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SUMMARY

Mobile devices are increasingly being relied on for computation intensive and/or
communication intensive applications that go beyond simple connectivity and demand more
complex processing. This has been made possible by two trends. First, mobile devices, such
as smartphones and tablets, are increasingly capable devices with processing and storage
capabilities that make significant step improvements with every generation. Second, many
improved connectivity options (e.g., 3G, WiFi, Bluetooth) are also available to mobile
devices.

In the rich computing and communication environment, it is promising but also chal-
lenging for mobile devices to take advantage of various available resources to improve the
performance of mobile applications. First, with varying connectivity, remote computing re-
sources are not always accessible to mobile devices in a predictable way. Second, given the
uncertainty of connectivity and computing resources, their contention will become severe.

This thesis seeks to address the connectivity challenges for mobile computing and com-
munication. We propose a set of techniques and systems that help mobile applications to
better handle the varying network connectivity in the utilization of various computation

and communication resources. This thesis makes the following contributions:

e We design and implement Serendipity to allow a mobile device to use other encoun-
tered, albeit intermittently, mobile devices to speedup the execution of parallel ap-
plications through carefully allocating computation tasks among intermittently con-

nected mobile devices.

e We design and implement IC-Cloud to enable a group of mobile devices to efficiently
use the cloud computing resources for computation offloading even when the connec-

tivity is varying or intermittent.

e We design and implement COSMOS to provide scalable computation offloading service

Xiv



to mobile devices at low cost by efficiently managing and allocating cloud computing

resources.

e We design and implement CoAST to allow collaborative application-aware schedul-
ing of mobile traffic to reduce the contention for bandwidth among communication-

intensive applications without affecting their user experience.

XV



CHAPTER I

INTRODUCTION

Recent years have seen a significant rise in the sophistication of mobile applications. Mobile
devices are increasingly being relied on for a number of services that go beyond a single de-
vice’s capability and require more complex processing. These include both communication-
intensive services such as video streaming that delivers high-resolution videos from remote
cloud to mobile users in real-time and computation-intensive services such as pattern recog-
nition that aids in identifying snippets of audio or recognizing images whether locally cap-
tured or remotely acquired, reality augmentation that enhances our daily lives, and collabo-
rative applications that enhance distributed decision making and planning and coordination.
Some such applications are already in ubiquitous use today, others are still on the drawing
boards and in lab prototypes awaiting the next generational change in device capability and
connectivity

Mobile applications have become an indispensable part of everyday life. This has been
made possible by two trends. First, truly portable mobile devices, such as smartphones and
tablets, are increasingly capable devices with processing and storage capabilities that make
significant step improvements with every generation. They allow communication-intensive
applications to buffer and cache more contents on the client side and computation-intensive
applications to do more complex processing on the end host.

A second trend that is directly relevant to this thesis is the availability of improved
connectivity options (e.g., 3G, WiF1i, Bluetooth) for mobile devices. They have enabled both
communication-intensive applications and computation-intensive applications to transcend
an individual device’s capabilities and make use of various remote resource. Specifically, they
have made the communication-intensive applications obtain higher aggregated bandwidth
from various network interfaces [19,51]. Additionally, they have also enabled computation-

intensive applications makes use of remote computing resources (e.g., cloud computing



] [

18

Central Cloud

Mobile Devices

Figure 1: System components and network connectivity for mobile computing and
communication.

resources) to offload the ”heavy lifting” that may be required in some mobile applications
to specially designated servers or server clusters [32,33,85].

A fundamental challenge to these mobile computing and communication applications
is how to handle the varying ( and sometimes even intermittent ) connectivity of mobile
devices. According to recent studies [20, 36, 70], mobile users typically experience intermit-
tent connectivity to the Internet and highly variable access quality even when connectivity
exists. For example, 3G access is only available 87% of the time even in a metropolis [20],
while WiFi coverage is even more intermittent. We also make the important observation
that a mobile device often encounters, albeit intermittently, many entities, including other
mobile devices, capable of lending various resources, e.g., computing cycles, storage and
cached contents. As a result if the applications are capable of handling varying and inter-
mittent connectivity that may occur in the middle of computation and communication, one
is not limited to using well-connected cloud and might be able to leverage this additional
resources.

In this thesis we focus on a mobile computing and communication paradigm that uses
various compute resources both mobile and not to enable its operation in the presence of
intermittent connectivity. We posit that an ultimately successful system should have the
flexibility to handle the connectivity challenge and use a mix of resources.

Mobile devices roam in a very rich computing and communication environment today,



as shown in Figure 1. For our purposes we classify system components of this environment

in the following four categories.

e User-carried mobile devices: Today such devices are typically smartphones or tablets.
They are portable and thus experience significant mobility. These devices are becom-
ing increasingly powerful although they continue to be constrained relative to tethered
devices. Additionally such devices typically have multiple communication interfaces

as well as GPS and other sensing devices (such as cameras).

e Mobile computing resources attached to moving vehicles: It is increasingly possible
today to piggyback computing resources on vehicles such as buses or taxicabs [93].
Such systems are not resource constrained since they can derive power from a ve-
hicle’s battery and as such can be quite useful in providing resources to user-carried
constrained devices. These represent mobile computing resources that may have some-

what predictable mobility patterns.

e Infrastructure-based resources suitable for opportunistic use: These are similar to
cloudlets [85] in the sense that they are pre-provisioned storage and computing re-
sources that are accessible locally over a wireless access point. The main additional
feature we allow in our work is the potential for user devices to intermittently connect

with such systems.

e Central service-owned cloud resources: These are servers that are always equipped
and ready to undertake a particular computation task. Compared with other system
components, cloud is much more powerful and usually has more resources. However,

its latency to mobile devices are also long.

In this environment, mobile nodes have access to multiple connectivity options, includ-
ing widely-deployed cellular networks that have high coverage but low bandwidth, sparsely-
deployed WiFi that has low coverage but high bandwidth, direct device-to-device commu-
nication through WiFi or Bluetooth. We are interested in supporting computation and

communication in mobile user devices without constraining (or otherwise modifying) their



mobility patterns. While user devices will, over time, come in contact with other devices
that can provide various resources (see classification above), such contact will be intermit-
tent and of potentially indeterminate duration. Two nodes within communication range of
each other experience a contact opportunity that lasts for as long as they can hear each

other.

a) Intermittent mobile devices ¢) Intermittent Cloud b) Varying Connectivity

Figure 2: Scenarios on the spectrum of mobile computing and communication.

In this mobile computing and communication environment, we envision a spectrum of

computing and communication contexts, some of which are shown in Figure 2.

e At one extreme is the mobile device cloud where a mobile device’s contacts are only
with other mobile devices, as shown in Figure 2(a). This is an extreme computational
environment where the computation resources are mobile but less powerful while the
connectivity is intermittent. We are interested in supporting computation-intensive
services that aggregates the intermittently connected computing resources to handle
complicated tasks. It represents the most challenging scenario that mobile applica-
tions may encounter. We summarize our work, Serendipity, on such environments in

Chapter 3.

e Next on the spectrum is the cloud-computing context where a mobile device is inter-
mittently connected to remote cloud resources maintained by a service provider with
which it has an established relationship, as shown in Figure 2(b). We present our
system, IC-Cloud, on supporting computation-intensive applications in this scenario

in Chapter 4.



e In the intermittent-cloud scenario as shown in Figure 2(b), another important prob-
lem is how to efficiently manage the cloud resources for computation offloading. In
this context, there exists a mismatch between how individual mobile devices demand
computing resources and how cloud providers offer them: offloading requests from
a mobile device usually require quick response, may be infrequent, and are subject
to variable network connectivity, whereas cloud resources incur relatively long setup
times, are leased for long time quanta, and are indifferent to network connectivity.
We describe our work, COSMOS, which bridges this gap by providing computation

offloading as a service to mobile devices in Chapter 5.

e Moving along the spectrum, we consider the case that multiple mobile devices connect
to the remote cloud through a cellular network, as shown in Figure 2(c). In this
context, mobile devices share a single link to access remote contents. It will cause
severe contention for bandwidth among communication-intensive applications. We
present our work, CoAST, in reducing the bandwidth contention for communication-

intensive applications in Chapter 6.

This thesis seeks to address connectivity challenge in the above contexts. Specifically,

this thesis work consists of the following components.

Serendipity. To address the issue of limited computing resources on mobile devices, this
thesis work studies the system design approach in which other mobile devices are utilized
to speedup the execution of computation-intensive mobile applications. Specifically, this
thesis investigates the scenario where an initiator mobile device needs to run a compu-
tational task that exceeds the mobile devices ability and where portions of the task are
amenable to remote execution. This thesis proposes the Serendipity system to decrease
computation completion time through computation offloading among intermittently con-
nected mobile devices. It leverages the fact that a mobile device within its intrinsic motion
pattern makes frequent contact with other mobile devices that are capable of providing

computing resources. Contact with these devices can be intermittent, limited in duration



when it occurs, and sometimes unpredictable. Serendipity divides a computational applica-
tions into multiple small computational tasks and allocates them among encountered mobile
devices. A set of task allocation algorithms are developed for different scenarios to minimize

the computation completion time by effectively using the available information.

IC-Cloud. To addresses the issue of using cloud computing resource to speedup the exe-
cution of computation-intensive applications, previous approaches [32,33] rely on the iden-
tification of computation-intensive components and dynamically offload their execution to
the cloud. There are two major challenges which are not considered in these approaches,
including the varying or intermittent connectivity between mobile devices and the cloud
and the contention for cloud computing resources. This thesis proposes the IC-Cloud sys-
tem to enable computation offloading to the intermittently connected cloud. To handle
the intermittent connectivity between mobile devices and the cloud, IC-Cloud uses a set of
methods to predict the future connectivity based on historical information. In addition, to
overcome the uncertainty in the prediction, it also uses a risk-control mechanism to limit

the impact of prediction errors.

COSMOS. To bridge this gap between how individual mobile devices demand computing
resources and how cloud providers offer them, this thesis investigates providing computation
offloading as a service for mobile devices. There are three major challenges in designing
such a system. First, the offloading requests require quick response and may not be very
frequent. Second, the number of offloading requests changes over time. Third, due to
the varying network connectivity, it is not always beneficial to offload computation to the
cloud. This thesis proposes COSMOS to solve these problems. It efficiently manages cloud
resources for offloading requests to both improve offloading performance seen by mobile
devices and reduce the monetary cost per request to the provider. It also effectively allocates

and schedules offloading requests to resolve the contention for cloud resources.

CoAST. To address the contention for bandwidth among communication-intensive appli-

cations, this thesis studies the scheduling of cellular traffic through the collaboration among



mobile applications. This thesis work makes two key insights derived from mobile traffic
traces of a large US cellular provider. First, we observe that the mobile data traffic exhibits
high burstiness over small time scales (few seconds). Thus, to ensure adequate quality of
service at all times, it is important to reduce the instantaneous peak traffic, not just the
aggregate traffic. Second, even applications like video streaming and mobile web browsing,
can, in fact, tolerate small delays. Based on these insights, this thesis work proposes CoAST
to reduce the peak traffic through the collaboration among mobile devices and network el-
ements. To achieve this purpose, CoAST uses three key mechanisms: a protocol to allow
mobile applications and providers to exchange traffic information, an incentive mechanism
to incentivize mobile applications to collaboratively delay traffic at the right time, and
mechanisms to delay application traffic.

This thesis work has been published in part in the following publications: [88], [89], [90],
and [91].

The rest of the thesis is organized as follows. Chapter 2 discusses existing work related
to the topics in this proposal. Chapter 3 investigates computation offloading among inter-
mittently connect mobile devices. Chapter 4 describes a system to support computation
offloading to an intermittently connected cloud. Chapter 5 describes a system that pro-
vides computation offloading as a service to mobile devices. Chapter 6 presents a system to
enable collaborative application-aware scheduling of the cellular traffic. The contributions

and future work of this thesis are summarized in Chapter 7.



CHAPTER II

RELATED WORK

This chapter provides an overview of the related work on the topics of mobile computing

and network connectivity.

2.1 Mobile Computing
2.1.1 Computation offloading

The concept of cyber foraging [84], i.e., dynamically augmenting mobile devices with resource-
rich infrastructure, was proposed more than a decade ago. Since then significant work has
been done to augment the capacity of resource-constrained mobile devices using computa-
tion offloading [16-18,47,77].

Closer to our work, MAUI [33] enabled mobile applications to improve their performance
and reduce the energy consumption through automated offloading. To profile the commu-
nication cost and computation gain, MAUI periodically measures the network bandwidth
and uses the previous invocations to profile applications. Similarly, CloneCloud [32] can
minimize either energy consumption or execution time of mobile applications through au-
tomatically identifying computation intensive methods and offloading those methods that
achieve best performance. ThinkAir [65] enables scalable offloading of multiple applications
with server-side support. All of these systems assume a stable environment where network
connectivity and application execution time are easy to predict. In contrast, we target at
the more challenging mobile environment where the Internet access is of highly variable
quality and often intermittent.

Computation offloading is also very useful for improving the security of mobile devices
as cryptographic functions are usually computation intensive. Green et al. [46] investigated
how to maintain data privacy in offloading the costly decryption of ABE ciphertexts to
servers. Kamara et al. [62] developed protocols to offload secure multiparty computation

to the cloud in their Salus system. Carter et al. [28] proposed a protocol to offload garbled



circuits to the cloud for jointly evaluating functions while pretecting user privacy. Zonouz et
al. [99] designed Secloud to perform resource-intensive security analysis for mobile devices
in the cloud.

Other works, like COMET [45], enable the offloading of multi-threaded applications
using distributed shared memory. ECOS [42] focuses on the data privacy in computation

offloading. A detailed survey of cyber foraging can be found in [40].
2.1.2 Distributed Computing with Non-Dedicated Machines

Our work is related to systems that use non-dedicated machines with cycles that are do-
nated and may disappear at any time. In this vein, our work takes some inspiration from
the Condor system architecture [94]. Our work also resembles in part distributed com-
puting environments that have well-connected networks but unreliable participation in the
computation. Examples of these systems include BOINC [13], SETI@home [14], and fold-
ing@home [22], all leveraging the willingness of individuals to dedicate resources to a large
computation problem. More recently, the Hyrax project envisions a somewhat similar ca-

pability to opportunistically use the resources of networked cellphones [72].
2.1.3 The Prediction of Program-Execution Time

Our work is also related to the studies on the prediction of program-execution time. Gupta
et al. [48] used a variant of decision trees to predict execution-time ranges for database
queries. Ganapathi et al. [41] used KCCA to predict time and resource consumption for
database queries. These approaches either require manual efforts to identify good features,
or require applications to high correlations between input size and execution time. Mantis
[31] estimated the execution time of an entire application using executable program slices
to obtain feature values at runtime. In contrast, we estimate the execution time of each

offloadable function.



2.2 Network Connectivity
2.2.1 Delay Tolerant Network

Our work also leverages recent advances in the understanding of data transfer over intermittently-
connected wireless networks (also known as disruption-tolerant networks or opportunistic
networks). These networks have been studied extensively in a variety of settings, from
military [73] to disasters [39] to the developing world [76]. These settings share the charac-
teristic that fixed infrastructure is unavailable, highly unreliable, or expensive. Further, the
communication links are subject to disruptions that mean network partitions are common.
Our work is also related to the efforts at developing useful applications over intermittently-
connected mobile and wireless networks. Examples of this work include the work by Hanna
et al. which develops mobile distributed information retrieval systems [52], and the work
by Fall et al. on an architecture for disaster communications response [39] with a spe-
cific focus on situational awareness. In this latter work the authors propose an architecture
that contains infrastructure-supported servers, mobile producer/consumer nodes and mobile
field servers. Related, the Hastily Formed Networks (HFN) project [35] describes potential
applications in disaster settings that match well with our vision requiring computation,

including situational awareness, information sharing, planning and decision making.
2.2.2 Connectivity Characterization of Wireless and Mobile Network

Our work is related to the efforts at predicting network connectivity. BreadCrumbs [74]
predicts the future locations of a mobile user by tracking her movements and creating
a predictive model based on the observed data. Combined with a database of network
connectivity of those locations, BreadCrumbs is able to predict future network connectivity.
Deshpande et al. [37] proposed to predict the connectivity to WiFi from vehicles and use
this information to improve vehicular WiFi access. These methods use energy-consuming
GPS to obtain the location information. On contrast, we use energy-efficient methods to
predict the connectivity properties that are critical to computation offloading.

Our work also leverages recent advances in the understanding of data transfer over

intermittently-connected wireless networks (also known as disruption-tolerant networks or
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opportunistic networks). These networks have been studied extensively in a variety of

settings, from military [73] to disasters [39] to the developing world [76].
2.2.3 Traffic Reduction

Our work is related to the efforts at reducing the peak throughput over a link. Laoutaris et
al. [66,67] proposed using diurnal variations in Internet traffic to transfer delay tolerant bulk
data over the Internet at off-peak times. With peak pricing, these shifts can also reduce cost.
Recently, Ha et al. [49] applied the idea of medium-to-long time scale shifting to cellular
networks and proposed a time-dependent pricing mechanism, TUBE, to motivate mobile
users to shift some cellular traffic sessions from peak time to off-peak times in exchange
for lower prices. CoAST is fundamentally different from TUBE in many aspects. First,
TUBE utilizes medium-to-long time-scale variation of the background traffic and thus are
only suitable for applications that can tolerate substantial delays. Second, CoAST requires
no involvement of mobile users, while TUBE requires user change their behavior. Third,
CoAST also has a data plane to schedule traffic, while TUBE only focuses on the control
plane. In addition, our approach is compatible with medium and long time scale traffic
shifting: our work can reduce the short time scale peaks that will remain after other data
is time shifted by hours or 10s of minutes.

In addition to reducing traffic peaks, time shifting mobile traffic can be beneficial in
saving device energy. For example, one set of approaches [21,87] utilize the observation
that aggregation of traffic can reduce energy by avoiding the excessive energy-consuming
RRC transitions and tail energy that occur in 3G and LTE networks [57,80] when traffic is
transferred in disjoint time periods. Studies show that mobile applications have sufficient
periods of sparse traffic transfer to make these approaches useful for energy saving with rel-
atively little traffic delay [78]. Another approach saves device energy by scheduling transfers
when signal strength is strong [86], leveraging the observation that energy consumption per
bit increases when signal strength degrades.

Our approach is not directly compatible with approaches that use scheduling to reduce

11



energy because both approaches operate on a similar time scale but with different objec-
tive functions. To use an energy saving scheduler with a peak reduction scheduler would
require an integrated objective function that minimizes a combination of device energy and
cost to use the shared link, while meeting deadlines. An adaptive approach may be most
appropriate, where reducing cost is favored when device energy is plentiful, and reducing
energy is favored when device energy is low. In its most simplistic form, a controller could

simply switch from one scheduler to the other based on a device energy threshold.
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CHAPTER III

SERENDIPITY: ENABLING REMOTE COMPUTING AMONG
INTERMITTENTLY CONNECTED MOBILE DEVICES

3.1 Introduction

Mobile devices are increasingly being relied on for a number of services that go beyond simple
connectivity and require more complex processing. These include pattern recognition to aid
in identifying snippets of audio or recognizing images whether locally captured or remotely
acquired, reality augmentation to enhance our daily lives, collaborative applications that
enhance distributed decision making and planning and coordination, potentially in real-
time. Additionally, there is potential for mobile devices to enable more potent ”citizen
science” applications that can help in a range of applications from understanding how
ecosystems are responding to climate change! to gathering of real-time traffic information.?

Fortunately, a mobile device often encounters, possibly intermittently, many entities
capable of lending it computational resources. This environment provides a spectrum of
computational contexts for remote computation in a mobile environment. An ultimately
successful system will need to have the flexibility to use a mix of the options on that
spectrum. At one extreme of the spectrum is the use of standard cloud computing resources
to offload the “heavy lifting” that may be required in some mobile applications to specially
designated servers or server clusters. A related technique for remote processing of mobile
applications proposes the use of cloudlets which provide software instantiated in real-time
on nearby computing resources using virtual machine technology [85]. Likewise, MAUT [33]
and CloneCloud [32] automatically apportion processing between a local device and a remote
cloud resource. In this chapter we consider the other spectrum extreme, where a mobile

device’s contacts are only with other mobile devices, where both the computation initiator

!See http://blogs.kqed.org/climatewatch/2011/01/29 /citizen-science-the-iphone-app/
2See  http://www.crisscrossed.net/2009/08/31/citizen-scientist-how-mobile-phones-can-contribute-to-
the-public-good/
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and the remote computational resources are mobile, and where intermittent connectivity
among these entities is the norm.

We investigate the basic scenario where an ¢nitiator mobile device needs to run a com-
putational task that exceeds the mobile device’s ability and where portions of the task are
amenable to remote execution. We leverage the fact that a mobile device within its intrin-
sic motion pattern makes frequent contact with other mobile devices that are capable of
providing computing resources. Contact with these devices can be intermittent, limited in
duration when it occurs, and sometimes unpredictable. The goal of the mobile device is
to use the available, potentially intermittently connected, computation resources in a man-
ner that improves its computational experience, e.g., minimizing local power consumption
and/or decreasing computation completion time. The challenge facing the initiator device
is how to apportion the computational task into subtasks and how to allocate such tasks
for remote processing by the devices it encounters.

The remainder of this chapter is organized as follows: we start with the discussion of
the problem context and the design challenges in Section 3.2; we describe the design of a
job model and the Serendipity system in Section 3.3; the task allocation algorithms are
presented in Sections 3.4 and 3.5; we describe how to enable energy-aware computing in
Section 3.6; we undertake an extensive evaluation of our system on Emulab in Section 3.7;
the implementation and evaluation of Serendipity on mobile devices are presented in Sec-

tion 3.8; We conclude this work in Section 3.9.
3.2 Problem Context and Design Challenges

Network Model: We focus on a network environment that is composed of a set of mobile
nodes with computation and communication capabilities. The network connectivity is in-
termittent, leading to a frequently-partitioned network. Every node can execute computing
tasks, the number of which is constrained by its resources, such as processor capability,
memory, storage size, and available energy. The period of time during which two nodes are
within communication range of each other is called a contact. During a contact nodes can

transfer data to each other. Both the duration and the transfer bandwidth of a contact are
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limited. There are some variants of the general network setting. For some mobile devices,
a low-capacity control channel (e.g., over satellite link) is available for metadata sharing.
In addition, in some special networks, such as networks with scheduled robotic vehicles or
UAVs, the node mobility patterns are predictable and, thus, their future contacts are also
predictable. All these variants are taken into consideration in our design.

Remote computing usually involves the execution of computationally complex jobs through
the cooperation among a set of devices connected by a network. A major class of such jobs,
supported by mainstream distributed computing platforms such as Condor [94], can be rep-
resented as a Directed Acyclic Graph (DAG). The vertices are programs and the directed
links represent data flows between two programs. A traditional distributed computing plat-
form maps the vertices to the devices and the links to the network so that all independent
programs are executed in parallel and they transfer the output to their children. As a vari-
ant of such computing platforms, MAUI [33] and CloneCloud [32] have a simple network
composed of a mobile device and the cloud.

Design Challenges: The intermittent connectivity among mobile devices poses three
key challenges for remote computing. First, because the underlying connectivity is often
unknown and variable, it is difficult to map computations onto nodes with an assurance
that the required code and data can be delivered and the results are received in a timely
fashion. This suggests a conservative approach to distributing computation so as to provide
protection against future network disruptions. Second, given that the network bandwidth
is intermittent, the network is more likely to be a bottleneck for the completion of the
distributed computation. This suggests scheduling sequential computations on the same
node so that the data available to start the next computation need not traverse the network.
Third, when there is no control channel, the network cannot be relied upon to provide
reachability to all nodes as needed for coordination and control. This suggests maintaining
local control and developing mechanisms for loose coordination. Besides the intermittent
connectivity, the limited available energy imposes another extra constraint on the remote

computing among mobile devices.
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Figure 3: A job model for DTNs is a Directed Acyclic Graph (DAG), the vertices of which
are PNP-blocks. Every PNP-block consists of a pre-process, a post-process and n parallel

tasks.

3.3 Serendipity System Design
3.3.1 A Job Model for Serendipity

Our basic job component is called a PNP-block. As shown in Figure 3, a PNP-block is
composed of a pre-process program, n parallel task programs and a post-process program.
The pre-process program processes the input data (e.g., splitting the input into multiple
segments) and passes them to the tasks. The workload of every task should be similar to
each other to simplify the task allocation. The post-process program processes the output
of all tasks; this includes collecting all the output and writing them into a single file.

The PNP-block design simplifies the data flow among tasks and, thus, reduces the
impact of uncertainty on the job execution. All pre-process and post-process programs are
executed on one initiator device, while parallel tasks are executed independently on other
devices. The communication graph becomes a simple star graph. The data transfer delay
can be minimized as the initiator device can simply choose nearby devices to execute tasks.
In contrast, it is much more difficult for a complicated communication graph, such as the
complete bipartite graph used in MapReduce [34], to achieve low delay among intermittently
connected mobile devices because the optimization problem associated with mapping the
general graph onto them is complex.

The single PNP-block job comprises an important class of distributed computing jobs

often called embarrassingly parallel and useful in many applications, among which are
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Figure 4: High-level Architecture of Serendipity. After receiving a job (1), the job engine
constructs the job profile (2) and starts a job initiator, who will initiate a number of
PNP-blocks and allocate their tasks (3). The job engine disseminates the tasks to either
local or remote masters (4). After a worker finishes a task (5), the master sends back the
results to the job initiator (6a, 6b), who may trigger new job PNP-blocks (3). After all
results are collected, the job initiator returns the final results (7a, 7b) and stops.

SETI@home [14] and BOINC [13]. All jobs are graphically represented by a DAG of PNP-

blocks, providing as much computational expressiveness as a regular DAG. For instance, the
MapReduce model [34] can be implemented with two sequentially connected PNP-blocks,

corresponding to the map phase and the reduce phase, respectively.
3.3.2 Serendipity System

Figure 4 shows the high-level architecture of Serendipity. A Serendipity node has a job
engine process, a master process and several worker processes. The number of worker
processes can be configured, for example, as the number of cores or processors of the node.
Each node constructs its device profile and, then, shares and maintains the profiles of
encountered nodes. A node’s device profile includes its execution speed which is estimated
by running synthetic benchmarks and its energy consumption model using techniques like
PowerBooter [97]. These device profiles when combined with the jobs’ execution profiles are
used to estimate the jobs’ execution time and energy consumption on every node, essential
for task allocation. Serendipity also needs access to the contact database, if available, for
better task allocation.

To submit a job, a user needs to provide a script specifying the job DAG, the programs
and their execution profiles (e.g., CPU cycles) for all PNP-blocks and the input data to the

job engine. Constructing accurate execution profiles of programs is a challenging problem
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and out of the scope of this chapter. We simply follow the offline method used by both
MAUT [33] and CloneCloud [32], i.e., running the programs multiple times with different
input data.

The script is submitted to the job profiler for basic checking and constructing a complete
job profile (i.e., tasks’ execution time and energy consumption on every node) using its
execution profiles and the device profiles. The generated job profile will be used to decide
how to allocate its tasks among mobile devices.

If everything is correct, the job engine will launch a new job initiator responsible for
the new job. It stores the job information in the local storage until the job completes. All
PNP-blocks whose parents have completed will be launched by running their pre-process
programs on a local worker and assigning a TTL (i.e., time-to-live), a priority and a worker
to every task. The TTL specifies the time before which its results should be returned. If
a task misses its TTL, it should be discarded, while a copy will be executed locally on the
initiator’s mobile device. The priority determines the relative importance of a job’s different
tasks. Section 3.5 will discuss how to assign the priorities.

Based on the consideration of task allocation and security, the assigned worker can be a
single node, a set of candidate nodes, or a wildcard. In fact, only in the specific scenario that
the future contacts are predictable while nodes have a control channel to timely coordinate
the remote computing, the job initiator will use the global information to allocate tasks and
assign a specific node for each task, which will be discussed in Section 3.4.1. Otherwise,
the job initiator only specifies the set of candidate nodes it trusts and lets the job engine
allocate the tasks. Finally, these tasks are sent to the job engine for dissemination.

The job engine is primarily responsible for disseminating tasks and scheduling the task
execution for the local master. When two mobile nodes encounter, they will first exchange
the metadata including their device profiles, their residual energy and a summary of their
carried tasks. Using this information, the job engine will estimate whether it is better to
disseminate a task to the encountered node than to execute it locally. Such a decision is
based on the goal of reducing the job completion time (to be discussed in Section 3.4) or

conserving the device energy (to be discussed in Section 3.6).
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To schedule the task execution, the job engine first determines the job priority. Currently
we use the first-in-first-serve policy. But it can be easily replaced by any arbitrary policy.
For example, the job from a node that helps other nodes execute a lot of tasks is assigned
a high priority. For the tasks of the same job, they are scheduled according to their task
priorities.

The master is responsible for monitoring the task execution on workers. After receiving
a task from the job engine, it starts a worker for it. When the task finishes, the output will
be sent back to the job initiator using the underlying routing protocols like MaxProp [26].
If the task throws an exception during the execution, the master will report it to the job
initiator who will terminate the job and report to the user.

In this chapter, we assume that all nodes are collaborative and trustworthy. However,
there are also scenarios that some nodes are selfish (i.e., refusing to help other nodes) or even
malicious (i.e., distorting the results). To motivate the selfish nodes, we can use some token-
based incentive mechanism [69], making use of notional credit to pay off nodes for executing
tasks. To protect the remote computing from malicious nodes, we can use reputation-based

trust [27] in which nodes construct and share nodes’ reputation information.
3.4 Task Allocation for PNP-blocks

One important goal of remote computing is to improve the performance of computationally
complex jobs, especially when mobile nodes have enough energy. In this section, we will
design efficient task allocation algorithms to minimize the job completion time. Specifically,
since PNP-blocks are the basic blocks to allocate tasks, we will focus on the task allocation
for PNP-blocks in various network settings. The problem of task scheduling for multi-
processor systems [30,56] is somewhat related to our task allocation problem. That work,
however, does not deal with intermittent connectivity and cannot, therefore, be applied
directly to our problem.

Figure 5 illustrates the timing and components of a PNP-block execution. Along the z-
axis are the k remote nodes that will execute the parallel tasks of the block. Along the y-axis

is a depiction of the time taken at each node to receive disseminated tasks from the initiator,
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Figure 5: The PNP-block completion time is composed of a) the time to disseminate

tasks, b) the time to execute tasks and c) the time to collect results, in addition to the
time needed to execute pre-process and post-process programs.

execute those tasks, and provide the result collection back to the initiator. As illustrated,
the time for each remote node to receive its disseminated tasks may vary, depending on the
availability and quality of the network between the initiator and the remote node. When
n tasks of a PNP-block are allocated to k£ nodes, each node will execute its assigned tasks
sequentially, again taking a variable amount of time. After execution of all assigned tasks in
the block, the node will send results back to the initiator, with time again being dependent
on the network between the initiator and the remote node. Our goal for the task allocation
is to reduce the completion time of the last task which equals to the PNP-block completion
time.

We consider the design of task allocation algorithms in the context of three models with

different contact knowledge and control channel availability assumptions.
3.4.1 Predictable Contacts with Control Channel

We first consider an ideal network setting where the future contacts can be accurately
predicted, and a control channel is available for coordination. The performance in this type
of scenarios represents the best possible performance of task allocation that is achievable
among intermittently connected mobile devices. It is useful to identify the fundamental
benefits and limits of Serendipity.

With future contact information a Dijkstra’s routing algorithm for DTNs [60] can be
used to compute the required data transfer time between any pair of nodes given its starting

time. With the control channel the job initiator can obtain the time and number of tasks to
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be executed on the target node with which to estimate the time to execute a task on that
node. Therefore, given the starting time and the target node, the task completion time can
be estimated.

Using this information, we propose a greedy task allocation algorithm, WaterFilling,
that iteratively chooses the destination node for every task with the minimum task com-

pletion time (see Algorithm 1).

Algorithm 1 Water Filling

1: procedure WATERFILLING(T', N) > T is task set; N is node set.
2: current < currentTime();

3: rsv <— getTaskReservationInfo();

4: inputSize «+ getTaskInputSize(T);

5: outputsize <— estimateOutputSize(T);

6: queue < initPriorityQueue();

T for all n € N do

8: arrivalT < dijkstra(this, n, current, inputSize);

9: exeT « estimateTaskExecutionTime(n,t); >teT
10: tfinishT + taskFinishTime(rsv[n], arrivalT, exeT);
11: completeT < dijkstra( n, this, tfinishT, outputSize);
12: queue.put({n, arrivalT, exeT, completeT});

13: end for
14: for all t € T do

15: {n, arrivalT, exeT, receiveT} + queue.poll();

16: updateReservation(rsv(n], t, inputSize, arrivalT, exeT);
17: send(n, t);

18: arrivalT < dijkstra(this, n, current, inputSize);

19: tfinishT < taskFinishTime(rsv(n), arrivalT, exeT);

20: completeT < dijkstra( n, this, tfinishT, resultSize);

21: queue.put({n, arrivalT, exeT, receiveT});

22: end for

23: reserveTaskTime(rsv);

24: end procedure

For every task, the algorithm first estimates its task dissemination time to every node.
With the information of the tasks to be executed on the destination node and the estimated
time to execute this task, it is able to estimate the time when this task will finish. Given
that time point, the time when the output is sent back can also be computed. Among all
the possible options, we choose the node that achieves the minimum task completion time
to allocate the task. The allocation of the next task will take the current task into account
and repeat the same process. Finally, the job initiator will reserve the task execution time

on all related nodes, which will be shared with other job initiators for future task allocation.
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3.4.2 Predictable Contacts without Control Channel

When mobile nodes have no control channels, it is impossible to reserve task execution
time in advance. WaterFilling will cause contention for task execution among different
jobs on popular nodes, prolonging the task execution time. To solve this problem, we
propose an algorithm framework, Computing on Dissemination (CoD), to allocate tasks in

an opportunistic way. The algorithm is shown in Algorithm 2.

Algorithm 2 Computing on Dissemination

1: procedure ENCOUNTER(n) > n is the encountered node.
2 summary < getSummary();
3 send(n, summary);

4: end procedure

5: procedure GETSUMMARY
6 compute < getNodeComputingSummary();

7 net < getNetworkSummary();

8 tasks «— getPendingTaskSummary();

9: return {compute,net,tasks};

10: end procedure

11: procedure RECEIVESUMMARY (1, msg) > msg is the summary message of node n.
12: updateNodes(msg.compute);

13: updateNetwork(msg.net);

14: toExchange < exchangeTask(n, this.tasks, msg.tasks);

15: isSent « false;

16: while n.isConnected() && !toExchange.isEmpty() do
17: send(n, toExchange.poll());

18: isSent < true;

19: end while

20: if n.isConnected() && isSent == true then

21: summary <+ getSummary();

22: send(n, summary);

23: end if

24: end procedure

25: procedure RECEIVETASK(msg) > msg contains exchanged tasks.
26: addTasks(msg.tasks);

27: end procedure

The basic idea of CoD is that during the task dissemination process, every intermediate
node can execute these tasks. Instead of explicitly assigning a destination node to every
task, CoD opportunistically disseminates the tasks among those encountered nodes until
all tasks finish. Every time two nodes encounter each other, they first exchange metadata
about their status. Based on this information, they decide the set of tasks to exchange.

When they move out of the communication range, they will keep the remaining tasks to
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execute locally or exchange with other encountered nodes in the future.

The key function of this algorithm is the exchangeTask function of line 14 that decides
which tasks to exchange. In this subsection we assume that future contact is still predictable.
Therefore, the task completion time can be estimated when the task arrives at a node as
discussed in last subsection. The intuition of CoD with predictable contacts (pCoD) is to
locally minimize the task completion time of every task if possible. When a node receives
the summary message from the encountered node, it first estimates the execution time of
its carried tasks on the other node using the job profiles and the device profiles. For each
task it carries, it estimates the task completion time (i.e., the time that its result is received
by the initiator) of executing locally and that of executing on the other node by using the
contact information. If the local task completion time is larger than the remote one, it sends
the task to the encountered node. Every node conservatively makes the decision without

considering the tasks the other node will send back.
3.4.3 Unpredictable Contacts

Finally we consider the worst case that future contacts cannot be accurately predicted.
Our task allocation algorithm, CoD with unpredictable contacts (upCoD), is still based on
CoD with the constraint that future contact information is unavailable. As shown in Figure
5, minimizing the time when the last task is sent back to the job initiator will reduce the
PNP-block completion time. When the data transfer time is unpredictable, we envision that
reducing the execution time of the last task will also help reduce PNP-block completion
time. This is because the locality property of CoD indicates the existence of a short time-
space path between the worker node and the job initiator node. Therefore, when two nodes
encounter each other, upCoD tries to reduce the execution time of every task.

In reality, historical contact information is useful to roughly estimate the future con-
tacts [26] and, thus, should be helpful to task exchange in CoD. Its performance is probably

between upCoD and pCoD. We will investigate such possibility as part of our future work.

23



b b
c c b c
c b b b
b b c c

Nodel Node2 Node3 - Nodek
Figure 6: A job example where both PNP-block B and C are disseminated to Serendipity
nodes after A completes. Their task positions in the nodes’ task lists are shown blow the
DAG.

3.5 PNP-block Scheduling

Our PNP-block design simplifies the task allocation so that every PNP-block is treated
independently. However, it is still possible to further reduce the job completion time by
assigning priorities to PNP-blocks since tasks from the same job are executed according to
their priority assignment.

Let’s consider a simple job DAG shown in Figure 6. PNP-blocks B and C' are simulta-
neously allocated after A completes. Their tasks arrive at the destination nodes unordered.
Given a network and a task allocation algorithm, the total time required for both B and C
to finish remains almost the same. However, either B or C' can have a shorter PNP-block
finish time if any of them is given a higher priority over the other. This will be beneficial

because their children PNP-block can start earlier.
Observation 1. [t is better to assign different priorities to the PNP-blocks of a job.

In the example shown in Figure 6, PNP-block E can only start when both B and D
finish. Thus, B and D are equivalently important to . Meanwhile, there is a time gap
between the execution time of C' and that of D caused by the result collection of C' and
task dissemination of D. During that gap, the execution of other tasks (e.g., B) will not
affect the PNP-block finish time of D. Therefore, if C' is assigned a higher priority than B,

the total time for both B and D to finish will be shorter.
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Observation 2. All parents of a PNP-block are equivalently important to it, while parents

have higher priorities than their children.

The next question arises when B and D are in the task list of the same node, which
should have higher priority. We notice that both B and D are equivalent to F, while FE
and F' are equivalent to the job. However, if B finishes earlier, F' can start earlier. This is

because F only relies on B.

Observation 3. When two PNP-blocks have the same priority, the one with more children

only depending on it should be assigned a higher priority.

Algorithm 3 PNP-block Priority Assigning

1: procedure ASSIGNPRIORITY (/) > J is the job DAG
2 while !.J.allPNPblocksHavePriority() do

3 for all s € J do > s is a PNP-block
4: if !s.haveChild() then

5: s.priority <— 0;

6: else if s.allChildrenHavePriority() then

7 s.priority «— s.maxChildrenPriority()+1;

8 end if

9: end for

10: end while

11: for p = 0 — J.getMaxPriority() do

12: PNPblocks < J.getPNPblocksWithPriority(p);
13: sort(PNPblocks);

14: for i = 0 — PNPblocks.size()-1 do

15: s < PNPblocks.get(i);

16: s.priority < s.priority + kaize();
17: end for

18: end for
19: end procedure

If there are still PNP-blocks with the same priority, we randomly assign some different
priorities to them that keep their relative priorities with other PNP-blocks. Algorithm 3
shows our priority assigning algorithm. The sort method of line 13 is based on Observation

3.
3.6 Energy-Aware Computing

In the above two sections we focused on how to accelerate the job execution without any

consideration of the energy consumption. Because of the limited energy available to some
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kinds of mobile devices (e.g., smartphones), there are also scenarios when energy conserva-
tion is at least as important as execution performance, especially when the applications can
tolerate delays. In this section, we describe how to support energy-aware computing with
Serendipity.

When a mobile device tries to off-load a task to another mobile device to save energy, the
latter may have very limited energy, too. Meanwhile, if all nodes postpone the task execution
forever, it definitely saves energy, but meaninglessly. Therefore, a reasonable objective of
energy-aware computing among mobile devices makes all nodes last as long as possible
while timely finishing the jobs, i.e., maximizing the lifetime of the first depleted node under
the constraint that jobs complete before their deadline (i.e., TTL). Unfortunately, without
information about the future jobs, it is impossible to solve this optimization problem.

An approximation to this ideal optimization is to greedily minimize a utility function
when the job initiator allocates the tasks. Two factors should be considered in the utility
functions, the energy consumption of all nodes involved in the remote computing of the task
and the residual energy available to these nodes. A good utility function should consume
less energy while avoiding nodes with small residual energy. We use a simple utility function

that has been considered in energy-aware routing [29]:

W)=y & (1)
ieNp ="
where N is the set of nodes involved in the remote computing of task 7', er; is the energy
consumption of node ¢ for task 7', and R; is the residual energy of node i.

As discussed in Section 3.4 the task allocation algorithms, WaterFilling, pCoD and
upCoD, try to optimize the job completion time. By replacing the time with the utility
function u(7T'), we can easily adapt these task allocation algorithms to be energy-aware.
Specifically, the energy-aware WaterFilling algorithm iteratively chooses the destination
node of every task with minimum w«(7") while satisfying the TTL constraint. When two
nodes encounter, pCoD and upCoD will exchange a task if executing it on current node has

higher utility than executing on the other node while satisfying the TTL constraint. If the

future contacts are unpredictable, upCoD replaces TTL with the time that task is executed.
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Figure 7: A comparison of Serendipity’s performance benefits. The average job completion
times with their 95% confidence intervals are plotted. We use two data traces, Haggle and
RollerNet, to emulate the node contacts and three input sizes for each.

3.7 Fvaluation

3.7.1 Experimental Setup

To evaluate Serendipity in various network settings, we have built a testbed on Emulab [96]
to easily configure the experiment settings including the number of nodes, the node proper-
ties, etc. In our testbed, a Serendipity node running on an Emulab node has an emulation
module to emulate the intermittent connectivity among nodes. Before an experiment starts,
all nodes load the contact traces into their emulation modules. During the experiments,
the emulation module will control the communication between its node and all other nodes
according to the contact traces.

In the following experiments, we use two real-world contact traces, a 9-node trace col-
lected in the Haggle project [59] and the RollerNet trace [95]. In the RollerNet trace, we
select a subset of 11 friends (identified in the metadata of the trace) among the 62 nodes so

that the number of nodes is comparable to the Haggle trace. The Haggle trace represents
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the user contacts in a laboratory during a typical day, while RollerNet represents the con-
tacts among a group of friends during the outdoor activity. These two traces demonstrate
quite different contact properties. RollerNet has shorter contact intervals, while Haggle has
longer contact durations.

We also use three mobility models to synthesize contact traces, namely the Levy Walk
Model [81], the Random WayPoint Model (RWP) [82], and the Time-Variant Community
Mobility Model (TVCM) [61]. We change various parameters to analyze their impact on
Serendipity.

We implement a speech-to-text application based on Sphinx library [68] that translates
audio to text. It will be used to evaluate the Emulab-based Serendipity. It is implemented
as a single PNP-block job where the pre-process program divides a large audio file into
multiple 2 Mb pieces, each of which is the task input.

To demonstrate how Serendipity can help the mobile computation initiator to speedup
computing and conserve energy, we primarily compare the performance of executing appli-
cations on Serendipity with that of executing them locally on the initiator’s mobile device.
Previous remote-computing platforms (e.g., MAUI [33], CloneCloud [32], etc) don’t work
with intermittent connectivity and, thus, cannot be directly compared with Serendipity.

In all the following experiments every machine has a 600 MHz Pentium III processor
and 256 MB memory, which is less powerful than mainstream PCs but closer to that of
smart mobile devices. Every experiment is repeated 10 times with different seeds. The

results reported correspond to the average values.

3.7.2 Serendipity’s Performance Benefits

We initiate the experiments with the speech-to-text application using three workloads
in three task allocation algorithms on both RollerNet and Haggle traces. The sizes of the
audio files are 20 Mb, 200 Mb, and 600 Mb. As mentioned before, it is implemented as
a single PNP-block job whose pre-process program divides the audio file into multiple 2
Mb pieces corresponding to 10, 100, and 300 tasks, respectively. The post-process program

collects and combines the results. The baseline wireless bandwidth is set to 24 Mbps. We
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also assume that all nodes have enough energy and want to reduce the job completion time.

Figure 7 demonstrates how Serendipity improves the performance compared with exe-
cuting locally. We make the following observations. First, with the increase of the workload,
Serendipity achieves greater benefits in improving application performance. When the au-
dio file is 600 Mb, Serendipity can achieve as large as 6.6 and 5.8 time speedup. Considering
the number of nodes (11 for RollerNet and 9 for Haggle), the system utilization is more than
60%. Moreover, the ratio of the confidence intervals to the average values also decreases
with the workload, indicating all nodes can obtain similar performance benefits. Second,
in all the experiments WaterFilling consistently performs better than pCoD which is better
than upCoD. In the Haggle trace of Figure 7(c), WaterFilling achieves 5.8 time speedup
while upCoD only achieves 4.2 time speedup. The results indicate that with more informa-
tion Serendipity can perform better. Third, although Serendipity achieves similar average
job completion times on both Haggle and RollerNet, their confidence intervals on Haggle are
larger than those on RollerNet. This is because the Haggle trace has long contact interval

and duration, resulting in the diversity of node density over the time.
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Figure 8: The load distribution of Serendipity nodes when there are 100 tasks total, each
of which takes 2 Mb input data.

To further analyze the performance diversity, we plot the workload distribution on the
Serendipity nodes of Figure 7(b) in Figure 8. In the RollerNet trace, all three task allocation
algorithms have similar load distribution, i.e., about 25% nodes are allocated 0 tasks while
about 10% of the nodes are allocated more than 20 tasks. In the Haggle trace, WaterFilling
and pCoD have similar load distribution, while upCoD’s distribution is quite different from

them. The long contact intervals of the Haggle trace makes the blind task dissemination of
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upCoD less efficient. In such an environment, the contact knowledge will be very useful to

improve the Serendipity performance.
3.7.3 Impact of Network Environment

Next, we analyze the impact of the network environment on the performance of the three
task allocation algorithms by changing the network settings from the base case.

Wireless Bandwidth: We first consider the effect of wireless bandwidth on the perfor-
mance of Serendipity. The wireless bandwidth is set to be 1 Mbps, 5.5 Mbps, 11 Mbps,
24 Mbps, and 54 Mbps, which are typical values for wireless links. The audio file is 200
Mb, split into 100 tasks. We plot the job completion times of Serendipity with three task

allocation algorithms in Figure 9.
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Figure 9: The impact of wireless bandwidth on the performance of Serendipity. The

average job completion times are plotted when the bandwidth is 1, 5.5, 11, 24, and 54
Mb/s, respectively.

We observe the following phenomena. First, in RollerNet, all three task allocation
algorithms accomplish similar performance. Because these nodes have frequent contacts
with each other, using the locality heuristic (upCoD) is good enough to make use of the
nearby computation resource for remote computing. Second, when the bandwidth reduces
from 11 Mbps to 1 Mbps, the job completion time experiences a large increase. This is
because RollerNet has many short contacts which cannot be used to disseminate tasks
when the bandwidth is too small. Third, in the Haggle trace, the job completion time of
upCoD increases from 545.0 seconds to 647.6 seconds when the bandwidth reduces from 24

Mbps to 11 Mbps. Meanwhile WaterFilling achieves consistently good performance in all
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the experiments. This is because in the laboratory environment users are relatively stable
and have longer contact durations. Thus, the primary factor affecting the Serendipity
performance is the contact interval. On the other hand, since the contact distribution is
more biased, only using locality is hard to find the global optimal task allocation.
Node Mobility: The above experiments demonstrate that contact traces impact the
performance of Serendipity. To further analyze such impact, we use mobility models to
generate the contact traces for 10 nodes. Specifically, we use Levy Walk Model [81], Random
WayPoint Model (RWP) [82], and Time-Variant Community Mobility Model (TVCM) [61].
These models represent a wide range of mobility patterns. RWP is the simplest model
and assumes unrestricted node movement. Levy Walk describes the human walk pattern
verified by collected mobility traces. TVCM depicts human behavior in the presence of
communities. The basic settings assume a 1 Km by 1 Km square activity area in which
each node has a 100 m diameter circular communication range.

In this set of experiments we focus on the two most important aspects of node mobility,

i.e., the mobility model and the node speed. The wireless bandwidth is set to 11 Mbps.
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Figure 10: The impact of node mobility on Serendipity. We generate the contact traces for
10 nodes in a 1 kmx1 km area. In (a) we set the node speed to be 5 m/s, while in (b) we
use Levy Walk as the mobility model.

The results of this comparison are shown in Figure 10. Figure 10(a) shows that Serendip-
ity has larger job completion time with all the mobility models than it had on Haggle and
RollerNet traces. This is because their node densities are much sparser than Haggle and

RollerNet traces. Thus it’s harder for the job initiator to use other nodes’ computation
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resources. We also observe that Serendipity achieves the best performance when the RWP
model is used. This is because RWP is the most diffusive [81] and, thus, results in more
contact opportunities among nodes.

Node speed affects the contact frequencies and durations, which are critical to Serendip-
ity. We vary the node speed from 1 m/s, i.e., human walking speed, to 20 m/s, i.e., vehicle
speed. As shown in Figure 10(b), when the speed increases from 1 m/s to 10 m/s, the
job completion times drastically decline, e.g., from 1077.1 seconds to 621.6 seconds for Wa-
terFilling. This is because the increase of node speed significantly increases the contact
opportunities and accelerates the task dissemination. When the speed further increases to
20 m/s, the job completion time is slightly reduced to 526.4 seconds for WaterFilling.
Number of Nodes: We finally examine how the quantity of available computation
resources impacts Serendipity. To separate the effect of node density and resource quantity,
we conduct two sets of experiments. In the first set, the active area is fixed, while in the
second one, the active area changes proportionally with the number of nodes using the
initial setting of 20 nodes in 1 kmx1 km square area. Figure 11 shows the results where

nodes follows RWP mobility model with wireless bandwidth at 2 Mbps.
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Figure 11: The impact of node numbers on the performance of Serendipity. We analyze
the impact of both node number and node density by fixing the activity area and setting
it proportional to the node numbers, respectively.

As shown in Figure 11(a), with the increase in the number of nodes in a fixed area, the
job completion times of the three task allocation algorithms are reduced by more than 50%,

from 550.0, 647.0, and 748.7 seconds to 273.0, 311.7, and 325.0 seconds for WaterFilling,
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Table 1: A comparison of Serendipity’s energy consumption. We report the number of
jobs completed before at least one node depletes its battery and their average job
completion time. Jobs arrive in a Poisson process with A = 0.005 jobs per second.

Haggle RollerNet
Energy Aware Time Optimizing Energy Aware Time Optimizing
# Jobs | Time (s) | # Jobs | Time (s) | # Jobs | Time(s) | # Jobs | Time(s)
WF 17.0 2664.7 4.5 409.2 21.8 2823.9 2.5 496.2
pCoD 10.0 2162.4 3.0 435.3 16.8 2173.6 4.8 539.0
upCoD 9.3 2080.6 3.0 564.0 16.8 2082.6 3.5 562.7
Phone N/A N/A 1.3 1614.0 N/A N/A 1.3 1614.0

pCoD and upCoD, respectively. Meanwhile, in Figure 11(b), the job completion times are

almost constant despite the increase in node quantity.
3.7.4 The Impact of the Job Properties

Next we evaluate how the job properties affect the performance of Serendipity.

Multiple jobs: A more practical scenario involves nodes submitting multiple jobs simul-
taneously into Serendipity. These jobs will affect the performance of each other when their
execution duration overlaps. In this set of experiments, nodes will randomly submit 100-
task jobs into Serendipity. The arrival time of these jobs follows a Poisson distribution. We
change the arrival rate, \ from 0.0013 (its system utilization is less than 20%) to 0.0056 (its
system utilization is larger than 90%) jobs per second. Figure 12 shows the results on the

RollerNet and Haggle traces.
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Figure 12: Serendipity’s performance with multiple jobs executed simultaneously. The job
arrival time follows a Poisson distribution with varying arrival rates.

As expected, the job completion time increases with the job arrival rate. In both sets of
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Figure 13: The importance of assigning priorities to PNP-blocks.

experiments, the job completion time gradually increases with the job arrival rate until 0.005
jobs per second and, then, drastically increases when the job arrival rate increase to 0.0056
jobs per second. According to queueing theory, with the system utilization approaching 1,
the queueing delay is approaching infinity. However, even when the system utilization is
larger than 90% (i.e., A = 0.0056), the job completion times of Serendipity with various task
allocation algorithms are still less than 54% of executing locally, showing the advantage of
distributed computation.

DAG jobs: The above experiments show that Serendipity performs well for single PNP-
block jobs. Since DAG jobs are executed iteratively for all dependent PNP-blocks while
parallel for all independent PNP-blocks. The above experiment results also apply to DAG
jobs. In this set of experiments we will evaluate how PNP-block scheduling algorithm
further improves the performance of Serendipity.

We use the job structure shown in Figure 6, where the processing of one image impacts
the processing of another. We use the PNP-blocks of speech-to-text application as the
basic building blocks. PNP-block A has 0 tasks; B has 200 tasks; C has 50 tasks; D has 100
tasks; E has 100 tasks; F has 0 tasks. The performance difference between our algorithm
and assigning equal priority to the PNP-blocks is shown in Figure 13.

Our priority assignment algorithm achieves the job completion time of 1155.8, 1315.8
and 1383.2 seconds for WaterFilling, pCoD, and upCoD, consistently outperforming that
of 1369.2, 1573.4, and 1654.4 seconds when all PNP-blocks have the same priority. These

experiments demonstrate the usefulness of priority assigning. Further evaluation of our
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algorithm on diverse type of jobs will be part of our future work.
3.7.5 Energy Conservation

In this set of experiments, we demonstrate how Serendipity makes the entire system last
longer by taking the energy consumption into consideration. We consider an energy critical
scenario where node i has E;% energy left, where E; is randomly selected from [0, 20].
The energy consumption of task execution and communication is randomly selected from
the measured values on mobile devices. The detailed measurement will be presented in
the next section. In this set of experiments, nodes will randomly submit 100-task jobs into
Serendipity. The arrival time of these jobs follows a Poisson distribution with A = 0.005 jobs
per second. We compare energy-aware Serendipity against “time-optimizing” Serendipity
and executing jobs locally. The TTL of energy-aware Serendipity is set to twice the time
of executing the job locally.

Table 1 shows the number of jobs completed before at least one node depletes its en-
ergy and the average job completion time of those completed jobs. We make the following
observations. First, energy-aware Serendipity completes many more jobs than executing
locally and using time-optimizing Serendipity. This is because energy-aware Serendipity
balances the energy consumption of all the mobile devices through adaptively allocating
more tasks to devices with more residual energy. In contrast, the time-optimizing Serendip-
ity will quickly deplete the energy of some mobile devices by allocating many tasks to them.
Second, through global optimization, energy-aware Serendipity with the WaterFilling allo-
cation algorithm completes more jobs than those with pCoD and upCoD. Third, the job
completion time of energy-aware Serendipity is much larger than that of time-optimizing
Serendipity. There exists a tradeoff between energy consumption and performance. Finally,
compared with executing locally, time-optimizing Serendipity both completes more jobs and
has smaller job completion time. This is because statistically the few devices with limited

residual energy will last longer by off-loading the computation to other devices.
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3.8 Implementation

We implemented a prototype of Serendipity on the Android OS [2]. It comprises three parts:
the Serendipity worker corresponding to the worker in Fig. 4, the Serendipity controller
including all other components in Fig. 4 and a user library providing the key APIs for
application development.

We currently use WifiManager’s hidden API, setWifiApEnabled, to achieve the ad hoc
communication between two devices, i.e., one device acts as an AP while the other device
connects to it as a client.

We use the Java reflection techniques to dynamically execute the tasks. Every task
has to implement the function ezecute defined in the APIs. When the Serendipity worker
executes a task, it executes this function.

The separation between the Serendipity worker and the Serendipity controller is based on
access control. Android’s security architecture defines many kinds of permission to various
resources including network, GPS, sensors, etc. The Serendipity worker is implemented as a
separate application with limited access permission to these resources, acting as a sandbox
for the task execution. When the Serendipity controller receives a task to execute, it will

start a Senredipity worker and get the results from it.
3.8.1 System Evaluation

To evaluate our system, we implemented two computationally complex applications, a face
detection application, and a speech-to-text application. The face detection application
takes a set of pictures and uses computer vision algorithms to identify all the faces in these
pictures [54]. It is implemented as a single PNP-block job where the face detection in each
picture is a task. The speech-to-text application takes an audio file and translates the
speech into text using the Sphinx library [68]. It is also a single PNP-block job where the
pre-process program divides a large audio file into multiple pieces, each of which is input to
a separate task.

We tested Serendipity on a Samsung Galaxy Tab with a 1 GHz Cortex A8 processor

and a Motorola ATRIX smartphone with a dual-core Tegra 2 processor, each at 1 GHz.
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Both of them run the Android 2.3 OS. The face detection and speech-to-text applications

are used for evaluation.

Table 2: The execution time of two applications on two devices.

Input size (Mb) | Galaxy Tab (s) | ATRIX (s)
FaceDetection 2.2 17.9 7.2
Speech-to-text 3.0 40.3 18.8

We first executed the two applications locally on the two devices. As Motorola ATRIX
smartphone has a dual-core processor, we split the input files into two parts of equal size
and simultaneously executed the two tasks to fully utilize its processor. Table 2 shows their
execution times. We also measured the TCP throughput between these two devices by
sending 800 Mb data. We obtain 10.8 Mbps throughput on average when they are within
10 meters. In fact, they still achieve 5.9 Mbps throughput even when they are more than
30 meters away.

To assess the performance of Serendipity, we construct a simple network in which the
two devices are consistently connected during the experiments. As expected, Serendipity
speeds up more than 3 times than executing the applications on the Samsung Galaxy Tab.

To generate the energy consumption profiles of the two applications on these mobile
devices, we repeatedly execute those applications starting with full battery until the bat-
teries are depleted and count the number of iterations. Similarly, WiFi’s energy profiles
are obtained by continuously transferring data between them. Table 3 demonstrates the
results.

Table 3: The energy consumption of mobile devices. The ratios of consumed energy to the
total device energy capacity are reported.

Input size (Mb) | Galaxy Tab ATRIX
FaceDetection 2.2 414 x107% | 3.44 x 1072
Speech-to-text 3.0 9.32x107% [ 9.01 x 1074
WiFi 800 8.02x 107* | 2.04 x 1073

The energy required to transfer a task only accounts for 0.5 % ( i.e., max( 2‘?2?826%,

8.02x3.0 . 20.4%2.2  20.4x3.0
o32xs00)) and 1.6% (ie., max(33553650 9.01x800

)) of the energy required to execute the

task on these devices, respectively. It indicates that Serendipity won’t consume much extra
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energy. Instead, by delegating tasks to devices with a lot of energy, it can significantly save
the job initiator’s energy.

We use an extreme example to show the gains of energy-aware Serendipity. Suppose the
ATRIX phone has a lot of pictures for face detection. Assume it only has 5% energy left,
and the Galaxy tablet has 50% energy left. Energy-aware Serendipity can detect about 1320
pictures before the ATRIX phone depletes its battery, while time-optimizing Serendipity

can only detect about 203 pictures.
3.9 Summary

In this chapter we have developed and evaluated the Serendipity system that enables a
mobile device to remotely access computational resources on other mobile devices it may
encounter. The main challenge we addressed is how to model computational tasks and how
to perform task allocation under varying assumptions about the connectivity environment.
Through an emulation of the Serendipity system we have explored how such a system
has the potential to improve computation speed as well as save energy for the initiating
mobile device. We have also reported on a preliminary prototype of our system on Android
platforms.

As mentioned previously we envision Serendipity as developed here to enable an extreme
of a spectrum of remote computation possibilities that are available to mobile devices. In
the next two chapters we will investigate how to utilize powerful cloud computing resources

for computation offloading.
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CHAPTER IV

IC-CLOUD: COMPUTATION OFFLOADING TO AN
INTERMITTENTLY CONNECTED CLOUD

4.1 Introduction

The idea of offloading computation from mobile devices to remote servers to improve perfor-
mance and reduce energy consumption has been around for more than a decade [16,17]. Its
usefulness hinges on the ability to achieve computation speedups with small communication
cost. In recent years, this idea has received more attention because of the significant rise in
the sophistication of mobile computing applications and the availability of improved con-
nectivity options for mobile devices. Some commercial applications such as Siri [9] have had
the goal to provide sophisticated services to mobile users pervasively. Through dynamically
identifying the offloadable tasks at runtime, recent work [32,33,45,65] has aimed to gen-
eralize this approach to benefit more mobile applications without the burden of offloading
logic.

Complicating the offloading function today is the fact that mobile users typically ex-
perience intermittent connectivity to the Internet and highly variable access quality even
when connectivity exists. According to recent studies [20,36,70], 3G access is only avail-
able 87% of the time even in a metropolis, while WiFi coverage is even more intermittent.
Figure 14 shows an example scenario where a mobile device is experiencing variable and
intermittent connectivity. The uncertainties in connectivity make computation offloading
challenging in two ways. First, it is hard to accurately estimate the communication cost
and computation time, both of which are needed to make the offloading decision. Sec-
ond, it requires computation-offloading systems to properly handle the uncertainty to avoid

degrading performance.
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Previous systems for computation offloading have often assumed stable network connec-
tivity making them perform poorly when connectivity characteristics are variable and uncer-
tain. Figure 14 provides some examples demonstrating how computation-offloading systems
that do not explicitly handle intermittent or variable connectivity may degrade the appli-
cation’s performance. A mobile user connects to the cloud with varying access quality from
time to time. She starts two computation-intensive applications at t; and to, respectively.
Consider three simple strategies for computation offloading, i.e., Local-execution, Offioad-
to-cloud and Offload-based-on-current-connectivity. For Appl, Offload-to-cloud achieves
the best performance because Appl has long local execution time and, thus, may benefit
from waiting for future connectivity to offload computation. Meanwhile, for App2, Local-
execution achieves the best performance because the mobile device loses connectivity before
receiving the results. Offload-based-on-current-connectivity has the worst performance for
both applications. It should be noted that none of these simple strategies are able to always
achieve good performance. Thus a robust solution must be able to adapt the strategy.

In this chapter, we propose IC-Cloud, a computation-offload-ing system that is designed
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to handle all the above-mentioned challenges in the mobile environment. To achieve this, IC-
Cloud uses two key techniques: lightweight connectivity prediction and prediction use in a
risk-controlled manner to make offloading decisions. Our connectivity-prediction algorithm
only uses the signal strength and user historical information to obtain a coarse-grained esti-
mation of the network access quality. Acknowledging the uncertainties in these predictions,
we propose a risk-control algorithm to reduce the impact of inaccurate predictions.

We have implemented a prototype of IC-Cloud on Android and tested the system using
a Samsung Galaxy Tab equiped with both WiFi and 3G and an 8-core server for offloading.
We modified three applications (i.e., face detection, voice recognition and chess) to use
IC-Cloud for offloading. We conducted extensive experiments in three different mobile
environment. In all these experiments, IC-Cloud helps improve the performance of mobile
applications and reduce the energy consumption. It achieves 4.1x speedup and reduces
energy consumption to 22% in some scenarios.

The rest of the chapter is organized as follows. Section 4.2 presents the overview of
IC-Cloud’s architecture. The design details of connectivity prediction and computation
offloading are described in Section 4.3 and 4.4, respectively. The evaluation of IC-Cloud is

provided in Section 4.5. Section 4.6 concludes the chapter.
4.2 IC-Cloud Architecture

IC-Cloud aims to achieve effective computation offloading in a mobile environment where
Internet access to remote computation resources is of variable quality and even intermittent.
Figure 35 shows the high-level architecture of IC-Cloud. On the mobile device, IC-Cloud
consists of six major components: 1) a connectivity predictor that monitors the network
states and maintains a database of the historical information of the network states; 2) a
connectivity manager that handles data transfer between the mobile device and the cloud;
3) an execution predictor that collects program features from the applications and predicts
the execution time of tasks considered for offloading; 4) a set of application trackers each
of which monitors the offloaded tasks for an application and adjusts its strategy based on

the connectivity over time; 5) an offloading controller that uses the information from the
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Figure 15: Overview of IC-Cloud system architecture.

connectivity predictor and the execution predictor to decide if a task should be offloaded
to the cloud; 6) local workers that may execute some offloaded tasks in the case that they
cannot return the results in time.

On the server, IC-Cloud consists of four major components: 1) an execution predictor
that tracks the program features of the applications and sends them back to the mobile
device; 2) a set of application trackers that monitor the execution of offloaded tasks; 3)
an execution controller that controls the execution of the offloaded tasks; 4) a connectivity
manager that communicates with the mobile devices.

Connectivity prediction is critical to the performance of IC-Cloud as the offloading
decision relies on the prediction of future connectivity. There are two major concerns in
its design: accuracy and energy-efficiency. Our main idea is to use the signal strength and
the user’s historical information to predict connectivity. Many studies [37, 74] have shown
that it is sometimes possible to predict user mobility and, thus, their connectivity using the
user’s historical information. However, many of these prediction mechanisms are energy-
consuming as they require GPS location to achieve accurate prediction. Instead of trying to
obtain accurate connectivity prediction, IC-Cloud only uses the perceived signal strength to
achieve coarse-grained prediction of the connectivity in an energy-efficient way and lets the

offloading controller handle the uncertainties in the prediction. We provide further details

42



in Section 4.3.

Similar to MAUI [33] and ThinkAir [65], IC-Cloud provides a library to application
developers and allows them to annotate all the tasks to be considered for offloading. IC-
Cloud will also instrument these applications to collect features for all these offloadable
tasks. Then IC-Cloud uses Mantis [31] to accurately predict their execution time based on
these features.

Using the information from connectivity prediction and execution prediction, the of-
floading controller estimates the potential benefits to offload the computation. Due to
the inherent uncertainties in user mobility and the connectivity prediction, the offloading
controller will sometimes make wrong decisions. Therefore, it is essential to take the risk
into account. In addition, different applications may tolerate different risks. For exam-
ple, interactive applications (e.g., games) should be executed before their deadlines and are
less tolerant to extra delays, while some background applications (e.g., virus scanning) can
tolerate occasional extra delays. Therefore, IC-Cloud should allow applications to specify
their tolerance to risks. The detailed design of the offoading controller is described in

Section 4.4.
4.3 Connectivity Prediction

A fundamental challenge to the design of IC-Cloud is how to estimate the communication
cost in the mobile environment. When offloading a piece of computation to the cloud, the
communication cost consists of the time to transfer the data from the mobile device to the
cloud and the time to return the result to the mobile device after execution. When the
connectivity is intermittent, the cost may also include the time to wait for connectivity in
either direction, making the estimation even more complicated.

A heuristic solution to this problem is to predict the Internet access quality and then
use the predicted values to assess the communication cost. Developing a highly accurate
prediction method will be beneficial to IC-Cloud but is out of the scope of this thesis. We

expect a simple and energy-efficient method to have advantages over greater accuracy but
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Figure 16: The WiFi signal strength measured on a campus shuttle. When the mobile
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10

T * T
« Upload .
j«Download . T g taerity T
The vy g%%*iiis;* e, L
tep o drilinag *;zi* i .
i N N
1037 ***** . M f M tia% *oes i
* % *t“ s *; ¢*¥* *
ST ¥ x i it *
- NSt L H I I I T
2 ETHTEEIRH LIS TRAY: .
o * ; £ %% ;‘i*ii e 0
X A I IR L D D
EPp RO L RS S T S
%lof ***f:§“% TRy ‘. %i** E
E IS LS .
e Y. L N i " o
I P * *
* A i
1 oy o s 1 - N
10 L 3
¥
B
10° | | | | | * | | | |
-100 -95 -90 -85 -80 -75 =70 -65 -60 -55 -50
RSS! (db)

Figure 17: Measured throughput vs. WiFi signal strength.

also greater energy, which predicts future connectivity with user historical information. IC-
Cloud maintains a database of the perceived signal strengths and the achieved throughput
when using the network. Such information is easy to obtain and requires little energy to
collect. This prediction method can be replaced by other more accurate methods. Our
focus is on profiling the connectivity and assessing the communication cost for computation
offloading.

To illustrate how dynamic Internet access quality impacts the communication cost of
computation offloading, we plot the measured WiFi signal strength on a Georgia Tech

campus shuttle in Figure 16 and the throughput to a server in our lab in Figure 17. The
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figures demonstrate three key properties that impact the estimation of communication cost:
intermittent connectivity, varying signal strength over time and uncertain throughput given
the signal strength. The latter two properties are also very common for WiFi in the indoor
environment and cellular 3G data access. We describe how to profile each of these three

properties in the following three subsections.
4.3.1 Intermittent Connectivity

Intermittent connectivity primarily impacts the estimation of communication cost in the
following two ways. First, if the mobile device disconnects from the server when a task is to
be offloaded, IC-Cloud needs to decide if it should wait for the next connectivity to offload
the task. If the local execution time is very long while the next connectivity will come soon,
it may be beneficial to wait. Otherwise, it should start to execute the task immediately on
the mobile device. Second, it is also possible that the mobile device will lose connectivity to
the server after ofloading the task. Therefore, before offloading the task IC-Cloud should
estimate the possibility of disconnection before obtaining the result from the server. In
addition, if it loses connectivity in the middle of offloading, it also needs to decide whether
to wait for the result or restart a local worker for the task. To assess the communication
cost under intermittent connectivity, we need to estimate the residual duration of current
connectivity, if connected, or the start time of the next connectivity, if disconnected.

Let us use C' to denote the duration of a contact during which the mobile device can
always communicate with the server and use D to denote the duration of an inter-contact
during which the mobile device totally loses connectivity to the server. Let us also use C} to
represent the duration of current contact until time ¢ if it is connected at time ¢ and use D;
to represent the duration of the inter-contact until time ¢. Finally, let Rc; and Rp; denote
the residual duration of a contact and that of a inter-contact since time ¢, respectively.
Therefore, the expected values and the standard deviations of the residual durations can

be computed as follows:

+o0 _
B = [ | mdx @)
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+oo
where X is either C or D.

There are also the cases where C; or D; are not available. For example, the user just
restarted the mobile device. Let’s consider the scenario that it is within a contact at time
t. The possibility that it is within a contact of duration C' is proportional to its duration,

i.e.,%f((g;). Since Rc¢ can be any value within [0, C] under the condition that the contact

duration is C, its expected value is 5. Thus, the expected value and the standard deviation

of Rc are:

B T cfe) (9@ —5)?
o(Rct) = \//0 E(C’)/O 02 dxdC

C3)
~ \12B(0) 5)

The results for Rp; are similar to the above two equations, i.e., replacing C' with D in these

equations.
4.3.2 Varying Signal Strength

IC-Cloud uses the signal strength as an indicator of Internet access quality because the
wireless interface is usually the bottleneck of network performance in mobile environment.
The communication cost of computation offloading includes both the time of sending data
to the cloud and that of receiving the result from the cloud. The former uses the current
signal strength for estimation, while the latter requires an estimate of the distribution of
future signal strength and uses it for cost estimation. In this subsection, we describe how
to obtain the distribution of future signal strength based on user historical information.
Our method is to use the current signal strength and the statistical distribution of

user historical information to obtain that distribution. To demonstrate how current signal
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Figure 18: The correlation between current WiFi signal strength with future signal
strength. The X-axis is the time difference.

strength can be used to obtain the distribution of future signal strength, we plot the cor-
relation between the signal strength at time ¢ and that at time ¢ + At for three different
mobile environments in Figure 18. “Indoor WiFi” corresponds to the WiFi measurement
conducted by a student randomly walking in a building with good WiFi coverage; “Out-
door WiFi” refers to WiFi measurement conducted on a Georgia Tech campus shuttle, the
same as Figure 16; “Outdoor 3G” refers to 3G measurement conducted by a student on
the commute between home and school. When At is small, the correlations in all these
scenarios are high. However, the correlation of WiF1i signal strength (both indoor and out-
door) quickly drops from about 0.9 to about 0.2 when At increases from 1 second to 10
seconds. Meanwhile the correlation of 3G signal strength is still about 0.4 when At = 30.
If the correlation is larger than a threshold, we can obtain the distribution of future signal
strength using the current signal strength.

Let us use (z(t),z(t + At)) to denote the pair of signal strengths at time ¢ and ¢ + At.
We simply assume that z(t) follows the normal distribution N (u,c?) and use pas to denote
the correlation between z(t) and z(t + At). In the implementation, u, o? and pa; are

obtained from user historical information. Then, (z(t), z(t+ At)) follows a bivariate normal
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distribution:

u o paso?

N ;
u pac?  o?
Using the conditional distribution of bivariate normal distribution [24], we can obtain the

distribution of x(t + At) given x(t) as:

N (u+ par((t) —u), (1 = pag)o?) (6)

It is noteworthy that when pa; is small, the variance, (1 — pQAt)O'Q, will be large, in-
dicating inaccurate estimation. In addition, the value of pa; will also be biased in the
implementation because we use the historical information to approximate it. Therefore,
in our implementation, when pa; is smaller than a threshold (e.g., 0.4), IC-Cloud simply
uses the overall statistical distribution of signal strength, namely, N (u,0?), to describe the

distribution.
4.3.3 Uncertain Throughput

To estimate the time of sending the data and receiving the result, IC-Cloud needs to predict
its current throughput (for sending) as well as the future one (for receiving). There are three
challenges in the prediction. First, since IC-Cloud uses the signal strength as the indicator
of Internet access quality, it is hard to predict the throughput accurately. As shown in
Figure 17, for any specific value of the signal strength, the measured throughput usually
has high variance. Second, IC-Cloud uses historical information to obtain the relation
between signal strength and throughput. It may be biased, especially when the data is
sparse. Third, as discussed in the above subsection, we can only obtain a range of future
signal strength, making it even harder to estimate the corresponding throughput.

To handle the uncertainties and make robust estimation, we divide the signal strength
into several categories and generate a throughput distribution for each category using the
historical information. Figure 19 shows an example using the measurement on the Georgia
Tech campus shuttle. The throughput distributions of the various categories are quite

different.
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Figure 19: The distributions of the measured WiFi throughput on a Georgia Tech campus
shuttle. They are divided into five categories based on the signal strength.

4.4 Computation Offloading

The offload controller of IC-Cloud uses the information from the connectivity and execution
predictors to decide how to offload the computation-intensive tasks of mobile applications.
Ideally, if future connectivity and execution time can be accurately predicted immediately
after the mobile application starts, a global optimal solution [88] can be used to make the
offloading decision. However, such global optimum is unavailable in the mobile environment
investigated in this chapter because of two reasons. First, the dynamic Internet access
quality makes it hard to accurately predict the communication costs for all the offloadable
functions, especially for those to be called later. Second, some of the application features
essential for the execution prediction of offloadable functions may be unavailable until these
functions are about to be called.

Instead, the offload controller uses a greedy strategy to make the offloading decision.
Every time when an offloadable function is called, the offload controller determines if it
is beneficial to offload the function. Because of the uncertainty inherent in the mobile
environment, the offloading decision takes risk into consideration. In case a bad decision
has been made, it will also adjust its strategy with new information available. Meanwhile,
for functions capable of executing concurrently, the offload controller will maximize their

overall benefit. We describe these design details in the following subsections.
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4.4.1 Offloading Gain

When an offloadable function is called at time ¢, the ofload controller needs to determine
if it is beneficial to offload this function to the cloud. Let us use T, to denote the time
to wait for connectivity before sending the data, Ty for the time to send the data, T, for
the execution time in the cloud, Ty, for the time to wait for connectivity before receiving
the result, T, for the time to receive the result, and T} for the local execution time on the

mobile device. Let G represent the gain of offloading the function. Therefore,
G:Tws+Ts+Tc+Twr+Tr_ﬂ- (7)

In Formula 7, T, and T; are independent of network connectivity and can be estimated
using Mantis [31]. Meanwhile, Ty,s, Ts, Ty, and T, can be estimated using the information
from the connectivity predictor.

Conceptually, when G > 0, it will be beneficial to offload the function. However, because
of the uncertainties in the mobile environment, the offload controller can only obtain a
distribution for G (i.e., F(G) and 0?(G)). Simply using E(G) to make the offloading
decision will introduce the risk of longer execution time and, thus, cause bad user experience.
Therefore, controlling the risk in offloading is very important. We describe the risk-control

mechanism of the offload controller in the next subsection.
4.4.1.1  The Computation of Offloading Gain

In this subsection, we describe how to compute the offloading gain G of a single function at
time ¢t. Depending on the connectivity at time t, 1,5 and T have different distributions. In

ds
bull)’ where

the case that the mobile device connects to the cloud at time t, T,,s = 0; Ts =
ds is the data size, and b, (t) is the upload bandwith at time ¢. ds is available at time ¢,
while b, (t) can be estimated using the current signal strength as described in Section 4.3.3.
Otherwise, T,s = Rp,, which can be obtained according to Equation 2 and 3; Ty = l%i’
where b} is the overall upload bandwidth of the entire trace.

The value of T, depends on whether the mobile device still connects to the cloud when

the cloud finishes execution at time ¢ + Ti,s + Ts + T¢.. If connected, Ty, = 0. Otherwise,
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D — Rcy +Ts+1T,, if connected at time ¢
Twr - (8)

D-C+Ts+1T,, otherwise
where C' and D are contact duration and inter-contact duration, respectively.

The value of T, also depends on the connectivity at time t' = t + Ty,s + Ts + T,.. If
connected, T, = %, where d, is the result size, and by(t') is the download bandwidth.
bg(t')can be estimated according to Formula 6. Otherwise T, = %, where 0} is the overall
download bandwidth.

According to the above analysis, T, is directly related to Ts and T,.. T, is indirectly
related to Ts and T, as Ts + T, may impact the distribution of signal strength which im-
pacts T,. However, this correlation is small and, thus, be ignored in the implementation

for simplicity. Other variables are independent of each other. Therefore, the variance of

offloading gain can be computed using

UQ(G) = UQ(TwS) + Uz(TS) + Uz(TC) + ‘72(Twr)
+0*(T;) + o*(Th) + 20(Ts + T, T ) (9)
4.4.2 Risk Control

Our risk-controlled offloading is based on two key ideas. First, we use risk-adjusted re-
turn [23] in making the offloading decision so that the return and risk of offloading are
simultaneously considered. Second, we re-evaluate the return and risk with new informa-
tion available. The algorithm is shown in Algorithm 4.

When a computation task is initiated, the offloading controller evaluate its return and
risk of offloading gain. E(G) and o(G) are used as the return and risk, respectively. The
detailed algorithms to compute them are described in the appendix. If the risk-adjusted

return (i.e., f((g))) is larger than a threshold, the offloading controller offload the task to the

cloud. In addition, it also listens to the connectivity status which has high impact on E(G)
and o(G). Once new connectivity information is updated, it re-evaluates the risk-adjusted

return and adjust its decision accordingly.
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Algorithm 4 Risk Controlled Offloading

1: procedure OFFLOADING(Oy,) > Oy, is the computation task.
2 if riskAdjustedOffloading(Oy) then

3 offloadedTask + Oy;

4: registerReceiver(this, CONNECTIVITY);

5: end if
6
7
8
9

: end procedure
: procedure RISKADJUSTEDOFFLOADING(Oy)
gain + getOffloadingGain(Oy);
: risk < getOffloadingRisk(Oy);
10: if gain/risk > o then

11: offload(Oy,); return true;

12: else

13: localExecute(Oy,)

14: unregisterReceiver(this); return false;

15: end if

16: end procedure

17: procedure ONRECEIVE(conn) > conn is the connectivity status.

18: riskAdjustedOffloading(offloaded Task);
19: end procedure

20: procedure RECEIVERESULT(Oy)

21: offloadedTask <— NULL;

22: unregisterReceiver(this);

23: end procedure

4.5 FEvaluation

In this section, we evaluate how IC-Cloud improves the performance and energy consump-

tion of various mobile applications in different types of mobile environments.
4.5.1 Methodology

We implemented our prototype of IC-Cloud (i.e., both IC-Cloud server and IC-Cloud client)
on the Android OS. The IC-Cloud server runs on Android x86. We use a server with an
8-core 3.4GHz CPU, running VirtualBox 4.1.22, in our lab. The IC-Cloud client runs on
a Samsung Galaxy Tab with a 1.0GHz Cortex A8 processor and equipped with both WiFi
and 3G connections.

We evaluate IC-Cloud’s benefits in three different mobile scenarios:

e Indoor WiFi: A student carrying a mobile device randomly walks in our department’s
building which has good WiFi coverage. WiFi is used for Internet access. In this
mobile environment, the mobile user will experience varying signal strength as WiFi

APs have limited communication range. However, intermittent connectivity is less
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frequent.

e Qutdoor WiFi: A student carrying a mobile device takes a shuttle running on the

Georgia Tech campus. WiFi is used for Internet access. In this scenario, the mobile

user will experience both varying signal strength and frequent intermittent connectiv-

ity.

o Outdoor 3G: A student is on his commute between home and school. The mobile

device accesses the Internet through an EVDO network of a large US 3G carrier.

Compared with WiFi, it has lower bandwith and longer delays but better coverage.

For each scenario, we first measure the network connectivity and construct a database for

it. During the experiments, we use those databases as user historical information.

ing:

We modified three existing mobile applications to use IC-Cloud for computation offload-

FACEDETECT is a face detection application that uses APIs in the Android SDK to
detect all the faces in a given picture. We collected a data set of pictures containing
faces from Google Image. During the experiments, each time we randomly choose a

picture in the data set as input to the application.

VOICERECOG is an Android port of the speech recognition program PocketSphinx [58].
For simplicity of experiments, we also modified the application to use audio files as
input. We created a set of audio files with different lengths in advance. During the

experiments, we randomly select a file as the input each time.

DROIDF1sH is an Android port of the Chess engine Stockfish [5] that allows users to
set the strength of the Al to play with. Because computation requirement changes
with the chosen Al player’s strength, the user in our experiments randomly changes

the strength before each move.

To evaluate the benefits of IC-Cloud, we use three offloading baselines:

e LocalEze executes all offloadable functions locally on the mobile devices. It provides

a fundamental baseline to demonstrate the benefit of computation ofloading.
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e Oracle assumes accurate knowledge of all connectivity and execution profile infor-
mation necessary to make the offloading decision. It represents the upper-bound of

offloading benefits.

e CloneCloud is a basic offloading system in which each mobile device has a server in

the cloud that is always on [32]. In addition, it assumes stable network connectivity.

The dynamic mobile environment makes the comparison very hard since each invocation
of an offloadable function has different Internet access quality. To achieve fair comparison
with those baselines, at runtime we force IC-Cloud to offload every offloadable function
and record the information of network connectivity and application states. Then we replay
these applications later for each baseline. We are aware that this method may introduce
some errors but believe they are negligible.

The primary goal of IC-Cloud is to improve the performance of mobile applications.

Execution time
> Local execution time’

Therefore, we use speedup, i.e. as the major metric for evaluation.
When speedup is larger than 1, the application benefits from offloading. When speedup is
less than 1, it spends more time for execution. We also measure the energy to analyze if
IC-Cloud can also reduce energy consumption. We use PowerTutor [98], a power estimation
tool for Android, to estimate the power consumption. We will primarily report the energy

consumption of CPU and network interfaces because other background energy consumption

(e.g., screen) is related to user settings.
4.5.2 The effect of connectivity scenarios

In the first set of experiments, we evaluate the performance of IC-Cloud in the three different
mobile scenarios using the FACEDETECT application. « (see Section 6.2) is set to 0.5 for IC-
Cloud. Figure 20 shows the speedup distribution in those experiments. When the speedup
is larger than 1, the system outperforms Localkixe. However, when the speedup is smaller
than 1, the system causes longer execution time. For example, when speedup is 0.1, IC-
Cloud takes 10 times the local execution time. In all these experiments, IC-Cloud performs
well and achieves similar performance to Oracle. It also outperforms HistInfo by reducing

the number of bad offloading decisions.
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Figure 20: A comparison of IC-Cloud’s performance benefits using the FACEDETECT
application in different mobile scenarios. The speedups against local execution on the
mobile devices are reported.

We also find some interesting phenomena in these experiments. First, in the scenario
of Indoor WiFi where mobile users have good WiFi coverage, offloading computation to
the cloud benefits the mobile applications in about 80% of the cases. However, there are
still about 20% in which a simple method like HistInfo will increase the execution time as
much as 20 times. IC-Cloud reduces the portion of negative cases to about 10% with the
smallest speedup at approximately 0.4. In addition, it also enables 75% of the cases to
benefit from offloading. IC-Cloud achieves 4.1x overall speedup in this scenario. Second,
in the scenario of Outdoor WiFi where intermittent connectivity is common, at most 40%
of the cases can benefit from offloading. HistInfo causes the bad offloading to take much
more time to execute. In contrast, IC-Cloud still manages to control the smallest speedup
in a similar range to Indoor WiFi scenarios. Third, in the scenario of Outdoor 3G, ideally
at most 30% of the cases benefit from offloading, while the maximal speedup is only about
4. This is because the 3G has relatively smaller bandwidth and longer delays. In this
scenario, IC-Cloud helps about 15% invocations of FACEDETECT benefit from offloading.

In addition, it only occasionally made some negative decision, while HistInfo causes more
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Figure 21: A comparison of IC-Cloud’s energy consumption using the FACEDETECT
application in three different mobile environments. We primarily report the energy
consumption of CPU and network interfaces.

than 30% invocations to take more time to execute.

To demonstrate how IC-Cloud can also save energy for mobile devices, we plot the
average energy consumption for every scenario in Figure 21. 1C-Cloud only consumes about
22%, 67% and 82% energy of local execution in those three scenarios, respectively. Its energy
consumption is also very close to Oracle in all those scenarios. In addition, since IC-Cloud
also reduces the execution time of these applications, it may also reduce the background
energy consumption (e.g., screen). We also notice that although HistInfo made many bad
offloading decisions in the scenario of Outdoor 3G, its average energy consumption is similar
to LocalExe. This is because bad offloading decisions correspond to pictures with small local
execution times. Although for each case it took much more energy to offload, the total extra
energy is relatively small and is compensated by the energy saving of offloading other larger

tasks in the experiments.
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Figure 22: The local execution time vs. the size of uploaded data

4.5.3 Results for different applications

The gain from computation offloading is normally counterbalanced by the communication
cost. Different applications usually have different execution times and different amount of
data exchanged between the mobile device and the cloud. In this subsection, we evaluate
IC-Cloud with different applications of different properties on computation and commu-
nication cost. Figure 22 plots the local execution time of the offloadable functions and
the corresponding data to be sent to the cloud. We can see that local execution time of
VOICERECOG is almost proportional to the data size, while DROIDF1SH has constant data
size.

To demonstrate how these application properties impact computation offloading, we
compare the performance of different applications using IC-Cloud in the scenario of Outdoor
WiFi. The results are plotted in Figure 23.

IC-Cloud performs well in all these experiments. In FACEDETECT and VOICERECOG,
IC-Cloud helps more than 35% of the function invocations benefit from offloading. Mean-

while, it limits the portion of bad decisions cases to be about 10% with small extra execution
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Figure 23: A comparison of IC-Cloud’s performance with three different applications. All
experiments are conducted in the scenario of Outdoor WiFi.

time. In contrast, HistInfo makes many more bad offloading decisions and causes these invo-
cations to last much longer. Compared with FACEDETECT app, HistInfo made about 30%
invocations execute longer than LocalExe. This is because HistInfo’s application prediction
method can easily overestimate the local execution time and, thus, mistakenly decide to of-
fload them. In contrast, our application prediction method helps IC-Cloud obtain accurate
prediction and avoid the unnecessary risk in computation offloading.

The behavior of DROIDFISH is quite different from those of FACEDETECT and VOICERE-
coG. Even Oracle can only help about 15% of those invocations achieve more than 2x
speedup. This is because the data uploaded to the cloud is so large that if the computation
gain is small it cannot compensate for the communication cost. As in our experiments only a
small portion of invocations have long local execution time, the overall performance improve-
ment is small. However, for those invocations with long local execution time, DROIDF1SH
can still benefit from offloading. We notice that HistInfo always chooses to execute locally

because it underestimates the computation gain using previous invocations. IC-Cloud helps
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about 20% of the invocations improve their performance and about 15% achieve 2x speedup.
Compared with Oracle, IC-Cloud does not help computations that can only achieve small
performance improvement because it tries to control the risk of offloading. As a result, only

a small portion of invocations have longer execution time when using IC-Cloud.
4.5.8.1 The return-risk tradeoff

IC-Cloud enables applications to control the risk of offloading by setting the value of a. An
application sensitive to extra delays can use large a value, while a small « value will result
in higher expected return. To show how « impacts the return-risk tradeoff, we apply various
values of o to the VOICERECOG application in the scenario of Outdoor WiFi. Figure 24
plots the results.

When the value of « increases from 0.5 to 10, the portion of invocations with speedup
less than 1 decreases from about 10% to almost 0%. Meanwhile the portion of invocations
that can benefit from offloading also drops from about 35% to 5%. It will be important to

find a proper tradeoff between return and risk a question we relegate to future research.
4.6  Summary

In this chapter, we proposed IC-Cloud, a system for computation ofloading in mobile en-
vironment where the Internet access to remote computation resources is of highly varying
quality and often intermittent. IC-Cloud uses three key techniques to overcome the un-

certainties in this environment, including lightweight connectivity prediction, lightweight
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execution prediction and usage of these predictions in a risk controlled manner to make
offloading decisions. We have implemented IC-Cloud on Android. Our evaluation explored
a large space of possibilities by testing in three different mobile connectivity scenarios and
three applications with differing computation and data I/O profiles. The experimental re-
sults show that IC-Cloud can enable effective computation offloading in a variety of mobile

environments.
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CHAPTER V

COSMOS: COMPUTATION OFFLOADING AS A SERVICE FOR
MOBILE DEVICES

5.1 Introduction

There is great potential for boosting the performance of mobile devices by offloading
computation-intensive parts of mobile applications to the cloud. Despite this potential,
a key challenge in computation offloading lies in the mismatch between how individual mo-
bile devices demand and access computing resources and how cloud providers offer them.
Offloading requests from a mobile device require quick response and may not be very fre-
quent. Therefore, the ideal computing resources suitable for computation offloading should
be immediately available upon request and be quickly released after execution. In contrast,
cloud computing resources have long setup time and are leased for long time quanta. For
example, it takes about 27 seconds to start an Amazon EC2 VM instance. The time quan-
tum for leasing an EC2 VM instance is one hour. If an instance is used for less than an
hour, the user must still pay for one-hour usage. This mismatch can thus hamper offloading
performance and/or incur high monetary cost.

Complicating this issue is the fact that mobile devices access cloud resources over wire-
less networks which have variable performance and/or high service cost. For example, 3G
networks have relatively low bandwidth, causing long communication delays for computa-
tion offloading [33]. On the other hand, although WiFi networks have high bandwidth and
are free to use in many cases, their coverage is limited, resulting in intermittent connectivity
to the cloud and highly variable access quality even when connectivity exists [20, 36, 70].

In this chapter we propose COSMOS, a system that bridges the above-discussed gaps
by providing computation offloading as a service. The key premise of COSMOS is that
an intermediate service between a commercial cloud provider and mobile devices can make

the properties of underlying computing and communication resources transparent to mobile
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devices and can reorganize these resources in a cost-effective manner to satisfy offloading
demands from mobile devices. The COSMOS system receives mobile user computation
offload demands and allocates them to a shared set of compute resources it dynamically
acquires (through leases) from a commercial cloud service provider. The goal of COSMOS
is to provide the benefit of computation offloading to the mobile devices while at the same
time minimizing the compute resource leasing cost.

Our goal is to develop a design for COSMOS, implement it and evaluate its performance.
At the heart of COSMOS are two types of decisions: 1) whether a mobile device should
offload a particular computation to COSMOS and 2) how COSMOS should manage the
acquisition of compute resources from the commercial cloud provider.

We start by formulating an optimization problem whose solution can guide the required
decision making. Because of its complexity, we are unable to provide a solution to this
optimization. It does, however, lead us to the identification of three components of COS-
MOS decision making that we then explore individually. Specifically, we develop a set of
novel techniques, including resource-management mechanisms that select resources suitable
for computation offloading and adaptively maintain computing resources according to of-
floading requests, risk-control mechanisms that properly assess returns and risks in making
offloading decisions, and task-allocation algorithms that properly allocate offloading tasks
to the cloud resources with limited control overhead.

We have implemented COSMOS for Android and evaluated the system for offloading
from a set of smartphones/tablets to Amazon EC2, across different applications in vari-
ous types of mobile environments. We evaluate the performance of the system in several
realistic mobile environments. To further explore the design space of COSMOS, we also
conduct extensive trace-based simulation. In all these experiments, COSMOS achieves good
offloading performance and significantly reduces the monetary cost compared with previous
offloading systems like CloneCloud [32]. We find that COSMOS, configured with the right
design choices, has significant potential in reducing the cost of providing cloud resources to
mobile devices while at the same time enabling mobile computation speedup.

The rest of the chapter is organized as follows. Section 5.2 presents some background
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materials and presents the problem statement and optimization formulation. Section 5.3
presents an overview of COSMOS’s architecture incorporating the insight produced from
the optimization formulation regarding the system decomposition. The design details are
presented in Sections 5.4. COSMOS is evaluated in Section 5.5 and 5.6. We discuss related

issues in Section 5.7. Section 5.8 concludes this chapter.

5.2 Background and Problem Statement
5.2.1 Background

Cloud computation resources are usually provided in the form of virtual machine (VM)
instances. To use a VM instance, a user installs an OS on the VM and starts it up, both
incurring delay. VM instances are leased based on a time quanta. e.g., Amazon EC2 uses a
one hour lease granularity. If a VM instance is used for less than the time quanta, the user
must still pay for usage. A cloud provider typically provides various types of VM instances
with different properties and prices. Table 4 lists some properties and prices for three types
of Amazon EC2 VM instances: Standard On-Demand Small instances (m1.small), Standard
On-Demand Medium instances (ml.medium) and High-CPU On-Demand Medium instance
(cl.medium). For some pricing models (e.g., EC2 spot), the leasing price may change over
time.

Table 4: The characteristics of EC2 on-demand instances. The setup time is measured by
starting and stopping each type of instances for 10 times. The average value and standard
deviation are reported.

Instance | Cores | CPU(GHz) | Setup(second) | Price($/hr)

m1.small 1 17 26.5(5.5) 0.06
ml.medium 1 2.0 26.6(3.7) 0.12
cl.medium 2 2.5 26.7(8.4) 0.145

Note that the server component of offloaded mobile computation needs to run on a VM
instance. This server component needs to be launched at the time the offloading request
is made and terminated when the required computation is complete. The lifetime of the
server component is typically much less than the lease quantum used by the cloud service
provider. An important question we consider in our system design is how to ensure there is

enough VM capacity available to handle the mobile computation load without needing to
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always launch VM instances on-demand and incur long setup time.
5.2.2 Problem Statement

The basic idea of COSMOS is to achieve good offloading performance at low monetary
cost by sharing cloud resources among mobile devices. Specifically, in this chapter our goal
is to minimize the usage cost of cloud resources under the constraint that the speedup of
using COSMOS against local execution is larger than 1 — § of the maximal speedup that it
can achieve using the same cloud service, where § € (0,1). The extension of COSMOS to
support other optimization goals will be discussed in Section 5.7. A related but independent
problem is how COSMOS charges mobile devices for computation offloading, which will also
be discussed in Section 5.7.

Let’s assume that the cloud can simultaneously run N VM instances. Let’s use (M;, T;)
to denote the usage of the it v instance, where M; is its type (see Table 4 for examples),
and T; = {(tij,};)|VJ, tij < ti;,ti; < tij+1)} represents all the leasing periods. We use t;;
and t;j to represent the start time and end time of the jth leasing period, respectively. Let
(M, T) be the leasing cost of (M, T'), which is computed by multiplying the price with the
total leasing time quanta.

Let’s assume that there are K computation tasks generated by mobile users in the
COSMOS system during the period of time of interest. Let Oy = (tk, ¢k, dk, dog) denote
the k" computation task, where t; ( Vk,t,_1 < 3, ) is the time the task initiated by the
mobile user, ¢ is the number of CPU cycles it requires, djj is the size of its input data,
and doy is the size of its output data. Let I(i,k) and I;(k) be indicator functions. If Oy
is offloaded to the ith VM instance, I(i,k) = 1. Otherwise, I(i,k) = 0. Similarly, if it is
locally executed, I;(k) = 1. Otherwise, I;(k) = 0. Since Oy should be executed exactly
once, Ij(k) + >, I(i,k) = 1. Let L(Oy) be the local execution time of O which can be
estimated based on ¢ and the CPU frequency of the mobile device [65]. Let R;(Oy) be the
response time of offloading Oy, to the it v instance, i.e., the time elapsed from t; to the
time that the output is returned to the mobile device. It depends on the network delays of

sending input data and receiving output data, the execution time on the VM instance and
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the waiting time. Its formula will be shown in Section 5.4.2.
The maximal speedup of using COSMOS against local execution can be obtained by

solving the following optimization problem:

K

L(Ox)
Max ) — _ . (10)
= min{ 50, {9 vity
N
st L(k)+ > I(ik) =1

i=1

Since for each k there is exactly one of the functions I;(k) and I(i, k) that equals to 1,

nga’“)),{Rf((i%) |Vi}} equals to the corresponding L(Oy) or R;(Oy), representing the

min{
response time of task Op in COSMOS. Thus, Eqn 10 is to maximize the speedup of all
tasks. Let’s use S} to denote the corresponding maximal speedup achieved by task O. We

have Vk, S} > 1. The goal of COSMOS can be formally formulated as:

N
Min ) ¢(M;,T)) (11)
i=1
N
st L(k)+ > I(ik)=1
i=1
L(Ok)
' : — > (1-4)S}
min{ 7G50, (e Vi)

where § € (0,1) can be arbitrarily chosen by the system. When § — 1, all tasks will be
executed locally while the total cost will approach 0. When § — 0, the speedups approach
to the optimal values while the total cost will be high.

COSMOS is to find the values of (M;,T;), I;(k), and I(i,k) that optimize Eqn 11.
This is a challenging problem especially because we have no information regarding future
computation tasks. Our approach to solve this problem is to break it down into three

sub-problems and address each of them separately:

e Cloud resource management: This is the problem of determining the number
and type of VM instances to lease over time, i.e., (M;,T;). It has two major goals.
First, there should always be enough VM instances to ensure high offloading speedup.

Second, the cost of leasing VM instances should be minimized.
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Figure 25: Architecture of the COSMOS system.

e Offloading decision: This is the problem of deciding if a mobile device offloads
a computation task, i.e., deciding whether to set I;(k) to 0 or 1. The challenge
comes from the uncertainties of network connectivity, program execution, and resource
contention. A wrong offloading decision will both waste cloud resources and result in

lower speedup. It is very important to properly handle the uncertainties.

e Task allocation: This is the problem of choosing a VM instance among all available
instances if we decide to offload a computation task, i.e., deciding whether to set (i, k)
to 0 or 1. The decision is made independently by each mobile device. In addition,
the decisions for previous computation tasks will impact the decision of the current
one because of resource sharing. Therefore, task allocation should be designed as a

distributed mechanism.

In the following sections, we will present the design of COSMOS and its mechanisms to

solve these problems.
5.3 COSMOS System

Figure 25 provides a high-level overview of the COSMOS system. It consists of three
components: a COSMOS Master running on a VM instance that manages cloud resources
and exchanges information with mobile devices; a set of active COSMOS Servers each of
which runs on a VM instance and executes offloaded tasks; and a COSMOS Client on each
mobile device that monitors application execution and network connectivity and makes

offloading decisions.
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The COSMOS Master is the central component for cloud resource management. It pe-
riodically collects information of computation tasks from COSMOS Clients through task
tracker and the workloads of COSMOS Servers through server tracker. Using this infor-
mation, its server scheduler decides the number and type of active COSMOS Servers over
time. Note that when a COSMOS Server is turned on/off, its corresponding VM instance
is also turned on/off. The detailed mechanism will be described in Section 5.4.1.

An active COSMOS Server is responsible for executing offloaded computation tasks.
Each COSMOS Server has one task queue and multiple workers the number of which equals
to its number of CPU cores. Computation tasks are executed on a first-come-first-serve
basis. The COSMOS Server also estimates and provides the workload information upon
request by predicting the execution time of all tasks in the queue through the ezxecution
predictor. We use Mantis [31], a state-of-the-art predictor for mobile applications.

A COSMOS Client tracks all applications running on its mobile device, makes offloading
decisions for them, and allocates tasks to COSMOS Servers. When a mobile application
starts, an application tracker monitors the application execution and identifies its compute-
intensive tasks in the same way as MAUI [33] and CloneCloud [32]. When it reaches
the entry point of such a task, the offloading controller obtains the computation speedup
from the execution predictor and the communication delay from the connectivity predictor
(e.g., BreadCrumbs [74]) and decides if it should offload the task based on them. The
design details of this offloading decision will be described in Section 5.4.2. If it decides to
offload, the COSMOS Client allocates the task to an active COSMOS Server, which will
be described in Section 5.4.3. Finally the COSMOS Client offloads the task and waits to
receive the result. If the COSMOS Client cannot obtain the results before a deadline, it
executes the task on a local worker.

The COSMOS system is based on a generic architecture that enables the efficient sharing
of cloud computation resources in the presence of intermittent connectivities. The key
mechanisms (i.e., cloud resource management, offloading decision, and task allocation) are
designed as independent modules so that they can be easily replaced to achieve various

objectives of the system operators. In the next section, we will describe the design details
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of the key mechanisms to achieve the objective presented in Section 5.2. There are many
alternatives for each mechanisms that can be used in the COSMOS system. We will pick

some basic alternative mechanisms to compare with our current design in the evaluation.

5.4 Design Details

5.4.1 Cloud Resource Management

The cloud resource management has two major mechanisms: how to select the type of VM

instance (i.e., M;) and when to start and stop COSMOS Servers (i.e., T;).
5.4.1.1 Resource Selection

COSMOS strives to minimize the cost per offloading request under the constraint that the
offloading speedup is large enough. Recall that our goal is to achieve speedup of at least
1 — 0 of the maximally possible. Therefore, the resource selection algorithm selects the
least cost VM instance whose CPU frequency is larger than 1 — ¢ of the most powerful VM

instance. The algorithm is shown in Algorithm 5.

Algorithm 5 Resource Selection

1: procedure RESOURCESELECTION({I},d) > I is a instance type.
2 maxFreq < 0; minCost + +o0 ;
3 for I'in {I} do

4 if maxFreq < I.f then
5: maxFreq < Lf;
6 end if

7 end for

8 for I'in {I} do

9

if If > (1 — §)maxFreq && Icl><7plf < minCost then

10: maxCost <+ I.CIX%”I_JC;
11: selected + I;

12: end if

13: end forreturn selected;

14: end procedure

In Algorithm 5, ¢, f, and p denote the number of processor cores, the CPU frequency
and the price of a VM instance, respectively. If all cores are 100% utilized during a time
quanta 7, the VM instance totally executes cfr CPU cycles. The cost of each CPU cycle

is %. We use this value as the cost for comparison in Algorithm 5.
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5.4.1.2  Server Scheduling

Server scheduling is the key mechanism to balance the usage cost of VM instances and the
offloading performance. Its basic operations are as follows: The COSMOS Master peri-
odically collects the number of offloading requests and the workloads of COSMOS Servers
(every 30 seconds in our implementation). When the workloads are too large, it turns on
new COSMOS Servers. When a time quantum of a COSMOS Server is to expire, it turns off
the COSMOS Server if the remaining COSMOS Servers are enough to handle the offloading

requests. The algorithm is shown in Algorithm 6.

Algorithm 6 Server Scheduling

1: procedure SERVERSCHEDULING(A,z) > A and p are reported arrival rate and service time of
offloading requests in the last round.

2: As ¢ getMaxArrivalRatePerServer(u, 155);
3: n [%L
4: if n > activeServers.size() then
5: turnOnServers(n - activeServers.size());
6: else
7 for s € activeServers do
8: if s.quantumExpiring() then
9: pendingServers.add(s);
10: end if
11: end for
12: turnOffServers();
13: end if
14: end procedure
15: procedure TURNONSERVERS(n) > n is the number of server
16: fori = 1mndo
17: if pendingServers.isEmpty() then
18: activeServers.add(turnOnAServer())
19: else
20: activeServers.add(pendingServers.remove(0));
21: end if
22: end for
23: end procedure
24: procedure TURNOFFSERVERS
25: for s € pendingServers do
26: if s.quantumaExpired() then
27: turnOff(s);
28: end if
29: end for
30: end procedure

Every round the COSMOS Master computes the current arrival rate and service time of

offloaded computation tasks and uses them to estimate the minimal number of COSMOS

69



Servers to achieve the desired offloading performance. If the number of active COSMOS
Servers is smaller than this value, it turns on new COSMOS Servers. A COSMOS Server
whose current time quantum expires will be turned off only if the number of remaining
COSMOS Servers are larger than the minimal value for several rounds. Otherwise, its lease
will be renewed for another quantum.

A key function of Algorithm 6 is how to estimate the maximal arrival rate (i.e., As)
that a COSMOS Server can handle, as shown in Line 2. Since a COSMOS Server serves
offloading requests in a first-come-first-serve manner, it can be modeled as a G/G/c system.
Based on the required speedup (i.e., 1 — ¢ of the maximal speedup), we obtain that the
maximal response time of the system should be smaller than ﬁ. According to Kingman’s

formula [63], we can obtain the value of As.
5.4.2 Offloading Decision

The offloading controller uses the information from the connectivity and execution predic-
tors to estimate the potential benefits of the offloading service. Ideally, if future connectivity
and execution time can be accurately predicted immediately after the mobile application
starts, the offloading controller can make the global optimal offloading decision. However,
such global optimum is unavailable in reality.

Instead, the offloading controller uses a greedy strategy to make the offloading decision.
Every time an offloadable task is initiated, the offloading controller determines if it is ben-
eficial to offload it. Because of the uncertainties inherent in the mobile environment, the
offloading decision takes risk into consideration. In case a bad decision has been made, it
will also adjust its strategy with new information available.

We use the risk-controlled offioading developed for IC-Cloud to make the offloading

decision. The details can be found in Section 4.4.
5.4.3 Task Allocation

When a COSMOS Client is to offload a task, it must decide which COSMOS Server should
execute the task. We consider three heuristic methods. The first method is that the COS-

MOS Master maintains a global queue to directly accept offloading requests and allocates
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tasks when a COSMOS server has idle cores. Although it should have high server utiliza-
tion, the network connecting the COSMOS Master may become a bottleneck. The second
method is that the COSMOS Client queries the workloads of a set of COSMOS servers and
randomly chooses one with low workload to allocate the new task. Although tasks are di-
rectly sent to COSMOS Servers in this method, it will cause huge control traffic. In addition,
it will cause extra waiting time. The third method is that the COSMOS Master provides
each COSMOS Client a set of active COSMOS Servers and informs it the average workloads
of all COSMOS Servers. Each COSMOS Client randomly chooses a server among them to
offload the task. This method has minimal control overhead. As the resource-management
mechanism ensures that the workloads of COSMOS Servers are low, it should also have

good performance. Thus, COSMOS uses the third method for task allocation.
5.5 System Implementation and FEvaluation

In this section, we evaluate our prototype implementation of COSMOS in various mobile

environments.
5.5.1 Implementation

We implemented the COSMOS Server on Android x86 [3]. To run COSMOS Servers on
Amazon EC2, we use an Android-x86 AMI [64] to create EC2 instances. Since Android-x86
is a 32-bit OS, three types of EC2 instances can be used for COSMOS Servers, as listed
in Table 4. Based on our resource selection algorithm, High-CPU On-Demand Medium
instances are used to run COSMOS Servers.

The COSMOS Master runs on an EC2 instance running Ubuntu 12.04. It uses the
Amazon EC2 API tools [1] to start and stop EC2 VM instances on which COSMOS Servers
run.

A COSMOS Client runs on an Android device equipped with both WiFi and 3G con-
nections. It uses the Java reflection techniques to enable the offloading of computation
tasks.

We modified three existing Android applications to use COSMOS, including;:

71



FACEDETECT is a face detection application that uses APIs in the Android SDK. We
collected a data set of pictures containing faces from Google Image.

VOICERECOG is an Android port of the speech recognition program PocketSphinx [58].
For simplicity of experiments, we also modified it to use audio files as input.

DROIDFISH is an Android port of the Chess engine Stockfish [5] that allows users to

set the strength of the Al logic.
5.5.2 Experimental Setup

In the system evaluation, we consider a stable WiFi environment in which a student carrying
a mobile device sits in his lab. We measure the network connectivity and construct a
database for the connectivity predictor.

We compare COSMOS with two baseline systems:

e CloneCloud is a basic offloading system in which each mobile device has a server in

the cloud that is always on [32]. In addition, it assumes stable network connectivity.

e COSMOS(OP) is a variant of COSMOS with a simple strategy for resource manage-
ment, i.e., the number of active COSMOS Servers are over-provisioned for the peak

requests. We assume the number of peak requests is accurately estimated in advance.

We use two metrics to evaluate COSMOS: speedup and cost. The values of speedup are
different for different mobile devices. For fair comparison, we use a Samsung Galaxy Tab
running Android 2.3 to obtain the local execution time in calculating speedup. The prices

for EC2 on-demand instances are used to compute the cost.

5.5.3 Experiment Results

In this set of experiments, we use 10 Android devices to conduct a one-day experiment
for each of the systems: CloneCloud, COSMOS(OP), and COSMOS. During an experiment,
each device randomly becomes active or idle from time to time. Their durations follow an

exponential distribution, with average values of 0.5 hour and 1 hour, respectively. When
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Figure 26: The performance of COSMOS on Amazon EC2 for FACEDETECT in one day.
There are 10 Android devices which randomly become active or idle. When they are
active, they randomly execute the FACEDETECT application.

a device is active, it randomly starts the FACEDETECT application following a Poisson
distribution with arrival rate of 0.2. The same random seed is used for all three experiments.

The experiment results are reported in Figure 26. As shown in Figure 26(a), all three
systems achieve similar speedups, i.e., 2.91X, 2.86X and 2.76X on average for CloneCloud,
COSMOS(OP), and COSMOS, respectively. Meanwhile, the total cost of COSMOS ($7.25)
is significantly lower than that of CloneCloud ($23.4) and COSMOS(OP) ($10.44), as shown
in Figure 26(b).

To demonstrate how COSMOS reduces its cost, we plot the number of active devices
(the dotted blue line) and that of active COSMOS Servers (the red line) in Figure 26(c)

. COSMOS adaptively changes the number of active COSMOS Servers according to the
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Figure 27: Impact of the arrival rate on COSMOS performance.
arrival rate of offloading requests. Therefore, COSMOS is able to reduce its cost by turn-

ing off some COSMOS Servers when the number of offloading requests is low. In con-
trast, COSMOS(OP) spends 44% more money to keep 3 COSMOS Servers active the whole
day, whereas CloneCloud spends 223% more money than COSMOS with only 5.4% extra

speedup.
5.6 Trace Based Simulation

In this section, we use trace-based simulation to extensively evaluate the properties of

COSMOS and how its components impact its performance.

5.6.1 The impact of request rate

In this subsection, we analyze the impact of offload request intensity on the performance of
COSMOS.

In the first set of experiments, we conduct simulation-based experiments using infor-
mation logged in the experiments of Section 5.5.3. We vary the arrival rate of offloading
requests from 0.1 to 0.4 per second and keep other settings unchanged.

Figure 27 plots the experiment results. In all experiments, COSMOS achieves the lowest
cost and high speedup. We also make the following observations. First, both COSMOS and
COSMOS(OP) have lower cost with lower arrival rate, while CloneCloud has constant cost.

This indicates the importance of cloud resource sharing in reducing the cost. Second, when
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Figure 28: Offloading cost for various real-world access traces.
the arrival rate is very high (e.g., 0.4), COSMOS(OP) has higher speedup (i.e., 2.87X) than
CloneCloud (i.e., 2.78X). Its cost is slightly higher than CloneCloud. Third, the speedup
of COSMOS is similar with those of CloneCloud and COSMOS(OP) in all experiments.

5.6.2 Scalability

Next, we evaluate COSMOS using real-world access traces [10]. The data set consists
of 8 access traces each of which is composed of access requests in 2 days. We use these
timestamps of access requests as the start time of mobile applications on various mobile
devices. We evaluate the performance of COSMOS through simulation. The average number
of requests from the same user is very low in the traces, indicating extremely high cost of
CloneCloud. Therefore, we only compare COSMOS with COSMOS(OP). The costs and
speedups for the FACEDETECT application on various traces are plotted in Figure 28 and
29, respectively.

COSMOS yields slightly smaller speedups but at significantly lower cost than COS-
MOS(OP) on all traces. Specifically, COSMOS(OP) pays 13.2 times more money than
COSMOS on trace 7, while its speedup (i.e., 2.87X) is only slightly higher than that of
COSMOS (i.e., 2.7X). COSMOS is able to reduce the cost by an order of magnitude while
still achieving 2.7X speedup. The results of this set of experiments demonstrate that COS-
MOS is able to provide computation offloading with high performance at very low cost.

We also conducted experiments for our other two mobile applications, as well as a mix
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Figure 29: Offloading speedup for various real-world access traces.

of all three applications. The results are similar and we omit them for brevity.
5.7 Discussion

In this section we disscuss some important issues in extending COSMOS and the possible

solutions.

Energy minimization: In this chapter COSMOS is to speed up the execution of mobile
applications. There are also scenarios in which minimizing energy consumption is more
important than speeding up the execution.Extending COSMOS to minimize energy con-
sumption requires two major changes. First, the offloading controller should make the
offloading decision based on energy consumption. It should delay computation offloading
until the network connectivity is good. Second, the cloud resources can be used in a more
efficient way. Instead of immediately executing each offloaded task, COSMOS can wait

until enough tasks are aggregated.

Pricing model: There are several possible methods for COSMOS to charge the usage
of its computation-offloading services. First, users pay monthly service fees and can use
COSMOS as frequent as they want. Second, an offloaded task could be charged according
to its execution time. Third, mobile devices could bid for computation-ofloading. When

the number of offloading requests is small, COSMOS could charge at a lower price to attract
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more requests and thereby avoid wasting cloud resources.

Server implementation: In our current implementation, COSMOS servers run on Android-
x86 and rely on java reflection techniques to enable computation offloading. By doing this,
it requires no modification to the original mobile applications and simplifies the implemen-
tation. However, its execution speed will be a little slower than native code in the cloud.
In performance-sensitive scenarios, the application developers can implement a c++ ver-
sion for each mobile application and run it on COSMOS servers to further improve the

performance.
5.8 Summary

In this chapter, we proposed COSMOS, a system that provides computation offloading as a
service to resolve the mismatch between how individual mobile devices demand computing
resources and how cloud providers offer them. COSMOS solves two key challenges to achieve
this goal, including how to manage and share the cloud resources and how to handle the
variable connectivity in making offloading decision. We have implemented COSMOS and
conducted an extensive evaluation. The experimental results show that COSMOS enables

effective computation offloading at low cost.
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CHAPTER VI

COAST: COLLABORATIVE APPLICATION-AWARE SCHEDULING
OF LAST-MILE CELLULAR TRAFFIC

6.1 Introduction

The rapid proliferation of smartphones, tablets, and mobile applications has led to a tremen-
dous increase in mobile data traffic in the last few years. For example, the mobile data traffic
on major US based mobile carriers has increased by more than 20,000% in five years [15].
Furthermore, according to forecasts by major equipment manufacturers, this trend is likely
to continue in future with 78% compound annual growth rate [4]. In contrast, the capacity
of cellular networks, especially the wireless spectrum, has not increased proportionally. The
efficient management of mobile traffic is, therefore, critical for cellular network operators.

Various solutions have been proposed to manage the mismatch between the ever-increasing
traffic demand and finite wireless spectrum. These solutions can be broadly classified into
two categories—adding more network resources to increase the overall capacity (i.e. increas-
ing supply), or managing user demands and behavior to reduce the load on the network
(i.e. controlling demand). Examples of the first category include the use of small cells
for augmenting the capacity of traditional macro cells, adding WiFi hotspots to offload
cellular traffic to WiFi, using portable base stations (e.g. Cells On Wheels or COWSs) to
meet high traffic demands in event venues where large numbers of users gather for some
time periods, etc. Examples of the second category include congestion pricing, off-peak
delivery, network-aware throttling, etc. These approaches reduce the aggregate traffic in
busy periods by either shifting the parts of traffic that can tolerate some delay to off-peak
hours (e.g. backup, synchronization, cloud offload, etc.) [50], or causing the user to use the
network less frequently.

These existing approaches have some fundamental limitations. Shifting traffic to off-

peak hours can cause degradation of quality of service experienced by the end users. The
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vast majority of mobile data traffic, including video streaming and mobile web browsing,
cannot be shifted to off-peak hours because of latency requirements. Although additional
network resources increase the overall capacity, they also incur significant costs. Further-
more, solutions like small cells can be deployed only gradually because of the detail radio
engineering trials required for the correct positioning and deployment of such infrastructure.

In this chapter, we take a fundamentally different approach to tackle this problem—
delaying mobile traffic like video streaming and mobile web browsing that are not tradi-
tionally thought to be delay tolerant. This is based on two key insights derived from mobile
traffic traces of a large US cellular provider. First, we observe that the mobile data traffic
exhibits high burstiness over small time scales (tens of seconds). Thus, to ensure adequate
quality of service at all times, it is important to reduce the instantaneous peak traffic, not
just the aggregate traffic. Second, even applications like video streaming and mobile web
browsing can, in fact, tolerate small delays. For example, a video streaming client can
tolerate delays of tens of seconds as long as its playback buffer is not empty. Mobile web
browsers can delay downloading the contents that are not currently displayed on the screen.
These two insights suggest that if the right user traffic (from the set of all current user traffic
in the cell) is delayed at the right time for the right time duration, it is possible to reduce
the peak traffic in a cell without affecting the user experience on any mobile device. This
requires both device-level information (e.g. tolerable delay values at the given time instant)
and cell-level information (e.g. the total traffic demand in the cell at the given time instant).
Thus, an efficient interaction mechanism between mobile devices and cellular infrastructure
is necessary to enable collaboration between them to make proper decisions about delaying
the user traffic.

Using these insights, we present the design, implementation, and extensive evaluation
of a novel system called CoAST (Collaborative Application-Aware Scheduling of Last Mile
Cellular Traffic). CoAST provides an interface to enable an efficient collaboration between
mobile devices and the network element to which they are connected (e.g. a base station).
The interface is simple and flexible, allowing dynamic policies and protocols to be built on

top of it, according to the requirements and capabilities of individual mobile applications.
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CoAST also provides an incentive mechanism for mobile applications to delay their traffic
and the actual mechanisms to delay the application traffic.

In addition to benefits to the mobile network operator, CoAST also improves the ap-
plication performance for the end user. By delaying traffic of users with enough playback
buffer contents, CoAST can aggressively fill the starving buffers of other users, thereby
reducing their buffering delays.

In summary, CoAST makes following novel contributions:

1) Rather than reducing the aggregate busy hour traffic, CoOAST reduces the instanta-
neous peak load in a cell, without compromising the quality of service experienced by the
end users.

2) CoAST can handle traffic which is not traditionally thought to be delay tolerant.

3) CoAST provides a simple and flexible interface for mobile devices and the cellular
network to exchange various information to enable them to make proper decisions about
delaying user traffic.

We implement a prototype of CoAST on the Android platform for two sample application
categories, streaming (e.g., YouTube) and web browsing, which are the top two generators
of cellular network traffic, accounting for nearly 70% of global cellular traffic [83]. We
evaluate our implementation on a per-cell basis using emulation based on real YouTube and
web browsing traces obtained from a major US cellular provider. Our results show that
CoAST reduces traffic peaks by an average of 30-50%, or conversely, increases the capacity
of a cell by 20% without compromising the quality of the end user experience. In fact, we
show that CoAST achieves a better quality of service in terms of reduced buffering delay
compared to the cell that does not use CoAST. Our experiments also show that the control
plane overhead introduced by CoAST is negligible.

The rest of the chapter is organized as follows. In Section 6.2, we describe the back-
ground of this work and present an overview of CoAST design. We motivate the CoAST
design with an analysis on cellular traffic in Section 6.3. The design details of CoAST is de-
scribed in Section 6.4. The deployment and implementation of CoAST system is discussed

in Section 6.5. The system evaluation of CoAST prototype and the trace-driven evaluation
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of CoAST are presented in Section 6.6 and 6.7, respectively. We discuss the related issues in
Section 6.8. Section 6.9 summarizes the related work. We conclude this chapter in Section

6.10.
6.2 Background and Design Overview

In this section, we describe the background of this work and present a high-level overview

of CoAST design.

ISP
Backbone

Figure 30: Architecture of UMTS data network.
6.2.1 Background of Cellular Networks

In this subsection, we first describe the basics of cellular architecture and then provide
information about the data set used in our evaluations.

Figure 30 shows the key components of a typical UMTS data network. It consists of
2 major components: the Radio Access Network (RAN) and the Core Network (CN) (or
Packet Core). The mobile device, called User Equipment (UE) in UMTS terminology, is
connected to one or several cell sectors in RAN. A physical base station (called NodeB
in 3G and eNodeB in LTE) can have multiple cell sectors, which provide radio resources
to UEs for wireless communications. Cellular data traffic from several NodeBs are then
passed to the Radio Network Controller (RNC), which manages handovers, and scheduling
of wireless resources among the NodeBs under its control. The RNCs connect to Serving
GPRS Support Nodes (SGSNs) at the core network. The SGSNs are connected to the
external networks, such as the Internet, via Gateway GPRS Support Nodes (GGSNs).
When a UE connects to the network, it establishes a Packet Data Protocol (PDP) context

which facilitates tunneling of IP traffic from the UE to the peering GGSN using GPRS
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Tunneling Protocol (GTP) (see [55] for details of the UMTS network).

We evaluate CoAST using real-world cellular traffic data from a tier-1 cellular network
carrier. All device and user identifiers are anonymized for our analysis. The first data
set is collected from the link between SGSN and GGSN in the core network. It contains
information about IP flows carried in PDP contexts for a 3% random sample of devices
collected every minute, e.g. start and end time stamps, per flow traffic volume, application
identifier, etc. This data set is used to collect information about the characteristic of video
streaming traffic. To gain more fine grained information about the actual traffic volume in
a given cell sector, we use another dataset collected every 2 seconds at RNCs in the RAN

network.
6.2.2 Design Overview

CoAST aims to reduce the peak-to-average ratio of the cellular last-hop traffic, and conse-
quently improve application performance for the end user. It is not designed for persistently
congested networks whose average traffic is close to the capacity. Such networks need to
be upgraded to increase the capacity. We focus primarily on downstream as the upstream
traffic intensity is not as significant. (Note that CoAST can apply equally to upstream
traffic as well. But we do not claim it is the contribution of this chapter.) We accomplish
this by delaying downstream traffic at times when the link is experiencing heavy load. In
order to avoid degrading the quality of service experienced by the end user, the acceptable
delays may range from a few to tens of seconds depending on the applications. As will
be shown in the next section such relatively short traffic delays are enough to produce the
desired effect of reducing traffic peaks.

One key insight of CoAST is that only mobile applications know the delay constraints
of their traffic while the eNodeB has the aggregated traffic information. Thus, solutions
that rely solely on the eNodeB or on the mobile devices do not have enough information
to simultaneously achieve both high utilization and good quality of service. Collaboration
between the eNodeB and mobile devices is required to determine if and by how much the

downstream data should be delayed. The scheme, described in detail in Section 6.4, enables
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the users to optimize their download rates while minimizing the cost of data download and
maximizing the quality of service.

It is important to note that the pricing incentive used in our scheme is, strictly speaking,
internal to the system and is used to facilitate decision making regarding whether to delay
a certain chunk of the download traffic. It is not meant to be exposed directly and as-is to
the user, nor is it meant to translate directly into billing. It will be important, however,
to incentivize users to deploy this system in their devices. So we expect that there will be
some correlation between billing and pricing practices of operators to be influenced by the
usage of this system. However, the exact approach here is beyond the scope of our technical
discussion.

Although a wide user participation increases the effectiveness of CoAST, it is not nec-
essary that all users in a cell deploy CoAST—only enough number of UEs that can make a
difference in traffic peaks is needed. Also note that users who do not deploy the system will
not necessarily have any advantage over those who use the system since the user experience
is preserved for those using it. So there is no individual incentive to ”cheat” the system
from this perspective. On the contrary, users will be interested to participate if operator
pricing does somehow reflect the usage of the system. CoAST also monitors the behaviors

of participating devices to identify potential cheating, which will be discussed in Section 6.8.
6.3 Feasibility and Benefits of Delaying Mobile Traffic

In this section we present an analysis of the real-world traffic traces of a large US cellular
carrier to provide motivation about the feasibility and potential benefits of delaying mobile

traffic for short time durations.
6.3.1 Short-Term Burstiness of Mobile Traffic

First, we analyze the traffic distribution of a large number of cells (13522 NodeBs) using
a large dataset of cellular traffic collected at several RNCs to demonstrate that the mobile
data traffic of a typical cell demonstrates high variations over short time scales (e.g. 30
seconds). This dataset provides per cell as well as per UE cellular data records. We focus

on the downlink traffic because it is significantly larger than the uplink traffic in cellular
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Figure 31: The downlink traffic and its 20 second moving average in a cell in one typical
day. The throughput is normalized with the maximal capacity used. The difference
between the original traffic and its moving average demonstrates its high short-term

variations.

networks [38, 71].

Figure 31 plots the downlink throughput along with its 20 second moving average in a
typical cell in one day. The traffic is clearly very bursty with large short-term variations.
To ensure adequate quality of service at all times, the cellular network provider needs to
over-provision the network resources based on the peak traffic demand. Therefore, the
burstiness of mobile traffic makes the resources underutilized during most periods of time.

A heuristic idea to better utilize the cellular resources is to delay a portion of mobile
traffic for a short period of time to reduce the peak throughput over time. As a simple
approximation, we use the moving average in a short period of time to demonstrate the
potential benefits of delaying mobile traffic. Figure 31 shows that the peak value of the 20
second moving average is only about 60% of the original peak throughput. This implies that
delaying a portion of mobile traffic by 20 seconds or less can result in a significant reduction
in the peak throughput demand in the cell. It will lead to two major benefits. First, the
reduction in the peak throughput allows the network to support more users and mobile

traffic without upgrading the infrastructure. In some cases, it also means that the cellular
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network may be able to support better quality services. For example, it may be feasible
to support a better quality video streaming (say HD video with better resolution) if there
is sufficient reduction in the overall load on the cell. Second, this also reduces congestion
and helps improve the performance of mobile applications that are sensitive to delays (e.g.,

VoIP).

o
o)

o
o))

o
>
[ —
i
—l—
i
——

The Reduced peak

o
N

1

% 20 40 60 80 100
Window Size (second)

Figure 32: The reduction of the peak downlink throughput for moving averages computed
over different time periods. The average and standard deviation are plotted.

To further quantify the relationship between the extra delay and the reduction on the
peak throughput, we compare the reduced peak throughput achieved by moving averages
computed over different time intervals for the top 200 heavy-loaded cells. The results are
plotted in Figure 32. When the window size increases from 1s to 30s, the reduced peak
throughput quickly decreases from 100% to 60.5% of the original peak on average. As the
window size further increases to 100s, the peak is gradually reduced to 42.5% of the original
peak. This figure implies that most benefits in terms of reduction of peak throughput can
be obtained by delaying traffic for short time durations (e.g., 30 seconds), with diminishing

returns for larger delay intervals.
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6.3.2 Delay Tolerance of Mobile Applications

The real-world cell traffic traces indicate that delaying mobile traffic for a few seconds can
reduce the peak load in the cell significantly. The next natural question is: Can real-world
mobile applications tolerate such delays without affecting the quality of service experienced

by the end-users? To investigate this, we consider following major traffic classes:
6.3.2.1 Streaming

Streaming applications (e.g., video streaming, audio streaming) account for around 34%
of the total mobile traffic [83]. As they usually buffer some data, they can tolerate small

delays which are equivalent to the current buffer occupancy of their playback buffer.
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Figure 33: The download and playback progress of a Youtube video on an Android

smartphone using a cellular network. The difference between download and playback
represents the delay it can tolerate.

To investigate delay tolerance of streaming applications over cellular networks, we play
a Youtube video on an Android smartphone and record the cellular traffic using Wireshark.
Figure 33 compares the number of downloaded bytes and the actual playback progress
during the experiment. Initially, the Youtube client aggressively buffers the video contents.
But once the client has sufficient contents to play for some time, it slows the download
to avoid downloading unnecessary contents in case the user does not watch the complete

video. The difference between the actual download and the playback progress at any given
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time is the amount of delay the Youtube client can tolerate at that time without affecting
the user experience (i.e., pausing the video).

We also see from Figure 33 that depending on the size of the buffered data, the tolerable
delay varies from a few seconds to more than one hundred seconds in this example. In
addition, user operations like “back” and “forward” will also impact the delay that the
video client can tolerate at the specific time.

To accurately predict the future traffic and delay that the video client can tolerate, video
size, bitrate, buffered data, and playback progress are required. Specifically, we can predict
the amount of data to download based on the video size and buffered data. Meanwhile, the
bitrate, buffered data and playback progress can be used to estimate the delay that it can
tolerate. Fortunately, all of them are available to the video client. Video size and bitrate
can be obtained from the video metadata, while buffered data and playback progress are
internal states of the video client. In contrast, delaying the streaming traffic arbitrarily, say
from the network side without taking real time input from the application, may affect the

user experience.
6.3.2.2 Web Browsing

Web browsing applications, which are also one of the top generators of cellular mobile
traffic [83], are generally not regarded as being delay-tolerant. Due to their small size, mobile
devices like smartphones and tablets can display only a small portion of a webpage (e.g.,
texts, images, and other multimedia contents) at any given time. Thus when a user browses
a web page, only contents that are shown on the screen need to be downloaded immediately,
while off-screen contents can be downloaded a little bit later without impacting the user
experience. In other words, off-screen contents can be treated as being delay-tolerant. In
fact, some websites (e.g., Huffington Post [6]) already support progressive download and
display of the web pages. When web pages contain many multimedia contents (e.g., images),
the amount of traffic that can be delayed will be significant.

To identify the delay tolerance of web browsing, we analyze the on-screen and off-

screen contents of the top 500 Alexa websites [12] in various categories. We only treat
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off-screen images as off-screen contents and the rest components as on-screen contents. We
use PhantomlJS [8] to download and render the web pages. For every website, we only
download and analyze its home page. We set the user agent of all HI'TP requests to that of
the Android web browser and let those websites decide whether to return the mobile version
or the full version. The screen size is set to 480x 800, a typical setting for smartphones. For
each web page, we identify all the off-screen images and treat them as off-screen content,

while all other contents are treated as on-screen content.
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Figure 34: The ratio of off-screen content to the total content on the homepages of the top
500 websites. We also select 4 categories and plot the top 500 websites in these categories.
Figure 34 shows the ratio of the size of the off-screen contents to that of the total contents
on the homepage of the top 500 Alexa websites [12]. The category “Global” represents the
overall top 500 websites. We also select and plot 4 categories among 16 special categories
listed by Alexa. The distributions of other categories are between that of “News” and that
of “Shopping”. Generally a significant portion of the web content is off-screen and can
tolerate short extra delays. For categories like “News”, more than 50% of those websites
have more than 50% of the contents that can tolerate extra delay. In addition, since the
homepages of the websites that we analyzed usually contain less content than other pages,
our estimation of the potential benefits as shown in Figure 34 is likely very conservative.

Like streaming applications, we also notice that only the web browser knows which
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images are off-screen and can tolerate short delay, especially when the user scrolls the web
page. Specifically, by parsing the HTML file, the web browser can identify the images that
are not shown on the screen. In addition, using the height and width attributes of the

corresponding “img” tags, it can estimate their sizes.
6.4 CoAST Design

CoAST enables collaboration among mobile devices for scheduling their mobile traffic, when
necessary and feasible, to reduce the peak traffic load on a cell. The basic idea is to use
dynamic pricing to motivate the mobile applications to proactively shift their traffic in small
time scales (up to 30 seconds) while still satisfying their delay constraints. To realize this
idea, CoAST uses three major mechanisms: a protocol to allow mobile applications and their
associated cell to exchange traffic information, an incentive mechanism to incentivize mobile
applications to collaboratively delay traffic at the right time for the right time duration,
and a mechanism to enable applications to delay their traffic. The first two mechanisms
are incorporated into the control plane of CoAST, while the last one is realized in its data
plane. However, it should be noted that all CoAST mechanisms are data plane functions

from 3GPP protocol perspective, i.e. CoAST does not change the 3GPP protocol itself.
6.4.1 Design Principles

Minimal modification to mobile applications: For ease of deployment, CoAST re-
quires no modification on the server side, but only small changes on the client side because
only mobile applications know the delay constraints of their traffic. CoAST modifies the
underlying socket API implementation to allow client applications to specify the tolerable
delay information via these socket calls in a transparent manner. The actual value of the
tolerable delay at a given time instant depends on the application itself. In this chapter,
we describe how playback buffer size can be used to figure out the value of tolerable delay
for video streaming applications. For other applications, mobile developers may use ex-
isting instrumentation systems [53] to determine the tolerable delay, thereby reducing the

development efforts.
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Privacy preservation: To reduce the peak load on the cell, CoAST relies on collabo-
ration and sharing of traffic information among all mobile devices in that cell. A malicious
mobile device may participate CoAST and collect the traffic information of other mobile
devices to infer their application usage. To prevent privacy leak under such attack, the con-
trol plane is divided into UE proxies on mobile devices and a market proxy on the eNodeB.
Each mobile device shares its aggregated traffic demand only with the market proxy and
obtains the prices for downloading data only from the market proxy, avoiding the direct
sharing of traffic demands among participating devices. With this design, it will be impossi-
ble for malicious mobile device to obtain accurate traffic information of mobile applications
running on other mobile devices.

Control of demand through pricing: To motivate mobile applications to delay their
traffic when necessary, CoAST uses dynamic “prices” to charge mobile traffic at different
time instants. The prices used by CoAST can be $ per bit as used in [50]. More generally,
it can also be treated as the discount ratio on the accounted traffic. For example, when the
price is 0.8, 1 Mb mobile traffic can be accounted as 0.8 Mb. The latter case is compatible
with the usage-based pricing model used by most cellular providers nowadays. In this
chapter, we don’t specify the pricing model used by the cellular providers. We treat the
price as the ratio of accounted traffic to the transferred traffic.

Tackling system abuse: CoAST requires UEs to report traffic demands to the market
proxy, which sets the prices based on demand information from all UEs in the cell. Malicious
UEs may attempt to report fake information to abuse the system. To prevent such cheating
behavior, CoAST records and compares the reported traffic demands and the real traffic to

identify suspicious behavior (please see Section 6.8 for a detail discussion).
6.4.2 Overview of CoAST Operation

Figure 35 provides a high-level overview of the CoAST architecture. It consists of two major
components: a market proxy that resides on a cell-level network element like eNodeB and
a UFE prozy on each mobile device. The market proxy collects the traffic demands for some

future time window from all mobile devices in a cell. These are used by the market proxy as
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Figure 35: CoAST Architecture.
parameters of an optimization problem (eOpt) which determines new future prices for each
UE (for the next time window) with the goal of minimizing the traffic peak in the cell. The
traffic demands and prices may also be reported to the LTE network for accounting and
billing purpose. On the user side, applications determine their traffic demands in a manner
that satisfies their delay constraints and sends this information to its UE proxy through the
user library. The UE proxy uses these demand information as inputs to an optimization
problem (uOpt) that attempts to minimize the cost of satisfying these demands based
on prices obtained from the market proxy. CoAST also includes a mechanism by which

applications can control their traffic according to the outputs of uOpt.
6.4.3 Control Plane

CoAST ensures that the traffic demand does not exceed the network capacity at any time
without affecting the user experience of mobile applications. Let’s denote the capacity of
a cell sector by ¢, the throughput at time ¢ of the 0 flow under the control of CoAST by

th;(t), and the total throughput of all other flows by thy(t). CoAST’s goal can be expressed
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as optimizing an objective function of the difference between the throughput and capacity

over time, as follows:
min ®({> " thi(t) + thy(t) — c}) (12)
i=1

where ® can be any meaningful utility function. For simplicity of description, we omit the
constraints in Eqn 12 and will present them in Eqn 15.

One design challenge is the fact that CoAST has neither control nor accurate information
about the background traffic in the cell. By background traffic, we mean all mobile traffic
generated by applications that do not use CoAST. Given the burstiness of mobile traffic
as shown in Figure 31, it’s also hard to accurately predict the background traffic using
historical information. To solve this problem, CoAST optimizes the maximal throughput
of the flows under its control over time, as follows:

n
min max ; thi(t) (13)

Therefore, no information of the background traffic is required. Let th; = max; thy(t). A
pleasant property of this objective function is that it is equivalent to minimizing » ;" | th;(t)+
thy, which will be proved in Section 6.4.5. When enough numbers of UEs use CoAST, the
peak throughput of total traffic will be minimized.

A centralized solution to Formula 13 would require the market proxy and the UE proxies
to share information of all flows, resulting in a lot of control overhead. Moreover, it violates
our privacy preservation design goal. Thus, a distributed control protocol that exchanges
limited information is required. To solve this problem, we use the dual decomposition
method [25] to decompose the original problem into a master problem and multiple inde-
pendent sub-problems. The master problem (eOpt) is solved by the market proxy, while the
independent sub-problems (uOpt) are solved by the UE proxies. We describe this control
protocol next.

At a high level, the control plane functions as follows: The market proxy periodically
computes the projected prices for mobile traffic for some time window in the future. These
prices are calculated based on the traffic demand collected from all connected UEs. The

prices are broadcasted to all connected UEs. Each UE proxy uses the price information from
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the market proxy and the demand information from its mobile applications to schedule the
mobile traffic such that the demand of each application is satisfied and the overall cost is
minimized. The UE proxy then sends back the traffic demands that it calculates for some

future time window to the market proxy, and the process is repeated.
6.4.3.1 Market Prozy Operations

The market proxy operates in time slots with length 7 (e.g., 1 second). The time slot
that time ¢ belongs to is denoted as [t], = [*=12], where #; is the start time. Let p([¢];)
represent the price for the downlink traffic through a cell sector during time slot [t],. Let
the(|t]+) represent the downlink traffic demand of UE e during time slot |¢].

In every § seconds (e.g., 0.1), the market proxy receives a vector of traffic demand for
the next x (e.g., 30) time slots, i.e., the = {the(|t]|), the(|[t]; +1), ..., the(|t]+ +k)}, where
t is the current time. Then it updates the price vector , i.e., p = {p(|t]+),..., p(|t]+ + &)},

as follows:

7=+ B T - alu (14)
e
where a = max; ), the(t), [p|m represents the projection of p onto the hyperplane H =
{p(®)|>,p(t) = 1,p(t) > 0}, and S is the step length. The value of 3 is set to ensure that
Vi, [p'(t) — p(t)| < p(t)/10 in our implementation.

The market proxy then broadcasts the prices to all UEs in the cell.
6.4.3.2 UE Proxy Operations

The UE proxy collects the information about traffic demand per slot (7) for & slots into the
future from all mobile applications and periodically receives the future price information
from the market proxy. It generates the future traffic demand, th., and sends it to the
market proxy.

Each mobile application reports its delay constraints for the next x time slots to its
UE proxy. Let’s use (D,t), i.e., a tuple of the amount of data D and its deadline ¢, to
express the delay constraint that data D should be downloaded before deadline ¢t. There-

fore, for a specific flow i, its delay constraints can be expressed as a set of tuples, i.e.,

93



{{Dio,tio), (Di,ti1), ..., (Din,tin)}, where t;o < tj1 < --- < t;,. Let’s define function
d;(t) = Z?:o D; ;, where t; 7 <t < t; 741. It represents the amount of data required to be
transferred before time t.

When a UE proxy receives the price information from the market proxy, it tries to
minimize the cost of transferring data under the constraint that the delay constraints of all
flows are satisfied. Specifically, at time t* the UE proxy solves the following optimization
function:

min Y > thi(t) x p(t)

i teT
s.t. Zthi(t) <bg,VteT

2

SO thit) x T = di(t), V' €T (15)

i<t
where th;(t) is the throughput of flow 7 at time ¢, b, is the bandwidth, and T = {|t* |, ..., [t*] -+
K}.

By solving the above optimization function we obtain the desired throughput of all
downlink flows over time. th;([t*];) corresponds to the bandwidth allocated to flow i in
the current time slot. The UE proxy will send this value back to the mobile applications
to control their traffic in the data plane accordingly as described in Section 6.4.4. It should
be noted that those constraints may not be satisfied, i.e., the available bandwidth may be
smaller than the traffic demand. Under such scenario, CoAST will allow mobile applications
to transfer data as fast as possible and let users decide if they want to stop some applications.

The UE proxy will send {the(t)|the(t) = > ,thi(t),t € T} to the market proxy. The
market proxy collects such traffic demands from all UEs in the cell and updates the prices

in the next round.
6.4.4 Data Plane

The primary functionality of the CoAST data plane is to control the downlink traffic based
on the throughput cap assigned by the control plane. As most of the mobile applications we
are considering use TCP and we don’t want to modify the server, we focus on controlling

the TCP traffic from the receiver side. It is also important to note that while the control
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plane operates with a window of projected demands and prices, the data plane only controls
the traffic for the current slot.

In TCP the amount of data that the sender can send within an RTT is limited by
min{cwnd, rwnd} where cwnd is the congestion window size, and rwnd is the receiver’s
window size advertised in the acknowledgement packets. When cwnd is larger than rwnd,
rwnd will determine the throughput of a TCP flow. To control the downlink traffic from

the receiver side, we set an upper-bound on rwnd as:
DL_CAP = max{throughput x RTT, MSS} (16)

where throughput is the target throughput assigned by the control plane. When throughput
is very small, DL_CAP is set to MSS to avoid totally blocking the flow. In our implemen-
tation, we add a new socket option, DL_CAP, to allow applications to dynamically specify
the upper-bound on the advertised receiver’s window size at runtime.

It’s noteworthy that the receiver will obtain the required downlink throughput after
one RTT since the sender receives the new advertised rwnd after RTT/2 and then spends
RTT/2 to deliver the new packets to the receiver. When RTT is large (e.g., 1 second), the

receiver should use the estimated future throughput to set DL_CAP.
6.4.5 CoAST Performance Guarantee

The primary goal of CoAST is to schedule the last-mile traffic to ensure that the total
traffic demand does not exceed the network capacity. For scalability, CoAST is designed as
a distributed system that only schedules the traffic under its control. A natural question is
whether the CoAST design meets its goal. Here we present a theoretical analysis to answer
this question.

CoAST uses an iterative control protocol between a market proxy and a set of UE
proxies to schedule the traffic. This control protocol allows CoAST to minimize the maximal

throughput of flows under its control over time. Formally, we have the following theorem:

Theorem 1. With the interaction interval, §, approaching 0, CoAST approaches the opti-

mization goal defined in Formula 13.
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Proof. The goal of the market proxy is to minimize the maximal throughput on a cell sector
over time, as shown in Formula 13. To decompose this problem and derive a distributed

protocol, we rewrite the objective of the market proxy as follows:

min «Q (17)
st VEY thi(t) <o (18)

Introducing a dual variable p(¢t) > 0 (i.e., price for downlink traffic through the cell

sector at time slot t) for each constraint of (18), we define the Lagrange dual function

L({p(t)}) = min o + Zp(t)(z thi(t) — ) (19)

To make L({p(t)}) finite, the coefficient of o should be 0:

> p(t) =1 (20)

Then, we simplify L({p(t)}) to

L({p(®)}) = mian(t)Zthi(t) (21)
= minZZp(t)thi(t) (22)

The original problem can be decomposed into independent problems for each mobile

applications. If we aggregate the throughput by UEs, we obtain

L{p()}) = min) > > p(t)thi(t) (23)

e ice t

= Z min Z Z p(t)th(t) (24)

ice t
Therefore, the original problem is decomposed into independent sub-problems for each

UE. The objective of each UE is to select th.(t) among all feasible values so that » ... >, p(t)th;(t)

is minimized. The derived objective of each UE is exactly the same as (15).
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The market proxy, running the master program of the decomposition method, gets
feedbacks (i.e., the(t)) from UE proxies and updates {p(t)} using a projected sub-gradient
method as described in (14). Therefore, the objective of Formula (13) is equivalent to the

control protocol in Section 6.4.3. 0

As CoAST minimizes the maximal throughput of flows under its control, it also reduces
the maximal throughput of all flows including those background traffic. Formally, we have

the following theorem:

Theorem 2. Assume Y., thi(t) and thy(t) are independent random wvariables. With
t — +o00, the expected value of the peak throughput obtained by using CoAST approaches

maxy y .y thi(t) + max; thy(t).

Proof. Let x; = Y " | th;i(t) have a probability density function f(z;) and a cumulative
probability distribution function of F'(x;). Let y; = thy(t;) have a probability density
function g(y;) and a cumulative probability distribution function of G(y;). Let x4, and
Ymaz De the lowest value of x; and y; such that F(z;) = 1 and G(y;) = 1, respectively.
Since the number of flows associated with a cell is limited, 4 and ymq. are finite. Let p
be the convolution of f and g, and P be its cumulative probability distribution function.
Then the sum z; = x; + y; is a random variable with the density function p(z;) and the
cumulative probability distribution function of P(z;). Since z; and y; are independent,
P(zt < Tmaz + Ymaz) = 1.

Let z* = max; z; where ¢t € {1,2,...,T}. The probability density function of z*, h(z*)

is

The expected value of z* is



Therefore, when T' — 400, we have

1
lim E(Z*) = / P_l(l)dz* = Tmaz + Ymax (28)
T—+o00 0

Since CoAST minimizes Zpqe With ¥Ymae: unchanged, it is equivalent to minimizing

max; ., thi(t) +y,,,., when T' — +oo0. =

Thus, when the number of UEs that uses CoAST is large enough, CoAST can signifi-

cantly reduce the overall peak traffic.
6.5 Deployment and Implementation

In this section, we discuss various ways in which CoAST can be deployed on a real network

and describe our prototype implementation.
6.5.1 Deployment

CoAST proposes two new functions to be added to the cellular network: a UE proxy
for each mobile device and a market proxy for each cell sector. The UE proxy interacts
with mobile applications running on the UE to collect their delay constraints and allocates
bandwidth to them. The market proxy aggregates demand information from all the UEs
in a cell and sets the prices. UE and market proxies communicate with each other to
exchange demand and pricing information. The network elements on which these functions
are deployed determines both the information available to CoAST and the changes needed
to the network. We consider three deployment options and their merits.

Clean Slate: The market proxy for a cell and the UE proxies for all UEs in the cell are
hosted in the cell’s eNodeB. Mobile applications directly communicate their requirements
to their UE proxy through extensions to the 3GPP RAN control plane (via mobile OS APIs
to expose these extensions). The UE proxy directly controls bandwidth allocations through
the eNodeB scheduler. Because the market proxy also resides on the eNodeB, it has full
access to cell utilization information when setting prices and no latency between the UE
and market proxy. The market proxy can also compare reported traffic and real traffic to

detect price manipulation. While this represents the cleanest and most functional design,
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it requires changes to the 3GPP protocol to exchange demand and price information, to
eNodeBs, and to the mobile OS, and thus may be difficult to deploy.

Incremental: The UE proxy is deployed on the mobile device as a daemon process,
while the market proxy is deployed by the network provider as a new network element in the
packet core. The UE proxy interacts with mobile applications through user library calls for
collecting delay constraints and allocating bandwidth (via a controlled socket abstraction).
Interaction between the UE and market proxy for exchanging demand and price information
occurs using the normal cellular network data plane, through a well known UDP port and
a special destination IP address that points to the market proxy for the current cell. This
configuration imposes higher latency between the UE and market proxies, but because the
market proxy is deployed by the network provider, it can be made as low as possible. Also,
the market proxy may be given access to real-time traffic information through a private
interface to the eNodeB as well as the provider’s charging and data metering systems [75].
Thus, it provides most of the benefits of the clean slate design while being easier to deploy
- 3GPP protocols or eNodeBs do not have to be extensively modified on the provider side,
while the UE proxy can be implemented as a user space library without modifying the
mobile OS on the UE side.

Over-the-top: The UE proxy is deployed as a library on the UE just as in the incre-
mental design, but the market proxy is deployed as a third-party service on an external cloud
server, possibly even on an application-by-application basis. E.g., a large video streaming
provider may have its own market proxy that serves to smooth only its own traffic within
a cell and improve the performance for its own users. In this design, when a mobile device
connects a cell, its UE proxy uses the cell ID to find the IP address of the corresponding
market proxy through standard DNS mechanisms. UE and market proxies exchange infor-
mation through UDP as in the incremental design, but the third party nature of the market
proxy precludes the market proxy from basing its pricing decisions based on real-time traffic
information (e.g., it cannot lower prices during periods of low utilization to incentivize more
aggressive transfers) or from actually providing real monetary incentives to users. However,

the design requires no modification to any cellular network elements, or to the mobile OS,
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and thus is the easiest to deploy.

Due to its ease of deployment, we chose the over-the-top design for our prototype.
However, the goal of this chapter is to evaluate the feasibility of CoAST and quantify its
benefits and costs instead of advocating a particular deployment choice. Our evaluation

will hold irrespective of the design chosen.
6.5.2 Prototype Implementation

We implemented market proxy on a Linux system with a dual-core 2.53 GHz CPU and 4GB
of RAM. The market proxy divides time into 1-second slots and dynamically sets the prices
for future 30 time slots. Every 100ms the market proxy collects the traffic demands for the
future 30 time slots from all mobile devices that connect to it. Then it updates the prices
based on the aggregated traffic demand and sends the new prices to all the mobile devices.

Ideally the market proxy should reside on a cell-level network element like the eNodeB
in a 4G LTE network or the RNC in a 3G network where it can also monitor the traffic
over the cell. However, because we have no access to such network elements, we have to run
the market proxy on a remote server whose RTT to the mobile devices through a 4G LTE
network is 57ms on average. Since the RT'T between the market proxy and UE proxies is
much smaller than their interaction interval (i.e., 100ms), the functionality of the control
plane will not be affected.

We implemented the UE proxy on Android 4.1. It is implemented as an Android ap-
plication collecting delay information from mobile applications and the prices from the
market proxy and assigning throughput caps to the mobile traffic. To dynamically control
the downlink traffic from the receiver side, we also patched the Android kernel to add a new

socket option, DL_CAP, to limit the maximal throughput of the TCP flows at runtime.
6.5.2.1 Communication and Computation Overhead

The traffic demands and prices are the only data exchanged between the UE proxy and
the market proxy. In the current implementation, we use 2 bytes for the traffic demand
and 1 byte for the price in each time slot. Therefore, each UE proxy uploads 60 bytes and

downloads 30 bytes from the market proxy in every round. Since they exchange information
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every 100ms, the control overhead in this case is 600 Bytes/s in the upload direction traffic
and 300 Bytes/s in the download direction in the worst case. The overhead is much lower
in reality because of two reasons. First, the UE proxy will exchange information with the
market proxy only if some communication-intensive applications (e.g., video streaming) are
running. Second, compared with the high traffic volume of those target applications, the
extra communication overhead of CoAST is negligible. As the experiment in Section 6.6.2
will show, CoAST only leads to 0.07% extra traffic.

The computation overhead is also very low. The market proxy updates the prices by
solving a projection problem. Its computational complexity is O(x) where £ is the number
of time slots (30 in our implementation). The UE proxy needs to solve an optimization
problem that minimizes the cost under the delay constraints. As we discretize time into
time slots, the maximal number of delay constraints for a flow is O(x). The optimization
problem can be solved by gradually finding the minimal cost for each constraint. Therefore,
its computational complexity is O(f x k2 x log(x)), where f is the number of concurrent
flows. On an old Motorola ATRIX smartphone with Android 2.3, it takes less than 1ms for

the UE proxy to solve the problem for 100 concurrent flows.
6.6 System FEvaluation

In this section, we evaluate the CoAST prototype as described in Section 6.5.2. We will
demonstrate how CoAST improves the performance of mobile applications under various

LTE network congestion states.
6.6.1 Experimental Setup

Our testbed is composed of 5 Linux workstations and 4 Android smartphones with 4G
LTE capability. The first workstation acts as the market proxy. Its average RTT to these
smartphones through the LTE network is 57ms. The other 4 workstations act as the remote
mobile application servers, each of which serves one smartphone. The Linux traffic control
tool tc is used on application servers to control their available bandwidth. We make sure
that all these smartphones connect to the same cell during the experiments by checking the

cell id of their connected cell. All experiments are conducted in a residential area around
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midnight to reduce the impact of other cellular users.

CoAST is designed to improve the performance of mobile applications when the LTE
network is congested. We use following mobile streaming strategies to create different levels
of network congestion and streaming behavior. The evaluation for other types of mobile
applications (e.g. web browsing) will be presented in Section 6.7. We find that the streaming
strategies impact the distribution of mobile traffic and how they interact with each other

in CoAST.

e All-at-once: strategy aggressively transfers data from the server to the client as fast
as possible. This strategy is usually used by some audio streaming [79] and video

streaming applications on some specific phones [92].

e Pacing: strategy controls the download throughput at the “steady state” after initial
buffering. This strategy is widely used in video streaming services such as Youtube,

Hulu, and Netflix [43].

e Bundling: strategy is proposed to reduce the energy consumption of video streaming
applications [92]. It divides the entire stream into several large chunks and aggressively

transfers each chunk periodically.

We use two metrics to evaluate the impact of CoAST on mobile users:

e Buffering time: It is a direct measure of the user experience for streaming applica-
tions. We consider both initial buffering period and rebuffering period in the steady

state.

e Energy consumption: The energy consumption of video streaming is primarily
caused by the device screen in the “on” state and the LTE network interface. For fair
comparison, we use the LTE energy model that calculates energy consumption based

on traffic traces [57].

6.6.2 The Reduction of Buffering Time in Video Streaming

We first demonstrate the basic mechanism through which CoAST enables collaborative

traffic scheduling via a simple two-device video streaming experiment. Let the two devices
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Figure 36: The interaction between two video streams
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start streaming two HD videos at time Os and 7s, respectively. Both of them use the
all-at-once strategy. The LTE cell is the only bottleneck of both streams.

Figure 36 plots the throughputs of two streams for the native LTE network and CoAST
cases. In the native LTE case, streaml is unaware of the traffic demand of stream2 and,
thus, continues downloading data from its server even after stream2 starts. Therefore, the
initial buffering period for stream?2 is twice as long as that of streaml. In CoAST, when
stream?2 starts at 7sec with an empty buffer, it tries to download aggressively, thus causing
the market proxy to increase prices due to the increased demand. Because streaml has a
relatively full buffer, it is less willing to pay the increased price than stream2, and thus
delays its traffic. After some time, when stream2 has buffered enough data for playback, it
reduces its willingness to pay higher prices, and thus begins delaying its data more. In the
meantime, stream1 has already played back a portion of data in its buffer and becomes more
aggressive to meet its delay constraints. Due to this cooperative inter-play between the UEs
— the UE with full buffer deferring its download in favor of the UE with empty buffer—
the buffering time of stream? is reduced by 50% while that of stream1 is not affected.

By exchanging traffic demands and prices between the UE proxies and the market proxy,
CoAST incurs a total of 47.5 kB extra traffic in the experiment. Compared with the total

download traffic (i.e., 64 MB), CoAST only incurs a 0.07% communication overhead.

6.6.3 The Impact of Network Congestion

Next we evaluate the impact of traffic demand on CoAST performance by varying the

stream bitrate from 400 kb/s (i.e., average Youtube bitrate [44]) to 3200 kb/s while keeping
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Figure 37: The impact of taffic demand on CoAST performance

the number of streams unchanged. We randomly start 4 streams within 30 seconds. The
length of each stream is 3.33 minutes, i.e., the median Youtube video length [44]. The
upload bandwidth of servers are unlimited, i.e., the LTE cell is the only bottleneck. Each
experiment is repeated 3 times with different random seeds. The average values are reported.

Figure 37 plots the reduced buffering time and average energy consumption of the smart-
phones. It is clear that the benefits of CoAST start increasing with the increase in traffic
demand (i.e. bitrate in the experiments). When the bitrate is 3200 kb/s, CoAST is able to
reduce buffering time by more than 10% on average. It is exactly the design goal of CoAST,
i.e., to reduce the impact of increased mobile traffic on user experience.

Figure 37(b) also shows that CoAST increases the energy consumption by less than 8%
in all the experiments. More importantly, with the increase in traffic demand, the extra
energy consumption is even smaller (e.g. 7% for 3200 kb/s case). The increase in energy
consumption is caused by longer streaming time in CoAST. Note that energy consumption
is based on the assumption that there is no background traffic. Otherwise, CoAST will

incur even smaller energy consumption overhead.
6.6.4 The Impact of Streaming Strategies

Finally we evaluate the impact of streaming strategy on the performance of CoAST. The
stream bitrate is 3200 kb/s. Other parameters are the same as previous experiments.
The experiment results are shown in Figure 38. When the all-at-once strategy is used,
CoAST reduces buffering time by 66%. However, it also increases the energy consumption

significantly if the entire video is downloaded. Compared to the pacing strategy, CoAST
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incurs similar buffering time and slightly more energy consumption in the bundling strategy.

6.7 Trace-Driven Fvaluation

In this section, we demonstrate the potential benefits of CoAST by using trace-driven

evaluations of real-world cellular traffic traces from a large US mobile network operator.

6.7.1 Experimental Setup

We implement CoAST on a packet-level simulator, ns-3 [7], which supports the simulation
of LTE networks. The network is composed of an eNodeB, a remote server and multiple
mobile devices. The market proxy is installed on the eNodeB, while the application servers
are installed on the remote server. All mobile devices connect to the same eNodeB during
the experiments. We use the default parameters for all the experiments.

Traffic traces: We identify the top 100 heavily-loaded cell sectors in our cellular traffic
dataset and evaluate how CoAST reduces their peak throughputs within 1 day. For each

cell, we generate the flows for Youtube video streaming and web browsing as follows.

e YouTube video streaming: We identify all flows from Youtube servers to the
mobile devices in the cellular traffic dataset. But only flows whose size and duration
are large enough (i.e., size > 100 kB and duration > 10 s) are treated as streaming
flows. Since we don’t have video information (e.g., bitrate, video length) in our
dataset, we use the empirical models from [44] to generate the video profile for each

flow. The pacing strategy is used to control the stream.
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e Web browsing: We first identify all web traffic using port number 80. If two flows
between the same source and destination start within 5 seconds, they are considered
as belonging to the same browsing event. Using this method, we obtain a set of
browsing events with their start time instants. Since the dataset doesn’t contain the
identity of the web page, we randomly pick one of the top 500 Alexa websites for each

browsing event.

Metrics: We compare CoAST against the native network using the following metrics:

e Peak reduction: This is the most important metric because the goal of CoAST is

Peakynative—PeakcoasT
Peaknative

to reduce the peak cell throughput. It is defined as

e Discount: A key promise of CoAST is that mobile users will also benefit from CoAST
and, thus, be willing to use it. We use Dt%tD“ to denote the user benefit, where D, is

the amount of transferred data, D, is the amount of accounted data.

e Overhead: We also analyze if CoAST causes any overhead, including energy con-

sumption and RRC signaling overhead [55].

We acknowledge that our trace-based evaluation has some limitations. First, there is no
system feedback. By scheduling the traffic better, CoAST may cause mobile users to use
more data and, thus, increase the peak traffic. However, our experiments cannot capture
this phenomenon. Second, the user behavior in using applications is not available. For
video streaming, the user may skip ahead or pause the video. For web browsing, the user
may quickly scroll down in the webpage. These user behaviors impact the delay constraints

of the corresponding traffic and, thus, affect the performance of CoAST.

6.7.2 Experimental Results
6.7.2.1 Video Streaming FExperiments

We first perform simulation-based video streaming experiments using 100 heavy-loaded cells
for 1 day. In all experiments we only consider Youtube video streams. As shown in Figure 39,

CoAST successfully reduces the peak throughput for all cells. We also observe the following
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Figure 39: The performance of video streaming supported by CoAST on various sectors.

phenomena. First, the peak reduction ranges from 5% to 55% for different cells, as shown
in Figure 39(a). More than 30% cells reduce their peak by 30%. The high variation of the
peak reduction among different cells is probably caused by diverse distribution of Youtube
video streams among various cells. Cells with more video streams are able to achieve better
performance. Second, the average discount obtained by the mobile users correlates with the
peak reduction on the cells, as shown in Figure 39(b). Finally, none of the videos is paused
during the experiments.

Next we explore how the reduced peaks actually help increase the capacity of cellular
networks by examining the impact of increasing user demand on application level perfor-
mance with and without CoAST. Specifically, we increase the users/spectrum ratio and
measure how long the video streams pause waiting for more data. However, rather than
increasing the number of users in a cell artificially, we increase the ratio by reducing the
effective bandwidth (spectrum) available to a cell by a fraction « € [0, 1), i.e., Capacity =
(1 — a)x MaxCapacity. The average values of video pause time over 100 cells are reported
for different values of « in Figure 40. We see that CoAST results in very little application
performance degradation while supporting a capacity increase of up to 20% (« = 0.2). Also,
for the same value of application performance degradation, CoAST can support more users

per unit of available spectrum.
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Figure 41: The performance of web browsing supported by CoAST on various sectors.

6.7.2.2  Ezperiments on Web Browsing

Web browsing is another important application that can benefit from CoAST because of
its delay tolerance. Unlike video streaming, web browsing flows are relatively small. In this
subsection, we analyze the performance of CoAST-based web browser.

First, we consider the simple scenario that all cellular traffic are web traffic. For each
browsing event, we randomly choose one of the top 500 Alexa websites in the “news”
category. We report the results for the 100 heavy-load cells in Figure 41.

As expected, CoAST-based web browser reduces the peak throughput for all cells. Like

in video streaming experiments, the peak reduction varies significantly among cells, ranging
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from 6% to 50%. However, different from video streaming, CoAST-based web browser
helps more than 55% cells achieve more than 30% peak reduction. In addition, as shown in
Figure 41(b), the average discount obtained by the mobile users ranges from 22% to 31%,
which is more than video streaming case. This is because web browsing flows are usually

very small and are able to take advantage of the variation in price.
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Figure 42: The performance of both video streaming and web browsing supported by
CoAST.

Next, we evaluate the scenario in which both video streaming and web browsing use
CoAST to schedule their traffic. Video streaming and web browsing are the most important
mobile applications, accounting for more than 70% mobile traffic. The experimental results
are plotted in Figure 42. In this more realistic scenario, CoAST helps all cells to reduce
their peak throughputs. We also plot the discount obtained by video streaming and web
browsing in Figure 42(b). Web browsing is still able to obtain higher discount than video
streaming.

In Section 6, we noticed that CoAST slightly increases the energy consumption in some
scenarios. This is because by delaying mobile traffic, mobile devices need to keep the net-
work interface active for longer duration, resulting in extra energy consumption. To analyze
the overhead of CoAST, we assume that the mobile device is initially in the RRC_IDLE
state, and there is no other traffic on the mobile device. We use the RRC state model [57]
to analyze the overhead. For both video streaming and web browsing, the mobile devices

always stay at the RRC_CONNECTED state when using these applications. Thus, CoAST
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Figure 43: The time duration at RRC_CONNECTED state for video streaming and web
browsing.

does not introduce extra RRC state transitions. However, CoAST does keep cellular inter-
face alive for slightly longer duration and, thus, consumes a little more energy. Figure 43
shows that in CoAST, the mobile devices stay slightly longer in the RRC_CONNECTED

state than the native case.
6.7.2.3 The Impact of Partial Deployment

CoAST reduces the peak throughput by rescheduling the traffic of mobile devices under its
control. The number of participating mobile devices will impact the CoAST performance.
In this subsection, we evaluate the performance of CoAST when only a portion of mobile
devices support it.

In this set of experiments, we randomly select % mobile devices to support CoAST,
where r varies from 50 to 100. The video streaming application is used in the evaluation.
Each experiment is repeated 10 times with different random seeds. We report the average
value of all the 100 cells.

The experimental results are shown in Figure 44. It’s clear that the participation rate
has significant impact on the CoAST performance. When r reduces from 100 to 50, the
average peak reduction decrease from 27% to 8%. We also observe that the slope of the curve

decreases with the increase of the r value. This is because the peak value of the background
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Figure 44: The impact of partial deployment on CoAST performance.

traffic will be higher when the participation rate is low. Thus, according to Theorem 2, the
peak reduction achieved by CoAST will be much lower. This set of experiments indicate
the importance of increasing the participation rate in CoAST.

To analyze whether partial deployment will impact the user experience of early adopters
or non-adopters, we compare the buffering time of streaming applications in the above
experiments and that in LTE networks. The buffering time of each stream in both scenarios
are the same in all experiments. This is because CoAST tries to satisfy the delay constraints
of all adopters. When the network is not very congested, their delay constraints can be easily
satisfied. In contrast, when the network is persistently congested which is uncommon in
our dataset, adopters behave the same as non-adopters, i.e., downloading as fast as possible
without rescheduling their traffic.

Therefore, the partial deployment will primarily impact the peak reduction with little

impact on the user experience of mobile applications.
6.7.2.4 The Impact of Design Choices

In this subsection, we evaluate the impact of CoAST parameters and network factors on

the performance of CoAST.
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Figure 45: The impact of interaction frequency between UEs and the market proxy.

In the first set of experiments, we analyze the impact of the interaction frequency be-
tween the UE and Market proxies. We change the interaction interval (i.e., §) from 50 ms
to 700 ms, while other parameters are kept unchanged. The video streaming application is
used in the evaluation. We report the average value of all the cells.

The experimental results are shown in Figure 45. When the interaction interval is less
than 100 ms, CoAST achieves similar performance in terms of peak reduction. As the
interval increases from 100 ms to 500 ms, the average peak reduction slightly drops from
27% to 24%. When it further increases to 700 ms, the obtained peak reduction is quickly
reduced to 15%. This is because the control plane of CoAST utilizes an iterative protocol
that gradually optimizes its performance in each iteration. When interaction interval is
too large, it is hard for the system to converge to the optimal solution. On the other
hand, increase in interaction frequency results in more communication overhead. From our
experiments, we find that 100 ms is a good choice as it achieves good tradeoff between
performance and overhead.

In the second set of experiments, we analyze the impact of the distance between the UE
and market proxies. We vary the RTT between them from 10 ms to 90 ms. The results
are reported in Figure 46. We observe that the RTT between UE proxy and market proxy

has very small impact on peak reduction. This indicates that CoAST can still achieve
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Figure 46: The impact of the delay between UEs and the market proxy. The interaction
interval is 100 ms.

good performance even if it is not possible to deploy the market proxy in cellular network

elements close to the end user devices, like eNodeB in LTE or NodeB in 3G networks.
6.8 Discussion

In this section, we discuss how the mechanisms proposed by CoAST interact with other
existing and proposed mechanisms in the RAN.

3GPP quality of service: The LTE specification provides a QoS model based on
Quality Class Indicators (QCI) [11]. A UE may create bearers with one of up to 9 QCI
classes, each with a different priority (diffserv), packet delay budget, loss rate, and bitrate
guarantee. Many cellular providers today reserve QCI only for managed services (e.g.,
IMS), and do not expose QCI classes to third party applications. Because CoAST is an
over-the-top protocol that can operate without any support from 3GPP infrastructure, it
is applicable even on networks which do not expose QCI. Furthermore, QCI provides a
static and inflexible partitioning of applications into a small number of priorities. It is
not sufficient for scenarios presented by both our examples — streaming and web browsing
— in which the same application requires different QoS and delay tolerance at different
times, depending on the context. Furthermore, any non-collaborative mechanism cannot

coordinate behavior across multiple UEs the way that CoAST does.
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Congestion aware pricing/control: Access to real-time congestion information at
the eNodeBs is not exposed through 3GPP standardized interfaces. Therefore, to remain
independent of vendors-specific implementations, CoAST does not assume any access to the
eNodeB, including information about whether there is cell congestion or not. Instead, it
tries to continuously minimize the peaks across the applications whose traffic is managed
through its APIs, independently of other background traffic. If real-time congestion infor-
mation could be made available, it could easily be used to trigger when CoAST optimization
mechanisms kick-in and provide improved fidelity and price control to the market proxy’s
demand estimation step. We leave this extension to future work.

RNC/eNodeB schedulers: The UMTS RNC or LTE eNodeB have a scheduler that
allocates scrambling codes (variable sized slices of the spectrum) to UEs every 2ms based
on their demands, QCI, channel noise, and overall cell congestion. Beyond differentiation
using QCI, this scheduler is application context agnostic. CoAST does not interfere with
this scheduler because it operates at a much coarser granularity (hundreds of msec). CoAST
adds an additional application aware layer of control on the top, and helps the RAN sched-
uler by reducing demand peaks themselves, thus reducing the need for the RAN scheduler
to allocate less than what UEs demand. However, the RAN scheduler can have an impact
on applications that use CoAST because it may restrict the bandwidth available to a UE
(because of noise or congestion), and thus decrease the amount of time an application’s
data can be delayed. To solve this problem, CoAST should take the radio link condition
into consideration. We leave it for future work since it requires deeper integration with the
eNodeB scheduler.

Energy vs. congestion tradeoffs: Several proposals have been made in the literature
to help mobile devices save energy by batching mobile traffic into short concentrated bursts
and reducing the time UE radios spend in the active state, e.g., [57,80]. It would seem
that CoAST proposes the opposite philosophy—spread out traffic to minimize congestion.
However, in reality, these two mechanisms are relatively complementary. CoAST can just as
easily work with applications where data transfers occur in bursts—e.g., web browsing. All

CoAST advocates is that when there is contention, priority be given to the traffic on which
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users are waiting as opposed to applications that are just filling up their buffers. While this
can increase the amount of time needed to transfer an application’s background data, as
Figure 43 shows, the increase is not substantial. An interesting future use of CoAST is for
applications to increase their price based on how much available battery they have, thus
prioritizing their transfers over everyone else.

Potential for price manipulation: Because CoAST’s mechanisms do not force users
to transfer any data after they have indicated their demand forecast, it is possible that
malicious users may increase the price others have to pay by falsely forecasting high de-
mands. While it is not easy to detect one-off instances of such behavior (a user’s demand
may legitimately have changed), it is easy to detect systematic abuse over a period of time
by statistically comparing forecasts to actual data transfers using cellular providers existing
data tracking mechanisms. Abusers may then have their bids ignored in the future, thus
effectively removing them from the set of CoAST managed devices. With incremental de-
ployment, it is possible that some legitimate applications don’t support CoAST, resulting
in the discrepancy between reported traffic and the real traffic. To solve this problem, the
UE proxy needs to report the flow information of those adopters, while the CoAST will
only monitor those flows.

Impact of handover: Finally, we briefly describe CoAST’s interactions with mobility
mechanisms, i.e., handover. UEs detect when a handover takes place by querying their
baseband chip for the current cell id. They inform the market proxy for every handover,
which then simply assigns the UE’s projected demand to the new cell and recomputes the
demand for both the old and new cells. Because we expect each market proxy to cover a
relatively large area (we expect one market proxy per P-GW), the number of inter-proxy

handoffs are few and are handled by the UE simply reconnecting to the new market proxy.
6.9 Summary

In this chapter, we present a new approach to improving the capacity of cellular network
cells through application-aware collaborative microscheduling and delaying of traffic. Our

implementation, CoAST, supports applications such as streaming and web-browsing that
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are not normally considered to be delay tolerant, but yet account for over 70% of cellular
network traffic today. Our extensive evaluation demonstrates shows the approach’s potential
by showing that it can reduce traffic peaks by up to 50%, and increase the capacity of cells

to serve such workloads by up to 20% without any degradation to user experience.
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CHAPTER VII

SUMMARY OF CONTRIBUTIONS AND FUTURE WORK

This thesis work studies addressing connectivity challenges for mobile computing and com-

munication. The contributions of the thesis work can be summarized as follows:

e Serendipity. This thesis work presents the design and implementation of Serendipity
system to enable remote computing among intermittently connected mobile devices.
This work designs computation models for this purpose. This work designs algorithms
for task allocation for various network settings. This work also designs allocation

algorithms for energy-aware computing.

e IC-Cloud. This thesis work presents the design and implementation of IC-Cloud
system to support computation offloading with intermittent connectivity. This work
designs mechanisms to handle intermittent connectivity, including connectivity pre-

diction mechanism and risk control mechanism.

e COSMOS. This thesis work presents the design and implementation of COSMOS
system to provide computation offloading as a service to mobile devices. This work
formulates it as an optimization problem whose solution guides the required decision
making. This work designs resource-management mechanisms that select resources
suitable for computation offloading and adaptively maintain computing resources ac-
cording to offloading requests and task-allocation algorithms that properly allocate

offloading tasks to the cloud resources with limited control overhead.

e CoAST. This thesis work presents the design and implementation of CoAST to sup-
port collaborative application-aware scheduling of cellular traffic. This work designs
a protocol to allow mobile applications and providers to exchange traffic information.

This work will design an incentive mechanism to incentivize mobile applications to
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collaboratively delay traffic at the right time. This work also designs mechanisms to

delay application traffic.
7.1 Future work

The work done in this thesis can be extended in several directions. We describe some of

the potential future work below.

e Computation offloading to cloudlets: Mobile devices are in intermittent con-
tact with multiple (stationary) cloudlet resources over time. This scenario adds the
multiple compute resource dimension to the problem. This environment presents ad-
ditional concerns beyond the problem of partitioning for remote execution. Among
the problems is how to provide for continued execution if a mobile device loses contact
with a cloudlet before it completes the processing of an allocated task. Depending on
the contact model there is the possibility that the mobile device will meet the same
cloudlet again, in which case results can be obtained at this subsequent meeting. Al-
ternatively, we can consider a “hand-off” process where data and computation are
migrated among cloudlets over the Internet in anticipation of future contacts with the

initiator.

e Computation offloading in cellular networks: There are scenarios that mobile
devices requires to access computation offloading service through the cellular networks.
However, previously proposed systems are not very suitable for cellular networks be-
cause of two reasons. First, the communication latency of cellular network is very
high. Second, computation offloading will cause extra overhead on the already con-
gested cellular networks. How to make computation offloading beneficial in cellular
networks is very important. A potential solution to this problem is to incorporate
clouds in the cellular networks and offload the computation-intensive tasks to the
in-network cloud. It has three major benefits. First, the latency between end-device
to the cloud will be low. Second, the traffic over the backbone network will not be
increased by offloading. Third, the cellular networks can increase their revenues by

providing computation offloading service.
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e Computation offloading in a hybrid environment: We envision that the en-
vironment in which a user-carried mobile device operates will be a hybrid of the
individual scenarios we previously discussed. The goal of our work in general is to
allow the device to leverage the combination of resource types available in its envi-
ronment from which it derives the most benefit while adhering to the constraints of
the environment (such as willingness of other devices to contribute resources). There
are two types of such environments. The first is where multiple options for remote
computation are available contemporaneously. In this case the question is how to op-
timally use the mixture of available resource types to maximum benefit. The second
type is where the environment can change over time. For example the initiator device
can encounter a cloudlet for some time and then be in an environment with a number
of neighbor user-carried devices some time later. In this case, the environment needs
to be monitored and strategies for adaptation of the computation off-loading need to

be adopted.

e Cloud-based storage system: Nowadays users usually have multiple mobile devices
(e.g., smart phone, tablet, laptop) and access similar contents (e.g., music) on different
devices in various environments. For example, when a user is traveling, she tends to
use smart phone to listen to the music; when she is at home, she probably prefers to
play the same music on laptop; when she is to sleep, she may play the music on tablet.
A challenging problem in this scenario is how to manage the contents among all these
mobile devices. A simple solution is to store the contents in the Cloud (e.g., iCloud,
Dropbox) and directly download the required contents to the mobile devices in use at
run time. However, this simple method introduces a lot of network traffic, a severe
burden on the network infrastructure (especially for cellular networks). A better
solution is to build a generic cloud-based storage system that can makes contents
easily accessible to users through different devices with low overhead on the network
infrastructure. It is composed of mobile devices, personal server (e.g., desktop at
home) and cloud storage system. It will store various contents at different storage

resources according to user usage habit and the access patterns to various contents.

119



In the study of the future work, attention should be paid to the development trends of
techniques that impact the usefulness and performance of mobile computing and commu-

nication.

e The ratio of cloud power to device power: Computation offloading relies on
the powerful cloud computation resources to speed up the execution of computation-
intensive functions. As shown in [88], with the increase of the ratio of the cloud power
to device power, computation offloading systems can achieve higher performance. Re-
cent year we have seen the continuous expansion of clouds. Clouds become more and
more powerful and easier to be accessed. Meanwhile, although mobile devices are
also becoming more and more powerful, they are fundamentally limited by their small
sizes. It is highly possible that the ratio of cloud power to device power will contin-
uously increase in future. In addition, with more clouds geographically distributed,

the latency between mobile devices and the clouds will be reduced.

e The battery life time: One major goal of computation offloading is to reduce
the energy consumption of mobile devices. Although the battery power availability
continues to improve, it is still very constrained and will continue to be a major
bottleneck of mobile devices. Techniques that reduce the energy consumption will
remain important to mobile computing. Therefore, more efforts may be required to

optimize computation offloading techniques to reduce the energy consumption.

e The wireless networks: The wireless networks impact computation offloading in
two ways. First, the wireless speed determines the communication cost of computa-
tion offloading. Second, the network coverage determines if computation offloading
can be used. Although the wireless speed increases slowly, the network coverage (e.g.,
WiFi and cellular networks) continues increasing. This trend will make computa-
tion offloading ubiquitously accessible to mobile devices and achieve more consistent

performance at different locations.

e Future applications: The development of mobile applications will also determine

the usefulness of computation offloading. As more and more sophisticated applications
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are required by mobile user for various advanced services, there are a lot of pressure
for application developers to improve the application performance. As an important
mobile computing technique, computation offloading will play an important role. In
addition, as computation offloading becomes available to application developers, they

may also consider how to better use this technique to build more powerful applications.

In summary, computation offloading is a very promising and useful technique for mobile
computing. Efforts are required to continuously address emerging challenges according to

the development trends of related techniques.
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