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SUMMARY 

Many studies throughout the area of decision-making have shown that people are 

able to adapt to different decision environments. A number of frameworks have been 

proposed that seek to explain adaptive decision making in the context of cue-based 

inferences, a type of decision where a person decides which option is highest on a 

variable of interest based on the attributes of those options. However, current frameworks 

fail to account for the role of memory in cue-based inferences. The goal of this 

dissertation was to test whether a framework based on the accessibility of cues in 

memory can provide a better account of adaptive decision-making in cue-based 

inferences compared to either the adaptive toolbox or current single-strategy models. 

Three experiments were conducted to test the accessibility framework by manipulating 

decision environments as well as directly manipulating memory for cues. The results of 

the experiments extend previous research showing that memory affects cue-based 

inferences, challenging frameworks that are based on validity only. They also extend 

research on adaptive decision-making by showing that people are sensitive to the decision 

environment but that this does not always result in changes to both decision outcomes 

and decision processes. Overall, the accessibility framework provides a promising 

foundation for explaining how people make cue-based inferences, but further research is 

necessary to better understand how people search for cues, particularly how they decide 

to stop searching.  
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CHAPTER 1: INTRODUCTION 

 

 

 

People are often faced with decisions in which they are trying to choose which 

option is highest (or lowest) on some variable of interest based on the attributes of those 

options. For example, a restaurant-goer might want to choose which menu item has fewer 

calories based on different characteristics of the menu items, such as whether they are 

made with red meat, whether they have dairy, whether they are high on carbs, etc. How a 

person makes their decision might change depending on the decision environment. For 

example, which attributes they use and how they combine those attributes to arrive at a 

decision may depend on how much time they have to make the decision and how easy the 

attribute information is to retrieve from the environment or from memory. There is a 

large body of literature that seeks to understand how people make these inferences and 

how people adapt their decision-making to the environment (for review see Gigerenzer, 

Hertwig, & Pachur, 2011). Within the literature, these inferences are known as cue-based 

inferences because people are using information about the options to infer the value of a 

criterion of interest, which is calories in the above example. Information about the 

options that can be used to make inferences are known as cues, such as the presence of 

dairy for the menu items being compared.  

There is ample evidence that people making cue-based inferences adapt to the 

decision environment by either using fewer cues or combining the cue information 

differently (Bröder, 2003; Newell & Shanks, 2003; Payne, Bettman, & Johnson, 1988; 

Rieskamp & Hoffrage, 2008; Rieskamp & Otto, 2006). Much of the work within cue-

based inferences is based on the work of Payne et al. (1988), who proposed the idea that 
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people select adaptively among different strategies based on the decision environment. 

These strategies are characterized by rules for searching cues, when to stop searching, 

and how to combine cues. The most popular account of adaptive decision making within 

the cue-based inference literature is the adaptive toolbox (Gigerenzer, Todd, & ABC 

Research Group, 1999). The adaptive toolbox, like the theory of adaptive decision 

making (Payne et al., 1988), is a multi-strategy framework that assumes people select 

adaptively among a repository of qualitatively different strategies depending on the 

decision environment. Much of this research compares under which circumstances people 

are likely to use compensatory strategies, high values on less useful cues can compensate 

for a low value on a highly useful cue, versus noncompensatory strategies, only the most 

useful cue is used. Recently, however, this framework has been criticized, both because 

the strategy selection process is poorly specified (Glöckner & Betsch, 2008a; Lee & 

Cummins, 2004; Newell, 2005; Söllner, Bröder, Glöckner, & Betsch, 2014) and because 

the increasing number of strategies in the toolbox makes it difficult to falsify (Dougherty, 

Thomas, & Franco-Watkins, 2008; Marewski & Link, 2014; Scheibehenne, Rieskamp, & 

Wagenmakers, 2013). 

Single-strategy frameworks have been proposed as potential solutions to the 

problems with multi-strategy accounts. The single-strategy frameworks, such as evidence 

accumulation (Lee & Cummins, 2004) and parallel constraint satisfaction (Glöckner & 

Betsch, 2008a), assume that people use one strategy that adjusts to the decision 

environment. For example, the threshold of the amount of evidence required to make a 

decision adjusts to the decision environment in the evidence accumulation model (Lee & 

Cummins, 2004). Single-strategy frameworks can account for much the same data as the 
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multi-strategy frameworks because they are able to mimic apparent strategy changes by 

adjusting thresholds or information weights (Glöckner, Betsch, & Schindler, 2010; 

Glöckner & Hodges, 2011; Lee & Cummins, 2004; Newell & Lee, 2011). 

Although there is evidence for both the multi-strategy and single-strategy 

frameworks, none of the current frameworks provide a fully compelling account of 

adaptive decision-making in cue-based inferences. Most frameworks rely on the concept 

of pre-computed cue hierarchies based on cue validity, a measure of cue accuracy. 

Specifically, cue validity is the number of times a cue correctly identifies the correct 

option compared to the total number of times it differs between the options. The adaptive 

toolbox assumes cue use is driven by cue validity and evidence accumulation models 

assume search follows validity order. In these frameworks, cue use is based on the cues 

being organized hierarchically such that cues are used in order of validity with the 

hierarchy being determined prior to decision-making (precomputed). The general concept 

of a precomputed hierarchy is not psychologically plausible because of the amount of 

knowledge required to calculate cue validity and the number of calculations that need to 

be made (Dougherty, Franco-Watkins, & Thomas, 2008). Those frameworks that are not 

directly based on validity, such as parallel constraint satisfaction, still do not provide 

compelling accounts of decision-making because they do not fully specify how people 

search and select which cues are used in the decision process. Parallel constraint 

satisfaction tries to separate itself from the formal definition of cue validity by invoking 

subjective cue validity. Subjective cue validity is determined by the decision maker and 

does not always reflect actual cue validity. However, there is no explicit explanation of 
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the processes involved in determining subjective cue validity (Glöckner & Betsch, 

2008a).  

More importantly, all of these frameworks ignore the central role of memory in 

cue-based inferences. There is evidence that accessibility affects cue use beyond what 

can be accounted for by validity alone (Lawrence, Thomas, & Dougherty, 2018a, 2018b; 

Platzer & Bröder, 2012; Platzer, Bröder, & Heck, 2014;). Within in this dissertation, 

accessibility refers to how easily information can be retrieved from memory. For 

example, people tend to use more accessible cues even when they have low validities 

(Lawrence et al., 2018a, 2018b; Platzer et al., 2014). There is also evidence that cue 

accessibility affects later decision strategies such that people are more likely to use 

compensatory strategies when less valid cues are accessible and more likely to use 

noncompensatory strategies when more valid cues are accessible (Lawrence et al., 2018a; 

Platzer et al., 2014). A good explanation of cue-based inferences should be able to 

account for these effects.          

The goal of this dissertation is to propose and test a framework for cue-based 

inferences that is based on memory accessibility. Because this framework focuses on the 

role of memory in cue-based inferences, it can account for accessibility effects that the 

other frameworks cannot. Moreover, the framework can account for apparent changes in 

strategy via accessibility, thus, avoiding the strategy selection problem. Unlike the other 

single-strategy frameworks, the use of cues is described in a psychologically plausible 

manner that is not based on a validity hierarchy but is instead based on well-established 

memory phenomenon. Overall, an accessibility-based framework should lead to a more 

parsimonious account of the data and a testable model of decision making. 
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A series of experiments were conducted to test the accessibility framework. 

Previous experiments have shown that cue accessibility affects how cues are used such 

that more accessible cues are preferred over less accessible ones (Lawrence et al., 2018a, 

2018b). However, these experiments focused on cue preference and failed to demonstrate 

that an accessibility-based framework truly provides the best account of cue-based 

inferences in terms of both cue search and decision process. In order to fully test the 

accessibility framework in this dissertation, experiments were conducted that 

manipulated decision tasks in ways that commonly lead to different apparent strategies to 

show that an accessibility-based framework can account for these changes. For example, 

cue dispersion, the amount of variability in the validities of the cues, has been shown to 

affect apparent decision strategies (Bröder, 2003; Newell & Shanks, 2003) and the 

accessibility account should be able to explain the effects of cue dispersion. Moreover, 

the experiments also manipulated accessibility via well-established memory effects to 

show that the framework can also account for accessibility effects beyond what current 

frameworks can account for. In general, these experiments tested how direct 

manipulations of accessibility interact with decision environment. 

Experiment 1 extended previous research which found evidence for serial position 

effects on cue preference (Lawrence et al., 2018b). Specifically, this experiment tested 

the influence of accessibility on cue preference and decision by crossing serial position 

manipulations with manipulations of average cue validity and dispersion of cue validity. 

Experiment 2 sought to generalize the effects of accessibility to a manipulation of 

accessibility via a retention interval while still maintaining the manipulation of cue 

dispersion. Moreover, this study provided more detailed process data than the previous 
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experiment by allowing participants to decide when to stop searching on their own. 

Experiment 3 then tested whether an accessibility framework could also account for 

decisions made from information stored in memory. One of the major arguments from 

supporters of the adaptive toolbox account is that people are more likely to use 

noncompensatory strategies when the decisions are made from memory rather than from 

information on the screen (Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003). Thus, 

it is important to show that an accessibility account can also function in this context. 

The data from these experiments were compared to behavior predicted from an 

accessibility-based framework. The framework evaluated was an extension of the 

HyGene architecture (Lawrence et al., 2018a; Thomas, Dougherty, Sprenger, & 

Harbison, 2008). Specifically, the model assumes that cue preference is driven by the 

accessibility of the cues in memory, and it assumes that the cues used to make a decision 

are limited to only those available in working memory. The model mimics apparent 

strategy changes through changes in which cues are accessible to the decision-maker. 

Those cues that are accessible are assumed to be integrated in a compensatory manner to 

arrive at a decision. The goal of the analyses was to test the predictions made by the 

accessibility model in terms of cue search and final decision by comparing those 

predictions to participant behavior. The predictions of the accessibility model were also 

compared to the predictions of a general evidence accumulation model (Lee & Cummins, 

2004), parallel constraint satisfaction (Glöckner & Betsch, 2008a), and predictions based 

on the adaptive toolbox. 

The experiments further the understanding of how people make cue-based 

inferences by testing the effect of the interaction between direct manipulations of 
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accessibility and manipulations of the decision environment. The experiments partially 

establish that accessibility can account for both cue use and decisions beyond what can be 

accounted for by currently available frameworks. Testing the accessibility account is 

important because it is more plausible and parsimonious than other accounts of cue-based 

inferences. It is more plausible in that it assumes that cue use is based on well-established 

memory phenomenon rather than a pre-computed validity hierarchy. Because it does not 

require a vast number of free parameters to account for behavior, it is also more 

parsimonious than the other frameworks. By extending the understanding of the 

importance of memory in how people make cue-based inferences, this work provides a 

major contribution to the literature. 

The rest of the paper will be structured as follows. Literature concerning the 

current accounts of cue-based inferences will be reviewed, focusing on evidence for and 

against these frameworks for adaptive decision-making. Evidence for the role of memory 

in cue-based inferences will then be discussed to highlight some of the shortcomings of 

these current accounts. A detailed description of the accessibility-based framework will 

be provided as an alternative account for the adaptive decision-making in cue-based 

inferences. Then three experiments to test this account will be discussed. The paper will 

conclude by highlighting the major findings from these experiments and discussing 

further research. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

 

2.1 Multi-Strategy Framework 

 

         The most researched account of adaptive decision-making in cue-based inferences 

is the adaptive toolbox (Gigerenzer et al., 1999). This framework assumes that people 

adapt to changes in the environment by selecting among qualitatively different strategies. 

Each strategy in the toolbox is described by a search rule, a stopping rule, and a decision 

rule (Gigerenzer & Goldstein, 1996). There are numerous strategies that are included 

within the adaptive toolbox (for review see Gigerenzer et al., 2011). This dissertation will 

not review all the strategies within in the adaptive toolbox but will focus on those 

strategies that search through cue information for the options and decide based on that 

information.  

Strategies can be either compensatory or noncompensatory. In compensatory 

strategies, positive values on some cues can compensate for negative values on other 

cues. Alternatively, in noncompensatory strategies, decisions are based on a single cue 

that cannot be compensated for by other cues. Much of the work within the adaptive 

toolbox builds off of the work of Payne, Bettman, and Johnson (for review see Payne, 

Bettman, & Johnson, 1993) who studied how decision makers adapt to different decision 

environments. Although Payne et al.’s (1993) research takes a different theoretical 

approach than the adaptive toolbox research, their focus on how people adapt to decisions 

environments provided the base for the adaptive toolbox research. They found that how 

people process information while making a decision is affected by both the probability 
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dispersion of the options and time pressure (Payne et al., 1988; Payne, Bettman, & Luce, 

1996). Specifically, they found that high dispersion and high time pressure lead to more 

attribute-based processing compared to alternative-based processing. Importantly, 

attribute-based processing is often considered to be a characteristic of noncompensatory 

strategies and alternative-based is often considered to be a characteristic of compensatory 

strategies. In general, evidence that decision-makers are sensitive to the decision 

environment and adaptively adjust between compensatory strategies and 

noncompensatory strategies supports the adaptive toolbox framework. 

The most popular and well researched noncompensatory strategy for cue-based 

inferences within the toolbox is the Take-the-Best (TTB) heuristic (Gigerenzer & 

Goldstein, 1996). The search rule assumes that decision makers search available cues by 

their validity, where validity is defined as the proportion of times a cue correctly predicts 

which option is higher on the criterion given each option has a different value for that cue 

(the cue discriminates). Options are compared for the most valid cue first. If this cue does 

not discriminate between options, then the options are compared for the next most valid 

cue and so on. Once a discriminating cue is found, decision makers stop searching cues 

and choose the option that is higher on that cue. If no discriminating cues are found, then 

the decision maker guesses. This strategy has often been compared to a weighted additive 

strategy (WADD), which is a compensatory strategy that integrates all cue information 

(values and validities) by weighting cues by their validity and summing. 

Work specifically testing the adaptive toolbox in cue-based inferences have also 

found that people behave adaptively. Increasing the cost of information results in the use 

of noncompensatory strategies rather than compensatory ones. For example, people are 
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more likely to use noncompensatory strategies when the cues are assigned a high 

monetary cost (Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003). This also occurs 

when information has a retrieval cost such that people are more likely to use 

noncompensatory strategies when information must be retrieved from memory (Bröder, 

2000; Newell & Shanks, 2003). Increasing time pressure also results in the use of 

noncompensatory strategies rather than compensatory ones (Rieskamp & Hoffrage, 

2008), but this may depend on whether the information is presented sequentially or 

simultaneously (Glöckner & Betsch, 2008b). The dispersion of cue validities also affects 

strategy use such that when cues are highly dispersed, meaning one cue is much more 

valid than the others, people are more likely to use a noncompensatory strategy (Bröder, 

2003; Newell & Shanks, 2003). In general, participants adapt strategies based on the 

ecological structure of the environment such that they seem to use the strategy that 

performs the best in that environment (Bröder, 2003; Rieskamp & Hoffrage, 2008; 

Rieskamp & Otto, 2006; Lawrence et al., 2018a). 

Despite evidence that people seem to adaptively select among strategies, there are 

a number of criticisms of the adaptive toolbox. Several researchers have expressed 

concern in regards to the poor specification of the strategy selection process (Glöckner & 

Betsch, 2008a; Lee & Cummins, 2004; Newell, 2005; Söllner et al., 2014). Within the 

adaptive toolbox, it is unclear exactly what processes are involved in selecting among the 

qualitatively different strategies, which some argue leads to a recursive process in which 

the decision maker is stuck in a loop of deciding how to decide (Glöckner & Betsch, 

2008a). Attempts have been made to address this problem, for example, Rieskamp and 

Otto (2006) proposed a reinforcement learning model in which people learn which 
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strategies perform well based on the past performance of those strategies. Although there 

is some evidence for this model over an exemplar-based model, the model tested assumed 

only two strategies, WADD and TTB. It is unclear that it would be able to scale up to the 

number of strategies assumed to be in the adaptive toolbox. Moreover, the model 

assumes that the toolbox strategies are already represented in the mind without explaining 

how all of these different strategies were learned in the first place. Marewski and 

Schooler (2011) also addressed the strategy selection problem by proposing the cognitive 

niche framework. In this framework, the environment and memory are assumed to limit 

which strategies can be applied in certain situations. Thus, there can be situations in 

which only one strategy can be used, eliminating the need for strategy selection. 

However, it is unclear what processes are involved when more than one strategy can be 

applied to an inference decision. 

Moreover, these attempts to solve the strategy selection problem do not solve 

other criticisms of the adaptive toolbox. Newell (2005) argued that the deterministic 

nature of many of the strategies in the toolbox (e.g. TTB), makes it difficult for the 

framework to account for individual differences. This is particularly problematic because 

the framework assumes that the environment determines the strategy, but empirical 

evidence suggests there are large individual differences (Newell, 2005). Further, the 

multiple strategy structure of the adaptive toolbox means new strategies can always be 

proposed to account for decision behavior, making the framework difficult to falsify 

(Dougherty, Thomas, & Franco-Watkins, 2008; Marewski & Link, 2014; Scheibehenne 

et al., 2013). The number of strategies in the toolbox, even if the individual strategies are 

simple, results in a very complex and flexible model (Scheibehenne et al., 2013). 
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Alternatives to the adaptive toolbox have been proposed that attempt to address the 

problems with strategy selection, falsification, and individual differences. 

 

2.2 Single-Strategy Frameworks 

 

         Single-strategy frameworks have been proposed as alternatives to the adaptive 

toolbox. Instead of assuming that people select among qualitatively different strategies, 

these frameworks assume a single strategy that adjusts to the decision environment via 

changes in decision thresholds (Lee & Cummins, 2004) or changes in cue weighting 

(Glöckner & Betsch, 2008a). The most studied single-strategy frameworks within the 

cue-based inference literature are evidence accumulation models (Lee & Cummins, 2004) 

and parallel constraint satisfaction (Glöckner & Betsch, 2008a). Other models, such as 

decision field theory (Busemeyer & Townsend, 1993), could also be considered single-

strategy models but have not been studied in the context of cue-based inferences. The 

single-strategy frameworks discussed in this dissertation can account for much of the 

same data as the adaptive toolbox, such as evidence that people use less information 

under time pressure and information costs (Bröder & Gaissmaier, 2007; Bröder & 

Schiffer, 2003; Rieskamp & Hoffrage, 2007). However, they also address some of the 

criticisms of the adaptive toolbox by eliminating the need for strategy selection and 

allowing for individual differences. 

The parallel constraint satisfaction model (PCS) was proposed as a single-strategy 

alternative to the adaptive toolbox (Glöckner & Betsch, 2008a). Unlike the adaptive 

toolbox, PCS assumes compensatory and simultaneous processing of all information (cue 

values and validity) with information being integrated through a consistency maximizing 
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process. Specifically, the model follows three or four steps (Glöckner & Betsch, 2008a; 

Glöckner & Hodges, 2011). The first step is the activation of information related to the 

decision problem (cues, goals, options, etc.) both from memory and from the 

environment. This information is then used to form a mental representation (network) of 

the problem. The second step is an automatic consistency maximization process in which 

activations of options and cues within the network are adjusted until one option 

dominates the other. Importantly, during this process the validities of cues are also 

adjusted from their starting values to achieve consistency, meaning posterior cue 

validities may differ from the a priori cue validities of the network. In the third step, once 

a consistency threshold is met, the decision maker chooses the option that dominates the 

other within the network. The fourth step only occurs if consistency is below the 

threshold. In this step, the structure of the network is deliberately changed to feed back 

into the consistency maximization process. During this step, the decision maker must 

select a strategy for searching, producing, or changing information within the network to 

reach the threshold within the second step. 

The evidence accumulation model (EAM) was also proposed to unify both 

noncompensatory and compensatory strategies within a single-strategy framework (Lee 

& Cummins, 2004; Newell, 2005). Unlike PCS, this model assumes information is 

considered sequentially rather than simultaneously. This model follows a random walk 

process in which evidence from each cue updates the state of the random walk 

sequentially. Specifically, cues are considered in validity order and evidence is updated 

via a log-odds transformation of the validity. Information accumulates in this way until a 

decision threshold is reached and the alternative with the most evidence is selected. If the 
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threshold is not reached after all cues are considered, then the option with the most 

evidence is selected. Noncompensatory strategies such as TTB and compensatory 

strategies such as WADD correspond to different evidence accumulation thresholds. 

Noncompensatory strategies have lower thresholds leading to a decision being made after 

the most valid discriminating cue. Compensatory strategies have higher evidence 

thresholds requiring all information to be considered before making a decision. 

Both PCS and EAM have empirical support in terms of fitting participant decision 

behaviors. In decisions where there was time pressure and cue information had to be 

retrieved from memory, Glöckner and Hodges (2011) classified 40% of participants as 

using PCS. When inferences were made from given information, around 75% of 

participants were best fit by PCS (Glöckner & Bröder, 2011). Both of these studies 

suggest that PCS can account for a decent proportion of participants decision behaviors. 

In studies comparing EAM with toolbox strategies, EAM best fit about 85% of the 

participants’ decisions in environments in which participants learned cue validities 

through experience (Lee & Cummins, 2004; Newell & Lee, 2011). Similar results were 

also found both when cues were costly and when they were not (Newell & Lee, 2011). 

Both of the single-strategy frameworks and the adaptive toolbox typically make the same 

predictions in terms of decision behavior, making it difficult to provide conclusive 

support for them over the adaptive toolbox when looking only at decisions. 

However, some attempts have been made to disentangle the single-strategy 

frameworks from the adaptive toolbox. Because PCS operates through consistency 

maximization, it assumes that decisions with initially inconsistent information both take 

longer and result in lower confidence than decisions with initially consistent information. 
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EAM is also sensitive to consistency such that information inconsistent with the currently 

favored option moves the decision maker further from the threshold, resulting in a more 

extensive search. There is evidence for the effect of consistency such that decision time 

increases and confidence decreases with an increase in the inconsistency of cue 

information (Dummel, Rummel, & Voss, 2016; Glöckner et al., 2010; Glöckner & 

Hodges, 2011). These effects remain even when the inconsistent information comes from 

less valid cues (Dummel et al., 2016; Glöckner & Betsch, 2012), suggesting that people 

do not ignore information from less valid cues, even in situations in which TTB would be 

expected to operate. Participants also searched more extensively when information 

incompatible with the TTB option intrudes even when specifically trained to use TTB 

(Söllner et al., 2014). The adaptive toolbox cannot account for the effect of information 

inconsistency. 

In addition to evidence showing that people are sensitive to the consistency of 

information, there is also evidence that stopping behavior is better accounted for by a 

decision threshold than the stopping rules within the adaptive toolbox. TTB assumes 

search stops after the most valid cue that discriminates between the options, and WADD 

assumes exhaustive search. EAM makes predictions about stopping behavior that allow 

search to stop between what TTB and WADD predict, past the most valid discriminating 

cue but not all cues. Note, PCS does not make any predictions about stopping behavior 

because the formally specified version assumes all information is available. Newell and 

Lee (2011) showed that the amount of evidence participants required prior to stopping 

search matched well with predictions based on the participants’ evidence accumulation 

threshold. Participants had lower thresholds under high costs compared to low, also 
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matching model predictions. Hausmann and Läge (2008) also found evidence that search 

termination behavior was better captured by an EAM compared to a multiple strategy 

model. Participants tended to terminate search when the first cue’s validity was over the 

participant’s threshold but continued otherwise. In another experiment using partial 

information boards, where some information was initially available and the rest could be 

acquired, stopping behavior depended on the quality of the given information such that 

the probability of immediately stopping increased with increasing levels of evidence 

(Söllner & Bröder, 2015). 

Although both single-strategy frameworks address some of the criticisms of the 

adaptive toolbox, they also have their own limitations. There are concerns about PCS 

being ill-specified. Some researchers have argued that rather than solving the strategy 

selection problem, PCS just replaces it with a parameter fitting problem (Marewski, 

2010; Marewski & Link, 2014). This is particularly problematic because some of the 

processes and variables within PCS cannot be understood psychologically (Glöckner & 

Betsh, 2008a; Glöckner & Hodges, 2011). Moreover, the strategy selection problem is 

still present in the way the model addresses information search (Glöckner & Betsch, 

2012; Marewski, 2010; Marewski & Link, 2014). As noted above, the fourth step of PCS 

requires the decision-maker to select a strategy for searching for information. This 

process has not been well specified. In fact, the way the PCS model has been applied in 

the literature assumes all information is available and does not include this fourth step 

(Marewski, 2010; Söllner et al., 2014). The model also fails to specify the processes 

involved in how the starting values for cue validity are determined, which is critical for a 

full account of how people make cue-based inferences. 
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Like the other models discussed above, EAM also has a few limitations. EAM 

assumes all search occurs cue-wise and so it cannot account for search that occurs 

alternative-wise (Newell & Lee, 2011). It’s important to note that PCS also cannot 

account for different search patterns because its search process is unspecified. Related to 

this criticism, Marewski and Link (2014) argued that EAM is limited because it has only 

integrated a few decision strategies and has not integrated all of the strategies in the 

toolbox. However, this criticism assumes all of the strategies in the toolbox are actually 

used, which may not be the case (Glöckner & Betsch, 2008a). Yet, one major limitation 

of EAM is that it does not describe the process for ordering cues for search, but instead 

assumes cues are ordered by cue validity. As noted above, PCS also fails to provide a 

process account for the initial validities of the cues used to make decisions. 

 

2.3 Shortcomings of Current Frameworks 

          

Concerns about the specification of the processes for determining search in both 

of the single-strategy frameworks discussed above are partially the result of issues with 

the concept of cue validity in general. All of the current frameworks rely on the concept 

of cue validity to explain how cues are used. The knowledge-based strategies within the 

adaptive toolbox assume cue use is based on validity: TTB uses validity to determine 

search order and WADD uses validity to weight cues. EAM also assumes search order is 

determined by cue validity. Even though PCS allows initial validities and final validities 

to differ, it still assumes weighting of the cues is based on subjective cue validity 

(Glöckner & Betsch, 2008a). However, the process of determining the initial subjective 
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cue validity is not specified. Moreover, the consistency maximization process is also not 

specified in a way that is clear what psychological processes are involved in determining 

the final cue validity. 

         Frameworks that use cue validity to describe information use are problematic 

because cue validity calculations are complex, it is not clear that people actually use cue 

validity, nor is it clear that people can learn specific cue validities. Dougherty, Franco-

Watkins, and Thomas (2008) argued that decisions based on cue validity are not 

psychologically plausible because cue validity calculations require that people have 

access to a vast amount of information in memory and require a large number of 

calculations. In support of these concerns, there is evidence that people are not very good 

at learning actual cue validities (Bergert & Nosofsky, 2007; Dieckmann & Rieskamp, 

2007;  Newell, Rakow, Weston, & Shanks, 2004; Newell & Shanks, 2003; Rakow, 

Newell, Fayers, & Hersby, 2005). In fact, in many studies of how people make cue-based 

inferences, participants are actually told the cue validities (Bröder, 2003; Bröder & 

Gaissmaier, 2007; Dieckmann & Rieskamp, 2007; Dummel et al., 2016; Glöckner & 

Betsch, 2012; Hausmann & Lage, 2008; Newell & Shanks, 2003; Rieskamp & Hoffrage, 

2008; Söllner et al., 2014). In studies where participants are not told cue validities, there 

is evidence that validity does not provide the best account of cue use, instead 

participants’ behavior is best accounted for by a combination of validity and 

discrimination rate (Rakow et al., 2005; Newell & Shanks, 2003; Newell, Weston, & 

Shanks, 2003). Because of issues with cue validity, Dougherty, Franco-Watkins, and 

Thomas (2008) argued that cue use is likely driven by memory retrieval. 
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Moreover, there is evidence for the role of memory in cue-based inferences. A 

number of studies have shown that memory accessibility influences decision making 

through apparent strategy selection. There is evidence for different strategies when 

accessibility is directly manipulated. In studies in which accessibility or salience of 

information was manipulated, participants’ decisions matched compensatory strategies 

when less valid cues were more accessible or salient and matched noncompensatory 

strategies when more valid cues were more accessible or salient (Platzer & Bröder, 2012; 

Platzer et al., 2014). Participants’ decisions were also found to match compensatory 

strategies when the frequency with which they saw cues during training was either 

negatively correlated or uncorrelated with cue validity (Lawrence et al., 2018a). Overall, 

studies suggest that when less valid cues are more accessible, people are more likely to 

use compensatory strategies over noncompensatory ones, providing evidence for the 

importance of accessibility in theories of cue-based inferences. 

         Evidence for the influence of accessibility on cue preferences also supports the 

claim that accessibility is important in cue-based inferences. Although validity and 

accessibility are typically confounded in studies of cue-based inferences, there have been 

recent attempts to directly manipulate accessibility. Lawrence et al. (2018a) manipulated 

the relationship between cue validity and the frequency of cue presentations during 

training. Participants selected the two most valid cues more often when frequency and 

validity were positively correlated compared to when they were negatively correlated. 

Participants also selected the two least valid cues more when frequency and validity were 

negatively correlated compared to when they were positively correlated. Another study 

also found the serial position of correct discriminations across training blocks affected 
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cue use (Lawrence et al., 2018b). This study tested serial position effects 

(primacy/recency) by having pairs of cues with the same validity but one member 

correctly discriminated more at either the beginning (primacy) or the end (recency) of 

each training block and the other member correctly discriminated more in the middle of 

each block. Participants selected the cue that correctly discriminated more at the 

beginning compared to the one that correctly discriminated more in the middle, despite 

the cues having the same validity. Again, this provides evidence for an accessibility 

effect for cue selection. In general, studies that directly manipulated accessibility while 

controlling for validity have found an effect of accessibility on cue preference and use 

that cannot be accounted for within the existing frameworks. 
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CHAPTER 3: ALTERNATIVE ACCESSIBILITY-BASED FRAMEWORK 

          

 

 

An alternative framework based on memory accessibility likely provides a better 

account of how people make cue-based inferences. Rather than assuming cue use is based 

on a precomputed cue hierarchy, the accessibility-based framework assumes cue use is 

based on memory retrieval. Accessibility can be influenced by memory phenomenon, 

such as repetition effects, but it can also be influenced by cue validity. In this way, the 

framework can account for the effects of accessibility on cue use found in previous 

studies (Lawrence et al., 2018a, 2018b; Platzer et al., 2014) that current frameworks 

cannot explain. The accessibility-based framework should also be able to account for 

apparently different strategies via differences in which cues are accessible at the time of 

the inference. 

         The accessibility-based framework for cue-based inferences is an extension of the 

HyGene model (Thomas et al., 2008). The original HyGene was developed as a process 

model of hypothesis generation (Thomas et al., 2008) and has been extended to cue-based 

inferences (Lawrence et al., 2018a). Briefly, the original model is based on three basic 

principles. First, data in the environment function as retrieval cues that prompt retrieval 

of hypotheses from long-term memory. Second, the number of hypotheses that can be 

considered is limited by cognitive constraints and task characteristics. Third, these 

hypotheses are then used to judge probability and drive information search. 

Specifically, the original version of HyGene is based on three memory constructs: 

working memory, exemplar memory, and semantic memory. These memory constructs 

interact in the process of generating hypotheses. First, a prototype hypothesis is extracted 
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based on a comparison of information in the environment to exemplars in memory. 

Exemplar memory is made up of imperfectly encoded representations (traces) of a 

decision maker’s past experiences with observations and hypotheses. These traces are 

activated based on the similarity between them and the information currently in the 

environment. Those traces that are activated above a threshold are amalgamated to create 

an unspecified probe based on the hypotheses in exemplar memory most similar to the 

data observed. Then the unspecified probe is compared to representations in semantic 

memory, generalized knowledge representations of data and hypotheses. Those 

hypotheses in semantic memory that exceed a similarity threshold when compared to the 

probe are maintained in working memory, but the number of hypotheses in working 

memory is limited. Finally, the probability of each hypothesis in working memory is 

determined by its activation relative to the activation of all hypotheses in working 

memory. 

         Recently, HyGene has been extended to cue-based inferences (Lawrence et al., 

2018a). The basic principles and processes described above still apply but rather than 

generating hypotheses, the model generates cues for cue-based inferences. The three 

principles can be extended to cue-based inferences. First, data in the environment 

function as retrieval cues that prompt retrieval of cues from long-term memory. Second, 

the number of cues that can be considered is limited by cognitive constraints and task 

characteristics. Third, the cues that are actively being considered are used as input into a 

decision strategy. 

The specific processes described for the original version of HyGene also operates 

here. First, information in the environment (e.g., the goal of task and the objects) prompt 
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the retrieval of cues. Specifically, cues are retrieved based on a comparison between 

information in environment and exemplar memory. Information in the environment can 

be characterized as the goal of choosing the option with the higher criterion value; 

however, other goals could also be instantiated. Exemplar memory is made up of 

previously experienced decisions with those cues. Each previously experienced object is 

encoded individually with either a win or loss feedback signal depending on if that object 

was higher or lower on the criterion than whichever object it was compared to. The 

quality of the encoded information in exemplar memory is based on an encoding 

parameter (L) such that a value of 1 means the information has been perfectly encoded 

and a value of 0 means that the information is completely degraded. This allows the 

model to account for individual differences at the level of learning. 

The comparison of information in the environment (goal context) and exemplar 

memory results in the creation of an unspecified probe. In this model, unspecified probes 

are actually created for both win and loss contexts, these can be thought of as the 

prototypical winning (or losing) option. Then the activation of individual cues (As) is 

calculated based on the similarity between the semantic representation of the cues and 

each unspecified probe. Overall cue activation is calculated by taking the difference in 

the memory activation between win and loss contexts. Thus, cues with a higher activation 

in the win context relative to the loss context are more accessible overall. Importantly, the 

memory representation of the learning environment assumes that people are sensitive to 

other factors in the environment that influence accessibility in addition to cue validity. 

For example, repetition effects can be accounted for in the way the framework structures 

exemplar memory (Lawrence et al, 2018a), more exemplars with that cue results in that 
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cue being more accessible. Yet, the framework is still sensitive to the accuracy of the 

cues through the way activation is calculated in general. 

Then cues are generated into working memory one at a time based on activation 

(As) with only cues that exceed the activation threshold (ActminH) being generated. The 

order in which cues are generated into working memory is probabilistic, with the 

probability determined by the relative activation of the cue to all other cues. This means 

that more accessible cues are likely generated early, but the order is not deterministic. 

The activation threshold (ActminH) is updated throughout the generation process to match 

the activation of the cue in working memory with the highest activation. Cues stop being 

generated into working memory when the number of retrieval failures exceeds the 

threshold or there is no time left, representing memory and task constraints. Then those 

cues that have been generated into working memory are used in inference decisions. 

The accessibility framework presented in this dissertation is nearly the same as 

the version of HyGene described in the Lawrence et al. (2018a), but with one important 

difference. The previous version assumed that cues could be fed into a number of 

qualitatively different strategies, such as TTB or WADD. However, in this dissertation, a 

single strategy is assumed because of issues with the multi-strategy approach described 

above (i.e. complexity and difficulty falsifying). Instead, the accessibility-based 

framework assumes that cues are integrated in a compensatory manner with the cues 

weighted by accessibility. This assumption is based on a number of studies that suggest 

compensatory strategies may be the default strategy (Bröder, 2003; Glöckner & Betsch, 

2008a; Rieskamp & Otto, 2006; Söllner et al., 2014). However, which cues are actually 

used in the compensatory decision depends on which cues are available in working 
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memory. This means that the model can show adaptive behavior and mimic apparently 

different strategies based on which cues are available in memory. 

The effects found to result in qualitatively different strategies in the adaptive 

toolbox literature can be accounted for with the accessibility framework. Evidence that 

people are more likely to use noncompensatory strategies under high information cost 

(Bröder, 2000; Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003; Newell & Shanks, 

2003) and under time pressure (Glöckner & Betsch, 2008b; Rieskamp & Hoffrage, 2008) 

can be accounted for by the threshold for the number of retrieval failures before cue 

generation stops. This results in fewer cues being available to make a decision, resulting 

in decisions that look like noncompensatory ones. Effects of cue dispersion, more 

dispersed cue validities leading to more noncompensatory decisions (Bröder, 2003; 

Newell & Shanks, 2003), can be accounted for by the minimum activations of cues. Cues 

that are more accessible than others are more likely to enter working memory first and 

keep less accessible cues out, resulting in more noncompensatory type of behavior. In 

general, adaptation to the ecological structure (Bröder, 2003; Lawrence et al., 2018a; 

Rieskamp & Hoffrage, 2008; Rieskamp & Otto, 2006) is the result of changes in the 

accessibility of cues based on previous experiences with the cues. 

Like the single-strategy frameworks discussed above, the accessibility framework 

addresses the criticisms of the adaptive toolbox: eliminating the need for strategy 

selection, providing a falsifiable model, and being able to account for individual 

differences. However, the accessibility framework addresses these criticisms better than 

the other frameworks. The parameters in the accessibility framework have psychological 

grounding, eliminating the criticism that parameter fitting replaces strategy selection that 
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has been levied against PCS (Marewski, 2010; Marewski & Link, 2014). Further, the 

framework makes predictions that are falsifiable because the predictions are based on 

well-established memory research and the way the model is typically instantiated results 

in one free parameter (L). The accessibility framework can also demonstrate individual 

differences through the encoding parameter. Unlike EAM or PCS, the accessibility 

framework can also account for differences in search order because search order is not 

deterministic in the accessibility framework. 

The accessibility framework has several other similarities with the single-strategy 

models while providing a better process account of cue-based inferences. Like the 

evidence accumulation model (Lee & Cummins, 2004), the accessibility framework 

allows for decisions based on any number of cues, which matches empirical evidence that 

people often do not stop searching at the first discriminating cue nor do they always 

search all cues (Newell & Shanks, 2003; Newell et al., 2003). Yet, the search order and 

processes involved in search are better specified in the accessibility framework because it 

is not based on precomputed validity. Similar to PCS, the accessibility framework is 

based on prior experience (Betsch & Glöckner, 2010) and assumes decisions are based on 

all the evidence available to the decision maker (Betsch & Glöckner, 2010; Glöckner & 

Betsch, 2008a). However, unlike PCS, the processes accounting for the influence of prior 

experience and the determination of which cues are available are well specified in the 

memory representation of the learning environment. 

Overall, the accessibility framework provides a better theoretical account of cue-

based inferences than the current frameworks. In addition to addressing issues with the 

adaptive toolbox, it also addresses criticisms of the current single-strategy frameworks 
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(e.g. poor specification of search, too many parameters). Unlike the other frameworks, 

the accessibility framework is not based on a precomputed cue hierarchy but is instead 

based on memory accessible. Moreover, the process for cue generation is well specified 

and psychologically plausible because it is based on well-established memory 

phenomenon. Thus, the model can account for both the influence of direct and indirect 

memory manipulations as well as accounting for adaptive decision-making behavior. 
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CHAPTER 4: SIMULATION OF ACCESSIBILITY-BASED FRAMEWORK 

  

 

 

Before getting into the specifics of the experiments testing the accessibility 

framework, a simulation will be described. The goal of this simulation was to show that 

the accessibility framework mimics apparently different strategies without explicitly 

specifying qualitatively different strategies. Specifically, the simulation shows that the 

model behaves differently under highly dispersed cue validities compared to cue 

validities that are closer together. As noted above, cue validity dispersion is an 

environmental factor that has led to different strategy classifications with more dispersed 

cue validities leading to more noncompensatory classifications (Bröder, 2003; Newell & 

Shanks, 2003). The extension of the HyGene model described above was used to 

simulate the behavior of the accessibility framework. With this implementation of 

HyGene, the simulation provides predictions in terms of cue preferences, the number of 

cues searched, and decision behavior.   

 

4.1 Simulation Method 

 

Three data sets were simulated to use as training data for the HyGene model. 

These data sets included 200 pairs of options with each option having values for five 

dichotomous cues. The data sets differed in the dispersion of cue validities but had the 

same average cue validity as shown in Table 1. All cues had a discrimination rate of .6, 

meaning that for each cue the value differed between the options on 60% of the trials. 

The model was trained on each dataset using the method described in the model section. 
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Each option in the training dyads was encoded with either a loss context or win context, 

depending on which option had a higher criterion value. These traces were used to 

determine the overall activation for each cue. Then the normalized activations were used 

to give the probability of each cue being retrieved at the time of the decision. 

 

 

 

Table 1 

Validity of Cues for High and Low Dispersion Data Sets 
 

Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

High .91 .78 .70 .62 .51 

Med .77 .73 .70 .67 .63 

Low .72 .71 .70 .69 .68 

 

 

 

Fifty test trials were also simulated to look at the decision behavior of the model. 

These were presented as dyads in which the model must select which option is higher on 

the criterion based on the cue values. Importantly, the activations from the training data 

were used to determine which cues were available to the model at the time of the 

decision. The cues that were available in working memory can be thought of as the cues 

searched by the model. Because of the way the generation process operates, a varying 

number of cues may be used by the model for each decision. Only cues that have been 

generated into working memory were used in the decision process in which cue values 

were weighted by their normalized activations and summed. The option with the highest 

total was selected. If the options were tied, then a selection was made randomly. 
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In addition to manipulating the dispersion of validity in the training data, the 

encoding parameter and the threshold for the number of retrieval failures were also 

manipulated within the model. The encoding parameter was manipulated to show the 

differences in model performance under different levels of learning. The threshold for the 

number of retrieval failures was manipulated to demonstrate the effect of time constraints 

on the model.  

The way the model operates means that it should mimic both noncompensatory 

and compensatory behavior. When one cue is much more valid than other cues, as is the 

case for the high dispersion dataset, its probability of being generated into working 

memory first is high. Once this best cue is generated, other cues cannot exceed the 

activation of that cue so the best cue will be the only one active in working memory. If 

that cue fails to discriminate between the options, then the model randomly selects one of 

the options. In contrast, when cues are much closer in validity, the best cue may not be 

generated first. This results in more cues entering working memory and decisions that are 

more likely to match a compensatory strategy. Thus, the simulations should show 

differences depending on cue validity dispersion: less valid cues are used more 

frequently, more cues are used, and decisions match a compensatory strategy more often 

in the low dispersion dataset compared to the high dispersion data set. Establishing that 

the model can mimic different decision strategies is important for justifying it as an 

alternative to the current frameworks.  
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4.2 Simulation Results 

 

In general, the number of cues generated increased as the dispersion of validity 

decreased (as shown in Table 2). This pattern was stronger for higher levels of the 

encoding parameter and when the threshold for the number of retrieval failures was 

higher. Importantly, this matches the pattern that would be expected from different 

decision strategies without invoking qualitatively different strategies. The number of cues 

generated was also higher when the threshold of retrieval failures was higher. Again, this 

matches the idea that under time pressure people are more likely to use fewer cues. 

Finally, as the encoding parameter decreased, the number of cues selected tended to 

decrease. The differences in the number of cues generated for the levels of dispersion of 

cue validity also decreased as the encoding parameter decreased. 

 

 

  

Table 2 

Average Number of Cues Select by Data Set, Threshold for Retrieval Failures, and 

Encoding Parameter 

Threshold = 3 

 L=1 L=.8 L=.6 L=.4 L=.2 

High 1.64 1.65 1.63 1.64 1.61 

Med 1.78 1.75 1.73 1.68 1.61 

Low 1.78 1.78 1.74 1.68 1.62 
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Table 2 (continued). 

Threshold = 10 

 L=1 L=.8 L=.6 L=.4 L=.2 

High 1.73 1.75 1.74 1.72 1.71 

Med 1.96 1.93 1.87 1.82 1.70 

Low 2.01 1.98 1.90 1.82 1.70 

 

 

 

In addition to looking at the average number of cues generated, the different 

model conditions were also compared in terms of the proportion of decisions based on 

one cue, a sign of noncompensatory behavior. As the dispersion of validity increased, the 

number of decisions based on one cue also increased as shown in Table 3. This is in line 

with evidence for the use of more noncompensatory strategies when the dispersion is 

high. When the threshold for the number of retrieval failures was lower, the proportion of 

decisions based on a single cue was higher. Again, this matches the idea that under time 

pressure people are more likely to use fewer cues. Encoding parameter and the dispersion 

of validity appeared to interact, such that the encoding parameter did not have much of an 

effect on the proportion of times a single cue was generated when dispersion was high. 

However, when dispersion was low or at a medium level, the proportion of decisions 

based on a single cue increased as the encoding parameter decreased. At the lowest 

encoding parameter, the three dispersion conditions were nearly equal. 
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Table 3 

Proportion of Decision Based on a Single Cue by Data Set, Threshold for Retrieval 

Failures, and Encoding Parameter 

Threshold = 3 

 L=1 L=.8 L=.6 L=.4 L=.2 

High 0.48 0.47 0.48 0.48 0.50 

Med 0.41 0.42 0.43 0.46 0.49 

Low 0.41 0.41 0.43 0.46 0.49 

 

Threshold = 10 

 L=1 L=.8 L=.6 L=.4 L=.2 

High 0.42 0.41 0.41 0.42 0.43 

Med 0.31 0.33 0.35 0.38 0.44 

Low 0.30 0.31 0.34 0.38 0.44 

 

 

 

In terms of cue preferences, preference for the most valid cue was highest in the 

high dispersion condition and lowest in the low dispersion condition (see Figure 1). 

Conversely, preference for the lowest validity cue was strongest in the low dispersion 

condition and weakest in the high dispersion condition. Again, showing that the model 

can mimic different decision strategies. When the threshold for the number of retrieval 

failures was higher, preference for the most valid cue was generally higher. However, the 

threshold did not have a strong effect on the overall pattern of cue preferences. This is 

consistent with the idea that people simply select more cues when they have more time. 

As the encoding parameter decreased, preference for the more valid cues decreased while 
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preference of the least valid cues increased. Differences in preferences between the 

different dispersion conditions also tended to decrease. 
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Figure 1. Proportion of trials each cue was selected by data sets and encoding parameter. 
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Figure 1continued.  
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For decision outcome, as the dispersion of validity decreased, the proportion of 

decisions matching a compensatory strategy increased (Table 4). Again, showing that the 

model can mimic different decision strategies without actually invoking qualitatively 

different strategies. The manipulation of the threshold for the number of retrieval failures 

did not have a large effect of apparent decision strategy. In general, as the encoding 

parameter decreased, the proportion of decisions matching a compensatory strategy 

increased. This is likely because differences in preferences between the different cues 

generally decreased as the encoding parameter decreased, resulting in fewer decisions 

based on the most valid cues.  

 

 

 

Table 4 

Proportion of Decisions Matching Compensatory Rule When Compensatory and 

Noncompensatory Differ by Data Set, Threshold of Retrieval Failures, and Encoding 

Parameter 

Threshold = 3 

 L=1 L=.8 L=.6 L=.4 L=.2 

High .27 .31 .32 .39 .46 

Med .40 .44 .48 .50 .58 

Low .52 .54 .57 .56 .60 

 

Threshold = 10 

 L=1 L=.8 L=.6 L=.4 L=.2 

High .25 .25 .30 .37 .47 

Med .35 .39 .47 .53 .59 

Low .51 .51 .58 .58 .61 
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4.3 Simulation Discussion 

  

The above simulations demonstrate that the accessibility-based framework 

mimics changes in apparent decision strategy without invoking qualitatively different 

strategies. The model demonstrated differences in cue preferences, the number of cues 

generated, and option selected under training sets with different dispersions of validity. In 

general, the model showed more compensatory type behavior when dispersion was low: 

less preference for the most valid cue, more cues selected, and more decisions matching a 

compensatory type of decision. The model also showed shifts in apparent decision 

strategy toward compensatory types of decisions when the maximum number of retrieval 

failures decreased, a proxy for time pressure. Overall, the model demonstrates many of 

the common findings in the cue-based inferences literature, such as more decisions that 

seem compensatory under time pressure (Bröder & Gaissmaier, 2007; Bröder & Schiffer, 

2003; Rieskamp & Hoffrage, 2007) and under less dispersed validity conditions (Bröder, 

2003; Newell & Shanks, 2003). These simulations essentially provide a proof-of-concept 

for the experiments that follow. 

  



 

39 
 

CHAPTER 5: EXPERIMENTS 

  

 

 

Three experiments were conducted to test whether the accessibility framework 

provides the best account of adaptive decision making in cue-based inferences. As 

mentioned above, a few experiments have already shown that accessibility affects how 

cues are used (Lawrence et al., 2018a, 2018b; Platzer et al., 2014). However, these 

experiments fail to demonstrate that a memory-based framework truly provides the best 

account in terms of both information search and decision. Prior research has focused on 

cue preference with only a little attention paid to the decision processes. Further, research 

specifically looking at decisions have been framed within the multiple-strategy 

framework, arguing that accessibility affects strategy selection. The overall goal of the 

following experiments was to show that the accessibility framework accounts for 

differences in decisions processes that result from both direct manipulations of cue 

accessibility and manipulations of the decision environment that commonly result in 

different apparent strategies.  

 

5.1 Experiment 1: Serial Position Effects in Cue-Based Inferences 

 

The goal of the first study in this dissertation was to show that the accessibility 

framework can account for apparent strategy differences that result from both a direct 

memory manipulation and the manipulation of cue validity. In this study, memory was 

manipulated via the serial position of the correct discriminations of cues, which is when a 

cue correctly indicates which option is higher on the criterion. The manipulation of serial 
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position is based on evidence in the memory literature that the serial position of learned 

items affects later recall of that information (Bjork & Whitten, 1974). Mean cue validity 

and dispersion of cue validities were also manipulated based on evidence that these affect 

strategy selection (Bröder, 2003; Newell & Shanks, 2003). It was hypothesized that the 

effects of both manipulations would match predictions based on the accessibility-based 

framework. Differences in cue preferences and final decision that result from these 

manipulations should be caused by differences in the accessibility of the cues in memory. 

The other frameworks discussed in this proposal have no mechanism for accounting for 

the influence of a direct memory manipulation on cue use and decision in cue-based 

inferences.   

Long-term serial position effects have been well established in the memory 

literature. When learning word lists, people typically show both long-term primacy and 

recency (Bjork & Whitten, 1974). Specifically, when presented with a number of word 

lists, people tend to recall words presented at the beginning (primacy) and ends (recency) 

of each list better than information in the middle of each list. Both primacy and recency 

have also been demonstrated to influence decision-making (Hastie & Park, 1986; Hogarth 

& Einhorn, 1992; Peterson & DuCharme, 1967) and hypothesis generation (Lange, 

Thomas, Buttaccio, Illingworth, & Davelaar, 2013; Lange, Thomas, & Davelaar, 2012).    

Prior research has also shown that primacy affects cue preferences in cue-based 

inferences (Lawrence et al., 2018b). In that study, the serial position of correct cue 

discriminations was manipulated within training blocks. During training, participants 

were asked to choose which company had a higher stock based on five cues for each 

company. The position of correct discriminations was manipulated for two pairs of cues. 



 

41 
 

Cues were paired such that they had approximately the same validity, but one member of 

the pair correctly discriminated more often in the middle of each training block and the 

other correctly discriminated more in the beginning (primacy) or end (recency). The two 

experiments conducted in that study showed that people selected the cue that 

discriminated more frequently at the beginning compared to the one that discriminated 

more frequently in the middle, even when the middle cue had the same or slightly higher 

validity than the primacy cue. Although the exact mechanisms for this effect were not 

directly tested, the authors concluded that this may have been due to an encoding 

advantage for cues learned early in each block.  

Yet, the two experiments reported in that paper found slightly different results; 

the primacy effect was stronger in Experiment 2 compared to Experiment 1. The authors 

speculated that this difference was due to the cue validities being less dispersed in 

Experiment 2 compared to Experiment 1. Specifically, they argue that when the cue 

validities are greatly dispersed, people might not show a strong preference among the 

remaining cues once the two most valid cues were selected. As noted above, there is 

evidence that people use apparently different strategies when cues have more dispersed 

validities, specifically using more noncompensatory strategies (Bröder, 2003; Newell & 

Shanks, 2003). However, the previous study did not systematically manipulate cue 

validity. Moreover, this study was focused on cue preferences and did not make any 

hypotheses about the effect of the manipulations on final decisions.   

The current study provides a more systematic test of the influence of serial 

position and the dispersion and mean of cue validities in cue-based inferences than the 

previous study. Specifically, the serial position manipulation was implemented using a 
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similar method as Lawrence et al. (2018b). However, there were two serial position 

conditions: one in which the more valid cue pair included the primacy cue and the less 

valid cue pair included the recency cue and one in which the less valid cue pair included 

the primacy cue and the more valid cue pair included the recency cue. There were also 

two conditions for mean cue validity with the average validity of the cues being either 

high or low. Finally, there were two conditions for cue dispersion, where the cue 

validities were either highly dispersed or not. All of these manipulations were crossed 

resulting in eight experimental conditions. By systematically manipulating these 

variables, the experiment provides a more complete test of the accessibility framework by 

testing whether it correctly predicts the effects of both direct manipulations of memory 

and manipulations of the cue validity structure as well as the interaction between these 

variables. Further, this experiment tested the effect of these manipulations, not only on 

cue preferences, but also on apparent decision strategy by looking at decisions between 

companies at test.   

The accessibility framework makes several predictions in regards to both cue 

preference and actual decision. First, the manipulations were predicted to affect cue 

preference by affecting the accessibility of the cues. Recall from the description of the 

framework that cue accessibility is based on both the accuracy of the cues and general 

memorial effects. Thus, the serial position of correct cue discriminations should affect 

cue preference, such that participants generally prefer the primacy cue over the similarly 

valid middle cue as found in previous research (Lawrence et al., 2018b). A recency effect 

is not predicted based on previous research that has failed to find such an effect but was 

manipulated in case the effect interacted with validity manipulations. There are no 
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specific predictions about the effect of whether the primacy cue is in the more valid cue 

pair or the less valid. Yet, the strength of the effect of primacy is predicted to interact 

with the manipulations of cue validity. The effect should be stronger when all cues have 

more similar validities. This may be especially pronounced when the mean validity is 

lower. The reason for these predicted interactions is that the primacy effect may be 

unable to provide a noticeable boost to the accessibility in conditions in which the best 

cues are highly valid.   

The accessibility of the cues should also affect participants’ decisions, leading to 

apparently different strategies. The dispersion of the cue validities should affect apparent 

strategy such that more dispersed cue validities should result in more decisions matching 

a noncompensatory type strategy; this may be more pronounced when the average 

validity is higher. Conversely, less dispersed cue validities should result in more 

compensatory type of behavior, which may not be influenced by average cue validity. 

This prediction is based on the functioning of the accessibility framework such that when 

cues are much more valid than other cues, only the most valid cue is available at the time 

of the decision. The serial position manipulation should also affect apparent strategy such 

that when the more valid cue pair includes the primacy cue, decisions should become 

more noncompensatory compared to when the less valid cue pair includes the primacy 

cue. Again, this is because the primacy manipulation should provide a boost to the 

accessibility of a cue that is already relatively more accessible than the other cues 

because of its validity, making it more likely to be the only cue available. A boost to a 

less valid cue makes it more accessible in general but may not make it so much more 

accessible than other cues that it is the only one available. 
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5.1.1 Method 

  

There were 308 participants (approximately 39 participants in each condition) 

recruited for this study using the online experiment management system at Georgia 

Institute of Technology. Participants received course credit for their participation and 

could receive $5.00 for correctly selecting the company with the highest stock price on 

one randomly selected trial from the test phase.  

 The design of this experiment was a 2 (serial position) by 2 (mean cue validity) 

by 2 (dispersion of cue validity) between subjects design. The two conditions for the 

serial position manipulation were either the primacy cue was in the most valid cue pair 

and the recency cue was in the less valid cue pair or vice versa. The two conditions for 

the mean cue validity were .8 (high) and .65 (low). The two conditions for the dispersion 

of cue validity were a standard deviation of .05 (low) or .12 (high). This resulted in 8 

experimental conditions in the experiment. 

 Participants completed both a training phase and a test phase of a stock-

forecasting task in which they were asked to predict which of two companies would have 

a higher stock price based on the attributes of the companies. The training phase 

consisted of 5 blocks of 15 dyad comparisons. The test phase consisted of 40 dyad 

comparisons. There were five dichotomous attributes (cues) that were associated with 

each company: asset rating (AR), earning potential (EP), liquidity appraisal (LA), 

optimized capital (OC), and profit intensification (PI). The validities of the cues were 

manipulated such that there were two pairs of cues with similar validities and one cue 
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with a unique validity. The mean and dispersion of the cue validities were manipulated, 

as shown in Table 5, resulting in four different validity conditions.  

 

 

 

Table 5 

Validity of the Cues by Condition for Experiment 1 

  High Mean/ 

Low SD 

High Mean/ 

High SD 

Low Mean/ 

Low SD 

Low Mean/ 

High SD 

Cue 1 0.84 0.96 0.71 0.8 

Cue 2 0.84 0.96 0.71 0.8 

Cue 3 0.8 0.76 0.64 0.58 

Cue 4 0.8 0.76 0.64 0.58 

Cue 5 0.71 0.6 0.56 0.51 

Mean .80 .81 .65 .65 

SD .05 .13 .06 .12 

 

 

 

The frequency with which each cue correctly discriminated in the beginning (first 

five trials 1-5), middle (trials 6-10), and end (last five trials 11-15) of each block of the 

training phase were also manipulated. One member of each pair correctly discriminated 

more often in the middle of every block than either the beginning or the end (Cue 1 and 

Cue 3). The other member of the pair correctly discriminated more at the end or the 
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beginning of each block as shown in Table 6. The cue that was the primacy cue (more 

discriminations early) and the cue that was the recency cue (more discriminations at the 

end) were manipulated so that in one condition the primacy cue was in the higher validity 

pair and in the other condition the primacy cue was in the lower validity pair. This was 

done to isolate the effects of the serial position of cue discrimination on cue use while 

controlling cue validity. Note that Cue 5 was a filler cue that was not specifically 

manipulated.  

 

 

 

Table 6 

Average Number of Discriminations by Position in Each Training Block 

 High Mean/ Low SD Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

Begin (1-5) 2.4 4.8 2.2 1 2 

Middle (6-10) 2.8 1.8 3 1.8 2.4 

End (11-15) 2.4 1 2 4.4 2 

 

 High Mean/ High SD Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

Begin (1-5) 2.6 5 2.2 1 1.2 

Middle (6-10) 3.2 2 2.6 1.8 2.2 

End (11-15) 2.8 1.6 2 4 2 
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Table 6 (continued) 

 Low Mean/ Low SD Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

Begin (1-5) 1.8 4 2 0.8 1.4 

Middle (6-10) 2.8 1.4 2 1 2.4 

End (11-15) 1.8 1 1.8 4 1.4 

 

 Low Mean/ High SD Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 

Begin (1-5) 1.8 4 2 1 1 

Middle (6-10) 3.2 2 2 1 2.2 

End (11-15) 2.2 1.2 1.2 3.2 1.4 

Note: Order manipulation flips the beginning and ending trials in each block. 

 

 

 

To further explicate the method, note that Cue 1 and Cue 2 had equivalent 

validities, but Cue 2 had more correct discriminations at the beginning of each block 

compared to Cue 1 (in the condition in which the primacy cue is in the most valid cue 

pair). For Cue 3 and Cue 4, note that both had equivalent validities, but that Cue 4 had 

more correct discriminations at the end of each training block compared to Cue 3. If cue 

usage is dependent on long-term serial position effects, then participants should choose 

Cue 2 over Cue 1 (primacy) and may choose Cue 4 over Cue 3 (recency) in this 

condition. Overall discrimination rate (combining both correct and incorrect 
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discriminations) was held constant for Cues 1 through 4, meaning the values of individual 

cues differed between companies for about 60% of the trials. 

During the training phase, participants were presented with 75 company dyads 

presented in 5 blocks. Each block was labeled as corresponding to a specific market 

sector: technology, financial, utility, property, or healthcare. There were no other 

differences between blocks other than the label. The labels and the spatial locations of the 

cues were random between participants, meaning the cues listed in Table 6 did not appear 

in the same location or have the same label for all participants. The participants were 

asked to predict which of the two companies presented would have a higher stock value 

based on the attributes, as shown in Figure 2. Once they selected which company they 

thought would have a higher stock price they were given feedback on whether they were 

correct. 

 

 

 

 

Figure 2. Example of a single learning trial in Experiment 1. 
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Between each of the blocks, participants completed a 25-second distractor task in 

which they were asked to verify simple mathematical equations involving addition or 

subtraction of single digit numbers. Each equation was presented for 5 seconds and the 

participants indicated whether the solution was correct. 

         In the test phase, participants were presented with 40 dyads and asked to indicate 

which of the two companies they thought would have the higher stock value, like the 

training phase but without feedback. These companies were labeled as belonging to the 

service market sector, a sector not seen during training. Before comparing each company 

dyad, participants were told to select which cues they would like to use based on what 

they learned in the previous sectors. The number of cues that they had to select before 

they compared dyads varied between 1 and 5.  The number of cues participants had to 

select was manipulated to determine participant cue preference. The participants were 

given 8 test trials (dyads) for each required number of cues. For the cases in which the 

number of cues was less than 5, the participants clicked on the cue labels to select the 

cues that would be revealed on the next screen during their choice between the dyads. On 

the 8 trials in which they saw all the cues, 5 of those were structured to discriminate 

between compensatory and noncompensatory decisions. 

 

5.1.2 Results 

 

5.1.2.1 Learning 

Learning was checked using a generalized linear model with a binomial logit link 

to test whether block, order condition, dispersion of validity, and mean validity affected 
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performance during the training trials. Block (χ2 (4) = 36.90, p < .0001) significantly 

affected performance during training as shown in Figure 3. Planned comparisons for the 

effect of block showed that the odds of selecting the correct company were higher in the 

last block (O = 1.80) compared to the first block (O = 1.47, p < .001), suggesting that 

participants were able to learn.  

 

 

 

 

Figure 3. Percent correct during training across blocks for Experiment 1. 

 

 

 

Order condition (χ2 (1) = 5.67, p = .017), mean validity (χ2 (1) = 262.80, p < 

.0001), and dispersion of validity (χ2 (1) = 42.33, p < .0001) also significantly affected 

performance during training such that the odds of being correct were higher in the group 

in which primacy was manipulated in the less valid cue pair (O = 1.74, 82.60%) 

compared to when it was in the most valid cue pair (O = 1.66, 81.32% correct),  in the 

high mean group (O = 2.44, 91.71% correct) compared to the low mean group (O = .96, 

72.24% correct), and in the high dispersion group (O = 1.84, 83.10% correct) compared 
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to the low dispersion group (O = 1.57, 80.85% correct). There was also a significant 

interaction between dispersion of validity and mean validity (χ2 (1) = 36.10, p < .001), as 

shown in Figure 4. The dispersion of validities appeared to have a stronger influence on 

performance when the mean validity was high. There was also a significant interaction 

between mean validity and block (χ2 (4) = 9.52, p = .049) such that those in the high 

validity condition improved more across early blocks than those in the low validity 

condition. The differences in performance at training between the different mean 

conditions reflect the fact that the decision environment was more challenging in the low 

mean condition and does not necessarily indicate that those in the low mean condition 

could not learn. The other group differences at training were small and all conditions 

showed training performance above chance, suggesting that participants were able to 

learn.  

 

 

 

 

Figure 4. Percent correct during training by dispersion condition and validity condition. 
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5.1.2.2 Cue Preference 

Figure 5 shows cue preference for each cue by condition. A generalized linear 

model with a binomial logit link was used to test the effect of order condition, dispersion 

of validity and mean validity on cue preferences. The number of cues participant had to 

choose was also included as a predictor. Specifically, the model was predicting 

preference for the primacy cue (or recency cue) over its similar validity middle cue. Thus, 

it was only run on trials in which participants selected either the primacy cue or its 

similar validity middle cue, excluding cases in which none of the cues were selected or 

both of the cues were selected. Separate analyses were conducted to test preference for 

the primacy cue and preference for the recency cue.  
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Figure 5. Proportion of trials each cue was selected by dispersion and mean conditions. 

Note that Cue 1 and Cue 2 had the same validity by Cue 2 correctly discriminated more 

at the beginning (primacy) or end (recency) and that Cue 3 and Cue 4 had the same 

validity, but Cue 4 correctly discriminated more at the end (recency) or beginning 

(primacy). Bars indicate standard error. 

  

0

0.2

0.4

0.6

0.8

Cue

1

Cue

2

Cue

3

Cue

4

Cue

5

P
ro

p
o
rt

io
n
 o

f 
T

ri
al

s 
C

u
e 

w
as

 

S
el

ec
te

d

Primacy      Recency

Low Mean

Low Dispersion High Dispersion

0

0.2

0.4

0.6

0.8

Cue

1

Cue

2

Cue

3

Cue

4

Cue

5

P
ro

p
o
rt

io
n
 o

f 
T

ri
al

s 
C

u
e 

w
as

 

S
el

ec
te

d

Primacy      Recency

High Mean

Low Dispersion High Dispersion

0

0.2

0.4

0.6

0.8

Cue

1

Cue

2

Cue

3

Cue

4

Cue

5

P
ro

p
o
rt

io
n
 o

f 
T

ri
al

s 
C

u
e 

w
as

 

S
el

ec
te

d

Recency     Primacy

Low Mean

Low Dispersion High Dispersion

0

0.2

0.4

0.6

0.8

Cue

1

Cue

2

Cue

3

Cue

4

Cue

5

P
ro

p
o
rt

io
n
 o

f 
T

ri
al

s 
C

u
e 

w
as

 

S
el

ec
te

d

Recency    Primacy

High Mean

Low Dispersion High Dispersion



 

54 
 

Tests of the preference for the primacy cue, did not find a significant effect of 

order condition (χ2 (1) = 1.22, p = .269), dispersion of validity (χ2 (1) = 1.37, p = .242), 

mean validity (χ2 (1) = 1.03, p = .311) or the number of cues participants were instructed 

to select (χ2 (1) = 3.24, p = .357). There was a significant interaction between order 

condition and dispersion of validity (χ2 (1) = 4.56, p = .03). Post-hoc analyses indicated 

that those in the condition with primacy manipulated for the less valid cue pair and low 

dispersion of validity were much less likely to select the primacy cue (O = -.61) 

compared to those in the same order condition but with high dispersion of validity (z = 

2.35, p = .019; O = .05) and compared to those with low dispersion but primacy 

manipulated for the most valid cue pair (z = 2.33, p = .02; O = .05). No other conditions 

differed significantly. There was also a significant interaction between mean validity and 

dispersion of validity (χ2 (1) = 4.63, p = .03), such that those in the high mean condition 

with low dispersion of validity were much less likely to select the primacy cue (O = -.59) 

compared to those in the high mean condition with high dispersion of validity (z = 2.35, p 

= .019; O = .06) and compared to those in the low mean condition with low dispersion of 

validity (z = 2.23, p = .026; O = .03).  No other conditions differed significantly. 

A chi-square goodness-of-fit was conducted to compare the selection of only the 

primacy cue to its similar validity middle cue when only one of them was selected, 

collapsed across the number of cues selected. This was done to further examine the 

preference between the primacy cue and the middle cue within participants. Selection of 

either member of the pair was found to significantly differ from a chance selection of .5 

with preference for the middle cue when primacy was manipulated for the best cue pair 

and dispersion was high and mean was low, when primacy was manipulated for the most 
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valid cue pair and dispersion was low and mean was high, and when primacy was 

manipulated for the less valid cue pair and dispersion was low and mean was high, as 

shown in Table 7. Preference for the primacy cue was found in the condition in which 

primacy was manipulated for the best cue pair and the dispersion was low and mean was 

low. 

 

 

 

Table 7 

Chi-square Goodness-of-fit Tests for Preference for Primacy Cue 

Order Dispersion Mean 

Preference for 

Primacy Cue 

Chi-

Square 

P 

Primacy/Recency High High 0.4981 .00076 (1) 0.93 

Recency/Primacy High High 0.5309 1.91 (1) 0.17 

Primacy/Recency High Low 0.4072 20.24 (1) < .0001 

Recency/Primacy High Low 0.5097 .21 (1) 0.64 

Primacy/Recency Low High 0.4573 3.84 (1) 0.05 

Recency/Primacy Low High 0.2597 149.49 (1) <.0001 

Primacy/Recency Low Low 0.5542 6.83 (1) 0.009 

Recency/Primacy Low Low 0.46 3.44 (1) 0.06 

 

 

 

Tests of the preference for the recency cue also did not find a significant effect of 

order condition (χ2 (1) = 0.17, p = .678), dispersion of validity (χ2 (1) = 2.69, p = .10), 

mean validity (χ2 (1) = .08, p = .775) or the number of cues participants were instructed 

to select (χ2 (1) = 2.81, p = .423). There was a significant interaction between of the 
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dispersion of validity and order condition (χ2 (1) = 6.86, p = .009) and a significant three-

way interaction between mean validity, dispersion, and order condition (χ2 (1) = 8.05, p = 

.005). Post hoc analyses showed that when recency was manipulated for the less valid cue 

pair, mean validity was high, and dispersion was low, participants were much less likely 

to select the recency cue (O = -1.09) compared to when recency was manipulated for less 

valid cue pair, mean validity was high, and dispersion was high (z = 3.26, p = .001; O = 

.26) and compared to when recency was manipulated for more valid cue pair, mean 

validity was high, and dispersion was low (z = 3.20, p = .001; O = .16). 

A chi-square goodness-of-fit was conducted to compare the selection of the 

recency cue to its similar validity middle cue when only one of them was selected, 

collapsed across the number of cues selected as shown in Table 8. Selection of either 

member of the pair was found to significantly different from a chance selection of .5 such 

that participants tended to prefer the middle cue when recency was manipulated for the 

most valid cue pair and both mean validity and dispersion were high and when both mean 

validity and dispersion were low. Participants also tended to prefer the middle cue when 

recency was manipulated for the less valid cue pair and dispersion as low for both levels 

of mean validity. Selection of either member of the pair was found to significantly 

different from a chance selection of .5 such that participants tended to prefer the recency 

cue over the middle cue when dispersion was high, mean was high, and recency was 

manipulated for the less valid cue pair. 
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Table 8 

Chi-square Goodness-of-fit Tests for Preference for Recency Cue 

Order Dispersion Mean 

Preference for 

Recency Cue 

Chi-

Square 

P 

Primacy/Recency High High .5766 12.26 .0005 

Recency/Primacy High High .3353 56.34 <.0001 

Primacy/Recency High Low .4868 .42 .51 

Recency/Primacy High Low .4765 1.13 .29 

Primacy/Recency Low High .2565 163.62 <.0001 

Recency/Primacy Low High .5314 1.88 .17 

Primacy/Recency Low Low .4009 25.56 <.0001 

Recency/Primacy Low Low .3827 29.32 <.0001 

 

  

 

5.1.2.3 Decision Outcome 

A generalized linear model with a binomial logit link was also used to test the 

effect of order condition, dispersion of validity, and mean validity on participant’s 

decisions. This analysis was conducted on trials in which participants had access to all 

cues and compensatory and noncompensatory strategies differed in which company 

should be selected. Decisions differed significantly between dispersion conditions (χ2 (1) 

= 9.34, p = .002), mean condition (χ2 (1) = 5.99, p = .01), and order condition (χ2 (1) = 

7.37, p = .007).  There was also a significant three-way interaction between order 

condition, mean condition, and dispersion condition (χ2 (1) = 4.74, p = .029). In general, 

participants in the low dispersion group (O = 1.69) were more likely to select the 
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compensatory option compared to those in the high dispersion group (O = 1.12). The 

effects of the order condition and the mean condition depended on the three-way 

interaction. Participants in the high mean group were more likely to select the 

compensatory option compared to those in the low mean group, except when primacy 

was manipulated for the most valid cue pair and the dispersion was high as shown in 

Figure 6. For the effect of serial position, those with primacy manipulated for the least 

valid cue pair tended to select the compensatory option more frequently than when 

primacy was manipulated for the most valid cue pair except for in the low dispersion and 

high mean condition in which the difference disappears.   

 

 

 

 

Figure 6. Proportion selecting the compensatory option by order condition, mean 

condition, and dispersion condition. Bars indicate standard errors. 
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5.1.3 Discussion  

 

In general, this study provided partial support for the hypotheses of an 

accessibility-based framework for cue-based inferences. The goal of this study was to test 

predictions based on the accessibility framework for the effects of manipulations of 

validity and serial position. In terms of decision outcome, the manipulations of serial 

position, dispersion of validity, and mean validity affected the likelihood of selecting the 

compensatory option. As predicted, participants in the low dispersion group were more 

likely to select the compensatory option compared to those in the high dispersion group. 

This replicates prior research that has found that people are sensitive to the dispersion of 

cue validities when making decisions (Bröder, 2003; Newell & Shanks, 2003). Although 

there were differences in training performance between these conditions, these 

differences were small, meaning learning differences likely do not account for the above 

effect. 

Moreover, those with primacy manipulated for the less valid cue pair also tended 

to select the compensatory option more frequently, except in one condition. Again, this is 

not likely caused by the small differences in performance at training. This partially 

supports the hypothesis that there would be more compensatory-type of behavior when 

primacy was manipulated in the less valid cue pair. Additionally, the high mean and high 

dispersion condition with primacy manipulated for the best cue pair showed the least 

amount of compensatory decisions, as predicted. It also provides further evidence that 

serial position manipulations interacted with other aspects of the decision environment. 

The manipulation of the serial order did not seem to affect decisions in the environment 
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with low dispersion low and high mean. This could be because there was already a strong 

preference for the compensatory option in the low dispersion and high mean condition in 

general. Overall the results suggest that manipulations of serial position can affect how 

people combine cue information to arrive at a decision. 

Although mean validity was not predicted to have a main effect on decisions, the 

results also indicated that those in the high mean condition were more likely to select the 

compensatory option compared to those in the low mean condition, except in one 

condition.  It could be the case that more valid cues were given relatively more weight 

when mean validity was low because the less valid cues had very low validity, resulting 

in fewer compensatory decisions. For example, in the low mean and high dispersion 

condition, the least valid cue only performed slightly above chance. This effect was 

absent when primacy was manipulated for the most valid cue pair and the dispersion was 

high. It is possible that the manipulation of serial order increased noncompensatory 

decisions in this condition, making the high and low mean conditions more similar. This 

is partially consistent with the hypothesized effect that there would be fewer 

compensatory decisions in the high mean and high dispersion condition overall. 

It was hypothesized that the effects of serial position would interact with 

manipulations of validity, such that the primacy effect would be stronger under certain 

conditions. Although this study found evidence for an interaction between cue validity 

and serial position effects, the pattern of the interaction in this experiment was difficult to 

interpret and not consistent with predictions from the accessibility-based framework. It 

was hypothesized that serial position effects would likely be stronger in conditions in 

which the dispersion of validity was low. Yet, preferences for the primacy cue were not 
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consistently found when the dispersion of validity was low. In fact, in three out of the 

four conditions with low dispersion of validity, there was a trend for preferring the cue 

that discriminated correctly more often in the middle for both primacy and recency cue 

pairs.    

 In general, the expected differences in cue preferences were not well-supported by 

the results. There was not a consistent pattern for either a primacy effect or a recency 

effect. A primacy effect was only found in the condition with low mean validity and low 

dispersion and only when primacy was manipulated for the most valid cue pair. 

Similarly, a recency effect was only found in one condition: recency manipulated for the 

less valid cue pair with high dispersion and high mean validity. This is not consistent 

with previous research which found a robust primacy effect when primacy was 

manipulated for the less valid cue pair and dispersion of validity was low and found no 

evidence for a recency effect (Lawrence et. al., 2018b). However, the mean validity and 

dispersion of validity in the previous experiment fell between the manipulated values in 

the current study. It is possible that the effect interacts with validity in a nonlinear 

manner.    

Moreover, in a few conditions, there was evidence for a preference for the middle 

cue over the primacy cue. For the recency manipulation, this pattern was even stronger. 

In fact, in half of the conditions, there was evidence for a preference for the middle cue 

over the recency cue. This is not completely inconsistent with previous research 

(Lawrence et al., 2018b), which found some evidence for a preference for the middle cue 

over the recency cue. However, in that paper, the validity of the middle cue was slightly 
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higher than the validity of the recency cue so, unlike in the current experiment, validity 

could not be ruled out as a possible explanation.  

In order to better understand the effects of serial position, future research could 

focus on measuring additional process level data. For example, eye-tracking data might 

help elucidate whether there are differences in attention within learning blocks. It was 

hypothesized that cues that correctly discriminated early in blocks would have an 

encoding advantage. However, changes in attention could explain the preference of the 

middle cue in some conditions. It is possible that participants were more attentive during 

certain parts of the learning blocks, resulting in preferences for one cue over another even 

when the cues had the same validity. These attentional differences could have interacted 

with the manipulations of mean validity and dispersion of validity such that they only 

operated under certain conditions.  

Importantly, none of the current accounts of cue-based inferences can explain 

why participants would prefer the middle cue in some situations. In this experiment, cues 

were paired such that they had the same validity and discrimination rates but differed in 

terms of the serial position of correct discriminations. Thus, validity-based accounts (e.g. 

adaptive toolbox, EAM, and PCS) would predict that participants should show no 

preferences between the members of each cue pair. Alternatively, a memory-based 

account would predict that participants should show a preference for the cues that 

correctly discriminated more at the beginning or end of each block, but not in the middle. 

Even though the results of this experiment challenge all frameworks for cue-based 

inferences discussed in this dissertation, the effects of the manipulations on decision 

outcomes provide partial support for the accessibility-based framework.   
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5.2 Experiment 2: Effect of Delay on Cue-Based Inferences 

 

Although the first experiment tested the accessibility framework’s predictions 

about the effect of manipulations of cue validity and memory on cue preferences and 

decision, it did not test predictions about search order and stopping behavior. This second 

experiment tests the accessibility framework by examining search behavior more closely. 

Specifically, in this experiment participants were able to search cues sequentially and 

decide for themselves when to stop search. This provides a further test of the accessibility 

model and allows for model comparisons between the HyGene based accessibility 

framework and the other frameworks discussed in this dissertation, except PCS which 

does not have a specified search process. 

Memory was manipulated differently in this study compared to Experiment 1. 

Rather than manipulating the serial position of correct discriminations, this study 

introduced a retention interval between the training phase and the final test phase. Effects 

of retention intervals, the time between learning and recall, on memory are well 

established. Although the exact mechanisms leading to forgetting are under debate, there 

is clear evidence that the more time that passes between learning and test, the less 

information is retrieved (for review see Wixted, 2004).  However, the current frameworks 

for cue-based inferences cannot account for such a pervasive memory phenomenon.  

Because the accessibility framework is a memory-based model, only a slight 

adjustment is needed to allow it to account for the effects of retention intervals. Within 

MINERVA-2 (Hintzman, 1988), the model upon which HyGene is based, decay could 

only be modeled using the learning parameter (L). However, this implementation for 
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decay has been criticized for being unconstrained (Dimov, 2017). Instead of using L to 

model decay, the accessibility model can implement decay as a power function such that 

activation after a delay is a function of initial cue activation and a decay parameter: 

𝐴𝑠𝑑 = 𝐴𝑠𝑡
−(𝐴𝑠∗𝑑)                         (1) 

where Asd is the activation of a cue after a delay, As is the initial cue activation, t is the 

time between learning and retrieval, and d is the decay parameter. Although other 

functions accounting for decay exist (Rubin & Wenzel, 1996), the power function was 

chosen because it has been shown to successful (Wixted & Carpenter, 2007; Wixted & 

Ebbesen, 1991) and because it has been used in other cognitive architectures, such as 

ACT-R (Anderson et al., 2004). Modeling decay rate as a function of initial activation is 

based on the way practice effects have been implemented in ACT-R (Pavlik & Anderson, 

2005).  In contrast to the accessibility framework, effects of a delay cannot be easily 

modeled in the other frameworks because they assume cue search is based on pre-

computed hierarchies, which are not memory-based.  

As noted above, the overall goal for this dissertation is to show that the 

accessibility framework accounts for differences in decisions processes resulting from 

both direct memory manipulations and manipulations of the decision environment. Thus, 

in addition to manipulating memory via different retention intervals, the dispersion of cue 

validity was also manipulated. This manipulation was similar to Experiment 1 with one 

condition having highly dispersed cue validities and one condition having less dispersed 

cue validities, which was manipulated between participants. The retention interval was 

manipulated within participants with a test phase immediately following learning and 

another test phase a week later. These conditions were compared in terms of cue search 
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(both cue selection and order of selection), stopping behavior (number of cues searched, 

decision time), and decision (option selected).  

The accessibility framework makes a number of predictions in regards to the 

effect of these manipulations on cue-based inferences. As shown in the previous 

experiment, it is expected that participants in the less dispersed validity condition will 

show more compensatory like behavior compared to the highly dispersed condition. 

Participants should search more cues, show a weaker preference for the most valid cue 

(as measured by selection and order of selection), and select the compensatory option 

more often. Although the mechanisms differ, the other models make similar predictions 

in regards to the effects of cue dispersion. The evidence accumulation model assumes the 

decision threshold will be reached with a less extensive search in the high dispersion 

condition compared to the low. This means the same pattern of behavior predicted for the 

accessibility framework is also predicted by EAM. The adaptive toolbox also assumes 

differences in behavior between the groups, such that participants may use Take-the-Best 

in the high dispersion condition and WADD in the low dispersion condition. This means 

in the low dispersion condition the adaptive toolbox assumes exhaustive search, which 

neither the accessibility framework nor EAM assume. Note, parallel constraint 

satisfaction does not specify search processes but assumes all available information is 

used.  

Although all models assume differences caused by the manipulation of the 

dispersion of cue validity, only the accessibility framework can account for differences 

caused by the retention interval. The accessibility framework assumes participants will 

behave differently during the test phase after the week-long retention interval compared 
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to the immediate test phase. This may interact with the manipulation of the dispersion of 

cue validity. The retention interval should result in more compensatory-type of behavior 

in both dispersion groups, but the effect may be stronger in the high dispersion group. 

Before getting into specifics of the experiment, simulations of the different decision 

models will be discussed to demonstrate these predictions. 

 

5.2.1 Model Simulations 

 

5.2.1.1 Accessibility-Based Framework 

Simulations were conducted to demonstrate the behavior of the HyGene 

accessibility-based model with the decay parameter under two different validity 

dispersions. The two data sets used for training participants in the current experiment 

were used as training data for the HyGene model. The model was trained using the 

method described in the simulation section of this dissertation.  Additionally, the decay 

parameter detailed in the introductory section for this experiment was used in this 

simulation. In addition to training on either the high or low validity dispersion data sets, 

the encoding parameter and the decay parameter were also manipulated within the model.  

The encoding parameter was manipulated to show the differences in model performance 

under different levels of learning. The decay parameter was manipulated to show the 

effects of different decay rates on the performance of the model, as would be expected 

after a retention interval. The discussion of the results of the simulation will focus on the 

effects of decay and how it interacts with the encoding parameter and the dispersion of 
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validity. A detailed discussion of the effects of the encoding parameter and the dispersion 

of validity on the model can be found in the previous simulation. 

5.2.1.1.1 Number of Cues Generated 

In general, the number of cues generated increased as the dispersion of validity 

decreased (as shown in Table 9). This pattern was stronger for higher levels of the 

encoding parameter. As the encoding parameter decreased, the number of cues selected 

tended to decrease. Yet, the number of cues generated increased as the decay parameter  

increased, matching the prediction that more cues are used when there is a delay between 

training and test. 

 

 

 

Table 9 

Average Number of Cues Selected by Data Set, Encoding Parameter, and Decay 

Parameter 

 

 

 

In addition to looking at the average number of cues generated, the performance 

of the model under different parameters was also compared in terms of the proportion of 

decisions based on one cue, see Table 10. As the decay parameter increased, the 

 High Dispersion Low Dispersion 

 Decay = 0 Decay = 1 Decay = 2 Decay = 0 Decay = 1 Decay = 2 

Encoding       

1.0 1.74 1.90 2.00 1.96 2.04 2.15 

0.6 1.76 1.91 2.01 1.93 2.04 2.12 

0.2 1.72 1.89 1.98 1.75 1.92 2.03 
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proportion of decisions based on a single cue also decreased. Again, demonstrating the 

prediction that people use more cues when there is a delay between training and test. 

  

 

 

Table 10 

Proportion of Decisions Based on a Single Cue by Data Set, Encoding Parameter, and 

Decay Parameter 

 

 

 

5.2.1.1.2 Cue Preferences 

When the decay parameter was set to zero, the results of this simulation matched 

the simulation discussed earlier in this dissertation as shown in Figure 7. In general, as 

the decay parameter increased, preference for the most valid cue decreased and 

preference for the least valid cue increased.  At the lowest level of the encoding 

parameter, preferences between cues were nearly equal, especially when dispersion was 

low.  At higher levels of the encoding parameter, preference for the middle cues tended to 

increase, especially for the high dispersion condition. Overall, these simulations 

demonstrate the prediction that cue preferences change as a result of the delay between 

learning and test.

 High Dispersion Low Dispersion 

 Decay = 0 Decay = 1 Decay = 2 Decay = 0 Decay = 1 Decay = 2 

Encoding       

1.0 .41 .33 .29 .32 .28 .24 

0.6 .41 .33 .29 .33 .28 .25 

0.2 .43 .33 .30 .42 .32 .28 
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5.2.1.1.3 Decision Outcome 

When the decay parameter was high for moderate and high levels of the encoding 

parameter, the proportion of decisions matching compensatory strategy was increased 

(shown in Table 11). This demonstrates the prediction that the number of compensatory 

decisions increases when there is a delay between learning and test. Decay did not have a 

strong effect on the option selected when the decay parameter was moderate or when the 

encoding parameter was low. 

 

 

 

Table 11 

Proportion of Decision Matching Compensatory Rule When Compensatory and 

Noncompensatory Differ by Data Set, Encoding Parameter, and Decay Parameter 

  

 

 

5.2.1.2 Simulation of EAM, TTB, and WADD 

Simulations were also conducted to show the behavior of the other models: TTB, 

WADD, and EAM. Because none of these models include a learning portion, the models 

were based on the ecological validity of the two dispersion conditions. Model behavior 

was simulated for the test trials. This is straightforward for both TTB and WADD. For 

TTB, cues were searched in order of validity until a discriminating cue was found for 

 High Dispersion Low Dispersion 

 Decay = 0 Decay = 1 Decay = 2 Decay = 0 Decay = 1 Decay = 2 

Encoding       

1 .250 .251 .456 .349 .342 .508 

.6 .270 .275 .474 .437 .431 .528 

.2 .438 .439 .438 .567 .562 .620 
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each test trial. The model then selected the option with the higher value on that cue. For 

WADD, every cue was searched for each trial and the option selected was determined by 

weighing the cues by their validity.  

The behavior of EAM was simulated following the description of EAM found in 

Cummins & Newell (2005). The likelihood of each option being higher on the criterion 

was calculated based on the validity of the cues. This was done sequentially until the 

likelihood exceeded the threshold parameter. For example, at a threshold of 0, the model 

mimics TTB such that the option that is highest on the first discriminating cue is selected. 

Simulations were run for five different levels of the threshold parameter: 0, 1, 2, 3, and 4. 

Because EAM, TTB, and WADD, are deterministic models, they were only simulated on 

a single run through the test trials. 

5.2.1.2.1 Number of Cues Selected. 

For EAM, as the threshold increased the average number of cues selected 

increased as shown in Table 12. This increased more quickly for the low dispersion 

condition than for the high dispersion condition. For TTB, the average number of cues 

selected was the same as EAM with a threshold of 0, 1.64. WADD always selected all 

cues. Compared to HyGene accessibility framework, EAM generally selected a larger 

number of cues.  
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Table 12 

Average Number of Cues Selected for EAM at Different Levels of the Threshold 

Parameter 

Threshold 0 1 2 3 4 

High 1.64 1.94 2.56 4.38 4.9 

Low 1.64 2.54 4.38 4.92 5 

 

 

 

As shown in Table 13, at low levels of the threshold parameter the majority of 

decisions were based on single cue, but this dropped to zero at higher levels of the 

threshold parameter for EAM. At low levels of the threshold parameter, EAM predicts a 

larger number of decisions based on a single cue than the HyGene accessibility-based 

framework. HyGene predicts more cues based on a single cue compared to EAM at 

higher levels of the threshold parameter. 

 

 

 

Table 13  

Proportion of Decisions Based on a Single Cue for EAM at Different Levels of the 

Threshold Parameter 

Threshold 0 1 2 3 4 

High .6 .6 .6 0 0 

Low .6 .6 0 0 0 

  

 

 

5.2.1.2.2 Cue Preferences 

Unlike the HyGene accessibility framework, the other models showed less 

variability in cue selection behavior; these models always selected the most valid cue as 

shown in Figure 8. As the threshold increased for EAM, the proportion of trials using the 
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less valid cues also increased. Again, TTB is the same as EAM at a threshold of 0, 

meaning it used the best cue almost exclusively. In contrast, WADD always used all 

cues.  
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Figure 8. Proportion of trials each cue is selected by threshold parameter and dispersion 

of validity. 
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5.2.1.2.3 Decision Outcome 

Compared to HyGene, the other models had less variability in the option selected 

(see Table 14). No matter the threshold, EAM for the high dispersion condition always 

selected the non-compensatory option because high values on the less valid cues could 

not out-weigh a high value on the more valid cues. For the low dispersion condition, 

EAM always selected the compensatory option except at low levels of the threshold 

parameter. TTB always selected the non-compensatory option for both dispersion 

conditions and WADD always selected the compensatory option.  

 

 

 

Table 14.  

Proportion of Decisions Matching Compensatory Rule When Compensatory and 

Noncompensatory Differ by Dispersion of Validity and Threshold Parameter 

Threshold 0 1 2 3 4 

High 0 0 0 0 0 

Low 0 0.4167 1 1 1 

 

 

 

5.2.2 Method 

 

There were 77 total participants in this study. However, only those who attended 

both sessions were included in data analyses. This resulted in 66 participants with 34 in 

the high dispersion condition and 32 in the low dispersion condition. Participants 

received course credit for their participation. They also received a bonus check based on 

the points they earned throughout both sessions of the experiment. The average bonus 

earned in the first session was $4.19 and in the second session it was $2.53 
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The design of this experiment was a 2 (retention interval) by 2 (dispersion of cue 

validity) with the retention interval manipulated within subjects and dispersion 

manipulated between subjects. The two conditions for the dispersion of cue validity were 

a standard deviation of .05 (low) or .14 (high).  

The training phase of this experiment was like Experiment 1 with participants 

learning how five different cues could be used to predict stock price. The procedure 

differed from Experiment 1 in a few ways. The dispersion of the cue validities was 

manipulated so that in one group the standard deviation of the cue validities was .05 and 

in the other group the standard deviation of the cue validities was .14 as shown in Table 

15. The training phase was not divided into blocks, instead, participants completed 100 

training trials in a single block. To incentivize good performance, participants earned 5 

points for each correct answer during this phase. 

 

 

 

Table 15 

Validity of the Cues by Condition for Experiment 2 

  High Dispersion Low Dispersion 

Cue 1 .91 .77 

Cue 2 .78 .73 

Cue 3 .70 .70 

Cue 4 .62 .67 

Cue 5 .51 .63 
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Table 15 (continued). 

Mean .70 .70 

SD .14 .05 

 

 

 

Once participants completed the training phase, they began the first test phase. 

Unlike Experiment 1, participants were allowed to determine for themselves the number 

of pieces of information to use and when they would like to stop search. The test phase 

looked similar to the training phase, except none of the cue information was immediately 

available. For each cue, participants were able to reveal information by clicking on a 

button to purchase the cue information for both companies. Participants were required to 

purchase at least one piece of information. To incentivize more careful cue search, each 

cue cost 1 point to be revealed. However, participants earned 10 points for each correct 

answer, so they could still earn 5 points for a correct response even if they decided to 

purchase all the information. Participant s completed 50 test trials during this phase. A 

second test phase then took place a week later. This phase was the same as the previous 

test phase. 

 

5.2.3 Results 

 

5.2.3.1 Learning 

A generalized linear model with a binomial logit link was used to test if trial and 

dispersion of validity affected performance during the training trials. Trial (χ2 (1) = 5.90, 
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p = .015) significantly affected performance during training such that performance 

increased across training trials. Dispersion of validity did not significantly affect 

performance during training (χ2 (1) = 2.20, p = .138) and there was no interaction 

between dispersion of validity and trial (χ2 (1) = 0.24, p = .624). A binomial test, 

collapsed across conditions, also showed that the proportion of correct responses on the 

last quarter of training trials (.82) was above a chance level of .5 (z = 25.90, p <.0001), as 

shown in Figure 9, suggesting that participants were able to learn. 

 

 

 

 

Figure 9. Proportion correct on the last 25 trials by participant. 

 

 

 

5.2.3.2 Number of Cues Selected and Decision Time 

A Poisson regression with a log link was used to test whether dispersion of 

validity and retention interval affected the number of cues participants selected at test. 

Neither dispersion of validity (χ2 (1) = 2.85, p = .091) nor retention interval (χ2 (1) = 

0.58, p = .445) significantly affected the number of cues selected and there was no 
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interaction (χ2 (1) = 0.04, p = .851). The median number of cues selected per trial was 4 

as shown in Figure 10.  

 

 

 

 

Figure 10. Number of cues selected by dispersion condition and retention interval. Bars 

indicate standard errors. 

 

 

 

A generalized linear regression was used to test whether dispersion of validity and 

retention interval affected the amount of time participants took for each trial at test. 

Decision time was log transformed. Dispersion of validity did not significantly affect 

decision time (χ2 (1) = 2.06, p = .15). Retention interval significantly affected decision 

time (χ2 (1) = 26.10, p < .001) such that participants took less time in the delayed session 

(M = 6.013, SE = .335) compared to the session immediately following training (M = 

7.51, SE = .35).  
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5.2.3.3 Decision Outcome 

A generalized linear model with a binomial logit link was used to test the effect of 

dispersion of validity and retention interval on participant’s decisions. This analysis was 

conducted on trials in which the compensatory and noncompensatory strategies differed 

in which company should be selected. The number of cues selected was also included as 

a predictor in the model. Retention interval did not significantly affect the option selected 

(χ2 (1) = .08, p = .777). Dispersion condition significantly affected the likelihood of 

selecting the compensatory option (χ2 (1) = 6.46, p = .011) such that participants were 

more likely to select the compensatory option in the low dispersion condition (O = 2.209; 

82.94%) compared to the high (O = 1.540; 77.7%). Moreover, participants were also 

more likely to select the compensatory option as the number of cues selected increased 

(χ2 (1) = 20.47, p < .001) as shown in Figure 11.  

 

 

 

 

Figure 11. Proportion selecting the compensatory option when compensatory and 

noncompensatory differ. Bars indicate standard errors. 
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A generalized linear model with a binomial logit link was also used to test the 

effect of dispersion of validity and retention interval on participant’s performance during 

the test trials. This analysis was conducted on trials in which the compensatory and 

noncompensatory strategies indicated the same company should be selected. The number 

of cues selected was also included as a predictor in the model. Neither dispersion of 

validity (χ2 (1) = 1.45, p = .229) nor number of cues selected (χ2 (1) = 1.77, p = .183) 

significantly affected the option selected. Retention interval did significantly affect the 

likelihood of selecting the correct option (χ2 (1) = 5.88, p = .015) such that participants 

were more likely to select the correct option in during the immediate session (O = 1.318; 

78.83%) compared to the delayed session (O = 1.164; 76.20%). 

5.2.3.4 Cue Preferences 

A generalized linear model with a binomial logit was also used to test whether cue 

preferences were affected by dispersion of validity and retention interval (see Figure 12 

for the overall pattern of selections). This was done individually for each cue with the 

number of cues selected also included as a predictor. The number of cues selected was 

the only significant predictor for the best cue (χ2 (1) = 18.98, p < .001), the second best 

cue (χ2 (1) = 28.51, p < .001), and the worst cue (χ2 (1) = 44.58, p < .001), such that the 

more cues selected the more likely a participant was to select that particular cue.  

For the third best cue, there was a significant interaction between number of cues 

selected and dispersion condition (χ2 (1) = 4.78, p = .029) such that when few cues were 

selected (1 or 2), those in the low dispersion condition were more likely to select this cue, 

but when more cues were selected (3 or 4), those in the high dispersion condition were 

more likely to select this cue. Number of cues selected was also significant for the third 
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cue (χ2 (1) = 38.88, p < .001). Dispersion condition affected the selection of the fourth 

most valid cue (χ2 (1) = 4.64, p = .031) such that those in the low dispersion condition 

were more likely to select this cue (O = .988) compared to those in the high dispersion 

condition (O = 1.916). Number of cues selected was also significant for the fourth cue (χ2 

(1) = 33.07, p < .001). 

 

 

 

 

Figure 12. Proportion of trials each cue was selected by dispersion condition and 

retention interval. Bars indicate standard errors. 

 

 

 

Figure 13 shows the percentage of trials in which each individual cue was 

selected in a particular order position out of all trials in which it was selected, collapsed 

across conditions. A generalized linear model with a cumulative logit link was used to 

test whether the order of cues selected was affected by dispersion of validity and 

retention interval. This was done individually for each cue with the number of cues 

selected also included as a predictor. These analyses were only run on trials in which the 

cue being modeled was selected. Number of cues significantly predicted the order of cue 
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selections for all cues (χ2 (1) = 16.69, p < .001; χ2 (1) = 18.11, p < .001; χ2 (1) = 24.07, p 

< .001; χ2 (1) = 19.80, p < .001, χ2 (1) = 21.31, p < .001). This was an artifact of the 

nature of the order of selection because the more cues that were selected later a cue could 

be selected in the order. The number of cues selected was included in the model to 

control for this when looking at the effects of the other manipulations. 

 

 

 

 

Figure 13. Percent of trials for each order of selection by cues in order of validity. For 

example, Cue 1 was selected first in approximately 50% of the trials in which it was 

selected. 

 

 

 

For the third cue, retention interval significantly affected the order of cue 

selections (χ2 (1) = 4.88, p = .027) such that the third cue tended to be selected earlier in 

the second session compared to the first. For the fourth cue, there was a significant 

interaction between the number of cues selected and retention interval (χ2 (1) = 4.03, p = 

.045). When fewer than five cues were selected, there were no large differences in the 

selection order. Yet when all five cues were selected, the fourth cue tended to be selected 
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more in middle during the immediate test phase but more often as either the first of the 

last cue in the delayed session. No other manipulations were significant for the other 

cues. 

5.2.3.5 Model Fitting 

In order to compare how well each model accounted for the data, fit analyses 

were conducted by determining the likelihood of participant cue selection behavior under 

the various models: random, TTB, WADD, EAM, and HyGene accessibility-based 

framework. The probability of each cue being selected was determined by normalizing 

the cue selections of the various models based on the simulations of each model 

discussed above. The response probabilities were applied stochastically without 

replacement to calculate the likelihood of the participant’s pattern of cue selections. For 

example, assume a participant selected Cue 3 and then Cue 4. Under a random model, the 

likelihood of selecting Cue 3 first is .2 and the likelihood of selecting Cue 2 second is 

.25; this results in a likelihood of .05 (.2 multiplied by .25).  The probability of each 

number of cues being selected was also determined by normalizing the proportion of 

decisions based on each number of cues from the simulated model behaviors. For 

example, the probability of choosing any number of cues in a random model is .2. The 

log likelihood of the pattern of cues selected was combined with the log likelihood of the 

number of cues selected to calculate the log likelihood of each model for each trial for 

individual participants. These likelihoods were then used to derive fit statistics: G2 and 

BIC. This was done at the individual participant level and at the aggregate level for both 

sessions. 
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The overall model fits are shown in Table 16. For EAM and HyGene, the fits 

shown are for the best fitting parameters for those models for each participant. The fits 

for the delayed session were then calculated by using the best fitting parameters from the 

immediate session for both EAM (threshold) and HyGene (encoding). However, the 

decay parameter was then also fit for HyGene. At the aggregate level, the best fitting 

model was the random model for both the immediate and delayed sessions.  

 

 

 

Table 16 

Aggregated Model Fits to Participant Cue Selection Pattern and Number of Cues 

Selected for Experiment 2  

  Random TTB WADD EAM HyGene 

Immediate G2 38033.5 92451.2 76092.1 44017.12 54123.07 

 BIC   -54417.7 -38058.6 -5991.72 -16097.7 

Delayed G2 37828.6 90676.4 77444.1 44996.02 49153.56 

 BIC   -52847.8 -39615.5 -7159.32 -11333.1 

Note: BIC is calculated in comparison to the random model. 

 

 

 

Each participant was also classified based on which model had the best BIC 

compared to the random model as shown in Table 17. If the BIC was less than 0, then 

participant was classified as best fit by the random model. Again, the majority of 

participants were classified as using a random model.  
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Table 17 

Proportion of Participants Classified as Best Fit by Each Model When Fitting Cue 

Selection Pattern and Number of Cues Selected 

 Random TTB WADD EAM HyGene 

Immediate .68 .05 .05 .11 .12 

Delayed .53 .03 .05 .21 .18 

 

 

 

Model fits were also conducted only on the pattern of cue selections without 

including fit to the number of cues selected. This was done because the patterns of 

selection shown in both Figure 12 and Figure 13 suggests that participants were not 

selecting cues in a truly random matter. It is possible that the number of cues participants 

were selecting could not be well accounted for with any of the models while the pattern 

of cue selections could be. It is important to note that results from this model fitting help 

determine the potential cause of the poor model fits above, but do not provide compelling 

evidence for any models because it ignores the number of cues selected for which all of 

these models make predictions.   

Table 18 shows the model fits when the number of cues selected was not included 

in the fitting algorithm. When the number of cues was no longer being fit, both HyGene 

and EAM fit the data better than a random model, but the evidence accumulation model 

provided the best fit to the data for both the immediate and delayed sessions.   
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Table 18 

Aggregated Model Fits to Participant Cue Selection Pattern Only for Experiment 2  

  Random TTB WADD EAM HyGene 

Immediate G2 27411.2 56002.1 27411.2 24197.4 26521.5 

 BIC   -28590.9 0 3205.7 1164.6 

Delayed G2 27206.3 5556.7 27206.3 23780.1 24702.4 

 BIC   -28358.4 0 3418.1 2487.7 

Note: BIC is calculated in comparison to the random model. 

 

 

 

Participants were also classified based on which model had the best BIC 

compared to a random model as shown in Table 19. In the immediate session, more 

participants were classified as using EAM compared to the other models. In the delayed 

session, approximately equal numbers of participants were classified as using EAM and 

HyGene. 

 

 

 

Table 19 

Proportion of Participants Classified as Best Fit by Each Model When Fitting Cue 

Selection Pattern Only 

 Random TTB WADD EAM HyGene 

Immediate - .05 .21 .45 .29 

Delayed - .05 .21 .38 .36 

Note: WADD and random model make the same predictions 
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5.2.4 Discussion 

 

Overall, this experiment does not provide strong evidence for a memory-based 

account of cue-based inferences. The goal of this experiment was to test the predictions 

of the accessibility-based framework in terms of the effects of dispersion of validity and 

retention interval on cue search behavior and decision outcome. Only one hypothesis 

based on the accessibility framework was confirmed. This experiment did find some, but 

not all, of the expected differences between the two validity dispersion conditions. The 

two conditions did not differ in the number of cues selected nor the amount of decision 

time. However, those in the low dispersion condition were more likely to select the 

compensatory option compared to those in the high dispersion condition. Further, there 

were differences in cue selection behavior between these conditions such that those in the 

low dispersion condition were more likely to select the fourth most valid cue and were 

more likely to select the third most valid cue when few cues were selected.  

Taken all together, these results suggest that dispersion conditions differed in the 

way in which the cues were used to make decisions even though they did not differ in the 

amount of information selected nor decision time. This replicates prior work showing that 

participants’ actual decisions match the ecological structure of the environment (Bröder, 

2003; Lawrence et al., 2018a; Rieskamp & Hoffrage, 2008; Rieskamp & Otto, 2006) and 

replicates findings from Experiment 1. At the same time, it challenges work that suggests 

that participants search information differently under these environments because there 

were no differences in the number of cues selected or decision time. As noted above, the 
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adaptive toolbox, EAM, and HyGene all assumed that there would be changes in the 

number of cues searched between the different dispersion conditions. 

There was also no evidence for the expected differences between the immediate 

and delayed trials in the number of cues selected, cue preferences, or decision time. 

Opposite to what was expected, participants took longer on decisions in the immediate 

test trials compared to the delayed test trials. Which could be taken as evidence for a 

change in the way participants were making decisions after a delay, although not in the 

way that was expected. However, there were no differences between immediate and 

delayed test trials in which company was selected when compensatory and 

noncompensatory strategies differed. And the only difference in cue preferences was in 

the order of selection for the third and fourth most valid cues. This suggests that 

participants did not substantially change the way they searched for information or the 

way they used the information after the week delay. One potential account for the change 

in decision time is that participants were simply not trying as hard in the delayed test 

trials as evidenced by poorer performance compared to the immediate test trials. 

 One possible explanation for why this experiment failed to find many differences 

between conditions is the number of cues participants were selecting at test in both the 

immediate and delayed sessions. Participants tended to select more cues than necessary to 

maximize their final point total, especially in the high dispersion condition. Because most 

participants were selecting at least four cues, this resulted in a sort of ceiling effect for the 

comparison between the immediate and delayed sessions both in terms of the number of 

cues selected and preference for individual cues. This may also partially explain the lack 

of difference between the two dispersion conditions in terms of the number of cues and 
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decision time. The cost of the cues was set in a way to try to encourage selective behavior 

but may have been set too low. A future study could specifically manipulate the cost of 

the cues to determine the effect that has on cue selection.  

 When fitting the number of cues selected and the pattern of cues selected, none of 

the models tested in the model fitting provided a good fit to the data. Again, this is likely 

because of the number of cues participants were selecting. Participants generally showed 

a preference for more valid cues over less valid cues, suggesting that their cue selection 

behavior was not entirely random. In fact, when the number of cues was not included in 

the model fitting procedure, both EAM and HyGene outperform the random model with 

EAM providing the best fit. Yet, the number of cues the participants selected was best 

accounted for by a random model. Both TTB and HyGene assume that few cues are 

selected, typically one or two for HyGene and a single cue for TTB. At low levels of the 

evidence threshold, EAM also assumes few cues are selected. However, at higher levels, 

EAM tends to favor a larger number of cues selected, typically three or five. This is likely 

why EAM provided the second-best fit to the data. Yet, it is important to note that EAM 

also assumes that cues are checked exclusively in order of validity. The model fitting 

procedure used assumed stochastic selection of cues for all models rather than 

deterministic; this was done to put the other models in the same terms as HyGene which 

does not assume a deterministic cue order. However, this means that the fitting procedure 

does not fully capture true model behavior for those models that assume a validity-based 

search order. 

 Although this experiment failed to provide evidence for a memory-based account 

for cue-based inferences, it also does not provide compelling evidence for any other 
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account. The toolbox account assumes that participants follow a specific strategy during 

cue-based inference, but very few participants could be classified as using TTB or 

WADD. Moreover, the lack of differences in process data (decision time and the number 

of cues selected) between the dispersion conditions also challenges the idea of different 

strategies being used. The evidence accumulation account provided the best fit to the data 

but still failed to fit better than a random model when the number of cues selected was 

taken into account. As noted above, future research could specifically manipulate the cost 

of cue information to determine how that affects participant behavior as this likely 

influenced selection behavior in the current study.  

 

5.3 Experiment 3: Cue-Based Inferences from Memory 

 

The first two experiments tested predictions of the accessibility framework in 

environments in which the cue information was available to the participants. Yet, 

arguments around the adaptive toolbox often focus on the distinction between decisions 

made from givens and decisions made from memory. The above experiments are 

examples of decisions made from givens because at least some of the cue values were 

available to the participants while they were making their decisions. In contrast, 

participants must retrieve cue information from memory in decisions from memory. 

Although most of the studies testing different accounts of cue-based inferences use 

decisions from givens, Gigerenzer et al. (1999) argue that the tools within the adaptive 

toolbox, especially Take-the-Best, are more suited for decisions from memory. Moreover, 

they also argue that decisions from memory are more common than decisions from 
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givens. Thus, showing that the accessibility framework can account for decisions in this 

context is important.  

The primary reason for a lack of research on cue-based inferences from memory 

is the methodological challenge. In decisions from given information, testing assumptions 

about cue preferences and search behavior is rather straightforward because researchers 

can directly observe these behaviors. When decisions are made from memory, however, 

it is much more difficult to uncover the exact processes that participants use to make their 

decisions. Simply looking at final decisions does not provide compelling evidence for or 

against any particular frameworks. As noted above, the adaptive toolbox, single-strategy 

frameworks, and the accessibility framework can often result in the same decisions 

despite different processes. 

Yet, some work has been done to test different accounts of cue-based inferences 

in decisions from memory. A few studies (Broder & Gaissmaier, 2007; Bröder & 

Schiffer, 2003) have used both reaction times and decision outcomes to classify 

participants as using different strategies. They found that reactions times corresponded 

well with what would be expected for the different strategies. In general, reaction times 

were longer the more cues that had to be checked before one discriminated, assuming 

people were searching in validity order. Work has also been done to show that parallel 

constraint satisfaction can account for decisions from memory by looking at reaction 

time, decision, and confidence (Glockner & Hodges, 2011). In this study, they found that 

PCS provided a better account of participant behavior than WADD, TTB, or an equal 

weights strategy.  
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However, these studies do not consider the implications of actual memory 

processes involved in decisions made from memory. This is likely because the 

frameworks being tested do not have memory mechanisms. In the studies discussed 

above, all cues were assumed to be equally memorable. But returning to Gigerenzer’s 

(1999) argument that decisions from memory are more realistic, it is also likely more 

realistic that some cues are more accessible in memory than others. For example, some 

cues may be easier to retrieve because they have been seen more often than others. The 

other frameworks discussed in this paper cannot account for differences in cue 

accessibility if they do not match what would be expected based on cue validity. Note, it 

is possible that PCS could allow memory to influence subjective cue validity, but they do 

not formally specify the processes involved in determining subjective cue validity. In 

contrast, the accessibility framework, being a memory-based model, should operate well 

in decisions from memory.  

The goal of this experiment was to test the accessibility framework in the context 

of decisions from memory. To achieve this goal, memory for specific cues was 

manipulated. In a previous experiment, the frequency of cue use during training was 

shown to affect cue preferences and later decisions (Lawrence et al., 2018a). However, in 

that experiment, cue values were provided to the participants. The current study sought to 

replicate these results in the context of inferences from memory. In the following 

experiment, participants learned the values of cues for the different options they would 

later be asked to compare. The frequency of learning for individual cues was manipulated 

such that one cue, either the most valid cue or the least valid cue, had more learning trials 

than the others. Note, however, that all cue values should have been learned but those 
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with more training trials were likely to be more accessible. Like the previous 

experiments, the dispersion of cue validity was also manipulated. The different 

conditions were compared on decision time, decision outcome, and confidence. 

 The accessibility framework makes several predictions about the effects of these 

manipulations on cue-based inferences. Participants’ decision times and decisions 

outcomes should be affected by the manipulation of cue validity such that decisions are 

slower and match a compensatory strategy in the condition with low validity dispersion 

compared to the one with high. These general predictions match the other frameworks. 

But the accessibility framework also predicts an effect of the memory manipulation, 

which the other frameworks cannot predict. When the best cue is trained most often, 

decision times should be faster in both the high dispersion and low dispersion conditions 

compared to when the worst cue is trained most often. This is because the manipulation 

boosts the accessibility of the best cue, making it more likely to be the only cue available, 

especially when cues are highly dispersed. The effect of the manipulations on confidence 

is more complex because it partially depends on the cue patterns for the options being 

compared (see simulation section for more detailed predictions). In general, the 

accessibility framework predicts that the manipulation of memory and dispersion of 

validity will affect confidence. Before describing the specifics of the experiment, a 

simulation of the HyGene model will be briefly discussed to demonstrate these 

predictions. 
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5.3.1 Simulation 

 

Similar to Experiment 2, simulations were conducted to demonstrate the behavior 

of the HyGene accessibility model in this experiment. The model was trained on the 

different datasets used for training participants using the method described in the 

simulation section. The effect of the frequency manipulation was simulated by fixing the 

encoding parameter to 1 for the cue that was trained most frequently while the encoding 

of the other cues was set to .6. An alternative version of HyGene was also simulated 

based on the results from Experiment 2, which found that participants selected more cues 

than HyGene predicts. In the alternative version of HyGene (activation-only HyGene), all 

cues are available in memory and decisions are based made by weighing cues by their 

activations in memory and summing those values for each option. This model 

demonstrates the effect of differences in memory activation due to the manipulations 

without the cue selection processes being implemented. Simulation results focus on 

decision outcome, the number of cues generated, and confidence. Confidence in both 

versions of HyGene was determined by the support for the favored option over the 

combined support for both options, where support is based on the sum of cues available 

in working memory weighted by their accessibility. The discussion of the simulation will 

focus on the effect of the frequency manipulation because the effect of the dispersion 

manipulation has been discussed extensively in previous sections. 

5.3.1.1 Decision Outcome 

The proportion of options corresponding to a compensatory decision strategy for 

cases in compensatory and noncompensatory differed was calculated. This was done both 
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for standard HyGene and activation-only HyGene. However, the pattern was the same for 

both models. In general, when the worst cue was trained most often, the compensatory 

option was more likely to be selected (see Figure 14). This effect was larger in the low 

validity dispersion condition compared to the high validity dispersion condition.  

 

 

 

 

Figure 14. Proportion of decisions matching a compensatory rule when compensatory 

and noncompensatory differed by dispersion and frequency manipulations 

 

 

 

5.3.1.2 Number of Cues Generated 

As shown in Figure 15, the average number of cues generated was larger when 

the worst cue was trained most frequently compared to when the best cue was trained 

more frequently. Although HyGene does not make a direct decision time estimate, the 

number of cues generated was used as a proxy for decision time when comparing model 

performance and participant performance. This means the model assumes more time will 

be taken on decisions in which the worst cue was trained most frequently. Activation-
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only HyGene assumes all cues are always generated so it makes no assumptions about 

changes in decision time. 

 

 

 

 

Figure 15. Average number of cues HyGene generated by experimental condition with an 

encoding parameter of .6 for all but most frequent cue. 

 

 

 

5.3.1.3 Confidence 

Average confidence for trials in which the best cue and the worst cue 

discriminated but compensatory and noncompensatory strategies should select the same 

option was compared across different simulated conditions. These trials were selected 

because they are the trials for which the conditions would be expected to differ most 

because the conditions should differ most in terms of accessibility of both the best and 

worst cue. Both versions of HyGene showed the same pattern. Confidence was lower in 

the low dispersion condition compared to the high dispersion condition, as shown in 

Figure 16. Confidence was also lower when the worst cue was trained most frequently 
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compared to when the best cue was trained most frequently. This is because the increased 

accessibility of the less valid cues gave the unselected alternative a weighted value closer 

to the selected alternative. 

 

 

 

 

Figure 16. Average confidence of HyGene and activation-only HyGene by experimental 

condition with an encoding parameter of .6 for all but most frequent cue. 

 

 

 

Overall, the simulations demonstrate that the accessibility framework makes 

predictions in regards to the effect of manipulations of individual cue’s encoding quality 

on decision outcomes, the number of cues used, and confidence. When the worst cue is 

encoded the best, decisions are more likely to match compensatory strategies, more cues 

are used, and confidence tends to be lower. This effect interacts with the dispersion of 

validity, such that the effect is slightly larger when the dispersion is low. These 

predictions were tested in the following experiment. 
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5.3.2 Method 

 

There were 186 participants in this study. However, participants that failed to 

reach a threshold of 80% correct in the test of recall for the learned cue values were 

excluded from data analyses. They were excluded because the goal of this experiment 

was to compare performance assuming that cue values were learned. Without this 

assumption in place, it is difficult to draw conclusions from the participant’s data. This 

resulted in 119 participants being included in the study (30 in all but the high dispersion 

condition with the best cue trained most frequently, which had 29). Participants were 

recruited for this study using the online experiment management system at Georgia 

Institute of Technology. Participants received course credit for their participation. 

The design of this experiment was a 2 (number of learning trials) by 2 (dispersion 

of cue validity) with both variables manipulated between participants. The number of 

learning trials was manipulated by changing which cue had the most learning trials: the 

most valid cue or the least valid cue. There were also two conditions for the dispersion of 

cue validity: a standard deviation of .04 (low) or .13 (high).  

Unlike the previous studies, this study was presented as a decision between which 

fictional planets were more likely to support life. Each planet was described by four cues: 

geochemistry, microenvironments, orbital eccentricity, atmosphere. These cues were 

either positive or negative. The validity of these cues was manipulated so that the cue 

validities were either highly dispersed or not, as shown in Table 20. The labels and the 

spatial locations of the cues were random between participants, meaning the cues listed in 

Table 20 did not appear in the same location or have the same label for all participants.   
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Table 20 

Validity of the Cues by Condition for Experiment 3 

  High Dispersion Low Dispersion 

Cue 1 .88 .75 

Cue 2 .76 .72 

Cue 3 .64 .68 

Cue 4 .52 .66 

Mean .70 .70 

SD .13 .04 

 

 

 

This study consisted of three phases: cue learning, validity learning, and test. 

During the cue learning phase, participants were told that they needed to learn four 

distinct characteristics of eight different planets. This phase was followed by a four-part 

procedure for cue value learning similar to the one used by Glöckner & Hodges (2011) 

and shown in Figure 17. First, participants were shown each planet with all four cues. 

Second, they were shown individual cue values for all cues for all planets in random 

order. Third, they were asked to recall individual cue values for all cues for all planets in 

random order and they were provided with feedback. It was during this part of cue 

learning that the manipulation took place. Participants saw each cue twice for each planet 

except for the cue that was being manipulated, which they saw four times. Fourth, they 

were presented with each planet and asked to recall all four cues for each, and then they 
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were provided with feedback. The third and fourth parts of the cue learning phase were 

repeated three times.    

 

 

 

 

Figure 17. Example of trials in cue learning phase. Each image corresponds to one of the 

four phases of the cue learning phase. 

 

 

 

Once the cue learning phase was complete, participants completed a validity 

learning phase. During the validity learning phase, participants completed 100 paired 

comparisons in which they needed to decide which planet was more likely to support life. 

Participants were instructed that they needed to learn which cues were better at predicting 

which planet was more likely to support life. Like the validity learning phase in 

Experiments 1 and 2, all four cues were presented during this phase and participants were 

provided with feedback. The planets during this phase were not the same eight planets 

they learned the cues for previously. However, they were instructed that the relationship 
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between the cues and the criterion is the same for these new planets as the planets they 

learned previously.  

At the end of the validity learning phase, participants completed a refresher on the 

cue values for the cues for the eight planets they learned previously and a final memory 

check. The refresher consisted of repeating the third and fourth parts of the cue learning 

phase once more. The fourth part was then repeated a second time without feedback to 

get a measure of learning. Then they moved on to the test phase as shown in Figure 18. 

During this phase, they were instructed to use what they had learned in the previous 

phase to decide which of the planets they learned about were more likely to support life. 

During this phase, they were presented with all possible combinations of the eight planets 

they learned. However, the cues values for these planets were not presented on the screen 

but instead needed to be retrieved from memory. The decision outcome, decision time, 

and confidence were measured for each decision.  
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Figure 18. Example of test phase portion for Experiment 3. 

 

 

 

5.3.3 Results  

 

The results of this experiment are organized as follows. First, learning checks are 

discussed. Learning was checked in terms of recall of cue values, validity learning, and 

performance on test trials. Then the results for critical trials are discussed. These are the 

trials for which both the worst cue and the best cue discriminated but compensatory and 

noncompensatory decision strategies select the same option. Third, the results for test 

trials in which compensatory and noncompensatory strategies make different selections 

are discussed. The results are separated by trial type because the predictions discussed 

above, particularly for planet selected and confidence, were specific to certain types of 

trials. Finally, participant performance is compared to model predictions. 
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5.3.3.1 Learning Checks 

As noted above, only participants who exceeded a threshold of 80% correct on the 

memory check for cue learning were included in the analyses. The average proportion 

correct of included participants was .957, while the average of excluded participants was 

.626. A generalized linear model with a binomial logit link was used to test whether 

dispersion of validity or cue frequency affected recall of the cue values for which the 

frequency of training was manipulated. For the most valid cue, dispersion of validity (χ2 

(1) = 1.11, p = .29) and the frequency manipulation (χ2 (1) = .40, p = .53) did not 

significantly affect recall and there was no interaction (χ2 (1) = .07, p = .79). For the least 

valid cue, the frequency manipulation did significantly affect recall (χ2 (1) = 4.72, p = 

.03) such that participants for which the worst cue was trained most frequently were more 

likely to recall the cue value (O = 3.64) compared to those with the best cue trained most 

frequently (O = 2.78). However, the proportion of those recalling the cue value for the 

least valid cue was .94 in the condition with the best cue trained most frequently and .97 

in the condition with the worst cue trained most frequently so it is unlikely this difference 

substantially affected performance at test. Dispersion condition (χ2 (1) = 0.06, p = .81) 

did not significantly affect recall of the least valid cue and there was no interaction (χ2 (1) 

= 0.02, p = .88).  

Validity learning was checked both over the validity learning trials and at the final 

test trails. For the validity learning trials, a generalized linear model with a binomial logit 

link was used to test if trial, dispersion of validity, and cue frequency affected 

performance during the training trials. Trial (χ2 (1) = 7.24, p = .007) significantly affected 

performance during training such that performance increased across training trials, 
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suggesting that participants were learning. Dispersion of validity also significantly affect 

performance during training (χ2 (1) = 11.76, p < .001), such that those in the low 

dispersion condition (85.38% correct) performed better than those in the high validity 

condition (82.83% correct).  The frequency manipulation did not significantly affect 

performance (χ2 (1) = 1.04, p = .31) and there were no significant interactions. A 

binomial test, collapsed across conditions, also showed that the proportion of correct 

responses on the last quarter of training trials (.85) was above a chance level of .5 (z = 

38.19, p <.0001), also suggesting that participants were able to learn. 

 For test trials, a generalized linear model with a binomial logit link was also used 

to test the effect of dispersion of validity and the frequency manipulation on participant’s 

performance. This analysis was conducted on trials in which compensatory and 

noncompensatory strategies resulted in the same planet being selected. There were no 

significant effects of dispersion of validity (χ2 (1) = .01, p = .92) or the frequency 

manipulation on participant’s performance (χ2 (1) = .44, p = .51). On average, 

participants selected the correct planet on approximately 82% of the trials, which is 

consistent with the learning checks from the validity learning phase. In general, 

participants seemed to learn how to use the cues correctly. 

5.3.3.2 Results for Critical Trials 

The following analyses were conducted on trials in which both the best cue and 

the worst cue discriminated but compensatory and noncompensatory strategies should 

result in the same option being selected. As described above, these trials were selected 

because they were the trials for which the manipulations were expected to have the 
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strongest result. Hypotheses for these trials focused on confidence, but option selected 

and decision time were also analyzed. 

To examine the effects of the manipulations on confidence, a generalized linear 

model with an identity link was also used to test the effect of dispersion of validity and 

the frequency manipulation on participant’s decision confidence. Two models were run; 

one for correct responses and one for incorrect responses. For correct responses, decision 

confidence differed significantly between dispersion conditions (χ2 (1) = 5.12, p = .02), 

such that participants were more confident in the high dispersion condition (M = 70.23, 

SD = 25.37) compared to the low dispersion condition (M = 61.71, SD = 25.83). The 

frequency manipulation did not significantly affect decision confidence (χ2 (1) = .44, p = 

.51) nor was there a significant interaction (χ2 (1) = .28, p = .60). For incorrect responses, 

there was no effect of dispersion (χ2 (1) = 1.09, p = .30) or frequency (χ2 (1) = 2.11, p = 

.15) and there was no interaction (χ2 (1) = .07, p = .79). Average confidence for incorrect 

responses was 54.26 (SD = 27.96).  

Further analyses were conducted to check for differences in bias and calibration. 

Bias was calculated as the difference between overall performance and average 

confidence for each participant. Calibration was calculated as the mean square deviation 

from confidence to percent correct weighted by bin size for each participant. For this 

calculation, confidence judgments were separated into five bins. A general linear model 

was used to test the effect of dispersion of validity and frequency manipulation on bias. 

There was no effect of dispersion (F(1,115) = 1.06, p = .31), or frequency (F(1,115) = 

0.25, p = .62), and there was no interaction (F(1,115) = 0.16, p = .69). Average bias was -

.04 (SD = .27), suggesting slight overconfidence. A general linear model was used to test 
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the effect of dispersion of validity and frequency manipulation on calibration. There was 

a significant effect of dispersion of validity (F(1,115) = 4.39, p = .04), such that those in 

the high dispersion condition (M = .13, SD = .11) were better calibrated than those in the 

low dispersion condition (M = .18, SD = .14). There was no effect of frequency (F(1,115) 

= 0.89, p = .35) and there was no interaction (F(1,115) = 1.04, p = .31).  Figure 19 shows 

calibration between conditions at the aggregate level, with the condition in which the best 

cue was trained most frequency and dispersion was high being the most well calibrated.  
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Figure 19. Calibration curves by dispersion and frequency conditions. 
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To determine whether the conditions performed differently on the critical trials, a 

generalized linear model with a binomial logit link was also used to test the effect of 

dispersion of validity and the frequency manipulation on participant’s decisions. 

Decisions differed significantly between dispersion conditions (χ2 (1) = 4.91, p = .03), 

such that the odds of selecting the correct option was higher when dispersion was high (O 

= .89; 71%) compared to when dispersion was low (O = .44; 61%). The frequency 

manipulation did not significantly affect decisions (χ2 (1) = .17, p = .68) nor was there a 

significant interaction (χ2 (1) = .09, p = .77). 

Finally, the effect of the manipulations on decision time for critical trials was also 

tested. A generalized linear model with an identity link was also used to test the effect of 

dispersion of validity and the frequency manipulation on the participant’s decision time. 

Decision time was log transformed to better handle outliers. There were no significant 

differences of dispersion of validity (χ2 (1) = .58, p = .45) or the frequency manipulation 

(χ2 (1) = .18, p = .67) and there was no interaction (χ2 (1) = .30, p = .59). 

5.3.3.3 Results of Trials in which Compensatory and Noncompensatory Strategies Differ 

The following analyses were conducted on trials in which compensatory and 

noncompensatory strategies differed in which planet should be selected. Hypotheses for 

these trials focused on differences between conditions on decision time and option 

selected. However, additional analyses of confidence were also conducted to further 

elucidate differences found between conditions. 

To determine whether the manipulations affected apparent decision strategy, a 

generalized linear model with a binomial logit link was also used to test the effect of 

dispersion of validity and the frequency manipulation on participant’s decisions. 
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Decisions differed significantly between frequency conditions (χ2 (1) = 4.77, p = .03), 

such that the odds of selecting the compensatory option was higher when the worst cue 

was trained most frequently (O = 2.56, 92.54%) compared to when the best cue was 

trained most frequently (O = 1.69, 84.33%). Dispersion of validity did not significantly 

affect decisions (χ2 (1) = 1.53, p = .22) nor was there a significant interaction (χ2 (1) = 

.28, p = .59).  

 A generalized linear model with an identity link was also used to test the effect of 

dispersion of validity and the frequency manipulation on participant’s decision time. 

Decision time was log transformed to better handle outliers. Log decision times differed 

significantly between dispersion conditions (χ2 (1) = 5.04, p = .02), such that participants 

took more time making decisions in the high dispersion condition (M = 5402.04, SE = 

360.90) compared to the low dispersion condition (M = 4081.02, SE = 319.35). The 

frequency manipulation did not significantly affect decision time (χ2 (1) = 1.37, p = .24) 

nor was there a significant interaction (χ2 (1) = .65, p = .42). 

 Finally, a generalized linear model with an identity link was also used to test the 

effect of dispersion of validity and the frequency manipulation on participant’s decision 

confidence for trials in which the compensatory and noncompensatory strategies differed 

in the option selected. Two models were run, one for when the compensatory option was 

selected and one for when the noncompensatory option was selected. For responses 

matching a compensatory strategy, decision confidence differed significantly between 

dispersion conditions (χ2 (1) = 5.12, p = .02), such that participants were more confident 

in the low dispersion condition (M = 88.28, SD = 19.38) compared to the high dispersion 

condition (M = 78.53, SD = 22.60). The frequency manipulation did not significantly 
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affect decision confidence (χ2 (1) = .97, p = .33) nor was there a significant interaction (χ2 

(1) = .02, p = .89). For responses matching a noncompensatory strategy, there was no 

effect of dispersion (χ2 (1) = 3.55, p = .06) or frequency (χ2 (1) = 2.66, p = .10) and there 

was no interaction (χ2 (1) = .17, p = .68). Average confidence for noncompensatory 

responses was 49.48 (SD = 28.15). It is worth noting that the sample size for the model 

for noncompensatory decisions was much smaller than for compensatory because all but 

one participant made at least one compensatory response but only 37 participants made at 

least one noncompensatory response. 

5.3.3.4 Comparison of Participant Data to Model Simulations 

Although formal model fitting was not conducted for this experiment, participant 

performance was compared to predictions from TTB, WADD, EAM, and both versions 

of the HyGene accessibility framework. Predictions for all but the HyGene model were 

determined by running each model through each test case once. Because HyGene is a 

stochastic model, predictions were determined by averaging simulation performance 

across 500 simulation runs for each test case. A HyGene model in which decision 

behavior was determined only by normalized activation in memory was also included in 

the model comparisons. This model assumes all information is available in working 

memory, and the information is weighted by memory activation to arrive at a decision. 

This model was included to determine whether HyGene memory activations can predict 

participant performance. The previous study found that HyGene selected less information 

than participants so including this model should help elucidate the effect of HyGene cue 

selection behavior on model performance. 
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First, overall adherence rates of participants’ planet selections for each case were 

compared to model predictions as shown in Table 21. No model consistently 

outperformed the other models. However, TTB and standard HyGene never fit best. 

Activation only HyGene fit the best or tied for the best fit in three conditions. EAM and 

WADD provided the best fit or tied for the best fit in two conditions. 

 

 

 

Table 21 

Adherence Rates for Participants’ Decision Outcomes Compared to Model Predictions 

Dispersion Frequency TTB WADD EAM HyGene Activation 

Only HyGene 

High Best 0.7 0.7 0.7 0.7 0.73 

 Worst 0.69 0.68 0.69 0.78 0.83 

Low Best 0.69 0.81 0.81 0.69 0.76 

 Worst 0.7 0.86 0.86 0.8 0.86 

 

 

 

Second, model predictions for decision time were compared to participant 

performance. Decision time for the models was simply the number of cues the models 

checked before making a decision for each test case. Model predictions were correlated 

with the average amount of time participants took on each individual case by 

experimental condition. Model decision time and average participant decision time were 

correlated for all models that made variable predictions for the number of cues checked 

as shown in Table 22. Models that assumed all cues were checked on every trial (WADD, 

EAM at high thresholds, and activation only HyGene) could not be fit. HyGene decision 
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time estimates were most strongly correlated with participant decision time for all 

conditions, although in the high dispersion/ best cue condition this was a strong negative 

correlation. Also note, that HyGene did not vary much in terms of the number of cues 

selected between cases within each condition because the number of cues was just based 

on availability in memory which was not case dependent. This could mean that HyGene 

provided the best correlation simply because it did not make extreme predictions like the 

other models. 

 

 

 

Table 22 

Correlation between Participant Decision Times and Models’ Conceptual Decision 

Times 

Dispersion Frequency TTB EAM HyGene 

High Best -.19 .28 -.54 

 Worst -.12 -.11 .36 

Low Best -.19 -.19 .36 

 Worst -.24 -.24 .33 

Note: Estimates for EAM and HyGene reflect parameters with the strongest correlation 

 

 

 

Finally, model predictions for confidence were also compared to participant 

performance. Confidence in TTB was calculated as the validity of the cue upon which the 

decision was made (as described in Glöckner & Broder, 2011). Confidence in WADD 

and EAM were calculated as the odds of selecting the planet over the combined odds of 

selecting either planet. For HyGene, confidence was calculated by weighing each cue by 

its normalized activation and then summing those values for each planet. The weighted 
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sum for the planet selected was then divided by combined the weighted sum for both 

planets.  Again, no model consistently correlated best with participant performance, as 

shown in Table 23. However, standard HyGene never provided the highest correlation 

with participant data and TTB only provided the strongest correlation in one condition. 

Activation-only HyGene and EAM were both relatively strongly correlated with 

participant performance for all conditions, but activation-only HyGene was the only 

model that was consistently positively correlated. 

 

 

 

Table 23 

Correlation between Participant Confidence and Model-Predicted Confidence 

Dispersion Frequency TTB WADD EAM HyGene Activation 

Only 

HyGene 

High Best -0.22 0.19 -0.24 -0.22 0.26 

 Worst -0.33 -0.21 -0.33 -0.08 0.22 

Low Best -0.13 0.63 0.63 -0.21 0.35 

 Worst -0.27 0.55 0.55 -0.18 0.65 

Note: Estimates for EAM and HyGene reflect parameters with the strongest correlation 

 

 

 

5.3.4 Discussion 

 

  This experiment provides partial support for a memory-based account of cue-

based inferences from memory. The frequency manipulation affected which planet was 

selected at test when compensatory and noncompensatory options differed. As 
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hypothesized, those in the condition in which the worst cue was trained most frequently 

were more likely to select the compensatory option compared to those in the condition in 

which the best cue was trained most frequently. This extends previous research in which 

frequency of training was found to affect apparent decision strategy in cue-based 

inferences from given information (Lawrence et al., 2018a). Moreover, none of the 

current models for cue-based inferences, other than the accessibility-based framework, 

can account for the effect of training frequency on decisions. Although differences in 

recall for the least valid cue were found for the different frequency conditions, the 

differences were slight and cannot account for the effect.  

Despite evidence for an effect of the frequency manipulation on decision 

outcomes, there were no significant differences between the frequency conditions for 

decision time or confidence. It was hypothesized that those in the condition in which the 

worst cue was trained most frequently would take more time and show lower confidence 

on critical trials than those for which the best cue was trained most frequently. A lack of 

difference in decision time with the presence of a difference in decision outcome 

challenges some assumptions present in the literature. Assuming participants were using 

qualitatively different strategies, it challenges the supposition that compensatory 

strategies take longer than noncompensatory strategies.  It also further challenges the 

assumption that decision outcomes reliably indicate actual decision strategy (see Dummel 

et al., 2016; Glöckner, Hilbig, & Jekel, 2014). It could be the case that participants were 

adjusting the weights of cues, resulting in apparently difference decisions strategies based 

on decision outcomes while actually using the same number of cues. However, based on 
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model simulations, changing the way the cues were weighted should have resulted in a 

change in confidence, which was not found.  

This experiment does not provide strong support for hypothesized effects of the 

dispersion of validity in decisions made from memory. Looking first at trials in which 

compensatory and noncompensatory strategies should select different planets, it was 

hypothesized that those in the low dispersion condition would be more likely to select the 

compensatory option compared to those in the high dispersion condition. However, there 

were no significant differences in decision outcomes between those in the low and high 

dispersion conditions for these trials. This challenges previous research on the effects of 

the dispersion of validity (Bröder & Schiffer, 2006) and the previous two experiments. 

Moreover, those in the high dispersion condition took longer on these test trials, opposite 

of predictions. They also showed lower confidence in these test trials when they selected 

the compensatory option. It is almost as though a compensatory strategy was the default 

strategy and when the ecology favored a noncompensatory strategy, participants took 

more time and were less confident in their decisions but still selected the compensatory 

option (Bröder, 2003; Glöckner & Betsch, 2012).  

For trials in which both the most valid and least valid cues discriminated, no 

differences were specifically hypothesized for the dispersion conditions. Nevertheless, 

there were significant differences between dispersion conditions in terms of confidence 

and correct responses. For these trials, those in the low dispersion condition were less 

confident and less accurate. Moreover, their confidence was also more poorly calibrated 

with actual performance than those in the high dispersion condition. Although this was 

not a focal hypothesis, the lower confidence for the low dispersion condition matches 
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predictions from the activation-based framework shown in Figure 16. Moreover, a post-

hoc investigation of the simulation results also found poorer performance in the low 

dispersion condition (82% correct) compared to the high dispersion condition (96%). In 

some simulation trials, the less valid cues were more activated than the most valid cues 

which resulted in poorer performance in the low dispersion condition, especially when 

the worst cue was trained most often. This may explain what is happening with the 

participants in these trials. 

The above results provide unexpected support for the accessibility-framework. 

None of the other models predicted poorer performance under the low dispersion 

condition for the trials discussed above. In fact, all of the other models predicted perfect 

performance on those trials because they assume cues are always weighted by validity. 

Yet, in terms of direct comparison to participant data, no single model provided the best 

matched to participant performance for all variables in all conditions. However, models 

that favored the use of few cues (TTB and HyGene) tended to not fit as well as those that 

favored most or all cues being used (WADD, EAM, and activation-only HyGene).  

Considering both the results of the statistical tests and the results of the 

comparison of participant data to model predictions, it seems that participants tended to 

use most, if not all, cues when making decisions. This is consistent with the fact that 

participants tended to select the compensatory option over the noncompensatory option 

during test trials. This is also consistent with the results from Experiment 2, which found 

that participants tended to select most cues. However, this finding is a little surprising 

given that these decisions were made from information stored in memory, decisions for 

which TTB was specifically designed (Gigerenzer et al., 1999). Nevertheless, this 
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consistent with previous research (Glöckner & Hodges, 2011) has found some evidence 

that people may continue to use compensatory strategies when decisions are made from 

memory. 

Although the results of this experiment were not conclusive in terms of which 

framework provides the best account of cue-based inference, they do suggest some 

frameworks may be better than others. It seems particularly unlikely that participants 

were using an adaptive toolbox. Hardly any participants consistently selected the 

noncompensatory option when compensatory and noncompensatory strategies differed. 

Under an adaptive toolbox, participants in the high dispersion condition should have used 

a noncompensatory strategy, especially because these were decisions from memory. 

None of the results directly rule out the evidence accumulation model, but there were 

some results that only an accessibility-based framework could account for, such as the 

effect of the frequency manipulation. Yet, not all of the predicted results from the 

accessibility-based framework were confirmed. 

One possible explanation for the lack of large differences between conditions is 

that a large number of participants had to be excluded from the analyses. Participants that 

could not recall at least 80% of the cue values were not included in the analyses. Because 

they could not recall cue values, their responses at test would have been difficult to 

interpret. It would be impossible to determine what information they were using to make 

their decisions. However, it is possible that the participants who could recall cue 

information may not be representative of the general population. Those who were able to 

recall all cue information may also have been more likely to consider all information at 

test. Although the cue learning phase was based on previous research (Glöckner & 
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Hodges, 2011), a future study could provide more test trials or better incentives for the 

participants to learn the cue values to get a larger proportion of participants above the 

80% cutoff.   

In general, the results of this study challenge assumptions found in prior research. 

It challenges the assumption that a majority of participants use a noncompensatory 

strategy when the dispersion is high (Bröder & Schiffer, 2006; Newell & Bröder, 2008) 

or when decisions are made from memory (Bröder & Schiffer, 2003; Gigerenzer et al., 

1999).  Moreover, much of the research on decision strategies assume that compensatory 

strategies take more time than noncompensatory strategies (see Glöckner et al. (2014) for 

an alternative account). However, in some trials, this study found a difference in decision 

time with no corresponding difference in decision outcomes and vice-versa. This could 

mean that compensatory strategies do not necessarily take longer, as argued by Glöckner 

and colleagues. Finally, the effect of the frequency manipulation on the option selected 

and the effect of dispersion on accuracy and confidence provides some evidence for the 

role of memory in cue-based inferences that cannot be accounted for by validity alone. 

Thus, challenging validity-based models and suggesting that accessibility-based models 

may be worth investigating further. 
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CHAPTER 6: GENERAL DISCUSSION 

 

 

 

Since the work of Payne et al. (1988), researchers have been trying to understand 

how decision makers adapt to different decision environments. The primary goal of this 

dissertation was to test an accessibility account of adaptive decision-making in cue-based 

inferences. The accessibility framework was proposed to address the shortcomings of 

current frameworks for cue-based inferences. By basing cue use on memory accessibility, 

the accessibility framework addresses criticisms of current single strategy frameworks 

(evidence accumulation model and parallel constraint satisfaction) and the adaptive 

toolbox.  Theoretically, the accessibility framework resolves problems with 

psychological plausibility, falsifiability, reliance on cue-validity, and inability to account 

for memorial effects found in the other frameworks. In order to test the predictions of the 

accessibility framework against predictions of current frameworks for cue-based 

inferences, three studies were conducted that manipulated both cue accessibility and cue 

validity.  

In general, the studies found partial support for the role of memory in cue-based 

inferences. In two of the three studies, there was evidence for an effect of memory 

manipulations on decision outcomes. In the first experiment, participants preferred the 

compensatory option when primacy was manipulated in the less valid cue pair. This 

interacted with the manipulations of dispersion of validity such that the effect 

disappeared when the dispersion was low and the mean was high. In the third experiment, 

the frequency with which participants recalled cue values during training affected 

decision outcomes such that participants were more likely to select the compensatory 
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option when the less valid was trained most frequently. Not only do these findings extend 

previous research that has shown participant’s decision outcomes are sensitive to memory 

manipulations (Lawrence et al., 2018a; Platzer et al., 2014), they also challenge current 

frameworks of cue-based inferences. Because the current frameworks are validity-based, 

they cannot account for the effect of memory. 

However, the studies failed to confirm all hypothesized effects of the memory 

manipulations. In the first experiment, there was only evidence for the preference of the 

primacy cue over a similarly valid cue in one condition. Moreover, there was evidence 

for a preference for the cue that discriminated correctly most often in the middle of each 

block rather than the beginning or end in several conditions. In the second experiment, 

there was no evidence for the hypothesized differences between the immediate test and 

the delayed test in terms of cue preferences, the number of cues selected, or decision 

outcomes. In fact, participants tended to take less time on the delayed decisions compared 

to the immediate decisions, which is opposite of what was hypothesized. In the third 

experiment, there were no differences between frequency conditions in terms of decision 

time or confidence. 

Although these results challenge the accessibility framework, most of them are 

also not well explained within the other frameworks. Any effects of manipulations of 

memory, such as serial position effects and training frequency, cannot be accounted for 

with validity-based models (adaptive toolbox, EAM, and PCS) because they assume that 

participants’ cue preferences should be based on validity alone. For example, participants 

should not show a preference between cues with the same validity no matter the serial 

position of correct discriminations at training. Any evidence for a strong preference 
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between cues with the same validity, even if it is a preference for the cue that was correct 

most often in the middle of each block, challenges validity-based models. 

In addition to providing partial support to hypotheses based on the accessibility 

framework in terms of the effects of memory manipulations, there was also partial 

support for the hypothesized effects of the validity manipulations. Specifically, there was 

evidence for a preference for the compensatory option when dispersion was low in both 

the first and second experiment, matching prior research that has found effects of 

dispersion manipulations (Bröder & Schiffer, 2006; Newell & Bröder, 2008). Because all 

frameworks make similar predictions for the effect of validity manipulations on decision 

outcomes, evidence for these effects does not provide as strong support for accessibility 

framework as evidence for the effects of direct memory manipulations. As noted above, 

all frameworks predict changes in decisions based on the decision environment but differ 

in the mechanism of those changes. However, in Experiment 3, dispersion of validity also 

affected confidence and accuracy for decision trials in which the most valid and least 

valid cues discriminated. Only the accessibility framework can account for differences in 

performance for these trials because the other frameworks are based on validity. 

Again, there were also results related to the effect of the dispersion manipulations 

that could not be accounted for with the accessibility framework or the other frameworks.  

In the second experiment, there was no evidence of differences in the number of cues 

selected or decision time between the two dispersion conditions. There was also only 

evidence for differences in cue preferences for the third and fourth most valid cues and 

not the most valid cue. These results challenge the assumption that dispersion of validity 

affects cue selection and decision time, an assumption held by all frameworks except 
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PCS. Finally, there was also no evidence of a difference between dispersion conditions in 

terms of decision outcome for decisions in which compensatory and noncompensatory 

options should differ in the third experiment, challenging previous research (Bröder & 

Schiffer, 2006) and the previous two experiments.   

The effect, or lack of effect, of the manipulation of dispersion in both Experiment 

2 and Experiment 3 are particularly challenging to the adaptive toolbox and the evidence 

accumulation model. EAM and the adaptive toolbox assume more cues are selected and 

more time should be taken for decisions matching a compensatory strategy. In 

Experiment 2, there was an effect of dispersion on decision outcome but not on the 

number of cues selected. In contrast, those in the high dispersion condition in Experiment 

3 took longer on test trials, despite no differences in decision outcomes. Neither of these 

findings is consistent with EAM or the adaptive toolbox. Although these results are also 

not consistent with predictions based on simulations of the accessibility model, they are 

not impossible under the theoretical framework. Within the accessibility framework, cues 

are not weighted by validity so it is possible for different instances of the model to select 

different options without differing in the number of cues generated due to differences in 

accessibility. For example, if a less valid cue is very accessible instead of the most valid 

cue, then the accessibility framework may choose the compensatory option without 

differences in the number of cues generated. 

Another challenge to the adaptive toolbox is the lack of evidence for 

noncompensatory strategies in all experiments. Although some of the studies found 

differences in the proportion of participants selecting compensatory options, none of the 

experiments reported in this dissertation found that a majority of participants selected the 
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noncompensatory option over the compensatory one when those strategies should differ. 

This is consistent with the literature which has found little evidence for TTB when 

validity is learned in training (Newell & Shanks, 2003; Newell et al., 2003; Rakow et al., 

2005). However, the decision environment of the last experiment, especially in the high 

dispersion condition, should have resulted in a number of participants using TTB under 

the assumptions of the adaptive toolbox (Marewski & Schooler, 2011). Yet, very few 

participants selected noncompensatory options in this experiment.  

In general, the results of the experiments support the assumption that 

compensatory strategies are the default strategy (Bröder, 2003; Glöckner & Betsch, 

2008a; Rieskamp & Otto, 2006; Söllner et al., 2014). Most participants selected the 

compensatory option in all conditions. Moreover, in both Experiments 2 and 3, 

participants seemed to be using most of the cues. Glöckner and Hodges (2011) argued 

that noncompensatory strategies, TTB specifically, are only used when retrieval of 

information is effortful, such as in laboratory studies in which participants must access 

unfamiliar cue values and validities. It is possible that there are certain conditions under 

which participants may have used noncompensatory strategies, but that was not observed. 

One potential explanation for the lack of evidence for Take-the-Best is that the 

cues in the experiments in this dissertation were uncorrelated. This was done in order to 

better control the relationship between validity and direct memory manipulations. 

However, there is evidence that people are more likely to use simple strategies, like TTB, 

when cues are intercorrelated (Dieckmann & Rieskamp, 2007; Lee & Zhang, 2012). 

Future research might test whether the conclusions from the studies in this dissertation 

hold when cues are correlated with each other. Although not simulated in this 
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dissertation, the accessibility framework would likely make different predictions under 

correlated cues compared to uncorrelated cues. Extending the findings in this dissertation 

to environments with correlated cues would also be important for better understanding 

cue-based inferences outside of the laboratory because information is often redundant in 

natural environments (Gigerenzer & Brighton, 2009). 

Nevertheless, evidence for a trend toward compensatory strategies supports the 

parallel constraint satisfaction model. This model was absent from the model 

comparisons in the experiments for this dissertation because many aspects of the model 

are not well specified, such as the search process and how cue validities are initialized. It 

is important to note, however, that it could account for many of the findings in this 

dissertation. Theoretically, it can account for the evidence that participants almost 

exclusively selected the compensatory option in many cases. It could also potentially 

account for the finding of no difference in decision time even when there were 

differences in decision outcome and vice versa because decision time is based on the 

maximization process rather than the number of cues searched. One could even argue that 

the effects of the memory manipulations could be accounted for by adjusting the initial 

cue validities to reflect memory accessibility.  

However, the way PCS has been implemented results in more of a descriptive 

model rather than a process model. Many of its parameters cannot be understood 

psychologically within the consistency maximization process. As noted above, the 

process for determining initial cue validities is also not specified. In practice, the initial 

cue validities fed into the model are the ecological cue validities, but Glöckner and 

Betsch (2008a) make it clear that these could also be subjective cue validities. 
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Unfortunately, the process for determining initial cue validities is not well specified 

within in the model so it would be difficult for the model to account for memory effects 

in practice. Because of the shortcomings of this model, it is hard to endorse it as the best 

framework of cue-based inferences.  

Although the experiments in this dissertation also do not provide conclusive 

evidence in support of the accessibility framework, they indicate how the framework 

could be improved. Both Experiments 2 and 3 showed that participants often used most 

of the cues when they were allowed to search for themselves. These findings are not 

consistent with predictions of the accessibility framework. The accessibility framework 

predicts different numbers of cues being used under different decision environments, and 

it very rarely uses more than three cues. This is because as soon as the most accessible 

cue is retrieved, no other cues can be retrieved. However, this process may need to be 

reconsidered. When an activation-only model, a model in which decisions were based on 

all cues weighted by memory accessibility, was compared to participant performance, it 

tended to provide a better match to participant data compared to the accessibility model 

with cue selection operating. This supports the conclusion that the accessibility 

framework’s search process is limiting the model’s performance. 

One way to address this in the accessibility-based model is to allow it to make 

decision specific predictions for the cue generation process. Both PCS and EAM can 

handle decision specific predictions in terms of the number of cues used (EAM only), 

decision time, and confidence. However, the accessibility model only makes decision 

specific predictions for confidence. As is, the model retrieves all cues that will be used in 

the decision process based on activation alone and not based on the specific decision 
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being made. For example, it does not retrieve more cues even if none of the available 

cues discriminate. Based on the experiment results, it is very unlikely that participants 

stopped searching cues when no cues discriminate. This could be adjusted by allowing 

the model to set the activation threshold back to zero after the maximum number of 

retrieval failures was reached but no discriminating cues were generated. 

Because the accessibility-based framework is a decision model, decision specific 

predictions could also be made by allowing additional information to be used as retrieval 

cues. In the current framework, the goal of the task (i.e. choosing the option with the 

higher criterion value) is used as the retrieval cue. However, as noted in the introduction, 

other information could also serve as retrieval cues. For example, the actual options being 

compared could prompt the retrieval of different cues, which might happen if certain 

options are more strongly associated with particular cues. The cues themselves could also 

be used as retrieval cues. This would likely occur if cues are intercorrelated, such that the 

value of one cue provided information about the value of another cue. In this case, 

retrieving one cue might prompt the retrieval of a related cue.  

Moving toward decision specific predictions could address another potential 

shortcoming of the accessibility framework. As noted in the discussion of single strategy 

models above, one of their strengths is in accounting for evidence that people are 

sensitive to the consistency of cue information, meaning when all cues do not support the 

same option (Dummel et al., 2016; Glöckner et al., 2010; Glöckner & Hodges, 2011). For 

example, studies found that people continued searching cues after finding inconsistent 

information (Dummel et al., 2016; Glöckner & Betsch, 2012). PCS and EAM both make 

predictions about the effects of inconsistent information. PCS assumes that when less 
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valid cues are inconsistent with more valid cues confidence will be lower and decision 

times will increase because the consistency maximization process is more difficult. 

Similarly, EAM assumes that cue search will be more extensive if less valid cues are 

inconsistent with more valid cues because it will take longer to reach the threshold. 

Although consistency affects the confidence within the accessibility framework, it does 

not affect the cue generation process directly for the reasons listed above. None of the 

experiments in this dissertation were directly testing effects of information consistency, 

but it is possible that information consistency was affecting participant’s decisions. Thus, 

allowing the accessibility framework to adjust search based on the specific decision being 

made, may improve its ability to account for participant performance in a psychologically 

plausible way. 

By making these changes to the accessibility framework, it should be able to 

address criticisms of the current frameworks and solve the shortcomings uncovered in 

this dissertation. Unlike the current frameworks, the accessibility model is not validity-

based and is able to account for the effects of memory on cue-based inferences. The 

accessibility framework resolves the criticisms of the adaptive toolbox by eliminating the 

strategy selection problem, providing a falsifiable model, and being able to account for 

individual differences. It also addresses the criticisms of the single strategy models by 

fully specifying search and not being overparameterized. The changes discussed above 

will improve its ability to account for the amount of information people use when making 

decisions and allow it to adapt to specific decisions. Because the framework assumes cue 

use is dependent on the accessibility of the cues in memory, the accessibility framework 

is more plausible and parsimonious than the previous accounts. Moreover, it provides a 
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foundation for future research looking more closely at the role of memory in cue-based 

inferences, both in experimental and applied settings. 

As discussed above, much of the work within cue-based inferences are based on 

the seminal work of Payne et al. (1988) who studied how people adapt to different 

decision environments. This dissertation also finds evidence for adaptive decision-

making but suggests that the adaptations may be more nuanced than changing search or 

integration strategies. Understanding that people tend to use most cues available them, 

even when additional cues are not necessary to arrive at the correct decision, can help 

researchers understand why certain decision errors are made and can help researchers 

work toward improving these errors. For example, a decision aid could be designed to 

only show information known to be important for the decision at hand and not include 

additional information simply because the decision-maker requests it. 

  



 

130 
 

CHAPTER 7: CONCLUSION 

 

 

 

Although the studies presented in this dissertation do not conclusively support the 

accessibility framework for cue-based inferences, they still provide several important 

contributions to the literature. First, they extend previous research showing that memory 

affects cue-based inferences, challenging frameworks that are based on validity only. 

Second, they extend research on adaptive decision-making by showing that people are 

sensitive to the decision environment but that this does not always result in changes to 

both decision outcomes and decision processes. Third, many of the results directly 

challenge assumptions of the adaptive toolbox, and Take-the-Best in particular, because 

participants did not often appear to use noncompensatory strategies. Overall, the 

accessibility framework provides a promising foundation for explaining how people 

make cue-based inferences, but further research is necessary to better understand how 

people search for cues, particularly how they decide to stop searching.  
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