
ADAPTATION OF HYBRID DEEP NEURAL NETWORK-HIDDEN MARKOV
MODEL SPEECH RECOGNITION SYSTEM USING A SUB-SPACE APPROACH

A Dissertation
Presented to

The Academic Faculty

By

Muhammad Rizwan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2017

Copyright c©Muhammad Rizwan 2017

ADAPTATION OF HYBRID DEEP NEURAL NETWORK-HIDDEN MARKOV
MODEL SPEECH RECOGNITION SYSTEM USING A SUB-SPACE APPROACH

Approved by:

Dr. David V. Anderson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mark A. Clements
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mark A. Davenport
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Omer T. Inan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Fang (Cherry) Liu
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Wayne Daley
Georgia Tech Research Institute

Date Approved: June 30, 2017

Dedicated to my parents & teachers

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, David V. Anderson for his

guidance and support. Especially his mentorship style that any graduate student requires

namely the freedom to explore new ideas, friendly style of advising and encouragement.

I am indebted and grateful to him for allowing me to explore and work on other projects

besides my Ph.D. thesis area of research. These projects have provided me with learning

opportunities and have broadened my horizon of research. I feel privileged and lucky to

have the opportunity to work with him during my Ph.D. In addition to research skills, I also

learned from him how to be a good human-being.

I am thankful to Dr. Mark Clements, Dr. Mark Davenport, Dr. Wayne Daley, Dr. Omer

Inan, and Dr. Fang (Cherry) Liu for their time and consideration as members of my thesis

committee. Also, I owe gratitude to Dr. James McClellan for teaching me how to link

ideas from different research papers and build connections in mind, Dr. Mary Weitnauer

for introducing me to an exciting area of machine learning, and Dr. John Barry for being

teaching mentor and providing me with an opportunity to teach lectures.

My wife has been a significant support throughout the journey of Ph.D. I appreciate her

for continuous support and unconditional love. I would like to thank my parents for their

encouragement and constant support. I would not have achieved this without their prayers.

Special thanks to my sister for advice and well wishes.

Finally, big thanks to all of my friends at the Georgia Tech for making my time enjoy-

able and enlightening. Especially the members of the Efficient Signal Processing Lab - Dr.

Nashlie, Dr. Kaitlin, Femi, Nathan, Brad, Brandon, Courtney, Daniel, and Jeff. Thank you

for making this entire Ph.D. journey exciting.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

Chapter 1: INTRODUCTION . 1

1.1 Recent Work . 1

1.2 Current Challenges . 2

1.3 Contributions . 2

1.4 Outline of thesis . 4

Chapter 2: ADAPTATION OF AUTOMATIC SPEECH RECOGNITION 6

2.1 Automatic speech recognition . 6

2.2 Speaker Adaptation . 8

2.3 Speaker Adaptation for GMM-HMM ASR 8

2.4 Speaker Adaptation for DNN-HMM ASR 10

Chapter 3: ACCENT CLASSIFICATION USING MULTIPLE WORDS 18

3.1 Related work . 18

3.2 Extreme learning machines . 20

v

3.3 Support vector machines . 24

3.4 Comparison between ELMs and SVMs . 27

3.5 Weighted accent classification algorithm 31

3.6 Experiment . 35

3.7 Results . 37

Chapter 4: ADAPTIVE PHONEME CLASSIFICATION 43

4.1 Related work . 44

4.2 Feature learning using deep neural networks 45

4.3 Adaptive phoneme classification . 47

4.4 Experiment . 56

4.5 Results . 57

Chapter 5: ROBUST PHONEME CLASSIFICATION 64

5.1 Related Work . 64

5.2 Dimensionality reduction using neighborhood component analysis 66

5.3 Instance space reduction using adaptive data condensation 69

5.4 Results . 70

Chapter 6: SPEAKER ADAPTATION OF SPEECH RECOGNITION SYTEM 77

6.1 Speaker similarity based speaker adaptation 77

6.2 Sparse coding based speaker adaptation 79

Chapter 7: CONCLUSION AND FUTURE WORK 83

7.1 Conclusion . 83

vi

7.2 Future Work . 84

References . 97

vii

LIST OF TABLES

3.1 SVM - Kernel functions . 26

3.2 Comparison of ELMs and SVMs . 30

4.1 Deep neural network architectures . 57

viii

LIST OF FIGURES

2.1 Automatic speech recognition block diagram 7

2.2 GMM-HMM based adaptation methods for ASR 9

2.3 Linear input network . 10

2.4 Parallel hidden network . 12

2.5 Linear hidden network . 13

2.6 Singular value decomposition of weight matrix 14

2.7 Multi-task learning for speaker adaptation 15

2.8 I-vector based speaker adaptation . 16

2.9 Speaker codes based speaker adaptation 17

3.1 Extreme learning machines . 21

3.2 Support vector machine . 25

3.3 Extreme learning machine decision surface 27

3.4 Support vector machine decision surface 28

3.5 Weighted accent classification algorithm - Block diagram 31

3.6 Extreme learning machine - Training . 32

3.7 Support vector machine - Training . 33

3.8 Weighted accent classification - Architecture 34

ix

3.9 Weighted score . 35

3.10 Comparison of classification accuracy with different words using ELM as
a classifier . 38

3.11 Comparison of classification accuracy with different words using SVM as
a classifier . 38

3.12 Comparison of classification accuracy with number of words 39

3.13 Classification accuracy per different accents 40

3.14 Comparison of ELMs and SVMs training and testing time 41

4.1 Deep neural networks . 46

4.2 Deep neural network as feature extractor 48

4.3 Speaker similarity score . 48

4.4 Adaptive phoneme classification . 49

4.5 Instance Space. Each gray circle represents phoneme samples from training
data. For each of these phoneme speech samples we have phoneme label
and speaker information available. There are ‘L’ speakers and ‘P’ phoneme
classes. For simplicity and clarity we have shown our instance space in two
dimensions with limited phoneme and speaker labels. 50

4.6 Speaker similarity score calculation. The blue circle indicates an adapta-
tion phoneme speech sample from the target speaker. For this adaptation
phoneme speech sample from the target speaker we have phoneme label
information available (i.e. “sh”). The green circle represents k-nearest
neighbor speech samples from training data similar to the target speaker
adaptation phoneme speech sample (“sh”). The red circle represents the k-
nearest neighbor phoneme speech sample that does not match with the tar-
get speaker adaptation speech sample (“ix”). For speaker similarity score,
we will incrementally increase the score of speakers correspoding to correct
phoneme speech samples (i.e. “s1” and “s7”) by “1” 52

4.7 Speaker similarity score after going through all adaptation phoneme sam-
ples from the target speaker . 53

x

4.8 Adaptive phoneme classification. Blue circle represents target speaker test-
ing phoneme sample. Orange circle shows k-nearest neighbor phoneme
samples from the training data. First, it looks for the speaker similarity
score of each of these speakers in orange circle with the target speaker us-
ing the speaker similarity score learned in the last step. e.g. speaker s1, s6,
and s8 speaker similarity score is 8,7, and 3 respectively. Then it looks for
the unique phonemes in k-nearest neighbor. e.g. here “ih” and “iy”. It adds
the speaker score for similar phonemes. e.g. adding the score of speaker s1
and s8. e.g. 8 + 3 = 11 Now, phoneme “ih” has a value of 11 and “iy” has
a value of “7”. Finally, it makes the decision based on highest score. e.g.
“ih” has the highest score, so phoneme decision here is “ih” 55

4.9 Comparison of the speaker similarity score algorithm (SSS) with baseline
system . 58

4.10 Comparison of deep neural network architecture 59

4.11 Variation with ‘k’ for speaker similarity score 60

4.12 Variation with ‘k’ for phoneme classification 61

4.13 Speaker-wise comparison . 62

5.1 Phoneme frame error rate with reduced feature dimension using neighbor-
hood component analysis (NCA) . 71

5.2 Reduction in computation time with reduced feature dimension using neigh-
borhood component analysis . 71

5.3 Phoneme frame error rate per speaker . 72

5.4 Comparison of neighborhood component analysis with principal compo-
nent analysis and linear discriminant analysis 73

5.5 Instance space size vs. phoneme frame error rate 74

5.6 Instance space size vs. improvement in computation time 75

5.7 Complete vs. reduced instance space-Speakerwise comparison 76

6.1 Speaker adaptation using speaker similarity score 78

6.2 Sparse coding based speaker features . 80

xi

6.3 Speaker adaptation using speaker features 82

xii

SUMMARY

The performance of automatic speech recognition (ASR) system can be enhanced by

adaptation of the ASR for a particular speaker or a group of speakers. In ASR, train-

ing and testing data often do not follow the same statistics; they are often mismatched,

which leads to a gap in performance. The difference between training and testing statistics

can be minimized by speaker adaptation techniques, which require adaptation data from

a target speaker to optimize system performance. In the past, ASR systems were based

on Gaussian mixture model-hidden Markov models (GMM-HMM). A resurgence of neu-

ral networks has resulted in the popularity of hybrid deep neural network-hidden Markov

models (DNN-HMM) for speech recognition. The adaptation techniques developed for

GMM-HMM systems cannot be directly applied to DNN-HMM systems because GMMs

are generative models and DNNs are discriminative models. Also, DNN-HMM systems

contain large numbers of parameters and require a huge amount of data from target speaker

to adapt ASR. In many cases, only a limited amount of adaptation data is available for the

target speaker. This thesis proposes multiple methods for the adaptation of speech recogni-

tion system by using a limited amount of data (a few words). The first method uses multiple

words for accent classification in order identify variability in speaking style. Next adaptive

phoneme classification is proposed based on target speaker similarity with speakers in the

training data. Finally, we present adaptation of ASR by augmenting the speech features

with speaker-specific information learned using sparse coding.

xiii

CHAPTER 1

INTRODUCTION

Communication through speech is the most natural and convenient way that we all use

every day for interacting with one another. There are other ways through which people

can communicate with one another. Communication through speech is the most efficient

and versatile way as it allows a fast flow of information. In the last decade, we have seen a

pervasive spread of electronic devices that have revolutionized and have become an integral

part of our daily life. These electronic devices have improved the way we get information

from all around the world and have a profound impact on our everyday activities. Speech

recognition can help people to interact with these devices seamlessly and can revolutionize

the landscape of human-machines interaction. Automatic speech recognition (ASR) is a

thriving and promising topic that can provide more opportunities for getting more benefits

from these electronic devices.

The goal of a speech recognition system is to convert an audio waveform (speech sig-

nal) to words accurately, independent of a speaker and environmental variations by using a

computer interface. In other words, ASR is a system that takes a speech signal as an input

and gives words as an output corresponding to the given input speech signal. The con-

version of speech signal into words is a challenging task as the speech signal intrinsically

exhibits many variations: physiological, environmental, linguistic, etc.

1.1 Recent Work

Speech recognition has been an active research area for four decades. Speech signals con-

tain temporal structure, and the role of ASR system is to convert variable length speech ut-

terances into variable length sequences of words. Hidden Markov models (HMMs) provide

a statistical framework for acoustic modeling of speech signal [1]. HMMs map sequences

1

of observations (acoustic frames) to sequences of labels (phonemes). For a given acous-

tic observation, HMMs provide the probability distribution over all possible sequences of

labels. In the past, Gaussian mixture models (GMMs) were used for estimating the prob-

ability distributions of speech utterances associated with the states of HMMs. Acoustic

models based on GMMs-HMMs were trained using the maximum likelihood algorithm.

In the 2000s the maximum likelihood algorithm was replaced by the sequence discrimina-

tive algorithm. Sequence discriminative algorithms, such as minimum classification error

and minimum phone error, further improved the performance accuracy of ASR. Recently

GMMs have been replaced by discriminative hierarchical models such as deep neural net-

works (DNNs) and have significantly improved the accuracy of ASR system. A major driv-

ing force for these discriminative hierarchical models is the availability of a large amount

of data and computational resources [2].

1.2 Current Challenges

Although in recent years there has been a significant improvement in ASR system accuracy,

people still mostly interact with various devices through a keyboard or touchscreen. The

primary reason is that typing is more convenient than dictation considering the low accu-

racy of ASR. Also, the recent improvement in performance is limited to certain conditions

[3, 4]. To have a seamless interaction with the devices and widespread use of ASR, one

needs to improve the accuracy of ASR under all conditions. The most prominent of these

variations are speaker mismatch, channel mismatch, and noise [5].

1.3 Contributions

This thesis focuses on variation due to speaker mismatch. The speaker mismatch vari-

ations result in performance degradation of ASR system when a new speaker data does

not match with the data used for training ASR system. To improve accuracy further, the

biggest challenge is the adaptation of ASR system to different dialects, accents, speaking

2

styles, etc. There is a plethora of work done for the adaptation of GMM-HMM speech

recognition systems. The resurgence of neural networks resulted in hybrid deep neural

network-hidden Markov model (DNN-HMM) speech recognition systems. The techniques

developed for speaker adaptation of GMM-HMM speech recognition systems cannot be

directly applied to DNN-HMM speech recognition systems because GMMs are generative

models and DNNs are discriminative models. There is no clear structure in the model pa-

rameters of DNN. Training DNN-HMM speech recognition systems require large amounts

of data and are computationally expensive. Also, adaptation techniques proposed recently

for the DNN-HMM speech recognition systems require a significant amount of data (10’s

- 100’s of sentences) for the speaker adaptation.

The objective of this thesis is to develop a framework for the adaptation of ASR systems

by using a limited amount of data (a few words). To achieve this objective, we break down

the speaker adaptation problem of ASR in the following specific aims.

1.3.1 Accent classification

Variability in speech due to accents results in performance degradation of ASR systems.

The performance degradation of ASR system can be overcome by identifying the accent

of the speaker and using accent information for the adaptation of ASR. An algorithm is

proposed that uses multiple words for accent classification. The algorithm uses a novel

architecture to classify North American accents into seven groups [6].

1.3.2 Adaptive phoneme classification

Speech recognition systems decode words for a given speech signal by splitting the speech

signal into small fragments known as frames. The overall performance of a speech recog-

nition system is dependent on the frame phoneme classification accuracy of these frames.

A speaker similarity score algorithm is proposed that uses k-nearest neighbor (k-NN) on

the deep neural network (DNN) features to find the similarity of a given test speaker with

3

speakers in an instance space (training data). Based on the speaker similarity score infor-

mation, the algorithm does adaptive phoneme classification [7, 8, 9].

1.3.3 Robust phoneme classification

The computation time of the speaker similarity score algorithm is improved by reducing the

dimension of the feature vectors using neighborhood component analysis that learns low

dimensional linear embeddings from the training data. Also, an adaptive data condensation

scheme for instance space (training data) reduction is proposed based on the speaker rank-

ing. Dimensionality reduction using neighborhood component analysis and adaptive data

condensation using speaker ranking provide a significant reduction in the computational

time of the speaker similarity score algorithm at the cost of a slight increase in phoneme

frame error rates [10].

1.3.4 Speaker adaptation of ASR

The performance of ASR system is improved by augmenting the speech features with

speaker features. The speaker features contain speaker-specific information. Universal

background sparse coding and a multi-layer bootstrap networks are used to extract speaker

features using a few words. The extracted speaker features are augmented with speech

features for the speaker adaptation of ASR system.

1.4 Outline of thesis

The rest of the thesis is organized as follows. Chapter 2 begins with an overview of ASR

and speaker adaptation. The chapter also provides a summary of speaker adaptation meth-

ods for GMM-HMM based speech recognition. Finally, a comprehensive review of speaker

adaptation methods for DNN-HMM based speech recognition system is discussed.

Chapter 3 discusses the weighted accent classification algorithm. The weighted accent

classification algorithm is based on extreme learning machines is compared with support

4

vector machines. The performance of the accent classification algorithm is compared by

using different words and varying the number of words.

Chapter 4 describes a novel algorithm for adaptive phoneme classification named as the

speaker similarity score algorithm. The speaker similarity score algorithm learns a speaker

similarity score based on a small amount of adaptation data from each target speaker us-

ing the deep neural network-based acoustic features. A comparison regarding frame-wise

phoneme classification is made between adaptive phoneme classification with the baseline

deep neural network.

Chapter 5 focuses on methods to improve the computational time of the speaker simi-

larity score algorithm. The first method reduces the dimension of the feature space by using

neighborhood component analysis and the second method reduces the number of samples

in the instance space by doing adaptive data condensation. Comparison of these methods

is made with principal components analysis and linear discriminant analysis.

Chapter 6 extends the speaker similarity score algorithm for the adaptation of ASR

system. A feature augmentation approach for speaker adaptation based on sparse coding

and bootstrap network is also presented. A summary of the contributions made in this

thesis, along with future directions, is provided in Chapter 7.

5

CHAPTER 2

ADAPTATION OF AUTOMATIC SPEECH RECOGNITION

In the past, ASR systems have been dominated by GMM-HMM for acoustic modeling. Re-

cently hybrid DNN-HMM have shown significant improvements over GMM-HMM. This

chapter provides an overview of speaker adaptation methods for both GMM-HMM and

DNN-HMM speech recognition systems. This chapter is organized as follows: first, a brief

overview of ASR is provided; then a summary of methods developed for GMM-HMM

based speech recognition systems is presented; finally, a comprehensive review of speaker

adaptation methods for hybrid DNN-HMM speech recognition systems is discussed.

2.1 Automatic speech recognition

The goal of the speech recognition system is to find the most probable word sequence

corresponding to a given speech signal. Mathematically, this is represented as [11]:

Ŵ = arg max
W

P (W|X) = arg max
W

P (W)P (X|W)

P (X)
(2.1)

where X represents speech signal with observation sequence X = [X1, X2, ..., Xn]. ASR

has to map the speech signal of variable length into a sequence of words which are also of

variable length W = [W1,W2, ...,Wm]. The above equation is rewritten below for a given

fixed observation X as:

Ŵ = arg max
W

P (W)P (X|W) (2.2)

where P (W) represents the language model, and P (X|W) accounts for the acoustic model.

Automatic speech recognition systems use large amounts of training data to learn the acous-

tic and language models to accurately predict words for a given sequence of observa-

tions, X, of the speech signal. The underlying architecture of an ASR system is shown

6

in Fig. 2.1. ASR comprises mainly four components: feature extractor, acoustic model,

language model, and decoder.

Acoustic Model

Georgia Tech

Language Model

DecoderFeature Extractor

Signal Features Word

Figure 2.1: Automatic speech recognition block diagram

The feature extractor takes a speech signal as an input and converts it into features that

are invariant to changes in the speaker, environment, and are suitable for building an ac-

curate acoustic model. Feature extraction plays a vital role in the overall performance of

an ASR. Many methods have been proposed over the years for feature extraction. These

include Mel-frequency Cepstral coefficients (MFCCs), linear predictive coding (LPC), per-

ceptual linear predictive coefficients (PLP), and relative spectral transform (RASTA). The

speech signals are quasi-stationary and have stationary characteristics over a short period

(10-100 msec) [12]. The speech signal is divided into frames so that the signal within

each frame remains stationary and the corresponding features can be represented by a fixed

length feature vector.

The acoustic model represents a statistical relationship between the features extracted

from the speech signal and the linguistic unit. The most commonly used method to learn

the acoustic model is the HMM. In HMMs, the acoustic input which comprises frames is

represented by a set of states. A GMM is used to model the relationship between the states

in the HMMs and given speech observations. Recently, DNNs replaced GMMs to estimate

the posteriori probabilities of each state for a given observation [13]. Language models

specify the likelihood of a word sequence by constraining the search in terms of limiting

the number of possible words that need to be considered at a given point. The language

7

model helps in faster searches at the decoding stage and improves the overall accuracy.

The most widely used language model for ASR is N-gram. The decoder uses the acoustic

and language models to search for the best sequence of words by maximizing the score

computed by the acoustic and language models.

2.2 Speaker Adaptation

The accuracy of speaker independent and speaker dependent ASR systems significantly

differs, which leads to a gap in performance. The performance of an ASR system can be

enhanced by adapting the ASR for a particular speaker or group of speakers [14]. In ASR,

as training and testing data do not follow the same distribution, they are often mismatched.

The difference between training and testing statistics/parameters can be minimized by

speaker adaptation techniques, which require adaptation data from a target speaker to op-

timize system performance. In most cases, only a limited amount of adaptation data are

available for the target speaker.

Speaker adaptation has different modes [15]. In the supervised adaptation, word-level

transcriptions of speaker utterances are known. In unsupervised adaptation, word-level

transcriptions are not available, and the ASR estimates them [16]. In static adaptation (also

called batch mode), all adaptation data is given to the ASR before the adaptation process.

In dynamic adaptation (also known as online adaptation), data is incrementally given to

ASR.

2.3 Speaker Adaptation for GMM-HMM ASR

In the past, speech recognition systems were dominated by GMM-HMM systems and a

plethora of work has been done for the adaptation of GMMs-HMMs based speech recogni-

tion systems. Several survey papers are written on GMM-HMM adaptation techniques [17,

18, 19, 20]. Speaker adaptation techniques for GMM-HMM systems can be broadly classi-

fied into maximum a posteriori (MAP), transformation, and speaker space-based methods

8

[17]. Fig. 2.2 provides a summary of GMMs-HMMs adaptation methods.

cMLLR - Constrained maximum likelihood linear regression

SAT - Speaker adaptive training

CAT - Cluster adaptive training

cMLLR - Constrained maximum likelihood linear regression

SAT - Speaker adaptive training

CAT - Cluster adaptive training

RMP - Regression based model prediction

SMAP - Structural max a posteriori

MLLR - Maximum likelihood linear regression

RMP - Regression based model prediction

SMAP - Structural max a posteriori

MLLR - Maximum likelihood linear regression

Speaker Adaptation

(GMM-HMM)

Maximum Aposteriori

RMP SMAP

Transformation

MLLR cMLLR SAT

Speaker Space

CAT Eigen Voices

Speaker Adaptation

(GMM-HMM)

Maximum Aposteriori

RMP SMAP

Transformation

MLLR cMLLR SAT

Speaker Space

CAT Eigen Voices

Figure 2.2: GMM-HMM based adaptation methods for ASR

In MAP-based methods, the parameters of the model are re-estimated by using adapta-

tion data from the test speaker [21]. MAP-based methods require a significant amount of

data from the test speaker to re-estimate HMM parameters. Given a large amount of data

from the test speaker, the MAP estimate converges to the maximum likelihood (ML) esti-

mate. When there is limited adaptation data from the test speaker, regression-based model

prediction, and structural maximum a posteriori are used [22, 23].

The most widely used techniques for transformation-based methods are the maximum

likelihood linear regression (MLLR), constrained maximum likelihood linear regression

(cMLLR), and speaker adaptive training (SAT) [24, 25]. These techniques estimate a trans-

formation of the model parameters. Speaker space-based methods estimate HMMs for a

group of speakers. A few utterances are used from the test speaker to identify his/her group.

Promising techniques for speaker space-based methods are cluster adaptive training (CAT)

and Eigen-voices [26, 27]. For details regarding these methods, readers are referred to a

review paper by P. C. Woodland [17].

9

2.4 Speaker Adaptation for DNN-HMM ASR

2.4.1 Feature space adaptation

The simplest approach for a feature space adaptation is a linear input network [28]. The

linear input network uses linear mapping to transform input feature vectors as shown in

Fig. 2.3. For a new test speaker, a linear input network is initialized with an identity matrix

so that the initial point is based on a speaker independent model. The linear input network

is trained using the back-propagation algorithm, and weights of the speaker independent

neural network are kept frozen during training of the linear input network.

Linear Input Network

Speaker Independent

Neural Network

Feature Vector

Output Layer

Speaker Independent

Neural Network

Feature Vector

Output Layer

Output Layer

Speaker Independent

Neural Network

Feature Vector

Figure 2.3: Linear input network

J. Neto et al. proposed a restrained speaker independent scheme for speaker adapta-

tion [28]. In the restrained speaker independent scheme, weights of the original speaker

independent neural network were adapted based on the test speaker adaptation data. The

challenge is that there are large numbers of free parameters with a small amount of adap-

tation data, and training must be stopped before the system over-fits the adaptation data.

Cross-validation determines the stopping criterion for network training on an independent

set of data.

10

V. Abrash et al. used a transformation network as a pre-processor to the original speaker

independent neural network [29]. The transformation neural network learns speaker depen-

dent characteristics with a small number of parameters by applying a linear transformation

to the incoming speech features. The architecture of the transformation neural network

depends on the amount of adaptation data from the test speaker. The transformation neural

network can be jointly trained with the speaker independent neural network. The param-

eters of the combined system (speaker independent and transformation neural network)

are learned using a small learning rate. The transformation neural network provides quick

adaptation with a small amount of adaptation data from the test speaker. F. Seide et al.

applied heteroscedastic linear discriminant analysis, vocal tract length normalization, and

feature space maximum likelihood linear regression to DNN-HMM speech recognition

systems [30]. The authors found that DNN features are better than features obtained by

heteroscedastic linear discriminant analysis and vocal tract length normalization.

2.4.2 Model space adaptation

J. Neto et al. proposed an architecture for model space adaptation in which a new neu-

ral network is placed in parallel with the speaker independent neural network [28]. The

parallel neural network as shown in Fig. 2.4 has the same input layer and the same output

layer as the speaker independent neural network. The original speaker independent net-

work is kept frozen, and the new parallel neural network is trained using adaptation data

from the test speaker. The intuition for the parallel neural network is that it compensates

for the difference between the speaker independent neural network and the new speaker

through weights. The parameters of the original speaker independent neural network are

kept frozen, and weights of the parallel neural network are learned to provide speaker de-

pendent information.

The neural network hidden layers activations learn better and refine features that are

useful for phoneme classification as we move from input layer to the output layer of the

11

Adaptation Network

Feature

Vector

Output Layer

Speaker Independent

Neural Network

Feature

Vector

Output Layer

Speaker Independent

Neural Network

Figure 2.4: Parallel hidden network

neural network. The weights between the last hidden layer and the output layer provide a

linear discrimination of the phoneme classes. R. Gemello et al. proposed a linear hidden

network in which the linear transformation network is placed between the last hidden layer

and the output layer [31]. The linear hidden network learns weight using adaptation data

from the test speaker and provides better separation of phoneme classes. Fig. 2.5 shows

the architecture of the linear hidden network. The linear hidden network is learned using

the same procedure as discussed earlier for the linear input network. Conservative training

is used to overcome the missing data classes in the adaptation data by replacing missing

data class outputs with the outputs computed from the original speaker independent neural

network.

K. Yao et al. further extended the idea of the transformation neural network before the

output layer by applying an affine transformation to the parameters of softmax layer [32].

Only the bias vector is modified due to the scarcity of adaptation data from the test speaker.

S. M. Siniscalchi et al. applied the idea of model space adaptation to large vocabulary

continuous speech recognition [33]. A Hermitian activation function is used and the shape

of the Hermitian activation function was modified based on speaker characteristics. The

same degree of polynomial was used for the Hermite as an activation function for all the

12

WLHN

Linear Hidden Network

Speaker Independent

Neural Network

Feature Vector

Output Layer

Speaker Independent

Neural Network

Feature Vector

Output Layer

Output Layer

Speaker Independent

Neural Network

Feature Vector

Figure 2.5: Linear hidden network

hidden layers. Adaptation of the non-linear activation function also overcomes the problem

of test speaker adaptation data scarcity. Based on their experimental study, the authors

did not find any effect of doing an adaptation of bias and slope of the sigmoid activation

function.

D. Yu et al. proposed a conservative adaptation method that constrained the output

probabilities of senones by adding Kullback-Leibler divergence regularization to the neu-

ral network objective function [34]. The Kullback-Leibler divergence forces the senone

distributions to have probability values that are close to those estimated by the original

speaker independent neural network.

S. Xue et al. applied singular value decomposition to the weight matrices of the speaker

independent neural network [35]. The weight matrices of each layer are decomposed using

singular value decomposition as shown in Fig. 2.6. The decomposition of the weight matri-

ces is regularized such that the maximum singular value in S is one. During the adaptation,

only the singular values of matrix S are updated for each target speaker. The non-diagonal

zero elements of S, matrices U and V are kept frozen. This approach overcomes the over-

fitting problem as only limited parameters (singular values of matrices S) are updated by

13

using the adaptation data of the test speaker.

Wm x n

V
T

n x n

Sm x n

Um x mSingular Value Decomposition

Wm x n = Um x m Sm x n V
T

n x n

Figure 2.6: Singular value decomposition of weight matrix

Y. Zhao et al. modified the bias and slope of the sigmoid activation function for speaker

adaptation [36]. The total number of adaptation parameters is twice the number of hidden

units in the speaker independent neural network. This approach requires a small amount of

adaptation data from the test speaker and has a low footprint, which makes it appealing for

deployment in large-scale speech recognition systems.

R. Price et al. proposed speaker adaptation technique that overcomes the issue of classes

with no representation at all or smaller representation in the adaptation data [37]. In their

approach, they appended an additional output layer, termed the hierarchy output layer, that

maps the original phonetic classes at the output layer to a smaller set of phonetic classes.

During adaptation, weights of the hierarchy output layer are kept fixed, and weights of all

other layers are adjusted using back-propagation.

Z. Huang et al. applied multi-task learning for speaker adaptation [38]. Senone clas-

sification is used as the primary task and monophone as the secondary task as shown in

Fig. 2.7. Multi-task learning improves the generalization capability of the neural network

14

by enhancing the acoustic space for unseen senone scenarios. Multi-task learning also re-

sults in better discrimination capabilites of the neural network specifically when the adap-

tation data is small and most of the senones classes are not available in the adaptation data.

WLHN

Linear Hidden Network

Feature Vector

Task 1 Task 2 Task k...

Feature Vector

Task 1 Task 2 Task k...

Figure 2.7: Multi-task learning for speaker adaptation

MAP framework is applied to the parameters of the top layer for speaker adaptation

[39]. The prior information required by MAP is learned from the training data. Acti-

vation functions of the hidden layer are parameterised with a linear output scaling factor

for speaker adaptation [40]. The parameters for the activation function are incrementally

learned at each layer. The speaker dependent model comprises an adaptive linear factor

associated with each activation function.

2.4.3 Sub-space data augmentation

The performance of ASR can also be improved by augmentation of speaker-specific in-

formation to the speech features. Speaker-specific information is added both during the

training of ASR and at the testing stage. Various methods have been proposed to learn

speaker-specific information that can be augmented with the speech features in the hybrid

15

DNN-HMM speech recognition system.

I-vectors can provide speaker information by using a very small amount of data from

the speaker. The DNN-HMM system is adapted by giving speaker-specific information

(i-vectors) along with acoustic feature vectors as input. Y. Miao et al. used i-vectors along

with speech features for the speaker adaptation [41]. The speaker independent neural net-

work is first trained using the training data. In the next step, i-vectors for each speaker

in the training data are extracted and given as input along with speech feature vectors to

learn the weights of adaptation neural network. During this step, the weights of the speaker

independent neural are kept fixed. In the last step, the parameters of the adaptation network

are kept fixed and the parameters of the speaker independent neural network are updated

with the features obtained from adaptation network and speech feature vectors as shown in

Fig. 2.8.

Adaptation

Network

Feature

Vector A3

W1

W2

W3

A2

A1

Speaker Independent

Neural Network

Feature

Vector

W1

W2

W3

i-Vector

(Speaker)

Element-wise Addition

Output Layer

Output Layer

Speaker Independent

Neural Network

Figure 2.8: I-vector based speaker adaptation

16

Abdel et al. proposed three methods for speaker adaptation based on speaker codes [42,

43, 44]. The speaker code is a discriminative condition code associated with each speaker

and represents speaker-specific information in a compact form. In first method, the adap-

tation neural network is added prior to the speaker independent neural network as shown

in Fig. 2.9. Speaker codes are connected to the adaptation neural network. In the second

method, speaker codes are directly used to adapt the speaker independent neural network

by directly connecting speaker codes with all the layers of the speaker independent neural

network. In third method, a joint learning procedure is used to learn speaker independent

neural network weights, speaker codes, and connection weights from scratch.

Feature Vector

W1

W2

W3

Feature

Vector

A3

W1

W2

W3

A2

A1

Speaker

Code

B1

B2

B3

Output Layer

Output Layer

Speaker Independent

Neural Network

Speaker Independent

Neural Network

Adaptation Network

Figure 2.9: Speaker codes based speaker adaptation

17

CHAPTER 3

ACCENT CLASSIFICATION USING MULTIPLE WORDS

Speech recognition systems exhibit performance degradation due to variability in speech

caused by the accents or dialects of speakers. The performance degradation can be over-

come by correctly identifying the accent or dialect of the speaker and using accent or dialect

information to adapt speech recognition systems. In this chapter, novel accent classification

algorithm based on extreme learning machines (ELMs) is presented. ELMs are attractive

for the accent classification task as they can be quickly trained and also provide a better

generalization capability for small amounts of training data [45, 46]. Accent classification

algorithm performance based on ELMs is compared with support vector machines (SVMs)

as classifiers. The rest of the chapter is organized as follows: Section 3.1 summarizes re-

lated work in accent/dialect classification, Section 3.2 and 3.3 presents the theory of ELMs

and SVMs, Section 3.4 provides theoretical comparison between ELMs and SVMs, Sec-

tion 3.5 discusses accent classification algorithm, Section 3.6 describes dataset and feature

extraction, and Section 3.7 presents results.

3.1 Related work

Speech signals intrinsically exhibit many variations, even in the absence of background

noise. The three most prominent types of variations are due to acoustic effects, accent,

and dialect. Acoustic variations are primarily related to inherited physical characteristics

of size and shape of a vocal tract. Two different people saying the same sentence results in

different spectrograms. The variations due to accent result from the relative prominence of

a particular syllable or a word in pronunciation determined by the regional or social back-

ground of the speaker [47]. Different accents affect a change in the order and number of

phonemes used to construct each word of an utterance, i.e. phoneme deletion, insertion and

18

substitution with respect to some reference accent. Dialect is defined as a regional variety

of a language distinguished by pronunciation, grammar or vocabulary. Every individual

develops a characteristic speaking style at an early age that is highly dependent on his or

her language environment as well as the region where the language is spoken [48, 49].

The performance of a speech recognizer can be further improved by adapting a system

based on accent/dialect. S. Goronzy achieved a 37% relative reduction in word error rate

by adapting a speech recognizer based on accent [50]. There has been little past research

in the area of accent classification. In particular, most of the previous work in the field

involves accent classification among non-native English speakers. Accent variation among

native American speakers is more challenging and has not enjoyed the same amount of

attention in speech community research.

G. Choueiter et al. extended language identification techniques to a large-scale accent

classification task [51]. The authors performed several experiments using heteroscedastic

linear discriminant analysis and maximum mutual information on the Foreign Accented

English dataset. The dataset is composed of utterances spoken by native speakers of 23

languages. They found that acoustic-only methods are useful for accent classification in

contrast to typical language identification systems. P. Angkititrakul et al. used a phoneme-

based model to design a text independent automatic accent classification scheme [52]. They

performed experiments capturing the spectral evolution information as potential accent sen-

sitive cues. They generated subspace representations using principal component analysis

and linear discriminant analysis. The authors compared a spectral trajectory model frame-

work with a traditional HMM framework using an accent sensitive word corpus. Sys-

tem evaluation was performed using a corpus that represents five English speaker groups,

which consisted of native American English and English speakers having Mandarin Chi-

nese, French, Thai, and Turkish accents for both male and female speakers. J. Guarasa

used GMMs and Bayes’ classifiers for German versus Spanish accent classification [53].

C. Clopper et al. did an extensive study of vowel variation in different regions of North

19

America by measuring duration of the first and second formant frequencies [54]. J. Hansen

et al. did an extensive analysis and modeling of speech accents on NATO N-4, TIMIT and

the WSJ corpus [55]. The authors analyzed prosodic structure (formants, syllable rate, and

sentence duration), phoneme acoustic space and did word-level based modeling on large

vocabulary data. The authors found that using the most discriminating vowels from each

group improves the accent detection rate.

3.2 Extreme learning machines

Extreme learning machine (ELM) is a robust learning algorithm for single layer feed-

forward neural networks (SLFNs) [56]. Currently, SLFNs mostly use gradient based meth-

ods for training neural networks. Gradient-based methods often get trapped in local minima

solutions and, as a result, give suboptimal solutions. Genetic and evolutionary algorithms

have been used to overcome local minima problems, but they are computationally expen-

sive [57].

In ELMs, input weights of the hidden layer neurons are randomly generated, and output

weights of the hidden layer neurons are learned analytically [56, 58]. By determining

weights analytically, there is a high-performance speedup for training neural networks as

compared to learning methods such as back-propagation [59]. Theoretically, it has been

shown that by using ELMs universal approximation can be achieved [60, 61]. ELMs can

also be used for training multilayer perceptrons by using hierarchical frameworks [62].

Various other architectures for ELMs have been proposed. In incremental-ELM, hid-

den nodes are added incrementally, and output weights are determined analytically [63]. In

online sequential-ELM, training data is fed to the network in chunks [64]. Local receptive

fields-ELM uses local structures and combinatorial nodes for incorporating translational

invariance in the network [65]. ELMs can be used for both regression and multiclass clas-

sification problems directly [66].

ELMs transform the input data to the hidden layer by via randomly initialized weighted

20

connections. A single hidden layer network with M hidden nodes is shown in Fig. 3.1.

H1 H2 .. HM

x1 xD...

β 1 β 2 .. β V

Figure 3.1: Extreme learning machines

The output function of the single layer network with M hidden neurons can be written

as [45]:

f(x) =
M∑
i=1

βihi(x) = h(x)β (3.1)

where

hi(x) = σ(wix + bi) (3.2)

and σ is a non-linear activation function given by:

σ(wix + bi) =
1

1 + e−(wix+bi)
(3.3)

21

β is the vector of weights between M neurons in the hidden layer and the output layer:

β =


β1

...

βM

 (3.4)

The goal of ELM is to minimize the training error as well as the norm of the output

weights. It does not require any adjustments to the input weights of neurons in the hidden

layer [45, 65, 67, 68].

minimize ‖β‖σ1p + C ‖Hβ − T ‖σ2q (3.5)

where σ1 > 0, σ2 > 0, and p, q = 0, 1, 2, ...,∞, and H is the output matrix at the hidden

layer given by:

H =


h(x1)

...

h(xN)

 =


h1(x1) . . . hM(x1)

...
...

...

h1(xN) . . . hM(xN)

 . (3.6)

and T is the training data target values:

T =


t1

...

tN

 (3.7)

Minimizing the training error and norm of weight vector results in good generalization

capability of the network [63, 69]. The optimal output weights are then computed as:

β = H†T (3.8)

22

where H† is the Moore-Penrose generalized inverse of the matrix H [70]. Various methods

can be used to calculate the inverse of the matrix H such as orthogonal projection methods,

iterative methods, and singular value decomposition [66, 71]. A closed-form solution for

calculating β is given by [65]:

β =


HT (I

C
+ HHT)−1T, if N ≤M

(I
C

+ HTH)−1HTT, if N > M

(3.9)

where C is a regularization parameter, I is the identity matrix, and H and T are as previ-

ously defined in Eqs. 3.6 and 3.7 respectively. ELM classifier expression can be written as:

f(x) =


h(x)HT (I

C
+ HHT)−1T, if N ≤M

h(x)(I
C

+ HTH)−1HTT, if N > M

(3.10)

where h(x) is the hidden layer output vector corresponding to the input samples x and β

are the output weight vector between a hidden layer of M nodes and the output node. In

fact, h(x) is a feature mapping from input space of D-dimensions to random feature space

(or ELM space) of M -dimensions.

The training data consists of N distinct input-output pairs of words and their corre-

sponding accent type given by:

Training Data = {(x1, t1), (x2, t2), ..., (xN , tN)} (3.11)

where each (xi,ti) respectively represent an input word data and its corresponding accent

label. Specifically, xi ∈ RD is the vector of extracted speech signal features for a complete

“word”, and ti ∈ RV is the corresponding accent type. In this case, ELMs are trained to

distinguish between two accent types.

23

3.3 Support vector machines

Support vector machines (SVMs) are based on the intuition of placing a hyperplane in

such a way that it separates data classes with a large margin. An SVM is thus a maximum

margin classifier. The margin in an SVM is the distance between the hyperplane and data

point closest to it [72, 73, 74, 75]. When the data to be classified is not linearly separable

(usually the case), a kernel function may be used to map the data from a given input space

to a high dimensional space known as a kernel space. Using the kernel space may result

in a better separability of data [76, 77]. For a given training set comprising N data points

with class labels ti ∈ {1,−1}, the goal of SVM classifier is to separate data classes by

finding an optimal hyperplane in the kernel space by solving a minimization problem with

the inequality constraint given by Eq. 3.12:

minimize
w,ζi

1

2
||w||2 + C

N∑
i=1

ζi

subject to ζi ≥ 0, ti

wTφ(xi) + b

 ≥ 1− ζi

(3.12)

where i = 1, 2, ..., N , φ(·) is a mapping function, w is the normal to the optimal deci-

sion hyperplane, b is the bias term, C is the regularization parameter which determines

the generalization capability of SVM (i.e. trade-off between margin and misclassification

errors; the higher the value of C, the stricter the constraint and the lower the likelihood of

over-fitting [78]), and ζi is the slack variable.

The above equation (Eq. 3.12) is in non-convex form and, therefore, difficult to solve.

The above optimization problem is transformed into its dual form with an equality con-

24

Optimal Hyperplane

Support Vectors

Maximum Margin

Class +1

Class -1

ζ

Figure 3.2: Support vector machine

straint by using the Lagrange multiplier. Lagrange function is given by:

L(w, b, ζi;αi, λi) =
1

2
||w||2 + C

N∑
i=1

ζi

−
N∑
i=1

αi(ti[w
Tφ(xi) + b]− 1 + ζi)−

N∑
i=1

λiζi

(3.13)

where αi ≥ 0 and λi ≥ 0.

The solution can be obtained by solving the Lagrange function and calculating the

partial derivative of the Lagrange function with respect to w, b, and ζi [79].

max
αi,λi

min
w,b,ζi

L(w, b, ζi;αi, λi) (3.14)

∂L

∂w
= 0,

∂L

∂b
= 0,

∂L

∂ζi
= 0 (3.15)

25

w =
N∑
i=1

αitiφ(xi) (3.16)

N∑
i=1

αiti = 0 (3.17)

0 ≤ αi ≤ C (3.18)

By using the above constraints, SVMs dual optimization problem can be written as:

maximize
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

t(i)t(j)αiαj

〈
xi,xj

〉

subject to αi ≥ 0,
m∑
i=1

αit
(i) = 0, i = 1, ...,m

(3.19)

SVMs decision function in a kernel space is given by:

f(x) = sgn

 M∑
i=1

αi ti κ

(
xi,x

)
+ b

 (3.20)

where κ(.) is a kernel function. Several kernel functions with their hyperparameters are

summarized in Table 3.1 below.

Table 3.1: SVM - Kernel functions
Kernel Function Parameters

Linear xi
Txj -

Polynomial (γxi
Txj + r)d γ, r, d

Radial basis function exp(−γ||xi − xj||2) γ

Sigmoid tanh(γxi
Txj + r) γ, r

When using SVMs, three choices must be made: kernel type, corresponding kernel

parameters, and regularization parameter [80]. SVMs computational complexity depends

26

on the number of samples in the training data and is independent of kernel space dimension.

3.4 Comparison between ELMs and SVMs

Both ELMs and SVMs converge to a single global optimum solution. ELMs optimize

sum of squared errors, while SVMs construct a hyperplane that maximizes the separation

between the data classes [79, 81, 82].

3.4.1 Decision surface

ELMs and SVMs have the same dual optimization objective functions. In ELMs, optimal

solutions are learned from the entire cube [0, C]N , while in SVMs optimal αi is learned

from one hyperplane
∑N

i=1 αiti = 0 within the cube [0, C]N as shown in Figs. 3.3 and 3.4.

This results in SVM solution being sub-optimal as compared to ELM.

C

αN

Figure 3.3: Extreme learning machine decision surface

27

C

αN

Figure 3.4: Support vector machine decision surface

3.4.2 Loss function

The training of classifier depends on the loss functions. Loss function has a significant

impact on the training time of the classifier, as well as on the computational cost for the

classification of new data [81].

ELM uses a quadratic loss function and minimizes the sum of square errors between the

class labels and the network output. It not only penalizes wrong answers but also penalizes

correct answers which are far from the decision boundary. The quadratic loss function is

smooth and the resulting Karush-Kuhn-Tucker (KKT) system has a closed form solution

[83]. This makes the training of ELM easy. Decision boundary of the ELM classifier is

determined by using all samples present in the training data [84].

SVM constructs hyperplane as a loss function. The loss function is not smooth which

results in an iterative solution for KKT dual system. It not only penalizes answers which

are incorrect, but also that are correct but lie close to decision boundary [85]. Decision

boundary is decided by only those samples from the training data for which Lagrange

28

multiplier is non-zero (i.e. support vectors).

3.4.3 Feature transformation

ELM uses random feature transformation and classifier can be trained by using primal or

dual formulations [81]. SVM transforms data in kernel space by using kernel functions.

SVMs are always trained in the dual space [72].

3.4.4 Hyperparameters

ELM requires selection of regularization parameter C and a number of neurons in hidden

layer as hyper-parameters. The number of neurons in the hidden layer determine the di-

mensionality of the feature space. SVM requires hyperparameters depending on the kernel

function, in addition to regularization parameter C. In short, SVM requires more hyperpa-

rameters as compared with ELM [81].

3.4.5 Training and testing time

ELM training time can be estimated as it uses a closed form solution for calculating

weights. Let N be the number of training samples, D be the dimensionality of input data,

and M be the number of neurons in the hidden layer of ELM. To calculate weight matrix

given by Eq. 3.9, we first need to calculate H . Calculating H matrix requires O(NDM)

operations. The weight matrix β requires O(NM2 + M3) operations [66, 81]. Training

and testing time of ELM is given by Eqs. 3.21 and 3.22 for the case when N � M and

N � D.

ELM Training T ime = O(NM2) (3.21)

ELM Testing T ime = O(MD) (3.22)

29

SVM training time estimation is difficult because of its iterative training procedure [81].

SVM training is related to the number of support vectors [86, 87]. For S number of support

vectors, the testing time of SVM classifier is given by Eq. 3.23:

SVM Testing T ime = O(SD) (3.23)

Table 3.2: Comparison of ELMs and SVMs
Characteristics ELMs SVMs

Optimization Sum of squared errors Maximum margin classifier

Loss function Smooth Not smooth

Feature transfor-
mation

Random features Kernel functions

- Linear

- Polynomial

- Radial basis function

- Sigmoid

Hyperparameters Regularization parameter “C” Regularization parameter “C”

Number of neurons in hidden
layer

Kernel function parameters

Activation functions
- Linear (γ)

- Polynomial (γ, d, r)

- Radial basis function (γ)

- Sigmoid (γ, r)

Computational
complexity

Dependent on dimension of fea-
ture space

Independent of feature space di-
mension

Training time Less More

Multi-class clas-
sification

Directly Indirectly

30

3.5 Weighted accent classification algorithm

Weighted accent classification algorithm uses either ELMs or SVMs for accent classifica-

tion. The algorithm involves three stages. In the first stage, multiple ELMs (or SVMs) are

trained using word samples from two accent classes at a time. This pair-wise classifica-

tion helps to find right decision boundaries [6]. Hyperparameters of ELMs (or SVMs) are

learned by cross-validation. In the second stage, the output of multiple ELMs (or SVMs)

are combined to obtain a classification score. Finally, the classification score is encoded,

and output accent class decision is made based on the highest encoded score. Fig. 3.5

shows the overall block diagram.

Word
Feature Extreme learning machines Encode

[D1,D2] [D1,D3] [D1,D4] [D1,D5] [D1,D6] [D1,D7]

[D2,D3] [D2,D4] [D2,D5] [D2,D6] [D2,D7]

[D3,D4] [D3,D5] [D3,D6] [D3,D7]

[D4,D5] [D4,D6] [D4,D7]

[D5,D6] [D5,D7]

[D6,D7]

Score

Figure 3.5: Weighted accent classification algorithm - Block diagram

31

3.5.1 Classifier training

Each ELM (or SVM) is individually trained and optimized for a single pair-wise decision.

For example, an ELM (or SVM) [D1, D2] is trained using word samples from speakers

belonging to accents D1 (New England) and D2 (Northern). Similarly, an ELM (or SVM)

[D1, D3] is trained using word samples from speakers belonging to dialects D1 (New Eng-

land) and D3 (North Midland), and so on. For ELMs, the number of hidden layer neurons

was varied during training. For SVMs, kernel parameters were learned using grid search

approach. The best hyperparameters were selected based on cross-validation.

Although ELMs (or SVMs) are capable of complex decision boundaries, in practice,

developing a system that can reliably distinguish the seven accent classes is demanding,

especially because there are many similarities between accents. The method is shown

in Fig. 3.5 utilizes only pair-wise classification to make it easier to find good decision

boundaries. This will result in 21 ELMs as shown in Fig. 3.5.

Let ZA1,ZA2,...,ZAj be the training word samples from accent “DA” and let “j” be the

total number of speakers in that particular accent group. Similarly, ZB1,ZB2,...,ZBk are the

training word samples from accent “DB,” and “k” is the total number of speakers in accent

group “DB.” Thus we have DA ∈ {D1, D2, D3, ... , D7}, DB ∈ {D1, D2, D3, ... , D7},

and DA 6= DB. Fig. 3.6 and Fig. 3.7 shows how ELMs or SVMs are trained in a pairwise

manner for the weighted accent classification algorithm.

ZA1,ZA2,..,ZAj,ZB2,ZB2,ZBk

H1

H2

..

..

HN

x1

xn

...

DA

DB

Figure 3.6: Extreme learning machine - Training

32

...

ZAj

ZA1

...

...

ZA2

ZB1

...

...

ZBk

...

ZB2

Figure 3.7: Support vector machine - Training

3.5.2 Classification score

Each ELM (or SVM) can receive all the samples from a typical word at once. All the word

samples from a particular speaker are given as input to all these 21 ELMs (or SVMs) at

once as shown in Fig. 3.8. Each of these ELMs (or SVMs) trained in a pair-wise manner

will classify the particular speaker accent. For example, if the true class of the input word

was D2, most of the pair-wise classifiers that were trained on D2 (i.e., (D1, D2), (D2, D3),

. . . (D2, D7)) will correctly identify the class as D2. Those not trained on D2 (i.e., (D1,

D3), (D1, D4), . . . (D6, D7)) will have effectively random outputs, choosing among the

other classes with approximately equal probability as shown in Fig. 3.8. Thus, the class

D2 will win the vote, and the class will be correctly identified. No hard decision is made

on a single word, so the results are combined over the entire utterance using a weighting

scheme as described below in Section 3.5.3.

33

Word
Feature Extreme learning machines Encode

D2 D1 D4 D5 D1 D1

D3 D2 D2 D2 D2

D3 D3 D3 D7

D4 D6 D7

D5 D7

D6

Score

Figure 3.8: Weighted accent classification - Architecture

3.5.3 Accent decision

Classification results from multiple words are combined using a weighting scheme that

improves overall performance. The output classes from each of the 21 ELMs (or SVMs)

are tallied, and a score is given to each class according to the number of times that class was

selected. The maximum count that any class can have is 6, and the count⇒score mapping

is given in Fig. 3.9. The highest total score determines the overall dialect class.

34

Classification

Score

Weighted

Score

6

5

4

3

2

1

2
1

2
0

2
-1

2
-2

2
-3

2
-4

6

5

4

3

2

1

2
1

2
0

2
-1

2
-2

2
-3

2
-4

Classification

Score

Weighted

Score

6

5

4

3

2

1

2
1

2
0

2
-1

2
-2

2
-3

2
-4

Figure 3.9: Weighted score

3.6 Experiment

3.6.1 Dataset

The dataset used in the experiment is TIMIT, a speech dataset developed by Texas Instru-

ments (TI) and Massachusetts Institute of Technology (MIT) and considered as one of the

standard datasets in speech research [88, 89]. The TIMIT dataset contains utterances from

630 speakers representing eight different dialect regions of the United States. The dialect

regions are New England (D1), Northern (D2), North-Midland (D3), South-Midland (D4),

Southern (D5), New York City (D6), Western (D7), and Army Brat. In TIMIT dataset,

they used the term dialect for specifying these regions. To be consistent with the dataset

we use the word dialect here. These utterances are read, so there are no word and gram-

mar variations. The only variation in the acoustic waveform is the accent variations. For

each utterance, the text, the signal sampled at 16 kHz, and hand-labeled segmentation at

the word and phonetic level are provided. In our experiment, we used the first seven ac-

cent regions as the Army Brat accent group comprises speakers who moved around often

during their childhood. For each speaker, we have ten utterances consisting of two accent

sentences (SA) which are the same for each speaker, five phonetically compact sentences

(SX) and three phonetically diverse sentences (SI). In our proposed method we are using

35

words from sentence “SA” as these words are available for each speaker.

3.6.2 Feature extraction

The TIMIT dataset is provided with word label information. Using word-label information,

we extracted speech samples of words from the TIMIT dataset. These speech samples

were normalized between -1 and 1. We extracted 12 Mel-frequency cepstral coefficients

(MFCCs) [90] and normalized energy parameter using Auditory Toolbox [91]. We used a

Hamming window and triangular filter bank for the MFCCs [92]. To incorporate temporal

dependencies we used ∆ and ∆−∆’s coefficients. Delta (∆) coefficients are computed by

the regression Eqs. 3.24 and 3.25:

∆i =

∑M
n=1 n(ci+n − ci−n)

2
∑M

n=1 n
2

(3.24)

(∆−∆)i =

∑M
n=1 n(∆i+n −∆i−n)

2
∑M

n=1 n
2

(3.25)

For each word sample we have 39 dimension feature vectors consisting of 13 static cepstral

feature, 13 ∆ cepstral features, and 13 ∆ − ∆’s cepstral features. The ∆’s improve the

accent classification accuracy by adding temporal dependencies.

3.6.3 ELMs and SVMs hyperparameters

During ELM training, the number of neurons in hidden layer was varied from 100 to 1000

with an increment of 100 and sigmoid is used as a non-linear activation function. The

number of neurons in the hidden layer was learned using trial and error procedure based on

cross-validation. For SVM training, a grid search method was used to find optimal SVM

model parameters [93]. SVMs in the weighted accent classification algorithm was trained

using LIBSVM library [94]. We used linear, polynomial, radial basis function, and sigmoid

kernels with d = {1, 2, ..., 15}, γ = {2−15, 2−14, ..., 25}, and C = {2−3, 2−2, ..., 215}.

36

3.7 Results

The accuracy of the weighted accent classification algorithm is compared by using ELMs

and SVMs as classifiers. Also, the performance comparison of different words and the

improvement resulting from using multiple words from a particular speaker is evaluated.

Finally, the relative computational time between ELMs and SVMs as classifiers in weighted

accent classification is compared.

3.7.1 Comparison of different words

Eleven different words: “dark,” “like,” “oily,” “suit,” “that,” “wash,” “year,” “your,” “carry,”

“water,” and “greasy” were used to classify speaker into one of the seven different accents.

The words with three or more letters were selected so that they can capture variability in

terms of accents and are available for all speakers in the TIMIT dataset. The weighted ac-

cent classification algorithm (Section 3.5) was tested using ELMs and SVMs as classifiers

with only one word at a time. The performance of weighted accent classification algorithm

was compared with multi-class classification. Figs. 3.10 and 3.10 show the comparison

of weighted accent classification algorithm with multi-class classification using ELMs and

SVMs as a classifier.

Weighted accent classification algorithm gives better results as compared with multi-

class classification. The proposed weighted accent classification algorithm with ELM-

based classifier performed best with the word “like” while the SVM-based classifier per-

formed best with the word “carry”. In this experiment, only one word at a time is used for

a particular speaker.

3.7.2 Classification accuracy and number of words

In this experiment, the improvement in accent classification accuracy obtained by using

multiple words from a given speaker is compared. The number of words from one to

37

dark like oily suit that wash year your carry water greasy

Words

5

10

15

20

25

30

35

40

45

50

A
cc

en
t c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 (
%

)

ELM (Proposed)
ELM (Multi-class)

Figure 3.10: Comparison of classification accuracy with different words using ELM as a
classifier

dark like oily suit that wash year your carry water greasy

Words

5

10

15

20

25

30

35

40

45

50

A
cc

en
t c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 (
%

)

SVM (Proposed)
SVM (Multi-class)

Figure 3.11: Comparison of classification accuracy with different words using SVM as a
classifier

38

five are varied for a particular speaker. Fig. 3.12 shows the comparison of weighted

accent classification algorithm with multi-class classification by using ELMs and SVMs as

classifiers for multiple words.

1 2 3 4 5

Number of words

0

10

20

30

40

50

60

70

80
A

cc
en

t c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

ELM (Proposed)
ELM (Multi-class)
SVM (Proposed)
SVM (Multi-class)

Figure 3.12: Comparison of classification accuracy with number of words

We used the top five words in terms of their performance as presented in Figs. 3.10

and 3.11. For weighted accent classification using ELMs, the following words are used:

“like,” “greasy,” “suit,” “wash,” and “water.” For multi-class classification using ELMs fol-

lowing words are used: “water,” “that,” “like,” “wash,” and “dark.” Similarly, for weighted

accent classification using SVMs the following words are used: “carry,” “suit,” “dark,”

“wash,” and “water.” For multi-class classification using SVMs the following words are

used: “carry,” “water,” “like,” “suit,” and “your.”

As the number of words from one to five are increased for a particular speaker, the

weighted accent classification algorithm using ELMs and SVMs results in an improvement

of accuracy from 49.04% to 77.88% and from 43.27% to 60.58% respectively. In the case

of multi-class classification using ELMs and SVMs, there is a very slight improvement in

39

accent classification accuracy (multi-class ELMs 29.81% to 35.58% and multi-class SVMs

28.85% to 30.77%).

3.7.3 Classification accuracy of each accent

Fig. 3.13 shows the accent classification accuracy as a function of true accent. In this

experiment, five words from each speaker are used. As shown in Fig. 3.13, accent D6

(New York City) shows the worst performance for both ELM and SVM classifiers. This is

because speakers from accent region D6 (New York City) intermixed with speakers from

accent region D1 (New England) and D2 (Northern).

1 2 3 4 5 6 7

Accent

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (

%
)

ELM (Proposed)
SVM (Proposed)

Figure 3.13: Classification accuracy per different accents

3.7.4 Comparison of ELMs and SVMs training and testing time

Using ELMs as classifiers for the accent classification algorithm gives a better accent clas-

sification accuracy relative to SVMs. Fig. 3.14 shows the relative comparison of training

and testing time using ELMs and SVMs as classifiers for the proposed weighted accent

40

classification algorithm. ELMs take less time to train and operate by more than a factor of

2 relative to SVMs.

Training Time Testing Time
0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
tim

e

ELM (Proposed)
SVM (Proposed)

Figure 3.14: Comparison of ELMs and SVMs training and testing time

3.7.5 Comparison of accent classification results

As discussed, accent classification is a challenging problem, and it becomes more chal-

lenging on read sentences because word selection and sentence structure are not part of the

message as in spontaneous speech. Different researchers have tried various approaches on

different datasets, and most of the work is done in classifying accents of non-native speak-

ers. In the empirical study of 23-way classification on a Foreign Accented English dataset

[51], an average accuracy of 32.7% was obtained. J. Guarasain used acoustic methods to

classify a German and Spanish group in an Foreign Accented English dataset [53]. By us-

ing GMMs and the Bayesian classifier, detection rates of 73% and 58.9% respectively were

obtained. In the text-independent automatic accent classification using phoneme-based

models, average classification accuracies of 64.90% at the phone level and 75.18% at the

41

word level for pairwise classification were obtained [52]. For a pool of four accents, the

average classification accuracy rate was 37.57% at the phone level and 46.72% at the word

level. In another study on the TIMIT dataset that used the most discriminating vowels, a

detection rate of 42.52% was obtained [55].

To summarize, this chapter describes a novel accent classification algorithm based on

ELMs. The algorithm uses five words from a speaker to differentiate between different

accents and is comprised of three stages. In the first stage, a given word from a test speaker

is presented as the input to 21 ELMs which are each trained to distinguish between two

accents. In the second stage, the outputs of multiple ELMs are combined to obtain a clas-

sification score for that word. Finally, the classification score is encoded and optionally

combined with the scores from other words and a decision about an accent class is based

on the highest total score. Experiments were conducted on seven different accent groups

from the TIMIT dataset. The proposed method classifies speakers into seven groups with an

accuracy of 77.88% using five words from a given test speaker. Weighted accent classifica-

tion algorithm is compared with SVMs as classifiers and also with multi-class classification

using ELMs or SVMs.

42

CHAPTER 4

ADAPTIVE PHONEME CLASSIFICATION

Speech recognition is a complex problem because of inherent variability among speak-

ers due to vocal tract length, dialect, accent, speaking rate, etc., and uncertainties such as

environmental noise. Speech recognition systems seek to find a sequence of words corre-

sponding to an acoustic waveform by splitting the acoustic waveform into small fragments

known as frames. Data driven models are used to correctly identify the phonetic identity of

the frames. The phonetic identity, along with language and pronunciation models are used

for decoding words from the acoustic waveform.

The overall goal of the speech recognition system is to learn a model from given data

(also known as training data) that generalizes well to testing data. These models can be

learned either by using all the available training data to build a model before the testing

sample is seen or by judiciously selecting a subset of exemplars from the training data to

build a local model specifically for every test sample. In machine learning, the former

belongs to global learning methods and the latter to local learning methods.

This chapter discusses adaptive phoneme classification method based on speaker sim-

ilarity. The proposed method attempts to overcome the problems inherent in HMMs by

utilizing the feature learning capabilities of DNNs. The proposed speaker similarity score

algorithm requires a small amount of adaptation data from the target speaker to learn a

speaker similarity score. Based on the speaker similarity score information, the algorithm

adapts and predicts phonemes for the target speaker. Reduction in frame error rate yield an

overall improvement in the performance of the speech recognition system.

This chapter is organized as follows: Section 4.1 reviews related work, Section 4.2 dis-

cusses DNNs for feature learning, Section 4.3 presents propose speaker similarity score

algorithm, Section 4.4 discusses the dataset and experiments, and Section 4.5 presents re-

43

sults.

4.1 Related work

Currently, speech recognition systems are dominated by a statistical data modeling tech-

nique known as hidden Markov models (HMMs). HMMs are based on global learning

methods to model the time-varying nature of the speech. In the past, GMMs were used

to model the observation probabilities required by HMMs. Recently, DNNs have also be-

come popular to convert speech inputs into observation probabilities. Although HMMs are

popular and dominant in current speech recognition systems, they have weaknesses such

as conditional independence and piecewise stationary assumptions. They fail to capture

speaker-specific properties such as accents, dialects, etc. This is because HMMs learn a

global model that generalizes well to all the samples present in the training data. In the

process of learning a generalized global model, speaker specific properties are aggregated

to determine statistical parameters of the model, resulting in a loss of speaker specific infor-

mation. Also, they fail to generalize well to classes of examples in the training data which

have small numbers of samples or observations (with limited training data, the models are

incapable of representing the fine detail in the distribution of the data). Exemplar-based

approaches do not share these weaknesses. An examplar-based approach can construct a

local model using a very small amount of data. An exemplar-based approach keeps all the

information from the training data, while methods such as HMMs build statistical approx-

imations from the training data.

Exemplar-based approaches are popular in machine learning and are applied to vari-

ous signal processing applications such as image processing [95, 96], video processing,

and biomedical signal processing [97, 98]. In audio signal processing, exemplar-based ap-

proaches were initially applied for content based audio classification [99, 100, 101, 102,

103, 104], music genre classification [105, 106, 107], audio information retrieval, source

separation [108], and speaker identification [109, 110, 111].

44

Various attempts have been made using exemplar-based approaches for speech recog-

nition. The promising techniques based on an exemplar-based approach include k-NN

classifiers, sparse representation, support vector machines, and template matching. A k-

NN classifier searches the entire training data during classification, and the test sample is

classified based on the class(es) of the closest neighbor or neighbors for a given distance

measure. k-NN classifiers require minimal training [112, 113, 114, 115]. Sparse represen-

tation approaches represent the data as a linear combination of dictionary atoms which are

learned from the training data [116, 117, 118]. The underlying structure of the data as em-

bodied in the choice of dictionary atoms can then be exploited to make classification easier.

Template-matching compares testing data with reference templates from training data by

using dynamic time warping [119, 120, 121]. For extensive details on exemplar-based

methods for speech recognition, are referred to an overview by T. Sainath et al. [122].

4.2 Feature learning using deep neural networks

Feature extraction plays a significant role in the accuracy of any classification engine. In

the case of speech, extracted features should be chosen to represent information from the

speech signal and at the same time eliminate information that is irrelevant for classifica-

tion (e.g., intensity of the speech signal, background noise). Speech signal comprises a

small number of parameters produced by modulating a dynamical system. The underlying

structure of speech is low dimensional and lies on a nonlinear manifold [123]. Several

methods have been proposed to deal with the task of modeling and to represent speech

signals. Some of them are based on physiological research on human hearing while others

are human engineered and require significant expertise. Using DNNs for feature learning,

one can discover abstractions from low-level features to high-level concepts with little hu-

man effort. These algorithms can learn nonlinear mathematical models with multivariate

statistics related to each other by intricate statistical relationships [124]. A typical DNN

architecture consists of an input layer, hidden layers and an output layer, as shown in Fig.

45

4.1.

Hidden Layer 3Input Layer Hidden Layer 1 Hidden Layer 2

RAW

MFCC

Features

Softmax Layer

Figure 4.1: Deep neural networks

Mathematically we can write a neural network with H hidden layers as below

ol = σ(zl) = σ(Wlol−1 + bl), 0 < l < H (4.1)

where σ is an activation function given below.

σ(z) =
1

1 + e−z
, (4.2)

o0 = x ∈ RD is the input to the network, Wl ∈ Rηl×ηl−1 is the weight matrix, bl ∈ Rηl

is the bias vector, ηl is the number of neurons at layer l, and oH = o∗ ∈ RP is the output

of the neural network. The number of outputs, P , is the same as the number of phoneme

classes Ψ ∈ {ψ1, ψ2, ..., ψP}.

Each neuron at the output layer represents one class of phonemes. We use the softmax

function (φ) at the output to assign probability for each phoneme class as given by Eq. 4.3.

46

oHi = φi(z
H) =

ez
H
i∑P

j=1 e
zHj

(4.3)

The features learned using DNNs tend to eliminate irrelevant variabilities of raw input

data and at the same time preserve information that is useful for classification. The network

is trained using training data given by Eq. 4.4.

S = {(xIi ,yIi) | 1 ≤ i ≤ N} (4.4)

where N is the total number of samples in our training data. xIi and yIi is the ith input

feature and corresponding output vector respectively. Cross entropy is used as cost function

given by Eq. 4.5.

J(W,b : xI ,yI) = −
P∑
i=1

yIi log oHi (4.5)

To learn optimal W and b parameters we use the backpropagation learning algorithm

using all the training samples as given below.

J(W,b;S) =
1

N

N∑
i=1

J(W,b : xIi ,y
I
i) (4.6)

Once the deep neural network is trained using backpropagation, the output of the last

hidden layer is used as new features. The inputs consist of 13 raw Mel-frequency cep-

stral coefficients along with the first and second temporal differences (the deltas and delta-

deltas). A deep neural network as feature extractor is shown in Fig. 4.2. The data after the

last hidden layer activations are used as features for training and testing speaker similarity

score algorithm discussed in Section 4.3.

4.3 Adaptive phoneme classification

The speaker similarity score algorithm uses a k-NN approach on adaptation data from the

target speaker to learn the speaker similarity score (see Fig. 4.3). The speaker similar-

47

Hidden Layer 3Input Layer Hidden Layer 1 Hidden Layer 2

RAW

MFCC

Features

DNN

Features

Figure 4.2: Deep neural network as feature extractor

ity score is used to adapt a distance metric of the k-NN classifier for adaptive phoneme

classification as shown in Fig. 4.4. Using k-NN for phoneme classification, the algorithm

estimates a target function locally and differently for each new speaker instead of estimat-

ing the target function over the entire instance space. This has a significant advantage when

the target function is very complex but can still be described by a collection of less complex

local approximations [125].

Instance Space
Feature

Extractor

k-Nearest Neighbor

Score

Training Data

Feature

Extractor

Target Speaker

(Adaptation Data)

Figure 4.3: Speaker similarity score

The instance space consists of phoneme samples from the training data in the DNN

48

Instance Space

k-Nearest Neighbor

Score

Feature

Extractor

Target Speaker

(Testing Data)

Phoneme Classification

Figure 4.4: Adaptive phoneme classification

feature space. For each phoneme frame instance, we have a corresponding phoneme label

and speaker information available as shown in Fig. 4.5. The instance space in total consists

of ‘N’ phoneme frame samples from continuous speech as given by Eq. 4.7.

Phoneme Samples =

{
xI1,x

I
2,x

I
3, ...,x

I
N

}
(4.7)

xi is a feature vector that lies in ‘M’ dimensional DNN feature space RM as given by Eq.

4.8.

xIi =

{
xIi1, x

I
i2, x

I
i3, ..., x

I
iM

}
(4.8)

For each of these phoneme speech samples from the instance space, corresponding phoneme

and speaker labels are given by Eqs. 4.9-4.10.

Phoneme Labels =

{
yI1,y

I
2,y

I
3, ...,y

I
N

}
(4.9)

Speaker Labels =

{
zI1, z

I
2, z

I
3, ..., z

I
N

}
(4.10)

where, yIi ∈ {ψ1, ψ2, ψ3, ..., ψP} and zIi ∈ {s1, s2, s3, ..., sL}. There are P phoneme

49

ix,s1
ae,s3

i,s12

sh,s1

ix,s8
sh,s7

ow,s41 oy,s1 s,s19

ih,s1

m,s9

i,s15

ow,s6

ih,s2

sh,s17

zh,s19

ih,s8

iy,s6 oy,s14

th,s8

y,s13

en,s12

uh,s8

el,s7

p,s2

n,s3

en,s5

ih,s10

ux,s2

ao,s10

r,s2

hv,s18

em,s8

k,s4

aw,s11

r,s6

h,s15

Figure 4.5: Instance Space. Each gray circle represents phoneme samples from training
data. For each of these phoneme speech samples we have phoneme label and speaker
information available. There are ‘L’ speakers and ‘P’ phoneme classes. For simplicity and
clarity we have shown our instance space in two dimensions with limited phoneme and
speaker labels.

classes and L different speakers in our instance space.

The adaptation data used from the target speaker for learning the speaker similarity

score, and evaluated our approach on the testing data from the target speaker for adaptive

phoneme classification. In the training phase, target speaker similarity scores are learned

by using k-NN. While in the testing phase predictions about the phoneme classes are made

by combining target speaker similarity score information with k-NN.

50

4.3.1 Speaker Similarity Score

When a new target speaker is encountered, we must first learn a speaker similarity score,

γi, for each of the speakers, si, in the instance space relative to the target speaker. This is

done using k-NN—a non-parametric, lazy learning algorithm widely used in various types

of classification, estimation, and prediction problems due to its simplicity and versatility.

Because of its non-parametric nature k-NN does not require building statistical models

of the underlying data. While statistical models provide structure that aids in generaliza-

tion, they may also result in a loss of information because of that generalization. Using a

non-parametric approach, different training observations are not generalized but are rather

retained and used for doing fine comparison between the input samples with the training

observations resulting in better speech recognition.

For the target speaker the adaptation data consists of Q phoneme frame samples in the

DNN feature space and corresponding phoneme labels given by Eqs. 4.11 & 4.12

Adaptation Phoneme Samples =
{
xA1 ,x

A
2 , ...,x

A
Q

}
(4.11)

Adaptation Phoneme Labels =
{
yA1 ,y

A
2 , ...,y

A
Q

}
(4.12)

where, yAi ∈ {ψ1, ψ2, ψ3, ..., ψP}. To find the speaker similarity scores, γ = {γ1, γ2, . . . , γL},

we initialize γi = 0 for i = 1, . . . , L. Then we iterate through the Q adaptation phoneme

samples and find those speakers among the L different speakers in the instance space who

best predict the labels of the adaptation samples using k-NN as follows. For each adapta-

tion phoneme sample, xAj , find the ks most similar phoneme samples in our instance space

using the Euclidean distance measure given by Eq. 4.13:

ρ(xIi ,x
A
j) = 2

√√√√ M∑
k=1

(xIik − xAjk)2 (4.13)

51

ix,s1
ae,s3

i,s12

sh,s1

ix,s8
sh,s7

ow,s41 oy,s1 s,s19

ih,s1

m,s9

i,s15

ow,s6

ih,s2

sh,s17

zh,s19

ih,s8

iy,s1 oy,s14

th,s8

y,s13

en,s12

uh,s8

el,s7

p,s2

n,s3

en,s5

ih,s10

sh,sT

ux,s2

ao,s10

r,s2

hv,s18

em,s8

k,s4

aw,s11

r,s6

h,s15

s1

s2

s4

s5

s6

s7

sL

s8
.
.
.

s3

1

0

0

0

0

1

0

0

.

.

.

0

Figure 4.6: Speaker similarity score calculation. The blue circle indicates an adaptation
phoneme speech sample from the target speaker. For this adaptation phoneme speech sam-
ple from the target speaker we have phoneme label information available (i.e. “sh”). The
green circle represents k-nearest neighbor speech samples from training data similar to the
target speaker adaptation phoneme speech sample (“sh”). The red circle represents the
k-nearest neighbor phoneme speech sample that does not match with the target speaker
adaptation speech sample (“ix”). For speaker similarity score, we will incrementally in-
crease the score of speakers correspoding to correct phoneme speech samples (i.e. “s1”
and “s7”) by “1”

Each of the ks nearest samples found in the instance space will either have the same

label as the adaptation sample, xAj , or a different label. For each phoneme match, that is for

every i for which yIi = yAj among the ks nearest neighbors of xAj , we increase the score, γi,

of that particular speaker by one as shown in Fig. 4.6. Selection of “ks” can be done in a

heuristic way or by cross-validation. This process is repeated for all the phoneme samples

from our adaptation data of the target speaker to find the total score, γi, for each of the

speakers in our instance space as shown in Fig. 4.7. The greater the score of a particular

52

speaker in our instance space, the more similar it is to the given target speaker.

ix,s1
ae,s3

i,s12

sh,s1

ix,s8
sh,s7

ow,s41 oy,s1 s,s19

ih,s1

m,s9

i,s15

ow,s6

ih,s2

sh,s17

zh,s19

ih,s8

iy,s6 oy,s14

th,s8

y,s13

en,s12

uh,s8

el,s7

p,s2

n,s3

en,s5

ih,s10

ux,s2

ao,s10

r,s2

hv,s18

em,s8

k,s4

aw,s11

r,s6

h,s15

s1

s2

s4

s5

s6

s7

sL

s8
.
.
.

s3

8

2

0

1

7

1

5

3

.

.

.

1

Figure 4.7: Speaker similarity score after going through all adaptation phoneme samples
from the target speaker

4.3.2 Adaptive Phoneme Classification

For adaptive phoneme classification the speaker similarity scores γ found for the target

speaker are used to modify a k-NN classifier. Given an unknown phoneme from the target

speaker testing data, the k-nearest neighboring phonemes in the instance space are found

using the same Euclidean distance measure described previously. The classification deci-

sion for the unknown phoneme is then made by a vote of these k nearest instance-space

samples; however, the votes are weighted according to the corresponding speaker similar-

ity scores. In other words, for each phoneme represented among the k-nearest neighbors,

the corresponding speaker similarity scores, γi, are added. The classifier then assigns a

phoneme label to the given test data based on the highest score as shown in Fig. 4.8.

53

Algorithm 1: Speaker similarity score
Result: Speaker similarity score of a target speaker
Input : xI , yI , zI , xA, yA, ks
Output: γ

/* L is the number of speakers in zA */
/* Q is the number of samples in xA */

1 Initialize γi = 0 for i = 1, . . . , L

2 for j = 1 to Q do
3 ζ = knn(xI ,xAj , ks) /* ζ is a vector containing the indices

of the ks nearest neighbors in xI to xAj . */

4 for m = 1 to ks do
5 if yIζ(m) == yAj then

/* Increase the speaker score for index ζ(m) */

6 γζ(m) = γζ(m) + 1

7 end
8 end
9 end

Algorithm 2: Adaptive phoneme classification
Result: Predicted phoneme
Input : xI , yI , γ, xTi , kprd
Output: p

1 ζ = knn(xI ,xTj , kprd) /* ζ is a vector containing the indices
of the kprd nearest neighbors in xI to xTj . */

2 Initialize ϑi = 0 for i = 1, . . . , P
/* The score for each phoneme. */

3 for m = 1 to length(Ψ) do
4 for i = 1 to ks do

/* If the ith nearest neighbor is phoneme ψm then
increment the score (ϑm) for ψm according to the
corresponding speaker score. */

5 if xIζ(i) == ψm then
6 ϑm = ϑm + γζ(i)
7 end
8 end
9 end

10 m∗ = arg max
m

(ϑm) /* Get the index of the largest score. */

11 p = ψm∗ /* Return the predicted phoneme label. */

54

ix
,s

1

a
e

,s
3

i,
s

1
2

s
h

,s
1

ix
,s

8

s
h

,s
7

o
w

,s
4

1
o
y
,s

1
s
,s

1
9

ih
,s

1

m
,s

9

i,
s

1
5

o
w

,s
6

ih
,s

2

s
h

,s
1

7

z
h

,s
1

9

ih
,s

8

iy
,s

6
o
y
,s

1
4th

,s
8

y
,s

1
3

e
n

,s
1

2

u
h

,s
8

e
l,
s

7

p
,s

2

n
,s

3

e
n

,s
5

ih
,s

1
0

u
x
,s

2

a
o

,s
1

0

r,
s

2

h
v
,s

1
8

e
m

,s
8

k
,s

4

a
w

,s
1

1

r,
s

6

h
,s

1
5

s
1

s
2

s
4

s
5

s
6

s
7

s
L

s
8 . . .s
3

8 2 0 1 7 1 53 . . .1

ih
,s

1

iy
,s

6

ih
,s

8

8 7 3

ih iy

8
+

3
=

1
1

7

ih

Figure 4.8: Adaptive phoneme classification. Blue circle represents target speaker test-
ing phoneme sample. Orange circle shows k-nearest neighbor phoneme samples from the
training data. First, it looks for the speaker similarity score of each of these speakers in
orange circle with the target speaker using the speaker similarity score learned in the last
step. e.g. speaker s1, s6, and s8 speaker similarity score is 8,7, and 3 respectively. Then
it looks for the unique phonemes in k-nearest neighbor. e.g. here “ih” and “iy”. It adds
the speaker score for similar phonemes. e.g. adding the score of speaker s1 and s8. e.g.
8 + 3 = 11 Now, phoneme “ih” has a value of 11 and “iy” has a value of “7”. Finally, it
makes the decision based on highest score. e.g. “ih” has the highest score, so phoneme
decision here is “ih”

55

4.4 Experiment

4.4.1 Dataset

The dataset used in this experiment is the TIMIT, which consists of 630 speakers from

eight different dialect regions of the United States [88, 89]. For each speaker, ten prompted

utterances (2 SA, 5 SX and 3 SI), which are phonetically rich are available. These utter-

ances are accompanied with transcriptions at the word and phoneme levels. The dataset

is divided into training, validation, and testing data. Testing data consists of 24 speakers

(3 speakers from each dialect region). [7]. Originally, the phoneme labels in the dataset

were categorized into 61 phoneme classes. These 61 phoneme classes are mapped into

39 phoneme classes. This is standard practice for experimentation on TIMIT dataset by

merging those with similar sounds and combining “closures” with “stops” [126]. There are

1, 477, 824 and 57, 919 frames in the training and testing set respectively. From training set,

10% frames are held out as a validation set for tuning hyper-parameters. In experiments,

phoneme classification is done on speech frames.

4.4.2 Feature Learning Using DNN

For feature extraction, a DNN is trained using speakers from training data comprising sen-

tences “SX” and “SI”. Seven different architectures of DNN for feature extraction are used.

Architecture “A” comprises one layer, architecture “B” comprises two layers and architec-

ture “C” comprises three layers, and so on. We varied the number of neurons in the last

hidden layer as shown in Table 4.1, where value of ηH can be either one of these {25, 50,

100, 200, 400, 800}. The speech signal is divided into hamming windows of 25ms with a

frame rate of 10ms. For each window 39 (13 static, 13 delta and 13 delta-delta) Cepstral

coefficients were computed. For the evaluating frame, we included three contextual frames

on each side. This makes the dimension of input vector 273 (39x7). Each frame was la-

beled as one of the 39 standard phoneme class. DNNs are trained using backpropagation

56

Table 4.1: Deep neural network architectures
Name Layers (H) Neurons in each hidden layer (ηl)

DNN “A” H = 1 ηi ∈ {25, 50, 100, 200, 400, 800}, i = 1

DNN “B” H = 2 ηi = 1000,i = 1, ηH ∈ {25, 50, 100, 200, 400, 800}
DNN “C” H = 3 ηi = 1000,i = 1, 2, ..., (H − 1), ηH ∈ {25, 50, 100, 200, 400, 800}
DNN “D” H = 4 ηi = 1000,i = 1, 2, ..., (H − 1), ηH ∈ {25, 50, 100, 200, 400, 800}
DNN “E” H = 5 ηi = 1000,i = 1, 2, ..., (H − 1), ηH ∈ {25, 50, 100, 200, 400, 800}
DNN “F” H = 6 ηi = 1000,i = 1, 2, ..., (H − 1), ηH ∈ {25, 50, 100, 200, 400, 800}

algorithm with cross entropy error as the objective function (Eq.4.5). The training of the

DNN is further optimized using momentum. Once the DNN is trained, the softmax layer

is removed and outputs at the last hidden layer activations are used as features as discussed

in Section 4.2.

4.4.3 Speaker Similarity Score Algorithm

The instance space for the speaker similarity score algorithm comprises phoneme samples

from sentences SI and SX from the training dataset. An input comprising Mel-frequency

cepstral coefficients of phonemes from target speaker-adaptation data are fed as input to a

DNN feature extractor as shown in Fig. 4.3. For adaptive phoneme classification speaker

similarity score calculated for the target speaker from adaptation data is used in above step.

Input comprising Mel-frequency cepstral coefficients of target speaker-testing data is fed

as input as shown in Fig. 4.4.

4.5 Results

4.5.1 Comparison with baseline system

The speaker similarity score (SSS) algorithm for phoneme frame error rate is compared

with a baseline system. The baseline system uses softmax layer at the output of DNN for

phoneme classification of frames. Fig. 4.9 shows the comparison of the speaker similarity

57

score algorithm with the baseline system for DNN architectures “B (2 layers),” “D (4 lay-

ers),” and “F (6 layers).” We also varied the number of neurons in the last hidden layer. The

speaker similarity score algorithm gives 1.93%, 2.43%, 2.65%, 2.32%, 2.01%, and 1.37%

absolute reduction in frame error rate with 25, 50, 100, 200, 400, and 800 neurons respec-

tively in the last hidden layer for DNN architectures as compared with the baseline system.

The value of ‘k’ used for speaker similarity score (ks) and adaptive phoneme prediction

(kprd) in this experiment was 40 and 50 respectively.

25 50 100 200 400 800

Number of neurons in last hidden layer

25.0

30.0

35.0

F
ra

m
e

er
ro

r
ra

te
 (

%
)

Baseline(2 Layers)
SSS Algorithm(2 Layers)

Baseline(4 Layers)
SSS Algorithm(4 Layers)

Baseline(6 Layers)
SSS Algorithm(6 Layers)

Figure 4.9: Comparison of the speaker similarity score algorithm (SSS) with baseline sys-
tem

4.5.2 Deep neural network architecture

Fig. 4.10 shows comparison of frame error rate with the variation in number of neurons

in the last hidden layer. Since our approach is based on k-NN, and computational cost of

58

k-NN increases with an increase in the dimension of feature vector. The number of neu-

rons in last hidden layer decides the dimension of our feature vector for speaker similarity

score algorithm. As we decrease the number of neurons from 800 to 25 in the last hidden

layer, frame error rate also increases. But, there is a very slight increase in frame error

performance if we use 50 neurons in the last hidden layer with a higher number of lay-

ers in the DNN. The value of “k” used for speaker similarity score and adaptive phoneme

classification in this experiment was 30 and 30 respectively.

1 2 3 4 5 6 7

Number of hidden layers

28.0

30.0

32.0

34.0

36.0

38.0

40.0

F
ra

m
e

er
ro

r
ra

te
 (

%
)

Neurons = 25
Neurons = 50
Neurons = 100
Neurons = 200
Neurons = 400
Neurons = 800

Figure 4.10: Comparison of deep neural network architecture

4.5.3 Value of ‘k’ for speaker similarity score and phoneme classification

In this experiment we varied the value of ‘k’ in k-NN for learning speaker similarity score

and doing adaptive phoneme classification. Finding the optimal value of ‘k’ in k-NN de-

pends on the structure of data in the instance space. In general, a large value ‘k’ gives

better classification performance. But, very large value of ‘k’ may result in an over-smooth

59

decision boundaries. Using very small value of ‘k’ results in a noisy decision boundary.

To manage these tradeoffs, ‘k’ is learned over the validation data by varying value of ‘k’

incrementally. Fig. 4.12 shows performance of the speaker similarity score algorithm with

variations in value of ‘k’ for speaker similarity score (ks) and adaptive phoneme classifica-

tion (kprd). The optimal value of ‘k’ for speaker similarity score and phoneme classification

 10 20 30 40 50 60 70 80 90

Value of 'k' for speaker similarity score (k
sss

)

28.0

28.5

29.0

29.5

30.0

F
ra

m
e

er
ro

r
ra

te
 (

%
)

k
prd

 = 10

k
prd

 = 20

k
prd

 = 30

k
prd

 = 40

k
prd

 = 50

k
prd

 = 60

k
prd

 = 70

k
prd

 = 80

k
prd

 = 90

Figure 4.11: Variation with ‘k’ for speaker similarity score

was 30 and 60 respectively. Fig. 4.11 shows phoneme frame error rate performance of the

speaker similarity score algorithm with variations in value of ‘k’ for speaker similarity

score (ks) calculation. Similarly, we compared phoneme frame error rate with variation in

the value of ‘k’ for phoneme prediction (kprd) for various values of ‘k’ for speaker similarity

score calculation (ks).

60

 10 20 30 40 50 60 70 80 90

Value of 'k' for phoneme classification (k
prd

)

28.0

28.5

29.0

29.5

30.0

F
ra

m
e

er
ro

r
ra

te
 (

%
)

k
sss

 = 10

k
sss

 = 20

k
sss

 = 30

k
sss

 = 40

k
sss

 = 50

k
sss

 = 60

k
sss

 = 70

k
sss

 = 80

k
sss

 = 90

Figure 4.12: Variation with ‘k’ for phoneme classification

4.5.4 Comparison with number of sentences

In this experiment we varied the number of sentences for learning the speaker similarity

score. As we increase the number of sentences form 1 to 4, phoneme frame error rate

reduces from 30.2% to 28.8%. The value of “k” used for speaker similarity score and

adaptive phoneme classification in this experiment were 30 and 60 respectively. We used

DNN architecture “F”.

4.5.5 Speaker-wise comparison

We compared speaker-wise phoneme frame error rate by using optimum values of ‘k’ for

speaker similarity score (ks) calculation and phoneme prediction (kprd). Fig. 4.13 shows

61

the phoneme frame error rate for the speakers in our testing data.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Speakers

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00
F

ra
m

e
er

ro
r

ra
te

 (
%

)

Figure 4.13: Speaker-wise comparison

4.5.6 Comparison of Results

We repeated our experiments twenty times by changing the sentences used for learning

the speaker similarity score and phoneme prediction. The average phoneme frame error

obtained on these twenty experiments is 29.17% with a standard deviation of 0.3%. The

minimum phoneme frame error obtained in these experiments is 28.75%. A. Graves et al.

trained bidirectional Long Short Term Memory (LSTM) networks on the TIMIT dataset

by modifying full gradient version of the LSTM learning algorithm [127]. They compared

various neural network architectures for phoneme frame error rate. Based on their findings,

bidirectional networks provide better performance as compared with unidirectional net-

works. LSTMs are quick to train as compared with recurrent neural networks (RNNs) and

also give better performance. They achieved a phoneme frame error rate of 30.2%, 31.0%,

62

34.0%, 34.8%, and 36.9% for bidirectional LSTM (BLSTM), bidirection RNN (BRNN),

LSTM, RNN, and multilayer perceptron (MLP) respectively. J. Labiak et al. compared dis-

tance metric in k-NN for phonetic frame error rate [115]. The authors compared a standard

Euclidean distance metric with two learned Mahalanobis distance metric based on large-

margin nearest neighbors (LMNN) and locality pre-serving projections (LPP). Locality

sensitive hashing was used for approximate nearest neighbor search in order to decrease

the computational time of k-NN classifier. The phonetic frame error rate of 36.92% and

36.72% were obtained with LMNN (k=30) and LPP (k=38) respectively. The dimensions

of phoneme sample were 195 and 130 for LMNN and LPP respectively. A. Dhaka et al.

used semi-supervised learning based on sparse autoencoders. The authors tested their ap-

proach with varying proportions of labelled and unlabelled data for phoneme frame error

rate on the TIMIT dataset. They obtained a phoneme frame error rate of 30.35% [128].

The novel speaker similarity score algorithm presented in this chapter can reduce phoneme

frame error rate on features learned through DNNs. The algorithm requires a small amount

of adaptation data from the target speaker. The adaptation algorithm calculates speaker

similarity score for the target speaker using the training data. On the basis of a speaker

similarity score of the target speaker with speakers in instance space, it uses the nearest

neighbor classifier for phoneme prediction.

63

CHAPTER 5

ROBUST PHONEME CLASSIFICATION

K-nearest neighbor (k-NN) classifier can learn a nonlinear decision surface and requires

only one hyper parameter (i.e. the value of “k”) for training. The classification perfor-

mance improves as we increase the amount of training data. With an increase in the amount

of training data, computational and memory requirements also increase as it has to store

and search through the entire training data for classification of one test point. This chap-

ter in- vestigates multiple methods to reduce the computational time of speaker similarity

score algorithm for phoneme classification. The chapter is organized as follows: Section

5.1 reviews methods to reduce the computational cost of k-nearest neighbor, Section 5.2

discusses neighborhood components analysis, Section 5.3 discusses a novel approach for

reducing the computation time of k-NN by reducing samples in instance space, and Section

5.4 presents results and comparison of these methods.

5.1 Related Work

The performance of k-NN classifier improves as we increase the amount of training data.

For a huge amount of data and large value of “k,” error rate of k-NN approaches Bayes

error rate [129]. Also, using a large value of “k” reduces over-fitting. The computational

cost of k-NN is high as it stores all the samples from the training data for classification

of a single test sample. Features learned through DNNs lie in a high dimensional space

[124]. Using k-NN in DNN feature space results in high computational cost. One such

method to reduce computational cost of k-NN in a high dimensional space is to apply

dimensionality reduction techniques. Various techniques have evolved such as: principal

component analysis (PCA) which finds the linear projection of data that captures maximum

variability in an unsupervised manner [130], linear discriminant analysis (LDA) that learns

64

linear combination of features in such a way that preserves class labels discriminatory

information [131], and locally linear embedding (LLE) which preserves local symmetries

[132]. For details of dimensionality reduction techniques, readers are referred to [133,

134].

Another method to reduce the computational cost of k-NN is to reduce the number

of samples in the training data (instance space). Instance space reduction methods use

the same approach as being used in k-NN but work on a subset of training set examples

(instance space). It is a data reduction framework in which the goal is to find the most

important training set examples which could be used to classify any new observation [135].

This results in a significant reduction in computation time, as the number of comparisons

are reduced because of fewer training set examples in the instance space. The instance

space reduction method may result in a slight increase in phoneme frame error rate.

Instance space reduction techniques not only provide a reduction in computation time

but they also provide a reduction in memory requirements, better generalization capability,

and tolerance to noise. The seminal work was proposed by Hart and is known as condensed

nearest neighbor [136]. Condensed nearest neighbor finds a subset S of the training set T

in such a way that each instance in T is nearer to the instances of the same class in S than

to the instances with a different class in S. This approach is computationally expensive

and is very sensitive to noisy instances. These noisy instances cause obstruction in the

instance space reduction size. The reduced nearest neighbor rule proposed by Gates uses

decremental search approach [137]. It begins with S = T and searches for instance to

remove from S in a way such that the removal of such instance from S does not result

in any misclassification with the instances present in T . The reduced nearest neighbor is

computationally more expensive than condensed nearest neighbor but guarantees a subset

which is smaller than that obtained with condensed nearest neighbor. It also removes noisy

instances and internal points but retains border points. The edited nearest neighbor rule

[138] also begins with S = T and removes each instance of S if a majority of its nearest

65

neighbors does not match with it. The edited nearest neighbor rule also removes noisy

instances as well as border point instances. However, it does not remove much of the

internal points. As a result, this approach provides smooth decision boundaries but results

in more memory requirements as compared with other instance space reduction techniques.

Instance space reduction techniques differ in terms of their approach to keep border

points, internal points, noise instances, or some other set of points [139]. Boundary points

play a significant role in defining decision boundaries as compared with internal points.

Removing internal points from our instance space will have little impact on classification

performance. Condensed nearest neighbor and reduced nearest neighbor are based on this

intuition. Edited nearest neighbor removes border points or noisy instances which do not

agree with their neighbors. This results in a smooth decision boundary. The instance space

reduction techniques mentioned above do not work well with speech utterances, as speech

signals intrinsically exhibit many variations.

Another method to reduce the computational time for k-NN search is KD-tree. In KD-

tree [140, 141], the whole space is partitioned into k-dimensional space by making binary

trees recursively. The search is based on nearest query region. The KD-tree is not efficient

in high dimensional space. Local sensitivity hashing [142] works well in high dimensional

space by reducing the dimensionality of data by mapping data points using hash functions.

Hash functions are used for similarity search. Although these techniques reduce the com-

putational time of k-NN search, they do not reduce memory requirements.

5.2 Dimensionality reduction using neighborhood component analysis

Neighborhood components analysis is a non-parametric approach to learn low-dimensional

linear embeddings from the labeled data. Low-dimensional linear embeddings results in

fast classification for k-NN. It does not assume any information regarding distribution

of various classes present in the labeled data, nor the decision boundaries between these

classes [143]. Let instance space (training data) consists of N labeled phoneme samples

66

given by Eqs. 5.1 and 5.2 in “M” dimensional space.

Phoneme samples = X =

{
x1,x2,x3, ...,xN} (5.1)

Phoneme labels = Y =

{
y1,y2,y3, ...,yN} (5.2)

Neighborhood components analysis selects a single neighbor stochastically and looks

at the expected votes for each class. For instance, each point “i” selects other points “j” as

its neighbor with a probability pij by using softmax over the distance metric given by:

pij =
e−dij∑
k 6=i e

−dik
(5.3)

where pii = 0. Probability that the point “i” will be correctly classified is:

p∗i =
∑
j∈Ci

pij (5.4)

where Ci represents set of points in the same class.

The objective of the neighborhood components analysis is to maximize the expected

number of points correctly classified which is given by expected leave-one-out classifica-

tion performance. The objective function is given by Eq. 5.5:

f(A) =
1

N

∑
i

p∗i =
1

N

∑
i

∑
j∈Ci

pij

=
1

N

∑
i

∑
j∈Ci

e−dij∑
k 6=i e

−dik

(5.5)

For quadratic (Mahalanobis) distance metric we can write the expression as:

dij = (xi − xj)
TQ(xi − xj) (5.6)

67

where Q is a positive semi-definite matrix which can be decomposed using Eigen decom-

position Q = ATA as:

dij = (xi − xj)
TATA(xi − xj)

= (Axi −Axj)
T(Axi −Axj)

(5.7)

Here A is the transformation matrix that we want to learn. We can restrict matrix A of size

(d ×M) to be a rectangular matrix of low rank in our optimization procedure. Gradient

with respect to the transformation matrix A is given by:

∂f

∂A
= −2A

∑
i

∑
j∈Ci

pij

[
xijx

T
ij −

∑
k

pikxikx
T
ik

]
(5.8)

Equivalent and more efficient computed expression is:

∂f

∂A
= 2A

∑
i

[
p∗i
∑
k

pikxikx
T
ik −

∑
j∈Ci

pijxijx
T
ij

]
(5.9)

By choosing d�M, transformation matrix A will map the training phoneme samples

from M dimensional space to a low dimensional space d.

Low dimensional phoneme samples = Z = A ·X (5.10)

Similarly for test point, we can find its projections in low dimensional “d” space by using

transformation matrix A.

Test phoneme sample = ztest = A · xtest (5.11)

Thus by learning optimal transformation matrix A we reduce the dimensions of our training

and testing phoneme samples to low dimensional space “d”. Using k-NN classifier with

Euclidean distance metric we can get significant reduction in memory and computation

68

cost [143].

5.3 Instance space reduction using adaptive data condensation

Adaptive data condensation method uses speaker characteristics to reduced the instance

space. It learns the speaker similarity of the target speaker with speakers in our instance

space. Based on the speaker similarity score, it sorts the speakers in the instance space. The

speaker with the highest similarity score gets the rank 1, and so on. It picks the phoneme

samples of the first “k” speakers in the instance space based on the speaker ranking. Some

portion of the target speaker utterance data is used to learn a speaker similarity score with

the speakers in the instance space. The instance space comprises phonemes from various

sentences and speakers. For each phoneme instance, we have phoneme label and speaker

label information available. For each correct match of the phoneme from the target speaker,

we will find corresponding speakers for that correct match in our instance space. We then

increment the score of that particular speaker by one. In this way we use all the available

phoneme-labeled utterances from the target speaker to find the score of the speakers in

our instance space. Once we learn the speakers’ scores for speakers in our instance space,

we then sort the scores in decreasing order of speaker similarity score. This gives us the

ranking of the speakers in our instance space. A higher speaker similarity score will result

in a lower rank. A lower rank means a speaker from the instance space is more similar

to the target speaker. Let n be the number of speakers in our instance space and let k

be the number of speakers we want our instance space to be reduced to. Based on the

value of k we pick all the phoneme instances of first k speakers in our instance space and

remove phoneme instances from all other speakers. Reducing our instance space result in

a reduction of computational time as well as memory space for k-NN. This approach of

instance space reduction is adaptive with the speaking characteristics of the target speaker.

For phoneme classification, we use the reduced instance space based on the speaker ranking

and weight our decision by speaker similarity score. Using phoneme acoustic frame from

69

the target speaker we found the k-nearest neighbors in the reduced instance space using

the Euclidean distance metric. From these “k” nearest neighbor phonemes, we find the

corresponding speakers. For each phoneme represented among the k-nearest neighbors,

the corresponding speaker similarity scores are added. The classifier then assigns a label to

the acoustic frame according to which represented phonemes has the highest score.

5.4 Results

5.4.1 Phoneme classification error with reduced feature dimension using neighborhood

component analysis

Size of the transformation matrix is varied A (d×M) to learn low dimensional embeddings

of features learned from DNN. The dimension of features learned from DNN is 50. Size

of dimension d is varied from 50 to 1 and compared it with phoneme frame error rate of

speaker similarity score algorithm with dimension size of 50. As dimension “d” is varied

from 50 to 1, there is a very slight increase in phoneme frame error rate till d=10. After

that frame error rate increases at a much higher rate as shown in Fig. 5.1.

5.4.2 Computation time with reduced feature dimension using neighborhood component

analysis

Computational time of the speaker similarity score algorithm using neighborhood com-

ponents analysis is compared with the speaker similarity score agorithm with dimension

d=50. Fig. 5.2 shows the reduction in computational time with reduced dimensions ob-

tained through neighborhood components analysis with DNN features. As dimensions of

feature vectors are decreased, it results in reduced computational time for phoneme classi-

fication.

70

0 10 20 30 40 50

Feature dimension

25

30

35

40

45

50

55

60

65

F
ra

m
e

er
ro

r
ra

te
 (

%
)

NCA

Figure 5.1: Phoneme frame error rate with reduced feature dimension using neighborhood
component analysis (NCA)

0 10 20 30 40 50

Feature dimension

0

20

40

60

80

100

R
ed

uc
tio

n
in

 c
om

pu
ta

tio
n

tim
e

(%
) NCA

Figure 5.2: Reduction in computation time with reduced feature dimension using neigh-
borhood component analysis

71

5.4.3 Speaker-wise comparison with reduced feature dimension using neighborhood component

analysis with baseline

Figs. 5.3 shows the comparison of speaker similarity score (SSS) algorithm on DNN

features with low dimensional features (d=10) obtained using neighborhood components

analysis (NCA). Phoneme frame error rate of 12 speakers using reduced dimensions are

compared with baseline speaker similarity score algorithm. The value of d (number of di-

mensions) used for learning transformation matrix in neighborhood component analysis is

10. The average reduction in computational time obtained using neighborhood components

analysis on DNN features is 69.7%. Using dimensionality reduction resulted only in 1.55%

increase in phoneme frame error rate on an average.

1 2 3 4 5 6 7 8 9 10 11 12

Speaker

0

5

10

15

20

25

30

35

40

F
ra

m
e

er
ro

r
ra

te
 (

%
)

SSS
SSS + NCA (d = 10)

Figure 5.3: Phoneme frame error rate per speaker

72

5.4.4 Comparison of neighborhood component analysis with PCA and LDA

Phoneme frame error rate with reduced dimension using neighborhood component analysis

is compared with the principal component analysis (PCA) and linear discriminant analysis

(LDA) as shown in Fig. 5.4 below. NCA gives the best performance for a feature dimension

size of 10. At d=10 NCA, PCA, and LDA has a phoneme frame error rate of 30.33%,

31.32%, and 31.83% respectively.

0 10 20 30 40 50

Feature dimension

25

30

35

40

45

50

55

60

65

70

F
ra

m
e

er
ro

r
ra

te
 (

%
)

NCA
PCA
LDA

Figure 5.4: Comparison of neighborhood component analysis with principal component
analysis and linear discriminant analysis

5.4.5 Copmarison of phoneme classification error with reduced instance space

After learning speaker similarity score for a target speaker (Section 4.3.1), the speakers

present in the instance space are ranked in decreasing order. For example, the speaker

with the highest score is assigned rank 1, which means that the target speaker more closely

matches this speaker in terms of speaking style, accent, etc. The number of phoneme sam-

73

ples in the instance space is reduced by varying the number of speakers in the instance

space. Fig. 5.5 shows the variation of phoneme frame error rate of the target speaker with

the number of speakers in the instance space. The number of speakers in the instance space

are reduced from 496 to 10. The reduced instance space results in a low memory require-

ments at the cost of small increase in phoneme frame error rate. Significant reduction in the

size of instance space is achieved using 100 speakers in the instance space with an absolute

increase in phoneme frame error rate by 1.15%. In general, more the phoneme samples we

have from different speakers in the instance space, the better the performance we get (at

the cost of large memory requirements and computational cost).

0 100 200 300 400 500

Number of speakers in instance space

28.5

29

29.5

30

30.5

31

31.5

32

F
ra

m
e

er
ro

r
ra

te
 (

%
)

Instance space reduction

Figure 5.5: Instance space size vs. phoneme frame error rate

5.4.6 Improvement in computation time with reduced instance space

Fig. 5.6 shows the impact of reduced instance space on improvement in computation cost.

Using phoneme samples from fewer speakers not only results in low memory requirements

74

but also helps to speed up the search for nearest neighbors. As we decrease phoneme

frame samples from 450 speakers to 10 speakers in the instance space we get a significant

improvement in the computational time. For 100 speakers in the instance space we get

an improvement in computational time by 77.05% at the cost of 1.15% decrease in the

absolute phoneme frame error rate.

0 100 200 300 400 500

Number of speakers in instance space

0

20

40

60

80

100

R
ed

uc
tio

n
in

 c
om

pu
ta

tio
n

tim
e

(%
) Instance space reduction

Figure 5.6: Instance space size vs. improvement in computation time

5.4.7 Speaker-wise comparison of reduced instance space with baseline

Fig. 5.7 shows the comparison of phoneme frame error rate of using complete instance

space that comprises phoneme frame samples from 496 speakers (complete instance space)

with 100 speakers (reduced instance space) for 12 different speakers. The maximum abso-

lute increase in phoneme frame error rate across different speaker was 2.2%.

75

1 2 3 4 5 6 7 8 9 10 11 12

Speaker

0

5

10

15

20

25

30

35

40

F
ra

m
e

er
ro

r
ra

te
 (

%
)

SSS
SSS + I-SPACE (S = 100)

Figure 5.7: Complete vs. reduced instance space-Speakerwise comparison

5.4.8 Approximate nearest neighbor based search

Approximate nearest neighbor methods provide another approach to reduce the computa-

tional time of nearest neighbor search [144]. The key idea of approximate nearest neighbor

is to pre-process the training data in such a way that when test instance comes, it can

quickly search and find the nearest neighbor from the training data for the given test in-

stance. The training data is preprocessed using a data structure for an efficient and quick

search for a given test point. Approximate nearest neighbor wrapper for Matlab was used,

but it resulted in an increase in computational time with almost the same phoneme frame

error rate.

76

CHAPTER 6

SPEAKER ADAPTATION OF SPEECH RECOGNITION SYTEM

Speech recognition systems use acoustic models, language models, and lexicon to decode

words for a given speech signal from a test speaker. There is always a mismatch between

trained acoustic model and test speaker. Speaker adaptation techniques can minimize the

difference between acoustic model and test speaker. Speaker adaptation techniques require

adaptation data from the test speaker to optimize system performance. In most cases only a

limited amount of adaptation data from the test speaker is available. This chapter discussed

two methods for speaker adaptation. The first method is based on the speaker similarity

score algorithm. The second method extracts speaker features and appends these with

speech features for speaker adaptation of speech recognition system.

6.1 Speaker similarity based speaker adaptation

The adaptive phoneme classification method discussed in Chapter 4 is extended for the

speaker adaptation of speech recognition systems. The main idea is that ASR system can

be adapted by using speaker similarity score information and finding a similar frame from

the training data using k-NN. The intuition is that since DNN has already seen the similar

frame sample, it will be able to give a better estimate of the probability across phoneme

classes. Replacement with the similar frame can reduce the mismatch between the training

and testing data. Figs. 6.1(a) and 6.1(b) show the block diagram of the conventional hybrid

DNN-HMM system and speaker similarity score based speaker adaptation of the hybrid

DNN-HMM system. The speaker similarity score based speaker adaptation can be robust

as it does not require modification and retraining of the DNN for speaker adaptation.

77

0 10 0 20 0 30 0 40 0 50 0 60 0 70 0

-0. 3

-0. 2

-0. 1

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

S
ta

rt
b

2 (o
)

E
n

d
b

3 (o
)

b
4 (o

)

a
1
2

a
2
3

a
3
4

a
1
3

a
2
4

a
3
5

a
4
4

a
3
3

a
2
2

HMM DecoderTraining Data
Feature

Extractor
DNN

K-Nearest Neighbor

Score

Instance Space

Similar Feature Vector

(From Instance Space)

HMM Decoder
Target

Speaker

Feature

Extractor
DNN

(a)

(b)

Figure 6.1: Speaker adaptation using speaker similarity score

The speaker similarity score based speaker adaptation method consists of the following

three steps.

Step 1

Th speaker similarity score of the target speaker is learned using the k-NN. The instance

space for the k-NN comprises speech frames from the training data with their correspond-

ing phoneme labels and speaker information. K-NN classifier is used to learn the speaker

similarity score for a given target speaker. For details regarding speaker similarity score

calculation, readers are referred to Section 4.3.1 of this thesis. All the available adapta-

tion data from the target speaker is used to learn the speaker similarity score information.

Greater the score of a particular speaker in the training data, the more similar it is to the

78

given target speaker.

Step 2

In the second step, feature vectors of the test speaker are replaced with the similar feature

vectors from the instance space. K-nearest neighbor is used for searching phoneme frames

in the instance space using the Euclidean distance metric. The k-nearest phoneme frames

are weighted by their corresponding speaker score information to find the most similar fea-

ture vector frame in the instance space. The similar feature vectors from the instance space

corresponding to the test speaker utterances are given as an input to the DNN. The DNN

provides posteriori probabilities for all states in the HMM. These posteriori probabilities

are converted to scaled likelihoods by using the state prior probability information. The

likelihoods are given as an input to the decoder for recognition.

We used the same experimental setup discussed in Section 4.4. The baseline hybrid

DNN-HMM system consists of five hidden layers with monophone HMMs. The hidden

layer comprises 1000 neurons with sigmoid as an activation function. Two sets of exper-

iments were conducted using this method. In the first approach, all the frames from the

target speaker testing data are replaced with the frames from the instance space. This ap-

proach resulted in an increase of the phoneme error rate as compared with the baseline

system. In the second approach, only selected frames from the testing data of the target

speaker are replaced with the similar frames from the instance space. The selection of the

frames from the target speaker testing data was based on probability values obtained at the

softmax layer. This approach does not provide any significant reduction in the phoneme

error rate as compared with the baseline system.

6.2 Sparse coding based speaker adaptation

Sparse coding has attracted a lot of attention in many speech processing applications.

Sparse coding maps original features to sparse representations. Recently, universal back-

ground sparse coding is proposed for the speaker verification task [145, 146]. The univer-

79

sal background sparse coding uses multilayer bootstrap network in a supervised manner to

learn high dimensional sparse features for each speaker termed as a super vector. The super

vector dimensionality is reduced by the multilayer bootstrap network. The multilayer boot-

strap network trains an ensemble of clusters and applies one-nearest-neighbor optimization

and binarization to produce sparse codes. Fig. 6.2 shows the overall block diagram for

learning speaker features. The speaker features learned are augmented with the speech fea-

tures for the speaker adaptation of the ASR system.

+ + + + . . . + =)
)

N

PCA

Stage 1

Universal background sparse coding

Stage 2

Multilayer bootstrap network

Figure 6.2: Sparse coding based speaker features

Learning speaker features involve two stages. In the first stage, the universal background

sparse coding is used to generate high-dimensional sparse features for each speaker termed

as a super vector. In the second stage, the dimensionality of the speaker super vector is

reduced by multilayer bootstrap network.

Stage 1: Universal background sparse coding-based speaker super vector

The universal background sparse coding learns a data distribution in a discrete space. The

80

first step comprises MFCC feature extraction at the frame level from the training data. The

second step randomly selects k frame samples from the whole training data as centers for

the cluster to build random models. Each layer comprisesM random models with k frames

randomly selected without replacement from the training data as centers. After this step,

frame samples from the given data are assigned to one of the k clusters based on the min-

imum squared Euclidean distance. This step is repeated for all M models. Based on the

cluster assignments, it gives an output indicator vector for each model i = [i1, i2, ..., ik].

For example, if the frame sample is assigned to cluster 1 then the indicator vector is given

by i = [1, 0, ..., 0]. The indicator vectors for all the models are combined to provide frame

level binary sparse features. Finally, the frame level binary sparse features are combined

and normalized for all the frame samples from each speaker to give a d dimensional speaker

super vector.

Stage 2: Multilayer bootstrap network based dimensionality reduction

Multilayer bootstrap network is applied to reduce the dimensions of the speaker super vec-

tor from d to d∗. The multilayer bootstrap network is trained layer-by-layer. Each layer

of the multilayer bootstrap network consists of mutually independent clusters that are ran-

domly sampled from the training data after random feature selection. Each cluster consists

of k output units. The output units of all clusters are concatenated as the input to the next

layer. The last layer of multilayer bootstrap network applies principal component analysis

(PCA).

The same experiment setup is used as mentioned in Section 4.4. The baseline hybrid

DNN-HMM system consists of five hidden layers with triphone HMMs. Each hidden layer

contained 1000 neurons and used sigmoid as an activation function. We used five words

from each speaker to learn speaker features using the universal background sparse cod-

ing. A number of experiments were conducted to determine the dimension of the speaker

features. Using speaker features with small dimension did not have any impact on the

phoneme error rate. And, using speaker features with large dimension distorted the speech

81

features that contain phoneme information. Fig. 6.3 shows the comparison of the baseline

system with the sparse coding based speaker adaptation for 24 speakers. An absolute re-

duction of 0.8% in phoneme error rate is achieved using 39-dimensional MFCCs as speech

features and 11-dimensional speaker features learned with the universal background sparse

coding.

0 5 10 15 20 25

Speakers

10.0

15.0

20.0

25.0

30.0

P
ho

ne
m

e
er

ro
r

ra
te

 (
P

E
R

)
(%

)

Baseline
Speaker Adaptation

Figure 6.3: Speaker adaptation using speaker features

82

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation presented multiple methods for the adaptation of speech recognition sys-

tems.

Chapter 3 presented a novel architecture for accent classification based on extreme

learning machines. Using a single word from a speaker is effective for the accent classi-

fication and significant improvement in accent classification accuracy can be obtained by

incorporating multiple words from a speaker. Different words were analyzed for accent

classification. Also, extreme learning machines are effective for accent classification tasks

as ELMs do not require a significant amount of training data for learning neural network

weights. However, the proposed method requires specific words from a test speaker for

accent classification.

Chapter 4 presented a novel speaker similarity score algorithm for adaptive phoneme

classification. The activations of the last hidden layer were used as features for the speaker

similarity score algorithm. We found that DNNs last hidden layer activations are more ef-

fective in identifying phoneme classes of frames as compared with traditional raw MFCC

features. The number of neurons in the last hidden layer and number of hidden layers were

varied to investigate the impact of these on phoneme frame error rate performance. Based

on our experiments 50 neurons in the last hidden layer and five layers is a nice compromise

between frame error rate and computational cost. The proposed speaker similarity score al-

gorithm based on DNN features outperformed both the k-NN based method on raw MFCC

features and neural networks using soft-max for phoneme classification.

Chapter 5 presented two methods for reducing the computational time of the speaker

83

similarity score algorithm. The first method applies neighborhood component analysis

for dimensionality reduction. The dimensions of features were reduced to 10. The second

method discusses adaptive data condensation that uses speaker similarity score information

to reduce the number of phoneme frame samples in the instance space. In our experiments,

the number of speakers in the instance space were reduced to 100. We discovered based on

our experiments that both dimensionality reduction using neighborhood component analy-

sis and adaptive data condensation provide a significant decrease in computation time for

speaker similarity score algorithm with a slight increase in phoneme frame error rate.

Chapter 6 investigates methods for speaker adaptation. In our first method based on

speaker similarity score, each frame of the target speaker was replaced with most similar

frame from the instance space. This resulted in an increase in phoneme error rate as this

replacement lost the contextual information. In the second method, speech features are

augmented with the speaker features that contain speaker information. Speaker features

learned using the universal background sparse coding to be useful for speaker adaptation.

We discovered that the dimension of speaker features augmented with speech feature is

critical. Using few speaker features does not have any impact and using too many speaker

features will distort the speech features that contain phoneme information. Based on our

experiments, we found 39-dimensional MFCCs and 11-dimensional sparse features learned

with the universal background sparse coding gives an absolute reduction in phoneme error

rate by 0.8%.

7.2 Future Work

The work presented in this dissertation may lead to some new opportunities for research.

The following list includes a number of promising ideas that need further investigation.

Accent classification using multiple words

• Identification of distinguishing words that can help in accent classification

84

• Extension of the proposed method to non-native speakers

Adaptive phoneme classification

• Combining hidden layer activations from multiple layers for feature extraction

• Identification of hidden layer activations that contain speaker specific information

using information visualization techniques

Robust phoneme classification

• Using the adaptive data condensation method on other speech tasks such as speaker

identification and language identification

Speaker adaptation of ASR

• Extension of the work to a large vocabulary continuous speech recognition dataset

• Extracting speaker specific features from the activations of DNNs

85

REFERENCES

[1] M. Gales and S. Young, “The application of hidden Markov models in speech
recognition,” Foundations and Trends in Signal Processing, vol. 1, no. 3, pp. 195–
304, 2008.

[2] D. Yu and L. Deng, Automatic speech recognition: A deep learning approach.
Springer, 2014.

[3] O. Abdel-Hamid, “Automatic speech recognition using deep neural networks: New
possibilities,” PhD thesis, York University, 2014.

[4] T. N. Sainath, “Applications of broad class knowledge for noise robust speech
recognition,” PhD thesis, Massachusetts Institute of Technology, 2009.

[5] Y. Miao, “Incorporating context information into deep neural network acoustic
models,” PhD thesis, Carnegie Mellon University, 2016.

[6] M. Rizwan, B. O. Odelowo, and D. V. Anderson, “Word based dialect classifica-
tion using extreme learning machines,” in IEEE International Joint Conference on
Neural Networks, 2016, pp. 2625–2629.

[7] M. Rizwan and D. V. Anderson, “Using k-nearest neighbor and speaker ranking for
phoneme prediction,” in IEEE International Conference on Machine Learning and
Applications, 2014, pp. 383–387.

[8] ——, “Speaker adaptation using speaker similarity score on DNN features,” in
IEEE International Conference on Machine Learning and Applications, 2015, pp. 877–
882.

[9] ——, “Comparison of distance metrics for phoneme classification based on deep
neural network features and weighted k-NN classifier,” in Workshop on Machine
Learning in Speech and Language Processing, 2016.

[10] ——, “Speaker similarity score based fast phoneme classification using neighbor-
hood components analysis,” in IEEE Global Conference on Signal and Information
Processing, 2016, pp. 50–54.

[11] X. Huang, A. Acero, and H. Hon, Spoken language processing: A guide to theory,
algorithm, and system development. Prentice Hall, 2001.

86

[12] J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete time processing of speech
signals. Prentice Hall, 1993.

[13] A. R. Mohamed, G. Dahl, and G. E. Hinton, “Deep belief networks for phone recog-
nition,” in NIPS workshop on deep learning for speech recognition and related
applications, vol. 1, 2009, p. 39.

[14] X. Huang and K. F. Lee, “On speaker-independent, speaker-dependent, and speaker-
adaptive speech recognition,” IEEE Transactions on Speech and Audio Processing,
vol. 1, no. 2, pp. 150–157, 1993.

[15] L. Rabiner and B. Juang, Fundamentals of speech recognition. Prentice Hall, 1993.

[16] S. Furui, “Unsupervised speaker adaptation based on hierarchical spectral cluster-
ing,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no.
12, pp. 1923–1930, 1989.

[17] P. C. Woodland, “Speaker adaptation for continuous density HMMs: A review,” in
ISCA Tutorial and Research Workshop on Adaptation Methods for Speech Recog-
nition, 2001.

[18] C. H. Lee and Q. Huo, “On adaptive decision rules and decision parameter adap-
tation for automatic speech recognition,” Proceedings of the IEEE, vol. 88, no. 8,
pp. 1241–1269, 2000.

[19] M. J. Gales, “Maximum likelihood linear transformations for HMM-based speech
recognition,” Elsevier Computer Speech & Language, vol. 12, no. 2, pp. 75–98,
1998.

[20] S. Furui, “Generalization problem in ASR acoustic model training and adapta-
tion,” in IEEE Workshop on Automatic Speech Recognition & Understanding, 2009,
pp. 1–10.

[21] J. L. Gauvain and C. H. Lee, “Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains,” IEEE Transactions on Speech
and Audio Processing, vol. 2, no. 2, pp. 291–298, 1994.

[22] S. Ahadi and P. C. Woodland, “Rapid speaker adaptation using model prediction,”
in International Conference on Acoustics, Speech, and Signal Processing, 1995,
pp. 684–687.

[23] K. Shinoda and C. H. Lee, “A structural Bayes approach to speaker adaptation,”
IEEE Transactions on Speech and Audio Processing, vol. 9, no. 3, pp. 276–287,
2001.

87

[24] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression for
speaker adaptation of continuous density hidden Markov models,” Elsevier Com-
puter Speech & Language, vol. 9, no. 2, pp. 171–185, 1995.

[25] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A compact model
for speaker-adaptive training,” in IEEE International Conference on Spoken Lan-
guage, vol. 2, 1996, pp. 1137–1140.

[26] M. Gales, “Cluster adaptive training of hidden Markov models,” IEEE Transactions
on Speech and Audio Processing, vol. 8, no. 4, pp. 417–428, 2000.

[27] R. Kuhn, J. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker adaptation in
eigenvoice space,” IEEE Transactions on Speech and Audio Processing, vol. 8, no.
6, pp. 695–707, 2000.

[28] J. Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, Luis, S. Renals, and T.
Robinson, “Speaker-adaptation for hybrid HMM-ANN continuous speech recogni-
tion system,” in Eurospeech, 1995.

[29] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Connectionist speaker normal-
ization and adaptation,” in Eurospeech, 1995.

[30] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent
deep neural networks for conversational speech transcription,” in IEEE Workshop
on Automatic Speech Recognition and Understanding, 2011, pp. 24–29.

[31] R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. D. Mori, “Linear hidden trans-
formations for adaptation of hybrid ANN/HMM models,” Elsevier Speech Commu-
nication, vol. 49, no. 10, pp. 827–835, 2007.

[32] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation of context-
dependent deep neural networks for automatic speech recognition,” in IEEE Spoken
Language Technology Workshop, 2012, pp. 366–369.

[33] S. M. Siniscalchi, T. Svendsen, F. Sorbello, and C. H. Lee, “Experimental studies
on continuous speech recognition using neural architectures with adaptive hidden
activation functions,” in IEEE International Conference on Acoustics Speech and
Signal Processing, 2010, pp. 4882–4885.

[34] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regularized deep neural
network adaptation for improved large vocabulary speech recognition,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, 2013, pp. 7893–
7897.

88

[35] S. Xue, H. Jiang, L. Dai, and Q. Liu, “Speaker adaptation of hybrid NN/HMM
model for speech recognition based on singular value decomposition,” Springer
Journal of Signal Processing Systems, vol. 82, no. 2, pp. 175–185, 2016.

[36] Y. Zhao, J. Li, J. Xue, and Y. Gong, “Investigating online low-footprint speaker
adaptation using generalized linear regression and click-through data,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, 2015, pp. 4310–
4314.

[37] R. Price, K. Iso, and K. Shinoda, “Speaker adaptation of deep neural networks using
a hierarchy of output layers,” in IEEE Spoken Language Technology Workshop,
2014, pp. 153–158.

[38] Z. Huang, J. Li, S. M. Siniscalchi, I. F. Chen, J. Wu, and C. H. Lee, “Rapid adap-
tation for deep neural networks through multi-task learning,” in Interspeech, 2015,
pp. 3625–3629.

[39] Z. Huang, S. M. Siniscalchi, I. F. Chen, J. Wu, and C. H. Lee, “Maximum a posteri-
ori adaptation of network parameters in deep models,” ArXiv preprint arXiv:1503.02108,
2015.

[40] C. Zhang and P. C. Woodland, “DNN speaker adaptation using parameterised sig-
moid and ReLU hidden activation functions,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2016, pp. 5300–5304.

[41] Y. Miao, H. Zhang, and F. Metze, “Speaker adaptive training of deep neural network
acoustic models using i-vectors,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 23, no. 11, pp. 1938–1949, 2015.

[42] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hybrid NN/HMM model
for speech recognition based on discriminative learning of speaker code,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 7942–
7946.

[43] ——, “Rapid and effective speaker adaptation of convolutional neural network
based models for speech recognition,” in Interspeech, 2013, pp. 1248–1252.

[44] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu, “Fast adaptation of deep
neural network based on discriminant codes for speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 1713–
1725, 2014.

[45] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and
applications,” Elsevier Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

89

[46] G. B. Huang, E. Cambria, E. K. A. Toh, B. Widrow, and Z. Xu, “New trends of
learning in computational intelligence [guest editorial],” IEEE Computational In-
telligence Magazine, vol. 10, no. 2, pp. 16–17, 2015.

[47] L. M. Arslan and J. H. L. Hansen, “Language accent classification in American
English,” Elsevier Speech Communication, vol. 18, no. 4, pp. 353–367, 1996.

[48] J. J. Humphries, “Accent modelling and adaptation in automatic speech recogni-
tion,” PhD thesis, University of Cambridge, 1998.

[49] R. Huang, J. H. L. Hansen, and P. Angkititrakul, “Dialect/accent classification using
unrestricted audio,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 2, pp. 453–464, 2007.

[50] S. Goronzy, Robust adaptation to non-native accents in automatic speech recogni-
tion. Springer Science & Business Media, 2002.

[51] G. Choueiter, G. Zweig, and P. Nguyen, “An empirical study of automatic accent
classification,” in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2008, pp. 4265–4268.

[52] P. Angkititrakul and J. H. L. Hansen, “Advances in phone-based modeling for au-
tomatic accent classification,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 2, pp. 634–646, 2006.

[53] J. Macı́as-Guarasa, “Acoustic adaptation and accent identification in the ICSI MR
and FAE corpora,” in ICSI Meeting slides, 2003.

[54] C. G. Clopper, D. B. Pisoni, and K. D. Jong, “Acoustic characteristics of the vowel
systems of six regional varieties of American English,” The Journal of the Acousti-
cal Society of America, vol. 118, no. 3, pp. 1661–1676, 2005.

[55] J. H. L. Hansen, U. H. Yapanel, R. Huang, and A. Ikeno, “Dialect analysis and
modeling for automatic classification,” in Interspeech, 2004.

[56] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: A new learn-
ing scheme of feedforward neural networks,” in IEEE International Joint Confer-
ence on Neural Networks, vol. 2, 2004, pp. 985–990.

[57] G. Huang, S. Song, J. Gupta, and C. Wu, “Semi-supervised and unsupervised
extreme learning machines,” IEEE Transactions on Cybernetics, vol. 44, no. 12,
pp. 2405–2417, 2014.

90

[58] G. B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines: A survey,”
Springer International Journal of Machine Learning and Cybernetics, vol. 2, no.
2, pp. 107–122, 2011.

[59] E. Cambria, N. Howard, Y. Xia, and T. S. Chua, “Computational intelligence for big
social data analysis [guest editorial],” IEEE Computational Intelligence Magazine,
vol. 11, no. 3, pp. 8–9, 2016.

[60] G. B. Huang, “An insight into extreme learning machines: Random neurons, ran-
dom features and kernels,” Springer Cognitive Computation, vol. 6, no. 3, pp. 376–
390, 2014.

[61] ——, “What are extreme learning machines? Filling the gap between Frank Rosen-
blatt’s dream and John von Neumann’s puzzle,” Springer Cognitive Computation,
vol. 7, no. 3, pp. 263–278, 2015.

[62] J. Tang, C. Deng, and G. B. Huang, “Extreme learning machine for multilayer
perceptron,” IEEE Transactions on Neural Networks and Learning Systems, vol.
27, no. 4, pp. 809–821, 2016.

[63] G. B. Huang, L. Chen, and C. K. Siew, “Universal approximation using incremental
constructive feedforward networks with random hidden nodes,” IEEE Transactions
on Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[64] Y. Lan, Y. C. Soh, and G. B. Huang, “Ensemble of online sequential extreme learn-
ing machine,” Elsevier Neurocomputing, vol. 72, no. 13, pp. 3391–3395, 2009.

[65] G. B. Huang, Z. Bai, K. L. Chamara, and C. M. Vong, “Local receptive fields based
extreme learning machine,” IEEE Computational Intelligence Magazine, vol. 10,
no. 2, pp. 18–29, 2015.

[66] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for
regression and multiclass classification,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 513–529, 2012.

[67] G. B. Huang and L. Chen, “Convex incremental extreme learning machine,” Else-
vier Neurocomputing, vol. 70, no. 16, pp. 3056–3062, 2007.

[68] W. Schmidt, M. Kraaijveld, and R. Duin, “Feedforward neural networks with ran-
dom weights,” in IEEE International Conference on Pattern Recognition Method-
ology and Systems, 1992, pp. 1–4.

[69] P. L. Bartlett, “The sample complexity of pattern classification with neural net-
works: The size of the weights is more important than the size of the network,”
IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 525–536, 1998.

91

[70] P. Lancaster and M. Tismenetsky, The theory of matrices: With applications. Else-
vier, 1985.

[71] N. Draper, H. Smith, and E. Pownell, Applied regression analysis. Wiley New York,
1966.

[72] C. Cortes and V. Vapnik, “Support-vector networks,” Springer Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[73] V. Vapnik, S. Golowich, and A. Smola, “Support vector method for function ap-
proximation, regression estimation, and signal processing,” in Advances in Neural
Information Processing Systems, 1997, pp. 281–287.

[74] S. Schölkopf, V. Vapnik, and A. Smola, “Improving the accuracy and speed of
support vector machines,” in Advances in Neural Information Processing Systems,
1997, pp. 375–381.

[75] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”
Springer Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[76] A. Aizerman, M. E. Braverman, and L. Rozoner, “Theoretical foundations of the
potential function method in pattern recognition learning,” Automation and Remote
Control, vol. 25, pp. 821–837, 1964.

[77] V. Vapnik, The nature of statistical learning theory. Springer Science & Business
Media, 2013.

[78] B. Frénay and M. Verleysen, “Using SVMs with randomised feature spaces: An
extreme learning approach,” in ESANN, 2010.

[79] L. Zhang, D. Zhang, and F. Tian, “SVM and ELM: Who wins? Object recogni-
tion with deep convolutional features from ImageNet,” in Proceedings of Extreme
Learning Machines, Springer, 2016, pp. 249–263.

[80] O. Chapelle, V. Vapnik, Vladimir, O. Bousquet, and S. Mukherjee, “Choosing mul-
tiple parameters for support vector machines,” Springer Machine Learning, vol. 46,
no. 1-3, pp. 131–159, 2002.

[81] J. Chorowski, J. Wang, and J. M. Zurada, “Review and performance comparison
of SVM-and ELM-based classifiers,” Elsevier Neurocomputing, vol. 128, pp. 507–
516, 2014.

[82] X. Liu, C. Gao, and P. Li, “A comparative analysis of support vector machines and
extreme learning machines,” Elsevier Neural Networks, vol. 33, pp. 58–66, 2012.

92

[83] B. Scholkopf and A. Smola, Learning with kernels: Support vector machines, reg-
ularization, optimization, and beyond. MIT press, 2001.

[84] G. B. Huang, X. Ding, and H. Zhou, “Optimization method based extreme learning
machine for classification,” Elsevier Neurocomputing, vol. 74, no. 1, pp. 155–163,
2010.

[85] J. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[86] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in ACM Workshop on Computational Learning Theory, 1992,
pp. 144–152.

[87] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector
machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425,
2002.

[88] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “DARPA
TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-
1.1,” NASA Technical Report, vol. 93, p. 27 403, 1993.

[89] V. Zue, S. Seneff, and J. Glass, “Speech database development at MIT: TIMIT and
beyond,” Elsevier Speech Communication, vol. 9, no. 4, pp. 351–356, 1990.

[90] L. Rabiner and R. Schafer, Digital processing of speech signals. Prentice Hall,
1978.

[91] M. Slaney, “Auditory toolbox: A Matlab toolbox for auditory modeling,” Interval
Research Corporation Work Technical Report, pp. 29–32, 1998.

[92] V. Tiwari, “MFCC and its applications in speaker recognition,” International Jour-
nal on Emerging Technologies, vol. 1, no. 1, pp. 19–22, 2010.

[93] C. W. Hsu, C. C. Chang, and C. J. Lin, A practical guide to support vector classifi-
cation, 2010.

[94] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, p. 27, 2011.

[95] R. Brunelli and T. Poggio, “Face recognition: Features versus templates,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1042–
1052, 1993.

93

[96] D. G. Lowe, “Object recognition from local scale-invariant features,” in IEEE In-
ternational Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157.

[97] M. Ankerst, G. Kastenmüller, H. Kriegel, and T. Seidl, “Nearest neighbor classifi-
cation in 3D protein databases,” in International Conference on Intelligent Systems
for Molecular Biology, vol. 99, 1999, pp. 34–43.

[98] Y. Lee, T. Hara, H. Fujita, S. Itoh, and T. Ishigaki, “Automated detection of pul-
monary nodules in helical CT images based on an improved template-matching
technique,” IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 595–604,
2001.

[99] E. Wold, T. Blum, D. Keislar, and J. Wheaten, “Content-based classification, search,
and retrieval of audio,” IEEE MultiMedia, vol. 3, no. 3, pp. 27–36, 1996.

[100] S. Z. Li, “Content-based audio classification and retrieval using the nearest feature
line method,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 5,
pp. 619–625, 2000.

[101] L. Lu, H. Jiang, and H. J. Zhang, “A robust audio classification and segmentation
method,” in ACM International Conference on Multimedia, 2001, pp. 203–211.

[102] J. C. Wang, J. F. Wang, K. W. He, and C. S. Hsu, “Environmental sound classifica-
tion using hybrid SVM/K-NN classifier and MPEG-7 audio low-level descriptor,”
in IEEE International Joint Conference on Neural Networks, 2006, pp. 1731–1735.

[103] K. Lee and D. P. Ellis, “Audio-based semantic concept classification for consumer
video,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18,
no. 6, pp. 1406–1416, 2010.

[104] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “Unsupervised learning of
sparse features for scalable audio classification,” in International Society for Music
Information Retrieval Conference, vol. 11, 2011.

[105] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE
Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, 2002.

[106] Y. Yaslan and Z. Cataltepe, “Audio music genre classification using different clas-
sifiers and feature selection methods,” in IEEE International Conference on Pattern
Recognition, vol. 2, 2006, pp. 573–576.

[107] Y. Panagakis, C. Kotropoulos, and G. R. Arce, “Music genre classification via
sparse representations of auditory temporal modulations,” in IEEE European Sig-
nal Processing Conference, 2009, pp. 1–5.

94

[108] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies, “Sparse
representations in audio and music: From coding to source separation,” Proceed-
ings of the IEEE, vol. 98, no. 6, pp. 995–1005, 2010.

[109] Y. Li, A. Cichocki, and S. Amari, “Analysis of sparse representation and blind
source separation,” Neural Computation, vol. 16, no. 6, pp. 1193–1234, 2004.

[110] J. Shah, B. Smolenski, R. Yantorno, and A. Iyer, “Sequential k-nearest neighbor
pattern recognition for usable speech classification,” in IEEE European Signal Pro-
cessing Conference, 2004, pp. 741–744.

[111] I. Naseem, R. Togneri, and M. Bennamoun, “Sparse representation for speaker
identification,” in IEEE International Conference on Pattern Recognition, 2010,
pp. 4460–4463.

[112] T. Deselaers, G. Heigold, and H. Ney, “Speech recognition with state-based nearest
neighbour classifiers,” in Interspeech, 2007, pp. 2093–2096.

[113] L. Golipour and D. O. Shaughnessy, “Context-independent phoneme recognition
using a k-nearest neighbour classification approach,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2009, pp. 1341–1344.

[114] ——, “Phoneme classification and lattice rescoring based on a k-NN approach,” in
Interspeech, 2010, pp. 1954–1957.

[115] J. Labiak and K. Livescu, “Nearest neighbors with learned distances for phonetic
frame classification,” in Interspeech, 2011, pp. 2337–2340.

[116] J. Gemmeke, L. Bosch, L. Boves, and B. Cranen, “Using sparse representations for
exemplar based continuous digit recognition,” in IEEE European Signal Processing
Conference, 2009, pp. 1755–1759.

[117] T. N. Sainath, B. Ramabhadran, D. Nahamoo, D. Kanevsky, Dimitri, and A. Sethy,
“Sparse representation features for speech recognition,” in Interspeech, 2010, pp. 2254–
2257.

[118] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-based sparse repre-
sentations for noise robust automatic speech recognition,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2067–2080, 2011.

[119] M. D. Wachter, K. Demuynck, D. V. Compernolle, and P. Wambacq, “Data driven
example based continuous speech recognition,” in Interspeech, 2003.

95

[120] M. D. Wachter, K. D. M. Matton, P. Wambacq, R. Cools, and D. V. Compernolle,
“Template-based continuous speech recognition,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 15, no. 4, pp. 1377–1390, 2007.

[121] S. Demange and D. V. Compernolle, “HEAR: An hybrid episodic-abstract speech
recognizer,” in Interspeech, 2009, pp. 3067–3070.

[122] T. N. Sainath, B. Ramabhadran, D. K. D. Nahamoo, D. Compernolle, K. Demuynck,
J.Gemmeke, J. Bellegarda, and S. Sundaram, “Exemplar-based processing for speech
recognition: An overview,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 98–
113, 2012.

[123] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, and T. N. Sainath, “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[124] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Ma-
chine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[125] R. Michalski, J. Carbonell, and T. Mitchell, Machine learning: An artificial intelli-
gence approach. Springer Science & Business Media, 2013.

[126] T. Robinson, Several improvements to a recurrent error propagation network phone
recognition system. University of Cambridge, 1991.

[127] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-
tional LSTM networks,” in IEEE International Joint Conference on Neural Net-
works, vol. 4, 2005, pp. 2047–2052.

[128] A. K. Dhaka and G. Salvi, “Semi-supervised learning with sparse autoencoders in
phone classification,” ArXiv preprint arXiv:1610.00520, 2016.

[129] R. Duda, P. Hart, and D. Stork, Pattern classification. John Wiley & Sons, 2012.

[130] H. Abdi and L. Williams, “Principal component analysis,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.

[131] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysis-A brief tu-
torial,” Institute for Signal and Information Processing, vol. 18, 1998.

[132] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear em-
bedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[133] I. K. Fodor, A survey of dimension reduction techniques, 2002.

96

[134] F. Camastra, “Data dimensionality estimation methods: A survey,” Elsevier Pattern
Recognition, vol. 36, no. 12, pp. 2945–2954, 2003.

[135] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-based learn-
ing algorithms,” Springer Machine Learning, vol. 38, no. 3, pp. 257–286, 2000.

[136] K. C. Gowda and G. Krishna, “The condensed nearest neighbor rule using the con-
cept of mutual nearest neighborhood,” IEEE Transactions on Information Theory,
vol. 25, no. 4, pp. 488–490, 1979.

[137] G. W. Gates, “The reduced nearest neighbor rule,” IEEE Transactions on Informa-
tion Theory, vol. 18, no. 3, pp. 431–433, 1972.

[138] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,”
IEEE Transactions on Systems, Man, and Cybernetics, no. 3, pp. 408–421, 1972.

[139] D. R. Wilson and T. R. Martinez, “Instance pruning techniques,” in International
Conference on Machine Learning, vol. 97, 1997, pp. 403–411.

[140] J. L. Bentley, “Multidimensional divide-and-conquer,” Communications of the ACM,
vol. 23, no. 4, pp. 214–229, 1980.

[141] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM Transactions on Mathematical Soft-
ware, vol. 3, no. 3, pp. 209–226, 1977.

[142] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing
the curse of dimensionality,” in ACM symposium on Theory of Computing, 1998,
pp. 604–613.

[143] S. Roweis, G. E. Hinton, and R. Salakhutdinov, “Neighbourhood component anal-
ysis,” in Advances in Neural Information Processing Systems, 2004, pp. 513–520.

[144] S. Arya and D. M. Mount, “Approximate nearest neighbor queries in fixed dimen-
sions,” in ACM-SIAM Symposium on Discrete Algorithms, vol. 93, 1993, pp. 271–
280.

[145] X. L. Zhang, “Universal background sparse coding and multilayer bootstrap net-
work for speaker clustering,” in Interspeech, 2016, pp. 1858–1862.

[146] ——, “Multilayer bootstrap networks,” ArXiv preprint arXiv:1408.0848, 2014.

97

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	INTRODUCTION
	Recent Work
	Current Challenges
	Contributions
	Outline of thesis

	ADAPTATION OF AUTOMATIC SPEECH RECOGNITION
	Automatic speech recognition
	Speaker Adaptation
	Speaker Adaptation for GMM-HMM ASR
	Speaker Adaptation for DNN-HMM ASR

	ACCENT CLASSIFICATION USING MULTIPLE WORDS
	Related work
	Extreme learning machines
	Support vector machines
	Comparison between ELMs and SVMs
	Weighted accent classification algorithm
	Experiment
	Results

	ADAPTIVE PHONEME CLASSIFICATION
	Related work
	Feature learning using deep neural networks
	Adaptive phoneme classification
	Experiment
	Results

	ROBUST PHONEME CLASSIFICATION
	Related Work
	Dimensionality reduction using neighborhood component analysis
	Instance space reduction using adaptive data condensation
	Results

	SPEAKER ADAPTATION OF SPEECH RECOGNITION SYTEM
	Speaker similarity based speaker adaptation
	Sparse coding based speaker adaptation

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	References

