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SUMMARY

Throughout our history, the singing voice has been a fund#ahéool for musi-
cal expression. While analysis and digital synthesis tepies have been developed for
normal speech, few models and techniques have been focastheé singing voice. The
central theme of this research is the development of mod®lsdaat the characterization
and synthesis of the singing voice. First, a spectral madetesented in which asymmet-
ric generalized Gaussian functions are used to represemdtimant structure of a singing
voice in a flexible manner. Efficient methods for searchirggghrameter space are inves-
tigated and challenges associated with smooth paramajectories are discussed. Next
a model for glottal characterization is introduced by finsggenting an analysis of the re-
lationship between measurable spectral qualities of tbtadlwaveform and perceptually
relevant time-domain parameters. A mathematical deawadif this relationship is pre-
sented and is extended as a method for parameter estimakiese concepts are then used
to outline a procedure for modifying glottal textures andildgies in the frequency domain.

By combining these models with th&nalysis-by-Synthesis/Overlap-Adthusoidal
model, the spectral and glottal models are shown to be capébharacterizing the singing
voice according to traits such as level of training and ttegi®n. An application is pre-
sented in which these parameterizations are used to implesrgystem for singing voice
enhancement. Subjective listening tests were conductetich listeners showed an over-
all preference for outputs produced by the proposed enhagrtiesystem over both unmod-

ified voices and voices enhanced with competitive methods.

Xiii



CHAPTER 1

INTRODUCTION

The singing voice lies at the very heart of musical expressithrough the combination
of music, lyrics, and emotion, the singing voice is able tov&y powerful sentiments
and thoughts in a manner that entertains listeners acrbsslflres. The versatility of
the singing voice is reflected in its application to all genoé music, from opera to rock-
and-roll. For countless years, society has had an appi@tiar good singing voices and
trained performing artists. However, our understandindgp@f to model, enhance, and
synthesize singing electronically is presently quite fedi The concept of digitally syn-
thesizing a good singing voice or improving the vocal qyalita poor one has only begun
to attract the attention of researchers. This challengegher, has produced many more
guestions than answers. While efforts aimed at synthesithrgy musical instruments have
produced realistic and natural sounding results, thesghgbice has yet to be convincingly
simulated with synthesis techniques. This is mainly aited to the complex nature of the
singing voice production mechanism. By careful positionaighe many organs of the
vocal apparatus (jaw, lips, tongue, etc.), singers aretalppeoduce an incredibly wide va-
riety of sounds. Even small perturbations of any of thesepmrants can vastly alter the
acoustic properties of the produced waveform as well asenks’s perceptual response.
For several years, recording artists and producers haee tdvantage of basic speech
synthesis methods for making limited enhancements to decovoices. The karaoke in-
dustry has also incorporated many of these features into riiechines. Many of these
modification techniques are basedwawvetable synthesmethods such gstch-synchronous
overlap-add(PSOLA) [27,56]. PSOLA operates by sampling windowed pmsi of the

original signal and then resynthesizing them with a baserlap-add procedure. Time



scaling is performed by deleting or repeating windowedisastprior to the overlap-add
procedure. Pitch-scale modifications are also possibledhysting the spacing between
overlapped windows during resynthesis. Methods of thig tyave been a popular choice
mainly because of their simplicity and capability of highdiity playback. However, these
methods offer only crude modifications that often resultbjeotionable artifacts [80]. The
nature of singing voice synthesis places a high demand otugahaounding, artifact-free
synthesis procedure.

The interest in efficient and flexible speech models led tatwelopment of a class of
sinusoidal models the mid-1980s. Sinusoidal models were initially exptbby McAulay
and Quatieri [47,49] as well as Marques and Almeida [46] drahv to be an effective rep-
resentation for speech. By representing a voiced waveforansasn of sinusoidal compo-
nents, sinusoidal models have found uses in a wide rangeptitafons. Later work with
this model showed the potential for time-scale modificatiad pitch alteration [62, 64].

An extension to McAulay and Quatieri’'s work was developed@prge and Smith [24—
26]. The Analysis-by-Synthesis/Overlap-Add (ABS/OLA) nebs based on the combina-
tion of a block overlap-add sinusoidal representation andralysis-by-synthesis param-
eter estimation technique. ABS/OLA performs synthesis bypleging an efficient FFT
implementation. Improvements to the prosody modificatemimhiques of this system were
implemented by Macon and applied to text-to-speech andrgingice synthesis (LYRI-
COS) applications [40—-43]. The LYRICOS system uses sinusontaleled segments from
an inventory of collected singing voice data to drive a coecation-based synthesis en-
gine.

These are only a few of the models that have been advancee rast for synthesizing
voiced song. While these methods are capable of performinge snodifications to a
singing voice, such as time and pitch-scale modificatiatiee has been done in the way
of parameterizing the characteristics associated withirsgnin a way that allows one to

digitally transform a poor singer into a good one. For thialgo be realized, a method for



characterizing the voice production mechanism must beideresd so that differences in
the production of singing voices of varying styles and diesdican be characterized. These
are important keys that enable us to take steps toward aoraté goal of enhancing and
synthesizing a singing voice.

The source-filter model for speech is based on a simplifiecAmunice production sys-
tem where no interaction between the source and vocal sasisumed. According to this
model, the simplified human voice production system is demusad into three elements:
glottal source, vocal tract, and radiation impedance. ThiBustrated in Figure 1. The
radiation impedance is typically approximated with a siengifferentiation filter. Since
both the vocal tract filtefy’(z), and the radiation filter are linear time-invariant (oveorsh
frames), the glottal source and radiation impedance carobwined to form the glottal
derivative waveform/J’(z). The result of these manipulations is a source-filter synthe
sis model in which the human voice is modeled as a vocal triéet éxcited by a glottal
excitation.

Because of the separable nature of the source-filter modatacterization and en-
hancement of the singing voice can be performed on the ihaliyicomponents of the
voice production mechanism. Both the vocal tract filter arattgl excitation have been
shown to be very different in their composition and thus megjdifferent techniques for
analysis and modification.

In the source-filter representation, the vocal tract is camgnmodeled as an acoustic
tube of varying diameter [18]. This model is further simgitfiby dividing it into cylin-
drical sections of equal width. Depending on the shape oatimeistic tube, a sound wave
traveling through it will be reflected in a certain way so th@erferences will generate
resonances at certain frequencies. These resonancedladef@anants Their location
largely determines the speech sound that is heard as wédhascial quality [10].

The ability to manipulate the characteristics of the vocatttis largely dependent on

the formant structure of the vocal tract spectrum. Formaatacteristics have long been



Glottal Source Vocal Tract Filter Radiation

Voice Output
U(Z) > V(Z) Ml -zt s[n]
... Gloual Dervative
U(z) sl — 2zt » V(z) ——» s[n]
U'(2) » V(z) ——>sn]

Figure 1: lllustration of the source-filter model for speech prodoictiBecause the original
model (top) is composed of filters that are linear time-irasat; the glottal source filter
(U(2)) and the radiation filter can be combined (middle) to form &@fitepresenting the
glottal derivative {’(z)) which serves as the excitation to the vocal tract filter.

known to hold importance for recognition and intelligibjli but research has shown that
various vocal qualities in singing can also be derived. Ow@@ple is thesinger’s formant
which is a clustering of the 3rd, 4th, and 5th formants. Therged formant causes a
perceptuatinging quality in a singer’s voice [73].

Modification of formant structure can be performed in a numifeways. All-pole
models such as LPC offer formant modification through th&isliand scaling of pole
locations. Other methods modify the spectral envelope furtistions that warp the enve-
lope along the frequency and/or amplitude axes. These mgtihowever, are capable of
making only limited modifications and offer little controver important formant charac-
teristics. For example, pole modification does not allow di@aar formant’s bandwidth
and amplitude to be easily controlled independently.

Vocal qualities in singing, however, are not solely basedhencharacteristics of the



vocal tract. The glottal excitation has a significant impatthe vocal textures of a singer’s
voice. Glottal characteristics have been shown to be aigelwith various voicing modes
ranging frompressedo breathy Further studies [8] have outlined relationships between
glottal source characteristics and stress levels in speech

A model for the glottal excitation that is both accurate aedifile enough for modifi-
cations is a crucial component to an effective singing veickancement system. Several
models for the glottal source waveform have been proposaidcin accurately capture
glottal characteristics in either the time or frequency dom [13, 20, 66, 85]. However,
methods for using such models to effectively enhance theepéual characteristics of a

singing voice have yet to be discovered.

1.1 Research Overview

This thesis presents a multi-fold approach to parametgyiand modifying vocal qualities.
As shown in Figure 2, the components of the source-filter maemodified on an indi-
vidual basis. First, a new spectral model for modifying therfant structure of the vocal
tract is investigated. Current methods for spectral modi6oghave been shown to provide
only a low level of control over important formant characgcs. Additionally, an algo-
rithm for identifying glottal characteristics in the fregpcy domain is presented that is used
to modify the source excitation in an effort to control thecabtexture of a singing voice
waveform. These two modification methods, operating withi context of the source-
filter model, are combined with prosodic modifications forrecting pitch and inserting
vibrato to perform natural-sounding enhancements to argingpice. Furthermore, tech-
niques presented in this system are also capable of provitiitailed characterization of a
particular singing voice so that it can be classified aceayti skill, style, gender, register,
and vocal texture.

Through the presentation of these methods and their afiplictd singing voice en-

hancement as well as results of subjective human listemistg,tit will be shown that the



A 4

U'(2)

l Modification Procedure l

U'(2)

V(z) ——>sn]

Modified Voice Output

A 4

Figure 2: In the presented modification procedure, each componerteosadurce-filter
model is modified independently of one another.

models presented in this work can provide a framework foh{gjgality modifications to
the human voice, offering advantages over competing msthod

This thesis is organized as follows:

Chapter 2 presents a brief background of the singing voice and owtloieracteristics

that differentiate the voice of a trained singer from thaaofuntrained singer.

Chapter 2 provides background information on spectral modeling aodification tech-
niques. Basic methods for estimating the spectral enveloperasented, followed

by an analysis of various modification algorithms.

Chapter 3.2.2 begins with an overview of the proposed spectral modificghimcess. The
ABS/OLA sinusoidal model, which provides the framework floe imodification al-
gorithm, is then presented. The actual modification proednd its implementation

are then discussed in detail.

Chapter 4.4.1 presents an overview of time-domain glottal flow models dtaga deriva-
tion of equations relating these model parameters to freguudomain characteris-

tics.



Chapter 5.2.2 further explores the relationship between glottal paransat the time and
frequency domains. Based on these findings, a frequencyidgaemeter estima-
tion technique is proposed that is able to capture impotiarg-domain characteris-

tics. This chapter also presents a proposed techniquedtiabgmodification.

Chapter 6.3 provides a detailed analysis of a set of recorded wavefotng by singers
with extensive professional training in a classical styld aingers with no previous
experience or training. The proposed models are used to shavacteristics and

differences among the groups of singers.

Chapter 7.3 details an implementation of the proposed techniques foauecing the singing
voice of untrained singers base on the findings in ChaptefM&i&results of subjec-
tive listening tests quantifying the performance of theaerdement system are also

provided.

Chapter 9 concludes the thesis with a summary of contributions anaéuvork.



CHAPTER 2

BACKGROUND: THE SINGING VOICE

To improve the vocal quality of the singing voice, charastezs must be identified that dif-
ferentiate “good” singers’ voices from “poor” ones. Thiswever, can be a very subjective
endeavor, especially when considering a wide variety ajismstyles. For example, the
voice of a singer trained in the tradition of the musical thedalso known as theelt
voice [17,51]) may not be considered proficient for an operarformance of the West-
ern classical tradition. By and large, the majority of simgwoice research has focused
on singing based on traditional methodologies for vocahing. This produces a style of
singing that is most commonly referred to as th@ssicalvoice. Researchers have iden-
tified a number of characteristics in classically trainetysrs’ voices that are commonly

absent or less evident in the voices of untrained singers.

Vibrato

Vibrato occurs in most Western opera and concert singingpéad in popular singing
as well. Vibrato can be described as a nearly sinusoidal tabda of the fundamen-
tal frequency during voiced segments. The rate of vibratypgally 5-8 Hz, and
the modulation depth varies betwe#fi0 and+150 cents (where 1200 cents = 1 oc-
tave) [74]. Although the rate and depth of vibrato may vaonirsinger to singer or
from genre to genre, there is an acceptable range amongdrsiingers. Studies have
shown that the voices of trained singers exhibit vibratdhwgiteater depth and reg-
ularity than for those of untrained singers [7]. Additidgathe presence of vibrato
has been shown to be directly correlated with the percepticocal beauty. Robi-
son [65] found that baritones with the most aestheticaliaping voices maintained

vibrato in their tones more than 80% of the time.



The pitch contours for the vowéb/ sung by both a trained singer and an untrained
singer are shown in Figure 3. Both signals clearly show vili&e fluctuations, but

the depth and consistency are much greater in the contobheafdined singer.

In addition to frequency modulation, vibrato has been shewmpirically to have
an associated modulation in amplitude as well as spectegdesf#4]. The percep-
tual effects of these amplitude modulations, however, ecersdary to the frequency

modulation effects.
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Figure 3: Fundamental frequency tracks of the vowalfor an untrained singer (top) and
a trained singer (bottom).

The Singer’'s Formant
Trained singers (especially males) often create a resenanthe range of 3000 to

5000 Hz by employing a technique in which the larynx is lovder&coustically, this



results in a clustering of the third, fourth, and sometimitk formants. This reso-
nance, referred to as tlsnger’s formantadds a perceptual loudness that allows a
singer’s voice to be heard over a background accompanirghtThis phenomenon
coincides with a perceptuaing in a singer’s voice. According to Sundberg, the
singer’s formant is generated as a result of an intentiomaéting of the larynx,

which leads to a wider pharynx.

Figure 4, which presents the spectral envelopes of the tam@dfentioned singers
averaged over time, clearly illustrates the singer’s farht@ntered at approximately
3000 Hz. Ekholm [16] found that the presence of the singermant in the voice,

much like vibrato, is strongly correlated with the perceptof vocal beauty.
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Figure 4: Average spectral envelopes for the vovIfor a trained singer and an untrained
singer. The arrow indicates the region of the singer’s farina
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Timbre/Tone Color
In general, sounds may be characterized by pitch, loudrsass quality. Timbre
describes those characteristics of sound that allow th&oedistinguish sounds that
have the same pitch and loudness. Timbre is then a broadeethefdistinguishable

characteristics of a tone. In singing, it is often referredstone color

Many perceptual characteristics of timbre are evident engpectral content or for-
mant structure of a singer’s voice. Trained singers oftedifpohe formant structure
of their voice in order to add certain desirable charadiess For example, a low-
ered second formant results in a “darker” voice—often refeto as “covered”-while
a raised second formant produces a “brighter” voice [71f Gtvered voice reflects
a softer sound, which is desired by singers trained in theéhleslassical tradition,

unlike broadway and pop singers who typically use a brigiése.

Another interesting phenomenon has been documented iretrdemale singers’
voices. Female singers often shift their first formant toehahe fundamental fre-
guency when the fundamental rises above the first formant73]2 This has the

effect of increasing the intelligibility of a vowel soundrfa performing artist.

Glottal Source
The glottal source waveform has been shown to possessrcqualities that have
a great impact on the acoustic characteristics of voiceddpeThese characteris-
tics play a large part in determining the individuality aslivees vocal qualities of a
spoken or sung voice. Applications in the synthesis and redgraent of speech or
singing voice require improved naturalness and a highel lelzcontrol over these
vocal qualities. ldentifying and modeling the glottal whoren attributes that pro-
duce these qualities can help improve the performance eéthpplications as well
as others such as speech recognition, speaker identificatial voice pathology

identification. Such advances can also be used to gain &furtiderstanding of the

11



glottal characteristics of normal speakers.

The glottal source is typically characterized in eithertihee or frequency domains.
In the frequency domain, studies have aimed at identifyloga characteristics that
can be used to describe perceptual cues. Much of this réskascidentified spec-
tral characteristics affiliated with vocal qualities (j.breathiness, pressed) or sex.
Klatt and Klatt [34] and Hanson [28] found that the main spagbarameters nec-
essary for synthesizing natural-sounding voices withed#iht qualities are spectral
tilt, bandwidth of the first formant, relative noise levedsyd amplitudes of the first
few harmonics. While these characteristics have been fooirk tof great use in
identifying perceptual qualities of the voice, they havetgebe successfully used to

produce these qualities in synthesis applications.

While several frequency-domain glottal models have beepgsed based on these
findings, they typically model the glottal waveform with pareters in which the
correlation with time domain parameters is unclear. In otdeetain the temporal
information of the glottal waveform, it is important to idéy spectral correlates for

time-domain glottal parameters.

In the time domain, the glottal waveform is typically chaemzed by various mea-
sures such as the fundamental period, open quotient, attdlgleymmetry—usually
denotedIy, O,, anda, respectively. Measures such as these have proven to be in-
tegral in characterizing vocal effort, prosodic variasand a wide variety of vo-

cal qualities. The values of these parameters can vary,ndapg on the configu-
ration of the glottal mechanism. Several glottal flow modedse been developed

in which many important glottal characteristics such ase¢hare parameterized in
the time domain. Cummings and Clements denoted this broad ofawodels as
non-interactive parametric glottal mode]8]. These models are based on the as-
sumption that the glottal source and vocal tract are liyeseparable and that no

interaction occurs between the two. Examples of modelsistyipe were proposed

12



by Rosenberg [66] and Klatt & Klatt [34] (KLGLOTT88). The effitveness of these
models lies in their ability to capture timing relationshighat have been shown to
have an important perceptual impact on speech signals. \Wiake two particular
models assume an abrupt closure of the glottis, other madels as those devel-
oped by Fant, Liljencrants, Lin [20] (LF model), and Veld&(85] (R++) provide
an additional parameter that describesrgtern phaseof a glottal cycle. This pa-
rameter provides an increased level of flexibility that desla better fit of the glottal

derivative waveform.

While synthesis systems based on either time-domain orérexyadomain parame-
terizations of the glottal source have had mixed successodtiping vocal qualities
and textures, a method of utilizing both sets of parametesassingle domain might

provide a significant improvement.
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Vocal Registration
Vocal registration has been the subject of a vast amounsefareh but has remained
largely controversial in its precise definition and undexymechanisms. There is
general agreement, however, that a register is a seriegaufeard tones on the scale

that (a) sounds equal in timbre and (b) is felt to be produnedsimilar manner.

A register covers a certain frequency range, but adjacegrgtezs do overlap, so it is
often possible for the same note to be sung in two differegisters. Trained singers
have traditionally been taught to impose a smooth tramsitetween registers by
“blending” them during transitional regions. This is refat to aspassagio The

voices of untrained singers often contain register “br@¢akbich are sharp shifts

from one register to another.

The male voice is often distinguished as having three regisnormally referred
to aschest head andfalsetta A male singer normally sings in the chest and head
registers but will commonly oscillate in and out of the félsgegister when breaks
occur. The falsetto register for males can also be thoughéwfg used when trying

to imitate a female voice.

The literature normally identifies three registers [52,if3jhe female voicechest
middle andhead However, some females are capable of singing in a specidémo

at the upper frequency range in what is referred to asvthistleregister.

Registers are generally assumed to correspond to voiceespunperties as deter-
mined by the muscular tuning of the vocal folds, particyldHe vocal ligament.

Hence, they should be basically independent of vocal tesgmance. A number of
studies have used various glottal models to identify maidalin glottal behavior that
can be used to determine register shifts as well as regptaific characteristics in

a singer’s voice [31, 77-79].
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CHAPTER 3

BACKGROUND: SPECTRAL MODELS AND
MODIFICATION TECHNIQUES

Before attempting to develop a model for singing voice analgad synthesis, it is
important to have an understanding of the issues that ac#fisge this particular task. The
singing voice has been shown to be very different from norspalech, and thus speech
processing techniques that were designed for general ls@gemot always suitable for
the singing voice. However, many of these techniques caeast provide a basis from
which algorithms specific to the analysis, synthesis, andification of the singing voice
can be derived. As mentioned earlier, the source-filter infmtespeech production can
be divided into two components that can be independentlyeteddand modified. This
chapter focuses on the vocal tract filter and its spectraésgmtations. An investigation of
current existing methods for spectral modeling and modibodor speech is presented.

Methods for spectral modification are targeted at alterdmggerceived characteristics
of a speaker’s or singer’s voice. In the singing voice, tlaa be thought of as altering
the timbre or tone color by controlling the underlying formhatructure that resides in the
spectrum. This is generally performed by first identifyingaaametric spectral model for
the voice and then systematically adjusting parametersdardao modify vocal qualities.
Spectral modification can serve a variety of alternate apftins such as speaker normal-
ization and voice conversion. The goal of this work, howeisaio develop a spectral model
and modification algorithm to enhance vocal qualities indimging voice. Figure 5 shows
a block diagram of the analysis, modification, and synthasisedures.

There are a number of techniques for estimating the vooal tesponse in the source-
filter model. This filter is often defined in frequency aspeectral envelopéWhile there are

several methods for accomplishing this, we will discussvali@sic methods from which

15



Original
l Signal

Analysis

Spectral
Envelope

ﬂ Parameters

Formant
Analysis

Analysis

Formant

Y

Modification
Procedure

Maodification
Specifications

Y Y

Synthesis

Modified

Signal

Figure 5: Block diagram of the analysis, modification, and synthesie@dures for mod-

ifying vocal qualities.

most alternative methods are derived.

3.1 Spectral Envelope Estimation

In computing the spectral envelope of a signal for the purpad spectral modification,

there are a number of factors that should be considered iosoip a proper method for

estimation.

Accuracy It is important for a spectral envelope to provide a propetofihe magnitude

spectrum. A spectral envelope should fit the peaks of thégpsavtithout tracing any

one of them individually.
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SmoothnessA certain level of smoothness is desired for a spectral epelin frequency,
a spectral envelope should give a general idea of the disiiio of the signal’s en-
ergy. Spectral envelopes should also possess consistemayfrime to frame. Ex-
cessive oscillations or the presence of discontinuitieslead to unnatural qualities

in synthesized waveforms.

Flexibility An effective spectral envelope estimation technique mastdpable of han-
dling a wide range of signals with varying characteristitis.speech and signing,
a variety of vocal tract configurations are possible, as a®kbounds that contain a

mixture of both harmonic and noisy contents.
3.1.1 Linear Predictive Coding (LPC)

LPC is an early method originally developed for speech apdimd compression. Because
of the special properties of this method, it can also be useshiectral envelope estimation.
LPC represents the spectral envelope as an all-pole filtas rEpresentation is based on
the concatenated lossless acoustic tube model.

As discussed earlier, an acoustic tube representatiommsnomly used to model the
vocal tract. The acoustic tube model, however, omits aedamplexities of the vocal tract
and is thus not a perfect model. The concatenation of acotigies typically does not
account for the effects of the nasal tract. This secondyg@&/ghaped very irregularly and
introduces additional resonances and anti-resonancssl @eros) because of the effect of
coupling. While the zeros are not vital for the recognitiortted speech sounds, they can
lead to problems in formant detection and characterizatidaditionally, certain speech
sounds like laterals (e.gll/) have a tongue configuration that is not well described by a
simple acoustic tube. The acoustic tube model also ignbeegiscosity of the walls of the
vocal tract as well as any damping that may occur. Despiteetdeawbacks, the acoustic
tube model performs remarkably well in a wide variety of speanalysis and synthesis

applications.
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The idea behind LPC analysis is to represent each sampleighal sn| in the time
domain by a linear combination of thepreceding valuesi[n — p] throughs[n — 1], where
p is the order of the analysis [45]. The approximated valije], is computed from the

preceding values andpredictor coefficientsy;, as follows:

p

sln] = Z a;s[n — 1. (1)

=1
For each time frame, the coefficiens, will be computed such that the prediction error,

eln] = §[n] — s[n], for this window is minimized. In coding applications, itssfficient
to send thep coefficients,a;, and the residual signat/n|, which uses a smaller range of
values and can thus be coded with fewer bits. The receivethmanrecover the original
signal frome[n| and the filter coefficients;.

When the residual signaljn], is minimized, the resulting analysis filter serves to flatte

the spectrum of the input signal. The transfer function o fitter is given by
p
A(e¥) =1 — Zaie_jm. 2
=1
Because this filter removes the spectral envelope from the impveform, it is generally

referred to as thewversefilter. In a synthesis application, the synthesis filter jleg an

approximation of the spectral envelope:

I 1
Alei) " T30 e it

As can be seen, the synthesis filter (with ga@@)A(e’), is an all-pole filter.

3)

The order of the filter is an important parameter that cancatiee accuracy of the
spectral envelope. As the order decreases, fewer polesadeamd the approximation of
the spectral envelope becomes coarser. However, the geveld still reflect the rough
distribution of energy in the spectrum. This is illustratedrigure 6.

In some cases, the LPC spectral envelope will descend dowhettevel of residual
noise in the gap between two harmonic partials. This occhesmhe distance in frequency
between partials is large, as in high pitched sounds, anortlez of estimation is high. This

effect is illustrated in Figure 7.
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3.1.2 Cepstrum Spectral Envelope

The cepstrum is a method of speech analysis based on a $pept@sentation of the
signal. According to the source-filter model of speech potidua, a speech signajn| can
be expressed as a convolution between a source or excitagjpale[n] and the impulse

response of the vocal tract filtefn|:
s[n] = e[n] * v[n]. (4)

In the frequency domain, this convolution becomes the pligation of the respective
frequency responses:

S(e?) = E(e?) - V(). (5)

Taking the logarithm of the absolute value of the Fouriengfarms, the multiplication

in (5) is converted to an addition:
log [S(e)] = log |[E(e™)] + log [V (e7)]. (6)

If we now apply an inverse Fourier transform to the logaritbinthe magnitude spectrum,
we get the frequency distribution of the fluctuations in theve of the spectrum, denoted

c[n], which is called theepstrun(3, 59]:
cn] = F~! [log|S(ejw)|} =F! [log|E(ejw)|} + P! [log |V(ej“)|] ) (7)

The cepstrum no longer exists in the frequency domain bteaagsoperates in an alternate
domain referred to as thrguefrencydomain.

Under the assumption that the source spectrum has only flapidations (the exci-
tation signale[n| is a stable, regular oscillation on the order16f Hz), its contribution
to c[n] will be concentrated in its higher regions, while the cdnttion of V' (¢7*) will be
the slow fluctuations in the spectrusife’~) and will therefore be concentrated only in the
lower part ofc[n]. This can be seen in Figure 8. Thus, separating the two coemten

is accomplished simply by keeping the figstepstral coefficients of[n] and throwing
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Figure 8: Cepstrum of a voiced frame of speech. The voiced excitationifess itself
as a weighted impulse train, while the vocal tract respossepresented by the quickly
decaying portion in the lower regions of the “quefrency.”

away the remainder. The resulting representation modelet-frequency components or
smoothed portion of the spectrum. This interpretationesras an estimate of the spectral
envelope.

There are two disadvantages of the cepstrum method forrgpeatelope estimation.
First, since the cepstrum is essentially a low pass filtesirtge curve of the spectrum, the
partial peaks are not always properly linked. Instead, thetdhtions of the spectrum are
merely averaged out. This effect is illustrated in Figure 9.

Another disadvantage of the cepstrum method is similarabdhLPC. In cases where
both the frequency gap between partials and the estimatier are large, the resulting
spectral envelope will trace the residual noise presertargaps. Figure 10 illustrates this

case for the cepstrum estimator.
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3.2 Spectral Envelope Modification

The task of spectral envelope modification is one that has Bpproached with respect
to a variety of applications. While there has been much rebe@med at transforming
the identity of a speaker, our focus is on improving vocalligea of the singing voice
while maintaining the singer’s identity. There are two plap@approaches to spectral mod-
ification: (1) all-pole (LPC)-based methods of scaling pdigsa complex factor in order
to alter formant characteristics and (2) frequency wargingcedures for modifying the

spectral envelope directly.
3.2.1 Pole Modification

When LPC analysis is used to estimate the spectral envelopmahts are assigned to
poles and can then be modified to correspond with desireddiorfocations. The formant
structure of the vocal tract can be viewed as a set of cascatahd-order IR filters of
the form

1

F(z) = 1—ar )1 —az1) (8)

The conjugate pole pair = \ayeiﬂa and sampling frequency, determine the formant

frequencyF’ and 3-dB bandwidttB according to

F= Ela Hz, (9)
2
B = —éln la] Hz. (10)
T

Formant modifications can be performed by scaling the angleand magnitudela|, of
each pole.

Occasionally, when two poles are shifted in frequency teselto one another, only
one peak will appear in the spectrum. This is a symptomaobé interaction An example
of pole interaction is shown in Figure 11. In part (a) of theufigy the spectral envelope

is characterized by pole 1 and pole 2. When pole 2 is shiftedeaalesired frequency for

23



the second formant;, as shown in part (b), it is no longer distinguishable from finst
formant, F}.

A number of algorithms have been developed to compensap®felinteraction. Hsiao
and Childers [33] define a pole interaction factor that ideagtithe effect of surrounding
poles on a given pole at its center frequency. In a simplifieatpole case, where, =

r;el% andz; = r;e’%i, the frequency response of the overall filter at the anglie

1
2 FrQ :I:I

WhereA|H|j2. is the pole interaction factor of potg with pole z;. This factor is defined as

|H(ej¢i)

1
2 _
AlHl = 1 —2rjcos(¢i — ¢5) + 13 (12)

For formant modification, the radii of the poles are scaledriter to achieve desired for-
mant amplitudes in spite of pole interaction. This procesagplied iteratively until the
spectral deviation, which is defined as the sum of the diffees between the resulting for-
mant spectrum and the desired spectrum at the formant inecpse falls below a threshold.
A similar iterative algorithm for overcoming pole interewt during formant modification
was also developed by Mizuno, Abe, and Hirokawa [53].

While these methods produce spectral envelopes with ddsinadnt amplitudes at the
formant frequencies, one drawback to this technique istkigabandwidth of each formant
cannot be controlled. As shown in (10), each formant’s badthnis dependent on the
magnitude of the corresponding pole. Therefore, the aogditand bandwidth of each
formant cannot be independently modified with these proeedu

Recently, modification techniques for transforming the kpectrum pair (LSP) fre-
guencies have been developed [55] that enable a higherdegehtrol over formant char-
acteristics. By taking advantage of the nearly linear retethip between the LSPs and
formants, modifications are performed based on desiretsshiformant frequencies and

bandwidths.
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3.2.2 Frequency Warping

Frequency warping is a simple method for shifting formamtaplying a frequency warp-
ing function directly to the spectral envelope. Four partrsetypically specify a formant
shift. The lower and upper frequencigg,andf;;, determine the range of the spectral enve-
lope to be affected. The original formant center frequenay the target center frequency
are specified by, andf,, respectively. The warping function gradually decreakesshift
distance as it gets further frof . The resulting warping function can either be a piecewise
linear function or a smoother realization connecting thEsmmameters. An example of this
process is illustrated in Figure 12. Formant bandwidthsatan be modified with the use
of a warping function. Figure 13 shows a warping functionif@mreasing the bandwidth of

a single formant as well as the resulting spectral modificati
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Figure 12: Two possible frequency warping functions are linear (tefpyland Gaussian

(top-right). These can be applied to a spectral envelopedardo shift formant locations
(bottom).

Turajlic [83] suggests an alternate process in which a #aqu shift warping function,
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Figure 13: Example of a frequency warping function (top) being appledlter a for-
mant’s bandwidth (bottom).
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a(w), and a bandwidth warping functiom(w), are combined with amtensity shaping
function ~(w), which allows modifications to the magnitude of the spectriitre equation

for this process is expressed as
H(w) =y(w) - H((a(w) * f(w)) - w) (13)

whereH (w) is the modified spectral envelope.

Frequency warping methods allow a high level of control deemant characteristics,
but only when the original and modified formants are spacecf@ugh apart so as to
be nearly independent of one another. When formants are t®e ¢b one another, it
is difficult to modify their bandwidths to desirable speations. This is similar to the
pole interaction problem suffered by pole modification teghes. Additionally, frequency
warping methods do not allow formants to merge or split adftisnodesired in formant
modification processes. Figure 14 illustrates this phemameln this example, the center
frequency ofF; has been warped from 2300 Hz to 2700 Hz. In doing/sadhas failed to
split from F; (centered at 1800 Hz) and merge with (centered at 3200 Hz).
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Figure 14: Frequency warping example: the center frequencldias been warped from
2300 Hz to 2700 Hz, but in doing sé3 has failed to split from¥, (centered at 1800 Hz)

and merge with; (centered at 3200 Hz).

29



CHAPTER 4

A NEW METHOD FOR SPECTRAL MODELING AND
MODIFICATION

As described in the previous chapter, spectral modificagohniques are capable of
performing a variety of modifications to the formant struetthat resides within the spec-
tral envelope. However, these techniques are limited by thability to independently
control important formant characteristics such as amgditand bandwidth. Furthermore,
these modifications are only effective when the underlyirgleh for the spectral envelope
provides an accurate representation of the formant steiwc#uny errors such as the ones
described in Section 3.2 will render the modification predegffective and may result in
resynthesized outputs with unnatural qualities or arisfaén this chapter, a new method
for spectral modeling and modification is presented thained at overcoming the afore-
mentioned shortcomings of current methods. The block dragn Figure 15 outlines the

proposed spectral modification procedure compared to thergemodification procedure.

4.1 Analysis/Synthesis Procedure

The analysis and synthesis procedures provide the spaudification algorithm with an
interface with the actual speech waveforms. The requirésradithe analysis and synthesis
methods are similar to those of the spectral estimationguhoies discussed in Section 3.1.
The analysis/synthesis techniques must provide accuradeling of the dynamic charac-
teristics of the speech production process, as well as fléxito model and synthesize a
wide variety of signals with minimal computational cost.

In order to achieve the requirements of accuracy, flexybiiind computational ef-
ficiency, the Analysis-by-Synthesis/Overlap-Add (ABS/OL#ginusoidal modeling sys-
tem was chosen to provide the framework for the spectral fication procedure. The

ABS/OLA sinusoidal model represents an input signéh), by a sum of equal-length,
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Figure 15: Block diagrams for the original spectral modification prased(left) and the
proposed system (right).

overlapping short-time signal frames/n|. Thus,

sln| = g[n] Z w[n — nNg|sg[n], (14)

whereN's is the frame lengthw|n] is a complementary tapered window functigif| is
a slowly time-varying gain envelope, angln] represents thith frame of the synthesized
signal. Each signal contributiony[n], is represented as the sum of a small number of

constant-frequency sinusoidal components, given by
J—1
sk[n] = Z A¥ cos(whn + ¢b), (15)
=0

where J is the number of sinusoidal components in the frame, 4hd., and¢’ are the
sinusoidal amplitudes, frequencies, and phases fartthérame.
The parameters for each frame are determined by an iteaatadgsis-by-synthesis pro-

cedure designed to minimize a mean-squared error criteWidrle the frequencies of the
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sinusoids are not restricted to be harmonically relatecheoanother (i.e., exact multiples
of the fundamental frequency), only one sinusoid near eaombnic is retained during the
analysis. This form of the sinusoidal model is called a “du@snonic” representation [24].

The quasi-harmonic nature of the synthesis model impliasttie frequency of each

sinusoidw;, is at or near a multiple of the fundamental frequengy,as follows:
Wk = b + AL, (16)

whereA? is the differential frequency of each component.

The synthesis procedure uses the inverse fast Fouriefdranto compute each syn-
thetic contributionsy[n], instead of the oscillator functions commonly used in o#ieru-
soidal models [64, 70]. The final synthesized output is caegbby applying an overlap-
add procedure to the synthesized frames.

High-quality modifications are possible within the framelwof the ABS/OLA model [24],
which make it particularly attractive for singing voice $iyesis. Time scaling is performed
by altering the update rate for the model parameters in oatipn with changing the frame
duration. Phase constraints are imposed on the sinusoadén to maintain the phase re-
lationship between the sinusoids within each frame. Pitoldifitations are implemented
by modifying the frequencies of the sinusoids to be muligléa scaled fundamental fre-
guency. A phasor interpolation scheme was developed sthise changes could be made

while maintaining the spectral shape of the original sigaa].

4.2 Spectral Envelope Estimation

As discussed in Section 3.1, LPC and cepstral analysis bathtb trace the residual noise
in the spectrum of voiced speech when partials are spacehfargh apart and the order
of estimation is sufficiently high. Because of this shortaognian alternative method for
the envelope estimation was implemented within the ABS/ObAlysis procedure. This

method, developed by Galas and Rodet [21, 22], is knowgeasralized discrete cepstral

analysis
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Unlike LPC, which is computed directly from the waveform, acepstral analysis,
which is computed from a spectral representation of theadigith points spaced regularly
on the frequency axis, the discrete cepstrum spectral @mwas computed from discrete
points in the frequency/amplitude plane. This method isdmali companion to the si-
nusoidal model, where the peaks of the sinusoids serve asettessary discrete points.
Assuming that the sinusoids accurately model the partfalsioed speech without regard
to the residual noise, the discrete cepstrum will not suffan the problem of tracing the
spectrum in the frequency region between partials. Insieadl produce a smooth spec-
tral envelope that links the peaks of the partials. The nudlogy for determining the
discrete cepstrum is as follows.

Given a set of spectral peaks with amplitudesit frequencies);, fori = [1,...,n], a

magnitude spectruni (e/+), is defined as
X(e*) = iné(w — w;). (17)
=1

X (e/*) is considered to be the combined frequency response of theespectrum,

S(e*), and a filter transfer functior? (¢’*), as follows:
X (™) = S(e) - P(e*). (18)

The source spectrum is given by

n

S(e?) = Z $i0(w — w;), (29)

i=1
where s; are the source amplitudes at the same frequencies as X (¢’“). The filter

transfer function is modeled by

p
P(ejw) _ H Ci Cos(wi)’ (20)
=0
wherec; are the filter parameters.

Assuming a flat source spectrusi(e’*) = 1, for all w, the filter parameters;, must

be determined so that the quadratic erioy,between the log spectra is minimized. This
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error criterion is given as

n

E =Y [logs;|P(e™)

i=1

—log xz)f . (21)

Determining the cepstral coefficients is accomplished birbp solving the following ma-
trix equation fore.

Ac=b, (22)

whereA is a matrix of ordep + 1 whose components are given by

n

a;j = Z cos(wyi) cos(wyj), (23)

k=1

andb is the column vector given by

n T .
b; = Z log s_: cos(wgi). (24)
k=1

Because the resulting matrix is symmetric, it can be solvideitly.

4.3 Spectral Modeling and Modification Using Asymmetric
Generalized Gaussian Functions

The proposed approach for spectral modeling and modificagpresents the formant
structure of a speech waveform as a weighted sum of asyningeneralized Gaussian

functions [38, 39]. The discrete vocal tract respolisk| is approximated as

M
VI = AyGolk], (25)
m=0
where the generalized Gaussian function G[K] is specified as
( M ol
exp —("Z—,‘”) ], for k£ < pu,
Glk] = (26)

exp |— ('kﬁ_r’”)a } , for k> p.

\

The discrete frequency index and the center frequency aea diy & and ., respectively.

These functions independently parameterize the width hagesof the left and right sides
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of the generalized Gaussian function. The spectral widtarpater,3, dictates the band-
width of each formant, whilex is a shaping parameter that controls the rate of decay.

Figure 16 illustrates the effect of these parameters.

Increasing 3 Increasing a

. _

Figure 16: Asymmetric generalized Gaussian functions with incregasiidth parameters
(0) to the left and increasing shape parametejgq the right.

The final vocal tract response is obtained by estimating @realized Gaussian for-
mant structure with a high-order cepstral approximatiohe purpose of this is to couple
minimum phase characteristics with the magnitude spectivimen no spectral modifica-
tions are applied, the final vocal tract response shoulabidi the sinusoidal parameters.
Figure 17 shows an example of asymmetric generalized Gaugsictions fit to a spectral
envelope.

The flexibility of the asymmetric generalized Gaussian fioms ensures an accurate
fit to the spectral envelope and enables intuitive and indeget modification of each for-
mant’s frequency, amplitude, bandwidth, and shape. Tlogiges a high level of control
over the formant structure of a singer’s voice.

Before formant modification can be performed, each formargtrbe mapped to a
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Figure 17: Asymmetric generalized Gaussian functions fitted to a spleetvelope.

particular Gaussian function. Errors can often occur wimngimg to assign smooth for-
mant trajectories to continuously varying spectral shap@smants can merge, split, and
sometimes disappear. Since formant changes occur réyasiesvly over time, a formant
tracking system was implemented to perform the mappingimvéhach frame, as well as to
form tracks across frames. The process is based on McAuthQaatieri’s peak matching
algorithm for tracking harmonics [49]. A cost function is ployed that is based on prox-
imity in frequency and difference in amplitude. Formantksare derived such that the
cost function is minimized. “Births” and “deaths” of formandcks are allowed to account

for the possibility of the number of distinguishable forrteachanging from frame to frame.

4.4 Parameter Estimation Using the Expectation Maximiza-
tion Algorithm

The task of estimating parameters for a set of coexistingnasstric generalized Gaus-
sian functions must be carefully considered because ofdiye Isearch space involved.

Therefore, an implementation of the Expectation Maximara{EM) algorithm is used to
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determine the function parameters optimally.

The Expectation Maximization algorithm is a broadly apglite algorithm used to
maximize the log-likelihood from incomplete data by itéraly maximizing the expec-
tation of the log-likelihood of the complete data [11]. Tlparticular type of statistical
estimation algorithm in an unsupervised learning algaritivhich means only the data
sample is observed while the class or state of the data sasmphans unobservable.

The EM algorithm is composed of an expectation step (E-ste@a maximization step
(M-step). The E-step estimates the unobserved data bast anrrent estimated distri-
bution parameters. The M-step then updates the parameitdrs \ynmaximume-likelihood
estimate based on the data derived from the previous E-Stegse two steps are repeated
until convergence is reached.

In the proposed application of the EM algorithm, the spéaraelope,X (e/“"), of
a speech waveform is viewed as a probability distributiBy;), wherez;, are the bin
numbers(k = 1,...,N). The purpose of the algorithm is to approximdtéz;) with a
mixture of asymmetric generalized Gaussian functions.

For our model, we let; be the observed incomplete data dnmg, y,.) be the complete
data, wherey, is an unobservable integer between 1 andhdicating the corresponding
component density, (x| yx, ¢y, ), and mixing parametes,, , of the mixture pdf. The next
step is to compute the expectation of the log-likelihoodegithe complete data. TH@
function serves to represent this expectation for multyleerved dataX = {1, ..., z,},
and multiple unobserved dafd, = {y, ..., y,}. Itis assumed that a parametric family of
mixture probability density functions is given and that atigalar & is the parameter value
to be estimated.

Given the probability of multiple observed data, the Idgelihood of the observable
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data is as follows:

N
L(X,®) = log Hf(xk|<I>)P(xk)]
k=1
N (27)
= P(x;)log f(x|®).
k=1
The log-likelihood of a single complete data poifty, yx ), iS
f(mlm yk|¢) = wykf(xk|yk7 ¢yk)7 (28)

wherew,, is thea priori probability (the mixture weight). The log-likelihood of amcom-

plete data pointy, is given by

flaxlo) = Zf i, Y| @), (29)

and the posterior probability is

_ wykf(kaka gbyk)
)= > Yo f (@h Yy Gy,) (30)

TheQ function can then be formulated as

P(yk|‘rk7 ¢

= Z P(xk) {Z P(yk|xk‘7 ¢yk> log [wykf(xk‘yk7$yk)] } : (31)

Yk

Since the inner summation is overgllandy;, € {1... s} for eachk, y, can be denoted
by i. For example, if the:'* sample was generated by thé mixture, theny, = i. By

expanding the log terms, tti@ function can be reformulated as

BT -y {zp )P |xk,¢z>}1ogwi

Z’ (32)

+ Z {ZP xg)P(i|xy, ¢;) log f(zkli, @ )}

It is important to distinguish between the first and secogdiments of th&) function,
® and®. & is a conditioning argument to the expectation and is reghedefixed and
known at every E-step. The second arguméntgonditions the likelihood of the complete

data. During the M-step, a value f@ris determined such that tig@gfunction is maximized.
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The asymmetric Generalized Gaussian function is the pilifyatbensity that is used
for this particular model and is given by
_ (u-m)ﬁf <.
’YeXp ol ) T = Mlv

fzpli, di) = R 33
( k’ (b) _(Iffuil)ﬂi . ( )
Y eXp . , T > .

7

Once theQ function has been determined, the M-step is completed bymzixg each

term in (32) for each with respect tas; and¢,. This is accomplished by solving for

=

“9‘”’ = " Plea) Plles, 60) - [log £l B)] = 0. (34)
k=1

However, because of the asymmetric nature of this partiquitabability density func-
tion, 1 is not the true mean and the left and rightterms are unrelated to the standard
deviation. Therefore it is impossible to determine a clefech solution for (34). Sub-
sequently, it must be solved numerically with respectito o, 3%, 3%, andy;. This,
however, is a much simpler optimization than estimatin@pueaters for all of the general-
ized Gaussian functions simultaneously.

In summary, the EM algorithm can be utilized to fit a set of @aibty density functions
to a frequency spectrum by maximizing the log-likelihoodtwd observed datd, (X, ®),

in the following manner:
1. Choose an initial estimate.
2. E-step: ComputeQ(®, ®) based on the give.
3. M-step : Determine® = argmazQ(®, ®).
P
4. Set® = ® and repeat steps 2-4 until convergence is reached.

4.4.1 Initialization of the EM Algorithm

The EM algorithm has been shown to provide an increase inkbihood function after

every iteration. Furthermore, it is guaranteed to converga local maximum. Despite this
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property, the EM algorithm is not guaranteed to convergegiobal maximum. Therefore,
it is important to provide the algorithm with a proper initéstimate.
A number of methods were investigated for initializing thigl Blgorithm. These in-

clude

e Peak picking the spectral envelope to initialize the cefresguencies and weights.

The width and shape parameters were set to equal values.

e Using the estimated parameters from the previous frameitialine the current

frame.

e Employing a formant tracking scheme to determine the fotrfraquencies and us-

ing the corresponding spectral envelope magnitudes ialing the weights.

The first method often missed formants that were too closedthar formant so as to
not exhibit a peak in the spectral envelope. The second rdégmaled to produce errors be-
cause two Gaussian functions would occasionally convergesingle formant. Figure 18
shows examples of these errors produced by the first twalizdition methods. In both
cases, the formant at 1000 Hz is missed by the estimatiorepsoc

While not the most efficient of the three methods, a formarukirey algorithm em-
ployed to initialize the parameter estimation process igex the most accurate and con-
sistent results. The formant estimation method employesl evaginally formulated by
Schafer and Rabiner [69]. This particular method was choseause of its ability to

determine formant parameters directly from cepstral caefiis.

40



14

—— Original Spectrum
---- Component AGGs

Amplitude

I I I
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

14

—— Original Spectrum
---- Component AGGs

Amplitude

I I
2000 3000 4000 5000 6000
Frequency (Hz)

Figure 18: Examples of errors in the Expectation Maximization procedar fitting asym-
metric generalized Gaussians to a spectral envelope. Tagsethformant at 1000 Hz.
Bottom: double formant at 400 Hz.
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CHAPTER 5

BACKGROUND: THE GLOTTAL VOICE SOURCE

The signal produced when the vocal folds vibrate the amstréom the lungs is com-
monly known as the glottal voice source. This intermediadgeatorm serves as the canvas
onto which the vocal tract imprints its own characteristicshe form of resonances and
timbre. While many basic speech synthesis techniques asthanée excitation to the
vocal tract is an impulse train and that the glottal speatnalping is included in the over-
all vocal tract filter model, it has been shown that an appatgmodel for the glottal
source can greatly improve naturalness and vocal qualityinfportant study by Rosen-
berg [66] showed that the use of a more natural glottal puisge resulted in synthetic
speech with significantly improved quality over those tharevproduced with simpler
glottal pulse models such as impulses, triangular wavesjware waves. This work, along
with many others, provided the motivation for the develophw# glottal models of appro-
priate complexity that could effectively capture the cloteastics of the glottal source for

more natural speech synthesis.

5.1 Glottal Flow Models

Several glottal source models have been proposed for nmgdile glottal derivative wave-
form. While some glottal flow models such as the KLGLOTT88 nffsimple and efficient
method for representing a glottal wave period, we have chtisease more complex mod-
els that offer greater flexibility as well as accuracy. Thedtfd R++ glottal flow models
are both five-parameter models capable of modeling smoo#ui of the glottis as well
as asymmetric glottal flow pulse shapes. Other models asanmbrupt closure that can
cause a skewing of the spectral tilt when this assumptios doehold. Fant and his col-
leagues note that even a slight departure from abrupt @assults in a significant increase

in the roll-off of the glottal spectrum [20].
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5.1.1 LF model

Originally proposed by Fant and his colleagues [20], thgehidrants-Fant (LF) model
is a representation of the glottal flow derivative. In thersetfilter model of the speech
production mechanism, the glottal flow derivative servethaxcitation for the vocal tract
filter. The actual glottal flow waveform, representing théuwee velocity of air traveling

through the glottis, can be calculated by integrating thatgl derivative over a single

period. The five independent parameters of the LF model are
e T, : fundamental period
e T, : instant of maximum excitation

» . Instant of maximum glottal flow

e T, : return phase constant

e F. : amplitude at instant of maximum excitation

The model divides the glottal cycle into two distinct phaseh the boundary being
marked by the instant of glottal closure, which is where mmaxn excitation occurs. The
amplitude of the glottal derivative at this poiri,, also marks the point of steepest decent
in the glottal waveform.

The LF model is parameterized by the following equation:

a(t—T,) sin(nt/Tp)
—Eeel )m7 0<t<T,

g(t) = (35)

ZTEJ [e*E(t*Te) — efﬁ(TO*TE)} , Te <t <.

The first segment of the LF model characterizes the derwalottal flow from the
glottal opening to the glottal closure instant. During thesiod, the glottis is considered
to be open and is thus denoted thygen phase This portion of the glottal derivative is

modeled as an increasing exponential modulated by a sohuSbie second segment, the
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closed phasecharacterizes the closure of the glottis as a decreaspanextial. Figure 19
illustrates the LF model for a single glottal cycle. The efseof the parameters on the

waveform are also indicated.

Open Phase Closed Phase

Opening Phase : Closing Phase
! .————Glottal Closure Instant

\'\

Figure 19: Parameters for glottal flow models and how they relate tat@letaveforms
(top) and their derivatives (bottom).

The internal parameters of the LF model equatioande, are determined by solving

the constraint equations,

ETa =1- eie(ToiTe) (36)
and
1 —ar, /T T 7T, T, —T, 1
— et a— cot( )| = — (37)
@+ (TL>2 [ Sm(Tl:) T, T, ecTo-Te) —1 ¢

These constraints ensure the continuity of the glottalvdévie at the boundary points as
well as the glottal closure instant.
The open quotient),, is a significant measure that defines the ratio of the opesepha

duration to the fundamental period. Because this portioh@fjlottal cycle is represented
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by the first segment in the LF model, the open quotient is tatled as

1e

Oq:?().

(38)

The open phase can be further divided into two segmentspiieing phasandclosing
phase The division of these two segments is marked by the insthmaximum glottal
flow (7,). The asymmetry coefficient;, defines the ratio of the opening phase duration to

the length of the entire open phase. Thus,
T,
a= T (39)

The duration required for the glottis to reach full closusecharacterized by the pa-
rameter?,. This period is also known as threturn phase An alternative form of this
parameterg),, is often used that describes the ratio of the return phasetodosed phase.

Q. is calculated as
T,

Qa:TO_Te

. (40)

O,, o, and@, have been shown to be indicators of perceptual qualitieswésvill
see later in this document, these measures also have amgpesition the spectrum of the
glottal source. Although these measures are not explicimaters of the LF model, they

are closely related to the LF parameters and can be caldulateg the above equations.
5.1.2 R++ model

Veldhuis proposed the R++ model for the glottal derivativg] [8s an extension to a poly-
nomial model originally proposed by Rosenberg [66]. Thedereions were designed to
increase the flexibility of the original model by incorpongt control over both the return
phase and asymmetry of a glottal pulse. The independentneaees for this modelT(,,
T.,T,, T,, A) are equivalent to those of the LF model with the exceptiothefparameter
A, which is an amplitude coefficient that scales the maximuottajl flow.

Like the LF model, this model offers a flexible and accurapgesentation of the glottal

flow derivative waveform. The glottal derivative of a singlgle is segmented into open
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and closed phases as in the LF model, but the R++ model usaslatber polynomial to
represent the waveform during the open phase. The closes# @fidhe glottal derivative
cycle is modeled with a decreasing exponential. The fortioriaf the R++ model is given
by
4AH(T, — t)(T, — t), 0<t<T.,
g(t) = (41)

g(Te)e*(t*Tc)/Tafe*(TO*TevTa Te < t S To,

1—@*(T0*Te)/Ta ?

The parametef, in the equation is calculated as:

2 - T.T,
T.=T.1—- 5 , (42)
2T,* - 31,17, + 61,(T. — T,,)D(1y,1¢,T3)
where
To - Te Ta
D(T,,T.,T,) =1 ( )/ (43)

 e(M-Te)/Ta — 1
Because the timing parameters are the same as those of theddt, tih@ formulas for
the open quotient, asymmetry coefficient, and return phasgnpeter for the R++ model

are identical.

5.2 Spectral analysis of time-domain glottal flow models

5.2.1 Frequency-domain representations

In this section, spectra of the glottal flow models presemediously are examined in
an effort to determine the relationship between the timexala parameters and frequency-
domain characteristics of these models. In order to acasimhlis, it is useful to derive an-
alytic formulas for the frequency-domain representatiofrthese glottal derivative models
(LF and R++). This is performed by employing properties of ¢batinuous-time Fourier
Transform. Specifically, a frequency representation ofgluétal flow waveform can be

calculated by using the integral property of the Fouriem$farm:

/ et inX(Q) L RX(0)3(9). (44)

— 00
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The spectra of each segment of the LF model are derived indepdly of one another

and summed in the frequency domain:

GH(Q) = GI7 () + Gy () (45)
where
—aTe (™ —1QT, Te\ 7
L, e e () e I%e cos(T=) -
G Q) = ——= | e — ST
sin(3E) | Q=P +(F)  (2-aP+(F)
eI e gin(TLe) (5 — a)
, U (46)
(2 -+ (%)
_ —jTe —€(T()—T€) —jQTo _G(TO_Te) —iQTe _ ,—jQTy
GEF(Q) = E, (? G - e G (e' e ) (47)
€T, [jQ)+ € JQ2+€ iy
A similar derivation is used to determine the spectrum ofRke model:
GTH(Q) = GIH(Q) + G (Q) (48)
where
GIFH(Q) = 4K | =W (Q) = (T, + T)W' (@) = LW (9)] (49)
- GRHH(T) (e 9T — T om0t (T (o0 _ =iy
Q) = - -
G2 ( ) 1 B ef(T%;Te) jQ + 1/Ta ,]Q
(50)
and
1 ‘
Q) = —(1 — e 79T¢), 1
W) = 51— ) (52)

The spectral formulations for each of these glottal modafste expressed in terms of
O, a, and@), by substituting (38)-(40).

Figure 20 illustrates an example of spectra generated @siog of the models with a
common parameter set. Glottal derivative waveforms geeeénaith identical parameters
by each model are shown with their corresponding frequelteyain representations. Al-
though not identical, the spectra of the two models are atiked agreement in capturing the

spectral shape of the glottal excitation. The spectrum efgibttal source generally takes

a7



the shape of a low-pass filter. Because of the apparent resibegunency and asymptotic
roll-off in high frequencies, the spectrum of the glottatidative is generally described as

aglottal formant

— LF
--- R++

amplitude

time

magnitude (dB)

log frequency

Figure 20: Glottal waveform derivatives produced using the LF and R+#ef®(top) and
their corresponding spectra (bottom)),(= 0.6, « = 0.66, @), = 0.3)

5.2.2 Spectral correlates with time-domain parameters

The spectral derivations presented above can be usedgtralle the effects of the time-
domain parameters of the glottal flow models in the frequeloeyain. For this section, the
LF model will be used instead of the R++ model. Although the Lédel requires a larger
number of calculations and requires two constraint eqnatto be resolved, it allows for
a greater range of values for the asymmetry coefficient tharRi++ model, wherer is

restricted to a relatively narrow range.
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The analysis presented in this section only considers fieetefof varying the time-
domain parameters of the glottal model on the magnitudetspec The phase spectrum
of the glottal waveform will be analyzed later in this paper.

The parameteF, determines the amplitude of the glottal derivative at tloétgl closure
instant. ., can also be described as the closing rate of the glottal flovefsam. Sundberg
found thatF, showed a strong correlation with loudness of phonation. [By]inspection
of (46) and (47), the spectral effects of varyihy are evident. When the other model
parameters are kept constast, serves as a scalar for the spectrum of the glottal source.
Varying the value ofr’, scales the spectrum equally across all frequencies. Theseer
gives the LF model the flexibility to match the vocal intepsif a glottal waveform.

Figure 21 illustrates the spectral effect of varying therogeotient,0,, while keeping
the remaining parameters constant. These plots show Syn¢ideperiods of the glottal
derivative with varying), values and their corresponding spectra. As can be seerrjhgwve
the open quotient results in an upward frequency shift olb&al formant. This energy
increase in higher frequencies has been linked to percaiedases in the loudness and
brightness of a voiced waveform. Several studies have alsalrthat the type of phonation
(e.g., pressed, modal, breathy) can have a large effecteonpién quotient.

The asymmetric coefficient;, and the return phase parametgy,also affect the higher
frequencies in the spectrum of the glottal waveform. Irgteashifting the glottal formant,
however, increasing or loweringO, results in an increase in the bandwidth of the glottal
formant. This is shown in Figures 22 and 23. In these pletand @, are varied while
all other parameters are held constant. The increase imbditdcauses a decrease in the
spectral roll-off in higher frequencies. Rothenberg natitieis relationship in voices of
trained singers. He observed higher energy in the third andt formants of voices with
greater levels of glottal asymmetry [68]. He contended thigtcharacteristic is desirable

for good singers and would lead to a clearer and more intieligyoice.
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Figure 21: Glottal flow waveforms with varying open quotient valués, (= 0.2, 0.5, 0.8)

and the corresponding spectra of the waveform derivatidéiother parameters are held
constant.
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Figure 22: Glottal flow waveforms with varying asymmetric coefficierdlves ¢ =

0.6,0.7,0.8) and the corresponding spectra of the waveform derivatié®ther parame-
ters are held constant.
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Figure 23: Glottal flow waveforms with varying return phase coefficieatues (0, =

0.1,0.3,0.5) and the corresponding spectra of the waveform derivatéé®ther parame-
ters are held constant.
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CHAPTER 6

NEW FREQUENCY-DOMAIN METHODS FOR
GLOTTAL CHARACTERIZATION AND
MODIFICATION

The time-domain glottal flow models discussed thus far haenlshown to be capable
of effectively parameterizing perceptually relevant ewderistics of the glottal source. A
frequency-domain solution, however, would offer a seasiletggration with the ABS/OLA
sinusoidal model chosen for the proposed system. Currepudrey-domain models fail to
provide reliable parameterizations for reliable glottaldification. Thus, it would be desir-
able to implement a frequency-domain model capable of cagttime-domain features.
This chapter continues the investigation of the relatigndletween time-domain param-
eters and frequency-domain characteristics introducetdrprevious chapter. Based on
these findings, new methods for estimating and modifying@tdomain glottal parameters

in the frequency domain are proposed.
6.1 Analysis of H1*-H2* and time-domain parameters

As has been shown earlier, the parametgysy, andT}, all have an effect on the magnitude
of the spectrum of a glottal waveform. In particular, the mpgiotient,O,, has a direct
effect on the center frequency of the glottal formant. Savexperimental studies have
supported this by showing a correlation between@@nd the relative spectral amplitude
of the first two harmonics of the glottal derivative wavefofil*-H2*). The amplitudes
of H1 and H2 are typically measured from the spectrum of a wivetl frame of the glottal
source. The glottal spectrum is usually obtained by one ofrivethods: inverse filtering
the original speech waveform in order to remove the contiobs of the vocal tract, or by
applying a formula in which the amplification of the glottalsce due to the first formant

is “corrected” [29].
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Based on these results, additional studies have attempteel&dop methods for es-
timating O, from measured values of H1*-H2*. Sundberg and his colleagrserved a
strong pattern between the open quotient and the ratio ofiftetwo harmonics of the
glottal flow waveforms for five professional baritone sirgggf5]. Their analysis resulted

in the following relationship based on these measurements:
H1% —H2x =215—-31.1(1 - O,). (52)

It should be noted that in this case, H1*-H2* indicates thatiee amplitude of the first
two harmonics of the glottal flow waveform and not its derivat

Fant used the LF model to analyze this relationship betwbkeropen quotient and
the amplitudes of the first two harmonics [19]. A regressinalgsis of synthesized data

varying O, was used to derive the expression:
Hl % —H2% = —6+ 0.27e%%%. (53)

While these studies have attempted to define a direct retdttiprbetween the open
guotient and relative amplitudes of the first two harmonidbe glottal source, our analysis
from section 5.2 revealed that the magnitude spectrum of.henodel can be affected
by the asymmetry coefficientf as well as the return phase parametgf)( This could
decrease the accuracy of any estimatiorOgf since its relationship to H1*-H2* is not
one-to-one.

By using (45), it is possible to measure the effects of varyirggtime-domain glottal
parameters of the LF model on the relative amplitude of tret fivwo harmonics. The
frequency-domain representation of the LF model can beedeas a function of both
frequency and time-domain parametérs, O,, o, Q.. E.). If T and E, are normalized
to values of 1, then the fundamental frequency is guaraniedx: (2, = 27 rad/sec.
Therefore, H1 and H2 can be measured by evaluati(i@, /) at frequencie@r and4r,

respectively. In the equation below= {O,, o, Q,}. H1*-H2* can then be calculated as:

G(2nm, 1
H1 % —H2% = 20log,, <%) : (54)
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Figure 25: Contour plots of the relative phase of the first two harmonfdh@glottal flow
waveform (A¢,) using the LF model. In each plot, two parameters are vafad: vs. O,,
(Qa = 0.3); (b) O, VS. Q,, (@ = 0.66); (C) v vS. Q,, (O, = 0.7);

The parameter®,, o, and(), can then be systematically varied while resulting values
of H1*-H2* are calculated. Figure 24 illustrates the depamze of H1*-H2* onO,, a, and
Q. using the LF model. In these plots, the contours represerstant values of H1*-H2*,
In each of the plots two of the three parameters are varietevaliiother parameters are
held constant.

In part (a),c andO,, are varied while&, is held constant. It can be seen that H1*-H2*
is largely dependent of?, over o for low values ofO,. For higher values ob,, however,

a has a much greater influence on H1*-H2* thap It is interesting to note thad, anda

have a wide range of possible values that can produce theldamid2*.
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This phenomenon is further illustrated in parts (b) and {djigure 24. In these plots,
H1*-H2* is shown as a function of the variable pai8,((Q,) and ¢, (),), respectively.
The contours clearly indicate that for a given value of H12*Hseveral pairs of@,, (),)
and ¢, Q) are possible. It can be seen that the effects of the retlasepparametep, on
H1*-H2* is very moderate compared @, anda.

These plots show that H1*-H2* is not a consistent indicafdhe open quotient as was
hypothesized in other studies. It can be further geneilizat H1*-H2* does not have a
one-to-one relationship with any of the three paramet@ysd, ).,).

It is apparent that for many cases it is not possible to estidig «, or (), accurately
based on amplitude measurements of the first two harmonibhe gfottal source. However,
additional information derived from these harmonics exibait can be used to develop an
improved parameter estimation technique. This infornmaisoprovided by the phases of
the harmonics. If each harmonic is viewed in time as a simgben the phase of that
harmonic indicates the position of the sinusoid relativeh®analysis window. Since the
phases of sinusoids vary based on their position relatitbegavindow, it is necessary to
use a phase measure that is shift-invariant. Therefordatveephase measure of the first
two harmonics is calculated by determining the phase of H2eapoint at which the phase
of H1 is zero. Given the phases and frequencies of H1 and H2,a8-) and (w;, ws),

respectively, the relative phase of H2 to H1 is calculated as
Ay = ¢ — 1. (55)
w1

This measure has the advantage of being invariant to theéveelgosition of the analysis
window while yielding a parameter that characterizes ttapstof the glottal waveform.

Figure 26 shows the sum of two harmonic sinusoids with aivelamplitude (H1*-
H2*) of 20 dB and with relative phase\(,) values of0 and 2. It can be seen from this
figure that the difference in relative phase affects the g@ishape of a glottal cycle which

in turn influences the glottal parametélg, o, and(),. Using (45) for the spectra of the LF

model, the relative phase of H2 to H1 is calculated for a walege of possible values of
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Oy, a, and@,. This relationship is illustrated in Figure 25. These platsover a complex
relationship between the glottal parameters and relathas@ of H2 to H1. WhileAg,
tends to be slightly more dependent Op anda than@,, the effect of the return phase
parameter is nonetheless significant. Additionally, iMislent thatA¢, does not vary with
the glottal parameters in the same fashion that (H1*-H2®gat is therefore conceivable
that the combination of the measured values for relativelituide (H1*-H2*) and relative

phase {\¢,) can be used to estimate the glottal waveform parameéigrs, andq),,.

— Agy=0
- Agy=3m/4

Figure 26: Summation of two sinusoid#{@ =

o = 10) with relative phase values df¢, = 0
(solid) andA¢, = 37 /4 (dashed).

6.2 Parameter Estimation

In this section, a technique is proposed in which frequetmyain parameterizations are
used to estimate the time-domain parameters of a glotta¢fwew. The performance of
this method is then measured by examining experimentaltsesbtained from recorded
speech waveforms. In an ideal test, the estimates of thedon®in characteristics would
be compared to known ground-truth values. However, becaiube difficulty in measur-

ing the true volume velocity of air travelling through theotis, the experimenters were
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unable to obtain these true measures and thus determinbgbkite accuracy of the pro-
cedure. As an alternative, the experimental estimateseoptbposed procedure are com-
pared with those obtained using a biologically-inspirddnmence procedure. This reference
procedure combines acoustic and biological measuremeétitswlosed-phase inverse fil-
tering technique for determining glottal flow. It has beeowh that closed-phase inverse
filtering is highly proficient in extracting glottal flow waf@ms from acoustic speech sig-
nals when glottal closure instants are located using auyibiological sensors [35,60]. By
exhibiting a level of consistency between the proposed ateéind the reference method,
it is shown that key time-domain features of the glottal wax@ can be estimated from

frequency-domain measurements of the first two harmonics.
6.2.1 Estimation Method

The parameter estimation method requires a recorded se¢gfrsggreech or singing to deter-
mine the corresponding glottal characteristics. By meaguthe frequencies, amplitudes,
and phases of the first two harmonics of the glottal sourceasighe parameters can be
estimated by incorporating the concepts discussed in #hequs section.

Before the estimation can be performed, the measuremeneafdurce parameters
requires a separation of the glottal waveform and vocat tegponse from the acoustic
signal. While several inverse filtering techniques exist,ethod based on an algorithm
by [54] was chosen for this work. In this procedure, basicragmations of glottal clo-
sure regions are identified and a local iterative search rfoqmeed in order to estimate
the closed-phase portions of the waveform. These segmentien used to produce an
estimate of the vocal tract that minimizes the linear pradcerror for a frame of speech.
An estimate of the glottal derivative can then be obtainedhisgrse filtering the original
speech waveform in either the time or frequency domains.

The next step of the estimation procedure is to determinethglitudes and phases

of the first two harmonics. This is performed using a sinugloahalysis method such
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as that found in [24]. This class of techniques models a $peawveform as a sum of
sinusoids. Sinusoidal parameters are typically obtaite@tively on a frame-by-frame
basis by minimizing an error criterion. These methods ate tbaccurately capture the
amplitudes, frequencies, and phases of the sinusoids aedlmaadvantage of being able
to compensate for the spectral effects of the window usediteate the waveform.

At this point, the relative phase of the first two measuredriwenics is calculated
with (55) and used to identify a candidate set of LF paramsetén iterative search is
performed to find all the parameter combinations of the LF ehdklat yield a relative

phase withinr /10 of the measured value:
[£G(2-Q,1) =2 LG(Q, )] — @] < 7/10. (56)

The final estimation of the parametersy, «, and ), is then made by performing a
search for the candidate parameter set whose relativevestahplitude is closest to that of

the measured signal as follows,

G, )] |H]]
G(2-Q, 1) [H2[|

In order to minimize the computational load required forgbarch processes, a database

arg m[in (57)
of relative amplitudes and phases for all parameter conibmacan be constructed prior

to the estimation procedure. The size of the database caontelted by imposing limits

on the ranges of each of the parameters.
6.2.2 Reference Method

In order to evaluate the performance of the frequency-dormparameter estimation tech-
nigue, experimental data was collected and parameter a&stsmvere compared to those
produced by a baseline time-domain method of measuring lttlgwaveform. Accu-
rately determining glottal flow has been a problem of comsidie interest for several
years. Several sensors have been developed to make physaalirements which esti-

mate glottal flow. Devices such as flow masks [67] and eletittmgraphs (EGG) have

59



been shown to provide general approximations for glottal.fl®Vhile these techniques
provide useful information, they often do not determine #&xact information required
for certain applications and may also be inherently inaateur Glottal inverse filtering is
the only waveform-based method of determining glottal flowerse-filtering techniques,
however, require an accurate estimate of the closed phaerpof a periodic signal. This
estimate is often prone to error. As mentioned earlier, & baen shown that auxiliary
biological sensors can be used to locate the closed-phasersoof the acoustic signal
and thus produce an accurate signal representing glottal Tlois particular approach was
chosen as the front end for the reference method in the empets conducted.

The auxiliary device used is a General Electromagnetic Sgi@EMS). The GEMS
device is a low-power miniature device consisting of a pextieig radar that can be used
to detect the motion in the region of the glottis. When poséid correctly on the exterior
of the throat adjacent to the glottis, the output of the ratlaing voiced speech is a signal
from which many important characteristics can be extratitatlare useful for speech pro-
cessing. Studies have shown that reliable estimates daagéhattivity can be derived from
the output of the GEMS device [4,5]. While it has been suggktiat this signal can also
be used to calculate subglottal pressure, we chose to uS&BRES device only to segment
closed-phase portions of the acoustic signal. The closedegportions of the simultane-
ously recorded acoustic signal were hand-marked baseceagidtial activity recorded by
the GEMS. Methods for synchronizing the acoustic and GEN8ads as well as for re-
moving the filter response of the GEMS device are outlinedjrahd were implemented
in this experiment. Vocal tract filter parameters were thaloudated from these segments
and an estimate of glottal excitation was obtained througmeerse-filtering operation.
The LF parameters were determined by performing an iteraitie-domain optimization
based on a minimum squared error criterion. The paramélgrs, and Q, were then

calculated from the LF parameters using (38)-(40).
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6.2.3 Experimental Setup

Simultaneous recordings of 6 speakers were made using aghajity condenser micro-
phone and the GEMS device. The corpus consisted of 12 TIMiiesees recorded by
three male speakers in an isolated sound studio. Both sigaasastic and electromagnetic—
were recorded at a sampling rate of 10 kHz.

The acoustic data from the microphone was windowed withlapping frames and
the proposed parameter estimation technique was useddnrieé estimates foD,, «,
and@), for randomly selected voiced frames of data. These estgwatee then compared
to measurements for the same frames obtained through thesansor inverse-filtering

method.
6.2.4 Experimental Results

Figure 27 shows a comparison of the results produced by tbheestimation methods for
each parameter as well as a reference line indicating geréerelation of the estimation
techniques. For the parametera strong correlation exists (= 0.91) between the two
methods, although the frequency-based method consistgettied slightly lower esti-
mates than the reference method estimates. The compafisstirnates for the parameter
O, revealed a relatively low correlatiom & 0.63) with the proposed method while gen-
erally producing somewhat higher estimates than the neterenethod. However, a small
number of frames resulted in grossly erroneous estimateithefr the minimuma@, = 0.2)

or maximum (O, = 0.99) values of the search interval. The removal of these ostliar
proved the correlation coefficient to= 0.87.

The frequency-based estimation technique produced sdsulp , that were only mod-
erately correlated to the reference estimates ().75). As shown in part (c) of Fig. 27, the
correlation between the two estimates for the return phas#icient,(,, is minimal. It is
likely that this is partly due to the moderate correlatiorgpfto the relative amplitude and

relative phase measures as compared tando.
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The experimental results show encouraging evidence thiathe amplitudes and phases
of the first two harmonics can be used to provide an accurétaason of time-domain
glottal parameters. Although the return phase parametawnesh very little correlation
with the reference measurements, the estimates for botbpre quotient and asymmetry
coefficient showed a significant correlation with the GEMéd measurements. The ten-
dency of the frequency-based estimate®pto be higher than the GEMS estimate and the
slightly lower estimates aft were largely related to the observation that the spectriaeof t
estimated glottal waveform showed a higher level of spktilrghan expected.

One possible factor which may have contributed to the inisterst results for the return
phase parametef),, is the high level of sensitivity to quantization error whiaffects this
measurement. The analysis presented earlier shows thatvariations in the parameter
(@, produce only moderate effects in the relative amplitude@rabe measurements.

It should also be noted that for a number of voiced framesinibial search for param-
eter sets within the relative phase boundaries produceamdidates. In this situation, no
estimation was made for that particular frame. There arenabeu of factors which could
lead to an unsuccessful candidate search. Occasionalitettative closed-phase inverse-
filtering technique produced an irregular estimate of tlodtgl source. This was typically
caused by an erroneous estimate of the glottal closureninetaan acoustic waveform
with a closed-phase segment which was too short to produae@mate approximation of
the vocal tract filter. Incomplete closure of the glottis dnigh level of glottal leakage—
characteristics of certain modes of phonation, such ashyea whispered speech—would

also cause an inaccurate estimate.
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6.3 Glottal Modification

The methods outlined in the previous section serve to iltisthe intimate relationship be-
tween time-domain glottal characteristics and their fesguy-domain counterparts. It was
shown that two perceptually relevant time-domain pararegteandO,,, can be predicted
based on frequency domain measurements of the relativetades and phases of the first
two harmonics. The purpose of this exercise was not onlytaésh a link between glottal
source parameters in both the time and frequency domaihaldmito provide an accurate,
yet simple parameterization of glottal excitation. Whilsearchers have typically used
either a large set of time-domain parameters or a small $eg@iency-domain parameters
(spectral tilt, H1*-H2*), we propose a set of parameters thtins characteristics captured
by each of these classes of glottal parameters.

The parameters H1*-H2* and ¢, have been shown to be useful in analyzing glottal
waveforms. However, experiments have shown that altelinge parameters do not pro-
duce reliable modifications to the glottal source. This isntyebecause these parameters
are only indicators of broader phenomena. The measurerhklit'eH2* specifies the rel-
ative amplitude of the first two harmonics, but in many cakeésis merely an indication
of the general roll-off of all of the harmonics. This chaexettic is often referred to as the
spectral tilt While the spectral tilt is a frequency-based characteribit has been shown
to be linked to vocal textures and singing quality, it tooas & parameter that can be solely
modified to change the shape of the glottal pulse in a pera#ptontrolled manner. In a
similar fashion as H1*-H2*, the relative phase measure effitst two harmonics)\¢,, is
an indicator of the behavior of the remaining harmonics.

Figure 28 shows the amplitudes and relative phases for ttetd¢in harmonics of the
glottal sources of the vowéd/ sung by an untrained and trained singer. As can be seen,
the shape of the glottal pulses are largely correlated wighroll-off of the harmonic am-
plitudes. This is consistent with earlier studies meagytie spectral tilt of singing voices.

Part (c) indicates the relative phases of the harmonicsabdhthe fundamental. These
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phases appear to follow a linear pattern with a consistepiesI The previous analysis of
the relative phase of the first two harmonics as well as obsens of this general pat-
tern indicate that this slope is also associated with dlpttese shape. This slope combined
with the spectral tilt serves as reliable parameters froneckvbpen quotient and asymmetry
values can be modified.

These two parameters can be calculated directly from thessidal components as:

o, ()

S.T. = (58)

Ap=12 , (59)

where(A;,w;, ¢;) are the amplitudes, frequencies and phases of the compsinesbids,
and N, is the number of sinusoids. While there are several methodsaue for measur-
ing and representing spectral tilt, this formulation wasgalieped to utilize the sinusoidal
parameters and produce an output with the units of dB/octEve average relative phase,
A¢, represents the average slope of the unwrapped phasessiftiseids relative to the
fundamental in units of rad/rad.

Our experiments have shown that modifying these paramfteessinging voice can
have a perceptual effect on the vocal texture as well as tteeped quality of the voiced
waveform. We contend that it is therefore possible to usedbt of parameters to impose
vocal quality enhancements and stylistic modifications singing voice. The following
chapter discusses the implementation of this techniquenmbmation with the proposed

spectral modification system to perform stylistic enhaneststo specific voices.
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CHAPTER 7

CHARACTERIZATION OF THE SINGING VOICE
USING THE PROPOSED SPECTRAL AND GLOTTAL
MODELS

The spectral and glottal models that have been outlinederptbvious chapters have
been shown to be capable of parameterizing many importamacteristics of the singing
voice. The flexibility of these parameters enable variogbneues for the modification
and transformation of the singing voice. However, as we ltiraonstrated, the singing
voice is a highly complex instrument that can be configurealwrtually limitless number
of combinations to produce a desired sound. While a long tyigibsinging voice ped-
agogy exists for training singers to control these mecimagis their voices, only recent
research has uncovered acoustic qualities that resulttfeomng. In order to determine the
usefulness of our models for representing these qualitiegedl as to enable high-quality
vocal enhancement, it is necessary to quantify these acaoustlities using the parameters
of the proposed models.

In this chapter, experimental results are presented inlwthie spectral and glottal
models are used in an attempt to characterize the singicgvofi trained versus untrained
singers. While there are many different genres and stylesging as well as differing
opinions concerning the desired perceptual qualitiesrajisg, the scope of the experi-
ments presented here has been narrowed to focus on the iVestssical singing tradition.
This style of singing, which includes opera and most cladstyles, possesses qualities
which are generally agreed upon and have remained cortsistenghout it’s history. The
purpose of this investigation is to illustrate the effeetiess of the proposed models for
characterizing vocal qualities which can differentiateral vocal beauty as well as level

of training.
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7.1 Experiment 1

In the first experiment, 8 male subjects, ranging in ages f2dnio 45, were recorded
singing various segments of the soiipe Star Spangled Banndfour of the subjects had
no previous training and no previous professional expedeiihe remaining four subjects
were classically trained singers with extensive (10 yearsare) singing experience in the
performing arts. The segments were chosen such that the caiéd be comfortably sung
by each of the singers in the chest register. For the subjeaibved, this required the seg-
ments to be sung in a key such that all notes were sung at F alnddée C or lower. All of
the subjects were recorded in an isolated studio. The sam@ee recorded at a sampling
rate of 48 kHz and downsampled to 16 kHz for computationatiefficy. The samples
were then analyzed with both the spectral and glottal maalgléned in Chapter 3.2.2 and
Chapter 5.2.2.

7.1.1 Spectral Analysis

The spectral modelling technique described in Chapter 3e¢h&sents the spectral enve-
lope of a windowed frame of data as a sum of asymmetric gemedaGaussian functions,
each of which is comprised of six parameters, as shown in (Zéese six parameters,
[A, i, B, 37, o!, "], quantify the amplitude and the center frequency as welhasvidth
and shape of the left and right sides of the function. Befana)yaing the recorded data,
voiced portions were segmented and phonetically labefaepresentative subset of these
segments were selected and parameterized with the spectial. Table 1 shows the aver-
age parameter values for the phoregs/i/, and/o/ for each of the subjects. In these cases,
the model was limited to parameterizing only the first founiants. As can be seen in the
table, several segments are represented with only threenasiric generalized Gaussian
functions. This is due to a single function representing tmerged formants, such as the
Singer’s Formant.

The average values of the frequency and amplitude parasrfeiethe trained singers
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versus the untrained singers are given in Table 2. An arsabysthe measured model
parameters presented in this table reveals a number ofatédferentiating the singers
with no previous training or experience from the trainedysis. The most prominent
difference is the strong, sometimes dominating, presehtleecSinger's Formant in the
voices of the trained singers. Figures 29,30, and 31 iliistthe asymmetric Gaussian
function averages for the phonks, /i/, and/o/ for the trained and untrained singers. As
shown in these figures, there is a consistent Gaussian dmneith high amplitude in the
frequency region of 2500 Hz to 3000 Hz for the trained sing€ns average, the formant
in this region has an amplitude approximately equal to thahe first formant and more
than 3 dB greater than the second formant. The Singer’s Farsfows a high level of
consistency across all of the trained singers as well assaalh of the vowel sounds.
Additionally, because no discernable formants are dedeicteéhe region of 3000 Hz to
3500 Hz, these results are consistent with the hypotheatsthie Singer's Formant is a

result of the merging of the upper formants.
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Figure 29: Spectra of the average asymmetric generalized Gaussiatidng for trained
(left) and untrained (right) singers singing the vovs!|

Conversely, the untrained singers show little energy in thy@eu formants. The third
and fourth formants for these singers have average amefttitht are 17 dB and 20 dB

lower than that of the first formant. They also show no signsefging or blending. The
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Figure 30: Spectra of the average asymmetric generalized Gaussiatidns for trained
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(@) (b)

o

@
o
@

Ampflltude
Ampgtude
>

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz) Frequency (Hz)

Figure 31: Spectra of the average asymmetric generalized Gaussiatidng for trained
(left) and untrained (right) singers singing the vova!|

average center frequencies of these two resonances intdbamdaseparated by more than
80 Hz.

Another pattern that emerged form the analysis parameterseens the center frequen-
cies of the first two formants. It has been well establishespeech processing that these
two formants are closely related to the identity of a spokamel [10,57]. Frequency mod-
ification of these formants can therefore have an undesiratbéct on the intelligibility
of the output. However, classically trained singers arerofaught to “color” their vow-

els which results in the modification of the first two forma8]. This typically serves
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two purposes. First, a quality most often described as “darkcovered” is obtained by
lowering the center frequencies of these formants. Adaitily, formant tuning is often
performed in order to maximize the energy in the availablenaaics.

The mechanism behind this tuning has been largely attiiktota lowering of the larynx
during phonation. Sundberg notes that this phenomenotisésa lowering of the formant
frequencies because a depressed larynx effectively elemtfee vocal tract [73]. Sundberg
also performed X-ray examinations in which he showed thawnelting of the larynx has a
secondary effect of widening the bottom part of the pharyiixs effect is believed to be
responsible for the Singer's Formant. By widening the phargn impedance mismatch is
formed between the laryngeal tube and the lower pharynatiagea strong resonance that
is independent of the remainder of the vocal tract [1,12,71]

In order to understand the results of formant modificatiowksiced by trained singers,
it is useful to analyze a chart plotting the first two formafiotsvarious vowels sung by the
subjects. This is given in Figure 32. It can be clearly seemfthis figure that the trained
singers maintain lower frequencies for both the first andbsddormants. While it is
possible that this could be due to natural factors such aa W@t length, the data supports
claims that the lowering of formant frequencies is a residirointentional manipulation of
the vocal tract mechanism by trained singers.

The amplitude parameters for the first two formants also shiovnteresting pattern.
While the relative amplitude of the second formant to the fgstpproximately equal for
untrained and trained singers for the vowelsand/o/, the amplitude of the second formant
is considerably larger for the vowél in trained singers. In fact, the second formant in
trained singers exhibits greater amplitude (with a reéatimplitude of 1.08) than the first
formant. This compares to a relative amplitude of 0.23 farained singers. It should
be noted that the phonemié is afront vowe] whereada/ and/o/ areback vowels This
terminology refers to the placement of tongue constrictiothe oral tract. Front vowels

are typically characterized by higher values in centerdesies of the second formant.
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Figure 32: Comparison of center frequencies for the first two formantstfained and
untrained singers for the phonks /a/, and/ol.

The data therefore suggests that trained singers are gewile additional power to this
resonance during phonation of front vowels.

One advantage of using the parameters of the asymmetricajieed Gaussian func-
tions is that they enable an examination of the bandwidtmaaheristics of formants. It
has been noted that while the bandwidths of formants likalyelan effect on vowel iden-
tity, their primary contribution is to a vowel’s charactarguality [10]. Table 3 reveals a
number of patterns concerning the bandwidths of the Gauésrections. Bandwidths are

calculated as the sum of the average values foptharameter on the left and right sides,
BW =g+ 3. (60)

This definition of bandwidth is equivalent to finding the foemcy range in which the
amplitude is within 8.69 dB of the peak.

The bandwidths of the first two formants appear to be slightgater on a consistent
basis for the trained singers than for the untrained sing8tadies have shown that in-

creased formant bandwidths can be linked to a higher levabeélization during vowel
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phonation [10].

The third formant shows similar bandwidths for both groupsingers. This is signif-
icant, however, in light of the observation that the amplé&wf the third formant is signif-
icantly larger for the trained singers. It appears thangdisingers can raise the energy
in this formant without altering the bandwidth. This is armmple of the flexibility of the
asymmetric generalized Gaussian model. An all-pole madebt able to independently
control the amplitude and bandwidth of a formant in this fastunless multiple poles are

used for a single formant.
7.1.2 Glottal Analysis

The glottal parameterization presented in Chapter 5.2.2 dpplies a closed-phase in-
verse filtering technique and then characterizes the negulottal waveform with two
frequency-domain parameters. These parameters reflegspéutral tilt of the glottal har-
monics as well as the average slope of the relative phasessdlacted voiced portions of
the recorded subjects samples were analyzed using thisiggehand average values for
the trained and untrained subjects were calculated. Tlessd#t{s are given in Table 4. In
addition, the time-domain parameters for the open quosiadtasymmetry coefficient are
calculated using the frequency-domain estimation tectenaptlined in Section 6.2 based
on the relative amplitudes and phases of only the first twmbaics.

As noted in earlier observations (Figure 28), both the spktitt and the slope of the
relative phase show a significant discrepancy betweeretlaamd untrained singers. The
averages shown in Table 4 quantify these differences. Ftinrale measured phones, the
glottal waveforms of trained singers show lower roll-off &y average of 8.4 dB/octave.
The largest average difference occur for the phongh{@&4.7 dB/octave) and the smallest
for /o/ (2.1 dB/octave). The average slope of the glottal harmonases relative to the
fundamental also show a similar pattern. The phases of thained singers exhibit a

much sharper negative slope than those of the trained singehrese differences range
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from 12.6 rad/rad for the phonenf@ to 21.9 rad/rad fofo/.

It was shown eatrlier that these frequency-domain chaiatter exhibit a strong rela-
tionship with the time-domain parameters of the glottal @avm. The time-domain esti-
mates of the open quotiend() and asymmetry coefficientf are consistent with studies

that show a lowe©), and highew for classically trained singers.

7.2 EXxperiment 2

A second experiment was conducted in which subjects wertaskperform a vocal exer-
cise known agrpeggia The four classically trained male subjects (T1, T2, T3, ffdin
the previous experiment were recorded along with four netkaimed subjects (U5, U6,
U7, U8) which were not part of the previous experiment. Areggo consists of a series
of notes which make up a chord. In this particular experimdreg subjects were asked
to sing the notes composing the chord A-major using the vda/ein an ascending and
descending pattern as shown in Figure 33. These notes tohdig C4i, E,, andA,. The
A-major chord was chosen for this experiment because thgerafinotes, from A below
middle C (43) to A above middle C 4,), span the boundary between the chest register
and the head register for most male singers. The recordeplssain this experiment were
recorded and processed with the presented analysis tegsiiga manner identical to that

in Experiment 1.

)
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Figure 33: A-major arpeggio.
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7.2.1 Spectral Analysis

A number of researchers have claimed that changes in r&istrin singing are mainly
associated with different modalities of glottal excitatiovarious studies [2, 31, 76] have
used signals obtained from electroglottographs or glfttal masks to support this claim.
However, it is still highly debated whether these modes cftakon are accompanied by
changes in the shape of the vocal tract. This spectral arsaly/slesigned to shed some
light on this issue as well as identify some differences gisteation techniques (or lack
thereof) between trained and untrained singers.

The parameters of the asymmetric generalized Gaussiatiapaodel were calculated
for the notesd; and A, for each of the singers in the experiment. The average valube
frequencies and amplitudes for each of the subjects are givéable 5. Average values
for the complete set of parameters for the trained and ung@dasubgroups are given in
Tables 6 and 7. As expected, the parameters for the notesasuhgeflect very similar
patterns to those observed in Experiment 1. The spectrahpaers of the trained singers
show a prominent singer’s formant consisting of a mergingpethird and fourth formants.
Additionally, the first two formants of the trained singers &wer in frequency and have
a slightly greater bandwidths.

When comparing the parameters of the untrained singers torrimes, a few differ-
ences can be observed in their respective formant strigctiiebles 6 and 7 show a small
increase in formant frequencies as well as slightly widerdwadths in the first two for-
mants. Additionally, the ratio of the second formant anoulé to that of the first increases
from 0.59 to 0.88 ford,. This increase in ratio, however, is significantly more sabsal
for the trained singers. The average A2/A1 ratio jumps froB6Qo 4.00, an increase of
614%. This phenomenon may not be solely caused by an incire#ise resonance asso-
ciated with the second formant, but rather by a decreaseeitoth-frequency resonance
associated with the first formant. This supposition is samisited by an increase in the

ratio of the third formant to the first (A3/A1) from 1.25 to 5.9The discrepancy between
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trained and untrained singers shows a high level of comsigtacross all of the subjects. It
has been hypothesized that trained singers are able toerduricesonant power of the first
formant by tuning it so that it lies directly between two hamts [52].

Figures 34 and 35 further illustrate differences betweamé&d and untrained singers
by showing the average spectral models for subjects T3 anfotJ8ach of the notes.
Comparing the spectra of singer T3 for notégsand A, shows a significant decrease in
the relative amplitude of the Gaussian function modelirgyfitst formant. The spectra of
singer U3, however, shows little change in the relative @#omhés of the formants. This
is most likely due to an improper registration technique agihe untrained singers. The
most common result of improper registration is a singemapteng to maintain the chest
register at notes that are above the proper range of thigylartregister [6]. The spectra
of singer U3 appears to exemplify this error. The similaofythe spectra for notes that
should clearly be sung in different registers indicatesilar@ato transition from chest to

head.
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Table 1: Experiment 1: Average AGG frequency and amplitude paranvelaes for each
subject for the phonés/, /i/, and/o/.

Subject| F1 (Hz) | F2 (Hz) | F3 (Hz)| F4 (Hz) | AL | A2 | A3 | A4
T1 562 | 1063 | 2664 1 |0.47|0.94
T2 602 | 1117 | 2516 1 0.34|0.71
T3 508 | 1039 | 2617 1 |0.94|2.09
YRR 648 | 1109 | 2930 1 [0.70| 0.71
U1 648 | 1125 | 2734 | 3367 | 1 |0.77|0.34| 0.27
U2 617 | 1117 | 2359 | 3203 | 1 |0.53|0.31]0.22
U3 656 | 1172 | 2453 | 3633 | 1 |0.52|0.29|0.27
U4 602 | 1086 | 2305 | 3289 | 1 |0.71|0.12|0.07
T1 273 | 1977 | 2781 1 |1.41|0.91
T2 258 | 1914 | 2586 1 |1.05|0.78
T3 242 | 1773 | 2461 1 |1.07|1.90
i T4 305 | 1898 | 2813 1 0.80| 0.87
U1 289 | 2133 | 2938 | 3852 || 1 |0.14|0.02| 0.03
U2 313 | 2063 | 2531 | 3695 || 1 |0.22|0.06|0.03
U3 297 | 1867 | 2711 | 3484 | 1 |0.25|0.09| 0.08
U4 320 | 2008 | 2695 | 3734 || 1 |0.29|0.11]|0.06
T1 336 781 | 2930 1 0.60|0.31
T2 297 719 | 2617 1 |0.76| 0.80
T3 359 852 | 2508 1 |1.06| 1.00
o] T4 320 | 836 | 2852 1 [051|0.77
U1 336 | 1102 | 2734 | 3313 || 1 | 0.25|0.07 | 0.05
U2 375 | 1055 | 2594 | 3047 || 1 |0.29|0.06| 0.03
U3 359 | 1047 | 2727 | 3367 | 1 |0.25|0.11| 0.07
U4 308 | 1008 | 2688 | 3438 | 1 | 0.54|0.03|0.02
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Table 2: Experiment 1: Average AGG frequency and amplitude parametkies for

trained and untrained singers for the phofads/i/, and/o/.

Subjects | F1 (Hz) | F2 (Hz) | F3(Hz) | FA (Hz) || A1 | A2 | A3 | A4
/a/ Trained 580 1082 2682 1 061|111
Untrained 631 1125 2463 3373 1 |/0.63|027|0.21
fif Trained 270 1891 2660 1 108|112
Untrained 305 2018 2719 3691 1 |/0.23|0.07| 0.05
/O/ Trained 328 797 2727 1 1]0.34|0.72
Untrained 367 1053 2686 3291 1 /0.34|0.07| 0.04

Table 3: Experiment 1: Average AGG width and shape parameter vahresdined and
untrained singers for the phonks, /i/, and/ol.

lal

N/

/ol

la/

N/

/ol

(left/right)
Subjects 61 62 63 (4
Trained | 297/273 | 305/266 | 281/344
Untrained| 258/219 | 211/281 | 305/242 | 289/273
Trained | 688/391 | 313/391 | 430/352
Untrained| 750/375 | 344/313 | 438/313 | 242/266
Trained | 344/219 | 234/250 | 250/313
Untrained| 320/211 | 211/188 | 313/227 | 219/180

(left/right)
Subjects al a2 a3 ad
Trained | 1.75/2.11| 2.45/1.54| 1.96/1.87
Untrained| 1.77/2.08| 2.34/1.79| 1.84/1.85| 2.04/1.87
Trained | 1.56/1.83| 1.94/2.43| 2.83/1.98
Untrained| 1.72/1.97| 1.81/1.71| 2.74/1.94| 1.77/1.81
Trained || 1.34/2.41| 2.82/1.91| 1.74/1.58
Untrained| 1.45/1.94| 1.43/1.64| 1.29/1.85| 1.76/1.78
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Table 4: Experiment 1: Average glottal parameters of trained andcaumed singers for the
phonedal/, /i/, and/ol.

Subjects || Spectral Tilt| A¢ O, | Asymmetry Coeff.
(dB/octave)| (rad/rad) ()

Ja/ Trained -12.4 -7.1 0.68 0.69
Untrained -20.7 -19.7 | 0.71 0.56

Jif Trained -9.5 94 0.64 0.81
Untrained -24.2 -23.1 | 0.75 0.59

/ol Trained -16.1 -8.3 |0.67 0.77
Untrained -18.2 -30.2 | 0.72 0.67

Table 5: Experiment 2: Average AGG frequency and amplitude paranvedees for each
singer for the notesl; and A,.

Subject| F1 (Hz)| F2 (Hz)| F3 (Hz) | F4 (Hz) || A1 | A2 | A3 | A4
T1 617 | 1070 | 2710 1 |0.37| 1.00
T2 625 | 1171 | 2460 1 |0.26| 0.74
T3 492 | 1078 | 2593 1 |0.97| 2.59

A3 T4 711 | 1164 | 2984 1 | 0.64| 0.66
us 648 | 1109 | 2789 | 3320 | 1 |0.76| 0.39 | 0.32
U6 625 | 1093 | 2289 | 3328 | 1 |0.49| 0.23 | 0.19
u7 617 | 1164 | 2468 | 3710 | 1 |0.55| 0.15 | 0.04
us 641 | 1132 | 2507 | 3398 | 1 |0.56| 0.26 | 0.12
T1 656 | 1102 | 2563 1 121 291
T2 672 | 1086 | 2336 1 | 5.13| 2.54
T3 609 | 1328 | 2656 1 | 3.63| 14.50

A4 T4 641 | 1133 | 2578 1 |6.05 3.89
us 773 | 1273 | 2953 | 3469 | 1 |1.56| 0.52 | 0.30
ue 688 | 1156 | 2328 | 3305 | 1 |0.52| 0.38 | 0.09
u7 680 | 1289 | 2594 | 3758 | 1 |0.64| 0.15 | 0.06
us 719 | 1203 | 2664 | 3523 | 1 |0.82| 0.26 | 0.12
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Table 6: Experiment 2: Average AGG frequency and amplitude parametees for the
trained and untrained singers for the natgsand A,.

Subjects | F1 (Hz) | F2 (Hz) | F3(Hz) | FA(Hz) || A1 | A2 | A3 | A4
A3 Trained 611 1121 2688 1 [0.56|1.25

Untrained 633 1125 2514 3439 1 /059|026]|0.17
A4 Trained 645 1162 2533 1 |4.00|5.96

Untrained 715 1230 2635 3514 1 /0.88|0.33|0.14

Table 7: Experiment 2: Average AGG bandwidth and shape parameteesdbr the
trained and untrained singers for the natgsand A,.

(left/right)
Subjects 61 62 63 54
A3 Trained | 258/281 | 242/258 | 273/289
Untrained| 258/242 | 227/234 | 273/242 | 250/258
A4 Trained | 305/250 | 289/250 | 305/367
Untrained| 344/242 | 250/266 | 313/258 | 328/305
(left/right)
Subjects al a2 a3 ad
A3 Trained | 1.25/2.09| 2.68/1.76| 1.86/1.85
Untrained| 1.18/2.28| 2.90/1.59| 1.19/1.94| 2.11/1.59
A4 Trained | 1.42/2.02| 1.48/1.86| 1.65/1.46
Untrained| 1.16/2.50| 2.77/1.83| 1.73/2.02| 2.53/1.66
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Figure 34: Spectra of the average asymmetric generalized Gaussiatidng for the
trained singer T3 for the notes; (left) and A, (right).
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trained singer U3 for the note$; (left) and A4 (right).
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7.2.2 Glottal Analysis

As discussed earlier, it has been widely thought that a gtliok exists between singing
registers and distinct modes of glottal production. Theedes are typically implemented
by controlling the length and thickness of the vocal folds.tHe chest register, the vocal
folds are relatively short and thick. Vibration occurs otrer entire length of the vocal fold
with a vertical phase difference, whereas in the head egitte mass and vibratory length
are reduced [86] and there is little to no vertical phasestiiffice. In this mode, the glottal
flow signal exhibits a more symmetric quality.

An analysis of the glottal parameters for the trained andaumed singers is performed
by applying the presented glottal model and estimationrtegles to the recorded wave-
forms. Table 8 reflects the average parameters for each grfosipgers. The measured
parameters (spectral tilt, average relative phase slqm) quotient, and asymmetric co-
efficient) for the noteA; coincide closely with those calculated in Experiment 1. The
parameters ford,, however, show a much smaller discrepancy between trainédia-
trained singers. While the untrained singers exhibit glatt@racteristics very similar to
those sung in3, the trained singers show an increase in spectralAift, andO, along
with a decrease in asymmetry.

These results support the idea that trained singers ardabiaintain separate modes
of glottal production. Glottal flow during chest registmativersus head registration shows
less spectral roll-off in terms of amplitude as well as ietaphase of the harmonics. This
corresponds in the time domain to a larger open quotient amdra asymmetric glottal
pulse. Although additional registers (i.e. falsetto) faales do exist, chest and head are
the two that are most commonly used in classical singing egealso the most easily
identified [52].

The untrained singers show little change in glottal chamstics when comparing the
two notes. This supports the hypothesis that untrainecessngre typically incapable of

transitioning from one register to the next, thus attengptm sing all notes in the chest
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register until the voice “breaks” into falsetto. Howevdrjtiinteresting to note that the
glottal characteristics of the untrained singers in thigezkment are close to those of the
trained singers singing in the head register and not the cbgister.

Table 8: Experiment 2: Average glottal parameters of trained andhumrgd singers for the
notesA; and A,.

Subjects || Spectral Tilt| A¢ O, | Asymmetry Coeff.
(dB/octave)| (rad/rad) ()
A3 Trained -14.3 -8.7 0.63 0.71
Untrained -22.1 -18.8 | 0.68 0.53
Ad Trained -18.5 -16.3 || 0.74 0.55
Untrained -23.5 -19.7 | 0.67 0.56

7.3 Conclusion

The two experiments presented in this chapter have exeetptliie ability of the proposed
spectral and glottal models to parameterize a singing \&g@®al so that various character-
izations including level of training and mode of registatcan be identified and measured.
Previous studies have also been conducted using portidhe afiodel to characterize var-
ious singing styles, such as Broadway belt [38] and countrgtern [37].

The ability to capture parameters associated with vocalittgsacan be applied to a
number of applications such as classification or vocal imgifieedback tools. The next
chapter examines our attempt to combine these models vatresults from experiments
1 & 2 to perform modifications to the voices of untrained sisge a manner that would

enhance their vocal qualities.
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CHAPTER 8

CLASSICAL ENHANCEMENTS TO THE SINGING
VOICE

The previous chapter detailed experiments for using theqeed spectral and glot-
tal models for identifying acoustic characteristics anddei@arameters that differentiate
trained singers from untrained singers according to theemeglassical style of singing.
This chapter explores an analysis/modification/synthasication which is designed to
use this knowledge to perform classical enhancements osirtigeng voices of untrained
singers. Details of experiments used to evaluate the pedioce of this system are also
provided. The advantage of an analysis/synthesis systeéhaisa synthesized output is
produced which can be used in human listening experimenialidate the system per-
ceptually, which is arguably the most important metric. leger, as mentioned in the
introduction, music is highly subjective and the musicallgy of a singers voice is not as
easily agreed upon as the intelligibility of a spoken word.

Seventeen male subjects with no previous training or psafaal experience were
asked to sing an arpeggio exercise identical to the one qexben the previous chap-
ter. This exercise was sung with the vouies in the notes i3, Cf, E,, A4]. The subjects
were allowed to listen to the correct notes immediately te&nging in order to reduce
any errors in pitch. For subjects whose comfortable rangadi coincide with these notes,
the arpeggio was raised or lowered one half note at a timéetbatsubject was able to com-
plete the task comfortably. This exercise was repeatedeuutded five times. Recordings
were made in a sound-proof studio with the amplified microhoutput recorded directly
to disk at 48 kHz. The data was then downsampled to a sam@tegf 16 kHz to reduce
the computational requirements. Three of the five segmeents thhen randomly chosen for

each singer and analyzed offline with the proposed spectdaylattal modeling techniques
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using 25 ms frames tapered with a Hamming window updated/év@&ms.

8.1 Spectral and Glottal Modifications

The vocal enhancements were performed so that the chasticeeof the untrained singers
mimicked those of the trained singers that were identifiethanprevious chapter. These

modifications are summarized as follows:

decrease frequencies of first two formants

increase bandwidths of first two formants

merge third and fourth formants and increase their ammgughile maintaining

their bandwidths

for notes at or abové}:

— decrease amplitude of first formant
— decrease the open quotient of the glottal flow waveform

— increase asymmetry in the glottal flow waveform

The degree to which each of these modifications was perfomasdietermined so that
the modified output possesses parameters that are equit@ligye average of the source
and target parameters. According to this procedure, thecequarameters are updated
each frame. The target parameters remain constant thratigfe proper register (chest,
head) and are determined by using the median values foraimett singers in Experiment
2 discussed in the previous chapter. Register transitiolmmegvere identified prior to
modification based on target notes crossing the boundaweeetr, and ;. The target
parameters for these regions were then linearly interpdlbetween the target parameters

for each register. These regions are illustrated in thénmtmtour shown in Figure 36.
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Figure 36: Example of identified register transition regions for a giggtch contour.

8.1.1 Competing Methods

In order to test the performance of the proposed enhancem@ampeting methods were
also included in the experiments. The algorithms for spé@&nd glottal modification
were implemented in a modular fashion so that they could baenksssly interchanged
with the proposed methods. The framework of the enhancesystgém is provided by the
AbS/OLA sinusoidal model described in Chapter 3.2.2.

In determining a competing spectral method, a number of ceria products for
singing voice processing were investigated. While a numbpramlucts exist that perform
varying levels of spectral modification, they are mostlyaddtiven models in which a
source singer’s spectral envelope is replaced with thataigget singer. This has the effect
of changing the identity of the singer, which is not desinedhis particular application.
Other products such as the Yamaforaloid[87] implement rule-based synthesis in which

lyrics and a musical score serve as the only inputs. Theitgeitthe singer is solely based
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on the loaded database of units which are selected and ematatl by the system.

The competing spectral modification method that was chosethis experiment has
been used in various forms in a number of leading singingeveithancement systems,
such as the TC Helicoxoice Modelerseries of products. This technique is a frequency
warping method based on the algorithm presented in Sectib.3rhis method combines
a frequency shift warping function,(w), with an intensity shaping function{w), in order
to control the formant frequencies and amplitudes. Bandwieirping functions5(w),
were also included for altering formant bandwidths. As shaw61, these functions can

be combined to modify a spectral envelop&w), according to
H(w) =y(w) - H((a(w) * f(w)) - w) (61)

whereH (w) is the modified spectral envelope.

While this particular method offers independent controlrate formant frequencies,
amplitudes, and bandwidths, it's effectiveness is only im&ed when there is no formant
interaction. This is only the case when formants are spasreeinfough apart in frequency
that they can be modified separately.

Although many techniques have been put forth for synthegiglottal excitation wave-
forms based on a synthesis-by-rule approach, very few sis&dynthesis methods have
been developed for the modification of an existing glottghal in a meaningful way.
Therefore, it is difficult to perform a comparative evaloati However, the techniques pro-
posed in this thesis are based on earlier studies whichdiogen quotient values to the rel-
ative amplitude of the first two harmonics of the glottal smufl9, 23]. The open quotient
has been shown by many studies—including the one presentieel previous chapter—to be
highly correlated with various vocal qualities and textur&his implies a simple method
for glottal modification. By modifying the relative amplited of the first two harmon-
ics, and not accounting for phase relationships as propagedapter 5.2.2, modifications
which may be equivalent to modifying the open quotient mapdbgsible. This technique

was implemented and included in the experiment for a conparavaluation with the
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proposed glottal modification procedure.

8.2 Additional Modifications: Pitch and Vibrato

As mentioned in Chapter 3.2.2, the ABS/OLA sinusoidal modat th used in the pro-

posed system is capable of natural sounding pitch-scalsnmggua phasor interpolation
scheme [25]. This technique can be applied on a frame-bgdrhasis, so that specific
time-varying changes to the pitch contour of a waveform camiade. When enhancing
the pitch of an untrained singer’s voice, the two main asperte considered are note
errors and vibrato.

While it is possible to modify the pitch contour of the origlisanger’s waveform to the
exact notes as prescribed by the musical score, the residugly not a natural sounding
waveform. Care must be taken to maintain the prosodic featfra voice to maintain the
unique qualities of a singer’s voice as well as it's indiatity. Therefore, pitch correc-
tions are performed gradually by allowing transition pdaan between notes and applying
slowly varying modifications. These tolerances may varynfreinger to singer and of-
ten need to be adjusted to fit a particular singer’s attrioutéowever, the result of such
corrections is a pitch-corrected voice waveform that rstéine singer’s vocal qualities.

Vibrato is a highly important factor in the enhancement &f $inging voice. As men-
tioned in Chapter 2, the presence of vibrato is present inyhalitrained singers’ voices
and is strongly correlated with the perception of vocal iefl6]. The insertion or modifi-
cation of vibrato requires a specification of tiage andextentof the sinusoidal oscillations
of the fundamental frequency. Studies have shown that {heseneters can vary based on
the individual singer as well as the note being sung. Howere common characteristic
of trained singers is the regularity of the vibrato cycle8][SUntrained singers typically
sing with little to no vibrato or with vibrato of varying raté&nother observation of trained
singers regards the extent of vibrato. Prame [61] notedithedto extent tended to increase

throughout the duration of a sustained note in trained sg\geices.
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Based on these studies as well as our own observations, osilisrtion is imple-
mented as a frame-based frequency modulation. A desireld intour is outlined based
on the score as well as target vibrato characteristics. Tdautation function is modeled
as a sinusoid with an amplitude envelope that is an incrgasectewise-linear function as
shown in Figure 37. An example of the resulting modificatitmghe pitch contour of an
untrained singer’s voice is illustrated in Figure 38.

It has been observed that modulating the fundamental freyueith a sinusoid with
constant frequency results in an unnatural sounding wavefdlthough trained singers
exhibit higher degrees of regularity, slight fluctuatiomgrequency nonetheless exist. There-
fore, the modulating sinusoid of the vibrato model is phasdutated with a random noise
signal that has been lowpass filtered. Vibrato is thus foateal by modifying the frame-

based fundamental frequendy,(n]) as
Fo[n] = Fy[n] + a[n] - sin (2rw,n + r[n]) , (62)

wherea|n]| is the piecewise-linear amplitude envelope,is the vibrato rate (5-7 Hz), and
r[n] is the lowpass noise signal.

Vibrato onset time can also be modeled as a simple delay frenonset of the note
to the onset of the pitch oscillation. While vibrato onsetdilras been demonstrated in a
number of classical singers, the majority of classicalsiadnave exhibited very short to no
onset times. Others have hypothesized that longer onses @me common in other styles

of singing such as Broadway belt [36].
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Figure 37: Piecewise-linear function used to shape the amplitudee¥ihrato inserted
into untrained singers’ voices.

8.3 Listening Experiments

In order to measure the usefulness of the proposed methodsnfying voice enhance-
ment, it is necessary to determine a procedure for testidgesaluation. In addition to
determining the level and nature of enhancement that caclbeved with the techniques
proposed here, a comparison with competitive algorithmstrbe documented. However,
it is clear that the testing and evaluation of the proposetesy requires a unique method-
ology. There are many challenges to obtaining a consistehtaiable evaluation of the
singing voice. Additionally, the testing of synthesizedmtmrms provides issues that must
be addressed during testing. Issues such as the presenti&aofsaand naturalness are im-
portant in determining the success of synthesis applicstio

One of the challenges of subjective vocal quality evalugtis obtaining a sufficient
number of experts to serve as evaluators. Typically, thie tf resource is only available at
large music institutions or conservatories. However, istlave shown that there is some
value in using non-expert evaluators. Ekholm [15] conddi@estudy in which a group
of vocal experts and a group of students evaluated the sanhw secal performances
according to the twelve factors identified in [88]. Theiruks show that while the inter- and

intrajudge reliability were higher for the group of vocapexts than for the students, there
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Figure 38: Prosodic modification: the original pitch contour (dott@itch-scaled to the
correct pitch (solid bars) and vibrato inserted.

agreement within the group of students and between groupsstatistically significant.
Therefore, due to the inability to obtain the services of ffigant number of experts, the

following methodology was used for the listening experitsen
8.3.1 Methodology

Ten non-expert listeners were asked to take a series of AlBrprece tests comparing sev-
eral pairs of waveforms. Prior to any processing, all saswplere pitch-corrected with the
ABS/OLA phasor-interpolation scheme. Each subject wascagkeompare ten samples
for each comparison condition. The order of the pairs as agthe elements of each pair
were selected randomly for each subject. Each subject waside select sample “A’
or “B” based on two different criteria. These criteria arevéaall musical quality” and

“naturalness or freedom from artifacts.”
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8.3.2 Comparison Results

The results of the comparison test are shown in Table 9. ktdble “Glotl” refers to
the proposed glottal modification method, and “Glot2” refter the competing method de-
scribed earlier in this chapter. A detailed analysis of ezc¢he testing conditions provides

an assessment of the performance of the proposed methods.

Table 9: Results of AB comparison tests for each testing condition.

(% preferring B)
Condition A | Condition B Overall Musical Quality| Naturalness
Original AGG 73 % 38 %
Original Glotl 56 % 32 %
Original AGG/Glotl 62 % 42 %
Original AGG/Glot1/Vibrato 86 % 46 %
Original FWarp 53 % 41 %
Original Glot2 51 % 47 %
Original FWarp/Glot2 56 % 33 %
FWarp AGG 69 % 63 %
Glot2 Glotl 56 % 42 %
FWarp/Glot2| AGG/Glotl 65 % 54 %
AGG/Glotl | AGG/Glot1/Vibrato 68 % 56 %

Original vs. Proposed Methods The results comparing the proposed spectral and glot-
tal modification methods versus the original waveformsHwitch-corrections ap-
plied) show a significant preference in overall musical fydbr the modification
methods. Glottal modifications exhibited less improven{g6%o preferred) than the
AGG spectral modifications (73% preferred). Combining the tmethods did not
produce an improvement greater than either of the two (62%emed), but nonethe-
less improved overall quality. The most significant improest (85% preferred),

however, occurred when vibrato modifications were incaajet into the combined
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spectral/glottal modifications. All of these results weetedmined to be statistically

significant < 0.05).

The breakdown by-singer in Figure 39 shows a number of isteg patterns. It
can be seen in Part (a) of the figure that singers S3 (40%) an@&88) showed
significantly lower scores for overall quality when AGG spvatmodifications were
performed. Upon review of these samples, a number of adifaere noted during
some of the sustained portions. These distortions maedestemselves as short
discontinuities in the perceptual quality of the waveforrBecause they were also
present in the synthesized samples using the frequencyingappocedure, it was
concluded that the source of the distortions was in the sidat model. Further
analysis showed that these errors were due to a misaligrimeeméen frames during
sinusoidal synthesis. This was caused by errors in the asiof the pitch pulse

onset time for certain frames.

The by-singer results for the proposed glottal modificatio@thod are shown in
Part (b) of Figure 39. These results show a consistent ldvetederence with the
exception of singers S2 (35%), S3 (30%), and S14 (27%) whases were signif-
icantly lower than the remaining singers. Informal questig after the test showed
that listeners found these samples to have a “rough” quéiltymarkedly decreased

the musical quality.

Part (c) of Figure 39 shows the overall musical quality ressfdr each singer when
both the spectral and glottal modifications are performetie 3cores for singers
S2 (41%), S3 (25%), S8 (37%), and S14 (25%) are all more tharstamdard devi-
ation (o = 20.8) below the meany( = 62). This clearly shows that any degradation
due to the proposed spectral or glottal modifications vki\Wise corrupt the output

when both modifications are performed.
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Original vs. Competing Methods Table 9 shows that the competing methods for spec-

tral and glottal modifications resulted in an increase ifggence over the absence

of modifications for overall musical quality. The improvemt for these methods

(frequency warping - 53%, H1H2 glottal modification - 51%the56%), however,

were slight.

The by-singer results given in Figure 40 show that the spkatrd glottal modifica-

tions resulted in significantly lower scores for the samgestia as with the proposed

methods. As noted eatrlier, the distortions for

singers SBIMafter spectral modi-

fications were due to inaccuracies associated with the gitgi@lsmodel and not nec-

essarily the spectral modification procedures.

It is algickd that the same singers

(S2, S3, S14) fared worse with both glottal modification rdghsince the methods

are similar in nature. It can be said, however, that the coimpenethods show a

much more consistent pattern across singers than the mopuosthods. This is veri-

fied by a comparison of the standard deviation values foryh&fger tests as shown

in the table below.

Standard
Proposed Method

Deviation()
s Competing Methods

Spectral Modification 16.6
Glottal Modification 14.1
Both 20.8

7.0
9.7
13.8

Proposed Methods vs. Competing MethodsA third set of comparisons was implemented

using human listeners in which the proposed models weredegfainst the compet-

ing methods. Table 9 shows a significant level of prefereacéhe proposed models

in all three comparisons. Figure 41 provides the by-singsults for the comparison.

When only spectral modeling was applied, the AGG spectralehads preferred

by a statistically significant 69% of listenens € 0.05) over the frequency warping

method. The by-singer results show that the AGG method wefeped by the
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listeners for 15 of the 17 singers. It is curious to note thattivo singers (S3, S8)
who scored lower when compared to the frequency warping odetvere the two

singers who suffered from the errors in pitch pulse onset tstimation. Although,
these errors were common to both methods, it is apparerttéhftequency warping

modifications mitigated the distortions somewhat comp#wable AGG method.

The glottal modifications showed a somewhat less signifieset of preference for
the proposed method (56%). Listeners showed a preferenté fif the 17 speakers.
Many listeners reported having difficulty in distinguispibetween the samples in

these comparisons.

The combined experiment where both spectral and glottaifinations were simul-
taneously performed shows a preference pattern that glosztiches the results for
the spectral modifications. A 65% preference for the propasethods was deter-
mined with the by-singer breakdown showing a much higheretation with the
spectral comparison than the glottal comparison. Thigpatiplies a greater effect
of the spectral modifications on the perceptual quality efgiinthesized waveform

than the glottal modifications.

Effects of Vibrato A final set of experiments was conducted to determine th@paegnce
of the vibrato model. Table 9 shows the results of two addéicomparisons that
were tested, (1) the unmodified waveform versus the propsgectral, glottal, and
vibrato modifications, and (2) a comparison of the propopedtsal and glottal mod-

ifications with and without vibrato modifications.

The preference results show that the vibrato modificati@we la substantial effect
on the perceived overall musical quality. Listener prafesincreased from 62% to
86% when vibrato modifications were added to spectral antedjlmodifications. A

direct comparison between these two conditions showed af@@¥erence for the

vibrato modified output. This is not a surprising result siseveral past studies have

96



demonstrated the importance of vibrato to the perceptioocal beauty [44, 65].

Naturalness Listener preference results based on naturalness andfredm artifacts
or distortions show a decrease in this measure when any ohduifications were
performed and compared to the unmodified waveform. This easekn in Table 9.
In some cases, however, this preference was slight (OtiggaAGG/Glotl/Vibrato
- 46%, Original vs. Glot2 - 47%). When comparing the proposezthads to
the competing methods, the proposed methods fared bettaturalness for the
spectral-only modifications (63%) and the spectral/glattenbination (54%). Lis-
teners found less naturalness in the proposed glottal nwildeh compared to the

competing model by a small margin (54%).

Vibrato modifications did appear to actually increase theinadness of the synthe-
sized output. When vibrato was added and compared to theralgicttal modifi-

cation combination, it was preferred 56% of the time. Howgwvdormal comments
by listeners revealed that the addition of vibrato to cartaiices resulted in an ex-

tremely unnatural sound.
8.3.3 Discussion

The results of the subjective comparison indicate thaenaks a whole, the pool of 10
listeners preferred the proposed methods for spectral ltthigmodifications over both

the unmodified singing voices and the modifications usingctirapeting methods. This
suggests that for the application of enhancing the voicesthined singers, the spectral
and glottal methods outlined in this thesis offer a viablieitson.

It should be emphasized that the overall performance of tiram@cement system is
reliant on a number of interdependent modules. As was the wih pitch pulse onset
time estimation, any errors in a single module results imodi®ns or artifacts. During
the course of this experiment, a number of common errors baea encountered that

degraded the performance of the modification system. Sonoesewere alleviated by
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adjusting various parameters, but others persisted. A fahese issues are detailed here:

¢ In order to enable the AGG spectral modification method aqdesmcy warping algo-
rithm to be effective in performing formant modificationsis necessary to employ
an accurate formant tracking system. It was noted in Chapge? ghat the AGG
model can be used to refine initial formant estimates butdtéopmance is largely
affected by the performance of the initial estimate progithy a formant tracker.
Performance of the AGG spectral model improved somewhatdxjian filtering the
formant estimates, thus smoothing noisy tracks. Exce$siveant smoothing in the
AGG spectral model, however, resulted in reverberant effiacthe synthesized out-
put. The frequency warping modification procedure also owed when smoothing

was applied but was also found to be more robust to inacagaciformant tracking.

e Pitch doubling and halving errors occasionally occurredrduthe analysis of the
samples. This impacted the spectral estimate which cauiggd gerceptual varia-
tions in the modified waveforms. This issue was also alledabmewhat by median
filtering but only when errors occurred in short spurts. ESrgpanning several con-
secutive frames persisted after filtering. It could be adghewever, that in a singing
voice enhancement application, the correct melody woulkhosvn beforehand and
thus could be utilized to prevent pitch doubling and halvidgwever, it was found
that some untrained singers would occasionally, albedyaerr in pitch by an entire

octave or more.

e During the processing stage of the modification experimentgas found that im-
proved performance could be attained by manually adjustirgarget parameters
for each of the spectral methods. These adjustments ofteedvaom singer to
singer. However, these target parameters that were emlpyridetermined for the
AGG and frequency warping methods often did not coincide.aBise the purpose

of the experiment was to objectively compare the ability aflemethod to perform
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modifications based on the analysis performed in Chaptett&e3arget parameters

were not altered from the original specifications.

The results of the listening tests show that the proposettrghand glottal modification
algorithms enable a number of important characteristi¢sagied singers to be parameter-
ized and implemented in an enhancement system. Howevsrcliéar that there are still
some aspects of trained singers’ voices that are not enssapdy these models. Infor-
mal comparisons show that even the most highly rated endassraples do not match the
vocal beauty of the voices of professional classical ssigéhese observations imply that
all of the qualities of vocal beauty can not be solely desttiby a static model. While
it is agreed upon that prosodic features contribute to thegpgion of beauty or level of
training, models that are able to effectively capture tledseacteristics in singing have yet
to be formulated. Although our attempts at separately etihgnvoiced segments based
on registration were able to capture some of the time-vgrgivaracteristics of singing, the
complex nature of the modalities of the singing voice musiupther investigated to truly

enhance the singing voice.
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CHAPTER 9

CONCLUSIONS

In this research, a set of models for modeling the spectradlghottal characteristics of
the singing voice has been developed and used to chara&cterdz modify certain vocal
qualities of the singing voice.

First, a spectral model was described in which the formauatgire of a voice is mod-
eled as a sum of asymmetric generalized Gaussian funciitresuse of these functions is
advantageous over traditional methods because of thegrenh flexibility. Most notably,
the ability to independently control the amplitude and lvaidth of each Gaussian function
in an asymmetric fashion enables an accurate estimate sptutral envelope as well as a
wide variety of modifications.

A glottal model based on a frequency-domain derivation mitdomain glottal flow
models was also developed. It was shown that important tiomeain characteristics of
the glottal source can be captured in the time domain by pateniming the relative ampli-
tudes and phases of the harmonics in a voiced signal. Thiswdsy led to a method for
accurately estimating perceptually important time-donpaErameters in the frequency do-
main. Experimental evidence was presented in which theésaates showed a high level
of correlation with estimates produced by a closed-phas&se filtering technique using
a physical microradar device to accurately measure theagdosure instants.

An additional technique for modeling vibrato was also folated in which vibrato
could be naturally infused into a singer’s voice.

An experimental study was presented in which these modeis used to capture and
parameterize those characteristics that differentiatgirsg produced by singers with no

training and those with extensive classical training. Iswhown that a number of spectral
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and glottal patterns could be discerned using the proposeteis. Additionally, differ-
ences in registration, or the modes of singing often useddnydd singers, were illustrated
with these models. Evidence that changes in registratieolia changes in spectral as
well as glottal characteristics were presented, thus stipgoa largely minority opinion
that registration is independent of the vocal tract.

Finally, an application for enhancing the characteristitsintrained singers was de-
veloped and subjectively tested against unmodified soumedscompeting algorithms. It
was shown that the proposed models are capable of providing@roved framework for

high-quality vocal modifications.

9.1 Contributions

Contributions of the proposed work include the following:

Development of a spectral model based on asymmetric gezetabaussian func-

tions for parameterizing and modifying the formant struetof the spectral envelope.

e Development of a method for estimating the parameters ofpleetral model using

the Expectation-Maximization algorithm.

¢ A theoretical analysis of the frequency-domain charasties of two time-domain

glottal flow models (LF, R++).

e Development of a parameter estimation technique for détemmtime-domain glot-

tal characteristics in the frequency domain.

e Development of a model for characterizing perceptuallgvaht glottal character-
istics based on amplitude and phase characteristics ofatmadmics of the glottal

source.

e Development of a model for pitch and vibrato correction base the ABS/OLA

sinusoidal model as a pitch-scaling engine.
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¢ Implementation of the proposed spectral, glottal, andhprodification methods for

the classical enhancement of an untrained singer’s voice.
e Various extensions to the existing glottal estimation radtim [54]:

— Improvement of initial estimation of the glottal closuretant using group de-

lay methods.

— Improvement of averaging technique for vocal tract estiomat

9.2 Future Work

Algorithm robustness Perhaps the best way in which the spectral and glottal madeilsl
be improved for all applications is by the development of enarbust methods for
the estimation of various parameters such as pitch pulset dimse, voicing, for-
mant frequencies, and pitch. Each one of these is a challantgelf and has much
room for improvement. Although several ad hoc methods falidg with isolated
errors were implemented, these techniques are far fronbtapadealing with more

serious errors that can be common occurrences in singing.

Genre classification In this thesis an investigation was performed which idesdifa set
of characteristics describing a classical style of singiile we have conducted
studies regarding other styles [37, 38], a wide-rangingremation of genres as well
as genders could utilize the spectral and glottal modelsdo fullest capabilities
and provide significant insight of the characteristics oiggig for both the music

and research communities.

Database collectionOne of the most challenging aspects of this research hastheen
inability to obtain a sufficient variety of studio-qualitsalated singing voice samples.
Any future comprehensive study in singing will require swchklatabase spanning

gender, genre, vocal range, and level of training. Addélynsuch a database would
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be invaluable for using the proposed models for some typtatsscal classifier that

would require a relatively large amount of training data.

Prosody models in singing synthesisSpectral and glottal characteristics encompass a large
portion of a singer’s characteristics, but time-varyingmtes or prosodic features are
also significant contributors. The vibrato model proposetthis thesis is capable of
capturing some of these features, but it nonetheless faidiynentary. In order for a
complete model of the singing voice to be attained, it is agagy for a more complex

model capable of capturing the dynamic features of singirgetdeveloped.

Alternate applications Singing voice enhancement and genre classification areadely
of the many applications that can utilize the models dewsdojn this work. The
models developed in this work open up a myriad of possibléiegpns that can be

used to transform, segment, identify, compress, or evamttia singing voice.

9.3 Concluding Remarks

In this work, we have attempted to answer the difficult questiwhat gives a singing
voice its unique qualities? Although this question may ndagecompletely answered, it
has been shown that it is not feasible to simply use methadgmally designed for normal
speech processing. There may never be a sufficient levelreéagent among the music
community as to what makes a singing voice “good” or “bad{ thuough the models and
methods presented here, a set of tools has been developgezhithhopefully be used to

take steps toward clarifying the picture.
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