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SUMMARY

A load plan specifies how freight is routed through a linehaul terminal network

operated by a less-than-truckload (LTL) carrier. Determining the design of the load

plan is critical to effective operations of such carriers. This dissertation makes contri-

butions in modeling and algorithm design for three problems in LTL load plan design:

refined execution cost estimation, dynamic load planning, and stochastic load plan

design.

Chapter 2 focuses on accurate estimation of the operational execution costs of

a load plan. Load plan design models in use or proposed today approximate trans-

portation costs by using costs per trailer dispatched between terminals. Furthermore,

empty transportation costs are determined by solving a trailer re-balancing problem.

These approximations ignore two important ideas: (1) trailers are typically moved

behind tractors in trains of two or three trailers, and the cost of moving a trailer

train is not linear in the number of trailers; and (2) drivers must be scheduled for

each dispatch, and driver rules introduce additional empty travel than that minimally

required for trailer balance. We develop models that more accurately capture key op-

erations of LTL carriers. A computational study demonstrates that our technology

produces accurate operational execution costs estimates, typically within 2% of actual

incurred costs.

Chapter 3 describes dynamic load planning (DLP) technology. Traditionally, load

plans are revised infrequently by LTL carriers due to the difficulty of solving the as-

sociated optimization problem. Since freight volumes served vary each operating day,

carriers typically operate by manually adjusting the plan at each terminal to each

xi



day’s operating conditions. Technological advances have now enabled carriers to con-

sider more thorough, system-wide daily load plan updates. We develop technologies

that efficiently and effectively adjust a nominal load plan for a given day based on the

actual freight to be served by the carrier. We present two approaches for adjusting

an existing load plan: an integer programming based local search procedure, and a

greedy randomized adaptive search heuristic. A computational study using complete

network data from a national carrier demonstrates that the proposed technology can

produce significant cost savings.

Chapter 4 studies the stochastic load plan design problem. Load plan design

models commonly represent origin-destination freight volumes using average demands

derived from historical data, the drawback of which is that they do not describe freight

volume fluctuations. We investigate load plan design models that explicitly utilize

information on freight volume uncertainty during planning, and design load plans

that most cost-effectively deal with varying freight volumes and lead to the lowest

expected cost. We present Sample Average Approximation (SAA) approaches for

solving stochastic integer programming formulations of the load plan design problem

with demand uncertainty. In addition to applying the standard SAA approach, we

also propose a modified version which, in order to correct the bias in the branch-

and-bound search that results from using a sample, frequently computes an exact

evaluation of the solution expected cost and a lower bound on this cost, to more

accurately guide the search process.

xii



CHAPTER I

INTRODUCTION

The trucking industry provides an essential service to the U.S. economy by trans-

porting goods from business to business and from business to consumer. Less-than-

truckload (LTL) transportation is an important segment serving businesses that ship

quantities ranging from 150 lbs to 10,000 lbs, i.e., less-than-truckload quantities. A

typical shipment occupies only 5-10% of the trailer capacity. Hence, transporting

each customer shipment directly from origin to destination is not economically vi-

able. LTL carriers therefore collect and consolidate freight from multiple shippers,

and route shipments through a terminal network of cross-dock transfer points to in-

crease trailer utilization. A so-called load plan specifies how shipments traveling from

each origin to destination are routed through the terminal network, and where along

the way they are transferred from one terminal to another. Effective load plans are de-

signed to minimize total linehaul transportation and handling costs, while satisfying

origin-to-destination maximum transit time requirements for customers.

1.1 Less-Than-Truckload Freight Transportation

LTL linehaul networks are comprised of two types of terminals: end-of-line termi-

nals that serve only as origin or destination terminals, and breakbulk terminals that

additionally serve as transfer points for shipments. City operations are used at every

terminal to organize the pickup and delivery of freight to customers with the small

geographic area served by the terminal.

LTL networks enable consolidation of freight from many customers and take ad-

vantage of transportation economies of scale. During the day, city operations tours

are used to both deliver shipments to customers and to collect freight before returning
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to the terminal. Shipments arriving at the terminal are then sorted and loaded into

outbound trailers. When terminals do not collect enough arriving freight to build a

nearly-full trailer direct to a destination terminal, some shipments may be loaded first

on a trailer bound to an intermediate breakbulk terminal. Upon arrival at a break-

bulk terminal, shipments are mixed with other arrivals (including those from local

city operations), and the sorting and loading process continues until freight reaches

its ultimate terminal destination.

Terminals in LTL networks are organized as cross-docks, and are set up to enable

efficient transfer of freight from one trailer to another. Cross-docking a shipment,

however, does require some time and handling cost. When designing a load plan, it

is important to consider both the time and cost of transporting shipments, as well

as the additional handling time and cost introduced by routing shipments through

intermediate breakbulk terminals. A typical LTL shipment may travel from an origin

terminal to a destination terminal, and pass through usually one or two intermediate

breakbulk terminals en route.

Figure 1: An LTL Network

An originating shipment is typically delivered by the city operation to the origin

terminal by the late afternoon, and must be transported to the destination terminal
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by early morning on the day of delivery specified by the service standard. For an

example drawn from a national LTL carrier, a shipment originating in Atlanta, GA on

Monday with a destination of Cincinnati, OH and a service standard of one business

day may arrive at the Atlanta terminal on Monday by 6 p.m. and must be moved to

the Cincinnati terminal by no later than 8 a.m. Tuesday morning.

An important concept in load planning is that of a direct. A direct is a trailer

movement from one terminal to another, where the trailer is loaded at the origin

terminal and unloaded at the destination terminal with no intermediate loading or

unloading. Each direct, therefore, specifies where freight handling occurs in the net-

work. During load planning, shipments are planned to be loaded onto a sequence of

directs that connect the origin terminal of the shipment to its ultimate destination.

A direct consists of either a single dispatch or a sequence of dispatches along the

legs of the trailer path associated with the direct. In case a trailer path consists

of multiple legs, the freight is relayed at the intermediate terminals. Relaying is

necessary because of the limitations imposed on drivers by the Department of Trans-

portation. For safety reasons, a driver is not allowed to drive for more than 11 hours

or be on duty for more than 14 hours before requiring a rest period of at least 10

hours. Therefore, when the travel time between the origin and destination of a direct

is more than a single driver can cover without a rest period, one or more relays are

introduced. Usually, a relay happens at a breakbulk terminal, although they may

happen at special relay facilities. At a relay point, the load is transferred to another

driver and continues with minimal delay. For example, a direct from Dallas to San

Francisco covers 27 hours of drive time and involves two relays and three drivers. It

happens frequently that different directs include common legs in their trailer paths.

For example, both the Dallas-San Francisco and the Dallas-El Paso directs include

the Dallas-El Paso leg in their respective trailer paths.

LTL carriers pack freight into 28-foot trailers known as pups or 53-foot vans.
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Typically, one tractor pulls either a single van or two pups. Most carriers use pups

in their linehaul operations because a pup fills up more quickly than a van, and by

combining pups with different final destinations it is possible to build loads that can

be dispatched earlier, and thus improve service. For example, a pup on the Dallas-San

Francisco direct can be paired up with a pup on the Dallas-El Paso direct to form

a dispatch on the Dallas-El Paso leg. Effectively exploiting the advantages of using

pups requires proper pup matching at breakbulks and relays, i.e., deciding which

pups to pair up into loads. Note that empty and loaded pups can also be combined

into loads.

Driver management is a complex task for LTL carriers, since numerous rules govern

how drivers can be used and are compensated (e.g., a driver is compensated for a

long rest away from his domicile to cover meals and accommodation). Furthermore,

carriers are concerned about the quality of life of their drivers and want them to rest

at their domiciles with some frequency, e.g., at least every other night. In fact, LTL

carriers often execute empty movements in order to return drivers to their domiciles.

1.2 Load Plan Design

Consider a path from a shipment’s origin to destination consisting of a sequence

of directs. A complete load plan will specify such a path for each shipment, and thus

prescribes how all freight should be routed through the linehaul network. A traditional

load plan also has additional structure, where the set of all paths terminating at a

specific destination terminal d form a directed in-tree on the network of potential

directs (see Figure 2 for an illustration). Thus, all shipments that pass through

intermediate terminal i on a path to d are loaded onto the outbound direct (i, j). This

simplifies terminal operations since a dock worker only has to examine the destination

of a shipment to determine the appropriate outbound trailer for loading. For example,

the load plan may give the following instruction: “all freight in Jackson, TN destined
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for Atlanta, GA loads next to Nashville, TN.”

Figure 2: Freight Paths Form an In-Tree into a Destination Terminal

The load plan determines how freight is routed through a carrier’s network, and

thus where opportunities for consolidation occur. Consequently, load plan design is

critical to effective operations of an LTL carrier. Load plans are designed to minimize

total linehaul costs which are comprised of:

1. transportation costs associated with moving loaded and empty trailers; and

2. handling costs associated with transferring freight between trailers at a terminal.

Consider the network presented in Figure 3 for an example of load plan design.

Above each arc, the number inside the parentheses represents the freight volume

measured in fractional trailerloads, and the number outside the parentheses represents

the corresponding required number of trailers if all origin-destination freight were to

be sent direct. Low load factors are observed on many long directs. On the other

hand, Figure 4 shows the freight routing under a load plan and the resulting required

number of trailers on each direct. By consolidating and routing freight in a terminal

network, we reduce the total trailer miles.

In the U.S., national carriers may spend millions of dollars weekly on transporta-

tion and handling costs. Thus, small percentage gains in trailer utilization can lead
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Figure 3: Load Plan Design Example - Freight Volumes

to significant monetary savings. Freight fluctuations, whether seasonal or caused by

changing economic conditions, force LTL carriers to regularly review and adjust their

load plan.

LTL shipments are quoted a service standard from origin to destination in busi-

ness days. Historically these standards were long enough (often 5 or more business

days) that service only loosely constrained freight routing decisions. Today, service

standards of 1, and 2 days are much more common. Figure 5 presents a freight profile

by service standard for a national carrier. These tighter standards must be enforced

when planning shipment paths. Shorter service standards reduce opportunities for

consolidation (since consolidation introduces handling time and circuity time penal-

ties). As a result, carriers need methods for designing load plans that accurately

model how short service standards constrain shipment paths and the consolidation

opportunities that still exist.

Load plan design should also account for the trailer resource requirements that

result from the plan. LTL carriers typically serve an overall freight profile that con-

tains some geographic imbalance, e.g., there is more freight flowing into Florida, than

flowing out of Florida. Thus, trailers need to be moved empty from freight “sinks” to
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Figure 4: Load Plan Design Example - Consolidated Movements

ensure the availability at freight “sources”. Empty trailer repositioning movements

result in costs. Good load plans take advantage of trailer capacity that naturally

arises in backhaul lanes to reduce total system costs.

1.3 Related Literature

Early research in LTL load plan design focused on models developed using static

networks that do not explicitly capture service standard constraints or the timing of

consolidation opportunities. A local improvement heuristic for such a model is pre-

sented in [16]; related work includes [18], [19], and [17]. Recognizing the limitations

of the static network models, a dynamic model that can more accurately model con-

solidation timing is presented in [20]. The paper presents an alternative heuristic that

relies on determining service network arc subgradients by solving large-scale multi-

commodity network flow problems. This approach, however, allows origin-destination

shipments to split onto multiple paths and does not model empty equipment balancing

decisions.

More recent research attempts to build and solve models that more accurately

capture LTL linehaul costs. A column generation approach to create load plans where
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Figure 5: Freight Profile by Service Standard

columns represent freight path trees into a destination is developed [9]. A slope scaling

heuristic is used to linearize costs when generating columns. The approach explicitly

models service requirements of shipments, and only allows service-feasible paths to be

selected. However, freight flows are mapped to a simplified time-space network with

only one copy of an arc for each direct movement per day; this approximation may

overestimate opportunities for consolidation cost savings. Most recently, [5] develop a

model that uses a detailed time-space network representation to accurately model the

timing of freight consolidation opportunities, and considers decisions for loaded and

empty trailer movements simultaneously. The paper proposes a local search solution

heuristic that searches a large neighborhood each iteration using an integer program.

Load plan design can be seen as a special case of service network design; this

problem class has also received a great deal of attention (see [3] or [24] for a review

of research in this area). The need to consider equipment management decisions in

service network design problems is recognized in [15], which presents both a model

and a metaheuristic for the problem. However, the instance sizes considered are

significantly smaller than those typical for load planning for a large LTL carrier, and

it is not clear how effective the proposed solution approach would be if adapted to
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the load plan design problem.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 focuses on accurate estimation of the operational execution costs of

a load plan. Load plan design models in use or proposed today approximate trans-

portation costs by using costs per trailer dispatched between terminals. Furthermore,

empty transportation costs are determined by solving a trailer re-balancing problem.

These approximations ignore two important ideas: (1) trailers are typically moved

behind tractors in trains of two or three trailers, and the cost of moving a trailer

train is not linear in the number of trailers; and (2) drivers must be scheduled for

each dispatch, and driver rules introduce additional empty travel than that minimally

required for trailer balance. We develop models that more accurately capture key op-

erations of LTL carriers. A computational study demonstrates that our technology

produces accurate operational execution costs estimates, typically within 2% of actual

incurred costs.

Chapter 3 describes dynamic load planning (DLP) technology. Traditionally, load

plans are revised infrequently by LTL carriers due to the difficulty of solving the as-

sociated optimization problem. Since freight volumes served vary each operating day,

carriers typically operate by manually adjusting the plan at each terminal to each

day’s operating conditions. Technological advances have now enabled carriers to con-

sider more thorough, system-wide daily load plan updates. We develop technologies

that efficiently and effectively adjust a nominal load plan for a given day based on the

actual freight to be served by the carrier. We present two approaches for adjusting

an existing load plan: an integer programming based local search procedure, and a

greedy randomized adaptive search heuristic. A computational study using complete

network data from a national carrier demonstrates that the proposed technology can

9



produce significant cost savings.

Chapter 4 studies the stochastic load plan design problem. Load plan design

models commonly represent origin-destination freight volumes using average demands

derived from historical data, the drawback of which is that they do not describe freight

volume fluctuations. We investigate load plan design models that explicitly utilize

information on freight volume uncertainty during planning, and design load plans

that most cost-effectively deal with varying freight volumes and lead to the lowest

expected cost. We present Sample Average Approximation (SAA) approaches for

solving stochastic integer programming formulations of the load plan design problem

with demand uncertainty. In addition to applying the standard SAA approach, we

also propose a modified version which, in order to correct the bias in the branch-

and-bound search that results from using a sample, frequently computes an exact

evaluation of the solution expected cost and a lower bound on this cost, to more

accurately guide the search process.

Finally, Chapter 5 provides some concluding remarks and discusses possible im-

provements for future research.
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CHAPTER II

REFINED EXECUTION COST ESTIMATION

2.1 Introduction

Our focus in this chapter is not on load plan design, but instead on accurately

estimating the operational execution costs of a given load plan. During load plan

design, transportation costs are usually approximated using linear cost factors per

trailer dispatched between terminal pairs; often this cost is determined by multiplying

a cost per mile by the mileage separating the terminals. However, this can be a crude

approximation, since actual transportation costs are affected by the dispatched driver

tours, and driver tours are severely restricted by government regulations and company

and/or union policies. These policies and regulations can impact the amount of empty

travel required, and may lead to more empty travel than predicted by empty trailer

balancing models. Furthermore, short trailers (often referred to as pups) can be

moved by a single driver in trains of two or three trailers; in this research, we assume

that a trailer train contains at most two trailers. Since it is difficult to predict in

advance what fraction of trailers dispatched on a lane between two terminals will

travel alone or in a train, it is not easy to determine an appropriate linear cost per

trailer. As a result, load plan design methods may substantially under- or over-

estimate transportation costs. Such cost estimation errors may have unintended and

costly consequences.

The technology we develop and present in this chapter takes a set of shipments

for a certain planning horizon and a load plan to route shipments through the termi-

nal network, and then builds driver dispatches with associated dispatch windows (a

dispatch corresponds to a combination of up to two trailers and each trailer contains
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one or more shipments) and generates cost-effective driver tours to cover these dis-

patches and balance empty trailers. The cost of executing these driver tours is then

our estimate of the transportation costs incurred when executing the load plan.

Having an accurate estimate of the cost of executing a new load plan is an essential

part of the load plan design process. An ancillary benefit of our approach is that it

builds a set of cost-effective driver tours. First, this set of tours may be useful in

practice. Second, the set also provides input useful for determining the number of

drivers needed at the different terminals. Identifying a set of suggested driver tours

for adjusted load plans is especially important to speed up implementation, and thus

the realization of any cost savings resulting from the use of the adjusted load plan.

We have conducted a computational study of the proposed approach using an

actual load plan and actual shipment data from a super-regional LTL carrier operating

in the continental U.S. We compare the execution cost estimates of the load plan

from two different approaches with the actual linehaul costs incurred in practice

when executing the load plan. The first estimate comes from SuperSpin, the current

industry standard software for load plan design. The second estimate is taken from

the technology presented in this chapter. The results show that SuperSpin tends to

underestimate actual costs, between 88.8% to 90.6% of actual, while our technology

provides accurate cost estimates, between 99.6% and 101.7% of actual.

Summarizing, this research makes contributions primarily in the context of load

plan design, evaluation, and execution for LTL carriers. Specifically, we have devel-

oped technology that

• improves load plan execution cost estimates; accuracy improvements on the

order of 10-15% are shown for a super-regional carrier,

• builds a set of dispatches and generates a set of cost-effective driver duties

and tours covering these dispatches; driver duties and tours satisfy government
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regulations and union and/or company rules and can thus be used in practice,

and

• solves real-life instances efficiently; less than 2 hours for instances representing

a week of data with over 140,000 shipments, which equates to over 10,000 loads

and approximately 6,000 driver duties.

The remainder of this chapter is organized as follows. In Section 2.2, we review

relevant literature. In Section 2.3, we formally state the load plan costing optimization

problem and discuss the modeling issues and choices. In Section 2.4, we introduce our

solution approach. In Section 2.5 we present the results of an extensive computational

study using historical data from a super-regional LTL carrier in the U.S.

2.2 Additional Related Literature

Problems also related to the one we consider in this chapter are the focus of [2]

and [21], in which solution approaches are developed that integrate empty balancing

with a pup matching and routing for small package express carrier operations. The

proposed set partitioning model uses composite variables that define complete paths

for one or more trailers, and employs templates to limit the set of such composites

generated. While we also consider a pup loading and matching problem, our matching

problem is somewhat simpler since we assume that the best trailer path is known for

each direct. Furthermore, we estimate transportation costs more precisely since we

construct feasible driver tours to cover loads. Greedy approaches are developed in

[6] to construct driver tours that cover dispatches; in this research, we develop an

optimization-based set covering heuristic.

2.3 Model Formulation

As mentioned in the introduction, our focus is not load plan design, but accurately

estimating the operational execution costs of a given load plan. A number of modeling
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choices were made when formulating the problem. These choices are discussed below.

1. The problem is formulated on a time-space network. Flat network representa-

tions, i.e., networks without an explicit time dimension, such as the ones used in

[18], [16], [19], and [17], are based on two important assumptions: (1) the total

trailer loads needed on a direct during the planning horizon can be determined

by assuming that all freight traveling at any time within the planning horizon

can be consolidated; and (2) service standard constraints can be modeled by

using a proxy, e.g., by ensuring a minimum trailer frequency on a direct per day.

In today’s LTL market where 1-day and 2-day service have become the norm,

these assumptions are no longer valid. It is necessary to use a representation

that can explicitly represent time. A detailed time-space network model allows

consolidation timing and service standards to be modeled accurately. Given

a time discretization of the planning horizon, multiple nodes are created for

each terminal, one for each time point, so that each node represents a location

and a point in time. For each leg in the linehaul network, we create multiple

transportation arcs in the time-space network, each representing the possibility

to move freight at a particular time. Each node in the time-space network is

connected with an arc to the node representing the same terminal at the next

time point, thus modeling the possibility to hold freight at a terminal. See

Figure 6 for an illustration.

2. The planning horizon considered is a week. The freight volumes within a week

often exhibit marked variability by day-of-week, but freight patterns tend to

be similar across weeks. As a result, carriers have started to explore day-

differentiated load plans, i.e., load plans that allow for different freight routing

decisions on different days of the week.

Carriers often out-source a portion of their transportation needs to third-party
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Figure 6: Time-Space Network

carriers, a practice referred to for the remainder of this dissertation as purchased

transportation. Usually, the third-party carriers are railroads, but occasionally

also trucking companies are used. Transporting freight by rail is cheaper, but

slower than by truck. Since weekend days do not count against service, carriers

often utilize rail transportation over the weekend. In fact, most rail options are

only available near the end of the week. Purchased transportation schedules

tend to repeat weekly.

The above discussion suggests that a week-long planning horizon is appropriate.

To accurately capture daily freight volume fluctuations, we model freight origi-

nating at a terminal on a given day and destined for another terminal on another

day as a commodity. Arcs representing purchased transportation options are

only created at their scheduled time of the week.

3. Time is discretized in hours. Time must be modeled at a fine level of granularity

for two reasons: (1) to be able to accurately model the driver rules discussed

in Section 1.1, and (2) to be able to properly model freight paths between
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origin-destination pairs with tight service standards. Consider the freight path

encountered at a super-regional carrier for freight available in Lexington, KY

at 7 pm and due in Grayling, MI at 8 am the next day shown in the top part

of Table 1.

Table 1: Modeling Freight Paths

Travel from Lexington, KY to Cincinnati, OH for 2 hours
Spend 0.5 hour being handled at Cincinnati, OH
Travel from Cincinnati, OH to Toledo, OH for 3.75 hours
Spend 0.5 hour being handled at Toledo, OH
Travel from Toledo, OH to Grayling, MI for 4.46 hours

Leave Lexington, KY at 19:00, arrive at Cincinnati, OH at 21:00
Finish handling at Cincinnati, OH at 21:30
Leave Cincinnati, OH at 22:00, arrive at Toledo, OH at 01:45
Finish handling at Toledo, OH at 02:15
Leave Toledo, OH at 03:00, arrive at Grayling, MI at 07:27

An hourly time discretization, i.e., constructing a node at every hour, allows us

to accurately model this freight path by timing the dispatches as shown in the

bottom part of Table 1.

4. Freight enters the linehaul system at 7 p.m. and leaves the linehaul system at

8 a.m.. All freight picked up during the day is assumed to be ready to be send

into the linehaul system at 7 p.m. local time. All freight to be delivered during

the day must arrive at its destination terminal at 8 a.m. local time. Thus, we

model the freight that enters the linehaul network at terminal t1 on day d1 and

is due at terminal t2 on day d2 as originating in the time-space network at node

n1 = (t1, 7 p.m. d1) and is destined to node n2 = (t2, 8 a.m. d2).

5. Handling 1-day service freight takes 30 minutes and handling all other freight

takes 2 hours. A certain amount of time is required for handling freight at

intermediate breakbulks. Special handling procedures are generally used at

breakbulks to prioritize the processing of 1-day freight to ensure that it can
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meet its service expectation. Therefore, a short handling time for 1-day freight

is appropriate. We note that handling of freight can only occur during business

hours, which typically start at 12 am on Monday morning, and end Saturday

at noon. The terminals are, however, accessible to drivers arriving/departing

all weekend long.

6. Modeling full truckload freight. To diversity their offerings, and because it is

more profitable, many LTL carriers run a small full truckload operation as well.

Full truckload shipments do not require any intermediate handling, but the

trailers used for full truckload service are relayed along legs according to the

load plan. LTL carriers frequently fill truckload trailers with LTL shipments to

exploit any remaining trailer capacity. Therefore, full truckload freight should

be considered when estimating the execution cost of a load plan.

We can now state the LTL load plan cost estimation problem as the problem of

determining a freight path for each commodity in the time-space network, conforming

to the load plan, and creating valid driver tours to cover the resulting dispatches with

minimal total cost over the week. Since handling costs are fixed given a load plan,

minimizing total cost is equivalent to minimizing the transportation cost required to

move empty and loaded trailers. As we will describe in the following section, total

transportation cost in this problem is assumed to be the sum of the costs of executing

the set of driver tours necessary to move all empty and loaded trailers.

2.4 Solution Approach

We have designed and implemented a three-phase solution approach for the LTL

load plan cost estimation problem.
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2.4.1 Phase I: Loading and Matching Pups

In the first phase, we determine a timed path for each commodity, we build loaded

trailers on each direct, and combine loaded trailers on a direct into dispatches, i.e.,

the trailers are pup-matched. We have developed a GRASP heuristic to determine

the timed paths. The GRASP heuristic sequentially chooses paths for commodities

using a shortest path algorithm; note that since the load plan is fixed, determining

the path for a commodity is simply selecting the dispatch times for each of the direct

moves in the load plan path (represented by arcs in the time-space network). The

sequential nature of the search enables us to estimate the marginal cost of adding the

commodity under consideration to all possible dispatch arcs, and thus to minimize the

marginal cost increase that results from selecting a set of feasible dispatch times. More

formally, the marginal cost of adding a commodity of size c (measured in fractional

trailerloads) to arc a as a leg of the trailer path of direct d0 is defined as follows.

Suppose that d0, . . . , dm are the directs whose trailer paths include arc a as a leg and

that the dispatch cost on arc a is pa. Furthermore, let w0 be the existing freight

(measured in fractional trailerloads) on arc a for direct d0 and let ei be the current

number of trailers on leg a for direct di, i = 0, . . . , m. Finally, let U be the capacity

of a trailer. Adding commodity c to arc a changes the required number of trailers on

leg a for direct d0 from e0 to ⌈w0+c
U
⌉. Hence the marginal cost is

(⌈
⌈w0+c

U
⌉+

∑m

i=1 ei

2

⌉
−

⌈∑m

i=0 ei

2

⌉)
pa. (1)

The sequence in which the commodities are processed impacts the paths chosen,

hence we decided to implement a GRASP heuristic. Let a commodity’s slack time

be defined as the maximum length of time it can be held at its origin such that

it can still be dispatched along a path that satisfies the service deadline. A large

slack time is an indication of more flexibility for choosing dispatch times along the

path, and hence more opportunities for taking advantage of available capacity on
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trailers along the way that have been “opened” for transporting other commodities.

On the other hand, a small slack time for a commodity implies that there is little

or no flexibility for choosing dispatch times. Therefore, for a given direct in its load

plan path, unless there is a trailer with sufficient remaining capacity dispatched at the

exact time required by this commodity, a new trailer must be opened to accommodate

this commodity. Clearly, it is better to open such new trailers earlier in the heuristic

to allow other commodities to fill in any remaining unused capacity therein. This

suggests that we process commodities with small slack times first. Furthermore, a

commodity with smaller size c is more likely to be able to take advantage of remaining

capacity in open trailers; thus, we break slack time ties between commodities by

choosing those with larger sizes first. The GRASP heuristic is described in Algorithm

1.

Algorithm 1 GRASP for Pup Loading and Matching

Sort the commodities in order of increasing slack time. In case of ties, sort the
commodities in order of decreasing weight.
for i = 1 to N do

Create a copy of the commodity list
while the list is not empty do

Select a commodity from the list biased towards the top, i.e., the k-th com-
modity ck with probability λ · (1− λ)k−1, k = 1, 2, . . .
Find the least-marginal-cost path for ck that conforms to the load plan, using
the cost in (1)
Remove ck from the commodity list

end while

if an improved solution is found then

Update the best solution
end if

end for

Once timed paths for all the commodities have been selected by the GRASP

heuristic, we have determined, for each arc a,

• a set of commodities that move on arc a; each commodity is associated with a

direct whose trailer path includes a
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• the number of required trailers for each such direct, by grouping commodities

associated with common directs into trailers

• the number of dispatches required on arc a, by matching up trailers required

for all directs whose trailer path includes a

At this point, pup-matched dispatches moving all the freight are constructed.

2.4.2 Phase II: Determining Dispatch Windows

Note that in Phase I, a timed path is selected for each commodity, and thus

the trailers that have been implicitly constructed all have specific dispatch times.

However, the shipments comprising a dispatch may not be tightly constrained by

service, and thus may have flexibility in the selection of actual dispatch times. Such

dispatch flexibility for loads will be beneficial when building driver tours. Therefore

in Phase II, we use a linear program to determine dispatch windows for each load

constructed in Phase I.

Let P be the set of dispatches (or loads) built in Phase I corresponding to pur-

chased transportation. Since purchased transportation takes place on fixed schedules

(recall that purchased transportation is typically provided by railroad companies)

these dispatches cannot be altered. Let L be the set of dispatches (or loads) built

in Phase I corresponding to transportation provided by company drivers. Our goal

is to find for each load i ∈ L an earliest and a latest dispatch time, denoted by αi

and βi respectively, such that when all loads are dispatched between their earliest

and latest dispatch time all freight is moved feasibly, i.e., every shipment reaches its

destination at or before its due time and can make feasible connections at transfer

and relay points. See Figure 7 for an illustration of a dispatch window.

We introduce some additional notation before discussing the linear programming

model. Let oc and dc denote the ready time at the origin and the cut time at the

destination for commodity c. Furthermore, let pc
1, . . . , p

c
nc

denote the sequence of
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Figure 7: Dispatch Window

dispatches for commodity c. Finally, let dtpc
k
, ttpc

k
, htpc

k
, and ftpc

k
, be the dispatch time,

travel time, handling time, and finish time, respectively, of dispatch pc
k, where the

dispatch time and the finish time are based on the timed path selected for commodity

c. Our goal is to determine the flexibility of load dispatch times, i.e., the load dispatch

windows, and the objective function of the linear program should reflect this. We

have chosen to maximize the sum of the widths of individual dispatch windows. An

alternative is to maximize the minimum width of any dispatch window. However,

since there typically are a few dispatches without any flexibility this objective does

not produce any useful information.

21



The linear program to determine dispatch windows is as follows

Maximize
∑

i∈L

(βi − αi)

subject to αpc
1
≥ oc ∀c, pc

1 ∈ L (2)

βpc
nc

+ ttpc
nc
≤ dc ∀c, pc

nc
∈ L (3)

βpc
l
+ ttpc

l
+ htpc

l
≤ αpc

l+1
(4)

∀c, 1 ≤ l ≤ nc − 1, pc
l ∈ L, pc

l+1 ∈ L

βpc
l
+ ttpc

l
+ htpc

l
≤ dtpc

l+1
(5)

∀c, 1 ≤ l ≤ nc − 1, pc
l ∈ L, pc

l+1 ∈ P

ftpc
l
≤ αpc

l+1
(6)

∀c, 1 ≤ l ≤ nc − 1, pc
l ∈ P, pc

l+1 ∈ L

αpc
l
≤ dtpc

l
≤ βpc

l
∀c, 1 ≤ l ≤ nc, pc

l ∈ L (7)

Constraints (2) ensure that the first dispatch occurs no earlier than the ready

time at the origin and constraints (3) ensure that last dispatch is such that the

freight arrives at the destination before its cut time. Constraints (4), (5), and (6)

ensure feasible connections at transfer and relay points. Constraints (7) forces the

dispatch times on the timed path selected in Phase I to be feasible.

The linear program presented above ignores one important problem character-

istic: terminals operate only limited hours over the weekend. Therefore, we may

have produced dispatch windows that require handling to take place during weekend

hours. A post-processing step is added to fix such situations. More specifically, the

predecessor’s latest dispatch time is pushed back or the successor’s earliest dispatch

time is pushed forward, whichever applicable, to their dispatch times on the timed

path selected in Phase I to be feasible, since all connections are feasible with these

dispatch times. The post-processing algorithm is given in Algorithm 2.
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Algorithm 2 Post-Processing Dispatch Windows

for all commodity c do

for l = 1 to nc − 1 do

if pc
l ∈ L and c requires a handling after traveling on pc

l and the time period
from βpc

l
+ ttpc

l
to βpc

l
+ ttpc

l
+ htpc

l
does not fall entirely in the business hours

then

τ ← start of next business day + htpc
l

if pc
l+1 ∈ L and τ > αpc

l+1
then

βpc
l
← dtpc

l

αpc
l+1
← dtpc

l+1

else if pc
l+1 ∈ P and τ > dtpc

l+1
then

βpc
l
← dtpc

l

end if

end if

end for

end for

2.4.3 Phase III: Constructing Driver Tours

In the third phase, we determine driver tours to cover all dispatches that can be

performed by a single driver. A driver tour begins and ends at a driver domicile,

and thus forms a timed cycle, and consists of one or more duties. A duty is a

feasible sequence of timed dispatches that can be performed in a single day and

abides by Hours of Service regulations. If a tour contains multiple duties, the duties

are separated by a rest period. The Hours of Service regulations impose the following

restrictions on drivers: a driver is allowed to drive up to 11 hours in a duty, a duty

must not exceed 14 hours, and a driver must rest for at least 10 hours between duties.

Note that duties may include empty dispatches. If we assume that drivers are always

dispatched with two trailers, empty trailer balance over time is implied.

LTL companies must compensate drivers for long rests spent away from their

domiciles, referred to as lay-downs. Lay-down costs typically include hotel room stays

and meals. Most companies like to have their drivers resting at their domiciles with

some frequency. Single-man drivers typically do not rest away from their domicile two

nights in a row. Therefore a tour consists of either one or two duties. If a tour contains
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two duties (the first ending away from the domicile, and the second returning to the

domicile), the long rest that separates the two duties should not exceed 14 hours (and

has to be at least 10 hours). A duty typically contains no more than four dispatches.

Since we want to build single-man driver tours, we modify the time-space network

by removing all purchased transportation arcs, by removing all arcs representing

travel of more than 11 hours, and by adding lay-down arcs from every node to the

nodes representing the same terminal 10 to 14 hours into the future.

To determine a low-cost set of driver tours covering all dispatches that can be

performed by a single driver, we use a set-covering model. Let I ⊆ L be the subset of

loads that can be performed by single driver, i.e., loads that do not require more than

11 hours of driving. For each i ∈ I, let A(i) be the subset of arcs in the time-space

network associated with load i that fall within its dispatch window. Since A(i) and

A(i′) with i 6= i′ may contain common arcs, an arc does not uniquely identify a load.

For each arc a, let I(a) = {i ∈ I | a ∈ A(i)} be the set of loads that can potentially

use a.

In the set covering model the goal is to select a subset of tours covering all the

dispatches at minimum cost. Let T be the set of tours, ct be the cost of executing

tour t ∈ T , ait be the number of times tour t ∈ T covers load i, and zi be the number

of dispatches required for load i. If xt represents the number of times tour t ∈ T is

executed, then we have the following integer programming formulation:

Minimize
∑

t∈T

ctxt (8)

subject to
∑

t∈T

aitxt ≥ zi ∀i ∈ I

xt ∈ Z
+ ∀t ∈ T

As the set of tours is too large to consider explicitly we rely on column generation

to solve the linear programming relaxation. Given a dual solution π to the linear

programming relaxation of a restricted master problem, the pricing problem seeks to
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identify a tour with negative reduced costs. More specifically, the pricing problem

seeks a tour minimizing
∑

a∈t(ca − maxi∈I(a) πi). Note that because multiple loads

may be covered with the same arc, we have to look at maxi∈I(a) πi when determining

the dual value to use on an arc. The pricing problem is thus a resource-constrained

shortest path problem with arc cost ca −maxi∈I(a) πi.

We keep track of four resources to ensure the feasibility of the tour found: the

duty time, the driving time in a duty, the number of dispatches in a duty, and the

number of lay-downs in a duty. Let da be the driving time on arc a and H be the

lay-down cost. Then the resource extension functions for the various arc types and

the resource limits are summarized in Table 2.

Table 2: Resource Extension Functions and Resource Limits
Initial
value

Resource extension functions Resource limits
at a nodeTransportation arc a Waiting arc Lay-down arc

Duty time 0 + ⌈da⌉ + 1 reset to 0 [0,14]
Driving time in duty 0 + da unchanged reset to 0 [0,11]

Num of dispatches in duty 0 + 1 unchanged reset to 0 [0,4]
Num of lay-downs in duty 0 unchanged unchanged + 1 [0,1]

Cost 0 + (ca − max
i∈A(a)

πi) unchanged + H

We round up the driving time when updating the duty time because freight con-

solidation only takes place at the discretization points, and thus dispatches only occur

at these discretization points, i.e., whole hours. Note that the duty time label is only

used in the dynamic programming algorithm for solving the resource-constrained

shortest path problem. When reporting duty times in our computational study, we

calculate and report actual duty times.

We solve the resource-constrained shortest path problem using a typical dynamic

programming approach (see [8] and [4] for discussions of dynamic programming ap-

proaches for constrained shortest path problems). In the path extension step, a

waiting arc and a lay-down arc are disallowed to immediately follow each other in

order to prevent undesirable long rests.

The following ideas were incorporated to accelerate the column generation process:

25



• We do not solve the pricing problem completely, but terminate the search as

soon as a feasible tour with a negative reduced cost is found, and then add the

newly found column to the restricted master problem, which is then re-solved.

• We restricted the search to tours that start with a loaded dispatch. This does

not preclude good solutions, but speeds up the search considerably. Further-

more, we sort the loads in order of increasing cost ci − πi and select loads in

that order to start a tour.

• Because only one column is added in each iteration, many dual prices will

not change between successive pricing problem solves. It is thus reasonable

to assume that a load that failed to produce a tour with a negative reduced

cost will likely continue to do so in the near future. Hence we exclude it from

consideration for a number of iterations.

The algorithm to find a low-cost set of driver tours covering all dispatches that

can be performed by a single driver is described in Algorithm 3.

2.4.3.1 Meet-and-Turns and Initial Columns

It is well-known that a good set of initial columns can reduce the running time of

a column generation algorithm. However, before presenting our approach for creating

initial columns, we have to discuss meet-and-turns, which are used by LTL carriers on

long legs to reduce lay-down costs. A meet-and-turn is considered when two drivers

move loads in opposite directions on a leg that is longer than half of the maximum

allowed driving time in a duty, i.e., 5.5 hours. Without intervention, the drivers

moving these loads will be unable to return to their domiciles at the end of the day

because they would violate the driving time limit. A meet-and-turn, illustrated in

Figure 8, instead has the two drivers meet at a location along the leg, exchange their

loads, and then return to their respective starting location. This ensures that both
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Algorithm 3 Load Covering

Generate a set of initial columns
repeat

Solve the linear programming relaxation of the restricted master problem
Retrieve the dual prices
Sort the loads in increasing order of (ci − πi)
for i = 1 to |I| do

if load i is not excluded from consideration then

Invoke a dynamic programming search for a tour that starts with load i
while a tour with a negative cost is not found and there are feasible exten-
sions do

Perform a dominance check and a path extension
end while

if a desirable tour is found then

Add a column representing the tour
break loop

else

Exclude load i from consideration for M iterations
end if

end if

end for

until a column with negative reduced cost is not found
Solve a set covering problem over the columns in the restricted master problem
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loads arrive at their destination on time, and both drivers get back to their domiciles

at the end of the day. A parking lot or a rest area suffices as a meet-and-turn location.

Executing meet-and-turns reduces lay-down expenses for the carriers and improves

the quality of life for the drivers.

Figure 8: Meet-and-Turn

To generate a set of initial columns, i.e., driver tours, we use templates of desirable

driver tours. Some of these templates involve meet-and-turns. The algorithm for

creating initial columns is described in Algorithm 4.

2.4.3.2 Short Driving and Duty Times

Hours of Service regulations, which are motivated by safety considerations, only

restrict the maximum driving and duty times. Therefore, short driver duties with

short driving times are legal, but may not be cost-effective. When faced with short

driver duties, non-unionized carriers often resort to “dual-using” drivers by having

them perform dock work, and by staffing dock workers accordingly. Short driver

duties are thus acceptable, but typically undesirable.

In this section, we propose a penalty-based approach that allows the analysis of

the tradeoff between the quality of the tours (in terms of duty time and driving time)

and the execution costs. The penalty-based approach penalizes short duties with a

term in the objective function that is proportional to the difference between the actual

and the maximum allowed driving time in a duty, i.e., 11 hours. The reason that we
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Algorithm 4 Creation of Initial Columns

Let SL contain loads that require less than or equal to 5.5 hours of driving and let
LL contain loads that require more than 5.5 hours of driving
for all i, j ∈ SL, i 6= j do

if i and j can form a feasible out-and-back tour without a lay-down then

Create a column representing the tour
end if

end for

for all i, j ∈ LL, i 6= j do

if i and j can form a feasible meet-and-turn then

Create a column representing both tours in the meet-and-turn
end if

end for

for all i, j ∈ LL, i 6= j do

if i and j can form a feasible out-and-back tour with a lay-down then

Create a column representing the tour
end if

end for

for all i ∈ I = SL such that i has not been covered by any tour do

Create a column representing an out-and-back tour with an outbound dispatch
moving i and empty inbound dispatch

end for

for all i ∈ I = LL such that i has not been covered by any tour do

Create a column representing a meet-and-turn consisting of i and an empty
dispatch in the opposite direction

end for
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penalize short driving times rather than short duty times is because waiting between

dispatches is counted towards duty time, and waiting should not be encouraged for

its own sake.

Let nt be the number of duties in tour t (either 1 or 2), let α be a parameter

indicating the weight we assign to the penalty term, and let LD be the set of lay-

down arcs. Then the cost of a tour t becomes

∑

a∈t

(
ca − max

i∈A(a)
πi

)
+ α

(
11 · nt −

∑

a∈t

da

)

= α · 11 ·
(
1 +

∑

a∈t∩LD

1
)

+
∑

a∈t

(
ca − max

i∈A(a)
πi − α · da

)

= α · 11 +
∑

a∈t

(
ca − max

i∈A(a)
πi − α · da + 1LD(a) · α · 11

)

which is still additive on arcs.

Therefore, the same solution methodology can be applied with only minor modi-

fications. All that is required is to adapt a few elements in the last row of Table 2 as

shown in Table 3.

Table 3: Cost Extension with Penalty
Initial value Transportation arc a Waiting arc Lay-down arc

· · · · · · · · · · · · · · · · · ·
Cost α · 11 + (ca − max

i∈A(a)
πi)− α · da unchanged + H + α · 11

2.5 Computational Study

We next present the results of a set of computational experiments conducted

to tune and analyze the performance of our proposed LTL load plan cost estimation

technology. We use four instances, each representing an actual week of shipment data

of a super-regional LTL carrier in the U.S. The carrier’s linehaul network consists of

253 terminals (end-of-lines, breakbulks, and relays) and 8,152 linehaul legs, and the

carrier transports over 140,000 shipments every week. Each week begins on a Sunday

30



at 12:00 a.m., and concludes on a Saturday at 11:59 p.m. Table 4 gives the start and

end dates of the weeks used in our computational experiments.

Table 4: Weeks Used in Our Computational Study
Instance Start date End date

W1 March 01, 2009 March 07, 2009
W2 March 08, 2009 March 14, 2009
W3 March 15, 2009 March 21, 2009
W4 March 22, 2009 March 28, 2009

All computational experiments were carried out on a system with a 2.66 GHz

Intel Xeon processor and 4 GB of RAM, and using CPLEX 11.1 as the optimization

engine.

2.5.1 GRASP Heuristic Parameters

The first experiment is designed to determine the parameters λ and N for the

GRASP heuristic for loading and matching pups. For λ = 0.1, 0.2, ..., 0.9, 1.0, we let

Algorithm 1 run for 100 iterations and monitor the progress of the value of the best

solution found. Note that for λ = 1 the algorithm reduces to a greedy heuristic, and

the behavior of the algorithm is deterministic, so there is no benefit of performing

more than one iteration. Each iteration takes approximately 4 minutes to run. Figure

9 and 10 show the progress over time for weeks W1 and W4 (similar behavior was

observed for weeks W2 and W3).

The results indicate that although a greater level of randomization, i.e., a smaller

value of λ, tends to lead to a slightly better solution over time, the benefit is min-

imal as the difference between the overall best solution value and the one found by

the greedy heuristic is less than 0.40%. Hence, for the rest of the computational

experiments we will use the greedy heuristic.
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Figure 9: Progress of GRASP Heuristic for Instance W1

2.5.2 Dispatches and Dispatch Windows

Next, we present a few statistics related to the dispatches built in Phase I and

the dispatch windows determined in Phase II. (Note that the dispatch windows are

determined using a linear program and thus are computed in a matter of seconds.)

In Figure 11, we show the number of dispatches occurring at particular times during

the day as determined by Phase I.

We see that most dispatches occur between 7 p.m. and 6 a.m. This is not unex-

pected, and in line with what happens in practice, as a significant portion of shipments

have 1-day service guarantees, which implies that they have to be moved between 7

p.m. and 8 a.m. In Figure 12, we show the distribution of the widths of dispatch

windows as determined by Phase II.

As can be seen, a few dispatches have little or no flexibility and have to be dis-

patched according to a specific schedule to make service; most likely these represent

shipments in relatively long corridors with a 1-day service guarantee. At the other

end of the spectrum are a few dispatches that have a lot of flexibility; most likely these
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Figure 10: Progress of GRASP Heuristic for Instance W4

represent shipments on origin-destination pairs that are relatively close, but have a 5-

day service guarantee. From an operational execution perspective, the most relevant

information is that most dispatches have some flexibility, which can be exploited to

build low-cost driver tours.

It is also insightful examine the dispatch windows on a single linehaul leg in

more detail. Figure 13 shows all the Markham-Chicago dispatches and their dispatch

windows.

A few interesting observations can be made. First, the dispatches occurring at

7 p.m. and 8 p.m., which likely represent a substantial portion of the shipments

picked up during the day have little or no flexibility. Again, these likely represent

dispatches involving shipments with 1-day service. Furthermore, we see that the

dispatches between 10 a.m. and 6 p.m. have the most flexibility. These likely

represent dispatches between breakbulks involving shipments with service levels that

can relatively easily be achieved.
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Figure 11: Dispatch Pattern

2.5.3 Column Generation and IP Optimization

Next, we consider parameter tuning for the column generation and IP optimiza-

tion processes at the heart of Phase III. Recall that during the column generation

process, if an attempt to build a tour with a negative reduced cost starting with a

particular load fails, we exclude that load from consideration for the next M itera-

tions to hopefully avoid spending computing time on finding negative reduced cost

columns that is unlikely to be successful. The tradeoff between the computing time

and the value of the final LP solution when we vary M is shown in Figure 14; for

M = 50, 100, 1, 000, 10, 000,∞.

We see that re-visiting loads provides a small benefit, but it comes at a very high

price in terms computing time. Hence, for the remaining computational experiments,

we have used M =∞, i.e., we will not re-visit a load ever again once our attempt to

build a tour with a negative reduced cost starting from that load fails.

Next, we provide more details about the initial columns generated using structured

templates; the templates are summarized in Table 5. Figure 15 shows the composition

of the columns in the initial LP solution and the final LP solution in terms of their
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Figure 12: Dispatch Window Widths

Table 5: Template Types
Template code Dispatch length Type Lay-down Loaded/empty dispatch
SHORT-OB-LD less than or equal to 5.5 hours out-and-back No both loaded
LONG-MT-LD more than 5.5 hours meet-and-turn No both loaded
LONG-OB-LD more than 5.5 hours out-and-back Yes both loaded
SHORT-OB-EMT less than or equal to 5.5 hours out-and-back No 1 loaded and 1 empty
LONG-MT-EMT more than 5.5 hours meet-and-turn No 1 loaded and 1 empty

structure, i.e., the template corresponding to their structure.

Of course in the final LP solution we encounter structures that were not present in

the initial LP solution. These structures are lumped together under the “template”

COLGEN. For example, columns representing tours with duties involving more than

2 dispatches will end up under this template. This includes, for example, triangular

duties, i.e., duties of the form A-B-C-A (dispatches AB, BC, and CA), which can

be quite effective. Column generation is used precisely to generate such duties if

desirable. The figure demonstrates that using these more complicated structures

substantially reduces the use of inefficient structures with empty dispatches.

Finally, and most importantly, in Table 6 we report the value of the final LP

solution and the value of the IP solution generated using the columns in the final LP

solution (where the stopping criterion for the IP solve was an optimality gap of less

35



Figure 13: Markham-Chicago Dispatches with their Dispatch Windows

than 0.1%). We see that optimal or near-optimal solutions are produced.

Table 6: Comparison of LP and IP Solutions
Value LP solution Value IP solution

W1 3,247,583 3,249,398
W2 3,267,249 3,269,375
W3 3,311,176 3,314,513
W4 3,350,560 3,353,409

2.5.4 Tour Structures

In this section, we provide more details about the structure of the driver tours

generated. In Table 7, we report the number of tours with 1 duty and 2 duties, the

number of duties with 1, 2, 3, and 4 dispatches, and the number of duties involving

meet-and-turns, and the number of loaded versus empty dispatches. We see that

a relatively small percentage of duties involve more than 2 legs. Since counts only

provide a partial picture, Figure 16 and 17 show the distribution of the driving and

duty time of the duties.

We see that the majority of duties have a driving time of more than 7 hours and
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Figure 14: Impact of Varying the Number of Iterations to Exclude a Load from
Consideration

a duty time of more than 9 hours, which is desirable. However, a non-trivial fraction

corresponds to short duties with short driving times.

2.5.5 Execution Cost Estimates

The main goal of this research was to develop technology to accurately estimate

the operational execution cost of a load plan. To demonstrate that we have achieved

our goal, we present for the four instances, in Figure 18, the actual execution costs

incurred by the carrier, the execution cost estimate produced by SuperSpin, the de

facto industry-standard for load plan design, and our execution cost estimate (where

the actual execution costs are normalized at 100% and the two estimates are given

as a percentage of the actual costs).

The figure shows that our technology produces remarkably accurate execution

cost estimates, within 1.7% of the actual execution costs incurred for each of the four

weeks. The figure also shows that SuperSpin tends to under-predict execution costs

(about 90% of the actual execution costs incurred), primarily due to over-estimation
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Figure 15: Template Uses in Solutions

of the consolidation opportunities.

Furthermore, we present, in Figure 19, for cost estimate the breakdown into loaded

transportation costs, empty repositioning costs, and lay-down costs.

2.5.6 Varying Maximum Allowed Number of Dispatches in a Duty

During the construction of tours we limit the number of dispatches in a duty.

There are two reasons for that. Firstly, duties with a small number of legs are

preferred by both drivers and the carrier. Secondly, limiting the number of dispatches

per duty limits the number of feasible duties and thus simplifies the pricing problem,

which will reduce the computing time. In the next experiment, we investigate the

impact of varying the maximum number of dispatches allowed in a duty. Figure 20

shows the total linehaul cost and the number of column generation iterations versus

the maximum allowed number of dispatches in a duty.

As we allow a duty to contain more dispatches, the technology is able to generate

more complicated and efficient driver tours, and thus to reduce the total linehaul

cost. However, we see that the benefits of allowing more than 4 dispatches in a duty
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Table 7: Tour Structure
W1 W2 W3 W4

Tours
1 duty 4026 3993 4066 4068
2 duties 1354 1387 1391 1436
total 5380 5380 5457 5504

Duties

1 leg 1027 1029 1039 1099
2 legs, non-meet-and-turn 2964 2981 2997 3008
meet-and-turns 2040 2016 2064 2066
3 legs 624 662 646 689
4 legs 79 79 102 78
total 6734 6767 6848 6940

Dispatches
loaded 11039 11073 11183 11361
empty 1528 1649 1664 1626
total 12567 12722 12847 12987

is negligible.

2.5.7 Short Driving and Duty Times

Up to now, short driving and duty times were not discouraged. As we observed

in Figures 16 and 17, a majority of the duties have a driving and duty time close to

their respective limits, but there are a fair number of duties with small driving and

duty times.

In Figure 21, we analyze the tradeoff between the “quality” of the tours, in terms

of their driving and duty time, and the operational execution costs.

We see that an increase in the average driving time of 1.5 hours and an increase

in the average duty of 1 hour comes at an increase in operational execution costs of

1%.
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Figure 16: Driving Time Histogram

Figure 17: Duty Time Histogram
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Figure 18: Estimated Linehaul Cost as a Percentage of Actual Execution Cost

Figure 19: Cost Breakdowns
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Figure 20: Impact of Varying the Maximum Number of Allowed Dispatches in a
Duty

Figure 21: Impacts of Varying Penalty Factor α
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CHAPTER III

DYNAMIC LOAD PLANNING

3.1 Introduction

Traditionally, carriers revise load plans somewhat infrequently, perhaps once ev-

ery few months. Constructing a good load plan is a complex and time consuming

task; load plan design is a difficult constrained optimization problem. Furthermore,

implementing frequent load plan changes at a terminal could increase the rate of

shipment routing errors. Since freight volumes do vary from day to day, carriers cur-

rently adapt the plans to take advantage of consolidation opportunities that decrease

costs; currently this is performed locally by terminal managers, and may not result

in effective systems-level decisions.

A number of technological advances and changes in practices at LTL firms are

changing the service network design environment, and it is now possible for carriers

to consider implementing frequent load plan updates:

• Hand-held scanners at pickup points of shipments provide immediate accurate

information on actual freight picked up from customers during the day;

• Global positioning and mobile communication devices allow better tracking of

in-transit freight; and

• Cross-dock automation again through hand-held scanner technology enables

dock workers to reliably (re-)direct arriving shipments to the correct loading

door, and reduces the necessity for a consistent predetermined plan.

In this chapter, we develop new technology for dynamic load planning (DLP),

which efficiently and effectively alters a load plan for a given day based on accurate
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information on the current state of the LTL system, including an updated forecast of

the actual freight to be transported and the current status of trailer resources. DLP

technology is intended to be used each day at a time when nearly all new freight

entering the system has been picked up (e.g., 6 p.m.). Since DLP technology is to be

used in a real-time operational environment, it needs to produce modified load plans

in a short amount of time, e.g., less than 5 minutes.

We present two approaches for solving DLP problems: an integer programming

based local search procedure, and a greedy randomized adaptive search heuristic. A

computational study using data from a national carrier currently implementing the

technology demonstrates that the DLP solutions can produce significant cost savings.

The research presented in this chapter makes contributions in the context of load

planning and algorithm design. Specifically,

• we are the first to study load planning in a dynamic operational setting, and to

addresses the challenges encountered in such an environment;

• we efficiently solve real-life instances, requiring only minutes of computation

time for the optimization of the entire network of a national carrier;

• we create load plan adjustments that produce significant cost-savings, in the

range of 7-10 percent of total linehaul costs;

• we judiciously choose and exploit a set of templates for freight paths to success-

fully balance the tradeoff between solution quality and solution time; and

• we demonstrate an effective greedy randomized adaptive search inspired heuris-

tic for a large-scale service network design problem.

As part of this study, we also examine the potential value of routing freight at

an individual shipment level, which represents a new frontier in load planning. Our

computational study shows that substantial cost savings are possible.
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The remainder of this chapter is organized as follows. Section 3.2 details a few

key modeling features for dynamic load planning. Section 3.3 outlines how we model

freight routing and how we choose a set of templates for freight paths. Section 3.4

presents integer programming based approaches we have developed for DLP, and

Section 3.5 describes the greedy randomized adaptive search heuristic.

3.2 Modeling Dynamic Load Planning

A time-space model is presented in [5] for the tactical static load planning problem

in which it is assumed that origin-destination freight flow patterns repeat weekly.

The model minimizes total weekly transportation and handling costs such that each

origin-destination shipment satisfies prescribed service levels. The starting point for

our dynamic load planning technology is a similar time-space model. Below we discuss

a few key features.

3.2.1 Modeling Time

Figure 22: Freight Profile by Service Standard

Figure 22 shows that approximately 83% of the freight volume for the regional

carrier that sponsored this research has a service standard of either 1 or 2 business
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days. Such short service standards reduce consolidation opportunities substantially

since freight typically cannot wait very long at intermediate breakbulk transfer points.

Thus, it is not only necessary to explicitly model time in any reasonable model, but

to do so at a fine level of detail in order to correctly approximate transportation costs.

For example, consider the following path for freight originating in Chicago, IL at 7

p.m. destined for Cincinnati, OH at 8 a.m. the next day:

• Travel for 4 hours from Chicago, IL to Indianapolis, IN

• Freight handling for 30 minutes in Indianapolis, IN

• Travel for 3 hours from Indianapolis, IN to Cincinnati, OH

Furthermore, consider the path for freight originating in St. Louis, MO at 7 p.m.

also destined overnight for Cincinnati, OH:

• Travel for 5 hours from St. Louis, MO to Indianapolis, IN

• Freight handling for 30 minutes in Indianapolis, IN

• Travel for 3 hours from Indianapolis, IN to Cincinnati, OH

A time-space model that uses a daily time-granularity would conclude that each of

these paths is infeasible, and thus a potential real-world consolidation opportunity is

lost. Since freight is handled and consolidated primarily during the overnight hours,

we divide a day into time windows separated by the following breakpoints: 1 a.m., 3

a.m., 5 a.m., 8 a.m., 10 a.m., 2 p.m., 7 p.m., 9 p.m., and 11 p.m. By specifying nodes

at such times, we can time the dispatches such that the freight can be consolidated

at Indianapolis, IN into a common trailer (or trailers) outbound to Cincinnati, OH:

• Chicago, IL - Cincinnati, OH freight:

– Leave Chicago, IL at 7 p.m. CST, arrive at Indianapolis, IN at 12 a.m.

EST
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– Finish handling at Indianapolis, IN at 12:30 a.m. EST

– Leave Indianapolis, IN at 3 a.m. EST, arrive at Cincinnati, OH at 6 a.m.

EST

• St. Louis, MO - Cincinnati, OH freight:

– Leave St. Louis, MO at 7 p.m. CST, arrive at Indianapolis, IN at 1 a.m.

EST

– Finish handling at Indianapolis, IN at 1:30 a.m. EST

– Leave Indianapolis, IN at 3 a.m. EST, arrive at Cincinnati, OH at 6 a.m.

EST

3.2.2 Planning Horizon

In static load plan design, it is typically assumed that origin-destination freight

flow patterns repeat, either daily or weekly. Thus, a wrapped version of the time-

space network is appropriate, where arcs connect nodes at the end of the planning

period to nodes at the beginning of the planning period. In dynamic load planning, a

wrapped time-space network is not appropriate since actual origin-destination freight

flows differ on a daily basis. Two key decisions must be made when setting up a time-

space network for dynamic load plan generation: the length of the planning horizon,

and the destination of freight with a due time after the end of the chosen horizon.

We address the second issue by simply following the original load plan. That is, we

set the destination for freight with a due time after the end of the planning horizon

to be the last terminal along the path specified by the original load plan that falls

within the horizon. See Figure 23 for an illustration.

This approach, although reasonable, can be restrictive if the chosen planning

horizon is too short, in which case it may prevent us from consolidating on longer

directs. Therefore, it is advantageous to have a horizon for which a high percentage of
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Figure 23: DLP Freight Target Destination

freight reaches its final destination within the horizon. Referring again to the freight

volume profile in Figure 22, we see that 56% of the freight would reach its destination

if we use a 24-hour planning horizon (starting and ending at 6 p.m.) and 84% if we

extend the planning horizon to 38 hours (starting at 6 p.m. and ending at 8 a.m.) as

it would include 2-day freight. Thus, we have chosen to work with a 38-hour horizon.

See Figure 24 for an illustration.

Figure 24: DLP Planning Horizon

For this study, we assume that DLP will be executed once each evening at 6 p.m.,

when most newly arriving freight has been picked up by collection tours. Note that

since DLP will be executed each evening, any load plan adjustments (path changes)

will only remain in effect for the next 24 hours despite the 38-hour planning horizon.

This is therefore a fairly typical rolling horizon optimization approach.

There are four time zones in the continental U.S., creating additional challenges for
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dynamic load planning. For example, if DLP is run at 6 p.m. eastern standard time,

which corresponds to 3 p.m. pacific standard time, originating freight information at

terminals on the west coast may not be availabel yet. Multiple time zones can be

accommodated by running DLP multiple times during the evening hours of each day.

Each time, the system uses up-to-the-minute information on each shipment that is in

the carrier’s system and has not yet been delivered to their destination terminal, and

projections of future freight volumes in later time zones, to make decisions. Earlier

decisions may be modified as freight volume projections become more accurate.

3.2.3 Initial Trailer Resources

When transferring freight arrives at a terminal during the day, dock workers be-

gin to build outbound trailers according to the then active load plan. Therefore,

when DLP is run at 6 p.m., some shipments have already been loaded into outbound

trailers with designated destinations. The outbound directs for these shipments are

considered fixed and will not be modified regardless of whether the trailer has been

closed and moved from the loading door, or not. However, if a trailer is open at a

loading door and has remaining capacity, DLP may add freight to that trailer. When

such an outbound trailer arrives at its destination, the shipments will be unloaded

from the trailer and can then be re-routed and re-consolidated.

3.2.4 Accounting for Empty Trailer Movements

Freight flows tend to be imbalanced, e.g., there is more freight flowing into Florida,

then flowing out of Florida. Thus, trailers need to be repositioned periodically from

freight “sinks” to ensure the availability at freight “sources”. The repositioning of

empty trailers creates opportunities for routing actual freight: transporting freight in

a trailer that is being repositioned is essentially free. For example, suppose that we

have the following freight flows on the network depicted in Figure 25:

• One trailerload originating at C and destined for A,
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Figure 25: Example Network Showing Per Trailer Cost

• One trailerload originating at C and destined for B,

• A half trailerload originating at A and destined for C, and

• A half trailerload originating at B and destined for C.

Given that full trailerloads are traveling from C to A and from C to B, there is no

need to consolidate those freight flows. If we ignore the need to repositioning trailers

and only focus on consolidation, then we would route the half trailerload from A to

C via B to consolidate it with the half trailerload from B to C (see Figure 26, where

the numbers above arcs represent the number of trailers dispatched, and the numbers

beside each node represent the balance of trailers at that node.) To restore trailer

balance a trailer must be sent from B to C.

Figure 26: Trailer movements when repositioning is not considered
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If on the other hand, we recognize that more freight is flowing out of C then

flowing into C, and thus that trailers must be repositioned back to C, it now is cost-

effective to send half a trailerload from A to C and half a trailerload from B to C

(see Figure 27).

Figure 27: Trailer movements when repositioning is considered

The latter solution avoids repositioning and is likely to be cheaper than the former

solution. This is also what would happen in practice; a carrier would recognize that

A → C and B → C are backhaul lanes, and hence would not want to move freight

away from those lanes.

Properly accounting for trailer repositioning in the context of dynamic load plan-

ning is complicated since it is not necessary for each terminal to maintain strict trailer

balance within the planning horizon; the actual timing of repositioning moves need

not be explicitly resolved. We have chosen a pragmatic approach in this research,

and we do not allow freight to shift away from known backhaul lanes even if that may

seem to lead to better consolidation. This approach is reasonable, since most empty

trailer repositioning is caused by freight flow imbalances and does not vary much with

load plan changes.

Backhaul lanes can be derived by examining the original load plan. To compute

the set of backhaul lanes, we use a time-space network with a week-long planning

horizon, and techniques similar to those developed in Chapter 2 to build trailer loads
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based on freight volume projections for each day of the week, according to the original

load plan. Then a minimum cost flow problem is solved on a static (space) network

to resolve trailer imbalances and produce the set of backhaul lanes.

3.2.5 Load Plan Structure

Traditional load plans require that freight (whether originating or transferring) at

a terminal destined for a common destination will be loaded next to a common out-

bound terminal. This simplifies terminal operations since a dock worker only has to

examine the destination of a shipment to determine the appropriate outbound trailer

for loading. This restriction enforces an “in-tree” structure into each destination.

Currently, however, dock automation technology, such as handheld scanners that

allow a dock worker to read the outbound trailer off a display after scanning an in-

bound shipment, make it possible to relax this constraint and route freight at the

shipment level. We will consider and analyze both options and will refer to them

as DLP-INTREE, where the load plan is adjusted, and DLP-SPLIT, where ship-

ments are re-routed on an individual basis.

3.3 Freight Path Templates

The goal of dynamically adjusting the load plan is to find the best consolidation

opportunities given the actual freight in the system. That means determining the

path that freight in the system will follow the next 24 hours, i.e., selecting the directs

used to route freight and establishing when and where to hold freight to maximize

consolidation. As discussed in Section 3.2, to make these decisions we model termi-

nals and potential directs on a time-space network. To be more precise, let (U, L)

denote the carrier’s linehaul network, where U is the set of terminals in the carrier’s

network and L is the set of potential directs connecting terminals. For a given time

discretization of a planning horizon T , we define the time-space linehaul network

(N, A), where N denotes the set of nodes and A denotes the set of arcs. Each node
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n = (u, t), u ∈ U, t ∈ T represents a terminal at a particular point in time. Let

N∗ = {(u, t) ∈ N |t ≤ 6 p.m. the next business day}. Each arc a = ((u1, t1), (u2, t2))

with u1 and u2 ∈ U and u1 6= u2 represents a potential dispatch from u1 at time

t1 on direct (u1, u2) arriving in u2 at time t2. We create such arcs for each direct

l = (u1, u2) ∈ L and each timed copy (u1, t1) of the origin node u1. The destination

node (u2, t2) is then chosen to be the earliest timed copy of the node u2 such that

t2 − t1 is no less than the transit time of the underlying direct l. We also create

arcs a = ((u1, t1), (u1, t2)) to connect subsequent timed copies of each node u1. These

allow us to model holding a trailer or shipment at terminal u1.

Given networks (U, L) and (N, A), let δ+(u) ⊆ L denote the set of potential

outbound directs from terminal u ∈ U ; for each arc a ∈ A, let l(a) denote the direct

l ∈ L corresponding to a, ca denote the per-trailer travel cost along arc a, Mw
a denote

the maximum weight per trailer in pounds, and M b
a denote the maximum cube per

trailer in cubic feet.

We model freight that enters the linehaul network as commodities in the time-

space network. These commodities include

1. Actual picked up shipments. We model them as entering the time-space network

at the node representing the first location and time where we can make changes.

The meaning of this depends on the status of the shipment at the time DLP is

run:

• In a trailer in transit, or in a closed outbound trailer in a yard. The

commodity enters the time-space network at the next handling terminal

at the estimated arrival time at the next handling terminal.

• In an inbound trailer at a terminal, still to be unloaded. The commodity

enters the time-space network at its current terminal at a time equal to

the current time plus the estimated time required to unload it.
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• On the dock, unloaded but not yet loaded. The commodity enters the time-

space network at its current terminal at the current time.

• In an open outbound trailer at door. The commodity enters the time-space

network at its current terminal at the current time. The destination of the

first direct is fixed and all shipments in this open outbound trailer must

depart the on the same timed copy of the direct.

2. Projected freight volumes still to be picked up during the current day d1. We

model projected freight entering the linehaul network at terminal u1 as entering

the time-space network at node n1 = (u1, t1) where t1 = max(current time, d1

@ 7 p.m.).

3. Projected freight volumes to be picked up during the next business day d1 + 1.

This freight is included because the planning period covers freight originating

on the next business day. We model freight entering the linehaul network at

terminal u1 as entering the time-space network at node n1 = (u1, t1) where

t1 = d1 + 1 @ 7 p.m.

As discussed earlier, freight destined for terminal u with a due day d within the

planning period, i.e., d ≤ d1 + 2 is given destination node n = (u, d @ 8 a.m.), and

freight with a due date after the end of the planning period is given as destination

node the last node within the planning period on the path specified by the original

load plan.

Let K denote the set of commodities. For each commodity k ∈ K, let o(k) denote

the origin terminal, d(k) denote the destination terminal, wk denote the weight in

pounds, bk denote the cube in cubic feet. Let K(d) ⊆ K, d ∈ U denote the set of

commodities with destination terminal d.

Given that there is little time available for adjusting load plans, i.e., at most 5

minutes, it is crucial to carefully select the adjustments to consider. As load planning
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is all about identifying freight paths, we have chosen to work with a set of freight

path templates that correspond to load plan changes that are most likely to provide

additional opportunities for consolidation. The freight path templates are discussed

below:

• Skip direct. Skip directs are motivated by situations where freight volumes

are large enough to justify building longer directs to save on handling costs at

intermediate terminals. Consider the example in Figure 28. The original load

plan path from A to D is A−B −C −D, where B and C are handling points.

If we have a nearly full trailer worth of freight at B bound for C and then D, it

makes sense to build a direct trailer from B to D, skipping C and thus saving

the handling cost that would have been incurred at C. In general, we consider

skipping each handling point on the original load plan path, e.g., create paths

A− C −D and A−B −D in this case.

Figure 28: Skip Direct

• Add direct. In opposite situations where we have low load factors on a direct,

we may save on transportation costs by “breaking up” the original direct and

introducing extra handles to increase consolidation. Consider the example in

Figure 29. The original load plan path from A to D is A − C −D; breakbulk

terminal B is on the route from A to C. Suppose that the load factor on direct

A−C is low, and we already have a half-full trailer flowing on B −C, then by

breaking direct A − C and handling the freight at B, we save transportation
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costs of moving one trailer on B−C. If this saving dominates the handling cost

at B, this change reduces the total system cost. We examine direct C −D for

similar opportunities.

Figure 29: Add Direct

• Alternate outbound at freight origin. Loading freight to alternate outbound

directions may improve consolidation. This is most effective near the freight

origin, where the freight has not been heavily consolidated. Consider the exam-

ple in Figure 30. The original load plan path from A to F is A− B − C − F .

At freight origin A, instead of loading the shipment to B, we consider loading

it to another direction D, and from D continue on the original load plan path

to F , resulting in A−D − E − F . If, for example, the remaining capacities of

trailers already flowing on A−D, D −E and E − F all can accommodate the

A − F freight, while routing it on the original load plan path A − B − C − F

would require opening new trailers, then the new route is preferred (ignoring

handling cost differences).

When we repeat this for each alternate outbound direction at A, we could

potentially create a large number of paths. To keep the size of potential paths

manageable, we only consider up to the LO shortest ones among them.

• Alternate outbound at origin breakbulk. When freight originates at an end-of-

line, in addition to alternate outbound loading at freight origin, we also search
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Figure 30: Alternate Outbound at Freight Origin

for such opportunities at the origin breakbulk, i.e., the first breakbulk (second

overall) terminal on the original load plan path. Consider the example in Figure

31. The original load plan path from A to E is A−B −C −E. This time, we

keep the loading decision at the freight origin A (to B), but examine alternate

outbound directions at the first breakbulk B, e.g., to D. Then we continue on

the original load plan path from D to E, resulting in a new path A−B−D−E.

We repeat this procedure for each alternate outbound direction at B and only

the shortest LB paths are admitted.

Figure 31: Alternate Outbound at Origin Breakbulk

Besides load plan changes that improve consolidation, additional savings may be

achieved by executing so called “milk runs” involving freight origins and destinations.

Specifically, when multiple end-of-lines dispatch trailers to a common breakbulk, or

vice versa when a breakbulk dispatch trailers to multiple end-of-lines, it may be possi-

ble combine the trips from (or to) multiple end-of-line into a single one by stopping at
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an intermediate end-of-line to pick up (or kick off) some freight, and then continuing

on to the final destination of the trip.

• Inbound Milk Run. Consider the example in Figure 32. End-of-lines A and B

both load trailers to breakbulk O. If we load A− O freight as the headload of

the A− O trailer, and route it through B, we could potentially pick up B −O

freight at B, continue on to O, and thus save a separate dispatch from B to O.

Figure 32: Inbound Milk Run

• Outbound Milk Run. Consider the example in Figure 33. Breakbulk O loads

trailers to end-of-lines A and B. If we load O − B freight as the headload of

the O − B dispatch, O − A freight on the same trailer towards the back of it,

and route the it though A, we could kick off O−A freight at A, continue on to

B, and thus save a separate dispatch from O to A.

Figure 33: Outbound Milk Run
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3.4 Integer Programming Approaches

Due to the success of integer programming based search for the static load planning

problem, as reported in [5], it seemed natural to explore the same approach in the

context of dynamic load planning. The approach uses a path-based optimization

model on the time-space network. Let P (k) be a set of possible freight paths for

commodity k ∈ K, where a freight path p is a sequence of arcs, i.e., p = (a1, . . . , anp
).

Each path p = (a1, . . . , anp
) ∈ P (k) connects the origin and the destination node of

k. How commodity k is routed then simply becomes a question of choosing a path

p ∈ P (k). Associated with a path p = (a1, . . . , anp
) is an underlying path p of directs

p = (l(a1), . . . , l(anp
)). Note that given a path p, we can calculate its total handling

cost hp per pound by summing the costs for the intermediate terminals visited.

To construct a set of paths P (k) for commodity k, we first check the service

feasibility of the paths generated using the templates discussed in the previous section.

That is, we compare the remaining time until the due time at the destination and

the minimum amount of time required to reach the destination, which is the sum of

• the transit times of the directs,

• 30 minutes per intermediate handling for 1-day freight (special handling proce-

dures have been put in place at breakbulks to streamline the processing of 1-day

freight so as to ensure that it can make service), or two hours per intermediate

handling for multi-day freight, and

• 30 minutes for loading or unloading at the intermediate stop of a milk run.

We then map the service-feasible paths to the time-space network. For each such

path of directs, we include not only the minimum duration path p into P (k), but

potentially also other versions that add holding arcs if they are also feasible. Adding

such timed copies models the ability to hold freight at intermediate terminals to
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improve the plan. We construct a limited set of such paths by only holding freight

until specific events occur. First, we allow freight to be held at a terminal until the

time that new freight originates at that terminal; thus, freight arriving at a breakbulk

during the day can be consolidated with that evening’s originating outbound freight.

Second, we allow freight to be held at a terminal until its cut time, i.e., the latest

time at which the freight can be dispatched and still arrive on time to its destination.

In this way, freight destined for common destinations may be consolidated.

When selecting paths for commodities, we must ensure consistency between the

paths chosen for commodities in a common open outbound trailer. Therefore, let T

denote the set of open outbound trailers. For each t ∈ T , let C(t) ⊆ K be the set of

commodities in trailer t and D(t) ⊆ A be the set of possible dispatch arcs for t, i.e.,

a set of timed copies of the same direct.

3.4.1 DLP-SPLIT Integer Program

We first present an integer programming formulation, referred to as DLP-SPLIT-

IP, for DLP-SPLIT. It has three sets of decision variables. First, x variables indicate

whether commodity k uses path p, i.e., xk
p ∈ {0, 1} ∀k ∈ K, ∀p ∈ P (k). Second,

z variables enforce consistency between paths for commodities in an open outbound

trailer by indicating whether arc a is chosen for open trailer t, i.e., zt
a ∈ {0, 1} ∀t ∈

T, ∀a ∈ D(T ). Finally, τ variables count the required number of trailers that move

on arc a, i.e., τa ∈ Z+ ∀a ∈ A.

The formulation is to then minimize

∑

a∈A

caτa +
∑

k∈K

∑

p∈P (k)

hpwkx
k
p

subject to
∑

p∈P (k)

xk
p = 1 ∀k ∈ K (9)

∑

a∈D(t)

zt
a = 1 ∀t ∈ T (10)
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∑

p∈P (k):a∈p

xk
p ≤ zt

a ∀t ∈ T, ∀k ∈ C(t), ∀a ∈ D(t) (11)

∑

k∈K

∑

p∈P (k):a∈p

wkx
k
p ≤ τaM

w
a ∀a ∈ A (12)

∑

k∈K

∑

p∈P (k):a∈p

bkx
k
p ≤ τaM

b
a ∀a ∈ A (13)

The objective function represents the total transportation and handling costs.

Constraints (9) ensure that a path is chosen for each commodity. Constraints (10)

ensure that a single departure arc is selected for each open outbound trailer. Con-

straints (11) ensure that a path for a commodity in an open outbound trailer can

only be chosen when the first arc on the path is the same as the departure arc for

the open trailer. Constraints (12) and (13) ensure that the number of trailer trailers

on an arc is sufficient to carry the freight that moves along the arc, i.e., the freight

“assigned” to the arc through the chosen paths.

3.4.2 DLP-INTREE Integer Program

As mentioned earlier, a traditional load plan specifies the outbound direct a ship-

ment should take at its current location given its final destination. Choosing the

outbound direct for freight at terminal u and destined for terminal d (regardless of its

origin or service standard) corresponds to choosing a single arc from δ+(u) for freight

destined to node d ∈ U .

In our path-based approach, we choose for each commodity k ∈ K a path of arcs,

where each arc a is a timed copy of a direct. Therefore, when adjusting a load plan,

we must ensure consistency among the paths chosen for commodities with a common

final destination, i.e., for commodities k ∈ K(d) for all d ∈ U .

Additional y variables are introduced to enforce consistency between paths for

commodities with common destinations indicating whether direct l ∈ δ+(u) is chosen

for commodities destined for terminal d routed through terminal u until 6 p.m. the

next business day, i.e., yd
l ∈ {0, 1} ∀d ∈ U, ∀l ∈ δ+(u), u ∈ U . Assuming the load
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plan reverts back to the original one after that, we let ŷd
l denote the fixed outbound

direct decisions given by the original load plan. For each a ∈ A, let o(a) be the origin

node of a.

The formulation, referred to as DLP-INTREE-IP, is to minimize

∑

a∈A

caτa +
∑

k∈K

∑

p∈P (k)

hpwkx
k
p

subject to
∑

p∈P (k)

xk
p = 1 ∀k ∈ K (14)

∑

a∈D(t)

zt
a = 1 ∀t ∈ T (15)

∑

p∈P (k):a∈p

xk
p ≤ zt

a ∀t ∈ T, ∀k ∈ C(t), ∀a ∈ D(t) (16)

∑

l∈δ+(u)

yd
l ≤ 1 ∀u ∈ U, ∀d ∈ U (17)

∑

p∈P (k):a∈p

xk
p ≤ y

d(k)
l(a) ∀k ∈ K, ∀a ∈ A, o(a) ∈ N∗ (18)

∑

p∈P (k):a∈p

xk
p ≤ ŷ

d(k)
l(a) ∀k ∈ K, ∀a ∈ A, o(a) ∈ N \N∗ (19)

∑

k∈K

∑

p∈P (k):a∈p

wkx
k
p ≤ τaM

w
a ∀a ∈ A (20)

∑

k∈K

∑

p∈P (k):a∈p

bkx
k
p ≤ τaM

b
a ∀a ∈ A (21)

The additional constraints (17) ensure that a single outbound direct is selected for

freight at terminal u and destined for terminal d. Constraints (18) and (19) ensure

that a path for commodity k can only be chosen when all of its component directs

are chosen.

3.4.3 Inbound-IP Based Search

Realistically-sized instances of DLP-SPLIT-IP and DLP-INTREE-IP cannot be

solved directly by commercial integer programming solvers, let alone within 5 minutes.
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A decomposition approach that uses exact optimization within heuristic search is

proposed in [5]; see Algorithm 5 for a general outline of the procedure. We apply the

same technique to the dynamic load planning problem.

Algorithm 5 Integer Programming Based Neighborhood Search

Require: a feasible solution to the integer program
while the search time has not exceeded a prespecified limit T do

Choose a subset of variables V
Solve the integer program with all variables not in V fixed at their current value
if an improved solution is found then

Update the best known feasible solution
end if

end while

The choice of a subset of variables V is motivated by the “in-tree” structure of

traditional load plans, i.e., directs into a destination d must form an in-tree (see

Figure 34). We refer to the associated integer program as an Inbound IP into d, or

IIPd, with DLP-SPLIT-IP and DLP-INTREE-IP variants. The purpose of IIPd is

to improve the current solution by optimally choosing the directs used for d-bound

freight, and by optimally choosing when and where d-bound freight is held. The IIPd

problem is to determine a set of paths for all commodities in K(d); note that this

problem is then to determine a new directed in-tree into d. More formally, given a

current feasible solution (z̄, ȳ, x̄, τ̄), IIPd is defined by holding fixed the variables

• yu
l = ȳu

l ∀u ∈ U such that u 6= d,

• xk
p = x̄k

p ∀k ∈ K \K(d), and

• zt
a = z̄t

a ∀a ∈ D(t), ∀t ∈ T such that C(t) 6⊆ K(d).

A specialized version of Algorithm 5 is presented in Algorithm 6. Since our ap-

proach improves the load plan by re-routing freight destined for a specific terminal, we

do not want to spend time solving Inbound IPs for terminals for which little freight is

destined. Thus, we only consider the top p% of terminals for which freight is destined.
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Figure 34: Freight Paths into a Destination Terminal

The algorithm we present iterates through this subset of terminals in a round-robin

manner.

Algorithm 6 IIP Neighborhood Search

Require: an initial load plan (z̄, ȳ, x̄, τ̄)
for each terminal d do

Set Fd =
∑

k∈K(d) wk, the total amount of freight destined for d
end for

Set T = array of top p% of terminals with respect to Fd

Sort T in descending order of Fd

Set i = 0
while the search time has not exceeded the prespecified limit do

Choose destination terminal d = T [i mod |T |]
Solve Inbound-IP IIPd

if Solution to IIPd gives lower total load plan cost then

Update (z̄, ȳ, x̄, τ̄)
end if

Set i = i + 1
end while

3.4.4 Computational Results

The algorithms were developed in C++ with CPLEX 11 as the Mixed Integer

Program solver, interfaced via ILOG Concert Technology. All computational experi-

ments were carried out on a system with a 2.66 GHz Intel Xeon processor and 4 GB
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of RAM.

Our test set for the integer programming based approaches consists of the five data

instances described in Table 8, each representing a snapshot of the system of a national

LTL carrier in the U.S. The carrier’s linehaul network consists of 58 breakbulks, 103

end-of-lines, and approximately 24,000 potential directs. A typical DLP run involves

approximately 20,000 commodities and 1,000 open outbound trailers in the starting

condition.

Table 8: Data Instances for Inbound IP Approach
Instance Description

I1 18:00 EST, Monday, March 23, 2009
I2 18:00 EST, Tuesday, March 24, 2009
I3 18:00 EST, Wednesday, March 25, 2009
I4 18:00 EST, Thursday, March 26, 2009
I5 18:00 EST, Friday, March 27, 2009

The computational experiments for the integer programming based approaches

were conducted using a slightly simplified version that bases trailer computations only

on weight but not cube. The Inbound-IP approach successfully finds cost savings for

the less-constrained DLP-SPLIT-IP problem. In Table 9, we report the cost savings

measured in percentages relative to the initial load plan provided by the carrier, and

each type of paths used. This approach, however, has its limitations in dynamic load

planning mainly due to the much more aggressive target run time of 5 minutes. Figure

35 shows the progress of the Inbound-IP approach over the course of its execution. We

see that only a small fraction of the savings are achieved in the first 5 minutes because

only a few terminals can be re-optimized in that time. For the more constrained DLP-

INTREE-IP, the Inbound-IP approach was unable to find improving solutions in 15

minutes.
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Figure 35: Progress of Inbound-IP Approach

Table 9: Computational Results for Inbound IP Approach for DLP-SPLIT-IP
Instance I1 I2 I3 I4 I5
cost savings 4.64% 6.08% 5.82% 8.68% 5.59%
run time (minutes) 15 15 15 15 15
skip direct 0.45% 0.55% 0.49% 0.51% 0.34%
add direct 0.21% 0.11% 0.20% 0.16% 0.20%
alternate outbound at origin 1.40% 1.39% 1.27% 0.91% 0.75%
alternate outbound at origin breakbulk 1.21% 1.13% 1.36% 0.93% 0.96%
inbound milk run 0.62% 0.73% 0.62% 0.87% 0.37%
outbound milk run 0.12% 0.10% 0.06% 0.14% 0.00%

3.5 GRASP-Inspired Heuristic Approaches

The computational experiments discussed above show that the integer program-

ming based approaches are too time-consuming to be of value for dynamic load plan-

ning. We next describe a heuristic approach, inspired by the concepts of Greedy

Randomized Adaptive Search Procedures (GRASPs), that is capable of producing

high-quality load plan adjustments in a short amount of time.

To evaluate a tentative load plan, a timed-copy of the path specified by the load

plan needs to be determined for each commodity so as to maximize consolidation

(or equivalently to minimize the total cost). Ideally, these timed-copies should be
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determined simultaneously for all commodities. However, that is computationally

prohibitive and an effective and efficient randomized greedy procedure has been de-

veloped instead. The efficiency of the randomized greedy procedure relies on the

fact that finding an optimal timed-copy of the path specified by the load plan for

a single, given commodity can be done efficiently using a shortest path algorithm.

The marginal cost of adding commodity k with weight wk and cube bk to arc a with

current freight flow weight ew
a and freight flow cube eu

a, and maximum freight flow

weight Mw
a and maximum freight flow cube M b

a per trailer equals
(
⌈max(

ew
a + wk

Mw
a

,
eu

a + bk

M b
a

)⌉ − ⌈max(
ew

a

Mw
a

,
eu

a

M b
a

)⌉

)
ca. (22)

A shortest path algorithm using these arc costs finds the least marginal cost path for

commodity k. The greedy aspect of the approach is due to the order in which the

commodities are processed. Let a commodity’s slack time be defined as the maximum

amount of time it can be held at its origin such that it can still meet service. A

large slack time is an indication of more flexibility for choosing dispatch times along

the path, and hence more opportunities for taking advantage of “free” capacity on

trailers along the way that have been “opened” for transporting other commodities.

On the other hand, a small slack time for a commodity implies that there is little

or no flexibility for choosing dispatch times so as to consolidate freight. Therefore,

unless there is a trailer with sufficient remaining capacity dispatched at the exact

time required by this commodity, a new trailer has to be opened to accommodate this

commodity, which may lead to a low load factor and may thus be costly. This suggests

that we select paths for commodities with a small slack time first, and overlay those

with paths for commodities with larger slack times. Furthermore, a commodity of

lighter weight is more likely to be able to take advantage of remaining capacity on open

trailers, which suggest we select paths for commodities with larger weights first. We

introduce randomness into the algorithm by processing the commodities not entirely

in the order described above. Rather, a Restricted Candidate List (RCM) consisting
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of the top m commodities (according to the above sorting criterion) is maintained.

Then in each iteration, we select a commodity within the RCM with equal probability;

or with probability proportional to λi for the ith commodity, λ ∈ (0, 1).

With an effective and efficient way to evaluate a tentative load plan, it is possible

to design local search procedures to dynamically identify high-quality adjustments to

a load plan.

3.5.1 Local Search for DLP-INTREE

When dynamically adjusting a load plan, the paths selected for commodities must

satisfy the consistency requirements for a load plan, i.e., the paths into a particular

destination must form an intree. Therefore, when evaluating a potential adjust-

ment to the load plan, whether it is selecting an outbound direction for an origin-

destination pair, or determining whether freight on a direct between an end-of-line

and a breakbulk should become part of a milk run, we must collectively consider all

the commodities that are affected by such a change.

Our local search heuristic consists of two phases. In the first phase, we search

for improving load plan changes for origin-destination pairs. In the second phase, we

search for milk run opportunities.

In the first phase, we process all origin-destination pairs in some random order.

Given an origin-destination pair (o, d), we determine the set L(o, d) of commodities

that are affected by a change in the outbound direction at o for freight destined to d,

i.e., the set of commodities destined for d that visit o in the next 24 hours. Next, we

evaluate the tentative load plans that result when we change the outbound direction

at o for freight destined to d. The freight path templates are used to restrict the

outbound directions considered when creating tentative load plans. The evaluation

of a tentative load plan is done using the randomized greedy procedure outlined above.

Because the dynamic load planning technology will be executed again in 24 hours,
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we do not know the load plan that will be in place after 24 hours. However, our

planning period covers 38 hours, so we do need to have a load plan in place for last

14 hours of the planning period. We have chosen to use the static load plan for that

as that was designed to perform well throughout the week.

In the detailed description given in Algorithm 7, the function f(n, d) represents a

tentative (partial) load plan, i.e., it specifies for freight at node n with final destination

d, the next destination. We use u(n) to denote the terminal associated with node

n and LMC(k, f) to denote the least marginal cost path for commodity k given

tentative load plan f .

Algorithm 7 Load Plan Change Local Search for DLP-INTREE

Require: a set s of paths for each commodity, a load plan l
I ← a random ordering of all origin-destination pairs
for all (o, d) ∈ I do

L(o, d)← set of commodities destined for d and visiting o in the next 24 hours
s∗ ← ∅
v∗ ← ∅
for all v ∈ potential outbound directions from o to d do

// Create tentative load plan

f ← f(n, d) =

{
v if u(n) = o and n ∈ N∗

l
(
u(n), d

)
otherwise

// Evaluate tentative load plan
s← s \ L(o, d)
for all k ∈ L(o, d) do

s← s
⋃

LMC(k, f)
end for

if s improves s∗ then

s∗ ← s
v∗ ← v

end if

end for

s← s∗

l ← (l \ (o, d))
⋃

v∗

end for

In the second phase, we process all directs between an end-of-line and a breakbulk,

i.e., the candidates for a milk run, in some random order. Given a direct, we determine

the set L(dir) of commodities that are dispatched on the direct in the next 24 hours.
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Next, we evaluate the tentative load plans that result when we visit an intermediate

milk run stop on the direct. The freight path templates are used to restrict the milk

runs considered when creating tentative load plans. As before, the evaluation of a

tentative load plan is done using the randomized greedy procedure outlined above. A

detailed description is given in Algorithm 8.

Algorithm 8 Milk Run Local Search for DLP-INTREE

Require: a set s of paths for each commodity, a load plan l
m← ∅ the set of milk runs
I ← a random ordering of all directs between an end-of-line and a breakbulk
for all dir ∈ I do

L(dir)← set of commodities dispatched on dir in the next 24 hours
s∗ ← ∅
v∗ ← ∅
for all v ∈ potential milk run stops for dir do

// Create tentative load plan

f ← f(n, d) =





destination of milk run if u(n) = intermediate stop of a milk run

v if
(
u(n), l

(
u(n), d

))
= dir and n ∈ N∗

m
(
u(n), l

(
u(n), d

))
if
(
u(n), l

(
u(n), d

))
∈ m and n ∈ N∗

l
(
u(n), d

)
otherwise

// Evaluate tentative load plan
s← s \ L(dir)
for all k ∈ L(dir) do

s← s
⋃

LMC(k, f)
end for

if s improves s∗ then

s∗ ← s
v∗ ← v

end if

end for

s← s∗

m← m
⋃

(dir, v∗)
end for

return s
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3.5.2 Local Search for DLP-SPLIT

As mentioned earlier, in the near future it may be possible to route freight at an

individual shipment level in which case it will no longer be necessary to enforce consis-

tency among shipments with the same final destination. In that case, the additional

flexibility can be exploited by adding a third phase in which we check sequentially

for each commodity if we can improve the current load plan by replacing its current

path with another one. The set of alternate paths is specified by the freight path

templates. In the detailed description in Algorithm 9 an alternate path p̄ is given as

a sequence of terminals, e.g., (p̄[1], p̄[2], ..., p̄[n]).

Algorithm 9 Phase 3 for DLP-SPLIT

Require: a set s of paths for each commodity
Sort commodities in increasing order of slack time; in case of ties, in decreasing
order of weight
while stopping criterion not met do

Create a copy L of the commodity list
while L 6= ∅ do

Select a commodity k according to a randomized greedy strategy
L← L \ k
s∗ ← ∅
for all p̄ ∈ path options from o(k) to d(k) do

// Create tentative load plan

f ← f(n, d(k)) =

{
p̄[i + 1] if u(n) = p̄[i] and n ∈ N∗

l(u(n), d(k)) otherwise
// Evaluate tentative load plan
s← (s \ k)

⋃
LMC(k, f)

if s improves s∗ then

s∗ ← s
end if

end for

s← s∗

end while

end while

return s
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3.5.3 Computational Results

Our test set for the GRASP-inspired heuristic approaches consists of the four data

instances listed in Table 10, each representing a snapshot of the system of a national

U.S. LTL carrier. The carrier’s linehaul network consists of 58 breakbulk terminal,

103 end-of-line terminals, and approximately 24,000 potential directs. A typical DLP

run involves approximately 20,000 commodities and has about 1,000 open outbound

trailers.

Table 10: Data Instances for GRASP-Inspired Heuristic Approaches
Instance Description

G1 18:35 EST, Monday, January 26, 2010
G2 17:15 EST, Friday, March 5, 2010
G3 19:09 EST, Friday, March 5, 2010
G4 20:45 EST, Tuesday, March 30, 2010

The dynamic load planning technology improves a load plan that was constructed

using freight projections by exploiting consolidation and cost-savings opportunities

created by the actual freight in the system. In Table 11, we report the cost savings and

computation times obtained for the four instances when we run both DLP-INTREE

and DLP-SPLIT variants of the heuristics. Again, the cost savings are measured in

percentages relative to the cost of the initial load plan provided by the carrier for

that day. Since a 1% savings represents about $10,000 for the carrier, these suggested

changes can have a substantial impact on the carrier’s bottom line. Furthermore, the

results also show that relaxing the in-tree requirement of a traditional load plan and

routing freight at an individual shipment level will increase the savings even more.

Finally, we observe that all computation times are less than 3 minutes.

The dynamic load planning technology is built around a set of specific load plan

adjustments. In Table 12 we present a breakdown of the cost savings by load plan

adjustment.

We see that, as expected, the majority of the cost savings are found in the load
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Table 11: Computational Results for GRASP-Inspired Heuristic Approaches

Instance
DLP-INTREE DLP-SPLIT

% cost savings run time (seconds) % cost savings run time (seconds)
G1 8.46% 120 9.26% 124
G2 10.32% 112 11.53% 122
G3 8.60% 133 10.08% 146
G4 7.21% 144 8.14% 148

Table 12: Cost Savings Breakdown by Path Types
G1 G2 G3 G4

skip direct 6.33% 3.04% 3.03% 3.88%
add direct 30.78% 24.75% 23.08% 22.05%
alternate outbound 60.13% 67.47% 66.95% 70.67%
inbound milk run 2.63% 4.60% 6.10% 2.72%
outbound milk run 0.13% 0.13% 0.84% 0.68%

plan change phase, but that the cost savings provided by milk-runs is non-trivial. The

bulk of the cost savings come from adding directs and sending freight on alternate

outbound directs. Identifying such adjustments requires knowledge of the freight flows

at several terminals and therefore are not likely to be found by terminal managers.

The use of optimization techniques with a system-wide view is crucial.

In the load plan change phase, we consider every origin-destination pair once.

Given that the technology requires less than 3 minutes, we have investigated if there

is benefit of considering every origin-destination pair twice. The results are presented

in Figure 36, which show how the cost-savings accumulate over time. We see that

the vast majority of the savings are found in the first pass and there is no real need

to expand the extra time and effort in a second pass.

3.5.3.1 Illustrative Examples

In this section, we present a few examples chosen from the computational results

to demonstrate the changes that were made by DLP. They were all selected from

the results of DLP runs on instance G4. In each example we show side-by-side the

“before” and “after” pictures of the freight flows, in trailerloads, under the original
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Figure 36: Progress of Load Plan Change Local Search

load plan on the left, and under the DLP-optimized load plan on the right. The

required number of trailers on a direct is simply the freight flow rounded up to the

nearest integer.

Figure 37: Skip Direct from Computational Results

Figure 37 illustrates a skip direct. Under the original load plan, Cleveland freight

destined for Jackson goes to Toledo, and then to Jackson. Two trailers are required on

each of Cleveland-Toledo and Toledo-Jackson directs. Out of these freight volumes,

0.82 trailerloads are Cleveland-Jackson freight. DLP determines that we should build

a direct trailer from Cleveland to Jackson. The same number of trailers are required

as under the original load plan, but we save the handling cost for Cleveland-Jackson

freight that would have been incurred at Toledo. In practice, this direct trailer from

Cleveland to Jackson will likely still travel on Cleveland-Toledo-Jackson route and be

74



matched with the remaining trailers, but will not be opened at Toledo.

Note that the numbers may not exactly add up for two reasons: there may be

other changes involved; and the freight volume is computed based on both weight

and cube, so the numbers may not be additive.

Figure 38: Add Direct from Computational Results

Figure 38 illustrates an add direct. Under the original load plan, Oakland-Salt

Lake City freight travels direct even though we have only 0.08 trailerloads of such

freight, while on Oakland-Reno and Reno-Salt Lake City directs there are trailers with

enough remaining capacities to accommodate such freight. DLP thus determines that

we should “break” the Oakland-Salt Lake City direct and re-route the freight through

Reno. By doing so we save the transportation costs of dispatching one trailer from

Oakland to Salt Lake City.

Figure 39 shows an alternate outbound change. The freight origin-destination

pair under consideration is Lubbock-Victoria. Under the original load plan, such

freight travels from Lubbock to Houston, and then to Victoria. DLP finds that at

the freight origin Lubbock, instead of loading the freight to Houston, we can shift it

to the Dallas lane without having to open up new trailers on either Lubbock-Dallas

or Dallas-Victoria directs, and we do not require a trailer on Lubbock-Houston direct

anymore.
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Figure 39: Alternate Outbound from Computational Results

Figure 40: Inbound Milk Run from Computational Results

Figure 40 demonstrates an inbound milk run. End-of-lines Greenville and Fayet-

teville both dispatch trailers to breakbulk Charlotte, with a total freight volume of less

than one trailerload. DLP determines that we should route the Greenville-Charlotte

dispatch through Fayetteville to pick up Fayetteville-originating freight. A separate

dispatch from Fayetteville to Charlotte is no longer needed.

Figure 41 demonstrates an outbound milk run. Breakbulk Memphis dispatches

trailers to end-of-lines Evansville and Jackson, both with low load factors. DLP

determines that we should load Jackson-bound freight also to the Memphis-Evansville

trailer, route such trailer through Jackson where Jackson-bound freight is kicked off,

and continue the dispatch on to the final destination Evansville. Combining the two
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Figure 41: Outbound Milk Run from Computational Results

destinations into a single dispatch removes the need for a separate dispatch from

Memphis to Jackson.
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CHAPTER IV

STOCHASTIC LOAD PLAN DESIGN

4.1 Introduction

Load plan design models commonly represent origin-destination freight volumes

using average demands derived from historical data; for example, an average weekly

freight volume or an average daily freight volume might be used. The drawback of

using an average is that it does not describe freight volume fluctuations. In this

chapter, we investigate load plan design models that attempt to explicitly utilize

information on freight volume uncertainty during planning. Our goal is to develop

load plans that most cost-effectively deal with varying freight volumes and lead to

the lowest expected cost.

Consider the small network presented in Figure 42 for an example of how a stochas-

tic model can lead to a different optimal load plan than that from a deterministic

model. The numbers above each arc represent the dispatch cost of a trailer, where L

is a large, positive number.

Figure 42: Example Network

Suppose that the network faces two origin-destination pair freight volumes, A→ E

and B → F , each of which can be represented by a continuous random variable

with a uniform distribution on [1− ǫ, 1 + ǫ], where volume is measured in fractional
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trailerloads, and ǫ < 0.5 is a small, positive number. Suppose furthermore that the

freight volumes on each pair are independent.

A deterministic model that uses average freight volumes sees both A → E and

B → F freight as exactly one full trailerload. Therefore, there is no need for con-

solidation and the optimal load plan is to serve each demand using a direct trailer,

as shown in Figure 43. The probability distributions above arcs represent the freight

flow. The expected number of trailers dispatched on A→ E and on B → F is

E [ ⌈X1⌉ ] = 1.5, X1 ∼ U(1− ǫ, 1 + ǫ), (23)

and the expected system cost of executing this load plan is

cdet = 1.5L + 1.5L = 3L

Figure 43: Freight Routing Decisions by Deterministic Load Plan Optimization

On the other hand, a stochastic model that considers freight volume uncertainty

in load plan design would produce the solution shown in Figure 44. Both A → E

and B → F freight is consolidated at breakbulk terminals C and D. This allows the

possibility of a high value in one of the demands being offset by a low value in the

other. Freight flow on C → D is the sum of two independent, uniformly distributed

random variables, and is itself triangularly distributed with lower limit 2− 2ǫ, upper

limit 2 + 2ǫ, and mode 2.

Similar to (23), the expected number of trailers dispatched on A → C, B → C,

79



Figure 44: Freight Routing Decisions by Stochastic Load Plan Design

D → E, and D → F is 1.5. The expected number of trailers dispatched on C → D is

E [ ⌈X2⌉ ] = 2.5, X2 ∼ Tri(2− 2ǫ, 2 + 2ǫ, 2)

If we ignore cross-dock handling costs, which are typically dominated by trans-

portation costs associated with moving trailers, the expected system cost of executing

the second load plan is

cstoch = 1.5× 4 + 2.5L = 2.5L + 6

For L > 12, cstoch = 2.5L + 6 < 3L = cdet, and the stochastic load plan compares

favorably.

The example demonstrates that consideration of demand stochasticity may allow

load plans to be developed that reduce costs using the well-known concept of risk

pooling (see [22] [12] for discussions, for example). In supply chain management, risk

pooling effects incentivize serving customers from consolidated distribution facilities

where one aggregates demand across locations in order to increase the likeliness of

high demand from one customer being offset by low demand from another, hence

reduces demand variability, decreases safety stock, and reduces average inventory.

For load plan design, a similar effect provides further incentives for consolidation

beyond those that are induced by scale economies in transportation cost alone.

In this chapter, we develop and present Sample Average Approximation (SAA)

approaches for solving stochastic integer programming formulations of the load plan
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design problem with origin-destination pair demand uncertainty. In addition to ap-

plying the standard SAA approach, we also propose a modified version which, in

order to correct the bias in the branch-and-bound search that results from using a

sample, frequently computes an exact evaluation of the solution expected cost and a

lower bound on this cost, to more accurately guide the search process.

The contributions of this research are two-fold. It is the first to study a stochastic

service network design problem for LTL carriers, illustrating the importance of ex-

plicitly utilizing information on freight volume uncertainty during planning. Second,

it demonstrates a scheme of using exact evaluations within solving SAA problems

to improve the guidance of the search when it is not expensive to compute such

information.

The remainder of this chapter is organized as follows. In Section 4.2, we review

relevant literature. In Section 4.3, we discuss modeling issues and choices for the

stochastic load plan design problem. Section 4.4 presents integer programming for-

mulations of the load plan design problem and our solution approaches. Section 4.5

reports the results of computational studies conducted using data from a national

LTL carrier.

4.2 Additional Related Literature

Stochastic service network design problems were first discussed in [12] and [7].

The papers demonstrate that plans created with explicit consideration of stochastic

elements are more robust than those of traditional deterministic models.

The sample average approximation method was introduced in [10]. Theoretical

and algorithmic issues related to stochastic integer programs are also discussed in [1].

Computational experiments of the SAA method are reported in [11] and [13], and a

successful application to stochastic routing problems in [23].
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4.3 Modeling Stochastic Load Plan Design

Solving realistically-sized instances of load plan design models developed using

detailed time-space network representations is beyond the capability of the state-

of-the-art integer programming solvers available today. A decomposition approach

that uses exact optimization within heuristic search is proposed in [5]. Incorporating

uncertainty into the model further increases the complexity of the resulting optimiza-

tion problem. In this research, we focus on modeling and algorithm design for the

stochastic aspect of the problem, and thus have chosen to make a number of simplify-

ing assumptions to limit the problem size. Extending our approach to solve detailed,

full-sized models using decomposition and heuristic search as proposed in [5] is left

for future research.

Specifically, then, we make the following simplifying assumptions in this chapter:

1. Instead of working with the full linehaul network of a national LTL carrier, we

use only a portion of the network, e.g., the northwestern United States.

2. We use a planning horizon of a day, and assume that the freight pattern repeats

daily.

3. We model freight routing decisions on a static network and ignore dispatch

timing. Although we only consider service-feasible paths, we recognize that

this may lead to an overestimation of consolidation opportunities. Note that

this is similar to [9] which models time coarsely with a single node per day per

terminal.

4. We model only transportation costs associated with moving trailers. Cross-

dock handling costs are commonly dominated by transportation costs and are

ignored.

5. We calculate trailer requirements based on weight only, not cube.
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6. We do not model repositioning of trailers for balancing. This allows the recourse

problem to be especially simple (a counting problem). Although we use this

assumption, it is not conceptually difficult to extend our framework to model

trailer balance by solving minimum cost flow repositioning problems during

recourse, which is left for future research.

To make freight routing decisions, we model terminals and potential directs on

a directed graph D = (V, A), where V is the set of terminals and A is the set of

potential directs connecting terminals. Associated with each direct a ∈ A is a transit

time and a cost ca that respectively reflect how much time and money it takes the

carrier to route a trailer from the origin terminal to the destination terminal of direct

a.

Each origin-destination freight pair is modeled as a commodity. We assume a dis-

crete uniform distribution for joint realizations of freight volumes of all commodities,

i.e., N0 scenarios, each representing a complete realization of all origin-destination

freight volumes, are equally likely to be observed. The set of scenarios can be con-

structed, for example, using historical freight volume demands on N0 different days.

Let K denote the set of commodities. For each commodity k ∈ K, let wk denote the

average weight of the total daily shipments from origin to destination, and wn
k denote

the weight in scenario n, n ∈ {1, . . . , N0}. Let C denote the capacity of a trailer.

Our approach will use a path-based optimization model on D. For each commodity

k ∈ K, we construct a set of possible freight paths, denoted by P (k), where a freight

path p is a sequence of directs, i.e., p = (a1, . . . , anp
). Each path p ∈ P (k) connects

the origin terminal of k to the destination terminal of k. How commodity k is routed

then simply becomes a question of choosing a path p ∈ P (k). By using a path-

based model, many practical constraints can easily be enforced, e.g., the restriction

that freight is handled at most two times is easily modeled by restricting the path

generation step to find only such paths.
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To generate a set of paths P (k) for commodity k, we begin by enumerating all

paths in D that connects from its origin to destination and involve at most two

intermediate handlings. Up to h minimum cost paths with respect to total travel cost

are then taken for further inspection (for some given value of h). Since we ignore time

in this computation, we next determine which of these paths are service feasible. To

do so, we first compute the minimum execution duration of each path by summing the

travel times of the directs on the path and the required handling time at intermediate

terminals. Consistent with [5] and [9], we assume 30 minutes of handling time for

1-day (overnight) services, and two hours for all other service standards. We then

compare this minimum execution duration with the available transit time defined

by the service standard, origin time, and due time. We model freight entering the

linehaul network at 6 p.m. on the day of pickup, and it must reach its destination

terminal by 8 a.m. on the day of delivery.

Recall that a traditional load plan specifies the unique direct that a shipment

should take given its current terminal location and its ultimate destination. Hence,

the structure of a load plan requires that the directs chosen for freight destined for ter-

minal d must form a directed in-tree rooted at d, as depicted in Figure 45. Therefore,

in our path-based approach when choosing paths for commodities, we must ensure

that the set of paths chosen for all commodities are such that there is appropriate

consistency of the paths selected for commodities with a common destination. We

ensure this requirement using so-called path-continuation constraints. For example,

suppose that freight originating in Athens, GA and destined for Columbus, OH uses

path (Athens → Atlanta → Cincinnati → Columbus). Then freight originating in

Atlanta, GA and destined for Columbus, OH must use path (Atlanta → Cincinnati

→ Columbus). In general, for any path p = (a1, . . . , anp
) ∈ P (k) that consists of

more than one direct, let cont(p) = (a2, . . . , anp
) be a path for the commodity that

originates at the destination terminal of direct a1 and has the same destination as
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commodity k. Such path cont(p) is always generated when it is itself service-feasible.

The in-tree structural property can then be ensured by allowing path p to be selected

only if cont(p) is selected.

Figure 45: Freight Paths Form an In-Tree into a Destination Terminal

4.4 Load Plan Design Integer Programs

In this section, we present integer programming formulations of the load plan

design problem and our solution approaches.

4.4.1 Deterministic Load Plan Optimization

The first formulation we present is the deterministic load plan optimization model,

referred to as DetLPO. It has two sets of decision variables : x variables indicate

whether commodity k uses path p, i.e., xp ∈ {0, 1}, ∀p ∈ P (k), ∀k ∈ K ; and τ

variables count the number of trailers that move on direct a, i.e., τa ∈ Z+, ∀a ∈ A.

minimize
∑

a∈A

caτa (24)
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subject to
∑

p∈P (k)

xp = 1 ∀k ∈ K (25)

xp ≤ xcont(p) ∀p ∈ P (k), |p| ≥ 2, ∀k ∈ K (26)

∑

k∈K

∑

p∈P (k) : a∈p

wkxp ≤ τaC ∀a ∈ A (27)

xp ∈ {0, 1} ∀p ∈ P (k), ∀k ∈ K

τa ∈ Z+ ∀a ∈ A

The objective (24) is to minimize total transportation costs, which are assumed

to be linear in the number of trailers dispatched on each direct. Constraints (25)

ensure that a path is chosen for each commodity. Path-continuation constraints (26)

ensures the in-tree structural property of the load plan. Constraints (27) ensure that

there are enough trailers dispatched on a direct arc to carry the freight assigned via

the paths chosen.

4.4.2 Stochastic Load Plan Design

When freight volume is a random vector w, the stochastic load plan design (SLP)

model seeks to minimize the expected total cost. We formulate SLP as a two-stage

stochastic programming model. First-stage x variables define the load plan, while

second-stage τ variables count the number of trailers required on each direct arc, for

each possible value of w.

minimize

E [C(x, w)] (28)

subject to
∑

p∈P (k)

xp = 1 ∀k ∈ K

xp ≤ xcont(p) ∀p ∈ P (k), |p| ≥ 2, ∀k ∈ K
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xp ∈ {0, 1} ∀p ∈ P (k), ∀k ∈ K

where C(x, w) =

minimize
∑

a∈A

caτa

subject to
∑

k∈K

∑

p∈P (k) : a∈p

wkxp ≤ τaC ∀a ∈ A

τa ∈ Z+ ∀a ∈ A

Note that, for a fixed first-stage decision x and a particular realization of w, the

second stage problem C(x, w) has a trivial solution which can be explicitly specified

as follows:

τa =






∑

k∈K

∑

p∈p(k):a∈p

wkxp


 /C



∀a ∈ A (29)

With a finite number of scenarios, the expectation E [C(x, w)] can be evaluated

as the finite sum 1
N0

∑N0

n=1 C(x, wn), and SLP can be converted into a deterministic

equivalent form, referred to as SLPDE, by introducing a different set of τ variables

for each scenario to represent the trailer flows required on each arc.

minimize

1

N0

N0∑

n=1

(
∑

a∈A

caτ
n
a

)

subject to
∑

p∈P (k)

xp = 1 ∀k ∈ K

xp ≤ xcont(p) ∀p ∈ P (k), |p| ≥ 2, ∀k ∈ K

∑

k∈K

∑

p∈P (k) : a∈p

wn
kxp ≤ τn

a C ∀a ∈ A, ∀n ∈ {1, . . . , N0}

xp ∈ {0, 1} ∀p ∈ P (k), ∀k ∈ K

τn
a ∈ Z+ ∀a ∈ A, ∀n ∈ {1, . . . , N0}
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4.4.3 Sample Average Approximation

With a large number of scenarios, SLPDE is a large-scale integer program. Solving

it directly is generally beyond the capability of the state-of-the-art integer program-

ming solvers. To overcome this difficulty, Sample Average Approximation (SAA)

approaches use Monte Carlo simulation to reduce the scenario set to a manageable

size. A sample ŵ1, . . . , ŵN of N (< N0) realizations of w is generated, and the ex-

pected value function E [C(x, w)] is approximated by the sample average function

1
N

∑N

n=1 C(x, ŵn). The obtained sample average approximation problem is then to

minimize

1

N

N∑

n=1

(
∑

a∈A

caτ
n
a

)
(30)

subject to
∑

p∈P (k)

xp = 1 ∀k ∈ K

xp ≤ xcont(p) ∀p ∈ P (k), |p| ≥ 2, ∀k ∈ K

∑

k∈K

∑

p∈P (k) : a∈p

ŵn
kxp ≤ τn

a C ∀a ∈ A, ∀n ∈ {1, . . . , N}

xp ∈ {0, 1} ∀p ∈ P (k), ∀k ∈ K

τn
a ∈ Z+ ∀a ∈ A, ∀n ∈ {1, . . . , N}

The SAA problem is then solved using a standard branch-and-bound approach,

and its solution serves as a candidate solution to the true SLP problem. The sampling-

optimization process is repeated M times with different samples to obtain candidate

solutions along with statistical estimates of their optimality gaps. Specifically, sup-

pose that by generating M independent samples and solving the associated SAA

problems, we obtain optimal objective values z1, . . . , zM and candidate solutions

x1, . . . , xM . Let z∗ denote the optimal objective value of the true SLP problem. We

88



next describe techniques for estimating upper and lower bounds for z∗. The difference

between them is the estimated optimality gap.

4.4.3.1 Upper Bound

For each candidate solution x, clearly the objective value E [C(x, w)] is an upper

bound for z∗. Using the result of (29), this expectation objective can be exactly

evaluated as:

1

N0

N0∑

n=1

∑

a∈A


ca






∑

k∈K

∑

p∈p(k):a∈p

wn
kxp


 /C





 (31)

We then choose the best solution among all the candidate solutions x1, . . . , xM .

4.4.3.2 Lower Bound

The following lower bounding technique is developed in [13] and [14]. Suppose

zSAA is the optimal value obtained from solving an SAA problem. It is well-known

that

E[zSAA] ≤ z∗

Therefore, we can obtain a lower bound to z∗ by estimating E[zSAA]. Recall that

z1, . . . , zM denote the optimal objective values of the M independent SAA problems.

Then

z =
1

M

M∑

m=1

zm

is an unbiased estimator of E[zSAA] and thus is a statistical lower bound to z∗. Fur-

thermore, the variance of the above estimator (and therefore the variance of the gap

estimator) can be estimated by

σ2
z =

1

M(M − 1)

M∑

m=1

(zm − z)2

4.4.4 Sample Average Approximation with Exact Evaluations

The idea of incorporating exact evaluations in Sample Average Approximation is

a natural one. Since each SAA problem is biased from using a sample, when it is
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not expensive to compute exact evaluations such as (31), one can frequently generate

such information during solving an SAA problem and use it to improve the guidance

of the branch-and-bound search.

Specifically, at each node of the branch-and-bound search tree, we have a poten-

tially fractional x. Depending on whether x is integral or fractional, we can compute

either the exact expected cost of a solution, or a lower bound, using all N0 scenarios.

• When x is integral, the exact expected cost associated with it is

1

N0

N0∑

n=1

∑

a∈A


ca






∑

k∈K

∑

p∈p(k):a∈p

wn
kxp


 /C





 (32)

• When x is fractional, an approximate lower bound at the node is obtained by

relaxing the integrality constraint on trailer count variables

1

N0

N0∑

n=1

∑

a∈A



ca ·




∑

k∈K

∑

p∈p(k):a∈p

wn
kxp



 /C



 (33)

This is an approximate lower bound because the x values are obtained by solving

the linear relaxation of a formulation that is biased by a sample.

A node is pruned if the lower bound (33) is larger than the cost (32) associated with

the incumbent solution. We referred to this modified branch-and-bound procedure

as the Sample Average Approximation with Exact Evaluations (SAAEE). Similar to

SAA, we also repeat the sampling-optimization procedure M times and choose the

best solution among all the M candidate solutions. An interesting question for future

research is whether using exact evaluations during SAA solves reduces the required

number of solves to achieve the same level of optimality as a standard SAA approach.

4.5 Computational Results

The algorithm was developed in C++ with CPLEX 11 as the Mixed Integer Pro-

gram (MIP) solver, interfaced via ILOG Concert Technology. When solving DetLPO
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and SAA, we use an optimality tolerance of 0.01%. For SAAEE, we solve each sample

for 2 hours. We perform M = 10 replications for SAA and SAAEE. All computational

experiments were carried out on a system with a 2.66 GHz Intel Xeon processor and

4 GB of RAM.

Our test instances are generated from a portion of the linehaul network of a

national LTL carrier. It consists of the northwestern United States including the

states of Washington, Oregon, Idaho, and parts of California, Nevada, and Utah,

with a total of 13 terminals (7 breakbulks and 6 end-of-lines), and 156 potential

directs and 141 freight origin-destination pairs. See Figure 46 for an illustration.

Figure 46: Portion of Linehaul Network for Computational Experiments

We create two instances with different levels of dispersion.

1. Ilow: scenarios are drawn from U(0.5 w, 1.5 w); all commodities thus have the

same standard-deviation-to-mean ratio of 0.288675.
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2. Ihigh: scenarios are drawn from U(0, 2w); all commodities thus have the same

standard-deviation-to-mean ratio of 0.577350.

In Table 13, we compare the true expectation objective (31) associated with the

load plans obtained by solving DetLPO, SAA, and SAAEE. We also report the op-

timality gaps and their standard deviations. All values are measured in percentages

relative to the objective value of DetLPO. In Table 14, we report computation times.

The results show that stochastic optimization approaches produce more robust load

plans than the deterministic model. Furthermore, the benefit is larger for the more

dispersed setting. Finally, we see that, as a result of using exact evaluations to more

accurately guide the branch-and-bound search process, SAAEE compares slightly fa-

vorably against the standard SAA approach.

Table 13: Comparison of Load Plan Costs

Instance DetLPO
SAA SAAEE

obj value opt gap σgap obj value opt gap σgap

Ilow 100 95.25 0.86 0.004 95.17 0.78 0.004
Ihigh 100 94.29 1.11 0.007 94.16 0.98 0.007

Table 14: Computation Times (Seconds)
Instance DetLPO SAA, average per sample SAAEE, average per sample

Ilow 3 3747 7200 (limited)
Ihigh 3 4579 7200 (limited)

We next analyze the differences among the load plans obtained from each ap-

proach. In Table 15, we report the average number of handlings per commodity. In

Table 16, we report the average number of commodities moved on a direct. In Table

17, we report the average length of haul per dispatched trailer. We see an increase in

the first two statistics as we move from the deterministic model to the stochastic mod-

els, and a decrease in the average length of haul. This is expected because stochastic

models are incentivized to consolidate freight beyond those that are induced by scale

economies in transportation cost alone.
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Table 15: Average Number of Handlings per Commodity
Instance DetLPO SAA SAAEE

Ilow 0.766 0.851 0.865
Ihigh 0.766 0.839 0.850

Table 16: Average Number of Commodities on a Direct
Instance DetLPO SAA SAAEE

Ilow 5.533 6.525 6.575
Ihigh 5.533 6.310 6.524

Lastly, we demonstrate the value of using exact evaluations to improve the guid-

ance of the branch-and-bound search. Table 18 is generated based on all feasible

solutions that we encounter during SAAEE solves and that improve the then-current

incumbent solution based on either SAA objective (30) or exact evaluation (32).

These solutions are classified into three categories:

1. False Improving : It improves the incumbent solution based on SAA objective

(30), but turns out not to be an improving solution based on exact evaluation

(32)

2. Missed Improving : It does not improve the incumbent solution based on SAA

objective (30), but turns out to be an improving solution based on exact eval-

uation (32); in other words, this solution would have been lost if we do not

compute exact evaluations within the branch-and-bound search

3. Consistent Improving : Both criteria indicate that it improves the incumbent

solution

We see that for a significant portion of the solutions we encountered, using SAA

Table 17: Average Length of Haul per Dispatched Trailer
Instance DetLPO SAA SAAEE

Ilow 311.2 298.1 297.3
Ihigh 311.7 300.2 297.1
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Table 18: Using SAA Objective v.s. Using Exact Evaluation
Instance Consistent Improving Missed Improving False Improving

Ilow 32.7% 22.1% 45.2%
Ihigh 33.6% 23.8% 42.6%

objective (30) renders a different conclusion than using exact evaluation (32). Incor-

porating such exact evaluations in the branch-and-bound process thus helps improve

the guidance of the search. We recognize, however, that the computational results

show only modest benefit of this approach, partly because standard SAA approaches

already overcome the drawback that results from using a sample by drawing large

enough samples and by repeating the sampling-optimization procedure many times.

We believe more research effort will be necessary in the future to improve our approach

and to reach a conclusion about the benefit of this type of approach.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

Load plan design technologies, such as dynamic load planning described in Chap-

ter 3 and stochastic load plan design studied in Chapter 4, have to make simplifying

assumptions to become computationally tractable. In Chapter 2, we designed tech-

nologies that more accurately capture key operation of LTL carriers and estimate

the operational execution costs of a load plan. The next challenge is to integrate

load plan design and execution cost estimation technologies. For example, load plan

design models could be extended to incorporate the building of driver tours to cover

planned dispatches.

In stochastic load plan design, we have chosen to make rather strong simplifying

assumptions and to focus on the stochastic aspects of modeling and algorithm design.

We believe that there is potential to extend our approach to solve detailed, full-sized

models by using decomposition and heuristic search as proposed in [5].

Finally, there is potential to improve the stochastic load plan design models by

using dynamic load planning adjustments as a recourse strategy, allowing actual op-

erations to be responsive to freight volumes. For example, we can modify SLP by

letting x variables now indicate selection of nominal paths, and introducing addi-

tional second-stage v variables to indicate selection of actual paths that adjust the

nominal paths based on demand realizations. For each k ∈ K and p ∈ P (k), let

Q(k, p) denote a set of potential DLP-adjusted paths based on p. For each k ∈ K,

let Q(k) =
⋃

p∈P (k) Q(k, p).

The stochastic load plan design model with DLP recourses is then to
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minimize

E

[
C̃(x, w)

]

subject to
∑

p∈P (k)

xp = 1 ∀k ∈ K

xp ≤ xcont(p) ∀p ∈ P (k), |p| ≥ 2, ∀k ∈ K

xp ∈ {0, 1} ∀p ∈ P (k), ∀k ∈ K

where C̃(x, w) =

minimize
∑

a∈A

caτa

subject to
∑

q∈Q(k)

vq = 1 ∀k ∈ K (34)

vq ≤
∑

p∈P (k) : q∈Q(k,p)

xp ∀q ∈ Q(k), ∀k ∈ K (35)

vq ≤ vcont(q) ∀q ∈ Q(k), |q| ≥ 2, ∀k ∈ K (36)

∑

k∈K

∑

q∈Q(k) : a∈q

wkvq ≤ τaC ∀a ∈ A (37)

vq ∈ {0, 1} ∀q ∈ Q(k), ∀k ∈ K

τa ∈ Z+ ∀a ∈ A

Constraints (34) ensure that an actual, demand-responsive path is chosen for each

commodity. Constraints (35) ensure that an actual path can only be chosen when

the corresponding nominal path is chosen. Path-continuation constraints (36) ensures

that the demand-responsive load plan still maintains the in-tree structural property.

Constraints (37) ensure that there are enough trailers on an arc to carry the freight

assigned to the arc via the actual paths chosen based on freight volume realizations.
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