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 SUMMARY 

 

The calculation of the thermal conductivity of condensed matter has posed a 

significant challenge to engineers and scientists for almost a century.  Thermal 

conductivity models have been successfully applied to many materials however many 

challenges still remain.  One serious challenge is the inability of current thermal 

conductivity models to calculate the thermal conductivity of highly complex materials.  

Another challenge is managing error introduced by using an effective interatomic 

potential, for many materials this problem is exacerbated because their effective 

potentials have not been extensively used or characterized.  Recent interest in 

nanostructures has initiated a new set of challenges and unanswered questions.  This 

work addresses different aspects of the aforementioned challenges by using zeolite MFI 

and gallium nitride as case studies.   

The first part develops a phonon based modeling methodology that can be used to 

study the thermal conductivities of complex nanoporous materials.  In the second part 

interatomic potentials used to model gallium nitride are extensively tested, which 

includes an assessment of how well the potentials represent crystal anharmonicity.  The 

third component of this work analyzes how phonon properties and bond anharmonicity 

differ in gallium nitride nanowires of different shapes and sizes. 

Modeling the Thermal Conductivity of Zeolites 

One major shortcoming of current models is their inability to calculate the thermal 

conductivity of highly complex materials.  Calculations in the phonon picture of thermal 

transport frequently rely on simplified dispersion models, which neglect optical phonons.  

 x



Optical phonons frequently make substantial contributions to the thermal conductivity of 

complex materials, so current phonon based conductivity models are inapplicable.  

Molecular simulation has also been successful in calculating the thermal conductivities of 

many materials.  However molecular simulation is purely classical and the thermal 

conductivities of complex materials often exhibit strong quantum effects, even at high 

temperatures.  Zeolite MFI is used as a case study to develop a modeling methodology 

that can be used to calculate the thermal conductivity of highly complex materials.  It is 

chosen as a case study because it is technically relevant and it is well characterized. 

Further many zeolites have the same crystalline structure but different compositions and 

some have the same composition but different crystalline structures.  Thus zeolite 

materials can be used as a unique case study to understand structure-thermal property 

relationships in highly complex materials.  The thermal conductivity of thick zeolite MFI 

films with different amounts of point defects, which have been grown by secondary 

hydrothermal synthesis, is measured with the 3-omega method.  The new data is used to 

develop a new thermal conductivity modeling methodology for highly complex materials.  

The new methodology successfully reproduces the experimental data and provides 

physical insight into the conduction of heat in highly complex dielectric materials.    

Evaluating the Quality of Interatomic Potentials Used to Model the Thermal 

Conductivity of Gallium Nitride  

Experimental measurements of bulk gallium nitride thermal conductivity vary 

significantly amongst different samples.  The large experimental variance makes phonon 

based thermal conductivity models, which rely on constants fitted to experimental data, 

unreliable.  Therefore, molecular simulation is needed to calculate the thermal 
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conductivity of gallium nitride.  Interatomic potentials used to simulate gallium nitride 

have not been as extensively used and tested as those that are used to model silicates and 

many other materials.  Thermal conductivity is explicitly dependant upon the 3rd order 

derivatives of the interatomic potential with respect to atomic position.  Effective 

interatomic potentials are approximations of the forces between atoms; every time the 

derivative of an approximation is taken the error gets magnified.  As a result, it is 

expected that thermal conductivity is particular sensitive to the quality of the interatomic 

potential being used.  The quality of two different potentials used to model gallium 

nitride are tested by calculating different harmonic phonon properties and thermal 

expansion coefficients  then comparing the results with experimental data and each other.  

It is found that an effective potential that yields accurate results for harmonic material 

properties may be unable to correctly calculate properties, like thermal expansion, that 

are highly dependant upon crystal anharmonicity.               

Lattice Dynamics of Gallium Nitride Nanowires 

 Gallium nitride nanowires are increasingly being used in the development of next 

generation solid state devices.  Device performance is substantially affected by the 

temperature distribution and the formation of hot spots in the device, both of which are 

dependant upon the thermal properties of the device.  Many confinement effect issues are 

still not well understood.  Calculations of the phonon spectrum, specific heat, average 

phonon speed, and homogenous Gruneisen parameter are performed on gallium nitride 

nanowires of different shapes and sizes.  It is found that harmonic phonon properties of 

nanowires differ substantially from the bulk but are only weakly dependant on wire size 

and moderately dependant on wire shape. 



 

CHAPTER 1 

INTRODUCTION 

 

 Thermophysical properties of materials are often key parameters in the 

determination of the thermal response, performance, and reliability of many engineering 

devices.  As such, it is highly desirable to control or tailor the thermal properties of 

materials for specific applications.  In contrast to the technological revolution in 

modifying the electrical transport properties, understanding and methods to manipulate 

the thermal conductivity of solid state materials is very limited. The theoretical basis of 

structure-thermal property relationships in solid state materials has be described through 

the Boltzmann transport equation for the past 80 years.  However, the current application 

of the theory relies on many simplifying assumptions in order to obtain tractable 

descriptions of thermal transport. The objective of this work is to improve upon current 

thermal conductivity modeling paradigms.  This will yield a more accurate understanding 

of phonon physics and allow an extension of current models to complex and exotic 

materials.   The proposed work studies the thermal properties of a diverse set of complex 

materials (zeolites and nanostructured GaN).  Zeolites and GaN provide interesting case 

studies because they are both technically relevant and occur in complex forms, which 

require advances in the state of the art in thermal transport modeling.  The wide variety of 

materials and techniques provide a thorough and diverse framework for modeling and 

understanding thermal conduction in complex materials which can be extended to other 

complex oxides and semiconductors which are currently underdevelopment today. 
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1.1 Zeolites 

 Zeolites are nanoporous mixed-oxide crystals with complex structures formed by 

corner-sharing oxide tetrahedral (TO4; T=Si, Al, etc.).  There are more than 100 zeolite 

structures known, as well as a large number of other frameworks obtained by 

combination with elements favoring octahedral and pentahedral coordination. The 

capability of altering the composition of a given zeolite (e.g., by lattice atom substitution 

or by introducing metal cations and organic molecules into the pores) while maintaining 

the same crystal structure, or conversely the ability to synthesize different crystal 

structures with the same composition, makes them extraordinarily versatile materials with 

interesting structure-function relationship1 as well as many important applications2.  

Newly emerging applications of zeolites include low-k dielectric films for computer 

chips, materials for adsorption cooling devices3,4, and hosts for nanotube/wire arrays5. 

More generally, complex oxides which include zeolites are being developed as 

transparent semiconductor and power generation materials, transparent electrodes for 

displays and flexible electronics and dielectric films.  Theoretical interest in the thermal 

transport properties of zeolite materials originates primarily from their suitability as a 

model system containing complex, yet well-defined and characterizable, nanostructural 

features (such as an ordered nanopore network, lattice substitution sites, metal cations or 

organic species adsorbed in the pores) that interact with heat carrying phonons, thus 

offering a number of opportunities for developing and testing models for thermal 

conductivity in complex crystals. The rich structural complexity of these materials, as 

well as the increasing significance of thermal transport properties inherent in their 

emerging applications, justify detailed study of their thermal transport properties, of 
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which current knowledge is relatively limited. There are both experimental difficulties as 

well as theoretical challenges in describing thermal transport in complex materials with 

large unit cells6-9.  The thermal conductivity of zeolites is usually measured by 

compacting zeolite powders into disks9,10.  Measurements on powder samples are 

particular error prone because the presence of microscopic voids in the compacted disks 

skew the measured value of thermal conductivity and methods to correct the data are 

approximate9. Computational approaches have relied on classical molecular dynamics 

simulations7,8,11, which provide qualitative insight, but do not easily allow discrimination 

of the contributions from several possible phonon scattering mechanisms nor describe 

well the quantum statistical aspects of the phonon physics. Deviations from classical 

behavior of thermal properties are particularly large for zeolites.  This is because zeolites 

have many high frequency phonons, which make substantial contributions to thermal 

conductivity and high frequency phonons only behave classically at high temperatures. 

This is evidenced in large discrepancies7,8 between measured and computed thermal 

conductivities. 

 The zeolite study presented here combines systematic variation of zeolite 

composition, measurements of thermal conductivity using polycrystalline zeolite films 

which are more reliable than measurements on compacted powders, and modeling of 

thermal transport incorporating detailed input from lattice dynamics calculations (made 

with a high-quality interatomic potential). This approach allows separation and analysis 

of the structural and dynamical factors that influence the conductivity. The important 

zeolite MFI has been chosen as a well-characterized model system. 
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1.2 Zeolite Modeling Challenges 

 Modeling the thermal properties of zeolites is particularly problematic because no 

current techniques used to model thermal transport can estimate their thermal 

conductivities.  Furthermore, current techniques are even incapable of giving the correct 

qualitative behavior of how zeolite conductivity changes with temperature6,12.   The two 

approaches used to model thermal properties are molecular dynamics and lattice 

dynamics.  Molecular dynamics cannot be used to calculate the thermal conductivity of 

zeolites because it is classical.  Classically the thermal conductivity of a material can only 

decrease with rises in temperature.  This is because the classical specific heat of a 

material is constant, but real materials behave quantum mechanically so their specific 

heats increase with temperature and become constant in the classical limit.  Even at 

temperatures well above room temperature, Zeolite conductivities frequently increase 

with rising temperature.  Hence, molecular dynamics is incapable of providing realistic 

description of zeolite conductivity.  

 In lattice dynamics, the material being modeled is treated as a gas of interacting 

phonons.  Phonons are quantized lattice vibrations, which are analogous to photons.  The 

modern theory of thermal conduction by phonons was primarily developed by Peierls in 

the late 20’s13.   In the phonon picture of thermal transport the non-equilibrium phonon 

distribution, which causes a net heat flux, is governed by the Boltzmann transport 

equation.  However the scattering term in the equation is exceedingly complex precludes 

any kind of analytical solution and can only directly be solved by numeric iteration.  In 

the early 50’s Klemens14 introduced the relaxation time approximation to the Boltzmann 

equation.  In the relaxation time approximation the Boltzmann transport equation is 
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linearized and it is assumed that the non-equilibrium phonon distributions scatter back to 

equilibrium at an exponential rate.  The time constant in the exponential is called the 

relaxation time.  Klemens used his relaxation time approximation to derive an 

approximate expression for thermal conductivity.  He then developed semi-analytical 

relaxation time expressions that relied on fitted parameters to make some conductivity 

calculations14,15. To make his computations tractable, Klemens used many of the same 

assumptions used in the Debye specific heat model.  The Debye specific heat model 

assumes there are only three polarizations that have the same isotropic dispersion, which 

go linearly from zero to some cutoff frequency.  With the help of the Debye model and 

the use of fitted constants he was able to calculate the thermal conductivity.  While there 

have been some modifications and improvements made to the Klemens model16-18, most 

conductivity models that use the relaxation time approximation still rely on a highly 

simplified dispersions9,17-22.  Hence, they are inapplicable to highly complex materials. 

1.3 Gallium Nitride 

 Gallium Nitride is a wide band gap semiconductor with large carrier mobilities 

and electrical breakdown field and is considered an excellent material for use in high 

power semiconductor devices23.  At present, gallium nitride is being developed for rf and 

microwave communications applications with broad military and commercial appeal.  

Due to the tunability of its bandgap through the formation of AlGaN and InGaN 

compounds, gallium nitride has also become the workhorse material for the solid state 

lighting market, enabling the development of high powered and efficient LED sources.  

The aforementioned devices utilize gallium nitride in thin film form (20 – 2000 nm) with 

primarily a hexagonal wurtzite structure, although it may be found in a cubic zinc blend 
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structure as well.     These crystal structures are almost always grown heteroepitaxially on 

substrates which are not well lattice matched, thus introducing a number of defects in the 

crystals which may impede thermal performance. 

 In contrast to the thin films, gallium nitride nanowires are now being used to 

make new and unusual optoelectronic devices and circuit components.  Gallium nitride 

nanowires have been used to make blue laser24.  They have also been coated with 

different materials to create high efficiency multicolor diodes25.  Next generation optical 

nanodevices are also being made with gallium nitride nanowires.  Huang et al26 used high 

quality gallium nitride nanowires to created field effect transistors with large carrier 

mobilities.   The observed carrier mobilities show that gallium nitride nanowires are 

particularly well suited for use in next generation functional electronics.   Both bulk and 

nanostructures gallium nitride have a number of optoelectronic applications and are 

expected to play a prominent role in next generation microelectronics. Despite its 

technological relevance the thermal properties of nanostructured gallium nitride are not 

well understood. 

1.4 Gallium Nitride Modeling Challenges 

 There have been a few studies which have theoretically analyzed the conductivity 

of gallium nitride27,28.  However, these studies used many unphysical assumptions, such 

as linear dispersion and neglect of the optical phonons, which may be valid for bulk 

gallium nitride but confinement effects cause nanostructures to have complicated 

dispersions which cannot validly be modeled without taking into account the optical 

phonons.  These calculations have also relied on parameters fitted to experimental data, 

but there is a large range of measured values of the bulk thermal conductivity of gallium 
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nitride.  This large variation in values is caused by a lack of structurally consistent 

samples and makes it difficult to interpret the physical meaning of the fitted parameters. 

 The lack of consistent thermal conductivity data for bulk and nanowire gallium 

nitride necessitates the use of theoretical tools such as lattice dynamics and molecular 

simulation to estimate conductivity.   The accuracy of both these techniques is limited by 

the quality of the interatomic potential used.  Effective potentials for gallium nitride have 

not been as extensively tested as those for other materials and thermal conductivity is 

particularly sensitive the quality of the interatomic potential. The gallium nitride study 

presented here asses the quality of two commonly used effective potentials29,30 by 

calculating the density of states, specific heat, and thermal expansion of bulk gallium 

nitride and comparing them with experimental data.  Then the effects of nanowire size 

and shape on phonon spectrum, specific heat, phonon speed, and homogenous Gruneisen 

parameter are studied.   This analysis helps explain why nanowire conductivity is 

different from bulk, provides a framework for understanding thermal properties in 

nanostructures, and assesses the quality of interatomic potentials to help guide future 

theoretical investigations. 

1.4 Dissertation Objectives 

 The work presented in the dissertation has three main objectives: 

• Measure and model the thermal conductivities of zeolites.  The measured 

thermal conductivities presented in this work make a valuable contribution to the 

field because they are the first measurements performed on films, so they are far 

more reliable than existing measurements on powders.  The set of systematic and 

consistent data provides invaluable information that is used to develop a new 
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thermal conductivity modeling methodology that is applicable to highly complex 

materials.  The new methodology is used to model seven different zeolites and 

explains why zeolites have low thermal conductivities, why small amounts of 

impurities drastically lowers the thermal conductivity, and how cations in the 

pores  affect the thermal conductivity.     

• Assess the quality of interatomic potentials used to model gallium nitride.  

The calculated thermal conductivity is far more sensitive to the interatomic 

potential than other material properties.  Lattice dynamical calculations are done 

on bulk gallium nitride with a Stillinger Weber29  and a Tersoff30 potential.   It is 

shown that the two potentials exhibit drastically different crystal anharmonicity 

and are expected to predict different thermal conductivity values. 

• Analyze the effects of nanowire shape and size on the phonon spectrum.  

Lattice dynamical calculations are performed on three different nanowires of 

varying shape and size.  For each nanowire density of states, specific heat, 

average phonon speed, and homogenous Gruneisen parameters are calculated.  It 

is found that all properties are substantially different from that of bulk gallium 

nitride, but the harmonic properties are only weakly dependant on nanowire size. 
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CHAPTER 2 

BACKGROUND THEORY 

 

 This chapter starts with an overview of traditional phonon relaxation time models.  

After that the theories of phonons and phonon thermal properties are treated in more 

detailed fashion.   Then the chapter concludes with a brief exposition on interatomic 

potentials.  

 There are two ways to model conductive heat transfer through a crystalline solid.  

Heat can be thought of as energy transfer due to atoms in real space, the other is to think 

of heat as being carried by superimposed quantum lattice waves, also known as phonons, 

which exist in wave space.  A dielectric crystalline solid can be thought of as a phonon 

gas, heat excites phonons and the phonons drift through the solid carrying the heat.  

 In the phonon picture, a solid is modeled as a spring-mass network where the 

atoms behave as point masses and the chemical bonds as springs.  Phonons are linear 

combinations of the normal modes of vibration of the spring-mass network.  By 

superimposing the normal vibrations packets of energy localized in real and wave space 

can be constructed; these localized energy packets are the phonons.  A schematic of a 

lattice wave in simple solid is shown in Figure 2.1.  The spring-mass network is perfectly 

harmonic and real crystals are anharmonic. A harmonic crystal has an infinite 

conductivity.  If one were to shake a mass in a harmonic spring-mass network the signal 

would propagate across the network undamped and uninhibited.  Therefore the perfectly 

harmonic crystal fails to provide an adequate model for conductivity.  If the crystal is 
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weakly anharmonic, harmonic eigenstates with eigenvalues corrected for anharmonicity 

can be used to adequately model the conductivity22,31.  The harmonic eigenvalues are 

always real, while the anharmonic eigenvalue corrections are complex and the imaginary 

part is the inverse of phonon lifetime.   

 
Figure 2.1 Schematic of transverse and longitudinal lattice waves.  The picture is taken 
from Huxtable32.  A shows a snap shot of a longitudinal vibration where the atoms 
displace (white dots are equilibrium positions and green are current positions) in the same 
direction as the wave vector.  B shows a transverse vibration where the atoms displace in 
the direction perpendicular to the wave vector.  The picture is conceptually illuminating 
but should not be interpreted literally because lattice ways are typically much more 
complex and do not always have readily defined longitudinal and transverse vibrations.     
  

 The quantum theory of light provides a good metaphor for understanding 

phonons, normal modes of vibration, and energy eigenstates of the phonon gas.  In the 

theory of light the quantum mechanical Fock states are analogous with the energy 

eigenstates of the phonon gas.  The classical eigenstates of Maxwell’s electromagnetic 

wave equation correspond to the normal modes of vibration and photons are analogous 

with phonons.  There are many mathematical similarities between the electromagnetic 

field and the harmonic crystal.  Both have a one to one correspondence between energy 

eigenstates and normal modes and the phonon/photon occupancies of the eigenstates 

determine the amplitude of the normal vibrations.   
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 The heat capacity of a real gas is the sum of the heat capacities of its molecules. 

Like a real gas the solid or ‘phonon gas’ specific heat is simply a sum of the specific heat 

of the individual phonons, furthermore the expression for conductivity of the ‘phonon 

gas’ is analogous with that of a real gas and is14:  

( ) )(ˆ)()(
2

KjKvK
K

p
p

ppj ck τ∑ ⋅=                                              (2.1) 

The subscript on the conductivity labels the direction of interest. The summation goes 

over all unique physically meaningful phonon wave vectors K and dispersion branches p, 

so it is a sum over all phonon states (a phonon state is a also called a mode).  The number 

of dispersion branches is equal to three times the number atoms in a unit cell, the set of 

all unique physically meaningful phonon wave vectors are all contained in a volume in 

wave space called the Brillouin zone,  is the specific heat of all the phonons in a 

mode,   is the velocity of a phonon in a given mode and it is projected onto the 

direction of interest, and  

)(Kpc

)(Kv p

)(Kpτ  is the relaxation time, which is the time it takes an over 

excited phonon state to return to equilibrium.  

2.1 The Debye Model 

 Dispersion relationships can be complex and not always easy to calculate; 

calculating them requires a detailed knowledge of the interatomic potentials and the 

equilibrium atomic coordinates at T=0.  For some materials like silicon the dispersion can 

be readily and quickly calculated but for highly complex materials calculation of the 

dispersion requires careful energy minimization of the crystal lattice and long 

computation times.  An example of dispersion in a simple material can be seen in Figure 

2.2.  There are six branches but because of degeneracy only four can be seen on the 
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graphs notice that at long wave lengths (small wave vectors) the acoustic branches 

become linear. 
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Figure 2.2 Calculated phonon dispersion for silicon along the (1 0 0) direction of the 
Brillouin zone.  The x-axis is the non-dimensional position along the (1 0 0) edge of the 
Brillouin zone.  The non-dimensional coordinates shown start at the center of the zone 
and go to the zone edge. 
 
 

 The vast majority of thermal property calculations in the phonon picture do not 

utilize the actual dispersion instead they use a simplified dispersion originally developed 

by Debye.   In 1912 Debye proposed a simple model of dispersion to enable calculation 

of specific heat33.  The model is known as the Debye model.  In the Debye model there 

are only three dispersion branches and they are linear, isotropic, and degenerate.  There 

are three different branches because in a continuum there are two different transverse 

ways the medium can vibrate and one longitudinal. The linear dispersion has a slope set 
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equal to the speed of sound, because long wave length acoustic phonons are responsible 

for the propagation of sound in a solid and it is known that sound has a linear dispersion.  

The isotropic and degenerate approximations are merely simplifications.  In essence the 

Debye model treats the dispersion as that of sound in an isotropic continuous medium; as 

a result the Debye dispersion is a good approximation for wave lengths much greater than 

the interatomic spacing of the lattice.   

 

 
Figure 2.3 Comparison of the actual Brillouin zone of an orthorhombic crystal and the 
Brillouin zone of the Debye model. 
 

 

 Waves in a continuous medium do not have a maximum wave-vector, but waves 

in a crystal lattice do.  A lattice is discrete not continuous as a result the maximum wave 

vector is dependant on the lattice constants of the solid.  For a one dimensional lattice 

with a lattice constant of a, the shortest possible wave length is 2a, because wavelengths 

shorter than 2a are not physically meaningful.  As a result, the one dimensional lattice has 
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a cut off wave vector of   a
π .  For an actual three dimensional crystal the cutoff is a 

closed surface (the enclosed volume is the Brillouin zone).  In the Debye model the 

Brillouin zone is a sphere that has a radius equal to a magnitude called the cutoff wave-

vector.  Figure 2.3 shows a schematic comparing the Brillouin zone of a crystal with an 

orthorhombic unit cell, with the Brillouin zone predicted by the Debye model.  The value 

of the cutoff wave vector is obtained from the average interatomic spacing in a crystal 

and results in a Debye Brillouin zone that has a volume equal to the number atoms in a 

unit cell times the volume of the actual Brillouin zone.  Dispersion in the Debye model 

has following simple form34, 
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Debye used his simplified model to calculate the heat capacity of dielectric materials, 

which is dependant only on phonon dispersion.   

 The heat capacity of all the phonons in a given mode is,  
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The total heat capacity is the sum of the heat capacities of all the modes. 
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    (2.4) 

In the third term of the above expression the summation over all wave-vectors is replaced 

with an integral, in most cases this results in negligible error.  By using a change of 
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variable and exploiting the isotropy of the Debye dispersion, the specific heat in the 

Debye model can be written as, 
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Dθ  is the Debye temperature and has the following definition 
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The above expression is of great convenience because just by knowing the speed of 

sound in a solid the heat capacity can be predicted at all temperatures.  While the Debye 

temperature can be calculated from the speed of sound it is often fitted to experimental 

data. 
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Figure 2.4 Specific heat of silicon. The figure is from Greenstein et al6 ‘current model’ 
labels the specific heat calculated from the full dispersion 
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Figure 2.5 Specific heat of zeolite MFI the figure is from Greenstein et al6 ‘current 
model’ labels the specific heat calculated from the full dispersion 
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 The Debye model has done an excellent job of predicting the specific heat of 

many materials; this is not surprising because in actuality the Debye model is an 

interpolation formula.  In the high temperature limit every phonon mode of a harmonic 

crystal has a constant heat capacity equal to Boltzmann’s constant.  As a result, the 

Debye model will give the correct high temperature specific heat because the cutoff 

wave-vector in the Debye model is defined so that the number of phonon states in the 

Debye model is equal to the actual number of phonon states.  In the low temperature 

limit, only the long wave-length acoustic phonons contribute to the specific heat and for 

those phonons the Debye model is quite reasonable.  For specific heat the Debye model 

almost always gives good results in the low and high temperature limits and the specific 

heat at intermediate temperatures is a clever interpolation of the specific heat at those 

limits.  For simple materials like silicon the Debye model predicts the specific heat 

successfully at all temperatures.  Figure 2.4 shows the specific heat of silicon calculated 

from the Debye model and directly from the full dispersion; the Debye model prediction 

is only slightly less accurate than the full dispersion calculation.  However, for many 

complex crystals like zeolites the Debye model does a poor job of predicting the specific 

heat at many temperatures.  The specific heat of zeolite MFI is shown in Figure 2.5 the 

Debye model is incapable of predicting the right trend but the specific heat calculation 

that uses the full dispersion is accurate.   

2.2 Thermal Conductivity and the Debye Model 

 In 1951 Klemens14 developed the relaxation time theory for phonons and made 

some of the first thermal conductivity calculations.  By using the Debye model of 

dispersion he arrived at the following thermal conductivity expression, 
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To make the calculations tractable he used the Debye dispersion model and a semi-

empirical relaxation time model that relied on fitted constants.  His calculations agreed 

well with experiment but the use of fitted constants probably covered up some error 

caused by the Debye spectrum.  Furthermore, the crystals he did calculations on have 

their conductivities dominated by long wave length phonons, which the Debye model 

does a decent job of approximating.  However, the Debye model’s treatment of the 

optical phonons is completely inadequate. Instead of explicitly treating them it has the 

acoustic branches occupying more wave space to compensate for the states not accounted 

for by explicitly including the optical branches.   This results in treating the optical 

branches as if they were moving at the speed of sound, but in fact they are moving much 

slower.  This is not serious problem for the crystals that Klemens studied because in those 

crystals the scattering of the optical branches was much stronger than that of the acoustic 

branches so they are unimportant to conduction anyway.   

     Since Klemens first introduced his model there have been several improvements 

on the use of the Debye dispersion in conductivity.  Holland17 made improvements by 

treating the transverse and longitudinal branches separately and by breaking the 

dispersion up into two separate linear regimes in the Brillouin zone.   The Tiwari18 model 

of dispersion, used a slightly more sophisticated functional form for the dispersion; where 

the wave vector is treated as a 2nd order polynomial with respect to frequency.  However, 

all these models only treat the acoustic dispersion and neglect the optical dispersion.  As 
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a result, a new modeling methodology is needed for highly complex crystals that have 

many optical branched that contribute substantially to the conductivity. 

2.3 Modeling the Relaxation Time 

 The relaxation time is defined as the average time it takes a phonon mode, with 

more phonons than its equilibrium occupancy, to return to its equilibrium occupancy. 

There is no clear way to model the relaxation time.  Time-dependant quantum 

perturbation theory provides a theoretical framework for calculating phonon lifetimes15,35, 

but phonon lifetime is the average time a single phonon exists before it is scattered and 

not the time it takes a non-equilibrium occupancy of a phonon mode to decay to its 

equilibrium occupancy.  Further, a direct calculation of the phonon lifetimes is extremely 

expensive and can only be done for the simplest of crystals36-39 and the relaxation time is 

an even more complex quantity.  

 There are many different mechanisms that cause phonons to scatter into different 

states.  Phonons can scatter off of different kinds of crystalline defects, such as point 

defects, dislocations, stacking faults, grain boundaries, and interfaces, and off each other.  

A rigorous treatment of all phonon scattering mechanisms for any but the simplest cases 

is too expensive to be done.  As a result, there are different semi-empirical 

approximations, which rely on fitted constants that can be used to estimate phonon 

scattering from different scattering mechanisms.  To calculate the net relaxation time 

from the different scattering mechanisms Matthiessen's rule is used15,40.  Matthiessen's 

rule treats all scattering processes as occurring in parallel with each other and is, 

( ) ( )∑=
i itotal KK ττ

11         (2.8) 
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In the above expression i is a summation over all the different scattering processes.  

Models for the scattering rates from different structural defects are readily available in 

the literature22,35,40-42.  There are also models for modeling the relaxation time for 

phonon-phonon scattering14,16,43,44. For defect scattering phonon lifetime and relaxation 

time are almost identical. For phonon-phonon scattering the relationship between lifetime 

and relaxation time is more complex. 
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Figure 2.6 Umklapp and normal processes. The first diagram shows a normal process, 
were phonon 1 splits into phonons 3 and 3; wave vector is conserved and heat flows 
unimpeded.  The second diagram shows an umklapp where phonons 1 and 2 collide to 
make phonon 3 but in the process the phonons undergo Bragg reflection and the resulting 
wave vector is in the opposite direction; wave vector is not conserved and heat flow is 
directly impeded.  The first diagram shows a phonon splitting while the second shows 
two phonons merging but both normal and umklapp processes can occur when phonons 
merge or when a phonon splits. 
  
 
 
 
 Phonon scattering by defects is far simpler than phonon-phonon scattering 

because all defect scattering events directly contribute to the thermal resistance; this is 

not the case for phonon-phonon scattering.  There are two different types of phonon-

phonon scattering events umklapp scattering and normal scattering.  A schematic of the 
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two processes is shown in Figure 2.6.   Both types of events occur when either two 

phonons merge into one or when one phonon splits into two.  A normal scattering event 

occurs when the net wave-vector before the collision is equal to the net wave vector after 

the collision.  An umklapp event occurs when there is a scattering process and during the 

process the phonons undergoes Bragg reflection so the net wave-vector is flipped back.  

Normal processes do not directly contribute to thermal resistance they merely redistribute 

the phonons and the heat continues to drift unimpeded.  By ‘flipping’ the net wave vector 

Umklapp processes cause a direct resistance to the flow of heat.  The relationship 

between the two types of scattering and how they are related to relaxation time is a little 

ambiguous. 

 The simplest relaxation time model is the single mode relaxation time 

approximation or the SMRT approximation.  It assumes that all phonon modes decay as 

if every other mode were in equilibrium and is equivalent to assuming that the relaxation 

time is the same as the lifetime.  This approximation has been successfully used in the 

past17,45 but it is unphysical because not all phonon scattering processes contribute to the 

thermal resistance.  Another common approach developed by Callaway16 is to separate 

phonon-phonon scattering processes into Umklapp and Normal processes.  Then have 

one term where the two scattering processes are both treated as resistive and another term 

that corrects for phonon drift do to normal processes. Yet another approach is to set the 

phonon-phonon relaxation time equal to the time between Umklapp scattering events, so 

the Normal processes are completely neglected20.  This is done because normal processes 

do not directly contribute to the thermal resistance.  For many crystals normal scattering 

does not occur as frequently as umklapp scattering and is unimportant; for these crystals 
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all of the above approaches are equivalent.   There are more even models22,44, which are 

not discussed here, that relate frequency of normal and umklapp scattering events to 

phonon-phonon relaxation time.   In phonon-phonon practice relaxation time is frequently 

calculated with semi-empirical formulas14,16,21, which depend on parameters that are 

fitted to experimental data.  This is done because with the exception of the simplest 

crystal systems calculation of phonon lifetime is too expensive to be practical.  

2.4 Normal Coordinates and the Calculation of Phonon Dispersion 

 The earlier discussion on phonon dispersion was based largely on heuristic 

arguments.  One of the goals of this work is to incorporate full phonon dispersion into 

conductivity models.  This section outlines some of the theory needed to understand how 

to calculate phonon dispersion.  An atomic lattice can be modeled as a set of coupled 

harmonic oscillators.  When expressed in xyz coordinates the equations of motions of the 

masses in a mass spring network are highly complex and coupled with one another.  

However, when expressed in terms of different coordinates the equations of motion 

become much simpler.  This is not a feature unique to coupled oscillators; many 

dynamical systems are much easier to analyze with coordinates other than Cartesian ones.  

For example, the dynamics of pendulum are simpler to analyze in polar coordinates than 

in Cartesian ones.  The most convenient set of coordinates for analyzing coupled 

harmonic oscillators are called normal coordinates and like any other valid set of 

coordinates provide a complete description of the systems.  The normal mode coordinates 

greater simplify the equations of motion because they decouple them from each other, so 

each normal mode coordinate is independent from all the other ones.  As a result, a spring 
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mass system which is an n-body problem in Cartesian coordinates becomes n one-body 

problems in normal coordinates.   

 In the normal coordinate picture, the dynamics of point masses in a mass spring 

network are not expressed as individual mass displacements.   Instead the system 

dynamics are expressed as linear combinations of coupled vibrations.  The frequencies of 

the collective vibrations are called the normal mode frequencies.  The magnitude of a 

normal coordinate, which is usually a complex number, is the amplitude of the collective 

vibration and any configuration of the system can be expressed in terms of normal 

coordinates.   

 Finding the normal modes of vibration of a mass spring network is a well 

documented problem that yields simple equation of motion46.   Therefore it is desirable to 

approximate the atomic equations of motion in a crystalline lattice as set of point masses 

connected by springs.  This can be done by expressing the potential energy of a crystal 

lattice in Taylor series, with respect to the atomic displacements, which is  
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In the preceding expansion atomic displacements, u are treated as the independent 

coordinates which the potential energy Φ  is expanded about, ijk run over all atoms in the 

unit cell lmn run over all unit cells and αβγ  over all directions, so is the 

displacement of the ith basis atom in the lth unit cell in the 

αilu

α  direction.  The zeroth order 

term is set to zero because only changes in the energy are important, the first order term 

is always zero for a crystal in mechanical equilibrium47, so the dominant term is the 

second order term.  As a result, many crystal properties and behaviors are adequately 

 23



modeled by neglecting the third and higher order terms.  This is called the harmonic 

approximation.  Many crystal properties, like specific heat and mean atomic displacement 

can be calculated with the harmonic approximation.  However, there are many other 

crystal properties and phenomenon for which the harmonic approximation is completely 

invalid these include thermal expansion coefficient, thermal conductivity, and 2nd order 

phase transitions.  Solving the full anharmonic equations of motion is not feasible 

however there are approximate techniques, whose appropriateness depends on what is 

being calculated, that can be used to estimate the anharmonicity. 

 Normal coordinates can be also be used as a set of independent coordinates for the 

Taylor expansion.  The normal mode coordinates for a crystal are defined as48  
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N is the number of unit cells in the crystal, m is the atomic mass, the summation is over 

all atoms in a unit cell, all unit cells  in the crystal, and all directions. r is the equilibrium 

location of an atom, and   is the conjugate of the projection of  the p)(* Kαpie th 

polarization vector onto the ith atom of the unit cell in the α direction.  The normal mode 

coordinates defined above are analogous with the normal coordinates used in 

electromagnetism. Like normal coordinates in electromagnetism, the vector  is the 

polarization vector.  is the 

)(Ke p

)(Kαpie αi  coordinate of e .  Unlike electromagnetism, 

the vector  is more than three dimensions; its dimensionality equals three times the 

number of atoms in a unit cell. Further, the number of mutually orthogonal polarization 

vectors is also equal to three times the number of atoms in a unit cell, which is the 

number of degrees of freedom of a given unit cell.  The number polarization vectors is 

)K(p

)(Ke p
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the number of linearly independent ways unit cells in a crystal can vibrate against each 

other at a given wave vector.  In addition, the number of possible wave vectors is equal to 

the number of unit cells and the crystal Hamiltonian can be thought of as a function of 

atomic positions or normal mode coordinates.  The atomic displacements can be written 

as functions of the normal coordinates, 
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The normal mode coordinates and the atomic displacements are a Fourier transform pair.  

 By treating the normal coordinates as the independent variables and taking the 

Taylor expansion with respect to them, the crystal potential energy can be written as  
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In the above expansion only the terms in the second order expansion that have non-zero 

derivatives have been included.  Translational invariance causes the 2nd order derivatives 

without equal and opposite wave vectors to be equal to zero.  Furthermore, eigenvector 

orthonormality causes 2nd order derivatives with opposite and equal wave vectors, but 

different polarizations to be zero.  This is why normal mode coordinates are completely 

decoupled from each other.  In the harmonic approximation the crystal Hamiltonian is, 
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2ω is defined to be the 2nd order derivative appearing in the Taylor expansion with 

respect to the normal coordinates.  The equations of motion of this Hamiltonian result in 

decoupled normal coordinates with periodic temporal dependencies of frequencyω . 
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 Neglect of the higher order terms results in a model of non-interacting harmonic 

waves, which is incapable of explaining thermal conduction or expansion even 

qualitatively.  Without the third order terms the phonons never interact (mixed 2nd order 

derivatives are zero) and without interactions no equilibrium can be obtained and the 

thermal conductivity would be infinite.  Therefore, higher order terms need to be 

considered.  However, the harmonic approximation is an excellent first approximation of 

the equations of motion. 

 Consider the 2nd order normal coordinate derivative, using the chain rule and 

translational invariance it can be rewritten in terms of the 2nd order derivatives with 

respect to atomic displacements as  
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 is the dynamical matrix and is defined as 
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The matrix is hermitian therefore, it has a full set of orthonormal eigenvectors and those 

orthonormal eigenvectors are the polarization vectors that are used in the definition of the 

normal modes.  As a result the eigenvalues of the dynamical matrix are the square of the 

frequency of the normal coordinates.  By invoking the Born-Oppenheimer approximation 

the derivatives in the dynamical matrix can be calculated from an effective interatomic 

potential.  Once dynamical matrices are formed for all wave vectors, the dispersion is 

calculated by finding their eigenvalues throughout the Brillouin zone.  
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 Most phonon studies of thermal conductivity do not incorporate the use of the full 

phonon dispersion relationships.  While simplified dispersions have had some successes 

in describing the general trends of thermal conductivity in materials, many models lose 

the physical details underlying phonon behavior49.   Simplified dispersion relationships 

treat optical braches as being at a constant frequency, which results in them having zero 

group velocity, or simply neglect them.  Complex materials can have a significant 

conductivity contribution from optical branches6,50, which show much more variation in 

shape than acoustic branches and cannot be described by simple heuristic arguments.   As 

a result they cannot be modeled adequately without calculating phonon dispersion.  

Furthermore, the use of simplified dispersions can result in erroneous relaxation times49 

since they can skew fitted constants which are frequently used to estimate relaxation 

times.    

2.5 Phonon Mode Occupancy and Specific Heat 

 Statistical mechanics is used to calculate the energy and specific heat of a phonon 

gas.  Like a photon the energy of a phonon is the product of Planck’s constant and its 

frequency.  The energy of a phonon mode is the product of the number of phonons in the 

mode and the energy of a phonon in that mode (vacuum energy is neglected).  The energy 

of the entire solid is simply the sum of all phonon mode energies, understanding that the 

energy of the static lattice is defined to be zero.  The heat capacity of the solid is the 

derivative of the total energy with respect to temperature.  In the harmonic approximation 

phonon frequencies are independent of temperature, so the only temperature dependence 

of the lattice energy results from changes of the phonon occupancy of the modes.  
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Phonons have integer spins so like photons they obey Bose-Einstein statistics, therefore 

the occupancy of a single phonon mode is given by, 
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By taking the derivative of the occupancy with respect to temperature the specific heat of 

a phonon mode can be calculated.  The total specific heat can then be written as, 
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where n is the dimensionality of the solid.  The summation over all wave-vectors in the 

Brillouin zone has been replaced by an appropriately scaled integral a )(Knd c p

r
is the 

heat capacity of a single phonon mode.  At high temperature the specific heat converges 

to the classical limit and has a constant value.  The preceding analysis is harmonic but the 

harmonic approximations yield excellent results for the specific heats of many crystals. 

2.6 Phonon Velocity 

 In order to estimate thermal conductivity phonon velocity needs to be calculated.  A 

phonon is a wave-packet centered around some wave vector in wave space so its velocity 

is the group velocity of the wave and is, 

ωK∇=v        (2.19) 
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The above gradient is taken in wave space.  The gradient can be calculated two different 

ways. It can be estimated by calculating the dispersion at different points and then 

approximating the gradient with finite differences or it can be calculated with the 

Hellman-Feynman theorem51.  The finite difference estimation can cause errors because it 

neglects when two dispersion curves intersect.  However, for many solids including 

zeolites crossing is not common but there are special cases such as nanowires where they 

may occur frequently.  For such cases the Hellman-Feynman theorem can be used. The 

Hellman-Feynman theorem is a technique for obtaining the derivative of an eigenvalue 

by taking the derivative of its matrix and projecting it onto the eigenvector of that 

eigenvalue.  The eigenvalues of the dynamical matrix are the squares of the frequency, so 

the phonon velocity in direction j is51, 
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Because it can handle dispersion crossings without error, the Hellman-Feynman theorem 

is preferential to a finite difference derivative.  If finite differences are used at a point 

where dispersion curves intersect the phonon speed will be under estimated.     

Unfortunately, the Hellman-Feynman theorem cannot be readily implemented with 

commercial software packages.   Furthermore, it requires the computation of the phonon 

eigenvectors, which can become expensive for highly complex materials.    

2.7 Phonon Gruneisen Parameters 

  The phonon Gruneisen parameter is the non-dimensional derivative of phonon 

frequency with respect to strain.  It can be written as31, 
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The phonon Gruneisen parameter shows how much the frequency of a mode changes 

when a stain is applied to a lattice.   The Gruneisen parameter is the average specific heat 

weighted phonon Gruneisen parameter and it is written as 
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The Gruneisen parameter is a tensor with different entries corresponding to different 

strains.  It is an indirect measure of crystal anharmonicity and can be used in conjunction 

with elastic constants to calculate thermal expansion.   

2.8 Phonons in Nanowires 

 Bulk crystals are made up of a single unit cell infinitely replicated and translated 

in three different spatial directions.  This results in the model of a crystal existing 

everywhere in space.  For a nanowire this is a poor mathematical model. Instead a 

nanowire can be thought of as a unit cell, which includes the entire wire cross section, 

repeated infinitely in a single direction.  Because the crystal lattice of a nanowire is one 

dimensional it reciprocal lattice is also one dimensional.  Hence, the Brillouin zone of a 

nanowire is a line.       

2.9 The Born- Oppenheimer Approximation and Effective Potentials 

 If the wave function of the entire crystal is known any quantity of interest can be 

calculated.  However, determining the wave-function of a crystal without approximations 

is impossibly complex to do.  For most semi-conductors and dielectrics, including the 

ones considered in this work, the Born-Oppenheimer approximation is used47.  For many 
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materials and material processes the electrons move so rapidly that they can be 

approximated as shifting instantaneously when the nuclei move.  As a result, material 

energy can be approximated as being solely a function of nuclear coordinates.  Hence, a 

material for which the Born-Oppenheimer approximation is valid can be modeled by an 

effective potential, independent of electron dynamics.  The importance of the Born-

Oppenheimer approximation cannot be overstated, without it phonon-dynamics cannot be 

decoupled from electron dynamics and molecular dynamics would be impossible. 

 The Born-Oppenheimer approximation allows the use of effective potentials.  One 

common approach to effective interatomic potentials is to use different terms to account 

for different types of lattice distortions and sum them52-54.  For this type of potential there 

is a 2-body term which accounts for bond stretching and compression.  Many potentials 

include a 3-body angle bending term that parameterizes the energy with the respect to the 

angle between two bonds. Some potentials have a dihedral term that parameterizes the 

energy with respect to the twist angle between two bonds.  A schematic of theses 

different types of contributions to the potential energy can be seen in Figure 2.7.  

 Another common class of potentials are bond order potentials55,56.  Bond order 

potentials include 2-body bond stretching and 3-body angle terms, but the energy is not 

the sum of the two.  Instead it is a complicated function that correlates the strength of the 

atomic interactions with the number of atomic neighbors.  Depending on the situation one 

approach may be more appropriate than the other, but in general bond order potentials 

have the draw back of being substantially more expensive.   

 Ionic crystals also have long ranged columbic interactions, which can be 

evaluated using Ewald sums34 or the method of Wolf57.  Frequently ions in the lattice are 
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also given charged massless shells that are attached to the atomic core by a spring to 

simulate an effective dipole moment48.      

2.10 Summary 

 A heuristic overview of thermal conduction by phonons was presented.  This was 

followed up by a review of techniques used to calculate thermal conductivity in the 

phonon picture.  Then the underlying theory of phonon dispersion and lattice dynamics 

was presented.  Finally the chapter concluded with an overview of interatomic potentials. 

 

b a 

c 
 

 
Figure 2.7 Schematic of different contributors to the potential energy of a crystal. 
a) bond stretching b) angle bending c) torsional bond twisting.  The picture is taken from 
GSU department of chemistry website.   
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CHAPTER 3 

STRUCTURE, SYNTHESTHIS, AND MEASURED THERMAL 

CONDUCTIVTY OF ZEOLITE MFI  

 

  Zeolites are an important class of materials.  This chapter outlines the structural 

characteristics of zeolite MFI, explains the technique that was used to synthesize it, 

describes new conductivity measurements, and then concludes with an overview of 

challenges to accurately modeling its thermal conductivity.  It must be noted that the 

experimental work presented in this chapter was done in collaboration with Yeny 

Hudiono and a more detailed descriptions of the zeolite synthesis and thermal 

conductivity measurements can be found in her dissertation50.   

 

 

 

             a-direction                            b-direction                            c-direction 

Figure 3.1 Structure of zeolite MFI as viewed down crystallographic a, b, c directions.  
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3.1 Structural Characteristics of Zeolite MFI  

 MFI has an orthorhombic unit cell with edge lengths of 20.09, 19.74, and 13.14 

angstroms.  In its purely siliceous form its framework is made up of SiO2 tetrahedrons.  

Like many other zeolites, it is highly porous.  It has sinusoidal pores with the dimensions 

of 5.1 Ǻ x 5.5 Ǻ along (100) and a straight channel with the dimensions of 5.3 Ǻ x 5.6 Ǻ 

along (010).  Figure 3.1 shows the unit cell of MFI.  Its unit cell is highly complex and 

has 288 atoms.  MFI can be synthesized in an aluminosiliceous form where random 

silicon atoms, with the constraint that no AlO2 tetrahedrons can be adjacent to each 

other58, are substituted by aluminum atoms.  As a result, MFI occurs in different forms 

that have the same structure but different compositions; this provides a unique 

opportunity to analyze the effects of composition on the thermal conductivity of highly 

complex materials 

3.2 MFI  Synthesis and Sample Preparation   

 Thick films of MFI are grown using the secondary hydrothermal method59-61, 

which is a technique that uses nanoparticles of MFI as nucleation sites to grow a thick 

films of MFI .  Porous (alumina substrates with porosity of 25%) were purchased from 

Coorstek and polished with SiC paper in order to obtain a smooth surface for deposition 

of MFI .  A clear solution with molar ratio of 1 tetraethylorthosilicate (TEOS) :1 

tetrapropylammonium hydroxide : 23 H2O was hydrothermally a Teflon-lined stainless 

steel autoclave under rotation, to obtain 100 nm MFI nanoparticles.  A MFI nanoparticle 

dispersion in ethanol was spin-coated on alumina substrates.  The coated substrates were 

placed at an inclined angle (with the seeded side facing downwards) in a Teflon-lined 

 34



stainless steel autoclave for hydrothermal synthesis. The secondary growth solutions 

contained molar ratios of (4−x) TEOS: x Al:0.9 tetrapropylammonium bromide (TPABr) 

: 0.9 KOH: 940 H2O, with 0<x<0.25. Potassium aluminate solution was prepared by 

hydrolyzing aluminum powder in KOH, TPABr, and water solution for 1 h. Potassium 

silicate was prepared by mixing TEOS  in KOH, TPABr, and water solution for 1 h, and 

then both solutions were mixed together. The films were rinsed with hot de-ionized 

water, dried, and calcined in air at 500 °C for 6 hours. The films were then characterized 

by x-ray diffraction (PANalytical X’Pert Pro, Cu K ALPHA) to obtain the film 

orientation. The films were first polished with SiC paper then sequentially polished with 

alumina polishing suspensions. The film roughness was characterized by atomic force 

microscopy (AFM) using the contact mode technique. The film thicknesses and 

compositions were characterized by a scanning electron microscopy equipped with 

energy dispersive spectroscopy.   Pictures of the siliceous MFI film can be seen in Figure 

3.2. 

3.3 MFI Thermal Conductivity Measurements 

 The thermal transport properties of MFI zeolite films were characterized using the 

three-omega technique62,63.   The three omega technique uses a four point probe metal 

line as a thermometer and a heater.  An alternating current through the heater at 

frequency ω causes Joule heating to occur at a frequency of 2ω  this in turn induces a 

harmonic signal at 3ω , which is caused by the temperature dependence of the heater’s 

resistivity.  As a result, the thermal conductivity can be deduced from the 3ω signal 

because the 3ω signal is dependant on the periodic temperature fluctuations in the heater 

which in turn are dependant on the thermal properties of the film.  More details about the 
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experimental setup and data analysis used in the three-omega technique can be found 

elsewhere62,63. 

 

 

 

Figure 3.2 Unpolished and polished MFI films. The top two pictures are of the 
unpolished pure-silica MFI film and the bottom two pictures are the polished pure-silica 
MFI film 
 

 To measures the thermal conductivity of the MFI films a four point probe metal 

heater was fabricated on the film surface by evaporation of titanium and gold layers 

through a shadow mask. The thickness of the titanium layer was 30 nm and the thickness 

of the gold layer was 160 nm. An alternating current signal of amplitude 5 V was applied 

to the metal heater. Both the in-phase and out-of-phase response of the third harmonic 

voltage over a frequency range of 75–2000 Hz were employed to analyze the thermal 

conductivity of the MFI zeolite films. The measurements were performed at temperatures 

between 150 and 450 K in a vacuum cryostat (~10−8 Torr). The three-omega voltage 
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responses were obtained and used to calculate the thermal conductivity. The magnitude 

and phase of the three-omega voltage are directly related to the temperature response of 

the metal line, which is a function of the thermal properties of the underlying material. 

The thermal conductivity was deduced by a least-squares fit of a 2-D analytical solution 

for a periodic heat source on a multilayer-film-on-substrate system62. The thermal 

conductivity of the substrate was measured separately using the same methods and was 

then input as a parameter to fit MFI’s conductivity.  The measured conductivities can be 

seen in Figure 4.4 of the next chapter. 

3.4 Challenges in Modeling the Thermal Conductivity of Zeolites 

 Computational approaches have primarily relied on classical molecular dynamics 

simulations7,8, which cannot account for quantum effects. Deviations from classical 

behavior of thermal properties are particularly large for zeolites.  This occurs because 

zeolites have many high frequency phonons, which make substantial contributions to the 

thermal conductivity and high frequency phonons only behave classically at very high 

temperatures.  When conductivity increases with temperature, which MFI does even at 

moderately high temperatures, quantum mechanical effects cannot be neglected.  

Conductivity is dependant on phonon relaxation time, which can only decrease with 

increasing temperature, phonon velocity, which to a rough approximation remains 

constant with temperature, and phonon specific heat.  Classically phonon specific heat is 

roughly temperature independent but quantum mechanically it increases with 

temperature64.  Therefore the increase in thermal conductivity with temperature 

demonstrates that quantum effects are important because the quantum mechanical 
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specific heat is the only quantity that thermal conductivity is dependant on that increases 

with a rise in temperature. 

 If a material’s conductivity continues to rises at moderate temperatures the 

traditional phonon conductivity modeling approach of Klemens15, Callaway16, and 

Holland17 cannot be used.  At moderate temperatures the low frequency acoustic phonons 

have already reached the classical limit, so their contribution to the conductivity is 

decreasing.  This implies that the optical phonons, which are not in the classical limit, are 

contributing substantially to the conductivity; otherwise conductivity would decrease 

with increasing temperature.  In chapter 2, it was explained that phonon models which 

use the Debye model for phonon dispersion can only be used when long wave length 

acoustic phonons are dominating the conductivity.  Murashov9, attempted to model the 

thermal conductivity of zeolite LTA with a Klemens like model.  However, the 

calculation was found to be unrepeatable.  The inabilities of molecular dynamics and 

traditional relaxation time modeling to calculate the thermal conductivity of zeolite MFI 

necessitates a new modeling approach which is applicable to highly complex crystals like 

zeolite MFI. 

 MFI’s complexity makes it particularly challenging to model its thermal 

conductivity in a way that is both computationally feasible and physically sensible.  An 

outright calculation of phonon relaxation times is prohibitively expensive and will 

continue to be for some time.  Furthermore, relaxation time is not the only expensive part 

of a conductivity calculation and many aspects of an MFI conductivity model need to be 

approximate. 
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3.5 Summary 

 The structure of zeolite MFI, which has many features common to all zeolites, has 

been described.  This was followed by a brief overview of the experimental techniques 

used to synthesize and measure the conductivity of zeolite MFI.  Finally, the short 

comings of previous zeolite conductivity modeling and the challenges of new zeolite 

conductivity modeling were discussed.    
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CHAPTER 4 

MODELING THE THERMAL CONDUCTIVTY OF ZEOLITE MFI 

 

 As explained in the last chapter zeolite thermal conductivity cannot be calculated 

accurately with molecular dynamics because it’s purely classical and zeolite thermal 

conductivity exhibits strong quantum effects.  Further, previous relaxation time models 

are inapplicable because they assume that long wave length optical phonons are the 

dominant heat carrier, which is not the case for zeolites and other highly complex 

materials6,12,65,66.  Therefore, a new modeling paradigm for highly complex porous 

materials is needed.  The experimental data collected for this study is an invaluable tool 

for understanding thermal transport and developing new modeling methodologies not 

only for zeolites but also for complex crystals in general.  Furthermore, because the data 

is collected on MFI with different Si/Al ratios this study has a unique opportunity to 

analyze the effects of composition and defect scattering on highly complex materials. 

 In this chapter Zeolite MFI is used as case study to develop a more general 

phonon relaxation time framework to model the thermal conductivity of highly complex 

crystals.  The new methodology developed here is used to study the thermal conductivity 

of Zeolite MFI as a function of the Si/Al ratio.  The full phonon dispersion of the material 

is used instead of simplified forms that have been used in previous relaxation time 

models.  The first step in the methodology is to determine the equilibrium crystal 

structure of zeolite MFI.  This is done by inputting the estimated atomic positions (from 

spectroscopic data) and an effective interatomic potential into an energy minimization 

algorithm.  The equilibrium atomic positions are those for which the potential energy is at 
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a local minimum.    Once the equilibrium positions are known the phonon dispersion is 

calculated.  Then phonon velocity and specific heat are calculated from the dispersion.  

Next the relaxation time is approximated using a semi-quantitative functional form that 

relies on fitted constants.  Finally, the relaxation time expression, phonon velocity, and 

specific heat are put into Equation 2.1 and the fitted constants are obtained by fitting 

Equation 2.1 to the experimental data. 

4.1 Interatomic Potential for Zeolite MFI 

 Before any calculations can be done an interatomic potential needs to be chosen.  

For MFI the Catlow53  potential is used because of its ubiquity and many successes.  It 

includes a Buckingham term for dipole-dipole interactions for O-O and Si-O bonds, a 

three body term for angle bending of the SiO2  tetrahedrons, a Coulombic term resulting 

from the polarity of Si-O bonds, and a core-shell model for Oxygen polarizability.   

4.2 Determination of the Unit Cell 

 Once the potentials have been picked the equilibrium atomic positions need to be 

determined. This is done by using good initial guesses for the desired crystalline 

structures and then minimizing the energy of the crystalline structure with respect to the 

atomic coordinates. For MFI structures with different Si/Al ratios need to be constructed.  

To create them random Si atoms are replaced by Al atoms, with the constraint that no two 

Al sites can be adjacent as dictated by Loewenstein’s rule58.  When a Silicon atom is 

replaced by an Aluminum atom the atomic charge of the unit cell goes down by one, so a 

proton is added to the unit cell to make it electrically neutral.  The proton is placed in a 

pore, which is one of the most electronegative regions of the crystal, and bonded to an 

Oxygen atom that is bonded to an Aluminum atom.  The force field used for 
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aluminosiliceous MFI has all the terms used in siliceous MFI in addition to a 

Buckingham term for Al-O dipole-dipole interaction, an angle bending term for AlO2 

tetrahedrons, and a Morse potential for the O-H bond. 

 In order to model thermal conductivity within the framework of phonon theory a 

periodic unit cell is needed.  One unit cell (of size ~5360 Å3 and containing 288 atoms) is 

used for the computations, since larger unit cells are computationally too demanding. 

Crystal structures with Si/Al ratios of 95, 47, and 31 were created and used to describe 

the behavior of the experimentally generated Si/Al ratios of 82, 36, and 26. This 

approximation is made in an obviously consistent manner and does not lead to any loss of 

understanding of the phonon physics  This will lead to a slight overestimation of phonon 

velocity but the overestimation is consistent and the goal is not a perfect calculation but 

to elucidate trends and understand phonon physics.  The use of one unit cell will also 

introduce artificial periodicity but this should have minimal effects on the model because 

the following.  An impurity will only affect local bonding because dipole-dipole 

interactions and the disturbance in the electric field, which is a small dipole moment 

caused by the proton and Aluminum atom, are both short ranged.  Furthermore, only 

small amounts of Al are being considered and the unit cell of MFI is fairly large.  

Therefore, the different impurity sites should be largely independent of each other. 

4.3 Energy Minimization of the Crystal 

 The General Utility Lattice Program67 is a commercial lattice dynamics software 

package, which can be used to minimize crystal energy and calculate phonon dispersion.  

For zeolite MFI it was used to do both these things. During the energy minimizations, the 

fractional coordinates of all 288 atoms in the MFI unit cell are allowed to relax and the 
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unit cell parameters are left constant at the values obtained from the crystal structure. 

Newton–Raphson and rational function optimization minimization techniques are used. 

The potential energy surface is complicated and has many saddle points. Therefore, care 

must be taken when analyzing the results. The eigenfrequencies reveal if a local 

minimum has been reached. If all the phonons frequencies are real the dynamical matrix 

is positive definite, which implies the positive definiteness of the Hessian matrix. The 

structures are also examined visually to verify their reasonableness. 

4.4 Phonon Spectra of Zeolite MFI 

 The full anisotropic phonon dispersions for all 864 branches are calculated across 

the entire Brillouin zone. The dispersions are calculated by evaluating the square roots of 

the dynamical matrix eigenvalues across an evenly spaced grid of 1000 points that spans 

the positive octant of the Brillouin zone, this is done using GULP.  The effect of 

aluminum configurations is checked by calculating the dispersion for two structures with 

the same Si/Al ratios but different aluminum atom locations. The resulting dispersions 

are only weakly dependent on the configuration of the aluminum atoms.  Figure 4.1 

shows the dispersion in the (1 0 0) direction for an acoustic and optical branch.   
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Figure 4.1 Phonon dispersion for siliceous MFI along the (1 0 0) direction of the 
Brillouin zone.  The x-axis is the non-dimensional position along the (1 0 0) edge of the 
Brillouin zone.  The non-dimensional coordinates shown start at the center of the zone 
and go to the zone edge. 
 

 

 The group velocities are calculated by taking the gradient of the dispersions.  The 

gradient is approximated by finite differences of the dispersion in the Brillouin zone.  

This may cause some error when dispersion branches cross.  However, this error is small 

because group theory reveals that with the exception of directions of symmetry in the 

Brillouin zone phonon band crossings are unlikely to occur68.  In addition, MFI is a low 

symmetry crystal so there are not many symmetric directions in the Brillouin zone.  As a 

result the error introduced by using finite differences should have minimal qualitative 

effects.  Further, many highly complex crystals have more atoms in a unit cell then MFI 
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so for these crystals using the Hellman-Feynman theorem is expensive.  Figure 4.2 shows 

phonon velocities in the (1 0 0) direction for the dispersions shown above.   
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Figure 4.2 Phonon speeds of the same phonon branches shown in Figure 4.1. The 
acoustic phonon velocity goes discontinuously to zero at the zone center.  This is not 
shown on the graph.    
 

 

Notice the optical phonons are much slower than the acoustic ones; this is typical of 

optical phonons in general.   However, MFI has 861 optical branches and only three 

acoustic branches as a result the numerous optical branches add up and contribute 

substantially to the thermal conductivity.         
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4.5 Phonon Relaxation Time in MFI 

 A critical issue in modeling the thermal conductivity of crystals is the calculation 

of the phonon relaxation lifetimes that result from different phonon scattering 

mechanisms operating in the material.  As mentioned earlier, there is no clear 

unambiguous way to calculate the relaxation time.   The approach used here is to neglect 

normal processes.  This is done because normal processes do not directly contribute to 

the thermal resistance and in Zeolite MFI and silicates in general14 it is expected that 

normal scattering events will be far fewer than umklapp events, even at moderately low 

temperatures.  Therefore, the approach used here for MFI is equivalent to the SMRT 

approximation, which assumes that phonon relaxation time is the same as phonon 

lifetime.  

 In theory, phonon lifetime can be calculated from the Fermi scattering 

equation22,37. However, this calculation is extremely expensive for a simple material, and 

all but impossible for a complex material such as MFI.  There have also been molecular 

dynamics studies that explicitly calculate phonon lifetimes in simple crystals45,69, but this 

approach requires a large number of simulations with varying system sizes in order to 

adequately sample the Brillouin zone. The size and complexity of the MFI unit cell 

precludes the computational feasibility of this approach. As a result, semi theoretical 

expressions are used to estimate the relaxation times15,20,21,41.  

 The three processes considered in the present thermal conductivity model are 

umklapp phonon-phonon scattering, boundary scattering, and point defect scattering.  

The umklapp scattering term used here is 

T
U

D

TeB 321
θ

ωτ
−− =      (4.1) 

 46



 B is a fitted constant that is ascertained by fitting the thermal conductivity model to 

experimental data and Dθ  is the Debye temperature.  The above expression was not 

originally developed for materials as complex as MFI.  Its use is more appropriate with 

quartz or another dense silica polymorph.  However, there are no available phonon-

phonon relaxation time expressions that are more appropriate for MFI.  To compensate 

for this a boundary scattering term is added because MFI can be thought of as a dense 

silica polymorph with large pores in it.  The boundary scattering term also include 

scattering from stacking faults grain boundaries and other planar defects.  The boundary 

scattering term is35, 

eff
B l

v
=−1τ      (4.2) 

effl  is the effective distance between boundaries and interfaces a phonon can scatter off.  

It depends on the shape and size of domains, and interfacial reflectivity and is also treated 

as a fitted constant.  It is the only scattering term used here that is not derived from time 

dependant perturbation theory.  Ziman35 derived it directly from the Boltzmann transport 

equation. The point defect scattering term is22 

)(21 ωωτ gAD =−       (4.3) 

A is a fitted constant and g is the phonon density of states.  A could theoretically be 

calculated if enough structural information for the crystal were known.  However, it 

requires knowledge of the exact location of everything single defect in every single unit 

cell of the entire crystal to calculate.  Further, with exception of isotopic scattering, if all 

the required information were known it would still be prohibitively expensive to calculate 

for MFI.    The above expression is used to estimate phonon scattering off intrinsic 
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defects in the siliceous MFI, and more importantly the scattering of phonons off 

aluminum atoms in the aluminosiliceous samples.  Its use is predicated on assuming that 

the aluminosiliceous MFI can be thought of as a perturbation of siliceous MFI.  For the 

MFI compositions considered here only one, two, or three silicon atoms are replaced with 

aluminum atoms.  Further there are 288 atoms in a unit cell, so the structures are similar.  

Hence, the aluminosiliceous MFI can be thought of as a perturbation of the siliceous 

MFI.  

 Once all the phonons scattering mechanisms have been identified, the total 

relaxation time can be calculated from Matthiessen’s rule which gives an overall 

scattering rate of 

1111 −−−− ++= DBU ττττ      (4.4)  

Matthiessen’s is commonly used15,22,35 and should introduce little or no error into the 

calculation.  

 4.6 Calculating the Specific Heat  

 The specific heat is calculated for siliceous MFI and aluminosiliceous MFI with 

Si/Al ratios of 95,47, and 31  by inputting each sample’s calculated dispersion into 

Equation 2.17.  The specific heat is identical for all samples and implies that the phonon 

frequencies change very little from sample to sample. This is not surprising because the 

composition changes very little form sample to sample.  
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Figure 4.3 Calculated specific heat of MFI with different Si/Al ratios. 
 

 

 4.7 Calculating the Conductivity  

 By combining Equations 2.1, 2.18, 2.19, 4.1, 4.2, and 4.3 the expression used to 

calculate the thermal conductivity can be written as 
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As mentioned in the last chapter, thermal conductivity data as been collected at 

temperature from 150 to 450 K for four different MFI samples with four different Si/Al 

ratios.  The above equation is simultaneously fitted to all the experimental data for all the 

samples.  B is the same for all samples because the added aluminum defects are treated as 

perturbations so the phonon-phonon relaxation time is the same for all samples.  The pore 

structure is the same for all samples and  indicative of phonons scattering off planar 

defects and pores, as a result  is the same for all MFI compositions.   A is different for 

different samples because it is dependant on aluminum content.  As a result, a total of 

only six fitted constants are used to fit all the data.  The fit is done using non-linear least 

squares regression.  Unlike linear regression it is unable to fully explore the entire space 

of all parameter values.  To insure the full parameter space is explored, the fit was 

repeated for many different input parameter values and it was found that the obtained fit 

is the only reasonable one.   

effl

effl

 Because the dispersion is calculated for each sample, one complication that arises 

from the perturbation treatment of the phonon-defect scattering is the problem of double 

counting.  This occurs because the umklapp scattering rate is the same for all samples but 

different dispersions are input into the umklapp scattering rate for the different samples.  

However, the error introduced by this will be minuet because the phonon frequencies in 

the different samples do not differ much from each other.  The use of the same for all 

samples does not lead to double counting because the boundary scattering term is based 

on the Boltzmann transport equation and not perturbation theory.  Figure 4.4 shows both 

the measured and calculated thermal conductivities. 

effl

 

 50



0.3

0.5

0.7

0.9

1.1

1.3

1.5

150 250 350 450
Temperature (K)

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
/m

-K
)

Si/Al = infinity
Si/Al = 83
Si/Al = 35
Si/Al = 26
Si/Al = infinity
Si/Al = 83
Si/Al = 35
Si/Al = 26

       

Figure 4.4 Measured and calculated thermal conductivity of MFI with different Si/Al 
ratios. 
 

Considering the small amount of parameters used the obtained fit is of excellent quality.   

The values for the fitted parameters are listed in Table 4.1.  The boundary scattering term 

(with a fitted  of 4.8 nm) makes by far the strongest contribution of the three phonon 

scattering mechanisms and limits the absolute value of the thermal conductivity. The 

obtained value of  is worthy of more detailed discussion. Several authors report the 

existence of sub-100-nm domains in zeolite crystals

effl

effl

70,71.  An upper limit on the domain 

size is estimated from XRD50, performed on the MFI samples used here, as (100 nm) by 

the Scherrer relation which uses the full width at half maximum of the XRD peaks. 

However, the Scherrer domain size (100 nm) is much larger than the fitted  and is 

unlikely to limit the propagation of phonons at nanometer length scales. Furthermore, the 

effl
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MFI structure is inherently free of pore stacking faults that might also act as phonon 

scattering boundaries. The high quality of the obtained fit strongly implies that the 

temperature-independent boundary-like scattering mechanism arises from the interaction 

of the lattice vibrations with the pore network, which disrupts long-range lattice 

vibrations. The periodicity of the pore structure in MFI is about 1.5 nm and the 

crystallographic pore size is about 0.9 nm. Heat carriers would thus have a mean free 

path that is determined by the length scale of the pore network. From the point of view of 

real-space visualization of thermal transport (as opposed to the present reciprocal-space 

approach), the presence of nanoscale voids would impede the atom-to-atom transfer of 

heat energy at the surfaces of these voids, since this heat energy must be either reflected 

back from the void/pore or be channeled around it.  Recently, similar arguments based 

upon the results of molecular dynamics simulations have been advanced to qualitatively 

explain the thermal conductivity of nanoporous metal-organic frameworks65.  

 The substitution of aluminum atoms changes the shape of the thermal 

conductivity curve.  This occurs because higher frequency phonons scatter off of 

aluminum defects much more often then low frequency ones.  As a result, defect 

scattering suppresses high frequency phonon thermal conductivity more than low 

frequency phonon thermal conductivity.  Therefore, as higher frequency modes become 

excited they contribute less to the thermal conductivity than they would in siliceous MFI 

and this causes the thermal conductivity to change less. 

 Despite the quantitative success and physically reasonable qualitative 

explanations that the current relaxation model provides, a more realistic relaxation model 

is still needed. The need to heuristically use a boundary scattering term that dominates 
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the thermal conductivity when there is no indication of large amounts of planar defects 

implies that a superior umklapp scattering term is needed.   If the umklapp scattering 

expression used here were fully adequate it would automatically include the boundary 

like scattering.   

 The fact that the thermal conductivity continues to rise at the temperatures shown, 

implies the substantial contribution of the optical modes to the thermal conductivity.  

This is because even at 150 K all the acoustic phonons in MFI have reached the classical 

limit, so their thermal conductivity at the temperatures shown can only decrease with 

increasing temperature.   The approach adopted here is to treat thermal transport in the 

diffusive regime.  However, there is a possibility that the unsual temperature dependence 

of MFI’s thermal conductivity may be caused by phonon hopping72 and not just the 

importance of optical phonons.  It is interesting to note that small amounts of Al can 

drastically change the thermal conductivity even at high temperatures, where defect 

scattering is typically unimportant19,21,27.  MFI with a Si/Al ratio of 26 has an average of 

3.5 silicon atoms replaced with aluminum ones per unit cell.  MFI has 288 atoms in a unit 

cell, so the change in composition is very small, yet even at the high temperature of 450 

K, its thermal conductivity is half that of siliceous MFI.   

 Even though boundary scattering dominates the thermal conductivity, defect and 

umklapp scattering are still important.  The mean free path for all samples is shown in 

Figure 4.5.  It was calculated by averaging the mean free path of all phonon modes with 

modal thermal conductivity used as a weighting function.   

 For the siliceous sample the boundary scattering term is the only important 

scattering mechanism at 150K, and the small A value for this sample implies that point 
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defect scattering is not important at any temperature.  However, as the sample gets hotter 

the temperature dependant umklapp scattering term gains in strength and cause the mean 

free path to drop. 
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Figure 4.5 Modal thermal conductivity weighted phonon mean free path for all MFI 
samples. 
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Figure 4.6 Average phonon speed in the (1 0 1) direction.  Modal specific heat has been 
used as a weighting function 
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Figure 4.7 Average phonon speed in the (1 0 1) direction.  Modal phonon conductivity is 
used as a weighting function.  
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The mean free path also drops with increasing temperature because higher frequency 

modes become important in the average and they experience much more umklapp 

scattering than the low frequency modes.  With increasing Aluminum content the mean 

free path continues to drop.  However, the modest decrease in mean free path caused by 

the substitution of silicon atoms with aluminum ones cannot explain the large drop in 

thermal conductivity.  Further, specific heat is independent of aluminum content so the 

only possible explanation is that introducing aluminum defects causes phonons to slow 

substantially.  

 Figure 4.6 shows the modal phonon specific heat weighted average phonon speed 

in the (101) direction of MFI.  The averaging is done by using the specific heat of each 

phonon mode as a weighting function. This allows a truer picture of the average speed of 

phonons that contribute to thermal conductivity because high frequency phonons, which 

do not contribute to the thermal conductivity much, have small modal specific heats so 

the weighting ensures they don’t contribute much to the average phonon speed.  Despite 

the small changes in composition the drop in phonon velocity is substantial.  This is a 

feature that is unique to crystals where optical phonons dominate the thermal 

conductivity.  This happens because even though the frequencies change little with 

aluminum content small changes to the relatively flat optical branches can lead to large 

relative changes in the small optical phonon velocities.  By comparing Figures 4.4, 4.5 

and 4.6 it becomes apparent that consideration of phonon slowing is essential to 

consistently modeling the effects of point defects on complex crystals.  Typically thermal 
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conductivity models only account for the changes of scattering rates that defects cause 

and not the changes in phonon speed 

 The modal conductivity weighted averaged phonon speed is shown in Figure 4.7.  

Ideally it is a more accurate measure of the speeds of the phonons that contribute the 

most to the thermal conductivity than specific heat weighted phonon speed.  However, 

unlike the specific heat weighted average phonon speed it is approximate because it is 

dependant on the distribution of scattering rates amongst phonon modes, which may have 

some error due to the approximate nature of the relaxation time calculation.  However, it 

gives a more accurate picture of how phonon slowing affects thermal conductivity.  The 

average speeds are higher than in the specific heat weighted speeds because higher 

frequency phonons tend to move slower, scatter more, and contribute to the conductivity 

less than low frequency phonons.  At higher temperatures the average speed decreases 

because the temperature dependant umklapp scattering increase in strength which cause 

high frequency phonons to scatter more.  

4.8 Error Analysis  

 The sensitivity of the fitted parameters is analyzed by calculating their 95% 

confidence intervals.  The confidence intervals are expressed as the percent of the values 

of the fitted parameters and are shown in Table 4.1.  They are large; however the defect 

scattering term in the MFI sample with no aluminum barely affects the thermal 

conductivity.  Its lack of significance causes the Jacobian of the fitted parameters to be 

nearly singular, which results in large error prone confidence intervals.  To circumvent 

this problem the fits are redone without a defect scattering term for the MFI sample with 

no aluminum.  The new fitted constants and their confidence intervals are shown in Table 
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4.2.  The thermal conductivity fits with the new parameters are not shown but they are 

similar to the original fits.  The constants from the new fits are similar to those of the 

original fits.  The confidence intervals of the second fit directly reflect the importance of 

the different scattering terms to modeling the conductivity.  The defect scattering 

constant for the Si/Al = 83 sample is particularly large.  This may occur because of 

uncertainties in the aluminum content of the samples, inaccuracies in the assumed 

functional form of the scattering rates, or because the small amount of defect scattering in 

the sample is difficult to accurately fit because of noise in the data.  

 

Table 4.1 Fitted phonon scattering model parameters for MFI films. Umklapp parameter 
B and effective domain size  are held constant across all the samples whereas A varies 
with Al content.  Confidence intervals are expressed as the percent of the fitted constant 
they correspond to. 
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(s/rad2) 

(s/rad2) 
(s/rad2) 
(s/rad2) 

Fitted Constants 95% confidance interval 
B 7.44E-21 49.79

4.80E-09 19.67
A Si/Al =  Inf 7.00E-31 896.85
A Si/Al = 83 7.42E-31 808.52
A Si/Al = 35 4.43E-30 193.54
A Si/Al = 26 8.70E-30 122.70
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Table 4.2 Second set of fitted phonon scattering model parameters for MFI films. 
Umklapp parameter B and effective domain size l  are held constant across all the 
samples whereas A varies with Al content.  For this fit no point defect scattering term is 
included for the Si/Al = infinity sample.  Confidence intervals are expressed as the 
percent of the fitted constant they correspond to. 
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(s/rad2)

Fitted Constants 95% confidance interval 
1.07E-20 25.88
4.80E-09 3.09

 Si/Al =  Inf 0.00E+00 not fitted
 Si/Al = 83 8.66E-31 95.93

A Si/Al = 35 5.52E-30 24.57
 Si/Al = 26 9.48E-30 22.53

B

 

 

 

    

Figure 4.8 The crystal structures of (a) sodium LTA73 , and (b) potassium LTA74. The 
dark blue and purple dots are possible cation locations and the green and red tetrahedrons 
are silicon and aluminum tetrahedrons. 
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4.9 Application of Modeling Methodology to Zeolite LTA 

 The new modeling paradigm that has been developed is now extended to zeolite 

MFI, so the effect of non-framework cations on conductivity can be analyzed.   Figure 

4.8 shows the unit cell of zeolite LTA.  The unit cells shown in Figure 4.8 are actually 

supercells made up of four primitive unit cells.  Like all zeolites LTA is made up of 

silicon and aluminum tetrahedrons. LTA has a Si/Al ratio of one.  Because of 

Lowenstein’s rule, ideal LTA has perfectly ordered silicon and aluminum atoms.  

Aluminum has a smaller charge than silicon so non-framework cations become 

embedded in the pores so the crystal will be electrically neutral.  Na-LTA, K-LTA and 

Ca-LTA were synthesized using the secondary hydrothermal method and had their 

conductivities measured using the three-omega technique (for more details see 

Hudiono50). 

 The LTA unit cell has 96 Aluminum atoms so the sum of charges from all non-

framework cations is 96.  Sodium and potassium ions have a charge of +1 and calcium 

ions have a charge if +2, so Na-LTA and K-LTA have 96 cations and Ca-LTA has 43.  

For each type of LTA there are far more cation sites than cations as a result zeolite LTA 

has a substantial amount of disorder.  Because of the disorder four primitive lattice cells 

are used to make a unit cell to perform calculations on.  It would be ideal to use even 

more primitive cells to get a better representative unit cell but it would be too expensive. 

 The unit cells used for the calculation are made by taking spectroscopic data, 

which gives cation site location and occupancy, from the literature73-75, and then placing 

cations randomly at different cation cites according the experimental occupancy.  For 

some sites there are rules where if site A is occupied site B cannot, so the sites were 
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randomly picked in a way to satisfy such constraints.  To insure that the unit cells used 

appropriately represents the material three different unit cells with random cation sites 

were made for each LTA type.  For each LTA type the density of states were calculated 

and compared for the three different representative unit cells with different cation 

locations. For all types of LTA the density of states was almost exactly the same for all 

three representative unit cells, so four primitive cells should be enough to represent the 

disordered material. 

 After the cation locations were selected the energy of the entire unit cell (both the 

framework and the cations) is minimized.  The same effective potential that is used for 

MFI is used for all three types of LTA.  Buckingham potential terms for the dispersive 

interaction of the cations with the framework54 are also included.  The same methodology 

used to model MFI is used to model LTA.   
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Figure 4.9 Specific heat of zeolite LTA. Experimental data is from Murashov et al76.   
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Figure 4.10 Calculated and measured thermal conductivity of zeolite LTA samples. 
 

 

Except there are two notable differences,  no defect scattering term is included in LTA’s 

relaxation time expression and the relaxation time parameters are independently fitted for 

each type of LTA.  This is done because the different types of LTA differ from each other 

by 96 atoms while the different types of MFI differed from each other by at most three 

atoms so the LTA structures cannot be thought of as perturbations of each other.  The 

calculated specific heat is shown in Figure 4.9.  Experimental data is available only for 

Na-LTA. The discrepancy with experiment implies that the interatomic potential used to 

model the cation framework interaction is not as robust as the pure zeolite interatomic 

potential.   
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Figure 4.11 Modal specific heat weighted average phonon speed of LTA in the (1 0 0) 

direction. 

 

 The thermal conductivity is shown in Figure 4.10, the specific heat weighted 

phonon speed in Figure 4.11, and the phonon mean free path in Figure 4.12.  It is of note 

that there is little change in average phonon velocity amongst different types of LTA and 

that the differences in conductivity seem to primarily a result from different boundary 

scattering rates.  This is the opposite of what occurs amongst the different types of MFI.  

Zeolite LTA’s fitted constants and their confidence intervals are shown in Table 4.3.  The 

confidence intervals reflect the importance of boundary scattering.  The moderately large 

confidence intervals for the Umklapp constants probably result from inaccuracies in the 

assumed functional form and the difficulty in fitting a process of secondary importance to 
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noisy data.  LTA has larger effective boundary scattering domains than MFI.  This may 

occur because the cations can carry heat across the channels so the boundary scattering 

effect is slightly less pronounced.  Further evidence of this can be found in a recent 

molecular dynamics study11 which discovered that frequently the inclusion of cations in 

zeolite pores increases phonon lifetime. 

 

Table 4.1 Fitted phonon scattering model parameters for LTA films. 
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Figure 4.12 Phonon mean free path in different types of LTA.   
  

4.10 New Brillouin Zone Integration Technique for Extremely Large Unit Cells 

 Zeolite unit cells can get large and if a supercell needs to be used as a unit cell to 

simulate disorder the new unit cell can be extremely large.  This becomes a 

computational problem because an increase in unit cell size makes the dispersion 

calculation more expensive.  The LTA unit cells used have up to 480 atoms.  For the 

LTA unit cells, it took almost 10 days of computation time to calculate the dispersions on 

a 1000 point grid.  Therefore, the practicality of calculating the dispersion of even larger 

cells on a 1000 point grid becomes questionable.  There are many techniques77,78 that can 

be used to approximate Brillouin zone integrations by appropriately sampling different 

wave vectors.  However these techniques cannot be used to calculate quantities that are 
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not solely dependant on phonon frequency, and conductivity is dependant on phonon 

velocity.  Furthermore, unless the Hellman-Feynman theorem is used, which can get 

expensive for large unit cells, current sampling schemes cannot be used to obtain phonon 

velocities at the selected wave-vectors. To circumvent this problem a new Brillouin zone 

integration scheme, which easily includes phonon velocity has been developed.  Use of 

the new integration scheme will cause some error but it reduces the number of wave-

vectors that the dispersion needs to be calculated at by two orders of magnitude.  

 

 

 

Figure 4.13 Schematic showing one of the twelve subsections, and the positive octant of 
the Brillouin zone of MFI. For clarity, divisions between subsections and centers of 
subsections are marked only on Brillouin zone surface. 
 

 

 The new integration scheme is used to integrate over the box-shaped Brillouin 

Zone of siliceous MFI to calculate the conductivity. For the sake of simplicity, the full 

relaxation time mode that was presented earlier is not used instead a single relaxation 

time is fitted to all phonon modes.  The goal is not to obtain an exact comparison with the 

full grid but just to get an order of magnitude estimate of the relaxation time with the new 
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summation technique to see if it is reasonable.  Due to symmetry considerations, the 

calculation need only be performed in the positive octant. In this scheme, the three 

orthogonal faces in the positive octant are discretized into 4 subsections, giving a total of 

12 subsections. The volume of each subsection is bounded by lines from the edges of the 

subsection’s face on the Brillouin zone surface to the origin. Figure 4.13 shows a 

schematic of the Brillouin zone discretization. Dispersion curves are calculated from the 

origin to the center of each subsection face. It is assumed that in a given subsection, each 

dispersion curve is dependent only on kx, ky, or kz, depending on whether the subsection 

ends on the kx, ky, or kz plane. This yields the following expression for thermal 

conductivity, 
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The integration is over the volume elements The i summation is over the 3 faces BZidV

and the S summation is for the 4 discretized subsections that end on each face.  Because 

the dispersion is calculated along lines in the Brillouin zone phonon velocities can be 

estimated.  However, the velocity components not parallel with the line that the 
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dispersion is calculated on are neglected and this will cause some error, so the integration 

scheme should not be used unless the unit cell is extremely large.  By fitting a constant 

relaxation time the new integration scheme estimated a relaxation time of 9.2 ps in 

siliceous MFI.  The average relaxation time using the full grid is 10.9 ps.  It must be 

noted that such close agreement is a bit fortuitous but it does show that the new 

integration scheme does a reasonable job of sampling the Brillouin zone.  Further, the 

specific heat calculated with the new scheme is exactly the same as the specific heat that 

is calculated with the full grid.  This integration scheme has also been extended for use 

with FCC and hexagonal crystals6,79. With appropriate geometric adjustments, this 

scheme can be used with even more reciprocal lattice geometries.  

4.11 Summary  

 A new modeling paradigm has been developed to estimate the thermal 

conductivity in highly complex nanoporous crystals.  The developed model, which 

incorporates information from detailed atomistic lattice dynamics calculations, well 

describes the observed behavior and strongly suggests that the main phonon scattering 

mechanism limiting the thermal conductivity of nanoporous crystals such as MFI is the 

boundary-like scattering from the pore network. It is also found that Al incorporation 

significantly suppresses the thermal conductivity due to a combination of phonon slowing 

and point defect scattering, and not due to specific heat effects.  It was also found that for 

zeolites small changes to the microstructure can result in large changes to the thermal 

conductivity.  This implies that thermal conductivity is highly sensitive to microstructural 

detail; as a result multiscale modeling of zeolites needs to be handled with caution 

because seemingly small approximations may result in large errors.   The new modeling 
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paradigm was also used to analyze the effects of cation type on the conductivity of LTA.  

It was found that specific changes a little bit with cation type, phonon velocity barely 

changes, and that differences in effective boundary scattering are responsible for the 

corresponding change in thermal conductivity.  This occurs because different cations with 

different configurations are able to carry different amounts of heat across the pores, but 

more investigation is needed to verify this hypothesis.   It is important to emphasize that 

the present approach, although approximate in the handling of phonon scattering, still 

represents a considerable advance in modeling the thermal conductivity of zeolite 

materials.  The important roles of boundary and defect scattering, as illustrated here, also 

imply that the thermal conductivity of these complex crystals can be tuned by exploiting 

not only the composition but also the pore structure, e.g., by the inclusion of molecular 

species in the pores. 
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CHAPTER 5 

EVALUATION OF GALLIMUM NITRIDE INTERATOMIC 

POTENTIALS 

 

 The results of a molecular model are only as good as the effective interatomic 

potential that is used.  Some materials like silicates and silicon have a variety of 

potentials that have been extensively tested.  Unfortunately, potentials that are used to 

model gallium nitride have not been as rigorously tested.  The three most commonly used 

potentials to model Gallium nitride are a Stillinger-Weber potential29, which treats the 

potential energy as a sum of bond stretching and angle bending terms, a Tersoff 

potential30, which is a bond order potential, and an ionic Buckingham potential80.   For 

molecular simulation the Stillinger-Weber and Tersoff potentials are the most commonly 

used because the coulombic interactions in the ionic Buckingham potential are expensive.   

  All the aforementioned potentials have undergone and passed some computational 

tests81-83.  The tests tend to be structural in nature, such as the ability to represent the two 

different solid phases of gallium nitride30 or to correctly predict defect energies29.  

Further, all the potentials reproduce reasonable elastic constants.  However, measured 

elastic constants in gallium nitride exhibit a large range of variability84.  This occurs 

because gallium nitride is commonly grown on a substrate made of a different material.  

The resulting lattice mismatch strains the gallium nitride and causes large amounts of 

dislocations to form in the gallium nitride85.  The significant experimental variability 

implies that calculated elastic constants cannot be used as a metric to pick the most 

accurate interatomic potential. 
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 In this chapter lattice dynamical calculations are used to evaluate the accuracy of 

the Stillinger-Weber and Tersoff potentials for gallium nitride.  Lattice dynamics is the 

most stringent test possible to evaluate the quality of interatomic potentials for material 

systems where only small atomic displacements occur.   The test is rigorous because 

when only small atomic displacements occur, normal mode coordinates provide an 

approximation of the complete atomic dynamics of a crystalline solid.  In this section 

phonon density of states, specific heat, average phonon velocity, homogenous Gruneisen 

parameter and thermal expansion are calculated with both potentials.  The results are 

compared and contrasted with each other and when possible compared to experimental 

data.  This analysis provides some of the most rigorous testing these potentials have 

undergone.  It will provide an invaluable tool to better understand existing and future 

thermal conductivity calculations and any other gallium nitride simulation, where only 

small displacements occur.           

5.1 Density of States 

 The density of states of bulk gallium nitride was calculated with both potentials.  

To do this the entire phonon spectra was calculated across an 8000 point grid throughout 

the entire Brillouin zone.  The atomic spring constants were calculated numerically with 

2nd order finite differences by displacing the atoms by .001 angstroms at a time.  The 

dynamical matrix was then constructed and diagonalized to obtain the normal mode 

frequencies.  All frequencies were then sorted into a histogram with 64 boxes and 

normalized to obtain the density of states.  The calculated results along with density 

functional theory calculations from the literature86 are shown in Figure 5.1.  Below the 

band gap both potentials produce similar density of states (small differences cannot be 
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taken too literally because the density of states changes and shifts a little when the 

Brillouin zone is sampled differently).  At lower frequencies, both interatomic potentials 

reasonably approximate the measured density of states.   Above the bang gap both 

potentials do a poor job.  This happens because neither potential explicitly accounts for 

the ionicity of the crystal and when the ionic atoms vibrate they induce an electrical field, 

which results in the splitting and shifting of optical phonon branches.  However, the 

phonons above the band gap have a negligible contribution to the thermal conductivity 

because they have small group velocities and the large band gap ensures that they will 

rarely interact with the phonons below the band gap.  
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Figure 5.1 Gallium nitride density of states.  Density functional theory results are from 
Wang et al86. 
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Figure 5.2 The specific heat of gallium nitride.  Experimental data is from Kremer et al87. 

 

5.2 Specific Heat 

 The specific heat is an important quantity in conductivity modeling; if the specific 

heat is not accurate the conductivity will not be accurate.  The specific heat is calculated 

by evaluating the specific heat of each individual phonon state and then summing over all 

states.  Both potentials accurately reproduce the specific heat, which is shown in Figure 

5.2.  Deviations from experimental data could be caused by anharmonic effects (the 

specific heat is calculated in the harmonic approximation), differences between the 

measured constant pressure and the calculated constant volume specific heat, or most 

likely inaccuracies in the phonon spectrum from the use of effective potentials.  At lower 
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temperatures the specific heat calculation is more accurate; this is because at low 

temperatures only the low frequency phonons, which have a more accurately calculated 

spectrum, are contributing to the specific heat and anharmonic effects are less 

pronounced at low temperatures.  
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Figure 5.3 Specific heat weighted average phonon speed in the (1 0 0) direction of bulk 
gallium nitride. 

 

 

5.3 Phonon Speed  

 Individual phonon velocities are calculated, using the Hellman-Feynman theorem, 

across the same 8000 point grid in the Brillouin zone, used to calculate the density of 

 74



states.  The speeds are then obtained by projecting the velocities onto the direction of 

interest and taking their magnitudes.  Then the average phonon speed in that direction is 

calculated with modal specific heat as a weighting function.   Figure 5.3 shows the 

average phonon speed in the (1 0 0) direction; this direction was chosen because it is the 

axial direction in many gallium nitride nanowires so it allows for a direct comparison 

with phonon speeds in nanowires.  Unfortunately, there are no average phonon speed 

experimental measurements available so phonon speed cannot be used to evaluate the 

potentials.  The average speed in the low temperature limit is more indicative of the speed 

of the phonons contributing to the conductivity because in bulk gallium nitride it is 

expected that the long wave length acoustic phonons are the primary heat carriers.  The 

Stillinger Weber potential predicts slightly faster phonons.  This probably occurs because 

it predicts slightly higher elastic constants than the Tersoff potential29,30, so the stiffer 

Stillinger Weber gallium nitride will have a higher speed of sound.   

5.4 Gruneisen Parameter 

 The Gruneisen parameter is important because it gives a measure of phonon 

anharmonicity, which conductivity is also heavily dependent on. There is a common, 

heuristic, semi-empirical relaxation time model used for GaN, where modal phonon 

relaxation time is inversely proportional to the square of the phonon mode Gruneisen 

parameter 27.  While, the aforementioned semi-empirical relaxation times is approximate 

in nature it does show that conductivity is heavily dependant on the phonon Gruneisen 

parameters.     

 To calculate the phonon Gruneisen parameters, the spring constants are calculated 

in the strained and unstrained configurations, then the derivative of the dynamical matrix 
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with respect to strain is calculated with finite differences, and finally the Hellman-

Feynman theorem is applied.   
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Figure 5.4 Gruneisen parameter corresponding to a homogenous strain in gallium nitride. 
 

 

Figure 5.4 shows the Gruneisen parameter for a homogenous strain.  It is calculated from 

the following phonon Gruneisen parameter expression 
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The large difference in Gruneisen parameters between the two potentials, despite the 

small difference observed in other phonon properties, is striking.  This occurs because all 

other phonon properties calculated earlier in this chapter are dependant on the second 

order derivatives of the interatomic potentials but the Gruneisen parameter, an 
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anharmonic property, is dependant on the third order derivatives and each time a 

derivative is taken of an empirical function error is magnified. 

5.5 Thermal Expansion 

 The Gruneisen parameter cannot be directly compared to experimental data.  

However, the Gruneisen parameter tensor can be used to calculate the thermal expansion 

which in turn is readily compared with experimental data. 

 For an axial symmetric crystal like gallium nitride two different Gruneisen 

parameters are  used to calculate the thermal expansion88.  They are the specific heat 

weighted average of the following phonon mode Gruneisen parameters,   
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which correspond to changes in phonon frequency with respect to strains parallel and 

perpendicular to the (0 0 1) direction in gallium nitride.  The following expressions are 

used to calculate the thermal expansion of the a and c lattice constants in gallium 

nitride88.   

( ) vc
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a csss
⎭
⎬
⎫

⎩
⎨
⎧ ++= γ

γ
α 131211 2

    (5.4) 

( ){ } vcac csss γγα 131211 ++=     (5.5) 

The s’s that appear in the above equations are elements of the elastic compliance matrix, 

which is readily calculated from the elastic constants.  The elastic constants used here are 

taken from Aichouine et al29 and Nord et al30, where are they are calculated from the 
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Stillinger-Weber and Tersoff potentials respectively.  The calculated thermal expansions 

are compared with experimental data in Figures 5.5, 5.6, 5.7, and 5.8. 

 There is quite a bit of spread in the experimental data shown in Figures 5.5, 5.6, 

5.7, and 5.8.  This happens in part because all three sets of data were collected from 

gallium nitride samples grown in different ways.  The data of Reeber et al89 was collected 

from  a powder sample that was synthesized by reacting molten gallium with ammonium.  

Roder et al’s90 data was collected from a thick film sample that was made from hydride 

vapor phase epitaxy and then removed from its substrate and allowed to relax.  

Leszczynski et al85 made measurements on a thin film sample grown on sapphire by 

molecular beam epitaxy. They attribute the unusual temperature dependence of their data 

to strain induced from lattice mismatch effects.  There is no known way of synthesizing a 

high quality dislocation and strain free gallium nitride sample.  This highlights the 

difficulties in accurately characterizing gallium nitride.        

 It must be remembered that all the calculations presented hear are for a perfect 

crystal lattice.  However, they can still be used to qualitatively test the robustness of the 

interatomic potentials.  Figures 5.5, 5.6, 5.7, and 5.8. show that at all temperatures the 

Stillinger-Weber potential fails to even qualitatively predict the correct temperature 

dependence of the thermal expansion, while the Tersoff potential is able to reproduce 

qualitatively correct results .  However, there is one major qualitative trend that the 

Tersoff potential fails to reproduce.  It predicts that the thermal expansion of the c lattice 

parameter is always greater than that of the a lattice parameter.  The experimental data 

shows that except at the lowest temperatures the expansion of the a lattice parameter is 

always greater than the c lattice parameter. In bulk gallium nitride only the long wave 
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length acoustic phonons are expected to contribute substantially to the thermal 

conductivity.  As a result the thermal expansion at low temperatures is an indicator of 

how well a potential will reproduce the thermal conductivity.  Figures 5.7 and 5.8 show 

that the Tersoff potential does a better job of reproducing experimental thermal expansion 

data at low temperatures than the Stillinger Weber potential as a result it is expected to 

yield more accurate values of the thermal conductivity than the Stillinger Weber 

potential.  Considering the uncertainties in experimental data and the difficulties in 

accurately capturing anharmonic effects with an interatomic potential, the Tersoff 

potential does surprisingly well. 

 Thermal expansion is an extremely stringent test for the quality of an interatomic 

potential.  Defect energies and structural characteristics of a material are only dependant 

on the potential; specific heat and phonon density of states are dependant on the 2nd order 

derivatives of the potential; thermal expansion and conductivity are dependant on the 3rd 

order derivatives.  As a result, conductivity and thermal expansion are particular sensitive 

to the interatomic potential being used, and thermal expansion is one of the most rigorous 

tests for the accuracy of an interatomic potential that can be done without performing 

simulations.     

5.6 Summary 

 Phonon density of states, specific heat, average phonon velocity, homogenous 

strain Gruneisen parameter, and thermal expansion were calculated with both the Tersoff 

and Stillinger Weber interatomic potentials for bulk gallium nitride.  It was found that the 

calculated harmonic properties of both potentials are in reasonable agreement with 

experiment.  Further, the harmonic properties calculated with both potentials are found to 
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be in qualitative agreement with each other.  However, the anharmonic properties differ 

greatly from each other.  It was found that the Tersoff potential is able to qualitatively 

describe thermal expansion of gallium nitride, while the Stillinger Weber potential 

cannot.  This implies that the Tersoff potential will provide better accuracy in thermal 

conductivity simulations or any where anharmonic effects are critical than the Stillinger 

Weber potential.  However, the Tersoff potential is much more complicated than the 

Stillinger Weber potential.  As a result, it still may be preferable to use the Stillinger 

Weber potential in simulations that are particularly expensive.  
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Figure 5.5 Thermal expansion of the a lattice parameter in gallium nitride.  
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Figure 5.6 Thermal expansion of the c lattice parameter in gallium nitride. 
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Figure 5.7 Thermal expansion of the a lattice parameter in gallium nitride at low 
temperatures. 
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Figure 5.8 Thermal expansion of the c lattice parameter in gallium nitride at low 
temperatures. 
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CHAPTER 6 

LATTICE DYNAMICS OF GALLIUM NITRIDE NANOWIRES 

 

 Nanowires are emerging as a new class of materials for use in next generation 

microelectronics.  Their technological appeal stems from the vast differences in material 

properties from their bulk counterparts.  Because of their wide electrical band gaps and 

unique optoelectronic properties gallium nitride nanowires are expected to be pervasive 

in next generation lasers, lighting, and high power electronics24,26,91.  Despite their 

technological importance and device sensitivity to operating temperatures, their thermal 

properties are not well understood.  There has only been one study that measured the 

thermal conductivity of gallium nitride nanowires92, and large amounts of impurities in 

the measured wires make it difficult to distinguish between size and impurity effects on 

the thermal conductivity.  The inherent difficulties in measuring nanowire thermal 

properties and the need to obtain them for a wide variety of nanowire sizes and 

geometries necessitate the use of computational and theoretical methods.  The study 

presented her does not calculate nanowire thermal conductivity, but it does contribute to 

the understanding of phonon physics in gallium nitride nanostructures, which is necessary 

for understanding experimental and computational thermal conductivity data. 

 This chapter presents a study of the lattice dynamics of gallium nitride nanowires.  

Phonon dispersion, phonon density of states, specific heat, average phonon velocity, and 

homogenous Gruneisen parameters are calculated for different nanowire geometries and 

sizes.   
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6.1 Nanowire Structure 

  Calculations are performed on three different nanowire structures.  All structures 

used are stoichiometric and have no singly coordinated atoms; otherwise they would be 

unstable.  Two different nanowire geometries are studied the first has a cross sectional 

shape that is approximately an equilateral triangle and the wire axis along the (1 0 0) 

direction. The other structure is a hexagon with the wire axis along the (0 0 1) direction.  

The two structures are chosen because they both correspond to realistic nanowires that 

have been experimentally grown25,93.  Wire 1 (Figure 6.1) is the equilateral triangle 

structure with a height of 2.9nm, wire 2 (Figure 6.2) is the same structure with a height of 

6.2nm, and wire 3 (Figure 6.3) is the hexagonal structure with a diameter of 3.5 nm.  The 

phonon properties of all three wires are calculated with the Stillinger-Weber potential.      

 

 

Figure 6.1 Cross section of the unit cell used in gallium nitride wire 1. 
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Figure 6.2 Cross section of the unit cell used in gallium nitride wire 2. 

 

 

Figure 6.3 Cross section of the unit cell used in gallium nitride wire 3. 
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Figure 6.4 Phonon density of states of gallium nitride nanowires. 

 

 

6.2 Density of States and Specific Heat 

 For each nanowire phonon dispersion is calculated, using the same techniques and 

codes that were used for the bulk calculations (see chapter 5).  The calculations are done 

on a 20 point evenly spaced grid in the 1D Brillouin zone. The calculated dispersion for 

each wire is made into a histogram over different frequencies to obtain the density of 

states, which is shown in Figure 6.4.  Despite the large differences in size and shape 

between the different nanowires, they all have similar density of states.  However, there 

are moderate differences between the bulk and nanowire density of states.  At low 

frequencies the density of states of the nanowires is shifted, which shows that the 

nanowires have more phonons at the lowest frequencies.  The nanowires also have some 
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phonon states in the middle of the phonon band gap, which does not occur in bulk 

gallium nitride.  However, this may not be a real feature of the spectrum; it may result 

from inaccuracies in optical phonon frequencies, which inevitably result by using an 

effective potential that does not explicitly account for gallium nitride’s ionicity.  
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Figure 6.5  Specific heat of bulk and nanowire gallium nitride. 
 

 

  The calculated specific heat is shown in Figure 6.5.  At higher temperatures the 

specific heats of the wires are very similar to each other and that of the bulk.  However, at 

low temperatures there are significant differences between wire and bulk specific heat.  

At first, this may seem to imply that phonon specific heat may be responsible for the 

changes between nanowire and bulk conductivity but this is not the case.  Nanowires are 

 87



known to have much lower conductivities than their bulk counterparts92,94, at lower 

temperatures nanowire specific heat can be significantly higher than  bulk, so other 

effects which lower the conductivity, such as phonon slowing and increased 

anharmonicity, must be more prominent in nanowires than increased specific heat.   
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Figure 6.6 Specific heat weighted average phonon speeds in gallium nitride nanowires.  
The bulk speed is in the (1 0 0) direction. 
 
 
 

6.3 Phonon Speed  

 The phonon velocities are calculated using the Hellman-Feynman theorem and are 

shown in Figure 6.6.  The use of the Hellman-Feynman theorem is of particular 

importance because phonon band folding will cause a significant amount of phonon 

dispersion crossings.  The wires show a significant decrease in phonon speed when 
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compared to the bulk.  Further phonon speeds in wire 3 are decreasing even more than 

what is evident on the graph because the phonon speeds in bulk are for the (1 0 0) 

direction, while the axis of wire 3 is along the (0 0 1) direction and in bulk gallium nitride 

the phonons move faster in the (0 0 1) direction than they do in the (1 0 0) direction.  It is 

surprising that wires 1 and 2 have almost the same exact average phonon speeds even 

though the cross sectional area of wire 2 is five times that of wire 1.  Further, both wires 

have similar density of states and specific heats.   This implies that as the wire cross 

sectional area increases in size convergence to bulk harmonic phonon properties is slow.   

-1.5

-1

-0.5

0

0.5

1

0 500 1000

Temperature (K)

G
ru

ne
is

en
 P

ar
am

et
er

BULK
Wire 1
Wire 2
Wire 3

 
Figure 6.7 Homogenous Gruneisen parameter of gallium nitride nanowires. 
 
 

6.4 Gruneisen Parameter 

 To see if wire anharmonicity changes significantly with nanowire shape and size 

the homogenous Gruneisen parameter is calculated for all the wires.  They can bee seen 
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in Figure 6.7.   The Gruneisen parameters are very similar for wires 3 and 2 but 

significantly different from wire 1.  This contrasts heavily with the phonon speed 

calculation which found that wires 1 and 2 have nearly identical average phonon speeds 

with each other but not with wire 3.  However, care needs to be taken when interpreting 

the Gruneisen parameter results because a more subtle size effect is occurring.   

 For all wires the calculated phonon Gruneisen parameters of some acoustic 

phonon modes close to the gamma point become highly negative; this phenomenon has 

also been predicted for carbon nanostructures by Schelling and Keblinski95.  The highly 

negative phonon Gruneisen parameters imply thermal expansion along the wires axis will 

be negative.  This occurs because low frequency phonons cause large atomic 

displacements and if the displacements are perpendicular to the wire axis the overall 

length will contract.  This effect is expected to be more pronounced for thinner wires.  By 

treating a carbon nanotube as a slender hollow rod, Schelling and Keblinski95 were able 

to show that the magnitude of thermal contraction along the tube axis is inversely 

proportional to the moment of inertia of the nanotube.  Because of the large difference in 

size between wires 1 and 2 they have very different moments of inertia and as a result 

deflections in wire 2 will be smaller than those in wire 1.  This explains why wires 1 and 

2 have different Gruneisen parameters despite their similar harmonic phonon properties. 

 Unfortunately, the homogenous Gruneisen parameters do not give much 

information about wire thermal conductivities.  However, they do reveal that wire 

anharmonicity is strongly dependant on nanowire size.  This finding may seem obvious 

but in light of the unexpected weak dependence of phonon speed and spectrum on wire 

size, it is not. 
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6.5 Summary 

The phonon densities of states, specific heat, average phonon velocity, and homogenous 

Gruneisen parameter have been calculated for three different nanowires.  The properties 

of the different wires were compared with each other and with bulk gallium nitride.  It 

was found that while phonon density of states and specific heat of the nanowires differed 

substantially from that of bulk they were only weakly dependent on wire shape and size.  

Significant phonon slowing was found to occur in the nanowires and the average phonon 

speed was found to be dependant on the wire shape but not size.  It is unusual that for 

triangular shaped wires a five-fold increase in wire cross sectional area barely changes 

the average phonon speed.  It was found that the Gruneisen parameter is heavily affected 

by the size of the nanowire cross sectional area and that the strong dependence occurs in 

part by a few phonons with large negative phonon Gruneisen parameters.  This in turn 

makes it difficult to ascertain the effect of wire size and geometry on the anharmonicity 

of other phonon modes.      
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CHAPTER 7 

CONCLUSION 

 

 All the work presented here addressed challenges that need to be overcome to 

extend current thermal conductivity calculations to exotic and/or ill characterized 

materials.  A new thermal conductivity modeling methodology has been developed to 

calculate the thermal conductivity of zeolites and other highly complex materials.  It was 

used to discover the unusually prominent role of phonon slowing in the thermal 

conductivity reduction that results from substitutional defects in zeolites.  It also 

corroborated recent molecular simulations11 that showed inclusion of impurities in zeolite 

pores can facilitate heat transfer. 

 Two interatomic potentials (Stillinger-Weber and Tersoff) commonly used to 

simulate gallium nitride were extensively tested.  It was found that good theoretical 

agreement with experimental data of harmonic properties does not imply that anharmonic 

properties are accurately treated by the potential used.  In particular the Stillinger-Weber 

potential is able to accurately reproduce the density of states and specific heat of bulk 

gallium nitride but does a poor job of calculating the thermal expansion coefficients.  

This implies that thermal conductivity calculations that use the Stillinger-Weber potential 

may be particularly error prone.  The phonon properties of gallium nitride nanowires 

were calculated and compared with one another it was found that harmonic phonon 

properties are only weakly dependant on wire diameter, but differ substantially from 

bulk.  
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 There is still a lot of work that can be done to expand and improve upon the work 

presented here.  A more sophisticated relaxation time expression is needed to more 

accurately model and better understand the thermal conductivity of highly complex 

crystals.  Other interatomic potentials used to model gallium nitride need to be tested. 

Existing interatomic potentials could possibly have their parameters tweaked by fitting 

them to an anharmonic observable.  Understanding of the thermal properties of gallium 

nitride nanowire would greatly be enhanced by molecular simulation of their thermal 

conductivities and by calculation of their thermal expansion coefficients.  

As technology and material synthesis techniques progress, the prominence of 

complex and exotic materials will continue to increase.  Many applications in which they 

are used in are sensitive to their thermal properties.  As a result, understanding of thermal 

transport in complex materials will continue to be an important scientific challenge.  

Furthermore, to achieve the long term goal of having designer materials with tailored 

properties understanding of thermal transport in complex materials is essential.   
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