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SUMMARY

Throughout our history, the singing voice has been a fundamental tool for musi-

cal expression. While analysis and digital synthesis techniques have been developed for

normal speech, few models and techniques have been focused on the singing voice. The

central theme of this research is the development of models aimed at the characterization

and synthesis of the singing voice. First, a spectral model is presented in which asymmet-

ric generalized Gaussian functions are used to represent the formant structure of a singing

voice in a flexible manner. Efficient methods for searching the parameter space are inves-

tigated and challenges associated with smooth parameter trajectories are discussed. Next

a model for glottal characterization is introduced by first presenting an analysis of the re-

lationship between measurable spectral qualities of the glottal waveform and perceptually

relevant time-domain parameters. A mathematical derivation of this relationship is pre-

sented and is extended as a method for parameter estimation.These concepts are then used

to outline a procedure for modifying glottal textures and qualities in the frequency domain.

By combining these models with theAnalysis-by-Synthesis/Overlap-Addsinusoidal

model, the spectral and glottal models are shown to be capable of characterizing the singing

voice according to traits such as level of training and registration. An application is pre-

sented in which these parameterizations are used to implement a system for singing voice

enhancement. Subjective listening tests were conducted inwhich listeners showed an over-

all preference for outputs produced by the proposed enhancement system over both unmod-

ified voices and voices enhanced with competitive methods.

xiii



CHAPTER 1

INTRODUCTION

The singing voice lies at the very heart of musical expression. Through the combination

of music, lyrics, and emotion, the singing voice is able to convey powerful sentiments

and thoughts in a manner that entertains listeners across all cultures. The versatility of

the singing voice is reflected in its application to all genres of music, from opera to rock-

and-roll. For countless years, society has had an appreciation for good singing voices and

trained performing artists. However, our understanding ofhow to model, enhance, and

synthesize singing electronically is presently quite limited. The concept of digitally syn-

thesizing a good singing voice or improving the vocal quality of a poor one has only begun

to attract the attention of researchers. This challenge, however, has produced many more

questions than answers. While efforts aimed at synthesizingother musical instruments have

produced realistic and natural sounding results, the singing voice has yet to be convincingly

simulated with synthesis techniques. This is mainly attributed to the complex nature of the

singing voice production mechanism. By careful positioningof the many organs of the

vocal apparatus (jaw, lips, tongue, etc.), singers are ableto produce an incredibly wide va-

riety of sounds. Even small perturbations of any of these components can vastly alter the

acoustic properties of the produced waveform as well as a listener’s perceptual response.

For several years, recording artists and producers have taken advantage of basic speech

synthesis methods for making limited enhancements to recorded voices. The karaoke in-

dustry has also incorporated many of these features into their machines. Many of these

modification techniques are based onwavetable synthesismethods such aspitch-synchronous

overlap-add(PSOLA) [27, 56]. PSOLA operates by sampling windowed portions of the

original signal and then resynthesizing them with a basic overlap-add procedure. Time

1



scaling is performed by deleting or repeating windowed sections prior to the overlap-add

procedure. Pitch-scale modifications are also possible by adjusting the spacing between

overlapped windows during resynthesis. Methods of this type have been a popular choice

mainly because of their simplicity and capability of high fidelity playback. However, these

methods offer only crude modifications that often result in objectionable artifacts [80]. The

nature of singing voice synthesis places a high demand on a natural-sounding, artifact-free

synthesis procedure.

The interest in efficient and flexible speech models led to thedevelopment of a class of

sinusoidal modelsin the mid-1980s. Sinusoidal models were initially explored by McAulay

and Quatieri [47,49] as well as Marques and Almeida [46] and shown to be an effective rep-

resentation for speech. By representing a voiced waveform asa sum of sinusoidal compo-

nents, sinusoidal models have found uses in a wide range of applications. Later work with

this model showed the potential for time-scale modificationand pitch alteration [62,64].

An extension to McAulay and Quatieri’s work was developed byGeorge and Smith [24–

26]. The Analysis-by-Synthesis/Overlap-Add (ABS/OLA) model is based on the combina-

tion of a block overlap-add sinusoidal representation and an analysis-by-synthesis param-

eter estimation technique. ABS/OLA performs synthesis by employing an efficient FFT

implementation. Improvements to the prosody modification techniques of this system were

implemented by Macon and applied to text-to-speech and singing voice synthesis (LYRI-

COS) applications [40–43]. The LYRICOS system uses sinusoidal-modeled segments from

an inventory of collected singing voice data to drive a concatenation-based synthesis en-

gine.

These are only a few of the models that have been advanced in the past for synthesizing

voiced song. While these methods are capable of performing some modifications to a

singing voice, such as time and pitch-scale modifications, little has been done in the way

of parameterizing the characteristics associated with singing in a way that allows one to

digitally transform a poor singer into a good one. For this goal to be realized, a method for

2



characterizing the voice production mechanism must be considered so that differences in

the production of singing voices of varying styles and qualities can be characterized. These

are important keys that enable us to take steps toward our ultimate goal of enhancing and

synthesizing a singing voice.

The source-filter model for speech is based on a simplified human voice production sys-

tem where no interaction between the source and vocal tract is assumed. According to this

model, the simplified human voice production system is decomposed into three elements:

glottal source, vocal tract, and radiation impedance. Thisis illustrated in Figure 1. The

radiation impedance is typically approximated with a simple differentiation filter. Since

both the vocal tract filter,V (z), and the radiation filter are linear time-invariant (over short

frames), the glottal source and radiation impedance can be combined to form the glottal

derivative waveform,U ′(z). The result of these manipulations is a source-filter synthe-

sis model in which the human voice is modeled as a vocal tract filter excited by a glottal

excitation.

Because of the separable nature of the source-filter model, characterization and en-

hancement of the singing voice can be performed on the individual components of the

voice production mechanism. Both the vocal tract filter and glottal excitation have been

shown to be very different in their composition and thus require different techniques for

analysis and modification.

In the source-filter representation, the vocal tract is commonly modeled as an acoustic

tube of varying diameter [18]. This model is further simplified by dividing it into cylin-

drical sections of equal width. Depending on the shape of theacoustic tube, a sound wave

traveling through it will be reflected in a certain way so thatinterferences will generate

resonances at certain frequencies. These resonances are called formants. Their location

largely determines the speech sound that is heard as well as its vocal quality [10].

The ability to manipulate the characteristics of the vocal tract is largely dependent on

the formant structure of the vocal tract spectrum. Formant characteristics have long been

3



Glottal Source Vocal Tract Filter Radiation
Voice Output

U(z) V (z) 1 − z−1 s[n]

Glottal Derivative

U(z) 1 − z−1 V (z) s[n]

U ′(z) V (z) s[n]

Figure 1: Illustration of the source-filter model for speech production. Because the original
model (top) is composed of filters that are linear time-invariant, the glottal source filter
(U(z)) and the radiation filter can be combined (middle) to form a filter representing the
glottal derivative (U ′(z)) which serves as the excitation to the vocal tract filter.

known to hold importance for recognition and intelligibility, but research has shown that

various vocal qualities in singing can also be derived. One example is thesinger’s formant,

which is a clustering of the 3rd, 4th, and 5th formants. This merged formant causes a

perceptualringing quality in a singer’s voice [73].

Modification of formant structure can be performed in a number of ways. All-pole

models such as LPC offer formant modification through the shifting and scaling of pole

locations. Other methods modify the spectral envelope withfunctions that warp the enve-

lope along the frequency and/or amplitude axes. These methods, however, are capable of

making only limited modifications and offer little control over important formant charac-

teristics. For example, pole modification does not allow a particular formant’s bandwidth

and amplitude to be easily controlled independently.

Vocal qualities in singing, however, are not solely based onthe characteristics of the
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vocal tract. The glottal excitation has a significant impacton the vocal textures of a singer’s

voice. Glottal characteristics have been shown to be correlated with various voicing modes

ranging frompressedto breathy. Further studies [8] have outlined relationships between

glottal source characteristics and stress levels in speech.

A model for the glottal excitation that is both accurate and flexible enough for modifi-

cations is a crucial component to an effective singing voiceenhancement system. Several

models for the glottal source waveform have been proposed that can accurately capture

glottal characteristics in either the time or frequency domains [13, 20, 66, 85]. However,

methods for using such models to effectively enhance the perceptual characteristics of a

singing voice have yet to be discovered.

1.1 Research Overview

This thesis presents a multi-fold approach to parameterizing and modifying vocal qualities.

As shown in Figure 2, the components of the source-filter model are modified on an indi-

vidual basis. First, a new spectral model for modifying the formant structure of the vocal

tract is investigated. Current methods for spectral modification have been shown to provide

only a low level of control over important formant characteristics. Additionally, an algo-

rithm for identifying glottal characteristics in the frequency domain is presented that is used

to modify the source excitation in an effort to control the vocal texture of a singing voice

waveform. These two modification methods, operating withinthe context of the source-

filter model, are combined with prosodic modifications for correcting pitch and inserting

vibrato to perform natural-sounding enhancements to a singing voice. Furthermore, tech-

niques presented in this system are also capable of providing detailed characterization of a

particular singing voice so that it can be classified according to skill, style, gender, register,

and vocal texture.

Through the presentation of these methods and their application to singing voice en-

hancement as well as results of subjective human listening tests, it will be shown that the
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U ′(z) V (z) s[n]

Û ′(z) V̂ (z) ŝ[n]

Modified Voice Output

Modification Procedure

Figure 2: In the presented modification procedure, each component of the source-filter
model is modified independently of one another.

models presented in this work can provide a framework for high-quality modifications to

the human voice, offering advantages over competing methods.

This thesis is organized as follows:

Chapter 2 presents a brief background of the singing voice and outlines characteristics

that differentiate the voice of a trained singer from that ofan untrained singer.

Chapter 2 provides background information on spectral modeling and modification tech-

niques. Basic methods for estimating the spectral envelope are presented, followed

by an analysis of various modification algorithms.

Chapter 3.2.2 begins with an overview of the proposed spectral modification process. The

ABS/OLA sinusoidal model, which provides the framework for the modification al-

gorithm, is then presented. The actual modification procedure and its implementation

are then discussed in detail.

Chapter 4.4.1 presents an overview of time-domain glottal flow models as well as a deriva-

tion of equations relating these model parameters to frequency-domain characteris-

tics.
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Chapter 5.2.2 further explores the relationship between glottal parameters in the time and

frequency domains. Based on these findings, a frequency-domain parameter estima-

tion technique is proposed that is able to capture importanttime-domain characteris-

tics. This chapter also presents a proposed technique for glottal modification.

Chapter 6.3 provides a detailed analysis of a set of recorded waveforms sung by singers

with extensive professional training in a classical style and singers with no previous

experience or training. The proposed models are used to showcharacteristics and

differences among the groups of singers.

Chapter 7.3 details an implementation of the proposed techniques for enhancing the singing

voice of untrained singers base on the findings in Chapter 6.3.The results of subjec-

tive listening tests quantifying the performance of the enhancement system are also

provided.

Chapter 9 concludes the thesis with a summary of contributions and future work.
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CHAPTER 2

BACKGROUND: THE SINGING VOICE

To improve the vocal quality of the singing voice, characteristics must be identified that dif-

ferentiate “good” singers’ voices from “poor” ones. This, however, can be a very subjective

endeavor, especially when considering a wide variety of singing styles. For example, the

voice of a singer trained in the tradition of the musical theatre (also known as thebelt

voice [17, 51]) may not be considered proficient for an operatic performance of the West-

ern classical tradition. By and large, the majority of singing voice research has focused

on singing based on traditional methodologies for vocal training. This produces a style of

singing that is most commonly referred to as theclassicalvoice. Researchers have iden-

tified a number of characteristics in classically trained singers’ voices that are commonly

absent or less evident in the voices of untrained singers.

Vibrato

Vibrato occurs in most Western opera and concert singing andoften in popular singing

as well. Vibrato can be described as a nearly sinusoidal modulation of the fundamen-

tal frequency during voiced segments. The rate of vibrato istypically 5-8 Hz, and

the modulation depth varies between±50 and±150 cents (where 1200 cents = 1 oc-

tave) [74]. Although the rate and depth of vibrato may vary from singer to singer or

from genre to genre, there is an acceptable range among trained singers. Studies have

shown that the voices of trained singers exhibit vibrato with greater depth and reg-

ularity than for those of untrained singers [7]. Additionally, the presence of vibrato

has been shown to be directly correlated with the perceptionof vocal beauty. Robi-

son [65] found that baritones with the most aesthetically pleasing voices maintained

vibrato in their tones more than 80% of the time.
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The pitch contours for the vowel/o/ sung by both a trained singer and an untrained

singer are shown in Figure 3. Both signals clearly show vibrato-like fluctuations, but

the depth and consistency are much greater in the contour of the trained singer.

In addition to frequency modulation, vibrato has been shownempirically to have

an associated modulation in amplitude as well as spectral shape [44]. The percep-

tual effects of these amplitude modulations, however, are secondary to the frequency

modulation effects.
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Figure 3: Fundamental frequency tracks of the vowel/o/ for an untrained singer (top) and
a trained singer (bottom).

The Singer’s Formant

Trained singers (especially males) often create a resonance in the range of 3000 to

5000 Hz by employing a technique in which the larynx is lowered. Acoustically, this
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results in a clustering of the third, fourth, and sometimes fifth formants. This reso-

nance, referred to as thesinger’s formant, adds a perceptual loudness that allows a

singer’s voice to be heard over a background accompaniment [72]. This phenomenon

coincides with a perceptualring in a singer’s voice. According to Sundberg, the

singer’s formant is generated as a result of an intentional lowering of the larynx,

which leads to a wider pharynx.

Figure 4, which presents the spectral envelopes of the two aforementioned singers

averaged over time, clearly illustrates the singer’s formant centered at approximately

3000 Hz. Ekholm [16] found that the presence of the singer’s formant in the voice,

much like vibrato, is strongly correlated with the perception of vocal beauty.
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Figure 4: Average spectral envelopes for the vowel/o/ for a trained singer and an untrained
singer. The arrow indicates the region of the singer’s formant.
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Timbre/Tone Color

In general, sounds may be characterized by pitch, loudness,and quality. Timbre

describes those characteristics of sound that allow the earto distinguish sounds that

have the same pitch and loudness. Timbre is then a broad term for the distinguishable

characteristics of a tone. In singing, it is often referred to astone color.

Many perceptual characteristics of timbre are evident in the spectral content or for-

mant structure of a singer’s voice. Trained singers often modify the formant structure

of their voice in order to add certain desirable characteristics. For example, a low-

ered second formant results in a “darker” voice–often referred to as “covered”–while

a raised second formant produces a “brighter” voice [71]. The covered voice reflects

a softer sound, which is desired by singers trained in the Western classical tradition,

unlike broadway and pop singers who typically use a brightervoice.

Another interesting phenomenon has been documented in trained female singers’

voices. Female singers often shift their first formant to match the fundamental fre-

quency when the fundamental rises above the first formant [72, 73]. This has the

effect of increasing the intelligibility of a vowel sound for a performing artist.

Glottal Source

The glottal source waveform has been shown to possess certain qualities that have

a great impact on the acoustic characteristics of voiced speech. These characteris-

tics play a large part in determining the individuality as well as vocal qualities of a

spoken or sung voice. Applications in the synthesis and enhancement of speech or

singing voice require improved naturalness and a higher level of control over these

vocal qualities. Identifying and modeling the glottal waveform attributes that pro-

duce these qualities can help improve the performance of these applications as well

as others such as speech recognition, speaker identification, and voice pathology

identification. Such advances can also be used to gain a further understanding of the
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glottal characteristics of normal speakers.

The glottal source is typically characterized in either thetime or frequency domains.

In the frequency domain, studies have aimed at identifying glottal characteristics that

can be used to describe perceptual cues. Much of this research has identified spec-

tral characteristics affiliated with vocal qualities (i.e., breathiness, pressed) or sex.

Klatt and Klatt [34] and Hanson [28] found that the main spectral parameters nec-

essary for synthesizing natural-sounding voices with different qualities are spectral

tilt, bandwidth of the first formant, relative noise levels,and amplitudes of the first

few harmonics. While these characteristics have been found to be of great use in

identifying perceptual qualities of the voice, they have yet to be successfully used to

produce these qualities in synthesis applications.

While several frequency-domain glottal models have been proposed based on these

findings, they typically model the glottal waveform with parameters in which the

correlation with time domain parameters is unclear. In order to retain the temporal

information of the glottal waveform, it is important to identify spectral correlates for

time-domain glottal parameters.

In the time domain, the glottal waveform is typically characterized by various mea-

sures such as the fundamental period, open quotient, and glottal asymmetry–usually

denotedT0, Oq, andα, respectively. Measures such as these have proven to be in-

tegral in characterizing vocal effort, prosodic variations and a wide variety of vo-

cal qualities. The values of these parameters can vary, depending on the configu-

ration of the glottal mechanism. Several glottal flow modelshave been developed

in which many important glottal characteristics such as these are parameterized in

the time domain. Cummings and Clements denoted this broad class of models as

non-interactive parametric glottal models[9]. These models are based on the as-

sumption that the glottal source and vocal tract are linearly separable and that no

interaction occurs between the two. Examples of models of this type were proposed
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by Rosenberg [66] and Klatt & Klatt [34] (KLGLOTT88). The effectiveness of these

models lies in their ability to capture timing relationships that have been shown to

have an important perceptual impact on speech signals. Whilethese two particular

models assume an abrupt closure of the glottis, other modelssuch as those devel-

oped by Fant, Liljencrants, Lin [20] (LF model), and Veldhuis [85] (R++) provide

an additional parameter that describes thereturn phaseof a glottal cycle. This pa-

rameter provides an increased level of flexibility that enables a better fit of the glottal

derivative waveform.

While synthesis systems based on either time-domain or frequency-domain parame-

terizations of the glottal source have had mixed success at producing vocal qualities

and textures, a method of utilizing both sets of parameters in a single domain might

provide a significant improvement.
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Vocal Registration

Vocal registration has been the subject of a vast amount of research but has remained

largely controversial in its precise definition and underlying mechanisms. There is

general agreement, however, that a register is a series of adjacent tones on the scale

that (a) sounds equal in timbre and (b) is felt to be produced in a similar manner.

A register covers a certain frequency range, but adjacent registers do overlap, so it is

often possible for the same note to be sung in two different registers. Trained singers

have traditionally been taught to impose a smooth transition between registers by

“blending” them during transitional regions. This is referred to aspassagio. The

voices of untrained singers often contain register “breaks,” which are sharp shifts

from one register to another.

The male voice is often distinguished as having three registers, normally referred

to aschest, head, andfalsetto. A male singer normally sings in the chest and head

registers but will commonly oscillate in and out of the falsetto register when breaks

occur. The falsetto register for males can also be thought ofbeing used when trying

to imitate a female voice.

The literature normally identifies three registers [52, 73]in the female voice:chest,

middle, andhead. However, some females are capable of singing in a special mode

at the upper frequency range in what is referred to as thewhistleregister.

Registers are generally assumed to correspond to voice source properties as deter-

mined by the muscular tuning of the vocal folds, particularly the vocal ligament.

Hence, they should be basically independent of vocal tract resonance. A number of

studies have used various glottal models to identify modalities in glottal behavior that

can be used to determine register shifts as well as register-specific characteristics in

a singer’s voice [31,77–79].
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CHAPTER 3

BACKGROUND: SPECTRAL MODELS AND
MODIFICATION TECHNIQUES

Before attempting to develop a model for singing voice analysis and synthesis, it is

important to have an understanding of the issues that are specific to this particular task. The

singing voice has been shown to be very different from normalspeech, and thus speech

processing techniques that were designed for general speech are not always suitable for

the singing voice. However, many of these techniques can at least provide a basis from

which algorithms specific to the analysis, synthesis, and modification of the singing voice

can be derived. As mentioned earlier, the source-filter model for speech production can

be divided into two components that can be independently modeled and modified. This

chapter focuses on the vocal tract filter and its spectral representations. An investigation of

current existing methods for spectral modeling and modification for speech is presented.

Methods for spectral modification are targeted at altering the perceived characteristics

of a speaker’s or singer’s voice. In the singing voice, this can be thought of as altering

the timbre or tone color by controlling the underlying formant structure that resides in the

spectrum. This is generally performed by first identifying aparametric spectral model for

the voice and then systematically adjusting parameters in order to modify vocal qualities.

Spectral modification can serve a variety of alternate applications such as speaker normal-

ization and voice conversion. The goal of this work, however, is to develop a spectral model

and modification algorithm to enhance vocal qualities in thesinging voice. Figure 5 shows

a block diagram of the analysis, modification, and synthesisprocedures.

There are a number of techniques for estimating the vocal tract response in the source-

filter model. This filter is often defined in frequency as aspectral envelope. While there are

several methods for accomplishing this, we will discuss a few basic methods from which
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Figure 5: Block diagram of the analysis, modification, and synthesis procedures for mod-
ifying vocal qualities.

most alternative methods are derived.

3.1 Spectral Envelope Estimation

In computing the spectral envelope of a signal for the purposes of spectral modification,

there are a number of factors that should be considered in choosing a proper method for

estimation.

Accuracy It is important for a spectral envelope to provide a proper fitto the magnitude

spectrum. A spectral envelope should fit the peaks of the partials without tracing any

one of them individually.
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SmoothnessA certain level of smoothness is desired for a spectral envelope. In frequency,

a spectral envelope should give a general idea of the distribution of the signal’s en-

ergy. Spectral envelopes should also possess consistency from frame to frame. Ex-

cessive oscillations or the presence of discontinuities can lead to unnatural qualities

in synthesized waveforms.

Flexibility An effective spectral envelope estimation technique must be capable of han-

dling a wide range of signals with varying characteristics.In speech and signing,

a variety of vocal tract configurations are possible, as wellas sounds that contain a

mixture of both harmonic and noisy contents.

3.1.1 Linear Predictive Coding (LPC)

LPC is an early method originally developed for speech coding and compression. Because

of the special properties of this method, it can also be used for spectral envelope estimation.

LPC represents the spectral envelope as an all-pole filter. This representation is based on

the concatenated lossless acoustic tube model.

As discussed earlier, an acoustic tube representation is commonly used to model the

vocal tract. The acoustic tube model, however, omits certain complexities of the vocal tract

and is thus not a perfect model. The concatenation of acoustic tubes typically does not

account for the effects of the nasal tract. This second cavity is shaped very irregularly and

introduces additional resonances and anti-resonances (nasal zeros) because of the effect of

coupling. While the zeros are not vital for the recognition ofthe speech sounds, they can

lead to problems in formant detection and characterization. Additionally, certain speech

sounds like laterals (e.g.,/I/ ) have a tongue configuration that is not well described by a

simple acoustic tube. The acoustic tube model also ignores the viscosity of the walls of the

vocal tract as well as any damping that may occur. Despite these drawbacks, the acoustic

tube model performs remarkably well in a wide variety of speech analysis and synthesis

applications.
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The idea behind LPC analysis is to represent each sample of a signal s[n] in the time

domain by a linear combination of thep preceding values,s[n− p] throughs[n− 1], where

p is the order of the analysis [45]. The approximated value,ŝ[n], is computed from the

preceding values andp predictor coefficients,ai, as follows:

ŝ[n] =

p∑

i=1

ais[n − i]. (1)

For each time frame, the coefficients,ai, will be computed such that the prediction error,

e[n] = ŝ[n] − s[n], for this window is minimized. In coding applications, it issufficient

to send thep coefficients,ai, and the residual signal,e[n], which uses a smaller range of

values and can thus be coded with fewer bits. The receiver canthen recover the original

signal frome[n] and the filter coefficients,ai.

When the residual signal,e[n], is minimized, the resulting analysis filter serves to flatten

the spectrum of the input signal. The transfer function of this filter is given by

A(ejω) = 1 −

p∑

i=1

aie
−jωi. (2)

Because this filter removes the spectral envelope from the input waveform, it is generally

referred to as theinversefilter. In a synthesis application, the synthesis filter provides an

approximation of the spectral envelope:

1

A(ejω)
=

1

1 −
∑p

i=1 aie−jωi
. (3)

As can be seen, the synthesis filter (with gain),G/A(ejω), is an all-pole filter.

The order of the filter is an important parameter that can affect the accuracy of the

spectral envelope. As the order decreases, fewer poles are used and the approximation of

the spectral envelope becomes coarser. However, the envelope will still reflect the rough

distribution of energy in the spectrum. This is illustratedin Figure 6.

In some cases, the LPC spectral envelope will descend down tothe level of residual

noise in the gap between two harmonic partials. This occurs when the distance in frequency

between partials is large, as in high pitched sounds, and theorder of estimation is high. This

effect is illustrated in Figure 7.
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Figure 6: Example of LPC spectral envelopes fitted to the spectrum of a voiced frame. The
envelopes are calculated with order p=12 (dotted) and p=40 (dashed).

0 1000 2000 3000 4000 5000 6000 7000 8000
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

A
m

p
lit

u
d

e 
(d

B
)

signal spectrum
LPC (p=12)

Figure 7: Example of an LPC spectral envelope where the harmonics are spaced too far
apart for the LPC order chosen (p=12). The spectral envelopetraces unwanted portions of
the spectrum in between harmonics.
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3.1.2 Cepstrum Spectral Envelope

The cepstrum is a method of speech analysis based on a spectral representation of the

signal. According to the source-filter model of speech production, a speech signals[n] can

be expressed as a convolution between a source or excitationsignale[n] and the impulse

response of the vocal tract filterv[n]:

s[n] = e[n] ∗ v[n]. (4)

In the frequency domain, this convolution becomes the multiplication of the respective

frequency responses:

S(ejω) = E(ejω) · V (ejω). (5)

Taking the logarithm of the absolute value of the Fourier transforms, the multiplication

in (5) is converted to an addition:

log |S(ejω)| = log |E(ejω)| + log |V (ejω)|. (6)

If we now apply an inverse Fourier transform to the logarithmof the magnitude spectrum,

we get the frequency distribution of the fluctuations in the curve of the spectrum, denoted

c[n], which is called thecepstrum[3,59]:

c[n] = F−1
[
log |S(ejω)|

]
= F−1

[
log |E(ejω)|

]
+ F−1

[
log |V (ejω)|

]
. (7)

The cepstrum no longer exists in the frequency domain but instead operates in an alternate

domain referred to as thequefrencydomain.

Under the assumption that the source spectrum has only rapidfluctuations (the exci-

tation signale[n] is a stable, regular oscillation on the order of102 Hz), its contribution

to c[n] will be concentrated in its higher regions, while the contribution ofV (ejω) will be

the slow fluctuations in the spectrumS(ejω) and will therefore be concentrated only in the

lower part ofc[n]. This can be seen in Figure 8. Thus, separating the two components

is accomplished simply by keeping the firstp cepstral coefficients ofc[n] and throwing
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Figure 8: Cepstrum of a voiced frame of speech. The voiced excitation manifests itself
as a weighted impulse train, while the vocal tract response is represented by the quickly
decaying portion in the lower regions of the “quefrency.”

away the remainder. The resulting representation models the low-frequency components or

smoothed portion of the spectrum. This interpretation serves as an estimate of the spectral

envelope.

There are two disadvantages of the cepstrum method for spectral envelope estimation.

First, since the cepstrum is essentially a low pass filteringof the curve of the spectrum, the

partial peaks are not always properly linked. Instead, the fluctuations of the spectrum are

merely averaged out. This effect is illustrated in Figure 9.

Another disadvantage of the cepstrum method is similar to that of LPC. In cases where

both the frequency gap between partials and the estimation order are large, the resulting

spectral envelope will trace the residual noise present in the gaps. Figure 10 illustrates this

case for the cepstrum estimator.
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Figure 9: Example of cepstrum spectral envelopes fitted to the spectrum of a voiced frame.
The envelopes are calculated with order p=16 (dotted) and p=40 (dashed).
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Figure 10: Example of cepstrum spectral envelopes where the harmonicsare spaced too
far apart. Even with a wide variety of orders chosen, the envelopes do not smoothly connect
the harmonic peaks.
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3.2 Spectral Envelope Modification

The task of spectral envelope modification is one that has been approached with respect

to a variety of applications. While there has been much research aimed at transforming

the identity of a speaker, our focus is on improving vocal qualities of the singing voice

while maintaining the singer’s identity. There are two popular approaches to spectral mod-

ification: (1) all-pole (LPC)-based methods of scaling polesby a complex factor in order

to alter formant characteristics and (2) frequency warpingprocedures for modifying the

spectral envelope directly.

3.2.1 Pole Modification

When LPC analysis is used to estimate the spectral envelope, formants are assigned to

poles and can then be modified to correspond with desired formant locations. The formant

structure of the vocal tract can be viewed as a set of cascadedsecond-order IIR filters of

the form

F (z) =
1

(1 − az−1)(1 − a∗z−1)
. (8)

The conjugate pole pairz = |a|e±j 6 a and sampling frequencyfs determine the formant

frequencyF and 3-dB bandwidthB according to

F =
fs

2π
6 a Hz, (9)

B = −
fs

π
ln |a| Hz. (10)

Formant modifications can be performed by scaling the angle,6 a, and magnitude,|a|, of

each pole.

Occasionally, when two poles are shifted in frequency too close to one another, only

one peak will appear in the spectrum. This is a symptom ofpole interaction. An example

of pole interaction is shown in Figure 11. In part (a) of the figure, the spectral envelope

is characterized by pole 1 and pole 2. When pole 2 is shifted to the desired frequency for
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the second formant,F2, as shown in part (b), it is no longer distinguishable from the first

formant,F1.

A number of algorithms have been developed to compensate forpole interaction. Hsiao

and Childers [33] define a pole interaction factor that identifies the effect of surrounding

poles on a given pole at its center frequency. In a simplified two-pole case, wherezi =

rie
jφi andzj = rje

jφj , the frequency response of the overall filter at the angleφi is

|H(ejφi)|2 =
1

(1 − ri)2
· ∆|H|2j (11)

where∆|H|2j is the pole interaction factor of polezj with polezi. This factor is defined as

∆|H|2j =
1

1 − 2rj cos(φi − φj) + r2
j

. (12)

For formant modification, the radii of the poles are scaled inorder to achieve desired for-

mant amplitudes in spite of pole interaction. This process is applied iteratively until the

spectral deviation, which is defined as the sum of the differences between the resulting for-

mant spectrum and the desired spectrum at the formant frequencies, falls below a threshold.

A similar iterative algorithm for overcoming pole interaction during formant modification

was also developed by Mizuno, Abe, and Hirokawa [53].

While these methods produce spectral envelopes with desiredformant amplitudes at the

formant frequencies, one drawback to this technique is thatthe bandwidth of each formant

cannot be controlled. As shown in (10), each formant’s bandwidth is dependent on the

magnitude of the corresponding pole. Therefore, the amplitude and bandwidth of each

formant cannot be independently modified with these procedures.

Recently, modification techniques for transforming the linespectrum pair (LSP) fre-

quencies have been developed [55] that enable a higher levelof control over formant char-

acteristics. By taking advantage of the nearly linear relationship between the LSPs and

formants, modifications are performed based on desired shifts in formant frequencies and

bandwidths.
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Figure 11: When poles are shifted too close to one another, their respective formants merge
and become indistinguishable. This is an example of pole interaction.
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3.2.2 Frequency Warping

Frequency warping is a simple method for shifting formants by applying a frequency warp-

ing function directly to the spectral envelope. Four parameters typically specify a formant

shift. The lower and upper frequencies,fL andfU , determine the range of the spectral enve-

lope to be affected. The original formant center frequency and the target center frequency

are specified byf1 andf2, respectively. The warping function gradually decreases the shift

distance as it gets further fromF1. The resulting warping function can either be a piecewise

linear function or a smoother realization connecting theseparameters. An example of this

process is illustrated in Figure 12. Formant bandwidths canalso be modified with the use

of a warping function. Figure 13 shows a warping function forincreasing the bandwidth of

a single formant as well as the resulting spectral modification.
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Figure 12: Two possible frequency warping functions are linear (top-left) and Gaussian
(top-right). These can be applied to a spectral envelope in order to shift formant locations
(bottom).

Turajlic [83] suggests an alternate process in which a frequency shift warping function,
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Figure 13: Example of a frequency warping function (top) being appliedto alter a for-
mant’s bandwidth (bottom).
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α(ω), and a bandwidth warping function,β(ω), are combined with anintensity shaping

function, γ(ω), which allows modifications to the magnitude of the spectrum. The equation

for this process is expressed as

Ĥ(ω) = γ(ω) · H((α(ω) ∗ β(ω)) · ω) (13)

whereĤ(ω) is the modified spectral envelope.

Frequency warping methods allow a high level of control overformant characteristics,

but only when the original and modified formants are spaced far enough apart so as to

be nearly independent of one another. When formants are too close to one another, it

is difficult to modify their bandwidths to desirable specifications. This is similar to the

pole interaction problem suffered by pole modification techniques. Additionally, frequency

warping methods do not allow formants to merge or split as is often desired in formant

modification processes. Figure 14 illustrates this phenomenon. In this example, the center

frequency ofF3 has been warped from 2300 Hz to 2700 Hz. In doing so,F3 has failed to

split fromF2 (centered at 1800 Hz) and merge withF4 (centered at 3200 Hz).
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Figure 14: Frequency warping example: the center frequency ofF3 has been warped from
2300 Hz to 2700 Hz, but in doing so,F3 has failed to split fromF2 (centered at 1800 Hz)
and merge withF4 (centered at 3200 Hz).

29



CHAPTER 4

A NEW METHOD FOR SPECTRAL MODELING AND
MODIFICATION

As described in the previous chapter, spectral modificationtechniques are capable of

performing a variety of modifications to the formant structure that resides within the spec-

tral envelope. However, these techniques are limited by their inability to independently

control important formant characteristics such as amplitude and bandwidth. Furthermore,

these modifications are only effective when the underlying model for the spectral envelope

provides an accurate representation of the formant structure. Any errors such as the ones

described in Section 3.2 will render the modification process ineffective and may result in

resynthesized outputs with unnatural qualities or artifacts. In this chapter, a new method

for spectral modeling and modification is presented that is aimed at overcoming the afore-

mentioned shortcomings of current methods. The block diagram in Figure 15 outlines the

proposed spectral modification procedure compared to the general modification procedure.

4.1 Analysis/Synthesis Procedure

The analysis and synthesis procedures provide the spectralmodification algorithm with an

interface with the actual speech waveforms. The requirements of the analysis and synthesis

methods are similar to those of the spectral estimation procedures discussed in Section 3.1.

The analysis/synthesis techniques must provide accurate modeling of the dynamic charac-

teristics of the speech production process, as well as flexibility to model and synthesize a

wide variety of signals with minimal computational cost.

In order to achieve the requirements of accuracy, flexibility, and computational ef-

ficiency, the Analysis-by-Synthesis/Overlap-Add (ABS/OLA) sinusoidal modeling sys-

tem was chosen to provide the framework for the spectral modification procedure. The

ABS/OLA sinusoidal model represents an input signal,s[n], by a sum of equal-length,
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Figure 15: Block diagrams for the original spectral modification procedure (left) and the
proposed system (right).

overlapping short-time signal frames,sk[n]. Thus,

s[n] = g[n]
∑

k

w[n − nNs]sk[n], (14)

whereNs is the frame length,w[n] is a complementary tapered window function,g[n] is

a slowly time-varying gain envelope, andsk[n] represents thekth frame of the synthesized

signal. Each signal contribution,sk[n], is represented as the sum of a small number of

constant-frequency sinusoidal components, given by

sk[n] =
J−1∑

j=0

Ak
j cos(ωk

j n + φk
j ), (15)

whereJ is the number of sinusoidal components in the frame, andAk
j , ωk

j , andφk
j are the

sinusoidal amplitudes, frequencies, and phases for thekth frame.

The parameters for each frame are determined by an iterativeanalysis-by-synthesis pro-

cedure designed to minimize a mean-squared error criterion. While the frequencies of the
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sinusoids are not restricted to be harmonically related to one another (i.e., exact multiples

of the fundamental frequency), only one sinusoid near each harmonic is retained during the

analysis. This form of the sinusoidal model is called a “quasiharmonic” representation [24].

The quasi-harmonic nature of the synthesis model implies that the frequency of each

sinusoid,ωj, is at or near a multiple of the fundamental frequency,ω0, as follows:

ωk
j = jωk

0 + ∆k
j , (16)

where∆k
j is the differential frequency of each component.

The synthesis procedure uses the inverse fast Fourier transform to compute each syn-

thetic contribution,sk[n], instead of the oscillator functions commonly used in othersinu-

soidal models [64, 70]. The final synthesized output is computed by applying an overlap-

add procedure to the synthesized frames.

High-quality modifications are possible within the framework of the ABS/OLA model [24],

which make it particularly attractive for singing voice synthesis. Time scaling is performed

by altering the update rate for the model parameters in conjunction with changing the frame

duration. Phase constraints are imposed on the sinusoids inorder to maintain the phase re-

lationship between the sinusoids within each frame. Pitch modifications are implemented

by modifying the frequencies of the sinusoids to be multiples of a scaled fundamental fre-

quency. A phasor interpolation scheme was developed so thatthese changes could be made

while maintaining the spectral shape of the original signal[25].

4.2 Spectral Envelope Estimation

As discussed in Section 3.1, LPC and cepstral analysis both tend to trace the residual noise

in the spectrum of voiced speech when partials are spaced farenough apart and the order

of estimation is sufficiently high. Because of this shortcoming, an alternative method for

the envelope estimation was implemented within the ABS/OLA analysis procedure. This

method, developed by Galas and Rodet [21, 22], is known asgeneralized discrete cepstral

analysis.
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Unlike LPC, which is computed directly from the waveform, andcepstral analysis,

which is computed from a spectral representation of the signal with points spaced regularly

on the frequency axis, the discrete cepstrum spectral envelope is computed from discrete

points in the frequency/amplitude plane. This method is an ideal companion to the si-

nusoidal model, where the peaks of the sinusoids serve as thenecessary discrete points.

Assuming that the sinusoids accurately model the partials of voiced speech without regard

to the residual noise, the discrete cepstrum will not sufferfrom the problem of tracing the

spectrum in the frequency region between partials. Instead, it will produce a smooth spec-

tral envelope that links the peaks of the partials. The methodology for determining the

discrete cepstrum is as follows.

Given a set of spectral peaks with amplitudesxi at frequenciesωi, for i = [1, ..., n], a

magnitude spectrum,X(ejω), is defined as

X(ejω) =
n∑

i=1

xiδ(ω − ωi). (17)

X(ejω) is considered to be the combined frequency response of the source spectrum,

S(ejω), and a filter transfer function,P (ejω), as follows:

X(ejω) = S(ejω) · P (ejω). (18)

The source spectrum is given by

S(ejω) =
n∑

i=1

siδ(ω − ωi), (19)

wheresi are the source amplitudes at the same frequencies asωi in X(ejω). The filter

transfer function is modeled by

P (ejω) =

p∏

i=0

eci cos(ωi), (20)

whereci are the filter parameters.

Assuming a flat source spectrum,S(ejω) = 1, for all ω, the filter parameters,ci, must

be determined so that the quadratic error,E, between the log spectra is minimized. This
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error criterion is given as

E =
n∑

i=1

[
log si|P (ejωi)| − log xi)

]2
. (21)

Determining the cepstral coefficients is accomplished simply by solving the following ma-

trix equation forc.

Ac = b, (22)

whereA is a matrix of orderp + 1 whose components are given by

aij =
n∑

k=1

cos(ωki) cos(ωkj), (23)

andb is the column vector given by

bi =
n∑

k=1

log
xk

sk

cos(ωki). (24)

Because the resulting matrix is symmetric, it can be solved efficiently.

4.3 Spectral Modeling and Modification Using Asymmetric
Generalized Gaussian Functions

The proposed approach for spectral modeling and modification represents the formant

structure of a speech waveform as a weighted sum of asymmetric generalized Gaussian

functions [38,39]. The discrete vocal tract responseV [k] is approximated as

V [k] =
M∑

m=0

AmGm[k], (25)

where the generalized Gaussian function G[k] is specified as

G[k] =






exp

[
−
(

|k−µ|
βl

)αl
]

, for k ≤ µ,

exp

[
−
(

|k−µ|
βr

)αr
]

, for k > µ.

(26)

The discrete frequency index and the center frequency are given byk andµ, respectively.

These functions independently parameterize the width and shape of the left and right sides
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of the generalized Gaussian function. The spectral width parameter,β, dictates the band-

width of each formant, whileα is a shaping parameter that controls the rate of decay.

Figure 16 illustrates the effect of these parameters.
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Figure 16: Asymmetric generalized Gaussian functions with increasing width parameters
(β) to the left and increasing shape parameters (α) to the right.

The final vocal tract response is obtained by estimating the generalized Gaussian for-

mant structure with a high-order cepstral approximation. The purpose of this is to couple

minimum phase characteristics with the magnitude spectrum. When no spectral modifica-

tions are applied, the final vocal tract response should closely fit the sinusoidal parameters.

Figure 17 shows an example of asymmetric generalized Gaussian functions fit to a spectral

envelope.

The flexibility of the asymmetric generalized Gaussian functions ensures an accurate

fit to the spectral envelope and enables intuitive and independent modification of each for-

mant’s frequency, amplitude, bandwidth, and shape. This provides a high level of control

over the formant structure of a singer’s voice.

Before formant modification can be performed, each formant must be mapped to a
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Figure 17: Asymmetric generalized Gaussian functions fitted to a spectral envelope.

particular Gaussian function. Errors can often occur when trying to assign smooth for-

mant trajectories to continuously varying spectral shapes. Formants can merge, split, and

sometimes disappear. Since formant changes occur relatively slowly over time, a formant

tracking system was implemented to perform the mapping within each frame, as well as to

form tracks across frames. The process is based on McAulay and Quatieri’s peak matching

algorithm for tracking harmonics [49]. A cost function is employed that is based on prox-

imity in frequency and difference in amplitude. Formant tracks are derived such that the

cost function is minimized. “Births” and “deaths” of formanttracks are allowed to account

for the possibility of the number of distinguishable formants changing from frame to frame.

4.4 Parameter Estimation Using the Expectation Maximiza-
tion Algorithm

The task of estimating parameters for a set of coexisting asymmetric generalized Gaus-

sian functions must be carefully considered because of the large search space involved.

Therefore, an implementation of the Expectation Maximization (EM) algorithm is used to
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determine the function parameters optimally.

The Expectation Maximization algorithm is a broadly applicable algorithm used to

maximize the log-likelihood from incomplete data by iteratively maximizing the expec-

tation of the log-likelihood of the complete data [11]. Thisparticular type of statistical

estimation algorithm in an unsupervised learning algorithm, which means only the data

sample is observed while the class or state of the data sampleremains unobservable.

The EM algorithm is composed of an expectation step (E-step)and a maximization step

(M-step). The E-step estimates the unobserved data based onthe current estimated distri-

bution parameters. The M-step then updates the parameters with a maximum-likelihood

estimate based on the data derived from the previous E-step.These two steps are repeated

until convergence is reached.

In the proposed application of the EM algorithm, the spectral envelope,X(ejωn), of

a speech waveform is viewed as a probability distribution,P (xk), wherexk are the bin

numbers(k = 1, ..., N). The purpose of the algorithm is to approximateP (xk) with a

mixture of asymmetric generalized Gaussian functions.

For our model, we letxk be the observed incomplete data and(xk, yk) be the complete

data, whereyk is an unobservable integer between 1 ands, indicating the corresponding

component density,f(xk|yk, φyk
), and mixing parameter,ωyk

, of the mixture pdf. The next

step is to compute the expectation of the log-likelihood given the complete data. TheQ

function serves to represent this expectation for multipleobserved data,X = {x1, . . . , xn},

and multiple unobserved data,Y = {y1, . . . , yn}. It is assumed that a parametric family of

mixture probability density functions is given and that a particularΦ is the parameter value

to be estimated.

Given the probability of multiple observed data, the log-likelihood of the observable
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data is as follows:

L(X,Φ) = log

[
N∏

k=1

f(xk|Φ)P (xk)

]

=
N∑

k=1

P (xk) log f(xk|Φ).

(27)

The log-likelihood of a single complete data point,(xk, yk), is

f(xk, yk|Φ) = ωyk
f(xk|yk, φyk

), (28)

whereωyk
is thea priori probability (the mixture weight). The log-likelihood of anincom-

plete data point,xk, is given by

f(xk|φ) =
∑

yk

f(xk, yk|Φ), (29)

and the posterior probability is

P (yk|xk,Φ) =
ωyk

f(xk|yk, φyk
)∑

yk
ωyk

f(xk|yk, φyk
)
. (30)

TheQ function can then be formulated as

Q(Φ,Φ) =
N∑

k=1

P (xk)

{
∑

yk

P (yk|xk, φyk
) log

[
ωyk

f(xk|yk, φyk
)
]
}

. (31)

Since the inner summation is over allyk andyk ∈ {1 . . . s} for eachk, yk can be denoted

by i. For example, if thekth sample was generated by theith mixture, thenyk = i. By

expanding the log terms, theQ function can be reformulated as

Q(Φ,Φ) =
∑

i

{
N∑

k=1

P (xk)P (i|xk, φi)

}
log ωi

+
∑

i

{
N∑

k=1

P (xk)P (i|xk, φi) log f(xk|i, φi)

}
.

(32)

It is important to distinguish between the first and second arguments of theQ function,

Φ andΦ. Φ is a conditioning argument to the expectation and is regarded as fixed and

known at every E-step. The second argument,Φ, conditions the likelihood of the complete

data. During the M-step, a value forΦ is determined such that theQ function is maximized.
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The asymmetric Generalized Gaussian function is the probability density that is used

for this particular model and is given by

f(xk|i, φi) =






γ exp

[
−
(

|x−µi|

αL
i

)βL
i

]
, x ≤ µi,

γ exp

[
−
(

|x−µi|

αR
i

)βR
i

]
, x > µi.

(33)

Once theQ function has been determined, the M-step is completed by maximizing each

term in (32) for eachi with respect toωi andφi. This is accomplished by solving for

∂Q(Φ,Φ)

∂φi

=
N∑

k=1

P (xk)P (i|xk, φi)
∂

∂Φ

[
log f(xk|i,Φ)

]
= 0. (34)

However, because of the asymmetric nature of this particular probability density func-

tion, µ is not the true mean and the left and rightαi terms are unrelated to the standard

deviation. Therefore it is impossible to determine a closed-form solution for (34). Sub-

sequently, it must be solved numerically with respect toαL
i , αR

i , βL
i , βR

i , andµi. This,

however, is a much simpler optimization than estimating parameters for all of the general-

ized Gaussian functions simultaneously.

In summary, the EM algorithm can be utilized to fit a set of probability density functions

to a frequency spectrum by maximizing the log-likelihood ofthe observed data,L(X,Φ),

in the following manner:

1. Choose an initial estimateΦ.

2. E-step: ComputeQ(Φ,Φ) based on the givenΦ.

3. M-step : DetermineΦ = argmax
Φ

Q(Φ,Φ).

4. SetΦ = Φ and repeat steps 2-4 until convergence is reached.

4.4.1 Initialization of the EM Algorithm

The EM algorithm has been shown to provide an increase in the likelihood function after

every iteration. Furthermore, it is guaranteed to convergeon a local maximum. Despite this
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property, the EM algorithm is not guaranteed to converge to aglobal maximum. Therefore,

it is important to provide the algorithm with a proper initial estimate.

A number of methods were investigated for initializing the EM algorithm. These in-

clude

• Peak picking the spectral envelope to initialize the centerfrequencies and weights.

The width and shape parameters were set to equal values.

• Using the estimated parameters from the previous frame to initialize the current

frame.

• Employing a formant tracking scheme to determine the formant frequencies and us-

ing the corresponding spectral envelope magnitudes to initialize the weights.

The first method often missed formants that were too close to another formant so as to

not exhibit a peak in the spectral envelope. The second method tended to produce errors be-

cause two Gaussian functions would occasionally converge to a single formant. Figure 18

shows examples of these errors produced by the first two initialization methods. In both

cases, the formant at 1000 Hz is missed by the estimation process.

While not the most efficient of the three methods, a formant tracking algorithm em-

ployed to initialize the parameter estimation process provided the most accurate and con-

sistent results. The formant estimation method employed was originally formulated by

Schafer and Rabiner [69]. This particular method was chosen because of its ability to

determine formant parameters directly from cepstral coefficients.
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Figure 18: Examples of errors in the Expectation Maximization procedure for fitting asym-
metric generalized Gaussians to a spectral envelope. Top: missed formant at 1000 Hz.
Bottom: double formant at 400 Hz.

41



CHAPTER 5

BACKGROUND: THE GLOTTAL VOICE SOURCE

The signal produced when the vocal folds vibrate the airstream from the lungs is com-

monly known as the glottal voice source. This intermediate waveform serves as the canvas

onto which the vocal tract imprints its own characteristicsin the form of resonances and

timbre. While many basic speech synthesis techniques assumethat the excitation to the

vocal tract is an impulse train and that the glottal spectralshaping is included in the over-

all vocal tract filter model, it has been shown that an appropriate model for the glottal

source can greatly improve naturalness and vocal quality. An important study by Rosen-

berg [66] showed that the use of a more natural glottal pulse shape resulted in synthetic

speech with significantly improved quality over those that were produced with simpler

glottal pulse models such as impulses, triangular waves, orsquare waves. This work, along

with many others, provided the motivation for the development of glottal models of appro-

priate complexity that could effectively capture the characteristics of the glottal source for

more natural speech synthesis.

5.1 Glottal Flow Models

Several glottal source models have been proposed for modeling the glottal derivative wave-

form. While some glottal flow models such as the KLGLOTT88 offer a simple and efficient

method for representing a glottal wave period, we have chosen to use more complex mod-

els that offer greater flexibility as well as accuracy. The LFand R++ glottal flow models

are both five-parameter models capable of modeling smooth closure of the glottis as well

as asymmetric glottal flow pulse shapes. Other models assumean abrupt closure that can

cause a skewing of the spectral tilt when this assumption does not hold. Fant and his col-

leagues note that even a slight departure from abrupt closure results in a significant increase

in the roll-off of the glottal spectrum [20].
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5.1.1 LF model

Originally proposed by Fant and his colleagues [20], the Liljencrants-Fant (LF) model

is a representation of the glottal flow derivative. In the source-filter model of the speech

production mechanism, the glottal flow derivative serves asthe excitation for the vocal tract

filter. The actual glottal flow waveform, representing the volume velocity of air traveling

through the glottis, can be calculated by integrating the glottal derivative over a single

period. The five independent parameters of the LF model are

• T0 : fundamental period

• Te : instant of maximum excitation

• Tp : instant of maximum glottal flow

• Ta : return phase constant

• Ee : amplitude at instant of maximum excitation

The model divides the glottal cycle into two distinct phases, with the boundary being

marked by the instant of glottal closure, which is where maximum excitation occurs. The

amplitude of the glottal derivative at this point,Ee, also marks the point of steepest decent

in the glottal waveform.

The LF model is parameterized by the following equation:

g(t) =






−Eee
a(t−Te) sin(πt/Tp)

sin(πTe/Tp)
, 0 ≤ t ≤ Te,

−Ee

ǫTa

[
e−ǫ(t−Te) − e−ǫ(T0−Te)

]
, Te < t ≤ T0.

(35)

The first segment of the LF model characterizes the derivative glottal flow from the

glottal opening to the glottal closure instant. During thisperiod, the glottis is considered

to be open and is thus denoted theopen phase. This portion of the glottal derivative is

modeled as an increasing exponential modulated by a sinusoid. The second segment, the
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closed phase, characterizes the closure of the glottis as a decreasing exponential. Figure 19

illustrates the LF model for a single glottal cycle. The effects of the parameters on the

waveform are also indicated.

Open Phase Closed Phase
Opening Phase Closing Phase

Glottal Closure Instant

E
Tp

Te

T0

Ta

Figure 19: Parameters for glottal flow models and how they relate to glottal waveforms
(top) and their derivatives (bottom).

The internal parameters of the LF model equation,a andǫ, are determined by solving

the constraint equations,

ǫTa = 1 − e−ǫ(T0−Te) (36)

and

1

a2 +
(

π
Tp

)2

[
e−aTe

π/Tp

sin(πTe

Tp
)

+ a −
π

Tp

cot(
πTe

Tp

)

]
=

T0 − Te

eǫ(T0−Te) − 1
−

1

ǫ
(37)

These constraints ensure the continuity of the glottal derivative at the boundary points as

well as the glottal closure instant.

The open quotient,Oq, is a significant measure that defines the ratio of the open phase

duration to the fundamental period. Because this portion of the glottal cycle is represented
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by the first segment in the LF model, the open quotient is calculated as

Oq =
Te

T0

. (38)

The open phase can be further divided into two segments, theopening phaseandclosing

phase. The division of these two segments is marked by the instant of maximum glottal

flow (Tp). The asymmetry coefficient,α, defines the ratio of the opening phase duration to

the length of the entire open phase. Thus,

α =
Tp

Te

. (39)

The duration required for the glottis to reach full closure is characterized by the pa-

rameterTa. This period is also known as thereturn phase. An alternative form of this

parameter,Qa, is often used that describes the ratio of the return phase tothe closed phase.

Qa is calculated as

Qa =
Ta

T0 − Te

. (40)

Oq, α, andQa have been shown to be indicators of perceptual qualities. Aswe will

see later in this document, these measures also have a great impact on the spectrum of the

glottal source. Although these measures are not explicit parameters of the LF model, they

are closely related to the LF parameters and can be calculated using the above equations.

5.1.2 R++ model

Veldhuis proposed the R++ model for the glottal derivative [85] as an extension to a poly-

nomial model originally proposed by Rosenberg [66]. These extensions were designed to

increase the flexibility of the original model by incorporating control over both the return

phase and asymmetry of a glottal pulse. The independent parameters for this model (T0,

Te, Tp, Ta, A) are equivalent to those of the LF model with the exception ofthe parameter

A, which is an amplitude coefficient that scales the maximum glottal flow.

Like the LF model, this model offers a flexible and accurate representation of the glottal

flow derivative waveform. The glottal derivative of a singlecycle is segmented into open
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and closed phases as in the LF model, but the R++ model uses a third-order polynomial to

represent the waveform during the open phase. The closed phase of the glottal derivative

cycle is modeled with a decreasing exponential. The formulation of the R++ model is given

by

g(t) =






4At(Tp − t)(Tx − t), 0 ≤ t ≤ Te,

g(Te)
e−(t−Te)/Ta−e−(T0−Te)/Ta

1−e−(T0−Te)/Ta
, Te < t ≤ T0.

(41)

The parameterTx in the equation is calculated as:

Tx = Te

(
1 −

1
2
Te

2 − TeTp

2Te
2 − 3TeTp + 6Ta(Te − Tp)D(T0, Te, Ta)

)
, (42)

where

D(T0, Te, Ta) = 1 −
(To − Te)/Ta

e(T0−Te)/Ta − 1
. (43)

Because the timing parameters are the same as those of the LF model, the formulas for

the open quotient, asymmetry coefficient, and return phase parameter for the R++ model

are identical.

5.2 Spectral analysis of time-domain glottal flow models
5.2.1 Frequency-domain representations

In this section, spectra of the glottal flow models presentedpreviously are examined in

an effort to determine the relationship between the time-domain parameters and frequency-

domain characteristics of these models. In order to accomplish this, it is useful to derive an-

alytic formulas for the frequency-domain representationsof these glottal derivative models

(LF and R++). This is performed by employing properties of thecontinuous-time Fourier

Transform. Specifically, a frequency representation of theglottal flow waveform can be

calculated by using the integral property of the Fourier Transform:

∫ t

−∞

x(t)dt ⇐⇒
1

jΩ
X(Ω) + πX(0)δ(Ω). (44)
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The spectra of each segment of the LF model are derived independently of one another

and summed in the frequency domain:

GLF (Ω) = GLF
1 (Ω) + GLF

2 (Ω) (45)

where

GLF
1 (Ω) =

−Ee

sin(πTe

Tp
)

[
e−aTe( π

Tp
)

(jΩ − a)2 + ( π
Tp

)
−

e−jΩTe cos(πTe

Tp
) π

Tp

(jΩ − a)2 + ( π
Tp

)

−
e−jΩTe sin(πTe

Tp
)(jΩ − a)

(jΩ − a)2 + ( π
Tp

)

]
(46)

GLF
2 (Ω) =

−Ee

ǫTa

[
e−jΩTe

jΩ + ǫ
−

e−ǫ(T0−Te)e−jΩT0

jΩ + ǫ
−

e−ǫ(T0−Te)(e−jΩTe − e−jΩT0)

jΩ

]
(47)

A similar derivation is used to determine the spectrum of theR++ model:

GR++(Ω) = GR++
1 (Ω) + GR++

2 (Ω) (48)

where

GR++
1 (Ω) = 4K

[
−W

′′′

(Ω) − (Tp + Tx)W
′′

(Ω) − TpTxW
′

(Ω)
]

(49)

GR++
2 (Ω) =

gR++(Te)

1 − e
−(T0−Te)

Ta

{
e−jΩTe − e

−(T0−Te)
Ta e−jΩT0

jΩ + 1/Ta

−
e

−(T0−Te)
Ta (e−jΩTe − e−jΩT0)

jΩ

}

(50)

and

W (Ω) =
1

jΩ
(1 − e−jΩTe). (51)

The spectral formulations for each of these glottal models can be expressed in terms of

Oq, α, andQa by substituting (38)-(40).

Figure 20 illustrates an example of spectra generated usingeach of the models with a

common parameter set. Glottal derivative waveforms generated with identical parameters

by each model are shown with their corresponding frequency-domain representations. Al-

though not identical, the spectra of the two models are in relative agreement in capturing the

spectral shape of the glottal excitation. The spectrum of the glottal source generally takes
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the shape of a low-pass filter. Because of the apparent resonant frequency and asymptotic

roll-off in high frequencies, the spectrum of the glottal derivative is generally described as

aglottal formant.
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Figure 20: Glottal waveform derivatives produced using the LF and R++ models (top) and
their corresponding spectra (bottom). (Oq = 0.6, α = 0.66, Qa = 0.3)

5.2.2 Spectral correlates with time-domain parameters

The spectral derivations presented above can be used to illustrate the effects of the time-

domain parameters of the glottal flow models in the frequencydomain. For this section, the

LF model will be used instead of the R++ model. Although the LF model requires a larger

number of calculations and requires two constraint equations to be resolved, it allows for

a greater range of values for the asymmetry coefficient than the R++ model, whereα is

restricted to a relatively narrow range.
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The analysis presented in this section only considers the effects of varying the time-

domain parameters of the glottal model on the magnitude spectrum. The phase spectrum

of the glottal waveform will be analyzed later in this paper.

The parameterEe determines the amplitude of the glottal derivative at the glottal closure

instant.Ee can also be described as the closing rate of the glottal flow waveform. Sundberg

found thatEe showed a strong correlation with loudness of phonation [73]. By inspection

of (46) and (47), the spectral effects of varyingEe are evident. When the other model

parameters are kept constant,Ee serves as a scalar for the spectrum of the glottal source.

Varying the value ofEe scales the spectrum equally across all frequencies. This parameter

gives the LF model the flexibility to match the vocal intensity of a glottal waveform.

Figure 21 illustrates the spectral effect of varying the open quotient,Oq, while keeping

the remaining parameters constant. These plots show synthesized periods of the glottal

derivative with varyingOq values and their corresponding spectra. As can be seen, lowering

the open quotient results in an upward frequency shift of theglottal formant. This energy

increase in higher frequencies has been linked to perceivedincreases in the loudness and

brightness of a voiced waveform. Several studies have also noted that the type of phonation

(e.g., pressed, modal, breathy) can have a large effect on the open quotient.

The asymmetric coefficient,α, and the return phase parameter,Qa also affect the higher

frequencies in the spectrum of the glottal waveform. Instead of shifting the glottal formant,

however, increasingα or loweringOq results in an increase in the bandwidth of the glottal

formant. This is shown in Figures 22 and 23. In these plots,α andQa are varied while

all other parameters are held constant. The increase in bandwidth causes a decrease in the

spectral roll-off in higher frequencies. Rothenberg noticed this relationship in voices of

trained singers. He observed higher energy in the third and fourth formants of voices with

greater levels of glottal asymmetry [68]. He contended thatthis characteristic is desirable

for good singers and would lead to a clearer and more intelligible voice.
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Figure 21: Glottal flow waveforms with varying open quotient values (Oq = 0.2, 0.5, 0.8)
and the corresponding spectra of the waveform derivatives.All other parameters are held
constant.

50



time

am
pl

itu
de

0.6 0.7 0.8

0.6

0.7

0.8

log frequency

m
ag

ni
tu

de
(d

B)

Figure 22: Glottal flow waveforms with varying asymmetric coefficient values (α =
0.6, 0.7, 0.8) and the corresponding spectra of the waveform derivatives. All other parame-
ters are held constant.
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Figure 23: Glottal flow waveforms with varying return phase coefficientvalues (Qa =
0.1, 0.3, 0.5) and the corresponding spectra of the waveform derivatives. All other parame-
ters are held constant.
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CHAPTER 6

NEW FREQUENCY-DOMAIN METHODS FOR
GLOTTAL CHARACTERIZATION AND

MODIFICATION

The time-domain glottal flow models discussed thus far have been shown to be capable

of effectively parameterizing perceptually relevant characteristics of the glottal source. A

frequency-domain solution, however, would offer a seamless integration with the ABS/OLA

sinusoidal model chosen for the proposed system. Current frequency-domain models fail to

provide reliable parameterizations for reliable glottal modification. Thus, it would be desir-

able to implement a frequency-domain model capable of capturing time-domain features.

This chapter continues the investigation of the relationship between time-domain param-

eters and frequency-domain characteristics introduced inthe previous chapter. Based on

these findings, new methods for estimating and modifying time-domain glottal parameters

in the frequency domain are proposed.

6.1 Analysis of H1*-H2* and time-domain parameters

As has been shown earlier, the parametersOq, α, andTa all have an effect on the magnitude

of the spectrum of a glottal waveform. In particular, the open quotient,Oq, has a direct

effect on the center frequency of the glottal formant. Several experimental studies have

supported this by showing a correlation between theOq and the relative spectral amplitude

of the first two harmonics of the glottal derivative waveform(H1*-H2*). The amplitudes

of H1 and H2 are typically measured from the spectrum of a windowed frame of the glottal

source. The glottal spectrum is usually obtained by one of two methods: inverse filtering

the original speech waveform in order to remove the contributions of the vocal tract, or by

applying a formula in which the amplification of the glottal source due to the first formant

is “corrected” [29].
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Based on these results, additional studies have attempted todevelop methods for es-

timatingOq from measured values of H1*-H2*. Sundberg and his colleagues observed a

strong pattern between the open quotient and the ratio of thefirst two harmonics of the

glottal flow waveforms for five professional baritone singers [75]. Their analysis resulted

in the following relationship based on these measurements:

H1 ∗ −H2∗ = 21.5 − 31.1(1 − Oq). (52)

It should be noted that in this case, H1*-H2* indicates the relative amplitude of the first

two harmonics of the glottal flow waveform and not its derivative.

Fant used the LF model to analyze this relationship between the open quotient and

the amplitudes of the first two harmonics [19]. A regression analysis of synthesized data

varyingOq was used to derive the expression:

H1 ∗ −H2∗ = −6 + 0.27e5.5Oq . (53)

While these studies have attempted to define a direct relationship between the open

quotient and relative amplitudes of the first two harmonics of the glottal source, our analysis

from section 5.2 revealed that the magnitude spectrum of theLF model can be affected

by the asymmetry coefficient (α) as well as the return phase parameter (Qa). This could

decrease the accuracy of any estimation ofOq since its relationship to H1*-H2* is not

one-to-one.

By using (45), it is possible to measure the effects of varyingthe time-domain glottal

parameters of the LF model on the relative amplitude of the first two harmonics. The

frequency-domain representation of the LF model can be viewed as a function of both

frequency and time-domain parameters(T0, Oq, α,Qa, Ee). If T0 andEe are normalized

to values of 1, then the fundamental frequency is guaranteedto be: Ω0 = 2π rad/sec.

Therefore, H1 and H2 can be measured by evaluatingG(Ω, I) at frequencies2π and4π,

respectively. In the equation below,I = {Oq, α,Qa}. H1*-H2* can then be calculated as:

H1 ∗ −H2∗ = 20 log10

(
|G(2π, I)|

|G(4π, I)|

)
, (54)
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Figure 24: Contour plots of the relative amplitude of the first two harmonics of the glottal
flow waveform (H1*-H2*) using the LF model. In each plot, two parameters are varied:
(a)α vs. Oq, (Qa = 0.3); (b) Oq vs. Qa, (α = 0.66); (c) α vs. Qa, (Oq = 0.7);
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Figure 25: Contour plots of the relative phase of the first two harmonics of the glottal flow
waveform (∆φ2) using the LF model. In each plot, two parameters are varied:(a)α vs. Oq,
(Qa = 0.3); (b) Oq vs. Qa, (α = 0.66); (c) α vs. Qa, (Oq = 0.7);

The parametersOq, α, andQa can then be systematically varied while resulting values

of H1*-H2* are calculated. Figure 24 illustrates the dependence of H1*-H2* onOq, α, and

Qa using the LF model. In these plots, the contours represent constant values of H1*-H2*.

In each of the plots two of the three parameters are varied while all other parameters are

held constant.

In part (a),α andOq are varied whileQa is held constant. It can be seen that H1*-H2*

is largely dependent onOq overα for low values ofOq. For higher values ofOq, however,

α has a much greater influence on H1*-H2* thanOq. It is interesting to note thatOq andα

have a wide range of possible values that can produce the sameH1*-H2*.
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This phenomenon is further illustrated in parts (b) and (c) of Figure 24. In these plots,

H1*-H2* is shown as a function of the variable pairs (Oq, Qa) and (α,Qa), respectively.

The contours clearly indicate that for a given value of H1*-H2*, several pairs of (Oq, Qa)

and (α,Qa) are possible. It can be seen that the effects of the return phase parameterQa on

H1*-H2* is very moderate compared toOq andα.

These plots show that H1*-H2* is not a consistent indicator of the open quotient as was

hypothesized in other studies. It can be further generalized that H1*-H2* does not have a

one-to-one relationship with any of the three parameters (Oq, α,Qa).

It is apparent that for many cases it is not possible to estimate Oq, α, or Qa accurately

based on amplitude measurements of the first two harmonics ofthe glottal source. However,

additional information derived from these harmonics exists that can be used to develop an

improved parameter estimation technique. This information is provided by the phases of

the harmonics. If each harmonic is viewed in time as a sinusoid, then the phase of that

harmonic indicates the position of the sinusoid relative tothe analysis window. Since the

phases of sinusoids vary based on their position relative tothe window, it is necessary to

use a phase measure that is shift-invariant. Therefore, a relative phase measure of the first

two harmonics is calculated by determining the phase of H2 atthe point at which the phase

of H1 is zero. Given the phases and frequencies of H1 and H2 as(φ1, φ2) and(ω1, ω2),

respectively, the relative phase of H2 to H1 is calculated as:

∆φ2 = φ2 − φ1
ω2

ω1

. (55)

This measure has the advantage of being invariant to the relative position of the analysis

window while yielding a parameter that characterizes the shape of the glottal waveform.

Figure 26 shows the sum of two harmonic sinusoids with a relative amplitude (H1*-

H2*) of 20 dB and with relative phase (∆φ2) values of0 and 3π
4

. It can be seen from this

figure that the difference in relative phase affects the general shape of a glottal cycle which

in turn influences the glottal parametersOq, α, andQa. Using (45) for the spectra of the LF

model, the relative phase of H2 to H1 is calculated for a wide range of possible values of
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Oq, α, andQa. This relationship is illustrated in Figure 25. These plotsuncover a complex

relationship between the glottal parameters and relative phase of H2 to H1. While∆φ2

tends to be slightly more dependent onOq andα thanQa, the effect of the return phase

parameter is nonetheless significant. Additionally, it is evident that∆φ2 does not vary with

the glottal parameters in the same fashion that (H1*-H2*) does. It is therefore conceivable

that the combination of the measured values for relative amplitude (H1*-H2*) and relative

phase (∆φ2) can be used to estimate the glottal waveform parametersOq, α, andQa.

∆φ2 = 0
∆φ2 = 3π/4

Figure 26: Summation of two sinusoids (|H1|
|H2|

= 10) with relative phase values of∆φ2 = 0

(solid) and∆φ2 = 3π/4 (dashed).

6.2 Parameter Estimation

In this section, a technique is proposed in which frequency-domain parameterizations are

used to estimate the time-domain parameters of a glottal waveform. The performance of

this method is then measured by examining experimental results obtained from recorded

speech waveforms. In an ideal test, the estimates of the time-domain characteristics would

be compared to known ground-truth values. However, becauseof the difficulty in measur-

ing the true volume velocity of air travelling through the glottis, the experimenters were
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unable to obtain these true measures and thus determine the absolute accuracy of the pro-

cedure. As an alternative, the experimental estimates of the proposed procedure are com-

pared with those obtained using a biologically-inspired reference procedure. This reference

procedure combines acoustic and biological measurements with a closed-phase inverse fil-

tering technique for determining glottal flow. It has been shown that closed-phase inverse

filtering is highly proficient in extracting glottal flow waveforms from acoustic speech sig-

nals when glottal closure instants are located using auxiliary biological sensors [35,60]. By

exhibiting a level of consistency between the proposed method and the reference method,

it is shown that key time-domain features of the glottal waveform can be estimated from

frequency-domain measurements of the first two harmonics.

6.2.1 Estimation Method

The parameter estimation method requires a recorded segment of speech or singing to deter-

mine the corresponding glottal characteristics. By measuring the frequencies, amplitudes,

and phases of the first two harmonics of the glottal source signal, the parameters can be

estimated by incorporating the concepts discussed in the previous section.

Before the estimation can be performed, the measurement of the source parameters

requires a separation of the glottal waveform and vocal tract response from the acoustic

signal. While several inverse filtering techniques exist, a method based on an algorithm

by [54] was chosen for this work. In this procedure, basic approximations of glottal clo-

sure regions are identified and a local iterative search is performed in order to estimate

the closed-phase portions of the waveform. These segments are then used to produce an

estimate of the vocal tract that minimizes the linear predictive error for a frame of speech.

An estimate of the glottal derivative can then be obtained byinverse filtering the original

speech waveform in either the time or frequency domains.

The next step of the estimation procedure is to determine theamplitudes and phases

of the first two harmonics. This is performed using a sinusoidal analysis method such
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as that found in [24]. This class of techniques models a speech waveform as a sum of

sinusoids. Sinusoidal parameters are typically obtained iteratively on a frame-by-frame

basis by minimizing an error criterion. These methods are able to accurately capture the

amplitudes, frequencies, and phases of the sinusoids and have the advantage of being able

to compensate for the spectral effects of the window used to truncate the waveform.

At this point, the relative phase of the first two measured harmonics is calculated

with (55) and used to identify a candidate set of LF parameters. An iterative search is

performed to find all the parameter combinations of the LF model that yield a relative

phase withinπ/10 of the measured value:

|[ 6 G(2 · Ω0, I) − 2 · 6 G(Ω0, I)] − φ2
′| < π/10. (56)

The final estimation of the parametersOq, α, andQa is then made by performing a

search for the candidate parameter set whose relative relative amplitude is closest to that of

the measured signal as follows,

arg min
I

∣∣∣∣
|G(Ω0, I)|

|G(2 · Ω0, I)|
−

|H1|

|H2|

∣∣∣∣ . (57)

In order to minimize the computational load required for thesearch processes, a database

of relative amplitudes and phases for all parameter combinations can be constructed prior

to the estimation procedure. The size of the database can be controlled by imposing limits

on the ranges of each of the parameters.

6.2.2 Reference Method

In order to evaluate the performance of the frequency-domain parameter estimation tech-

nique, experimental data was collected and parameter estimates were compared to those

produced by a baseline time-domain method of measuring the glottal waveform. Accu-

rately determining glottal flow has been a problem of considerable interest for several

years. Several sensors have been developed to make physicalmeasurements which esti-

mate glottal flow. Devices such as flow masks [67] and electroglottographs (EGG) have
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been shown to provide general approximations for glottal flow. While these techniques

provide useful information, they often do not determine theexact information required

for certain applications and may also be inherently inaccurate. Glottal inverse filtering is

the only waveform-based method of determining glottal flow.Inverse-filtering techniques,

however, require an accurate estimate of the closed phase portion of a periodic signal. This

estimate is often prone to error. As mentioned earlier, it has been shown that auxiliary

biological sensors can be used to locate the closed-phase portions of the acoustic signal

and thus produce an accurate signal representing glottal flow. This particular approach was

chosen as the front end for the reference method in the experiments conducted.

The auxiliary device used is a General Electromagnetic Sensor (GEMS). The GEMS

device is a low-power miniature device consisting of a penetrating radar that can be used

to detect the motion in the region of the glottis. When positioned correctly on the exterior

of the throat adjacent to the glottis, the output of the radarduring voiced speech is a signal

from which many important characteristics can be extractedthat are useful for speech pro-

cessing. Studies have shown that reliable estimates of glottal activity can be derived from

the output of the GEMS device [4,5]. While it has been suggested that this signal can also

be used to calculate subglottal pressure, we chose to use theGEMS device only to segment

closed-phase portions of the acoustic signal. The closed-phase portions of the simultane-

ously recorded acoustic signal were hand-marked based on the glottal activity recorded by

the GEMS. Methods for synchronizing the acoustic and GEMS signals as well as for re-

moving the filter response of the GEMS device are outlined in [4] and were implemented

in this experiment. Vocal tract filter parameters were then calculated from these segments

and an estimate of glottal excitation was obtained through an inverse-filtering operation.

The LF parameters were determined by performing an iterative time-domain optimization

based on a minimum squared error criterion. The parametersOq, α, andQa were then

calculated from the LF parameters using (38)-(40).
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6.2.3 Experimental Setup

Simultaneous recordings of 6 speakers were made using a high-quality condenser micro-

phone and the GEMS device. The corpus consisted of 12 TIMIT sentences recorded by

three male speakers in an isolated sound studio. Both signals–acoustic and electromagnetic–

were recorded at a sampling rate of 10 kHz.

The acoustic data from the microphone was windowed with overlapping frames and

the proposed parameter estimation technique was used to determine estimates forOq, α,

andQa for randomly selected voiced frames of data. These estimates were then compared

to measurements for the same frames obtained through the multi-sensor inverse-filtering

method.

6.2.4 Experimental Results

Figure 27 shows a comparison of the results produced by the two estimation methods for

each parameter as well as a reference line indicating perfect correlation of the estimation

techniques. For the parameterα, a strong correlation exists (r = 0.91) between the two

methods, although the frequency-based method consistently yielded slightly lower esti-

mates than the reference method estimates. The comparison of estimates for the parameter

Oq revealed a relatively low correlation (r = 0.63) with the proposed method while gen-

erally producing somewhat higher estimates than the reference method. However, a small

number of frames resulted in grossly erroneous estimates ofeither the minimum (Oq = 0.2)

or maximum (Oq = 0.99) values of the search interval. The removal of these outliers im-

proved the correlation coefficient tor = 0.87.

The frequency-based estimation technique produced results forQa that were only mod-

erately correlated to the reference estimates (r = 0.75). As shown in part (c) of Fig. 27, the

correlation between the two estimates for the return phase coefficient,Qa, is minimal. It is

likely that this is partly due to the moderate correlation ofQa to the relative amplitude and

relative phase measures as compared toOq andα.
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The experimental results show encouraging evidence that both the amplitudes and phases

of the first two harmonics can be used to provide an accurate estimation of time-domain

glottal parameters. Although the return phase parameter showed very little correlation

with the reference measurements, the estimates for both theopen quotient and asymmetry

coefficient showed a significant correlation with the GEMS-based measurements. The ten-

dency of the frequency-based estimates ofOq to be higher than the GEMS estimate and the

slightly lower estimates ofα were largely related to the observation that the spectra of the

estimated glottal waveform showed a higher level of spectral tilt than expected.

One possible factor which may have contributed to the inconsistent results for the return

phase parameter,Qa, is the high level of sensitivity to quantization error which affects this

measurement. The analysis presented earlier shows that large variations in the parameter

Qa produce only moderate effects in the relative amplitude andphase measurements.

It should also be noted that for a number of voiced frames, theinitial search for param-

eter sets within the relative phase boundaries produced no candidates. In this situation, no

estimation was made for that particular frame. There are a number of factors which could

lead to an unsuccessful candidate search. Occasionally, the iterative closed-phase inverse-

filtering technique produced an irregular estimate of the glottal source. This was typically

caused by an erroneous estimate of the glottal closure instant or an acoustic waveform

with a closed-phase segment which was too short to produce anaccurate approximation of

the vocal tract filter. Incomplete closure of the glottis or ahigh level of glottal leakage–

characteristics of certain modes of phonation, such as breathy or whispered speech–would

also cause an inaccurate estimate.
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Figure 27: Comparison of frequency-based estimates of time-domain glottal parameters
and reference estimates (Oq (top),α (middle),Qa (bottom)).

63



6.3 Glottal Modification

The methods outlined in the previous section serve to illustrate the intimate relationship be-

tween time-domain glottal characteristics and their frequency-domain counterparts. It was

shown that two perceptually relevant time-domain parameters,α andOq, can be predicted

based on frequency domain measurements of the relative amplitudes and phases of the first

two harmonics. The purpose of this exercise was not only to establish a link between glottal

source parameters in both the time and frequency domains, but also to provide an accurate,

yet simple parameterization of glottal excitation. While researchers have typically used

either a large set of time-domain parameters or a small set offrequency-domain parameters

(spectral tilt, H1*-H2*), we propose a set of parameters that retains characteristics captured

by each of these classes of glottal parameters.

The parameters H1*-H2* and∆φ2 have been shown to be useful in analyzing glottal

waveforms. However, experiments have shown that altering these parameters do not pro-

duce reliable modifications to the glottal source. This is mainly because these parameters

are only indicators of broader phenomena. The measurement of H1*-H2* specifies the rel-

ative amplitude of the first two harmonics, but in many cases this is merely an indication

of the general roll-off of all of the harmonics. This characteristic is often referred to as the

spectral tilt. While the spectral tilt is a frequency-based characteristic that has been shown

to be linked to vocal textures and singing quality, it too is not a parameter that can be solely

modified to change the shape of the glottal pulse in a perceptually controlled manner. In a

similar fashion as H1*-H2*, the relative phase measure of the first two harmonics,∆φ2, is

an indicator of the behavior of the remaining harmonics.

Figure 28 shows the amplitudes and relative phases for the first ten harmonics of the

glottal sources of the vowel/a/ sung by an untrained and trained singer. As can be seen,

the shape of the glottal pulses are largely correlated with the roll-off of the harmonic am-

plitudes. This is consistent with earlier studies measuring the spectral tilt of singing voices.

Part (c) indicates the relative phases of the harmonics to that of the fundamental. These
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phases appear to follow a linear pattern with a consistent slope. The previous analysis of

the relative phase of the first two harmonics as well as observations of this general pat-

tern indicate that this slope is also associated with glottal pulse shape. This slope combined

with the spectral tilt serves as reliable parameters from which open quotient and asymmetry

values can be modified.

These two parameters can be calculated directly from the sinusoidal components as:

S.T. =

6.02
Ns∑

j=2

Aj

log
(

Aj

A1

)

log
(

ωj

ω1

)

Ns∑

j=2

Aj

(58)

∆φ =

Ns∑

j=2

Aj

(
φj − φ1

ωj

ω1

)

j − 1

Ns∑

j=2

Aj

, (59)

where(Aj, ωj, φj) are the amplitudes, frequencies and phases of the componentsinusoids,

andNs is the number of sinusoids. While there are several methods methods for measur-

ing and representing spectral tilt, this formulation was developed to utilize the sinusoidal

parameters and produce an output with the units of dB/octave.The average relative phase,

∆φ, represents the average slope of the unwrapped phases of thesinusoids relative to the

fundamental in units of rad/rad.

Our experiments have shown that modifying these parametersfor a singing voice can

have a perceptual effect on the vocal texture as well as the perceived quality of the voiced

waveform. We contend that it is therefore possible to use this set of parameters to impose

vocal quality enhancements and stylistic modifications on asinging voice. The following

chapter discusses the implementation of this technique in combination with the proposed

spectral modification system to perform stylistic enhancements to specific voices.
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Figure 28: Examples of (a) glottal waveform, (b) harmonic amplitudes,and (c) relative
phases for a voiced frame of a trained singer (left) and an untrained singer (right).
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CHAPTER 7

CHARACTERIZATION OF THE SINGING VOICE
USING THE PROPOSED SPECTRAL AND GLOTTAL

MODELS

The spectral and glottal models that have been outlined in the previous chapters have

been shown to be capable of parameterizing many important characteristics of the singing

voice. The flexibility of these parameters enable various techniques for the modification

and transformation of the singing voice. However, as we havedemonstrated, the singing

voice is a highly complex instrument that can be configured ina virtually limitless number

of combinations to produce a desired sound. While a long history of singing voice ped-

agogy exists for training singers to control these mechanisms in their voices, only recent

research has uncovered acoustic qualities that result fromtraining. In order to determine the

usefulness of our models for representing these qualities as well as to enable high-quality

vocal enhancement, it is necessary to quantify these acoustic qualities using the parameters

of the proposed models.

In this chapter, experimental results are presented in which the spectral and glottal

models are used in an attempt to characterize the singing voices of trained versus untrained

singers. While there are many different genres and styles of singing as well as differing

opinions concerning the desired perceptual qualities of singing, the scope of the experi-

ments presented here has been narrowed to focus on the Western classical singing tradition.

This style of singing, which includes opera and most classical styles, possesses qualities

which are generally agreed upon and have remained consistent throughout it’s history. The

purpose of this investigation is to illustrate the effectiveness of the proposed models for

characterizing vocal qualities which can differentiate overall vocal beauty as well as level

of training.
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7.1 Experiment 1

In the first experiment, 8 male subjects, ranging in ages from21 to 45, were recorded

singing various segments of the song,The Star Spangled Banner. Four of the subjects had

no previous training and no previous professional experience. The remaining four subjects

were classically trained singers with extensive (10 years or more) singing experience in the

performing arts. The segments were chosen such that the notes could be comfortably sung

by each of the singers in the chest register. For the subjectsinvolved, this required the seg-

ments to be sung in a key such that all notes were sung at F abovemiddle C or lower. All of

the subjects were recorded in an isolated studio. The samples were recorded at a sampling

rate of 48 kHz and downsampled to 16 kHz for computational efficiency. The samples

were then analyzed with both the spectral and glottal modelsoutlined in Chapter 3.2.2 and

Chapter 5.2.2.

7.1.1 Spectral Analysis

The spectral modelling technique described in Chapter 3.2.2represents the spectral enve-

lope of a windowed frame of data as a sum of asymmetric generalized Gaussian functions,

each of which is comprised of six parameters, as shown in (26). These six parameters,

[A, µ, βl, βr, αl, αr], quantify the amplitude and the center frequency as well as the width

and shape of the left and right sides of the function. Before, analyzing the recorded data,

voiced portions were segmented and phonetically labelled.A representative subset of these

segments were selected and parameterized with the spectralmodel. Table 1 shows the aver-

age parameter values for the phones/a/, /i/, and/o/ for each of the subjects. In these cases,

the model was limited to parameterizing only the first four formants. As can be seen in the

table, several segments are represented with only three asymmetric generalized Gaussian

functions. This is due to a single function representing twomerged formants, such as the

Singer’s Formant.

The average values of the frequency and amplitude parameters for the trained singers
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versus the untrained singers are given in Table 2. An analysis of the measured model

parameters presented in this table reveals a number of patterns differentiating the singers

with no previous training or experience from the trained singers. The most prominent

difference is the strong, sometimes dominating, presence of the Singer’s Formant in the

voices of the trained singers. Figures 29,30, and 31 illustrate the asymmetric Gaussian

function averages for the phones/a/, /i/, and/o/ for the trained and untrained singers. As

shown in these figures, there is a consistent Gaussian function with high amplitude in the

frequency region of 2500 Hz to 3000 Hz for the trained singers. On average, the formant

in this region has an amplitude approximately equal to that of the first formant and more

than 3 dB greater than the second formant. The Singer’s Formant shows a high level of

consistency across all of the trained singers as well as across all of the vowel sounds.

Additionally, because no discernable formants are detected in the region of 3000 Hz to

3500 Hz, these results are consistent with the hypothesis that the Singer’s Formant is a

result of the merging of the upper formants.

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

pl
itu

de

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

pl
itu

de

Figure 29: Spectra of the average asymmetric generalized Gaussian functions for trained
(left) and untrained (right) singers singing the vowel/a/.

Conversely, the untrained singers show little energy in the upper formants. The third

and fourth formants for these singers have average amplitudes that are 17 dB and 20 dB

lower than that of the first formant. They also show no signs ofmerging or blending. The
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Figure 30: Spectra of the average asymmetric generalized Gaussian functions for trained
(left) and untrained (right) singers singing the vowel/i/.
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Figure 31: Spectra of the average asymmetric generalized Gaussian functions for trained
(left) and untrained (right) singers singing the vowel/o/.

average center frequencies of these two resonances in the data are separated by more than

80 Hz.

Another pattern that emerged form the analysis parameters concerns the center frequen-

cies of the first two formants. It has been well established inspeech processing that these

two formants are closely related to the identity of a spoken vowel [10,57]. Frequency mod-

ification of these formants can therefore have an undesirable effect on the intelligibility

of the output. However, classically trained singers are often taught to “color” their vow-

els which results in the modification of the first two formants[73]. This typically serves
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two purposes. First, a quality most often described as “dark” or “covered” is obtained by

lowering the center frequencies of these formants. Additionally, formant tuning is often

performed in order to maximize the energy in the available harmonics.

The mechanism behind this tuning has been largely attributed to a lowering of the larynx

during phonation. Sundberg notes that this phenomenon results in a lowering of the formant

frequencies because a depressed larynx effectively elongates the vocal tract [73]. Sundberg

also performed X-ray examinations in which he showed that a lowering of the larynx has a

secondary effect of widening the bottom part of the pharynx.This effect is believed to be

responsible for the Singer’s Formant. By widening the pharynx, an impedance mismatch is

formed between the laryngeal tube and the lower pharynx, creating a strong resonance that

is independent of the remainder of the vocal tract [1,12,71].

In order to understand the results of formant modifications induced by trained singers,

it is useful to analyze a chart plotting the first two formantsfor various vowels sung by the

subjects. This is given in Figure 32. It can be clearly seen from this figure that the trained

singers maintain lower frequencies for both the first and second formants. While it is

possible that this could be due to natural factors such as vocal tract length, the data supports

claims that the lowering of formant frequencies is a result of an intentional manipulation of

the vocal tract mechanism by trained singers.

The amplitude parameters for the first two formants also showan interesting pattern.

While the relative amplitude of the second formant to the firstis approximately equal for

untrained and trained singers for the vowels/a/ and/o/, the amplitude of the second formant

is considerably larger for the vowel/i/ in trained singers. In fact, the second formant in

trained singers exhibits greater amplitude (with a relative amplitude of 1.08) than the first

formant. This compares to a relative amplitude of 0.23 for untrained singers. It should

be noted that the phoneme/i/ is a front vowel, whereas/a/ and/o/ areback vowels. This

terminology refers to the placement of tongue constrictionin the oral tract. Front vowels

are typically characterized by higher values in center frequencies of the second formant.
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Figure 32: Comparison of center frequencies for the first two formants for trained and
untrained singers for the phones/i/, /a/, and/o/.

The data therefore suggests that trained singers are able toprovide additional power to this

resonance during phonation of front vowels.

One advantage of using the parameters of the asymmetric generalized Gaussian func-

tions is that they enable an examination of the bandwidth characteristics of formants. It

has been noted that while the bandwidths of formants likely have an effect on vowel iden-

tity, their primary contribution is to a vowel’s character or quality [10]. Table 3 reveals a

number of patterns concerning the bandwidths of the Gaussian functions. Bandwidths are

calculated as the sum of the average values for theβ parameter on the left and right sides,

BW = βl + βr. (60)

This definition of bandwidth is equivalent to finding the frequency range in which the

amplitude is within 8.69 dB of the peak.

The bandwidths of the first two formants appear to be slightlygreater on a consistent

basis for the trained singers than for the untrained singers. Studies have shown that in-

creased formant bandwidths can be linked to a higher level ofnasalization during vowel
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phonation [10].

The third formant shows similar bandwidths for both groups of singers. This is signif-

icant, however, in light of the observation that the amplitude of the third formant is signif-

icantly larger for the trained singers. It appears that trained singers can raise the energy

in this formant without altering the bandwidth. This is an example of the flexibility of the

asymmetric generalized Gaussian model. An all-pole model is not able to independently

control the amplitude and bandwidth of a formant in this fashion unless multiple poles are

used for a single formant.

7.1.2 Glottal Analysis

The glottal parameterization presented in Chapter 5.2.2 first applies a closed-phase in-

verse filtering technique and then characterizes the resulting glottal waveform with two

frequency-domain parameters. These parameters reflect thespectral tilt of the glottal har-

monics as well as the average slope of the relative phases. The selected voiced portions of

the recorded subjects samples were analyzed using this technique and average values for

the trained and untrained subjects were calculated. These results are given in Table 4. In

addition, the time-domain parameters for the open quotientand asymmetry coefficient are

calculated using the frequency-domain estimation technique outlined in Section 6.2 based

on the relative amplitudes and phases of only the first two harmonics.

As noted in earlier observations (Figure 28), both the spectral tilt and the slope of the

relative phase show a significant discrepancy between trained and untrained singers. The

averages shown in Table 4 quantify these differences. For all three measured phones, the

glottal waveforms of trained singers show lower roll-off byan average of 8.4 dB/octave.

The largest average difference occur for the phoneme/i/ (14.7 dB/octave) and the smallest

for /o/ (2.1 dB/octave). The average slope of the glottal harmonic phases relative to the

fundamental also show a similar pattern. The phases of the untrained singers exhibit a

much sharper negative slope than those of the trained singers. These differences range
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from 12.6 rad/rad for the phoneme/a/ to 21.9 rad/rad for/o/.

It was shown earlier that these frequency-domain characteristics exhibit a strong rela-

tionship with the time-domain parameters of the glottal waveform. The time-domain esti-

mates of the open quotient (Oq) and asymmetry coefficient (α) are consistent with studies

that show a lowerOq and higherα for classically trained singers.

7.2 Experiment 2

A second experiment was conducted in which subjects were asked to perform a vocal exer-

cise known asarpeggio. The four classically trained male subjects (T1, T2, T3, T4)from

the previous experiment were recorded along with four new untrained subjects (U5, U6,

U7, U8) which were not part of the previous experiment. An arpeggio consists of a series

of notes which make up a chord. In this particular experiment, the subjects were asked

to sing the notes composing the chord A-major using the vowel/a/ in an ascending and

descending pattern as shown in Figure 33. These notes consist of A3, C4♯, E4, andA4. The

A-major chord was chosen for this experiment because the range of notes, from A below

middle C (A3) to A above middle C (A4), span the boundary between the chest register

and the head register for most male singers. The recorded samples in this experiment were

recorded and processed with the presented analysis techniques in a manner identical to that

in Experiment 1.

Figure 33: A-major arpeggio.
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7.2.1 Spectral Analysis

A number of researchers have claimed that changes in registration in singing are mainly

associated with different modalities of glottal excitation. Various studies [2, 31, 76] have

used signals obtained from electroglottographs or glottalflow masks to support this claim.

However, it is still highly debated whether these modes of excitation are accompanied by

changes in the shape of the vocal tract. This spectral analysis is designed to shed some

light on this issue as well as identify some differences in registration techniques (or lack

thereof) between trained and untrained singers.

The parameters of the asymmetric generalized Gaussian spectral model were calculated

for the notesA3 andA4 for each of the singers in the experiment. The average valuesof the

frequencies and amplitudes for each of the subjects are given in Table 5. Average values

for the complete set of parameters for the trained and untrained subgroups are given in

Tables 6 and 7. As expected, the parameters for the notes sungat A3 reflect very similar

patterns to those observed in Experiment 1. The spectral parameters of the trained singers

show a prominent singer’s formant consisting of a merging ofthe third and fourth formants.

Additionally, the first two formants of the trained singers are lower in frequency and have

a slightly greater bandwidths.

When comparing the parameters of the untrained singers for both notes, a few differ-

ences can be observed in their respective formant structures. Tables 6 and 7 show a small

increase in formant frequencies as well as slightly wider bandwidths in the first two for-

mants. Additionally, the ratio of the second formant amplitude to that of the first increases

from 0.59 to 0.88 forA4. This increase in ratio, however, is significantly more substantial

for the trained singers. The average A2/A1 ratio jumps from 0.56 to 4.00, an increase of

614%. This phenomenon may not be solely caused by an increasein the resonance asso-

ciated with the second formant, but rather by a decrease in the low-frequency resonance

associated with the first formant. This supposition is substantiated by an increase in the

ratio of the third formant to the first (A3/A1) from 1.25 to 5.96. The discrepancy between
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trained and untrained singers shows a high level of consistency across all of the subjects. It

has been hypothesized that trained singers are able to reduce the resonant power of the first

formant by tuning it so that it lies directly between two harmonics [52].

Figures 34 and 35 further illustrate differences between trained and untrained singers

by showing the average spectral models for subjects T3 and U3for each of the notes.

Comparing the spectra of singer T3 for notesA3 andA4 shows a significant decrease in

the relative amplitude of the Gaussian function modeling the first formant. The spectra of

singer U3, however, shows little change in the relative amplitudes of the formants. This

is most likely due to an improper registration technique among the untrained singers. The

most common result of improper registration is a singer attempting to maintain the chest

register at notes that are above the proper range of this particular register [6]. The spectra

of singer U3 appears to exemplify this error. The similarityof the spectra for notes that

should clearly be sung in different registers indicates a failure to transition from chest to

head.
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Table 1: Experiment 1: Average AGG frequency and amplitude parameter values for each
subject for the phones/a/, /i/, and/o/.

Subject F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) A1 A2 A3 A4

/a/

T1 562 1063 2664 1 0.47 0.94
T2 602 1117 2516 1 0.34 0.71
T3 508 1039 2617 1 0.94 2.09
T4 648 1109 2930 1 0.70 0.71
U1 648 1125 2734 3367 1 0.77 0.34 0.27
U2 617 1117 2359 3203 1 0.53 0.31 0.22
U3 656 1172 2453 3633 1 0.52 0.29 0.27
U4 602 1086 2305 3289 1 0.71 0.12 0.07

/i/

T1 273 1977 2781 1 1.41 0.91
T2 258 1914 2586 1 1.05 0.78
T3 242 1773 2461 1 1.07 1.90
T4 305 1898 2813 1 0.80 0.87
U1 289 2133 2938 3852 1 0.14 0.02 0.03
U2 313 2063 2531 3695 1 0.22 0.06 0.03
U3 297 1867 2711 3484 1 0.25 0.09 0.08
U4 320 2008 2695 3734 1 0.29 0.11 0.06

/o/

T1 336 781 2930 1 0.60 0.31
T2 297 719 2617 1 0.76 0.80
T3 359 852 2508 1 1.06 1.00
T4 320 836 2852 1 0.51 0.77
U1 336 1102 2734 3313 1 0.25 0.07 0.05
U2 375 1055 2594 3047 1 0.29 0.06 0.03
U3 359 1047 2727 3367 1 0.25 0.11 0.07
U4 398 1008 2688 3438 1 0.54 0.03 0.02
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Table 2: Experiment 1: Average AGG frequency and amplitude parameter values for
trained and untrained singers for the phones/a/, /i/, and/o/.

Subjects F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) A1 A2 A3 A4

/a/ Trained 580 1082 2682 1 0.61 1.11
Untrained 631 1125 2463 3373 1 0.63 0.27 0.21

/i/ Trained 270 1891 2660 1 1.08 1.12
Untrained 305 2018 2719 3691 1 0.23 0.07 0.05

/o/ Trained 328 797 2727 1 0.34 0.72
Untrained 367 1053 2686 3291 1 0.34 0.07 0.04

Table 3: Experiment 1: Average AGG width and shape parameter values for trained and
untrained singers for the phones/a/, /i/, and/o/.

(left/right)
Subjects β1 β2 β3 β4

/a/ Trained 297/273 305/266 281/344
Untrained 258/219 211/281 305/242 289/273

/i/ Trained 688/391 313/391 430/352
Untrained 750/375 344/313 438/313 242/266

/o/ Trained 344/219 234/250 250/313
Untrained 320/211 211/188 313/227 219/180

(left/right)
Subjects α1 α2 α3 α4

/a/ Trained 1.75/2.11 2.45/1.54 1.96/1.87
Untrained 1.77/2.08 2.34/1.79 1.84/1.85 2.04/1.87

/i/ Trained 1.56/1.83 1.94/2.43 2.83/1.98
Untrained 1.72/1.97 1.81/1.71 2.74/1.94 1.77/1.81

/o/ Trained 1.34/2.41 2.82/1.91 1.74/1.58
Untrained 1.45/1.94 1.43/1.64 1.29/1.85 1.76/1.78
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Table 4: Experiment 1: Average glottal parameters of trained and untrained singers for the
phones/a/, /i/, and/o/.

Subjects Spectral Tilt ∆φ Oq Asymmetry Coeff.
(dB/octave) (rad/rad) (α)

/a/ Trained -12.4 -7.1 0.68 0.69
Untrained -20.7 -19.7 0.71 0.56

/i/ Trained -9.5 -9.4 0.64 0.81
Untrained -24.2 -23.1 0.75 0.59

/o/ Trained -16.1 -8.3 0.67 0.77
Untrained -18.2 -30.2 0.72 0.67

Table 5: Experiment 2: Average AGG frequency and amplitude parameter values for each
singer for the notesA3 andA4.

Subject F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) A1 A2 A3 A4

A3

T1 617 1070 2710 1 0.37 1.00
T2 625 1171 2460 1 0.26 0.74
T3 492 1078 2593 1 0.97 2.59
T4 711 1164 2984 1 0.64 0.66
U5 648 1109 2789 3320 1 0.76 0.39 0.32
U6 625 1093 2289 3328 1 0.49 0.23 0.19
U7 617 1164 2468 3710 1 0.55 0.15 0.04
U8 641 1132 2507 3398 1 0.56 0.26 0.12

A4

T1 656 1102 2563 1 1.21 2.91
T2 672 1086 2336 1 5.13 2.54
T3 609 1328 2656 1 3.63 14.50
T4 641 1133 2578 1 6.05 3.89
U5 773 1273 2953 3469 1 1.56 0.52 0.30
U6 688 1156 2328 3305 1 0.52 0.38 0.09
U7 680 1289 2594 3758 1 0.64 0.15 0.06
U8 719 1203 2664 3523 1 0.82 0.26 0.12
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Table 6: Experiment 2: Average AGG frequency and amplitude parameter values for the
trained and untrained singers for the notesA3 andA4.

Subjects F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz) A1 A2 A3 A4

A3 Trained 611 1121 2688 1 0.56 1.25
Untrained 633 1125 2514 3439 1 0.59 0.26 0.17

A4 Trained 645 1162 2533 1 4.00 5.96
Untrained 715 1230 2635 3514 1 0.88 0.33 0.14

Table 7: Experiment 2: Average AGG bandwidth and shape parameter values for the
trained and untrained singers for the notesA3 andA4.

(left/right)
Subjects β1 β2 β3 β4

A3 Trained 258/281 242/258 273/289
Untrained 258/242 227/234 273/242 250/258

A4 Trained 305/250 289/250 305/367
Untrained 344/242 250/266 313/258 328/305

(left/right)
Subjects α1 α2 α3 α4

A3 Trained 1.25/2.09 2.68/1.76 1.86/1.85
Untrained 1.18/2.28 2.90/1.59 1.19/1.94 2.11/1.59

A4 Trained 1.42/2.02 1.48/1.86 1.65/1.46
Untrained 1.16/2.50 2.77/1.83 1.73/2.02 2.53/1.66
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Figure 34: Spectra of the average asymmetric generalized Gaussian functions for the
trained singer T3 for the notesA3 (left) andA4 (right).
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Figure 35: Spectra of the average asymmetric generalized Gaussian functions for the un-
trained singer U3 for the notesA3 (left) andA4 (right).
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7.2.2 Glottal Analysis

As discussed earlier, it has been widely thought that a strong link exists between singing

registers and distinct modes of glottal production. These modes are typically implemented

by controlling the length and thickness of the vocal folds. In the chest register, the vocal

folds are relatively short and thick. Vibration occurs overthe entire length of the vocal fold

with a vertical phase difference, whereas in the head register, the mass and vibratory length

are reduced [86] and there is little to no vertical phase difference. In this mode, the glottal

flow signal exhibits a more symmetric quality.

An analysis of the glottal parameters for the trained and untrained singers is performed

by applying the presented glottal model and estimation techniques to the recorded wave-

forms. Table 8 reflects the average parameters for each groupof singers. The measured

parameters (spectral tilt, average relative phase slope, open quotient, and asymmetric co-

efficient) for the noteA3 coincide closely with those calculated in Experiment 1. The

parameters forA4, however, show a much smaller discrepancy between trained and un-

trained singers. While the untrained singers exhibit glottal characteristics very similar to

those sung inA3, the trained singers show an increase in spectral tilt,∆φ, andOq along

with a decrease in asymmetry.

These results support the idea that trained singers are ableto maintain separate modes

of glottal production. Glottal flow during chest registration versus head registration shows

less spectral roll-off in terms of amplitude as well as relative phase of the harmonics. This

corresponds in the time domain to a larger open quotient and amore asymmetric glottal

pulse. Although additional registers (i.e. falsetto) for males do exist, chest and head are

the two that are most commonly used in classical singing are are also the most easily

identified [52].

The untrained singers show little change in glottal characteristics when comparing the

two notes. This supports the hypothesis that untrained singers are typically incapable of

transitioning from one register to the next, thus attempting to sing all notes in the chest
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register until the voice “breaks” into falsetto. However, it it interesting to note that the

glottal characteristics of the untrained singers in this experiment are close to those of the

trained singers singing in the head register and not the chest register.

Table 8: Experiment 2: Average glottal parameters of trained and untrained singers for the
notesA3 andA4.

Subjects Spectral Tilt ∆φ Oq Asymmetry Coeff.
(dB/octave) (rad/rad) (α)

A3 Trained -14.3 -8.7 0.63 0.71
Untrained -22.1 -18.8 0.68 0.53

A4 Trained -18.5 -16.3 0.74 0.55
Untrained -23.5 -19.7 0.67 0.56

7.3 Conclusion

The two experiments presented in this chapter have exemplified the ability of the proposed

spectral and glottal models to parameterize a singing voicesignal so that various character-

izations including level of training and mode of registration can be identified and measured.

Previous studies have also been conducted using portions ofthe model to characterize var-

ious singing styles, such as Broadway belt [38] and country/western [37].

The ability to capture parameters associated with vocal qualities can be applied to a

number of applications such as classification or vocal training feedback tools. The next

chapter examines our attempt to combine these models with the results from experiments

1 & 2 to perform modifications to the voices of untrained singers in a manner that would

enhance their vocal qualities.
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CHAPTER 8

CLASSICAL ENHANCEMENTS TO THE SINGING
VOICE

The previous chapter detailed experiments for using the proposed spectral and glot-

tal models for identifying acoustic characteristics and model parameters that differentiate

trained singers from untrained singers according to the western classical style of singing.

This chapter explores an analysis/modification/synthesisapplication which is designed to

use this knowledge to perform classical enhancements on thesinging voices of untrained

singers. Details of experiments used to evaluate the performance of this system are also

provided. The advantage of an analysis/synthesis system isthat a synthesized output is

produced which can be used in human listening experiments tovalidate the system per-

ceptually, which is arguably the most important metric. However, as mentioned in the

introduction, music is highly subjective and the musical quality of a singers voice is not as

easily agreed upon as the intelligibility of a spoken word.

Seventeen male subjects with no previous training or professional experience were

asked to sing an arpeggio exercise identical to the one presented in the previous chap-

ter. This exercise was sung with the vowel/a/ in the notes [A3, C4♯, E4, A4]. The subjects

were allowed to listen to the correct notes immediately before singing in order to reduce

any errors in pitch. For subjects whose comfortable range did not coincide with these notes,

the arpeggio was raised or lowered one half note at a time until the subject was able to com-

plete the task comfortably. This exercise was repeated and recorded five times. Recordings

were made in a sound-proof studio with the amplified microphone output recorded directly

to disk at 48 kHz. The data was then downsampled to a sampling rate of 16 kHz to reduce

the computational requirements. Three of the five segments were then randomly chosen for

each singer and analyzed offline with the proposed spectral and glottal modeling techniques
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using 25 ms frames tapered with a Hamming window updated every 10 ms.

8.1 Spectral and Glottal Modifications

The vocal enhancements were performed so that the characteristics of the untrained singers

mimicked those of the trained singers that were identified inthe previous chapter. These

modifications are summarized as follows:

• decrease frequencies of first two formants

• increase bandwidths of first two formants

• merge third and fourth formants and increase their amplitudes while maintaining

their bandwidths

• for notes at or aboveF4:

– decrease amplitude of first formant

– decrease the open quotient of the glottal flow waveform

– increase asymmetry in the glottal flow waveform

The degree to which each of these modifications was performedwas determined so that

the modified output possesses parameters that are equivalent to the average of the source

and target parameters. According to this procedure, the source parameters are updated

each frame. The target parameters remain constant throughout the proper register (chest,

head) and are determined by using the median values for the trained singers in Experiment

2 discussed in the previous chapter. Register transition regions were identified prior to

modification based on target notes crossing the boundary betweenE4 andF4. The target

parameters for these regions were then linearly interpolated between the target parameters

for each register. These regions are illustrated in the pitch contour shown in Figure 36.
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Figure 36: Example of identified register transition regions for a given pitch contour.

8.1.1 Competing Methods

In order to test the performance of the proposed enhancement, competing methods were

also included in the experiments. The algorithms for spectral and glottal modification

were implemented in a modular fashion so that they could be seamlessly interchanged

with the proposed methods. The framework of the enhancementsystem is provided by the

AbS/OLA sinusoidal model described in Chapter 3.2.2.

In determining a competing spectral method, a number of commercial products for

singing voice processing were investigated. While a number of products exist that perform

varying levels of spectral modification, they are mostly data-driven models in which a

source singer’s spectral envelope is replaced with that of atarget singer. This has the effect

of changing the identity of the singer, which is not desired in this particular application.

Other products such as the YamahaVocaloid[87] implement rule-based synthesis in which

lyrics and a musical score serve as the only inputs. The identity of the singer is solely based
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on the loaded database of units which are selected and concatenated by the system.

The competing spectral modification method that was chosen for this experiment has

been used in various forms in a number of leading singing voice enhancement systems,

such as the TC HeliconVoice Modelerseries of products. This technique is a frequency

warping method based on the algorithm presented in Section 3.2.2. This method combines

a frequency shift warping function,α(ω), with an intensity shaping function,γ(ω), in order

to control the formant frequencies and amplitudes. Bandwidth warping functions,β(ω),

were also included for altering formant bandwidths. As shown in 61, these functions can

be combined to modify a spectral envelope,H(ω), according to

Ĥ(ω) = γ(ω) · H((α(ω) ∗ β(ω)) · ω) (61)

whereĤ(ω) is the modified spectral envelope.

While this particular method offers independent control over the formant frequencies,

amplitudes, and bandwidths, it’s effectiveness is only maximized when there is no formant

interaction. This is only the case when formants are spaced far enough apart in frequency

that they can be modified separately.

Although many techniques have been put forth for synthesizing glottal excitation wave-

forms based on a synthesis-by-rule approach, very few analysis/synthesis methods have

been developed for the modification of an existing glottal signal in a meaningful way.

Therefore, it is difficult to perform a comparative evaluation. However, the techniques pro-

posed in this thesis are based on earlier studies which linked open quotient values to the rel-

ative amplitude of the first two harmonics of the glottal source [19,23]. The open quotient

has been shown by many studies–including the one presented in the previous chapter–to be

highly correlated with various vocal qualities and textures. This implies a simple method

for glottal modification. By modifying the relative amplitudes of the first two harmon-

ics, and not accounting for phase relationships as proposedin Chapter 5.2.2, modifications

which may be equivalent to modifying the open quotient may bepossible. This technique

was implemented and included in the experiment for a comparative evaluation with the

88



proposed glottal modification procedure.

8.2 Additional Modifications: Pitch and Vibrato

As mentioned in Chapter 3.2.2, the ABS/OLA sinusoidal model that is used in the pro-

posed system is capable of natural sounding pitch-scaling using a phasor interpolation

scheme [25]. This technique can be applied on a frame-by-frame basis, so that specific

time-varying changes to the pitch contour of a waveform can be made. When enhancing

the pitch of an untrained singer’s voice, the two main aspects to be considered are note

errors and vibrato.

While it is possible to modify the pitch contour of the original singer’s waveform to the

exact notes as prescribed by the musical score, the result isusually not a natural sounding

waveform. Care must be taken to maintain the prosodic features of a voice to maintain the

unique qualities of a singer’s voice as well as it’s individuality. Therefore, pitch correc-

tions are performed gradually by allowing transition periods in between notes and applying

slowly varying modifications. These tolerances may vary from singer to singer and of-

ten need to be adjusted to fit a particular singer’s attributes. However, the result of such

corrections is a pitch-corrected voice waveform that retains the singer’s vocal qualities.

Vibrato is a highly important factor in the enhancement of the singing voice. As men-

tioned in Chapter 2, the presence of vibrato is present in nearly all trained singers’ voices

and is strongly correlated with the perception of vocal beauty [16]. The insertion or modifi-

cation of vibrato requires a specification of therateandextentof the sinusoidal oscillations

of the fundamental frequency. Studies have shown that theseparameters can vary based on

the individual singer as well as the note being sung. However, one common characteristic

of trained singers is the regularity of the vibrato cycles [50]. Untrained singers typically

sing with little to no vibrato or with vibrato of varying rate. Another observation of trained

singers regards the extent of vibrato. Prame [61] noted thatvibrato extent tended to increase

throughout the duration of a sustained note in trained singers’ voices.
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Based on these studies as well as our own observations, vibrato insertion is imple-

mented as a frame-based frequency modulation. A desired pitch contour is outlined based

on the score as well as target vibrato characteristics. The modulation function is modeled

as a sinusoid with an amplitude envelope that is an increasing piecewise-linear function as

shown in Figure 37. An example of the resulting modificationsto the pitch contour of an

untrained singer’s voice is illustrated in Figure 38.

It has been observed that modulating the fundamental frequency with a sinusoid with

constant frequency results in an unnatural sounding waveform. Although trained singers

exhibit higher degrees of regularity, slight fluctuations in frequency nonetheless exist. There-

fore, the modulating sinusoid of the vibrato model is phase modulated with a random noise

signal that has been lowpass filtered. Vibrato is thus formulated by modifying the frame-

based fundamental frequency (F0[n]) as

F0[n] = F0[n] + a[n] · sin (2πωvn + r[n]) , (62)

wherea[n] is the piecewise-linear amplitude envelope,ωv is the vibrato rate (5-7 Hz), and

r[n] is the lowpass noise signal.

Vibrato onset time can also be modeled as a simple delay from the onset of the note

to the onset of the pitch oscillation. While vibrato onset time has been demonstrated in a

number of classical singers, the majority of classical singers have exhibited very short to no

onset times. Others have hypothesized that longer onset times are common in other styles

of singing such as Broadway belt [36].
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Figure 37: Piecewise-linear function used to shape the amplitude of the vibrato inserted
into untrained singers’ voices.

8.3 Listening Experiments

In order to measure the usefulness of the proposed methods for singing voice enhance-

ment, it is necessary to determine a procedure for testing and evaluation. In addition to

determining the level and nature of enhancement that can be achieved with the techniques

proposed here, a comparison with competitive algorithms must be documented. However,

it is clear that the testing and evaluation of the proposed system requires a unique method-

ology. There are many challenges to obtaining a consistent and reliable evaluation of the

singing voice. Additionally, the testing of synthesized waveforms provides issues that must

be addressed during testing. Issues such as the presence of artifacts and naturalness are im-

portant in determining the success of synthesis applications.

One of the challenges of subjective vocal quality evaluations is obtaining a sufficient

number of experts to serve as evaluators. Typically, this type of resource is only available at

large music institutions or conservatories. However, studies have shown that there is some

value in using non-expert evaluators. Ekholm [15] conducted a study in which a group

of vocal experts and a group of students evaluated the same set of vocal performances

according to the twelve factors identified in [88]. Their results show that while the inter- and

intrajudge reliability were higher for the group of vocal experts than for the students, there
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Figure 38: Prosodic modification: the original pitch contour (dotted)pitch-scaled to the
correct pitch (solid bars) and vibrato inserted.

agreement within the group of students and between groups was statistically significant.

Therefore, due to the inability to obtain the services of a sufficient number of experts, the

following methodology was used for the listening experiments.

8.3.1 Methodology

Ten non-expert listeners were asked to take a series of AB preference tests comparing sev-

eral pairs of waveforms. Prior to any processing, all samples were pitch-corrected with the

ABS/OLA phasor-interpolation scheme. Each subject was asked to compare ten samples

for each comparison condition. The order of the pairs as wellas the elements of each pair

were selected randomly for each subject. Each subject was asked to select sample “A”

or “B” based on two different criteria. These criteria are: “overall musical quality” and

“naturalness or freedom from artifacts.”
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8.3.2 Comparison Results

The results of the comparison test are shown in Table 9. In this table “Glot1” refers to

the proposed glottal modification method, and “Glot2” refers to the competing method de-

scribed earlier in this chapter. A detailed analysis of eachof the testing conditions provides

an assessment of the performance of the proposed methods.

Table 9: Results of AB comparison tests for each testing condition.
(% preferring B)

Condition A Condition B Overall Musical Quality Naturalness

Original AGG 73 % 38 %
Original Glot1 56 % 32 %
Original AGG/Glot1 62 % 42 %
Original AGG/Glot1/Vibrato 86 % 46 %

Original FWarp 53 % 41 %
Original Glot2 51 % 47 %
Original FWarp/Glot2 56 % 33 %

FWarp AGG 69 % 63 %
Glot2 Glot1 56 % 42 %
FWarp/Glot2 AGG/Glot1 65 % 54 %

AGG/Glot1 AGG/Glot1/Vibrato 68 % 56 %

Original vs. Proposed MethodsThe results comparing the proposed spectral and glot-

tal modification methods versus the original waveforms (with pitch-corrections ap-

plied) show a significant preference in overall musical quality for the modification

methods. Glottal modifications exhibited less improvement(56% preferred) than the

AGG spectral modifications (73% preferred). Combining the two methods did not

produce an improvement greater than either of the two (62% preferred), but nonethe-

less improved overall quality. The most significant improvement (85% preferred),

however, occurred when vibrato modifications were incorporated into the combined
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spectral/glottal modifications. All of these results were determined to be statistically

significant (p < 0.05).

The breakdown by-singer in Figure 39 shows a number of interesting patterns. It

can be seen in Part (a) of the figure that singers S3 (40%) and S8(36%) showed

significantly lower scores for overall quality when AGG spectral modifications were

performed. Upon review of these samples, a number of artifacts were noted during

some of the sustained portions. These distortions manifested themselves as short

discontinuities in the perceptual quality of the waveforms. Because they were also

present in the synthesized samples using the frequency warping procedure, it was

concluded that the source of the distortions was in the sinusoidal model. Further

analysis showed that these errors were due to a misalignmentbetween frames during

sinusoidal synthesis. This was caused by errors in the estimate of the pitch pulse

onset time for certain frames.

The by-singer results for the proposed glottal modificationmethod are shown in

Part (b) of Figure 39. These results show a consistent level of preference with the

exception of singers S2 (35%), S3 (30%), and S14 (27%) whose scores were signif-

icantly lower than the remaining singers. Informal questioning after the test showed

that listeners found these samples to have a “rough” qualitythat markedly decreased

the musical quality.

Part (c) of Figure 39 shows the overall musical quality results for each singer when

both the spectral and glottal modifications are performed. The scores for singers

S2 (41%), S3 (25%), S8 (37%), and S14 (25%) are all more than one standard devi-

ation (σ = 20.8) below the mean (µ = 62). This clearly shows that any degradation

due to the proposed spectral or glottal modifications will likewise corrupt the output

when both modifications are performed.
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Original vs. Competing Methods Table 9 shows that the competing methods for spec-

tral and glottal modifications resulted in an increase in preference over the absence

of modifications for overall musical quality. The improvements for these methods

(frequency warping - 53%, H1H2 glottal modification - 51%, both - 56%), however,

were slight.

The by-singer results given in Figure 40 show that the spectral and glottal modifica-

tions resulted in significantly lower scores for the same singers as with the proposed

methods. As noted earlier, the distortions for singers S3 and S8 after spectral modi-

fications were due to inaccuracies associated with the sinusoidal model and not nec-

essarily the spectral modification procedures. It is also logical that the same singers

(S2, S3, S14) fared worse with both glottal modification methods since the methods

are similar in nature. It can be said, however, that the competing methods show a

much more consistent pattern across singers than the proposed methods. This is veri-

fied by a comparison of the standard deviation values for the by-singer tests as shown

in the table below.

Standard Deviation (σ)
Proposed MethodsCompeting Methods

Spectral Modification 16.6 7.0
Glottal Modification 14.1 9.7
Both 20.8 13.8

Proposed Methods vs. Competing MethodsA third set of comparisons was implemented

using human listeners in which the proposed models were tested against the compet-

ing methods. Table 9 shows a significant level of preference for the proposed models

in all three comparisons. Figure 41 provides the by-singer results for the comparison.

When only spectral modeling was applied, the AGG spectral model was preferred

by a statistically significant 69% of listeners (p < 0.05) over the frequency warping

method. The by-singer results show that the AGG method was preferred by the
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listeners for 15 of the 17 singers. It is curious to note that the two singers (S3, S8)

who scored lower when compared to the frequency warping method were the two

singers who suffered from the errors in pitch pulse onset time estimation. Although,

these errors were common to both methods, it is apparent thatthe frequency warping

modifications mitigated the distortions somewhat comparedto the AGG method.

The glottal modifications showed a somewhat less significantlevel of preference for

the proposed method (56%). Listeners showed a preference for 11 of the 17 speakers.

Many listeners reported having difficulty in distinguishing between the samples in

these comparisons.

The combined experiment where both spectral and glottal modifications were simul-

taneously performed shows a preference pattern that closely matches the results for

the spectral modifications. A 65% preference for the proposed methods was deter-

mined with the by-singer breakdown showing a much higher correlation with the

spectral comparison than the glottal comparison. This pattern implies a greater effect

of the spectral modifications on the perceptual quality of the synthesized waveform

than the glottal modifications.

Effects of Vibrato A final set of experiments was conducted to determine the performance

of the vibrato model. Table 9 shows the results of two additional comparisons that

were tested, (1) the unmodified waveform versus the proposedspectral, glottal, and

vibrato modifications, and (2) a comparison of the proposed spectral and glottal mod-

ifications with and without vibrato modifications.

The preference results show that the vibrato modifications have a substantial effect

on the perceived overall musical quality. Listener preference increased from 62% to

86% when vibrato modifications were added to spectral and glottal modifications. A

direct comparison between these two conditions showed a 68%preference for the

vibrato modified output. This is not a surprising result since several past studies have
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demonstrated the importance of vibrato to the perception ofvocal beauty [44,65].

Naturalness Listener preference results based on naturalness and freedom from artifacts

or distortions show a decrease in this measure when any of themodifications were

performed and compared to the unmodified waveform. This can be seen in Table 9.

In some cases, however, this preference was slight (Original vs. AGG/Glot1/Vibrato

- 46%, Original vs. Glot2 - 47%). When comparing the proposed methods to

the competing methods, the proposed methods fared better innaturalness for the

spectral-only modifications (63%) and the spectral/glottal combination (54%). Lis-

teners found less naturalness in the proposed glottal modelwhen compared to the

competing model by a small margin (54%).

Vibrato modifications did appear to actually increase the naturalness of the synthe-

sized output. When vibrato was added and compared to the spectral/glottal modifi-

cation combination, it was preferred 56% of the time. However, informal comments

by listeners revealed that the addition of vibrato to certain voices resulted in an ex-

tremely unnatural sound.

8.3.3 Discussion

The results of the subjective comparison indicate that, taken as a whole, the pool of 10

listeners preferred the proposed methods for spectral and glottal modifications over both

the unmodified singing voices and the modifications using thecompeting methods. This

suggests that for the application of enhancing the voices ofuntrained singers, the spectral

and glottal methods outlined in this thesis offer a viable solution.

It should be emphasized that the overall performance of the enhancement system is

reliant on a number of interdependent modules. As was the case with pitch pulse onset

time estimation, any errors in a single module results in distortions or artifacts. During

the course of this experiment, a number of common errors havebeen encountered that

degraded the performance of the modification system. Some errors were alleviated by
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adjusting various parameters, but others persisted. A few of these issues are detailed here:

• In order to enable the AGG spectral modification method or frequency warping algo-

rithm to be effective in performing formant modifications, it is necessary to employ

an accurate formant tracking system. It was noted in Chapter 3.2.2 that the AGG

model can be used to refine initial formant estimates but its performance is largely

affected by the performance of the initial estimate provided by a formant tracker.

Performance of the AGG spectral model improved somewhat by median filtering the

formant estimates, thus smoothing noisy tracks. Excessiveformant smoothing in the

AGG spectral model, however, resulted in reverberant effects in the synthesized out-

put. The frequency warping modification procedure also improved when smoothing

was applied but was also found to be more robust to inaccuracies in formant tracking.

• Pitch doubling and halving errors occasionally occurred during the analysis of the

samples. This impacted the spectral estimate which caused slight perceptual varia-

tions in the modified waveforms. This issue was also alleviated somewhat by median

filtering but only when errors occurred in short spurts. Errors spanning several con-

secutive frames persisted after filtering. It could be argued, however, that in a singing

voice enhancement application, the correct melody would beknown beforehand and

thus could be utilized to prevent pitch doubling and halving. However, it was found

that some untrained singers would occasionally, albeit rarely, err in pitch by an entire

octave or more.

• During the processing stage of the modification experiments, it was found that im-

proved performance could be attained by manually adjustingthe target parameters

for each of the spectral methods. These adjustments often varied from singer to

singer. However, these target parameters that were empirically determined for the

AGG and frequency warping methods often did not coincide. Because the purpose

of the experiment was to objectively compare the ability of each method to perform
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modifications based on the analysis performed in Chapter 6.3,the target parameters

were not altered from the original specifications.

The results of the listening tests show that the proposed spectral and glottal modification

algorithms enable a number of important characteristics oftrained singers to be parameter-

ized and implemented in an enhancement system. However, it is clear that there are still

some aspects of trained singers’ voices that are not encompassed by these models. Infor-

mal comparisons show that even the most highly rated enhanced samples do not match the

vocal beauty of the voices of professional classical singers. These observations imply that

all of the qualities of vocal beauty can not be solely described by a static model. While

it is agreed upon that prosodic features contribute to the perception of beauty or level of

training, models that are able to effectively capture thesecharacteristics in singing have yet

to be formulated. Although our attempts at separately enhancing voiced segments based

on registration were able to capture some of the time-varying characteristics of singing, the

complex nature of the modalities of the singing voice must befurther investigated to truly

enhance the singing voice.
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Figure 39: By-singer results for (a) unmodified vs. AGG modifications, (b) unmodified
vs. glottal modifications, and (c) unmodified vs. AGG/glottal modifications.
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Figure 40: By-singer results for (a) unmodified vs. frequency warping modifications,
(b) unmodified vs. H1H2 glottal modifications, and (c) unmodified vs. frequency warp-
ing/glottal modifications.
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Figure 41: By-singer results for (a) frequency warping vs. AGG modifications, (b) H1H2
vs. the proposed glottal modifications, and (c) frequency warping/H1H2 vs. AGG/glottal
modifications.
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CHAPTER 9

CONCLUSIONS

In this research, a set of models for modeling the spectral and glottal characteristics of

the singing voice has been developed and used to characterize and modify certain vocal

qualities of the singing voice.

First, a spectral model was described in which the formant structure of a voice is mod-

eled as a sum of asymmetric generalized Gaussian functions.The use of these functions is

advantageous over traditional methods because of their inherent flexibility. Most notably,

the ability to independently control the amplitude and bandwidth of each Gaussian function

in an asymmetric fashion enables an accurate estimate of thespectral envelope as well as a

wide variety of modifications.

A glottal model based on a frequency-domain derivation of time-domain glottal flow

models was also developed. It was shown that important time-domain characteristics of

the glottal source can be captured in the time domain by parameterizing the relative ampli-

tudes and phases of the harmonics in a voiced signal. This discovery led to a method for

accurately estimating perceptually important time-domain parameters in the frequency do-

main. Experimental evidence was presented in which these estimates showed a high level

of correlation with estimates produced by a closed-phase inverse filtering technique using

a physical microradar device to accurately measure the glottal closure instants.

An additional technique for modeling vibrato was also formulated in which vibrato

could be naturally infused into a singer’s voice.

An experimental study was presented in which these models were used to capture and

parameterize those characteristics that differentiate singing produced by singers with no

training and those with extensive classical training. It was shown that a number of spectral
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and glottal patterns could be discerned using the proposed models. Additionally, differ-

ences in registration, or the modes of singing often used by trained singers, were illustrated

with these models. Evidence that changes in registration involve changes in spectral as

well as glottal characteristics were presented, thus supporting a largely minority opinion

that registration is independent of the vocal tract.

Finally, an application for enhancing the characteristicsof untrained singers was de-

veloped and subjectively tested against unmodified sourcesand competing algorithms. It

was shown that the proposed models are capable of providing an improved framework for

high-quality vocal modifications.

9.1 Contributions

Contributions of the proposed work include the following:

• Development of a spectral model based on asymmetric generalized Gaussian func-

tions for parameterizing and modifying the formant structure of the spectral envelope.

• Development of a method for estimating the parameters of thespectral model using

the Expectation-Maximization algorithm.

• A theoretical analysis of the frequency-domain characteristics of two time-domain

glottal flow models (LF, R++).

• Development of a parameter estimation technique for determining time-domain glot-

tal characteristics in the frequency domain.

• Development of a model for characterizing perceptually relevant glottal character-

istics based on amplitude and phase characteristics of the harmonics of the glottal

source.

• Development of a model for pitch and vibrato correction based on the ABS/OLA

sinusoidal model as a pitch-scaling engine.
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• Implementation of the proposed spectral, glottal, and pitch modification methods for

the classical enhancement of an untrained singer’s voice.

• Various extensions to the existing glottal estimation method in [54]:

– Improvement of initial estimation of the glottal closure instant using group de-

lay methods.

– Improvement of averaging technique for vocal tract estimation.

9.2 Future Work

Algorithm robustness Perhaps the best way in which the spectral and glottal modelscould

be improved for all applications is by the development of more robust methods for

the estimation of various parameters such as pitch pulse onset time, voicing, for-

mant frequencies, and pitch. Each one of these is a challengein itself and has much

room for improvement. Although several ad hoc methods for dealing with isolated

errors were implemented, these techniques are far from capable of dealing with more

serious errors that can be common occurrences in singing.

Genre classification In this thesis an investigation was performed which identified a set

of characteristics describing a classical style of singing. While we have conducted

studies regarding other styles [37,38], a wide-ranging examination of genres as well

as genders could utilize the spectral and glottal models to their fullest capabilities

and provide significant insight of the characteristics of singing for both the music

and research communities.

Database collectionOne of the most challenging aspects of this research has beenthe

inability to obtain a sufficient variety of studio-quality isolated singing voice samples.

Any future comprehensive study in singing will require sucha database spanning

gender, genre, vocal range, and level of training. Additionally, such a database would
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be invaluable for using the proposed models for some type of statistical classifier that

would require a relatively large amount of training data.

Prosody models in singing synthesisSpectral and glottal characteristics encompass a large

portion of a singer’s characteristics, but time-varying changes or prosodic features are

also significant contributors. The vibrato model proposed in this thesis is capable of

capturing some of these features, but it nonetheless fairlyrudimentary. In order for a

complete model of the singing voice to be attained, it is necessary for a more complex

model capable of capturing the dynamic features of singing to be developed.

Alternate applications Singing voice enhancement and genre classification are onlya few

of the many applications that can utilize the models developed in this work. The

models developed in this work open up a myriad of possible applications that can be

used to transform, segment, identify, compress, or even train the singing voice.

9.3 Concluding Remarks

In this work, we have attempted to answer the difficult question: What gives a singing

voice its unique qualities? Although this question may never be completely answered, it

has been shown that it is not feasible to simply use methods originally designed for normal

speech processing. There may never be a sufficient level of agreement among the music

community as to what makes a singing voice “good” or “bad,” but through the models and

methods presented here, a set of tools has been developed that can hopefully be used to

take steps toward clarifying the picture.
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