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SUMMARY

Aphasia is a language disorder that may occur post-stroke that can impact

quality of life and mental health due to its debilitating impact on the individuals

who experience a sudden loss in their abilities to communicate. Stroke survivors who

are living with aphasia are at risk to develop clinical stress and depression, but most

diagnostic techniques for diagnosing stress and depression have not been adapted for

those with aphasia or other language difficulties. Adapted assessments include self-

assessment manikins which are mostly used to determine short-term emotional state,

or caregiver assessments which ask questions related to behavioral changes the par-

ticipant may have exhibited over the last month. These methods are subjective and

do not utilize the methods that have progressed towards automatic stress and depres-

sion detection from speech analysis in the population without aphasia. It would be

preferable for clinicians to have an objective tool that can analyze the vocal acoustics

from speech of adults with aphasia to assist in their diagnostics of affective states.

This work focuses on analysis of a speech dataset from adults with aphasia col-

lected by Georgia State University. The database participants present with a wide

range of aphasia types, severities, ages, and other co-occurring motor disorders. Vocal

acoustics were extracted and analyzed for their ability to detect depression, predict

clinical stress and depression scores, and correlate to changes in short-term affective

states. This exploratory work has investigated an area of affective analysis that the

larger speech processing community has chosen to exclude due to the challenges of

working with a population with a language disorder (and often co-occurring motor

disorders as well).
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Analysis of the vocal acoustics and literature from the speech processing commu-

nity suggest the vocal acoustics may have been influenced by the presence of motor

disorders in the participants. The same vocal acoustics which were studied for aphasia

were extracted from databases containing speech from adults with dysarthria to deter-

mine to what extent the features could be used to predict the presence of dysarthria.

The analysis of cross-database training and testing with respect to the vocal acoustics

of dysarthria highlighted the challenges of combining datasets to overcome the often

limited number of participants available for analysis, as well as the utility of some of

the features to detect dysarthria.

This exploration of affect in aphasia through vocal acoustics has highlighted the

need for signal processing research to explore the more challenging subsets of the

population that are often excluded from affective analysis, even when they are at a

higher risk for experiencing stress and depression. While more work is needed before

a clinical tool will achieve the precision and recall necessary to be utilized in a clinical

setting, this dissertation provides a foundation on which future studies will build.
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CHAPTER I

INTRODUCTION

Each year, approximately 795,000 people will have a stroke, with 610,000 of these

being new stroke victims [1]. Stroke is a leading cause of serious long-term disability

in the United States [2], with 25-40% of stroke survivors developing aphasia [3, 4, 5].

Aphasia is a language disorder often resulting from stroke which can impair an individ-

ual’s ability to read, write, comprehend auditory dialog, and express himself/herself

verbally. An estimated two million people in the United States suffer from aphasia,

with nearly 180,000 acquiring the disorder each year [3]. Due to the difficulty with

language skills, individuals living with aphasia may be under considerable stress [6, 7]

which can be a factor associated with increased risk of depression. However, work by

Laures-Gore and DeFife indicated that most studies of post-stroke depression exclude

adults living with aphasia due to comprehension and expression disabilities that many

questionnaires cannot accommodate [8].

Accurate diagnosis of stress, depression, and determination of affective states in

adults with aphasia is challenging due to the linguistic burden of many self-report

measures, the potential for psychophysiological measures to be compromised by the

neurological changes accompanying stroke, and problems associated with proxy-based

questionnaires. The challenge of assessing stress, depression, and affective state in

adults with aphasia is most obviously demonstrated by the exclusion of many adults

with aphasia from post-stroke depression (PSD) studies due to their inability to com-

plete standard depression questionnaires [9]. Often, post-stroke assessment of stress,

depression, and affect in adults with aphasia is limited to proxy-based questionnaires

or visual scale substitutions. Prior work has concluded with concerns that stroke
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patients may have difficulty with visual analogue scales for mood [10]. Additionally,

Bennett et al. found some visual analogue scales may be poor tools for screening low

mood in patients with stroke, even though they could be useful over time for moni-

toring changes in mood [11]. Both prior studies excluded participants with aphasia.

Exclusion of adults with aphasia from research as well as the clinical implications

of inaccurate diagnosis of mood disorders and affective states can have negative ef-

fects on post-stroke recovery, mental and physical health, and cognitive functioning

[12]. Development of accurate and accessible techniques that avoid the pitfalls of con-

ventional assessment methods would enable health professionals to more effectively

treat mental health problems that develop during post-stroke recovery in adults with

aphasia. The use of speech acoustics in diagnosing stress, depression, and affective

states in adults with aphasia holds promise as a technique that permits avoidance of

self-report questionnaires or behavioral observations and could potentially replace or

augment conventional approaches to assessment. The overall goal of the work pre-

sented in this dissertation has been to investigate how vocal acoustic speech features

and speech processing techniques could be used in objective diagnoses of perceived

stress, clinical depression, and/or emotional state in the post-stroke population living

with aphasia. Background material relating to aphasia, motor disorders, and speech

analysis techniques is presented as a summary in Chapter 2, and details regarding

the databases collected and used throughout the work are included in Chapter 3.

The first set of analyses on this work focused on the Aphasia Database. Chap-

ter 4 highlights the preliminary investigation first which attempted classification of

depression on the SADQ-10 score using a support-vector machine. Results indicated

classification may not work well as a binary depression decision due to the ordinal

nature of depression, so regression was utilized to predict SADQ-10 and PSS scores,

presented in Chapter 5. Inconclusive results demonstrate the difficulty of working

with limited participants with various clinical conditions. To overcome this challenge,
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the changes within an individual’s speech features were analyzed by correlating them

to reported changes in acute affect. These results are presented in Chapter 6.

However, stroke survivors with aphasia may also have co-existing motor disorders,

specifically apraxia of speech and dysarthria. While aphasia alone would not be

expected to affect the vocal acoustics, motor disorders have been shown to change

the acoustics due to difficulties in speech production. Chapter 7 reports on a cross-

database experiment testing the ability to detect the presence of dysarthria using

the same speech features as those analyzed in the Aphasia Database. This chapter

illustrates how the same vocal acoustics can be used in the study of multiple different

language disorders, motor disorders, and affective state analysis for various distinct

purposes. Conclusions and future work relating to affective state analysis from vocal

acoustics in adults with aphasia are presented in Chapter 8.
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CHAPTER II

BACKGROUND

This work is multidisciplinary in the areas of electrical engineering and clinical speech-

language pathology. The theory and methods originate from the digital signal pro-

cessing field, specifically affect recognition in speech processing and machine learn-

ing. However, the application and impact of this work falls in the field of clinical

communication disorders research. As such, it is important to understand both the

methodology and the field from which the data has been collected. This literature

review will broadly discuss the clinical speech disorders of interest to this work in

Section 2.1, as well as the current techniques utilized in speech processing for affect

recognition in Section 2.2.

2.1 Characteristics and Diagnosis of Aphasia, Dysarthria,
and Apraxia

It is estimated that between 25% and 40% of stroke survivors will be diagnosed with

aphasia [3, 4, 5], with estimates of 10-18% of survivors left with aphasia in the long

term [4]. Post-stroke incidence rates of dysarthria range from 42-70% [13, 14], with an

estimated 15% of stroke survivors diagnosed with both aphasia and dysarthria [14].

An understanding of speech and vocal acoustics impacted by aphasia (the language

disorder of interest) and the often co-occurring motor disorders is essential for targeted

machine-learning and analysis of results. As the post-stroke language disorder of

interest, aphasia will be discussed in Subsection 2.1.1, while Subsection 2.1.2 will

cover the motor disorder dysarthria and Subsection 2.1.3 will briefly discuss the motor

disorder Apraxia of Speech (AOS).
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2.1.1 Aphasia

Aphasia is a language disorder that can occur post-stroke. Specifically, aphasia occurs

when there is a disruption to speech in regards to structure and linguistic rules. The

impacts on language due to aphasia may include: phonology, syntax, semantics, and

working memory [15]. Phonological changes may result in syllables or phonemes be-

ing swapped for another, while syntax difficulties may result in trouble understanding

word orders. Semantic losses (also known as anomia) may result in disrupted word

meaning while loss of working memory may result in difficulty understanding com-

plex or longer sentences. The characteristics of the language produced are impacted

differently depending on the type of aphasia present.

In general, aphasia can be grouped into two major categories. Fluent aphasia

usually results in difficulty understanding spoken and written language. While sen-

tence structure remains, there is a lack of meaning, and the speaker often has no idea

of how they are speaking. Non-fluent aphasia usually results in difficulty communi-

cating orally and with written words. While traditional noun/verb structures may

be retained, sentences are difficult due to a lack of grammar. Benson attempted to

distinguish between these two types of aphasia by considering the following: rate of

speaking, prosody, articulation, phrase length, speech effort, pauses, press of speech,

word choice, paraphasia, and verbal stereotypes (also known as recurring utterances)

[16]. These features, in order of statistical importance in distinguishing between flu-

ent and nonfluent aphasia as determined in a study by Kerschenstiner et al. were

phrase length, pauses, prosody, rate of speaking, and effort [17].

A clinical diagnosis of aphasia is useful in generalizing the specific changes in

speech caused by aphasia. Assessments of aphasia type are based on fluency, audi-

tory comprehension, and repetition [15]. Fluent aphasics include Wernicke’s aphasia,

anomic aphasia, conduction aphasia, and transcortical sensory. As an example, Wer-

nicke’s aphasia is categorized by poor comprehension, resulting in spoken jargon or
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nonsensical words and phrases. Nonfluent aphasics include Broca’s aphasia, global

aphasia, and transcortical motor aphasia. The characteristics of Broca’s aphasia

include pauses and effortful speech. Anomic aphasia is often the mildest aphasia

(resulting in the fewest language problems) and is characterized by difficulties with

word-finding tasks. It has been noted that most people with aphasia have anomic

characteristics to at least some extent [15].

The Western Aphasia Battery-Revised (WAB) [18] is one aphasia diagnostic tool

which determines the type of aphasia and an Aphasia Quotient (AQ), indicating how

severe the aphasia is. The sections of the test include:

� Spontaneous speech

– Conversational questions (e.g. How are you today?)

– Picture description

� Auditory verbal comprehension

– Yes/no questions

– Auditory word recognition (“Point to the ”)

– Sequential commands

� Repetition

– Words and short phrases in a repeat-after-me manner

� Naming and word finding

– Object naming (“What is this?”, *points to an object*)

– Word fluency (Name as many animals from memory in one minute)

– Sentence completion (e.g. The grass is ? )

– Responsive speech (e.g. What do you write with?)
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The participant’s scores of each section are combined to determine the Aphasia

Quotient. The aphasia type is determined from the values of each section and the

range into which they fall. Possible aphasia classifications include global, Broca’s, iso-

lation, transcortical motor, Wernicke’s, transcortical sensory, conduction, or anomic

aphasia.

Most research on aphasia has focused on the linguistic changes in speech produc-

tion. However, there is evidence that the vocal qualities of someone with aphasia

may also change. In 1986, Ryalls discovered a difference in the standard deviations

of the first and second formants in vowels spoken by male patients with aphasia in

comparison to a non-aphasia control group [19]. While single tones spoken in the Thai

language were found to have similar F0 contours between aphasics and non-aphasics,

the F0 range was generally larger in aphasic and brain-damaged individuals than the

non-aphasia controls [20].

Vukovic et al. performed a study of 60 Serbian-speaking aphasic patients, exclud-

ing those with dysarthria or apraxia [21]. Frequency alteration parameters, amplitude

alteration parameters, and noise and tremor estimate parameters were considered in

respect to the differences between the various types of aphasia patients as well as each

group to a non-aphasic group. Results found that while all three aphasic populations

varied from the control, Broca’s aphasics and subcortical aphasics varied more so

than Wernicke’s aphasics. Specifically, “higher mean values for all parameters were

present in participants with aphasia compared to speakers without stroke. Changes

appeared greatest in association with subcortical aphasia, less in Broca’s aphasia,

and least in association with Wernicke’s aphasia.”

Temporal changes to speech by aphasia may also be of interest for analysis.

Goldman-Eisler found that pauses in the general non-aphasic speech average 40-50%

of the utterance time [22]. Due to this large percentage, it can be concluded that
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pauses may be essential to the generation of spontaneous speech [23]. Quinting con-

cluded that aphasic speech is directly impacted by both increased frequency and

duration of pauses in speech as compared to non-aphasic speech. Specifically, he

found that the length of unfilled pauses was measurably different between aphasic

speech and nonaphasic speech.

From this section, it can be seen that aphasia has been studied from a prosodic

standpoint in the clinical field for quite some time, but objective measures that ex-

tend beyond pitch, formants, and timing are often not considered by clinicians or

researchers.

2.1.2 Dysarthria

Dysarthria is a term for a variety of speech motor disorders resulting from “paralysis,

weakness, or incoordination of the speech musculature following damage to the central

or peripheral nervous system” [15]. As such, dysarthria includes any disturbance of

the basic components underlying speech production, including respiration, phonation,

articulation, resonance, and prosody. Common speech errors due to dysarthria may

include distortions such as slurred speech or mumbled speech. Dysarthria is often a

consequence of a brain trauma (i.e., stroke) or a symptom of degenerative disorders

(i.e., hypokinetic dysarthria for Parkinson’s disease).

The traditional approach to diagnose dysarthria has clinicians perform perceptual

judgments of speech to appraise the type and severity of the disorder, such as with

the Frenchay Dysarthria Assessment [24]. The Frenchay Dysarthria Test- Second

Edition (FDA-2) analyzes important parameters of the motor speech system to assist

with neurological diagnosis of dysarthria and to guide treatment. Clinicians perform

their analysis via subjective listening tests, analyzing a patient’s reflexes, respiration,

lips, jaw, palate, laryngeal, tongue, and intelligibility. From these sub-tests, a patient

is given a severity ranging from 1-5, with one indicating mild and 5 indicating most
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severe. There are some concerns that the clinical assessment procedure is costly, labo-

rious, and prone to internal biases of the examiner [25]. The subjective nature of these

tests has raised doubts about the reliability and validity of perceptual judgments by

clinicians to consistently differentiate individual and coexistent speech disorders [26].

This motivates the design of a clinical tool that can objectively identify dysarthric

speech from healthy speech and distinguish the type and severity of the dysarthria

to assist with treatments and interventions.

Multiple research efforts to document the changes in speech and vocal acoustics

due to dysarthria utilize analysis at the phoneme level in regards to spectral informa-

tion of vowels, consonants, and transitions [27, 28, 29]. Tikofsky and Lehigh found

that in vowel production, normal speakers tended to have a larger standard devia-

tion in average F1 and F2 means than a group of dysarthric patients [28]. Lansford

and Liss investigated both vowel-space metrics and F2 slope metrics to distinguish

between dysarthric patients and the healthy control, as well as between those pa-

tients with various sub-types of dysarthria [29]. They were able to classify dysarthria

from the control population at an accuracy of 84% using the mean dispersion of the

front vowel space areas. It was found that average F2 slope was significant in dis-

tinguishing between the dysarthria subtypes- speakers diagnosed with hypokinetic

dysarthria had a higher average F2 slope than those with ataxic or mixed-flaccid-

spastic dysarthrias. Lansford suggests that the success of this feature is due to its

representation of both spectral and temporal information. Kent et al. discussed the

abnormal values found in the fundamental frequency variation, peak-amplitude vari-

ation, and smoothed amplitude perturbation quotient in dysarthric speech [30]. One

challenge highlighted in the aforementioned studies is that features that may work

well for one type of phoneme (consonants, fricatives, etc.) may not work well on

others [31].

Other research efforts have focused on designing automatic speech recognition
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(ASR) systems to help persons with dysarthria communicate [32, 33, 34]. Most speech

processing work has analyzed dysarthria to broaden the applicability and real-world

use of automatic speech recognition (ASR) systems. Shahamiri provides a compari-

son of several recent ASR models for dysarthric speech [34]. The UA-Speech dataset

was collected with the goal of expanding ASR systems to a more diverse population

including those with dysarthria [35], and has been used in multiple efforts for ASR

[32, 34]. Other English dysarthric speech databases that exist are Nemours, Torgo,

Whitaker and HomeService [36, 37, 38, 39]. A summary of the databases to which

signal processing has been applied to dysarthria is available in Table 1. Work pre-

sented by Sriranjani et al. combined datasets of speech without dysarthria with the

UA-Speech and Nemours Dataset to create larger datasets to train ASR systems, with

results suggesting the incorporation of non-dysarthric data for models of dysarthric

speech reduced performance [40]. While the goal of ASR with dysarthric speech has

not focused on diagnosing or detecting dysarthria, Laaridh et al. highlight that one

approach to automatic detection of dysarthria intelligibility could be the word tran-

script error rate based on automatic speech transcriptions systems [41] which often

utilize ASR systems.

While ASR has been the primary focus of much dysarthria signal processing re-

search, the task of automatically diagnosing and classifying the subtype and severity

of dysarthria is less common. Carmichael worked towards a computerized applica-

tion for detecting dysarthria subtypes by analysis of specific speech, articulatory, and

phonation tasks [47]. However, the signal processing was applied to speech from

tasks similar to a clinical dysarthria assessment as opposed to the more generic read

or spontaneous speech. Mujumdar created a dysarthria subtype tree-based classi-

fication algorithm based on global prosodic and spectral statistics, achieving 90%

accuracy across 35 moderately-severe dysarthric patients when selecting dysarthria

subtypes that are known to exhibit distinct speech changes and patterns from each

10
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other [43]. DeMino automatically classified dysarthria severity into mild, moderate,

or severe in 39 male and female participants [48]. Current research efforts to use full

speech sentences for classification are limited and have not conclusively solved the

automatic diagnosis of dysarthria subtype.

An important consideration of the work mentioned in this section is that often

the dysarthria studied is that which is caused by progressive neuromuscular disorders

including Parkinson’s disease and amyotrophic lateral sclerosis (ALS) [15]. There

is relatively little literature relating specifically to post-stroke dysarthria assessment

and/or treatment.

2.1.3 Apraxia of Speech

Apraxia is defined to be “a disturbance of movement or action not due to neuromus-

cular innervation disruption, . . . but instead to a hypothesized disruption of motor

programming” [49]. Apraxia of speech (AOS) has been defined as

“an articulatory disorder resulting from impairment, as a result of

brain damage, of the capacity to program the positioning of speech muscu-

lature and the sequencing of muscle movements for volitional production

of phonemes. The speech musculature does not show significant weak-

ness, slowness, or incoordination when used for reflex and automatic acts.

Prosodic alterations may be associated with the articulatory problems,

perhaps in compensation for it.” Defined by Darley, 1968 [50].

Apraxia is usually divided into various categories, including apraxia of speech, oral

or facial apraxia, and limb apraxia. While specific definitions and localization areas

related to speech programming are still under debate, apraxia of speech is generally

described as an articulation- and prosody of speech- disorder. Due to these motor-

difficulties, the speech produced by those with apraxia may change. The rate of speech

due to apraxia tends to be slower than that of normal speech, and additional pauses
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at the start of a word or in between syllables may be added [15][49]. Additionally,

Cherney noted that syllables may be equally-stressed within an utterance and normal

variations of pitch and loudness may be limited [15].

The Apraxia Battery for Adults- Second edition (ABA-2) determines the presence

and severity of apraxia in adults [51]. Segments of the test determine diadochokinetic

rate, increasing word length, limb apraxia, oral apraxia, utterance timing, ability of

repetition, and articulation measures. Labels from each subsection result are ‘none’,

‘mild’, ‘moderate’, or ‘severe’.

Even though Apraxia of Speech and aphasia share some common speech er-

rors, they are unique disorders [52]. As one example, AOS and conduction aphasia

have similar sound-level errors, but have a different underlying reason for the errors.

Conduction aphasia sound errors relate to the underlying deficit in the selection of

phonemes for speech. Apraxia sound errors are the correct phonemes, but are dis-

rupted due to motor programming flaws.

2.2 Affect Recognition and Speech Processing

This section of the literature review will briefly summarize the field of speech process-

ing as it relates to affect recognition. Subsection 2.2.1 will discuss affect recognition,

specifically for general emotions, stress, and depression. Subsection 2.2.2 will look at

the small amount of work in affect recognition from speech in persons with language

disorders.

2.2.1 Affect Recognition from Speech

Affective computing relates to emotion recognition, analysis, and synthesis [53]. When

using speech, affective speech processing often attempts to classify or detect various

emotions (e.g., joy, anger, sadness, surprise) or emotional states (e.g., stress, depres-

sion, frustration) from analysis of the vocal acoustics from the speaker. In this work,

clinical depression and perceived stress are of particular interest due to their clinical
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implications as they relate to post-stroke mental health.

The detection of depression in the voice is directly related to a large foundation of

research in the study of affect (emotion, stress) in the voice. Several literature surveys

over the years [54, 55, 56, 57] have provided overviews and updates on work related to

the creation and analysis of speech emotion databases and classification of emotion.

Emotions collected for study are acted, elicited via a task, or natural (e.g., taken from

other media with no original intent of being used in emotion recognition). Zeng et al.

mentioned that while automatic detection of the six basic emotions has achieved high

success rates when using controlled audio or visual displays, detection from less con-

strained settings such as spontaneous unscripted or unprompted speech still appears

challenging [57]. Features range from prosodic, spectral, glottal, and non-linguistic

vocal features (e.g., laughter, sighs, yawns). Additionally, various machine-learning

algorithms are utilized ranging from k-nearest neighbor (k-NN) to Support Vector

Machines (SVM) and decision trees, the model choice depending on the affective task

of interest and available data. The main conclusion drawn by the various studies and

other recent work is the lack of a one-size-fits-all feature set and model to handle all

vocal emotion recognition tasks.

One specific area of affect recognition is the detection of stress, with multiple

potential uses including medical diagnosis, interrogation analysis, and call center

customer service. Zhou et al. found that Teager Energy Operator (TEO) features

increased classification performance over pitch and MFCC features [58]. However,

much of the work on stress detection utilizes speech under workload-simulated stress

(e.g., [59]) or short-term stress (e.g., the SUSAS database [60]) instead of clinical

stress. As such, there is a lack of work in the area of speech processing focusing on

the detection of long-term stress in vocal acoustics.

Detection of depression through voice analysis is important for clinical research

and could reduce the incidence of suicide. While not a new topic of interest in the
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research community, i.e., [61, 62], depression of detection using vocal acoustics is still

being studied due to the complications of detecting a long-term clinical diagnosis

from voice acoustics that often vary in their short-term emotional state as well. The

Audio/Visual Emotion Challenge and Workshop (AVEC) series has provided an av-

enue for research groups to compete for the best depression and emotion-recognition

classification accuracies when using a standardized dataset [63, 64]. A recent re-

view article by Cummins et al. [65] summarized speech analysis in depression and

suicide risk over the last 10 years, including meta-analysis on vocal features as they

relate to diagnosis and classification of depression. Similar to the features for emotion

recognition, depression detection often utilizes prosodic, glottal, formant, and spec-

tral features. Cummins et al. mention SVM and Gaussian Mixture Models (GMM)

as two of the most popular prediction techniques for depression presence and severity

[65], and concludes with a call to action for better research collaboration and further

research into various demographic factors that lead to variability in depressed voices.

This work addresses the call as aphasia is often an exclusion factor for speech analy-

sis studies, even though adults with aphasia are more-likely to be depressed than the

non-aphasia population.

2.2.2 Affect Recognition in Speech with Language Disorders

Section 2.1 introduced the language disorder aphasia and the motor disorders dysarthria

and apraxia of speech. While Subsection 2.2.1 highlights the extensive body of liter-

ature for the recognition of stress and depression in persons without aphasia, there is

an analogous lack of such research for persons with aphasia. While speech processing

techniques have been used to determine aphasia intelligibility [66] and aphasia reha-

bilitation [67], the author is unaware of any prior research besides that mentioned in

Chapters 4, 5, and 6 as work focused on affective speech processing in persons with

aphasia. This lack of research is not surprising considering that aphasia affects the
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production and/or language coherency of persons who suffer from it, and this popu-

lation is often excluded from other research studies due to their language difficulties.

Given the success of detecting stress, depression, and affect in other populations via

speech analysis, exploration of this type of analysis in adults with aphasia could even-

tually lead to an accessible and accurate technique for identifying mood disorders in

adults with aphasia.

16



CHAPTER III

DATASETS AND ACOUSTIC FEATURES

The following chapter will discuss the databases collected and used in this study, as

well as the feature extraction techniques that were used.

3.1 Databases

Multiple databases were utilized in this work for a variety of purposes. The main

goal of this dissertation has been to analyze affect from speech acoustics of adults

with aphasia. In this work, the main database will be referred to as the ‘Apha-

sia Database’ which contains speech from adults with aphasia and is summarized in

Section 3.1.1. While the participants presented with aphasia and various types of

affective states (i.e., stress, depression, current emotional state), they also presented

with other clinical conditions including apraxia of speech and dysarthria. The sec-

ond database analyzed in this work is the Atlanta Motor Speech Disorder Corpus

(AMSDC) which contains speech from adults with dysarthria. The AMSDC is sum-

marized in Section 3.1.2. However, since the AMSDC has not been analyzed from

a signal processing perspective, baseline experiments were conducted on the more-

established UA-Speech dataset, which is detailed in Section 3.1.3.

3.1.1 Aphasia Database

Speech from 26 adults who were at least one-month post-onset of stroke was collected

at the Aphasia and Motor Speech Disorders Laboratory at Georgia State University

over a period of approximately one year from spring 2014 to summer 2015. Approval

from the institutional review boards at Georgia State University and Georgia Institute

of Technology was obtained prior to initiation of the study. Grady Memorial Hospital
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approved the research through the Grady Research Oversight Committee. Partici-

pants in the study exhibited Broca’s, Wernicke’s, Conduction, and Anomic aphasia as

determined by the Western Aphasia Battery (WAB) [18]. The WAB also assigns an

Aphasia Quotient (AQ) that assesses the severity of the subject’s aphasia. The range

of values for the AQ is from 0-100 (most to least severe) with a score higher than

93.8 within normal limits indicating no aphasia. A total of two participants scored

as normal on the WAB, a total of five participants had technical difficulties during

the recording process, and one participant was removed after no proof of stroke could

be determined. Table 2 shows selected demographic and clinical information for the

participants with confirmed history of stroke and complete audio recordings.

Participants were recorded during their series of tasks as a part of the West-

ern Aphasia Battery [18] as detailed in Section 2.1.1. Speech was recorded with an

AKG C520 headset condenser microphone and sampled at 16 kHz. Approximately

55 responses per participant were segmented, ranging from single word answers to an

extended description. An additional two picture descriptions, the cookie theft picture

from the Boston Diagnostic Aphasia Exam [68] and the Cat in Tree sketch [69], were

included in an attempt to elicit additional spontaneous speech. Longer responses,

including those of the picture descriptions, were segmented into individual utterances

based on the completion of an idea. In total, each participant had at least 3.5 minutes

of responses recorded after segmentation and approximately 75 utterances.

Two proxy-based questionnaires specifically for identification of depressive symp-

toms in adults with aphasia exist: the Stroke Aphasia Depression Questionnaire

(SADQ-10) [70] and the Aphasia Depression Rating Scale (ADRS) [71]. The SADQ-

10 is a ten-question survey requiring caregivers to assess the frequency of specific

behaviors of the participant, ranging from never (0) to always (3) [70]. In a sub-

sequent study among patients without aphasia, a threshold of 14/30 was found to

indicate clinically significant symptoms of depression with 70% sensitivity and 77%

18



T
ab

le
2:

C
li
n
ic

al
an

d
d
em

og
ra

p
h
ic

in
fo

rm
at

io
n

fo
r

p
ar

ti
ci

p
an

ts
w

it
h

co
n
fi
rm

ed
st

ro
ke

h
is

to
ry

an
d

co
m

p
le

te
re

co
rd

in
gs

ID
G

en
d

er
R

ac
e

A
ge

A
p

h
as

ia
T

y
p

e
A

p
h

as
ia

Q
u

ot
ie

n
t

D
y
sa

rt
h

ri
a

S
ev

er
it

y

A
p

ra
x
ia

O
f

S
p

ee
ch

S
ev

er
it

y

S
A

D
Q

-1
0

S
co

re
P

S
S

S
tr

es
s

S
ca

le
-

P
re

S
tr

es
s

S
ca

le
-

P
os

t

S
A

M
A

ro
u

sa
l

P
re

S
A

M
A

ro
u

sa
l

P
os

t

S
A

M
V

al
an

ce
P

re

S
A

M
V

al
an

ce
P

os
t

6
M

W
61

A
n

om
ic

87
.4

n
on

e
m

il
d

13
28

1
1

3
1

3
2

7
M

B
49

A
n

om
ic

82
.1

m
il

d
m

il
d

10
23

2
2

1
1

2
2

8
F

B
46

B
ro

ca
’s

59
.6

n
on

e
m

o
d

er
at

e-
se

ve
re

19
26

1
1

1
1

1
1

9
M

W
70

A
n

om
ic

83
.2

n
on

e
m

il
d

8
14

1
1

1
1

1
1

10
M

B
32

A
n
om

ic
99

.4
n

on
e

n
on

e
9

18
1

1
1

1
2

1

11
M

B
55

A
n
om

ic
78

.0
m

o
d

er
at

e
m

il
d

-
m

o
d

er
at

e
19

36
7

4
3

3
5

5

12
M

B
52

B
ro

ca
’s

58
.3

m
il

d
m

o
d

er
at

e-
se

ve
re

11
30

3
5

1
2

1
2

13
M

B
57

A
n
om

ic
87

.4
m

il
d

n
on

e
16

28
2

5
3

3
3

2

14
M

B
67

A
n
om

ic
98

.4
m

il
d

n
on

e
22

38
4

3
3

3
2

2

15
F

B
51

W
er

n
ic

ke
’s

41
.0

n
on

e
m

o
d

er
at

e-
se

ve
re

12
33

1
7

1
5

1
5

16
F

W
39

A
n

om
ic

93
.2

m
il

d
m

il
d

16
23

3
4

2
3

2
3

17
F

B
33

A
n

om
ic

92
.4

m
il

d
n

on
e

19
35

1
1

1
1

1
1

18
M

B
63

A
n
om

ic
83

.2
m

il
d

m
il

d
20

24
4

1
2

1
1

1

19
F

B
52

A
n

om
ic

88
.3

m
il

d
m

il
d

25
40

5
1

4
1

4
4

20
F

W
36

C
on

d
u

ct
io

n
54

.6
n

on
e

m
o
d

er
at

e
12

22
3

3
3

4
3

3

21
M

W
49

A
n

om
ic

83
.3

n
on

e
m

il
d

16
24

1
1

1
1

2
2

23
M

W
31

B
ro

ca
’s

31
.9

m
il

d
m

il
d

-
m

o
d

er
at

e
6

-
1

1
1

1
1

1

24
F

B
64

B
ro

ca
’s

68
.5

m
il

d
m

o
d

er
at

e
11

40
5

5
3

2
3

3

25
M

B
40

W
er

n
ic

ke
’s

75
.8

m
il

d
m

il
d

-
m

o
d

er
at

e
14

32
1

2
1

1
1

5

26
M

B
25

A
n
om

ic
92

.3
n

on
e

n
on

e
-

23
4

3
3

2
3

3

19



specificity [72]. SADQ-10 scores were received for 25 participants, with participant

SADQ-10 scores ranging from 6-25.

Caregivers also completed the Aphasia Depression Rating Scale (ADRS) [71]. The

ADRS is a nine-item questionnaire that rates external symptoms of depression such

as insomnia, weight loss, outward signs of anxiety, and fatigability. The ADRS is

scored by adding item scores into a combined score, with a higher score indicating

more depressive symptoms. The ADRS authors established a threshold of 9/30 to

suggest the presence of depression (83% sensitivity and 71% specificity). Based on

work by Laures-Gore et al., ADRS and SADQ-10 scores were highly correlated (r =

0.708, p < 0.001) [73]. As such, SADQ-10 scores were selected for the analysis of

depression in this work over those of the ADRS due to the higher completion rate.

The Perceived Stress Scale (PSS) is a fourteen-question assessment to determine

the degree to which situations in an individual’s life were considered stressful by that

individual [74]. For each item, a user can respond with never (item score of 0) to

very often (4), for a total of 56 points. While the PSS has been used in studies

on those with aphasia [8], it was not designed specifically for aphasic populations.

Therefore, administration of the PSS generally requires the assistance of a caregiver

or interviewer who reads the questionnaire aloud as the person with aphasia selects

responses. Participant PSS scores ranged from 14-40 with higher scores indicating

higher levels of perceived stress. The PSS was not designed with severity thresholds

or categories, nor can the authors find any published study validating proposed cate-

gories. However, some sources that publish the PSS-10 (a 10-question version of the

test with max score of 40) advertise the severities as low stress (0-13), moderate stress

(14-26), and high stress (27-40) [75, 76].

Acute assessments of affective state were collected at the start and end of the test-

ing session. Participants were asked to complete valance and arousal Self-Assessment
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Manikins [77], creating pre- and post- SAM scores. The non-verbal assessment con-

sists of two sets of line-drawn figures expressing different emotional scales for a total

of five figures in each set. While the original testing procedure for SAMs created

output scores on a 9-point scale by allowing participants to also choose an emotional

state between the pictures, the participants in this study were limited to selecting the

picture that best represented their mood, limiting the numeric outputs to 1-5. An

additional acute assessment was completed before and after the recording process.

Identified in this work as the Stress-Scale, participants were asked to identify their

emotion on a pictorial scale ranging from a sketched face shown smiling to a face

frowning with a wrinkled brow [78]. The assessment output was a number between

one and seven, identified by the authors as calm and stressed respectively. Both the

SAM and Stress-Scale were used in this work as acute measures of affect as they allow

feedback directly from the participants with linguistic challenges due to aphasia.

3.1.2 Atlanta Motor Speech Disorders Corpus (AMSDC)

The Atlanta Motor Speech Disorders Corpus (AMSDC) contains speech recordings of

99 adults local to the South-Eastern US with acquired neurogenic disorders that

resulted in a motor speech disorder [79]. Participants presented with aprosodia,

dysarthria, and apraxia of speech. An important distinction in this corpus is the em-

phasis on regional dialects unique to the southeastern US, especially those of African-

American English. Audio recordings were completed in private or semi-private rooms

of the Grady Memorial Health System using an AKG C520 condenser microphone

with a behind-the-neck band. All participants completed recordings of conversational

speech, oral readings of ‘The Caterpillar’[80] and ‘The Grandfather’[81] passages, sen-

tences with contrasting stress emphasis on specific words, sentences with material

sensitive to dysarthria, and affective sentences.
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Table 3: Clinical and demographic information summaries for the 57 participants from
the Atlanta Motor Speech Disorders Corpus included in analysis in this dissertation

Females Males

Number of Participants 22 35
Age Range 38 - 76 30 - 79

Number with Spastic Dysarthria 4 3
Number with Flaccid Dysarthria 4 9
Number with Mixed Dysarthria 11 11

Number with Other Dysarthria Subtypes 3 12

Very Low Participants 1 1
Low Participants 2 2

Middle Participants 2 7
High Participants 17 25

A subset of 57 participants who presented with dysarthria were selected for anal-

ysis in this work. For each participant, clinical and demographic information was

available including dysarthria type and dysarthria intelligibility. Intelligibility was

determined by a clinician and 4 graduate speech-language pathology interns based on

intelligibility of the read paragraphs. For use in this work, participants’ intelligibility

was categorized into four quartiles defined as very low (0-25%), low (26-50%), middle

(51-75%), and high (76-100%). Table 3 summarizes the clinical and demographic

information of the AMSDC participant subset included in the work presented in this

dissertation

3.1.3 Universal-Access Research Dataset (UA-Speech)

Originally collected by the University of Illinois, the Universal-Access Research (UA-

Speech) dataset contains speech recordings from 15 speakers (4 female, 11 male)

of mostly spastic dysarthria due to cerebral palsy [35]. Additionally, 13 controls

without dysarthria (4 female, 9 male) were included for a total of 28 participants.

Subjects were asked to read single isolated words shown on a laptop screen, with
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Table 4: Clinical and demographic information summaries for the 15 participants and
13 controls from the UA-Speech Database included in analysis in this dissertation

Females Males
Female
Controls

Male
Controls

Number of Participants 4 11 4 9
Age Range 18 - 51 18 - 58 age matched age matched

Number with Spastic Dysarthria 3 8 - -
Number with Other Dysarthria 1 3 - -

Very Low Participants 1 3 - -
Low Participants 1 2 - -

Middle Participants 1 2 - -
High Participants 1 4 - -

words representing the 10 digits, 26 radio alphabet letters, computer commands,

common words from the Brown corpus of written English, and uncommon words

from children’s novels selected to maximize phone-sequence diversity, for a total of

765 isolated words, 455 of which were distinct. An eight-microphone array was used

to collect the speech at 48 kHz, and processed to create seven channels. In this work,

one channel was randomly selected per participant to be included in the analysis

(as opposed to all seven channels) to reduce the number of repetitions within each

individual’s speech.

Speech intelligibility was rated by five native speakers without either transcription

experience or experience working with individuals with speech disorders. A subset of

the data was used, including 225 words per participant. Each listener was asked to

transcribe the word as well as their confidence in their transcription. The accuracy of

the transcriptions across all 5 participants and all 225 words was calculated to create

an intelligibility measure for each individual ranging from 0 (worst) to 100 (best).

Participants were categorized into four quartiles defined as very low (0-25%), low (26-

50%), middle (51-75%), and high (76-100%). Table 4 summarizes the demographic

information for the participants included in this study from the UA-Speech dataset.
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3.2 Speech Features Extracted

In this work, a variety of prosodic, spectral, TEO, and glottal features were extracted

from the various databases using Matlab. For each feature extracted, various low

level descriptors (e.g. mean, inter-quartile range, skew) were calculated based on

those described in the openSMILE software [82]. The features to which the low level

descriptors (LLDs) were applied are described below.

Cepstral Peak Prominence (CPP) was computed by the VoiceSauce application

using Hillenbrand’s formula [83, 84]. The cepstral domain is a mathematical trans-

formation of the signal from the frequency domain of the signal. Cepstral Peak

Prominence is a measure of cepstral peak amplitude normalized by the overall ampli-

tude. CPP has been found to be indicative of breathy speech, the overall periodicity

of speech, and dysphonia severity [84, 85, 86].

Four different Harmonic-to-Noise Ratios (HNR) were computed by the VoiceSauce

application using de Krom’s method [83, 87]. HNR is defined as the level difference

between the original spectrum and the noise spectrum of a signal within a speci-

fied frequency band. Previous studies have found HNR to be useful in identifying

depression and suicide risk [65] as well as stress [88].

14 mel-frequency cepstral coefficients (MFCCs) and their deltas were computed by

the VoiceBox toolbox [89]. Cepstral coefficients have been shown to be related to the

human perception of sound, and the mel-scale more closely relates to the nonlinear

frequency scale heard by humans. MFCCs are one of the most prevalent feature

types for speech affect analysis, with previous research using MFCCs for detection of

hypokinetic dysarthria as a symptom of Parkinson’s Disease [90, 91], long-term stress

[92], and depression [65, 93]. As such, they have become established as the basic

feature vector for most acoustic speech recognition problems [94].

Pitch, based on Sun’s Subharmonic-to-harmonic ratio [95] and jitter were also

calculated. Pitch is the perceptual measure most closely related to frequency, while
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jitter is the short-term, cycle-to-cycle perturbation in the fundamental frequency.

Pitch and jitter have both been shown to describe the pathological characteristics of

the speech, particularly in depression [65], emotional state [96, 97], and stress [92].

Eight Line Spectral Frequencies (LSF) were derived from the Linear Predictive

Coefficients (LPCs). The LPCs are the mathematical coefficients that attempt to

recursively identify a speech signal. The LSFs are the frequencies of the zeros to

the equations defining the line-spectral pair parameters, a mathematical attempt to

model the acoustics of speech [94]. While traditionally used for speech coding or

analysis, LSFs have more recently been used in affect recognition [98].

Root Mean Square-Energy (RMS-Energy) is the square root of the mean of the

squared value of the energy in a frame within a signal. RMS-Energy has detected

valance and arousal [99] and determined depression from controls groups [100].

The Teager Energy Operator (TEO) is a nonlinear equation that was created to

take advantage of short-term information within a signal from an energy point-of-

view. TEO features were originally developed to detect stress [58], but have more

recently been used to detect depression [101]. Specific TEO feature extracted in this

work include: amplitude modulation, frequency modulation, 16 critical band areas

[58], RMS-energy, and Log-energy.

The glottal waveform is an estimation of the volume velocity profile of the air as

it passes through the glottis and speech folds during speech production. The features

extracted relate to the timing, ratio, amplitude shimmer, and spectrum characteristics

of the estimated waveform. These features have been shown to be useful in the

detection of depression [102, 103, 104]. Specifically, the glottal parameters include:

H1-H2 as the difference between the first and second glottal formants in decibels

[105], Harmonic Richness Factor (HRF) as a measure of the ratio of higher harmonics

to the first harmonic [106], Parabolic Spectrum Parameters (PSP) which matches a

second order polynomial to the flow spectrum computed over a signal glottal cycle
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[107], and a set of time parameter estimates to analyze various speeds and ratios of

the opening and closing of the glottis [108].
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CHAPTER IV

CLASSIFICATION OF DEPRESSION FROM SPEECH IN

ADULTS WITH APHASIA

One of the main interests in collected the Aphasia Database was to investigate objec-

tive acoustic features relating to the detection of clinical depression. As the literature

in Chapter 2 summarized, depression classification has been explored through speech

analysis, but adults with aphasia have been excluded due to their language diffi-

culties, even though they experience higher rates of stress and depression than the

standard population. To investigate this research question, traditional acoustic vocal

features were extracted and a linear support-vector machine (SVM) was used to create

a binary classifier to assign the label of depressed/not-depressed. This chapter will

highlight the preliminary depression classification results from the Aphasia Database,

previously published by Gillespie et al. [109], © IEEE 2016.

4.1 Methodology

The Aphasia Database included depression scores from both the SADQ-10 and the

ADRS. However, the SADQ-10 was selected for analysis in this dissertation due to its

higher completion rate. The community Stroke Aphasia Depression Questionnaire-10

(SADQ-10) was developed to assess depressed mood in individuals with aphasia [70].

As one of the few depression scales available for adults with aphasia, the SADQ-10

was used to determine the potential presence of depression. A participant’s score of

greater than 14 is assigned a label of high depressive symptoms [72]. In this proposal,

the term ‘depressed’ is used as shorthand to indicate high depressive symptoms while

‘not depressed’ indicates low depressive symptoms.
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Table 5: Participants’ depression label, and aphasia type (aphasia quotient (AQ)) for
participants chosen in depression classification analysis.

Participant
Number

Gender SADQ Score
Label (Depressed if

SADQ-10 >14)
Aphasia Type (AQ)

15 Female 12 Not Depressed Wernicke’s (41)
20 Female 12 Not Depressed Conduction (54.6)
24 Female 11 Not Depressed Broca’s (68.5)
8 Female 19 Depressed Broca’s (59.6)
19 Female 25 Depressed Anomic (88.3)
5 Female 16 Depressed Anomic (92.2)
25 Male 14 Not Depressed Wernicke’s (87.4)
7 Male 10 Not Depressed Anomic (82.1)
9 Male 8 Not Depressed Anomic (83.2)
6 Male 13 Not Depressed Anomic (87.4)
11 Male 19 Depressed Anomic (78.0)
18 Male 20 Depressed Anomic (83.2)
21 Male 16 Depressed Anomic (83.3)
13 Male 16 Depressed Anomic (87.4)

Table 5 shows the demographics for the participants chosen for the classification

task of depression based on SADQ-10 score. The 14 participants were chosen to be

approximately balanced in gender and depression label, while still including as many

participants as possible.

For the analysis, 33 responses were selected per person, with phrases selected over

single-word answers based on initial analysis comparing classification accuracies of

models trained on words and models trained on phrases. Prosodic and spectral fea-

tures were extracted based on the features used in the INTERSPEECH 2009 emotion

challenge [110] with some additional common features and statistics from openSMILE

[82]. Specifically, low-level descriptors (LLD) statistics for the prosodic and spectral

features detailed in Section 3.2 were calculated yielding a total of 874 features.

Features and their statistics were extracted in MATLAB for each utterance of

each participant and Weka [111] was used for building the classifier using the SMO-

SVM (Sequential Minimal Optimization-Support Vector Machine). Feature selection

28



on the full data set as well as each individual feature type was performed using 5-

fold cross validation in Weka with the Correlation-Based Feature Subset selection

algorithm [112] and the Best-First search method. Only those features that were

selected by at least 3 of the 5 folds were chosen to be used to train and test the feature-

subset classifiers. Restricted by the small dataset, a leave-one-out approach was used

in which a training model was built on 13 participants and tested on the excluded

participant, yielding 14 separate classification tasks per feature subset. Analyses were

conducted based on all 874 features and each reduced subset of features grouped by

the following categories: Pitch+Jitter, RMS-Energy, Harmonic Noise Ratio (HNR),

Cepstral Peak Prominence (CPP), MFCC+deltas (MFCC + ∆), and LSF+deltas

(LSF + ∆).

4.2 Results and Discussion

Table 6 shows the precision (i.e., percentage correctly marked as depression out of all

observations marked as depression by the classifier), recall (i.e., percentage correctly

marked as depression out of all possible true labels of depression), and average accu-

racy for both the original full feature set and each set of reduced features after the

feature selection took place. Precision and recall balance each other as a high recall

and low precision would indicate a tendency to correctly classify more of the true

labels of depression at the cost of misdiagnosing a greater number of participants.

A high precision and low recall would indicate a tendency for the classifier to miss

more true diagnoses of depression while being more certain of the samples marked

as depression. The values in Table 6 are based on assigning the appropriate label

of depressed/not-depressed based on an individual’s SADQ-10 score across their 33

utterances. A total of 462 utterances were classified across all 14 participants.

Based on the results in Table 6, the Cepstral Peak Prominence feature subset

classified the best overall considering recall, precision, and accuracy. Only RMS-
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Table 6: Depression classification results by feature subtype in assigning the correct
depression label to each sentence, © IEEE 2016.

Features (number of
features)

Avg. Recall Avg. Precision
Avg. Accuracy
(standard dev.)

All (874) 0.359 0.411 0.422 (0.264)
Reduced (41) 0.459 0.447 0.446 (0.325)

Pitch + Jitter (7) 0.394 0.399 0.400 (0.303)
RMS-Energy (8) 0.814 0.487 0.478 (0.478)

HNR (10) 0.545 0.472 0.468 (0.311)
CPP (6) 0.563 0.634 0.619 (0.190)

MFCC+∆ (19 ) 0.432 0.588 0.502 (0.349)
LSF+∆ (20) 0.308 0.286 0.374 (0.246)

Energy had a higher recall, but also had a lower precision and accuracy, indicating

a tendency to assign the label of depression more often resulting in misdiagnoses.

Cepstral Peak Prominence has been found to be indicative of breathy voices and

has been extended to an evaluation of the overall periodicity of the speech [84, 86].

While the exact quantities that CPP measures are unknown, it is suggested that

the CPP integrates aperiodicity and other waveform features [113]. Jitter, a similar

feature that measures the noise of the signal’s pitch, has been found to be statistically

significant in classifying between suicidal and not-depressed participants, as well as

between depressed and control participants [62, 100]. Understanding the jitter and

CPP of depressed aphasic speech and not-depressed aphasic speech will need to be

continued in further detail to determine if this is unique to aphasic speech exhibiting

depressive symptoms or if the motor disorders of dysarthria and apraxia are also

contributing to these differences found in these features.

MFCC and ∆s were the next highest performing group of features overall regard-

ing accuracy and precision, while RMS-Energy had the highest recall of any feature

subset. The worst performance was from the LLDs of the LSF+∆ group which exhib-

ited a classification accuracy well-below chance (approximately 0.5). While all of the

features included above have been used in the past to assess depression, they are also
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Figure 1: Depression classification accuracy of each participant plotted against their
aphasia quotient and aphasia type, © IEEE 2016.

potentially linked to many of the communication and motor disorders experienced by

adults with aphasia. Future work will continue this analysis regarding the potential

impact on vocal acoustics from motor disorders, especially those measures relating to

depression.

In order to determine if the classifier was actually creating a model based on de-

pression or if it was discovering and representing other clinical information besides

depression, the classification accuracies of the Cepstral Peak Prominence subgroup

were compared to the aphasia type, aphasia quotient, and SADQ-10 numerical score

of the participants. Figure 1 shows each participant’s classification accuracy against

their aphasia quotient and aphasia subtype when assigning the label of depressed/not

depressed to each of the utterances for each participant. A score of more than 50%

would indicate a majority of their labels were correctly assigned according to the

SADQ-10 depression score. Eleven of the 14 participants in this study had the cor-

rect label assigned to the majority of their utterances. From Figure 1, it is seen

there does not appear to be an indication that the aphasia type or aphasia quotient
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Figure 2: Depression classification accuracy of each participant plotted against their
SADQ score and depression label, © IEEE 2016.

impacted the classifier’s ability to predict the depression label. Figure 2 shows the

classification accuracy in comparison to SADQ-10 scores and depression label. There

does not appear to be any indication that the classifier trained on the CPP features

classifies either the depressed or not-depressed participants better. An interesting

point is that there are three participants whose classification accuracies are below

30%. Two of these three have a SADQ-10 score of immediately below the thresh-

old for no depression (14) or immediately above threshold for depression (15). As

mentioned earlier in this study, the SADQ-10 score is a caregiver assessment from

which depression may be indicated. However, it is not a precise diagnosis and it is

possible that the depression label we are assuming to be a ground truth is false; the

results indicate that for the individuals near the depression threshold, their speech

has similar feature to those of the opposite class of their depression label.
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CHAPTER V

PREDICTING DEPRESSION AND STRESS SCORES IN

ADULTS WITH APHASIA

While the work in Chapter 4 presented results of a binary depression classification

based on support vector machines (SVM), this work constructs a linear support-vector

regression (linear-SVR) model in an effort to predict depression and stress scores from

speech. Regression was considered over additional classification methods to create a

prediction model that would better emulate how the clinical scores are used by the

clinicians as they consider the score itself instead of a binary depression label. The

work presented in this chapter was previously published at ICASSP 2017 [114], ©

IEEE 2017.

5.1 Methodology

From the 26 participants for which speech was collected, 19 participants were selected

for analysis by regression of their SADQ-10 scores and 18 were selected for analysis

by regression on their PSS (one participant was not able to complete the PSS and

was excluded from analysis). A summary of the data used in this analysis is pre-

sented in Table 7. Depression was assessed with the SADQ-10 questionnaire. Stress

was measured by the Perceived Stress Scale (PSS). The PSS is a fourteen-question

assessment to determine the degree to which situations in an individual’s life were

considered stressful by that individual [74]. For each item, a user can respond with

never (item score of 0) to very often (4), for a total of 56 points. The participant

PSS scores ranged from 14-40 with higher scores indicating higher levels of perceived

stress. The PSS was not designed with severity thresholds or categories, nor can the

33



Table 7: Summary of demographic and clinical information for the PSS and SADQ-
10 regression analysis, © IEEE 2017. *one of the males was excluded from the PSS
study since they could not complete the PSS questionnaire.

# Males 12*
# Females 7
Age range 31-70

Aphasia Quotient (AQ) 31.9-99.4
# with AQ >93.8 2

SADQ-10 score range 6-25
PSS score range 14-40

authors find any published study validating proposed categories. The range of values

for PSS and SADQ-10 served as the targets for the linear-SVR model.

Prosodic, spectral, TEO and glottal features described in Section 3.2 were ex-

tracted from the voiced sections of speech, with low-level descriptors (LLD) statistics

calculated at the sentence level as described in openSMILE [82]. A total of 1595

low-level statistics of the features were extracted in MATLAB for each sentence of

each participant and normalized using Z-normalization across each individual feature.

Feature selection on the full data set as well as each individual feature type grouping

was performed first by removing any features with a correlation greater than 0.75,

and then using 10-fold cross-validation sequential feature selection to reduce the size

of the feature subsets. Only those features that were selected were used to train and

test the feature-subset models built using the Support Vector Regression function in

MATLAB.

The SADQ-10 and PSS are scored on numeric scales (0-30 and 0-56 respectively)

and do not have multiple thresholds representing degrees of severity. Leeds et al.

[72] determined a SADQ-10 threshold of 14 as a clinical threshold for the manifes-

tation of depressive symptoms. However, it is difficult to determine how SADQ-10

scores within a range of 1 or 2 points should be interpreted for distinct degrees of

depression. In the previous work using SVM classification to detect depression in
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patients with aphasia presented in Chapter 4 [109], participants were labeled as de-

pressed or not-depressed based on their SADQ-10 score and the SADQ-10 proposed

clinical threshold [72]. Two of the three participants with below 50% accuracy had

SADQ-10 scores near the threshold of 14 in the range of 13-16. Cummins et al. [65]

recommended excluding any participants that score in the moderate categories of a

depression scale due to the ordinal nature of mental state scales. While this exclusion

represents an ideal circumstance, often a non-trivial amount of participants will fall

in the “moderate” score range, as evidenced by the Aphasia Dataset which contains 7

of 19 participants with +/- 2 of the threshold of 14. As a result, this work will explore

the use of a linear support-vector regression model as a predictor of SADQ-10 and

PSS values within the current dataset. A linear regression model was examined in

[115] on a speech depression dataset without aphasia containing ratings based on the

Hamilton Depression Rating Scale (HDRS) [116], a diagnostic which was not designed

for persons with aphasia.

To assess the proposed regression tasks, the results and outcomes are reported with

respect to mean absolute error (MAE), the R-squared coefficient of determination

(R2), and percentage of predicted scores within one standard deviation of the true

score (P1SD) [115]. Mean Absolute Error is the average difference between each

actual and predicted score, and represents the measure of how close the predicted

scores are to the clinical score of interest (SADQ-10 or PSS). The MAE is reported

with respect to the sample standard deviation of the diagnostic (SADQ-10 or PSS) in

the study by dividing the absolute MAE by the standard deviation of the SADQ-10

(SADQ-σ) and PSS (PSS-σ) scores. R-Squared is used to determine to what extent

the variation in the predicted values is determined linearly by the variation in the

dependent variable (either SADQ-10 or PSS). P1SD is borrowed from previous work

using regression with depression with the HDRS [115] to detect how many predictions

were close to the true value.
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5.2 Results and Discussion

SADQ-10 scores were predicted for a total of 19 participants (including 2 who had

WAB scores that indicated they were non-aphasic). Within the analysis, the SADQ-

10 average score was 14.63 and sample standard deviation was 4.97. MAE, R2,

and P1SD scores are shown in Table 8 for the various feature types considered in

the linear-SVR on the SADQ-10 scores. The MAE results suggest that the average

predicted score values were approximately one standard deviation from their true

values with HNR and TEO-FM feature subsets providing predictions at slightly less

than one standard deviation from the true values. This result is additionally noted

in the P1SD scores where HNR and TEO-FM feature subsets achieved 57.5% and

62.1%, respectively. The R2 scores are too close to zero to indicate any significant

linear dependency between the predicted values and the true SADQ-10 scores for the

HNR and TEO-FM features. Pitch + Jitter and the H1-H2 glottal feature subset

exhibited the highest R2 scores of 0.34 and 0.44 respectively.

PSS scores were predicted for a total of 18 participants. Within the population, the

PSS mean was 28.55 with a standard deviation of 7.31. Results in Table 9 show TEO-

AM performed the best according to the measures considered in the study, with a

relative MAE less than one standard deviation of the sample PSS, the second-highest

R2 score of 0.29, and 61.1% of sentences predicting the PSS within one standard

deviation of the true PSS score. Further analysis of the R2 score of the TEO-AM

feature subset results indicated a negative correlation between the predicted PSS

scores and the true PSS scores, as shown in Figure 3. These results indicate the

linear-SVR model was not sufficient to capture the complexities of the PSS and SADQ

scores from the aphasia database.

A correlation analysis was completed to determine any correlations between par-

ticipants clinical or demographic information and the prediction median, mean, stan-

dard deviation, IQR, and/or accuracy. For the top performing PSS feature subset
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Table 8: SADQ-10 regression results by feature subtype after feature selection, ©
IEEE 2017.

Feature Type MAE(SADQ-10-σ) R2 P1SD(%)

All 1.24 0.04 46.0%
Pitch + Jitter 1.08 0.34 48.4%
RMS-Energy 1.05 0.05 52.3%

LSF + ∆ 1.11 0.07 53.0%
MFCC + ∆ 1.25 0.04 47.7%

HNR 0.97 0.15 57.5%
CPP 1.03 0.13 54.4%

TEO-All 1.15 0.03 48.4%
TEO-AM 1.04 0.13 56.8%
TEO-FM 0.91 0.00 62.1%

TEO-CBarea 1.06 0.03 53.7%
TEO-RMS Energy 1.04 0.00 54.0%
TEO-log Energy 1.04 0.14 50.2%

Glottal-All 1.16 0.12 49.5%
H1-H2 1.16 0.12 49.5%
PSP 1.06 0.44 51.9%
HRF 1.07 0.17 51.9%

GLTP 1.21 0.18 44.9%
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Table 9: PSS regression results by feature subtype after feature selection, © IEEE
2017.

Feature Type MAE(PSS-σ) R2 P1SD(%)

All 1.51 0.12 36.8%
Pitch + Jitter 1.05 0.18 54.4%
RMS-Energy 0.94 0.12 61.4%

LSF + ∆ 1.17 0.11 43.9%
MFCC + ∆ 1.33 0.11 43.9%

HNR 1.02 0.15 55.8%
CPP 0.97 0.07 54.7%

TEO-All 1.01 0.00 55.3%
TEO-AM 0.94 0.29 61.1%
TEO-FM 1.06 0.25 53.2%

TEO-CBarea 0.97 0.00 55.0%
TEO-RMS Energy 1.01 0.40 56.1%
TEO-log Energy 0.98 0.09 59.4%

Glottal-All 1.05 0.02 52.9%
H1-H2 1.05 0.02 52.9%
PSP 1.01 0.24 52.9%
HRF 0.89 0.00 59.9%

GLTP 1.00 0.01 53.5%
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Figure 3: 1st, 2nd, and 3rd quartiles and linear regression line for prediction of PSS
scores for TEO-AM feature group © IEEE 2017.

(TEO-AM), no statistically significant correlation was found between the calculated

measures and any of the clinical or demographic information. Similarly, no other

feature subset results correlated significantly between the predictions and any clinical

or demographic information available for analysis. The lack of significant correlations

indicates that the models do not appear to perform significantly better or worse due

to any specific trait of the participants. Instead, the linear-SVR performance is likely

hindered by the complexities of the diverse population from which the dataset was

collected.
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CHAPTER VI

ANALYSIS OF CHANGE IN AFFECT IN ADULTS WITH

APHASIA

The participants available for analysis from the Aphasia Dataset vary greatly with

respect to age and gender. Many participants with aphasia are also diagnosed with

dysarthria or apraxia, motor disorders impacting the speech produced. As an addi-

tional complication, the PSS and SADQ-10 scores are based off of the participants

emotional state throughout the past month—it is often possible for a participant who

is depressed or stressed to appear happy or calm during the interview time period

which could change and impact the emotional content of their speech. Furthermore,

the current clinical labels for depression and stress are based off of the SADQ-10

(a survey completed by the caregiver) and the PSS (a survey not modified for the

aphasic population, currently read out loud to the participant with explanations or

substitutions of words provided as necessary).

The results of Chapters 4 and 5 have shown that the detection and/or prediction

of depression based on the SADQ-10 score or perceived stress based on the PSS

score is challenging. It was hypothesized that the short-term affective state could be

dominating the vocal acoustics extracted. The acute-nature of affect and emotional

states would make building a predictive model for affect challenging due to the time-

changing nature of affect. As an alternative approach, the work presented in this

chapter attempted to correlate changes in vocal acoustics to reported changes in

affect collected from pre- and post- recording assessments of affect. To accomplish

this, two tasks were performed:

1. Analyzing the correlation between collected SAM, Stress-Scale, and WAB scores,
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providing information regarding the consistency of the self-reported scores and

the potential implications of aphasia on affect, and

2. Determining the acoustic measures which correlate to changes in affect, testing

the hypothesis that short-term affective states are more prevalent in the vocal

acoustics than long-term stress or depression in adults with post-stroke aphasia.

The work presented in the remainder of this chapter has been submitted for pub-

lication to the Journal of Speech, Language, and Hearing Research [117].

Participants from the Aphasia Database were included on the condition of proper

audio recordings and confirmed history of stroke. This resulted in a total of 20

participants (included the two who with scored as higher than the threshold for

aphasia diagnosis, presenting in the non-aphasic range on the WAB) for the affect

analysis. The two participants who scored above the WAB cut-off were included in the

analyses as they self-identified as having aphasia and were referred to the study due to

their aphasia. Speech was limited to spontaneous-speech of the phrase- or sentence-

length only. The full feature set as detailed in Section 3.2 (prosodic, spectral, glottal,

and TEO) was extracted from each sample.

6.1 Correlation Analysis

Due to the variety of labels collected from both caregiver assessments as well as

self-reports from the participant, the correlation between similar affective scores was

necessary to validate the consistency in responses between the various affective as-

sessments. Laures-Gore et al. recently published the results comparing the Aphasia

Depression Rating Scale (ADRS), SADQ-10, and PSS scores for 25 of the partici-

pants included in the original data collection [73]. Laures-Gore et al. did not find

any significant correlations between the ADRS or SADQ-10 scores and the other de-

mographic information considered in their analysis (age, WAB-AQ, or time post-onset

from stroke). In this work, further correlation analysis using Pearson product-moment
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correlation was completed with a larger subset of the available clinical scores for the

20 participants analyzed for affect.

Selected results of the extended correlation analysis are shown in Table 10. High

correlation values between the SAM-arousal and Stress-Scale scores were found be-

tween both pre-recording scores and both post-recording scores (pre: r=0.712, post:

r=0.873), verifying that participants were consistent with their selection of pictures

relating to arousal and stress regardless of a 1-5 or 1-7 scale. Moderate correlations

were found between SAM-valance and SAM-arousal scores, indicating participants

may not have been able to isolate these aspects of their emotion as they related to

the pictures shown before them. There was a moderate to strong correlation between

each subtest of the WAB and the overall aphasia quotient, an expected finding as

the WAB Aphasia Quotient is based off a linear scoring of the individual subtests.

However, it is interesting to note that the spontaneous speech sub-score and the word

finding sub-score were the most highly correlated with the Aphasia Quotient (AQ).

The spontaneous speech score is weighted more heavily than other sections when com-

puting the Aphasia Quotient and would influence the AQ more, but the word-finding

score is not.

6.2 Methodology

During this study, individuals may have experienced a change in their affective state

depending upon their personal response to the testing procedure, which could cause

a change in their speech acoustics. Participants who maintained the same affective

scores from the pre- and post- labels should have minimal differences in the statistics

computed on their speech throughout the entire recording process, while participants

who reported a change in affective scores should have differences between the statistics

computed from the beginning and end of the recording session. Pre- and Post- scores

from the SAMs and the Stress-Scale provide a measurement from which to calculate
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a change in affective state. The reported change in affective state can be correlated

to changes in statistical distributions of the features to determine to what extent the

speech acoustics are representative of affective state instead of long-term stress or

depression.

The first and last ten sentences from the 20 participants who had complete record-

ings and had record of confirmed stroke were selected for analysis in Matlab. Limiting

the number of samples considered at the beginning and end of the interview to ten en-

sured minimal time elapsed between the SAM and Stress-Scale assessments and when

the sentences were recorded, minimizing the likelihood that the self-reported affective

labels would have changed. All 1595 statistics (including the aforementioned prosodic,

spectral, glottal, and TEO features) were extracted for each sentence. Looking at all

1595 features at once would cause the dimensionality to be too large to effectively

analyze, while it was unlikely that any single feature would be able to perfectly repre-

sent the change in affective scores for all 20 people. However, a small set of features,

when looked at together, would be an appropriate subset from which to understand

the reported changes in affect.

6.2.1 Feature Selection Process

Figure 4 shows a flow-chart of the small-group feature selection process, which in-

cluded grouping participants by their delta-SAM scores, calculating the Wilcoxon

Rank Sum probability for each feature’s distribution, calculating feature scores that

indicate how well a feature represents the changes in affect, and then the feature

selection processes based on the feature scores.

Participants were grouped according to the type of change self-reported in the

individuals affective scores: SAM valance, SAM arousal, and the Stress-Scale assess-

ments. The change in affective score was calculated by subtracting the pre-recording

score from the post-recording score. Based on the sign of the change in affect score,
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Figure 4: Flowchart visualizing the feature-selection process from 1595 objective
speech acoustics into three types of sub-groups, ranging in size from 2-54 features
each

participants were assigned to one of three groups for each affective label, which will

be referred to as Delta-Negative (∆-Neg), Delta-Neutral (∆-Neu), and Delta-Positive

(∆-Pos). The ∆-Neg group had a lower self-assessment score at the end of the record-

ing procedure than their initial score, the ∆-Neu group had the same score as their

initial score, and the ∆-Pos group had a higher self-assessment score at the end than

their initial score.

A change in affect should manifest itself as a distinct change in the distribution of

the vocal acoustics. The two-sided Wilcoxon Rank Sum (WRS) nonparametric test

uses the null hypothesis that the samples from two given distributions came from

a single distribution. The WRS test was completed for each participant and each

feature to determine, at the participant level, which features likely came from the

same distribution and which features rejected the null hypothesis based on the p-

value. This procedure has been used in prior vocal acoustic work to assess the extent

of voice impairment by comparing the calculated features of speech from adults with

Parkinson’s Disease to speech from healthy controls [91].

Using these groupings and the calculated WRS p-values, two numerical scores were
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calculated for each feature. The Delta-Sig Score was the total number of participants

in both the ∆-Pos and ∆-Neg groups who had a significant p value (p<0.05) that

rejected the null hypothesis of the WRS test. A higher Delta-Sig Score indicates

more rejected null hypotheses for individuals across the same feature when there was

an expected difference in distributions of the features as indicated by the reported

change in affect. The Overall Score was calculated by subtracting the number of

participants in the ∆-Neu group who had a significant p-value from the Delta-Sig

Score. This acted as a negative weighting for features receiving significant p-values

in the ∆-Neu group, participants from which a rejection of the null hypothesis would

not be explained by a change in affect. Three feature selection methodologies were

completed using these scores.

The first feature selection, referred to as the Delta-Sig Group method, ranked

features first according to the Delta-Sig Score (highest first) and then according to

the Overall Score (highest first). Any feature that had an Overall Score of 0 or below

was removed regardless of the Delta-Sig Score. Three groups of features of increasing

size (DSG1, DSG2, DSG3) were then created by selecting the top features based on

natural cutoffs in the data discerning between different Delta-Sig scores. Groups of

the DSG method had sizes ranging from 4 to 44 features. The DSG method can be

summarized as selecting the features that were most likely to come from two distinct

distributions in those participants who reported a change in affect.

The second type of feature selection, referred to as the Overall-Score Group

method, ranked features first based on the Overall Score, and secondarily on the

Delta-Sig Score. As before, three groups of features of increasing size (OSG1, OSG2,

OSG3) were selected based off of natural cutoffs in the data that allowed for various

group sizes to be considered. Groups of the OSG method ranged from 5 to 54 fea-

tures. The OSG method attempted to select the features that were most likely to

come from two distinct groups only for those participants who reported a change in
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affect, penalizing features that had a small p-value for participants with no reported

change.

The last type of feature selection, referred to as the Coverage Method, attempted

to optimize the features selected to ensure that there was at least one feature per

person in the ∆-Neg and ∆-Pos groups for whom a significant p-value was present,

while minimizing both the number of features selected and the number of participants

in the ∆-Neg group with a significant p-value. The feature subsets will be referenced

as CMG1, CMG2, and CMG3, where the number indicated the minimum number of

features with small p-value for each participant selected. The CMG method resulted

in sets of features with group sizes ranging from two to six features. While the manual

optimization was potentially not the optimal solution, it still created smaller group

sizes than either the OSG or DSG methods. The CMG method focused on selecting

the minimal-number of features while still ensuring every participant with a reported

change in affective score was represented by the features selected with significant

WRS p-values.

6.2.2 Correlation of Distribution Distances to Change in Affect

In total, 27 feature subsets were created using the aforementioned statistical methods

(3 methods of 3 different sizes for the 3 affective assessments). To determine to

what extent the feature subsets explained the changes in the self-assessment scores

for the various emotions within a single individual, various measures were calculated

between the First-10 and Last-10 samples of each individual in the N-dimensional

subspace, where N is the number of features in each subset. Both the Euclidean

distance and the cosine similarity were calculated between each point of the First-10

samples and each point of the Last-10 samples, resulting in a total of 100 distance

calculations. Then, the statistics of minimum, maximum, and mean values were

found for both the Euclidean distance and the cosine similarity score. Additionally,
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Figure 5: Visualizations of the distance metric calculations between the first-10 and
last-10 samples of each participant. The two classes are identified as x and o re-
spectively, representing the first-10 and last-10 recordings of each person. Left im-
age shows some of the distance measures calculated between points of the different
classes, from which the average, minimum, and maximum distances would be cal-
culated. Right image shows the calculated average of each class, from which the
between-class-mean distance was calculated

the average samples of both the First-10 and Last-10 groups were found by averaging

all 10 samples. From these two mid-points, the class average Euclidean distance and

cosine similarity were calculated. In total, four score-statistics (minimum, maximum,

mean, and between-class-average) were analyzed for both the Euclidean distance and

cosine similarity scores. Figure 5 shows an example of the statistics calculated from

two sample distributions for visualization purposes.

To compare the calculated statistics to the change in affect, each participant’s

calculated distance measure statistics were correlated to three different measures as-

sociated with the affective score. The three measures were the numerical change in

affective score, the sign of the change in affective score (represented as +1 if pos-

itive, -1 if negative, or 0 if no change), and the presence of a non-zero change in

affective score (1 if participants reported any type of different affective score and 0 if

participants reported the same affective pre- and post- scores).
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6.3 Results and Discussion

Figure 6 shows the calculated feature values for the first and last 10 samples of

speech across all 20 participants with the features selected by the Coverage Method

for the SAM-Valance label. This feature subset was selected for visualization due

to its simplicity with just two features, represented in two-dimensions. While the

specific features chosen (kurtosis of the delta of the 7-MFCC value and the linear

quadratic error of the 7th LSF coefficient) do not have any meaning that can be

translated to a directly identifiable trait or characteristic of the speech, they were

selected based off of their significant p-values as determined by WRS procedure that

would potentially identify changes in affective scores. The plots boxed with solid

black boxes, light grey boxes, and no boxes identify participants in the ∆-Neg group,

the ∆-Pos group, and the ∆-Neu group respectively. Visually, it can be seen that

certain participants (e.g. 16 and 21) had a clear change in their sample distribution

between the first and last 10 samples. However, not every participant with a change

in SAM-Valance score (as indicated by either a gray or black box around the plot)

had visible speech acoustic changes that confirmed their self-reported change in affect.

Additionally, some participants appear to have changes in speech acoustics, but did

not report a change in affect. The speech acoustics extracted in this work do not

correlate perfectly to the self-reported affect scores, and suggest that changes in affect

manifest themselves as changes in speech acoustics differently in each individual’s

speech acoustics. As such, the moderate correlations reported here are of significant

interest, with the results showing promise in being able to detect changes in affective

states in individuals with aphasia.

Pearson Correlation coefficients were considered significant with a two-tailed p-

value of 0.05 if |r| > 0.44 for N=20. Additionally, this criteria satisfies the definition

of moderate correlation set by Evans of |r| > 0.4 [118]. The Euclidean distance and
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Figure 6: Distributions of Coverage Method feature values for the first ten and last
ten sentences of each person for the SAM-Valance test scores. Plots with a solid black
outline displayed a negative change in SAM-Valance scores, plots with a solid gray
outline displayed a positive change in SAM-Valance scores, and plots with no outline
did not report a change in SAM-Valance scores.
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Cosine similarity had the most number of significant correlation coefficients, irrespec-

tive of the affective assessment, when correlated to the binary label representing any

change in affective score. This was the broadest category considered with the most

balance in the number of participants that fell into the two groups of interest (change

in emotion, +1, or no change in emotion, 0). Attempting to correlate to the sign

of the change (3 possible values) or the numeric value of the change itself (up to 13

possible values if Stress Scale, or 9 possible values if SAM scores) provides less gener-

alization and worse performance due to the limited number of participants available

for analysis since fewer participants would be spread out across a larger range of

values.

Of the 9 feature subsets considered for analysis for each of the 8 distance measures

and all 3 affective assessments, a total of 15/216 or 6.9% had significant correlations to

the presence of change in emotion, as compared to 5.6% for correlations to the changes

in the direction of the of the delta change (positive, negative, or neutral) and 1.9% for

correlations to the numeric delta-scores. Thirteen of the fifteen significant correlations

to presence of change were measures correlated to the Stress-Scale instead of valance

or arousal SAM scores, potentially indicating either that changes in stress manifest

themselves more clearly in the speech of patients with aphasia than possible changes

in arousal or valance, or that it was easier for participants to identify their emotion

on the Stress-Scale than the SAM. Table 11 shows, for each affective assessment, the

best feature subset and the corresponding correlation coefficients between the distance

measures and the presence of affective change. The average distances or the between-

class average distance tended to have higher correlation coefficients across both the

Euclidean and Cosine distance measures. This is likely because averages better handle

potential outliers compared to the minimum or maximum. The presented statistics

show that carefully select features groups reveal statistically significant correlations

to changes in affective state.
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Table 11: Correlation coefficients of the feature subsets with the largest number
of significant correlations with the distance measures for each affective label, where
significant is specified as |r|>0.44, for 2-sided probability of p<0.05, N=20

Affect
Label

Feat.
set
ID

Num.
of
Feats.

Min
Eucl.
Dist

Max
Eucl.
Dist

Avg
Eucl.
Dist

Eucl.
Dist.
to
mean

Min
Cos.
Dist

Max
Cos.
Dist

Avg
Cos.
Dist

Cos.
Dist.
to
mean

Arousal CMG2 4 0.28 0.10 0.220 -0.06 0.34 0.17 0.41 0.43
Valance OSG1 39 0.19 0.29 0.54 0.21 -0.03 -0.39 -0.36 -0.20
Stress
Scale

DSG2 34 -0.06 0.53 0.45 0.51 0.46 0.49 0.53 0.49

There was no obvious trend across the feature selection methods (OSG, DSG, or

CMG) to suggest better results when selecting more or fewer features. However, all

three methods already drastically reduced the number of features considered from the

original 1595 low-level descriptors down to feature sets with sizes ranging from 2 to

54. Additionally, there was no clear distinction in a specific feature selection method

resulting in better results when considering the different affective assessments or the

affective-change categories of the correlation methods. Figure 7 shows selected his-

tograms visualizing the number of each feature type selected by the feature selection

algorithms for some of the feature groupings. It can be seen that the MFCC features

were selected in 100% of the feature-selection tasks and were also selected most often,

with over 50% of the total features selected belonging to the MFCC type. Glottal

features were the next highest, with 62% of feature groups selecting at least one glot-

tal as a total of 19.8% of all features selected. LSF and TEO features were selected

in about half of the subsets. Pitch features were only selected in 14% of the 27 sub-

groups. While often indicative of emotion, it is possible the pitch already fluctuated

from sentence to sentence to such an extent that the potential affective changes did

not influence the distances calculated from the pitch statistics.

While a direct comparison of the features’ abilities to predict changes in affect
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compared to the features’ abilities to predict changes in stress or depression is not

possible due to the difference in the methodology performed (using the data to predict

a single clinical label versus correlating the differences in the data to the difference of

two acute temporal labels), the results suggest that changes in affect often influence

the features used in the speech analysis of this study. The prominence of acute

affective state in the recordings collected for this work could explain the disparities

between the higher accuracies reported in the literature for affective processing in

non-aphasic speech and the results reported in the prior work detecting stress and

depression in adults with aphasia. Since the speech of adults with aphasia is often

described as effortful and the recording process was an extended session, it is possible

that the participants in this study were more likely to experience changes in acute

affect as the study progressed compared to the participants in a depression study

on persons without aphasia. However, no formal comparison or conclusions can be

made regarding this claim as acute affective states have not been reported for speech

analysis studies of clinical depression in adults without aphasia.

6.4 Aphasia Database Limitations

The presented work on affect analysis was not easy due to multiple challenges, many

of which can be attributed to the data collection. The small database was limited

by eligible participants and their caregivers who are willing and able to successfully

complete the entire data-collection process and clinical diagnosis procedure, as well as

the extensive time-commitment to collect the data. As such, there was a large range in

clinical and demographic information for those participants who chose to participate,

making generalizations of models complicated and challenging. Additionally, the data

may be considered limited to a single snap-shot of participants mood during a single

recording session, while speech analysis for detection of long-term clinical depression

and stress often rely on databases that have multiple recordings over multiple months
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for each participant. As an analogy, this would be similar to clinicians being asked

to use SAM scores to detect long-term stress and depression instead of the SADQ-10

and PSS assessments; when detecting depression, caregivers and the individuals are

usually asked to comment on behaviors over a time-period of up to a month and not

the emotional state from just a single day. Perceived stress (as measured by the PSS)

and depression (as measured by the SADQ-10) are not acute conditions, and as such,

acute assessments should not be the primary diagnostic tool. Future studies of affect

in adults with aphasia, especially stress and depression, should strongly consider a

multi-session recording and assessment process to allow the speech collection to extend

over a longer time-period.
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CHAPTER VII

AUTOMATIC ANALYSIS OF DYSARTHRIA PRESENCE

USING CROSS-DATABASE MODELS

The work in Chapters 4, 5, and 6 analyzed the Aphasia Database for depression

classification, prediction of SADQ-10 and PSS scores for depression and perceived

stress, and feature distributions correlations to changes in acute affect. While most

of the participants in the Aphasia Database presented with dysarthria and apraxia of

speech, the impact of these motor disorders was not considered in the prior due to the

limited number of participants available. Attempting to learn a model which would

compensate for dysarthria as well as analyze stress, depression, or affect would not

be possible using the Aphasia Database due to the varying clinical and demographic

labels of the participants. An alternate approach would be to build a model using

other data representing dysarthria, and then apply it to the Aphasia Database. A

cross-database method is investigated to overcome the small database sizes present

in clinical data. A subset of the work presented in this chapter was submitted for

publication and is under review at the time of publication of this dissertation [119].

The goal of the work in this chapter is to begin the analysis necessary to de-

sign a clinical tool for the automatic detection of dysarthria from vocal acoustics of

continuous speech. An automatic dysarthria diagnostic system could be used in a

clinical setting on its own, or as a pre-processing tool for research related to affect

in language disorders, particularly as it relates to the analysis of aphasic speech and

affect presented in earlier chapters. This is an important initiative since dysarthria

is a co-occurring motor disorder with up to 50% of adults with aphasia also diag-

nosed as having dysarthria [14]. However, most of the speech databases including
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participants with dysarthria have a small number of participants. In an attempt to

overcome these small sizes, this work utilizes cross-database training for the detection

of dysarthria. There is little prior work which uses multiple corpora for classifying

dysarthric speech from non-dysarthric speech or identifying dysarthria subtype and

severity; one example is work by Orozco-Arroyave et al., which focuses on detecting

hypokinetic dysarthria for Parkinson’s disease across different languages [90].

Detection of dysarthria from vocal acoustics has occasionally been studied in re-

cent years. Classification results from analysis of vowels by Mekysaka et al. achieved

accuracy results ranging from 72-92% depending on the vowel and spoken condi-

tions [120]. DeCicco and Patel used machine learning in vowels from children with

dysarthria to automatically detect pitch and duration manipulations for use in al-

ternative and augmentative communication [121]. Vyas et al. extracted MFCCs,

skewness, and formants from 40 speech utterances evenly split for training and test-

ing of dysarthria vs controls from UA-Speech [122]. An accuracy of .98 for all speech

and .87 for dysarthria speech was reported. Intelligibility classification based on

the UA-Speech dataset has been considered by Martinez et al. achieving results of

0.60 for weighted precision and 0.44 for weighted recall in a leave-one-subject-out,

4-class setting [44]. Paja and Falk utilized a two-stage analysis for spastic dysarthria

detection and reported results of .83-.95 on the UA-Speech dataset using prosodic,

linear-predictive, MFCC, HNR, and Glottal-to- Noise Excitation (GNE) features [25].

The UA-Speech dataset [35] is one of the largest, freely-available datasets of

dysarthric speech and is used to establish a comparison of the presented work to

prior work. The inclusion of speech from healthy controls allows a model to be built

to detect the presence of dysarthria. Previous work on the UA-speech database has

been able to take advantage of the singular type of dysarthria presented in the data

as well as the uniformity in the type of speech collected. However, the UA-Speech

dataset is not sufficiently diverse to create a clinical dysarthria detection tool: the
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majority of speakers have spastic dysarthria originating from cerebral palsy. To ex-

pand the applicability of the proposed tool, the models trained on UA-Speech are

tested on the Atlanta Motor Speech Disorder Corpus (AMSDC) [79], containing a

wider variety of dysarthria types and etiology. The cross-database training for this

study uses the UA-Speech dataset as the only training set. Without speech from

healthy controls, the AMSDC is not suitable to be used to train the detection model

as there would be no counter-examples to the dysarthric speech.

7.1 Methodology

From the AMSDC, a subset of 57 participants who presented with dysarthria was

selected for analysis in this work. The AMSDC contains continuous speech samples

that needed to be manually segmented for this pilot study in making more direct

comparisons with UA-Speech. An estimated 30 words were manually segmented

from the AMSDC sentences with contrasting speech emphasis to match the length

of the recordings in the UA-Speech dataset. These words were identified to include

different parts of speech and avoided the stressed syllable of the phrase, but were not

able to be selected to be phonemically balanced. The manual segmentation of the

speech from the contrasting stress emphasis portion of the AMSDC resulted in some

participants having a maximum of 12 words segmented due to low intelligibility. In

order to create an even comparison for cross-database training, all participants were

restricted to 12 words for training/testing. Therefore, a reduced-UA-Speech dataset

was used with 12 words per person (taken from the same microphone of the original

8-microphone array for each individual) or 336 total words for training purposes.

Voiced sections of speech were identified from the word-length recordings of both

datasets. The prosodic, spectral, TEO and glottal features described in Section 3.2

were extracted, and statistics based on those reported in openSmile (i.e., average,

min, max, slope) were calculated at the word or sentence level [82]. A total of 1595
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low-level statistics of the features were extracted in MATLAB for each response and

normalized across each individual feature by subtracting the global mean and dividing

by the global standard deviation. Initial feature reduction involved removing features

with a correlation greater than 0.75. Gaussian noise on the order of 10−6 was added

to the data to ensure the matrix was well conditioned for the machine learning. A 10-

fold cross-validation sequential forward feature selection (SFFS) was used to further

reduce the size of the feature subsets. In general, the feature selection strategy selected

between 3-6 features for each experiment. It is possible by changing the criteria

function of the SFFS algorithm, more features would have been included and results

could have been improved. However, parameter searches to tune the feature selection

algorithm or SVM parameters were not of interest in this work since the focus was on

the impact of cross-dataset setup on classification results. Only the selected features

were used to train and test the feature-subset models built using the Support Vector

Machine function with a radial-basis function (RBF) kernel in MATLAB.

It is common to have small data-sets when working with clinical data, especially

those of speech language or motor disorders. To compensate for the small numbers

of participants, multiple databases can be used to train and test the algorithms. Al-

ghowinem at al. and Tahon et al. are two examples that have used multiple datasets

when detecting depression or classifying emotions in populations not affected by lan-

guage or motor disorders [123, 124]. Both studies observed performance declines when

a model was trained on one dataset and tested on another, likely due to differences in

the recording environments. To accurately compare the training and testing of mul-

tiple datasets in this work, a baseline is established by training and testing a model

on only the UA-Speech dataset, and then applying and testing the model on the

AMSDC. A leave-one-subject-out cross validation strategy was conducted per sub-

ject to determine the classification accuracy for the detection of dysarthria presence

from the controls in the UA-Speech dataset. Selected classification results from using
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the reduced-UA-Speech dataset are presented in the first column of Table 12 at the

word and participant level. The word level accuracies are calculated by comparing

each word’s predicted label of dysarthria or no-dysarthria to the known condition of

the individual. The participant-level accuracies are the percentage of participants for

which at least 50% of the individual’s words were classified correctly.

The main goal of this work was to perform cross-database training and testing

as an initial step to create a dysarthria classification tool. As mentioned previously,

the act of training a model on the AMSDC and testing on the reduced-UA-Speech

would not be appropriate in this work due to a lack of healthy-control speech included

in the same recording environment as a part of the AMSDC. Instead, a model for

the detection of the presence of dysarthria was trained on the reduced-UA-Speech

dataset, and then applied to the AMSDC. It could be predicted that testing the

model on speech most similar to what the model was trained with should produce

higher accuracies. As such, the first iteration compared the accuracy of detecting

dysarthria on those participants of the AMSDC presenting with spastic dysarthria,

the type of dysarthria most commonly represented in the UA-Speech dataset. Word

and participant-level classification accuracies for each feature-set are presented in

the third and fourth columns of Table 13. Next, the accuracies were calculated

amongst the participants who had either spastic or flaccid dysarthria, the two types

of dysarthria represented in the UA-Speech dataset. These results are presented in

the fifth and sixth columns of Table 13. The last experiment applied the dysarthria

detection model to all of the AMSDC, regardless of dysarthria type. These results

are presented in the two right-most columns of Table 13.
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Table 12: Classification accuracy of predicting dysarthria in the UA-Speech Dataset
based on a model trained on the UA-Speech dataset.

Feature Type

Average
Number
of Features
Selected

Word-level
Classification
Accuracy

Word-level
Precision

Word-level
Recall

Participant
Classification
Accuracy

All 5.79 0.661 0.706 0.706 0.750
Pitch + Jitter 3.79 0.670 0.725 0.689 0.786
RMS-Energy 3.64 0.648 0.693 0.639 0.750

HNR 3.04 0.673 0.700 0.706 0.786
All-Prosodics 4.82 0.753 0.824 0.728 0.923

LSF + ∆ 5.32 0.568 0.583 0.561 0.607
MFCC + ∆ 4.96 0.670 0.709 0.650 0.786

CPP 3.75 0.714 0.736 0.728 0.893
All-Spectral 5.29 0.607 0.648 0.633 0.679
TEO-AM 3.93 0.664 0.722 0.694 0.786
TEO-FM 3.46 0.592 0.624 0.656 0.679

TEO-CBarea 4.82 0.711 0.763 0.733 0.857
TEO-RMS Energy 3.39 0.693 0.696 0.739 0.786
TEO-Log Energy 4.46 0.714 0.715 0.739 0.857

All-TEO 5.89 0.726 0.764 0.739 0.893
H1-H2 3.32 0.705 0.723 0.694 0.821
PSP 4.28 0.622 0.623 0.689 0.714
HRF 3.89 0.610 0.613 0.650 0.607

GLTP 5.54 0.705 0.766 0.744 0.821
All-Glottal 5.57 0.711 0.754 0.750 0.857
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7.2 Results and Discussion

Tables 12 and 13 show the classification accuracies at the word and participant level

for detecting the presence of dysarthria for each different feature types on the reduced-

UA-Speech and AMSDC respectively. The word level accuracies are calculated by

comparing for each word the predicted label of dysarthria or no-dysarthria to the

known condition of the individual. The participant-level accuracies are the percent-

age of participants for which at least 50% of the individual’s words were classified

correctly. These two different types of accuracy calculations were both important

to consider; the results report that while the word level accuracies varied between

56-75% in the reduced-UA-Speech dataset experiment, the participant level accu-

racies were much higher ranging from 61-92%. This finding suggests that, for the

baseline models, the SVM worked very well on some individuals and very poorly on

others. As one example, on the reduced-UA-Speech dataset, the prosodic features

classified just 75.3% of the words correctly (0.823 precision, 0.728 recall), but 92.9%

of participants were classified correctly. Participant-level classification accuracies of

the prosodic feature set are compared to intelligibility score and gender in Figure 8.

These results suggest a balanced model was built on the reduced-UA-Speech data

that did not tend to under- or over- diagnose dysarthria, but did tend to perform

poorly on certain individuals.

An important observation is the stark difference in results of the TEO-Amplitude

Modulation (TEO-AM) feature set for the AMSDC experiments in Table 13 compared

to the baseline experiments using only the UA-Speech dataset as shown in Table 12.

While the TEO-AM feature set performed on par with the other feature sets in the

baseline experiments, the cross-dataset experiments had a 100% accuracy for both the

word-level and participant-level accuracy in every cross-dataset experiment. Analysis

of this specific feature subset indicated the feature distribution of the test set lay

completely outside of the range of the training set, a chance occurrence resulting in
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Figure 8: Dysarthria classification accuracy of each participant for prosodic feature
set plotted against their intelligibility score. Plot markers differentiate gender, and
healthy controls are all shown with an intelligibility score of 100.

100% accuracy based on the SVM’s hyperplane due to the RBF kernel. This differ-

ence in feature distributions highlights the complexity of cross-database training in

different environments, where differences in the recording environment may manifest

themselves in the features calculated from the signals.

Table 13 shows the word-level accuracies of the AMSDC generally fell in the range

of 30-70%, while the participant-level accuracies had a larger spread ranging from 14-

85%. Additionally, many of the TEO and Glottal features were analyzed for the first

time in this work with respect to there ability to detect the presence of dysarthria.

The TEO-FM feature was able to achieve max word- and participant level accuracies

of 0.713 and 0.9 when cross tested on the dysarthria of spastic/flaccid types on the

AMSDC. This was particularly surprising as the TEO-FM was not a high performing

feature for the UA-Speech training model in isolation. It was the only feature tested

on the AMSDC to achieve over 0.7 in word accuracy besides the results of the TEO-

AM feature subset.
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Figure 9: Cross-database analysis of the distributions of the dysarthria classification
accuracies for all 20 feature subsets for each AMSDC participant subset (spastic only,
spastic and flaccid only, all).

Figure 9 shows box-plots for all three AMSDC experiments summarizing the word-

level (left) and participant level (right) accuracies across all 20 feature subsets for the

spastic-only, spastic and flaccid, and all participant subsets. It is clear that the aver-

age accuracies are higher across all three experiments for the participant-level scores

than the word-level scores, though there is no statistical significance. However, the

hypothesis that the accuracies would be highest for the spastic-only participants and

lowest for the full AMSDC participants was not supported by the statistics. The

original hypothesis stemmed from idea that in cross-database training, the accuracies

are higher when the characteristics of the individuals are matched across the two

databases. In the figure, it is clear that there is no statistically significant improve-

ment between the three box-plots for either the word or participant level. It is possible

these results are manifesting from the small number of participants in the AMSDC

subsets (7 spastic only, 20 spastic and flaccid), or this could stem from instead the

difference in distributions of intelligibility scores between the UA-Speech dataset and
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the AMSDC datasets. Since the UA-Speech dataset has a higher percentage of very-

low or low intelligibility scores compared to the AMSDC, the hyperplane of the SVM

model from the UA-Speech dataset may be more tuned to predict severe dysarthria

in comparison to the mild dysarthria samples.

The cross-database AMSDC testing results had lower accuracies in general than

those of the reduced-UA-Speech, a finding that supports the challenges of cross-

database training and testing. Alghowinem et al. suggest that combining the two

databases for training and using a leave-one-subject-out testing approach will result

in higher accuracies due to the model being exposed to both types of speech and

recording environments [123]. Future work will need to investigate this configuration

for cross-database experiments and the applicability to dysarthria datasets. Addition-

ally, previous results have reported higher error rates when attempting to separate

dysarthria recordings from participants with similar types of aphasia (flaccid, spastic,

and amyotrophic lateral sclerosis, 26.2%) compared to participants with types known

to differ (ataxic vs amyotrophic lateral sclerosis 11.9%) [43]. The presented results

support that a model trained on one type of dysarthria but tested on other types may

perform poorly if the dysarthria types have differing characteristics, a trend seen in

a visual inspection of Figure 9; specifically the spastic dysarthria group did have a

higher average accuracy and higher second and third quartiles than the more diverse

groups from the AMSDC, though the differences were not statistically significant.

To investigate the potential relationship between accuracy and intelligibility scores

further, the Pearson correlation coefficients between the percentage of words correctly

classified for each individual and the demographics provided for the datasets are shown

in Tables 14 and 15 for the reduced-UA-Speech dataset baseline experiment and the

AMSDC cross-training experiments respectively. The bold entries on Table 14 for

the reduced-UA-Speech dataset show that classification accuracies for various feature

sets were statistically-significantly negatively correlated with the intelligibility score.
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Table 14: Correlation coefficients between participants’ word-level dysarthria classi-
fication accuracies and demographic information for the reduced-UA-Speech baseline
experiment. Bold entries are statistically significant, p<0.05 in a two-tailed test.

Reduced UA-Speech

Feature Type Gender Age Intelligibility Score

All -0.332 0.093 -0.368
Pitch + Jitter -0.405 0.366 -0.388
RMS-Energy -0.034 0.025 -0.423

HNR 0.038 0.051 -0.524
All-Prosodics -0.195 -0.191 -0.223

LSF + ∆ -0.126 -0.023 -0.553
MFCC + ∆ 0.019 0.327 -0.787

CPP 0.084 -0.023 -0.533
All-Spectral -0.080 0.218 -0.795
TEO-AM 0.466 -0.005 -0.629
TEO-FM 0.004 0.072 -0.570

TEO-CBarea -0.208 0.490 -0.280
TEO-RMS Energy 0.105 0.229 -0.626
TEO-Log Energy 0.136 -0.020 -0.402

All-TEO -0.021 -0.043 -0.436
H1-H2 -0.091 0.264 -0.756
PSP -0.404 0.275 -0.048
HRF -0.039 0.333 -0.593

GLTP -0.296 0.261 -0.694
All-Glottal -0.304 0.081 -0.620

Some of these feature subsets included HNR for the prosodics, all of the spectral fea-

tures, TEO-Amplitude Modulation, Frequency Modulation, and RMS-Energy, and all

of the glottal features except PSP. These results suggest that the majority of feature

subsets classified the best on individuals with more severe dysarthria as indicated by

a lower intelligibility score. Since it is expected that those individuals with more se-

vere dysarthria would have a larger difference in vocal acoustics and speech patterns

from someone with only mild or no dysarthria, the large negative correlations values

are not surprising. There were no statistically-significant correlations amongst any of

the feature subsets for gender or age within the reduced-UA-Speech dataset results.
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As shown in Table 15, there were no statistically-significant correlations for any

feature subsets applied to the AMSDC experiments and the intelligibility score. How-

ever, there was a moderately high negative correlation of the prosodic feature set to

the intelligibility score in the spastic-only participants, which mimics the patterns

seen in the reduced-UA-Speech dataset. This suggests that the model built on the

dysarthria subtypes present in the UA-Speech dataset worked similarly when applied

to the AMSDC spastic dysarthria participants, but statistical significance was not

achieved with only 7 participants included in the spastic-only analysis. Additionally

some of the result of the all-AMSDC analysis and the spastic and flaccid-AMSDC

analysis suggests that the prosodic and glottal classification accuracies were higher

for women than for men; it is unclear why the reduced-UA-Speech dataset model for

dysarthria (which was trained on more males than females) would work better on

the females than males in the AMSDC dataset. However, the overall lack of corre-

lation for the accuracies in the AMSDC is likely due to training exclusively on the

UA-Speech dataset for the classifier. Table 14 suggests that the intelligibility scores

likely played a meaningful role in feature selection from the UA-Speech data as these

served as the classifier targets in training.

This work focused on the prediction of dysarthria at the word-level recording.

While the words used in training in the UA-Speech database were often multisyllabic,

the words segmented from the AMSDC tended be shorter and were not segmented

to be phonemically balanced. Work by Martinez et al. informally suggested shorter

words were more difficult to classify into dysarthria intelligibility groupings [44]. As

segmentation continues, the inclusion of more complex words from other samples in

the AMSDC will be investigated to improve alignment with the UA-Speech dataset

for increased classification accuracy. Additionally, the results of the AMSDC are

likely influenced by the large proportion of the population presenting with a Southern

African-American dialect, a characteristic not present in the UA-Speech dataset. This
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study should be replicated with other datasets that would closer compare to the

demographics of the UA-Speech dataset for further analysis.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

The work presented in this dissertation analyzed the detection and prediction of

stress, depression and affective state in speech with adults with aphasia through

vocal acoustics analysis and machine learning. As a first step, a binary SVM classifier

was applied to a subset of participants from the Aphasia Dataset in an attempt to

classify depression based off of the SADQ-10 score [109]. Cepstral Peak Prominence

performed the best with respect to overall accuracy, precision and recall. However,

there were individuals with scores near the threshold between the binary labels with

poor performance when the SVM model was applied. It has been observed that

it would be hard to distinctly measure the difference of 1-2 points on the ordinal

depression scales. As such, the next step was to apply a prediction model based

off of regression [114]. Working with a larger subset of the Aphasia Dataset, SVR

models were built to predict the SADQ-10 and PSS scores. Results were mixed, but

were not precise enough to be useful as a clinical tool in the current state. This was

hypothesized to be the result of short-term affective state as the prominent affective

state in the vocal acoustics compared to the long-term clinical labels of stress and

depression.

To test this hypothesis, changes in vocal acoustics from the first-10 and last-10

samples of each individual’s recording process were compared to reported changes in

affect from Self Assessment Manikins and Stress-Scale scores [117]. Statistics were

computed between the distributions of features to measure potential changes in distri-

butions and then correlated to the reported changes in affect. The result found that

there was a moderate correlation between a reported change in affective score of the
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stress-scale and the distribution differences. Additionally, MFCC features were the

dominant feature type selected as being statistically significant to affective changes

regardless of the exact feature select methodology. These finding highlight the ability

to detect short-term affective state in vocal acoustics of adults with aphasia. However,

they also suggest that a more complex recording and experimental process would be

necessary to study long-term clinical states such as stress and depression in adults

with aphasia. These findings support a longitudinal data-collection process, as well as

documentation of both short- and long-term affective states at each speech recording

session to have the correct emotional information and data to be able to compare

changes in both short- and long-term vocal acoustics.

Throughout this entire study, the focus had been on affective state in adults with

aphasia from vocal acoustics. However, the earlier work disregarded the complication

that over half of the individuals in the Aphasia Database presented with at least

mild dysarthria, a motor disorder that is known to impact vocal acoustics. The last

component of this research was to determine the efficacy of a cross-database clinical

tool to detect the presence of dysarthria [119]. The use of a cross-database study was

necessary as most databases with speech from adults with aphasia tend to be either 1)

limited in size, or 2) limited in scope with respect to originating medical condition or

dysarthria subtype. Baseline results of training and testing on the UA-Speech dataset

achieved word-level accuracies of up to 75% and participant-level accuracies of up to

93%. Once the model from the UA-Speech dataset was applied to the AMSDC, the

performance dropped to 71% at the word level and 90% at the participant level.

Higher accuracies were achieved when testing on the same type of dysarthria as

the training model was built upon from the UA-Speech dataset. Additionally, a

statistically-significant negative correlation was seen in the baseline model between

speech intelligibility and classification accuracies, suggesting more-severe dysarthria

with a lower intelligibility score was more likely to be classified correctly. While this
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result was not seen with significance in the AMSDC results, it is possible the vocal

acoustics varied more so with the subtype of dysarthria than the intelligibility score.

Future work will be necessary to create a clinical tool for automatic assessment

of affective state in adults with aphasia. Preprocessing steps including detection of

dysarthria presence, subtype, and severity may be necessary to ensure the changes in

vocal acoustics due to dysarthria or other motor disorders are accounted for before

being used in models for affective state. Additionally, a more extensive database

of aphasia and affective states will be needed to continue this study. With only

20 participants available to study, very few generalizations could be made. It is

recommended that careful planning take place before beginning to collect data for a

new database with respect to affective states of adults with aphasia to ensure that

short-term affective states are considered with respect to the long-term clinical states

of interest. The work presented in this dissertation supports the ability to create a

clinical tool for affective state detection and/or monitoring in adults with aphasia,

but more research will be needed before it is ready for use in a clinical setting.
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CHAPTER IX

CONTRIBUTIONS

The main contribution of this work is an innovative application of speech processing

and machine learning to affective analysis of vocal acoustics in adults with aphasia.

Prior to this work, the population with aphasia was excluded from not only techni-

cal studies from the signal processing community but also many clinical studies of

post-stroke stress and depression due to their language difficulties. Focusing on a

population often excluded not only allows us to recognize the importance of real data

that isn’t collected to make analysis easy, but also allows us to contribute new knowl-

edge that can accompany clinical perspectives in diagnostic decisions and long-term

care. The work in this study explored classification, prediction, statistical analyses

that will be a starting point for future studies combining speech processing and affec-

tive analysis in adults with aphasia. As this study is a first of its kind, there are many

takeaways that can enhance future work in the area, primarily the recommendation

of a long-term, multi-recording setup which can be used to track vocal acoustics as

well as short-term affective state changes across multiple days, weeks, or even months.

Recognizing, analyzing, and compensating for the differences in short-term affective

states and long-term clinical states as they impact vocal acoustics will be the major

challenge of future research efforts.
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