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CHAPTER 1

SCIENTIFIC GOALS

Speech communication is a fundamental part of the human activities. With the advent

of a wide variety of gadgets, machines have become an integral part of the human soci-

ety. Consequently, the ability to communicate with these machines i.e. Automatic Speech

Recognition (ASR) has become a highly sought after technology. Modern Hidden Markov

Model (HMM) based ASR systems work well when there is a good conformation between

the training conditions where the models are built and the testing conditions where the

models are used. However, if there is mismatch between the training and the testing con-

ditions, the performance of the ASR systems degrade rapidly. On the other hand, humans

perform well in the speech understanding task even in adverse conditions[1][2]. Bringing

the performance of ASR systems at par with a human listener is a goal that has remained

elusive for many decades.

Research in the psycho-acoustics of humans indicate that the superior human perfor-

mance in speech perception is due to the ability to track the speech signal of interest in the

presence of multiple interfering signals corrupting the speech signal. For example, humans

can maintain an intelligibility of 70% − 80% under following conditions [1]:

1. The sentence is mixed with broadband random noise where

Power o f noise = 4 x power o f speech (S NR − 6dB).

2. When the noise is at 90degrees angle to the speech source

Power o f noise = 40 x power o f speech (S NR − 16dB).

Henceforth, many approaches have been proposed that attempt to estimate the clean

speech features from the features of the distorted signal. Stochastic matching [3][4][5],

vector Taylor series VTS [6] and codeword dependent cepstral normalization (CDCN) [7]

are some of the well known instances of this approach. Although these methods estimate
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the speech features from the distorted features, they do not attempt to track the clean speech

features. Consequently, they are not adaptable to a changing environment within an utter-

ance. A method that is capable of handling the variable noise will have to track the clean

speech features in the conventional sense.

A sequential Monte Carlo based tracking algorithm for feature compensation algorithm

was initially proposed [8][9] in which the noise was treated as a state variable while speech

was considered as the signal corrupting the observation noise. In [8], VTS approximation

was used to approximate the clean speech signal by applying a minimum mean square error

(MMSE) procedure. In [9] extended Kalman filters were used to model a dynamical system

representing the noise which was further improved by using Polyak averaging and feedback

with a switching dynamical system [10]. These were initial attempts to incorporate particle

filter for speech recognition in a more indirect fashion as it was used for tracking of noise

instead of the speech signal itself. Since the speech signal is treated as the corrupting

signal to the noise, there is limited information readily available from the HMMs or the

recognition process that can be utilized efficiently in the compensation process.

In contrast to the previous particle filter studies [8][9][10], we develop a method where

we treat the speech signal as the state variable and the noise as the corrupting signal, and at-

tempt to estimate the clean speech from the noisy speech [11]. The purpose of the proposed

research is to develop algorithms that are able to directly track the clean speech features.

These algorithms, which we call particle filter compensation (PFC), are based on tracking

the clean speech features with the particle filters with the aim of compensating the noisy

features. It is assumed that the clean speech is corrupted according to an additive noise

model. The statistical information available in the acoustic models of clean speech, ob-

tained from the HMMs trained with clean speech, is incorporated in the tracking algorithm

as an altrnative to the state transition model. Noise statistics are collected from the back-

ground environment and used in the observation model, which is derived from the additive

noise model.
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The similarity between HMMs and particles filters can be seen from the fact that an

observation probability density function corresponding to each state of an HMM describes,

in statistical terms, the characteristics of the source generating a signal of interest if the

source is in that particular state, whereas in particle filters we try to estimate the probability

distribution of the state the system is in when it generates the observed signal of interest.

Particle filters are suited for feature compensation because the probability density of the

state can be updated dynamically on a sample-by-sample basis. On the other hand, state

densities of the HMMs are assumed independent of each other. Although they are good

for speech inference problems, HMMs do not adapt well in fast changing environments.

By establishing a close interaction of the particle filters and HMMs, the potentials of both

models can be harnessed in a joint framework to perform feature compensation for robust

speech recognition. We improve the recognition accuracy through compensation of noisy

speech, and we enhance the compensation process by utilizing information in the HMM

state transition and mixture component sequences obtained in the recognition process.

Instead of using specific knowledge at the model and state levels from HMMs which is

hard to estimate, we pool model states into clusters as side information [12]. Since each

cluster encompasses more statistics when compared to the original HMM states, there is

a higher possibility that the newly formed probability density function at the cluster level

can cover the underlying speech variation to generate appropriate particle filter samples

for feature compensation. Additionally, a dynamic joint tracking framework to monitor

the clean speech signal and noise simultaneously is also introduced to obtain good noise

statistics [13][14]. In this approach, the information available from clean speech tracking

can be effectively used for noise estimation. The availability of dynamic noise information

can enhance the robustness of the algorithm in case of large fluctuations in noise parameters

within an utterance.

The goal of this thesis is to develop algorithms that are robust to non-stationery additive

noise distortions. To achieve our aim, we will pursue the following steps:
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1. To develop a particle filter based framework for tracking the clean speech features

from the noisy features observed in the testing environment.

2. To overcome the non-availability of a suitable state transition model for the speech

signal by integrating the HMMs in the particle filter framework.

3. To effectively reorganize the statistical information available from the HMMs for

optimal utilization in the PFC algorithm

4. To develop a particle filter algorithm that works in parallel with the PFC algorithm,

for tracking the noise signal corrupting the clean speech signal and use the informa-

tion obtained to improve the PFC algorithm.

5. To present a Markov chain Monte Carlo algorithm for joint estimation of speech

features and noise features to enhance the compensation of the noisy speech features

6. To investigate the performance of the PFC algorithm is ASR applications

(a) Apply PFC to robust speech recognition tasks

(b) Extend PFC to LVCSR tasks

The particle filter algorithms have gained popularity as a tracking algorithm is the past

decade due to its versatility and the freedom from constraints that effect other tracking al-

gorithms such as Kalman filter. The algorithm is a sequential importance sampling (Monte

Carlo) method, which has two important components. First, it’s effectiveness is dependent

on the accurate placement of samples. In this thesis, we will investigate this aspect in detail

and see how the placement of the samples impact the performance of the PFC algorithm.

Second, the weights assigned to the samples also play an important role. These weights are

computed using the observation model. In the PFC algorithm, the observation model is de-

rived from the additive noise model, which in turn depends on the noise statistics retrieved

from the background environment. Consequently, the methods to obtain the noise statistics
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and update them during the utterance will also be discussed in detail. The performance

of the PFC algorithm will be evaluated on the Aurora-2 connected and the Aurora-4 large

vocabulary continuous speech recognition task.

The dissertation will be organized as follows. Chapter 2 provides an overview of the

theory used in the development of the PFC framework. Tracking algorithms and Monte

Carlo methods in general and particle filters method in particular are introduced. The chap-

ter also discusses the relationship between the HMMs and the particle filters and the two

can be integrated together. Chapter 3 details the development of the PFC algorithm and

the utilization of statistics available from the HMMs for plugging in the PFC algorithm.

Chapter 4 presents two methods for dynamic estimation of noise statistics used in the PFC

algorithm. One is a parallel implementation of two particle filters that run simultaneously

while the second is based on the MCMC approach. In chapter 5, we extend the PFC

algorithm to large vocabulary continuous speech recognition tasks before presenting the

concluding remarks in chapter 6.
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CHAPTER 2

BACKGROUND OVERVIEW

In this chapter, the human speech perception, which provides the motivation behind PFC

is briefly described. Tracking methods and Monte-Carlo (MC) methods are the building

blocks of the PFC and other algorithms in this thesis and are therefore described in detail.

The Monte Carlo overview leads to the development of particle filters, which are flexible

tracking techniques based on a MC approach. Finally, HMMs and introduced and the rela-

tionship and similarities between HMMs and particle filters are explored. This relationship

is an important topic of the chapter because it leads to the integration of HMMs and particle

filters and subsequently the formulation of the PFC algorithm.

2.1 Background of Automatic Speech Recognition

The speech production mechanism goes through various stages. A thought is generated in

the speaker’s mind, which is then put into a sequence of words. These words are converted

into a speech signal using various muscles including face muscles, chest muscles, tongue,

etc. This signal is distorted by environmental factors such as background noise, reverber-

ations, channel distortions when sent through a microphone, telephone channel etc. The

aim of Automatic Speech Recognition Systems (ASR) is to reconstruct the spoken words

from the speech signal [15]. From an information theoretic perspective, we can treat what

is between the speaker and the machine as a distortion channel as shown in Figure 1.

Here, W represent the spoken words, and X is the speech signal. The problem of ex-

tracting W from X can be viewed as finding the words sequence that most likely resulted in

the observed signal X, as given in Equation (1).

Ŵ = arg max
W

p(W, X)

= arg max
W

pΛ̂(X|W).
(1)

Like any other Machine Learning/Pattern Recognition problem, the posterior p(X|W) plays
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Figure 1: Information theoretic view of speech recognition

a fundamental role in the decoding process. This distribution is parametric and its param-

eters Λ̂ are found from the available training data. Modern ASR systems do well when the

environment of speech signal being tested matches well with that of the training data. This

is because the parameter values correspond well to the speech signal being decoded. How-

ever, if the environments of training and testing data do not match well, the performance of

the ASR systems degrade. Many schemes have been proposed to overcome this problem,

but humans still outperform them, especially in adverse conditions. The distortions in a

speech signal can be viewed in the signal space, the feature space and the model space [3]

as shown in Figure 2. Resilience to environmental distortions can be added in the feature

extraction process by modifying the distorted features, or adapting the acoustic models to

better match the environment from which test signal has emanated. S X and FX represent

the speech signal and the speech features respectively whereas MX represents the acoustic

models. TS (.), TF(.) and TM(.) represent the distortions in signal, feature and model space

respectively.

2.1.1 Robustness in Model Space

The approaches to overcome the environment mismatch problem falls under two categories.

One way is to adapt the parameters of acoustic models, Λ̂ such that they match better with

the testing environment, and are implemented at stage 3 of the scheme shown in Figure

2. Most commonly used structure for the acoustic models in ASR systems is the Hidden
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Figure 2: Stages of training and test speech data

Markov Models (HMM)[16]. We start with an initial set of HMMs and constantly up-

date them as new information is obtained from the environment. A maximum a posteriori

(MAP) estimation directly maps the acoustic models to a new set of models that are better

suited for the new environment [17]. If sufficient testing data is available, the performance

approaches that which is achieved by maximum likelihood training. However, it may not

be very effective if training data size is limited. Structural MAP (SMAP) [18] exploits

the hierarchical structure of the acoustic models and performs better when limited data is

available. Joint MAP [19] also does well with small limited adaptation data. Maximum

likelihood linear regression (MLLR) [20] is an indirect approach to model adaptation that

computes the affine transformation from test data, which is then applied to the initial set of

models to obtain the new models that match better with the testing environment. MAP and

MLLR have been successfully combined [15] [21] where the affine transformation is ob-

tained using MAP instead of maximum likelihood. For both MAP and MLLR techniques,

good transcripts from the testing environment are required and may be difficult to obtain in
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some scenarios.

Methods such as stochastic matching [3][4][5], parallel model combination (PMC)

[22][23]and vector Taylor series VTS [6] model the environmental distortions using some

nuisance parameters and capture them from the test data. Stochastic matching estimates

the nuisance parameters using maximum likelihood technique and applies the correction

to model parameters. VTS approximates the new set of models using vector Taylor series

of the distortion model and obtains the noise parameters using expectation maximization

(EM) [24] algorithm. In PMC algorithm, in addition to the clean speech HMMs (initial

model set), another set of HMMs is obtained for the noise signal. This secondary model set

represents the noise component of the noisy signal and is obtained from the samples before

the onset of speech. It is then combined with the clean speech HMMs to get the hybrid

HMMs that will be used for testing in the new environment. The advantage of Stochas-

tic matching, PMC and VTS over MAP and MLLR techniques is that they do not require

transcripts for adaptation of models. However, some type of assumption has to be made

regarding the distortion model.

The above five techniques aim to improve the model parameters, for example if CDHMMs

[25] are used, this implies adjusting the means and covariance matrices of the Gaussian

mixtures to best fit the data from the testing environment. Another approach for improv-

ing acoustic models is to optimize them with the aim of minimizing the recognition error

of ASR system instead of finding the best possible distribution for test data. Minimum

classification error (MCE) [26] and soft margin estimation (SME) [27] strategies fall un-

der this category. These are offline techniques that are known to improve the ML training

of HMMs. Similarly, maximum mutual information (MMI) training [28][29] maximizes

the mutual information between the observations and the corresponding HMM from an

Information Theoretic perspective.
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2.1.2 Robustness in Feature Space

The techniques that operate directly on features such as MFCCs are similar to approaches

described for model space primarily because the distortion models are the same. Stochastic

matching [3] and VTS [30] for example work well in the feature space. Feature-space

maximum likelihood (fMLLR) [31] and feature-space eigen-MLLR [32] compensate noisy

features to reduce mismatch between training and testing data. Cepstral mean subtraction

(CMS) [33]is a simple yet effective technique where long-term mean value of the feature

vectors is subtracted from each vector. It normalizes the mean of the features and reduces

the variability of the data. Codeword dependent cepstral normalization (CDCN) [7] finds a

correction vector from the stereo data, which is then used to correct the noisy observation

and obtain the compensated feature vector. Higher order normalizations such as mean and

variance normalization (MVN) [34] as well as histogram normalization [35] have also been

proposed. These strategies occupy the stage 2 of Figure 2.

Robustness to noise can also be improved by a good choice of features in stage 1 of

Figure 2. Mel Frequency Cepstral Coefficients (MFCC) have been widely used and are

well known in the speech recognition community [36]. These are based on perceptual cues

as the short term Fourier transform (STFT) of the speech is mapped to the perceptual scale

(mel scale). Subsequently, the DCT transform of the log of power in each window, which

is positioned precisely according to the mel scale, gives the final features. It is common

to use the first and second time derivatives of MFCCs along with the features themselves

in ASR systems. MFCCs allow both suppression of insignificant spectral variations in

higher frequency bands and preserve acoustic information. However, these features do not

discriminate well between consonants and may not be very robust in presence of additive

noise [37]. Perceptual linear predictive (PLP) features are based on linear predictive (LP)

analysis [38]. The power spectrum of speech signal is warped along its frequency axis

into Bark frequency, which is based on the shape of auditory filters. The spectrum is

then passed through an equal loudness pre-emphasis and intensity loudness converter that
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reduces the spectral amplitude variation in the critical band and the resultant spectrum

is approximated by an all pole model. PLP features are inferior to MFCCs in terms of

capturing the acoustic information [39]. Principal component analysis (PCA) and linear

discriminate analysis (LDA) [40] have also been widely used for feature extraction because

of their good classification capability. These feature extraction techniques do not address

the additive noise problem specifically and rely more on their capability to capture acoustic

information, conciseness of feature size and their classification ability.

Recently proposed ETSI [41] is a technique that addresses additive noise more directly

by removing it in a two stage Wiener filter. First stage removes the noise while the second

stage removes the residual noise introduced in the first stage. Additionally, gain factor-

ization is done to apply more aggressive noise reduction in purely noisy frames compared

to ones having speech content. Finally cepstrum coefficient is obtained from the resultant

signal. ETSI advanced front end achieves good performance in terms of noise robustness

[42], but is computationally expansive as the noise removal is done on the waveform [42].

Spectral subtraction (SS) [43][44][45] was one of the first techniques that estimated clean

speech spectrum from the noisy spectrum. SS approach specifically addresses the addi-

tive noise distortion and estimates the noise spectrum from frames available before the

onset of speech. It’s an effective technique and inspired many noise robustness algorithms.

However, it suffers from the drawback that it introduces musical noise due to non-linear

subtraction procedures. A summary of various robustness techniques is shown in Figure 3.

2.1.3 The challenge of non-stationary noise

SM and VTS are some of the best available techniques that compensate the distorted speech

features under additive noise conditions for robust ASR. The noise is treated as a nuisance

parameter, and is estimated from the noisy features. The information thus obtained is then

used to estimate a new set of clean features. Both techniques are ,however, constricted

to assume that the noise is stationery for the purpose of obtaning the noise parameter. To
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Figure 3: Summary of robustness techniques

address the contamination of varying noise within an utterance, noise tracking technniques

have been proposed. These techniques track the noise using PF algorithms. However, due

to a lack of structure in the noises typically encountered in ASR problems, noise tracking

strategy also had a limited potential. For these reasons, the current state of the art technolo-

gies suffer from the dearth of successful strategies to address the issues of non-stationary

noise within an utterance.

2.2 Human Speech Perception

The robustness of the human speech communication can be observed in everyday life. As

described in the psycho-acoustic literature, following are some of the adverse scenarios

in which humans of a normal hearing capability can easily maintain an intelligibility of

70% − 80%[1]:

1. In additive noise conditions, the noise power can be four times the speech power,

i.e., the speech to noise ratio (SNR) of −6dB. If the noise source and the speech are
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separated by 90◦ and the speech source is straight ahead, then the SNR can be as low

as −16dB (noise power can be 40 times that of speech)

2. Both the source and the listener are in highly reverberations conditions with rever-

beration times exceeding 4 seconds[46].

3. The spectral lope of the communication channel can be varied between ±5dB/octave

at rates up to 2Hz if the noise power is equal to the speech power[47].

4. Background speech from multiple speakers is contaminating the speech of interest

and the powers of both speech signals is the same[48].

The robustness in human speech intelligibility is achieved in many ways. Amongst

them,the ability to track the speech signal of interest and isolate it from the interfering

signals is illuminating for the ASR technology. Listeners exploit the pressure difference

of the speech signal on the two ears, known as the interaural level difference (ILD), and

the time of arrival difference, known as the interaural time difference (ITD) to track the

speech signal[1]. In machines, this behavior can be mimicked by using microphone arrays

to capture the speech signal of interest. In addition to using ILD and ITD, human listeners

have the ability to give selective attention to the signal of interest [49][50][51]. Among

other cues used to focus on the speech signal of interest, the fundamental frequency of

the speech signal plays a critical role. For example, Sheffers [52] showed that humans

can differentiate between two vowels based on the difference between their fundamental

frequency.

Another experiment by Moore [53] sheds light on the human speech perception in pres-

ence of environmental noise. The experiment highlights a human speech perception fea-

ture, which is reminiscent of modern tracking algorithms that track objects in presence of

occlusions. He showed that, under noisy conditions, humans are able to listen only to some

glimpses of the speech signal and use these glimpses to identify the speech. The phenom-

ena is shown in Figure 4. From left to right, the three panels show the utterance masked
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by a single talker, eight talkers bable, and speech shaped noise, all at −6dB.The images

depict the spectrotemporal excitation pattern (STEP), is a smoothed and compressed rep-

resentation of the envelope of the basilar membrane response to sound. The row represents

the STEP for the actual speech token, the middle row represents distorted STEP and the

bottom row shows the glimpses observed by the listener. Depending on the type masking,

glimpses of the speech seen by the listener varies. But it was shown in [54] that the word

identification scores were almost at the level of uninterrupted speech despite a loss of 50%

of the waveform due to masking.

Figure 4: An illustration of potential glimpses of a short speech token

14



Although the understanding that how human speech perception works is not concrete,

yet from the above discussion, it is evident that some form of tracking of the frequencies of

interest in the speech signal is taking place. Taking a cue from human speech perception,

a tracking approach for ASR systems has the potential to enhance the robustness of these

systems in adverse environments. To consider the feasibility of such an approach, we first

take a look at fundamentals of the modern tracking algorithms.

2.3 Tracking Algorithms

Tracking is the problem of estimating the trajectory of an object in a space as it moves

through that space. The space could be an image plane captured directly from a camera or

it could be synthetically generated from a radar sweep. Generally, tracking schemes can be

applied to any system that can be represented by a time dynamical system which consists

of a state space model and an observation:

xt = f (xt−1,wt)

yt = h(xt, nt)
(2)

where nt is the observation noise and wt is called the process noise and represents the

model uncertainties in the state transition function f (.). What is available is an observation

yt which is function of xt.We are interested in finding a good estimate of current state

given observations till current time t i.e. p(xt|yt, yt−1, yt−2, ..., y0). The state space model f (.)

represents the relation between states adjacent in time. The model in Equation (2) assumes

that the state sequence is a one step Markov process:

f (xt+1|xt, xt−1, xt−2, ..., x0) = f (xt+1|xt) (3)

It is further assumed that observations are independent of one another:

f (yt+1|xt+1, yt, yt−1, yt−2, ..., y0) = f (yt+1|xt+1) (4)

Tracking is a two step process. The first step is to obtain density xt at time t − 1. This

is called the prior density of xt. Once it is available, we can construct a posterior density
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upon availability of observation yt. The propagation step is given in Equation (5) and the

update step is obtained using Bayesian theory (Equation (6)).

f (xt|yt−1, yt−2, ..., y0) =

∫
f (xt|xt−1) f (xt−1|yt−1, yt−2, ..., y0)dxt−1 (5)

f (xt|yt, yt−1, yt−2, ..., y0) =
f (yt|xt, yt−1, yt−2, ..., y0) f (xt|yt−1, yt−2, ..., y0)

f (yt|yt−1, yt−2, ..., y0)
(6)

2.3.1 Kalman Filter as a Recursive Estimation Algorithm

Kalman filter is the optimal recursive estimation solution for posterior density p(xt+1|yt, ..., y0)

if the time dynamical system is linear:

xt+1 = Atxt + wt

yt = Ctxt + nt

(7)

where At and Ct are known as state transition matrix and observation matrix respectively.

Subscript t indicates that both can vary with time. Under the assumption that both process

noise wt and observation noise nt are Gaussian with zero mean and covariance Qt and Rt

respectively, p(xt+1|xt) is Gaussian and can be readily obtained as follows:

mean(xt+1|xt) = E(Atxt + wt)

= Atxt

covariance(xt+1|xt) = E(wtwt
T )

= Qt

(8)

Therefore

p(xt+1|xt) ∼ N(Atxt,Qt) (9)

To obtain the propagation step, we need p(xt|yt, ..., y0) in addition to p(xt+1|xt) . Since this

is an iterative step, the estimate of xt, given observations up to time t, is available at t + 1.

Let’s call it xt|t and let the covariance of xt|t be Pt|t . Then

p(xt|yt, ..., y0) ∼ N(x̂t|t, Pt|t) (10)
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where Pt|t is the covariance of xt|yt, ..., y0 and is given by E[(xt−E[xt])(xt − E[xt])T |yt, ..., y0].

Now, both components of the integral in Equation (5) are available in (9) and (10). Solving

the integral using expanding and completing the squares [55], we get

p(xt+1|yt, ..., y0) ∼ N(At x̂t|t, AtPt|tAt
T + Qt) (11)

This is the propagation step and is sometimes also written as

p(xt+1|yt, ..., y0) ∼ N(x̂t+1|t, Pt+1|t) (12)

To get the update step, we note that the distributions of xt+1|yt, ..., y0 and yt+1 are both Gaus-

sian and consequently, xt+1|yt+1, yt, ..., y0 is also Gaussian.

x̂t+1|xt+1 = E[xt+1|yt+1, yt, ..., y0]

= x̂t+1|xt + RxyR−1
yy (yt+1 − E[yt+1|yt, ..., y0])

(13)

where

Rxy = E[(xt+1 − E[xt+1])(yt+1 − E[yt+1])T |yt, ..., y0]

= E[(xt+1 − x̂t+1|t)(Ct+1(xt+1 − x̂t+1|t) + nt+1)T |yt, ..., y0]

= Pt+1|tCT
t+1

(14)

and

Ryy = Ct+1Pt+1|tCT
t+1 + Rt+1 (15)

Back substituting Equation (14) and Equation (15) in Equation(13), we get

x̂t+1|xt+1 = x̂t+1|t + Kt+1(yt+1 −Ct+1 x̂t+1|t) (16)

where Kt+1 is called the Kalman gain and is given by

Kt+1 = Pt+1|tCT
t+1(Ct+1Pt+1|tCT

t+1 + Rt+1)−1 (17)

The covariance of x̂t+1|t+1 is given by

Pt+1|t+1 = Pt+1|t − Pt+1|tCT
t+1(Ct+1Pt+1|tCT

t+1 + Rt+1)−1Ct+1Pt+1|t

= (1 − Kt+1CT
t+1)Pt+1|t

(18)
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The block diagram in Figure 5 below shows a general recursive estimation algorithm steps

starting from some initial state estimate x0. The block labeled Kalman filter summarizes

the steps specific to Kalman filter algorithm.

Figure 5: Recursive estimation alorithm

2.3.2 Grid Based Methods

It is hard to obtain analytical solutions to most recursive estimation algorithms. If the state

space for a problem is discrete, then we can use grid based methods and can still obtain

the optimal solution. Considering that state x can take one of Ns possible values, we can

represent discrete density p(y|x) using Ns samples[56].

p(xk|yt, yt−1, ..., y0) =

Ns∑
i=1

wk|kδ(xk − xi
k) (19)

where the weights are computed as follows:

wi
k|k ,

1
C

wi
k|k−1 p(yk|xi

k)

,
Ns∑
j=1

wi
k−1|k−1 p(xi

k|x
j
k−1)

(20)
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Here C is the normalizing constant to make total probability equal one. The assumption

that state can be represented by finite number of points gives us the ability to sample the

whole state space. The weight wi
k represents the probability of being in state xi

k when

observation at time k is yk. In grid based method we construct the discrete density at every

time instant in two steps. First we estimate the weights at k without the current observation

wi
(k|k − 1) and then update them when observation is available and obtain wi

(k|k). In the

propagation step we take into account probabilities (weights) for all possible state values

at k − 1 to estimate the weights at time k as shown in Figure 6. If the prior p(xi
k|x

j
k) and the

Figure 6: Grid based method

observation probability p(zk|xk) are available, the grid based method gives us the optimal

solution for tracking the state of the system. If the state of the system is not discrete, then

we can obtain an approximate solution using this method. We divide the continuous space

into say J cells and for each cell we compute the prior and posterior in a way that takes into
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account the range of the whole cell:

p(xi
k|x

j
k−1) =

∫
x∈xi

k

p(x|x̄i
k−1)dx

p(yk|xi
k) =

∫
x∈xi

k

p(yk|x)dx
(21)

where x̄k is the center of jth cell at time k − 1. The weight update in Equation (21) subse-

quently remains unchanged.

2.4 Monte Carlo Methods

Grid based methods are a good alternative for situations where analytical solutions are not

available. However, they suffer from the limitation that the state has to be represented by

a finite set of points. Monte Carlo methods provide another powerful alternative to the

cases where close form solutions are intractable [57]. They can approximate both con-

tinuous states and discrete states equally well. MC refers to a broad class of techniques

that approximate the distribution of a state or a parameter by a set of random samples.

The requirement for implementing a successful MC scheme is the availability of a proper

sampling process. In other words, a pseudorandom number generator is required that can

generate numbers that have properties similar to those of random numbers. Most mod-

ern computer tools and languages have built in pseudorandom generators that can generate

long sequence of numbers with properties identical to a uniform distribution U[0, 1), and

therefore enable the implementation of MC algorithms.

2.4.1 Sampling
2.4.1.1 Inverse CDF Method

For sampling from a specific distribution, an MC algorithm starts with a pseudorandom

number sequence. The inverse CDF method [58] for continuous variables begins by se-

lecting a pseudorandom number ρi and then finds the desired sample value by using the

relation

xi = F−1(ρi) (22)
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where F(.) is the CDF of x, the random variable being sampled. The problem with inverse

CDF method is that the inverse function is not always available such as the cases where

f (.) can not be integrated or F−1(.) can not be obtained analytically. For such cases, the

Rejection method can be used.

2.4.1.2 Rejection Method

Consider a CDF that has support in the region R ∈ [a, b] and it is known that the value of

f (.) never exceeds a constant M. The rejection method [59] proceeds by first generating a

sample from the uniform distributionU[0, 1), followed by the generation of another sample

ρi, before selecting xi based on the following: accept xi if ρiM ≤ f (xi) and reject otherwise.

2.4.1.3 Composition Method

Composition method [57] is used where a PDF is difficult to sample from but can be split

into multiple PDFs, which are easier to sample from. For example, if we can write a PDF

f (x) as

f (x) = A1 f1(x) + A2 f2(x) + ... + Ai fi(x) + ... + An fn(x), (23)

and all fi(x) are proper PDFs, then the composition method can be applied. First, a ρi

is selected. Based on it’s value, one of the i-component is chosen. Then, the sample

is generated from the selected component PDF using the inverse CDF or the rejection

method. Note that the Ai’s can be considered as the weight of the PDF fi(x). Samples from

the Gaussian mixture models (GMMs) are drawn using the composition method.

2.4.2 Scoring

The heart of the MC methods is to obtain the expected value

〈z〉 =

∫ b

a
z(x) f (x)dx, (24)

which is approximated using

z̄ =
1
N

N∑
i=1

z(xi). (25)
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According to the law of large numbers

lim
N→∞

z̄ = 〈z〉. (26)

The standard deviation of the sample mean is given by

S (z̄) =
1

√
N − 1

√
z̄2 − z̄2. (27)

To obtain an accurate value of z̄, the standard deviation must be small. From Equation

(27), it can be observed that either the sample size N should be increased or the difference

between z̄2 and z̄2 should be reduced. Here, two popular methods are described to reduce

the standard deviation.

2.4.2.1 Importance Sampling

The power of MC lies in the fact that the sampling can be biased to get more samples in

the regions of interest [60]. Subsequently, to produce an unbiased estimate of the expected

value, weights are assigned to the samples. Consider that for a PDF f (x) that needs to

be sampled, almost all the value of 〈z〉 comes from a small region of the support of f (x).

In such a case, an efficient sampling scheme would be to give preference to the regions

where the value of |z(x) f (x)| is large. To implement this scheme, an arbitrary PDF f ∗(x) is

introduced with the desired properties, and consequently

〈z〉 =

∫
z(x) f (x)

f ∗(x)
f ∗(x)d(x) ≡

∫
z∗(x) f ∗(x)dx = 〈z∗〉. (28)

Here, the function W(x) ≡ f (x)
f ∗(x) is the weight assigned to the samples and z and z∗ have

the same expectation. Now, if f ∗(x) is chosen such that W(x) < 1 over regions where z(x)

makes a large contribution to the expected value, then

〈z∗2〉 =

∫
z2(x)W(x) f (x)d(x) <

∫
z2(x) f (x)d(x). (29)

It follows that σ2(z∗) < σ2(z).

22



2.4.2.2 Splitting

In the splitting method, an attempt is made to sample more frequently from attractive re-

gions and less frequently from unattractive regions. Attractive regions are the ones where

variance of z(x) is large or cost of picking xi and evaluating z(x) is small. In unattractive

regions, the samples are generated with a predetermined probability qm. otherwise, no sam-

ple is taken with a probability 1 − qm. The more unattractive the region, the smaller is the

value of qm. On the contrary, the samples in the attractive regions are split into multiple

samples. Splitting decreases the variance per selected subregion.

2.4.3 Morkov Chain Monte Carlo (MCMC)

MCMC [61] is a case of MC where samples are generated from a Markov chain. MCMC

can be used to sample single parameter distributions as well as multiple parameter distribu-

tions. Consider a set of parameters, a1, a2, ..., ap, such that we want to estimate p(a1, a2, ..., ap|y1, y2, ..., yn),

where y1, y2, ..., yn is the set of observations. Given a starting point a(0)
1 , a(0)

2 , ..., a(0)
p , the

MCMC generates a(s)
j from a(s−1)

1 , a(s−1)
2 , ..., a(s−1)

j−1 , a(s−1)
j+1 , ..., a(s−1)

p as follows [62]:

1. Sample a(s)
1 ∼ p(a(s)

1 |a
(s−1)
2 , a(s−1)

3 , ..., a(s−1)
p )

2. Sample a(s)
2 ∼ p(a(s)

2 |a
(s−1)
1 , a(s−1)

3 , ..., a(s−1)
p )

...

3. Sample a(s)
p ∼ p(a(s)

1 |a
(s−1)
2 , a(s−1)

3 , ..., a(s−1)
p−1 )

The resultant samples can be seen from two different perspectives. First, the sequence

of the following parameter vectors are dependent.

a(1) = {a(1)
1 , a(1)

2 , ..., a(1)
p }

a(2) = {a(2)
1 , a(2)

2 , ..., a(2)
p }

...

a(s) = {a(s)
1 , a

(s)
2 , ..., a

(s)
p }

(30)
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Note that the parameter a(s) is conditionally independent on a(1), a(2), ..., a(s−2) given a(s−1)

and therefore called the Markov chain. The other perspective is that the marginal distribu-

tion of parameter aj is given by a(0)
j , a

(1)
j , ..., a

(s)
j . This sampling distribution approaches the

target distribution as s → ∞. These samples can also be used to approximate the expected

value of a function g using
1
S

S∑
s=1

g(aj)→ E[g(aj)] (31)

The above sampling scheme, known as the Gibbs sampling, can only be implemented if the

conditional probabilities can be directly sampled. If direct sampling from the conditional

distributions is not possible, then a more general Metropolis sampling scheme [63] can be

used. It proceeds as follows:

1. Sample from a proposal distribution J(an
i
∗|an

i ) using any sampling method described

before. The proposal distribution must be symmetric, i.e., it must satisfy the condi-

tion J(a|b) = J(b|a)

2. Evaluate the quantity γ, called the Metropolis ratio

γ =
p(an

1
∗|an

2, a
n
3, ...)

p(an
1|a

n
2, a

n
3, ...)

(32)

3. Choose an+1
1 using the following relation

an+1
1 =


an

1
∗, with probability min(1, γ)

an
1, with probability 1 −min(1, γ)

(33)

Choosing an
1 means that a replica of sample an

1 is created for an+1
1 and there are now

two samples at the same location. Practically, the weight of the sample is increased to

offset the effect of multiple samples at the same location. The samples for an
2, a

n
3, ... can be

sequentially obtained in the same fashion. If some conditional distributions can be sampled

and some not, then a combination of Gibbs and Metropolis sampling can be used.
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2.4.4 Particle Filters

Consider a problem of filtering where we want to estimate the full trajectory of a state

sequence given all the observations, i.e., p(x1:n|y1:n). This problem can be thought of as a

tracking problem where a the track of the system’s current location is being maintained,

given noisy observations. To obtain an approximate distribution of x1:n using MC methods,

one has to take into account the complexity involved. The dimension of the distribution

is very high and will only increase as n becomes larger. Therefore, it is unfeasible to

approximate this kind of distribution using the MC schemes described above.

2.4.4.1 Sequential Importance Sampling

The solution to obtaining an MC approximation to tracking problems is based on selecting

an importance distribution that has the following structure:

qn(x1:n) = qn−1(x1:n−1)qn(xn|x1:n−1)

= q1(x1)
n∏

k=2

qk(xk|x1:k−1).
(34)

The weights are an important component of any IS algorithm. To obtain a distribution for

x1:n, the weight is computed as

wn(x1:n) =
pn(x1:n)
qn(x1:n)

, (35)

where pn(x1:n) is the distribution at time n. The weights obtained using Equation (35) are

not normalized. However, for convenience of notation, we will not differentiate between the

non-normalized and normalized weights. Based on Equation (34), weight update equation

can be written as:

wn(x1:n) = wn−1(x1:n−1)αn(x1:n)

= w1(x1)
n∏

k=2

αk(x1:k),
(36)

where

αn(x1:n) =
pn(x1:n)

pn−1(x1:n−1)qn(xn|x1:n−1
). (37)
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The computational effort required to sample from q(.) and compute α(.) in this case is

independent of n.

2.4.4.2 Resampling

SIS provides an efficient solution for sampling from distributions encountered in filtering

tracking problems. However, it suffers from the degeneracy problem. The variance of the

estimated parameter using SIS increases exponentially with n. At some stage, all but one

particle will be left with weights close to zero and the computational effort required to

process the samples with near zero weights is wasted. Degeneracy can be estimated from

the approximate effective sample size [64] [65]

N̂e f f =
1∑Ns

i=1(W i
k)

2
. (38)

A small N̂e f f indicates severe degeneracy. The solution to the degeneracy problem is

resampling, where particles that have small weights are eliminated and a new set of samples

are generated.

2.4.4.3 Sequential Monte Carlo

An SIS algorithm combined with the resampling step is called a Sequential Monte Carlo

(SMC) algorithm. Particle filter is a SMC method. Other names for Particle filtering are

bootstrap filtering, the condensation algorithm interacting particle approximations and the

survival of the fittest. Particle filtering (PF) is a popular way to model signals emanating

from a dynamical system. If the underlying state transition is known and the relationship

between the system state and the observed output is available, then the system state can

be found using Monte Carlo simulations [66]. Consider the discrete time Markov process

such that

X1 ∼ µ(x1)

Xt|(Xt−1 = xt−1) ∼ p(xt|xt−1)

Yt|(Xt = xt) ∼ p(yt|xt)

(39)
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We are interested in obtaining p(xt|yt, yt−1, yt−2, ..., y0) so that we have a filtered estimate

of xt from the measurements available so far. If the state space model for the process is

available, and both the state and the observation equations are linear, then Kalman filter

described above can be used to determine the optimal estimate of xt given observations

yt, yt−1, yt−2, ..., y0. Kalman Filter can only be used under the condition that the process and

observation noises are white Gaussian noise with zero mean and are mutually independent.

In case the state and observation equations are nonlinear, the Extended Kalman Filter (EKF)

[67], which is a modified form of the Kalman filter, can be used. Particle filter algorithm

estimates the state’s posterior density, p(xt|yt, yt−1, yt−2, ..., y0) represented by a finite set of

support points [56]:

p(xt|yt, yt−1, ..., y0) =

Ns∑
i=1

wi
tδ(xt − xi

t) (40)

where xt
i for i = 1, ...,Ns are the support points and wi

t are the associated weights. We thus

have a discretized and weighted approximation of the posterior density without the need

of an analytical solution. In the PF algorithm, the support points are determined based on

the concept of importance sampling, in which we draw points from a particular distribution

q(.). The algorithm proceeds as follows:

1. At n = 1, sample xi
1 ∼ q(x1)

2. Compute weight w1 using

wi
1 ∝

p(xi
1)

q(xi
1)
, (41)

which is an IS approximation, so that

p(xi
1) =

Ns∑
i=1

wi
1δ(x1 − xi

1). (42)

3. Resample to eliminate the weights that have values close to zero, and split the weights

with greater weights.

4. For n ≥ 2,
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(a) the importance density is chosen such that it can be factorized:

q(x0:n) = q(xn|xn−1)q(x0:n−1), (43)

and the new weights are sampled using

xi
n ∼ q(xn|xn−1). (44)

(b) The weight update equation is obtained as follows:

wi
n ∝

p(xi
0:n|z1:n)

q(xi
0:n)

. (45)

Here

p(x0:n|z1:n) =
p(zn|x0:n, z1:n−1)p(x0:n|z1:n−1)

p(zn|z1:n−1)

∝ p(zn|x0:n, z1:n−1)p(x0:n|z1:n−1).
(46)

And since p(x0:n) = p(xn|x0:n−1).p(x0:n−1), we can write

p(x0:n|z1:n) ∝ p(zn|xn)p(xn|xn−1)p(x0:n−1|z1:n−1). (47)

Combining Equations (43) and (47), the weight update Equation (45) can be

rewritten as

wi
n ∝

p(xi
0:n−1|z1:n−1)

q(x0:n−1)i

p(zn|xi
n)p(xi

n|x
i
n−1)

q(xi
n|x

i
n−1)

∝ wi
n−1

p(zn|xi
n)p(xi

n|x
i
n−1)

q(xi
n|x

i
n−1)

.

(48)

The sampling distribution can equally well be dependent on the observation

along with the previous state. In that case, q(xi
n|x

i
n−1) will be replaced with

q(xi
n|x

i
n−1, zn)

5. Resample {wi
n, x

i
n} to obtain N equal weight particles { 1

N , x̂
i
n} if required.

A general implementation of a particle filter is shown in Figure 7. The samples have the

flexibility to represent diverse distributions including multimodal ones. Also, note that the

particles with the largest weights will produce more child particles and some of the particles

with smaller weights will not be resampled at all.
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Figure 7: A General Particle Filter Implementation

2.5 HMM and PF Integration

HMMs have been widely used and studied for speech recognition [16] and other speech

related technologies such as speech enhancement [68], speech synthesis [69], and statistical

language modeling [70]. The wide acceptance of HMMs for modeling speech signals is due

to their ability to capture diverse statistical information and accommodate warping of time

axis associated with the natural variations in the speed of speech. HMMs are ideally suited

for signals that go through a sequentially changing behavior, where the properties remain

steady for a certain period, are then followed by a transition (rapid or gradual), before going

through a steady period again, and so forth. HMMs capture the statistical properties of the

signal in the short steady periods. Human speech is like the signal described, and hence, a

good application for the HMMs.

From the human psychoacoustics literature, we learn that ”in selectively attending to

one talker in the presence of interfering sounds, listeners exploit principles stemming from
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the physical structure of sounds that indicate their origin in a single source” [71]. Inspired

by this information, we will investigate whether the physical structure of the human speech,

captured by the HMMs, can be used in the speech tracking framework. For this goal, the

inherent flexibility of the PF can be exploited, and integration of HMMs with PF can be

pursued. This section will dwell on the possibility of using HMMs within the PF algorithm.

2.5.1 Introduction to HMMs

HMMs model a process that is going through a series of states, and is generating an obser-

vation from the probability distribution of state it is visiting. The states follow a Markov

chain. Following are the three elements of an HMM:

1. The first element, the state of the model, may or may not represent a real quantity.

The number of states is always finite and each state represents some statistical prop-

erties of the process modeled by the HMM.

2. The second element of the HMM are the state transition probabilities, which define

the probability of each state transitioning to another state at a particular time instant.

The state can transit to itself or to any other state in the model.

3. The third element of the HMM is the set of observation probabilities. An observation

probability distribution is defined for each state and can be discrete or continuous.

Gaussian mixture models (GMMs) are commonly used as observation probabilities

for speech related HMMs.

A comparison of HMMs with the Kalman Filter is given in Table 1

If we look at the properties listed in the Table 1, PF has more similarities with KF

compared to an HMM. The difference between PF and Kalman filter is that the earlier does

not restrict the state space and observation models to be linear. Otherwise, both are quite

similar.
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Table 1: A comparison of Kalman filter and HMM

Kalman Filter HMM

1. Based on state space model
Is a stochastic signal model. Can
be viewed as a state space model

with discrete latent varibles

2. The state can take any value in the
continuum of its space

Can only have a limited number of
discrete states

3.
The state represents some real

quantity, for example, the position
or speed of a target

States can be used merely as a
modeling strategy and do not have

to represent any real quantity

4.

Observation has a linear relation to
the state. The inaccuracy of the
relation is represented by the

observation noise

The observation model is
probabilistic and its distribution is

learned from training data

5. The state space model is linear
The state transition is probabilistic
and its distribution is learned from

training data

2.5.2 Description of HMMs

We start the description of HMMs with the description of an observable model because it

is a precursor of the HMM.

2.5.2.1 Observable Markov Models

A three state observable model is shown in Figure 8. The state here is a real observable

event. The figure depicts a one step Markov process, whose description is given by the

equation:

p[qt = S j|qt−1 = S i, qt−2 = S k, ...] = p[qt = S j|qt−1 = S i], (49)

where qt is the actual state at time t. Furthermore, the process is assumed to be independent

of time, and hence, the state transition probabilities between any two states remain fixed.

I this case, the complete system can be described by the state transition probabilities ai j,
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where,

ai j = p[qt = S j|qt−1 = S i], 1 ≤ i, j ≤ N

ai j ≥ 0
N∑

j=1

ai j = 1.

(50)

Figure 8: Observable Markov models

2.5.2.2 Hidden Markov models

Most modern speech recognition systems are based on HMMs. Each individual HMM may

be used to characterize a phone, triphone or a whole word. The HMM is an extension of the

observable Markov model in that the state of an HMM is not observable. Instead, each state

of the HMM has a corresponding output probability distribution and the the observation is

drawn from this distribution. A typical left-to-right HMM used in ASR is shown in Figure

9.
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Figure 9: Hidden Markov Models
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Assuming that bm(i, x) is the output probability distribution of the ith state of the recog-

nition class m, then bm(i, x) can be represented as

bm(i, x) =
∑

k

cm
i,kN(x, µm

i,k,Σ
m
i,k), (51)

where N(x, µm
i,k,Σ

m
i,k) and cm

i,k are the individual Gaussian distributions and mixture coeffi-

cients of the kth Gaussian mixture component, and the parameters µm
i,k and Σm

i,k represent the

mean and covariance of Gaussian component k. For reducing computational complexity,

Σm
i,k is constrained to be a diagonal matrix.

The transition probabilities of the states are the same as the ones defined in Equation

(50) for the observable models. The complete representation of an HMM is given by λm =

{Am, Bm}, where

1. Bm = {cm
i,k, µ

m
i,k,Σ

m
i,k} is the set of GMM observation probabilities, and cm

i,k is the weight

associated with the kth mixture of the GMM.

2. Am = [am(i, j)] is the set of transition probabilities.

Given the HMM state sequence S = {s1, s2, ...sN} and model parameters λm, the likeli-

hood of a feature vector sequence X = {x1, x2, ..., xN} is computed using

P(X|S , λm) =
∏

i

P(xi|si, λm). (52)

The complete likelihood of the feature vector sequence is obtained using

P(X|λm) =
∑

S

P(X|S , λm) =
∑

S

[∏
t

P(xt|st, λm)
]
P(S |λm), (53)

where P(xt|st, λm) is the state observation probability, P(S |λm) is the state transition proba-

bility generated from the transition matrix Am:

P(S |λm) =
∏

t

as(st, st+1)p(s1). (54)
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2.5.3 HMMs as generative models

Instead of considering HMMs for estimating the likelihood of an observed feature vector,

we will now look at an HMM as a generator of some feature vectors. In other words, is it

possible to generate feature vector samples from an HMM? Figure 10 shows the example

of the digit two, sampled using an HMM that was trained with 45 handwritten twos [72].

The top row shows some of the actual handwritten digits used to train the HMM, while the

bottom row shows the digits generated using the HMM. It can be noted that all the curves

traced by the human hand to write a two have been captured by the HMM and subsequently

reproduced in the artificial two. The models potential for sample generation is apparent.

HMM as a sample generator can also be justified based on the fact that, when modeling a

signal with an HMM, it is an underlying assumption that the signal is generated from such

a model.

Figure 10: An example of on-line handwritten digit

The sampling process will comprise of two steps. First, a state will be picked based

on the state transition probabilities. Once an appropriate state has been selected, samples

will be generated from its observation probability. If an HMM is intended to be used for

sample generation, its observation distributions should preferably be easy to sample from.
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Any appropriate scheme from amongst the methods defined in Section 2.4.1 can be used to

sample from the HMMs observation distribution.

2.5.4 HMMs within PF

As highlighted in Table 1, HMMs differ in nature from the standard tracking algorithms

and by themselves, have limited capability for tracking a continuously varying signal. Both

HMMs and PF have states, but these states different in nature. The state of a PF is a real

quantity. On the contrary, the states of an HMM may be used only as a modeling strategy.

The observation distribution of an HMM, however, is not only a real quantity, but also a

valid source for sample generation. Consequently, there is a possibility of utilizing the

observation distribution to generate the samples in the PF algorithm. In such a setup, the

observation distribution of the HMM will correspond to the state of the PF. The structure

can be viewed as a three layer scheme as shown in Figure 11.

The red line is the observed signal, the blue line is the state of the signal being estimated

and S 1, S 2 and S 3 in the circle are the HMM states, whose observation distribution is used

to generate the samples representing the state. Instead of obtaining the samples from the

state space model as is done in a conventional PF algorithm, the samples are generated from

the observation model of a particular state of an HMM. The wights of the samples can then

be computed using the observed signal. The diameter of the sample in the figure indicates

its weight. The idea will be actualized for tracking of speech signals contaminated by noise

in the next chapter.
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Figure 11: HMM for sample generation
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CHAPTER 3

CLEAN SPEECH TRACKING USING PARTICLE FILTER
COMPENSATION (PFC)

In this chapter, we develop the integration of the particle filter with HMMs to form the

Particle Filter Compensation (PFC) algorithm [11]. The observation model is derived and

we describe the specifics of how HMMs, used as side information, act as the replacement

of the state transition model in the particle filter framework. Then, it is shown that the chal-

lenge of estimating suitable side information can be overcome by merging the HMM sates

into a small number of clusters [12]. The performance of the PFC algorithm is evaluated

on a connected digit recognition task.

3.1 The Compensation Scheme

If the clean speech is corrupted by an additive noise, n, and a distortion channel, h, then

we can represent the noise corrupted speech with an additive noise model [30] shown in

Figure 12. Assuming known statistics of the noise parameters,

y = x + log(1 + en−x−h), (55)

where y = log(S y(mp)), x = log(S x(mp)) and h = log(|H(mp)|2) and S (mp) denotes the pth

mel spectrum.

S y(mp) = S x(mp)|H(mp)|2 + S N(mp). (56)

The additional side information needed for feature compensation is a set of nuisance pa-

rameters, Φ. Similar to stochastic matching [3], we can iteratively find Φ followed by

decoding as shown in Figure 13.

Φ′ = arg max
Φ

p(Y ′|Φ,Λ), (57)

where Y ′ is the noisy or compensated utterance.
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Figure 12: Distortion model

Figure 13: Compensation scheme based on Stochastic Matching
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The clean HMMs and the background noise information enable us to generate appropri-

ate samples from q(.) in Equation (48). The parameters Φ in Equation (57) in our particle

filter compensation (PFC) scheme, correspond to the corresponding correct HMM state

sequence and mixture component sequence. These sequences provide critical information

for density approximation in PFC. As shown in Figure 13 this can be done in two stages.

We first perform a front-end compensation of noisy speech. Then recognition is done in

the second stage to generate the side information Φ so as to improve compensation. This

process can be iterated similar to what’s done in maximum likelihood stochastic matching

[3]. During compensation, the observed speech y is mapped to clean speech features x.

For this purpose, clean speech alone cannot be represented by a finite set of points, and

therefore, HMMs by themselves cannot be used directly for tracking x.

3.2 PFC

The State transition information is an integral part of the particle filter algorithm, and is

used to propagate the particle samples through the time transitions of the signal being

processed. Specifically, the state transition is important to be able to position the samples

at the right locations. The difficulty of using particle filters for tracking the speech signal

lies in obtaining a state space model for speech, as consecutive speech features are usually

highly correlated. To solve this problem, statistics from HMMs can be used. Although

we only have discrete states in HMMs, each state is characterized by a continuous density

Gaussian mixture model (GMM), and therefore, it enables us to capture part of the variation

in speech features, to generate particle samples for feature compensation.

3.2.1 The Observation Model

The observation model is used to obtain p(yt|xi
t). It’s derivation for the case of clean speech

corrupted by an additive noise is described here. The distribution of the log spectra of noise

for each channel is assumed Gaussian with mean µn and variance σ2
n. Assuming there is
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additive noise only with no channel effects

y = x + log(1 + en−s). (58)

We are interested in evaluating p(y|x), where x represents the clean speech and n is the

noise with density N(µn, σn). Then,

p[Y < y|x] = p[x + log(i + eN−x) < y|x]

p(y|x) = F′(u)

= p(u)
ey−x

ey−x − 1
,

(59)

where F(µ)) is the Gaussian cumulative density function with mean µn and variance σ2
n and

u = log(ey−x − 1) + x. In the case of MFCC features, the nonlinear transformation is [6]:

y = x + D log(1 + eD−1(n−x)). (60)

Consequently,

p(y|x) = PN(g−1(y))Jg−1(y), (61)

where PN(.) is a Gaussian pdf, Jg−1(y) is the corresponding Jacobian and D is a discrete

cosine transform matrix which is not square, and thus not invertible. To overcome this

problem, we zero-pad the y and x vectors and extend D to be a square matrix. The variance

of the noise density is obtained from the available noise samples.

3.2.2 HMMs as State Transition Information in PF

Now we describe how feature compensation can be done using the particle filter algorithm

if the side information about the statistics of clean speech is available. Consider that an

HMM λm is available that adequately represents the speech segment under consideration

for compensation, along with an estimated state sequence s1, s2, ..., sT that correspond to T

feature vectors. Then, we can generate new samples from the current ith sample according

to

q(xi
t|x

i
t−1, yt) ∼

K∑
k=1

ck,stN(µk,st ,Σk,st), (62)
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where N(µk,st ,Σk,st) is the kth Gaussian mixture for the state st in λm, and ck,st is the corre-

sponding weight for the mixture. The total number of particles is fixed, and the contribution

from each mixture, computed at run time, depends on its weight. We have chosen the im-

portance sampling density, q(xi
t|x

i
t−1, yt) in Equation (48) to be p(xt|xi

t−1) in Equation (62).

This is known as the sampling importance resampling (SIR) filter [56]. It is one of the

simplest implementations of particle filters, and it enables the generation of samples in-

dependently from the observation. For the SIR filter, we only need to know the state and

the observation equations and should be able to sample from the prior. Also, the resam-

pling step is applied at every stage and the weight assigned to the ith support point of the

distribution of the speech signal at time t is updated as follows:

wi
t ∝ p(yt|xi

t). (63)

Once the point density of the clean speech features is available, we estimate the compen-

sated features using the discrete approximation of the expectation as follow:

xt =

Ns∑
i=1

wi
tx

i
t. (64)

The compensation is done on the fbank features because good observation model (distor-

tion model) is available for them. The fbank features obtained are then converted to MFCC

features, whose discriminative potential can be exploited in the recognition phase. The fi-

nal recognition result for the test utterance is thus decoded from the compensated MFCC

features. A block diagram of the flow of the compensation scheme is shown in Figure 14

3.2.3 Estimation of HMM Side Information

As described above, it is important to obtain Φ ∈ {λm, S }, where λm is an HMM that

faithfully represents the speech segment being compensated, and S = s1, s2, ..., sT is the

state sequence corresponding to the utterance of length T . To obtain λm for the mth word

Wm in the utterance, we chose the N − best models λm1 , λm2 , ..., λmN from HMMs trained

using ’clean speech data’. The N models are combined together to obtain a single model

λm.
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Figure 14: PF Compensation Scheme Block Diagram
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3.2.3.1 Gaussian Mixture estimation

To obtain the observation model for each state j of model λm, we concatenate mixtures

from the corresponding states of all component models as follows:

b̂(m)
j (o) =

L∑
l=1

K∑
k=1

cml
k, jN(µml

k, jΣ
ml
k, j), (65)

where K is the number of Gaussian mixtures in each original HMM, and L is the number of

different words m1,m2, ...,mL in the N − best hypothesis. µml
k, j and Σml

k, j are the mean and the

covariance from the k− th mixture in the j− th state of model ml respectively. The mixture

weights are normalized by scaling them according to the likelihood of the occurrence of

the model, from which they come from:

cml
k, j = cml

k, j p(Wm = λml). (66)

The mixture weight is an important parameter because it determines the number of samples

that will be generated from the corresponding mixture. The state transition coefficients for

λm are computed using the following:

â(m)
i j =

L∑
l=1

p[s(ml)
t = i, s(ml)

t−1 = j|Wm = λml]p[Wm = λml]

=

L∑
l=1

[a(m)|Wm = λml]p[Wm = λml].

(67)

3.2.3.2 State sequence estimation

The recognition performance can be greatly improved if a good estimate of the HMM state

sequence S is available, but obtaining this sequence in a noisy operational environment

in ASR is very challenging. The simplest approach is to use the decoded state sequence

obtained with multi-condition trained models in an ASR recognition process as shown in

Figure 13. However, these states could often correspond to incorrect models and deviate

significantly from the optimal one. Alternatively, we can determine the states (to generate

samples from) sequentially during compensation. For left-to-right HMMs, given the state
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st−1 at time t − 1, we chose st as follows:

st ∼ ast ,st−1

st = arg max
i

(ai j),
(68)

where a comes from the state transition matrix for λm. The mixture indices are subsequently

selected from amongst the mixtures corresponding to the chosen state.

3.2.4 Experiments

Before the experiment setup is laid out, and the results are analyzed, the speech corpus used

for connected digit recognition task is introduced.

3.2.4.1 Aurora-2 Test Set

Speech data in the Aurora-2 corpus are based on the TIDigits [73] speech data downsam-

pled at 8 kHz and filtered through G.712 characteristic to simulate the global system for

mobile communications (GSM) channel effect. Eight different noise sources (suburban

train, babble, car, exhibition hall, restaurant, street, airport, and train station) were artifi-

cially added in a controlled fashion to cover a range of SNR levels. The range includes a

no noise condition, referred to as the clean condition, along with six SNR levels 20, 15,

10, 5, 0, and −5 dB.

The Aurora-2 corpus contains two training sets and three test sets. The two training

sets are referred to as clean and multicondition training sets. The clean training set does

not contain any additive noise. The multicondition training set is representative of four

noise types (suburban train, babble, car, and exhibition hall) covering five SNR ratios 20,

15, 10, 5 dB and the clean condition. Both clean training and multicondition training sets

consist of 8440 utterances selected from the training part of the TIDigits containing the

recordings of 55 male and 55 female adults.

Three test sets are defined as Test Sets A, B and C. Test Set A is representative of all

four noise types seen in the multicondition training set. Test Set B is representative of

four noise types not represented in the multicondition training set. Test Set C is filtered
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through M-IRS filtering to introduce convolutional noise. It contains suburban street and

train noises. Each Test set covers all SNR levels 20, 15, 10, 5, 0, and −5 dB and the

clean condition. Therefore, Aurora-2 includes a total of 70 different testing conditions (ten

different noises with seven SNR levels). Each testing condition includes 1001 utterances

selected from the TIDigits test set.

3.2.4.2 Setup

To investigate the properties of the proposed approach, we first assume that a decent esti-

mate of the state is available at each frame. Moreover, we assume that speech boundaries

are marked and therefore the silence and speech sections of the utterance are known. To

obtain this information, we use a set of digit HMMs (18 states, 3 Gaussian mixtures) that

have been trained using clean speech represented by 23 channel mel-scale log spectral fea-

tures. The speech boundaries and state information for a particular noisy utterance is then

captured through digit recognition performed on the corresponding clean speech utterance.

The speech boundary information is critical because the noise statistics have to be esti-

mated from the noisy section of the utterance. To get the HMM needed for particle filter

compensation L models λ1, λ2, ..., λL are selected based on the N − best hypothesis list. For

our experiments, we set L = 3. We combine these models to get λ′m for the m − th word in

the utterance.

3.2.4.3 Clean FBANK Estimation

To see the efficacy of the compensation process, we consider the noisy, clean and compen-

sated filter banks (channel 8) for the whole utterances shown in Figure 15. The SNR for

this particular case is 5dB. When compared with the noisy feature (upper solid curve in

Figure 15) we can see that the compensated feature (lower dash curve matches well with

the clean feature (middle dash curve in Figure 15) of the shown utterance. It should be

noted however that such a good restoration of the clean speech signal from the noisy signal

is achievable only when a good estimate of the side information about the state and mixture

component sequences is available.
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Figure 15: Actual vs. estiamted speech at 5dB noise level

Next, we show the colormap of the noisy, compensated, and the clean fbank features

of two utterances at different SNRs. The clormap allows us to view the 23-fbank chan-

nels simultaneously. The left, center, and the right panes of Figures fig:Colormap1 and

fig:Colormap2 show the noisy, compensated, and the clean fbank features respectively.

Figue fig:Colormap1 shows the spoken utterance ”six eight eight” at SNR 15 while Figure

fig:Colormap2 shows the spoken utterance ”eight zero zero nine eight five” at SNR 5 The

efficacy of PFC can be seen from the transformation of the noisy features to a new set of

features that are more similar to the reference clean speech features.

3.2.4.4 Oracle Experiment

To analyze the efficacy of the PFC algorithm and evaluate it’s performance, three types of

experiments are performed; oracle, artificial word boundary and state alignment and Viterbi

state estimation. The experiments vary in the state estimation part only, other components

of the PFC scheme are constant throughout. Aligning the word boundaries means that the
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Figure 16: Compensated vs. clean features at 15dB noise level
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Figure 17: Compensated vs. clean features at 5dB noise level
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best possible word boundary information is available and used in the compensation process.

To elaborate further, when compensating a noisy utterance, a recognition is performed on

the clean version of the utterance (in Auror-2, a clean version of each and every noisy

utterance is available) with clean HMMs. Testing a clean utterance with clean HMMs will

give the best possible information about the utterance, even though the information may

not be perfect.

After obtaining the best possible word boundaries, the state sequence within the word

boundaries is obtained using the standard Viterbi algorithm on the noisy utterance. The

states at this stage are not well aligned but are still better compared to the case where the

word boundaries are not available. Next, we gradually align the state information within

the word boundaries (best possible state information is obtained in a similar fashion to the

way the word boundaries were obtained). Starting from one state, the number of states

aligned in this way is increased gradually to the maximum of 16, at which stage, the best

possible state alignment (HMM side information) is available for use in the PFC. Figure 18

shows the recognition performance for four conditions (2 known and 2 unknown additive

noise conditions) as more and more states are aligned.

The results point to the fact that if the correct state is used in PFC, i.e., the samples

are placed at the appropriate locations, then very good recognition performance can be

achieved. Also, if the state used for the generation of samples contains statistical informa-

tion similar to the correct state, then a good performance can still be achieved.

3.2.4.5 Oracle vs Real Experiment

In the case of the actual operational scenarios, when no side information is available, mod-

els were chosen from the N −Best list while the states were computed using Viterbi decod-

ing. Of course, the states would correspond to only one model which might not be correct,

and there might be a significant mismatch between actual and computed states. Moreover

the misalignment of words also exacerbated the problem. The results for this case (Adapted

Model III as shown in Table 2 Column 4) were only marginally better than those obtained
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with the multi-condition trained models.

Figure 18: Performance with various state alignments

Table 2: ASR accuracy comparisons for Aurora-2

Word Adapted Adapted Adapted Multi Clean
Accuracy Models I Models II Models III Cond. Cond.

clean 99.1 99.1 99.1 98.5 99.11

20dB 97.75 96.46 97.38 97.66 97.21

15dB 97.61 95.98 96.47 96.95 92.36

10dB 96.66 94 94.4 95.16 75.14

5dB 95.2 90.64 88.02 89.14 42.42

0dB 92.13 82.62 68.28 64.75 22.57

-5dB 89.28 72.13 32.92 27.47 NA

0-20dB 95.86 90.23 88.91 88.73 65.94

In collumn three of Table 2, the boundaries of words were extracted from the N-Best

list using exhaustive search and the states for the words between these boundaries were

assigned by splitting the digits into equal-sized segments and assigning one state to each
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segment. This limited the damage done by state misalignment, and it can be seen that a

13% digit error reduction from MC training was observed.

3.3 A Clustering Approach to Obtaining Correct HMM Information

HMM states are used to spread the particles at the right locations for subsequent estimation

of the underlying clean speech density. If the state is incorrect, the location of particles will

be wrong and the density estimate will be erroneous. One solution is to merge the states

into clusters. Since the total number of clusters can be much less than the number of states,

the problem of choosing the correct information block for sample generation is simplified.

A tree structure to group the Gaussian mixtures from clean speech HMMs into clusters can

be built with the following distance measure [18]:

d(m, n) =

∫
gm(x) log

gm(x)
gn(x)

dx +

∫
gn(x) log

gn(x)
gm(x)

dx

=
∑

i

[
σ2

m(i) − σ2
n(i) + (µn(i) − µm(i))
σ2

n(i)

+
σ2

n(i) − σ2
m(i) + (µn(i) − µm(i))
σ2

m(i)
],

(69)

where µm(i) is the i − th element of the mean vector µm, and σ2
m(i) is the i-th diagonal

element of the covariance matrix Σm. The parameters of the single Gaussian representing

the cluster, gk
c(X) = N(X; µk, σ

2
k), is computed as follows:

µk(i) =
1

Mk

Mk∑
m=1

E(x(k)
m (i))

=
1

Mk

Mk∑
m=1

µ(k)
m (i)

σ2
k(i) =

1
Mk

Mk∑
m=1

E(x(k)
m (i) − µk(i))2

=
1

Mk

Mk∑
m=1

σ2(k)
m (i) +

Mk∑
m=1

µ2(k)
m (i) − Mkµ

2
k(i).

(70)
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Alternatively, we can group the components at the state level using the following distance

measure [74]:

d(n,m) = −
1
S

S∑
s=1

1
P

P∑
p=1

log[bms(µnsp)

+ log[bns(µmsp)],

(71)

where S is the total number of states in the cluster, P is the number of mixtures per state

and b(.) is the observation probability. The clustering algorithm proceeds as follows:

1. Create one cluster for each mixture up to k clusters.

2. While k > Mk, find n and m for which d(n,m) is the minimum and merge them.

Once clustering is complete, it is important to pick the most suitable cluster for feature

compensation at each frame. The particle samples are then generated from the representa-

tive density of the chosen cluster. Two methods can be explored. The first is to decide the

cluster based on the N − best transcripts obtained from recognition using multi-condition

trained models. Denote the states obtained from the N − best transcripts for noisy speech

feature vectors at time t as st1 , st2 , ..., stN . If state sti is a member of cluster ck, we increment

M(ck) by one, where M(ck) is a count of how many states from the N − best list belong to

cluster ck. We choose the cluster based on arg maxk M(ck) and generate samples from it. If

more than one cluster satisfies this criterion, we merge their probability density functions.

In the second method, we chose the cluster that maximizes the likelihood of the MFCC

vector at time t, Ot, belonging to that cluster as follows:

C ∼ arg max
k

gmc(Ot|Ck), (72)

where gmc(.) represents the probability that Ot corresponds to the cluster Ck.

It is important to emphasize here that gmc(.) is derived from multi-condition speech

models and has a different distribution from the one used to generate the samples. The

relationship between clean clusters and multi-condition clusters is shown in Figure 19.
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Clean clusters are obtained using methods described above. The composition information

of these clusters is then used to build a corresponding multi-condition cluster set from

multi-condition HMMs. A cluster C j in clean clusters represents statistical information

of a particular section of the clean speech. The multi-condition counterpart C j represents

statistics of the noisy version of the same speech section.

Figure 19: Clustering of multi-condition trained HMMs

Clean clusters are necessary to track clean speech because we need to generate samples

from the clean speech distributions. However, they are not the best choice for estimating

Equation (72) because the observation is noisy and has a different distribution. The best

candidate for computing Equation (72) is the multi-condition cluster set. It is constructed

from multi-condition HMMs that match more closely with noisy speech. A block diagram

of the overall compensation and recognition process is shown in Figure 20. We make infer-

ence about the cluster to be used for observation vector Ot using both the N−best transcripts

and Equation (72) combined together. Samples at frame t are then generated using the pd f

of the chosen cluster. The weights of the samples are computed using Equation (59) and

compensated features are obtained using Equation (64). Once the compensated features are
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available for the whole utterance, recognition is performed again using retrained HMMs

with compensated features.

Figure 20: Complete recognition process

3.3.1 Simple Vs Complex Models

In the PFC algorithm, the compensation is done at the front end of the ASR system. Con-

sequently, the HMM set used for ompensation (box 1 of Figure 21), and the one used for

recognition (box 2 of Figure 21) can be different and independent of one another. This

relaxation can be exploited in the overall compensation and recognition processes. For the

compensation phase, simpler models are better since the states are ultimately merged into

clusters that represent diverse statistics.

Starting from complex HMMs does not give a significant advantage in the clustering

phase and because the statistical information related to a specific speech segment will be

lost at some stage. On the contrary, complex models are much more useful for the recog-

nition phase. Here, the objective is to obtain precise information about the speech segment
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Figure 21: Simple vs Complex models
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being evaluated. Complex models capture specific speech segments statistical information

better.

It must be noted that if precise information about the speech segment being compen-

sated is available, the compensation will improve. However, there will be a greater risk of

selecting wrong statistics, i.e., the state might not represent the speech being compensated.

It has been observed that the penalty incurred by wrong choice of cluster/state overwhelms

the advantage gained from using complex and specific models and therefore, the simpler

models work better in the compensation phase.

3.3.2 Experiments

To evaluate the proposed framework we experimented on the Aurora-2 connected digit

task. We extracted features (39-elements with 13 MFCCs and their first and second time

derivatives) from test speech as well as 23-channel filter-bank features thereby forming

two streams. One − best transcript was obtained from the MFCC stream using the multi-

condition trained HMMs. PFC is then applied to the filter-bank stream (stream two). We

chose two clusters, one based on One − best and the other selected with Equation (72).

The multi-condition clusters used in Equation (72) were from 23 channel fbank features

so that the test features from stream two can be directly used to evaluate the likelihood

of the observations. For results in these experiments, clusters were formed using method

two, i.e., tracking the state-wise composition of each cluster. The number of clusters and

particles were varied to evaluate the performance of the algorithm under different settings.

From the compensated filter-bank features of stream two, we extracted 39-element MFCC

features. Final recognition on these models was done using the retrained HMMs, i.e.,

multi-condition training data compensated in a similar fashion as described above.

3.3.2.1 Variable Number of Clusters

The results for a fixed number of particles (100) are shown in Table 3. The number of clus-

ters was 20, 25 or 30. To set the specific number of clusters, HMM states were combined
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Table 3: ASR accuracy - Variable number of clusters (100 particles)

Word 20 25 30 Multi Clean
Accuracy Clust. Clust. Clust. Cond. Cond.

clean 99.11 99.11 99.11 98.5 99.11

20dB 97.76 98 97.93 97.66 97.21

15dB 97 97.14 96.69 96.8 92.36

10dB 95.21 95.41 93.88 95.32 75.14

5dB 89.48 89.59 87.08 89.14 42.42

0dB 70.16 70.38 68.84 64.75 22.57

-5dB 36.3 36.63 36.94 27.47 NA

0-20dB 89.92 90.1 88.88 88.73 65.94

and clustering was stopped when the specified number was reached. HMM sets for all pur-

poses were 18 states, with each state represented by 3 Gaussian mixtures. For the 11-digit

vocabulary, we had a total of approximately 180 states. In case of 20 clusters, we have a 9

to 1 reduction of information blocks to choose from for plugging in the PF scheme.

It is interesting to note that best results were obtained for 25 clusters. Increasing the

number of clusters beyond 25 did not improve the accuracy. The larger the number of clus-

ters, the more specific speech statistics each cluster contains. If the number of clusters is

large, then each cluster encompasses more specific section of the speech statistics. Having

more specific information in each cluster is good for better compensation and recognition

because the particles can be placed more accurately. However, due to the large number

of clusters to choose from, it is difficult to pick the correct cluster for generation of par-

ticles. More errors were made in the cluster selection process resulting in degradation in

the overall performance. This is further illustrated in Figure 22. If the correct cluster is

known, having large number of clusters and consequently more specific information per

cluster will only improve the performance. The results are for 20, 25 and 30 clusters. In

the known cluster case, one cluster is obtained using Equation (72) and the second cluster

is the correct one. Correct cluster means the one that contains the state (obtained by doing
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recognition on the clean version of the noisy utterance using clean HMMs) to which the

observation actually belongs to. For the unknown cluster case, the clusters are obtained

using Equation (72) and One − best. It can readily be observed from the known cluster

case that if the choice of cluster is always correct, the recognition performance improves

drastically. Error rate was reduced by 54%, 59% and 61.4% for 20, 25 and 30 clusters,

respectively. Moreover, improvement faithfully follows the number of clusters used. This

was also corroborated by the fact that if the cluster is specific down to the HMM state level,

i.e., the exact HMM state sequence was assumed known and each state is a separate cluster

(total of approximately 180 clusters), the error rate was reduced by as much as 67%.

3.3.2.2 Variable Number of Particles

For the results in Table 4, we fixed the number of clusters and varied the number of par-

ticles. As we increased the number of particles, the accuracy of the algorithm improves

for set A and B combined i.e. for additive noise. The error reduction is 17% over the

MC trained models. Using a large number of particles implies more samples were utilized

to construct the predicted densities of the underlying clean speech features, which is now

denser and thus better approximated. Thus, a gradual improvement in the recognition re-

sults was observed as the particles increased. In case of Set C, however, the performance

was worse when more particles were used. This is so because the underlying distribution

is different due to the distortions other than additive noise.

Table 4: ASR accuracy - Variable number of particles (25 clusters)

Set A Set B Set C Average

100 particles 90.02 91.03 89.26 90.1

500 particles 90.03 91.1 89.07 90.07

1000 particles 90.02 91.13 89.07 90.07

MC Trained 88.41 88.82 88.97 88.73

Clean Trained 64 67.46 65.39 65.73
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Figure 22: Word accuracy - Correct cluster known vs unknown

Table 5: Simple Vs complex backend performances for Sets A and B

Word Simple Complex
Accuracy Models Models

clean 99.10 99.14

20dB 98.36 98.55

15dB 97.65 97.98

10dB 96 96.6

5dB 90.36 91.62

0dB 70.26 73.32

-5dB 36.01 38.96

0-20dB 90.53 91.61

3.3.2.3 Simple vs Complex Backend

Additionally, to explore the enhancement obtainable with higher complexity models at

the backend, another experiment was carried out. Keeping the compensation settings the

same, the number of GMMs for the backend HMMs was increased from 3 to 20. A clear

improvement for all SNRs can be observed in Table 5

60



3.3.3 Summary

In this chapter, We propose a particle filter compensation approach to robust speech recog-

nition, and show that a tight coupling and sharing of information between HMMs and

particle filters has a strong potential to improve recognition performance in adverse envi-

ronments. An integrated PF-HMM approach is presented, where we incorporate statistical

information available from the HMMs to make up for the lack of suitable state transition

model. This enables us to use the PF framework to compensate noisy speech signals. We

further developed a scheme to merge statistically similar information in HMM states to

enable us to find the right section of HMMs to dynamically plug in the particle filter algo-

rithm. Results show that if we use information from HMMs that match specifically well

with the section of the speech being compensated, significant error reduction is possible

compared to multi-condition HMMs.

It is noted that we need an accurate alignment of the state and mixture sequences used

for compensation with particle filters and the actual HMM state sequences that describes the

underlying clean speech features. Although we have observed an improved performance in

the current particle filter compensation implementation, there is still a considerable perfor-

mance gap between the oracle setup with correct side information and whats achievable in

this study with the missing side information estimated from the noisy speech. We antici-

pate that the current performance gap can be narrowed when more advanced algorithms are

explored to obtain better estimates of the missing side information needed to fully utilize

the power of particle filter compensation.
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CHAPTER 4

JOINT ESTIMATION OF SPEECH AND NOISE FEATURES

Noise parameters play a crucial role in the computation of the particle weights. While a

good selection of the cluster allows for a better placement of the samples, the availability

of precise noise information improves the weight estimates of the samples. The result is a

more faithful probabilistic representation of the underlying clean speech, and consequently,

an improved estimation of the clean-speech signal. In this chapter, two methods for the

estimation of the noise parameters are proposed. The first is based on a particle filter that

runs in parallel to the PFC [13]. The second method is based on a MCMC approach [14].

4.1 Noise Tracking Using PF

Noise parameters are difficult to track because the state-transition model for the noise signal

is difficult to obtain. Noise could be emanating from a wide variety of sources, and in most

cases, does not have a well-defined structure. To overcome this problem, an approach to

track the noise statistics is proposed that uses simplistic models for state transition. The

advantage of using simple state-transition models is that little or no assumptions are made

about the structure of the signal being evaluated. In the proposed tracking strategy, the

clean-speech-statistical information, obtained from the PFC algorithm, will also be put to

use.

4.1.1 Noise Modeling

For the purpose of noise tracking, the noise signal is treated as the hidden state of the sys-

tem, and the speech signal is treated as the corrupting signal. The observed noisy signal is

the observation. Two models are used to represent the state-transition process of the noise.

First, a random-walk process, which can be described by the following two equations, is

used:

Nt = Nt−1 + Wt (73)
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Wt ∼ N(0,ΣW), (74)

where Nt is the log-spectral vector of noise at time t, and Wt is the driving noise for the

state-transition process. The random-walk process translates into a simple propagation

scheme:

p(nt|nt−1) ∼ N(nt; nt−1,ΣW). (75)

The propagation steps are summarized in Figure 23. A particle that has a greater weight

will split into child particles in proportion to its weight. These particles are further dis-

placed by adding a random vector w that is sampled from the distribution in Equation (74).

Figure 23: Particle propagation for the random-walk process

The second choice for the state-transition model is the autoregressive (AR) model. In

this case, the particle for the next stage is regressed on the corresponding sample in the

current stage:

p(nt|nt−1) ∼ N(nt; Atnt−1, φε), (76)

which is derived from the first order AR model:

nt = Atnt−1 + εt. (77)

Here, εt represents the Gaussian-excitation process. Its mean is zero, and its variance is

φε, which can be learned from the available noise samples. The first order AR model in

Equation (77) does a fair job in capturing the spectral dynamics of various noises typically

encountered in ASR problems. Increasing the order does not increase the accuracy of the
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model [8]. The weights of the particles propagated using the random-walk process or the

AR model are computed in the same manner. The observation model is the same as the

one described in Equation (55). Instead of p(yt|xt) required for the speech particles, the

posterior p(yt|nt) is needed for computing the weights for the noise-particle samples. The

posterior is derived from

p(Yt < yt|nt) = p(Xt + log(1 + exp(nt − Xt)) < yt|nt), (78)

where Xt represents the clean speech random vector. It is considered to be a GMM, which

is imported from the PFC scheme. It is important to emphasize here that the posterior for

the noise particles cannot be obtained without some information about the clean-speech

statistics. Consequently, help from the speech tracking part of the PFC algorithm is sought,

and the best cluster at time t, Ct, is used to obtain the clean-speech statistics.

Looking at Equation (78), it is often difficult to resolve log(1 + exp(nt − Xt)) in terms

of Xt, a step required to obtain the posterior. To overcome this problem, a Taylor series

approximation of the term is taken around µx,t, which is the mean of the clean-speech

distribution. Thereupon, the term in consideration can be rewritten as log(1+exp(nt−µx,t)),

and the the posterior can be written

p(yt|nt) =
1√

2πσ2
x,t

exp[−
1

2σ2
x,t

(yt

− log(1 + exp(nt − µx,t)) − µx,t)2].

(79)

The clean-speech statistics are represented by a cluster, distribution of which is a Gaussian

mixture. Posterior can accordingly be simplified to

p(yt|nt) =

K∑
k=1

mkN(ut; µx,k,t, σ
2
x,k,t), (80)

where ut = yt − log(1 + exp(nt − µx,k,t)) − µx,t .

4.1.2 Implementation

The overall implementation scheme is shown in Figure 24. The compensation and the

recognition steps are carried out separately. Since the compensation is being done at the
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front end only, a different set of models can be used for each task. For the compensation

phase, it is better to have simple models. Since the mixtures are merged into clusters, using

complex models do not provide any advantage over simple models. For the recognition

phase, however, complex models perform better as they have a greater ability to capture

subtle variations of the speech signal to be decoded.

Figure 24: Complete recognition process with noise tracking

4.1.3 Experiments

To evaluate the proposed framework, experiments were conducted on the Aurora-2 (sub-

way noise) connected-digit task. MFCC features (39 elements with 13 MFCCs and their

first and second time derivatives) as well as 23-channel-filter-bank features are extracted

from the test speech, thereby forming two streams. One-best transcript was obtained from

the MFCC stream using the multi-condition-trained HMMs. PFC is then applied to the

filter-bank stream. The multi-condition clusters, used for choosing the best cluster, were

obtained from the 23-channel-fbank features so that the test features from stream two could
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be directly used to evaluate the likelihood of the observations. The noise was tracked us-

ing both the random-walk process and the AR model. Approximately 20 particles were

used for the noise tracking, whereas 100 particles were used for the clean-speech tracking.

From the compensated filter-bank features of stream two, a new set of 39-element-MFCC

features were extracted. Final recognition on these features was done using the retrained

HMMs that are trained with the multi-condition-training data, compensated in a similar

fashion to the compensation process described above.

If the samples are generated using the best possible state and mixture sequence (ar-

tificially obtained here), a very significant 67% digit-error reduction was attained over

multi-conditioned trained models as shown in column two (assuming all state sequences

are known in this oracle case) of Table 6. When the cluster information is estimated from

the testing environment in actual operating conditions (column three) as opposed to the

oracle case, some improvement over the state-of-the-art multi-conditioned-trained models

(column f ive) was observed. However, this performance was inferior to the oracle case.

Table 6: ASR accuracy - Performance comparison with noise tracking

Word Speech Speech Noise Multi
Accuracy Tracking I Tracking II Tracking Condition

clean 99.14 99.14 99.14 98.46

20dB 97.94 97.91 97.91 97.79

15dB 97.67 97.21 97.18 97.11

10dB 97.24 95.36 95.06 95.52

5dB 95.46 90.08 90.82 90.3

0dB 93.28 75.16 74.95 69.85

-5dB 92.26 41.51 39.36 28.98

0-20dB 96.37 91.14 91.18 90.11

The additional tracking of the noise signal (column f our) does show a slight improve-

ment in accuracy over the tracking of the speech signal only (column three). The perfor-

mance of noise tracking can also be observed in Figure 25. For better visualization, only
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one of the 23-fbank channels, under 5dB noise level, is shown. The actual noise is shown as

a black-solid line and the estimated noise obtained using PF is shown as a red-dashed line.

Although the tracker is able to capture the overall contour of the noise curvature at most

parts, it fails to follow the smaller variations. This anomaly is because of the simplicity of

the models being used for the noise-particle propagation. As a result, the particle samples

may not be in the optimal locations, leading to an unfaithful construction of the noise sig-

nal. Better models that can incorporate information from the observed noisy signal could

be used to improve the propagation and the overall performance.

Figure 25: Actual vs. estiamted noise at 5dB noise level
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4.2 An MCMC Approach to Noise Estimation

The MCMC approach allows for the estimation of the joint distribution p(nt, xt|yt), from

which the marginal distribution p(xt|yt) can be extracted. The straightforward implemen-

tation of MCMC described in Section 2.4.3 requires that the samples must be directly

obtainable from

p(nt|xt, yt)

p(xt|nt, yt).
(81)

However, it is not possible to generate samples from these distributions. To overcome this

problem, the more general Metropolis algorithm can be exploited. Specifically, a combi-

nation of the importance sampling and the Metropolis-sampling algorithm is put to use.

Compared to the jumping distribution used in the Metropolis-Hastings algorithm [75],

where samples are rejected with probability r, the importance sampling scheme is more

efficient. Another motivation for using the importance sampling is the availability of the

required framework.

Now, p(x(s)
t |n

(s−1)
t , yt) can be evaluated using

p(yt|x
(s)
t ) = p(ut)

eyt−x(s)
t

eyt−x(s)
t − 1

, (82)

where x(s)
t represents the sthclean speech sample at time t, the noise density is given by

N(n(s−1)
t , σn), and ut = log(eyt−x(s)

t − 1) + xt with F(ut) being the Gaussian cumulative func-

tion with mean n(s−1)
t and variance σ2

n. Similarly, to evaluate p(n(s)
t |x

(s−1)
t , yt), the following

relation [13] is used

p(yt|nt) =
1√

2πσ2
x,t

exp[−
1

2σ2
x,t

(yt

− log(1 + exp(n(s)
t − x(s−1)

t )) − x(s−1)
t )2].

(83)

The conditional distributions cover only a part of the distribution approximation by

providing a mechanism to evaluate the weights of the samples. Prior to evaluating the

weights, the samples have to be available at the right locations. To generate the speech
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samples, the statistics available from the HMMs are used. It is important to emphasize

here that the sample generation for xt is not dependent on the nt samples. Instead, it is the

computation of the weights for xt that is conditioned on the noise samples. On the contrary,

the location of the samples and the weights for the noise samples are both conditioned on

the clean-speech samples.

For each frame t, the algorithm proceeds as follows:

1. Generate sample xs
t using HMMs.

2. Compute the weight for xs
t using ns−1

t in Equation (82).

3. Generate the sample ns
t from xs−1

t using Equation (55).

4. Compute the weight for ns
t using xs−1

t Equation in (83).

5. Repeat if s < Ns,

where Ns is the desired number of samples. Once the point density of the clean-speech

features is available, the compensated features can be obtained using:

xt =

Ns∑
i=1

wi
tx

i
t. (84)

4.2.1 Comparison of PFC and MCMC Approaches

The comparison of the PFC approach for speech compensation and the MCMC approach

is laid out in Figure 26. The dashed arrows indicate the dependencies in the sample gener-

ation for MCMC, whereas the thick arrows indicate the dependencies for PFC. The cluster

selection mechanism is the same for the PFC and the MCMC methods. The main difference

lies in the distribution of the speech and the noise signals. While the samples for the noise

are propagated using the AR model or the random-walk process in PFC, the noise samples

in MCMC are generated directly from the speech samples. The statistics from the cluster,

directly and indirectly, influence the location of the speech and the noise samples respec-

tively. The observation then plays a critical role and adds the information to compute the
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weights for both samples. Moreover, unlike the PFC method, the noise samples are directly

used in the weight computation of the speech samples.

Figure 26: Comparison of PFC and MCMC

4.2.2 Experiments

To evaluate the proposed framework, experiments were conducted on the Aurora-2 connected-

digit task. The setup is similar to the one used for the PF based noise-tracking experiments.

Compensation is carried out in the 23-channel-fbank-feature domain. From the test speech,

39-element MFCC features (13 MFCCs and their first and second time derivatives) as well

as 23-channel-filter-bank features are extracted to form the two streams described previ-

ously. The One − best transcript, used for cluster selection, was determined by evaluating

the MFCC stream with the MC models. The speech samples are generated using the se-

lected clusters derived. Using the cluster instead of the noise samples for generating speech

samples helps in preventing the sticking problem, which is a vulnerability of the MCMC

algorithms. If the speech sample is generated based on the noise sample and vice versa,

then from Equation (55), the samples would be concentrated in a very small region. This

agglomeration will happen because after yt is observed, knowing the value of nt or xt gives

us precise information about the other. The sequence of samples generated for the speech
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and the noise signals is shown in Figure 27. The dependence of the noise samples is ob-

servable. The noise samples are related to the speech samples through the observation.

Note that for higher value of the speech sample, the value for noise sample is smaller and

vice versa.

Figure 27: Sample sequence for MCMC

The improvement obtained with MCMC in terms of the error reduction in word accu-

racy over multi-condition training and PFC is given in Table 7. The recognition perfor-

mance for the MCMC algorithm improves for all noise levels except for lower SNRs of

0dB and -5dB. Since the noise signal is dominant compared to the speech signal at these

SNRs, the assumption that the noise samples can be well placed by indirectly using the

speech statistics does not seem to hold, resulting in poor noise estimates. Consequently,

no improvement in the recognition performance is observed. Overall, an error reduction of

12.87% is achieved over multi-condition training compared to the 12.16% obtained with

PFC.

To improve the stability of the noise parameters estimate, the noise information from

multiple frames, t − Np/2 to t + Np/2 (Np frames), is combined together and used to re-

compute the weight of the xt samples. The weight for the speech samples is recomputed
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Table 7: Error reduction over MC

ER 20dB 15dB 10dB 5dB 0-20dB

MCMC 20.1% 20.3% 8.9% 8.1% 12.87%

PFC 14.5% 10.6% 1.9% 4.1% 12.16%

after getting the noise estimate from Np frames. Combining the noise information from

multiple frames improves the performance of the recognizer. While the Word Accuracy for

Np = 30 is 90.2%, the corresponding performance for Np = 60 and Np = 15 is 90.1% and

90.06% respectively. The performance is inferior if Np is either smaller or larger than the

value 30. If Np is large, the smaller variations in the noise estimate are averaged out and

the performance is comparable to the case where the noise statistics are considered to be

non-varying. On the other hand, the reduction in performance for Np smaller than 30 is

because of the erroneous estimate of the noise in the smaller intervals.

The noise estimation for a particular fbank channel is depicted in Figure 28. The errors

in the noise estimate cause corresponding fluctuations in the compensated speech estimate.

These fluctuations are undesirable from the machine learning perspective. For a better

recognition performance, it is desirable that the behavior is consistent, not only within

training data, but also between the training and the testing data. The random variations

caused by the wrong noise estimate introduces discrepancies in both training and testing

data. Increasing the number of frames, however, averages out these variations and improves

the recognition performance.

The performance achieved with MCMC is also superior to the improvement obtained

from tracking the speech signal using a particle filter that is running parallel to the PFC

algorithm. The comparison for subway noise is given in Table 8. Both approaches still fall

short of the case where the exact noise information (average over 30 frames) is available

and therefore, the margin for improvement in noise estimation is still present.
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Figure 28: Actual vs. estiamted noise for MCMC at 10dB noise level

Table 8: Noise estimation comparison

Word Noise Noise Noise
Accuracy Tracking MCMC Tracking PF Known

clean 99.14 99.14 99.14

20dB 98.25 97.91 98.19

15dB 97.51 97.18 97.14

10dB 95.03 95.06 95.3

5dB 90.76 90.82 90.39

0dB 74.7 74.95 76.02

0-20dB 91.25 91.18 91.41

4.3 Summary

In this chapter, a framework was introduced to obtain improved estimates of the noise

parameters, which play an important role in the PFC algorithm. A particle-filter algorithm

is developed to track the noise signal. The AR model and the random-walk process were

used for the state transitions of the noise signal. Both are simple models and are used

as a compromise because of a lack of structure in the noise signals typically encountered

in ASR. The impact of improved statistics on the PFC algorithm are also presented. The

estimation of the noise signal is good enough, but the improvement in the recognition
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performance of the overall scheme is only marginal.

An MCMC based approach for the joint estimation of speech and noise is also proposed.

Results show that the MCMC based approach provides better performance in the overall

recognition process when compared with the PF approach. MCMC performs better because

it utilizes more information from the available speech statistics. Instead of relying on a

point estimate of the clean-speech approximation like the PF algorithm, MCMC exploits

the full information in the clean-speech distribution generated by the PFC algorithm.

The performance of both the PF algorithm and the MCMC algorithm are compared

with the case where an accurate noise-parameter information is available. In general, a

better noise estimate improves the recognition performance for all SNRs except the very

low ones.
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CHAPTER 5

PFC FOR LVCSR

In this chapter, we extend the PFC algorithm to Aurora-4 corpus, which is a large vocabu-

lary continuous speech recognition task. Obtaining an accurately aligned state and mixture

sequence of HMMs (side information) that describe the underlying clean speech features

being estimated is a challenging task for sub-word based LVCSR because the total num-

ber of triphone models involved can be very large. By using separate sets of HMMs for

recognition and compensation, we can simplify the models used for PFC to a great extent

and thus facilitate the estimation of the side information offered in the state and mixture

sequences.

5.1 Overview of PFC

Before we get into the details of the implementation of PFC for LVCSR, the important

equations of PFC are reiterated here:

1. Posterior density of speech, based on the current observation is represented by a finite

number of set points,

p(xt|y0: t) =

Ns∑
i=1

wi
tδ(xt − xi

t), (85)

where xt
i for i = 1, ...,Ns are the support points of PF.

2. The weight vector, wi
t,associated with the support points, approximates the posterior

density and are determined based on the concept of importance sampling computed

with:

wt
i = wi

t−1

p(yt|xi
t)p(xi

t|x
i
t−1)

q(xi
t|xi

t−1, yt)
. (86)

3. PFC is done in the spectral domain. Given additive noise with no channel effects we

can evaluate p(y|x) using

p(y|x) = p(u)
ey−x

ey−x − 1
, (87)
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where x represents clean speech and n represents the noise with density N(µn, σn)

and u = log(ey−x − 1) + x with F(u) being the Gaussian cumulative function with

mean µn and variance σ2
n.

4. The density q(xi
t|x

i
t−1, yt) is used to generate the particle samples. The distribution is

obtained by clustering HMMs:

q(xi
t|x

i
t−1, yt) ∼

K∑
k=1

mk,CtN(µk,Ct ,Σk,Ct), (88)

where mk,Ct , µk,Ct and Σk,Ct are the weight, mean and variance of the mixture k in

cluster Ct.

5. After generating samples, we estimate the compensated features using

xt =

Ns∑
i=1

wi
tx

i
t. (89)

5.2 Implementation of PFC

In the PFC algorithm, four HMM sets are used in various roles. The roles of these models

are explained in this section. The most important aspect of the PFC algorithm, aside from

the observation model, is the placement of the samples. Clean fbank HMM set (hereafter

known as set 1) is used to generate the samples because clean speech is being estimated

from these samples, and clean HMMs provide the distributions that best represent the clean

speech statistics. These models are derived from the fbank features because compensation

is done in the fbank domain.

It is critical that the correct model from the HMM set is chosen for the treatment of

a particular frame so that the samples can be generated from a distribution that precisely

represents the underlying speech for that frame. The structure of the set 1 HMMs should

therefore be such that it is easy to pick the most suitable model at each frame. As is

described in section 3.3.1, a large number of models makes this selection harder. For

LVCSR systems, subword acoustic models are a popular choice and triphone representation
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achieves the best recognition performance. However, in the case of PFC, the large number

of models required in the triphone representation make the model selection problem even

harder.

Monophone models provide a convenient solution to the problem. Although the ac-

curacy of the statistical representation is compromised for the case of monophone models

compared to the triphone model, yet the number of statistical units is drastically reduced

by a ratio of approximately 1 : 20. By further clustering the monophone models into 10 or

less statistical units, the composition of the set is reduced to about 1 : 250 when compared

to the triphone models. This procedure simplifies the cluster selection process to a great

extent, but the task of estimating the appropriate cluster from the observerd noisy speech is

another complication. The set 1 is unsuitable for the task because:

1. It is built from fbank features, which have inferior discrimination capability com-

pared to MFCC features.

2. Clean models peform poorly in the recognition task when applied to noisy speech.

3. Monophone models cannot compete with the triphone models in the recognition task.

To overcome this complication, a second set of HMMs (set 2) is deployed to obtain

speech information from the noisy signal. This set is derived with the aim of getting opti-

mum recognition performance. Hence, the HMMs in set 2 are triphone models built using

the multi-condition MFCC features.

5.2.1 Alignment of Set 1 and Set 2

The HMMs in set 2 are used to select the appropriate cluster from HMMs in set 1, there-

fore, a good alignment between the two sets is essential to obtain good performance with

PFC algorithm. The two sets, however, use different features, structures (one is made up

of monophone while the other of triphone models) and data (one uses clean and the other

uses noisy speech). Consequently, the two sets can be severely misaligned. To overcome
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this problem, the clean MFCC HMMs (set 3) are used as the source and both set 1 and set

2 are derived from it. The technique for this alignment procedure is explained in Figure 29.

Training HMMs in set 1 has 2 steps. Step 1 computes forward and backward probabilities

using clean MFCC monophone HMMs on clean MFCC features. Step 2 estimates parame-

ters of fbank monophone HMMs using the statistics information from Step 1, together with

clean fbank features. This is known as single-pass retraining.

Figure 29: A block diagram illustrates training process using the single-pass retraining

In this way, the state/phone alignment (i.e., the posterior component probabilities) used

to estimate parameters of monophone fbank HMMs is the same as one generated by using

the monophone MFCC HMMs. Therefore, same component label of two states will model

the same sound but in two different feature domains.

Training HMMs in set 2 is similar. Step 1 computes forward and backward probabilities

using triphone HMMs on clean MFCC features. Step 2 estimates HMM parameters using

the statistics from Step 1 along with noisy MFCC features.

Since all HMM parameters of sets 1 and 2 are estimated based on state alignment com-

puted from clean MFCC HMMs, a state mapping between the two sets can be obtained by

just using the same component labels.

5.2.2 Models for Compensated Features

As described in Section 3.3.1, the HMMs (set 4) used in the final recognition of the com-

pensated data is isolated from the compensation process. Therefore, set 4 is independent

of sets 1,2 and 3. Set 4 is trained using MC training data that has been compensated like
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we would process the test data in actual scenario. Since there are no constraints on these

models, their complexity can be increased to the optimum level needed to obtain the best

possible recognition performance.

5.3 LVCSR Speech Corpus for the Experiments

The Aurora-4 corpus is an artificially noise-corrupted speech data. The vocabulary size is

around 5000 words. The corpus involves 6 real life noises (car, babble, restaurant, airport,

street, train) and clean utterances recorded with gender balance. The noisy data are gen-

erated by artificially adding the recorded noises to the clean utterances. The details of the

corpus are given in Table 9

Table 9: The Aurora-4 speech corpus

Nature of task Large vocabulary continuous English speech

Sampling frequency 16000Hz

Average utterance
length

7.6 seconds

Training data

83 speakers and gender-balanced. Clean training data:
7138 clean utterances, Multi-condition data: 7138

multi-condition utterances (different microphones and 6
different noise types)

Test data

14 test cases or environments Case 1: Clean test. Case 2-7
(6 noises): car, babble, restaurant, street, airport, train.
Case 8: Microphone mismatch. Case 9-14: case 2-7 +

microphone mismatch.

Recognizer HMM Toolkit

Language model Bigram model

Acoustic model
3 states triphone model, 1700 tied states and 16 Gaussian

mixtures per state

Test parameters
0 word insertion penalty,16 language model weight and

250 pruning threshold
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5.4 Experiments

This section presents the experiments of PFC on Aurora-4 corpus, and analysis of the

experimental results. We focus on training simple and complex acoustic models used in

PFC, an oracle experiment to estimate upper bound of the method and an actual experiment

to evaluate performance of the system.

5.4.1 General Configurations

HMM tool kit (HTK) is used to extract speech features and train acoustic model. Log mel

filter bank (fbank) coefficients (23 coefficients) are extracted from 16K sample rate speech

signal and enhanced by PFC method. Mel-frequency cepstral coefficients (13 coefficients)

and their first and second differential features are then extracted from compensated fbank

and used as speech features for speech recognizer. Mean normalization is also applied to

reduce the channel mismatch. A bigram language model is used with scale factor set to 15.

The four acoustic models are trained as described in the previous section. Clean fbank

HMMs (set 1) has 120 states. In this work, the complexity of set 2, 3 and 4 are the same

and have 1594 tied-states with 16 Gaussian mixtures per state.

In test phase, we are interested in additive background noises. Six noisy test sets (car,

babble, restaurant, street, airport and train noises) without channel mismatch are used to

evaluate the PFC performance.

5.4.2 Oracle Experiments

To estimate the potential of PFC, we first build an oracle experiment with good mapping

accuracy. In this experiment, we utilize the stereo data in Aurora-4 to generate oracle

state sequence which is clean state sequence and used as noisy state sequence and thus the

mapping is exact. In this way, we can focus on optimizing particle sampling and evaluate

the upper bound of the PFC method.

We generate mono-phone state sequence using clean fbank monophone HMMs (set 1)

on clean version of noisy data. The state sequence obtained is considered as the oracle
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state sequence because, albeit not perfect, it is the best estimate used for generation of

clean feature samples.

The prior information used by oracle experiment is illustrated in Figure 30. The oracle

state sequence is used together with the clean fbank monophone HMMs. Un-clustered

clean fbank monophone HMMs have 120 states and are denoted by “set 1-120”. We group

120 states into 10 (or 5, 3, 2, 1) clusters as discussed in the previous sections and denote as

“set 1-10” (or 1-5, 1-3, 1-2, 1-1 respectively).

Figure 30: A block diagram illustrating the actual vs the oracle experiment setup for
LVCSR

The word accuracies of these versions of set 1 are showed in table 10. In the study, 120

is the largest cluster count used. Although, the count can be increased to 1594, which is

the starting number of states if clustering directly from triphone acoustic model, and it will

most likely improve the performance beyond the best figure of 85.6% because the statistical

information is more precise. However, it hasn’t been explored due to the fact that obtaining

good side information in case of such a large number of clusters will be nearly impossible

in real scenarios.
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On the other side, 1-cluster is the smallest cluster count that can be used. Apart from the

fact that the performance for this case improves over the baseline multi-condition training,

the setup has it’s own advantages. First, the estimation of side information is not required,

making the compensation process very efficient. Secondly, with 1-cluster, no errors can be

made in the estimation of side information and therefore, the actual performance and the

oracle performances are the same.

Table 10: ASR accuracy comparisons for Aurora-4

No.
Clus. 2 3 4 5 6 7 Avg

- 87.4 81.5 75.6 78.4 80.9 75.4 79.9
1 86.6 82.6 76.2 79.3 80.7 76.2 80.3
2 87.2 83.9 78.2 80.4 82.1 77.1 81.5
3 87.3 84.5 78.9 81.3 82.3 79.0 82.2
5 88.1 84.9 81.2 83.0 84.0 82.1 83.9
10 88.2 85.8 81.3 83.5 83.7 81.7 84.0

120 88.8 86.3 83.4 84.4 87.1 83.8 85.6

5.4.3 Actual Experiments

In this work, we examine a straightforward cluster selection approach. The left and right

contexts of triphone state label are discarded to obtain a monophone state sequence. The

rest of the compensation process is the same as in the oracle experiment. A comparison of

the oracle and the real performance is given in Figure 31.

When we use more clusters, each cluster will have more specific statistical informa-

tion about the speech frame being compensated. Due to this, oracle 5-cluster is better

than 1-cluster and oracle 120-cluster is the best performance we have. When statistical

information is better, the samples generated from it are lying at locations that represent

the current underlying clean speech distribution more precisely and consequently, the esti-

mate of clean speech is better. Therefore, the greater the number of clusters, the better the

performance. However, in the actual scenario, we make mistakes in picking/choosing the

cluster for generating samples. Whenever an error is made, a penalty is incurred because
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compensation could be wrong and subsequent recognition could be incorrect. Obviously,

when we are using more clusters, there is a greater chance of picking a wrong cluster. For

example when we are using 1-cluster, error cannot be made at all, but when we are using 5

clusters, there are 4 wrong clusters that can be selected by mistake. Similarly, when using

3-clusters, the mistakes are less than the 5-cluster because the choices are less. To improve

the performance, we need to reduce the errors in cluster selection.

Figure 31: Real vs Oracle PFC performance for LVCSR

Table 11: ASR accuracy comparisons for Aurora-4 with PFC and MVN combined

Feat. 2 3 4 5 6 7
CMN 87.4 81.5 75.6 78.4 80.9 75.4

PFC3+. 87.3 82.8 76.6 79.3 79.5 77.7
%Rel -0.3% 7.0% 3.9% 4.3% -7.7% 9.4%
MVN 88.2 81.9 79.9 81.4 82.6 79.2

PFC3+. 89.0 82.9 79.6 82.4 82.2 79.5
%Rel 6.6% 5.5% -1.5% 5.7% -2.4% 1.4%

To further understand PFC, we investigated effects of variance normalization on the

compensated features. In particular, we evaluated enhanced features by first processing 3-

cluster PFC and then normalizing mean and variance of cepstral features. Details of word

accuracies are shown in Table 11. Clearly PFC gained improvements on babble, street and

train noises for both CMN and MVN features, but it was otherwise for car, restaurant and

airport noises. PFC could have large fluctuations in the compensated fbank features when
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the SNR is low and there are un-smoothed fluctuations in the observed fbank features. It

is our conjecture that MVN compensated for that effect. In cases where large fluctuations

are more frequent, we see improvements with MVN, but in other cases MVN is not as

beneficial. A more thorough investigation is required to quantify the effects of MVN on

PFC.

5.5 Summary

We have extended PFC to LVCSR. An incorrect state selection issue caused by a big tri-

phone set in LVCSR can be lessened with a clustering approach. However, there is a trade-

off in choosing the number of clusters. With less clusters, there is a smaller risk of incorrect

selection; but with more clusters, a more precise side information will be provided to the

PFC. The performance gap between the oracle and actual experiments is still rather large.

Hence, there are still plenty of studies required in the future to narrow the gap. A better

strategy in cluster selection is a critical direction. Creating a collection of consistent model

sets as discussed in Section 5.2.1 is also another promising direction.
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CHAPTER 6

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

In this dissertation, we proposed a framework for the joint tracking of the speech and the

noise signals for robust speech recognition. Although, many approaches have been pro-

posed for robust speech recognition under noisy conditions in the past, few can adapt to

the challenging non-stationary noise conditions. PFC is the first algorithm that tracks the

clean speech signal directly for robust ASR. By doing so, PFC can dynamically adapt to the

changing noise conditions within an utterance. Another innovation of the PFC algorithm is

the integration of HMMs with particle filters, and the exploitation of the statistical structure

of a signal, stored by the HMMs, in a tracking scheme. Separate HMM sets are used for

compensation at the front end and recognition at the back end. Consequently, the HMM

set that is integrated within the particle filter is simpler and allows for easier selection of

the side information. The resultant approach is a unified framework for estimation of the

clean speech and the noise component of the observed noisy signal, with the ultimate aim

of obtaining compensated features for ASR.

6.1 Summary of research

The PFC algorithm is motivated by the evidence of speech tracking performed by human

beings, who utilize the time and direction of arrival of the speech signal on each earlobe,

as well as the physical structure of the speech signal from the source of interest for better

speech perception. We cannot claim to have achieved the level of performance attainable by

human listeners, however, we have showed that the idea of speech tracking is both powerful

and accomplishable for robust ASR. When correct side information for PFC is available, a

major improvement is observed in the recognition accuracy for speech signals captured in

noisy environments. The improvement is seen in the simple connected digit tasks as well

as the more complex LVCSR tasks. With accurate side information, a digit error reduction
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of 67% from multicondition training is attainable for the connected digit task and 28.46%

for the LVCSR task.

Obtaining accurate side information in real scenarios is a challenging task. To simplify

the search for the side information, the HMMs used to generate particle samples are mod-

ified. The number of statistical unit blocks, the states of HMMs, is reduced by a ratio of

1 : 20 by clustering. For the LVCSR tasks, where thousands of statistical units are required

to represent the triphone level information, the reduction ratio was elevated to as high as

approximately 1 : 500, and even more. This simplification of the HMMs used for PFC is

possible because the compensation is done exclusively at the front end. Consequently, the

compensation phase can be decoupled from the recognition phase. When side information

was estimated from the noisy observation with simplified models, a digit error reduction

of 13% from multicondition training is attainable for the connected digit task and 3.3% for

the LVCSR task over multicondition training.

Apart from simplifying the search for side information, the decoupling of the compen-

sation phase and the recognition phase provides us the leverage to use complex model for

the recognition phase. For the recognition phase, the complex models (complex backend)

perform better when compared with the simple models (simple backend). Accordingly,

while we reduce the complexity of the HMMs used in the compensation phase, the com-

plexity of the HMMs used in the recognition phase was increased by boosting the number

of GMMs for each state from three to twenty. The word accuracy improved to 91.61%

compared to 90.53% achieved with the simple backend setup.

The noise parameters are an important component of the PFC algorithm, and are ob-

tained from the environment detected before the onset of the speech signal. In this thesis,

two methods are proposed to dynamically update the parameters during an utterance. Very

few existing methods for robust ASR have the capability to handle non-stationary noises

within an utterance. The tracking of the noise parameters allows us to lift this constraint.
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The speech tracking part of PFC provides information regarding the speech signal and fa-

cilitates the tracking and estimation of the noise signal during an utterance.

In the first method, we use a particle filter algorithm, which runs in parallel to PFC, for

tracking of the noise parameters. Simulations show that the algorithm successfully captures

the variations of the noise signal. The reduction in WER, however, is marginal. There are

two reasons for the limited improvement in the recognition performance. One reason is

that PFC is itself robust to noise variations within an utterance and therefore the margin

of improvement is small to begin with. Secondly, the data sets used for evaluation of the

algorithm has limited variations in the noise parameters within an utterance. Therefore, the

efficacy of the noise tracking part is not fully revealed.

In the second approach for updating of noise statistics, an MCMC based sampling

scheme is proposed in this thesis. The underlying distributions of the speech and noise

component of the noisy signal are estimated at each frame and inferences are made from

these distributions. Compared to the PF approach, MCMC utilizes more information from

the estimated underlying clean speech distribution obtained with PFC. For this reason, it

produces a better recognition performance compared to the one obtained with the PF based

algorithm. Word accuracy improves from 91.18% for PF to 91.26% for MCMC when

tested on the additive noise condition.

To investigate the potential of the PFC algorithm in more challenging large vocabulary

systems, we implemented a PFC scheme for the recognition of the Aurora-4 LVCSR test

corpus. Results for this test set show that PFC is equally effective for the LVCSR tasks.

When accurate side information is known, the word accuracy improves from 79.87% to

85.6%. Even when the complexity of the models used for sample generation is reduced by

a ratio of 1 : 150, word accuracy remains as high as 84.03%

When side information is obtained from the noisy observations, best performance is

observed for the 3− cluster case (Simplification of 1 : 500). The WER in this case reduces

by 3.3% and the word accuracy is 80.53%. However, when MVN is combined with PFC,
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word accuracy improves to 82.6%. There is still a large margin for improvement for the

LVCSR case when PFC is used alone. The improvement can be attained by having a

better alignment between the models used to compute the side information and the models

used to generate the samples. The models used for extracting the side information are

multicondition MFCC HMMs representing triphone models, whereas the models used to

generate the samples are clean fbank HMMs representing monophones. As a result, there

can be a severe mismatch between the two. With better alignment, we hope to improve the

ASR performance of PFC for the LVCSR task.

6.2 Suggestions for future work

PFC is a novel concept both in terms of its technique and its application. Experimental

results have shown its enormous potential. Here, we present suggestions for other applica-

tions of PFC as well as recommendations to lead the PFC towards its true potential.

6.2.1 Improving the side information estimation

Availability of accurate side information has the most significant effect on enhancing the

recognition performance of the PFC algorithm. Following steps are proposed to improve

the estimation of the side information:

1. Better side information can be obtained if it is computed iteratively. The transcript

generated during the final recognition recognition of the algorithm can be used to

obtain the side information for the next iteration.

2. Storing and exploiting the tree structure of the clustering algorithm can help us in

making better cluster choice in a large cluster set. If the validity of a particular cluster

selection is verified, it will be used for sample generation. Otherwise, we move one

step up the tree structure where there are less clusters, and consequently, finding the

correct cluster is easier.

3. Using different clustering strategies that reduce the confusions between the cluster
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during the cluster selection process.

4. Improve alignment between different set of models used in the PFC algorithm. MAP

is a good candidate for this task because it only updates the observation densities and

does not alter the state transition matrices.

5. Use the 6 manners of speech attribute (e.g. vowel, nasal, fricative, etc) as the class

and use Deep Neural Network to estimate it (Suggested by Dr Xiao Xiong).

6.2.2 Improvements for the PFC algorithm

Following two suggestions are proposed for the overall improvement of the PFC algorithm:

1. When compensating a speech utterance, the complete noisy utterance is available in

most cases. Under such circumstances, particle smoothing can be used for estimation

of the speech signal instead of the particle filtering. However, the implementation of

the particle smoothing is more complex compared to that of the particle filtering.

2. The MCMC sampling algorithm can generate samples from densities of multiple pa-

rameters sequentially. In the future, we can add the channel parameter to the speech

and the noise parameter inferred using MCMC in the current algorithm.

6.2.3 Theoretical aspects of the PFC algorithm

In this thesis, the efficacy of the PFC algorithm was proved via experimental results. In

the future, it is essential that the convergence results for PFC are also obtained. This will

bring forth various properties of PFC and provide the insights needed to further improve

the algorithm.

6.2.4 Implementation of PFC in other areas

HMMs have been successfully used in many areas outside speech processing such as (e.g.

image recognition, cryptanalysis, bioinformatics, etc.). PFC can potentially be used in

other cases where the structure of the signal is preserved using HMMs, and an observation

model for the distorted version of the signal being estimated is available.
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