Using ŵ for G0 we use the bootstrapping to closely estimate ŵ for G1. Then

we, alternately, decrease (slightly) the weight of non-edges of G creating a new graph Gi,

and then use the estimates of ŵ for Gi−1 to bootstrap ŵ for Gi. A crucial element of this

algorithmic approach is that the quantities ŵ(i, j) are trivial to compute in the initial graph,

which in this case is the complete bipartite graph.

For contingency tables, what is a starting instance where we can easily estimate the

corresponding ratios w(i, j)’s? Recall that our final goal is to sample subgraphs of the

complete bipartite graph with a given degree sequence. It is not clear that there is some

trivial graph which we can use to start the simulated annealing algorithm. This is the key

problem we overcome.

We prove that if we construct a graph G∗ with the desired degree sequence using a

particular Greedy algorithm, then we can estimate the ratios w(i, j) in the weighted com-

plete bipartite graph where edges of G∗ have weight 1 and non-edges have sufficiently small

(non-zero) weight (call this graph G0). Our aim is to estimate the ratios when all the edge

weights are 1. Once we have estimated the ratios for G0, they can be used to bootstrap the

annealing algorithm in order to compute the ratios for the graphs G1, G2 · · · with larger

and larger weights on the non-edges of G∗, until the edge weights are all 1. A high-level

outline of the bootstrapping algorithm to compute the ratios is shown in Figure 1 and a
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Bootstrapping Algorithm.
Input: Degree sequences r, c and parameters 0 < ε < 1.
Output: A 1± ε approximation to the ratios w(i, j).

1. Initialize k = 0, λ0 = ε(nm)−D.

2. Let Gk be the weighted graph with edges weights of 1 on the
edges of G∗ and λk on the non-edges.

3. For each pair i, j, compute a 1 ± ε approximation to w(i, j) for
G0, denoted by w0(i, j).

4. While λk ≤ 1, for each i, j such that there are graphs with
the required degree sequence with deficiencies at ui and vj,

• Let λk+1 = λk

(
1 + ln(21/4)

D

)
.

• Start with a constant factor approximation to wk+1 by
setting wk+1(i, j) := wk(i, j).
• Boost the constant factor approximation to wk+1(i, j) to a

(1 ± ε) factor approximation by sampling.

• Set k := k + 1.

Figure 1: Bootstrapping algorithm

more precise description can be found in Sections 3.4.3 and 3.7.1 (it may be helpful to skim

these before proceeding).

The algorithm to estimate the ratios for G0 follows from the following property of G∗.

For every pair of vertices ui, vj , there is a short alternating path between ui and vj , or there

is no graph with the degree sequence with deficiencies at ui, vj . (An alternating path is a

path which alternates between edges and non-edges of G∗.) Moreover, the alternating path

is of length at most 5, which implies an easy algorithm to count the number of minimum

length alternating paths. This in turn gives a polynomial time algorithm for estimating

the ratios w(i, j) to within a small relative error if the weights on the non-edges of G∗ are

sufficiently small. The above combinatorial fact is the main result of this work. Interestingly

this combinatorial property fails to hold for many other natural variants of Greedy and max-

flow algorithms for constructing a graph with a specified degree sequence.

The algorithmic consequence of our work is an O((nm)2D3dmax log5(n + m)) time al-

gorithm to approximately count the number of bipartite graphs with the desired degree

sequence, where D =
∑
r(i) =

∑
c(j) is the total degree (or total number of edges) and
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dmax = max{maxi r(i),maxj c(j)} is the maximum degree. In the worst case this translates

to an O(n11 log5 n) algorithm for an n × n matrix since D = O(n2) and dmax = O(n).

Moreover, we can count subgraphs with the given degrees of any input graph, rather than

only the complete bipartite graph (see Section 3.4.5 for a discussion of this extension). The

following is a precise statement of our main result.

Theorem 3.2. For any labeled bipartite graph G = (U ∪V,E) where U = {u1, . . . , un} and

V = {v1, . . . , vn}, any degree sequence r(1), . . . , r(n); c(1), . . . , c(m), and any 0 < ε, η < 1,

we can approximate the number of labeled subgraphs of G with the desired degree sequence

(i.e., ui has degree r(i) and vj has degree c(j), for all i, j) in time O((nm)2D3dmax log5(nm/ε)

ε−2 log(1/η)) where D =
∑

i r(i) =
∑

j c(j) is the total degree and dmax = max{maxi r(i),

maxj c(j)} is the maximum degree. The approximation is guaranteed to be within a multi-

plicative factor (1± ε) of the correct answer with probability ≥ 1− η.

The permanent is a special case of the problem statement in Theorem 3.2 when m = n

and for 1 ≤ i ≤ n, ri = ci = 1. In fact, the problem statement is not a generalization of the

permanent, but is equivalent to it, since it can be reduced to computing the permanent by

a reduction similar to the Tutte reduction. However, as mentioned, the reduction causes

a quadratic increase in the size of the instance. The running time of our algorithm when

the degrees are all constant is O(n7 log5 n) which matches the running time of the fastest

algorithm for the permanent [8].

In Section 3.4 we give the basic definitions and present a high level description of our

simulated annealing algorithm. This section aims to motivate our work on the particular

variant of the Greedy algorithm we study. We prove our main result about short alternating

paths in the graph constructed by a particular variant of Greedy in Section 3.5. In Section

3.6 we analyze the mixing time of the Markov chain which is used in the simulated annealing

algorithm. We conclude with the details of the simulated annealing algorithm in Section 3.7.

For completeness we sketch the standard reduction from counting to sampling in Section

3.8. Finally we give a breakup of the running time stated in Theorem 3.2 in Section 3.9.

32



3.4 Preliminaries

3.4.1 Definitions

We use U and V to denote the partitions of vertices of the bipartite graph on n+m vertices.

The desired degree sequences are denoted by r and c where r : U → N0, c : V → N0, and

N0 is the set of non-negative integers.

For every vertex v ∈ V (G), let N(v) denote its neighborhood and let N(v) = V \N(v)

if v ∈ U , and N(v) = U \N(v) if v ∈ V . We will use a and u to denote vertices in U and b

and v to denote vertices in V .

Definition 3.2.1. We say that a bipartite graph with partitions U , V corresponds to the

degree sequences r : U → N0, c : V → N0 if deg(a) = r(a) for every a ∈ U and deg(b) = c(b)

for every b ∈ V . A pair of degree sequences r, c is feasible if there exists a corresponding

bipartite graph.

Let P = P(r, c) be the set of all graphs corresponding to r, c. Recall, our overall aim

is to approximate |P|. By a standard reduction [48] this can be done by sampling almost

uniformly at random from P.

It is easy to construct a graph with the desired degree sequence, or determine that no

such graph exists, using a Greedy algorithm (of which there are many valid variants) or a

max-flow algorithm. We study one such variant of Greedy in Section 3.5. Hence, we can

assume that r, c defines a feasible degree sequence.

In our simulated annealing algorithm, graphs with the desired degree sequence, except

at two vertices, called holes (or deficiencies), will play a central role. This is akin to the

role of near-perfect matchings in algorithms for the permanent.

Definition 3.2.2. Let u ∈ U, v ∈ V and let r, c be a pair of degree sequences on U , V . We

define degree sequences with holes at u, v as follows:

r(u)(a) :=

 r(a) if a 6= u

r(a)− 1 if a = u
c(v)(b) :=

 c(b) if b 6= v

c(b)− 1 if b = v

We say that u, v is a pair of feasible holes for the degree sequences r, c if the pair of

sequences r(u), c(v) is feasible.
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Let N (u, v) be the set of all graphs corresponding to r(u), c(v) where u ∈ U , v ∈ V , and

let N = ∪u,vN (u, v). Let Ω = Ω(r, c) = P ∪N .

3.4.2 High-level Description of the Annealing

We give a rough description of the simulated annealing algorithm for binary contingency

tables. This is not the novel aspect of the algorithm as it is very much inspired by algorithms

for the permanent. Our emphasis in this section is to motivate our main result about the

graph constructed by the Greedy algorithm.

The simulated annealing algorithm will consider a sequence of activities on edges of the

complete bipartite graph, i.e., for all pairs (x, y) where x ∈ U, y ∈ V . There will be a

subgraph corresponding to the Greedy algorithm which always has activity 1 on each edge,

and the other edges will initially have activities λ ≈ 0, and these edges will slowly increase

their activities to λ = 1. More precisely, let G∗ denote the graph with the desired degree

sequence constructed by Greedy algorithm which is formally defined in Section 3.5. (The

details of this graph are not relevant at this stage.) For a positive parameter λ, we define

the activity of edge e = (x, y), x ∈ U , y ∈ V , as:

λ(e) =

 1 if e ∈ E(G∗)

λ if e 6∈ E(G∗)

The activity of a graph G ∈ Ω is then defined as:

λ(G) =
∏

e∈E(G)

λ(e) = λ|E(G)\E(G∗)|

Finally, the activity of a set of graphs is λ(S) =
∑

G∈S λ(G).

3.4.3 Bootstrapping

A key quantity is the following collection of ideal weights:

w∗λ(u, v) =
λ(P)

λ(N (u, v))

These weights are “ideal” in the sense that given close approximations to them, there is

a Markov chain which can be used to efficiently generate samples from P weighted by

λ. Thus, using these ideal weights for λ = 1 we can efficiently sample graphs with the

34



desired degree sequence. Given rough approximations to the ideal weights w∗ (say within a

constant factor), samples from the Markov chain can be used to boost these weights into an

arbitrarily close approximation of the ideal weights. This is the bootstrapping procedure

and the same approach was used for the approximation of the permanent.

Using the bootstrapping procedure (further details of which can be found in Section

3.7.1) to refine rough estimates of the ideal weights we can obtain a simulated annealing

algorithm for sampling binary contingency tables. We start with λ0 close to 0 (specifically

with λ0 = ε(nm)−D), where D is the total number of edges. For a particular choice of G∗,

it turns out to be possible to compute a (1± ε) approximation of the ideal weights w∗λ0
in

a straightforward manner. We will then raise λ slightly to a new value λ1. For example,

suppose we set λ1 =
(
1 + ln(21/4)/D

)
λ0. Then for any graph G, λ1(G) is within a factor

of 21/4 of λ0(G). This implies that λ1(P) and λ1(N (u, v)) will be within a factor of 21/4

respectively of λ0(P) and λ0(N (u, v)). Then, the ideal weights w∗λ0
for λ0 will be a

√
2-

approximation to the ideal weights for λ1. We use the bootstrapping procedure to boost

these to get arbitrarily close estimates of w∗λ1
. We can then continue to alternately raise

λ by a factor
(
1 + ln(21/4)/D

)
, and then bootstrap new estimates of the ideal weights. In

O(D2 log(mn)) steps, λ becomes 1 and we will have a suitable approximation of the ideal

weights for λ = 1. It turns out that we can use a more efficient algorithm for updating λ,

so that the ideal weights are still constant factor approximations for the successive ideal

weights, see Section 3.7.2.

Algorithms for the permanent use a similar simulated annealing approach, but instead

start at the complete bipartite graph and slowly remove edges not appearing in the input

graph. We instead start at a graph which depends on the desired degree sequence. We then

slowly add in non-edges until we reach the complete bipartite graph. In some sense we are

doing a reverse annealing.
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3.4.4 Estimating Initial Weights

Now we can address how we estimate the ideal weights for λ sufficiently small. Note, λ(P)

and λ(N (u, v)) are polynomials in λ. In particular,

λ(P) =
D∑
k=0

pkλ
D−k,

where pk denotes the number of graphs corresponding to r, c which contain exactly k edges

of G∗. Similarly,

λ(N (u, v)) =
D−1∑
k=0

pu,vk λD−1−k,

where pu,vk is the number of graphs corresponding to r(u), c(v) which contain exactly k edges

of G∗.

For λ sufficiently small, to approximate λ(N (u, v)), it suffices to determine the leading

non-zero coefficient, i.e., pu,vj such that pu,vk = 0 for k > j. Note that the sum of all the

coefficients in the polynomial is at most (nm)D. Then, for λ ≤ ε/(nm)D, for some ε > 0,

we claim that xu,v = pu,vj λD−1−j is a (1 + ε) approximation to λ(N (u, v)). Formally,

xu,v ≤ λ(N (u, v)) = xu,v +
j−1∑
k=0

pu,vk λD−1−k

≤ xu,v + λD−j
j−1∑
k=0

pu,vk

≤ xu,v + ελD−j−1

≤ (1 + ε)xu,v

The second to last inequality follows because λ(nm)D ≤ ε. The last inequality follows

since xu,v ≥ λD−1−j .

The graph G∗ constructed by Greedy has degree sequence r, c, and hence it has exactly

one subgraph (G∗ itself) that has this degree sequence. Thus, the constant term of λ(P)

is 1 and we can approximate λ(P) by 1. For u ∈ U, v ∈ V , if (u, v) ∈ E(G∗), then the

subgraph with edges E(G∗) \ (u, v) has holes at u, v, and this is the only subgraph with

degree sequence r(u), c(v). In this case we can also approximate λ(N (u, v)) by 1.
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If (u, v) 6∈ E(G∗), then there is no subgraph of G∗ with holes at u, v, i.e., degree sequence

r(u), c(v) so that pu,vD−1 = 0. Note, we cannot approximate λ(N (u, v)) by 0, since we need an

approximation that is close within a multiplicative factor. We instead need to determine a

non-zero coefficient of lowest degree in the polynomial. Since pu,vk is the number of graphs

corresponding to r(u), c(v) with exactly k edges of G∗, the degree of the leading non-zero

term in λ(N (u, v)) is ` where 2`+ 1 is the length of the shortest alternating path between

u and v in G∗. We prove that for our particular choice of G∗, for every u, v there is an

alternating path from u to v of length at most 5, or u, v are infeasible holes (in which case

we do not need to consider their polynomial). Since these alternating paths are so short, in

polynomial time we can simply enumerate all possible such paths, and exactly determine

the leading non-zero coefficient, thereby obtaining a good approximation to λ(N (u, v)).

This will result in the following theorem, whose proof we present in section 3.5.

Theorem 3.3. Let r, c be a feasible degree sequence and let ε > 0 and λ ≤ ε
(nm)D

. There

exists a graph G∗ (independent of ε and λ) such that for any pair of feasible holes u, v we

can compute a weight w(u, v) satisfying

(1− ε)w(u, v) ≤ w∗λ(u, v) ≤ (1 + ε)w(u, v).

in time O(nmd2
max). Overall, the construction of G∗ together with the computation of w(u, v)

for all feasible holes u, v takes time O((nmdmax)2).

3.4.5 Subgraphs of Arbitrary Input Graph

The above high-level algorithm description applies to the contingency tables problem, where

we are generating a random subgraph of the complete bipartite graph Kn,m with the desired

degree sequence. Our approach extends to subgraphs of any bipartite graph G = (V,E).

The general algorithm proceeds as in Section 3.4.2. Thus, regardless of G, we construct

G∗ using the Greedy algorithm and approximate the initial weights. For non-edges of G∗,

their activity is slowly raised from λ ≈ 0 to λ = 1. At this stage all edges have activity λ = 1,

and thus we can generate random subgraphs of Kn,m with the desired degree sequence.

Then for non-edges of G, i.e., (u, v) 6∈ E, we slowly lower their activity from λ(u, v) = 1 to

λ(u, v) ≈ 0.
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Lowering the activities is analogous to raising the activities, and simply requires that

the weights w∗ at the previous activities can be used to bootstrap the weights w∗ at the

new activities. Finally, the algorithm ends with close approximations to the weights w∗ for

the graph with activities of λ(u, v) = 1 for all (u, v) ∈ E and λ(u, v) ≈ 0 for all (u, v) 6∈ E.

Therefore, we can generate random subgraphs of G with the desired degree sequence.

3.4.6 Analysis Details

The analysis of the Markov chain underlying the simulated annealing algorithm requires

considerable technical work. It combines many of the ideas in the recent works of Cooper,

Dyer and Greenhill [19], Kannan, Tetali and Vempala [52], Jerrum, Sinclair and Vigoda

[47], and Bezáková et al. [8]. This analysis is contained in Section 3.6. In Section 3.7 we

give the details of the simulated annealing algorithm and analyze its running time. In the

next section we prove Theorem 3.3.

3.5 Greedy graph

In this section we prove that in the graph constructed by a variant of the greedy algorithm,

that we call Greedy, for all u, v, either there is a short alternating path from u to v or

there is no graph with holes at u, v. This immediately implies Theorem 3.3. The variant of

the greedy algorithm we analyze uses a specific rule to break ties which will be described

shortly,

Definition 3.3.1. Let G = (U, V,E) be a bipartite graph with partitions U, V and edge set

E, and let u ∈ U , v ∈ V . We say that there exists an alternating path from u to v of

length 2k+ 1, if there exists a sequence of vertices u = w0, w1, . . . , w2k, w2k+1 = v such that

w2i ∈ U,w2i+1 ∈ V and (w2i, w2i+1) ∈ E for every i ∈ {0, . . . , k}, and (w2i−1, w2i) /∈ E for

every i ∈ {1, . . . , k}.

The Greedy algorithm depends on an ordering of the vertices. We need an ordering

which is consistent with the degree sequence in the following sense.

Definition 3.3.2. Fix c : V → N0 and let π be a total ordering on V . We say that π

is consistent with c, if for every b1, b2 with c(b1) > c(b2), vertex b1 precedes b2 in π (i.e.
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b1 ≺π b2).

We now define the Greedy algorithm which is the focus of our analysis. It can be viewed

as a recursive procedure which matches the highest degree vertex in U , say x, to r(x) highest

degree vertices in V . Then the procedure recurses on the residual degree sequence obtained

from the original sequence by setting the degree of x to zero and decrementing the degrees

of all its neighbors, until all residual degrees equal zero. However, we need to specify how to

break ties when two vertices have the same residual degree. This turns out to be the crucial

aspect of our algorithm. For this purpose we introduce an additional parameter of the

algorithm, a preference relation π which is initially consistent with c. For the recursive call

we use a relation π̂ induced by π on the residual sequence ĉ. Here is the formal description

of the algorithm:

Procedure Greedy(r, c, π),

Input: r : U → N0, c : V → N0 are degree sequences and π is a total ordering on V

consistent with c

• Let G = (U, V, ∅) be a bipartite graph with partitions U , V and no edges.

• If
∑

a∈U r(a) 6=
∑

b∈V c(b), return “Sequences not feasible”.

• If
∑

a∈U r(a) = 0, return G.

• Let x ∈ U be a vertex for which r(x) is maximum (if there is more than one, choose

arbitrarily).

• Let Y ⊆ V be the first r(x) vertices in the ordering π.

• If Y contains a vertex of degree 0, return “Sequences not feasible”.

• For every y ∈ Y , add the edge (x, y) to G.

• Let Ĝ := Greedy(r̂, ĉ, π̂), where

r̂(a) =


r(a) a ∈ U \ x

0 a = x

ĉ(b) =


c(b)− 1 b ∈ Y

c(b) b ∈ V \ Y

and π̂ is a total ordering on V defined by: b1 ≺π̂ b2 if and only if ĉ(b1) > ĉ(b2) or

ĉ(b1) = ĉ(b2) and b1 ≺π b2.

• Add the edges of Ĝ to G and return G.
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Figure 2: The Greedy graph
on the sequence (1, 2, 2, 3, 4, 5, 7),
(1, 2, 2, 3, 4, 5, 7).

Now we are ready to present the main combinatorial result. We claim that in the graph

constructed by Greedy there is a short (constant-length) alternating path between any two

feasible holes. One such graph is depicted in Figure 2. It shows a pair of feasible vertices

a5, b5 and an alternating path a5, b2, a6, b6, a2, b5 between them of length 5. Notice that

the holes a7, b7 are infeasible, thus there is no alternating path between them. In contrast

with our main result, in Proposition 3.9 at the end of this section, we construct a family

of graphs which require alternating paths of linear length for certain pairs of holes. Each

graph in this family is an output of a greedy algorithm which breaks ties arbitrarily.

Theorem 3.4. Let r, c be a pair of feasible degree sequences and let π be a total ordering on

V consistent with c. Let G = (U, V,E) be the graph constructed by Greedy(r, c, π). Then

for any pair of feasible holes u ∈ U , v ∈ V in G there exists an alternating path from u to

v of length ≤ 5.

Proof. We prove the theorem by induction on the number of non-zero entries in r. In the

base case, there is a single non-zero entry in r. For any pair of feasible holes u, v, the

non-zero entry is r(u) and G contains the edge (u, v). Thus u, v forms an alternating path

of length 1.

For the inductive hypothesis, assume that the theorem is true for every triple (r′, c′, π′),

where r′, c′ are feasible degree sequences, r′ contains fewer non-zero entries than r, and π′

is a total ordering consistent with c′. Let u ∈ U , v ∈ V be a pair of feasible holes for r, c.

Suppose that U = {a1, . . . , an} and the edges adjacent to ai ∈ U are added in the i-th
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Figure 3: u = a1 and v ∈ Y

v

z

w

1u = a

Y

Figure 4: u = a1 and v ∈ V \ Y

iteration (or recursive call) of Greedy(r, c, π). We say that this is the recursive call when

ai is processed. In the first recursive call x = a1. Recall that Y denotes the set of a1’s

neighbors.

• If u = a1, we construct a short alternating path from u to v as follows (Figures 3,4).

– If v ∈ Y , then (u, v) is an edge in G and thus u, v forms an alternating path of

length 1.

– If v /∈ Y , let w be any neighbor of v. Such a neighbor exists since deg(v) > 0,

since u, v are feasible holes. Since u is the vertex of the highest degree, deg(w) ≤

deg(u). Hence there exists a vertex z ∈ Y which is not a neighbor of w. (If

not, then deg(w) ≥ 1 + |Y | > deg(u), a contradiction.) Then u, z, w, v forms an

alternating path of length 3.

• Suppose u 6= a1. Recall that r̂, ĉ are the reduced degree sequences corresponding to
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Figure 5: u has a neighbor b ∈ V \Y

the graph Ĝ obtained from G by removing all edges adjacent to a1.

– If u, v are also feasible holes for r̂, ĉ, then we may use the inductive hypothesis

to conclude that there exists an alternating path from u to v in Ĝ of length ≤ 5.

Note that the correctness of Greedy and the assumption that r, c are feasible

imply that r̂, ĉ are feasible sequences, and π̂ is consistent with ĉ by definition.

Hence we can indeed apply induction. Since G and Ĝ differ only in edges adjacent

to a1 and the path in Ĝ does not use a1 (because ĉ(a1) = 0), the path is also an

alternating path of length ≤ 5 in G.

– Suppose that u, v are not feasible holes for r̂, ĉ. We use the following claim:

Claim 3.5. If u, v are not feasible holes for r̂, ĉ, then v ∈ Y is of degree c(v) = 1

and there exists v′ ∈ V \ Y also of degree c(v′) = 1.

Before we prove the claim, we check what it implies about the existence of a

short alternating path between u and v.

By the claim, v ∈ Y and there exists another v′ ∈ V \Y with c(v) = c(v′) = 1. If

u has an edge to a vertex b ∈ V \ Y , then u, b, a1, v forms an alternating path of

length 3 (see Figure 5). Therefore, we may assume that all of u’s neighbors lie in

Y . Let rj , cj be the residual degree sequences just before the greedy algorithm for

r, c starts adding edges adjacent to u = aj (i.e., rj , cj are Greedy’s inputs to the

recursive call in which u is processed). In other words, rj , cj are the parameters

of the j-th recursive call originated from Greedy(r, c, π). Let b be a vertex of

the highest remaining degree in V \Y at the start of the j-th recursive call (notice
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Figure 6: Vertex b ∈ V \ Y of resid-
ual degree ≥ 1

that V \ Y is nonempty since v′ /∈ Y ). The existence of a short alternating path

follows from this claim:

Claim 3.6. If u, v are feasible, then cj(b) = 1.

The proof of the claim is included in Section 3.5.1. By the claim, for feasible u, v

there is a vertex a ∈ U adjacent to b which is processed after u (see Figure 6).

This follows from the fact that all of u’s neighbors are in Y . Hence, deg(a) ≤

deg(u), and therefore, there exists y ∈ Y which is a neighbor of u but it is not

a neighbor of a. (If not, then deg(a) ≥ 1 + deg(u), a contradiction.) Then

u, y, a, b, a1, v is an alternating path of length 5.

3.5.1 Proofs of Claims 3.5 and 3.6 and Theorem 3.3

To finish the proof of the Theorem 3.4, it remains to prove the two claims. We re-state

both claims, together with their assumptions.

Theorem 3.7 (Claim 3.5). Recall that r̂, ĉ denote the residual sequences after the greedy

algorithm matches the first vertex a1 ∈ U . Assume that u, v are feasible holes for r, c, where

u 6= a1. If u, v are not feasible for r̂, ĉ, then v ∈ Y = N(a1) and there exists a vertex

v′ ∈ V \ Y such that c(v) = c(v′) = 1.

Proof of Claim 3.5. Since u, v are feasible for r, c, there exists a graph with degree se-

quence r(u), c(v) (the sequence with holes at u, v). Let G(u,v) be the graph returned by
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Greedy(r(u), c(v), π(u,v)) where π(u,v) is the total order obtained from π by repositioning v

right after all the vertices of degree c(v) (thus v comes before all vertices of degree c(v)−1).

We will compare G(u,v) with G to establish conditions under which u, v are feasible for r̂, ĉ.

Notice that if v 6∈ Y or if v ∈ Y but c(v) > c(b) for every b ∈ V \ Y , then the neighbor-

hoods of a1 in G and G(u,v) are identical (because the first r(a1) = |Y | elements of π and

π(u,v) are the same). Thus, in this case, ĉ(v) (the sequence ĉ with hole at v) is identical to the

sequence ĉ(v), the residual sequence used in the recursive call of Greedy(r(u), c(v), π(u,v)).

Moreover, since u 6= a1, we have r̂(u) = r̂(u). By the correctness of the greedy algorithm,

r̂(u), ĉ(v) are feasible. Therefore, if a1 has the same neighbors in G and G(u,v), we can

conclude that u, v are feasible holes for r̂, ĉ.

We are left with the case when v ∈ Y and there exists v′ ∈ V \ Y of the same degree

c(v′) = c(v). We will show that if c(v) > 1, the holes u, v are feasible for r̂, ĉ. This implies

the claim.

Suppose c(v) = c(v′) > 1 for v ∈ Y and v′ ∈ V \ Y . Since u, v are feasible for r, c,

by symmetry u, v′ are also feasible for r, c. However, v′ 6∈ Y and thus, as before, we can

conclude that r̂(u), ĉ(v′) are feasible and there exists a corresponding graph H. Notice that

ĉ(v′) = c(v′)− 1 (because v′ 6∈ Y is a hole) and that ĉ(v′) = c(v)− 1 (because v ∈ Y ). Since

c(v′) = c(v) > 1, vertices v and v′ have the same non-zero degree in H. We will modify H

to obtain H ′, a graph corresponding to r̂(u), ĉ(v). This will prove the feasibility of u, v for

r̂, ĉ. To get H ′, we need to decrease the degree of v and increase the degree of v′ by one

while keeping the other degrees intact.

If there is a vertex a ∈ U which is adjacent to v but not v′ in H, we may simply set

H ′ = H ∪ (a, v′) \ (a, v). If there is no such a, then the neighborhood sets of v and v′ in

H are identical (see Figure 7). If there is a vertex y ∈ Y for which there exists a neighbor

a of v′ (and v) in H which is not adjacent to y, then we construct H ′ as follows. Since

y ∈ Y , and v′ /∈ Y is of the same degree in G as v ∈ Y , by the definition of Y we have

c(y) ≥ c(v) = c(v′). Therefore the degree of y in H is not smaller than the degree of v′

in H, i.e. ĉ(v′)(y) ≥ ĉ(v′)(v′). Thus there must exist y’s neighbor a′ in H which does not

neighbor v′. It suffices to set H ′ = H ∪ {(a, y), (a′, v′)} \ {(a, v), (a′, y)} (see Figure 7).

44



a’

Y

u

v

v’

a

y

Figure 7: Neighborhoods of v, v′ are
identical

Y

u

v

v’

a

a1

Figure 8: Every y ∈ Y is adjacent
to a

The last case happens when v and v′ share the same set of neighbors in H and every

y ∈ Y is adjacent to every neighbor of v′ (see Figure 8). By contradiction we will show that

this case never happens. Notice that since r(a) ≤ r(a1) for every a ∈ U and the degree of a

in H remains r(a) except for u 6= a1 which decreases by one, the degree of every a ∈ U in

H is upper bounded by r(a1), i.e. for all a ∈ U , r̂(u)(a) ≤ |Y |. Let a be any neighbor of v′

(by the assumption c(v′) > 1, the neighborhood set of v′ is non-empty). Then a is adjacent

to every vertex in Y ∪ {v′} and therefore r̂(u)(a) > |Y |, a contradiction.

Theorem 3.8 (Claim 3.6). Let u 6= a1 and v ∈ Y be such that c(v) = c(v′) = 1 for

some v′ ∈ V \ Y . Suppose Greedy(r, c, π) processes vertices from u in order a1, . . . , an.

Let ri, ci, πi be the parameters to the i-th recursive call of Greedy, i.e. the call when ai is

processed. Let u = aj. If cj(b) = 0 for all b ∈ V \ Y , then u, v are not feasible for r, c.
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Proof of Claim 3.6. Since c(v) = 1, for every b ∈ V \ Y we have c(b) ≤ 1. Let bmax ∈ V \ Y

be the vertex of degree 1 ordered last in π (there is at least one such vertex, since c(v′) = 1).

We create π′ by swapping the positions of v and bmax in π. Notice that this ordering is

consistent with c(v), the sequence obtained from c by decreasing the degree of v by one.

We will compare the execution of Greedy(r, c, π) and Greedy(r(u), c(v), π′) (see Figure 9).

The idea is that both executions will behave similarly, with the roles of v and bmax reversed.

Once Greedy(r, c, π) gets to matching bmax to a vertex ak from U , Greedy(r(u), c(v), π′)

will attempt to match ak to a vertex in V of residual degree zero and it will fail. Thus, by

the correctness of Greedy, u, v cannot be feasible holes for r, c. We describe the idea in

detail below.

Notice that Greedy(r, c, π) and Greedy(r(u), c(v), π′) process all vertices ai for i < j

in the same order (assume that if the second execution has multiple choices for x, it chooses

the same x as the first execution, if possible). This follows from the fact that the only

vertex whose degree is changed is vertex aj and its degree only decreased. Moreover, the

order of processing vertices of U is independent of c (or c(v)), assuming the executions do

not fail.

Let ri, ci, πi and r(u)
i , c

(v)
i , π′i be the parameters of the i-th recursive call originated from

Greedy(r, c, π) and Greedy(r(u), c(v), π′), respectively. Let ak ∈ U be the vertex matched

to bmax by Greedy(r, c, π). By the assumption of the claim, cj(bmax) = 0, and hence k < j,

i.e. ak is processed before u = aj . By induction on i one can verify that for i < k the

following hold:
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1. r(u)
i (a) = ri(a) for a ∈ U \ {u} and r

(u)
i (u) = ri(u)− 1.

2. c(v)
i (b) = ci(b) for b ∈ V \ {v, bmax}, c(v)

i (bmax) = ci(v), ci(bmax) = 1 and c
(v)
i (v) = 0.

3. Let supp(f) = {x | f(x) 6= 0}.

• If v ∈ supp(ci), then supp(ci) = supp(c(v)
i )∪{v}. The total order πi restricted to

supp(ci) and the total order π′i restricted to supp(c(v)
i )∪ {v} are identical except

that the positions of v, bmax are reversed.

• If v /∈ supp(ci), then supp(ci) \ {bmax} = supp(c(v)
i ), and the orderings πi re-

stricted to supp(ci) and π′i restricted to supp(c(v)
i )∪{v} are identical except that

bmax appears in πi where v appears in π′i.

4. For every b �πi bmax, ci(b) = 0. In words, bmax is the last vertex of degree 1 in πi, if

it is indeed of degree 1.

For the induction, the base case i = 1 is clear in each case. The case of i = 2 also follows

in each case, and it can be checked that it holds for the second claim in 3. Now assume the

claims are true up to some 2 ≤ i ≤ k − 2. We show that they hold for (i+ 1).

1. Since only the degree of ai 6= u decreases in both sequences by ri(ai) = r
(u)
i (ai).

2. Since bmax is matched only in the k-th recursive call, ci+1(bmax) = ci(bmax) = 1. Also,

c
(v)
i+1(v) = c

(v)
i (v) = 0. For i = 1, when v is matched by the outermost recursive

call of Greedy(r, c, π), bmax is matched by Greedy(r(u), c(v), π′), hence c(v)
i+1(bmax) =

ci+1(v). It follows that c(v)
i+1(b) = ci+1(b) for b ∈ V \ {v, bmax} since if the statement is

true for i and the orderings are identical on vertices of non-zero residual degree other

than v, bmax by 3., then exactly the same set of vertices are used by both in the i-th

recursive call.

3. This part is true by the definitions πi+1 = π̂i and π′i+1 = π̂′i and the fact that 1, 2,

and 3 hold for i.

4. This is clear by the definition of the orderings πi+1 and π′i+1 and the fact that

ci(bmax) = 1.
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Therefore ak is joined to the first r(ak) elements in πk by Greedy(r, c, π), and by 4. the

last of them is bmax. However, by 3., the execution of Greedy(r(u), c(v), π′) will attempt

to connect ak to v (or some vertex with remaining degree 0), which is impossible since

c
(v)
k (v) = 0. Thus, Greedy(r(u), c(v), π′) fails to construct a corresponding graph, and

hence u, v are not feasible holes for r, c.

This finishes the proof of the Theorem 3.4. As mentioned earlier, Theorem 3.3 is a

corollary of the theorem.

Proof of Theorem 3.3. We will prove that for the greedy graph G∗ for any ε > 0 and any

λ ≤ ε
(nm)D

we can efficiently estimate w∗(u, v) = λ(P)/λ(N (u, v)) (within a 1 ± ε factor)

for every feasible u, v. We have already observed that λ(P) and λ(N (u, v)) are polynomials

in λ. We will show how to approximate λ(P) and λ(N (u, v)).

First we observe, that each of λ(P) and λ(N (u, v)) has a positive small-degree coefficient.

In particular, the absolute coefficient of λ(P) is 1, since G0 is the only graph corresponding

to r, c sharing exactly D edges with G∗. Moreover, by Lemma 3.4, there exists a graph

G′ ∈ N (u, v) which can be obtained from G∗ by swapping the edges of an alternating path

of length ≤ 5. Therefore G′ shares at least D − 3 edges with G∗ and thus the coefficient of

xd for some d ≤ 2 in λ(N (u, v)) is positive. Moreover,

|P| ≤
(
nm

D

)
≤ (nm)D,

where the first inequality follows from the fact that
(
nm
D

)
counts the number of bipartite

graphs (with partitions of sizes n,m) with exactly D edges. Thus,

1 ≤ λ(P) = 1 +
D−1∑
k=0

pkλ
D−k ≤ 1 + λ

D−1∑
k=0

pk ≤ 1 + λ(nm)D ≤ 1 + ε

To approximate λ(N (u, v)), we will enumerate all graphs corresponding to r(u), c(v) which

share at least D − 3 edges with G∗. This can be done by going through all possible al-

ternating paths from u to v of length ≤ 5 and through all alternating cycles of length 4

(corresponding to the case when the symmetric difference of G∗ and the graph with the

degree sequence r(u), c(v) consists of the edge (u, v) and a 4-cycle). This way, for fixed u, v,
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in time O(nmd2
max) we can compute

xu,v := pu,vD−1 + pu,vD−2λ+ pu,vD−3λ
2.

Then, xu,v is a (1 + ε)-approximation of λ(N (u, v)):

xu,v ≤ λ(N (u, v)) = xu,v +
D−4∑
k=0

pu,vk λD−1−k ≤ xu,v + λ3
D−4∑
k=0

pu,vk ≤ xu,v + ελ2 ≤ (1 + ε)xu,v,

where the last inequality follows from xu,v ≥ λ2 since there exists j ∈ [3] for which pu,vD−j ≥ 1.

Therefore in time O((nmdmax)2) we can compute xu,v for every u, v and 1/xu,v is a

(1 + ε)-approximation of w∗λ(u, v).

Finally, we present a family of graphs, each resulting from a greedy algorithm breaking

ties arbitrarily, which for some feasible holes u, v require an alternating path from u to v of

linear length. This is in contrast to the result above showing that by choosing the rule for

breaking ties in the algorithm carefully, each feasible pair of holes is joined by a constant

length alternating path in the resulting graph.

Proposition 3.9. For every n ≥ 0, there exist degree sequences rn, cn and corresponding

graphs Gn such for some feasible pair of holes u, v, there is no alternating path from u to v

of length ≤ 2n in Gn.

Proof. Denote the vertices in the two bipartitions by U = {u1, · · · , un+1} and V = {v1, · · · , vn+1}.

For n = 0, let r0 = c0 = (1). For n ≥ 1 let rn = cn = (1, 1, 2, 3, . . . , n). Construct Gn

inductively as follows.

1. If n = 0, set E(Gn) = {(u1, v1)}.

2. If n = 1, set E(Gn) = {(u1, v2), (u2, v1)}.

3. For n ≥ 2,

i) Set E(Gn) :=
⋃

v∈U\{v1}

(un+1, v) ∪
⋃

u∈V \{u1}

(u, vn+1).
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ii) The degree requirements of u2, un+1, v2, vn+1 are now satisfied. The residual degree

sequence is of the form rn−2, cn−2 on the vertices u1, u3, · · · , un and v1, v3, · · · , vn if

n ≥ 3, and on u1, v1 if n = 2.

• If n ≥ 3, construct the graph G′n−2 on U ′ = {u3, u1, · · · , un} = {u′1, · · · , u′n−1}

and V ′ = {v3, v1, · · · , vn} = {v′1, · · · , v′n−1}. (Note that the order of u1, u3 and

v1, v3 are reversed, so that un, vn will be joined to all the vertices of V ′, U ′

except v3, u3 respectively.)

• If n = 2, construct the graph G′n−2 on U ′ = {u1} and V ′ = {v1}.

iii) Set E(Gn) := E(Gn) ∪ E(G′n−2).

For every n ≥ 1, u2, v2 is a pair of feasible holes. In the base cases, we can check that ,

the shortest alternating path in G0 from u2 to v2 is of length 1, u2, v2, and the shortest

alternating path in G1 from u2 to v2 is of length 3, u2, v1, u1, v2. In G2, the shortest

alternating path from u2 to v2 is of length 5, u2, v3, u1, v1, u3, v2. Assume the statement is

true for all k < n for n ≥ 3. We claim that the shortest alternating path from u2 to v2 in

Gn is of length ≥ 2n+ 1. Any alternating path from u2 to v2 must begin with the sequence

of vertices u2, vn+1, u1, and end with v1, un+1, v2, and consist of an alternating path from

u1 to v1, not using the vertices u2, un+1, v2, vn+1. I.e., an alternating path in G′n−2 from u′2

to v′2. By induction, the path in G′n−2 has length ≥ 2n− 3, and hence any alternating path

in Gn from u2 to v2 has length 2n+ 1.

3.6 The Markov Chain

Our Markov chain is analogous to the chain used in algorithms for the permanent [44, 47]

and is also an appropriately weighted version of the Markov chain defined in [45]. Recall

that P denotes the set of graphs with the required degree sequence, and N (u, v) denotes

the set of graphs with deficiencies at u, v and N = ∪u,vN (u, v). The state space of the

chain is Ω = P ∪N .

The Markov chain is characterized by an activity λ > 0 and a weight function w :
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U × V → R+. The weight of a graph G ∈ Ω is defined as

w(G) =

 λ(G) if G ∈ P

λ(G)w(u, v) if G ∈ N (u, v)

The transitions Gt = (U, V,Et)→ Gt+1 = (U, V,Et+1) of the Markov chain MC are:

1. If Gt ∈ P, choose an edge e uniformly at random from Et. Set G′ = Gt \ e.

2. If Gt ∈ N (u, v), choose an edge e = (x, y) uniformly at random from the multi-set1

Et ∪ {(u, v)} and choose W uniformly from U, V .

(a) If e = (u, v) and (u, v) 6∈ Et, let G′ = Gt ∪ (u, v).

(b) If W = U and (u, y) 6∈ Et, let G′ = Gt \ (x, y) ∪ (u, y).

(c) If W = V and (x, v) 6∈ Et, let G′ = Gt \ (x, y) ∪ (x, v).

(d) Otherwise, let G′ = Gt.

3. With probability min{1, w(G′)/w(Gt)}, set Gt+1 = G′; otherwise, set Gt+1 = Gt.

It is straightforward to verify that the stationary distribution π of the chain is propor-

tional to the weights w, i.e., for G ∈ Ω, π(G) = w(G)/Z where Z =
∑

Gw(G). The main

result of this section is to show that if the weights w(u, v) are within a constant factor of

their ideal values w∗(u, v), MC mixes in polynomial time.

We continue with some standard definitions before formally stating the main result

on the convergence time of the Markov chain. The total variation distance between two

distributions µ, ν on Ω is given by

dtv(µ, ν) =
1
2

∑
x∈Ω

|µ(x)− ν(x)|

Let P denote the transition matrix of the chain MC, and thus P t(x, ·) denotes the distribu-

tion after t steps of the chain, with starting state x. The mixing time τx(δ) of MC starting

at state x ∈ Ω is defined as

τx(δ) = min{t ≥ 0 | dtv(P t(x, ·), π) ≤ δ}

We can now state our main result on the mixing time of MC.

1It may be that (u, v) is already in the set of edges Et.
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Theorem 3.10. Assuming the weight function w satisfies inequality

w∗(u, v)/2 ≤ w(u, v) ≤ 2w∗(u, v) (4)

for every feasible hole pattern u ∈ U, v ∈ V , then the mixing time of the Markov chain MC

started at G is τG(δ) = O(nmD2dmax(ln(1/π(G))+log δ−1)), where dmax = max{maxi r(i),

maxj c(j)}.

3.6.1 Analyzing the mixing time

We will bound the mixing time of MC using the multicommodity flow method, see Chapter

2. To define the flow g, for each I, F ∈ Ω× Ω we must specify how to route the flow along

directed paths going from I to F . As in [47] it is convenient to first define a flow f between

all pairs I ∈ Ω and F ∈ P. The flow f can be extended to a flow g between all pairs by

routing the flow between a pair of near-perfect tables I, F through a random perfect table.

Extending the flow from f to g causes only a modest increase in the congestion. If ρ̂(f)

denotes the congestion restricted to pairs (I, F ) ∈ Ω× P, then

ρ(g) ≤ 2
π(N )
π(P)

ρ̂(f) ≤ 8nmρ̂(f) (5)

The first inequality follows by a result of Schweinsberg, Corollary 3 in [78]. The second

inequality follows assuming by (4) that the weights w(u, v) approximate the ideal weights

w∗(u, v) up to a factor of 2. Hence it will suffice to define the flow f , which we do in the

next section, and bound ρ̂(f) to bound the mixing time.

3.6.2 Defining the Canonical Flow

We use the flows defined by Cooper, Dyer and Greenhill [19]. Therefore, we follow their

notation. Let I, F be perfect or near-perfect contingency tables. We wish to define a set

of canonical paths between them by decomposing H = I ⊕ F into a sequence of edge-

disjoint alternating circuits. Different circuit decompositions will correspond to distinct

paths. A circuit of H is a sequence of vertices w0, · · · , w`, such that (wi, wi+1), (w`, w0) ∈

EH , and each of these edges is distinct, though the vertices may be repeated. The set
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EH = (EF \ EI) ∪ (EI \ EF ). Let the edges in EF \ EI be red and the edges in EI \ EF

be blue. At each vertex, we will choose a pairing of the red and blue edges. A pairing of

I ⊕ F consists of a pairing at every vertex. Let Ψ(I, F ) be the set of all such pairings of

I⊕F . For each pairing in Ψ(I, F ), we will construct a canonical path from I to F , carrying

a total flow of π(I)π(F )/|Ψ(I, F )|. We define the pairings and the corresponding circuit

decompositions below.

I, F ∈ P : In this case, at each vertex of H, the red degree is equal to the blue degree. A

pairing is constructed by pairing up the red edges at a vertex with the blue edges at each

vertex. Hence, if the red (and blue) degree in H of a vertex v is γv, |Ψ(I, F )| = Πvγv!.

Fix a pairing ψ ∈ Ψ(I, F ). We define an edge disjoint circuit decomposition of H, Cψ =

(Cψ1 , · · · , C
ψ
s ), and then define how to “unwind” each circuit to go from I to F . To simplify

notation, we omit the superscript henceforth. Let the lexicographically smallest edge in

EH be (w0, w1). Choose the (wi, wi+1) to be the next edge of the circuit if (wi, wi+1) is

paired with (wi−1, wi) at wi by ψ (so that we choose (w1, w2) if it is paired with (w0, w1)

by ψ at w1). This procedure terminates with the circuit C1 = w0, · · · , wk−1, wk when

the edge (wk, w0) is paired with (w0, w1) at w0. If EH = C1, set C = (C1). Otherwise,

generate C2 by starting with the lexicographically smallest edge not in C1. Continue until

EH = C1 ∪ · · · ∪Cs. Then set C = (C1, · · · , Cs). Note that the circuits C1, · · · , Cs are edge

disjoint by construction and the edges of the circuits are alternately blue and red.

The canonical path pψ corresponding to the pairing ψ is defined by the concatenation

of the sequence of moves which unwind C1, · · · , Cs. Let Cr = a0, b0, . . . , a`, b` be a circuit

whose lexicographically smallest blue edge is (a0, b0). First remove the edge (a0, b`). Then

for i = 0, . . . , `−1, slide the edge (ai+1, bi) into (ai, bi). Finally, add (a`, b`). Since the set of

circuits corresponding to different pairings are distinct, the corresponding canonical paths

are distinct as well. Set f(pψ) = π(I)π(F )/|Ψ(I, F )| for each path pψ.

I ∈ N and F ∈ P : Suppose I ∈ N (u, v). Then, in the graph H = I ⊕ F , every vertex

except u, v is incident with an equal number of red and blue edges. The vertices u, v are

each adjacent to one more red edge than the number of blue edges. Let the number of red
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edges adjacent to the vertex v in H be γv. Define the pairing ψ as follows. At each vertex

other than u, v choose a pairing of red and blue edges. At each of u, v choose one red edge

which remains unpaired, and pair up the remaining red and blue edges. If Ψ(I, F ) is the set

of such pairings then, |Ψ(I, F )| =
∏
v∈V γv!. For each pairing ψ ∈ Ψ(I, F ) we decompose

H into a set of circuits C and a walk W as follows. Let (w0, w1) be the red edge adjacent

to u = w0 which is unmatched by ψ. Choose the edge (wi, wi+1) to be the next edge of the

walk if (wi, wi+1) is paired with (wi−1, wi) at wi by ψ. The procedure terminates with the

walk W , given by u = w0, · · · , w` = v when the red edge (w`−1, w`) which is unpaired by ψ

at v is paired with (w`−2, w`−1) at w`−1. If EH = W , we are done, otherwise, start with the

lexicographically smallest unused edge of EH and define the circuits C1, · · · , Cs. To define

the canonical path corresponding to ψ, we unwind the walk W and then the circuits C in

their canonical order. To augment the walk a0, b0, . . . , a`, b`, we slide the edges (ai+1, bi) to

(ai, bi) for i = 0, . . . , `− 1. Then we add the edge (a`, b`). Set f(pψ) = π(I)π(F )/|Ψ(I, F )|

for each path pψ.

This completes the definition of the flow f between pairs I, F in Ω× P.

3.6.3 Analyzing the Flow

To prove Theorem 3.10, we analyze the mixing time of the Markov chain which uses the

ideal weights w∗(u, v). We will see that the theorem then follows immediately from the

condition (4). By the construction of the flow, `(f) ≤ D and `(g) ≤ 2D. Hence

ρ̂(f) ≤ 2D max
T=(M,M ′)

 1
π(M)P (M,M ′)

∑
p3T

f(p)


where the sum is over paths p ∈ Ψ(I, F ) for I, F in Ω × P. Moreover, by the definition

of the Markov chain MC, for any transition T = (M,M ′) which has non-zero probability,

π(M)P (M,M ′) ≥ 1
2D min{π(M), π(M ′)}. Hence,

ρ̂(f) ≤ 4D2 max
T=(M,M ′)

 1
min{π(M), π(M ′)}

∑
p3T

f(p)

 (6)
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Thus to bound ρ̂(g), it is enough if we bound

max
T=(M,M ′)

 1
π(M)

∑
p3T

f(p)


for every transition (M,M ′), since then the bound holds for the reverse transition (M ′,M)

as well.

Let T = (M,M ′) be any transition of the Markov chain so that P (M,M ′) > 0. Let

fT = {(I, F ) ∈ Ω× P : ∃ ψ ∈ Ψ(I, F ) s.t. pψ 3 T}.

We will show that for every transition T = (M,M ′) of the Markov kernel,

∑
(I,F )∈fT

π(I)π(F )
π(M)

|ΨT (I, F )|
|Ψ(I, F )|

= O(dmax) (7)

By equations (5),(6), and (7), this implies ρ(g) = O(mnD2dmax). This then implies the

bound on the mixing time. We divide the proof of (7) into two cases according to the type

of transition, in the following two subsections.

We will use the following notation. For y, u ∈ U and x, v ∈ V distinct, let

N̂ (y, x, (y, v), (x, u)) = {M ∈ N (y, x) : (y, v), (x, u) 6∈M}

Also, let

P̂(u, v) = {P ∈ P : (u, v) 6∈ P}

We also require notation for tables with up to 4 deficiencies. For y, u ∈ U and v, x ∈

V (not necessarily distinct), let N (y, x, u, v) denote the set of tables with deficiencies at

u, v, x, y. If any of the vertices y, u, v, x are the same, this means the degree at that vertex

is two less than its required degree.

Recall, for a transition T , fT denotes the set of (I, F ) ∈ Ω×P which use T for some of

its flow. Let

fu,vT = {(I, F ) ∈ fT : I ∈ N (u, v)}
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3.6.3.1 Transitions of Type 2b or 2c.

Lemma 3.11. For a transition T of type 2b or 2c,

∑
(I,F )∈fT

π(I)π(F )
π(M)

|ΨT (I, F )|
|Ψ(I, F )|

= O(dmax)

To prove the lemma, we use results analogous to the combinatorial lemmas proved in

[8], tailored to the canonical flows in this case. We first state and prove the combinatorial

results and then show how the lemma follows.

Lemma 3.12. Let T be a transition between near-perfect tables, so that M ∈ N (u, v),

M ′ ∈ N (u′, v) where u, u′ ∈ U , v ∈ V and M ′ = M \ (u′, x) ∪ (u, x) for some x ∈ V .

i)

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) ≤
∑
y∈U

(y,v) 6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (y, x, (y, v), (x, u)))λ(M)

ii) For all s ∈ U

∑
(I,F )∈fs,vT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) ≤ λ(u, x)λ(N̂ (s, x, (x, u)))λ(M)

iii) For all s ∈ U and z ∈ V ,

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) ≤
∑
y∈U

(y,v) 6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (s, z, y, x, (y, v), (x, u)))λ(M)

Proof. i) Let I ∈ P (blue), and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F ) (at x, the edge (u, x) is always paired with (u′, x)), which

gives a decomposition of I ⊕ F into red-blue alternating circuits. Since the pairing cor-

responds to a path from I to F through the transition T , the vertices u, v, x lie on some

circuit C. Let y be the vertex adjacent to v in C so that the edge (v, y) is blue (for the first

sliding transition in the unwinding of C, y is the vertex u so that the order of vertices on

the circuit is v, y, x, u′). Clearly, since (u, x) is an edge of the transition, and (y, v) is the

first removed edge, (y, v) 6= (u, x). In M , the circuits ordered before C agree with F , while

the circuits after C agree with I.
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Define the graph Eψ(I, F ) = I⊕F⊕(M∪M ′)\{(v, y)}. Then Eψ(I, F ) ∈ N̂ (y, x, (y, v),

(x, u)). Given M and (u, x), we can recover M ∪M ′ = M ∪ (u, x), and from this, given

Eψ(I, F ) and (y, v), we can recover I ⊕ F = (Eψ(I, F ) ∪ (y, v))⊕ (M ∪M ′). We have that

I ∪ F = M ∪ Eψ(I, F ) ∪ {(u, x), (y, v)}, and hence

1
|Ψ(I, F )|

λ(I)λ(F ) =
1

|Ψ(I, F )|
λ(M)λ(Eψ(I, F ))λ(u, x)λ(y, v) (8)

Let Ψ′(Eψ(I, F )) be defined as the set of triples (I ′, F ′, ψ′) with ψ′ ∈ Ψ(I ′, F ′) such

that E′ψ(I ′, F ′) = Eψ(I, F ). We claim that |Ψ′(Eψ(I, F ))| ≤ |Ψ(I, F )|. Assuming this, we

claim the lemma follows. If we add up (8) for each (I, F ) ∈ fT such that I ∈ P, and

each ψ ∈ ΨT (I, F ), then on the left hand side, each term λ(I)λ(F ) is counted |ΨT (I, F )|

times. On the right hand side of (8), for every graph E ∈ N̂ (y, x, (y, v), (x, u)) such that

E = Eψ(I, F ) for some I, F, ψ, the term λ(E)λ(M)λ(u, x)λ(v, y) is counted |Ψ′(E)| times.

Formally,

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) =
∑

E∈N̂ (y,x,(y,v),(x,u))

E=Eψ′ (I
′,F ′)

|Ψ′(Eψ′(I′,F ′))|
|Ψ(I ′, F ′)|

λ(u, x)λ(y, v)λ(E)λ(M)

≤
∑

E∈N̂ (y,x,(y,v),(x,u))

E=Eψ′ (I
′,F ′)

λ(u, x)λ(y, v)λ(E)λ(M)

≤
∑
y∈U

(y,v) 6=(u,x)

λ(u, x)λ(y, v)λ(N̂ (y, x, (y, v), (x, u)))λ(M)

Suppose that from Eψ and T we recover H = I ⊕ F . Then H has even degree at every

vertex. Color an edge of H green if it is in M and yellow if it is in Eψ. To bound the

number of triples |Ψ′(Eψ)|, we use the fact that the pairing ψ of red and blue edges is a

pairing of yellow and green edges at most vertices. A pairing of the yellow and green edges

defines a decomposition of I ⊕ F = I ′ ⊕ F ′ into alternating circuits, and further, using the

transition T we can recover I ′ and F ′. Thus the number of triples |Ψ′(Eψ)| is bounded by

the number of yellow-green pairings.

In H, every vertex except possibly u, v, x, y has equal yellow and green degree. Two

edges of H remain uncolored, (u, x) and (y, v).
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a) Suppose u 6= y, v 6= x. The vertices y, x have one extra green degree and u, v have one

extra yellow degree. To define the pairings at each vertex of H, define the pairings as

usual for all vertices except x, y, u, v. At u, think of (u, x) as a green edge, while at

x, think of it as a yellow edge. At y, think of (y, v) as a yellow edge, while at v think

of it as a green edge. This ensures that there is a yellow-green pairing corresponding

to the original red-blue pairing, because we know that in the red-blue pairing at v, the

edge (v, y) was paired with a red edge (from F ), which is now colored yellow (from Eψ).

Similar arguments can be made at the vertices y, u, x. In addition, at x, we know from T

that the edge (u, x) should be paired with (u′, x). The number of yellow green pairings

is at most |Ψ(I, F )|, since if we take into account the “bicolored” edges (v, y) and (u, x),

the number of yellow green pairings at each vertex is at most the number of red-blue

pairings originally.

b) Suppose that u 6= y, v = x. Then in H at every vertex except u, y, the green degree

is equal to its yellow degree. Meanwhile, y has an extra green degree and u an extra

yellow degree. The pairings at each vertex are constructed as in the previous case, with

the same rules for the edges (u, x) and (v, y). Again, it can be seen that the number of

yellow-green pairings is the same as the number of red-blue pairings.

c) Suppose u = y. Note that this implies v 6= x. Every vertex in H except v, x has equal

yellow and green degree, but again, coloring the edges (v, y) and (u, x) as before to define

the pairings at v, y, x can be used to show that the number of yellow green pairings that

we can construct are at most |Ψ(I, F )|.

Note that once the bicolored edges are taken into account, in each of the above cases,

every vertex of H has green degree equal to yellow degree.

ii) Let I ∈ N (s, v) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F ) and define Eψ(I, F ) = I ⊕ F ⊕ (M ∪M ′). Then Eψ ∈

N̂ (s, x, (x, u)). We claim |Ψ′(Eψ(I, F ))| ≤ |Ψ(I, F )|. Suppose that from Eψ(I, F ) and T we

recover H = I⊕F . Then H has even degree at every vertex except s, v. Color an edge of H
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green if it is in M and yellow if it is in Eψ(I, F ). The edge (u, x) of H remains uncolored.

We can show the bound on |Ψ′(Eψ(I, F ))| by exactly the same steps as i), by sub-

stituting y in that case, with s here. The only difference is that we no longer take into

consideration the edge (s, v) for constructing the pairings, as it is not in H. Notice that

here, the fact that s and v have extra red degree will be compensated for by considering

(u, x) to be bicolored for the purposes of constructing the yellow-green pairing. This results

in s having a green edge and v having a yellow edge remaining effectively unpaired in the

yellow-green pairing of H. Note that the red edges which were adjacent to s, v in the circuit

being unwound will appear yellow adjacent to v and green adjacent to s in the yellow-green

coloring of H. Thus the pairing red-blue ψ does indeed correspond to a yellow-green pairing

in H.

iii) Let I ∈ N (s, z) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F ). Then, ψ decomposes I ⊕ F into a sequence of red-blue

alternating circuits and an alternating walk from s to z whose initial and final edges are

red. Since T is a transition along the path corresponding to ψ from I to F , u, v, x lie on

some circuit C. Let y be the vertex adjacent to v in C so that the edge (v, y) is blue.

Define the graphEψ(I, F ) = I⊕F⊕(M∪M ′)\{(v, y)}. Then Eψ(I, F ) ∈ N̂ (s, z, y, x, (y, v),

(x, u)). Suppose that from Eψ(I, F ) and T we recover H = I⊕F . Then H has even degree

at every vertex except s, z. Color an edge of H green if it is in M and yellow if it is in

Eψ(I, F ).

First assume that the vertices u, v, s, z, x, y are distinct. Then, every vertex except

u, v, s, z, x, y has equal yellow and green degree in H. Both s and z have one green degree

more than their yellow degree. This is because they are the endpoints of a walk which has

already been unwound, and hence the red edges adjacent to s, z which are left unpaired by

ψ both appear in M and are green. Two edges of H remain uncolored, (u, x) and (y, v).

The vertices y, x have one extra green degree and u, v have on extra yellow degree. To

define the pairings at each vertex of H, define the pairings as usual for all vertices except

x, y, u, v. At u, think of (u, x) as a green edge, while at x, think of it as a yellow edge. At
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y, think of (y, v) as a yellow edge, while at v think of it as a green edge. The number of

yellow green pairings that we can construct are at most |Ψ(I, F )|.

Now, in case the vertices are not distinct, there are in all 21 possibilities, taking into

account the bipartition the vertices are in and the fact that (u, x) 6= (v, y). However, in

each case, suppose that at u, we think of (u, x) as a green edge, while at x, we think of it as

a yellow edge and at y, we think of (y, v) as a yellow edge, while at v think of it as a green

edge. Then, except at s, z, the yellow degree at every vertex is equal to the green degree in

H. At s, z, the green degree exceeds the yellow degree by 1. Hence, the number of yellow

green pairings we can construct are at most |Ψ(I, F )|.

Lemma 3.13. i) Let u, y ∈ U and v, x ∈ V such that (y, v) 6= (u, x).

λ(u, x)λ(N (u, v))
∑
y

λ(v, y)λ(N̂ (y, x, (y, v), (x, u))) ≤ 6dmaxλ(P)2

ii) Let s, u ∈ U and v, x ∈ V .

λ(u, x)λ(N (u, v))λ(N̂ (s, x, (s, u))) ≤ 4λ(P)λ(N (s, v))

iii) Fix s ∈ U, z ∈ V . Let u, y ∈ U and v, x ∈ V such that (y, v) 6= (u, x).

λ(u, x)λ(N (u, v))
∑
y

λ(v, y)λ(N̂ (s, z, y, x, (y, v), (x, u))) ≤ 2dmaxλ(P)λ(N (s, z))

Proof. i) Let N1 ∈ N (u, v) and N2 ∈
⋃
y N̂ (y, x, (y, v), (x, u)). We will consider the

symmetric difference N1 ⊕ N2 and define a modified (multi)graph H ′(N1, N2) and a set

of pairings of H ′, Ψ(N1, N2). From N1, N2 and a pairing in Ψ(N1, N2) we construct

graphs N3 ∈ P and N4 ∈ P, and a pairing of H ′(N3, N4). The graphs will satisfy

N1 ∪ N2 ∪ {(u, x), (v, y)} = N3 ∪ N4 where the union takes into account multiplicities.

Given N3, N4, and the pairing of H ′(N3, N4) we will be able to reconstruct N1, N2 and the

original pairing given an additional 3× [dmax]×{0, 1} amount of information. We then show

that the number of pairings of H ′(N3, N4) is at most the number of pairings of H ′(N1, N2),

and this implies the claimed inequality.

First assume the vertices u, y and v, x are distinct. Consider the symmetric difference

H = N1 ⊕ N2 so that the edges from N1 are blue, and those from N2 are red. Then, x, y
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each have blue degree 1 more than their red degree while u, v have red degree one more

than their blue degree. We will fix a pairing of the red and blue edges as follows. The

graph H may or may not contain the edges (u, x), (v, y) depending on whether or not they

are present in N1. If either is present, it is colored blue. To define pairings at each vertex,

first add the uncolored edges (u, x), (v, y) to H, i.e. let H ′ = H ∪ {(u, x), (v, y)} and retain

the color of all the edges from H. Note, H ′ may have double edges. To define the pairings

at u, v, think of both the uncolored edges (u, x), (v, y) as blue and define an exact pairing

of the red and blue edges. At y, x, we think of the uncolored edges as red and define an

exact pairing of the red and blue edges at these vertices such that the red edge (x, u) (resp.

(y, v)) is always paired with the blue (x, u) (resp. (y, v)), if it is present, for example, see

Figure 10 a). For all other vertices, the red degree is equal to the blue degree, and we pair

them up. Call this pairing in H ′ ψ, and let the set of pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into alternating circuits of even length. These

are shown for the example in Figure 10 b). The idea of the map is to traverse the circuits

and put edges alternately in N3 ∈ P and N4 ∈ P. For each circuit not containing the

uncolored edges, put edges alternately in N3 and N4 making the convention that the blue

edges are put into N4 and the red edges into N3. There is only one way for a circuit

to contain the uncolored edges; such a circuit must contain both. (There cannot be two

distinct circuits each containing one uncolored edge, since the circuit is even, and the edges

alternate red-blue, ignoring the uncolored edge). For the circuit containing the uncolored

edges, put edges alternately in N3 and N4 starting with the uncolored (y, v) in N3. Edges

which are in both N1, N2 are added to both N3, N4. Note that this set never includes the

edges (u, x), (v, y), so we never attempt to add them to N3 or N4 twice. By the definition

of ψ, if H ′ has any double edges, then both copies do not go into the same graph since they

appear consecutively in a circuit or walk. Then, N3 ∈ P and N4 ∈ P. The bit b of the

map is set to 1 if the blue edge (v, y) was present in N(u, v) and was traversed after the

uncolored (v, y). The set [dmax] is used to encode the vertex y.

To invert the map, consider two tables, N3 ∈ P and N4 ∈ P, and their symmetric

difference N3 ⊕ N4. If the pairing ψ of H ′ was known, we claim we can recover N1, N2
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uniquely. We can reconstruct H ′ as follows. If (u, x) (resp. (y, v)) appears in N3 ⊕ N4,

then it was not present in N1, and hence appears once in H ′. On the other hand, if (u, x)

(resp. (y, v)) does not appear in N3 ⊕N4, then it was present in N1, and hence appears as

a double edge in H ′. Thus, we can reconstruct H ′ from N3 ⊕ N4 by adding in two copies

of the edge if necessary. If ψ was known, we could partition the edges of H ′ into N1, N2 as

follows. The pairing ψ determines the decomposition of H ′ into alternating circuits. There

will be exactly one circuit which contains the edges (u, x) and (v, y). For the other circuits

and the walk, we put the edges coming from N3 into N2, and the edges from N4 into N1. If

there is a circuit containing (u, x), (v, y), proceed as follows. If (y, v) does not appear as a

double edge, start with the edge in the circuit after (y, v), and put edges alternately in N1

and N2, and also skipping one copy of the edge (u, x). If (y, v) appears twice in the circuit,

we can determine which copy was the uncolored one by looking at the bit b. If b is 1, it is

the first one, and if b is 0, it is the second one. Proceed as before, start with the edge after

the uncolored (v, y), and assign edges alternately to N1 and N2, and also skip one copy of

(u, x). Finally, put all other common edges of N3, N4 into both N1 and N2.

Color the edges of H ′ green if they come from N3, and yellow if they come from N4.

Since we do not have the pairing ψ of H ′, instead, we use the fact that a pairing of the

original red and blue edges is a pairing of the yellow and green edges of H ′ at all the

vertices. We know that at x, y if there is a double edge, they are colored yellow, and green,

and must be matched. Also, at u, v the double edges are not paired. Hence the number

of valid yellow-green pairings in H ′ is at most as the number of original red-blue pairings

|Ψ(N1, N2)|, and so there cannot be too many initial pairs of tables mapping to N3, N4.

This is illustrated with an example in Figure 11.

In the case that the vertices are not distinct, there 2 other possibilities :

a) u = y, v 6= x

b) u 6= y, v = x

The two cases are symmetric, except that in the second case, we have to keep track of y so

we only give the argument for a). Let N1 ∈ N (u, v) (blue) and N2 ∈ N̂ (u, x, (u, v), (x, u))
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(red). Then, in H = N1 ⊕ N2, the vertex u has equal red and blue degree, while v has

1 extra red degree and x has 1 extra blue degree. Also, if the edges (u, v) or (u, x) are

present, they are blue. Construct H ′ as before, and define the pairings as before. Thus at

x we think of the uncolored (u, x) as red (and pair it with the blue (u, x) if it is present),

while at u we think of it as blue. At v, think of the uncolored (u, v) as blue, while at u, we

think of it as red, and always pair it with the blue (u, v) if it is present. The remainder of

the argument is the same as when the vertices are distinct.

Now, given which case we are in (there are 3 cases in all), and N3, N4 ∈ P, and the ver-

tex y, the inequality follows since the number of yellow-green pairings is at most |Ψ(N1, N2)|.

ii) Let N1 ∈ N (u, v) and N2 ∈
⋃
y N̂ (s, x, (x, u)). As before, we will define a modified

(multi)graph H ′(N1, N2) and a set of pairings of H ′, Ψ(N1, N2). From N1, N2 and a pair-

ing in Ψ(N1, N2) we will construct graphs N3 ∈ N (s, v) and N4 ∈ P, and a pairing of

H ′(N3, N4). The graphs will satisfy N1 ∪ N2 ∪ (u, x) = N3 ∪ N4, taking into account the

multiplicity of the edges. Given N3, N4, and the pairing of H ′(N3, N4) we will be able to

reconstruct N1, N2 and the original pairing given a constant amount of additional informa-

tion. We then show that the number of pairings of H ′(N3, N4) is at most the number of

pairings of H ′(N1, N2), and this implies the claimed inequality.

First assume the vertices s, x, u, v are distinct. Consider the symmetric difference H =

N1 ⊕ N2 so that the edges from N1 are blue, and those from N2 are red. In H, s, x each

have blue degree 1 more than their red degree while u, v have red degree one more than

their blue degree. Let H ′ = H∪{(u, x)} and retain the color of all the edges from H leaving

the new edge (u, x) uncolored. Define a pairing ψ of H ′ as follows. At s, choose one blue

edge which remains unpaired, and pair up the remaining red and blue edges. At v, choose

one red edge to remain unpaired and pair up the others. To define the pairing at u, think

of the uncolored edge (u, x) as blue and define an exact pairing of the red and blue edges.

At x, we think of the uncolored edge as red and define an exact pairing of the red and blue

edges at these vertices such that the red edge (x, u) is always paired with the blue (x, u), if

it is present. For all other vertices, the red degree is equal to the blue degree, and we pair
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them up as usual. Let the set of such pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into circuits of even length and a walk of odd

length from s to v whose initial edge is blue, final edge is red, and contains the uncolored

edge (u, x), since the length of the walk is odd. The idea of the map is the same as in the

previous case, to put edges from the circuits and walks alternately in N3 and N4 with the

same color conventions as before. When we traverse the walk, starting with N4 we put each

edge alternately into N3 and N4. Then, N3 ∈ N (s, v) and N4 ∈ P.

To invert the map, consider the symmetric difference N3 ⊕ N4. If the pairing ψ of H ′

was known, we can recover N1, N2 uniquely. We can reconstruct H ′ as follows. If (u, x)

appears in N3 ⊕ N4, then it was not present in N1, and hence appears once in H ′. On

the other hand, if (u, x) does not appear in N3 ⊕N4, then it was present in N1, and hence

appears as a double edge in H ′. Thus, we can reconstruct H ′ from N3 ⊕N4 by adding in

two copies of the edge if necessary. If ψ was known, we could partition the edges of H ′ into

N1, N2. The pairing ψ determines the decomposition of H ′ into circuits and a walk of odd

length. The walk contains (all the copies of) the edge (u, x) since the circuits are all even

length. For each circuit as well as the walk, we put the edges coming from N3 into N2, and

the edges from N4 into N1. Put all other common edges of N3, N4 into both N1 and N2.

Color the edges of H ′ green if they come from N3, and yellow if they come from N4.

Since we do not have the pairing ψ of H ′, instead, we use the fact that a pairing of the

original red and blue edges is a pairing of the yellow and green edges of H ′ at all the vertices.

We know that at x if there is a double edge, they are colored yellow, and green, and must

be matched. Also, at u, the double edges are not paired.

If the vertices are not distinct, there are 3 cases:

a) u = s, v 6= x. In this case, add the uncolored (u, x) to H. At u, think of the uncolored

edge as blue, and fix a pairing by leaving out one blue edge. At x, fix the pairing by

always pairing the uncolored/red (u, x) with the blue copy of (u, x) if it is present. Now

in H ′, v has one extra red degree, while u has an extra blue degree taking into account

the uncolored (u, x). Hence the pairing determines an alternating walk from s to v

with initial edge blue, and final edge red, containing the uncolored edge, and alternating

66



circuits. Put the edges along the walk alternately in N3 and N4. Thus we ensure N3, N4

each contain at most one copy of (u, x). Inverting the map is easy if the pairing of H ′ is

known, and we can bound the number of yellow-green pairings as before.

b) u 6= s, v = x. In this case the argument is similar to the above, except that in H ′, to fix

a red-blue pairing, think of the the uncolored edge (u, x) as blue at u and red at x.

c) u = s, v = x. This case becomes trivial. Let N1 ∈ N (u, v) and N2 ∈ N̂ (u, v, (v, u)). Set

N3 = N1 and N4 = N2 ∪ (u, x). Clearly, N4 ∈ P, N3 ∈ N (s, v), and the map is easily

invertible.

Hence the number of yellow-green pairings in H ′ is at most the number of original red-

blue pairings |Ψ(N1, N2)|. Given which case we are in (which is a factor of 4), the inequality

follows.

iii) LetN1 ∈ N (u, v) andN2 ∈
⋃
y N̂ (s, z, y, x, (y, v), (x, u)). As before, we define a modified

(multi)graph H ′(N1, N2) and a set of pairings of H ′, Ψ(N1, N2). From N1, N2 and a pairing

in Ψ(N1, N2) we construct graphs N3 ∈ PP and N4 ∈ P, and pairing of H ′(N3, N4). The

graphs will satisfy N1 ∪N2 ∪ {(u, x), (v, y)} = N3 ∪N4, taking into account multiplicity of

edges. Given N3, N4, and the pairing of H ′(N3, N4) we will be able to reconstruct N1, N2

and the original pairing given an additional [dmax] × {0, 1} amount of information. We

then show that the number of pairings of H ′(N3, N4) is at most the number of pairings of

H ′(N1, N2), and this implies the claimed inequality.

First assume the six vertices are distinct. Consider the symmetric differenceH = N1⊕N2

so that the edges from N1 are blue, and those from N2 are red. Then, s, z, x, y each have

blue degree 1 more than their red degree while u, v have red degree one more than their

blue degree. Define H ′ as in i). We will fix a pairing ψ of the red and blue edges in H ′ as

follows. At s, z, choose one blue edge which remains unpaired, and pair up the remaining

red and blue edges. The pairing at all other vertices is defined as in i). Let the set of such

pairings be Ψ(N1, N2).

Then ψ defines a decomposition of H ′ into circuits of even length and a walk of odd
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Table 1: Enumeration of 21 cases

u 6= y, v 6= x u = y, v 6= x u 6= y, v = x

s = u • z = v • z = v • z = v = x
• z = x • z = x • z 6= v, x
• z 6= v, x • z 6= v, x

s = y • z = v • z = v
• z = x Counted in the case s = u • z 6= v, x
• z 6= v, x

s 6= u, y • z = v • z = v • z = v
• z = x • z = x • z 6= v, x
• z 6= v, x • z 6= v, x

length from s to z whose initial and final edges are blue. Traverse the walk, and starting with

N4 put each edge alternately into N3 and N4. The rest of the edges of H ′ are partitioned

as in i). Then, N3 ∈ N (s, z) and N4 ∈ P. The bit b of the map is set to 1 if the blue edge

(v, y) was present in N(u, v) and was traversed after the uncolored (v, y). The set [dmax] is

used to encode the vertex y.

We can reconstruct H ′ using the symmetric difference N3⊕N4 and the edges (u, x), (v, y)

exactly as in i). Since we do not have the pairing ψ of H ′, to recover N1, N2 we use the fact

that a pairing of the original red and blue edges is a pairing of the yellow and green edges

of H ′ at all the vertices. Color the edges of H ′ green if they come from N3, and yellow if

they come from N4. We know that at x, y if there is a double edge, they are colored yellow,

and green, and must be matched. Also, double edges at u or v are never paired. Hence the

number of yellow-green pairings in H ′ is at most the number of original red-blue pairings

|Ψ(N1, N2)|.

Lastly, we handle the various cases in which the vertices are not distinct. There are 21

possible distinct cases depending on which of the vertices u, y, v, x, s, z are the same. These

are enumerated in Table 1 for completeness.

In each of these cases, when we add the uncolored edges (u, x), (v, y), so that we think

of them as red at y and x and blue at u and v, in order to define the pairing of H ′, we find

that each of s, z have 1 extra blue degree, and at every other vertex, the blue degree equals

the red degree. Then, we can restrict to the same kinds of pairings as in the case when the

vertices are distinct, and the lemma follows, once we factor in which of the 22 cases we are
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in, and the vertex y is known in each case.

Note that in some of the cases, the map can be defined by adding the edges (u, x), (v, y)

to the tables, but the map can be defined in this way through the pairings as well. Since

the map is defined in the same way in each case, we do not even need to retain information

about which of the 22 cases we are in, and the bound now follows.

With the above inequalities in hand, the proof of Lemma 3.11 is a matter of plugging

them in to the expressions which bound the congestion through a transition.

Proof of Lemma 3.11. When T is a transition of type 2b or 2c the flow through T can come

from 3 sources. First, due to being on an alternating circuit between pairs of perfect tables.

Second, the congestion due to being on the augmenting walk between a near-perfect table

and a perfect table. Lastly, due to being on an alternating circuit between a near-perfect

table and a perfect table. The proof of the bound is similar in each of these cases, and

the bottleneck is the third case. In each case, let T = (M,M ′), where M ∈ N (u, v) and

M ′ ∈ N (u′, v), with x as the pivot vertex, so that M ′ = M ∪ (u, x) \ (u′, x).

We can bound the congestion due to (I, F ) ∈ P × P through T as follows.

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

π(I)π(F )
π(M)

=
1

w(Ω)

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F )
λ(M)

λ(N (u, v))
λ(P)

(By Lemma 3.12, i) ≤ 1
w(Ω)

∑
y

(y,v) 6=(u,x)

λ(u, x)λ(y, v)
λ(N̂ (y, x, (y, v), (x, u)))λ(N (u, v))

λ(P)

(By Lemma 3.13, i) ≤ 6dmaxλ(P)
w(Ω)

≤ 6dmax
nm

Next, we bound the congestion due to (I, F ) ∈ N × P through T when T is on the

alternating walk. Note that in this case at least one of the holes of I, v is the same as a
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hole of M . ∑
s∈U

∑
(I,F )∈fs,vT

|ΨT (I, F )|
|Ψ(I, F )|

π(I)π(F )
π(M)

=
1

w(Ω)

∑
s

λ(N (u, v))
λ(N (s, v))

∑
(I,F )∈fs,vT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F )
λ(M)

(By Lemma 3.12, ii) ≤ 1
w(Ω)

∑
s

λ(u, x)
λ(N (u, v))
λ(N (s, v))

λ(N̂ (s, x, (s, u)))

(By Lemma 3.13, ii) ≤ 4nλ(P)
w(Ω)

≤ 4
m

Lastly, we bound the congestion due to (I, F ) ∈ N × P when T is on an alternating

circuit. ∑
s∈U,z∈V

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

π(I)π(F )
π(M)

=
1

w(Ω)

∑
s,z

λ(N (u, v))
λ(N (s, z))

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F )
λ(M)

≤ 1
w(Ω)

∑
s,z

λ(u, x)
λ(N (u, v))
λ(N (s, z))

∑
y

(y,v) 6=(u,x)

λ(y, v)λ(N̂ (s, z, y, x, (y, v), (x, u)))

(By Lemma 3.12, iii)

≤ 2dmaxnmλ(P)
w(Ω)

(By Lemma 3.13, iii)

≤ 2dmax

Adding the congestion from each of these sources, the congestion through a sliding

transition T is bounded by O(dmax).

3.6.3.2 Transitions of Type 2a or 1.

Lemma 3.14. For a transition T of type 2a or 1,∑
(I,F )∈fT

π(I)π(F )
π(M)

|ΨT (I, F )|
|Ψ(I, F )|

= O(1) (9)
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To prove the lemma, we again tailor the corresponding combinatorial inequalities of [8]

for the case of canonical flows. We first state and prove the combinatorial results and then

show how the lemma follows.

Lemma 3.15. Let T = (M,M ′) be a transition between a near-perfect table in N (u, v) and

a perfect table, so that the edge (u, v) is either deleted or added. Let N be the near-perfect

table of M and M ′. Then,

i) ∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) ≤ λ(u, v)λ(P̂(u, v))λ(N)

ii) For all s ∈ U and z ∈ V ,

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F ) ≤ λ(u, v)λ(N̂ (s, z, (u, v)))λ(N)

Proof. i) Let I ∈ P (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F ). Define the graph Eψ(I, F ) = I ⊕ F ⊕ (M ∪M ′). Then,

Eψ(I, F ) ∈ P̂(u, v). Given Eψ(I, F ), T and ψ, we can recover I and F . Since I ∪ F =

N ∪ E(I, F ) ∪ (u, v),

1
|Ψ(I, F )|

λ(I)λ(F ) =
1

|Ψ(I, F )|
λ(u, v)λ(Eψ(I, F ))λ(N)

As before, color the edges of I ⊕F yellow and green depending on whether they come from

Eψ or M . The number of yellow-green pairings of I ⊕ F is bounded by Ψ(I, F ), and the

inequality follows.

ii) Let I ∈ N (s, z) (blue) and F ∈ P (red).

Fix a pairing ψ ∈ ΨT (I, F ). Define the graph Eψ(I, F ) = I ⊕ F ⊕ (M ∪M ′). Then,

Eψ(I, F ) ∈ N̂ (s, z, (u, v)). Given Eψ(I, F ), T and ψ, we can recover I and F . Since

I ∪ F = N ∪ E(I, F ) ∪ (u, v),

1
|Ψ(I, F )|

λ(I)λ(F ) =
1

|Ψ(I, F )|
λ(u, v)λ(Eψ(I, F ))λ(N)
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As before, color the edges of I ⊕F yellow and green depending on whether they come from

Eψ or M . The number of yellow-green pairings of I ⊕ F is bounded by Ψ(I, F ), and the

inequality follows.

Lemma 3.16. i) Let u ∈ U, v ∈ V . Then,

λ(u, v)λ(P̂(u, v))λ(N (u, v)) ≤ λ(P)2

ii) Fix s ∈ U, z ∈ V . Let u ∈ U, v ∈ V . Then,

λ(u, v)λ(N̂ (s, z, (u, v)))λ(N (u, v)) ≤ 4λ(N (s, z))λ(P)

Proof. i) Let N1 ∈ N (u, v) (blue) and N2 ∈ P̂(u, v) (red).

Consider the symmetric difference H = N1 ⊕ N2. Both u, v have red degree one more

than their blue degree. H may or may not contain the edge (u, v). If it is present, it is

colored blue. We define a red-blue pairing of H to partition the edges into two perfect

tables N3, N4. To define the pairing, we first define the multigraph H ′ = H ∪ (u, v), so that

the new edge (u, v) is colored blue. Now, let Ψgood be the set of possible pairings of H ′ so

that for ψ ∈ Ψgood, the corresponding decomposition of H ′ into alternating circuits, there

is not circuit containing both copies of (u, v). In case H ′ contained only one copy of (u, v)

all pairings are ’good’. If H ′ did indeed contain two copies of (u, v), we claim that |Ψgood|

is at least 1/2 fraction of all possible pairings. To see this, take any pairing whose circuit

decomposition contains a circuit with both copies of (u, v). From this pairing, we can obtain

a ’good’ pairing by switching the red edges that the blue copies of (u, v) are paired with at

u. Note that two such distinct pairings will always give distinct ’good’ pairings.

Now, fix ψ ∈ Ψgood. Let C1, C2 be the circuits containing the edge (u, v). For every

other circuit, send all the blue edges to N3 and the red edges to N4. Do the same for

the circuit of C1, C2 in which for the edge (u, v), v is adjacent to a lower numbered vertex

through a red edge. For the remaining circuit, put the red edges in N3, and the blue edges

in N4. Lastly, put all edges in N1 ∩N2 into both N3, N4. Then, N3, N4 ∈ P.

As before, we can recover the uncolored H ′ from N3, N4. If the pairing of H ′ was known,

the map can be inverted, and N1, N2 recovered. Since the pairing is not known, proceed
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as follows. Color the edges of H ′ green if they are from N3 and yellow if from N4. Now

the total number of yellow-green pairings is equal to the total number of possible red-blue

pairings. However, we can eliminate the ones in which, say at u the copies of (u, v) are

paired, since this would give a cycle decomposition which was impossible for a pairing from

Ψgood. If the yellow degree of u in H is d ≥ 2 (which is the case if there were 2 (blue) copies

of (u, v) in H ′), this eliminates at least (d − 1)!/(d!) ≥ 1/2 of all yellow-green pairings.

Hence not too many N1, N2 pairs can map to N3, N4.

ii) In the case that s 6= u and z 6= v, the proof is analogous to the previous case. The other

cases are:

a) s = u, z 6= v. Let N1 ∈ N (u, v) be blue and N2 ∈ N̂ (s, z, (u, v)) be red. Then, in the

symmetric difference, u has equal red and blue degree, v has 1 extra red degree, and

z has one extra blue degree. If we add an extra blue edge (u, v), then s has an extra

blue degree while v get equal red and blue degree. Hence in a pairing of H ′, there is an

alternating walk from s to z whose initial and final edges are blue. As before, to take

care that the two copies of (u, v) don’t end up in the same table, we can exchange the

pairing at one end, say u (on either the walk or any circuit), to get a pairing where the

two edges are not part of the same circuit or walk.

b) s 6= u, z = v. The argument in this case is similar to a).

c) s = u, z = v. This case is trivial. If N1 ∈ N (u, v) and N2 ∈ N (s, z) such that the edge

(u, v) is not present in N2, set N3 = N1 ∈ N (s, z), and set N4 = N2 ∪ (u, v) ∈ P. The

map is clearly invertible.

Since in all, there are 4 cases, accounting for a factor of 4, given which case we are in, we

obtain the claimed bound.

We now plug the above bounds into the expressions for congestion through a transition

of the chain which either adds or deletes an edge.
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Proof of Lemma 3.14. Let T be a transition which either adds or deletes an edge (a move

in the Markov chain of type 1 or 2a). In each case, let T = (M,M ′), where M ∈ N (u, v)

and M ′ ∈ P (the proof in the case that the transition deletes an edge is along the same

lines, with the appropriate modification to Lemmas 3.15 and 3.16). We bound the left hand

side of (9) by bounding the contribution firstly, due to a pair of perfect tables, and secondly

due to a near perfect and a perfect table.

We bound the congestion through T due to (I, F ) ∈ P × P as follows.

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

π(I)π(F )
π(M)

=
1

w(Ω)

∑
(I,F )∈fT
I∈P

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F )
λ(M)

λ(N (u, v))
λ(P)

(By Lemma 3.15, i) ≤ 1
w(Ω)

λ(u, v)λ(P̂(u, v))
λ(N (u, v))
λ(P)

(By Lemma 3.16, i) ≤ λ(P)
w(Ω)

≤ 1
nm

Next, we bound the congestion through T due to (I, F ) ∈ N × P.

∑
s∈U,z∈V

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

π(I)π(F )
π(M)

=
1

w(Ω)

∑
s,z

λ(N (u, v))
λ(N (s, z))

∑
(I,F )∈fs,zT

|ΨT (I, F )|
|Ψ(I, F )|

λ(I)λ(F )
λ(M)

(By Lemma 3.15, ii) ≤ 1
w(Ω)

∑
s,z

λ(u, v)λ(N̂ (s, z, (u, v)))
λ(N (u, v))
λ(N (s, z))

(By Lemma 3.16, ii) ≤ 4nmλ(P)
w(Ω)

≤ 4

Adding the congestion from each of these sources, the congestion through a transition

that adds or deletes an edge is bounded by O(1).
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Lemmas 3.11 and 3.14 imply the Inequality (7). It can be seen from the proofs of

the lemmas in this section, that if the weights w(u, v) satisfy (4), the bound holds for the

weights w up to a small constant factor. Hence, we have that ρ(f) = O(nmD2dmax).

This implies that the mixing time of the chain started at G is bounded by τG(δ) =

O(nmD2dmax(ln(1/π(G)) + log δ−1)). This completes the proof of Theorem 3.10.

3.7 Approximating Ideal Weights by Simulated Annealing

Recall that our goal is to find the ideal weights w∗λ(u, v) (or, rather, a constant factor

approximation of the ideal weights) for λ = 1.

As mentioned earlier, we will do this by progressively increasing the value of λ. We start

with λ close to 0, for which it is possible to compute a (1 + ε) approximation of the ideal

weights in a straightforward manner, see Theorem 3.3. However, later in the algorithm

we will only have a constant factor, say 2, approximation of the ideal weights. We will

use samples of the corresponding Markov chain to obtain a better approximation of the

ideal weights; this in turn allows us to increase the value of λ slightly so that the improved

approximation of the ideal weights of the old λ sufficiently approximates the ideal weights

of the new λ. Eventually, λ becomes 1 and we will have a suitable approximation of the

ideal weights for λ = 1. In this section we discuss these steps in more detail.

3.7.1 Bootstrapping

For each pair u, v suppose we have weights wλ(u, v) which are a 2-approximation to the

weights w∗λ(u, v). That is, suppose that w∗λ(u, v)/2 ≤ wλ(u, v) ≤ 2w∗λ(u, v). We want to

use the Markov chain to tighten this approximation to a factor c ∈ (1, 2). The following

computation closely mimics the computation of [47, Section 3].

Recall, that πλ denotes the stationary distribution of the Markov chain. To simplify

notation, we will omit the subscript λ. Recall, that for a given activity λ the ideal weights

are defined as w∗λ(u, v) = λ(P)/λ(N (u, v)). Note that if w(u, v) = w∗(u, v) for every

u ∈ U, v ∈ V , then

w(N (u, v)) = w∗(u, v)λ(N (u, v)) = λ(P) = w(P).
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Thus for the Markov chain run with weights w = w∗, the stationary distribution of the

chain satisfies π(N (u, v)) = π(P). For arbitrary weights w, note that

π(N (u, v)) =
w(u, v)λ(N (u, v))

w(Ω)
=

w(u, v)λ(P)
w(Ω)w∗(u, v)

= π(P)
w(u, v)
w∗(u, v)

Rearranging terms, we have

w∗(u, v) = w(u, v)
π(P)

π(N (u, v))
(10)

This implies a bootstrapping procedure to boost rough approximations to w∗ into arbitrar-

ily close approximations. By sampling from the stationary distribution of the chain with

weights w, we can estimate π(P)/π(N (u, v)), and thus using (10) we can estimate w∗(u, v).

Here are the details. The idea is to obtain a c1/2-approximation of both π(P) and

π(N (u, v)). Then we will have a c-approximation, say z, of π(P)/π(N (u, v)) = w∗(u, v)/w(u, v).

In other words,

z/c ≤ w∗(u, v)
w(u, v)

≤ cz

and thus it suffices to set the weight approximations wnew(u, v) := w(u, v)z to get c-

approximations of w∗(u, v).

We can use the indicator random variables X and Xu,v for the events “a sample from

π is in P” and “a sample from π is in N (u, v)” as estimators of π(P) and π(N (u, v)).

However, by running the Markov chain we cannot obtain a sample from π, rather a sample

from π̂ which is δ-close to π in total variation distance. Thus, E[X] = π̂(P) and E[Xu,v] =

π̂(N (u, v)). It is sufficient to set δ so that π̂(P) and π̂(N (u, v)) approximate π(P) and

π(N (u, v)), respectively, by a factor of c1/4. Then we can use several samples of X and

Xu,v to approximate π̂(P) and π̂(N (u, v)) to within a factor of c1/4. Thus, overall we obtain

a c-approximation of the ratio π(P)/π(N (u, v)).

First we sketch how to set δ so that π̂ is within a factor of c1/4 of π. Recall that the

distribution π is defined by a weight function w which is a 2-approximation of the ideal

weights w∗. Thus, 4/(nm) ≥ π(P), π(N (u, v)) ≥ 1/(4nm) and we can set δ = Θ(1/(nm))

so that π̂(P), π̂(N (u, v)) = Θ(1/(nm)) and π̂(P) and π̂(N (u, v)) are c1/4-approximations

of π(P) and π(N (u, v)).
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To obtain a c1/4 approximation of π̂(P) we approximate E[X] within a factor of c1/4

by averaging s random variables X1, . . . , Xs. By the Chernoff bounds, since E[X] =

Θ(1/(nm)), it suffices to take s = O(nm log ζ−1) samples to approximate E[X] = π̂(P)

with probability ≥ 1− ζ. Analogous arguments hold for E[Xu,v].

Putting it all together, the average of the Xi’s estimates π̂(P) within a factor of c1/4 with

probability ≥ 1−ζ and π̂(P) is within a factor of c1/4 of π(P). Thus, we obtain estimates of

π(P) to within a factor of c1/2 with probability ≥ 1−ζ. Therefore, with probability at least

1− (nm+ 1)ζ we obtain c1/2 approximations of all π(P), π(N (u, v)), resulting in factor of

c approximations of w∗(u, v) for every u, v. Since we do the bootstrapping for every λi, if

the number of phases is `, the overall probability of success is ≥ 1− (nm + 1)`ζ which we

want to be, say, 4/5. It suffices to set ζ = Θ(1/((nm+ 1)`)).

3.7.1.1 Warm Starts

For a fixed λ the improved approximation of the ideal weights includes running the Markov

chain s = O(nm log ζ−1) = O(nm log(nm)) times. By Theorem 3.10 the mixing time of

the Markov chain started at graph G is O(nmD2dmax(ln(1/π(G)) + log δ−1)). The term

log π(G)−1 comes from the fact that the starting distribution is concentrated on the state

G. The graph G∗ seems to be a good starting point since λ(G∗) = 1 and thus log π(G∗)−1 =

O(D log(nm)). If we start the chain at G∗ we need to take O(nmD2dmax(ln(1/π(G∗)) +

log δ−1)) steps of the chain per sample. The standard method of warm starts can be

used to avoid the log π(G∗)−1 term in the running time. The idea is to obtain the first

sample by taking O(nmD2dmax(ln(1/π(G∗)) + log δ−1)) steps, but all subsequent samples

are obtained by running the Markov chain started at the previous sample. This way, the

chain is effectively started from a distribution close to the stationary distribution and thus

the subsequent samples each take only O(nmD2dmax(log δ−1)) steps. The same idea is used

in [47].
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3.7.2 Total Number of Phases

We specify a sequence ε(nm)−D = λ1 ≤ · · · ≤ λ` = 1 such that

1√
2
≤

w∗λi(u, v)
w∗λi+1

(u, v)
≤
√

2 for every i ∈ [`− 1] and every u, v

Then, if wnew(u, v) is a
√

2-approximation (remember that we are free to choose any con-

stant c ∈ (1, 2)) of w∗λi(u, v), then by the above, wnew(u, v) is also a 2-approximation of

w∗λi+1
(u, v). Therefore we can increase λ from λi to λi+1 and still be able to use Theo-

rem 3.10.

We obtain the above sequence of λ’s by reversing the output produced by the algorithm

of [8] for computing the cooling schedule λ. It constructs a λ-sequence of length ` =

O(D logD log(nm)) with the additional property that λi+1(P) is within a factor of 21/4 of

λi(P) and λi+1(N (u, v)) is within a factor of 21/4 of λi(N (u, v)) for every u, v and i ∈ [`−1]

(see Lemmas 2 and 3 of [8], notice that in our case s = D and γ = (nm)D since we may

assume that ε ≥ 1/(nm)D). Thus, 1/
√

2 ≤ w∗λi(u, v)/w∗λi+1(u,v) ≤
√

2, as required.

3.8 Counting by Sampling

In this section, we sketch a standard reduction from counting to sampling. Our goal is to

estimate |P|. For any sequence λ1, . . . , λ`,

|P| = |P|
wλ`(Ω)

wλ`(Ω)
wλ`−1

(Ω)
wλ`−1

(Ω)
wλ`−2

(Ω)
· · · wλ2(Ω)

wλ1(Ω)
wλ1(Ω)

Let us fix the λ-sequence from the previous section. We first estimate

wλ1(Ω) = λ1(P) +
∑
u,v

wλ1(u, v)λ1(N (u, v))

where 1 ≤ λ1(P) ≤ 1 + ε and xu,v ≤ λ1(N (u, v)) ≤ (1 + ε)xu,v for every u, v, see Theorem

3.3. Since wλ1(u, v) = 1/xu,v, we get that nm+ 1 is a (1 + ε) approximation of wλ1(Ω). We

define s∗ := |P|/wλ`(Ω) and si := wλi(Ω)/wλi−1
(Ω) and we will use samples of the Markov

chain to estimate each si within a factor of eε/(2`) and s∗ within a eε/2 factor. Then, if s′∗

and s′i denote the estimates for s∗ and the si, the quantity (nm+ 1)s′∗s
′
2 . . . s

′
` estimates |P|

within a factor (1 + ε)eε = 1 + ε′, as required.
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Recall that with probability ≥ 4/5 the weights wλi correctly approximate the ideal

weights w∗λi for every i, see Section 3.7.1. In what follows we will assume that the weights

w are correct estimates of w∗ for every λi.

Notice that since λ` = 1 and each w(u, v) is within a factor of 2 of w∗(u, v), we have

that |P| = wλ`(P) is within a constant factor of wλ`(Ω)/(nm+ 1). Thus, s∗ = Θ(1/(nm)).

By a similar argument, si = Θ(1) for each i. Therefore we can estimate the si as follows.

We take a random sample X of the Markov chain for λi and consider the value of est(X) :=

wi(M)/wi−1(M). The expectation of this value is exactly si. Then we take O(`ε−2) samples

of the Markov chain for λi with the variation distance δ = O(ε/`) and average their esti(X)

values, obtaining esti. By the Chebyshev’s inequality,
∏`
i=2 esti estimate

∏`
i=2 si within an

eε/2 factor with a probability ≥ 11/12 (for suitable constants within the O notation).

Similarly, we sample X by the Markov chain for λ` and δ = O(ε) and define est∗(X) to

be indicator variable for the event X ∈ P. Then the expectation of est∗(X) is s∗ and we

average the values of O(nmε−2) samples to get within a factor eε/2 of s∗ with probability

≥ 11/12. Then, (nm + 1)est∗
∏`
i=2 esti approximates |P| within a factor of (1 + ε)eε with

probability ≥ 5/6.

Thus, with probability ≥ 4/5 we have correct estimates w of the ideal weights w∗ and

conditioned on the correct weight estimates, the algorithm outputs a (1+ε′)-approximation

of |Ω| with probability ≥ 5/6. Unconditionally, with probability ≥ 2/3, the algorithm

produces an answer within (1 + ε′) factor of |Ω|.

See [47] and [8] for details of this computation.

3.9 Proof of Correctness of the Algorithm

We now recall the statement of our main theorem, and conclude its proof.

Theorem 3.2. For any bipartite graph G = (U ∪ V,E) where U = {u1, . . . , un} and V =

{v1, . . . , vn}, any degree sequence r(1), . . . , r(n); c(1), . . . , c(m), any 0 < ε, η < 1, we can ap-

proximate the number of subgraphs of G with the desired degree sequence (i.e., ui has degree

r(i) and vj has degree c(j), for all i, j) in time O((nm)2D3dmax log5(nm/ε)ε−2 log(1/η))

where D =
∑

i r(i) =
∑

j c(j) is the total degree and dmax = max{maxi r(i),maxj c(j)} is
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the maximum degree. And, the approximation is guaranteed to be within a multiplicative

factor (1± ε) of the correct answer with probability ≥ 1− η.

Proof. The theorem states that we can approximately count the number of bipartite graphs

with a given degree sequence which are subgraphs of any given bipartite graph G. In the

previous sections we dealt with the case when G = Kn,m, the complete bipartite graph on

n+m vertices. If G is not complete, we can perform the annealing algorithm in two stages.

In the first stage, we run the simulated annealing algorithm described previously. Thus, we

estimate the ideal weights for λ = 1 for the complete graph at the end of the first stage. In

the second stage, we do the simulated annealing starting with the weights at the end of the

first stage (notice that now all edge activities are 1). However, the annealing will decrease

the activities of edges not present in G from 1 to λ ≈ 0 (hence, we may be decreasing the

activities of different edges than the ones whose activities were previously increased). The

analysis of the annealing algorithm and the mixing time of the Markov chain remain the

same. Thus, the two stage process only doubles the running time.

Now we break up the running time in the first stage. Initially, we spend O((nmdmax)2)

time to construct the Greedy graph G∗ and to approximate the initial weights, see The-

orem 3.3. We need ` = O(D log2(nm)) intermediate temperatures for the simulated an-

nealing (Section 3.7.2). As discussed in Section 3.7.1, at each temperature we need to

generate O(nm log(nm)) samples from the stationary distribution of the Markov chain in

order to do the bootstrapping. By Theorem 3.10, see also Section 3.7.1.1, each sample takes

O(D2nmdmax log(nm)) steps of the Markov chain (recall that we set δ = Θ(1/(nm)), Section

3.7.1). Thus, as discussed in Section 3.7.1, with probability ≥ 4/5 in time O((nm)2D3dmax

log4(nm)) we compute correct approximations of the ideal weights w∗ for λ = 1. Therefore,

we can generate a random bipartite graph with the desired degree sequence, from a distri-

bution within variation distance ≤ δ of uniform, in time O((nm)2D3dmax log4(nm/δ)). The

computation of the initial weights is absorbed by this quantity.

For the counting, see Section 3.8, we use O(nmε−2) samples of the Markov chain to ap-

proximate s∗ and for every intermediate temperature we need O(`ε−2) = O(D log2(nm)ε−2)
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samples to approximate the corresponding si. Taking into account the mixing time of the

Markov chain, the counting phase takes time O(D4nmdmax log5(nm/ε)ε−2). Thus, the final

running time of the algorithm including the weight estimation phase is O(D3(nm)2dmax

log5(nm/ε)ε−2). With probability ≥ 2/3 the algorithm outputs a (1 + ε) approximation of

the number of bipartite graphs with the desired degree sequence. This can be boosted to

probability ≥ 1− η by running the algorithm O(log η−1) times and outputting the median

of the resulting values.

3.10 Conclusions

We have presented an algorithm for counting and sampling binary contingency tables for

arbitrary degree sequences. While our algorithm has many similarities to the permanent

algorithm of [47], the new algorithm relies on a surprising combinatorial property of the

greedy graph that allows us to start the annealing process.

The Diaconis or “switch” Markov chain does not use the auxiliary states that the Markov

chain we analyze uses. An interesting open problem is the efficiency of the Diaconis chain

on arbitrary degree sequences. Does there exist a degree sequence for which the chain

converges slowly to the stationary distribution, or is the mixing time polynomial for all

degree sequences?
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CHAPTER IV

SIMULATED TEMPERING MIXES TORPIDLY FOR THE

3-STATE FERROMAGNETIC POTTS MODEL

Simulated tempering, like annealing, attempts to speed up the convergence time of a tor-

pidly mixing Markov chain by defining the chain on an extended space parameterized by

temperature. In this chapter, we study the simulated tempering Markov chain for sampling

from the Gibbs distribution for the 3-state Potts model. Our results show that in this case,

simulated tempering is not successful in overcoming the bottleneck that causes the fixed

temperature algorithm to be slow. This suggests a limitation of the method and a need for

finding better ways to define the tempering distributions.

4.1 Introduction

Glauber dynamics and local Markov chains like the Metropolis-Hastings algorithm are

known to mix torpidly for sampling from spin systems where there are multiple modes

in the stationary distribution [67, 85]. The modes usually correspond to different classes

of ordered configurations which are predominant in the stationary distribution. The torpid

mixing is due to bottlenecks in the state space where the Markov chain takes exponential

time to cross from one mode to another since it must pass through a set of configurations

enroute that is highly unlikely in the stationary distribution.

Simulated tempering and its variant swapping are Markov chain algorithms that attempt

to overcome the bottleneck to rapid mixing at low temperature by allowing the Markov

chain to spend some fraction of the time at higher temperatures where the Markov chain is

known to mix rapidly. The chain alternates between moves of the local Markov chain at its

current (fixed) temperature and randomly changing the temperature by a small amount.

The intuition is that it should speed up the mixing time at low temperatures if the chain

is “well mixed” on the space at higher temperatures and the intermediate temperatures
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interpolate between these two extremes.

In this work, we show that there are natural examples where this intuition can fail. In

particular, the Markov chain mixes rapidly at the high temperature distribution, but due

to a particular type of phase transition in the system, called a first order phase transition,

the simulated tempering chain mixes torpidly below a critical temperature.

4.1.1 Phase Transitions and Torpid Mixing

Phase transitions [35] are phenomena studied in statistical physics and thermodynamics and

refer to the transformation of a system from one phase to another. A phase is characterized

by one or more physical properties of the system, for example, the density or specific heat.

A phase transition is characterized by an abrupt change in the phase of the system when

the temperature is changed by a small amount. A physical example of this is the change

from liquid to gas when water is boiled.

One way to classify phase transitions is based on the non-analyticity of the derivatives

of the free energy with respect to the temperature. If Z(β) is the partition function at

inverse temperature β = 1/kT , the free energy is defined to be the quantity −kT log(Z(β)).

The order of the phase transition is given by the lowest order derivative of the free energy

with respect to temperature which is discontinuous. Thus, for example, a first order phase

transition is one where the first derivative of the free energy is discontinuous. The derivatives

of the free energy are relevant because it turns out that they are precisely thermodynamic

quantities like internal energy or specific heat for the system.

The order of the phase transition is also characterized by whether there is a latent

heat involved in the transition. Latent heat is the energy released or absorbed during the

transition. First order phase transitions are associated with latent heat in the following

sense. At the transition temperature, the heat capacity (which is the second derivative

of the free energy) becomes infinite, since the first derivative is discontinuous. This means

that heat can be added, but the temperature does not rise, instead the phase change occurs.

Once the latent heat has been added, the temperature continues to rise again. This implies

that first order phase transitions are associated with co-existence of phase. For example,
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at the boiling point of water, both liquid water and water vapor co-exist. The co-existence

is because the entire system does not complete the phase transition at the same time since

the latent heat cannot be transferred to or from the environment instantaneously for the

entire system. Mathematically, at a very high level, if the first derivative is discontinuous,

it implies that in the distribution, the location of the modes in the ordered phase does

not change in a smooth way to the location of the mode in the disordered phase. Rather,

there is a critical temperature at which both types of modes, ordered and disordered, must

co-exist [35].

Continuous phase transitions or second order phase transitions, do not exhibit phase co-

existence. An example of this type of phase transition is the ferromagnetic phase transition

in iron where the magnetization (the first derivative of the free energy) changes continuously

with the field strength, the analogue of temperature.

Systems with phase transitions are known to exhibit torpid mixing at low temperatures.

As we will see, the order of the phase transition, or specifically the coexistence of phase can

also cause a difference in the behavior of sampling algorithms.

4.1.2 The Mean-field Potts Model

Recall the definition of the q-state Potts model from Section 1.2.2, in Chapter 1 The mean-

field Potts model refers to the Potts model where G is the complete graph on n vertices.

Mean-field models are studied in physics because they often share the same characteristics of

systems in high dimensions [35]. Mean-field models are studied in computer science because

even in simple cases, the behavior of sampling algorithms for them is not fully understood.

The Swendsen-Wang algorithm [83] is an algorithm proposed as an alternative to Glauber

dynamics for sampling from configurations of the q-state Potts model. Cooper et al. [18]

considered the mean-field Ising model and showed that Swendsen-Wang algorithm mixes

rapidly at all temperatures except possibly near the critical point. Gore and Jerrum [39]

showed that the Swendsen-Wang algorithm mixes torpidly on the mean-field Potts model for

q ≥ 3 at the critical temperature. The complexity of Swendsen-Wang at the critical point

for the Ising model remains unresolved. Interestingly, Madras and Zheng [64] analyzed
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simulated tempering for the mean field Ising model and showed that it mixes rapidly at all

temperatures, including the critical temperature. In the next section we define the simulated

tempering and its variant swapping, and then describe our results for the mean-field Potts

model.

4.2 Simulated Tempering and Swapping Algorithms

Recall that for the Potts model, the Gibbs distribution at temperature β is given by

πβ(x) =
eβH(x)

Z(β)

where

H(x) =
∑

(i,j)∈E(G)

J · δ(x(i), x(j))

is the Hamiltonian.

We will consider the 3-state ferromagnetic mean-field Potts model, where q = 3, J > 0

and the underlying graph is complete. Let Ω denote the space of all 3n configurations and

suppose that we want to sample according to the Gibbs distribution at β∗ > 0,

πβ∗(x) =
eβ
∗H(x)

Z(β∗)

The local Markov chain underlying the simulated tempering algorithm that we will

consider is the Metropolis-Hastings algorithm [70]. The Markov kernel K is the graph

where there is an edge between pairs of configurations x, y ∈ Ω which differ in the spin of

only one vertex. For (x, y) ∈ E(K) let

P (x, y) =
1

2∆
min

(
1,
πβ∗(y)
πβ∗(x)

)
,

where ∆ is the maximum degree of K. It is easy to verify that πβ∗ is the stationary

distribution. It is well known by methods similar to those in [67, 85] that the Metropolis

Markov chain mixes torpidly for low values of β∗. We analyze whether simulated tempering

could speed up mixing.
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4.2.1 Simulated Tempering Markov Chain

Simulated tempering was defined by Marinari and Parisi, and Geyer and Thompson [37,

65]. For sampling from the distribution πβ above, the algorithm is as follows. Let 0 =

β0 < · · · < βM = β∗ be a set of inverse temperatures. Let πβ0 , · · · , πβM = πβ∗ be the

corresponding distributions over Ω. The state space of the simulated tempering chain at

βM with intermediate temperatures β1, · · ·βM−1 is Ω̂ = Ω × {0, · · · ,M}, which we can

think of as the union of M + 1 copies of the original state space Ω, each corresponding to

a different inverse temperature. The choice of β0 = 0 corresponds to infinite temperature

where the Metropolis algorithm converges rapidly to the stationary (uniform) distribution,

while βM is the inverse temperature at which we wish to sample. The distributions πβi

interpolate between the extremes.

The stationary distribution of the tempering chain π̂, is chosen to be uniform over temper-

atures, and the conditional distributions are the fixed temperature Gibbs distributions:

π̂(x, i) =
1

M+1
πβi(x), x ∈ Ω.

The tempering Markov chain consists of two types of moves: level moves, which update the

configuration while keeping the temperature fixed, and temperature moves, which update

the temperature while remaining at the same configuration. In each step of the chain, with

probability 1/2 we choose one of the types of moves to perform.

• A level move connects (x, i) and (x′, i), where x and x′ are connected by one-step transi-

tions of the Metropolis algorithm on Ω at inverse temperature βi. The move P̂ ((x, i), (x′, i))

is accepted with probability

Pi(x, x′) =
1

2∆
min

(
1,
πβi(x

′)
πβi(x)

)
.

Here Pi(x, x′) is the Metropolis probability of going from x to x′ according to the stationary

probability πβi .

• A temperature move connects (x, i) to (x, i±1). For a temperature move, we randomly

choose to move the temperature up or down, and the move P̂ ((x, i), (x, i± 1)) is accepted
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with probability

1
2

min
(

1,
π̂(x, i± 1)
π̂(x, i)

)
=

1
2

min
(

1,
Z(βi)
Z(βi±1)

e(βi±1−βi)H(x)

)
.

We will fix M , the number of temperatures to be a polynomial growing at least as Ω(n).

Since M is a polynomial, for every 0 ≤ i ≤M , π̂(Ω, i) is at least an inverse polynomial frac-

tion. It can be verified that the lower bound on M ensures that the transition probabilities

are not too small, by bounding the size of the ratio Z(βi)
Z(βi±1) . Notice that while the expo-

nential factor is simple to calculate given x and i, it is not clear that we can compute the

ratio of partition functions, which we need in order to compute the transition probabilities.

The swapping algorithm, also an aggregate chain using these temperatures, circumvents

this difficulty in implementing temperature moves.

4.2.2 Swapping Markov Chain

The swapping algorithm, also sometimes known as Metropolis Coupled Markov Chain

Monte Carlo was introduced by Geyer [36].

The state space is the product space Ω̂ = Ω(M+1), the product of M + 1 copies of the

original state space, corresponding to inverse temperatures β0 < · · · < βM .

Let πM (x) = π(x) be the distribution from which we wish to sample and let π0(x) = 1
|Ω|

(the uniform distribution), for x ∈ Ω. A configuration in the swapping chain is an (M+1)-

tuple x = (x0, · · · , xM ) ∈ Ω̂, where each component represents a configuration chosen from

the ith distribution. The probability distribution π̂ is the product measure

π̂(x) =
M∏
i=0

πβi(xi).

The swapping chain also consists of two types of moves:

• A level move connects x = (x0, · · · , xi, · · · , xM ) and x′ = (x0, · · · , x′i, · · · , xM ) if x and

x′ agree in all but the ith components, and xi and x′i are connected by one-step transitions

of the Metropolis algorithm on Ω. The move P̂ (x, x′) is accepted with probability

1
2(M+1)

Pi(x, x′) =
1

2(M+1)
min

(
1,
πβi(x

′)
πβi(x)

)
.
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• A swap move connects x = (x0, · · · , xi, xi+1, · · · , xM ) to x′ = (x0, · · · , xi+1, xi, · · · , xM ),

i.e., it interchanges the ith and i+ 1st components, with the appropriate Metropolis prob-

abilities on π̂. In particular,

P̂ (x, x′) =
1

2(M+1)
min

(
1,
π̂(x′)
π̂(x)

)
=

1
2(M+1)

min
(

1,
πi+1(xi)πβi(xi+1)
πβi(xi)πi+1(xi+1)

)
=

1
2(M+1)

min
(

1, e(βi+1−βi)(H(xi)−H(xi+1)
)
.

Notice that now the normalizing constants cancel out. Hence, implementing a move

of the swapping chain is straightforward, unlike tempering where good approximations for

the partition functions are required. Zheng proved that fast mixing of the swapping chain

implies fast mixing of the tempering chain [91], although the converse is unknown.

For both tempering and swapping, it is important that successive distributions πβi and

πβi+1
have sufficiently small variation distance so that temperature moves are accepted

with nontrivial probability. Hence, M must be sufficiently large. However, M must be

small enough so that it does not cause the running time to grow too much. Setting M to

be a polynomial which is Ω(n) ensures both these constraints are satisfied.

4.2.3 Importance Sampling

As an alternative to simulated tempering, Madras and Piccioni [61] proposed importance

sampling using the following distribution over Ω:

πav(x) =
M∑
i=0

πβi(x)
M + 1

They showed that the simulated tempering Markov chain is identical in distribution to the

Metropolis Markov chain defined according to the distribution πav. In some sense, simulated

tempering is doing importance sampling using the average of the simulated tempering dis-

tributions. As described in Section 3.2.2, we would like to choose the importance sampling

distribution so as to ensure the corresponding unbiased estimator has low variance. At a

high level, our slow mixing result can be viewed as saying that at low enough temperature,

the average of the tempering distributions is not a good choice for the importance sampling

distribution for the 3-state Potts model.
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4.3 Summary of Results.

We show that the simulated tempering and swapping Markov chains require exponential

time to converge for sampling from the 3 state mean-field ferromagnetic Potts model. We

show that no matter how the interpolating temperatures for the algorithms are chosen, the

chain will still take exponential time to converge.

Theorem 4.1. Let βc = 2 ln 2
n . There is a constant c1 > 0 such that for any set of

intermediate temperatures, the tempering chain on Ω at temperature βc has mixing time

τ(ε) ≥ ec1n ln(1/ε).

The torpid convergence of the tempering chain is caused by a first-order phase transition

in the 3-state ferromagnetic Potts model. In the Potts model, there is a critical temperature

which exhibits coexistence of the ordered and disordered phases. In contrast, the Ising model

has a second-order phase transition, and there is no phase coexistence, and this distinguishes

why simulated tempering mixes rapidly for the Ising model [64] and not the Potts model.

The second result that we show is that there are even cases when the mixing time

of the tempering algorithm will be significantly slower than that of the fixed temperature

Metropolis algorithm. This disproves the conventional wisdom that tempering can be in the

worst case slower by a factor polynomial in the number of temperatures. Let ΩRGB denote

the subset of Ω consisting of configurations where the majority of vertices are red. On the

restricted space ΩRGB , we show that tempering can slow down the Metropolis algorithm at

a fixed temperature by an exponential multiplicative factor.

Theorem 4.2. Let 2 ln 2
n < β∗ < 3

2n . There are constants c2, c3 (which may depend on β∗)

such that 0 < c2 < c3 and the Metropolis chain on ΩRGB at β∗ has mixing time τ(ε) ≤

ec2n ln(1/ε) while the mixing time of the tempering chain is bounded by τ(ε) ≥ ec3n ln(1/ε).

4.4 Torpid mixing of Simulated Tempering

In this section we show the main result, Theorem 4.1, which states that there is a tem-

perature βc at which simulated tempering for the 3-state ferromagnetic Potts model mixes

torpidly regardless of the intermediate temperatures we choose.
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We prove the lower bound on the mixing time of the tempering chain by bounding the

conductance. The state space of the tempering chain is Ω× [M+1]. To show torpid mixing,

it is enough to exhibit a cut in the state space whose conductance is small. The cut we

construct depends only on the number of red, blue and green vertices in the configuration.

Hence, for the purpose of defining the cut, it is convenient to view the state space of

configurations as equivalence classes of colorings according to the number of vertices of each

color. Furthermore, the cut we define will induce the same cut on Ω at each temperature.

It is convenient for the exposition to make the following change of variable using the

fact that for the 3-state ferromagnetic Potts model, the underlying graph is complete. Let

x1, x2, and x3 be the number of vertices assigned red, green and blue respectively in the

configuration x ∈ Ω. The Gibbs distribution at β̃ with Hamiltonian H̃ is given by

π
β̃
(x) = π

β̃
(x1, x2, x3) =

eβ̃H̃(x)∑
y e

β̃H̃(y)
,

For the complete graph, H̃(x) = 1
2(x1(x1 − 1) + x2(x2 − 1) + x3(x3 − 1)). Note that since

x1 + x2 + x3 = n, the linear terms will cancel from both the numerator and denominator.

Setting β = β̃J/2 and H(x) = x2
1 + x2

2 + x2
3, we will work with the following expression for

the distribution

πβ(x) =
eβH(x)

Z(β)
,

where Z(β) =
∑

x e
βH(x).

Henceforth, we will use this modified Gibbs distribution since we will always work on

the complete graph.

To define the cut, we partition Ω into sets Ωσ, where σ = (σ1, σ2, σ3) is partition of n into

a triple, i.e., σ1 + σ2 + σ3 = n. The set Ωσ contains all colorings with σ1, σ2 and σ3 vertices

colored red, green and blue, respectively. The set Ωσ corresponds to
(

n
σ1,σ2,σ3

)
different

configurations in Ω and hence the Gibbs distribution on partitions σ at the temperature

βi (that is, the stationary distribution of the tempering chain, conditioned on being at the

temperature βi) is given by

πβi(Ωσ) =
(

n

σ1, σ2, σ3

)
eβi(σ

2
1+σ2

2+σ2
3)

Z(βi)
(11)
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The idea for defining the cut with small conductance comes from the following properties

of the stationary distribution conditioned on the sets Ωσ. There is a critical temperature βc

where the Gibbs distribution exhibits the coexistence of two modes. There is a “disordered”

mode in the distribution at
(
n
3 ,

n
3 ,

n
3

)
; this mode is present because though these configu-

rations have small energy, the number of configurations (given by the multinomial term in

Equation (11)) is large. At βc, there are also “ordered” modes at
(

2n
3 ,

n
6 ,

n
6

)
,
(
n
6 ,

2n
3 ,

n
6

)
,(

n
6 ,

n
6 ,

2n
3

)
. These modes are present because configurations with a predominant number

vertices having the same color (red, or green or blue) are favored in the Gibbs distribution,

though there are not as many of these configurations. The ordered and disordered modes

are separated by a region whose density is exponentially smaller than both the modes,

where neither the multinomial nor the energy term dominates. As the inverse temperature

is decreased below βc, the size of the disordered mode grows while the sizes of the ordered

modes decrease. However, the region of exponentially small density remains small at every

temperature. The cut in the state space of the simulated tempering chain at βc is to take a

region surrounding the ordered mode at each temperature. The conductance of this cut, up

to a polynomial (in M) is bounded by the conductance at the critical temperature where

the modes coexist. This is because in the stationary distribution, the chance of being at

each temperature is equally likely.

In contrast, for the Ising model, there is no temperature at which the ordered and

disordered modes coexist. It is due to the coexistence of the ordered and disordered phases

that simulated tempering can be torpidly mixing for the Potts model while for the Ising

model, it mixes rapidly [64].

We first present a straightforward upper bound on the conductance of the tempering

chain at βc.

Theorem 4.3. Let βc = 2 ln 2
n . There is a constant c4 > 0 such that the conductance Φ of

the simulated tempering chain for the 3-state mean-field ferromagnetic Potts model at βc,

for any set of interpolating temperatures {βi}, for i ∈ I ⊆ [M ] is at most e−c4n.

As a corollary, by Theorem 2.2, the lower bound on mixing time by the inverse of
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conductance, this implies Theorem 4.1. Later, we will refine this bound in order to compare

it to the upper bound on the mixing time of the Metropolis chain at a fixed temperature

to show Theorem 4.2.

Let A ⊂ Ω be the set of configurations x such that x1, x2, x3 ≤ n/2. Let S = {(x, i) | x ∈

A, β0 ≤ βi ≤ βc}. Let B = {x ∈ A | ∃ x′ ∈ Ω \A, P (x, x′) 6= 0} be the boundary of A (the

set of configurations with at least one of x1, x2 or x3 equal to n/2). Our aim is to show

that the conductance of the set S is bounded. Note that it is not true that π(S) ≤ 1/2 and

hence a bound on ΦS does not immediately imply a bound on Φ. Instead, we will show

that the coexistence of the ordered and disordered phases implies that Φ ≤ poly(n)ΦS . We

start by bounding ΦS .

ΦS =
FS
CS

=

∑
i∈I

∑
x∈B

πβi(x)
∑
x′∈A

P (x, x′)

∑
i∈I

∑
x∈A

πβi(x)

≤

∑
i∈I

∑
x∈B

πβi(x)∑
i∈I

∑
x∈A

πβi(x)
(12)

The last expression above is the ratio of the sum over temperatures of the stationary

probabilities of configurations in the set B (the boundary of the set A) to the sum over

temperatures of the stationary probabilities of the configurations in the set A. In order to

bound this quantity, we will need several technical lemmas which we state in the course of

the proof but prove later to maintain the flow of the argument. The proofs of these lemmas

are gathered in Section 4.4.1.

For 0 ≤ α ≤ 1 let Ωαn denote the set of configurations Ωσ where σ1 = αn and σ2 =

σ3 = (1 − α)n/2. In the next step, we show that by losing only a polynomial factor, the

numerator of (12) can be bounded by the sums of the probabilities of the configurations

Ωn/2 (the set of configurations on the boundary B with equal numbers of green and blue

vertices), while the denominator is certainly is as large as the weight of the configurations

in Ωn/3 (the set of configurations with equal numbers of red, blue and green vertices). In

particular, we want to show that for some constant c5 > 0,
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∑
i∈I

∑
x∈B

πβi(x)∑
i∈I

∑
x∈A

πβi(x)
≤ c5n

∑
i∈I

πβi(Ωn/2)∑
i∈I

πβi(Ωn/3)
(13)

We use the following lemma, which says that along the line where the number of red

vertices is n/2, the distribution at every temperature has a unique maximum at the con-

figurations where the number of green vertices is equal to the number of blue vertices. Let

πi(x) = πβi
(
n
2 , xn,

n
2 − xn

)
be the continuous function where x is allowed to vary continu-

ously.

Lemma 4.4. For n sufficiently large, the function πi(x) has a unique maximum in the

range 0 < x < 1
2 and attains its maximum at x = 1

4 for all i such that βi ≤ βc.

This implies the inequality (13). Next, we’ll show that ΦS is essentially determined by

the conductance of the cut induced at the highest inverse temperature βM .

Lemma 4.5. For every inverse temperature βi ≤ βM , πi(Ωn/2)

πi(Ωn/3) ≤
πM (Ωn/2)

πM (Ωn/3) .

Proof. Note that only the exponential term in πi(Ωn/2)

πi(Ωn/3) varies with βi. Thus, for some

function h(n), we have

πi(Ωn/2)
πi(Ωn/3)

= h(n)βin
2(H( 1

2
, 1
4
, 1
4

)−H( 1
3
, 1
3
, 1
3

))

= h(n)eβin
2(1/24)

≤ h(n)eβcn
2(1/24) =

πβc(Ωn/2)
πβc(Ωn/3)

.

This implies that the ratio on the RHS of (13) can be bounded as follows∑
i∈I

πβi(Ωn/2)∑
i∈I

πβi(Ωn/3)
≤ c6n

πβc(Ωn/2)
πβc(Ωn/3)

. (14)

for some constant c6 > 0.
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There are two final steps to bounding the conductance. Firstly, we show that at βc,
πβc (Ωn/2)

πβc (Ωn/3) is exponentially small. Secondly, we show that Φ ≤ poly(n)ΦS . These facts follow

from properties of the stationary distribution proved in Lemmas 4.6 and 4.7.

The following lemma demonstrates that there is a critical temperature at which Ωn/3

and Ω2n/3 both have large weight compared to Ωn/2. Also, the configurations Ωn/3 have a

weight that is at least a polynomial fraction of the stationary weight of Ω at βc.

Lemma 4.6. At βc = 2ln2
n ,

(i) πβc(Ωn/3) = πβc(Ω2n/3) + o(1).

(ii) πβc (Ωn/2)

πβc (Ωn/3) ≤ e
−Ω(n)

(iii) πβc(Ωn/3) ≥ πβc (Ω)

n2

Putting together the bound on ΦS from inequality (14) and part ii) of Lemma 4.6, we

obtain that for some constant c7 > 0,

ΦS ≤ e−c7n

Lastly, we show the bound on the conductance. We need the following lemma, which

says that the stationary weight of the configurations on either side of the cut are within a

polynomial factor.

Lemma 4.7. The stationary weight in the tempering chain of the set S is bounded as

π̂(S) ≤ poly(n)π̂(S).

Proof.

π̂(S) =
1

M + 1

∑
i∈I

∑
x∈Ω\A

πβi(x)

≥ 1
M + 1

πβc(Ω2n/3)

=
1

M + 1
πβc(Ωn/3)

(By Lemma 4.6 iii)) ≥ 1
4n2

1
M + 1

πβc(Ω)

≥ 1
4n2

1
(M + 1)2

∑
i

∑
x∈A

πi(x)

=
1

4n2

1
M + 1

π̂(S)

94



With this in hand, we can bound the conductance of the tempering Markov chain at

the temperature βc.

ΦS =
FS
CS

(By Lemma 4.7) ≤ poly(n)
FS
CS

(By reversibility) = poly(n)
FS
CS

≤ poly(n)e−c7n

This bounds the conductance since Φ ≤ max(ΦS ,ΦS) ≤ ec4n for some c4 > 0. Finally,

note that if the tempering Markov chain is defined with temperatures βc > βi1 > · · · > βij

for any {i1, · · · ij} ⊆ {0, · · ·M − 1}, the same arguments show that the conductance of the

chain will still be exponentially small. This completes the proof of Theorem 4.3.

Zheng [91] has shown that rapid mixing of the swapping Markov chain implies rapid

mixing of the tempering chain. Thus Theorem 4.1 implies that the swapping chain for the

mean-field Potts model mixes exponentially torpidly.

4.4.1 Proofs of Technical Lemmas

Recall that πi(x) = πβi
(
n
2 , xn,

n
2 − xn

)
is the continuous function where x is allowed to

vary continuously.

Lemma 4.4. For n sufficiently large, the function πi(x) has a unique maximum in the

range 0 < x < 1
2 and attains its maximum at x = 1

4 for all i such that βi ≤ βc.

Proof. Examining πi on this line, we find

πi(x) =
(

n
n
2 , xn,

n
2 − xn

)
e
βin

2
(
( 1

2)2
+x2+( 1

2
−x)2

)
Z(βi)

.

Neglecting factors not dependent on x and simplifying using Stirling’s formula, we need to

check for the stationary points of the function

f(x)
g(x) =

eβin(x2+( 1
2
−x)2)

(x(1
2 − x))

1
2nxx(1

2 − x)( 1
2
−x)

.
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To test the sign of the derivative
(
f(x)
g(x)

)′
, we compare the quantities f ′

f and g′

g , where

f ′

f = βin(4x − 1) and g′

g = ln( x
1
2
−x) + 1

2n
1−4x
1−2x . At x = 1

4 we have f ′

f = 0 = g′

g , and

g 6= 0, and it can be checked that this is the unique stationary point. Since βc = 2 ln(2)/n,

βin ≤ 2 ln(2). For n ≥ 100,

βcn(4x− 1) >
g′

g
, x ∈

(
0,

1
4

)
,

βcn(4x− 1) <
g′

g
, x ∈

(
1
4
,
1
2

)
.

As βi is decreased, the slope of the line f ′

f decreases from the (positive) slope of the line

βcn(4x − 1). Thus, for a maximum at x = 1
4 , it is sufficient to check that the above

inequalities hold at βc to prove the lemma for βi < βc since g′

g is independent of βi.

Lemma 4.6 At βc = 2 ln 2
n

(i) πβc(Ωn/3) = πβc(Ω2n/3) + o(1).

(ii) πβc (Ωn/2)

πβc (Ωn/3) ≤ e
−Ω(n).

(iii) πβc(Ωn/3) ≥ πβc (Ω)

n2 .

Proof. (i) We solve for βc. Let πβi(Ωn/3) = πβi(Ω2n/3). Then,

(
n

2n
3 ,

n
6 ,

n
6

)
eβi(

4n2

9
+n2

18
)

Z(βi)
=
(

n
n
3 ,

n
3 ,

n
3

)
eβi(n

2/3)

Z(βi)
.

This implies

eβin
2(1/6) =

(
2n
3 !
) (

n
6 !
) (

n
6 !
)(

n
3 !
) (

n
3 !
) (

n
3 !
)

=

(
2
3

) 2n
3
(

1
6

)n
3(

1
3

)n (
1√
2

)(
1 +O(n−1)

)
=

2
n
3

√
2

(
1 +O(n−1)

)
,

which occurs when

βi =
2 ln(2)
n

+
2√
2n2

ln
(
1 +O(n−1)

)
.

Setting βc to 2 ln(2)
n gives the desired result.
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(ii) Let βc = 2 ln(2)
n . Then we have

πβc(Ωn/2)
πβc(Ωn/3)

=

(
n

n
2
,n
4
,n
4

)
eβc(3n

2/8)(
n

n
3
,n
3
,n
3

)
eβc(n2/3)

=

(
n
3 !
)3(

n
2 !
) (

n
4 !
)2 eβcn2/24

=

√
27
32

(
8
9

)n
2

eln(2)n/12
(
1 +O(n−1)

)
=

√
27
32

e
− n

12
ln
(

312

213

) (
1 +O(n−1)

)
≤ e−Ω(n).

(iii) Let βc = 2 ln(2)
n . Consider any general point in the space, which is of the form

(x, y, 1− x− y) for 0 ≤ x+ y ≤ 1. It can be verified by calculation that the function

h(x, y) =
f(x, y)
g(x, y)

=
eβcn(x2+y2+(1−x−y)2)

(xy(1− x− y))
1

2nxxyy(1− x− y)(1−x−y)

has a global maximum at (1/3, 1/3), i.e. h(x, y) ≤ h(1/3, 1/3) for all x, y such that 0 ≤

x + y ≤ 1. This can be shown by checking that h is maximized at (1/3, 1/3) over all

stationary points of h(x, y). This implies that πβc(Ωn/3) ≥ πβc (Ω)

n2 .

4.5 Tempering Can Slow Down Fixed Temperature Algo-
rithms

We have shown that simulated tempering can mix torpidly. In fact, tempering can be slower

than the fixed temperature algorithm by more than a polynomial factor. In this section

we show that just above the critical inverse temperature, on a restricted part of the state

space Ω, simulated tempering can be slower than the fixed temperature Metropolis chain

by an exponential factor. The idea is that although exponential, the mixing time of the

Metropolis chain at β∗ is bounded by the size of the cut at β∗, while the mixing time of

the simulated tempering chain can be an exponential multiplicative factor worse because

the conductance of the same cut at the higher temperatures is much smaller. Intuitively,

on average, the chain is spends even less time mixing on both sides of the cut at the higher

temperatures than at β∗.
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The precise theorem we show is the following. Recall that ΩRGB = {x ∈ Ω : x1 ≥

x2, x3}.

Theorem 4.8. Let βc = 2 ln(2)
n < β∗ < 3

2n . Assume that the number of distributions for

tempering is M = Θ(n). Then, there are constants δ > 0 and α < 0 (which may depend

on β∗) such that the simulated tempering algorithm on ΩRGB at β∗ mixes only after time

Ω(e(δ−α)n). The Metropolis algorithm at temperature β∗ mixes in time O(e−αn+o(1))

4.5.1 Torpid Mixing of Tempering for 2 ln(2)
n < β∗ < 3

2n

We start by proving the first part of the theorem above by showing the following bound on

the conductance of the simulated tempering chain. Let ΦRGB denote the conductance of

the tempering chain on ΩRGB at inverse temperature β∗.

Theorem 4.9. Let βc = 2 ln(2)
n < β∗ < 3

2n . Then, there exists α < 0 and δ > 0 such that

ΦRGB ≤ e(α−δ)n+o(n).

Define the set KRGB = {σ = (σ1, σ2, σ3) where σ1 ≥ σ2 ≥ σ3,
∑

i σi = n}. Thus KRGB

is the set of partitions σ corresponding to the configurations in ΩRGB . For σ ∈ KRGB , the

Gibbs distribution is given by

πβi(σ) =
(

n

σ1, σ2, σ3

)
eβi(σ

2
1+σ2

2+σ2
3)

ZRGB(βi)

where ZRGB(βi) is the normalizing constant.

Denote by `λ, the set of points σλ =
(
λn, (1−λ)n

2 , (1−λ)n
2

)
, for 1

3 ≤ λ ≤ 1 i.e., the subset of

KRGB with equal numbers of blue and green points (see Figure 12). There exists a constant

λmin (which can be found by differentiating the function, as usual), a value of λ between

the ordered and disordered modes where πβ∗(σλ) is minimized along the line `λ. Let Ωλmin

be the corresponding set of spin configurations. Let βM = β∗ = µ
n where µ is a constant

such that 2 ln(2) < µ < 3
2 . Let A ⊆ ΩRGB be the set of configurations x with x1 ≤ λmin.

Let Let S = {(x, i) | x ∈ A, β0 ≤ βi ≤ βc}. Let B = {x ∈ A | ∃ x′ ∈ Ω\A, P (x, x′) 6= 0} be
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Figure 12: The profile of the probability density function over KRGB

the boundary of A. Then, as before, we can bound the conductance of the set S as follows.

ΦS ≤

M∑
i=0

∑
x∈B

πβi(x)

M∑
i=0

∑
x∈A

πβi(x)

≤ O(n)

M∑
i=0

πβi(Ωλmin)

M∑
i=0

πβi(Ω1/3)

(15)

The second inequality above follows from the fact that the distribution at every temperature

is unimodal and is maximized at Ωλmin .

Lemma 4.10. Let 2 ln(2)
n < β∗ <

3
2n . For n sufficiently large, the continuous function

πβi(x) = πβi (λminn, (1− λmin − x)n, xn) has a unique maximum in the range 0 ≤ x ≤

1− λmin at x = 1−λmin
2 for all i ∈ {1, · · · ,M}.

Rewriting the last expression in (15), we have

ΦS ≤ O(n)
πβM (Ωλmin)
πβM (Ω1/3)

((
πβM (Ωλmin )

πβM (Ωλmin )

)
+
(
πβM−1

(Ωλmin )

πβM (Ωλmin )

)
+ · · ·+

(
πβ0

(Ωλmin )

πβM (Ωλmin )

))
((

πβM (Ω1/3)

πβM (Ω1/3)

)
+
(
πβM−1

(Ω1/3)

πβM (Ω1/3)

)
+ · · ·+

(
πβ0

(Ω1/3)

πβM (Ω1/3)

)) .(16)

We use the following properties of the stationary distribution to bound the conductance.

The first fact is that the stationary weight of the disordered mode conditioned on being at

a particular temperature is non-decreasing as we decrease β.

Lemma 4.11. For i ∈ {1, · · · ,M}, we have πβi(Ω1/3) ≤ πβi−1
(Ω1/3).
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Proof. This follows from the fact that H(σ) is minimized at σ1 = σ2 = σ3 = 1/3.

Next, we observe that the height of the disordered mode increases faster than the height

at Ωλmin .

Lemma 4.12. There is a constant d > 1 such that
πβi−1

(Ω1/3)

πβi (Ω1/3) > d ·
πβi−1

(Ωλmin )

πβi (Ωλmin ) .

Proof. Expanding the terms reveals that

πβi−1
(Ω1/3)/πβi(Ω1/3)

πβi−1
(Ωλmin)/πβi(Ωλmin)

=
πβi−1(Ω1/3)/πβi−1(Ωλmin )

πβi(Ω1/3)/πβi(Ωλmin )
= e(βi−βi−1)(H(Ωλmin )−H(Ω1/3))

Recall that βi−βi−1 = O( 1
nM ) while H(σλmin)−H(σ1/3) = Ω(n2), since λmin is a constant.

The claim follows since M = Θ(n).

Lemma 4.13. The density πβ∗(Ω1/3) is exponentially smaller than πβ∗(Ω2/3)

Proof. The claim follows by the setting β∗ > 2 ln(2)
n

πβ∗(Ω1/3)
πβ∗(Ω2/3)

=
eβ
∗ n2

3
−n ln n

3

eβ
∗ n2

2
−( 2n

3
ln 2n

3
+n

3
ln n

6 )
= e−β

∗ n2

6
+n

3
ln(2).

A corollary of the above lemma is that at the inverse temperature β∗ the weight of the

set Ω1/3 is an exponentially small fraction of the total weight. On the other hand, we know

that at β0 = 0, the weight is at least a polynomial fraction of the total weight. Therefore,

by Lemma 4.13, the sequence in the denominator of (16) grows from 1 to at least dn1 for

some constant d1 > 1 in M = O(n) terms. Let d2 be the smallest constant by which any

two consecutive terms of the sequence in the denominator differ. By Lemma 4.11, and the

previous statement, d2 > 1.

By Lemma 4.12, the rate of increase of terms in the series in the denominator of (4) is

at least a constant, d > 1, times the rate of increase of terms in the series in numerator.

Hence, for some constant d3 > 0, (15) implies

Φλ ≤ O(n)
πβM (Ωλmin)
πβM (Ω1/3)

(
1 +

(
d2
d

)
+ · · ·+

(
d2
d

)d3n
)

1 + d2 + · · ·+ dd3n
2

≤ O(n)
πβM (Ωλmin)
πβM (Ω1/3)

(min(d2, d))−d3n.

Theorem 4.9 now follows by setting δ = d
3 ln(min(d2, d)).
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4.5.2 Proof of the Technical Lemma 4.10

Lemma 4.10 Let 2 ln(2)
n < β∗ <

3
2n . For n sufficiently large, the continuous function

πβi(x) = πβi (λminn, (1− λmin − x)n, xn) has a unique maximum in the range 0 ≤ x ≤

1− λmin at x = 1−λmin
2 for all i ∈ {1, · · · ,M}.

Proof.

πi(x) =
(

n

λminn, (1− λmin − x)n, xn

)
eβin

2(λmin2+x2+(1−λmin−x)2)

Z(βi)
.

Neglecting factors not dependent on x, we need to check for the stationary points of the

function

f(x)
g(x) =

eβin(x2+(1−λmin−x)2)

(x(1− λmin − x))
1

2nxx(1− λmin − x)1−λmin−x
.

Differentiating, we have

f ′

f
= βin(4x− 2(1− λmin))

g′

g
= ln(

x

1− λmin − x
) +

1
2n

1− λmin − 2x
x(1− λmin − x)

At x = 1−λmin
2 we have f ′

f = 0 = g′

g , and g 6= 0, giving a stationary point. Let β∗ = 2 ln(2)+ε
n

for some 0 < ε ≤ 3/2− ln(2), and thus βin ≤ 2 ln(2) + ε. For n ≥ 100,

β∗n(4x− 2(1− λmin)) >
g′

g
, x ∈

(
0,

1− λmin
2

)
,

β∗n(4x− 2(1− λmin)) <
g′

g
, x ∈

(
1− λmin

2
, 1− λmin

)
.

As βi is decreased, the slope of the line f ′

f decreases from the (positive) slope of the line

β∗n(4x− 2(1− λmin)). Thus, it is sufficient that the above inequalities hold at β∗ = 3
2n to

prove the lemma for βi < β∗ since g′

g is independent of βi.

4.5.3 Upper bound for the Mixing Time of the Metropolis Algorithm on ΩRGB.

The Metropolis Markov chain on Ω at is known to have exponential mixing time and the

same argument also holds on ΩRGB . We would now like to derive a good upper bound on

this mixing time so that we can compare it to the tempering chain. However, bounding
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the conductance and applying Theorem 2.2 will not be sufficient as the square of the con-

ductance gives too weak a bound. Instead, to obtain the best possible lower bound on the

spectral gap of the Metropolis chain, we appeal to the comparison theorem [23]. We use

this technique to obtain a tight exponential upper bound for the mixing time. Let P be the

Metropolis chain on ΩRGB with stationary distribution π = πβ∗ . Then, the second part of

Theorem 4.8 is as follows.

Theorem 4.14. Let βc < β∗ < 3
2n and let α = ln

(
πβ∗(Ωλmin)/πβ∗(Ω1/3)

)
< 0. The Markov

chain P mixes in time O(e−αn+o(1)).

The comparison theorem of Diaconis and Saloff-Coste is also useful in bounding the

mixing time of a Markov chain when the mixing time of a related chain on the same space,

but with possibly a different stationary distribution is known. Let M1 and M2 be two

Markov chains on Ω. Let P1 and π1 be the transition matrix and stationary distributions

of M1 and let P2 and π2 be those of M2. Let E(P1) = {(x, y) : P1(x, y) > 0} and

E(P2) = {(x, y) : P2(x, y) > 0} be sets of directed edges. For x, y ∈ Ω such that P2(x, y) > 0,

define a path γxy, a sequence of states x = x0, · · · , xk = y such that P1(xi, xi+1) > 0. Finally,

let Γ(z, w) = {(x, y) ∈ E(P2) : (z, w) ∈ γxy} denote the set of endpoints of paths that use

the edge (z, w).

Theorem 4.15 ([23])). Let a = min
x

(
π2(x)
π1(x)

)
. Then

Gap(P1) ≥ a

A
·Gap(P2),

where

A = max
(z,w)∈E(P1)

 1
π1(z)P2(z, w)

∑
Γ(z,w)

|γxy|π2(x)P2(x, y)

 .

The idea behind showing the mixing time claimed in Theorem 4.14 is to define a new

distribution π̃ on KRGB by essentially eliminating the disordered mode. The Metropolis

chain P̃ is defined on ΩRGB with stationary distribution π̃. We will show that the mixing

time of P̃ is at most a polynomial. The comparison theorem then gives the required upper

bound on the mixing time of the Metropolis chain P in Theorem 4.14. For σ ∈ KRGB define
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π̃(Ωσ) =

 πβ∗(Ωλmin)ZRBG(β∗)/Z̃ if σ1 < t∗n and πβ∗(Ωσ) ≥ πβ∗(Ωλmin),

πβ∗(Ωσ)ZRGB(β∗)/Z̃ otherwise,

where

Z̃ = ZRGB(β∗)

∑
σ∈K1

πβ∗(Ωλmin) +
∑
σ∈K2

πβ∗(Ωσ)


is the normalizing partition function and the sets K1,K2 partition KRGB into the flattened

and unchanged configurations respectively.

For a configuration x ∈ ΩRGB , we define π̃(x) to be uniform over all the configurations

in the same equivalence class, i.e., if x is in the equivalence class σ

π̃(x) =
(

n

σ1σ2σ3

)−1

π̃(Ωσ).

The first step is to show that P̃ , the Metropolis chain on the flattened distribution, mixes

in polynomial time. This will follow from an application of the decomposition theorem [66].

The second step will be to use this bound and the comparison theorem to bound the mixing

time of the chain on the original unflattened space. This mixing time of P̃ will be a lower

order term when we compare it to the mixing time of P , which is exponential. Thus, any

polynomial bound on the mixing rate of P̃ will suffice.

Theorem 4.16. The Markov chain P̃ with stationary distribution π̃ mixes in polynomial

time.

To apply the decomposition theorem, we partition the space ΩRGB according to the

equivalence classes of configurations, i.e. into the space KRGB . Informally, the decomposi-

tion theorem states that the mixing rate of a Markov chain on Ω is at most the product of

the mixing rate of the chain restricted to Ωσ (the restrictions) and the mixing rate of the

chain on the quadratic sized set KRGB (the projection).

Instead of P̃ , it will be simpler to bound the mixing time of Q = P̃ 2, the two step

transition matrix that allows moves of length 0, 1 or 2. We can then infer the polynomial

mixing of P̃ from the polynomial mixing of Q. It is easy to see that Q is rapidly mixing

when restricted to Ωσ, for any σ, because two-step moves permute the colors on the vertices
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without changing the total number of each. Hence, we focus on showing the bound on

projection Markov chain Q. We will use the canonical path method.

Theorem 4.17. The Markov chain Q on the projection of KRGB is rapidly mixing.

Proof. Define canonical paths in the chain Q, {γστ} as follows:

Let σ = (t1, b1, g1) and τ = (t2, b2, g2). We assume that t1 ≥ t2. If not, the path from σ to τ

consists of the same vertices as the path from τ to σ but with all edges directed oppositely.

We define the canonical path for t1 odd and t2, the other case only needs a minor

technical modification due to parity issues. Assume (without loss of generality by the

symmetry of the colors blue and green) b1 ≤ g1 and b2 ≥ g2. The path γστ is defined

to be (t1, b1, g1), (t1, b1 + 1, g1 − 1), · · · , (t1, n−t1−1
2 , n−t1+1

2 ), (t1 − 1, n−t1+1
2 , n−t1+1

2 ), (t1 −

3, n−t1+3
2 , n−t1+3

2 ), · · · (t2, n−t22 , n−t22 ), · · · , (t2, b2 − 1, g2 + 1), (t2, b2, g2). It can be shown

that along the path, the distribution is “unimodal”, i.e.,

Lemma 4.18. For each σ = (t1, b1, g1), τ = (t2, b2, g2) ∈ KRGB, the distribution π̃ attains

a unique maximum on the path γσ,τ .

We defer the proof till the end of this argument. Assuming the lemma, the congestion

of the paths can be bounded as follows.

A = max
(α,β)∈E(Q)

 1
π̃(Ωα)P 2(Ωα,Ωβ)

∑
Γ(α,β)

|γστ |min(π̃(Ωσ), π̃(Ωτ ))


= max

(α,β)∈E(Q)

 1
min(π̃(Ωα), π̃(Ωβ))

∑
Γ(α,β)

|γστ |min(π̃(Ωσ), π̃(Ωτ ))


Since along every canonical path the distribution is unimodal, and the length of any path

is at most linear in n, and there are at most polynomially many paths Γ(α, β) using the

edge (α, β), A is at most a polynomial in n.

Corollary 4.19. The Markov chain P̃ on KRGB is rapidly mixing.

Proof of Lemma 4.18: Let `t denote the set of σ ∈ KRGB such that σ1 = t. Let `b=g denote

the set consisting of configurations where the number of green and blue vertices are equal.
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Since the space is discrete, because of parity considerations, the canonical paths cannot

simply go along the line `t1 , then along the line `b=g and finally along `t2 , except in the

case that t1 and t2 are both even. For this case, it is sufficient to show that firstly, for all

1/3 ≤ t ≤ 1, along the lines `t, the maximum is at the intersection with `b=g and secondly,

along the line `b=g, the distribution is unimodal. The observation is that the second fact

implies that on the portion of the canonical path along `b=g, the distribution is either

i) non-increasing

ii) non-decreasing

iii) non-decreasing and then non-increasing

but not decreasing and then increasing. Then in any of the three case above, it can be

verified that there is a unique local maximum along the path.

In the other cases, when either both t1 and t2 are odd, or one is odd and the other

even, the canonical path makes a “diagonal” move to switch parity and we have to argue

that the property of being unimodal is not violated. It turns out that this is implied by the

unimodality of the continuous function π̃ on the lines `t and `b=g. We first show that along

the lines `t and `λ the distribution π̃ is unimodal.

Claim 4.20. Let βc < β∗ < 3
2n and Lt = {σ|σ ∈ ΩRGB , σ1 = t}. Then there exists a

constant n0, such that ∀n ≥ n0 the function π̃(σ) when restricted to Lt is maximized at

σ2 = σ3 = n−t
2 and is non-increasing as σ3 decreases, ∀t such that Lt ⊆ ΩRGB.

Proof. Consider the original distribution π

πβ∗ (tn, xn, (1− t− x)n) =
(

n

tn, xn, (1− t− x)n

)
eβ
∗n2((t)2+x2+(1−t−x)2)

Z(βi)

Neglecting factors not dependent on x, the expression can be simplified using Stirling’s

formula, to check for the stationary points of the function

f(x)
g(x) =

e2β∗n(x2−(1−t)x))

(x(1− t− x))
1

2nxx(1− t− x)(1−t−x)
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To test the sign of the derivative we compare the quantities f ′

f and g′

g , at β∗ where

f ′

f = 2β∗n(2x− (1− t)) and g′

g = ln( x
1−t−x) + 1

2n
1−t−2x
x(1−t−x) .

At x = 1−t
2 we have f ′

f = 0 = g′

g , and g 6= 0, giving a stationary point. For n ≥ 100,

1−t
2 < x < 1 − t, we have f ′

f < g′

g , with g 6= 0. This can be seen by comparing the growth

rate of these functions in the specified interval, given that they take the same value at

x = 1−t
2 , and is true for βc < β∗ < 3

2n . The proof of the lemma now follows from the

definition of π̃R.

Claim 4.21. Let βc < β∗ < 3
2n . For n sufficiently large, π̃β∗(Ωλ) has a unique maximum

λmax and is non-increasing on either side of it.

Proof. We examine the continuous extension π of the original distribution π.

πβ∗

(
λn,

(1− λ)n
2

,
(1− λ)n

2

)
=
(

n

λn, (1−λ)n
2 , (1−λ)n

2

)
e
β∗n2

(
λ2+2( 1−λ

2 )2
)

Z(β∗)

Neglecting factors not explicitly dependent on λ, asymptotically, we obtain the function

e
β∗n2

2
(3λ2−2λ)−λn ln(λ)−(1−λ)n ln( 1−λ

2 )

The claim can be verified by differentiating it, solving for the stationary point λmax, and

checking the second derivative. By construction, π̃β∗ is non-increasing on either side of

λmax for 1
3 ≤ λ ≤ 1.

Finally, along the “diagonal” portions of the path the change in the value of the distri-

bution will be the net change if we were to move in a continuous fashion horizontally and

then vertically. Since along both these segments the change will be of the same sign if the

segments on either end are of the same type (increasing or decreasing), by the two claims

above, the net change will be positive or negative as required by unimodality.

The Metropolis chain at β∗ mixes torpidly, and by the above lemmas we can bound the

mixing time. Note that the proof uses a stronger version of the Comparison Theorem.

To use the comparison theorem to infer a bound on the mixing time of P from that of

P̃ we need good bounds on the parameters A and a. It turns out that A is the insignificant

factor in the mixing time, rather, a determines the mixing time of P . In contrast, most
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previous applications of the comparison theorem consider chains with identical stationary

distributions, so typically the parameter a = 1.

Proof of Theorem 4.14. We will use the refined comparison theorem of Diaconis and Saloff-

Coste, Theorem 4.15. Note that the two Markov kernels are identical, but their stationary

distributions are very different near the disordered state. Since the kernels are identical, we

can simply define trivial canonical paths, i.e., when we decompose a step in the unknown

chain Q with stationary distribution πβ∗ into a path using steps from the known chain Q

with distribution π̃, these paths all have length 1. It can be verified that the Metropolis

transition probabilities on the two chains are always within a polynomial factor of each

other and maxx(π̃(x)/π(x)) is at most a polynomial since flattening the distribution has a

negligible effect on the partition function.

Claim 4.22. For 2 ln(2)/n < β∗ < 3/3n,

ZRGB(β∗)/poly(n) ≤ Z̃ ≤ ZRBG(β∗).

Proof. The upper bound is easy to see by the definition of Z̃. By the construction of the

flattened distribution, Z̃ ≤ ZRGB(β∗). For the lower bound, we have

Z̃ = ZRGB(β∗)

∑
σ∈K1

πβ∗(Ωλmin) +
∑
σ∈K2

πβ∗(Ωσ)


≥ ZRGB(β∗)

∑
σ∈K2

πβ∗(Ωσ)


≥ ZRGB(β∗)/poly(n)

The last inequality follows because for β∗ > βc, the stationary probability on K2 is at least

1/poly(n) of the total measure.

Hence the parameter A is bounded by a polynomial.

Finally, we can compare the largest variation in the distributions π and π̃ to bound a.

Let x be any configuration in σ1/3, any x∗ a configuration in σλmin we have

a =
π̃β∗(x)
πβ∗(x)

=
πβ∗(Ωλmin)ZRGB/Z̃

πβ∗(Ω1/3)
≥
πβ∗(Ωλmin)
πβ∗(Ω1/3)

1
poly(n)
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Putting these bounds into the comparison theorem (Theorem 4.15) then implies Theo-

rem 4.14.

4.6 Speeding up Simulated Tempering

The slow mixing results of the previous sections give insight into how to speed up the mixing

time of the simulated tempering Markov chain in the special case of the complete graph. It

turns out that in this case, the barrier to mixing at the critical inverse temperature βc is

essentially the persistence of the disordered mode at the highest temperature.

For every inverse temperature β = µ
n for some constant µ, we define a modified sequence

of simulated tempering distributions to sample from configurations of the 3-state ferromag-

netic Potts model at that temperature. Set M be a polynomial that grows as Ω(n). We

define the modified simulated tempering distributions as follows. Let βi = β i
M and for

x ∈ Ω let

ρM (x) = πβM (x) =
eβMH(x)

Z(βM )
,

where

Z(βM ) =
∑
σ

(
n

σ1 σ2 σ3

)
eβM (σ2

1+σ2
2+σ2

3).

For 0 ≤ i ≤M − 1, the modified distributions are defined as follows

ρi(x) =

(
n

x1 x2 x3

) i−M
M ρ

i
M
M (x)

Zi

where

Zi =
∑
σ

ρ
i
M
M (Ωσ).

Note that

ρi(Ωσ) =
ρ
i
M
M (Ωσ)∑

σ

ρ
i
M
M (Ωσ)

.

Theorem 4.23. Let β = µ
n for a constant µ > 0. Then, for some constant c8 > 0 the

simulated tempering Markov chain P̂ with the distributions ρ0, · · · , ρM defined above mixes

in time O(nc8).

108



Proof. The proof makes use of the decomposition theorem. The strategy is to partition

the state space of the tempering chain Ω̂ into the sets (Ωσ, i) (abbreviated (σ, i)) for each

equivalence class of configurations σ and inverse temperature βi.

The restrictions (the sets (Ωσ, i)) are not connected by the chain P̂ since it only moves

between configurations which differ in the spin at exactly one vertex. We can get around

this technicality by first bounding the mixing time of the 2-step chain P̂ 2.

For P̂ 2, it is easy to see that each restriction mixes in polynomial time since the accep-

tance probabilities at a fixed temperature are always at least inverse polynomial, by the

choice of β.

We analyze the projection by comparison to the complete graph on the states of the

projection {(σ, i)}. For every pair of states (sigma, i) and (σ′, j), we define a path using

edges of P̂ 2 and show that the congestion of these paths is at most a polynomial.

Assume without loss of generality that i ≤ j. The path between (sigma, i) and (σ′, j) is

defined to be the sequence of states (σ, i), (σ, i−1), · · · , (σ, 0), τ(σ, σ′), (σ′, 0), · · · , (sigma′, j).

Here τ(σ, σ′) is a sequence of O(n) states that is the set of vertices along a shortest path

using edges of the projection chain in (Ω, 0) from Ωσ to Ωσ′ , not including the endpoints.

The observations we use to bound the congestion of the paths by a polynomial is as

follows.

i) Let σmax be an equivalence class of configurations maximizing ρM (Ωσ). For any i,

ρ
i
M
M (Ωσmax) ≤ Zi ≤ poly(n)ρ

i
M
M (Ωσmax).

ii) For any edge in the kernel of the Markov chain, the number of paths which are routed

through it is at most O(n4M2) ≤ poly(n), taking into account the possible starting

and ending states.

Then, the congestion of the paths can be bounded as follows. We divide into two cases.

The first where an edge corresponds to a change in the temperature and is of the form

(σ, i′), (σ, i′− 1) for some i′ ≤ i (or (σ, j′), (σ, j′+ 1) for somej′ < j). The second is an edge

corresponding to a pair of adjacent states at the inverse temperature β0.
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• Assume that the edge is of the form (σ, i′), (σ, i′ − 1) for some i′ ≤ i. By the observa-

tions i) and ii) above,

A ≤ poly(n)
min

(
ρ
i/M
M (Ωσ)

ρ
i/M
M (Ωσmax )

,
ρ
j/M
M (Ωσ′ )

ρ
j/M
M (Ωσmax )

)
min

(
ρ
i′/M
M (Ωσ)

ρ
i′/M
M (Ωσmax )

,
ρ

(i′−1)/M
M (Ωσ′ )

ρ
(i′−1)/M
M (Ωσmax )

)

≤ poly(n)
[
ρM (Ωσ)
ρM (Ωσmax)

] i−i′
M

≤ poly(n)

The other case is analogous.

• Suppose that the edge is a pair of adjacent states at β0. Since for every σ, ρ0(Ωσ) =

Θ(n−2), we have

A ≤ poly(n)
min

(
ρ
i/M
M (Ωσ)

ρ
i/M
M (Ωσmax )

,
ρ
j/M
M (Ωσ′ )

ρ
j/M
M (Ωσmax )

)
n−2

≤ poly(n)

Finally, by applying the comparison theorem, the polynomial mixing time of P̂ 2 implies that

the mixing time of P̂ is at most a polynomial. This follows since for any two adjacent states

of P̂ , the ratio of the stationary probabilities is at least an inverse polynomial. Moreover,

for any edge of the 1-step chain, there are at most a polynomial number of possibilities for

the other step.

Remarks: Though the above modified tempering algorithm is very specific to the mean-

field Potts model, it shows that there can be a lot of flexibility in deciding the tempering

distributions. Secondly, preliminary calculations indicate that this argument extends to the

case of the q-state Potts model for q > 3. In practice, it is usually the swapping algorithm

and not tempering which is implemented, since one can avoid computing the normalizing

constants. By the slow mixing results of the previous section, the swapping algorithm can

be shown to mix torpidly as well. However, it is possible to define a modified swapping

algorithm for mean-field models and for this algorithm, and in [9] it is shown that for

bimodal mean-field models, it mixes rapidly. Preliminary computations indicate that the

modified swapping Markov chain mixes rapidly for the mean-field ferromagnetic 3-state

Potts model.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have examined applications of simulated annealing and tempering to

counting and sampling problems. The annealing algorithm for binary contingency tables

suggests that one could perhaps exploit the combinatorial structure of other problems in

order to apply these techniques when efficient algorithms for sampling are not known. Our

negative results give insight into the mechanisms that can cause tempering and annealing

algorithms to fail. It points to the need for a better understanding of how to design these

algorithms. Below we summarize some problems for which finding algorithms or showing

hardness could give more insight into the use of these methods.

5.1 Matchings and Related Problems

Perfect Matchings: One of the most important open problems in the field of approximate

counting is counting the number of perfect matchings in a graph. The state of the art for

this problem are FPRAS’s in the cases when the graph is bipartite [47], or when the graph is

dense, meaning each vertex is of degree at least n/2 [44]. An annealing algorithm analogous

to the one defined by Jerrum, Sinclair and Vigoda for bipartite graphs can be defined for

this problem as well. The difficulty is in showing the rapid mixing of the Markov chain.

Is there a way to refine the weights that need to be computed to take into account the

presence of odd cycles? A first problem to attempt might be when there are only O(lnn)

odd cycles in the graph.

Graphs With Given Degrees: The problem of counting the number of graphs with a

given degree sequence can be reduced to the problem of counting perfect matchings, just as

in the bipartite case. The reverse reduction is not known. Hence it may be an easier prob-

lem to extend the Markov chain approach to this problem first. At this time, an algorithm
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is known only in the case that the degrees are all nearly equal [45, 19] or when the degrees

are bounded [4, 54]. As in the case of the permanent algorithm of [47], our analysis here of

the convergence of the Markov chain on perfect and near-perfect graphs uses bipartiteness

crucially.

Integer Contingency Tables: A related outstanding open problem is counting inte-

ger contingency tables. Morris proves [68] that if the row and column sums satisfy ri =

Ω(n3/2m lnm) and ci = Ω(m3/2n lnn), then sampling contingency tables can be reduced

to sampling from a convex body, for which there is a large body of work (see for instance

[59]). Cryan et al., in [20] show rapid mixing for a Markov chain that samples tables if the

number of rows is any constant. Dyer [26] gives an algorithm using dynamic programming,

also in the case where the number of rows is constant. Integer contingency tables with fixed

row and column sums are bipartite multigraphs with given degrees. Can the annealing

approach be extended for sampling from integer contingency tables? Though an analogue

of the greedy graph can be constructed in this case, the analysis of the convergence of the

Markov chain doesn’t go through. This is because the weights of the (multi)graphs must be

defined to take into account the multiplicities of edges and the corresponding combinatorial

inequalities no longer hold. Lastly, can any hardness of approximate counting be shown for

this problem?

5.2 Complexity of Simulated Annealing and Tempering

What is the relative complexity of methods related to annealing? Zheng [91] has shown

that if the swapping Markov chain converges, then so does simulated tempering, but the

converse is not known. Another result of this flavor is by Madras and Piccioni [61] showing

that the simulated tempering Markov chain is equivalent to importance sampling with the

average of the tempering distributions.

Is it clear that if annealing converges then tempering with the same underlying Markov

chain converges as well, i.e., is there any advantage to randomizing the temperature pa-

rameter? It would be interesting to construct natural examples where annealing fails but
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tempering succeeds in sampling. Are there examples where annealing converges, but tem-

pering fails?

5.3 Hardness of Approximate Counting

Independent Sets: It is known that it is NP-hard to approximate the number indepen-

dent sets even in constant degree graphs [60, 27]. An open question is whether this remains

true if the graph is bipartite. Dyer, Frieze and Jerrum, in [27] show that there is a bipartite

graph of maximum degree 6 such that any local Markov chain for sampling independent

sets of the graph will mix torpidly. In Section 1.3.1, we presented a simple argument, with a

worse degree bound, showing torpid mixing of Glauber dynamics for sampling independent

sets of a bipartite graph. Recently, Mossel, Weitz and Wormald [69] showed that for λ

greater than a critical λc(d), with high probability over d-regular bipartite graphs, Glauber

dynamics (or any local Markov chain) will mix torpidly for sampling independent sets with

activity λ. The two results above match the upper bound of Weitz in [89] showing that

Glauber dynamics mixes rapidly for sampling from independent sets in graphs of maximum

degree 5, or respectively, sampling independent sets in graphs of maximum degree d with

activity λ < λc(d). Mossel et al. [69] conjecture that λc(d) is in fact the exact threshold

for this computational problem, i.e., that for λ > λc(d) it is NP-hard to approximate the

partition function ZG(λ) for a graph G of maximum degree d in time that is polynomial in

the size of G.

An intriguing question is whether for bipartite graphs torpid mixing indicates that the

problem is computationally hard or whether there could be other methods used for sampling

and counting independent sets. The complexity of counting the number of independent sets

in a bipartite graph (#Bis) was first studied in [29] where they show that #Bis is a complete

problem for a class of counting problems in #P. Interestingly, approximating #Bis is known

to be equivalent to a number of other approximate counting problems [29] such as

• Counting the number of antichains in a poset.

• Computing the partition function of the Ising model when the external field is not

uniform. In the most general case for the Ising model where pairs of particles have
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interaction energy Jij , and the magnetic field at a vertex is µi, the Hamiltonian is

given by

H(x) =
∑

(i,j)∈E(G)

Jijx(i)x(j) +
∑
i∈[n]

µix(i)

and the partition function is

Z(β) =
∑

x∈{+1,−1}n
exp(βH(x)).

Jerrum and Sinclair [46] gave an FPRAS for the case that all the magnetic fields are

of the same sign.

• Counting the number of stable marriages for a set of preferences.

Can hardness of approximate counting be shown for any of these problems? There are no

sampling schemes known for any of the above problems, though perhaps intricate methods

like annealing have not been much explored. Even showing that there are instances of these

problems where annealing fails would be interesting. In [27] the instance for which Glauber

dynamics mixes torpidly was the basis of for showing that the number of independent sets

is hard to approximate in graphs of maximum degree at least 25. Thus understanding

instances for which Markov chains fail may bring us closer to showing the hardness of

approximate counting.

114



REFERENCES

[1] Aldous, D., “Some inequalities for reversible Markov chains,” Journal of the London
Mathematical Society, vol. 25, pp. 564–576, 1982.

[2] Alon, N., “Eigenvalues and expanders,” Combinatorica, vol. 6, pp. 83–96, 1986.

[3] Alon, N. and Milman, V., “λ1, isoperimetric inequalities for graphs and supercon-
centrators,” Journal of Combinatorial Theory Series B, vol. 38, pp. 73–88, 1985.

[4] Bayati, M., Kim, J., and Saberi, A., “Fast generation of random graphs via se-
quential importance sampling,” To appear in the Proceedings of the 11th International
Workshop on Randomization and Computation, RANDOM, 2007.

[5] Bender, A. and Canfield, R., “The asymptotic number of labeled graphs with
given degree sequences,” Journal of Combinatorial Theory Series A, vol. 24, pp. 296–
307, 1978.

[6] Besag, J. and Clifford, P., “Generalized Monte Carlo significance tests,”
Biometrika, vol. 76, pp. 633–642, 1989.
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