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SUMMARY

The objective of this thesis is to understand the interactions between the compu-

tational mechanisms, described by algorithms and software, and the physical world, de-

scribed by differential equations, in the context of networked systems. Such systems can

be denoted as cyber-physical nodes connected over a network. In this work, the power grid

is used as a guiding example and a rich source of problems which can be generalized to net-

worked cyber-physical systems. We address specific problems that arise in cyber-physical

networks due to the presence of a computational network and a physical network as well

as provide directions for future research.

ix



CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

The objective of this thesis is to understand the interactions between the computational

mechanisms, described by algorithms and software, and the physical world, described by

differential equations, in the context of networked systems. Such systems can be denoted as

cyber-physical systems with a network. While there is a significant body of work address-

ing the characterization, control and verification of cyber-physical systems (see [5] and [6]

and references herein), the networked nature of these systems has not received much atten-

tion. The work presented in this document addresses specific problems that arise due to the

networked nature of such systems as well as provides directions for future research.

Within the context of this work, we view networked cyber-physical systems as a col-

lection of spatially seperated entities, hereby referred to as nodes, interacting with each

other over a network to make decisions. Each node in such a system is considered to be a

computational unit controlling a physical device. This perspective allows us to decompose

the system into two distinct but related networks.

The entire system of nodes, viewed as a collection of coupled physical devices, gives

rise to a networked dynamical system whose evolution is governed by the laws of physics

and is influenced by human designed control laws. The coupling between the physical

devices dictates how their states affect each other and gives rise to a physical network.

The computational unit residing in each node is responsible for controlling the state of

the underlying physical device and setting long term goals. In order to do so, it needs to

acquire measurements and information from other nodes in the network. The information

exchange network specifies which nodes can communicate with each other and defines the

overall information flow through the network. A physical realization of such a network

comprises of sensor suites and communication infrastructure which will enable each node
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to communicate with other nodes or just observe their behaviour.

In this thesis, the power grid is used as a guiding example and a rich source of problems

which can be generalized to networked cyber-physical systems. In Section 1.2, a literature

survey which identifies the connection between the work in this thesis and existing literature

on networked controls and smart grids is provided.

In Chapter 2, the connection between information exchange networks and algorithms

is explored in the context of the power allocation problem. The information exchange

network must possess certain properties to support the data flow required by the problem in

hand and the algorithm chosen to solve the problem. Simply put, the information exchange

network determines which nodes can communicate with each other, but the information

requirements of an algorithm specifies which nodes must communicate with each other.

The work presented in Chapter 2 explores two different algorithms which solves the power

allocation problem in a distributed manner and identifies the tradeoffs between information

requirements and performance.

In Chapter 3, the effect of communication loss/node failure on the controllability of

the power grid is explored (i.e Can the network survive loss of communication and retain

certain properties?). Two topological tests which provide conditions that need to be met in

order to retain controllability under communication loss/node failure is provided.

In Chapter 4, we investigate how imposing time-constraints on the decision making

process imposes constraints on the algorithms chosen to solve a task (i.e How much should

agents in a network talk before making a decision?).The chapter introduces a method to

compute a lower bound on the number of iterations required by two different optimization

protocols used to compute the stabilizing control action for frequency regulation. It is em-

prically shown that this number depends on the size of the grid and the specific optimization

protocol that is chosen.
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In Chapter 5,a stability problem set in a multi-agent setting where the agents lack com-

munication capabilities and have access only to limited state information obtained via sens-

ing is considered. We provide conditions on the system matrices which allow us to stabilize

the system in a distributed manner using the information available to them.

It is our intention to develop the work presented in this dissertation into a framework

for tackling problems arising in general networked cyber-physical systems.

.

1.2 Literature Survey

The connection between topology and system properties has been explored under the name

of networked controls. This survey will provide a representative sample of the literature

that explores the connection between topology and networked controls. We provide a brief

review of smart grids and prosumer-based power systems as it acts a testbed for our analy-

sis. Finally, we also identify and review literature whch has previously dealt with the notion

of information constraints.

1.2.1 Smart Grids and Prosumers

Majority of the work presented in this proposal uses a smart grid model which is popu-

lated by producer-consumer hybrids as a test bed. We present a brief survey explaining

this setting. In recent years, changes in the power industry have been posing challenges

to the power grid. As renewable resources drop in cost and approach price parity with

fossil power, intermittent sources will become a larger part of total generation. Addition-

ally, power generation will be more distributed, with residential customers more frequently

having generation capacity. As this shift occurs, the lines between producer and consumer

become less clear leading to a hybrid prosumer. In the near future, it is expected that any

agent on the power grid will be able to have generation capacity, storage capacity, and

loads [7, 8]. The agents, being economically motivated entities, would have balance their

own personal needs while ensuring the stability of the grid. These entities are dubbed as
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prosumers in [9]. The resulting power grid, populated by prosumers, is largely flat in that

small prosumers, such as buildings with energy management systems, share the same func-

tionality as large prosumers, such as regional utilities [10]. The prosumer power grid model

is a prime example of a cyber-physical network (see [11]), a network of physical devices

which are controlled by networked computational entities.

This setting is used in the work presented in Section 2 which considers a power balanc-

ing problem in a power grid populated with prosumers. The work done in Chapter 3 aims

to explore the controllability problem in the same environment.

1.2.2 Networked Controls and the Graph Laplacian

The graph Laplacian is an important graph-theoritic object which encodes the structure of a

given graph. Given a graph G = (V, E), The graph Laplacian LG is a matrix which encodes

structural and spectral properties of the graph G. It is defined by the equation

LG = DG − AG

where DG is the node-edge incidence matrix and AG is the adjacency matrix of the graph

G. The Laplacian and its variants aid in the construction of several coordination protocols

(See for e.g [12], [13] and [14]).

An important coordination algorithm whose functioning can be described using the

graph Laplacian is the consensus protocol [15]. Consider a group of n agents modelled

as a graph G = (V, E) where V is the vertex set and (vi, v j) ∈ E if and only if the agents

represented by vi and v j can communicate with each other. Let xi represent a state, such

as spatial location, associated with each agent vi ∈ V . The consensus algorithm allows the

system of agents to converge to the average of their state values. In continuous time, each

agent executes the consensus protocol given by

ẋi = −
∑
j∈Ni

(xi(t) − x j(t))

where Ni is the neighborhood set of agent vi ∈ V (i.e v j ∈ Ni ⇔ (vi, v j) ∈ E). The
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corresponding state space form of the consensus equation is given by

ẋ = −LGx

where LG is the graph Laplacian associated with G.

The topology of the graph G plays a significant role in the convergence of the consen-

sus protocol. The rate of convergence of the consensus protocol depends on the smallest

non-zero eigenvalue of G. The smallest non-zero eigenvalue of the graph Laplacian LG is

known as the Fiedler value or the algebraic connectivity of the graph G and it measures

the connectivity of the graph. It is observed in [16] that more connected the graph G is,

faster the convergence of the consensus protocol. In Section 2.5, we study the connec-

tion relationship between information requirements, convergence and task formulation. It

can be seen that different formulation of the same task can lead to different information

requirements which in turn impacts rate of convergence.

1.2.3 Importance of Topology in Networked Systems

An area of research which highlights the connection between topology and system proper-

ties is that of the controllability of leader-follower networks where the follower dynamics

are determined by consensus-type local interaction rules. A leader-follower network is

constructed by segregating a group of agents, described by a graph G = (V, E), into leaders

and followers. The leaders are subject to external input while the dynamics of the followers

are governed by the consensus equation and influenced by the input supplied to the leaders.

The dynamics of a leader-follower system is given by

ẋ = −L f x(t) − lu(t)

where the matrices L f and l are sub-matrices of the graph Laplacian LG. The controllability

of leader-follower systems was first bought up by [17]. The paper characterized the con-

trollabilty of leader follower systems in terms of the eigenvectors of the graph Laplacian

and emphasized the need for a graph-theoretic characterization. A topological exploration
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of the controllability problem, for the single-leader case, with an emphasis on symmetry

and its impact on controllability can be found in [18]. Through the use of equitable parti-

tions, a graph theoretic sufficient condition was presented in [19]. A further investigation,

undertaken in [20], uses quotient graphs and bisimulations to show that the uncontrollable

part of such leader-follower networks is asymptotically stable for all connected networks.

Other results related to leader-follower networks with a single leader is presented in [21].

In case of multiple leaders, a tight lower bound for the rank of the controllability matrix,

computed by calculating the distance of each node to the closest leader, is presented in [22]

while [23] presents an upper bound.

From a design perspective, [24] presents a method to design completely controllable

networks by splicing together smaller controllable networks by connecting the leaders

and showing that controllability is preserved. Also, a method for constructing leader-

asymmetric networks, a necessary topological condition for controllability, in a decentral-

ized way using graph grammars can be found in [25].

Finally, the topology of the communication/interaction graph also plays a major role on

the robustness of consensus/leader-follower based networked systems to noise. It is shown

that the robustness of a leader-follower network with a single leader is very sensitive to the

communication topology. Specifically, it is shown that the topology which is maximally

robust with respect to certain robustness measures is the star topology with the leader acting

as the hub node [26]. In the case of a leaderless system executing the consensus protocol,

The Kirchoff index associated with communication graph can be used as a measure of

robustness and can be used to rearrange tree strucutres in order to improve their robustness

[27, 28]. Lastly, [29] unifes two different notions of robustness and demonstrates that they

can me measured using a common graph invariant, the Kirchoff index.

The work presented in Chapter 3 aims to explore the controllability of a specific net-

worked linear system, a power grid populated by producer-consumer hybrids, in the pres-

ence of communication failure and connect it to the underlying topology.
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1.2.4 Networked Systems and Information requirements

Networked dynamical systems can be thought of as a group of autonomous agents cooper-

ating with each other over a network in order to achieve a common task. Several examples

of such tasks can be found in multi-agent literature (for e.g, see [30],[31] for multi-robot

systems, [32], [33] for sensor networks and power systems). The information flow in such

a system is dictated by the sensing and communication capabilities of the individual agents.

Agents can obtain limited state information via sensors and the existence of a communica-

tion network can allow the agents to further coordinate and execute distributed algorithms

(for e.g, see [33], [34]). In Section 51, we approach the problem of stabilizing a networked

system described by linear dynamics using only sensor measurements without relying on

communication. One motivation behind such an undertaking is to understand whether typ-

ical tasks like stabilization can be dealt with without relying on expensive communication

infrastructure.

One of the idiosyncrasies of a networked dynamical system is the limited predictive

power of the individual nodes in the system. This is typically due to the fact that the indi-

vidual nodes are often seperated spatially and can observe and interact with only a small

subset, referred to as its neighborhood, of the system. This imposes an information con-

straint which needs to be taken into account when designing controllers. The problem of

stabilizing a power system modelled by linear dynamics under such an information con-

straint is approached by [33]. The information constraint is addressed by using a model

predicitve controller with a prediction horizon set to one (dubbed as one-step MPC in [33]).

The short prediction horizon allows the nodes to utilize the state information obtained by

observing its neighborhood to compute a stabilizing control strategy using optimization

methods. It is important to note that the execution of distributed optimization methods re-

quires a communication network as each node has to make multiple information exchanges

with its neighbors in order to compute the control signal. This approach was used in [33] in

order to compute a stabilizing control strategy for a power system. We adopt the appraoch
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of using a 1-step MPC in Section 5.1 but mitigate the need for a communication network

in Section 5.2 by using a approximate model which eliminates that need.

Another concept that aids in the design of a feedback controller which respects infor-

mation constraints is that of quadratic invariance. The information constraint is expressed

as a sparsity constraint on the structure of the gain matrix K which defines the feedback

law given by u = −Kx. It is then shown that it is possible to compute a stabilizing feedback

controller using convex programming methods if the constraint set defined by the sparsity

requirements is quadratically invariant with respect to the system [35, 36, 37, 38, 39]. The

results pertaining to quadratic invariance are fairly general and applies to a wide variety

of systems. The downside is that the controller design must be done offline and requires a

centralized computation.

In Section 5.3 and Section 5.4, we show that it is possible to design a stabilizing con-

troller in a online fashion for a limited class of systems. The notion of using limited in-

formation to solve tasks is also a theme that is explored in robotics under the name of

minimality (for e.g, see [40, 41, 42]).
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CHAPTER 2

DISTRIBUTED POWER ALLOCATION

In order to underline the connections between information requirements and task formu-

lation, we consider an highly idealized version of the supply and demand problem which

commonly arises in a power grid. The setting in which we consider this problem is that

of a homogenous power grid populated by producer/consumer hyrbids (referred to as pro-

sumers), a concept introduced in [10]. It is shown that the information requirements for

solving this problem depends cruically on the choice of the constraints. We also identify

that there exists an trade-off between information requirements and the rate of convergence.

For a full account of the presented work, see [43].

2.1 Problem Statement

We consider a set of k prosumer agents, denoted by V = {υ1, . . . , υk}. These agents are

assumed to be connected over a transmission network that they use for communications

and power exchange. Formally, we represent the network by a connected, undirected graph

G = (V, E) on V with m edges, in which the presence of an edge (υi, υ j) ∈ E indicates that

agents υi and υ j can communicate and exchange power bidirectionally. For the purpose of

notational ease, we associate an arbitrary orientation to G which will serve to give meaning

to positive and negative flows along edges. Indeed, for each edge ei ∈ E, we define a signed

power flow ri ∈ R across ei, and collect these flows in a vector r = (r1, . . . , rm)T ∈ Rm. In the

subsequent sections, we will present distributed algorithms that manipulate flow vectors to

satisfy the energy needs of the various agents.

We assume that each agent i in the network has computed its desired power need

Ni ∈ R, by taking into account its personal load, storage and generation capabilities. The

value Ni is negative if agent i desires to generate/produce power and positive if it wants

to consume power. Agents with positive Ni require more power than they produce, and
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are requesting power from the network. Likewise, agents with negative Ni have excess

power available, which they are offering for distribution. We collect the power needs of the

individual agents in the vector N = (N1, . . . ,Nk)T .

In a physical power network, the power produced by any node must subsequently be

consumed by some other node or nodes. The actual power which is being produced or

consumed by an agent is a determined by the amount of power which is being injected

and withdrawn from the transmission/distribution infrastructure represented as power flow

along the edges. The power pi ∈ R that is actually available to prosumer i is determined

by the power flows along edges incident to υi. Letting D(G) ∈ Rk×m be the node-edge

incidence matrix for G (given the arbitrary orientation) and given a flow r ∈ Rm, we define

the power vector p ∈ Rk by

p = Dr . (1)

The vector r represents the power flows along the edges whose directionality is deter-

mined by the incidence matrix D. We would like to compute a power-flow vector r such

that the net weighted discrepancy between the power p = Dr and the desired power N is

minimized. This problem can be phrased as least-squares optimization problem,

min
r

1
2

(Dr − N)T W(Dr − N), (2)

where W = WT � 0 is a diagonal, positive definite weight matrix.

The interpretation is that we are optimizing over power flows in order to ensure that

agents’ power needs are satisfied as closely as possible, in a least-squares sense. The weight

matrix W captures the relative importance of each agent’s need in the network. If agent j

is a critical facility (e.g a hospital) , whose power needs are important, then the w j j term

is made larger. Also, smaller agents like electric vehicles have smaller tolerances and poor

safety mechanisms and cannot handle large power fluctuations. This is also taken into

account when assigning weights for the prosumers.
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First of all, we immediately see that, as this is a standard linear least-squares problem,

the optimal r can be found by computing an appropriate Moore-Penrose psuedo-inverse.

Unfortunately, such a computation is inherently centralized and it will not endow the in-

dividual prosumers with distributed actions. Instead, one possible way to determine r is

to differentiate the cost in (2) with respect to r and perform a (hopefully distributed) gra-

dient descent to find the optimal value of r. But, since the dimension of the r is equal to

the number of edges in the network and since the transmission infrastructure is a passive

component and does not perform computations, this computation can unfortunately not be

distributed among the prosumers in the network.

In the following sections, we present an alternative formulation of the above problem as

a constrained optimization problem where the decision variable is actually p, the available

power at each individual node, instead of the flows r used in the definition of (2). We will

show that we can recover not only the flows r, but also obtain an alternative characterization

of the flows as potential differences across adjacent nodes. We also point out the relation-

ship between the structure of the solution and the constraints it imposes on the information

topology of the grid. We give a helpful alternate characterization of feasible power flows,

in Lemma 1, which is really just a direct consequence of the fundamental theorem of linear

algebra:

Lemma 1 A vector p ∈ Rk can be expressed as p = Dr for some r ∈ Rm, if and only if

1T p = 0, where 1 , (1, 1, . . . , 1)T ∈ Rk.

Proof: We must show that range(D) ⊥ span 1. Since range(D)⊥ = null(DT ) and it

is also known that null(DT ) = span(1) for weakly connected, directed networks, we have

range(D)⊥ = span(1).

In short, the requirement 1T p = 0 expresses the conservation law that the power generated

in the network equal the power consumed.
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2.2 Anticipating Available Power

Using Lemma 1, it is possible to solve for p directly without computing the flow r, as the

solution to the minimization problem

min
p

1
2

(p − N)T W(p − N)

s.t. 1T p = 0
. (3)

By Lemma 1, the constraint 1T p = 0 is equivalent to asserting that p belongs to range(D).

The Lagrangian for the above problem is given by

L(p, υ) =
1
2

(p − N)T W(p − N) + υ1T p (4)

where υ ∈ R being the Lagrange multiplier. The optimal solution is given by p∗ = N −

υW−11 and υ∗ = 1TN

1T W−11 . The term υ∗W−11 can be interpreted as the optimal disparity vector

as it represents the difference between the power need N and the optimal power vector p∗.

Let F , {p | p = N − αW−11 for α ∈ R}. We can understand the role of the Lagrange

multiplier υ by projecting the vectors in F onto the span(1). The projection of a vector p

onto span(1), derived using normal equations, is given by 1T p
1T 1 .The projection Π : R→ R of

a vector p ∈ F parameterized by α onto span(1) is given by the following equation:

Π(α) =
1T

1T 1
N −

1T

1T 1
(αW−11) (5)

Note that Π(α) = 0 when α = υ∗ = 1TN

1T W−11 . The Lagrange multiplier υ∗ determines

the magnitude of the error αW−11 such that the projection of the error term onto span(1)

cancels out the projection of the power need N onto span(1) thus rendering p∗ orthogonal

to span(1).

2.3 Constrained Formulation

We reformulate (2) as an equivalent, constrained minimization problem which allows us

to generate decentralized control laws depending on the characterization of the constraint

p ∈ F .
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Consider the following optimization problem:

min
p

1
2

pT W p

s.t. p ∈ F
(6)

whereD is the incidence matrix. We can show that the optimization problem defined in (6)

is equivalent to (3) as follows.

Lemma 2 Let p∗ be the minimizer for (3) and p̃∗ be the minimizer for (6). Then p∗ = p̃∗.

Proof:

Let p∗ = N − υ∗W−11 where υ∗ = 1TN

1T W−11 denote the minimizer for (3) and let h(α) =

N −αW−11. The range of h is the constraint space F and the tangent to F at a point p ∈ F

is given by ∂h
∂α

= W−11

Since p̃∗ is a minimizer for (6), it lies in F .

Let J = 1
2 pT W p. From the Karush-Kuhn-Tucker conditions, we know that, at p̃∗,

the gradient ∇J( p̃∗) can be expressed as a linear combination of the surface normals to the

constraint surface F . Therefore, at p̃∗, the gradient ∇J(p̃∗) will be orthogonal to the tangent

vector to F at p̃∗. The tangent vector to F , ∂h
∂α

at any point is simply the vector W−11.Then

we have:

∇J( p̃∗)T (W−11) = p̃∗T 1 = 0 (7)

Since p̃∗ lies in F , p̃∗ = N − α∗W−11 for some α∗ ∈ R. Substituting p̃∗ = N − α∗W−11 in

(7),we obtain

p̃∗T 1 = 1TN − 1T (α∗W−11) = 0 (8)

and α∗ = υ∗ = 1TN

1T W−11 . Therefore, we have p∗ = p̃∗.
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2.4 Flows, Potentials and Lagrange multipliers

We now point out the connection between the unconstrained optimization problem where

we optimize over flows r defined by (2) and the constrained optimization problem where

we solve for the feasible power p defined by (6). We can recast (6) in a much more concrete

fashion by noting that error space span(W−11) is the null space of the matrix DT W. Then

we can rewrite (6) as

min
p

1
2

pT W p

s.t.DT W(N − p) = 0
(9)

whose Lagrangian is given by

L(p, η) =
1
2

pT W p + ηTDT W(N − p) (10)

where η ∈ Rm is the Lagrange multiplier. We can obtain p as a function of η by setting

∂L
∂p

T
= W p−WDη = 0. We do so, and obtain p = Dη. We can then determine the Lagrange

dual function by substituting p = Dη in (10) and obtain

g(η) = inf
p

L(p, η) = −
1
2
ηTDT WDη + ηTDT WN . (11)

The minimizer for (10) is p∗ = Dη∗ where η∗ = argmax
η

g(η). We can use this fact to define

an update law for η by performing gradient ascent on (11) by letting

η̇ =
∂g
∂η

= −DT WDη +DT WN . (12)

The Lagrange multiplier η∗ is identical to the flow r∗ with respect to the orientation

defined by the incidence matrix D, where r∗ is the minimizer for the problem defined

by (2). The DT WD matrix is called the weighted edge Laplacian. For a more detailed

discussion of the weighted edge Laplacian, see [12].

So, the protocol defined by (12) in conjunction with p = Dη, solves the problem defined

by (2).
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The Lagrange multiplier η determines the feasible power vector p the same way the flow

vector r defined in (2) does. Since η is a Lagrange multiplier, its dimension is determined

by the dimension of the constraints which is equal to m, where m is the number of edges

in the network. As a result, the control law given by (12) becomes a edge oriented control

law. We can use this observation to obtain a nodal control law by recasting the above

m-dimensional constraint into a n-dimensional one,where n is the number of nodes.

An alternative way to characterize the constraint p ∈ F is to use the graph Laplacian L

instead of the transpose of the node-edge incidence matrixD. The graph Laplacian shares

the same nullspace with DT ; i.e null(DT ) = null(L) = 1. So, we can use this fact to

reformulate (6) as follows:

min
p

1
2

pT W p

s.t. LW(N − p) = 0
(13)

whose Lagrangian is then

L(p, q) =
1
2

pT W p + qTLW(N − p) (14)

where q ∈ Rn is the Lagrange multiplier. Let g be the Lagrange dual function associated

with the Lagrangian given by (14). We can then proceed to solve this problem in a similar

fashion to (9) and obtain p = Lq and an update law for q given by

q̇ =
∂g
∂q

= −LWLq +LWN . (15)

The Lagrange multiplier q∗ here provides an alternate way to define the flow r∗ as the

potential difference between the nodes, where the role of the potentials is played by the

Lagrange multiplier q∗. The flows are then defined as r∗ = DT q∗ and since the feasible

power at each node is defined as p∗ = Dr∗, we have p∗ = DDT q∗ = Lq∗.

2.5 Information requirements

In this section, we will identify the information topology which must be supported by the

prosumer network to execute the gradient ascent protocols defined by (12) and (15).
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Since the Lagrange multiplier q lies in Rn, where n is the number of prosumers in the

network, we can imagine prosumer i to be responsbile for updating the value qi. We can

then infer the information required by prosumer i to perform the q-update by inspecting the

protocol given by (15). Then, the LWLq term implies that agent i needs to keep track of

the potentials q j such that j ∈ cl(Ni) where cl(Ni) denotes the closure of the neighbourhood

set of i. Therefore protocol (15) requires each prosumer to keep track of the q-values of

its neighbours and the q-values of neighbours-of-its-neighbours (i.e neighbours that are

2-hops away or less).

To identify the information required by an individual prosumer i to execute the edge-

oriented update law given by (12), we need to recast it into a nodal update law.

Define node-potentials to be a vector q ∈ Rn. Then the flow η induced by the potential

q is DT q. To obtain a update law for q, we note that η̇ = DT q̇. Since (12) already defines

an update law for the flows η, we have

η̇ = DT q̇ = −DT (WDη + WN) = −DT (WDDT q + WN) (16)

This then gives us a update law for q as follows:

q̇ = W(−Lq +N) (17)

Clearly, we have q̇ = 0 when Lq = N . The above update law defined for q is not always

stable as N need not lie in the range L. We can achive stabilization by simply projecting

N into the range L as follows:

q̇ = W(−Lq +N − s)

where ṡ = −LWs and s(0) = N

(18)

The update on s ∈ RN is defined such that s converges to αW−11 where α = 1TN

1T W−11 . For

more details on the convergence properties of ODEs involving graph Laplacian, see [44].

So, when q̇ = 0, we obtain p = Lq = N − αW−11 as expected.

We can now determine the information required by individual prosumers by inspecting

(18). Both the q-update law and the s-update law requires only that we know the state pair
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(qi,si) of the neighbouring prosumers (encoded by theL term). So, the update law given by

(15) requires a one-hop information network as opposed to (15), but it requires that each

prosumer maintain two states, s and q, instead of one.

Also, the update law (15) typically converges to the optimal solution faster than (18).

This is because the convergence rate of (15) is proportional by λ2
2 and the convergence

of (18) is proportional by λ2 where λ2 is the second smallest eigenvalue of the Laplacian

matrix.

2.6 Example - A 100 Prosumer system

We compare the performance of the controllers given by (15) and (18) on a randomly

generated prosumer network with two different weight functions.

(a) (b)

Figure 1: 1a tracks the error N − Lq1 while 1b tracks the error N − Lq2. q1 is updated
according to (15) while q2 is updated according to (18). The weights are chosen to be the
identity matrix.

A prosumer graph G with 100 prosumers was generated randomly using a Erdos-Renyi

random graph model and the corresponding graph LaplacianLwas constructed. The small-

est non-zero eigen value of the generated graph, which determines the rate of convergence,

was 34.6389. The power need vector N was also generated randomly with values rang-

ing in between −70 to 70 watts. The average surplus in the network, given by 1
1001TN , is

5.5173 . The potentials q1 and q2 were randomly initialized and are modified according to
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(a) Error convergence at nodes 1 through 5 using up-
date law (15)

(b) Error convergence at nodes 1 through 5 using up-
date law (18)

Figure 2: 2a tracks the error N − Lq1 while 2b tracks the error N − Lq2. q1 is updated
according to (15) while q2 is updated according to (18). Agent 1(blue) suffers lower error
than the others as it was weighted much higher than the other agents

the update law given by (15) and (18), respectively.

The weight function W1 is the identity matrix I100 ∈ R
100×100. The power p converges to

N − α1 where α = 1
1001TN = 5.5173 . Figure 1a tracks the evolution of the error N − Lq1

for the first five nodes where q1 is updated according to (18) while Figure 1b tracksN−Lq2

for the same set of nodes, where q2 is updated according to (15). Note that the error does

converge to 5.5173, average of the power needsN . Also, the rate of the convergence of the

update law (15) is much higher than that of the update law given by (18). This is due to the

fact that the convergence rate of (15) is proportional to the square of the smallest non-zero

eigen value of the graph Laplacian L, due to the LWL term. The rate of convergence of

the update law given by (18) is determined by the smallest non-zero eigen value ofLwhich

is approximately 1120. As a result Lq1 converges to the minimum in less that 50 iterations

while Lq2 takes almost 1500 iterations to converge.

The weight function W2 is the matrix where W2ii = 1 if i , 1 and W211 = 5. All the other

entries, W2i j where i , j, is set to 0. In short, prosumer 1 is weighted in such a fashion that

it is considered 5 times more important the rest of the prosumers and will suffer 5 times

less error than the others. Figure 2a tracks N − Lq1 where q1 is updated according to (15)
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while Figure 2b tracksN−Lq2 where q2 is updated according to (15). The error suffered by

prosumer 1(blue) is just 1.1125, while the other prosumers bear 5 × 1.1125 = 5.5623. The

performance of both the update law is similar to the unweighted case for the same reasons.

2.7 Summary

In this chapter, The distributed power allocation problem was used to explore the con-

nection between task formulation and information requirements in a producer-consumer

(prosumers) hybrid environment. It was shown that different solutions have implications

for the information exchange network that needs to accompany the underlying physical

network. In the next chapter, we will further explore the connection between information

exchange networks and physical networks in the same prosumer environment by exploring

how loss of contact with a subset of nodes in the information exchange network can impact

the controllability of the system.

19



CHAPTER 3

CONTROLLABILITY AND COMMUNICATION FAILURE

Networked dynamical systems rely on communication in order to coordinate and compute

appropriate control actions. Loss of communication links can exclude key decision makers

from providing input and can even alter the system properties. The work presented in

this chapter explores the impact of communication loss on the controllability of a specific

networked system, a homogeneous power-grid populated by producer-consumer hybrids.

We provide results which relates the controllability of such a system with mute nodes to

the topology of the underlying electrical network and show that under certain topological

conditions, controllability is preserved. For more details, see [45].

3.1 Grid model

We briefly describe the power grid model that we shall be using throughout this Chapter

before addressing the issue of communication failure and muteness.

We consider a set V = {1, 2 . . . n} of n prosumers (introduced in Chapter 2) which are

connected to each other electrically via a transimission line. Formally, we can represent the

physical layout of this power network by a graph Gp = (V, E) where |V | = n. The presence

of an edge (vi, v j) indicates that the nodes vi and v j are physically coupled. There is a state

xi ∈ R, the deviation in output power with respect to a scheduled reference, associated with

each node vi in V . We collect the states in a vector associated with each node vi to obtain

the ensemble state given by x = [x1, x2 . . . xn]T . The evolution of x with respect to a discrete

time parameter k ∈ N is given by the following dynamical model:

x(k + 1) = Apx(k) + Bpu(k) (19)

where u(k) is a vector of setpoints which controls the power output of each agent at time k.

Furthermore,
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Ap = I − TsJS (20)

Bp = TsJβ (21)

where J ∈ Rn×n is called the Jacobian matrix, I is the n-dimensional identity matrix, Ts ∈ R

is the sampling time, S and β are diagonal matrices of dimension n × n which encodes

certain electrical properties of the each individual agent. Note that Ap and Bp are derived

from the Jacobian matrix J. This special structure inherent in the power grid model is what

allows us to connect controllability to the grid’s electrical layout. A much more detailed

discussion of this model can be found in [33].

The Jacobian matrix has a sparsity structure which reflects the underlying electrical

topology of the network. This is captured by the following relation

Ji j = 0⇔ (vi, v j) < E. (22)

Note that both Ap and Bp share the same sparsity structure with J as the algebraic

operations carried out to obtain them, multiplication by the diagonal matrices, S and β and

subtraction with the identity matrix I, do not affect the sparsity structure. Furthermore,

the Jacobian, for power systems, is invertible and posseses full rank (For more details,

see section 3-D in [33]) . This allows us to establish that the pair (Ap, Bp) is completely

controllable.

We also assume that the agents can communicate with each other over a communication

network which is represented by a graph Gc = (V, E) = Gp. The equivalence between the

physical and communication graphs imply that the nodes which are connected physically

can communicate with each other.

3.2 Muteness

The work done in [33] provides a distributed method to stabilize the system described by

(19) in a distributed manner where the agents iterate over control strategies by exchanging
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information over the communication network to obtain an optimal stabilizing solution. As a

result, any communication failure which isolates an agent from the rest of the system means

that the isolated agent cannot participate in the decision making process and is forced to

arrive at a control strategy without any information.

Since the isolated agent is still connected to the network physically, and is influenced by

the states of the other agents, one approach would be to set its input to zero and relinquish

the burden of stablizing the system to the rest of the agents. Consequently, it is important

to understand how this loss of actuation affects the controllability of the system. In this

section, we introduce the formal notion of muteness in order to discuss the system resulting

from the isolated agents not participating in the decision making process.

Let the setM ⊂ V denote the set of agents which are isolated due to communication

failure. We will refer to the agents belonging to the set M as mute. We assume that

each agent in the set M is unable to communicate with the rest of the network and as

a result adopts a ”zero-bias” control strategy. The following equation summarizes this

control strategy:

vi ∈ M ⇔ ui(k) = 0 ∀k ∈ N (23)

For convenience, we will assume that M is given by the last m agents i.e, M = {n −

m + 1, n − m + 2, . . . n} where m = |M| in order to simplify analysis.After substituting the

control strategy adopted by the mute agents given by (23) in the dynamical model (19), we

obtain

x(k + 1) = Apx(k) +

[
BN BM

] uN (k)

0m×1

 (24)

where BN is the matrix comprising of the first n − m columns of the Bp, the BM con-

tains the rest of the columns of Bp which corresponds to the mute agents. Also, uN =

[u1, u2 . . . un−m]T and 0m×1 is a column vector with m rows containing zeros. Since the in-

puts corresponding to the columns of BM is zero, we can simplify the dynamics further and

obtain
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x(k + 1) = Apx(k) + BNuN (k). (25)

The dynamics given by (25) represents the evolution of the power grid when the mute

agents do not participate in the decision making process. It is the controllability of this

system that we are interested in.

3.3 Controllability result

In this section, we will provide a rank test which allows us to establish the controllability

of the system described by (25).

The controllability matrix of the the system defined by (25) is expressed as

Γ =

[
BN ApBN . . . An−1

p BN
]
. (26)

Furthermore, we can define the reduced controllability matrix as follows

Γ̂ =

[
BN ApBN . . . Am

p BN
]
, (27)

where m = |M| is the number of mute prosumers.

We present a lemma which shows that it is enough to check the rank of Γ̂ in order to

establish controllability of the system described by (25).

Lemma 3 Let Γ and Γ̂ be as defined by Equations (26) and (27). Then ρ(Γ) = ρ(Γ̂) where

ρ is the rank operator.

Proof: We begin by defining

Γk =

[
A0

pBN A1
pBN . . . Ak

pBN
]

(28)

It can be easily seen that ρ(Γr+1) ≥ ρ(Γr). This is because Γr+1 is constructed by adding

more columns to Γr and adding more columns does not decrease the rank. Now, we claim
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that if ρ(Γr+1) = ρ(Γr) for some r, then ρ(Γr+n) = ρ(Γr) for all n. This can be established via

induction.

Let ρ(Γr+1) = ρ(Γr) and let h = 1. We will now establish that ρ(Γr+2) = ρ(Γr). Then,

Γr+1+h = Γr+2 =

[
Γr Ar+1

p BN Ar+2
p BN

]
. (29)

Now, let v be a column of the matrix Ar+2
p BN . Then v = Apu where u is a column of

the matrix Ar+1
p BN . Every column of the matrix Ar+1

p BN , which represents the last set of

columns in the matrix Γr+1, can be written as a linear combination of the columns of the

matrix Γr owing to the fact ρ(Γr+1) = ρ(Γr). This implies that u =
∑r

i=0 Ai
pBNvi for some

choice of vectors vi ∈ R
n. Then

v = Ap

r∑
i=0

Ai
pBNvi =

r+1∑
i=1

Ai
pBNvi (30)

=⇒ v =

r∑
i=1

Ai
pBNvi︸       ︷︷       ︸

Linear combinations of columns of Γr

+Ar+1
p BNvr (31)

Since every column of Ar+1
p BN is a linear combination of the columns of the matrix Γr, we

can conclude the v, a column of the matrix Ar+2
p BN is a linear combination of columns of

the matrix Γr. This establishes that every column of the matrix Γr+2 is a linear combination

of columns of Γr allowing us to conclude that ρ(Γr+2) = ρ(Γr).

Now, assume ρ(Γr+h) = ρ(Γr) for some h > 1. We will proceed to show that ρ(Γr+h+1) =

ρ(Γr). Note that ρ(Γr+h) = ρ(Γr) for some h > 1 implies that ρ(Γr+h−1) = ρ(Γr). This can

be established by the following argument. We know that r + h − 1 is bounded by r + 1 as

h > 1. Then since, the rank operator ρ is monotonic, we have

ρ(Γr) = ρ(Γr+1) ≤ ρ(Γr+h−1) ≤ ρ(Γr+h) = ρ(Γr) (32)

allowing us to infer that ρ(Γr+h) = ρ(Γr+h−1) = ρ(Γr). Now, setting c = r + h − 1, we have

ρ(Γc) = ρ(Γc+1). We can apply the same argument which we used above to establish that

ρ(Γc) = ρ(Γc+2) which was to be shown. This combined with base case argument shows

that if ρ(Γr+1) = ρ(Γr) for some r, then ρ(Γr+n) = ρ(Γr) for all n.
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Now, we know that Bp = TsJβ is n×n matrix of rank n as it is a product of two full rank

matrices, J and β. This implies all its columns are linearly independent. Then the rank of

BN , comprised of the first n − m columns, is n − m. Then, ρ(Γ0) = ρ(BN ) = n − m. Now,

if the ρ(Γm) = ρ(Γ̂) < n, then there exists k < m such that ρ(Γk) = ρ(Γk+1). Then, we can

establish that ρ(Γk) = ρ(Γm) = ρ(Γ̂) = ρ(Γ) from our previous argument.

If ρ(Γ̂) = n, then clearly ρ(Γ) = n, as n is the upper bound for the rank of the controlla-

bility matrix. This lets us conclude that ρ(Γ̂) = ρ(Γ).

The above lemma simplifies the problem by allowing us to truncate the controllability

matrix and this would allow us to discard a lot of columns if the number of agents n is much

greater relative to the number of mute agents m. We can further simplify the problem and

draw connections to the underlying physical topology of the system by further exploiting

the strucuture of the matrices Ap and Bp.

We recall from Section 2 that Ap = I − TpJS and Bp = TsJβ. We can then write

BN = TsJβ̂ where β̂ = [b1, b2 . . . bn−m] ∈ Rn×(n−m) where bi is the i’th column of the matrix

β and m = |M| is the number of mute agents. In order to proceed, we define a matrix Pm as

follows:

Pm =

[
S Jβ̂ . . . S (JS )m−1Jβ̂

]
(33)

The structure of the Pm contains information about the underlying physical graph Gp

and its higher powers. This will later allow us to connect the controllability of the power

network to its underlying physical topology. For now, we express Pm as the following block

matrix

Pm =

GF
 , (34)

where G is a matrix of dimension (n − m) × m(n − m) and F is a matrix of dimension

m × m(n − m). The matrix F is of quite some importance as it captures the interaction

between the mute nodesM and the non-mute nodes contained in the set V \M.
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Theorem 1 The pair (Ap, BN ) is completely controllable if the rank of the matrix F is equal

to m, where m is the number of mute agents.

Proof: We know that the rank of the controllability matrix Γ is equal to the rank

of Γ̂ from Lemma 1. We also know that Bp = TsJβ. Then BN = TsJβ̂ where β̂ =

[b1, b2 . . . bn−m] ∈ Rn×(n−m) where bi is the i’th column of the matrix β.

The sampling time Ts does not affect the rank analysis. So, we set Ts = 1 in the

following derivation to simplify analysis. Now, we have

ρ(Γ̂) = ρ(
[
Jβ̂ (I − JS )Jβ̂ . . . (I − JS )mJβ̂

]
)

We can expand the terms (I − JS )r using binomial expansion and obtain

ρ(Γ̂) = ρ(
[
Jβ̂ . . .

∑m
k=0 cn

k(−JS )kJβ̂
]
)

where ck
n = n!

k!(n−k)! . Since the coefficients do not contribute the rank analysis, we can drop

them and obtain a further simplified expression as follows:

ρ(Γ̂) = ρ(
[
Jβ̂

∑1
k=0(−JS )kJβ̂ . . .

∑m
k=0(−JS )kJβ̂

]
).

Note that the first term of the sum
∑r

k=0(−JS )kJβ̂ is always equal to Jβ̂. This allows us to

drop that term as it is also equal to the first set of columns of the matrix Γ̂. So, we then

obtain

ρ(Γ̂) = ρ(
[
Jβ̂ . . .

∑m
k=1(−JS )kJβ̂

]
).

We can see that the sum
∑r+1

k=1(−JS )kJβ̂ can expressed as the sum of
∑r

k=1(−JS )kJβ̂ and

(JS )r+1Jβ̂. This allows us to eliminate the summation and only retain the last term further

simplifying the expression for the rank as follows:

ρ(Γ̂) = ρ(
[
Jβ̂ (−JS )1Jβ̂ . . . (−JS )mJβ̂

]
).
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Finally, we can drop the negative signs (as they do not have an impact on the rank of a

matrix) and factor out the Jacobian to obtain

ρ(Γ̂) = ρ(J
[
β̂ S Jβ̂ . . . S (JS )m−1Jβ̂

]
).

Since, the Jacobian J is a full rank matrix, it does not reduce the rank of the controllability

matrix. So the rank is purely determined by the second term of the product. That is

ρ(Γ̂) = ρ(
[
β̂ S Jβ̂ . . . S (JS )m−1Jβ̂

]
).

We set

M =

[
β̂ S Jβ̂ . . . S (JS )m−1Jβ̂

]
. (35)

Note that β̂ is a truncated diagonal matrix of the form

β̂ =

 D

0m×(n−m)


where D is a diagonal matrix of dimension (n−m)× (n−m). We can use this to express M

as a block matrix of the form

M =

 D G

0m×(n−m) F

 .
where G is a matrix of dimension (n − m) × m(n − m) and F is a matrix of dimension

m × m(n − m).

Since D is a diagonal matrix, we can take linear combinations of the its columns to

eliminate the entries of the matrix G. This allows us to conclude that

ρ(M) = ρ(

 D 0(n−m)×m(n−m)

0m×(n−m) F

) (36)

=⇒ ρ(M) = ρ(D) + ρ(F) = (n − m) + ρ(F). (37)

In order for the system to be completely controllable, we require ρ(F) = m which was

to be shown.
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Theorem 1 provides us with a rank test as opposed to topological. One of the primary

advantages of a topological characterization as opposed to a rank test is that it aids in the

design of the network topology and is therefore of interest. In the next section, we will use

the results of Theorem 1 to connect the controllability of (25) to the topology given by Gp.

3.4 Controllability and Topology

The rank test provided by Theorem 2 involves inspecting the matrix Pm defined by (33).

The matrix Pm possess a rich topological structure which encodes information about the

physical network Gp and its higher graph powers. In this section, we establish controllabil-

ity by extracting specific linear submatrices of the matrix Pm and interpret the results from

a graph-theoritic viewpoint.

We will seperate our analysis into two cases : |M| = 1 and |M| > 1.

When there is a single mute agent (i.e |M| = 1), we can show that controllablity of (25)

can be directly related to the connectivity of the physical network represented by the graph

Gp.

Theorem 2 If the graph Gp is strongly connected and |M| = 1, then the pair (Ap, BN ) is

always completely controllable.

Proof: When the number of mute agents is equal to 1, we can write the matrix P1

defined by (33) as follows:

P1 = S Jβ̂ =

GF
 (38)

where F is a 1 × (n − 1) matrix. Note that F is just the last row of the matrix S Jβ̂. Since

both β̂ and S are diagonal matrices, they do not affect the sparsity structure of the product

P1 = S Jβ̂. So, P1 inherits its sparsity structure from that of J. Let u = n denote the single

element of the set M. Since Gp is strongly connected, there exists atleast one node v in

V \ M such that (v, u) ∈ E. This implies that α , 0 where α is the element in the v’th

position in the vector F. Since, F is a row vector with a non-zero entry α, we can conclude
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that the rank of F is equal to 1 which is the number of mute agents in the system. This

allows us (by Theorem 1) to conclude that the pair (Ap, BN ) is completely controllable.

So, as long as the isolated node is connected to the system electrically, we can use the

other nodes to control the state of the isolated node irrespective of the node’s position in

the network topology. This shows that the pair (Ap, BN ) is always controllable, irrespective

of the network topology, when only a single node suffers from communication failure.

For the case |M| > 1, we provide a sufficient condtion under which controllability is

preserved. In order to do so, we define the set N = V \ M where V is set of all agents

and M is the set of mute agents in the network. In the following theorem, we identify

topological conditions on the setM which renders the pair (Ap, BN ) controllable.

Theorem 3 Let Gp = (V, E) be the graph representing the electrical network. LetM ⊂ V

be the set of mute agents. If there exists an injective map φ :M→ N such that

φ(m) = n⇔ (m, n) ∈ E ∧ (v, n) < E ∀v ∈ M \ {m}, (39)

then the pair (Ap, BN ) is completely controllable.

Proof: Let M ⊂ V be a set of mute agents. Assume that there exists φ : M → N

which satisfies the condition given by (39). Physically speaking, the existence of the map

φ implies that every mute node v ∈ M is electrically connected non-mute node φ(v) = m

which is not connected to any node in the setM\ {v}.

Once again, we restrict our attention to matrix P̂m = S Jβ̂ and express it as

P̂m = S Jβ̂ =

ĜF̂
 (40)

where F̂ ∈ R|M|×|N|.

As in the case of the single mute agent case, the matrix F̂ encodes the relationship

between mute nodes and non-mute nodes. Allowing F̂(i, j) to stand for the element located

along the ith row and the jth column of the matrix F̂, we can say that

F̂(i, j) = 0⇔ (i, j) < E ∧ (i ∈ M) ∧ ( j ∈ N). (41)
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1 2 3 4

(a) Controllable according
to Theorem 3

1 2 3 4

(b) Controllable according
to Theorem 3

1 2 3 4

(c) Controllability cannot
be determined by applying
Theorem 3

Figure 3: Three different configurations of a line graph with different nodes muted (repre-
sented by white nodes).

Since φ satisfies the condtion (39), for every mute node m ∈ M, there exists a node

n = φ(m) ∈ N such that the column F̂φ(m) contains zero at all locations except F̂m,φ(m).

Then, the collection of columns {Fφ(m) | m ∈ M} are all mutually orthogonal and therefore

linearly independent. Therefore, the matrix F̂ contains |M| linearly independent columns

and the rank of F̂ is equal to m = |M|. Writing the matrix Pm as defined by (33) as

Pm =

[
S Jβ̂ . . . S (JS )m−1Jβ̂

]
=

Ĝ G̃

F̂ F̃

 (42)

we can see that the rank ρ(F) = ρ(
[
F̂ F̃

]
) = m. Appealing to Theorem 1, we can conclude

that the pair (Ap, BN ) is completely controllable.

Theorem 2 and Theorem 3 are results which connect the topology of the physical net-

work to the controllability of the underlying system. While the rank tests establish in

Section 4 are more definitive tests for controllability, the topological tests established in

this section can be a valuable aid when it comes to designing network topologies as they

can be used to identify problematic node configurations and restructure them so that the

system is more controllable.

In the next section, we consider different examples of network topologies and apply our

results to them in order to determine the controllability of a power grid with that physical

topology.
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2

3 4

Figure 4: The controllability of this configuration cannot be detected by applying Theorem
3, but can be inferred from theorem 1

3.5 Examples

We consider different network topologies and present a brief controllability analysis for

each one of them using the results derivied in Sections 5 and 4.

3.5.1 A path graph with 4 nodes

The physical topology under consideration is a line graph with four nodes. Figure 3 dis-

plays 3 different configurations of line graphs to which we can apply our results. The nodes

marked in white in the figures are the muted nodes and the black ones are the unmuted

nodes.

In the configuration shown in Figure 3a, we can define a map φ as follows:

φ(2) = 1

φ(3) = 4

The above map satisfies the requirements given by (39) allowing us to apply Theorem

3 and infer that the power grid model with the configuration given 3a is controllable. We

can also define a similar φ for the configuration given in 3b by mapping the node 1 to 2 and

node 4 to 3.

It turns out that there exists no φ which satisfies the requirement (39) for configuration

3c. We cannot apply Theorem 3 in this situation. But, it turns out that the configuration

given by 3c is actually controllable. This can be seen by computing the higher powers of

the matrix Pm given by equation 33 and applying Theorem 1.
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Figure 5: A cycle graph with 3 non-muted nodes and 2 muted nodes is always controllable

3.5.2 A 4 node asymmetrical graph

The example shown in the Figure 4 is chosen to illustrate the conservative nature of the

result presented in theorem 3. Note that the matrix F̂ defined in Theorem 3 would have the

following structure:

F̂ =

 f21 0

f31 f34

 (43)

.

It can be seen that the rank of the matrix F̂ is clearly equal to 2 implying that the

configuration shown in Figure 4 is controllable. Yet, there exists no map φ which will

satisfy the requirement given by (39).

3.5.3 C5 : Cycle graph with 5 nodes

Finally, we present an controllablility analysis of a cycle graph with 5 nodes (see fig 5)

with any 2 nodes muted as an example of a topology which is resilient to a certain degree

of muteness. Note that any 2 nodes in a cycle graph with 5 nodes have a neighboring node

which is not connected to the other node. This allows us to construct a φ satisfying the

requirements given by 39 quite easily and infer that a cycle graph with 5 nodes is always

controllable if only 2 nodes are muted.
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3.6 Summary

In this chapter, we explore the connection between the topology and the controllability

of a homogenous power grid consisting of prosumers in presence of communication fail-

ures. We provide topological tests which can be used to check whether a grid experiencing

communication failures is controllable when underlying physical network has certain sub-

structures. These tests can serve as an alternative to rank tests and can simplify the problem

of determining controllability significantly. In the next chapter, we explore communication

delays, another aspect of information exchange, in the prosumer environment and derive

results which provide conditions under which frequency regulation can be achieved in the

presence of communication delays.

33



CHAPTER 4

DISTRIBUTED FREQUENCY REGULATION AND
COMMUNICATION DELAYS

The networked nature of the systems considered in this work means that the communication

delay associated with exchanging information is an important factor that needs to be con-

sidered. For instance, we could envision agents in a multi-agent system relying on iterative

protocols to compute an optimal control strategy. Each iteration might require the agents

to exchange information with their neighbors. In such cases, the amount of time taken by

the agents to compute a control action depends not only on the number of iterations re-

quired to compute the optimal solution, but also on the communication delay associated

with exchanging information with their neighbours.The work presented in this chapter ap-

proaches this problem in the power systems setting. We utilize the linear system model for

prosumer based power systems introduced in the Chapter 3 in order to consider the prob-

lem of distributed frequency regulation. It provides an answer to the question ”How much

information needs to exchanged?” when certain optimization algorithms are used. For a

more detailed account of this work, see [46].

4.1 Overview of Distributed Frequency Regulation
4.1.1 DFR Framework

Frequency regulation is the process of driving frequency to the desired value, 60 or 50

Hz depending on the country 1, using minimal control effort. This is an optimal control

problem whose objective is to drive the power deviations to zero using minimal control

effort. This work presented here bases its analysis on the frequency regulation problem for

prosumer-based energy systems as it is formulated in [33]. For convenience, the problem

1Note that most countries operates at 50Hz.
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is summarized as follows:

min
u

J(x(tc), u) = min
u

∑
i∈N

pixi(tc + 1)2 + riu2
i , (44)

subject to coupling constraints

xi(tc + 1) = aiixi(tc) + biiui(tc)

+
∑
j∈Ni

ai jx j(tc) + bi ju j
(45)

where u =

[
u1, . . . un

]T

and x(tc) =

[
x1(tc), . . . xn(tc)

]T

, N is the set of all prosumers (n = |N|

is the number of prosumers), xi and ui are the power deviation and control variable of

prosumer i, P = diag(pi) and R = diag(ri) are cost coefficients, and Ni is the set of prosumer

i’s neighbors. In addition, the system matrices are A = [ai j] and B = [bi j], which have the

same sparsity structure as the Laplacian of the grid.

In today’s industry, this problem is solved by neglecting coupling between prosumers.

Therefore, the problem becomes much simpler and each prosumer solves its sub-problem

in a fully decentralized way as:

min
ui

[
pixi(tc + 1)2 + riu2

i

]
s.t. xi(tc + 1) = aiixi(tc) + biiui

(46)

As discussed in the preceding section, neglecting coupling can cause critical technical

problems for the grid. Advanced frequency regulators take into account the effect of tie-line

flows [47], but still neglect the effect of neighbors’ control strategy.

In [48], a distributed framework for frequency regulation is proposed, under which

prosumers have a perception of the decision variables of their neighbors and through a

consensus-based ADMM method they achieve agreement on their control strategy. This

framework is denoted as “One-Step DFR”, because only one-hop communication between

prosumers is sufficient to achieve stabilizing optimal control strategies. Under the one-step
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DFR framework, the frequency regulation problem is recast as follows [33]:

min
U1,···Un

n∑
i=1

(
pi

[
AT

i Xi + BT
i Ui

]2
+ riU2

ii
)

s.t. Ui j = U j j, ∀i ∈ N, j ∈ Ni,

(47)

where Ai, Bi, and Ui are the ith rows of A, B and U matrices, where U = [Ui j], ∀i ∈ N and

∀ j ∈ Ni∪{i}, and Ui j is the perception of prosumer i from the control action of its neighbor,

prosumer j. In addition, Xi is a column vector, which includes x j, j ∈ Ni ∪ {i}.

In order to solve the DFR problem, the constraints are augmented in the objective func-

tion and the ADMM method is used to produce the augmented Lagrangian function as [33],

[49], and [50]:

Lρ,i(Ui, Ūh
i , λ

h
i ) = pi

[
AT

i Xi + BT
i Ui

]2
+ riU2

ii

+ λhT

i (Ui − Ūh
i ) +

ρ

2
‖Ui − Ūh

i ‖
2
2,

(48)

where, ρ > 0 is a given penalty factor, and Ūh
i is a column vector, which includes the

average control strategy of prosumer i and that of its neighbors, defined as:

Ūh
i j :=

∑
l∈N j∪{ j}

Uk
l j

|N j| + 1
, ∀ j ∈ Ni ∪ {i}. (49)

In each iteration, prosumer i computes its optimal control strategy by solving a self-

contained problem of the following form:

Uh+1
i = argmin

Ui

Lρ,i(Ui, Ūh
i , λ

h
i ), (50)

Next, prosumers share their perceptions with their neighbors and continue this process

until errors in power deviations and errors in perceptions become smaller than a desired

value.

As shown in [48], DFR is a distributed method for frequency regulation, which can

guarantee system-wide stability using minimal control effort. It can also address inter-

area oscillations problems because coupling between prosumers is considered in computing

minimizing control strategies.
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4.1.2 Modelling communication delays

DFR relies on communication between prosumers, which can potentially pose limitations

for the convergence of the algorithm, if the communication delays become large. In general,

the communication architecture in smart grids supports the functionalities of the DFR algo-

rithm, as the cyber layer has a similar sparsity pattern as the prosumer-based power grid and

it connects neighboring prosumers, which are located at seperate geographical regions. The

communication networks for prosumer-based energy systems have three classes: ISO-level

network for communication between independent system operators (ISO); utility-level net-

work to connect various devices within utilities and interconnect neighboring utilities; and,

micro-level network to form a backbone for communication between microgrids, facilities,

homes, etc [3].

Furthermore, NERC A1 criterion requires that a prosumer brings power and frequency

deviations (area control error, ACE) to zero once every 10 minutes and NERC B2 criterion

requires that a prosumer begins to return ACE to zero within 1 minute after the beginning

of a disturbance [51]. These reliability criteria enforce a clear time limit for the DFR

algorithm. If a prosumer cannot compute stabilizing control strategy within 1 minute, it is

a violation, which can lead to system-wide stability problems.

Increasing the communication delay between prosumers increases the risk of violating

the NERC reliability criteria as it slows down the convergence of the DFR algorithm (iter-

ations take more time). It can also be noted as the size of the grid increases, the number of

iterations required to reach the minimizing control action increases for the DFR algorithm.

This has been illustrated in Table I for three practical prosumer-based energy systems with

different size and connectivity.

IEEE and the International Electrotechnical Commission (IEC) have defined rigorous

standards for communication delay requirements in smart grids in order to ensure reliable

operation of the grid and avoid potential stability problems [1]. Table II illustrates a sum-

mery of the expected packet delays in different communication categories. It is shown that
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Table 1: Convergence of the DFR algorithm for three practical energy systems
Number of Number Number of Duality
prosumers of buses iterations gap (pu)
3 (Flores Island) 46 10 10−4

10 (IEEE System) 24 47 10−4

15 (Sao Miguel Island) 1900 151 10−4

Table 2: IEEE and IEC standards for communication timing requirements in smart grids
Information category Delay requirment
Protection 4 ms
Monitoring and control 16 ms
Medium speed control functions 100 ms
Slow speed auto-control functions 500 ms
Operations and maintenance 1 s

the communication networks are responsible for delivering diverse categories of messages.

In addition, some of the messages, such as the monitoring and control information, have

critical delay requirements [3].

In reality, the communication networks are not always able to meet the strict communi-

cation delay requirements of IEEE and IEC. For instance, experimental results on commu-

nication delays between substations, reported in [1] and [2] and summarized in Table III,

show that in many scenarios the packet delays exceed the maximum required limit for the

most critical messages.

In order to overcome the limitations of the communication delays, in the next section,

a new framework is proposed to estimate a lower bound on the number of DFR iterations.

Table 3: Experimental delay measurement for messages requiring immediate actions [1, 2],
and [3]

Test scenario for critical messages Delay rang (ms)
1 0.2 - 0.7
2 3.2 - 17
3 12 - 86
4 32 - 173
5 18 - 97
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This algorithm may not be the most efficient but it allows us to explicitly ask questions

about the computation budget. This analysis presented in the following section focusses

on one-step Model predictive control in a distributed setting. A relatively general problem

has been studied in [52]. [52] focusses on identifying optimization algorithms which can

solve N-step Model Predictive Control problem within specified time constraints, albeit in

a centralized setting.

4.2 Obtaining a Lower Bound for DFR Iterations
4.2.1 Steepest Descent-based DFR

In this section, a gradient descent-based approach is proposed to obtain the computation

budget of DFR iterations. The general structure of the gradient descent-based DFR algo-

rithm is formulated as follows.

ul+1 = −
γ

2
∂J(x(tc), u)

∂u
+ ul = Cx(tc) + Dul (51)

where γtc is the step size at time tc and C and D matrices are defined as:

C = −γBT PA (52)

D = I − γ
(
R + BT PB

)
(53)

It follows from (51), (52), and (53) that the predicted control strategy is related to the

square of the Laplacian of the grid, which implies that each prosumer needs to communi-

cate with its neighbors and neighbors’ neighbors to estimate its control strategy for the next

step.

Equation (54) shows the predicted control strategy for two iterations and L iterations

scenarios.
u(tc)2 = (C + DC)x(tc) + D2u(tc − 1)

...

u(tc)L =

L−1∑
j=0

D jCx(tc) + DLu(tc − 1),

(54)
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In order to determine how many iterations need to be taken to obtaining stabilizing control

strategies, one needs to first calculate power deviations at time tc + 1 based on the predicted

control strategy at time tc

x(tc + 1) =

A + B
L−1∑
j=0

D jC

 x(tc) + BDLu(tc − 1), (55)

combining (54) and (55) leads to:x(tc + 1)

u(tc)

 = Asteepest

 x(tc)

u(tc − 1)


=


A + B

L−1∑
j=0

D jC BDL

L−1∑
j=0

D jC DL


 x(tc)

u(tc − 1)

 ,
(56)

where Asteepest is defined as the composite system matrix whose spectral properties deter-

mines the stability of the system.

In fact, it is possible to define a formal characterization of the sufficient number of

iterations based on the stability of the composite system matrix. The number of iterations

(L) needs to be large enough to satisfy the following condition:∣∣∣∣∣eig(Asteepest(L))
∣∣∣∣∣ < 1 (57)

4.2.2 Stability Condition for Steepest Descent-based DFR

Since (57) guarantees the stability of the composite system, it is important to first under-

stand whether there exists any L for which the stability condition holds. Intuitively, it

should be possible to find L if the optimal solution to DFR stabilizes the system. Note that

when performing gradient descent starting from an arbitrary initial point, the distance to

the optimal solution after L iterations depends on the step size and the distance between the

initial estimate and optimal solution.

The following theorem shows that as long as the step-size for the gradient descent

process is chosen appropriately, there exists L such that the composite system is always

stable regardless of how the initial estimates for the gradient descent process is chosen.
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Theorem 4 Recalling from (52) and (53), if γ is such that the spectral radius ρ(D) < 1 and

the spectral radius ρ(I−B(R+BT PB)−1BT P)A) < 1, there exists L such that ρ(Asteepest(L)) <

1.

Note that the spectral radius of D determines the stability of the gradient descent process,

while the spectral radius of I−B(R+ BT PB)−1BT P)A determines the stability of the closed-

loop system.

Proof: The key idea behind the proof lies in the following observation. Since

ρ(D) < 1, the expression
∑L−1

i=0 Di corresponds to a convergent geometric sum and therefore

converges to (I −D)−1 as L approaches∞. The same assumption also implies that DL must

converge to 0.

Therefore, 
A + B

L−1∑
j=0

D jC BDL

L−1∑
j=0

D jC DL


→

A + B(I − D)−1C 0n×n

(I − D)−1C 0n×n

 (58)

as L approaches∞, where (I − D)−1 = 1
γ
(R + BT PB)−1. Substituting for (I − D)−1 and C in

(58), we obtain

A∞ =

A − B(R + BT PB)−1BT PA 0n×n

−(R + BT PB)−1BT PA 0n×n

 (59)

The eigenvalues of the block lower triangular matrix A∞ are the eigenvalues of A −

B(R + BT PB)−1BT PA and 0n×n (due to the zero matrix on the bottom right corner of A∞).

Thus, all the eigenvalues of A∞ are contained in the unit circle as the spectral radius of

A − B(R + BT PB)−1BT PA is less than 1 by assumption [33].

This implies that ρ(A∞) < 1. Since the spectral radius of a matrix is a continuous

function of its entries, we have ρ(Asteepest(L)) → ρ(A∞) < 1. This shows that for large

enough L, ρ(Asteepest(L)) < 1.
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The above theorem guarantees that as long as a “large enough” L budget is chosen, the

system represented by (56) would be asymptotically stable. However, the size of the L

budget is quite dependent on the optimization procedure and the spectral characteristics of

the system matrix (A). This implies that the L budget, found by the gradient descent-based

method, can be conservative for many real-world power grids.

In the next section, an alternative and much faster approach is proposed, called Nes-

terov’s accelerated method, which converges to the optimal solution with a quadratic rate

as opposed to the steepest descent, which has linear convergence.

4.2.3 Nesterov’s Accelerated-based DFR

In this section, the Nesterov’s accelerated gradient descent method is applied to obtain

an effective L budget for the DFR algorithm. The Nesterov method is a variation of the

gradient descent, which uses a variable step-size to accelerate convergence.

The following equations outline the theory of the accelerated gradient method:

yl+1 = ul − γ∇J(ul) (60)

ul+1 = ηlyl + (1 − ηl)yl+1 (61)

where ul, yl ∈ Rn (n is the dimension of the system), γ is the step-size and the sequence ηl

is defined as:

η0 = 0 (62)

al =
1+
√

1+4η2
l−1

2 ηl = 1−al−1
al

(63)

The process is initialized such that y0 = u0. Next, it will be shown that yl converges to

the minimum of the DFR cost function (J) for all initial estimates u0. Recalling from (51),

the gradient of the cost function is recast as:

∇J(x(tc), u) = BT PAx(tc) + (R + BT PB)u (64)
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Therefore, the equations (60) and (61) can be re-formulated as follows:

yl+1 = Dul + Cx(tc) (65)

ul+1 = ηlyl + (1 − ηl)yl+1 (66)

Equations (65) and (66) constitute a time-varying linear system, which can be expanded as:


wl+1

yl+1

ul+1

 = Ml


wl

yl

ul

 + Nlx(tc) (67)

where the state variable wl is used to keep track of previous values of yl. In addition,

matrices MI and N1 are defined as:

Ml =


0n×n In 0n×n

0n×n 0n×n C

ηl 0n×n (1 − ηl)C

 (68)

and

Nl =


0n×n

D

(1 − ηl)D

 . (69)

Using (65) to (69), the Nesterov method can be casted as a linear time-varying system

driven by a constant input x(tc). The response of such a system at time L is given by
wL

yL

uL

 = Φ(0, L)


w0

y0

u0

 + FLx(tc) (70)

where Φ(0, L) is the state transition matrix and FL is the discrete time convolution operator,

defined as follows:

Φ(0, L) = ML−1ML−2 . . . M0In when L > 1 (71)

FL =

L−1∑
k=0

L−1−k∏
i=0

ML−1−iNk (72)
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Recalling from Section III.A, the composite system matrix for the Nesterov-based DFR

algorithm takes the following structure:x(tc + 1)

u(tc)

 = ANesterov

 x(tc)

u(tc − 1)


=

A + BPFL BTΦ(0, L)G

PFL TΦ(0, L)G


 x(tc)

u(tc − 1)


(73)

where

T =

[
0n×n I 0n×n

]
(74)

and

G =


I

0n×n

I

 . (75)

The matrix G is used to generate initial conditions for the Nesterov’s update equations

and T is used to recover the vector of interest (i.e yL). Since yL converges to the minimizer

of the DFR cost function as L approaches ∞, it can be shown that for large enough L, the

composite system will stabilize to the origin. The system given in (73) is asymptotically

stable if the spectral radius of the Nesterov’s composite matrix is less than 1. Equation (76)

illustrates a formal characterization for the stability of the Nesterov method.

ρ(

A + BPFL BTΦ(0, L)G

PFL TΦ(0, L)G

) < 1 (76)

4.3 Simulation Results

In this section, the Steepest descent-based and Nesterov’s accelerated-based DFR algo-

rithms are demonstrated on two practical power systems. The first system is the electric

power system on Sao Miguel Island, the capital of Azores Archipelago, and the second

system is the IEEE 24-bus system. The results show that the L budget depends on the op-

timization procedure, the spectral characteristics of the system matrix, and the size of the
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Figure 6: Schematics of the equivalent power grid on Sao Miguel Island

grid.

4.3.1 Computing L budget for Sao-Miguel Island

Sao Miguel is the largest and capital of Azores Archipelago, islands of Portugal. The

electric power system on Sao Miguel has more that 2000 lines, around 1900 buses, and 15

generators. The average demand of the island is 70 MW. The detailed description of the

Sao Miguel system is presented in [53], [54].

The power system of Sao Miguel is clustered into a prosumer-based structure, where

each prosumer represents a control area for frequency regulation. Figure 6 illustrates the

schematics of the equivalent power grid on Sao Miguel, in which each node represents

a prosumer, which has a generator and a load. The loads are representing the equivalent

demand on the prosumers [55].

The DFR cost is chosen such that the minimizer to the cost, which takes on the form of

u∗ = −Kx, becomes an stabilizing control strategy for the system. The state transition ma-

trix and the convolution matrix corresponding to the gradient descent process for different

values of L are computed using the following recursive equations:

Φ(0, k) = DΦ(0, k − 1) (77)

Fk = DFk−1 + C (78)

As shown in Figure 8, it takes at least 4300 iterations for the gradient descent process

to obtain a stabilizing control strategy, which can bring the spectral radius of Asteepest(L) to
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Figure 7: The plot of the spectral radius of the Asteepest matrix for the Sao-Miguel island
system.

less than 1. On the other hand, for the Nesterov’s accelerated method the number of itera-

tions (shown in Figure 9) is drastically less (L is approximately 700) due to the quadratic

convergence of the Nesterov process2.

Assuming that the expected communication delay for each iteration is δ, by increasing

the number of iterations the overall time3 taken to attain a stablizing controller is ∆ = Lδ.

Recalling from Section 4.1.1, NERC B2 criterion requires that prosumers start regulat-

ing frequency within 1 minute after the disturbance. Therefore, if ∆ ≥ 1 minute, prosumers

will violate the NERC reliability criteria and the DFC algorithm will fail to converge.

Computing L allows prosumers to estimate whether they are able to stabilize power and

frequency deviations after any arbitrary perturbations within the acceptable time window.

4.3.2 Computing L budget for the IEEE 24-bus system

The next case study is the IEEE 24-bus system, which has 38 lines and 32 generators. The

average demand of the system is 2,577 MW. The detailed description of the IEEE 24-bus

2Unlike gradient descent, Nesterov’s accelerated gradient descent is not a descent method and exhibits
oscillations, called Nesterov’s ripples, around the optimal solution. This is reflected in the osciallatory be-
haviour of the spectral radius of the ANesterov matrix.

3Note that the computation delays are considered to be negligible compared to the communication de-
lays. This is a reasonable assumption as the update law just requires taking linear combinations of state
measurements, which can be done quite quickly.
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Figure 8: The plot of the spectral radius of the Asteepest matrix for the Sao-Miguel island
system.

Figure 9: The plot of the spectral radius of the ANesterov matrix for the Sao-Miguel island.
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Figure 10: Schematics of the power grid of the IEEE 24-bus system [4]

system is presented in [4].

The power system is clustered into 10 prosumers, where each prosumer represents a

utility or area balancing authority. Figure 10 illustrates the schematics of the power grid

of the IEEE 24-bus system and Figure 11 demonstrates the cyber-physical network of the

prosumer-based IEEE 24-bus system. It is shown in Figure 11 that the cyber-layer has the

same sparsity structure as the physical grid.

Figures 12 and 13 illustrate the results of applying the Steepest descent-based and Nes-

terov’s accelerated-based DFR algorithms to the IEEE 24-bus system. It can be observed

that the Nesterov’s accelerated gradient method outperforms the gradient descent-based

approach by a large margin.

Note that, the number of iterations required by the gradient descent DFR for the IEEE

24-bus system is approximately 3300, while it takes more than 4300 iterations to find an

stabilizing control strategy for the Sao Miguel system. This is mainly due to the fact that

the IEEE system has 10 prosumers and the Sao Miguel Island has 15 prosumers. A similar

trend can be observed when comparing Nesterov’s accelerated method for the two test
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Figure 11: Schematics of the cyber-physical grid of the prosumer-based IEEE 24-bus sys-
tem

systems.

The findings also show that the Nesterov method provides an acceptable lower bound

for the computation budget of the test systems. Assuming that the cyber networks satisfy

the communication delay requirements of IEEE (δ < 16 ms), the overall delay for the

convergence of DFR for both systems would be with in the acceptable time window (∆ <

11.2 s for Sao Miguel and ∆ < 5s for the 24-bus system).

4.3.3 Frequency Regulation Performance

The spectral radius of the Asteepest or ANesterov matrices determines the rate at which the

power deviations decay down to zero (closer the spectral radius is to 1, slower the conver-

gence) and has a direct impact on the performance. At an execution level, each prosumer

improves its initial estimate of the control action by executing L steps of a pre-determined

optimization protocol and then applies the improved control action to the system. This

process is repeated until the power deviations, and consequently the frequency deviations,

are reduced to zero. The simulation results presented thus far demonstrates that the spec-

tral radius of Asteepest and ANesterov depends directly on the number of iterations (L) spent

improving the initial estimate.

49



Figure 12: The plot of the spectral radius of the Asteepest matrix for the IEEE 24-bus system.

Figure 13: The plot of the spectral radius of the ANesterov matrix for the IEEE 24-bus system.
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Figure 14: Plot of power deviations (L = 560 , optimization procedure = Nesterov’s accel-
erated descent)

In this section, further simulation results are presented to illustrate and compare the per-

formance of the optimization protocols at different values of L on the IEEE 24-bus system.

The dynamics used to simulate the evolution of the power deviations and the input vector

is given by (56) (steepest descent) and (73) (Nesterov’s accelerated gradient descent). The

plots presented in this section track the evolution of power deviations assuming a commu-

nication delay δ of 16 ms.

According to Figure 13, the spectral radius of the ANesterov matrix for the IEEE 24-

bus system dips below 1 for L = 560. Figure 14 shows the norm of the power deviation

when the number of optimization steps used to compute the control action is L = 560

when the optimization protocol used is Nesterov’s accelerated gradient descent. It takes

Lδ = 8.96 seconds to compute a control action. The largest eigenvalue of the matrix

ANesterov determines the rate at which the power deviations converge to zero. This can be

seen in Figure 14. The spectral radius of ANesterov is 0.9646 and as such it takes roughly

1200 seconds (20 minutes) for the system to converge to zero.

Figure 15 is a plot of the power deviations when the number of optimization steps

is L = 3600 when using the steepest descent method. Figure 16 shows a plot of power
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Figure 15: Plot of power deviations (L = 3600 , optimization procedure = steepest descent)

Figure 16: Plot of power deviations (L = 3600 , optimization procedure = Nesterov’s
accelerated descent)
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deviations when the number of optimization steps is L = 3600, but for Nesterov’s gradient

descent method. With L = 3600, the delay between the application of control actions is

Lδ = 57.6s which is still within the one minute limit, imposed by the NERC criteria.

Note that it takes about 500 minutes (8.5 hrs) for the power deviations to stabilize to

zero when using steepest descent (Figure 15) as opposed to 4 minutes (approximately) re-

quired by Nesterov’s accelerated gradient descent (Figure 16). This is due to the fact that

the spectral radius of the Asteepest matrix is 0.9898, which slows down the convergence.

The oscillatory behavior is due to the fact that the largest eigenvalue of the system matrix

Asteepest happens to be complex when using steepest descent. The fast convergence exhib-

ited in (Fig 16) is due to the extremely small spectral radius of the ANesterov matrix (0.0783)

when L = 3600.

It is of importance to note that the 8.5 hrs required for the steepest descent algorithm to

stabilize is absolutely not realistic. Nesterov’s accelerated gradient algorithm, on the other

hand, does stabilize sufficiently fast. However, we do not claim that other algorithms, such

as ADMM, would not do better. But, it has been shown that it is possible to connect the

computing budget (L) to the system performance in an explicit way.

4.4 Summary

This chapter introduces a method to estimate a lower bound for the computation budget of

the two different optimization protocols used to compute the control action for frequency

regulation. Under the proposed method, prosumers are able to predict how many iterations

they need to take to obtain a stabilizing control strategy in a distributed manner.

In this chapter, the ability of the prosumers to freely exchange measurements and ar-

bitrary information is what allows us to compute a stabilizing control strategy. In the next

chapter, we explore the other extreme by studying the stability of linear systems with sparse

system matrices while allowing limited information exchange.
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CHAPTER 5

ONE-STEP MODEL PREDICTIVE CONTROL AND
STABILIZATION

In order to understand the importance of communication, we approach the problem of sta-

bilizing a networked linear system where each agent has access to limited state information

obtained via sensing. It is assumed that the agents do not possess any communication capa-

bilities. Instead of addressing the stabilization problem directly, we approximate the orig-

inal model in such a way that the information constraints are automatically satisfied. We

design a model predictive controller which respects the imposed information constraints

and stabtilizes the approximation of the system. We provide conditions on the original sys-

tem matrices under which the controller, designed for the approximation, will stabilize the

original system. We outline the work done on this problem in the following sections. For a

detailed account, see [56].

5.1 System Model and 1-step Model Predictive Control

This section provides a brief discussion of the networked dynamical system which we shall

be using throughout this work. The model that we are adapting is quite similar to the power

system model being used by [33].

Let V = {1, 2 . . . n} represent a group of n autonomous agents connected to each other

via some physical infrastructure. Formally, we can represent this by using a graph G =

(V, E) where |V | = n and (vi, v j) ∈ E implies that vi and v j are physically coupled. We

associate a state xi with each agent i ∈ V . The state vector x of the system is then given by

x = [x1, x2 . . . xn]T . Then, the evolution of the state vector x with respect to a discrete time

parameter k ∈ N is given by:

x(k + 1) = AGx(k) + BGu(k). (79)

where x(k) ∈ Rn, AG ∈ Rn×n and BG ∈ Rn×n. The system matrices AG and BG posses a
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sparsity structure which reflects the structure of the graph G. More formally, we have

(AG)i j = 0⇔ (i, j) < E

(BG)i j = 0⇔ (i, j) < E.

We assume that the magnitude of the largest eigenvalue λmax of AG is greater than 1 (i.e

the system given by equation (79) is unstable). It is also assumed that the matrix BG is

invertible and as such, the system given by the pair (AG, BG) is controllable.

In order to describe the information available to a agent, we define the neighborhood

set Ni ⊂ V of an agent represented by i ∈ V as follows:

v ∈ Ni ⇔ (v, i) ∈ E. (80)

It is assumed that each agent i ∈ V is equipped with sensors which allows it to observe the

state of all the nodes in its neighborhood set Ni. Due to the sparsity structure of AG, this

allows each agent to predict one step into the future under zero input conditions.

We briefly describe the model predictive control methodology used by [33] in order to

stabilize a power system whose structure is similar to equation (79).

One approach to stabilizing (79) is Model Predictive Control (MPC) with a time horizon

N which attempts to stabilize the state with minimal control effort. The cost function which

is typically used takes the form

Jk(u) =

k+(N−1)∑
i=k

x(i)T Qx(i) + uT Ru

+ x(N)T Px(N)

s.t x( j + 1) = AGx( j) + BGu, j ∈ {k, . . . , k + (N − 1)}

where P, Q and R are positive-definite diagonal matrices and k is the current time instant.

The minimizer for the cost function Jk(u) takes the form u = −Kx(k). If there exists some

central coordinating unit which has access to the complete state of the system, then the

optimal control law for the above system can be computed using numerical methods. In
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the absence of such a presence, it is necessary to seek out distributed solutions to the MPC

problem so that each agent can use the information that is available to it to compute a

stabilizing control action.

One idea proposed in [33] is to limit the amount of information required by each agent

by setting the time horizon for the MPC problem to be equal to one. Since the system

matrices have the same sparsity structure as that of the graph G, each agent i only needs to

observe the current state of the agents in its neighborhood set Ni to predict one step forward

in time.The cost function then becomes

Jk(u) = x(k + 1)T Px(k + 1) + uT Ru (81)

s.t x(k + 1) = AGx(k) + BGu(k). (82)

The control law which we obtain by minimizing the above cost takes the form

u∗ = −(BT
GPBG + R)−1BT

GPAGx(k) (83)

It might not be possible to approximate or compute the matrix (BT
G

PBG + R)−1 in a dis-

tributed manner as it might not have the sparsity structure of G. But the cost given by (81)

is convex and there exists optimization methods which allows for a distributed computation

of u∗. Computing the optimal control u∗ = −Kx(k) using distributed optimization methods

involves each node making multiple information exchanges with its neighbors. In the ab-

sence of a communication network, it might not even be possible to compute the optimal

solution to the cost given by equation (81).

One of the key issues with this approach is guaranteeing the stability of the closed loop

system obtained by using the above feedback law (83). The closed loop system is obtained

by substituting u = −(BT
G

PBG + R)−1BT
G

PAGx(k) in (79) and is given by

x(k + 1) = (I − BG(BT
GPBG + R)−1BT

G)PAGx(k).

It is necessary to choose the cost matrices P and R such that the state x(k) stabilizes to the

origin. One well known condition (see [57]) which guarantees stability requires the P and
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R matrices such that they satisify the following Lyapunov inequality

(AG − BGL)T P(AG − BGL) − P ≤ −LT RL (84)

The matrix L is such that u(k) = −Lx(k) is a stabilizing controller. The approach taken in

[33] is to choose diagonal P and R matrices such that the diagonal entries of the control cost

R are relatively small compared to the diagonal entries of the terminal state cost P which

will allow for large control signals.

In the next section, we consider approximations of the model presented in (79) which

can be stabilized with relative ease in the absence of a communication network. The rest

of the paper focusses on stabilizing this approximation and identifying conditions under

which the control signal which stabilizes the approximation can stabilize the system given

by (79).

5.2 Approximations to the System Model

Note that equation (83) in Section 2 provides a closed form solution which minimizes the

cost function Jk(u) which is of interest. But the inverse term (BGPBG + R)−1 might not

have the sparsity pattern which reflects the structure of the graph G. This makes the direct

computation of the the control signal u difficult and we need rely on distributed optimization

methods to compute the solution. In the absence of a communication network, it might

not possible for the agents to execute such optimization protocols. As such, an alternate

approach to the stabilization problem is required.

The main obstruction to the direct computation of the feedback signal given by (83) is

the inverse term (BGPBG + R)−1 which occurs in the solution. The difficulty in inverting

the matrix BGPBG + R stems from the non-diagonal nature of the matrix BG. Therefore, it

might be of interest to construct stabilizing control strategies for a different model with a

diagonal input matrix Bd, consisting of the diagonal terms of the matrix BG, and find means

to relate it back to the original system.
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Formally speaking, we are interested in computing a stabilizing control strategy for the

following system:

x(k + 1) = AGx(k) + Bdu(k) (85)

where x(k) ∈ Rn, AG ∈ Rn×n has the sparsity structure of G and the matrix Bd ∈ R
n×n is

defined as follows:

i = j⇔ (Bd)i j = (BG)i j

i , j⇔ (Bd)i j = 0

The pair (AG, Bd) is controllable as the matrix Bd is a diagonal matrix with non-zero diago-

nal entries. We would like to stabilize the system given by (85) with minimal control effort

at each time instant. The one-step MPC cost function is given by

Jk(u) = x(k + 1)T x(k + 1) + uT Ru (86)

s.t x(k + 1) = AGx(k) + Bdu (87)

where the matrix R is positive definite and diagonal in nature. The minimizer for Jk(u)

is of the from u∗ = Kx(k) where K is given by −(BT
d Bd + R)−1BT

d AG. We can immediately

observe that the control u∗ can be computed in a fast decentralized manner if each agent has

access to its neighbor’s state. This is because the inverse term (BT
d Bd + R)−1 is a diagonal

and AG has the sparsity structure of the G. As a result, their product K also has the sparsity

structure of G which implies that each agent only needs to measure or observe the power

deviations of their neighbors to compute the control action. The state of each agent evolves

as follows:

xi(k + 1) =
ri

(ri + b2
i )

∑
j∈Ni

ai jx j(k) (88)

where xi(k + 1) denotes the state of agent i and Ni denotes the neighborhoodset of agent i.

The terms bi and ri corresponds to the ii’th term of the matrices Bd and R.

Note that eventhough the control signal u(k) = −(BT
d Bd + R)−1BT

d AGx(k) can be com-

puted in a distributed manner, it need not be a stabilizing control signal. The stability
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depends on the how strict the input penalty is and this can be addressed by allowing the

matrix R to be time-varying and dependant on the current state of the system. The question

then becomes : Is it possible to choose for each agent i to choose ri(k) such that the state

xi(k + 1) stabilizes to the origin?

5.3 Stability Via Time-varying Cost matrices

In this section, we provide a method to choose the input penalty matrix R in a time-varying

and decentralized fashion such that the system given by (88) stabilizes to the origin. Since

the matrix R(k) now varies with time, we rewrite the dynamics for agent i as

xi(k + 1) = gi(xi(k), ri(k),Ni) =
ri(k)

(ri(k) + b2
i )

∑
j∈Ni

ai jx j(k). (89)

where xi(k) denotes the current state of agent i, Ni is the closed neighborhood of agent i,

and ri(k) stands for the current input penalty. The ensemble dynamics is then given by

x(k + 1) = (I − Bd(BT
d Bd + R(k))−1BT

d )AGx(k) (90)

The approach we take to guaranteeing stability is to choose ri(k) such that V(x) = xT x

is a Lyapunov function for (90). For V(x) = xT x to be a Lyapunov function, we require

V(0) = 0 and

V(x(k + 1) − V(x(k)) < −c‖x‖2 (91)

=⇒

n∑
i=1

(gi(xi(k), ri(k),Ni)2 − xi(k)2) < −c‖x‖2 (92)

for some c ∈ (0, 1). If each agent i can ensure that (gi(xi(k), ri(k),Ni)2 − xi(k)2) < −cx2
i

by picking ri(k), then stability follows as V(x) = xT x is a Lyapunov function for (90).

We present a theorem that shows it is possible to pick ri(k) such that (gi(xi(k), ri(k),Ni)2 −

xi(k)2) < 0 if certain conditions are met.

Theorem 5 For any given time instant k and any agent i, if (
∑

j∈Ni
ai jx j(k))2−xi(k)2 > −cx2

i ,

then there exists µ > 0 such that gi(x(k), µ,Ni)2 − xi(k)2 < −cx2
i where c ∈ (0, 1).
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Proof: Let xi denote the state of the ith agent and k denote a time instant. Let

(
∑

j∈Ni
ai jx j(k))2 − xi(k)2 > −cx2

i . We have

gi(xi(k), 0.Ni) − xi(k)2 = −xi(k)2 < 0. (93)

We also obtain

lim
r→∞

gi(xi(k), r,Ni)2 − xi(k)2 =
∑
j∈Ni

ai jx j(k))2 − xi(k)2. (94)

The above equality follows from the fact that

lim
r→∞

r
r + b2

i

= lim
r→∞

(1 −
b2

i

r + b2
i

) = 1. (95)

Taking the derivative of g2
i with respect to r, we can infer that

dgi(xi(k), r,Ni)2

dr
=

2rb2
i

(r + b2
i )3

∑
j∈Ni

(ai jx j(k))2 > 0 (96)

when r > 0.

The above equations can be used to establish the following facts

1. gi(xi(k), r,Ni)2 − xi(k)2 is a monotonically increasing function of r by (96)

2. gi(xi(k), 0,Ni)2 − xi(k)2 < 0 by (93)

3. gi(xi(k), p,Ni)2 − xi(k)2 > −cx2
i for sufficiently large p by (94).

Then, by the intermediate value theorem, there exists r∗ ∈ [0, p] such that gi(xi(k), r∗,Ni)2−

xi(k)2 = −cx2
i and r∗ > 0 (i.e gi(xi(k), r,Ni)2 − xi(k)2 has a positive square root). We can

choose µ = r∗ − r∗
D < r∗ where D is a natural number. Since, gi(xi(k), r,Ni)2 − xi(k)2 is a

monotonically increasing function of r, we can establish that

gi(xi(k), µ,Ni)2 − xi(k)2 < −cx2
i (97)

which was to be shown.
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When (
∑

j∈Ni
ai jx j(k))2 − xi(k)2 > 0, the value µ can be computed explicitly as follows

µ = max{p1(k), p2(k)} −
max{p1(k), p2(k)}

D
(98)

where D is a natural number and p1(k) and p2(k) are the roots of the equation gi(xi(k), µ,Ni)2−

xi(k)2 = −cx2
i . The roots can be extracted by using the quadratic formula and are given by

p1(k) =
−b2

i (1 − c)xi(k)
(1 − c)xi(k) +

∑
j∈Ni

ai jx j(k)
, (99)

p2(k) =
b2

i (1 − c)xi(k)
−(1 − c)xi(k) +

∑
j∈Ni

ai jx j(k)
. (100)

We can see that both the roots are functions of the system parameters ai j and the neighbors

states x j(k). This allows each area to compute ri(k) in a decentralized manner. It is also

easy to verify the condition
∑

j∈Ni
ai jx j(k)2 − xi(k)2 < 0 as it only requires us to observe the

neighbor’s state which we are assuming that we have access to. On the other hand, when∑
j∈Ni

ai jx j(k)2 − xi(k)2 ≤ −cx2
i ,

lim
r→∞

gi(xi(k), r,Ni)2 − xi(k)2 < −cx2
i . (101)

By (93), (96) and (101), we can infer that gi(xi(k), r,Ni)2 − xi(k)2 < 0 for all values of r and

does not have any positive roots. Now we set ri(k) = max{µ,C}

Now, we choose ri(k) as follows:

ri(k) = max{µ,C} (102)

where C is a large positive number. The reason C is required is to handle the situation when

the equation gi(xi(k), r,Ni)2− xi(k)2 = 0 does not have any positive roots. In such situations,

any value of positive value of ri(k) will cause descent. So, ri(k) can be chosen to be as large

as possible and since ri(k) cannot be set to infinity, we set it to a large positive number C.

We now establish the stability of the system (90) by a Lyapunov argument.

Theorem 6 The closed loop system described by (90) is asymptotically stable.
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Proof: Let V(x) = xT x. We will demonstrate that V is Lyapunov function for (90).

We have V(0) = 0 which implies that if V is a Lyapunov function, the system described by

(90) would stabilize to the origin. We also have

n∑
i=1

gi(xi(k), ri(k),Ni)2 − xi(k)2 < −c
n∑

i=1

x2
i (103)

=⇒ V(x(k + 1) − V(x(k)) < −c
n∑

i=1

x2
i < 0 (104)

Also, note that the above equation implies that

‖xk+1‖ ≤
√

(1 − c)‖xk‖ (105)

if we choose ri(k) is chosen as prescribed by equations (102). Therefore V is a Lyapunov

function for (90).

We can then conclude that (90) is asymptotically stable.

This allows us to stabilize the approximation (90) in a decentralized manner with min-

imal computation. In the next section, we provide conditions under which the input signal

given by (102) stabilizes the actual control system given by (79).

5.4 Impact of Diagonal Dominance On Stability

The control signal given by (102) stabilizes the approximation (90). In this section, we

establish some conditions under which such control signals will stabilize the actual system.

We want to understand how the control system given by

xk+1 = AGxk + BGuk (106)

behaves when driven by the input signal uk = −(R(k) + BT
d Bd)−1BT

d Agxk.

Note that we can write BG = Bd + Bod where Bd consists of the diagonal entries of BG

and Bod contains the off-diagonal terms.

If the entries of Bod are small in magnitude, then it might be possible for an agent

in the network to ignore the inputs of its neighbors. This in turn allows the controller
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uk = −(R(k) + BT
d Bd)−1BT

d Agxk to stabilize the system. The following theorem formalizes

this notion.

Theorem 7 Let xk+1 = AGxk + BGuk, where

uk = −(R(k) + BT
d Bd)−1BT

d Agxk. (107)

Let Bod = BG − Bd. If

‖Bod‖

‖Bd‖
‖A‖ +

√
1 − c < 1, (108)

then limk→∞xk = 0.

Note : The matrix norm used here is the induced 2-norm given by ‖D‖ = max‖x‖=1‖Dx‖2.

Proof: Assume ‖Bod‖

‖Bd‖
‖A‖ +

√
1 − c < 1. Applying the triangle inequality to xk+1 =

AGxk + Bduk + Boduk, we get

‖xk+1‖ ≤ ‖AGxk + Bduk‖ + ‖Boduk‖. (109)

Substituting uk = −(R(k) + BT
d Bd)−1BT

d Agxk and using the fact that matrix norms are

submultiplicative, we can see that

‖xk+1‖ ≤ ‖AGxk + Bduk‖ +
‖Bod‖‖Bd‖

‖R(k)+B2
d‖
‖AG‖‖xk‖. (110)

Since both B2
d and R(k) are positive definite diagonal matrices, ‖R(k) + B2

d‖ > ‖B
2
d‖ = ‖Bd‖

2.

This in turn implies that

‖xk+1‖ ≤ ‖AGxk + Bduk‖ +
‖Bod‖

‖Bd‖
‖AG‖‖xk‖. (111)

We also know that by construction of Rk, ‖AGxk + Bduk‖ ≤
√

1 − c‖xk‖. Since
√

1 − c +

‖Bod‖

‖Bd‖
‖AG‖ < 1,

‖xk+1‖ ≤ (
√

1 − c +
‖Bod‖

‖Bd‖
‖AG‖)‖xk‖ → 0 (112)

as k → ∞.
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The ratio ‖Bod‖

‖Bd‖
captures the interaction between the diagonal elements and the off diag-

onal elements of the B matrix. Smaller ‖Bod‖

‖Bd‖
implies that the diagonal terms dominate the

off diagonal ones which allows the system to stabilize with much more ease. Also note that

‖AG‖measures the instability of the system in a sense as the absolute value the matrix norm

bounds the absolute value of its eigen values. So, larger ‖AG‖ implies that it is harder to sta-

bilize the system. All this information is encoded in the relation (
√

1 − c +
‖Bod‖

‖Bd‖
‖AG‖) < 1.

Intuitively, we would expect the ratio ‖Bod‖

‖Bd‖
< 1 when the diagonal elements dominate

the off diagonal term in some fashion. This notion is made more precise by the following

definitions and lemma:

Definition 5.4.1 A matrix M is said to be column diagonally dominant if |Mii| ≥
∑

i, j |M ji|

for all i.

Definition 5.4.2 A matrix M is row diagonally dominant if |Mii| ≥
∑

i, j |Mi j| for all i.

The notion of diagonal dominance as defined above is usually a characterstic found in

distributed power systems. The following lemma shows that if the B matrix is diagonally

dominant, then the ratio ‖Bod‖

‖Bd‖
is always lesser than 1.

Theorem 8 Let B be a row and column diagonally dominant matrix. Then ‖Bod‖

‖Bd‖
< 1 where

Bod = B − Bd and Bd = diag(B).

Proof: The proof relies on the matrix norm inequality ‖Bod‖ ≤
√
‖Bod‖∞‖Bod‖1. The

‖Bd‖∞ is the largest absolute row sum and ‖Bd‖1 is the largest absolute column sum. They

are both dominated by ‖Bd‖ which is the largest absolute value of its diagonal elements.

Therefore

‖Bod‖ ≤
√
‖Bd‖

2 = ‖Bd‖ =⇒
‖Bod‖

‖Bd‖
≤ 1 (113)

Note that this is not enough to guarantee stability. It is necessary for the ratio ‖Bod‖

‖Bd‖
to be

small enough to counteract the natural instability of the AG matrix. The larger the unstable

eigenvalues of AG are, smaller the ratio ‖Bod‖

‖Bd‖
needs to be, in order to guarantee stability.
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5.5 Simulations

In this section, we present simulations of the one-step MPC protocol described above on a

small test system with diagonally dominant system matrices.

While we have provided a proof of stability for MPC protocol when the system model

is given by

x(k + 1) = AGx(k) + Bdu(k) (114)

it is of interest to investigate the stability when we are considering the actual model given

by

x(k + 1) = AGx(k) + BGu(k) (115)

The AG and BG system matrices which define the test system behaviour is given by

AG =


−0.3937 0.2011 8.7127

0.0391 −0.1823 0

0.3630 0 −8.70521

 (116)

BG = Bd + αBod (117)

where α ∈ (0, 1], Bd and Bod are given as follows:

Bd =


−0.3937 0 0

0 −0.1823 0

0 0 −8.70521

 (118)

Bod =


0 −0.04021 0.1269

−0.0326 0 0

−0.3025 0 0

 (119)

Note that the sparsity pattern of the matrices AG and BG matrices shows that the underlying

graph G is a line graph with 3 nodes. Furthermore, the magnitude of the largest eigenvalue

of the matrix AG is 9.0697 implying that the system is unstable. The parameter α controls

the magnitude of the off-diagonal entries and determines the diagonal dominance of the

matrix BG. We are interested in the stability of the closed loop system given by
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Figure 17: A plot of the state of the system when α = 1
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Figure 18: A plot of the state of the system when α = 0.05
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x(k + 1) = AGx(k) − BG(R(k) + BT
d Bd)−1BT

d AGx(k)

where R(k) is computed as described in the previous section by approximating the BG as a

diagonal matrix by considering only its diagonal terms. In this case, the entries of the R(k)

are chosen by the individual agents such that

‖x(k + 1)‖2 − ‖x(k)‖2 ≤ 0.95‖x(k)‖2.

We will now present simulations of the closed loop dynamics for different values of α and

observe that the system remains stable if

(
√

0.05 +
α‖Bod‖

‖Bd‖
‖AG‖) < 1. (120)

We present simulation results for α = 1 and α = 0.05 for fixed initial conditions. Note

that for α = 1, the matrix BG is not diagonally dominant and α‖Bod‖

‖Bd‖
> 1. Also the ‖AG‖ =

12.32. As such the condition given in (120) is not met. So, the stability of the system

is guaranteed and Figure 17 shows that the system is unstable. For α = 0.05, we have

(
√

0.05 +
α‖Bod‖

‖Bd‖
‖AG‖) = 0.7810 ≤ 1 which guarantees the stability of the system. This can

be seen in Figure 18.

5.6 Summary

In this chapter, the problem of stabilizing a linear system with sparse system matrices

was considered. It is shown by considering an approximate model of the actual system,

a single step Model Predictive Controller can be computed which relies only local state

measurements to stabilize the system. We also provide conditions under which such a

controller will stabilize the actual underlyng system.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary and Future Work

The research presented in this thesis considers specific problems that occur in networked

cyber-physical systems. The focus has been on understanding the problems that arise due

to the networked nature of such systems. The work presented can be used as a stepping

stone towards the development of general framework which can address problems arising

in networked cyber-physical systems. In the subsequent paragraphs, we explicitly identify

directions along which the work presented in this dissertation can be expanded.

Development of a general framework : While, we have explored a variety of problems

that can occur due to the networked nature of cyber-physical system, we have not provided

a general framework which can be used to pharse these problems. This is one of the main

directions in which the work presented in this dissertation can be expanded.

Design of Controllable networks : The work presented in Chapter 4 can be further

developed and can be used to identify topological substructures which are common among

controllable networks. This can be used for designing power networks which would remain

controllable even when multiple nodes are experiencing communication failure. This work

can also be further expanded by looking at much more general systems where the system

matrices have a sparsity structure which reflects the networked nature of the system.

Communication Delays and optimization algorithms : The work presented in Chap-

ter 5 explored the relationship between the communication delays and computation of an

optimal control signal when two different optimization algorithms are used. The update

law for computing the optimal control signal was linear due to the quadratic nature of the

cost and our choice of algorithms. It is not clear how to extend this framework when that

is not the case and this merits further investigation.
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Another avenue of research involves the exploration of the connection between the step-

size and how it affects the rate at which the spectral radius of aggregate system dynamics

presented in Chapter 5. Larger stepsizes leads to instabilty while too small a step size

leads to slower convergence. It is of interest to optimize this quantity in order to achieve

convergence without sacrificing speed. This has not been explored in this work and is

another avenue of research.

In conclusion, we have a explored a diverse subset of problems occuring networked

cyber-physical systems. Our initial efforts (Chapter 1 and Chaper 2) focussed on explor-

ing the relationship between information requirements and algorithmic choices. The work

presented in Chapter 1 solves the power allocation probelm in a distributed fashion and

identifies the connection between information requirements and performance. Chapter 2

addresses the problem of stabilizing a linear system without communication with only sen-

sor measurements. Our later efforts focussed on addressing more diverse problems arising

due communication faiulre and delays. In Chapter 3, we explored the relationship be-

tween controllability and communication failure and provided topological results. These

results can be used to ascertain the controllability of the system by looking at its topology

when certain nodes are experiencing communication failure. In Chapter 4, we looked at

the relationship between communication delays and computation of optimal control laws

using gradient descent and Nesterov’s accelerated gradient descent. We provided condi-

tions which can be used to determine the number of iterations that is required to compute a

stabilizing control signal in the presence of communication delays.
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[57] J. Löfberg, “Linear model predictive control: Stability and robustness,” 2001.

75


