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SUMMARY

Given a closed surface Sg of genus g, a mapping class f in Mod(Sg) is said to be pseudo-

Anosov if it preserves a pair of transverse measured foliations such that one is expanding

and the other one is contracting by a number λ(f). The number λ(f) is called a stretch

factor (or dilatation) of f . Thurston showed that a stretch factor is an algebraic integer

with degree bounded above by 6g− 6. However, little is known about which degrees occur.

Using train tracks on surfaces, we explicitly construct pseudo-Anosov maps on Sg with

orientable foliations whose stretch factor λ has algebraic degree 2g. Moreover, the stretch

factor λ is a special algebraic number, called Salem number. Using this result, we show that

there is a pseudo-Anosov map whose stretch factor has algebraic degree d, for each positive

even integer d such that d ≤ g. Our examples also give a new approach to a conjecture of

Penner.
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CHAPTER I

INTRODUCTION

Let Sg be a closed surface of genus g ≥ 2. The mapping class group of Sg, denoted

Mod(Sg), is the group of isotopy classes of orientation preserving homeomorphisms of Sg.

An element f ∈ Mod(Sg) is called a pseudo-Anosov mapping class if there are transverse

measured foliations (Fu, µu) and (Fs, µs), a number λ(f) > 1, and a representative home-

omorphism φ such that

φ(Fu, µu) = (Fu, λ(f)µu) and φ(Fs, µs) = (Fs, λ(f)−1µs).

In other words, φ stretches along one foliation Fu by λ(f) and the other one Fs by λ(f)−1.

Foliations Fu and Fs are called unstable and stable foliations, respectively. The number

λ(f) is called the stretch factor (or dilatation) of f .

A pseudo-Anosov mapping class is said to be orientable if its invariant foliations are

orientable. Let λH(f) be the spectral radius of the action of f on H1(Sg;R). Then

λH(f) ≤ λ(f),

and the equality holds if and only if the invariant foliations for f are orientable (see [11]).

The number λH(f) is called the homological stretch factor of f .

Question. Which real numbers can be stretch factors?

It is a long-standing open question. Fried conjectured that λ > 1 is a stretch factor if

and only if all conjugate roots of λ and 1/λ are strictly greater than 1/λ and strictly less

than λ in magnitude.

Thurston [20] showed that a stretch factor λ is an algebraic integer whose algebraic

degree has an upper bound 6g− 6. More specifically, λ is the largest root in absolute value

of a monic palindromic polynomial. Thurston gave a construction of mapping classes of

Mod(Sg) generated by two multitwists and he mentioned that his construction can make a

1
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Figure 1: Simple closed curves on Sg

pseudo-Anosov mapping class whose stretch factor has algebraic degree 6g − 6. However,

he did not give specific examples.

What happens if we fix the genus g? To simplify the question, we may ask which

algebraic degrees are possible on Sg.

Question. What degrees of stretch factors can occur on Sg?

Very little is known about this question. Using Thurston’s construction, it is easy to

find quadratic integers as stretch factors. Neuwirth and Patterson [16] found non-quadratic

examples, which are algebraic integers of degree 4 and 6 on surfaces of genus 4 and 6,

respectively. Using interval exchange maps, Arnoux and Yoccoz [2] gave the first generic

construction of pseudo-Anosov maps whose stretch factor has algebraic degree g on Sg for

each g ≥ 2.

In this thesis, we give a generic construction of pseudo-Anosov mapping classes with

stretch factor of algebraic degree 2g.

1.1 Construction of mapping classes

Let us define a mapping class fg ∈ Mod(Sg) by

fg = (Tcg)
3(TcgTdg · · ·Tc2Td2Tc1Td1),

where ci and di are simple closed curves as in Figure 1 and Tc is the Dehn twist about

c. We will show that fg is a pseudo-Anosov mapping class and its stretch factor λ(fg) is

a special algebraic integer, called Salem number. A Salem number is an algebraic integer

α > 1 whose Galois conjugates other than α have absolute value less than or equal to 1 and

at least one conjugate lies on the unit circle.

2



Theorem 1 (Main Theorem). For each g ≥ 2, fg is a pseudo-Anosov mapping class and

satisfies the following properties:

1. deg λ(fg) = 2g,

2. λ(fg) = λH(fg), and

3. λ(fg) is a Salem number.

The degree of the stretch factor of a pseudo-Anosov mapping class f ∈ Mod(Sg) with

orientable foliations is bounded above by 2g (see [20]). Therefore our examples give the

maximum degrees of stretch factors for orientable foliations in Mod(Sg) for each g.

The hard part is to show the irreducibility of the minimal polynomial of λ(fg). We will

show that all conjugate roots of λ(fg) except λ(fg)
−1 are on the unit circle and none of

them are roots of unity.

Using a branched cover construction, we use the Main Theorem to deduce the following

partial answer to our question about algebraic degrees.

Corollary 8. For each positive integer h ≤ g/2, there is a pseudo-Anosov mapping class

f̃h ∈ Mod(Sg) such that deg(λ(f̃h)) = 2h and λ(f̃h) is a Salem number.

1.2 Obstructions

There are three known obstructions for the existence of algebraic degrees. For any

pseudo-Anosov mapping class f ∈ Mod(Sg), we have:

1. deg λ(f) ≥ 2,

2. deg λ(f) ≤ 6g − 6, and

3. if deg λ(f) > 3g − 3, then deg λ(f) is even.

The third obstruction is due to Long [13] and we have another proof in section 3.4.

It turns out these are the only obstructions for g = 2. However it is not known whether

there are other obstructions of algebraic degrees for g ≥ 3. By computer search, odd degree

3



stretch factors are rare compared to even degrees. We conjecture that every even degree

d ≤ 6g − 6 can be realized as the algebraic degree of stretch factors.

Conjecture. On Sg, there exists a pseudo-Anosov mapping class with a stretch factor of

algebraic degree d for each positive even integer d ≤ 6g − 6.

In chapter 4, we show that the conjecture is true for g = 2, 3, 4, and 5.

1.3 Outline

In chapter 2, we will give the basic definitions and results about train tracks and Perron–

Frobenius theory. Chapter 3 contains the main result; in section 3.1 we will prove the main

theorem by finding a train track and describing its action. In section 3.2, we construct

pseudo-Anosov mapping classes via branched covers. Section 3.3 contains a new approach

to Penner’s conjecture using our examples. In section 3.4, we explain some properties of odd

degree stretch factors. Section 3.5 is where we prove that the minimal polynomial of λ(fg)

has degree 2g. Chapter 4 contains examples of even degree stretch factors for g = 2, 3, 4

and 5.

4



CHAPTER II

BACKGROUND

We begin by recalling the definitions and results about train tracks and Perron–Frobenius

theorem. See [18], [19], or [17] for more discussion.

2.1 Train tracks and Perron–Frobenius theorem.

A weighted train track on a surface S is a smooth 1-complex τ whose vertices are called

switches and whose edges are called branches satisfying the following conditions.

1. Each branch is smooth and and each switch of τ is at least tri-valent.

2. At each switch s there is a well-defined unique tangent line. The set of edges incident

on the switch is partitioned into two disjoint sets depending on the direction of the

one-side tangent at the switch. We arbitrarily choose to call one set of this partition

incoming and the other outgoing.

3. Each component C of S − τ has negative cusped Euler index, i.e.,

χ(C)−
1

2
#(cusps) < 0,

where a cusp is a corner at a vertex that is formed by two edges having the same

one-side tangent direction.

4. Each branch of τ is labelled with a nonnegative integer called a weight. The weights

satisfy the switch conditions; at each switch, the sum of weights on incoming edges is

equal to the sum of weights on outgoing edges.

The set µ of weights on τ is called a measure. We can think of µ as a function µ :

{branches of τ} → [0,∞) satisfying the switch conditions. We say a train track is recurrent

if it supports a positive measure. Some examples of recurrent train tracks are in Figure 2.

5



y xx+y
4

1 3

2

2

1

1

2 3 1

2

Figure 2: Weighted train tracks on S2 and 3-punctured plane
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Figure 3: Moves on train tracks

Shifting and splitting are moves that can be performed on weighted train tracks as in

Figure 3. The inverse of a split is called a collapse. A train track is said to be transversely

recurrent if for any branch b of τ there is an essential simple closed curve α so that α

intersects b and no component of S − (α ∪ τ) is a bigon. (A simple closed curve is said to

be essential if it is not null homotopic.) We say a train track is birecurrent if it is both

recurrent and transversely recurrent. It turns out we can always split a recurrent train track

to a birecurrent one (see [17, Corollary 2.7.3]).

Let f ∈ Mod(S) be a mapping class and let τ be a weighted train track such that f(τ)

collapses to τ . Then the action of f on weights can be described by an nonnegative integral

matrix called the transition matrix. In this case, the spectral radius of the transition matrix

gives information about the mapping class. In particular, Penner [18] states a criterion for

pseudo-Anosov mapping classes. It requires one more ingredient, the Perron–Frobenius

theorem.

A matrix M is said to be positive (or nonnegative) if each of its entries is positive (or

nonnegative). We write M > 0 (or M ≥ 0). A nonnegative matrix is said to be primitive

or Perron–Frobenius if it has a power that is a positive matrix.

Theorem 2 (Perron–Frobenius theorem). Let M be an n× n nonnegative integral matrix.

6



If M is Perron–Frobenius, then M has a unique positive real eigenvalue λ that is strictly

bigger than all other eigenvalues in magnitude.

The eigenvalue in the theorem is called the Perron–Frobenius eigenvalue (or PF–eigenvalue)

for M .

We are now ready to state Penner’s criterion.

Theorem 3. [18, Corollary 3.2] Given a mapping class f of a surface S of negative Euler

characteristic, let φ be a representative of f . If there is a birecurrent train track τ ⊂ S

filling S so that τ splits to φ(τ) with Perron–Frobenius transition matrix, then f is a pseudo-

Anosov mapping class.

2.2 Nonnegative matrices and directed graphs

To apply Theorem 3, we need a criterion for showing that the transition matrix of a

train track is Perron–Frobenius. We will introduce an equivalent condition using directed

graphs.

The directed graph associated to the nonnegative matrix M of size n × n is a directed

graph that has the vertex set V = {v1, · · · , vn} and for each i and j, there are mij directed

edges from vi to vj .

A directed path from a vertex v to a vertex w is a finite sequence v0, · · · , vk with

v0 = v, vk = w where each (vi, vj) is an directed edge. The number k, i.e., the number of

directed edges in the directed path is called the length of the directed path. The directed

graph is said to be strongly connected if for any two vertices vi and vj , there is a directed

path joining vi and vj . Now we give a graph-theoretical description of the Perron–Frobenius

condition.

Theorem 4. A nonnegative matrix M is Perron–Frobenius if and only if the graph associ-

ated to M is strongly connected and has two cycles of relatively prime lengths.

7



CHAPTER III

CONSTRUCTION OF PSEUDO-ANOSOV MAPPING CLASSES

In this chapter, we will prove our main theorem. Let us recall Theorem 1.

Let fg ∈ Mod(Sg) be defined by

fg = (Tcg)
3(TcgTdg · · ·Tc2Td2Tc1Td1),

where ci and di are simple closed curves as in Figure 1 and Tc is the Dehn twist about c.

Theorem 1. For each g ≥ 2, fg is a pseudo-Anosov mapping class and satisfies the fol-

lowing properties:

1. deg λ(fg) = 2g,

2. λ(fg) = λH(fg), and

3. λ(fg) is a Salem number.

3.1 Proof of Main Theorem

3.1.1 Proof that fg is pseudo-Anosov

We will first find a train track for fg ∈ Mod(Sg) and show that fg is a pseudo-Anosov

mapping class using Theorem 3.

Let us consider the hyperelliptic involution of Sg, that is, the rotation by π about the

axis indicated in Figure 4. The quotient of Sg with respect to this involution is topologically

a sphere S̄ with 2g+2 marked points (branch points). Furthermore the Dehn twists about

the simple closed curves ci and di fixed by the involution correspond to the half twists γi

and δi about two marked points on the sphere as in Figure 4.

Hence the mapping class f̄g on S̄ corresponding to fg is the product of the half twists:

f̄g = (γg)
3(γgδg · · · γ2δ2γ1δ1).

8
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.....

Sg

d1c1d2c2
dgcg

S̄

δ1γ1δ2γ2δgγg

Figure 4: Hyperelliptic involution of Sg

.... x1x2x3x2g
x2g−1

y

Figure 5: Train track τ of f̄g on S̄

We will show f̄g is a pseudo-Anosov mapping class on S̄. If f̄g is a pseudo-Anosov

mapping class, there is a representative homeomorphism φ ∈ f̄g with two invariant foliations

Fu and Fs with stretch factor λ. Then φ lifts to φ̃ ∈ Homeo+(Sg) and the two foliations Fu

and Fs for φ lift to F̃u and F̃s for φ̃ with the same stretch factor λ. (A k-pronged singularity

lifts to a 2k-pronged singularity.) So the lift [φ̃] = fg is a pseudo-Anosov mapping class in

Mod(Sg) with stretch factor λ(f̄g).

By deleting the rightmost marked point in Figure 4, we consider S̄ as plane with (2g+1)

branch points. A train track for f̄g is given in Figure 5. There are 2g branches with integral

weights xi, 1 ≤ i ≤ 2g, and one more branch with weight y = x1 + x2 + · · · + x2g. By

9
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Figure 6: The action of f̄g on τ
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split

x2g y
split

Figure 7: τ splits to f̄g(τ)

assigning any positive even integers to each xi, one can see τ supports a positive measure.

Hence τ is a recurrent train track.

The action of f̄g on τ is as in Figure 6. At the final step, f̄g(τ) collapses into the

original train track τ with new integral weights obtained by zipping the parallel edges. The

transition matrix Mg of f̄g with respect to the basis (x1, x2, · · · , x2g) is a 2g × 2g matrix

such that

Mg =




0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 0

1 1 1 1 · · · 1 1

0 2 2 2 · · · 2 1




By applying consecutive splits, one can show that τ splits to f̄g(τ) as in Figure 7.

To prove f̄g, hence fg, is pseudo-Anosov it remains to show the transition matrix Mg

is Perron–Frobenius. We will show the equivalent condition that the graph associated to

Mg is strongly connected and has two cycles of relatively prime lengths. First, the vertex

v2g−1 is connected to every vertex vi because each entry in (2g − 1)st row is positive. In

the other direction, for i < 2g − 1, vi is connected to vi+1 because (i, i + 1)-entry of Mg

is positive and hence every vertex vi is connected to v2g−1 via the path vi, vi+1, . . . , v2g−1.

The last vertex v2g is also connected to v2g−1. Therefore the graph associated to Mg is

strongly connected since for every pair of vertices vi and vj there is a path joining vi and vj

via the vertex v2g−1. Second, we can easily find two cycles of relatively prime lengths. For

instance, A cycle (v2g−2, v2g−1, v2g−2) has length 2 and a cycle (v2g−3, v2g−2, v2g−1, v2g−3)

11



has length 3. Therefore the transition matrix Mg is Perron–Frobenius. By Theorem 3, f̄g

is a pseudo-Anosov mapping class on S̄ and so is fg on Sg.

3.1.2 Characteristic polynomials and Salem numbers

Now we will compute the characteristic polynomial pg(x) of Mg. Using the cofactor

expansion of the first row,

pg(x) = det(Mg − xI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 0 · · · 0 0

0 −x 1 0 · · · 0 0

0 0 −x 1 · · · 0 0

...
...

...
...
. . .

...
...

1 1 1 1 · · · 1− x 1

0 2 2 2 · · · 2 1− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 · · · 0 0

0 −x 1 · · · 0 0

...
...

...
. . .

...
...

1 1 1 · · · 1− x 1

2 2 2 · · · 2 1− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0

0 −x 1 · · · 0 0

...
...

...
. . .

...
...

1 1 1 · · · 1− x 1

0 2 2 · · · 2 1− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Let us denote the first determinant by q2g−1(x). By the consecutive cofactor expansions of

the first row, the second determinant is

(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0 0

0 −x 1 0 · · · 0 0

0 0 −x 1 · · · 0 0

...
...

...
...
. . .

...
...

1 1 1 1 · · · 1− x 1

0 2 2 2 · · · 2 1− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0

0 −x 1 · · · 0 0

...
...

...
. . .

...
...

1 1 1 · · · 1− x 1

0 2 2 · · · 2 1− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= · · ·

= (−1)2g−2

∣∣∣∣∣∣∣

1 1

0 1− x

∣∣∣∣∣∣∣
= −x+ 1

12



Hence we can write pg(x) = (−x) · q2g−1(x)− x+ 1. We claim that

qk(x) = (−1)k(xk−1 − 2xk−2 − 2xk−3 − · · · − 2x2 − 2x− 1),

for each k ≥ 3. We prove this claim by induction on k.

The base case is when k = 3. By direct calculation,

q3(x) =

∣∣∣∣∣∣∣∣∣∣

−x 1 0

1 1− x 1

2 2 1− x

∣∣∣∣∣∣∣∣∣∣

= (−1)3(x3 − 2x2 − 2x− 1).

Suppose the claim is true for k. By the cofactor expansions of the first row again, we can

write

qk+1(x) = (−x) · qk(x) + (−1)k−1

∣∣∣∣∣∣∣

1 1

0 1− x

∣∣∣∣∣∣∣

= (−x) · (−1)k(xk−1 − 2xk−2 − · · · − 2x− 1) + (−1)k+1(−x− 1)

= (−1)k+1(xk − 2xk−1 − · · · − 2x2 − 2x− 1).

Finally we can conclude that

pg(x) = (−x) · q2g−1(x)− x+ 1

= x2g − 2x2g−1 − · · · − 2x2 − 2x+ 1

= x2g − 2

(
2g−1∑

k=1

xk

)
+ 1.

The largest root of pg(x) in magnitude is the stretch factor λ(fg). The fact that λ(fg)

is a Salem number results in the following theorems in Akiyama–Kwon’s paper. More

specifically, all roots of pg(x) except λ(fg) and λ(fg)
−1 are on the unit circle.

Theorem 5 (Theorem 2.1 [1]). Let

p(x) = xd − ad−1x
d−1 − ad−2x

d−2 − · · · − a1x+ 1 ∈ Z[x]

be a palindromic polynomial, and assume

p
(
e2kπi/d

)
≥ 0,

13



for all k = 1, 2, . . . , d− 1. If p is non-cyclotomic, then there is a root β > 1 of f such that

1/β is also a root and all the other roots have modulus 1, whence β is a Salem number.

Lemma 6 (Lemma 2.2 [1]). Let b ∈ Z and let

p(x) = xd − b(xd−1 + xd−2 + · · ·+ x) + 1.

Then we have

p
(
e2kπi/d

)
= b+ 2,

for every k = 1, 2, . . . , d− 1.

We will prove the following proposition in section 3.5.

Proposition 7. None of unimodular roots of pg(x) are roots of unity and hence pg(x) is

irreducible over Z for each g ≥ 2.

Proposition 7 implies that pg(x) is the minimal polynomial of λ(fg) and deg(λ(fg)) = 2g.

3.1.3 Orientability

To compute the action of fg on the first homology, let us choose the following homology

classes as a basis for H1(Sg) as in Figure 8.

...

Sg

g g
3 2 112

ab aaa bb

Figure 8: A basis for H1(Sg).

By computing images of each basis element under fg, we can get the following action
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on H1(Sg). 


1 −1 0 0 · · · 0

1 0 −1 0 · · · 0

...
...

...
...

. . .
...

1 0 0 0 · · · −1

4 0 0 0 · · · −3




By induction again, the characteristic polynomial hg(x) of the homological action is

hg(x) = x2g + 2

(
2g−1∑

k=1

(−1)kxk

)
+ 1.

Since hg(−x) = pg(x), the largest root of hg(x) in magnitude is −λ(fg). Therefore λH(fg) =

λ(fg). This implies every mapping class fg has orientable invariant foliations.

It is also possible to see directly that the foliation on Sg is orientable, for instance one

can show that the cover Sg → S̄ is the orientation double cover for the foliation on S̄.

3.1.4 A family of pseudo-Anosov mapping classes on a given closed surface

We can construct infinitely many pseudo-Anosov mapping classes whose stretch factors

have algebraic degree 2g on Sg. For n ≥ 3, define a family of mapping classes fg,n on Sg by

fg,n = (Tcg)
n(TcgTdg · · ·Tc2Td2Tc1Td1).

Then the minimal polynomial of λ(fg,n) is

pg,n(x) = x2g − (n− 1)

(
2g−1∑

k=1

(−1)kxk

)
+ 1.

Using the same argument as in the proof of Theorem 1, we can show that stretch factors

λ(fg,n) are Salem numbers and deg(λ(fg,n)) = 2g. These are not conjugate to each other

because fg,n has a different stretch factor for each n.

For mapping classes fg,n with even n, we may use the same train track as in Theorem

1, but for those with odd n, we need a different train track.
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3.2 Branched Covers

Lifting a pseudo-Anosov mapping class via a covering map is one way to construct

another pseudo-Anosov mapping class. If there is a branched cover Σ̃ → Σ and a pseudo-

Anosov mapping class f ∈ Mod(Σ), then there is some k ∈ N such that Mod(Σ̃) has a

pseudo-Anosov element f̃ which is a lift of fk and hence λ(f̃) = λ(f)k.

Corollary 8. Let g ≥ 2. For each positive integer h ≤ g/2, there is a pseudo-Anosov

mapping class f̃h ∈ Mod(Sg) such that deg(λ(f̃h)) = 2h and λ(f̃h) is a Salem number.

Proof. Let

h =





g−2m
2 , if g is even, m = 0, 1, . . . , (g − 2)/2,

g−1−2m
2 , if g is odd, m = 0, 1, . . . , (g − 3)/2.

Then h is an integer such that 1 ≤ h ≤ g/2 if g is even, and 1 ≤ h ≤ (g − 1)/2 if g is odd.

	 	

Sg Sg

ShSh

g even g odd

Figure 9: A branched cover

Construct a branched cover Sg → Sh as in Figure 9. For h ≥ 2, Sh has a pseudo-

Anosov mapping class fh ∈ Mod(Sh) as in Theorem 1 such that its stretch factor has
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deg(λ(fh)) = 2h. For some k, fh
k lifts to Sg and the lift has stretch factor λ(fh)

k. We

claim that deg
(
λ(fh)

k
)
= 2h. Let λi, 1 ≤ i ≤ 2h, be the roots of the minimal polynomial

of λ(fh). Let us consider the polynomial

p(x) =

2h∏

i=1

(
x− λki

)
.

Then p(x) is an integral polynomial because the following elementary symmetric polynomi-

als in λ1, . . . , λ2h
∑

λi,
∑

i<j

λiλj ,
∑

i<j<l

λiλjλl, · · · , λ1λ2 · · ·λ2h

are all integers and hence one can deduce that coefficients of p(x)

∑
λki ,

∑

i<j

λki λ
k
j ,
∑

i<j<l

λki λ
k
jλ

k
l , · · · , λ

k
1λ

k
2 · · ·λ

k
2h

are also integers. Therefore p(x) is divided by the minimal polynomial of λ(fh)
k. Due to

Proposition 7, all λki except λ(fh)
k and λ(fh)

−k are on the unit circle and they are not

roots of unity. This implies that p(x) is irreducible and λ(fh)
k is also a Salem number with

deg
(
λ(fh)

k
)
= 2h.

If h = 1, Sh is a torus and it admits a Anosov mapping class f whose stretch factor

λ(f) has algebraic degree 2. Then similar arguments as above tells us that there is a lift of

some power of f to Sg whose stretch factor has deg(λ(fk)) = 2.

Therefore there is a pseudo-Anosov map f̃h ∈ Mod(Sg) with deg(λ(f̃h)) = 2h for each

h ≤ g/2. In other words, every positive even degree d ≤ g is realized as the algebraic degree

of a stretch factor on Sg.

3.3 Penner’s conjecture

Penner gave a general construction of pseudo-Anosov mapping classes.

Theorem 9 (Penner [19]). Let A = {a1, . . . , an} and B = {b1, . . . , bm} be multicurves on

the surface S such that A∪B fills S. Let f be any product of positive Dehn twists about aj

and negative Dehn twists about bk, where each aj and each bk appears at least once. Then

f is a pseudo-Anosov mapping class.
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Penner conjectured that every pseudo-Anosov map has a power that is given by this

construction.

Each Dehn twist in this setting has a simple matrix representation. A train track can

be obtained by smoothing edges of A ∪B at each intersection (see [19, p.187]). The action

of each Taj and each T−1
bk

on the train track can be written as the following block matrices

of size |A ∪B| .

Taj ↔




In Uj

0 Im


 , T−1

bk
↔




In 0

Lk Im


 ,

where each Uj and each Lk have only one nonzero row. The jth row in Uj is the only

nonzero row , and entries in the jth row are the intersection numbers of aj with bk ∈ B, i.e.,

(Uj)jk = i(aj , bk) for 1 ≤ k ≤ m. Similarly, the kth row of Lk is the only nonzero row whose

entries are intersection numbers of bk with aj ∈ A, i.e., (Lk)kj = i(bk, aj) for 1 ≤ j ≤ n.

Hence Uk and Lj are symmetric in a sense that intersection numbers are matching; more

precisely, (Uj)jk = (Lk)kj = i(aj , bk) for each j and k.

Penner’s pseudo-Anosov map has a transition matrix that is the product of these inter-

section matrices, where each one appears at least once. We conjecture that these matrices

does not have eigenvalues on the unit circle except 1.

Conjecture. Let λ be the stretch factor of a pseudo-Anosov mapping class given by Pen-

ner’s construction. Then no conjugates of λ are on the unit circle. In particular, a Salem

number cannot be the stretch factor of pseudo-Anosov mapping classes from Penner’s con-

struction.

If the above conjecture is true, then we have a counterexample to Penner’s conjecture.

The stretch factor of the mapping class fg ∈ Mod(Sg) in Theorem 1 is a Salem number such

that all other conjugate roots are on the unit circle and none of them are roots of unity.

Hence for each k ∈ N, the stretch factor of fkg is also a Salem number, and therefore each

power of fg cannot come from Penner’s construction.

We have slightly more general linear algebra problem without geometrical configuration

that may give the answer to Penner’s conjecture.
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Problem 10. For given integers n and m, let us consider the set of nonnegative integral

matrices

P =

{


In Uj

0 Im


 ,




In 0

Lk Im



}
,

such that for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, the jth row of Uj and the kth row

of Lk are the only nonzero rows in Uj and Lk, respectively, satisfying (Uj)jk = (Lk)kj.

Then any product of matrices in P , where each one appears at least once, does not have an

eigenvalue on the unit circle except 1.

3.4 Stretch factors of odd degrees

Long proved the following degree obstruction and McMullen communicated to us the

following proof. First we will give a definition of the reciprocal polynomial. Given a

polynomial p(x) of degree d, we define the reciprocal polynomial p∗(x) of p(x) by p∗(x) =

xdp(x). It is a well-known property that p∗(x) is irreducible if and only if p(x) is irreducible.

Theorem 11 ([13]). Let f ∈ Mod(Sg) be a pseudo-Anosov mapping class having stretch

factor λ(f). If deg(λ(f)) > 3g − 3, then deg(λ(f)) is even.

Proof. Since f acts by a piecewise integral projective transformation on the 6g − 6 dimen-

sional space PMF of projective measured foliations on Sg, and since λ(f) is an eigenvalue

of this action, λ(f) is an algebraic integer with deg(λ(f)) ≤ 6g − 6. Also, since f preserves

the symplectic structure on PMF , it follows that λ(f) is the root of palindromic polynomial

p(x) whose degree is bounded above by 6g − 6.

Let q(x) be the minimal polynomial of λ(f) and let q∗(x) be the reciprocal polynomial

of q(x). Then either q(x) = q∗(x) or they have no common roots, because if there is at least

one common root ζ of q(x) and q∗(x), then both q(x) and q∗(x) are the minimal polynomial

of ζ and hence q(x) = q∗(x). Suppose deg(q(x)) > 3g−3. If q(x) and q∗(x) have no common

roots, then their product q(x) q∗(x) is a factor of p(x) since q∗(x) is the minimal polynomial

of 1/λ(f). This is a contradiction because deg(p(x)) ≤ 6g−6 but deg
(
q(x) q∗(x)

)
> 6g−6.

Therefore we must have q(x) = q∗(x) and this implies q(x) is an irreducible palindromic

polynomial. Hence deg(q(x)) is even since roots of q(x) comes in pairs, λi and 1/λi.
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It follows from the previous proof that if the minimal polynomial p(x) of λ has odd

degree, then p(x) is not palindromic and in fact the minimal palindromic polynomial con-

taining λ as a root is p(x)p∗(x).

We will now show that the stretch factors of degree 3 have an additional special property.

A Pisot number, also called a Pisot–Vijayaraghavan number or a PV number, is an algebraic

integer greater than 1 such that all its Galois conjugates are strictly less than 1 in absolute

value.

Proposition 12. Let f ∈ Mod(Sg). If deg(λ(f)) = 3, then λ(f) is a Pisot number.

Proof. Let λ1 > 1 be the stretch factor of a pseudo-Anosov mapping class with algebraic de-

gree 3, and let p(x) be the minimal polynomial of λ1. Let λ1, λ2, and λ3 be the roots of p(x).

Then the degree of p(x)p∗(x) is 6 and it has pairs of roots (λ1, 1/λ1), (λ2, 1/λ2), (λ3, 1/λ3),

where λ1 is the largest root in absolute value. We claim that the magnitude of λ2 and λ3

are strictly less than 1.

Suppose one of them has magnitude greater than or equal to 1, say |λ2| ≥ 1. The

constant term λ1λ2λ3 of p(x) is ±1 since it is the factor of a palindromic polynomial with

constant term 1. So |λ1λ2λ3| = 1 and we have

1

|λ3|
= |λ1λ2| ≥ |λ1|,

which is a contradiction to the fact that the stretch factor λ1 is strictly greater than all

other Galois conjugates. This proves the claim and hence the stretch factor of degree 3 is

a Pisot number.

We now explain two constructions of mapping classes f ∈ Mod(Sg) whose degree of λ(f)

is odd.

1. As we mentioned, Arnoux–Yoccoz gave examples of a pseudo-Anosov mapping class

on Sg whose stretch factor has algebraic degree g. In particular for odd g, this gives examples

of mapping classes with odd degree stretch factors. They proved that these stretch factors

are all Pisot numbers.
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2. For genus 2, there is a pseudo-Anosov mapping class f whose stretch factor has

algebraic degree 3 (see chapter 4). This is the only possible odd degree on S2 by Long’s

obstruction. It is also true that deg(fk) = 3 for each k because the stretch factor is a Pisot

number (Proposition 12). There is a cover Sg → S2 for each g, so the lift of some power of

f has a stretch factor with algebraic degree 3 on Sg.

Proposition 13. For each genus g, the stretch factor with algebraic degree 3 can occur on

Sg.

Question. Are there stretch factors with odd algebraic degree that are not Pisot numbers?

3.5 Irreducibility of Polynomials

In this section, we will prove Proposition 7. For n ≥ 2, let

pn(x) = x2n − 2

(
2n−1∑

k=1

xk

)
+ 1.

We will show pn(x) does not have a cyclotomic polynomial factor. It then follows from

Kronecker’s theorem that pn(x) is irreducible.

proof of Proposition 7. Suppose pn(x) has the mth cyclotomic polynomial factor. Then

e2πi/m is a root of pn(x).

pn(e
2πi/m) = e4nπi/m − 2

(e4nπi/m − 1

e2πi/m − 1
− 1
)
+ 1 = 0

=⇒ e2(2n+1)πi/m − 3e4nπi/m + 3e2πi/m − 1 = 0 (1)

Consider the real part and the complex part of (1). Then we have the system of equations





cos
(2(2n+1)π

m

)
− 3 cos

(
4nπ
m

)
+ 3 cos

(
2π
m

)
− 1 = 0

sin
(2(2n+1)π

m

)
− 3 sin

(
4nπ
m

)
+ 3 sin

(
2π
m

)
= 0

Using double-angle formula for the first cosine and sum-to-product formula for the last two

cosines, the first equation gives

2 sin
((2n+ 1)π

m

)[
3 sin

((2n− 1)π

m

)
− sin

((2n+ 1)π

m

)]
= 0.
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Similarly the second equation gives

2 cos
((2n+ 1)π

m

)[
sin
((2n+ 1)π

m

)
− 3 sin

((2n− 1)π

m

)]
= 0.

Since sine and cosine have no common zeros, we must have

sin
((2n+ 1)π

m

)
− 3 sin

((2n− 1)π

m

)
= 0.

For m ≤ 5, by direct calculation we can see pn(e
2πi/m) 6= 0. So we may assume that m ≥ 6.

Let ϕ = (2n− 1)π/m and then we can write the above equation as

sin
(
ϕ+

2π

m

)
− 3 sin(ϕ) = 0. (2)

Since sin
(
ϕ+ 2π/m

)
is a real number between −1 and 1, we have

−
1

3
≤ sin(ϕ) ≤

1

3
. (3)

Let ψ = sin−1(1/3). Note that ψ < π/6. Equation (3) gives the restriction on ϕ, that is,

−ψ ≤ ϕ ≤ ψ or π − ψ ≤ ϕ ≤ π + ψ.

Another observation from (2) is that both sin
(
ϕ + 2π/m

)
and sin(ϕ) must have the same

sign, so both ϕ+ 2π/m and ϕ are on the above the x−axis or below the x-axis.

We claim that ϕ has to be on the either first or third quadrant. Suppose ϕ is on the

second quadrant, that is, π−ψ < ϕ < π. Note that m ≥ 6 implies 2π/m ≤ π/3. Since ϕ is

above the x-axis, ϕ+ 2π/m also has to be above the x-axis due to (2) and hence the only

possibility is that ϕ+ 2π/m is between ϕ and π. Then

0 < sin
(
ϕ+

2π

m

)
< sin(ϕ) =⇒ sin

(
ϕ+

2π

m

)
< 3 sin(ϕ),

which is a contradiction to (2). Similar arguments holds if ϕ is on the fourth quadrant.

Therefore the possible range for ϕ is

0 < ϕ ≤ ψ or π < ϕ ≤ π + ψ.
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Figure 10: Possible range for ϕ

Suppose ϕ is on the first quadrant. Then so is ϕ+ 2π/m because

0 < ϕ+
2π

m
≤ ψ +

π

3
<
π

2
.

We can write

ϕ =
(2n− 1)π

m
≡

jπ

m
. (mod 2π)

for some positive integer j, i.e., 0 < jπ/m < π/2.

If j ≥ 2, Using the subadditivity of sin(x) on the first quadrant

sin(x+ y) ≤ sin(x) + sin(y),

we have

sin
(
ϕ+

2π

m

)
− 3 sin(ϕ) ≤

(
sin(ϕ) + sin

(2π
m

))
− 3 sin(ϕ)

= sin
(2π
m

)
− 2 sin(ϕ)

= sin
(2π
m

)
− 2 sin

(jπ
m

)
< 0,

which contradicts (2).

If j = 1, using triple-angle formula

sin
(
ϕ+

2π

m

)
− 3 sin(ϕ) = sin

(3π
m

)
− 3 sin

( π
m

)

=
(
3 sin

( π
m

)
− 4 sin3

( π
m

))
− 3 sin

( π
m

)

= −4 sin3
( π
m

)
< 0,
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which contradicts (2) again. Therefore there is no possible ϕ on the first quadrant. By

using the same arguments, the fact that ϕ is on the third quadrant gives a contradiction.

Therefore we can conclude that p(x) does not have a cyclotomic factor.

We now show that pn(x) is irreducible over Z. Suppose pn(x) is reducible and write

pn(x) = g(x)h(x) with non-constant functions g(x) and h(x). There is only one root of

pn(x) whose absolute value is strictly greater than 1. Therefore one of g(x) or h(x) has all

roots inside the unit disk. By Kronecker’s theorem, this polynomial has to be a product of

cyclotomic polynomials, which is a contradiction because pn(x) does not have a cyclotomic

polynomial factor. Therefore pn(x) is irreducible.
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CHAPTER IV

EXAMPLES OF EVEN DEGREES

Tables 1 through 4 give explicit examples of pseudo-Anosov mapping classes whose

stretch factors realize various degrees. We will follow the notation of software Xtrain by

Brinkmann. More specifically, ai, bi, ci, and di are Dehn twists along standard curves and

Ai, Bi, Ci, and Di are the inverse twists as in [5]. The only missing degree on S3 is degree

5. We do not know if there is a degree 5 example or there is another degree obstruction.

...

Sg

a0

b0

c0

d0

a1

b1

c1

d1

ag−1

bg−1

cg−1

dg−1

Figure 11: Standard curves in Xtrain

Table 1: Examples of genus 2

deg f ∈ Mod(S2) Minimal polynomial λ(f)

2 a0a0d0C0D1C0 x2 − 3x+ 1 λ = 2.618

3 a0d0d0C0C0D1 x3 − 3x2 − x− 1 λ = 3.383

4 a0d0d0d1c0d0 x4 − x3 − x2 − x+ 1 λ = 1.722

6 a0a0d0A0C0D1 x6 − x5 − 4x3 − x+ 1 λ = 2.015
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Table 2: Examples of genus 3

deg f ∈ Mod(S3) Minimal polynomial λ(f)

2 a1c0d0c0d2C1D1 x
2
− 4x+ 1 3.732

3 a0c0d0C1D1D2 x
3
− 2x

2
+ x− 1 1.755

4 a1c0d0a1c1d1d2 x
4
− x

3
− 2x

2
− x+ 1 1.722

6 a0c0d0d2C1D1 x
6
− 3x

5
+ 3x

4
− 7x

3
+ 3x

2
− 3x+ 1 2.739

8 a0c0d0d1C1D2 x
8
− x

7
− 2x

5
− 2x

3
− x+ 1 1.809

10 a1c0d0d1C1A2D2 x
10

− x
9
− 2x

8
+ 2x

7
− 2x

5
+ 2x

3
− 2x

2
− x+ 1 1.697

12 a1c1c0d1d2A0D0 x
12

− x
11

− x
9
− x

8
+ x

7
+ x

5
− x

4
− x

3
− x+ 1 1.533

Table 3: Examples of genus 4

deg f ∈ Mod(S4) deg f ∈ Mod(S4)

4 a0a0a1c0d0c1d1c2d2c3d3 12 a0B1d0c0d1c1d2c2d3c3

6 a0B2A3d0c0d1c1d2c2d3c3 14 a0d0B0d0c0d1c1d2c2d3c3

8 a0A1d0c0d1c1d2c2d3c3 16 A0d0c0d1c1d2c2d3c3

10 a0b1A2d0c0d1c1d2c2d3c3 18 a0B1A2d0c0d1c1d2c2d3c3

†Degree 2 on S4 can be realized by a branched cover S4 → S2 as in 3.2.

Table 4: Examples of genus 5

deg f ∈ Mod(S5) deg f ∈ Mod(S5)

6 b3d0c0d1c1d2c2d3c3d4c4 16 a1B2d0c0d1c1d2c2d3c3d4c4

8 a0a1d0c0d1c1d2c2d3c3d4c4 18 a1B0d0c0d1c1d2c2d3c3d4c4

10 a1A4d0c0d1c1d2c2d3c3d4c4 20 a1A0d0c0d1c1d2c2d3c3d4c4

12 b2C2d0c0d1c1d2c2d3c3d4c4 22 a2A1d0c0d1c1d2c2d3c3d4c4

14 a1B1d0c0d1c1d2c2d3c3d4c4 24 c2A2d0c0d1c1d2c2d3c3d4c4

†Degree 2 and 4 on S5 can be realized by a branched cover S5 → S2.
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