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SUMMARY

With the advent of unmanned aerial vehicles (UAVs), a major area of interest in the

research field of UAVs has been vision-aided inertial navigation systems (V-INS). Many

missions of UAVs—reconnaissance, damage assessment, exploration, and other guidance,

navigation, and control (GNC) tasks—often demand V-INS in more operational environments

such as indoors, hostilities, and disasters. In V-INS, inertial measurement unit (IMU) dead

reckoning generates the dynamic models of UAVs, and vision sensors extract information

about the surrounding environment and determine features or points of interest. With these

sensors, the most widely used algorithm for estimating vehicle and feature states of V-INS

is an extended Kalman filter (EKF). The design of the standard EKF does not inherently

allow for time offsets between the timestamps of the IMU and vision data, and the necessary

assumption of the EKF is Gaussian and white noise. In fact, sensor-related delays and

measurement outliers that arise in various realistic conditions are unknown parameters. A

lack of compensation of unknown parameters leads to a serious impact on the accuracy

of the navigation systems. To compensate for uncertainties of the parameters, we require

modified versions of the estimator or the incorporation of other techniques into the filter.

The main purpose of this thesis is to develop accurate and robust V-INS for UAVs,

in particular, those for situations pertaining to such unknown parameters. First, to fuse

measurements with unknown time delays, this study incorporates parameter estimation into

feature initialization and state estimation. Utilizing estimated delays and cross covariance,

online temporal calibration, called “latency-adaptive filtering,” corrects residual, Jacobian,

and covariance. In addition, feature correspondence in image processing front end rejects

vision outliers, and then a chi-squared statistic test in filtering back end detects the remaining

outliers of the vision data. For frequent outliers, variational approximation for Bayesian

inference derives how to compute the optimal noise precision matrices of the measurement

outliers. These overall processes of outlier removal and adaptation refer to as “noise-

xiv



adaptive filtering.” Even though almost all of V-INS remove outliers by their own methods,

unfortunately, few researchers have treated outlier adaptation in V-INS in great detail.

Results from flight dataset tests validate the improved accuracy of V-INS employing these

adaptive filtering frameworks.
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CHAPTER 1

INTRODUCTION

This chapter describes a clear statement of motivation and implications of problems that

we handle in this document. Next, the literature review presents a systematic overview

of what has been done and what questions remain unanswered. The next section in this

chapter articulates the purpose and contributions of this study, and the last section provides

an outline of the content of this dissertation.

1.1 Motivation

The most widely used algorithms for estimating the states of a dynamic system are a

Kalman Filter [1, 2] and its nonlinear versions (e.g., extended Kalman filter (EKF) [3,

4] and unscented Kalman filter (UKF) [5]). After the NASA Ames Research Center first

implemented the Kalman filter into the navigation computer to estimate the trajectory for

the Apollo program, engineers have developed myriad applications of the Kalman filter

in guidance, navigation, and control (GNC) research areas [6]. For example, Gaylor and

Lightsey [7] designed the GPS/INS Kalman filter for spacecraft operating in the proximity

of the international space station, and Holzinger et al. [8] developed the photometric

attitude estimator for agile space objects with shape uncertainty. Furthermore, Le Ny et al.

[9] scheduled sensor/target assignments and ran their corresponding Kalman filters to solve

an attention-control problem in continuous time. Despite the development of numerous

applications of the Kalman filter in various fields, it suffers from inaccurate estimation

when required assumptions fail.

The design of the standard Kalman filter does not inherently allow for significant sensor-

related delays in computation. Fig. 3.1 shows that the delay is the time difference between

an instant when a measurement is taken by a sensor and another instant when the measurem-
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ent is available in the filter. As an example of a delay, some complex sensors such as

vision processors for navigation often require extensive computations to obtain higher-

level information from raw sensor data. Furthermore, a closed-loop system including

control logics may be an overall computational burden to a single processing center. Delays

resulting from heavy computation may distort the quality of state estimation since a current

measurement corresponds to the past states of a system model. In other words, unless

compensating delays in Kalman filtering, large estimation errors may accumulate over time.

The delay value is typically unknown and variable in many real applications. For

example, even though a local clock is initially forced to synchronize with the centralized

clock, deviations between clocks would occur because of clock drift, skew, or bias. In

sensor fusion systems, when the timestamps of each sensor are typically recorded by

triggered signals, non-deterministic or non-quantized transmission delays lead to unknown

time offsets on sensor streams. Moreover, if low-cost sensors such as rolling shutter

cameras or software triggered devices are mounted on a vehicle, variance of the uncertainty

of timestamps might be larger. In particular, in vision-aided inertial navigation, since

a camera does not have its essential clock, we do not know exact time instants when a

camera opens and captures images. Exposure time depends on surrounding illumination

conditions. The timestamp of a latest grabbed image by some cameras corresponds to

the time at which the entire image was available in the memory of a host computer. As

such, the timestamps ignore the communication delays that are not precisely known. In

fact, when estimating faster motions or using progressive scan cameras, the unknown

time delays may worsen the navigation quality. Without calibrating unknown latency in

filtering, we cannot guarantee the reliability of the navigation algorithm in practice. In fact,

according to an anecdote from our research flying, we observed the necessity of the time

delay compensation to be correct for a UAV in flight flying closed loop on the vision-based

solution; for, otherwise, we can end up with oscillations that badly exacerbate time delay

errors. For example, when a UAV maneuvers with rapid rotation, the bigger time errors
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produce the larger position estimation errors. Thus, for reliability, an adaptive filtering

technique is required to deal with unknown time delays.

The estimation of the Kalman filter is optimal when process and measurement noise are

Gaussian. However, sensor measurements are often corrupted by unmodeled non-Gaussian

or heavy-tailed noise. An abnormal value relative to an overall pattern of the nominal

Gaussian noise distribution is called an outlier. In other words, in statistics, an outlier

is an observation that deviates so much from other observations as to arouse suspicion

that it is generated by a different mechanism [10]. Such outliers have many anomalous

causes. They arise due to unanticipated changes in system behavior (e.g., temporary sensor

failure or transient environmental disturbance) or unmodeled factors (e.g., human errors

or unknown characteristic of intrinsic noise). As an example of measurement outliers in

many navigation systems, either computer vision data contaminated by outliers or sonar

data corrupted by phase noise lead to erroneous measurements. Process outliers also

occur by chance. Inertial measurement unit (IMU) dead reckoning and wheel odometry

as a proxy often generate inaccurate dynamic models in visual inertial odometry (VIO)

and simultaneous localization and mapping (SLAM) algorithms, respectively. Without

accounting for outliers, the accuracy of the estimator significantly degrades, and control

systems that rely on high-quality estimation lose stability.

1.2 Related Work

This section reviews the literature pertaining to sensor-related delays and outliers in state

estimation including V-INS.

1.2.1 Vision-Aided Inertial Navigation

In recent years, an increasing demand for the research of unmanned aerial vehicles (UAVs)

has prompted substantial interest in vision-aided inertial navigation systems (V-INS) [11,

12, 13]. Delmerico and Scaramuzza [14] provide a benchmark comparison of monocular

3



visual inertial odometry (VIO) algorithms for flying robots. Similar to their comparison,

Table 1.1 illustrates state-of-the-art VIO techniques even including stereo VIO. Let us

explain some relevant terminologies for clarity. VIO uses only data from an IMU and

camera vision, but V-INS can fuse other sensors such as altimeters, compass, and GPS

with VIO. The tightly-coupled V-INS jointly optimize over all sensor measurements (i.e.,

visual and inertial cost terms in VIO) which results in higher accuracy. The opposite refers

to as loosely coupled.

Table 1.1: State-of-the-art Visual Inertial Odometry

Name ROVIO
[15]

VINS-
MONO

[16]

SVO
+MSF
[17]

Alternati-
ng Stereo

VINS
[18]

S-
MSCKF

[19]

OKVIS
[20]

Year 2015
IROS

2017 2016 2018
CVPR

2018
ICRA

2015

Monocular × × ×
Stereo × × ×
Indirect × × × ×
Semi-direct ×
Direct ×
Loosely Coupled ×
Tightly Coupled × × × × ×
Optimization-based × ×
Filtering-based × × × ×
Open-source × × × × ×

VINS-MONO [16, 21] is optimization-based visual SLAM including loop closure.

Some processes in this approach is not efficient. VINS duplicates integration with same

IMU data at different timestamps for prediction and optimization purposes. That is, for

publishing odometry at IMU rate, it integrates whenever IMU data arrived, whereas IMU

data are also accumulated in a buffer for batch processing of integration at the time of image

measurement update steps. Mourikis first introduced a multi-state constraint Kalman filter

(MSCKF) [22, 23] and Sun et al. [19] recently provided its stereo version. Although the

real-time high frequency VIO outputs might be crucial for UAV attitude control, MSCKF
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does not publish the odometry at the IMU rate but at the image rate. Furthermore, batch

processing for IMU data integration in MSCKF may add redundant time delays to the filter

when vision measurements are available. VINS-MONO and IMU are adequate to only

IMU and vision fusion. If we fuse other sensors such as GPS and altimeters in navigation

systems, those approaches may not be operable since measurements from other sensors

are available to update between images and assumptions for IMU pre-integration between

key frames and backward propagation with loop closure in their approaches does not hold.

Hence, the EKF-based V-INS frameworks cover more scopes of sensor fusion.

Faessler et al. [17] combined semi-direct visual odometry [24, 25] with modular multi-

sensor fusion [26]. Even though this approach uses IMU data for fusing, since it is loosely

coupled, its results are suboptimal. Paul et al. [27, 18] recently proposed alternating

stereo V-INS that requires computation comparable to monocular V-INS yet provides scale

information from the visual observations. However, this method may be not sufficient for

tracking fast motions in low-latency demanding applications. Since the implementation is

not open-sourced, this is not used for comparison. Leutenegger et al. [20] introduced a

consistent keyframe-based stereo SLAM algorithm that performs nonlinear optimization

over both visual and inertial cost terms. To maintain the sparsity of the system, their

approach employs the some approximation rendering sub-optimal. Since it requires much

computation resource or specific levels of sensors such as industrial grade IMUs, operating

OKVIS in real-time is more challenging. Among six algorithms in Table 1.1, only S-

MSCKF handles an unknown latency and only SVO+MSF deeply considers outlier rejection.

Hence, I will use their estimation results as prior work in comparisons to this study.

When we use sensors in V-INS, their numerous unknown parameters affect the navigation

solution. Chapter 1.1 introduced the significance of sensor-related unknown delays and

outliers. A few among the above state-of-the art VIO have extended to investigate the

unknown time delays of vision data, and Section 1.2.2 will present the details of the

extensions. However, in fact, few researchers have treated noise-adaptive filtering for V-
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INS in great details. Instead, Section 1.2.3 will explore how to handle outliers in general

filtering areas.

1.2.2 State Estimation Using Time-Delayed Measurements

In a number of applications, a vital problem for combining data from various sensors

is the fusion of delayed observations, and if the computational delay is crucial, fusing

the data in a Kalman filter is challenging. During the last 20 years, the sensor time-

delay problem have been solved by a number of methods, most of which modify the

Kalman filter so that it handles delay in the sensor fusion algorithm. Alexander [28]

derived a method of calculating a correction term and then added it to filter estimates when

lagged measurements arrive. However, because the uncertainty of measurements is often

an unknown quantity until the data are processed, applying the method in time-varying

systems is impossible. To overcome the shortcoming of Alexander’s method, Larsen et

al. [29] extrapolated a measurement to a current time using the past and present estimates

of the Kalman filter and calculated an optimal gain for this extrapolated measurement.

However, Larsen’s approach is exact for only linear systems, but if the system dynamics

and measurement equations are significantly nonlinear, it can be highly inaccurate. For

optimally fusing lagged sensor data in a general nonlinear system, Van Der Merwe et

al. [30, 31] introduced a new technique called “sample-state augmentation,” based on the

Schmidt-Kalman filter [32] or the stochastic cloning [33]. Appendix C provides detailed

background information about the new technique. Lastly, Gopalakrishnan et al. [34]

provided a survey of all previously noted methods.

Unknown Time Delays

All of the above methods assume that the amount of delay is known. As an illustration,

those methods only work with a few strictly hardware synchronized sensors. However,

the hardware synchronization of most low-cost or customized sensors is not available.
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Moreover, situations in which a current, accurate time delay might not be known can

arise in real applications. To deal with the unknown time delays, Julier and Uhlmann [35]

introduced the covariance union algorithm, and Sinopoli et al. [36] modeled the arrival of

intermittent observations as a random variable with a probability. In addition, Choi et al.

[37] and Yoon et al. [38] augmented a state vector with as many past states as the maximum

number of delayed steps. The size of this augmented state vector is extremely large, and

calculations with the large-size vector might require additional extensive computational

effort. Recently, for the uncertainty of time delays in state estimation, Lee and Johnson [39]

also suggested an approach combined with multiple-model adaptive estimation. However,

because of imperfect information on a certain range of the delay value, this method might

not be suitable if too many models are candidates with delay values.

Instead, we directly estimate the time delay as an additional state since augmentation is

a straightforward means of handling unknown delay. Nilsson et al. [40] investigated this

idea using Taylor series expansion for small delays. However, delay values are typically

larger than a time step, and the linearization in their approach does not hold for large

delays. Li and Mourikis [41] also examined the state augmentation for estimating an

unknown time offset between the timestamps of two sensors. However, their approach

is not optimal since it performs the measurement update of delayed sensor data without

the covariance correction that uses the cross-covariance term computed during the delay

period. Furthermore, in the recent optimization-based method proposed by Qin and Shen

[42], if cameras move at non-constant speed during the short time period like progressive

scan cameras, then their assumption does not hold any longer. Despite the short time period,

the camera coordinate frame is still changing and moving. Their another assumption in

which the time offset is a constant variable is also not general since the unknown delay may

be varying. Even though their analysis is meaningful, the purpose of the online temporal

calibration is calibrating the existing time offsets whose some parts are possibly uncertain.

However, to validate their proposal, they forced to adjust the timestamps of datasets and
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defined the adjustment as time offsets, but this newly defined time offsets can be different

from the really existing time offsets of the datasets. To overcome all previously noted

drawbacks, Chapter 3 proposes a novel approach, “latency-adaptive filtering” based on the

combined parameter-state estimator [43, 44].

1.2.3 State Estimation for Measurements with Outliers

Since the performance of the Kalman filter degrades at the presence of measurement outliers,

many researchers have investigated other approaches to mitigate the impact of outliers.

Mehra [45] created adaptive filtering with the identification of noise covariance matrices

and showed the asymptotic convergence of the estimates towards their true values. Maybeck

[46] and Stengel [47] found other noise-adaptive filtering such as covariance matching.

However, all of these filters performed only offline and required filter tuning. To estimate

parameter values in unknown covariances without the need for manual parameter tuning,

Ting et al. [48] used a variational expectation-maximization (EM) framework. That is,

they introduced a scalar weight for each observed data sample and modeled the weights

to be Gamma distributed random variables. However, it assumed that noise characteristics

are homogeneous across all measurements even though sensors have distinct properties.

Särkkä and Nummenmaa [49] provided the online learning of the parameters of the measur-

ement noise variance, but to simultaneously track the system states and the levels of sensor

noise, they additionally defined a heuristic transition model for the noise parameters. Piché

et al. [50] developed Gaussian assumed density filtering and smoothing framework for

nonlinear systems using the multivariate Student t-distribution, and Roth et al. [51] included

an approximation step for heavy tailed process noise, but this filter are not applicable in

high dimensions. Next, Solin and Särkkä [52] found that the added flexibility of Student-t

processes over Gaussian processes robustifies inference in outlier-contaminated noisy data,

but they treated only analytic solutions enabled by the noise entanglement.

Recently, Agamennoni et al. developed the outlier robust Kalman filter (ORKF) [53,
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54] to obtain the optimal precision matrices of measurement outliers by variational approxi-

mation for Bayesian inference [55]. However, this method requires iterations at every

time, even when observed data contain no outliers. Graham et al. also established the

`1-norm filter [56] for both types of sparse outliers. However, the filter might not work

for nonlinear systems since they derived the constraint of `1-norm optimization based on

only linear system equations. Similar to the ORKF, the `1-norm filter needs the constrained

optimization at all times, even when no additional noise present as outliers. Hence, these

two approaches demand some extensive computational complexity for either iterations or

optimization. Since outliers do not always arise (i.e., are rare), we reduce such computation

cost if a tests detect the time when outliers occur. All of the above methods were not

validated for complicated systems such as unmanned aerial vehicles or vision-aided inertial

navigation including the sequential measurement update.

Outlier Rejection Techniques

One of the primary problems in VIO is incorrect data associations. Matched features

between two different camera views are corrupted by outliers because of image noise,

occlusions, and illumination changes that are not modeled by the feature matching techniqu-

es. To provide cleaned measurement data to the filter, outlier removal in image processing

front end is essential. One of standard outlier rejection techniques is RANdom SAmple

Consensus (RANSAC) [57]. RANSAC is an iterative approach to estimate the parameters

of a mathematical model from a set of observed data contaminated by outliers. An underlyi-

ng assumption is that the data consists of inliers whose distribution is explained by some

set of the model parameters and outliers that do not fit the model. The generated parameters

are then verified on the remaining subset of the data, and the model with the highest

consensus is a selected solution. In particular, 2-point RANSAC [58, 59] is an extended

RANSAC-based method for two consecutive views of a camera rigidly mounted on a

vehicle platform. Given gyroscopic data from IMU measurements, randomly selected two
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feature correspondences hypothesize an ego-motion of the vehicle. This motion constraint

discards wrong data associations in the feature matching processes.

For detecting remaining outliers that were not rejected in image processing front end,

outlier detection tests are required in filtering back end. Most of statistical tests [60] that

require access to the entire set of data samples for detecting outliers might not be a viable

option in real-time applications. For example, the typicality and eccentricity data analysis

(TEDA) [61, 62, 63] used in [64] is an inadequate measure in V-INS since computing

the means and variances of each residual of sequential measurements is challenging. The

tracking of some feature measurements is possibly lost due to out of sight and new feature

measurements are coming for initialization.

For the real-time outlier detection of sequential measurements in V-INS, the Mahalanob-

is gating test [65] is a useful measure based on the analysis of residual and covariance

signals at each feature measurement. The approach builds upon each Mahalanobis distance

[66] of residuals and compares its value against a threshold given by the quantile of the

chi-squared distribution with degrees of freedom. The confidence level of the threshold

is designated prior to examining the data. Most commonly, the 95% confidence level is

used. This hypothesis testing, called goodness of fit, is a commonly used outlier detection

method in practice. Because of such suitability of the Mahalanobis gating test to real-

time detection in V-INS, this thesis combined the test with outlier robust EKF (ORKF)

[53, 64] to detect and handle measurement outliers in vision-aided estimation problems.

Similar to the derivation of update steps for handling measurement outliers in the ORKF,

for computing the optimal precision matrices of unmodeled outliers in V-INS, Chapter 4

will derive feasible update procedures by variational inference. In other words, whenever

unexpected outliers appear, the noise-adaptive filtering in Chapter 4 updates and marginaliz-

es measurement outliers to improve robustness of the navigation systems.
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1.3 Summary of Contributions

This thesis presents several adaptive and robust estimation solutions for vision-aided inertial

navigation systems (V-INS) and evaluates their performance with flight datasets testing. For

problem statements, the objectives of this thesis are as follows:

• Development of a practical EKF-based V-INS accounting for vehicle-feature correlat-

ions.

• Development of tightly coupled visual inertial odometry (VIO) for autonomous flight

of UAVs.

• More precise definition of time delays of vision data measurements in V-INS.

• Development of a reliable and accurate filtering formulation for measurements with

unknown time delays.

• Improved utilization of outlier removal techniques in image processing front end.

• Development of a robust and adaptive state estimation framework for V-INS under

frequent outliers occurrence.

• Test of the performance of V-INS employing the adaptive filtering algorithms in the

benchmark flight datasets for comparison to other state-of-the-art VIO algorithms.

• Validation of improved accuracy of V-INS employing the latency-adaptive filtering

in the fast motion flight dataset.

• Validation of improved accuracy of V-INS employing the noise-adaptive filtering in

the motion blur flight dataset.

This research is conducted within the following scope.
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• We handle only unknown time offsets between the timestamps of the IMU and vision

sensor data. However, if V-INS fuse another sensor, its unknown time delays may be

investigated by the similar way of this study.

• Similar to global shutter cameras, all features from one image have one delay value.

However, if relaxing the assumption, we might solve rolling shutter effects by augme-

nting more state variables regarding multiple unknown delays.

• The unknown part of time delays are static or varying slowly.

• We solve for the situation in which only independent and identically distributed (IID)

measurement outliers occur.

• We assume that two unknown parameters—time-delayed measurements and outliers—

are independent although they can occur together. Hence, each uncertainty of the

unknown parameters generates each distinct adaptive estimation problem.

Starting from the architecture of the existing navigation system, this dissertation focuses

on contributing the development of red boxes in Figure 1.1.

1.4 A Guide to This Document

The remainder of this document contains the following chapters. Chapter 2 introduces

background for all of this study. To estimate unknown time delays and the states of V-

INS, Chapter 3 presents a novel combination of the parameter-adaptive filtering technique

with the modified EKF that compensates delayed measurements. To estimate the states of

V-INS in which frequent outliers arise, Chapter 4 examines outlier rejection techniques in

image processing front end and formulates a novel implementation of robust noise-adaptive

filtering. The last chapter concludes and plans future work.
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Figure 1.1: A Block Diagram of the Vision-Aided Inertial Navigation System Employing
Adaptive Filtering
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CHAPTER 2

PRELIMINARIES

This chapter provides background for chapters that follow. The first section presents an

overview of the EKF that forms the basis of all proposed adaptive filters in this thesis. The

next sections introduce the vehicle model for state propagation and the camera model for

measurement update in the filters, respectively.

2.1 The Extended Kalman Filter

The system equations with continuous-time dynamics and a discrete-time sensor are as

follows:

ẋ(t) = f(x(t), η(t) ) +Bu u(t) (2.1)

y(tk) = h(x(tk) ) + ζ(tk), (2.2)

where x ∈ Rn is the state, u ∈ Rl a control input, and y ∈ Rm a measurement. f(·)

and h(·) are the nonlinear dynamic and measurement functions, respectively, and Bu is

the input matrix. Let’s assume that these functions are known based on each equation of

motion and modeling. To clarify, t denotes continuous time, subscript k represents the

k-th time step, and initial condition x(0) = x0 is given. Moreover, let’s assume that both

propagation and measurements are corrupted by additive zero-mean white Gaussian noise;

that is, η(t) ∼ N (0, Q(t)) and ζ(tk) ∼ N (0, R(tk)).

2.1.1 Time Update

To estimate the state variables of the system, we design a hybrid EKF in the following

steps. In the propagation step, state estimate x̂ := E[x] and its error-covariance P :=
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E[ (x− x̂)(x− x̂)T ] are integrated from time (k−1)+ to time k− with respect to variable τ

˙̂xk−1 = f(x̂+
k−1) +Bu uk−1 (2.3)

x̂−k = x̂+
k−1 +

∫ tk

tk−1

˙̂x(τ) dτ ' x̂+
k−1 +

(
3

2
˙̂xk−1 −

1

2
˙̂xk−2

)
∆tk−1, (2.4)

where ∆tk−1 = tk − tk−1, let x̂k = x̂(tk) and uk = u(tk). Hat “ˆ” denotes an estimate,

and superscript − and + a priori and a posteriori estimates, respectively. Here, for one

numerical solution of the ordinary differential equation, the Heun’s method [67] that refers

to the improved Euler’s method or a similar two-stage Runge–Kutta method is used. Jacobian

A, B and state transition matrix Φ are defined by

Ak−1 =
∂f(x)

∂x

∣∣∣∣
x̂+
k−1

, Bk−1 =
∂f(x)

∂η

∣∣∣∣
x̂+
k−1

(2.5)

Φk−1 = exp(Ak−1 ∆tk−1) ≈ I + Ak−1 ∆tk−1. (2.6)

Letting Pk = P (tk) and Qk = Q(tk), the time update of error covariance is

P−k = Φk−1 P
+
k−1 ΦT

k−1 +Bk−1Qk−1B
T
k−1 ∆tk−1. (2.7)

2.1.2 Measurement Update

Using actual sensor measurements, the measurement update step of the EKF corrects state

estimate and its corresponding error covariance after propagation. Letting yk = y(tk) and

Rk = R(tk), at every time k,

Kk = P−k C
T
k (CkP

−
k C

T
k +Rk )−1 (2.8)

x̂+
k = x̂−k +Kk ( yk − h(x̂−k ) ) (2.9)

P+
k = P−k −KkCkP

−
k , (2.10)
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Figure 2.1: A Schematic of the Sequential Measurement Update

where K is called the Kalman gain and Jacobian C is defined as

Ck =
∂h(x)

∂x

∣∣∣∣
x̂−k

. (2.11)

Equation (2.10) is the Joseph’s form [68] of the covariance measurement update, so this

form preserves its symmetry and positive definite. For more details such as optimality and

derivation, see references [69, 70].

2.1.3 Sequential Kalman Filter

When myriad measurements are observed at one time, sequential Kalman filtering is useful.

In fact, we obtain N measurements, y1, y2, · · · , yN , at time k; that is, we first measure y1,

then y2, · · · , and finally yN , shown in Figure 2.1.

We first initialize a posteriori estimate and covariance after zero measurement is processed;

that is, they are equal to the a priori estimate and covariance. For i = 1, · · · , N , perform the

general measurement update using the i-th measurement. We lastly assign the a posteriori
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estimate and covariance as

(x̂k)0 ← x̂−k , (Pk)0 ← P−k (2.12)

(x̂k)1 = (x̂k)0 +K1 (y1 − h1 ((x̂k)0)) , (Pk)1 = (Pk)0 −K1(C1)k (Pk)0 (2.13)

...

(x̂k)j = (x̂k)j−1 +Kj

(
yj − hj

(
(x̂k)j−1

))
, (Pk)j = (Pk)j−1 −Kj (Cj)k (Pk)j−1

(2.14)

...

x̂+
k ← (x̂k)N , P+

k ← (Pk)N . (2.15)

Since Simon [69] proved that the sequential Kalman filtering is equivalent formulation of

the standard EKF, the order of updates does not affect overall performance of estimation.

2.2 Vehicle Model

The nonlinear dynamics of a vehicle is driven by raw inertial measurement unit (IMU)

sensor data including specific force and angular velocity inputs. Figure 2.2 illustrates the

key reference frames used in this document: the inerial frame i, the vehicle body frame

b, and the camera frame c. In general, the origins of the IMU sensor frame and the body

frames are in different locations, but for simplicity of presentation, we assume that they are

co-located.

The vehicle state is given by

x̂V =

[
ip̂T
b/i

iv̂T
b/i δθ̂

T
b̂T
a b̂T

ω

]T

, (2.16)

where pb/i, vb/i are the position and velocity of the vehicle with respect to the inertial frame,

respectively. δθ is the error quaternion of the attitude of the vehicle, and its more details

will be explained in Equations (2.27) – (2.28) or references [71, 72, 73]. ba, bω are the

17



Figure 2.2: A Schematic of the Key Reference Frames

acceleration and gyroscope biases of the IMU, respectively. Left superscript i denotes a

vector expressed in the inertial frame. The EKF propagates the vehicle state vector by

dead reckoning with data from the IMU. Raw IMU sensor measurements araw and ωraw are

corrupted by noise and bias as follows:

araw = atrue − Tb/i ig + ba + ηa, ḃa = ηba (2.17)

ωraw = ωtrue + bω + ηω, ḃω = ηbω , (2.18)

where atrue, ωtrue are the true acceleration and angular rate, respectively, and g is the gravitational

acceleration in the inertial frame. ηa, ηω are zero-mean, white, Gaussian noise of the

accelerometer and gyroscope measurement, and ηba , ηbω are the random walk rate of the

acceleration and gyroscope biases. The rotation matrix from the inertial frame to the body

frame denotes Tb/i = Ti/bT.
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The vehicle dynamics is given by

i ˙̂pb/i = iv̂b/i (2.19)

i ˙̂vb/i = T̂i/b ( araw − b̂a ) + ig (2.20)

˙̂qi/b′ =
1

2
Q(ωraw − b̂ω ) q̂i/b′ (2.21)

δ
˙̂
θ = −

⌈
(ωraw − b̂ω )×

⌋
δθ̂ (2.22)

˙̂
ba = 0 (2.23)

˙̂
bω = 0, (2.24)

where a skew symmetric matrix is defined

dα×c =
⌈

[α1 α2 α3]T×
⌋

=


0 −α3 α2

α3 0 −α1

−α2 α1 0

 , (2.25)

so functionQ(·) maps a 3 by 1 vector of the angular velocity into a 4 by 4 matrix as follows:

Q(ω) =

0 −ωT

ω −dω×c

 . (2.26)

The use of the 4 by 1 quaternion representation in state estimation causes the covariance

matrix to become singular, so it requires considerable accounting for the quaternion constraints.

To avoid these difficulties, engineers developed the error-state Kalman filter in which 3 by

1 infinitesimal error quaternion δθ is used instead of 4 by 1 quaternion q in the state vector.

In other words, we use attitude error quaternion δqb/b′ to express the incremental difference

between tracked reference body frame b′ and actual body frame b for the vehicle, shown in
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Figure 2.3.

qi/b = q̂i/b′ ⊗ δqb′/b (2.27)

δqb′/b = q̂−1
i/b′ ⊗ qi/b '

 1

1
2
δθ

 (2.28)

Resulting rotation matrices with error quaternion and with respect to the nominal reference

Figure 2.3: Definition of an Attitude Error Quaternion

body frame are

T (qi/b) = T̂b/i = T̂b/b′ T̂b′/i (2.29)

T̂i/b′ = T̂ T
b′/i = T (q̂i/b′)

T (2.30)

T̂b′/b = T̂ T
b/b′ '

(
I + [δ̂θ×]

)T

. (2.31)
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Jacobian matrix A = ∂ ẋ
∂ x
|x̂ and B = ∂ ẋ

∂ η
, where η = [ ηT

a , η
T
ω , η

T
ba
, ηT
bω

]T, are computed

A =



0
∂ i ˙̂pb/i
∂ iv̂b/i

0 0 0

0 0
∂ i ˙̂vb/i

∂ δθ̂

∂ i ˙̂vb/i

∂ b̂a
0

0 0 ∂ δ
˙̂
θ

∂ δθ̂
0 ∂ δ

˙̂
θ

∂ b̂ω

0 0 0 0 0

0 0 0 0 0


, B =



0 0 0 0

∂ i ˙̂vb/i
∂ ηa

0 0 0

0 ∂ δ
˙̂
θ

∂ ηω
0 0

0 0 ∂ ḃa
∂ ηba

0

0 0 0 ∂ ḃω
∂ ηbω


(2.32)

∂ i ˙̂pb/i
∂ iv̂b/i

= I3×3,
∂ i ˙̂vb/i

∂ δθ̂
= −T̂i/b′

⌈
( araw − b̂a )×

⌋
,

∂ i ˙̂vb/i

∂ b̂a
= −T̂i/b,

∂ δ
˙̂
θ

∂ δθ̂
= −

⌈
(ωraw − b̂ω )×

⌋
,

∂ δ
˙̂
θ

∂ b̂ω
= −I3×3,

∂ i ˙̂vb/i
∂ ηa

= −T̂i/b,
∂ δ

˙̂
θ

∂ ηω
= −I3×3,

∂ ḃa
∂ ηba

= I3×3,
∂ ḃω
∂ ηbω

= I3×3,

where for more detailed derivations, see a reference [74].

2.3 Camera Model

An intrinsically calibrated pinhole camera model depicted in Figure 2.4 is given by

uj
vj

 = yj = hj (x) + ζj =

fu cXjcZj
+ ζuj

fv
cYj
cZj

+ ζvj

 (2.33)

[
cXj,

cYj,
cZj

]T

= cpfj/c = Tc/i
(
ipfj/i − ipc/i

)
= Tc/b T

(
qi/b
) (

ipfj/i − ipb/i
)
− Tc/b bpc/b (2.34)

where measurement yj is the j-th feature 2D location on the image plane. fu, fv are the

horizontal and vertical focal lengths, respectively, and ζu, ζv are additive, zero-mean, white,

Gaussian noise of the measurement. Vectors pfj/c, pfj/i defined in Figure 2.2 are the j-th

feature 3D position with respect to the camera frame and the inertial frame, respectively.

Extrinsic parameter Tc/b and bpc/b are known and constant, and rotation matrix T̂c/i =
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Figure 2.4: A Schematic of the Camera Model.

Tc/b T̂b/b′ T̂b′/i.

Jacobian matrix Cj =
∂ yj
∂ x
|x̂ is computed as follows:

Cj =

[
∂ yj
∂ ip̂b/i

0
∂ yj

∂ δθ̂
0 0

∣∣ 0 · · · ∂ yj
∂ ip̂fj/i

· · · 0
]

(2.35)

∂ yj
∂ ip̂b/i

=

(
∂ yj

∂ cp̂fj/c

)
(−T̂c/i),

∂ yj
∂ ip̂fj/i

= − ∂ yj
∂ ip̂b/i

, (2.36)

∂ yj

∂ δθ̂
=

(
∂ yj

∂ cp̂fj/c

)
Tc/b

⌈
b′ p̂fj/b×

⌋
(

∂ yj
∂ cp̂fj/c

)
=

1
cẐj

fu 0 −fu
cX̂j
cẐj

0 fv −fv
cŶj
cẐj

 , (2.37)

where for more detailed derivations, see a reference [74].

2.3.1 Feature Initialization

From Equation (2.34), if j-th measurement yj on an image is a new feature, then ipfj/i is

unknown so need to be initialized. In the first step of the measurement update, we employ

Gauss-Newton least-squares minimization [75, 22] to estimate feature 3D position ip̂fj/i.

To avoid local minima, we apply the inverse depth parameterization of the feature position

[76] that is numerically more stable than the Cartesian parameterization.

We assume that the intrinsic and extrinsic parameters of a stereo camera are known and
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constant values. c1, c2 frames are the left and right camera frame of the stereo, respectively.

Since the baseline of the stereo is fixed, rotation Tc2/c1 and translation c2pc1/c2 between

both cameras are constant and known values. Feature coordinates c[X, Y, Z]T with respect

to both cameras are

c2pfj/c2 = Tc2/c1 c1pfj/c1 + c2pc1/c2 (2.38)[
c2Xj

c2Yj
c2Zj

]T

= Tc2/c1
[
c1Xj

c1Yj
c1Zj

]T

+ c2pc1/c2 (2.39)

= c1Zj

 Tc2/c1

c1Xj
c1Zj
c1Yj
c1Zj

1

+
1

c1Zj
c2pc1/c2

 (2.40)

= c1Ẑj

 Tc2/c1

ûj,1 /fu1

v̂j,1 /fv1

1

+
1

c1Ẑj

c2pc1/c2

 . (2.41)

Simplifying Equation (2.41),


c2Xj

c2Yj

c2Zj

 = c1Ẑj



mx

my

mz

+
1

c1Ẑj


trx

try

trz


 , (2.42)

wheremx,my, andmz are scalar functions of given j-th measurement and constant extrinsic

rotation matrix. Based on Equation (2.33), since measurement equations from the stereo

camera are

yj =



fju1

vj1

u2j

2vj


=



fu1

c1Xj
c1Zj

fv1

c1Yj
c1Zj

fu2

c2Xj
c2Zj

fv2

c2Yj
c2Zj


+ ζj,
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right c2 camera measurements are expressed in Ax = b form.

ûj,2 /fu2

v̂j,2 /fv2

 =

mx + ( trx / c1 Ẑj )

mz + ( trz / c1 Ẑj )

my + ( try / c1 Ẑj )

mz + ( trz / c1 Ẑj )

 (2.43)

mx − (ûj,2 /fu2)mz

my − (v̂j,2 /fv2)mz

 c1Ẑ =

(ûj,2 /fu2) trz − trx

(v̂j,2 /fv2) trz − try

 , (2.44)

where let

x = c1Ẑ, A =

mx − (ûj,2 /fu2)mz

my − (v̂j,2 /fv2)mz

 , b =

(ûj,2 /fu2) trz − trx

(v̂j,2 /fv2) trz − try

 . (2.45)

Hence, Gauss-Newton least-squares minimization estimates depth c1Z of left c1 camera

using the pseudo-inverse of A:

Ax = b ⇒ (AT A)x = AT b ⇒ x̂ = (AT A)−1AT b.

If either estimated depth c1Ẑ or c2Ẑ is negative, the solution of the minimization is

invalid since the feature is always in front of both camera frames observing it. By substituting

estimated c1Ẑ into Equation (2.41),

c1 p̂fj/c1 =

[
(ûj,1 /fu1) c1Ẑ ((v̂j,1 /fv1) c1Ẑ c1Ẑ

]T

, (2.46)

where p̂fj/c is not related to the pose of the vehicle. Likewise, if a monocular camera is

used instead, c1 is the camera frame in which the feature was observed at the first time, and

c2 is the camera frame at a different time instance.
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The j-th feature 3D position with respect to the inertial frame is

ip̂fj/i = T̂i/c1 c1 p̂fj/c1 + ip̂c1/i

= T̂i/b Tb/c1 c1 p̂fj/c1 +
(
ip̂b/i + T̂i/b bpc1/b

)
= T̂i/b′ T̂b′/b

(
Tb/c1 c1 p̂fj/c1 + bpc1/b

)
+ ip̂b/i. (2.47)

The new feature is initialized using only one image in which the feature is first observed.

Although the new feature is initialized, since it still entails uncertainty, the EKF recursively

estimates and updates its 3D position by augmenting into the state vector.

x̂ =

[
x̂T
V

ip̂T
fj/i

]T

, (2.48)

where x̂V is the vehicle state vector defined in Equation (2.16). The overall initialization

includes the initial value of the feature state and its error covariance assignment. The error

covariance of the new feature are initialized using state augmentation with Jacobian J .

P ∗

∗ ∗

 =

I
J

P [I JT

]
=

 P P JT

J P JPJT + Pfnew

 , (2.49)

where Jacobian J =
∂ pf/i
∂ x

∣∣
x̂

is computed as follows:

J =

[
I3×3 03×3 −T̂i/b′

⌈
( Tb/c1c1 p̂fj/c1 + bpc1/b )×

⌋
03×6

∣∣0 · · ·] . (2.50)

Pfnew is own uncertainty of the initialized new feature. The error pertains to measurement

noise and the error of the least-squares minimization and so on. In fact, since Montiel et al.

[76] validate that the initial uncertainty is coded as Gaussian, the EKF including the feature

initialization still holds optimality.

Once initialized, the EKF processes the feature state in the prediction-update loop. In
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the time update of the EKF, we propagate P by Equation (2.7).

Φ 0

0 I


Pvv Pvf

Pfv Pff


ΦT 0

0 I

+

Qv 0

0 Qff

 =

ΦPvv ΦT +Qv ΦPvf

Pfv ΦT Pff +Qf

 ,
(2.51)

where state transition matrix Φ ≈ I + A∆t. In addition, we assume that surrounding is

static, so the dynamics of features ˙̂pfj/i = 0. In the measurement update of the EKF, only

tracked features are used for the update. For the efficient management of the map database,

if the size of the state vector exceeds than the maximum limit, then the feature with the

least number of observations is pruned and marginalized.
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CHAPTER 3

LATENCY-ADAPTIVE FILTERING FOR MEASUREMENTS WITH UNKNOWN

TIME DELAYS

To fuse measurements of vision data with unknown time delays, this chapter incorporates

three correction techniques into state estimation. Similar to the combined parameter-state

estimator [43], we directly estimate the unknown part of the delay value as an additional

state and simultaneously obtain refined state estimates in the modified Kalman filter that

corrects Jacobian, residual, and covariance for compensating of delayed measurements.

Testing results of this study on flight dataset show that this approach is more reliable than

the existing other approaches for state estimation using measurements with unknown time

delays.

3.1 Definition of Time Delays

Based on dead reckoning, the EKF propagates state x and its error covariance P at time t

when IMU sensor data araw and ωraw are measured. Since an IMU is a discrete-time sensor,

the time update of the EKF is processed in discrete time step k = (integer) (t /∆ tIMU),

where continuous time t ∈ [0, tfinal] and ∆ tIMU is the sampling rate of the IMU. ∆ tIMU is

generally almost constant since a micro controller such as Arduino and Pixhawk calculates

precise timestamps in millisecond for each IMU measurement. Next, whenever a new

vision data from an image are arrived at the filter, the EKF performs the measurement

update for correcting the state estimate and its error covariance. As introduced in Section 1.1,

various reasons such as image processing produce time delays that the time stamps of vision

data contain. For clarity, this section defines the latency in details.

Latency is the time difference between when an image was grabbed and when vision

data from the image are updated in the filter, shown in Figure 3.1. That is, true delays ∆ td
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Figure 3.1: Data Streams of the IMU and the Delayed Vision Data

is written as

t = timg + ∆ td, (3.1)

where t is current IMU time and timg is the time when current image was captured. Since

cameras do not equip with clock, we do not know exact time when images are grabbed. The

timestamps of each image are encoded by indirect ways such as triggers. In other words,

true image time timg constitutes readable timestamps timg, raw and unknown δtd such as clock

bias and drift. Let us define time differences ∆ t̄d between the time readouts of sensors as

follows:

timg, raw = timg + δtd (3.2)

∆ t̄d := t− timg, raw = ∆ td − δtd (3.3)

∆ td = ∆ t̄d + δtd, (3.4)

where ∆ t̄d and δtd are the approximately known and the unknown parts of true delays td,

respectively.
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3.2 Approximately Known Part of Time Delays

∆ t̄d is either a fixed value determined by offline beforehand tuning or readable differences

between the time stamps of image and the time stamps of IMU data. Indeed, regardless of

a constant value or readable varying delays, approximate delay ∆ t̄d is a known value. Let

the discrete steps of the approximately known part be d = (integer) (∆ t̄d /∆ tIMU), where

(integer) means type conversion to integer from other types; that is, d is the quotient of

division ∆ t̄d
∆ tIMU

.

3.2.1 Jacobian and Residual - “Baseline Correction”

Since δtd is unknown, we first consider the only ∆ t̄d term as delays of the system. From the

system models given in Sections 2.2 and 2.3, only measurements from the camera model

depend on the time delays. To correct Jacobian and residual with approximately known

delays, interpolation and quaternion slerp are required.

Interpolation

Since k − d 6= (integer)
(
t−∆ t̄d
∆tIMU

)
, we define new time notation [ k − d̄ ] as

[ k − d̄ ] :=
timg, raw

∆tIMU
=
t−∆ t̄d
∆tIMU

.

When time [ k − d̄ ] is expressed at subscript (e.g., x[ k−d̄ ], P[ k−d̄ ]), we will use the shorthand

notation without [ ] (e.g., xk−d̄, Pk−d̄).

Although delay d in discrete-time systems is the number of delayed samples, time

[ k − d̄ ] is not required to be an integer by reading timestamps of each sensor. Since

[ k − d̄ ] is not an integer, we cannot directly access the values of either x̂k−d̄ or its correspon-

ding error covariance Pk−d̄, so relevant interpolation is required instead. Mathematically,

linear interpolation constructs a new data point within the range of two known adjacent data

points by the same slope of two lines [77]. Let us take the nearest integer time step k − d,
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(a) Linear Inteportation (b) Quaternion Slerp

Figure 3.2: Examples of Interpolation and Slerp

which is greater than or equal to [ k − d̄ ], shown in Figure 3.2(a). With two data points,

either (k − d − 1, x̂k−d−1) and (k − d, x̂k−d) or (k − d − 1, Pk−d−1) and (k − d, Pk−d),

the interpolants at time [ k − d̄ ] are given by

x̂k−d − x̂k−d−1 =
x̂k−d − x̂k−d̄

k − d− [ k − d̄ ]

x̂k−d − x̂k−d̄ '
(

t

∆ tIMU
− d− t−∆ t̄d

∆tIMU

)
(x̂k−d − x̂k−d−1) (3.5)

x̂k−d̄ =

(
1− ∆ t̄d

∆tIMU
+ d

)
x̂k−d +

(
∆ t̄d

∆tIMU
− d
)
x̂k−d−1, (3.6)

where k = (integer)
(

t
∆ tIMU

)
≈ t

∆ tIMU
in Equation (3.5). Likewise,

Pk−d̄ =

(
1− ∆ t̄d

∆tIMU
+ d

)
Pk−d +

(
∆ t̄d

∆tIMU
− d
)
Pk−d−1.

Quaternion Slerp

Although we compute the interpolants at time [ k − d̄ ] using linear interpolation, because of

the constraint and specialty of quaternion, another adequate interpolation is required. Slerp

is shorthand for spherical linear interpolation, introduced by Ken Shoemake [78] in the

context of quaternion interpolation for the purpose of animating 3D rotation. Interpolants

refer to constant-speed motion along a unit-radius circle arc, shown in Figure 3.2(b). Based
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on the fact that any point on the curve is linear combination of the given ends, the geometric

formula [78, 79] is

Θ = cos−1 (qk−d · qk−d+1) (3.7)

q̂k−d̄ =
sin
[(

1− ∆ t̄d
∆tIMU

+ d
)

Θ
]

sin Θ
q̂k−d +

sin
[(

∆ t̄d
∆tIMU

− d
)

Θ
]

sin Θ
q̂k−d−1, (3.8)

where since only unit quaternions are valid rotations, normalization of each quaternion

before applying Slerp is a prerequisite.

Θ is a smaller angle between two end quaternions, so we ensure that −90 deg ≤ Θ ≤

90 deg. If the dot product in Equation (3.7) is negative, Slerp does not represent the shortest

path. To prevent long paths, we negate one of end quaternions since q and−q are equivalent

when the negation is applied to all four components. If the input quaternions are too

close, then interpolants by linear interpolation explained in Section 3.2.1 is acceptable.

Otherwise, since the dot product is in range of threshold, cos−1(·) is safe computation.

Baseline Correction

With suitable interpolants at time [ k − d̄ ], a baseline approach modifies the feature initial-

ization in Section 2.3.1 and the measurement update in Section 2.1.2. At time k, the

vision data of an image grabbed at time (t−∆ td) arrives at the filter for either the feature

initializations or the sequential measurement updates.

If j-th measurement yj on the last image is a new feature, then from Equations (2.48)

and (2.49), state x̂ and covariance P at current time k are augmented as follows.

x̂k
aug
=⇒

[
x̂T
k

ip̂T
fj/i

]T

, (3.9)

Pk
aug
=⇒

 Pk Pk (Jj)
T
k−d̄

(Jj)k−d̄ Pk (Jj)k−d̄ Pk (Jj)
T
k−d̄ + Pfjnew

 , (3.10)
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where ip̂fj/i = Ti/b
∣∣
k−d̄

bp̂fj/b +
(
ipb/i

)
k−d̄ and (Jj)k−d̄ =

∂pfj/i

∂x

∣∣
x̂k−d̄

. bp̂fj/b is initialized

by Gaussian-Newton least-squares minimization derived in Section 2.3.1. Although we

assume static features, since the feature initialization is related to estimated camera pose at

the time when the delays begin, corrected Jacobian Jj is required in the initialization steps.

If j-th measurement yj on the image is a tracked feature, then we correct only residual

r and Jacobian C in the following measurement update.

Kj = (Pk)j−1 (Cj)
T
k−d̄

(
(Cj)k−d̄ (Pk)j−1 (Cj)

T
k−d̄ +R

)−1

(3.11)

(x̂k)j = (x̂k)j−1 +Kj

(
yj
∣∣
t−∆ td

− hj(x̂k−d̄)
)

(3.12)

(Pk)j = (Pk)j−1 −Kj (Cj)k−d̄ (Pk)j−1 (3.13)

where corrected residual (rj)k−d̄ = yj
∣∣
t−∆ td

−hj(x̂k−d̄) and Jacobian (Cj)k−d̄ =
∂ hj(x)

∂ x

∣∣∣∣
x̂k−d̄

.

Kj is sub-optimal Kalman gain computed by current covariance. As sequential Kalman

Filtering introduced in Section 2.1.3, if j is the first feature on the current image (i.e., j=0),

then assign (x̂k)0 ← x̂−k , (Pk)0 ← P−k , and if j is the last feature on the current image

(i.e., j=Nk), then assign x̂+
k ← (x̂k)N , P+

k ← (Pk)N . Before measurement updates (3.11)

– (3.13), a chi-squared gating test rejects outliers of each measurement. For only this test

purpose in the case of baseline correction, we add uncertainty due to time delay. Procedures

in Equations (3.9) – (3.13) are referred to as ”baseline correction.”

3.2.2 Cross Covariance - “Covariance Correction”

During the delay period, even though an image was already captured in the past, since

vision data from the image have not arrived yet at the filter because of various reasons, the

EKF is not ready to perform the measurement update. Indeed, the filter processes only time

update in Equations (2.3) – (2.7). When a vision data packet from the image finally arrives

and is ready to update in the filter, we simply execute the Jacobian and residual correction

in Equations (3.11) – (3.13) using the delayed measurements. However, unlike the baseline
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correction, if the filter acts the update as if the measurements arrives immediately without

delays (like red lines in Figure 3.3), then filter can achieve more accurate estimation quality.

In fact, covariance correction presented in this section (like blue lines in Figure 3.3) is a way

as if the filter accomplished the general measurement update in Equations (2.8) – (2.10) at

the time instant when the image was captured. In other words, red lines in Figure 3.3

are ideal but unrealistic, blue lines in the figure are practical. The red lines process the

measurement update first and then time update; however, the order of the processes of the

blue lines are opposite. Only the order of the processes has changed.

Figure 3.3: A Schematic of Modified Measurement Update Using Covariance Correction

Among a variety of fusing techniques for time-delayed observations discussed in Section-

1.2.2, the stochastic cloning [33]-based method (i.e., the Schmidt EKF [30, 31]), is applicable

to varying delays and nonlinear functions such as the vehicle and camera models described

in Sections 2.2 and 2.3, respectively. Thus, this study modifies the method for finding the

optimal navigation solution of vision-aided inertial navigation systems.

Let us introduce new notation P dly. P dly is P covariance matrix at the time when the

true delays begin. In the scope of this section, P dly ' Pk−d̄. In addition, when this section

uses corrected residual (rj)k−d̄ and Jocobians (Jj)k−d̄, (Cj)k−d̄, we will use their shorthand

notations as rj and Jj , Cj , respectively. That is, each residual and Jacobian is corrected

based on Section 3.2.1. In addition to the baseline correction, we correct error covariance
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in both the feature initialization and the measurement update when delayed vision data are

available in the filter.

If j-th feature measurement yj on the recent image is a new feature, the augmentation

of P dly in the feature initialization is similar to Equation (3.10). On the other hand, since

Jacobian Jj is computed at the time when the delays begin, the augmentation of covariance

matrix Pk at current time is following by a different way.

Pk
aug
=⇒

Pk 0

0 dQf

 (3.14)

P dly aug
=⇒

 P dly P dly JT
j

Jj P
dly Jj P

dly JT
j + Pfjnew

 , (3.15)

where d = (integer) ∆ t̄d
∆ tIMU

and Jj =
∂ pfj/i

∂x

∣∣
x̂k−d̄

. State estimate x̂k is augmented by

Equation (3.9).

When j-th delayed vision data yj is ready to update at time k, we modify the measurement

update steps of the sequential Kalman filtering as follows:

Sj = Cj
(
P dly)

j−1
CT
j +R

Kcrs
j = (P crs)j−1 C

T
j S

−1
j (3.16)

(x̂k)j = (x̂k)j−1 +Kcrs
j rj (3.17)

(Pk)j = (Pk)j−1 −K
crs
j Cj (P crs)T

j−1 , (3.18)

where rj = yj
∣∣
t−∆ td

−hj(x̂k−d̄) andCj =
∂ hj(x)

∂ x

∣∣∣∣
x̂k−d̄

. P crs is the relevant cross-covariance

term during the delay period. This term, which fuses a current prediction of the state with

an observation related to the lagged state of the system, is used for formulating modified

Kalman gain matrix Kcrs. Equation (3.18), like (2.10), still holds Jeseph’s form [68] that

preserves the symmetry of the updated covariance and ensures its the positive definiteness.
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By sequential update provisions, the state estimate and covariance at time [ k − d̄ ] are also

updated as follows:

Kdly
j =

(
P dly)

j−1
CT
j S

−1
j (3.19)

(x̂k−d̄)j = (x̂k−d̄)j−1 +Kdly
j rj (3.20)(

P dly)
j

=
(
P dly)

j−1
−Kdly

j Cj
(
P dly)

j−1
. (3.21)

At time timg, when cameras open for capturing the image, the cross-covariance matrix

is initialized with covariance at that time; that is, P crs ← P dly ≈ Pk−d̄. During the delay

period, from time [ k − d̄ ] to current time k, if no other measurements are fused into the

filter, the cross covariance is only propagated by the following computation based on the

Schmidt-Kalman filter [30, 33, 32].

Φ crs =
k−d∏
i=k−1

Φi 0

0 I

 =


(∏k−d

i=k−1 Φi

)
0

0 I

 (3.22)

P crs = Φ crs P dly (3.23)

=


(∏k−d

i=k−1 Φi

)
P dly
vv

(∏k−d
i=k−1 Φi

)
P dly
vf

P dly
fv P dly

ff

 (3.24)

where Φ is the state transition matrix defined in Equation (2.6). In the sequential measure-

ment update, based on updated
(
P dly

)
j

in Equation (3.21), updating (P crs)j−1 is straight-

forward as follows:

(P crs)j = Φ crs (P dly)
j

(3.25)

If other measurements from other sensors such as an altimeter and GPS are fused during

the delay period, then P dly and cross covariance P crs are also recursively updated using the

Kalman gain of the other measurements. For this case, Equation (3.22) – (3.25) do not hold

any longer. For more details, see Appendix C. All modification in this section is referred
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to as ”covariance correction.” Furthermore, the optimality of this covariance correction

is guaranteed based on the fact that the standard Kalman filter is an optimal fitler since

Appendix C proves that the covariance correction is identical to the standard EKF. Hence,

the proposed correction still holds its optimality. Section 3.4 will describe ways of its

efficient implementation.

3.3 Unknown Part of Time Delays - “Online Calibration”

Although residual, Jacobians, covariance are corrected for measurements with time delays,

if ∆ t̄d is uncertain readouts or δtd is the larger portion of true delays, we cannot guarantee

the reliability of the correction algorithm (Figure 3.4). For robustness of vision-aided

navigation systems, we need to additionally investigate the unknown part of true delays.

Figure 3.4 shows three corrections in the latency-adaptive filter presented in Chapter 3.

Figure 3.4: Three Corrections in the Latency-Adaptive Filter

From the standard Kalman filter, if one does not account for time delay, propagation
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and measurement update look like grey lines in Figure 3.4. For the last correction, we

estimate the unknown part of time delays to obtain more precise time instant when the

delays begin. As discussed in Section 1.1, unknown phenomena such as clock bias, drift,

skews, asynchronization cause δtd, so δtd may be a positive or negative value.

State estimation theory can be used to estimate not only the states but also the unknown

parameters of the system [80]. Numerous researchers [81, 82, 83] have proved that state

augmentation functions are easy to use with state observers, so we enable design a state

observer by state augmentation to estimate the unknown part of the time delays. To estimate

unknown delay value δtd, we first augment state estimates x̂V and covariance Pvv of the

vehicle as follows:

xV
aug
=⇒

[
xT
V , δtd

]T

, Pvv
aug
=⇒

 Pvv Pv δtd

Pδtd v Pδtd

 . (3.26)

Like the modeling of the IMU biases in Equations (2.17) and (2.18), we model the dynamics

of δtd using a small artificial noise term

δ̇td = ηd,
˙̂
δtd = 0, (3.27)

where ηp is a random walk rate that allows the EKF to change its estimate of δtd; that is, the

power spectral density of ηp represents the variability of δtd. In fact, this is a conventional

random walk model for an unknown parameter that may be varying—commonly seen for

things like gyro bias, as done here. If additional modeling information about the way time

delays are expected to vary is known, then it could be captured here with a more complex

model.
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Let us rewrite the definition of time delays.

t− timg = ∆ td

∆ td = ∆ t̄d + δtd = (t− timg, raw) + δtd.

For clarity, we define new time notation [ k − d̂ ] as

[ k − d̂ ] :=
timg, raw − δ̂td

∆tIMU
≈

timg

∆tIMU

=
t− (∆ t̄d + δ̂td)

∆tIMU
,

where now time [ k − d̂ ] is the most precise time instant when the image was captured.

To apply the relevant interpolation techniques in Sections 3.2.1 and 3.2.1 to the state

estimates and covariance at time [ k − d̂ ], we access their values at the nearest integer

time step k − s, where s = (integer)
(

∆ t̄d + δ̂td

)
/∆tIMU. In other words, s, discrete

delayed samples including estimated latency, is greater than or equal to [ k − d̂ ], shown in

Figure 3.1.

To operate the augmented system, we match its dimension by augmenting other matrices.

In the time update, since ˙̂
δtd = 0, the state transition matrix and the process noise covariance

matrix are augmented

Φ
aug
=⇒

Φ 0

0 I

 , Qv
aug
=⇒

Qv 0

0 Qd

 (3.28)

where I is due to ˙̂
δtd = 0 and the Gaussian white noise ηd ∼ N (0, Qd). Under assumption

of static features, since estimated latency δtd is pertain to only vision measurements, we

compute augmented elements of Jacobian matrices J andC [41, 43]. In fact, from Equation-
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(2.50), Jacobian Jj in the feature initialization is augmented as follows:

(Jj)k−d̂
aug
=⇒

[
I3×3 03×3

∂ p̂fj/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

03×6 Jjδtd

∣∣0 · · ·] ,
where

Jjδtd =
∂ p̂fj/i

∂ δ̂td

∣∣∣∣
[ k−d̂ ]

'
∂ p̂fj/i

∂ x

∣∣∣∣
x̂k−d̂

· ∂ x
∂ t

∣∣∣∣
[ k−d̂ ]

· ∂ t
∂ δ̂td

∣∣∣∣
[ k−d̂ ]

= (Jj)k−d̂
˙̂xk−d̂

=

[
I3×3 03×3

∂ p̂fj/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

03×3 03×3

∣∣0 · · ·]



i ˙̂pb/i

i ˙̂vb/i

δ
˙̂
θ

0

0

(0 · · · 0)T


[ k−d̂ ]

=
(
iv̂b/i

)
k−d̂ +

(
∂ p̂fj/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

)
δ

˙̂
θk−d̂ (3.29)

Furthermore, from Equation (2.35), augmented Jacobian Cj in the measurement update is

(Cj)k−d̂
aug
=⇒

[
∂ yj
∂ ip̂b/i

0
∂ yj

∂ δθ̂
0 0

∂ yj

∂ δ̂td

∣∣ 0 · · · ∂ yj
∂ ip̂fj/i

· · · 0
]

[ k−d̂ ]

,

where

∂ yj

∂ δ̂td

∣∣∣∣
[ k−d̂ ]

' ∂ yj
∂ x

∣∣∣∣
x̂k−d̂

· ∂ x
∂ t

∣∣∣∣
[ k−d̂ ]

· ∂ t
∂ δ̂td

∣∣∣∣
[ k−d̂ ]

= (Cj)k−d̂
˙̂xk−d̂

=

(
∂ yj
∂ ip̂b/i

∣∣∣∣
[ k−d̂ ]

) (
iv̂b/i

)
k−d̂ +

(
∂ yj

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

)
δ

˙̂
θk−d̂. (3.30)

Here, let us call the combination of the estimation of the unknown latency in this section

with the baseline correction ”online calibration.” Therefore, to reliably estimate the state
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variable and effectively compensate the total delays, we incorporate all three corrections,

called ”latency-adaptive filtering.”

3.4 Implementation

This section presents everything to solve the problem, and Figure 3.5 illustrates a flow chart

of the overall process.

Figure 3.5: A Flow Chart of the Overall Process of the Latency-Adaptive Filtering

3.4.1 Forward Computation of Cross Covariance

Even though delays begins ∆td time prior, estimated delay value t̂d is only accessible when

delay finished. That is, during the delay period from timg to t, ∆t̂d is unknown yet. ∆t̂d

is estimated at current time k. Since estimated delay value ∆t̂d is unknown up to time

k, we are not sure when the covariance correction begins computing cross covariance P crs.

Theoretically, when ∆t̂d is estimated at time k, we compute P dly and P crs by backward from

time k to time [ k− d̂ ] with saved Jacobians and covariance during the delay period. This is

ideal computation, but not realistic. Backward computation that used in [43] is impossible
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for real-time operations since storing large matrices such as sequences of Jacobian and

covariance matrices allocates huge memory uses. Furthermore, the backward computing is

not efficient because it iterates backward at time k like batch processing.

Instead, for real-time framework, an approximated way of forward computation of cross

covariance is introduced. Since δ̂td = 0, we assume that the time delay does not change

in state propagation during the delay period, so a posteriori estimate of time delay when

the last measurement update is assumed to be a priori estimate of the delay at current time.

Next, under this assumption, we predict when the time delay of the next image begins. At

the predicted time instant, we store the covariance matrix once for P dly and recursively

calculate Φ crs for P crs.

3.4.2 Summarized Algorithm

When the size of the state after augmentation in the feature initialization steps exceeds a

maximum threshold, we prune the number of features in database. The system in this study

finds an index for the best place to insert a new point in the database. The one with the least

number of observations or frequent outliers is marginalized. Unlike Lee at al. [43], this

thesis does not estimate the total parts of time delays, so the latency-adaptive filter does

not entail a specific constraints. That is, this study estimates only unknown part δtd that is

a possibly positive or negative value. To save computation, constrained Kalman filtering

is not necessary. Instead, interpolation and quaternion Slerp explained in Section 3.2.1 are

tractable.

From the definition of time delays presented in Section 3.1, total time delay is not

estimated as negative. For example, if estimated delay is negative (i.e., an exceeded index),

estimation is impossible since this case is forecasting states or obtaining measurements

from the future, so the total delay has to be bounded by zero. Moreover, in the sequential

measurement update, if estimated time delay δtd is larger than sampling time of the IMU,

∆tIMU, then we indicate another slot in the delay buffer. Algorithm 1 is a summarized
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algorithm of overall processes of the latency-adaptive filter.

Algorithm 1 The Latency-Adaptive Filtering

Require: x̂+
0 , P

+
0 , Q,R, P

dly(= P+
0 ),Φcrs(= I), χ2

1: for k = 1 : T do

2: if new IMU packet arrival then
3: Time Update:

4: ˙̂xV = f
(
x̂+
Vk−1

, araw, ωraw

)
. static features

5: Numerically integrate with ∆ tIMU(= tk − tk−1)

6: x̂−k = x̂+
k−1 +

∫ tk
tk−1

˙̂x(τ) dτ

7: Φk−1 = exp
(∫ tk

tk−1
A(τ) dτ

)
. A = ∂f

∂x

∣∣
x̂V

8: (Pvv)
−
k = Φk−1 (Pvv)

+
k−1 ΦT

k−1 +Bk−1Qv B
T
k−1 . B = ∂f

∂η

∣∣
x̂V

9: P−k =

[
(Pvv)

−
k Φk−1 (Pvf )

+
k−1

(Pfv)
+
k−1 ΦT

k−1 (Pff )
+
k−1 +Qf

]
10: Store the state estimates into the delay buffer

11: if during delay period then
12: Φcrs ← Φk−1 Φcrs . recursive
13: else
14: P dly ← P−k
15: Φcrs ← I
16: end if
17: end if

3.5 Monte Carlo Simulations

To show actual time delays being estimated accurately, this section simulates a simple

example problem by 100 Monte Carlo trials. The vehicle and measurement models of this

simulation are direct from Lee and Johnson’ previous work [43]. The models are a second

order dynamic system with a non-delayed speed measurement and two delayed bearing

angles measured from each location of two stations. From Equation (3.28), variance Qd

value of this simulation is 0.25 [s2]. The actual time delay of the delayed measurements

in this simulation is 0.9 [s], and this value is identical to 18 delayed samples since the
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18: if new vision data packet arrival then
19: Compute index d̂− of delay

20: Interpolate using the state estimates from the buffer

21: for j = 1 : ] of observed features do
22: if new feature then
23: Feature Initialization:

24: p̂fj/i = gj
(
x̂k−d̂, yj

)
. least-squares minimization

25: Augment state if feature is valid . if positive depth

26: x̂k
aug
=⇒

[
x̂T
k p̂T

fj/i

]T

27: P dly aug
=⇒

[
P dly P dly JT

j

Jj P
dly Jj P

dly JT
j + Pfjnew

]
. Jj =

∂pfj/i

∂x

∣∣
x̂k−d̂

28: Pk
aug
=⇒

[
Pk 0

0 d̂ Qf

]
29: Prune state vector if exceed maximum

30: else . tracked feature

31: Measurement Update:

32: Update if gating test is passed . rT
j S
−1
j rj

?
< χ2

j

33: rj = yj − hj(x̂k−d̂)

34: Sj = (Cj)k−d̂ P
dly (Cj)

T
k−d̂ +R . (Cj)k−d̂ =

∂hj
∂x

∣∣
x̂k−d̂

35: P crs ←

[
Φcrs P dly

vv Φcrs P dly
vf

P dly
fv P dly

ff

]
36: Kcrs

j = P crs (Cj)
T
k−d̂ S

−1
j

37: ∆ x̂k = +Kcrs
j rj . ∆t̂d

?
< ∆tIMU

38: ∆Pk = −Kcrs
j (Cj)k−d̂ (P crs)T

39: Sequentially update the buffer

40: Kdly
j = P dly (Cj)

T
k−d̂ S

−1
j

41: ∆ x̂k−d̂ = +Kdly
j rj

42: ∆P dly = −Kdly (Cj)k−d̂ P
dly

43: end if
44: end for
45: Store index d̂+ of the posterior estimated delay

46: P dly ← P+
k , Φcrs ← I

47: Erase used slots in the delay buffer

48: end if

49: end for 43



propagation rate of the simulation is 0.05 [s]. Monte Carlo simulations estimate the values
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(b) Varying Delays

Figure 3.6: Estimation of Total Delays in Simulation

of time delays, shown in Figure 3.6. Figure 3.6(a) shows that the estimated delay rapidly

converges to the true delay value. That is, the estimation error of the delayed samples

gradually decreases toward zero. Moreover, we may wonder whether the latency-adaptive

filtering algorithm works when the delay is not static. See Figure 3.6(b) for an answer.

Although the values of unknown delays vary over time, estimation resulting from the

adaptive method converges to true delay values.

3.6 Flight Datasets Test Results

To validate the reliability of the proposed approach for estimating states and unknown delay

values, we test one of benchmark datasets, so-call ”EuRoC MAV datasets [84]”. The visual-

inertial sequences of the datasets were recorded onboard a micro aerial vehicle while a

pilot manually flied around indoor Vicon environments. For more details, see Appendix A.

Although the datasets include noise model parameters from the IMU at rest, we need to

tune each variance of process noise covariance Q for the best performance. Likewise, to

estimate the unknown part of time delays, we set the standard deviation of random walk ηd

in Equation (3.27) as 1.0 × 10−5 since the order of this value is set to same order of the

smallest value among the provided noise parameters.

44



Figure 3.7: ROS rqt Graph

Given datasets provide various levels of challenging sequences such as faster motion,

poor illumination in each environment. To articulate the significance of time delays defined

in Section 3.1, we select two datasets of slow motion, called ”EuRoC V1 Easy,” and fast

motion, called ”EuRoC V1 Medium.” Since the vehicle in the medium dataset maneuvers

twice faster, we hypothesize that the time delays have greater impact on the navigation

solution of the medium dataset. Algorithms of image processing and filtering are developed

under the robot operating system (ROS) [85], given IMU data and images from the stereo

camera are also subscribed under the ROS, shown in Figure 3.7.

The simplest solution to the estimation problem of the given datasets is to run the

baseline in Section 3.2.1 that corrects only Jacobians and residual. However, the novel

latency-adaptive filter described in Algorithm 1 compensates for delayed measurements

at time when the vision data are fused at the filter and estimates the refined state and the

delay values. This adaptive filtering follows the processes of all three correction, shown in

Figure 3.5.

The EKF estimates relative location from a starting point. Since we do not know the

exact absolute location of origin of given datasets, to compare with ground truth data given

in the datasets, certain evaluation error metrics such as so-call ”absolute trajectory error

[86]” are required. For more details, see Appendix B. After applying the absolute trajectory

error, Figure 3.8 illustrates the top down view of the estimated flight trajectory of the

medium dataset. Figures 3.9 exhibit estimated x,y,z position and their estimation errors.

All estimation errors are bounded within each standard deviation σ bounds. We should

expect significant time correlation in error plots and a generally growing error covariance
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Figure 3.8: Top Down View of Flight Trajectory of the EuRoC V1 Medium Dataset by the
Latency-Adaptive Filter
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for vision-aided inertial navigation problems like this one. Conceptually, position error gets

“locked in” and to the extent new features are being mapped the position error will tend to

grow with the length of the trajectory. Starting from the noise model parameters reported

for the datasets, the adaptive filter is a well-tuned estimator; for, the performance of doing

runs with 3x or 10x (/3 or /10) multiplier on the R term used in the filter is worse for all of

those, shown in Table 3.1. In other words, the fact that using those multipliers shows larger

RMS estimation errors indicates that our approach is a well-tuned filter.

Table 3.1: Indication that the Latency-Adaptive Filter is Well-Tuned for EuRoC V1
Medium Dataset

Multiplier on R /10 /3 1 x3 x10
RMS error [m] 1.5096 0.1969 0.1619 0.2636 0.2850

Figure 3.10 shows the advantages of each correction in the latency-adaptive filtering

by comparing with the baseline and the covariance correction. The baseline discards cross

covariance and unknown part of the delays, and although the latency-adaptive filtering

might increase the computational effort of the entire system, it significantly improves the

accuracy of estimation.

Unlike either the baseline or the covariance correction, the latency-adaptive filter calibra-

tes the unknown part of time delays. Figure 3.11 shows that estimation resulting from the

adaptive filter converges to a certain, final delay value, and its variance rapidly decreases

although initial uncertainty is high. As shown in Figure 3.12, the average of total estimated

delays is around 45 [ms] that could generate about 4 cm drift and offset during the delay

period when the vehicle fly at 0.91m/s average speed. When readable delay values are

negative, the timestamps of images might indicate wrong pairs or packet.

Table 3.2 lists the root mean squared (RMS) position errors of cases for sensitivity

analysis. Approximately known part of time delays introduced in Section 3.2 is either

fixed t̄d by tuning or readouts t̄draw that is the difference of readable timestamps of current

IMU and image. In addition, we can directly estimate entire parts of time delays without
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Figure 3.9: Position and Estimation Error of the EuRoC V1 Medium Dataset by the
Latency-Adaptive Filter
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Figure 3.10: Box Plot of Absolute Estimation Error of Position of the EuRoC V1 Medium
Dataset by the Latency-Adaptive Filter

information of the approximately known part. For another case, using the final value of

estimated unknown part of time delays, we add a fixed δ̄td to the total delays at every

time. However, this case might not work when the delay is varying, and we can know the

final value only after running the proposed adaptive filter. In other words, before applying

the adaptive filtering, fixed δ̄td is still unknown. The estimation results from the latency-

adaptive filtering approach depict the influence of the delays and the effectiveness of the

corrections in the sensor fusion of the lagged measurements. Fast motion datasets are more

Table 3.2: Sensitivity Analysis in RMS Position Error [m] of Latency-Adaptive Filtering

Dataset EuRoC V1 Easy EuRoC V1 Medium
Slow Motion 0.41 m/s, 16.0 deg/s Fast Motion 0.91 m/s, 32.1 deg/s

Method Cross-Cov OFF Cross-Cov ON Cross-Cov OFF Cross-Cov ON
Fixed t̄dconst 0.3376 0.2677 0.4644 0.3135
Entirely Estimated t̂d 0.2282 0.2406 0.4734 0.3538

Readouts t̄d
+ N/A 0.2558 0.2032 0.4163 0.3121
+ Fixed δ̄td 0.2869 0.2285 0.3281 0.2218
+ Estimated δ̂td 0.2019 0.1461 0.3353 0.1619

sensitive to time delays since the improvement is larger when applied to those datasets.

49



0 10 20 30 40 50 60 70 80 90

time [s]

-250

-200

-150

-100

-50

0

50

100

150

200

250

d
e

la
y
 [

m
s
]

estimated unknown part

 2 
t
d

X: 84.5

Y: 12.15

Figure 3.11: Estimation of Unknown Part of Time Delays of the EuRoC V1 Medium
Dataset

Although numerous researchers have explored visual inertial odometry of the EuRoC

datasets, few of them thoroughly considered measurements with unknown time delays.

Table 3.3 reveals that the proposed estimator, the latency-adaptive filter, outperforms the

existing state-of-the-art methods, called ”S-MSCKF” and ”SVO+MSF” in which stereo is

available.

Table 3.3: Comparison with Other Methods in RMS Position Error [m] of Latency-
Adaptive Filtering

Dataset EuRoC V1 Easy EuRoC V1 Medium
Method Slow Motion 0.41 m/s, 0.28 rad/s Fast Motion 0.91 m/s, 0.56 rad/s
Latency-Adaptive Filter 0.1461 0.1619
S-MSCKF (stereo-filter) 0.34 0.20
SVO+MSF (loosely coupled) 0.40 0.63
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Figure 3.12: Estimation of Time Delays of the EuRoC V1 Medium Dataset
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CHAPTER 4

NOISE-ADAPTIVE FILTERING FOR MEASUREMENTS WITH FREQUENT

OUTLIERS

For outlier removal in image processing front end, feature correspondence constitutes the

following three steps: tracking, stereo matching, and 2-point RANSAC. To estimate the

states of V-INS in which vision measurements still remain outliers, this chapter proposes a

novel approach [64] that combines a real-time outlier detection technique with an extended

version of an outlier robust Kalman filter (ORKF) [53, 54]. Hence, our approach does

not restrict noise at either a constant or Gaussian level in filtering. The testing results of a

benchmark flight dataset show that our approach leads to greater improvement in robustness

under severe environments.

4.1 Outlier Rejection in Image Processing Front End

4.1.1 Feature Correspondence

In this dissertation, a feature detector using the Features from Accelerated Segment Test

(FAST) algorithm [87, 88] maintains a minimum number of features in each image. For

each new image, a feature extractor using the Kanade–Lucas–Tomasi (KLT) sparse optical

flow algorithm [89] tracks the existing features. Even though Paul et al. [27] proved that

descriptor-based methods for temporal feature tracking are more accurate than KLT-based

methods, since Sun et al. [19] analyzed that descriptor-based methods require much more

computing resource with small gain in accuracy, we employ the KLT optical flow algorithm

in the image processing front-end of this study. Next, our stereo matching using fixed

baseline stereo configuration also applies to the KLT optical flow algorithm for saving

computational loads compared to other stereo matching approaches. With the matched
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features, a 2-point RANdom SAmple Consensus (RANSAC) [57] is applied to remove

remaining outliers by utilizing the RANSAC step in the fundamental matrix test [58]. In

the scope of this study, we implement the 2-point RANSAC algorithm by simply running

one of open source codes.

Similar to [19, 90], our outlier rejection is composed of three steps, shown in Figure 4.1.

We assume that features from previous c1 and c2 images are outlier-rejected points. The

three steps forms a close loop of previous and current frames of left and right cameras.

The first step is the stereo matching of tracked features on current c1 image to c2 image.

The next steps are applying 2-point RANSAC between previous and current images of

left camera and another 2-point RANSAC between previous and current images of right

camera. For the step 2 and 3, stereo matched features are directly used in each RANSAC.

Figure 4.1: Close Loop Steps of Outlier Rejection in Image Processing Front End

4.1.2 Algorithm of Feature Correspondence

Algorithm 2 summarizes the feature correspondence for outlier rejection. For the scope

of this thesis, the OpenCV library [91] and open source codes of RANSAC are extremely

useful and directly applied. where Pyramid is a type of multi-scale signal representation in

which an image is subject to repeated smoothing and sub-sampling.
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Algorithm 2 Feature Correspondence for Outlier Rejection
Require: Pyramids and outlier-rejected points of previous c1, c2 images

1: Feature Tracking:

2: function BUILDOPTICALFLOWPYRAMID(current c1 or c2 image) . OpenCV
3: return pyramd of current c1 or c2

4: end function
5: function PREDICTFEATURES(outlier-rejected points of previous c1, T̂curr←prev of c1,

Intrinsic c1)
6: return predicted features of current c1

7: end function
8: function CALCOPTICALFLOWPYRLK(pyramids of previous and current c1, outlier-

rejected points of previous c1, predicted features of current c1) .
OpenCV

9: return tracked points of previous c1 and c2, tracked features of current c1

10: end function

11: Stereo Matching:

12: function STEREOMATCHING(tracked points of previous c1 and c2, tracked features of
current c1)

13: Initialize c2 points by projecting the tracked features of current c1 to c2 using the
rotation from stereo extrinsic

14: function CALCOPTICALFLOWPYRLK(pyramid of current c1 and c2, tracked
features of current c1, initialized c2 points) . OpenCV

15: end function
16: Further remove outliers based on the essential matrix
17: return matched points of previous c1 and c2, matched features of current c1 and c2

18: end function

19: 2-Point RANSAC:

20: function TWOPOINTRANSAC(matched points of previous c1 or c2, matched features
of current c1 or c2, T̂curr←prev of c1 or c2, Intrinsic of c1 or c2)

21: return outlier-rejected points of current c1 or c2

22: end function

23: Addition of Newly Detected Features:

24: Create a mask to avoid re-detecting existing features

25: function FASTFEATUREDETECTOR(current c1 image, mask)
26: return new features on current c1

27: end function
28: function STEREOMATCHING(new features on current c1)
29: return matched new features on current c2

30: end function
31: Group all of outlier-rejected features
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4.2 Outlier Adaptation in Filtering Back End

Even though image processing front end removes outliers by tracking, stereo matching,

and 2-point RANSAC, some outlier features still survive and enter the filter as inputs. This

section explains the outlier rejection procedure in filtering back end.

4.2.1 Outlier Removal in Feature Initialization

If a measurement is a new feature, our system initializes its 3D position with respect to

the inertial frame. In feature initialization, Gaussian-Newton least squares minimization in

Section 2.3.1 first estimates the depth of left c1 camera. If either estimated depth of left or

right camera is negative, then the solution of the minimization is invalid since features are

always in front of both camera frames observing it. The process of removing features that

has the invalid depth is referred to as outlier removal in feature initialization.

4.2.2 Outlier Detection by Chi-Squared Statistical Test

Before operating the navigation systems, we initialize the chi-squared test table with the

95% confidence level. While the systems estimate the state variable, if j-th measurement

yj is the existing feature, its residual rj and Jacobian Cj are computed. Next, we proceed a

Mahalanobis gating test [65] for residual rj to detect remaining outliers. In fact, Mahalano-

bis distance [66] γj is a measure of the distance between residual rj and covariance matrix

Sj = (Cj)k−d̂ P
dly
j−1 (Cj)

T
k−d̂ +R

γj = rT
j

(
(Cj)k−d̂ P

dly
j−1 (Cj)

T
k−d̂ +R

)−1

rj. (4.1)

In the statistic test, we compare γj value against a threshold given by the 95-th percentile

of the χ2 distribution with νj degrees of freedom. Here, νj is the number of observations

of the j-th feature minus one. If the feature passes the test, the EKF uses residual rj to

process the measurement update.
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4.2.3 Noise-Adaptive Filtering

Unlike the extended ORKF (EORKF) [64], for a practical estimation approach in V-INS,

this study investigates only measurement outliers due to the following reasons. Since the

measurement update is not the process performed at every time step, the outlier detection by

each residual value cannot directly detect the outliers of IMU measurements. Furthermore,

in the sequential measurement update, multiple residuals are computed to update at one

IMU time stamp. In other words, since only rare observations among feature measurements

from one image are corrupted by the remaining outliers, hypothesizing that the outliers

comes from the IMU may be faulty. Hence, in the scope of this thesis, we handle only

measurement outliers.

Student’s t-Distribution

Despite the true system with outliers, the classical EKF assumes that each model in the filter

is corrupted with additive white Gaussian noise. The levels of the noise are assumed to be

constant and encoded by sensor covariance matrices Q and R (i.e., ηk ∼ N (0, Q), (ζj)k ∼

N (0, R)). However, since outliers arise in the realistic system, now we do not restrict noise

at either a constant or Gaussian level. Instead, their levels vary over time, or noise have

heavier tails than the normal distribution as follows:

ζj
∣∣
k
∼ ST(0, R̃j, νj), where R̃j ∼ W−1 ( νjΛj, νj ) , (4.2)

where ST(·) denotes a Student’s t-distribution, and νk > m − 1 is degrees of freedom.

Covariance matrix R̃j follows the inverse-Wishart distribution, denoted asW−1(·). Λj � 0

is m×m precision matrix.

In Bayesian statistics, the inverse-Wishart distribution is used as the conjugate prior for

the covariance matrix of a multivariate normal distribution [55]. The probability density
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function (pdf) of the inverse-Wishart is

p(R̃j | νj, Λj) ∝ |R̃j|−
νj+m+1

2 exp
[
−νj

2
tr(Λj R̃−1

j )
]
, (4.3)

where tr(·) denotes the trace of a square matrix in linear algebra. Moreover, in probability

and statistics, a Student’s t-distribution is any member of a family of continuous probability

distributions that arises when estimating the mean of a normally distributed population in

situations where the standard deviation of the population is unknown [92]. Whereas a

normal distribution describes a full population, a t-distribution describes samples drawn

from a full population; thus, the larger the sample, the more the distribution resembles a

normal distribution. Indeed, as the degree of freedom goes to infinity, the t-distribution

approaches the standard normal distribution. In other words, when the variance of a

normally distributed random variable is unknown and a conjugate prior placed over it that

follows an inverse-Wishart distribution, the resulting marginal distribution of the variable

follows a Student’s t-distribution [93]. Then, the Student-t, a sub-exponential distribution

with much heavier tails than the Gaussian, is more prone to producing outlying values that

fall far from its mean.

Variational Inference

The purpose of filtering is generally to find the approximations of posterior distributions

p(xk | y1:k), where y1:k = [y1, y2, · · · , yk] is the histories of sensor measurements obtained

up to time k. For systems with the heavy tailed noise, we also wish to produce another

inference about covariance matrices whose priors follow the inverse-Wishart distribution.

Hence, our goal in this section is to find both approximations for posterior distribution

p(x1:k, R̃1:k

∣∣y1:k) and model evidence p(y1:k). Compared to sampling methods, the variatio-

nal Bayesian method performs approximate posterior inference at low computational cost

for a wide range of models [55, 93]. In the method, we decompose log marginal probability
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ln p(y1:k) = KL [ q ‖ p ] + L[ q ], (4.4)

where

KL [ q ‖ p ] =

∫
q(x1:k, R̃1:k) ln

q(x1:k, R̃1:k)

p(x1:k, R̃1:k

∣∣ y1:k)
(4.5)

L[ q ] =

∫
q(x1:k, R̃1:k) ln

p(x1:k, R̃1:k, y1:k)

q(x1:k, R̃1:k)
. (4.6)

p is the true distribution that is intractable for non-Gaussian noise models, and q is a

tractable approximate distribution.

In probability theory, a measure of the difference between two probability distributions

p and q is the Kullback-Leibler divergence, denoted as KL[·]. If we allow any possible

choice for q such as the Gaussian distribution, then lower bound L[q] is maximum when

the KL divergence vanishes; that is, q(x1:k, R̃1:k) = p(x1:k, R̃1:k | y1:k). To minimize the KL

divergence, we seek the member of a restricted family of q(x1:k, R̃1:k). Indeed, maximizing

L[q] is equivalent to minimizing another new KL divergence [93], and thus the minimum

occurs when factorized distributions q(x1:k, R̃1:k) = q(x1:k) q(R̃1:k) and the following

Equations (4.7) – (4.8) hold.

ln q(x1:k) = ln p(x1) +
k∑
t=2

Eq(R̃1:t)
[ln p(xt

∣∣xt−1)] +
k∑
t=1

Eq(R̃1:t)
[ln p(yt

∣∣xt, R̃t)] + · · ·

(4.7)

ln q(R̃k) = Eq(x1:k)[ ln p(yk
∣∣xk, R̃k) ] + ln p(R̃k) + · · · (4.8)

where Eq(·) represents the expectation with respect to q(·). With assuming that initial state

x1 is Gaussian, the measurement update with varying noise covariance E[ R̃−1
t ] = Λ−1

t ,

which closely resemble the EKF updates, solve Equation (4.7). Algorithm 3 describes the

details of the updates.
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Now let us assume that the true priors are IID noise models as the case in this study;

that is, p(R̃k) follows W−1(νR, ν) distribution. Then second term ln p(R̃k) in the right-

hand side of Equation (4.8) is computed using the pdf of the inverse-Wishart distribution

in Equation (4.3) with its prior noise model.

ln p(R̃k) = −ν +m+ 1

2
ln |R̃k| −

ν

2
tr(R R̃−1

k ). (4.9)

Since the term is conjugate prior for Equation (4.2), the approximations of q(R̃k) have same

mathematical forms as priors; that is, q(R̃k) also followsW−1(ν̃k Λk, ν̃k) distribution.

ln q(R̃k) = − ν̃k +m+ 1

2
ln |R̃k| −

ν̃k
2

tr(Λk R̃−1
k ). (4.10)

Since yt
∣∣{xt, R̃t} ∼ N (h(xt), R̃t),

E
[

ln p(yk |xk, R̃k)
]

= −1

2
ln |R̃k| −

1

2
tr
(
E[ζk ζ

T
k ] R̃−1

k

)
. (4.11)

From Equations (4.8) – (4.11), to handle measurement outliers, similar to Agamennoni et

al. [54, 53]’s derivation, we derive how to compute precision matrix Λk of approximate

distribution q(R̃k) of R̃k as follows:

ν̃k = 1 + ν, ν̃k Λk = E[ζk ζ
T
k ] + νR

⇒ Λk =
νR + E[ζk ζ

T
k ]

ν + 1
, (4.12)

where each feature from one image is independent and

(ζj)k = (yj)k − h(x(timg) )

= (yj)k − h
(

(x̂k−d̂)j + ej
)

≈ (yj)k − h
(

(x̂k−d̂)j
)
− Cj ej.
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Next, in Equation (4.12),

E
[

(ζj)k (ζj)
T
k

]
=
[
(yj)k − h

(
(x̂k−d̂)j

)] [
(yj)k − h

(
(x̂k−d̂)j

)]T
. . .

+ Cj E[ej e
T
j ]CT

j

= rj r
T
j + Cj (P dly)j C

T
j , (4.13)

where estimation error ej = x(timg) − (x̂k−d̂)j and the Jacobian Cj =
∂hj
∂x

∣∣
(x̂k−d̂)j

. In the

sequential measurement update, (x̂k−d̂)j and (P dly)j are corrected by Kalman gain K dly
j

that is a function of (Λj)k, so these update steps are coupled. Hence no a closed-form

solution exists, and we can only solve iteratively. The purpose of the iteration seems to be

similar to that of the online learning of unknown variances of each noise [45]. In addition,

similar to Agamennoni et al.’s interpretation [54], the convergence and optimality of the

derived update steps for outliers are guaranteed since the variational lower bound is convex

with respect to (x̂k−d̂)j , (P dly)j , and (Λj)k. In particular, as the j-th feature is observed

countless times (i.e., νj→∞), Λj converges to R in the limit of an infinitely precise noise

distribution, so the iterative update steps reduce to the standard sequential measurement

update of the EKF.

If true state x(timg) is significantly different from its estimate (x̂k−d̂)j , then statistics

E
[

(ζj)k (ζj)
T
k

]
dominates, and (Λj)k becomes much larger than R. This ζj is regarded as

a measurement outlier at time k. Since Kalman gain K dly
j is a function of the inverse of

precision matrix (Λj)k, the larger (Λj)k values, the smaller the Kalman gain. Therefore, to

deal with situations where measurement outliers occur, the iteration for Equations (4.12)

and (4.13) corrects the state estimates and its covariance with low weights.
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4.3 Implementation

4.3.1 Marginalization of Feature States

If measurement outliers often occur, a few number of sequential updates in the EKF are

proceed to correct the state estimates. Without enough number of the measurement updates,

the EKF is not robust. Hence, noise-adaptive filtering introduced in Section 4.2.3 performs

modified measurement update even when a residual is detected as an outlier. Indeed, to

save computation resource, this study operates the noise-adaptive filtering for only features

detected frequently outliers. For implementation, we count how many numbers features

augmented in state variables are detected as outliers. Once updating feature outliers by the

noise-adaptive filtering approach, we prune the used feature states from the state vector.

In addition, similar to mention in Section 2.3.1, to maintain a certain size of the state

vector, after the feature initialization, we marginalize the features with the least number of

observations among tracked features.

4.3.2 Summarized Algorithm

Algorithm 3 illustrates the pseudo-code of the overall process of the noise-adaptive filtering

approach for V-INS. From Figure 3.5, the blue boxes and circle in the figure are extended

for the noise-adaptive filter presented in this Chapter 4, shown in Figure 4.2.

4.4 Flight Datasets Test Results

To examine the influence of outliers and validate the reliability and robustness of the

proposed noise-adaptive approach for systems with outliers, we test the EuroC datasets. To

articulate the significance of outliers, we select two datasets of bright scene, called ”EuRoC

V1 Easy,” and motion blur, called ”EuRoC V1 Difficult.” Since the images in the difficult

dataset are dark scene or motion blur, we hypothesize that outliers occur more frequently

in the difficult dataset.
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Figure 4.2: A Flow Chart of the Overall Process of the Noise-Adaptive Filtering

By similar analysis in Section 3.6, absolute trajectory error as evaluation error metric

explained in Appendix B produces multiple comparison plots. Figure 4.3 illustrates the

top down view of the estimated flight trajectory of the difficult dataset. Figures 4.4 depict

estimated x,y,z position and their each estimation error. All estimation errors are bounded

within each standard deviation σ envelopes, so the proposed approach is reliable vision-

aided inertial navigation under even poor illumination environment. We should expect

significant time correlation in error plots and a generally growing error covariance for

vision-aided inertial navigation problems. Conceptually, position error gets “locked in”

and to the extent new features are being mapped the position error will tend to grow with

the length of the trajectory. Similar to the analysis presented Section 3.6, the adaptive filter

is a well-tuned estimator since the performance of doing runs with multipliers on the R

matrix used in the filter is worse for all of those, shown in Table 4.1. That is, the fact

that using the multipliers reveals larger RMS estimation errors indicates that our filter is

well-tuned.

Figure 4.5 shows the advantages of addition of outlier adaptation in the noise-adaptive
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Algorithm 3 The Noise-Adaptive Filtering

Require: x̂+
0 , P

+
0 , Q,R, χ

2

1: for k = 1 : T do

2: if new IMU packet arrival then
3: Time Update:

4: State prediction

5: end if

6: if new image capture then
7: Image processing front-end in different thread

8: Stereo matching between current images of left camera c1 and right camera c2

9: RANSAC between previous and current images of camera c1

10: RANSAC between previous and current images of camera c2

11: end if
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Figure 4.3: Top Down View of Flight Trajectory of the EuRoC V1 Difficult Dataset by the
Noise-Adaptive Filer
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12: if new vision data packet arrival then
13: for j = 1 : ] of observed features do
14: if new feature then
15: Feature Initialization:
16: If any depth of c1 or c2 is negative, j-th feature is outlier

17: else . tracked feature

18: Outlier Gating Test:

19: rj = yj − hj
((
x̂k−d̂

)
j−1

)
20: Sj = (Cj)k−d̂ P

dly
j−1 (Cj)

T
k−d̂ +R . (Cj)k−d̂ =

∂hj
∂x

∣∣
(x̂k−d̂)j−1

21: γ = rT
j S
−1
j rj

?
< χ2

j

22: if outlier detected then
23: Measurement Updates:

24: x̃j ←
(
x̂k−d̂

)
j−1

, P̃j ← P dly
j−1 .

(
x̂k−d̂

)
0

= x̂k−d̂, P
dly
0 = P dly

25: while until converged do
26: Update measurement noise given the state

27: r̃j = yj − hj(x̃j)
28: C̃j =

∂hj
∂x

∣∣
x̃j

29: Wj = r̃j r̃
T
j + C̃j P̃j C̃

T
j

30: Λj ←
νj R +Wj

νj + 1

31: Update the posteriori state given noise

32: S̃j = (Cj)k−d̂ P
dly
j−1 (Cj)

T
k−d̂ + Λj

33: K̃j = P dly
j−1 (Cj)

T
k−d̂ S̃

−1
j

34: x̃j ←
(
x̂k−d̂

)
j−1

+ K̃j rj

35: P̃j ← P dly
j−1 − K̃j (Cj)k−d̂ P

dly
j−1

36: end while
37:

(
x̂k−d̂

)
j

= x̃j, P dly
j = P̃j

38: else . Chapter 3

39: Kdly
j = P dly

j−1 (Cj)
T
k−d̂ S

−1
j

40:
(
x̂k−d̂

)
j

=
(
x̂k−d̂

)
j−1

+Kdly
j rj

41: P dly
j = P dly

j−1 −K
dly
j (Cj)k−d̂ P

dly
j−1

42: end if
43: Correct using cross covariance . Section 3.2.2

44: end if
45: end for
46: end if

47: end for
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Figure 4.4: Position and Estimation Error of the EuRoC V1 Difficult Dataset by the Noise-
Adaptive Filter
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Table 4.1: Indication that the Noise-Adaptive Filter is Well-Tuned for EuRoC V1 Difficult
Dataset

Multiplier on R /10 /3 1 x3 x10
RMS error [m] 0.9240 0.3801 0.1700 0.5153 0.5610

filtering by comparing with a baseline, the latency-adaptive filtering. Since Table 3.2

already shows that the latency-adaptive filtering is the promising combination, we choose

the method as a baseline here. The baseline rejects outliers whenever chi-squared test

fails, and although the iteration in the noise-adaptive filtering might increase computational

resource, it significantly improves the accuracy of estimation. Fortunately, the iteration in

Algorithm 3 rapidly converges to the optimal noise covariance by twice or three times

iterations. For sensitivity analaysis, RMS position errors resulting from four filters—
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Figure 4.5: Box Plot of Absolute Estimation Error of Position of of the EuRoC V1 Difficult
Dataset by the Noise-Adaptive Filer

the baseline correction, the baseline correction plus outlier adaptive filtering, the latency-

adaptive filtering, and a combination of all proposed adaptive approaches—are compiled

in Table 4.2. Motion blur datasets are more sensitive to outliers since the improvement is

larger when applied to those datasets. Thus, depending on computation margin and cost,
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Table 4.2: Sensitivity Analysis in RMS Position Error [m] of Noise-Adaptive Filtering

Dataset EuRoC V1 Easy EuRoC V1 Difficult
Slow Motion 0.41 m/s, 16.0 deg/s Fast Motion 0.75 m/s, 35.5 deg/s

Bright Scene Motion Blur
Method Latency-Adaptive OFF Latency-Adaptive ON Latency-Adaptive OFF Latency-Adaptive ON
Baseline 0.2558 0.1461 0.3656 0.2663
Noise-Adaptive 0.2237 0.1427 0.2264 0.1700

we can select adequate mode.

Although a number of researchers have investigated visual inertial odometry of the

EuRoC datasets, few of them thoroughly focus on measurements with outliers. Table 3.3

reveals that the proposed estimator, the noise-adaptive filter, outperforms other impressive

methods, called ”S-MSCKF” and ”SVO+MSF” in which stereo is available. Since SVO+MSF

is loosely coupled, its algorithm actually diverges.

Table 4.3: Comparison with Other Methods in RMS Position Error [m] of Noise-Adaptive
Filtering

Dataset EuRoC V1 Easy EuRoC V1 Difficult
Method Bright Scene Motion Blur
Noise-Adaptive Filter 0.1472 0.1700
SVO+MSF (loosely coupled) 0.40 ×
S-MSCKF (stereo-filter) 0.34 0.67
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CHAPTER 5

CONCLUSION

5.1 Contributions

This thesis has presented two adaptive filtering for V-INS and evaluated their performances

with flight datasets testing. Two unknown parameters—sensor-related delays and outliers—

arise in various realistic conditions, so compensating for uncertainties of the parameters

improved accuracy and robustness of V-INS.

In particular, the following contributions were made:

i) Development of a practical EKF-based V-INS accounting for vehicle-feature correlat-

ions. Development of tightly coupled visual inertial odometry (VIO) for autonomous

flight of UAVs. EKF-based V-INS is capable of solving more broad scopes of navigation

problems than the recent state-of-the-art VIO algorithms created for solving the only

IMU and vision fusion problem. Correlations between features and vehicle state were

fully considered which improves the consistency of the filter.

ii) Development of a reliable and accurate filtering formulation for measurements with

unknown time delays. We define time delays of vision data measurements in V-INS.

For compensating delayed measurements and estimating unknown delay values, this

thesis presented latency-adaptive filtering that includes state augmentation, interpolation,

and residual, Jacobian, covariance corrections. The optimality of the three corrections

and the observability of the state augmentation were validated and the resulting algorithm

is identical to the standard EKF.

iii) Development of a robust and adaptive state estimation framework for V-INS under

frequent outliers occurrence. We utilize adequate outlier removal techniques in image
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processing front end. For estimating the states of V-INS with measurement outliers,

this document presented a novel implementation of the outlier robust EKF to VIO, for

which we derive iterative update steps for computing the precision noise matrices of

vision outliers when the Mahalanobis gating test detects remaining outliers in filtering

front end.

iv) Test of the performance of V-INS employing the adaptive filtering algorithms in the

benchmark flight datasets for comparison to other state-of-the-art VIO algorithms.

We used realistic and widely used flight datasets for comparison to other state-of-the-

art VIO algorithms. In particular, to show more improvements of our method the over

others’ approaches, we tested in the fast motion and motion blur flight datasets.

v) Validation of improved accuracy of V-INS employing the latency-adaptive filtering in

the fast motion flight dataset. Validation of improved robustness of V-INS employing

the noise-adaptive filtering in the motion blur flight dataset.Results from flight datasets

testing show that the novel navigation approach improves the accuracy and reliability

of state estimation with unknown time delays and frequent outliers in V-INS. With

the adaptive filtering, RMS errors of estimation were decreased. In particular, latency-

adaptive filtering improved reliability of estimation for the fast motion datasets. Moreover,

the noise-adaptive filtering accelerates the robustness of estimation for motion blur

datasets.

Furthermore, the overall approach in this document can be easily employed in other filter-

based V-INS frameworks and suitable to monocular VIO although this study used a stereo

camera to showcase the methods.

5.2 Future Work

i) Investigation of color noise in V-INS. A required assumption of the Kalman filter is the

whiteness of measurement noise. As an illustration, during sampling and transmission
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in image processing, colored noise that may originate from a multiplicity of sources

often degrades the quality of images [94]. The vibrational effects of camera sensors

might also produce colored measurement noise [95]. Thus, we can test whiteness of

noise by computing an autocorrelation matrix in offline. If the residuals of vision data

are correlated with themselves at different timestamp, then colored measurement noise

occurs in V-INS. Since modeling noise without additional prior knowledge of the noise

statistics is typically difficult, the machine-learning techniques-based state estimator

for colored noise [96, 97] may handle the unknown correlations in V-INS.

ii) Extension of the noise-adaptive filtering for process outliers. Since an IMU is also a

sensor, it could generate outliers in V-INS. With accounting for the process outliers,

the accuracy and robustness of the estimator would be improved. If we distinguish

process outliers from IMU sensors with measurement outliers from vision data, the

extended outlier robust EKF [64] may be an impressive approach for this case.

iii) Evaluation with other flight datasets or by real-time flight tests. Although the reliability

and robustness of this thesis were validated by testing benchmark flight datasets,

validating with other flight datasets would be beneficial to prove robustness. Moreover,

UAVs stacked the navigation algorithms in this study can be operated with a controller

in the loop. The use of a controller in the loop is more important validation criteria

due to the potential for controller-navigation coupling.

The research goals presented here will significantly advance state-of-the-art state estimation

in vision-aided inertial navigation for UAVs.
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APPENDIX A

EXPERIMENTAL EQUIPMENT AND ENVIRONMENTS

Burri et al. [84] provide benchmark datasets of UAV flying, and Table A.1 illustrates the

sensor specifications of the datasets. They obtain the noise model parameters from the

Table A.1: Sensors of EuRoC Datasets

Sensor Rate Characteristics
Cameras 2 × 20 Hz Global Shutter
IMU 200 Hz Instrumentally Calibrated

IMU at rest and provide them; that is, σa, σω, σba , and σbω are known. The intrinsic and

extrinsic parameters of both cameras are also given; that is, fu, fv, Tc/b, and bpc/b are known.

The visual-inertial sensor unit is calibrated with Kalibr [98] prior to dataset collection.

Furthermore, IMU and cameras are hardware time-synchronized such that the middle of

the exposure aligned with the IMU measurements. The visual-inertial sensor employs an

automatic exposure control that is independent for both cameras. This results in different

shutter times and in turn in different image brightnesses. Since the mid-exposure times of

both cameras are temporally aligned, synchronization is not affected by different shutter

times.

Visual and inertial data is logged and timestamped on-board the MAV, while ground

truth is logged on the base station. The accuracy of the synchronization between the

ground truth and the sensor data is limited by the fact that both sources are recorded on

different machines and that the timestamps of the devices are unavailable for the ground-

truth system. A maximum likelihood (ML) estimator [46] aligns the data temporally

and calibrates the position of the ground-truth coordinate with respect to the body sensor

unit. In fact, the ML estimator synchronizes the time-varying temporal offset between the

ground-truth and the sensor system. Additionally, it determines the unknown transform
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between the ground-truth reference frame and the body frame. To obtain the full ML

solution, they employ a batch estimator in an offline procedure. Finally, as ground truth,

they provide the ML solutions instead of raw data.

Table A.2: A Comparative description of EuRoC Datasets

Name Scene Motion Average Velocity Average Angular Velocity
V1 01 easy Bright Slow 0.41 m/s 16.0 deg/s
V1 02 medium Bright Fast 0.91 m/s 32.1 deg/s
V1 01 easy Bright Slow 0.41 m/s 16.0 deg/s
V1 03 difficult Motion Blur Fast 0.75 m/s 35.5 deg/s
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APPENDIX B

EVALUATION ERROR METRIC

Sturm et al. [86] provide a set of tools that can be used to pre-process the datasets and to

evaluate the tracking results. To validate estimation results, we need to evaluate the errors

in the estimated trajectory by comparing it with the ground-truth. Among various error

metrics, two prominent methods are the absolute trajectory error (ATE) and the relative

pose error (RPE). In this thesis, to evaluate the overall performance of V-INS employing

the adaptive filtering, the ATE measure is selected.

B.1 Absolute Trajectory Error (ATE)

The absolute trajectory error directly measures the difference between points of the true and

the estimated trajectory. As a pre-processing step, we associate the estimated poses with

ground truth poses using the timestamps. Based on this association, we align the true and

the estimated trajectory using the Horn et al. [99]’s closed-form method based on singular

value decomposition. Finally, we compute the differences between each pair of poses, and

output the mean, median, and standard deviation of these differences.
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APPENDIX C

STOCHASTIC CLONING (OR THE SCHMIDT-KALMAN FILTER)

For shorthand expressions in this Appendix, we denote state x and covariance P without

the augmented state by the feature initialization. First, we prove Equations (3.22) – (3.25).

During the delay period, cross-covariance term P crs is propagated from time k − d̂ to time

k − s  Pk−d̂ P crs
(k−s) | (k−d̂ )

T

P crs
(k−s) | (k−d̂ )

Pk−s


=

I 0

0 Φk−d̂


Pk−d̂ Pk−d̂

Pk−d̂ Pk−d̂


I 0

0 Φk−d̂


T

+

0 0

0 Q∆tIMU


=

 Pk−d̂ Pk−d̂ ΦT
k−d̂

Φk−d̂ Pk−d̂ Φk−d̂ Pk−d̂ ΦT
k−d̂ +Q∆tIMU

 ,
where Pk−d̂ ≈ P dly and Φ denotes the state transition matrix. After s time steps, at time k,

the final cross-covariance term computed during the delay period is

 Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

 =

 Pk−d̂ Pk−d̂

(∏k−1

i=k−d̂ ΦT
i

)
(∏k−d̂

i=k−1 Φi

)
Pk−d̂ P−k

 . (C.1)
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Next, we prove Equations (3.16) – (3.21). The modified Kalman gain is computed as

follows: Ks

K crs

 =

 Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

[Ck−d̂ 0

]T

(Ck−d̂ Pk−d̂C
T
k−d̂ +R )−1

=

 ∗

P crs
k | (k−d̂)

CT
k−d̂ (Ck−d̂ Pk−d̂C

T
k−d̂ +R )−1

 , (C.2)

where Ks denotes the stationary Kalman gain and

Ck−d̂ Pk−d̂C
T
k−d̂ =

[
Ck−d̂ 0

] Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

[Ck−d̂ 0

]T

.

The update of covariance matrix using the cross covariance term is

∗ ∗

∗ P+
k

 =

 Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

−
 Ks

K crs

[Ck−d̂ 0

] Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k


=

∗ ∗

∗ P−k −K crs Ck−d̂ P
crs
k | (k−d̂)

T

 . (C.3)

We finally prove the optimality of the latency-adaptive filtering in Chapter 3. Since

the standard EKF is an optimal estimator, if we prove that the latency-adaptive filter is

identical to the standard EKF, then the latency-adaptive filtering approach becomes also
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optimal estimation. Let us recall Equations (3.16) – (3.18).

K crs = P crs
k | (k−d̂)

CT
k−d̂ (Ck−d̂ Pk−d̂C

T
k−d̂ +R )−1

= Φk−1Φk−2 · · ·Φk−d̂Pk−d̂ C
T
k−d̂ (Ck−d̂ Pk−d̂C

T
k−d̂ +R )−1 (C.4)

x̂+
k = x̂−k +K crs rk−d̂ (C.5)

P+
k = P−k −K

crs Ck−d̂ P
crs
k | (k−d̂)

T

= P−k −K
crs Ck−d̂ Pk−d̂ ΦT

k−d̂Φ
T
k−s · · ·ΦT

k−1 , (C.6)

Next, we assume that delayed measurement y is available immediately without delays.

In other words, for this assumed case, measurement update is first performed and then

propagation steps are processed. At time [ k − d̂ ], given x̂−
k−d̂ and P−

k−d̂, the standard

measurement update performs as follows:

Kk−d̂ = P−
k−d̂C

T
k−d̂ (Ck−d̂P

−
k−d̂C

T
k−d̂ +R )−1

x̂′
+

k−d̂ = x̂−
k−d̂ +Kk−d̂ rk−d̂

P
′+

k−d̂ = P−
k−d̂ −Kk−d̂Ck−d̂P

−
k−d̂,

where x̂′
+

k−d̂ 6= x̂k−d̂ and P
′+

k−d̂ 6= Pk−d̂ since x̂′
+

k−d̂ and P
′+

k−d̂ are values after the corrections

by the measurement update, shown in Figure C.1. That is, red lines illustrates the original

processes of the latency-adaptive filtering and blue lines presents the processes of the

assumed case. From time (k − s) to time k during the delay period, the assumed case

propagates state estimates and covariance recursively. At time (k − s),

x̂′
−
k−s ≈ Φk−d̂ x̂

′+
k−d̂

= Φk−d̂ x̂
−
k−d̂ + Φk−d̂Kk−d̂ rk−d̂

P
′−
k−d̂+1

= Φk−d̂ P
′+

k−d̂ ΦT
k−d̂ +Q∆tIMU

= Φk−d̂ P
−
k−d̂ ΦT

k−d̂ +Q∆tIMU − Φk−d̂ Kk−d̂Ck−d̂P
−
k−d̂ ΦT

k−d̂.
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Figure C.1: Optimality of the Latency-Adaptive Filter

Likely, at time k, only time update is processed since the measurement was already used to

update.

x̂+
k = x̂′

−
k ≈ Φk−1x̂′

+

k−1

= Φk−1Φk−2 · · ·Φk−d̂ x̂
−
k−d̂ + Φk−1Φk−2 · · ·Φk−d̂Kk−d̂ rk−d̂

= x̂−k + Φk−1Φk−2 · · ·Φk−d̂ Kk−d̂ rk−d̂

= x̂−k +K crs rk−d̂ (C.7)

P+
k = P

′−
k = Φk−1Φk−2 · · ·Φk−d̂ P

−
k−d̂ ΦT

k−d̂Φ
T
k−s · · ·ΦT

k−1

+Q∆tIMU + Φk−1Q∆tIMU ΦT
k−1 + · · ·

− Φk−1Φk−2 · · ·Φk−d̂Kk−d̂ Ck−d̂P
−
k−d̂ ΦT

k−d̂Φ
T
k−s · · ·ΦT

k−1

= P−k − Φk−1Φk−2 · · ·Φk−d̂Kk−d̂ Ck−d̂P
−
k−d̂ ΦT

k−d̂Φ
T
k−s · · ·ΦT

k−1

= P−k −K
crs Ck−d̂P

−
k−d̂ ΦT

k−d̂Φ
T
k−s · · ·ΦT

k−1. (C.8)

Since Equations (C.5) and (C.6) are identical to Equations (C.7) and (C.8), respectively,

the hypothesis was completely proved. In other words, the latency-adaptive filter for V-

INS acts as if the delayed vision data from an image are available at the right time when

the image was captured.
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[87] M. Trajković and M. Hedley, “Fast corner detection,” Image and vision computing,
vol. 16, no. 2, pp. 75–87, 1998.

[88] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
in European conference on computer vision, Springer, 2006, pp. 430–443.

85



[89] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proceedings of the 7th international joint conference
on Artificial intelligence-Volume 2, Morgan Kaufmann Publishers Inc., 1981, pp. 674–
679.

[90] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo image sequences
with ransac-based outlier rejection scheme,” in Intelligent Vehicles Symposium (IV),
IEEE, 2010, pp. 486–492.

[91] Open CV, https://opencv.org.

[92] J. L. Devore, Probability and Statistics for Engineering and the Sciences. Cengage
Learning, 2015.

[93] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[94] X. Shenshu, Z. Zhaoying, Z. Limin, X. Changsheng, and Z. Wendong, “Adaptive
filtering of color noise using the Kalman filter algorithm,” in Proceedings of the 17th
IEEE Instrumentation and Measurement Technology Conference (IMTC), vol. 2,
2000, pp. 1009–1012.

[95] A. Kumar and J. L. Crassidis, “Colored-noise Kalman filter for vibration mitigation
of position/attitude estimation systems,” in AIAA Guidance, Navigation and Control
Conference and Exhibit, 2007, p. 6516.

[96] K. Lee and E. N. Johnson, “State estimation using Gaussian process regression for
colored noise systems,” in IEEE Aerospace Conference, 2017, pp. 1–8.

[97] K. Lee, Y. Choi, and E. N. Johnson, “Kernel embedding-based state estimation for
colored noise systems,” in IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC), 2017, pp. 1–8.

[98] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for
multi-sensor systems,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2013, pp. 1280–1286.

[99] B. K. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form solution of absolute
orientation using orthonormal matrices,” JOSA A, vol. 5, no. 7, pp. 1127–1135, 1988.

86

https://opencv.org


VITA

Kyuman Lee received his B.S. degree in aerospace engineering from the Korea Advanced

Institute of Science and Technology and two M.S. degrees in aerospace engineering and

mathematics from the Georgia Institute of Technology. He is currently a Ph.D. candidate

in aerospace engineering at Georgia Tech, where he is conducting research pertaining

to adaptive state estimation for vision-aided inertial navigation systems of UAVs. His

other research at Georgia Tech, field test-based guideline development for the integration

of UAVs in GDOT operations, is funded by the Georgia Department of Transportation

(GDOT). He also worked as a teaching assistant in a control system design laboratory

for two years. After earning his doctorate, Kyuman plans to enter academia or a research

institute as a post-doctoral scholar. He has published six conference papers and one of them

was a winner of the American Institute of Aeronautics and Astronautics (AIAA) GNC best

paper award. He is a member of the AIAA and the IEEE Control Systems Society.

87


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Related Work
	Vision-Aided Inertial Navigation
	State Estimation Using Time-Delayed Measurements
	State Estimation for Measurements with Outliers

	Summary of Contributions
	A Guide to This Document

	Preliminaries
	The Extended Kalman Filter
	Time Update
	Measurement Update
	Sequential Kalman Filter

	Vehicle Model
	Camera Model
	Feature Initialization


	Latency-Adaptive Filtering for Measurements with Unknown Time Delays
	Definition of Time Delays
	Approximately Known Part of Time Delays
	Jacobian and Residual - “Baseline Correction”
	Cross Covariance - “Covariance Correction”

	Unknown Part of Time Delays - “Online Calibration”
	Implementation
	Forward Computation of Cross Covariance
	Summarized Algorithm

	Monte Carlo Simulations
	Flight Datasets Test Results

	Noise-Adaptive Filtering for Measurements with Frequent Outliers
	Outlier Rejection in Image Processing Front End
	Feature Correspondence
	Algorithm of Feature Correspondence

	Outlier Adaptation in Filtering Back End
	Outlier Removal in Feature Initialization
	Outlier Detection by Chi-Squared Statistical Test
	Noise-Adaptive Filtering

	Implementation
	Marginalization of Feature States
	Summarized Algorithm

	Flight Datasets Test Results

	Conclusion
	Contributions
	Future Work

	Experimental Equipment and Environments
	Evaluation Error Metric
	Absolute Trajectory Error (ATE)

	Stochastic Cloning (or the Schmidt-Kalman filter)
	References
	Vita

