
ABSTRACT

ABSHER, JOHN M. On the Isomorphy Classes of Involutions over SO(2n, k). (Under the
direction of Dr. Aloysius Helminck).

The study of symmetric spaces involves group theory, field theory, linear algebra, and

Lie algebras, as well as involving the related disciplines of topology, manifold theory, and

analysis. The notion of symmetric space was generalized in the 1980’s to groups defined

over arbitrary base fields. In particular, if G is an algebraic group defined over a field k of

characteristic not 2, θ is an automorphism of order 2 of G, and H is the fixed point group of

θ, then the homogeneous space G/H is called a symmetric space. It can be identified with

the subvariety Q = {gθ(g)−1 | g ∈ G} of G.

These generalized symmetric varieties are especially of interest in representation theory,

especially when the base field k is the p-adic numbers, a finite field or a number field. A full

classification of these symmetric spaces for arbitrary fields is still an open problem.

The main focus for my thesis concerns a classification of these symmetric spaces for G

the special orthogonal group defined over an arbitrary field.
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Chapter 1

Introduction

My thesis studies Lie groups (or algebraic groups) and the (generalized) symmetric spaces

obtained from them. The study of symmetric spaces involves group theory, field theory,

linear algebra, and Lie algebras, as well as involving the related disciplines of topology,

manifold theory, and analysis. The notion of symmetric space was generalized in the 1980’s

to groups defined over arbitrary base fields. In particular, if G is an algebraic group defined

over a field k of characteristic not 2, θ is an automorphism of order 2 of G, and H is the

fixed point group of θ, then the homogeneous space G/H is called a symmetric space. It can

be identified with the subvariety Q = {gθ(g)−1 | g ∈ G} of G.

These generalized symmetric varieties are especially of interest in representation theory,

especially when the base field k is the p-adic numbers, a finite field or a number field. A full

classification of these symmetric spaces for arbitrary fields is still an open problem.

The main focus for my thesis concerns a classification of these symmetric spaces for G the

special orthogonal group defined over an arbitrary field. Symmetric spaces have been studied

over 100 years, with the initial theory focusing on symmetric spaces over the real numbers

and their important role in mathematical physics, representation theory, harmonic analysis,

and differential geometry. More recently the field of research has expanded to include the

study of these spaces over general fields of characteristic not 2, and the applications of such

generalization has been shown to yield results important to not only the areas mentioned

above but also to number theory, quadratic forms, algebraic geometry, combinatorics, auto-
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morphic functions, and more. We obtain our symmetric space by starting with a reductive

linear algebraic group (matrix group) G defined over an arbitrary field (of characteristic not

equal to 2) and analyzing the space G/H, where H is the fixed point group of an involu-

tion of G. Classification of the involution leads to classification of the subgroup H, which

enables us to characterize the related symmetric space G/H. The symmetric space can also

be identified with the subvariety Q = {gθ(g)−1 | g ∈ G} of G. A full classification of these

symmetric spaces for arbitrary fields is still an open problem. The main focus for my the-

sis concerns a classification of these symmetric spaces for G the special orthogonal group

defined over an arbitrary field. For g ∈ SO(2n,K) where K is an extension field of k the

corresponding inner automorphism of SO(2n,K) is denoted by Inn(g).

Definition 1. If φ and ψ are involutions over SO(2n, k) then φ is isomorphic to ψ if there

is an inner automorphism ω ∈ Aut(SO(2n, k)) such that ω−1φω = ψ. By abuse of notation,

isomorphy classes of involutions with respect to conjugacy will also be called conjugacy classes

of involutions.

Definition 2. If K is an extension field of k and φ and ψ are involutions of SO(2n, k)

then they are K-isomorphic if there is an inner automorphism ω ∈ Aut(SO(2n,K)) such

that ω−1φω = ψ. By abuse of notation, K-isomorphy classes of involutions with respect to

conjugacy will also be called K-conjugacy classes of involutions.

Thus, for the classification one considers the notion of isomorphism up to Inn(G), where

two involutions θ and τ are isomorphic iff τ can be obtained from θ via conjugation by an

inner automorphism of G. Involutions of SL(n, k) were classified by Dometrius, Helminck,

and Wu, and the classification of SO(2n + 1, k) was done by Ling Wu. I have classified

the involutions of SO(2n, k). I first showed that all involutions of SO(2n, k) are restrictions

of involutions of SL(2n, k) to SO(2n, k). Then I determined which isomorphy classes of

involutions of SL(2n, k) have a representative that leaves SO(2n, k) invariant. The final step

is to determine in how many SO(2n, k)-isomorphy classes one SL(2n, k)-isomorphy class

splits. This depends on the field in question and in many cases one SL(2n, k)-isomorphy

class splits in several SO(2n, k)-isomorphy classes.
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Over any algebraically closed field of characteristic not equal to two, there is one isomor-

phy class of involutions in SO(2n, k) for every isomorphy class of SL(2n, k). The same is true

over the real numbers R. However, over the finite field of p elements, denoted Fp, there are

two isomorphy classes of SO(2n, k) for every one in SL(2n, k). The situation is much more

complicated over Qp. There are sixteen isomorphy classes in the case p ≡ 1 (mod 4) and

p ≡ 3 (mod 4), although they are different in these cases, and there are thirty-two classes

in the case p = 2.

From that, it is necessary to determine what the fixed-point groups of these isomorphy

classes of involutions are. That requires algebra, by which I have determined that, e.g.,

if A,B ∈ GL(n, k) and A = (aij) and B = diag(b1, . . . , bn). Then ABAT = B iff for all

i, j ∈ {1, 2, . . . , n}, i 6= j, two properties hold:

1.
n∑
`=1

a2
i`b` = bi

2.
n∑
`=1

ai`aj`b` = 0

Using this result and others like it I computed the fixed-point group of each isomorphy class

of involutions over Qp.

The next step is to determine which of these classes are compact, and which are not. It

turns out that the majority of them are not compact. Some of them are compact only for

suitably small n, and many of them are never compact. A major part of this result is the

fact that whereas if p ≡ 1 (mod 4) then every p-adic number in Qp is the sum of the squares

of two p-adic numbers, if p ≡ 3 (mod 4) or p = 2 then this is not true. That restricts the

size of n in many fixed-point groups, so that if n is too small certain fixed-point groups do

not exist over SO(2n, k).

From there, I have investigated the involution classes and fixed-point groups of the

quadratic extensions of each class of p-adic field, i.e., of each field Qp where p ≡ 1 (mod 4),

p ≡ 3 (mod 4), and p = 2. There are some differences between these case and the previous

cases (over Qp unextended).
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Further results are related to quadratic elements. Firstly, I have shown what the diagram

automorphisms are for the root system of SO(2n, k), which is D`, given the divers ways in

which various roots (or dots, on the graph) may be fixed points. I also identified a maximal

torus in SO(2n, k) and proved that that is what it is. That required tedious-to-compute

results related to eigenvalues, the form of matrices in SO(2, k), and other such things.
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Chapter 2

Preliminaries, Recollections, and

Notations

In this thesis, I have made use of the following notation: In will denote the n×n identity

matrix, Is,t will denote the matrix

(
Is 0

0 −It

)
, 3 means ”such that,” and k will denote

a field. Also, JA will denote the operator JA : X 7→ A−1XA for all X in GL(2n, k), and

Inn(G) will denote the set of all inner automorphisms in G. Further, F will always denote

an algebraically closed field, not necessarily of characteristic zero, and cp(A) will always

represent the Hasse symbol of A. Also, δij =

{
1, i = j

0, i 6= j
.

Furthermore, d e denotes the ”ceiling” function which sends any real number ξ to the

next integer greater than or equal to ξ. Similarly, b c denotes the floor function, and F
denotes an algebraically closed field of characteristic not equal to two.

I have made use of the following outside theorems: the first one was proven by Ling Wu

and Christopher Dometrius, and it appears in the Ph.D. thesis of the latter [2, Theorem 5.2

on p. 75].

Outside Theorem 1. Suppose β is a non-degenerate symmetric bilinear form with matrix

M over V = kn where char(k) 6= 2 and Ḡ = SO(2n, k̄), assuming n > 2.

i. If A ∈ GL(2n, k̄) then the automorphism JA : X 7→ A−1XA of GL(2n, k̄) keeps Ḡ
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invariant iff A = αA∗, where α ∈ k̄ and

a. A∗ ∈ Ḡ if n is odd

b. A∗ ∈ Ḡ or A∗ ∈ O(n, k̄, β) and det(A∗) = −1 if n is even

ii. If A is in Ḡ for any n, or O(n, k̄, β) where n is even, then the inner automorphism

JA of Ḡ keeps G invariant iff A = αA∗ where α ∈ k̄ and

a. A∗ ∈ G if n is odd

b. A∗ ∈ G or A∗ ∈ O(n, k, β) and det(A∗) = −1 if n is even

The next result is from Burton, and it is a well-known and essential result about the

p-adic numbers [6, pp. 27-28]. The definitions of the terms contained in it can be found in

chapter four.

Outside Theorem 2. Let α, β, γ, ρ, and σ be nonzero numbers in the p-adic field Qp. Let

(α|p) be the value of the Legendre symbol (α0|p) where α0 is the first term in the p-adic

expansion of α. Also let (α, β)∞ be the value of the Hilbert symbol over R and let (α, β)p be

the value of the Hilbert symbol in Qp. Then we have the following:

1. (α, β)∞ = 1 unless α < 0 and β < 0

2. (α, β)p = (β, α)p

3. (αρ2, βσ2)p = (α, β)p

4. (α,−α)p = 1

5. If α = pna1 and β = pmb1 with a1 and b1 units then:

i. if p is odd then (α, β)p = (−1|p)nm(a1|p)m(b1|p)n

ii. else if p = 2, then (α, β)p = (2|a1)m(2|b1)n(−1)
(a1−1)(b1−1)

4

6. If p is prime to 2αβ, (α, β)p = 1 for p 6=∞ provided α and β are p-adic integers.
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7. (α, β)p(α, γ)p = (α, βγ)p

8. (α, α)p = (α,−1)p

9. (αρ, βρ)p = (α, β)p(ρ,−αβ)p

10. If β is not a square in Qp and c = ±1 then for each prime p there is an integer α

such that (α, β)p = c. Furthermore, if m as defined in property 5 is odd, then such an

α can be found that is prime to p.

11. If a and b are in Q∗, the set of non-zero rational numbers, then∏
p prime and p = ∞

(a, b)p = 1

The next result can be found in Mahler [7, Theorem 1 on p. 72].

Outside Theorem 3. The non-squares of Qp are represented by the elements −1,±2,±3,

and ±6. If p > 2, the non-squares of Qp are represented by Np, p, and pNp. This means

that there are seven distinct quadratic extensions of Q2, viz., Q2(
√
−1), Q2(

√
2), Q2(

√
−2),

Q2(
√

3), Q2(
√
−3), Q2(

√
6), and Q2(

√
−6). Also, there are three distinct quadratic exten-

sions of Qp if p > 2, and they are Qp(
√
Np), Qp(

√
p), and Qp(

√
pNp). Note that if −1 /∈ Q∗2p

then one can use −1 in place of Np, as I did below.

The next result is a result by Drs. Helminck and Wang, the former of whom is my thesis

adviser. It can be found in their paper [5, Proposition 10].

Outside Theorem 4. Let G be a connected, reductive, algebraic k-group with char(k) = 0,

let χ be an involution of G, and let X = {xχ(x)−1 | x ∈ G}. If Gχ ∩ [G,G] is anisotropic

over k then Xk consists of semi-simple elements.

The next result is a result of elementary number theory, and a proof can be found in

Rosen [8, Lemma 3.9 on pp. 112-113].

Outside Theorem 5. Let n ∈ Z be such that n > 0 and n is odd. Then there is a one-to-

one correspondence between differences (not sums) of squares of integers (in Z) that equal n

and factorizations of n into two positive integers.
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The next result was proven by Ling Wu in his doctoral thesis [11, Lemma 11 on p. 26].

Outside Theorem 6. In the finite field Fp, −1 is a square iff p ≡ 1 (mod 4).

Now here is another result from elementary number theory on the integers Z. This one

is very useful in proving whether every element of Qp is a square or not. Specifically, it is a

result on linear diophantine equations in two variables. A proof can be found in Rosen [8,

Theorem 3.21 on pp. 120-121].

Outside Theorem 7. Let a, b ∈ Z be such that the greatest common divisor of a and b is

d. The equation ax + by = c has no solutions in Z if d does not divide c, i.e., if there is

no integer m such that md = c. On the other hand, if d does divide c (so such an integer

m exists) then there are infinitely many solutions to ax + by = c over Z. Furthermore, if

x = x0, y = y0 is a solution to the equation then every solution is of the form x = x0 + b
d
n,

y = y0 − a
d
n, where n ∈ Z.

This last outside theorem is very useful in computing the fixed-point groups and whether

they are compact over Qp.

Outside Theorem 8. Over any p-adic field Qp, ∀ a1, a2, a3, a4, a5 ∈ Q∗p, a1x
2
1+a2x

2
2+a3x

2
3+

a4x
2
4 + a5x

2
5 = 0 has a non-trivial solution. That implies a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = a5 has

a solution. This result can be found in Scharlau [9, Theorem 6.3 on p. 187].
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Chapter 3

Involution Isomorphy Classes with

Respect to Conjugation Classes over

SO(2n, k) where k = R, Fp

3.1 Results Over General Fields

The first needed result in classifying isomorphism classes of involutions over SO(2n, k)

with respect to conjugacy, which I also call ”conjugacy classes of involutions” by abuse of

notation, is one that gives an idea of what form the involutions over SO(2n, k) take. These

involutions are classified according to the inner involutions JA, A ∈ SO(2n, k). That is true

according to the following theorem:

Theorem 1. Suppose β is a non-degenerate symmetric bilinear form with matrix M over

V = kn where char(k) 6= 2 and Ḡ = SO(2n, k̄), assuming n > 2.

i. If A ∈ GL(2n, k̄) then the automorphism JA : X 7→ A−1XA of GL(2n, k̄) keeps Ḡ

invariant iff A = αA∗, where α ∈ k̄ and

a. A∗ ∈ Ḡ if n is odd

b. A∗ ∈ Ḡ or A∗ ∈ O(n, k̄, β) and det(A∗) = −1 if n is even
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ii. If A is in Ḡ for any n, or O(n, k̄, β) where n is even, then the inner automorphism

JA of Ḡ keeps G invariant iff A = αA∗ where α ∈ k̄ and

a. A∗ ∈ G if n is odd

b. A∗ ∈ G or A∗ ∈ O(n, k, β) and det(A∗) = −1 if n is even

Theorem 1 was proven by Ling Wu and Christopher Dometrius, and it appears in the

Ph.D. thesis of the latter [2, Theorem 5.2 on p. 75]. The theorem shows that the notion of

classifying conjugacy classes of involutions by the inner involutions is valid, and the following

proposition gives an idea of what form the inner involutions actually take.

Proposition 1. Suppose θ = JA is an involution of G ≡ SO(2n, k). Then if A ∈ G,

A = A−1
0

(
Is 0

0 −It

)
A0 where A0 ∈ GL(2n, k), A0A

T
0 is diagonal, s+ t = 2n, and s and t

are both even. It is also possible that A ∈ O(2n, k) and that A still has the same form but

A /∈ G, then s and t are both odd.

Proof. For all involutions θ of G, θ = JA. J2
A = id so ∀ X ∈ G, J2

A(X) = A−2XA2 =

X ⇒ XA2 = A2X so A2 = cI2n. It has elsewhere been proven that c = 1, so the minimal

polynomial of JA is (x+ 1)(x− 1). Thus, the eigenvalues of JA are ±1.

As a result, ∃ A0 ∈ GL(2n, k) 3 A = A−1
0 Is,tA0. Since A ∈ G, A−1 = AT , or in other

words,

AT0

(
Is 0

0 −It

)
(A−1

0 )T = A−1
0

(
Is 0

0 −It

)
A0

∴ A0A
T
0 Is,t = Is,tA0A

T
0 . Call this equation ”(∗)”.

Let A0A
T
0 =

(
X11 X12

X21 X22

)
, where X11 is an s× s block, X12 is an s× t block, X21 is an

t× s block, and X22 is an t× t block. Then from (∗),(
X11 −X12

X21 −X22

)
=

(
X11 X12

−X21 −X22

)
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∴ X12 = −X12 and X21 = −X21, so X12 = 0s×t and X21 = 0t×s.

∴ A0A
T
0 =

(
X11 0

0 X22

)
.

(A0A
T
0 )T = A0A

T
0 so

(
XT

11 0

0 XT
22

)
=

(
X11 0

0 X22

)
, which of course implies X11 = XT

11

and X22 = XT
22, so A0A

T
0 is symmetric. Since symmetric matrices are congruent to diagonal

matrices, there is a s× s matrix N1 such that N1X11X
T
11N

T
1 is diagonal and there is a t× t

matrixN2 such thatN2X22X
T
22N

T
2 is diagonal. Thus, ifN =

(
N1 0

0 N2

)
thenNA0A

T
0N

T =

(NA0)(NA0)T is diagonal. Ergo, (NA0)−1

(
Is 0

0 −It

)
(NA0) = A−1

0 N−1

(
Is 0

0 −It

)
NA0

= A−1
0

(
N−1

1 0

0 −N−1
2

)(
N1 0

0 N2

)
A0 = A−1

0 Is,tA0

∴ One can always pick A = A−1
0 Is,tA0 3 A0A

T
0 is diagonal.

Furthermore, detA = det(A−1
0 Is,tA0) = det(A−1

0 ) det(Is,t) det(A0) = det(A0)−1(−1)t

det(A0) = (−1)t = 1 so t must be even. Since s+ t = 2n, s is even too.

If s and t are even, A ∈ SO(2n, k), but it is possible that s and t are both odd and

A ∈ O(2n, k) but A /∈ SO(2n, k). Then JA will still represent an involution on SO(2n, k) by

Theorem 1. Q.E.D.

A result is needed that will help classify these involutions over SO(2n, k) for k not only

equal to F, the algebraically closed field of characteristic not equal to two, and R and Fp,
but Qp as well. The latter case will be considered in the following chapter.

But before one can begin classifying the conjugacy classes of involutions, one must have

a way to determine whether or not any two given involutions are equivalent. The following

proposition provides just such a set of criteria, which are all that is needed in the case

G = SO(2n, k).

Theorem 2. Suppose θ and φ are two involutions of G ≡ SO(2n, k) in the same GL(2n, k)-

conjugacy class. Let A and B be matrices such that θ = JA, φ = JB, and A and B satisfy the

conditions of Proposition 1. Suppose further that A = A−1
0 Is,tA0, B = B−1

0 Is,tB0, A0A
T
0 =
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diag(a1, ..., a2n), and B0B
T
0 = diag(b1, ..., b2n). Then the following are equivalent.

i. θ is conjugate to φ over G

ii. A is conjugate to B over G

iii. diag(a1, ..., as) is congruent to diag(b1, ..., bs) and diag(as+1, ..., a2n) is congruent to

diag(bs+1, ..., b2n)

iv. If k is the p-adic field Qp then there are τ1, τ2 ∈ Q∗p that are not necessarily distinct

such that a1a2...as = τ 2
1 b1b2...bs, as+1as+2...a2n = τ 2

2 bs+1bs+2...b2n, cp(a1, a2, ..., as) =

cp(b1, b2, ..., bs), and cp(as+1, as+2, ..., a2n) = cp(bs+1, bs+2, ..., b2n)

Proof. i.⇒ ii. Firstly, assume result i. is true. Then let θ = ρ−1φρ, where ρ ∈ Inn(G).

Then ∀ X ∈ G, θ(X) = (ρ−1φρ)(X) = ρ−1(φ(ρ(X))), so A−1XA = CB−1C−1XCBC−1.

Now, CB−1C−1A−1XACBC−1 = X so CB−1C−1A−1X = XCB−1C−1A−1 ⇒ CB−1C−1A−1

= aI2n, where a ∈ K and a 6= 0.

∴ 1
a
CBC−1 = A

I2n = AAT = 1
a2CBC

TCBTCT = 1
a2CBB

TCT = 1
a2CC

T = 1
a2 I2n, so a = ±1. Since A ∈

G, 1 = det(A) = det( 1
a
CBCT ) = 1

a
det(C) det(B) det(C)−1 = 1

a
det(B) (since C−1 = CT ).

Now, since B ∈ G, det(B) = 1 so 1 = 1
a
⇒ a = 1.

∴ A = CBCT = CBC−1.

ii.⇒ i. Assume ii., and let A = CBC−1 = CBCT . Define ρ(X) = CTXC. Then

ρ−1(φ(ρ(X))) = CBTCTXCBCT = ATXA = θ(X) so θ and φ are indeed conjugate.

ii.⇒ iii. Assume ii. Then A = CBCT = CBC−1, so

A−1
0 Is,tA0 = CB−1

0 Is,tB0C
−1

In that case,

(AT0 )−1A−1
0 Is,tA0A

T
0 = (AT0 )−1CB−1

0 Is,tB0C
−1AT0

(AT0 )−1A−1
0 Is,tA0A

T
0 = (AT0 )−1C[BT

0 (BT
0 )−1]B−1

0 Is,tB0[BT
0 (BT

0 )−1]C−1AT0

Therefore,

(A0A
T
0 )−1Is,t(A0A

T
0 ) = [(BT

0 )−1C−1AT0 ]−1(B0B
T
0 )−1Is,t(B0B

T
0 )[(BT

0 )−1C−1AT0 ]
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Now, by assumption A0A
T
0 and B0B

T
0 are diagonal, so they and their inverses both

commute with Is,t since Is,t is also diagonal.

∴ Is,t = [(BT
0 )−1C−1AT0 ]−1Is,t[(B

T
0 )−1C−1AT0 ], so (BT

0 )−1C−1AT0 commutes with Is,t as well.

Ergo, it must be true that (BT
0 )−1C−1AT0 =

(
N1 0

0 N2

)
, where N1 is s × s and N2

is t × t. Also, inasmuch as det((BT
0 )−1C−1AT0 ) 6= 0, det(N1) 6= 0 and det(N2) 6= 0, so

[(BT
0 )−1C−1AT0 ]−1 =

(
N−1

1 0

0 N−1
2

)
. For ease of reference, let N =

(
N1 0

0 N2

)
.

From these formulas, it is clear that AT0 = CBT
0 N , so A0 = NTB0C

T . Then A0A
T
0 =

NTB0C
TCBT

0 N . Since C ∈ G, CT = C−1 so A0A
T
0 = NTB0B

T
0 N , which implies that

diag(a1, ..., a2n) = NT diag(b1, ..., b2n)N . Therefore, diag(a1, ..., as) = NT
1 diag(b1, ..., bs)N1

and diag(as+1, ..., a2n) = NT
2 diag(bs+1, ..., b2n)N2

iii.⇒ ii. Now assume iii. and let diag(a1, ..., as) = NT
1 diag(b1, ..., bs)N1 and similarly

let diag(as+1, ..., a2n) = NT
2 diag(bs+1, ..., b2n)N2. Let N =

(
N1 0

0 N2

)
and M = A−1

0 NB0

as well. Then

M−1AM = B−1
0 N−1A0AA

−1
0 NB0

= B−1
0 N−1A0(A−1

0 Is,tA0)A−1
0 NB0

= B−1
0 N−1Is,tNB0

= B−1
0

(
N−1

1 0

0 N−1
2

)(
Is 0

0 −It

)(
N1 0

0 N2

)
B0

= B−1
0

(
N−1

1 0

0 N−1
2

)(
N1 0

0 −N2

)
B0

= B−1
0 Is,tB0

= B

iii.⇒ iv. Assume iii. There is a theorem that two symmetric matrices A and B are con-

gruent iff det(A) = τ 2det(B) and cp(A) = cp(B), where τ ∈ Q∗p and cp(x) is the Hasse symbol

of x [11, Theorem 7, p. 35]. Given that, then by iii., a1...as = τ 2
1 b1...bs and as+1...a2n =

τ 2
2 bs+1...b2n, where τ1, τ2 ∈ Q∗p and τ1, τ2 may be distinct. Further, cp(a1, a2, ..., as) =

cp(b1, b2, ..., bs) and cp(as+1, as+2, ..., a2n) = cp(bs+1, bs+2, ..., b2n).

iv.⇒ iii. Assume iv. Then iii. follows immediately from the theorem I mentioned
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above. Q.E.D.

3.2 R and Fp

Now it is possible to begin classifying the conjugacy classes of involutions themselves

(meaning, by abuse of notation, the isomorphism classes of involutions with respect to con-

jugacy). To that end, the following lemma makes the proof of the third proposition, which

will address this issue, much nicer. It states that in the case SO(2, k), there are two orbits

of matrices in GL(2, k) with respect to congruency.

Lemma 1. The orbit of diag(α, β) ∈ GL(2, k) where k = Fp over SO(2, k) is as follows:

diag(α, β) is congruent to a multiple of diag(1, a2), a ∈ F∗p, if the diagonal components of the

matrix are both squares of F∗p or to a multiple of I2 if they are equal, and it is congruent to

a multiple of diag(1, c∗) otherwise, where c∗ is any non-square element of F∗p.

Proof. Let A = diag(a, b), a 6= 0, b 6= 0 and let C =

(
c11 c12

c21 c22

)
. Then CTAC =

CT

(
ac11 ac12

bc21 bc22

)
=

(
ac2

11 + bc2
21 ac12c11 + bc22c21

ac11c12 + bc21c22 ac2
12 + bc2

22

)
Now, if a and b are both squares of Fp, a−1 is also a square so one has A = a diag(1, a−1b),

which is in the desired format. So set C = I2 and CTAC is naturally in the desired format

too.

On the other hand, if a is a square but b is not, then one already has obtain a multiple of

diag(1, c∗), where c∗ is any non-square of Fp, for by setting c∗ = a−1b one obtains diag(a, b) =

a diag(1, c∗). Or, if desired, one can conjugate by C∗ = diag(a−1/2, a1/2) to obtain diag(1, ab)

which is also in the needed format.

Also, if a is not a square of Fp but b is, then if one takes C =

(
0 −1

1 0

)
then one

obtains diag(b, a), whence one can obtain a multiple of diag(1, c∗) as before.

The last possibility is that both a and b are not squares of Fp. In that case, if a = b, the

matrix A = diag(a, a) = aI2 is already of the desired form. Otherwise, A = a diag(1, a−1b)
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so in this case A is already in the format β diag(1, c∗).

Thus, in every case it turns out that a suitable matrix is an element of SO(2n, k), which

completes the proof. Q.E.D.

Now I am ready to give the first classification of conjugacy classes of involutions, and to

prove that it is valid. This result is valid on the fields k = F,R, or the finite field Fp, where

F is the algebraically closed field of characteristic not equal to two. The proof is tedious,

and it uses induction.

Proposition 2. For k = F,R, or the finite field Fp, the isomorphy classes of involutions of

SO(2n, k) are as follows:

1. If k = F, there is only one SO(2n, k) conjugacy class for each GL(2n, k) conjugacy

class.

2. If k = R, the same thing is true.

3. Else if k = Fp then there are two SO(2n, k) conjugacy classes for each GL(2n, k)

conjugacy class. The representatives of these classes are I−1
2n Is,tI2n = Is,t and X−1Is,tX,

where X =


Is−1 0 0 0

0 α −β 0

0 β α 0

0 0 0 It−1

 and α2 + β2 is not a square of Fp (which implies

p 6= 2).

Proof. 1. ∀ θ ∈ Inn(G), θ = JA where A = A−1
0 Is,tA0 and A0 ∈ GL(2n, k), AT0A0 =

diag(a1, ..., a2n). By Theorem 2, JA is conjugate to JB iff AT0A0 is congruent to BT
0 B0 =

diag(b1, ..., b2n), where B = B−1
0 Is,tB0. Because F is algebraically closed, there is a matrix

N ∈ GL(2n, k) 3 NTBT
0 B0N = I2n. For example, let N = diag(b

−1/2
1 , b

−1/2
2 , . . . , b

−1/2
2n ),

noting that no bi = because det(BT
0 B0) 6= 0 (see part 2 below). Thus, if N∗ is 1

(detN)1/2n
N ,

(N∗)TBT
0 B0(N∗) = 1

(detN)1/4n
I2n and N can be selected such that N∗ ∈ SO(2n, k). (For

example, the N I gave above has this property, which would mean (N∗)−1 = (N∗)T .)
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Ergo, AT0 (N∗)TBT
0 B0N

∗A0 = 1
ξ
AT0 I2nA0 where ξ is some positive power of (detN)−1 ⇒

(ξ1/2nN∗A0)TBT
0 B0(ξ1/2nN∗A0) = AT0A0 so JA is conjugate to JB.

2. Let JA, JB, A, and B be defined as in the proof of 1. Then since JB is an involution,

the product BT
0 B0 is positive definite, so ∀ i ∈ {1, 2, ..., 2n}, bi > 0. Let C = (cij) be a

2n× 2n matrix. Then CTBT
0 B0C =

c11b1 c21b2 . . . c2n,1bn

c12b1 c22b2 . . . c2n,2bn
...

...
. . .

...

c1,2nb1 c2,2nb2 . . . c2n,2nbn

C

=


c2

11b1 + c2
21b2 + . . .+ c2

2n,1bn . . . c11b1c12 + . . .+ c2n,1bnc2n,2

...
. . .

...

c1,2nb1c11 + c2,2nb2c21 + . . .+ c2n,2nbnc2n,1 . . . c2
1,2nb1 + . . .+ c2

2n,2nbn


If ∀ i ∈ {1, 2, ..., 2n} one sets cii =

1√
bi

and if for all i 6= j one sets cij = 0, then the result

will be I2n. Additionally, C ∈ GL(2n, k). (Because the product BT
0 B0 is positive definite,

∀ i ∈ {1, 2, ..., 2n}, bi > 0 so
√
bk ∈ R.) As a result, one can replace C with C∗ = 1

(detC)1/2n
C

to get 1
(detC)1/2n

I2n, so by Proposition 2 JA is conjugate to JB.

3. I will first prove this result for s = 2 on SO(2n, k) and then proceed inductively. The

s = 1 case is clear because then the upper-left s × s block consists of a single entry, and if

that entry of a1 is a square one can use the ”matrix” C = (a
−1/2
1 ) to get the desired result.

Otherwise, it is in the desired form already. Let JA be any involution on SO(2n, k) where

A = A−1
0 Is,tA0 and the s × s upper-left corner of AT0A0 = diag(a, b), and s = 2. Then by

the Lemma proved before this proposition, that part of AT0A0 is congruent to a multiple

of diag(1, α2), where α ∈ F∗p, if the diagonal components of the matrix are both squares of

F∗p or are equal and it is congruent to a multiple of diag(1, c∗) otherwise, where c∗ is any

non-square element of F∗p. Therefore, these are the two conjugacy classes of involutions of

SO(2n, k).

Now assume the result is true for m = 1, 2, ..., s− 1. For simplicity, let s = m. Working

on the s×s case, I will make a proof for the (s−1)×(s−1) block in the upper-left corner, and
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note that the result is similar for the other part of the diagonal matrix A−1
0 A0. In that case,

let JA be any involution on SO(2n, k) where A = A−1
0 Is,tA0. Also let AT0A0 = diag(a1, ..., as).

Then by considering the (s− 1)× (s− 1) block in the upper-left corner, it is assumed that

diag(a1, ..., as) ∼= ε diag(1, ..., α2, a∗s) or diag(a1, ..., as) ∼= ε diag(1, ..., c∗, a∗s) where c∗ is not a

square of Fp and α and ε are elements of F∗p.
By abuse of notation, call a∗s as. If as is a square, then ε diag(1, ..., c∗, as) ∼= εα diag(1, . . . ,

1, d∗), where d∗ is not a square of Fp. Also,

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 −1

0 0 . . . 1 0



T 

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . c∗ 0

0 0 . . . 0 as





1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 −1

0 0 . . . 1 0



=



1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . as 0

0 0 . . . 0 c∗


∼= ε



1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 c∗∗


by the inductive hypothesis, where c∗∗

is a non-square element of Fp.
Else if as is not a square, if diag(a1, . . . , as) ∼= ε diag(1, . . . , α2, as) then I am already done

because I can use the inductive hypothesis on the 2× 2 lower-right corner of the matrix to

get a multiple of diag(1, 1, . . . , 1, as). Else if diag(a1, ..., as) ∼= ε diag(1, ..., c∗, as) then by the

inductive hypothesis taken in the lower-right (s−1)× (s−1) corner, the matrix is congruent

to a multiple of diag(1, . . . , 1, c∗∗), where c∗∗ is a non-square element of Fp, which is the

desired form.

A similar result holds for the t × t block in the lower-right corner, so by Proposition 2,

there are two conjugacy classes of involutions, with all the desired properties. Note that

det(A0A
T
0 ) equals the determinant of the upper-left s× s block times the determinant of the

lower-right t × t block, and det(A0A
T
0 ) = 1 modulo a square, so the same must be true of

each of the two blocks. To get a matrix of the desired shape, notice that one can just as well
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have the nonsquare entry of the lower-right t× t block be in the upper-left corner instead of

the lower-right corner. Q.E.D.

The conjugacy classes of involutions over the reals can be found in Lemma 15 in a later

chapter.
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Chapter 4

Involution Isomorphy Classes with

Respect to Conjugation Classes over

SO(2n, k) where k = Qp

4.1 A Brief Introduction to Qp

Definition 3. If F is a field, then a ”valuation” is a mapping | | : F → R such that for all

α, β ∈ F , the following are true:

i. |α| ≥ 0

ii. |α| = 0⇔ α = 0

iii. |αβ| = |α||β|

iv. |α + β| ≤ |α|+ |β|

This definition is taken from Gerstein, but it can be found in many other books [3, p. 51].

Given that, the p-adic numbers are defined as follows:

Definition 4. The ”p-adic valuation” | |p on Q is defined as follows: |0|p = 0 and ∀ α ∈ Q∗,
if α = p` a

b
where a, b, ` ∈ Z and a

b
is in lowest terms (so a and b are relatively prime) then
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|α|p = p−` [3, p. 52]. With that, the ”p-adic numbers” Qp are the completion of the rational

numbers Q with respect to the p-adic valuation [3, p. 61]. Similarly, the ”p-adic integers”

are the p-adic numbers α such that |α|p ≤ 1 [3, pp. 64, 66].

The following lemma is taken from Burton [6, pp. 27-28]. It depends on the Hilbert

symbol, Legendre symbol, and Hasse symbol, and these are defined as follows:

Definition 5. Let a be an integer and let p be a prime number. Then the Legendre symbol

(a|p) ≡


0 if a ≡ 0 (mod p)

1 if a 6≡ 0 (mod p) and ∃ x ∈ Z such that x2 ≡ a (mod p)

−1 otherwise

Definition 6. Let α and β be elements of Qp. Then the Hilbert symbol

(α, β)p ≡

{
1, x2α + y2β = 1 has a solution in Qp

−1, otherwise

Definition 7. The Hasse symbol over Qp is defined as

cp(a1, . . . , as) ≡ (−1,−a1 . . . as)p

s−1∏
i=1

(a1 . . . ai,−a1 . . . ai+1)p

The original definition actually corresponds to determinants of matrices, but all of the rele-

vant matrices in this thesis are diagonal, so for my purposes the above one suffices. In the

general definition, one takes successive determinants of blocks in the upper-left corner of the

same matrix. Then by replacing every term a1 . . . aj with detAjj, where Ajj is the j × j

upper-left block of the matrix A, one can recover the original definition from the above.

4.2 Computational Results

4.2.1 Results on the Hilbert Symbol

Lemma 2. Let α, β, γ, ρ, and σ be nonzero numbers in the p-adic field Qp. Let (α|p) be the

value of the Legendre symbol (α0|p) where α0 is the first term in the p-adic expansion of α.

Also let (α, β)∞ be the value of the Hilbert symbol over R and let (α, β)p be the value of the

Hilbert symbol in Qp. Then we have the following:
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1. (α, β)∞ = 1 unless α < 0 and β < 0

2. (α, β)p = (β, α)p

3. (αρ2, βσ2)p = (α, β)p

4. (α,−α)p = 1

5. If α = pna1 and β = pmb1 with a1 and b1 units then:

i. if p is odd then (α, β)p = (−1|p)nm(a1|p)m(b1|p)n

ii. else if p = 2, then (α, β)p = (2|a1)m(2|b1)n(−1)
(a1−1)(b1−1)

4

6. If p is prime to 2αβ, (α, β)p = 1 for p 6=∞ provided α and β are p-adic integers.

7. (α, β)p(α, γ)p = (α, βγ)p

8. (α, α)p = (α,−1)p

9. (αρ, βρ)p = (α, β)p(ρ,−αβ)p

10. If β is not a square in Qp and c = ±1 then for each prime p there is an integer α

such that (α, β)p = c. Furthermore, if m as defined in property 5 is odd, then such an

α can be found that is prime to p.

11. If a and b are in Q∗, the set of non-zero rational numbers, then∏
p prime and p = ∞

(a, b)p = 1

This lemma is a known result, so all proof is omitted [6, pp. 27-28].

This next lemma is helpful in the case −1 /∈ Q∗2p .

Lemma 3. If p 6= 2 and −1 /∈ Q∗2p , (p±1, p±1)p = −1, (p, p−1)p = 1, (−p±1,−p±1)p = −1,

and (−p,−p−1)p− = 1. Further, (−1,−1)p = 1, (p,−p2)p = −1, (p−1,−p−2) = −1, and

(−1,−p2)p = 1.
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Proof. These results can all be verified with Lemma 2. By item 5 of Lemma 2, (p, p)p =

(−1|p)1(1|p)1(1|p)1 = −1 · 1 · 1 = −1, (−p,−p)p = (−1|p)1(−1|p)1(−1|p)1 = −1 · (−1) ·
(−1) = −1, (p−1, p−1)p = (−1|p)1(1|p)−1(1|p)−1 = −1 · 1 · 1 = −1, (−p−1,−p−1)p =

(−1|p)1(−1|p)−1(−1|p)−1 = −1 · (−1) · (−1) = −1, and (p, p−1)p = (p, p)p = −1 and

(−p,−p−1)p = (−p,−p)p = −1 by item 3 of Lemma 2.

Furthermore, (−1,−1)p = 1 because −1 is a p-adic integer and p is prime to 2(−1)(−1) =

2 by assumption, so part 6 of Lemma 2 holds. Furthermore, by Lemma 2, (p,−p2)p =

(−1|p)2(1|p)2(−1|p)1 = (−1)2 ·11 ·(−1)1 = −1. For similar reasons, (p−1,−p−2) = −1. In ad-

dition, (−1,−p2)p = 1 because by property 7 of Lemma 2, (−1,−p2)p = (−1,−1)p(−1, p2)p =

1 · 1 = 1. Q.E.D.

Similarly, the following lemma is helpful in the case k = Q2

Lemma 4. Let k = Q2. Then (−1,−1)2 = −1, (−1,±3)2 = ∓1, (−1,±2)2 = ±1, and

(−1,±6)2 = ∓1. Also, (2,±3)2 = −1.

Proof. These statements are proven using the results of Serre [10, pp. 18-20]. Specifically,

he gives the following: if a = 2αu, b = 2βv, where u and v are 2-adic units, then [10, p. 20]

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u)

In the above, ε and ω are defined as follows: ε(u) ≡ u− 1

2
(mod 2), ω(u) ≡ u2 − 1

8
(mod 2)

[10, p. 18].

In that case, we have the following:

i. ε(−1) ≡ −1−1
2

(mod 2) = 1, ω(−1) ≡ (−1)2−1
8

(mod 2) = 0

ii. ε(−3) ≡ −3−1
2

(mod 2) = 0, ω(−3) ≡ (−3)2−1
8

(mod 2) = 1

iii. ε(3) ≡ 3−1
2

(mod 2) = 1, ω(3) ≡ (3)2−1
8

(mod 2) = 1

Therefore, (−1,−1)2 = (−1)1·1+0·0+0·0 = −1, (−1,−3)2 = (−1)1·0+0·1+0·0 = 1, and

(−1, 3)2 = (−1)1·1+0·1+0·0 = −1. Furthermore, (−1, 2)2 = (−1)1·0+0·0+1·0 = 1, (−1,−2)2 =

(−1)1·1+0·0+1·0 = −1, (−1, 6)2 = (−1)1·1+0·1+1·0 = −1, and (−1,−6)2 = (−1)1·0+0·1+1·0 = 1.

Lastly, (2, 3)2 = (−1)0·1+1·1+0·0 = −1 and (2,−3)2 = (−1)0·0+1·1+0·0 = −1. Q.E.D.
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4.2.2 The Classification Lemmas that Show What is Possible for

A0A
T
0 = diag(ζ1, . . . , ζ2n) from Proposition 1

The above results are useful in proving what the conjugacy classes of involutions are in

the case k = Qp. The three lemmas below are different: both of them show that there are

restrictions on these conjugacy classes. Each of the conjugacy classes comes from the invo-

lution JA, A = A−1
0 Is,tA0 and A0A

T
0 is diagonal, as proved over general fields in Proposition

1.

Below there are several results that show there are restrictions on what values one can

select for A0A
T
0 . Firstly, there is a well-known result about the square classes of Qp that

shows that if p 6= 2, there are four such square classes, and otherwise there are eight. First,

a definition is needed.

Definition 8. Over Q, if |x− y|p ≤ 1/g (so g divides x− y), then x ≡ y (mod g) and we

say ”x is congruent to y modulo g.” If x is congruent modulo g to the square of a rational

integer, then x is a ”quadratic residue modulo g,” otherwise it is a ”quadratic non-residue

modulo g.” This notation comes from Mahler [7, p. 67].

It is a known fact that if p > 2 is prime, not all integers relatively prime to p are quadratic

residues modulo p, so there is a smallest such number Np that is a quadratic non-residue

modulo p [7, p. 68]. This element will turn out to be a non-square of Qp, p > 2, and the

square classes of Qp are as follows:

Classification Lemma 1. The non-squares of Q2 are represented by the elements −1, ±2,

±3, and ±6. If p > 2, the non-squares of Qp are represented by Np, p, and pNp. This means

that there are seven distinct quadratic extensions of Q2, viz., Q2(
√
−1), Q2(

√
2), Q2(

√
−2),

Q2(
√

3), Q2(
√
−3), Q2(

√
6), and Q2(

√
−6). Also, there are three distinct quadratic exten-

sions of Qp if p > 2, and they are Qp(
√
Np), Qp(

√
p), and Qp(

√
pNp). Note that if −1 /∈ Q∗2p

then one can use −1 in place of Np, as I did below.

Proof. This result can be found in Mahler [7, Theorem 1 on p. 72]. Q.E.D.
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Each remaining classification lemma below shows that there are restrictions on what

diagonal elements are allowed in A0A
T
0 . These restrictions vary according to whether p ≡

1 (mod 4), p ≡ 3 (mod 4), or p = 2.

Classification Lemma 2. Let p 6= 2, let a1, . . . , as ∈ Q∗p. Then if cp(a1, . . . , as) = −1,

in the case −1 ∈ Q∗2p it is impossible that there are not at least two ai’s in distinct square

classes of Qp. In the case −1 /∈ Q∗2p , it is impossible that every non-square is in the same

square class as −1.

Proof. Assume in fact that a1 . . . as = ξ, where ξ ∈ Q∗p, cp(a1, . . . , as) = −1, and that all

non-square ai’s are in the same square class. Then by the definition of the Hasse symbol,

cp(a1, . . . , as) = (−1, ξ)p
∏s−1

i=1 (a1 . . . ai,−a1 . . . ai+1)p

= (−1, ξ)p(a1,−a1)p(a1, a2)p(a1a2,−a1a2)p(a1a2, a3)p . . . (a1 . . . as−1,−a1 . . . as−1)p

(a1 . . . as−1, as)p

= (−1, ξ)p(a1, a2)p(a1a2, a3)p(a1a2a3, a4)p . . . (a1 . . . as−1, as)p

Now, if in any of the above terms on either side of the Hilbert symbol is a square, the

value of the Hilbert symbol will be one, so such terms may be cancelled out. In the other

terms, one obtains a non-square on either side of the Hilbert symbol, and these non-squares

may be distinct. Assume that we have m such terms, and label these nonsquares Npi and

N∗pi as follows:

cp(a1, . . . , as) = (−1, ξ)p(Np1 , N
∗
p1

)p(Np2 , N
∗
p2

)p . . . (Npm , N
∗
pm)p

∀ i ∈ {1, . . . ,m}, Npi and N∗pi are in the same square class by assumption so they

differ by a square. Hence, (Npi , N
∗
pi

)p = (Npi , Npi)p = (Np1 , Np1)p. Further, by part 8 of

Lemma 2, (−1, ξ)p = (ξ, ξ)p, and ξ may or may not be a square. If it is not, then it is

in the same square class as Npi . As a result, one obtains cp(a1, . . . , as) = (Np1 , Np1)
m
p or

cp(a1, . . . , as) = (Np1 , Np1)
m+1
p , and since it is of little practical significance, by abuse of

notation assume cp(a1, . . . , as) = (Np1 , Np1)
m
p .

If −1 ∈ Q∗2p , it follows that cp(a1, . . . , as) = (Np1 , Np1)
m
p . But by property 8 of Lemma 2,

(Np1 , Np1)p = (Np1 ,−1)p = 1 so (Np1 , Np1)
m
p = 1, but this violates my original assumption

that cp(a1, . . . , as) = −1.
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If −1 /∈ Q∗2p , then by the assumptions of the Lemma, cp(a1, . . . , as) = (−1,−1)mp . But by

Lemma 2, property 6, (−1,−1)p = 1 ⇒ (−1,−1)mp = 1, but again this violates my original

assumption that cp(a1, . . . , as) = −1. Q.E.D.

Classification Lemma 3. If A0A
T
0 = B ∈ GL(n, k) then A0 ∈ GL(n, k) is possible iff

√
detB ∈ k. If A0 /∈ GL(n, k) then A0 ∈ GL(n, k̄) and A0 ∈ GL(n, F ) if F is k extended

quadratically to the greatest possible extent.

Proof. detA0 = detAT0 and det(A0A
T
0 ) = detB ∈ GL(n, k) so det(A0)2 = detB ⇒ detA0 =

√
detB. Now, the formula for the determinant is a linear combination of elements in k, so if

every element of A0 is in k then detA0 ∈ k. Therefore, if detA0 /∈ k then not every element

of A0 is in k. As a result, if
√

detB ∈ k then A0 ∈ GL(n, k) is possible, else if
√

detB /∈ k
then A0 ∈ GL(n, k̄), A0 ∈ GL(n, F ) and A0 /∈ GL(n, k). Q.E.D.

4.3 The Isomorphy Classes over Qp

Here are the isomorphy classes. Note that Classification Lemma 2 implies there is a

restriction on what elements one can and cannot put on the diagonal.

Proposition 3. Let the field under consideration be k = Qp, where −1 ∈ Q∗2p , p 6= 2, and

Np /∈ Q∗2p . Then the conjugacy classes of involutions JB of SO(2n, k), where B = B−1
0 Is,tB0,

depend on the values of det(diag(b1, . . . , bs)), det(diag(bs+1, . . . , b2n)), cp(b1, . . . , bs), and

cp(bs+1, . . . , b2n) in the following way: firstly, because of Classification Lemma 3, the only way

in which corresponding B0B
T
0 can exist in SO(2n, k) as opposed to SO(2n, k̄) is if det(B0B

T
0 )

is a square. That means det(diag(b1, . . . , bs)) = det(diag(bs+1, . . . , b2n)) if they are non-

squares, and they can both be set equal to one if they are squares. Then the conjugacy classes

of involutions are given by Table 4.1.
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Table 4.1: The conjugacy classes of SO(2n, k) where

k = Qp and −1 ∈ Q∗2p . This table corresponds with

Proposition 3.

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

1 1 1 1

1 1 Is It

2 1 1 1

2 −1 Is diag(1, . . . , 1, p,Np, p
−1N−1

p )

3 1 1 −1

3 1 diag(1, . . . , 1, p,Np, p
−1N−1

p ) It

4 1 1 −1

4 −1 diag(1, . . . , 1, p,Np, p
−1N−1

p ) diag(1, . . . , 1, p,Np, p
−1N−1

p )

5 Np Np 1

5 1 diag(1, . . . , 1, Np) diag(1, . . . , 1, Np)

6 Np Np 1

6 −1 diag(1, . . . , 1, Np) diag(1, . . . , 1, p, p−1Np)

7 Np Np −1

7 1 diag(1, . . . , 1, p, p−1Np) diag(1, . . . , 1, Np)

8 Np Np −1

8 −1 diag(1, . . . , 1, p, p−1Np) diag(1, . . . , 1, p, p−1Np)

9 p p 1

9 1 diag(1, . . . , 1, p) diag(1, . . . , 1, p)

10 p p 1

10 −1 diag(1, . . . , 1, p) diag(1, . . . , 1, Np, pN
−1
p )

11 p p −1



27

Table 4.1: Continued

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

11 1 diag(1, . . . , 1, Np, pN
−1
p ) diag(1, . . . , 1, p)

12 p p −1

12 −1 diag(1, . . . , 1, Np, pN
−1
p ) diag(1, . . . , 1, Np, pN

−1
p )

13 pNp pNp 1

13 1 diag(1, . . . , 1, pNp) diag(1, . . . , 1, pNp)

14 pNp pNp 1

14 −1 diag(1, . . . , 1, pNp) diag(1, . . . , 1, p,Np)

15 pNp pNp −1

15 1 diag(1, . . . , 1, p,Np) diag(1, . . . , 1, pNp)

16 pNp pNp −1

16 −1 diag(1, . . . , 1, p,Np) diag(1, . . . , 1, p,Np)

Proof. The proof is entirely computational, so it has been omitted. One need only check

that all of my calculations are correct. And please remember, reader, whoever you are, that

it is extremely easy to make typos that are hard to spot when typing something like this.

Q.E.D.

Proposition 4. Let the field under consideration be k = Qp, where −1 /∈ Q∗2p and p 6=
2. Then the conjugacy classes of involutions JB of SO(2n, k), where B = B−1

0 Is,tB0,

depend on the values of det(diag(b1, . . . , bs)), det(diag(bs+1, . . . , b2n)), cp(b1, . . . , bs), and

cp(bs+1, . . . , b2n) in the following way: firstly, because of Classification Lemma 3, the only way

in which corresponding B0B
T
0 can exist in SO(2n, k) as opposed to SO(2n, k̄) is if det(B0B

T
0 )

is a square. That means det(diag(b1, . . . , bs)) = det(diag(bs+1, . . . , b2n)) if they are non-

squares, and they can both be set equal to one if they are squares. Then the conjugacy classes

of involutions are given by Table 4.2.
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Table 4.2: The conjugacy classes of SO(2n, k) where

k = Qp and −1 /∈ Q∗2p . This table corresponds with

Proposition 4.

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

1 1 1 1

1 1 Is It

2 1 1 1

2 −1 Is diag(1, . . . , 1, p, p−1)

3 1 1 −1

3 1 diag(1, . . . , 1, p, p−1) It

4 1 1 −1

4 −1 diag(1, . . . , 1, p, p−1) diag(1, . . . , 1, p, p−1)

5 −1 −1 1

5 1 diag(1, . . . , 1,−1) diag(1, . . . , 1,−1)

6 −1 −1 1

6 −1 diag(1, . . . , 1,−1) diag(1, . . . , 1, p,−p−1)

7 −1 −1 −1

7 1 diag(1, . . . , 1, p,−p−1) diag(1, . . . , 1,−1)

8 −1 −1 −1

8 −1 diag(1, . . . , 1, p,−p−1) diag(1, . . . , 1, p,−p−1)

9 p p 1

9 1 diag(1, . . . , 1,−1,−p) diag(1, . . . , 1,−1,−p)

10 p p 1

10 −1 diag(1, . . . , 1,−1,−p) diag(1, . . . , 1, p)

11 p p −1
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Table 4.2: Continued

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

11 1 diag(1, . . . , 1, p) diag(1, . . . , 1,−1,−p)

12 p p −1

12 −1 diag(1, . . . , 1, p) diag(1, . . . , 1, p)

13 −p −p 1

13 1 diag(1, . . . , 1,−1, p) diag(1, . . . , 1,−1, p)

14 −p −p 1

14 −1 diag(1, . . . , 1,−1, p) diag(1, . . . , 1,−p)

15 −p −p −1

15 1 diag(1, . . . , 1,−p) diag(1, . . . , 1,−1, p)

16 −p −p −1

16 −1 diag(1, . . . , 1,−p) diag(1, . . . , 1,−p)

Proposition 5. Let the field under consideration be k = Q2. Then the conjugacy classes of

involutions JB of SO(2n, k), where B = B−1
0 Is,tB0, depend on the values of det(diag(b1, . . . ,

bs)), det(diag(bs+1, . . . , b2n)), cp(b1, . . . , bs), and cp(bs+1, . . . , b2n) in the following way: firstly,

because of Classification Lemma 3, the only way in which corresponding B0B
T
0 can exist in

SO(2n, k) as opposed to SO(2n, k̄) is if det(B0B
T
0 ) is a square. That means det(diag(b1, . . . ,

bs)) = det(diag(bs+1, . . . , b2n)) if they are non-squares, and they can both be set equal to one

if they are squares. Then the conjugacy classes of involutions are given by Table 4.3.

Table 4.3: The conjugacy classes of SO(2n, k) where k =

Q2. This table corresponds with Proposition 5.

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

1 1 1 1
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Table 4.3: Continued

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

1 1 diag(1, . . . , 1,−1,−1) diag(1, . . . , 1,−1,−1)

2 1 1 1

2 −1 diag(1, . . . , 1,−1,−1) It

3 1 1 −1

3 1 Is diag(1, . . . , 1,−1,−1)

4 1 1 −1

4 −1 Is It

5 −1 −1 1

5 1 diag(1, . . . , 1,−1) diag(1, . . . , 1,−1)

6 −1 −1 1

6 −1 diag(1, . . . , 1,−1) diag(1, . . . , 1, 3,−3−1)

7 −1 −1 −1

7 1 diag(1, . . . , 1, 3,−3−1) diag(1, . . . , 1,−1)

8 −1 −1 −1

8 −1 diag(1, . . . , 1, 3,−3−1) diag(1, . . . , 1, 3,−3−1)

9 2 2 1

9 1 diag(1, . . . , 1,−1,−2) diag(1, . . . , 1,−1,−2)

10 2 2 1

10 −1 diag(1, . . . , 1,−1,−2) diag(1, . . . , 1, 2)

11 2 2 −1

11 1 diag(1, . . . , 1, 2) diag(1, . . . , 1,−1,−2)

12 2 2 −1

12 −1 diag(1, . . . , 1, 2) diag(1, . . . , 1, 2)
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Table 4.3: Continued

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

13 −2 −2 1

13 1 diag(1, . . . , 1,−2) diag(1, . . . , 1,−2)

14 −2 −2 1

14 −1 diag(1, . . . , 1,−2) diag(1, . . . , 1,−1, 2)

15 −2 −2 −1

15 1 diag(1, . . . , 1,−1, 2) diag(1, . . . , 1,−2)

16 −2 −2 −1

16 −1 diag(1, . . . , 1,−1, 2) diag(1, . . . , 1,−1, 2)

17 3 3 1

17 1 diag(1, . . . , 1, 3) diag(1, . . . , 1, 3)

18 3 3 1

18 −1 diag(1, . . . , 1, 3) diag(1, . . . , 1, 2, 3 · 2−1)

19 3 3 −1

19 1 diag(1, . . . , 1, 2, 3 · 2−1) diag(1, . . . , 1, 3)

20 3 3 −1

20 −1 diag(1, . . . , 1, 2, 3 · 2−1) diag(1, . . . , 1, 2, 3 · 2−1)

21 −3 −3 1

21 1 diag(1, . . . , 1,−3, 1) diag(1, . . . , 1,−3, 1)

22 −3 −3 1

22 −1 diag(1, . . . , 1,−3, 1) diag(1, . . . , 1,−3)

23 −3 −3 −1

23 1 diag(1, . . . , 1,−3) diag(1, . . . , 1,−3, 1)

24 −3 −3 −1
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Table 4.3: Continued

Item b1 . . . bs bs+1 . . . b2n cp(b1, . . . , bs)

Item cp(bs+1, . . . , b2n) diag(b1, . . . , bs) diag(bs+1, . . . , b2n)

24 −1 diag(1, . . . , 1,−3) diag(1, . . . , 1,−3)

25 6 6 1

25 1 diag(1, . . . , 1, 6) diag(1, . . . , 1, 6)

26 6 6 1

26 −1 diag(1, . . . , 1, 6) diag(1, . . . , 1, 6, 1)

27 6 6 −1

27 1 diag(1, . . . , 1, 6, 1) diag(1, . . . , 1, 6)

28 6 6 −1

28 −1 diag(1, . . . , 1, 6, 1) diag(1, . . . , 1, 6, 1)

29 −6 −6 1

29 1 diag(1, . . . , 1,−1, 6) diag(1, . . . , 1,−1, 6)

30 −6 −6 1

30 −1 diag(1, . . . , 1,−1, 6) diag(1, . . . , 1,−6)

31 −6 −6 −1

31 1 diag(1, . . . , 1,−6) diag(1, . . . , 1,−1, 6)

32 −6 −6 −1

32 −1 diag(1, . . . , 1,−6) diag(1, . . . , 1,−6)
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Chapter 5

Fixed-Point Groups of Isomorphy

Classes of Involutions over SO(2n, k)

Where k = Qp

5.1 Introductory Material

The fixed point group of an involution χ over a group G is defined by Gχ ≡ {x ∈
G | χ(x) = x}. Throughout this chapter, I will be using SO(2n, k) and I will assume

char(k) = 0. First a definition:

Definition 9. If G is a semisimple algebraic group over k and θ ∈ Aut(G), the corresponding

”symmetric k-variety” is X = {gθ(g)−1|g ∈ G}

For k = R symmetric k-varieties are also called ”semisimple symmetric spaces.” The

real symmetric semisimple symmetric spaces for which Gχ is compact are also known as

Riemannian symmetric spaces. These play an important role in Lie theory, representation

theory, differential geometry, mathematical physics, and many other areas.

The symmetric k-varieties with a compact fixed-point group have many properties similar

to real Riemannian symmetric spaces. For example, they consist of semisimple elements as

follows from the following result due to Helminck and Wang.
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Theorem 3. Let G be a connected, reductive, algebraic k-group with char(k) = 0, let χ be

an involution of G, and let X = {xχ(x)−1 | x ∈ G}. If Gχ ∩ [G,G] is anisotropic over k

then Xk consists of semi-simple elements [5, Proposition 10].

According to another result of Helminck and Wang, two symmetric k-varieties related to

a matrix group G are G-isomorphic iff their involutions are isomorphic with respect to con-

jugacy. Theorem 3 is also useful in working with symmetric k-varieties. Over R, symmetric

varieties are called ”symmetric spaces” and they are studied in differential geometry, Lie

groups, and representation theory. Symmetric k-varieties are generalizations of symmetric

spaces.

5.2 Computational Results Used to Find the Fixed-

Point Groups and Whether They are Compact

My first result of this chapter is a result giving the fixed-point group of the most basic

possible involution over SO(2n, k).

5.2.1 The Most Basic Fixed-Point Group

Proposition 6. Let G = SO(2n, k) and let k = R or k = Qp. For the matrix A = I2n−i,i, the

fixed point group GJA consists of the block matrices diag(X1, X2) where X1 is (2n−i)×(2n−i),

X2 is i × i, XT
1 = X−1

1 , XT
2 = X−1

2 (so they are both invertible), and detX1 detX2 = 1.

Also, GJA is not compact over R or Qp.

Proof. Let B ∈ GJA , where A = I2n−i,i. Let B =

(
B11 B12

B21 B22

)
. Then by straightforward

computation, JA(B) =

(
B11 −B12

−B21 B22

)
=

(
B11 B12

B21 B22

)
. Since char(k) 6= 2 by assump-

tion, B21 = 0 and B12 = 0. And inasmuch as B ∈ SO(2n, k), BT = B−1 so BT
11 = B−1

11 ,

BT
22 = B−1

22 , and detB = detB11 detB22 = 1.
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Further, because compactness on both R and Qp is equivalent to being both closed and

bounded, none of these fixed point groups are compact since ‖B‖ = ‖B11‖‖B22‖ using the

norm of either R or Qp and the only restriction on Bii, i ∈ {1, 2}, is that B−1
ii = BT

ii .

Therefore, the fixed point group GJA , A = I2n−i,i, is unbounded. Q.E.D.

5.2.2 Full Results on the Possible Sums of Two Squares of P-Adic

Numbers

Here are some results related to showing whether every integer 1, 2, . . . , p is a sum of two

squares in Qp. This turns out to be an important issue in determining the fixed-point groups

and whether or not they are compact.

Lemma 5. Let n ∈ Z be such that n > 0 and n is odd. Then there is a one-to-one

correspondence between differences (not sums) of squares of integers (in Z) that equal n and

factorizations of n into two positive integers.

Proof. This is a result of elementary number theory, and a proof can be found in Rosen [8,

Lemma 3.9 on pp. 112-113]. It depends on the fact that a2 − b2 = (a+ b)(a− b). Q.E.D.

Because of this lemma, whenever −1 ∈ Q∗2p , there is a sum of two squares that equals p

which consists of p-adic integers. If p − 1 is a square, (
√
p− 1)2 + 12 = p so for all primes

p ≡ 1 (mod c), c a square, the result has been proven. It is below in lemma form.

Lemma 6. For all prime numbers p ∈ N, if p ≡ 1 (mod c2) and c ∈ N then p is the sum of

two squares p = (
√
p− 1)2 + 12.

Further, because all prime numbers p where −1 ∈ Q∗2p are congruent to 1 modulo 3, I

have proven the following lemma.

Lemma 7. For all p-adic fields Qp such that −1 ∈ Q∗2p , every odd p-adic integer corre-

sponding to a finite p-adic series is a sum of two squares. Note that p ≡ 1 (mod 4) iff

−1 ∈ Q∗2p .

Proof. This is a consequence of Lemma 5. Q.E.D.
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Here is another lemma that is useful in proving what I want, viz., that if p ≡ 3 (mod 4)

then p is not the sum of two squares over Qp.

Lemma 8. Over Z, if p is a prime integer, p ≡ 3 (mod 4), and a0, a1, b0, b1 ∈ {0, 1, 2, . . . , p−
1} then a2

0 + b2
0 6≡ 0 (mod p), a2

0 + b2
0 + 2a0a1p+ 2b0b1p 6= p, and (a0 +pa1)2 + (b0 +pb1)2 6= p.

Proof. Assume a2
0 + b2

0 + 2a0a1p + 2b0b1p = p. Then I want to show that either a1 or b1 is

not zero, so assume they are both zero. Then a2
0 + b2

0 = p. Therefore, a2
0 + b2

0 ≡ 3 (mod 4).

Now, any square is equivalent to 0 or 1 modulo four, so that is impossible, meaning either

a1 or b1 is not zero, or both of them are nonzero. Further, a2
0 + b2

0 6≡ 0 (mod p).

Assume without loss of generality that a1 6= 0. If a0 = 0, then b2
0 + 2b0b1p = p so

b2
0 = p(1 − 2b0b1) which implies that p divides b2

0, hence b0 (by the definition of ”prime

number”). That must mean that b0 = 0, so 2b0b1p = p ⇒ 2b0b1 = 1, but that is a

contradiction because it was assumed that b0, b1 ∈ {0, 1, 2, . . . , p− 1}.
Therefore, a0 6= 0. For similar reasons, b0 6= 0. a2

0 + b2
0 + 2a0a1p + 2b0b1p = p ⇒

a2
0 + b2

0 = p(1 − 2a0a1 − 2b0b1) so p divides a2
0 + b2

0. Thus, a2
0 + b2

0 = `p, ` ∈ Z. But

a0, a1, b0, b1 ∈ {0, 1, 2, . . . , p− 1} and a2
0 + b2

0 + 2a0a1p+ 2b0b1p = p, so the only possibilities

are that ` = 0, which I proved was impossible, and ` = 1, which I proved was impossible.

That proves the first desired result.

Now assume (a0 + pa1)2 + (b0 + pb1)2 = p. (a0 + pa1)2 = a2
0 + 2a0a1p+ a2

1p
2, so

(a0 + pa1)2 + (b0 + pb1)2 = a2
0 + b2

0 + 2a0a1p+ 2b0b1p+ a2
1p

2 + b2
1p

2 = p

But I have shown that the first four terms above of the expansion of (a0 + pa1)2 + (b0 + pb1)2

cannot be p, or in other words, a2
0 + b2

0 + 2a0a1p+ 2b0b1p 6= p. Then a2
1p

2 + b2
1p

2 6= 0 so either

a1 6= 0, b1 6= 0, or both. Assume without loss of generality that a1 6= 0. Then a2
1p

2 > p, so it

cannot be true that a2
0 + b2

0 + 2a0a1p+ 2b0b1p+ a2
1p

2 + b2
1p

2 = p. Q.E.D.

Proposition 7. Over Qp, if p 6≡ 3 (mod 4) (so p = 2 or p ≡ 1 (mod 4)) then p is the sum

of two square p-adic integers. Else if p ≡ 3 (mod 4) then p is not the sum of two square

p-adic integers.
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Proof. The first statement is a direct consequence of Lemmas 5 and 7. As for the second

statement, let α =
∞∑
i=0

piai be a p-adic integer, so all ai ∈ {0, 1, 2, . . . , p−1}. Let β =
∞∑
j=0

pjbj

be another p-adic integer, which thusly has a similar condition on all bi. Then suppose

α2 + β2 = p. In that case, a2
0 + b2

0 + 2a0a1p+ 2b0b1p+ . . . = p.

In order for that to be true, it would be necessary that a2
0 +b2

0 ≡ 0 (mod p), but I showed

in Lemma 8 that this condition cannot be met. Q.E.D.

Lemma 9. Let p be a prime integer. Then for any a ∈ Z there exist b, c ∈ Z such that

b2 + c2 ≡ a (mod p).

Proof. There are only two square classes of the finite field Fp, where p 6= 2, so the sum of

any two squares has to be in one of them. In other words, each element of these square

classes can be multiplied by a square to get any of the others. The result is automatic if a

is a square. Since one can obtain a non-square with appropriate b and c, there is an α ∈ Z
such that α2(b2 + c2) ≡ a (mod p), or (αb)2 + (αc)2 ≡ a (mod p).

If p = 2 then a ≡ 0 (mod 2) or a ≡ 1 (mod 2), so one can set b = 0 or b = 1 and let

c = 0 in either case to obtain the desired result. Q.E.D.

Lemma 10. In the finite field Fp, −1 is a square iff p ≡ 1 (mod 4).

Proof. This result was proven by Ling Wu in his doctoral thesis. He pointed out that F∗p is

a cyclic group of order p− 1 and −1 is the only element of order two. Thus, −1 is a square

iff the order of F∗p is divisible (over Z) by four, i.e., iff p ≡ 1 (mod 4) [11, Lemma 11 on p.

26]. Q.E.D.

Now here is a result from elementary number theory on the integers Z that is very useful

in proving whether every element of Qp is a square or not.

Proposition 8. Let a, b ∈ Z be such that the greatest common divisor of a and b is d. The

equation ax+by = c has no solutions in Z if d does not divide c, i.e., if there is no integer m

such that md = c. On the other hand, if d does divide c (so such an integer m exists) then

there are infinitely many solutions to ax+ by = c over Z. Furthermore, if x = x0, y = y0 is
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a solution to the equation then every solution is of the form x = x0 + b
d
n, y = y0− a

d
n, where

n ∈ Z.

Proof. This is a result of elementary number theory on linear diophantine equations in two

variables. A proof can be found in Rosen [8, Theorem 3.21 on pp. 120-121]. Q.E.D.

For p-adic integers, the result is found in the next proposition.

Proposition 9. If p ≡ 1 (mod 4) then every p-adic integer in Qp is the sum of the squares

of two p-adic integers. If p ≡ 3 (mod 4) or p = 2 then this is not true.

Proof. Much of this result has already been proven by Proposition 7 and Lemma 5. In

particular, the case p ≡ 3 (mod 4) was proven by Proposition 7. Consider the case p ≡

1 (mod 4). By Lemma 5, every odd p-adic integer corresponding to a finite sum
∑̀
i=0

aip
i is

in fact the sum of two squares of integers in Z, hence in Qp.

Therefore, let α =
∞∑
i=0

aip
i be a p-adic integer such that either α is even or there are an

infinitely many aj 6= 0, j ∈ Z≥0. Suppose α = β2 + γ2, where β and γ are p-adic integers.

Let β =
∞∑
i=0

bip
i and γ =

∞∑
i=0

cip
i. Then β2 =

(
∞∑
i=0

bip
i

)2

= b2
0 + 2b0b1p + (2b0b2 + b2

1)p2 +

(2b0b3 +2b1b2)p3 + . . . Thus, β2 +γ2 = b2
0 + c2

0 +(2b0b1 +2c0c1)p+(2b0b2 + b2
1 +2c0c2 + c2

1)p2 +

(2b0b3 + 2b1b2 + 2c0c3 + 2c1c2)p3 + . . .

For this to equal α, it is necessary that b2
0 + c2

0 ≡ a0 (mod p), and I proved in Lemma 9

that this can be done. Let b2
0 + c2

0 = np+ a0. Then it is necessary that n+ (2b0b1 + 2c0c1) ≡
a1 (mod p), i.e., that 2b0b1 + 2c0c1 ≡ a1 − n (mod p), so without loss of generality one

may assume n = 0. Then 2(b0b1 + c0c1) ≡ a1 (mod p). Now, b0 and c0 have already been

determined, but b1 and c1 have not.

If 2(b0b1 + c0c1) = a1 + np for some n ∈ Z then 2(b0b1 + c0c1) ≡ a1 (mod p). Since

|Z| is infinite, if p 6= 2 there is some n ∈ Z such that the greatest common divisor of 2b0

and 2c0 divides a1 + np. Then by Proposition 8, there are numbers b1 and c1 such that

2(b0b1 + c0c1) ≡ a1 (mod p). A similar result holds for the coefficients of p2, p3, and etc. of

β2 + γ2, so inductively one can get every coefficient of every pi to equal ai.
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On the other hand, let p = 2 and assume that α = β2 + γ2 for all p-adic integers α ∈ Q2.

If a1 is odd, a1 +np from the previous paragraph must be odd, so there is no suitable n. But

that means I must solve 2(b0b1 + c0c1) ≡ 0 (mod 2) or 2(b0b1 + c0c1) ≡ 1 (mod 2). In the

former case, let b1 = c1 = 0. The latter case is insoluble. If a0 = 0, one can set b2
0 + c2

0 = 2

(if c0 = b0 = 1) and c1 = b1 = 0 to obtain 0 as the coefficient of p0 and 1 as the coefficient

of p.

However, if a0 = 1 and a1 = 1, one cannot solve the equations b2
0 + c2

0 = a0 = 1 and

2(b0b1 + c0c1) = a1 = 1 because a0 = 1 implies one of b0 or c0 is one and the other is zero.

Assume without loss of generality that b0 = 1 and c0 = 0. Then in the second term one has

2(b0b1 +c0c1) = 1 so 2b1 = 1, but b1 ∈ {0, 1}, which is a contradiction. Ergo, the result is not

true for p = 2, since 3 = 1 + 21 is not the sum of two square p-adic integers in Q2. Q.E.D.

Here is the final result.

Theorem 4. If p ≡ 1 (mod 4) then every p-adic number in Qp is the sum of the squares of

two p-adic numbers. If p ≡ 3 (mod 4) or p = 2 then this is not true.

Proof. In the case p ≡ 1 (mod 4), a similar proof holds as was used in the previous proposi-

tion, Proposition 4. If α =
∞∑
i=`

aip
i, ` ∈ Z and ` < 0, one can make α the sum of two squares

β =
∞∑
i=`

bip
i and γ =

∞∑
i=`

cip
i as before. In the case p ≡ 3 (mod 4), suppose p = β2 + γ2.

Then let β =
∞∑
i=m

bip
i and γ =

∞∑
i=n

cip
i. By Proposition 4, m < 0 or n < 0. So assume

without loss of generality that m < −2.

β2 = b2
mp

2m + 2bmbm+1p
2m+1 + b2

m+2p
2m+2 + . . .. Furthermore, p2j, j < 0, is larger with

respect to the p-norm than pj. As a result, in β2 + γ2 = p, the terms that are the largest

with respect to the p-norm must have their coefficients cancel out or the lefthand-side of

the equation will have a larger norm than the righthand-side, which is a contradiction. But

‖β‖p > 1 because m < −2 < 0, so, because of what has been said, ‖β2‖p > ‖β‖p > 1. As a

result, unless m = n, the biggest terms of β2 (or γ2 if n > m) will not be cancelled out, so

‖β2 + γ2‖p > 1 > 1/p = ‖p‖p meaning β2 + γ2 = p is impossible.
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Therefore assumem = n. Then β2+γ2 = b2
mp

2m+c2
mp

2m+2bmbm+1p
2m+1+2cmcm+1p

2m+1+

bm+2p
2m+2+c2

m+2p
2m+2+. . .. But by Lemma 8, b2

mp
2m+c2

mp
2m 6= p2m+1, so b2

mp
2m+c2

mp
2m < p

or b2
mp

2m+c2
mp

2m > p. In the former case, the norm of β2 +γ2 is still different from the norm

of p, so that cannot be true. In the latter case, there is still a coefficient of p2m by Lemma

8, since neither the p2m terms nor the p2m and p2m+1 terms can cancel evenly (supposing

m < −1). This contradicts my hypothesis that β2 + γ2 = p.

Now suppose p = 2. Let β =
∞∑
i=m

bi2
i and γ =

∞∑
i=n

ci2
i and assume β2 + γ2 = 3. Then

for the same reasons as before (viz., the p-norm) m = n. In that case, it is impossible that

β2 +γ2 = 3 because the earlier terms cannot cancel out, for reasons similar to what was seen

in the previous proposition. Q.E.D.

From the proof of the above, there are two corollaries found below that have been proven.

Corollary 1. In Q2, 3 is not the sum of two squares. If p ≡ 3 (mod 4) then p is not the

sum of two squares.

Corollary 2. For any prime number p, in Qp, if α2 + β2 = γ, and the first term in the

p-adic expansion of γ is not a square, then α =
∞∑
i=m

ai2
i and β =

∞∑
i=m

bi2
i. So both α and β

start with the same index m. Furthermore, m is the first term of the p-adic expansion of γ.

5.2.3 Computational Lemmas

The following results have to do with finding the fixed-point groups as well.

Lemma 11. Let ε ∈ k be such that ε−1 is the sum of two squares in Qp. Then diag(ε, ε) is

congruent to I2.

Proof. Let ε−1 = a2 + b2. Then(
a b

−b a

)(
ε 0

0 ε

)(
a −b
b a

)
=

(
ε(a2 + b2) 0

0 ε(a2 + b2)

)
= I2

Q.E.D.
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Lemma 12. Let 0 < ` < n, ` ∈ Z. On Fp and Qp, if p ≡ 1 (mod 4) then the block matrix

diag(In−`,−I`) is congruent to diag(In−1,−1) and In.

Proof. If p ≡ 1 (mod 4) then −1 is a square in both Fp and Qp, and by Lemma 10 and Propo-

sition 9 both 1 and −1 are the sums of two squares in both Fp and Qp. Then by an inductive

process, using the result of Lemma 11 as a first step, one can show that diag(In−`,−I`) is

congruent to In.

Firstly, let n = 2. Then ` = 1. Let a2 + b2 = −1 and let c2 + d2 = 1, c 6= 0 (e.g.,

c = 1, d = 0). Then

(
c

√
−1d

∓d ±
√
−1c

) (
1 0

0 −1

) (
c ∓d

√
−1d ±

√
−1c

)
=

(
1 0

0 1

)
.

If n = 3 and ` = 1, a similar process shows that the matrix is congruent to I3. If ` = 2,

Lemma 9 shows how one can obtain I3 with a block matrix.

Assume the result is true for all m < n, 1 < ` < m. Then the matrix diag(In−`,−I`)
is congruent to In if ` < n − 1 by the inductive hypothesis, and otherwise it is congruent

to diag(In−1,−1) which is congruent to In. Furthermore, ∀ n > 1, In is congruent to

diag(In−1,−1). Q.E.D.

5.3 Fixed-Point Groups on Two Often-Used Involu-

tions

First I have computed the fixed-point groups on a more basic set of involutions.

Proposition 10. Let A =



0 1 . . . 0 0

−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . −1 0


. Then the fixed point group of JA over

GL(2n, k) consists of matrices B =


B11 B12 . . . B1,n−1 B1,n

...
...

. . .
...

...

Bn1 Bn2 . . . Bn,n−1 Bnn

 where each Bi,j is
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a 2 × 2 block, Bi,j =

(
αij −βij
βij αij

)
, and (naturally) |B| 6= 0. Over R and Qp it is not

compact.

Proof. Let B ∈ SO(2n, k), B =


B11 B12 . . . B1,n−1 B1,n

...
...

. . .
...

...

Bn1 Bn2 . . . Bn,n−1 Bnn

 where each Bi,j is a

2 × 2 block. Let B be in the fixed point group of JA over GL(2n, k). (Observe that

A−1 = −A = AT , so A ∈ SO(2n, k)). Let L2 =

(
0 1

−1 0

)
. Then JA(B) = −ABA =

− diag(L2, . . . , L2)B diag(L2, . . . , L2)

=


−L2B11L2 −L2B12L2 . . . −L2B1,n−1L2 −L2B1,nL2

...
...

. . .
...

...

−L2Bn1L2 −L2Bn2L2 . . . −L2Bn,n−1L2 −L2BnnL2


which must equal B.

As a result, ∀ i, j ∈ {1, 2, . . . , n−1, n}, −L2Bi,jL2 = Bi,j. Let Bi,j =

(
αij βij

γij δij

)
. Then

−L2Bi,jL2 =

(
−γij −δij
αij βij

)
L2 =

(
δij −γij
−βij αij

)
=

(
αij βij

γij δij

)
. Therefore, αij = δij

and βij = −γij.

Now,

∣∣∣∣∣ αij −βijβij αij

∣∣∣∣∣ = α2
ij + β2

ij which can be arbitrarily big. Thus,

∥∥∥∥∥
(
αij −βij
βij αij

)∥∥∥∥∥ is

infinite when using the sup norm. Ergo, because compactness on R and Qp is equivalent to

being closed and bounded, the fixed point group of A is unbounded, so it is not compact.

Q.E.D.

Proposition 11. Let X =


Is−1 0 0 0

0 α −β 0

0 β α 0

0 0 0 It−1

 ∈ GL(2n, k), where k = Fp and α2 +β2

is not a square of Fp (which implies p 6= 2). Then the fixed point group of JX−1Is,tX over

GL(2n, k) is the subset of GL(2n, k) containing all matrices S of one of the following forms:
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1. if α = ±β, then S =


S11 ∓S13 S13 0

∓Σ31 σ33 σ32 ±Σ34

Σ31 σ32 σ33 Σ34

0 ±S43 S43 S44

 where S11 is (s − 1) × (s − 1),

S44 is (t− 1)× (t− 1), the 0 in the upper-right corner is (s− 1)× (t− 1), and the 0

in the lower- left corner is (t− 1)× (s− 1), all σij are (one-dimensional) elements in

Fp, Σ31 is 1× (s− 1), and Σ34 is 1× (t− 1).

2. Else if α 6= ±β, then S =


S11

−α
β
S13 S13 0

−α
β

Σ31 σ22
αβ(σ33−σ22)

α2−β2
β
α

Σ34

Σ31
αβ(σ33−σ22)

α2−β2 σ33 Σ34

0 β
α
S43 S43 S44

. The blocks

of S have the same sizes here as in case 1.

Proof. Let α2 + β2 = ξ. Then X−1Is,tX =


Is−1 0 0 0

0 α2−β2

ξ
−2αβ
ξ

0

0 −2αβ
ξ

β2−α2

ξ
0

0 0 0 −It−1

. Let A =

X−1Is,tX and let S ∈ GL(2n, k), S =


S11 S12 S13 S14

Σ21 σ22 σ23 Σ24

Σ31 σ32 σ33 Σ34

S41 S42 S43 S44

 where the entries with an S

are block matrices of the appropriate size to match the blocks of A and the entries with a σ

are elements of k = Fp.
By assumption, α 6= 0 and β 6= 0 (otherwise, α2 + β2 would be a square). Since A−1 =

AT = A, JA(S) = ASA which we set equal to S. Then AS = SA, or AS − SA = 0. Hence

by computation,
0 2β(S12β+S13α)

ξ
2α(S12β+S13α)

ξ
2S14

−2β(βΣ21+αΣ31)
ξ

−2αβ(σ32−σ23)
ξ

2(α2σ23−β2σ23−αβσ33+αβσ22)
ξ

2α(αΣ24−βΣ34)
ξ

−2α(βΣ21+αΣ31)
ξ

−2(αβσ22+α2σ32−β2σ32−αβσ33)
ξ

2αβ(σ32−σ23)
ξ

2β(αΣ24−βΣ34)
ξ

−2S41
−2α(−S43β+S42α)

ξ
−2β(−S43β+S42α)

ξ
0

 = 0
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Therefore, S12 = −α
β
S13, Σ21 = −α

β
Σ31, σ32 = σ23, Σ24 = β

α
Σ34, S14 = 0, S41 = 0, and

S42 = β
α
S43. Further, one obtains the following:

1. If α = ±β, then σ22 = σ33.

2. Else if α 6= ±β then σ23 = σ32 =
αβ(σ33 − σ22)

α2 − β2
.

As the result, the matrix S has one of the following two forms: if α = ±β,

S =


S11 ∓S13 S13 0

∓Σ31 σ33 σ32 ±Σ34

Σ31 σ32 σ33 Σ34

0 ±S43 S43 S44

. Otherwise,

S =


S11

−α
β
S13 S13 0

−α
β

Σ31 σ22
αβ(σ33−σ22)

α2−β2
β
α

Σ34

Σ31
αβ(σ33−σ22)

α2−β2 σ33 Σ34

0 β
α
S43 S43 S44


Q.E.D.

Corollary 3. Let X =


Is−1 0 0 0

0 α −β 0

0 β α 0

0 0 0 It−1

 ∈ GL(2n, k), where k = Fp and α2 + β2

is not a square of Fp (which implies p 6= 2). Then the fixed point group of JX−1Is,tX over

SO(2n, k) is the fixed point group of JX−1Is,tX over GL(2n, k) given in the previous proposition

intersected with SO(2n, k).

5.4 Results Critical to Computing Generalized Fixed-

Point Groups and Whether They are Compact

This next lemma simplifies many proofs.
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Lemma 13. Let A ∈ GL(2n, k), char(k) 6= 2. If A−1Is,tA = Is,t then A is a block matrix of

the form A =

(
W 0

0 X

)
, where W is s× s and X is t× t.

Proof. Assume A−1Is,tA = Is,t. Then Is,tA = AIs,t. Let A =

(
W X

Y Z

)
, where where W

is s × s, X is s × t, Y is t × s and Z is t × t. Then AIs,t =

(
W −X
Y −Z

)
and Is,tA =(

W X

−Y −Z

)
. Since these two matrices are equal and char(k) 6= 2, it follows that X = 0

and Y = 0. Q.E.D.

Theorem 5. Let A ∈ SO(2n, k), A = X−1Is,tX, and XXT = diag(a1, a2, . . . , a2n). Let

Ms = diag(a1, . . . , as) and Mt = diag(as+1, . . . , at). Then the fixed point group of JA over

SO(2n, k) is GJA =
{
X−1 diag(Ns, Nt)X|NsMsN

T
s = Ms, NtMtN

T
t = Mt

}
.

Proof. Suppose B ∈ GJA . Then A−1BA = B ⇒ X−1Is,tXBX
−1Is,tX = B. Therefore

Is,tXBX
−1 = XBX−1Is,t. By Lemma 13, that means XBX−1 = diag(Ns, Nt) where Ns

is s × s and Nt is t × t. Therefore, B = X−1 diag(Ns, Nt)X, and because B ∈ SO(2n, k),

BBT = I2n ⇒ X−1 diag(Ns, Nt)XX
T diag(NT

s , N
T
t )(X−1)T = I2n.

Therefore, diag(Ns, Nt)XX
T diag(NT

s , N
T
t ) = XXT so NsMsN

T
s = Ms and NtMtN

T
t =

Mt as claimed. Note that the case in SO(2n + 1, k), which was proven by Ling Wu, has

a very similar proof, and as such I have borrowed his notation [11, Lemma 46 on p. 63].

Q.E.D.

Fixed-Point Group Computation Lemma 1. Let A,B ∈ GL(n, k). Let A = (aij) and

B = diag(b1, . . . , bn). Then ABAT = B iff for all i, j ∈ {1, 2, . . . , n}, i 6= j, two properties

hold:

1.
n∑
`=1

a2
i`b` = bi

2.
n∑
`=1

ai`aj`b` = 0
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Proof. Assume ABAT = B. Then by computation, AB =


a11b1 a12b2 . . . a1nbn

a21b1 a22b2 . . . a2nbn
...

...
. . .

...

an1b1 an2b2 . . . annbn

.

Therefore, ABAT =
a2

11b1 + . . .+ a2
1nbn a11a21b1 + . . .+ a1na2nbn . . . a11an1b1 + . . .+ a1nannbn

a21a11b1 + . . .+ a2na1nbn a2
21b1 + . . .+ a2

2nbn . . . a21an1b1 + . . .+ a2nannbn
...

...
. . .

...

an1a11b1 + . . .+ anna1nbn an1a21b1 + . . .+ anna2nbn . . . a2
21b1 + . . .+ a2

2nbn


From this computation, it can be seen that if i, j ∈ {1, 2, . . . , n} and i 6= j then each

entry in the diagonal spot (i, i) has the form
n∑
`=1

a2
i`b`, which must be equal to bi. Similarly,

each entry in the spot (i, j) has the form
n∑
`=1

ai`aj`b` and it must equal zero.

Similarly, if ABAT 6= B then either property one or property two is not true for some

entry (i, j) of ABAT . Otherwise, by property one and by computation (as above), the

diagonal elements of ABAT are the same as the diagonal elements of B, and by property

two and computation, the off-diagonal elements of ABAT are all zero, so ABAT = B. Q.E.D.

The next two lemmas give two matrices, of order two and three, respectively, that can

be used in blocks to obtain any diagonal matrix over SO(2n, k), where k = Qp and p ≡
1 (mod 4), given the right conditions on a and i. The fact that they can be so used is proven

subsequently.

Fixed-Point Group Computation Lemma 2. If A ∈ GL(2, k),

A =

 ±a ±
√
α− a2

∓
√
β(1− a2/α) ±a

√
β
α


where a ∈ k and every root in A is in k then AAT = diag(α, β). Similarly, if B =

diag(In−2, A) ∈ GL(n, k) then BBT = diag(In−2, α, β). Furthermore, any matrix C ∈
GL(2, k) such that CCT = diag(α, β) has this form.
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Proof. AAT =

 a2 + (α− a2) −a
√
β(1− a2/α) +

√
α− a2a

√
β
α

−a
√
β(1− a2/α) +

√
α− a2a

√
β
α

β(1− a2/α) + a2(β/α)

.

That simplifies to diag(α, β). Based on this, the second result is automatic.

To prove the last statement, let C = (cij). Then assume

CCT =

[
c2

11 + c2
12 c11c21 + c12c22

c11c21 + c12c22 c2
21 + c2

22

]
=

[
α 0

0 β

]

That means c12 = ±
√
α− c2

11, c22 = ±
√
α− c2

21, and c11c21 + c12c22 = 0 ⇒ c21 =

∓
√
β(1− c2

11/α), whence c22 = ±c11

√
β
α

. By computation, only the configuration of ±
signs found in the statement of the Lemma will get the right result. Q.E.D.

Fixed-Point Group Computation Lemma 3. If A ∈ GL(n, k), n = 3,

A =


a

√
α− a2 0

−i
√

β(α−a2)
αγ

ia
√

β
αγ

−
√

β(γ−i2)
γ

−
√

(γ−i2)(α−a2)
α

a
√

γ−i2
α

i


where a, i ∈ k, and every root in A is in k then AAT = diag(α, β, γ). Similarly, if B =

diag(In−2, A) ∈ GL(n, k) then BBT = diag(In−3, α, β, γ).

Proof. By laborious computation, AAT = diag(α, β, γ), and the second result is automatic.

Q.E.D.

Fixed-Point Group Computation Lemma 4. If p ≡ 1 (mod 4) and a ∈ Qp then every

root in A in both of the previous two lemmas is in Qp for α = β = 1, p,Np, or pNp or αβ = 1

for appropriate a (in the first case corresponding to Fixed-Point Group Computation Lemma

2) and α = β = γ = 1 or αβγ = 1 for appropriate a and i (in the second case corresponding

to Fixed-Point Group Computation Lemma 3). Also, one can replace 1, p,Np or pNp with

a square of Q∗p times 1, p,Np or pNp in the above equations. The cases αβ = p,Np, or pNp

and α = β = γ = p,Np, or pNp do not come out.

Proof. From Fixed-Point Group Computation Lemma 2, if α = β = 1, I want to show A = a
√
α− a2

−
√
β(1− a2/α) a

√
β
α

 ∈ GL(2, k), k = Qp, p ≡ 1 (mod 4).
√
α− a2 =

√
1− a2,
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and this works for a = ±1. Now set α = β = p. Then
√
α− a2 =

√
p− a2. Since −1 is a

square in this case, by Lemma 6, if p− 1 is a square in Z then there is nothing to show since

I can set a = 1, so assume otherwise. By Proposition 7, for some α, β ∈ k, α2 + β2 = p, so

set a = α. A similar argument holds for α = Np and α = pNp.

−
√
β(1− a2/α) = −

√
β − a2β/α and α = β, so we have −

√
β − a2 again, for which the

result has been proven. Similarly, since α = β, a
√

β
α

= a ∈ k.

Now suppose αβ = 1. Then it is easily seen that all of the terms in the matrix A from

Fixed-Point Group Computation Lemma 2 are in Qp. If αβ = p, Np, or pNp, the case does

not come out by Classification Lemma 3. Similar arguments will work for −A, since the

terms in the radicals are the same.

If α = β = γ = 1, then set a = 0,±1 and i = 0,±1 and one has it. If αβγ =

1, then β = α−1γ−1 so −i
√

β(α−a2)
αγ

= −i
√
β2(α− a2) = −iβ

√
α− a2, and this case has

already been dealt with. Additionally, ia
√

β
αγ

= iaβ and −
√

β(γ−i2)
γ

= −
√
γ − i2. Further,

−
√

(γ−i2)(α−a2)
α

= −
√

(γ − i2)(1− α−1a2) which is similar to other terms that have been

dealt with, and the same is true for a
√

γ−i2
α

.

Any of the above calculations will come out if 1, p,Np or pNp is replaced by a square

of Q∗p times 1, p,Np or pNp. A specific proof has been omitted because the calculations are

essentially the same as the above.

Now consider the last case corresponding to Fixed-Point Group Computation Lemma

3. If α = β = γ = p then simplifying most of the terms is similar to what has been seen.

However, it cannot be done simultaneously. For ia
√

β
αγ

= ia
√

p
p2

= ia
√
p−1 = i

√
p−1a2

meaning that a = 0, or alternatively, that i = 0. However, if either one of them is zero then

there are other terms that don’t come out. The cases α = β = γ = Np and α = β = γ = pNp

are similar. Q.E.D.

Fixed-Point Group Computation Lemma 5. For any diagonal matrix C ∈ GL(n, k),

C is congruent over SO(n, k) to any diagonal matrix D ∈ GL(n, k) such that the elements

of D are the transposed elements of C. So there are the same number of the same entries of

C in D, just in different places.
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Proof. Consider the matrix Aij = (a`m) where A is the same as In except that for some

i, j ∈ {1, 2, . . . , n}, i > j, aii = ajj = 0, aij = −1, and aji = 1. It is clear that |Aij| = 1

because one can take the determinant successively over every row except the ith and jth rows

to obtain 1n−2

∣∣∣∣∣ 0 −1

1 0

∣∣∣∣∣ = 1. Further, AijA
T
ij = In, so Aij ∈ SO(n, k).

Now, AijCA
T
ij = C∗, where C∗ has the same entries in the same places as C except that

the ith and jth entries (counting by rows or columns) have been transposed. By picking

successive, appropriate matrices A`λmλ , one can obtain A`1m1 . . . A`ιmιCA
T
`ιmι

. . . AT`1m1
= D.

Q.E.D.

Fixed-Point Group Computation Lemma 6. If p ≡ 3 (mod 4), for the matrix in Fixed-

Point Group Computation Lemma 2, if it is in GL(n, k) and k = Qp then it is impossible

that α = p. Similarly, if p = 2 then it is impossible that α = 3 and that the matrix in

Fixed-Point Group Computation Lemma 2 is in GL(n, k), k = Q2.

Proof. This is a consequence of Corollary 1. In the first case, because p is not the sum of two

squares, the term ±
√
α− a2 cannot be in Qp. The second case is similar, since Corollary 1

states that 3 is not the sum of two squares in k = Q2. Q.E.D.

Fixed-Point Group Computation Lemma 7. Over any p-adic field Qp, ∀ a1, a2, a3, a4, a5

∈ Q∗p, a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 = 0 has a non-trivial solution. That implies a1x

2
1 +

a2x
2
2 + a3x

2
3 + a4x

2
4 = a5 has a solution. This result can be found in Scharlau [9, Theorem

6.3 on p. 187].

Fixed-Point Group Computation Lemma 8. If diag(ζ1, . . . , ζm) ∈ GL(m,Qp),
∏m

i=1 ζi ∈
Q∗2p , and m ≥ 4, ∃ A0 ∈ GL(m,Qp) such that A0A

T
0 = diag(ζ1, . . . , ζm) ∈ GL(m,Qp).

Proof. By Fixed-Point Group Computation Lemma 7 and because the diagonal elements of

A0A
T
0 have the form

∑m
j=0 η

2
ij, ηij ∈ Qp in the ith row of A0A

T
0 , one can get every necessary

diagonal element in A0A
T
0 . As for the other elements, they can be made equal to zero by

linear algebra. Q.E.D.
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Lemma 14. For any A ∈ SO(2, k), A has the form

[
±
√

1− a2 a

−a ±
√

1− a2

]
for some

a ∈ k. If −1 ∈ k∗2, a can assume any value in k.

Proof. Let A =

[
a11 a12

a21 a22

]
∈ SO(2, k). Then A−1 = AT and |A| = 1, so

[
a22 −a12

−a21 a11

]
=

[
a11 a21

a12 a22

]

As a result, a11 = a22 and a21 = −a12. Thus, A =

[
a11 a12

−a12 a11

]
.

Now, |A| = 1⇒ a2
11 +a2

12 = 1. This means that a11 = ±
√

1− a2
12 as claimed. If −1 /∈ k∗2

and the field is well ordered, then 1 − a2
12 ≥ 0 ⇒ 1 ≥ a2

12 ⇒ 1 ≥ a12 ≥ −1. (If the field is

not well ordered but −1 /∈ k∗2 there will still be a restriction on a12.) Otherwise, there is no

restriction on a12. Q.E.D.

5.5 The Generalized P-Adic Fixed-Point Groups of In-

volution Isomorphy Classes

Proposition 12. Let k = Qp, −1 ∈ Q∗2p , and Np /∈ Q∗2p . Then the fixed point groups

GJB of the involution conjugacy classes of SO(2n, k) corresponding to an involution JB,

B = B−1
0 Is,tB0, which are given by Proposition 4 are listed in Table 5.1. Their properties

of compactness or non-compactness are listed below. The entries of the table correspond to

α, β, γ, and δ, which fill out the following summations, which correspond to NsN
T
s and

NtN
T
t : i.

s−α∑
`=1

µ2
i` = β,

2n−γ∑
`=s+1

ν2
i` = δ and ii.

s−α∑
`=1

µi`µj` = β,

2n−γ∑
`=s+1

νi`νj` = δ. On the chart it is

assumed that i 6= j, ι 6= λ, i, j ∈ {1, 2, . . . , t} and ι, λ ∈ {s + 1, s + 2, . . . , 2n}. Also, GJA ={
A−1

0 diag(Ns, Nt)A0 |Ns = (µij), Nt = (νij)
}

unless otherwise specified. If Ns ∈ O(s, k) or

Nt ∈ O(t, k) then I have written ”n/a” for α or γ and ∈ O(s, k) or ∈ O(t, k) for β or δ,

respectively. The order of the items is the same order as can be found in Proposition 3.
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Table 5.1: The table of the fixed-point groups of invo-

lutions over SO(2n, k) corresponding to Proposition 3,

where k = Qp and −1 ∈ Q∗2p . This chart corresponds

with Proposition 12.

Item diag(b1, . . . , b2n) β

α γ δ

1.i. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

1.ii. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

2.i.
diag(1, . . . , 1, p,Np,

p−1N−1
p ) ∈ O(s, k)

n/a 3

1 + (p− 1)δι,2n−2+
(Np − 1)δι,2n−1 + (p−1N−1

p − 1)δι,2n
−pν2

ι,2n−2 −Npν
2
ι,2n−1 − p−1N−1

p ν2
ι,2n

2.ii.
diag(1, . . . , 1, p,Np,

p−1N−1
p ) ∈ O(s, k)

n/a 3
−νι,2n−2νλ,2n−2p− νι,2n−1νλ,2n−1Np−

νι,2nνλ,2np
−1N−1

p

3.i.
diag(1, . . . , 1, p,Np,
p−1N−1

p , 1, . . . , 1)

1 + (p− 1)δi,s−2+
(Np − 1)δi,s−1 + (p−1N−1

p − 1)δis
−pµ2

i,s−2 −Npµ
2
i,s−1 − p−1N−1

p µ2
is

3 n/a ∈ O(t, k)

3.ii.
diag(1, . . . , 1, p,Np,
p−1N−1

p , 1, . . . , 1)
−µi,s−2µj,s−2p−

µi,s−1µj,s−1Np − µisµjsp−1N−1
p

3 n/a ∈ O(t, k)

4.i.

diag(1, . . . , 1, p,Np, p
−1N−1

p ,

1, . . . , 1, p,Np, p
−1N−1

p )

1 + (p− 1)δi,s−2+
(Np − 1)δi,s−1 + (p−1N−1

p − 1)δis
−pµ2

i,s−2 −Npµ
2
i,s−1 − p−1N−1

p µ2
is
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Table 5.1: Continued

Item diag(b1, . . . , b2n) β

α γ δ

3 3

1 + (p− 1)δι,2n−2+
(Np − 1)δι,2n−1 + (p−1N−1

p − 1)δι,2n
−pν2

ι,2n−2 −Npν
2
ι,2n−1 − p−1N−1

p ν2
ι,2n

4.ii.

diag(1, . . . , 1, p,Np, p
−1N−1

p ,

1, . . . , 1, p,Np, p
−1N−1

p )
−µi,s−2µj,s−2p−

µi,s−1µj,s−1Np − µisµjsp−1N−1
p

3 3
−νι,2n−2νλ,2n−2p− νι,2n−1νλ,2n−1Np−

νι,2nνλ,2np
−1N−1

p

5.i. diag(1, . . . , 1, Np, 1, . . . , 1, Np) 1 + (Np − 1)δi,s −Npµ
2
i,s

1 1 1 + (Np − 1)δι,2n −Npν
2
ι,2n

5.ii. diag(1, . . . , 1, Np, 1, . . . , 1, Np) −µi,sµj,sNp

1 1 −νι,2nνλ,2nNp

6.i.
diag(1, . . . , 1, Np, 1, . . . ,

1, p, p−1Np) 1 + (Np − 1)δi,s −Npµ
2
i,s

1 2
1 + (p− 1)δι,2n−1 + (p−1Np − 1)δι,2n

−pνι,2n−1 − p−1Npν
2
ι,2n

6.ii.
diag(1, . . . , 1, Np, 1, . . . ,

1, p, p−1Np) −µi,sµj,sNp

1 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1Np

7.i.
diag(1, . . . , 1, p, p−1Np,

1, . . . , 1, Np)
1 + (p− 1)δi,s−1 + (p−1Np − 1)δi,s

−pµi,s−1 − p−1Npµ
2
is

2 1 1 + (Np − 1)δι,2n −Npν
2
ι,2n

7.ii.
diag(1, . . . , 1, p, p−1Np,

1, . . . , 1, Np) −µi,s−1µj,s−1p− µisµjsp−1Np

2 1 −νι,2nνλ,2nNp

8.i.
diag(1, . . . , 1, p, p−1Np,

1, . . . , 1, p, p−1Np)
1 + (p− 1)δi,s−1 + (p−1Np − 1)δi,s

−pµi,s−1 − p−1Npµ
2
is

2 2
1 + (p− 1)δι,2n−1 + (p−1Np − 1)δι,2n

−pνι,2n−1 − p−1Npν
2
ι,2n
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Table 5.1: Continued

Item diag(b1, . . . , b2n) β

α γ δ

8.ii.
diag(1, . . . , 1, p, p−1Np,

1, . . . , 1, p, p−1Np) −µi,s−1µj,s−1p− µisµjsp−1Np

2 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1Np

9.i. diag(1, . . . , 1, p, 1, . . . , 1, p) 1 + (p− 1)δi,s − pµ2
i,s

1 1 1 + (p− 1)δι,2n − pν2
ι,2n

9.ii. diag(1, . . . , 1, p, 1, . . . , 1, p) −µi,sµj,sp
1 1 −νι,2nνλ,2np

10.i.
diag(1, . . . , 1, p, 1, . . . ,

1, Np, pN
−1
p ) 1 + (p− 1)δi,s − pµ2

i,s

1 2

1 + (Np − 1)δι,2n−1 + (pN−1
p − 1)δι,2n

−Npνι,2n−1 − pN−1
p ν2

ι,2n

10.ii.
diag(1, . . . , 1, p, 1, . . . ,

1, Np, pN
−1
p ) −µi,sµj,sp

1 2 −νι,2n−1νλ,2n−1Np − νι,2nνλ,2npN−1
p

11.i.
diag(1, . . . , 1, Np, pN

−1
p ,

1, . . . , 1, p)

1 + (Np − 1)δi,s−1 + (pN−1
p − 1)δi,s

−Npµi,s−1 − pN−1
p µ2

is

2 1 1 + (p− 1)δι,2n − pν2
ι,2n

11.ii.
diag(1, . . . , 1, Np, pN

−1
p ,

1, . . . , 1, p) −µi,s−1µj,s−1Np − µisµjspN−1
p

2 1 −νι,2nνλ,2np

12.i.

diag(1, . . . , 1, Np, pN
−1
p ,

1, . . . , 1, Np, pN
−1
p )

1 + (Np − 1)δi,s−1 + (pN−1
p − 1)δi,s

−Npµi,s−1 − pN−1
p µ2

is

2 2

1 + (Np − 1)δι,2n−1 + (pN−1
p − 1)δι,2n

−Npνι,2n−1 − pN−1
p ν2

ι,2n

12.ii.

diag(1, . . . , 1, Np, pN
−1
p ,

1, . . . , 1, Np, pN
−1
p ) −µi,s−1µj,s−1Np − µisµjspN−1

p

2 2 −νι,2n−1νλ,2n−1Np − νι,2nνλ,2npN−1
p
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Table 5.1: Continued

Item diag(b1, . . . , b2n) β

α γ δ

13.i. diag(1, . . . , 1, pNp, 1, . . . , 1, pNp) 1 + (pNp − 1)δi,s − pNpµ
2
i,s

1 1 1 + (pNp − 1)δι,2n − pNpν
2
ι,2n

13.ii. diag(1, . . . , 1, pNp, 1, . . . , 1, pNp) −µi,sµj,spNp

1 1 −νι,2nνλ,2npNp

14.i.
diag(1, . . . , 1, pNp, 1, . . . ,

1, p,Np) 1 + (pNp − 1)δi,s − pNpµ
2
i,s

1 2
1 + (p− 1)δι,2n−1 + (Np − 1)δι,2n

−pνι,2n−1 −Npν
2
ι,2n

14.ii.
diag(1, . . . , 1, pNp, 1, . . . ,

1, p,Np) −µi,sµj,spNp

1 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2nNp

15.i.
diag(1, . . . , 1, p,Np,

1, . . . , 1, pNp

1 + (p− 1)δi,s−1 + (Np − 1)δi,s
−pµi,s−1 −Npµ

2
is

2 1 1 + (pNp − 1)δι,2n − pNpν
2
ι,2n

15.ii.
diag(1, . . . , 1, p,Np,

1, . . . , 1, pNp −µi,s−1µj,s−1p− µisµjsNp

2 1 −νι,2nνλ,2npNp

16.i.
diag(1, . . . , 1, p,Np,

1, . . . , 1, p,Np)
1 + (p− 1)δi,s−1 + (Np − 1)δi,s

−pµi,s−1 −Npµ
2
is

2 2
1 + (p− 1)δι,2n−1 + (Np − 1)δι,2n

−pνι,2n−1 −Npν
2
ι,2n

16.ii.
diag(1, . . . , 1, p,Np,

1, . . . , 1, p,Np) −µi,s−1µj,s−1p− µisµjsNp

2 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2nNp

The results on the compactness of each isomorphism class with respect to conjugacy, a.k.a.

each conjugacy class by abuse of notation, are listed below.

1. Never compact

2. Never compact
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3. Never compact

4. Never compact

5. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k))

6. Never compact

7. Never compact

8. Compact iff s = t = 2

9. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k))

10. Never compact

11. Never compact

12. Compact iff s = t = 2

13. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k))

14. Never compact

15. Never compact

16. Compact iff s = t = 2

Proof. The results about the fixed-point groups are simple usages of Theorem 5 and Fixed-

Point Group Computation Lemma 1. As for compactness, any group in SO(2n, k) is compact

iff it is closed and bounded, and because of the form of matrices in SO(2, k), which can be

found in Lemma 14, SO(2, k) is unbounded. Therefore, any group of diagonal matrices that

has a block consisting of matrices in SO(2, k) is not compact, and by Fixed-Point Group

Computation Lemma 5, it is enough for a diagonal matrix to have two diagonal entries of

1. Therefore, whenever s + t − α − γ ≥ 2, the fixed-point group is not compact. (Recall

that s + t = 2n, and that s and t must both be even for the corresponding matrix to be in

SO(2n, k) instead of O(2n, k).)

Every fixed-point group listed in this proposition can be formed using the matrices listed

in Fixed-Point Group Computation Lemmas 2 and 3 in appropriate blocks of different ma-

trices. That is because of Fixed-Point Group Computation Lemma 4, which states that

under the right conditions (which one is free to select) they are in GL(2, k) or GL(3, k),

respectively. Because s + t = 2n is even, whenever α + γ is odd and greater than one, the

corresponding fixed-point group will not be compact. For 1 is a square, so the equation

x2 + y2 + z2 = 1 has an unbounded solution x = p−m, y =
√
−1p−m, z = 1, where m ∈ N.
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Consequently, there is an unbounded matrix in the corresponding fixed-point group, making

the group itself non-compact.

As a result, whenever one has a 1 in the diagonal of B0B
T
0 , the corresponding fixed-point

group is non-compact. However, by Fixed-Point Group Computation Lemma 2, if there is

no such entry of B0B
T
0 and s and t are small enough, then the fixed-point group is indeed

compact. That requires 2n = α + γ, so α + γ must be even. Recall that because we do not

want the identity mapping to be considered an involution, s > 0 and t > 0. Thus, α > 0

and γ > 0 are necessary conditions of compactness, and α and γ must both be odd or even.

Case four presents a special case on O(2n, k). Over SO(2n, k) it is not compact because,

to be in SO(2n, k), t must be even, so there is a diagonal entry of 1. However, even on

O(2n, k) it is not compact because the smallest corresponding matrix is 6× 6, so one is free

to select one of the thirty-six entries of the matrix in the fixed-point group as p−m, m ∈ N
(the positive integers). That makes the matrix unbounded, hence the fixed-point group is

not compact.

Similarly, in cases eight and twelve, one can make a 4 × 4 matrix A such that AAT has

the appropriate form by Classification Lemma 3. It need not be bounded because there are

enough independent variables for one to be pm, m ∈ Z, just as I set the entry in spot (1, 3)

equal to zero in the matrix in Fixed-Point Group Computation Lemma 3. Q.E.D.

Proposition 13. Let k = Qp and −1 /∈ Q∗2p . Then the fixed point groups GJB of the

involution conjugacy classes of SO(2n, k) corresponding to an involution JB, B = B−1
0 Is,tB0,

which are given by Proposition 5 are listed in Table 5.2. Their properties of compactness or

non-compactness are listed below. They are in tabular form, and the entries α, β, γ, and

δ fill out the following summations, which correspond to NsN
T
s and NtN

T
t : i.

s−α∑
`=1

µ2
i` = β,

2n−γ∑
`=s+1

ν2
i` = δ and ii.

s−α∑
`=1

µi`µj` = β,

2n−γ∑
`=s+1

νi`νj` = δ. On the chart it is assumed that i 6= j,

ι 6= λ, i, j ∈ {1, 2, . . . , t} and ι, λ ∈ {s+ 1, s+ 2, . . . , 2n}. Also,

GJA =
{
A−1

0 diag(Ns, Nt)A0 |Ns = (µij), Nt = (νij)
}

unless otherwise specified. If Ns ∈ O(s, k) or Nt ∈ O(t, k) then I have written ”n/a” for α
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or γ and ∈ O(s, k) or ∈ O(t, k) for β or δ, respectively. The order of the items is the same

order as can be found in Proposition 5.

Table 5.2: The fixed-point groups of involutions over

SO(2n, k) corresponding to Proposition 4, where k = Qp,

−1 /∈ Q∗2p , and p 6= 2. This chart corresponds with Propo-

sition 13.

Item diag(b1, . . . , b2n) β

α γ δ

1.i. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

1.ii. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

2.i. diag(1, . . . , 1, p, p−1) ∈ O(s, k)

n/a 2
1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n

−pν2
ι,2n−1 − p−1ν2

ι,2n

2.ii. diag(1, . . . , 1, p, p−1) ∈ O(s, k)

n/a 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1

3.i.
diag(1, . . . , 1, p,
p−1, 1, . . . , 1)

1 + (p− 1)δi,s−1 + (p−1 − 1)δis
−pµ2

i,s−1 − p−1µ2
is

2 n/a ∈ O(t, k)

3.ii.
diag(1, . . . , 1, p,
p−1, 1, . . . , 1) µi,s−1µj,s−1p− µisµjsp−1

2 n/a ∈ O(t, k)

4.i.
diag(1, . . . , 1, p, p−1,

1, . . . , 1, p, p−1)
1 + (p− 1)δi,s−1 + (p−1 − 1)δis

−pµ2
i,s−1 − p−1µ2

is

2 2
1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n

−pν2
ι,2n−1 − p−1ν2

ι,2n

4.ii.
diag(1, . . . , 1, p, p−1,

1, . . . , 1, p, p−1) µi,s−1µj,s−1p− µisµjsp−1
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Table 5.2: Continued

Item diag(b1, . . . , b2n) β

α γ δ

2 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1

5.i. diag(1, . . . , 1,−1, 1, . . . , 1,−1) 1− 2δi,s + µ2
i,s

1 1 1− 2δι,2n + ν2
ι,2n

5.ii. diag(1, . . . , 1,−1, 1, . . . , 1,−1) µi,sµj,s

1 1 νι,2nνλ,2n

6.i.
diag(1, . . . , 1,−1, 1, . . . ,

1, p,−p−1) 1− 2δi,s + µ2
i,s

1 2

1 + (p− 1)δι,2n−1+
(−p−1 − 1)δι,2n − pνι,2n−1

+p−1ν2
ι,2n

6.ii.
diag(1, . . . , 1,−1, 1, . . . ,

1, p,−p−1) µi,sµj,s

1 2 −νι,2n−1νλ,2n−1p+ νι,2nνλ,2np
−1

7.i.
diag(1, . . . , 1, p,−p−1,

1, . . . , 1,−1)
1 + (p− 1)δi,s−1 + (−p−1 − 1)δi,s

−pµi,s−1 + p−1µ2
is

2 1 1− 2δι,2n + ν2
ι,2n

7.ii.
diag(1, . . . , 1, p,−p−1,

1, . . . , 1,−1) −µi,s−1µj,s−1p+ µisµjsp
−1

2 1 νι,2nνλ,2n

8.i.
diag(1, . . . , 1, p,−p−1,

1, . . . , 1, p,−p−1)
1 + (p− 1)δi,s−1+

(−p−1 − 1)δi,s − pµi,s−1 + p−1µ2
is

2 2

1 + (p− 1)δι,2n−1+
(−p−1 − 1)δι,2n − pνι,2n−1

+p−1ν2
ι,2n

8.ii.
diag(1, . . . , 1, p,−p−1,

1, . . . , 1, p,−p−1) −µi,s−1µj,s−1p+ µisµjsp
−1

2 2 −νι,2n−1νλ,2n−1p+ νι,2nνλ,2np
−1
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Table 5.2: Continued

Item diag(b1, . . . , b2n) β

α γ δ

9.i.
diag(1, . . . , 1,−1,−p, 1,

. . . , 1,−1,−p)
1− 2δi,s−1 + (−p− 1)δi,s

+µ2
i,s−1 + pµ2

is

2 2
1− 2δι,2n−1 + (−p− 1)δι,2n

+νι,2n−1 + pν2
ι,2n

9.ii.
diag(1, . . . , 1,−1,−p, 1,

. . . , 1,−1,−p) µi,s−1µj,s−1 + µi,sµj,sp

2 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2np

10.i.
diag(1, . . . , 1,−1,−p,

1, . . . , 1, p)
1− 2δi,s−1 + (−p− 1)δi,s

+µ2
i,s−1 + pµ2

is

2 1 1 + (p− 1)δι,2n − pν2
ι,2n

10.ii.
diag(1, . . . , 1,−1,−p,

1, . . . , 1, p) µi,s−1µj,s−1 + µi,sµj,sp

2 1 −νι,2nνλ,2np

11.i.
diag(1, . . . , 1, p, 1, . . . ,

1,−1,−p) 1 + (p− 1)δi,s − pµ2
i,s

1 2
1− 2δι,2n−1 + (−p− 1)δι,2n

+νι,2n−1 + pν2
ι,2n

11.ii.
diag(1, . . . , 1, p, 1, . . . ,

1,−1,−p) −µi,sµj,sp
1 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2np

12.i.
diag(1, . . . , 1, p,

1, . . . , 1, p) 1 + (p− 1)δi,s − pµ2
i,s

1 1 1 + (p− 1)δι,2n − pν2
ι,2n

12.ii.
diag(1, . . . , 1, p,

1, . . . , 1, p, ) −µi,sµj,sp
1 1 −νι,2nνλ,2np

13.i. diag(1, . . . , 1,−1, p, 1, . . . , 1,−1, p)
1− 2δi,s−1 + (p− 1)δi,s

+µ2
i,s−1 − pµ2

is

2 2
1− 2δι,2n−1 + (p− 1)δι,2n

+νι,2n−1 − pν2
ι,2n
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Table 5.2: Continued

Item diag(b1, . . . , b2n) β

α γ δ

13.ii. diag(1, . . . , 1,−1, p, 1, . . . , 1,−1, p) µi,s−1µj,s−1 − µi,sµj,sp
2 2 νι,2n−1νλ,2n−1 − νι,2nνλ,2np

14.i. diag(1, . . . , 1,−1, p, 1, . . . , 1,−p)
1− 2δi,s−1 + (p− 1)δi,s

+µ2
i,s−1 − pµ2

is

2 1 1 + (−p− 1)δι,2n + pν2
ι,2n

14.ii. diag(1, . . . , 1,−1, p, 1, . . . , 1,−p) µi,s−1µj,s−1 − µi,sµj,sp
2 1 νι,2nνλ,2np

15.i. diag(1, . . . , 1,−p, 1, . . . , 1,−1, p) 1 + (−p− 1)δi,s + pµ2
is

1 2
1− 2δι,2n−1 + (p− 1)δι,2n

+νι,2n−1 − pν2
ι,2n

15.ii. diag(1, . . . , 1,−p, 1, . . . , 1,−1, p) µi,sµj,sp

1 2 νι,2n−1νλ,2n−1 − νι,2nνλ,2np

16.i. diag(1, . . . , 1,−p, 1, . . . , 1,−p) 1 + (−p− 1)δi,s + pµ2
is

1 1 1 + (−p− 1)δι,2n + pν2
ι,2n

16.ii. diag(1, . . . , 1,−p, 1, . . . , 1,−p) µi,sµj,sp

1 1 νι,2nνλ,2np

1. Never compact

2. Never compact (since s > 0)

3. Never compact (since t > 0)

4. Compact iff s = t = 2 and x2
1 + x2

2 + x2
3 + x2

4 = p has no unbounded solutions in

k = Qp

5. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−1 is the sum of two squares in k = Qp

6. Compact iff s = t = 2 and x2
1 +x2

2 +x2
3 +x2

4 = 1 has no unbounded solution in k = Qp

7. Compact iff s = t = 2 and x2
1 +x2

2 +x2
3 +x2

4 = 1 has no unbounded solution in k = Qp
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8. Compact iff s = t = 2, and x2
1 + x2

2 + x2
3 + x2

4 = p and x2
1 + x2

2 + x2
3 + x2

4 = −p have

no unbounded solutions in k = Qp

9. Compact iff s = t = 2 and x2
1 + x2

2 + x2
3 + x2

4 = −1 and x2
1 + x2

2 + x2
3 + x2

4 = −p have

no unbounded solutions in k = Qp

10. Compact iff s = t = 2 and no square class has an unbounded solution if it is the

sum of four squares

11. Compact iff s = t = 2 and no square class has an unbounded solution if it is the

sum of four squares

12. Compact iff s = t = 2 and x2
1 + x2

2 + x2
3 + x2

4 = p has no unbounded solutions in

k = Qp

13. Compact iff s = t = 2 and x2
1 + x2

2 + x2
3 + x2

4 = −1 and x2
1 + x2

2 + x2
3 + x2

4 = p have

no unbounded solutions in k = Qp

14. Compact iff s = t = 2 and no square class has an unbounded solution if it is the

sum of four squares

15. Compact iff s = t = 2 and no square class has an unbounded solution if it is the

sum of four squares

16. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−p is the sum of two squares in k

Proof. The results about the fixed-point groups are simple usages of Theorem 5 and Fixed-

Point Group Computation Lemma 1. As for compactness, any group in SO(2n, k) is compact

iff it is closed and bounded, and because of the form of matrices in SO(2, k), which can be

found in Lemma 14, SO(2, k) is unbounded. Therefore, any group of diagonal matrices that

has a block consisting of matrices in SO(2, k) is not compact, and by Fixed-Point Group

Computation Lemma 5, it is enough for a diagonal matrix to have two diagonal entries of

1. Therefore, whenever s + t − α − γ ≥ 2, the fixed-point group is not compact. (Recall

that s + t = 2n, and that s and t must both be even for the corresponding matrix to be in

SO(2n, k) instead of O(2n, k).)

The compactness results come from a similar process as in the previous lemma. If s + t

is big enough, then there will be independent variables in the corresponding matrix B0, i.e.,
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one will be able to make B0 unbounded. Unlike in the previous case, p is never the sum of

two squares by Corollary 1. When x2
1+x2

2+x2
3+x2

4 = α has an unbounded solution in Qp, if α

is in the diagonal of B0B
T
0 , the corresponding fixed-point group is not compact. Otherwise,

one needs to ones in the diagonal to get a matrix with a block congruent to SO(2, k) in the

fixed-point group. Q.E.D.

Proposition 14. Let k = Q2. Then the fixed point groups GJB of the involution conjugacy

classes of SO(2n, k) corresponding to an involution JA, B = B−1
0 Is,tB0, which are given by

Proposition 6 are listed in Table 5.3. Their properties of compactness or non-compactness

are listed below. The entries α, β, γ, and δ in the tables fill out the following summations,

which correspond to NsN
T
s and NtN

T
t : i.

s−α∑
`=1

µ2
i` = β,

2n−γ∑
`=s+1

ν2
i` = δ and ii.

s−α∑
`=1

µi`µj` = β,

2n−γ∑
`=s+1

νi`νj` = δ. On the chart it is assumed that i 6= j, ι 6= λ, i, j ∈ {1, 2, . . . , t} and

ι, λ ∈ {s + 1, s + 2, . . . , 2n}. Also, GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

unless otherwise specified. If Ns ∈ O(s, k) or Nt ∈ O(t, k) then I have written ”n/a” for α

or γ and ∈ O(s, k) or ∈ O(t, k) for β or δ, respectively. The order of the items is the same

order as can be found in Proposition 6.

Table 5.3: The fixed-point groups of isomorphism classes

of involutions over SO(2n, k) where k = Q2. This chart

corresponds with Proposition 14 and the order of the

items in it correspond with Proposition 5.

Item B0B
T
0 β

α γ δ

1.i.
diag(1, . . . , 1,−1,−1, 1,

. . . , 1,−1,−1) 1− 2δi,s−1 + µ2
i,s−1 − 2δis + µ2

is

2 2 1− 2δι,2n−1 + ν2
ι,2n−1 − 2δι,2n + ν2

ι,2n

1.ii.
diag(1, . . . , 1,−1,−1, 1,

. . . , 1,−1,−1) µi,s−1µj,s−1 + µisµjs

2 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

2.i. diag(1, . . . , 1,−1,−1, 1, . . . , 1) 1− 2δi,s−1 − 2δi,s + µ2
i,s−1 + µ2

i,s

2 n/a ∈ O(t, k)

2.ii. diag(1, . . . , 1,−1,−1, 1, . . . , 1) µi,s−1µj,s−1 + µisµjs

2 n/a ∈ O(t, k)

3.i. diag(1, . . . , 1,−1,−1) ∈ O(s, k)

n/a 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

3.ii. diag(1, . . . , 1,−1,−1) ∈ O(s, k)

n/a 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n

4.i. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

4.ii. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

5.i. diag(1, . . . , 1,−1, 1, . . . ,−1) 1− 2δis + µ2
is

1 1 1− 2δι,2n + ν2
ι,2n

5.ii. diag(1, . . . , 1,−1, 1, . . . ,−1) µisµjs

1 1 νι,2nνλ,2n

6.i. diag(1, . . . , 1,−1, 1, . . . , 1, 3,−3−1) 1− 2δis + µ2
is

1 2
1 + 2δι,2n−1 + (−3−1 − 1)δι,2n

−3ν2
ι,2n−1 + 3−1ν2

ι,2n

6.ii. diag(1, . . . , 1,−1, 1, . . . , 1, 3,−3−1) µisµjs

1 2 −3νι,2n−1νλ,2n−1 + 3−1νι,2nνλ,2n

7.i. diag(1, . . . , 1, 3,−3−1, 1, . . . , 1,−1)
1 + 2δi,s−1 + (−3−1 − 1)δis
−3µ2

i,s−1 + 3−1µ2
is

2 1 1− 2δι,2n + µ2
ι,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

7.ii. diag(1, . . . , 1, 3,−3−1, 1, . . . , 1,−1) −3µi,s−1νj,s−1 + 3−1µisµjs

2 1 νι,2nνλ,2n

8.i.
diag(1, . . . , 1, 3,−3−1,

1, . . . , 1, 3,−3−1)
1 + 2δi,s−1 + (−3−1 − 1)δis
−3µ2

i,s−1 + 3−1µ2
is

2 2
1 + 2δι,2n−1 + (−3−1 − 1)δι,2n

−3ν2
ι,2n−1 + 3−1ν2

ι,2n

8.ii.
diag(1, . . . , 1, 3,−3−1,

1, . . . , 1, 3,−3−1) −3µi,s−1νj,s−1 + 3−1µisµjs

2 2 −3νι,2n−1νλ,2n−1 + 3−1νι,2nνλ,2n

9.i.
diag(1, . . . , 1,−1,−2,

1, . . . , 1,−1,−2)
1− 2δi,s−1 − 3δis

+µ2
i,s−1 + 2µ2

is

2 2
1− 2δι,2n−1 − 3δι,2n

+ν2
ι,2n−1 + 2ν2

ι,2n

9.ii.
diag(1, . . . , 1,−1,−2,

1, . . . , 1,−1,−2) µisµjs + 2µisµjs

2 2 νι,2n−1νλ,2n−1 + 2νι,2nνλ,2n

10.i.
diag(1, . . . , 1,−1,−2,

1, . . . , 1, 2)
1− 2δi,s−1 − 3δis

+µ2
i,s−1 + 2µ2

is

2 1 1 + δι,2n − 2ν2
ι,2n

10.ii.
diag(1, . . . , 1,−1,−2,

1, . . . , 1, 2) µisµjs + 2µisµjs

2 1 −2νι,2nνλ,2n

11.i.
diag(1, . . . , 1, 2,
1, . . . , 1,−1,−2) 1 + δis − 2µ2

is

1 2
1− 2δι,2n−1 − 3δι,2n

+ν2
ι,2n−1 + 2ν2

ι,2n

11.ii.
diag(1, . . . , 1, 2,
1, . . . , 1,−1,−2) −2µisµjs

1 2 νι,2n−1νλ,2n−1 + 2νι,2nνλ,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

12.i.
diag(1, . . . , 1, 2,

1, . . . , 1, 2) 1 + δis − 2µ2
is

1 1 1 + δι,2n − 2ν2
ι,2n

12.ii.
diag(1, . . . , 1, 2,

1, . . . , 1, 2) −2µisµjs

1 1 −2νι,2nνλ,2n

13.i.
diag(1, . . . , 1,−2,

1, . . . , 1,−2) 1− 3δis + 2µ2
is

1 1 1− 3δι,2n + 2ν2
ι,2n

13.ii.
diag(1, . . . , 1,−2,

1, . . . , 1,−2) 2µisµjs

1 1 2νι,2nνλ,2n

14.i.
diag(1, . . . , 1,−2,

1, . . . , 1,−1, 2) 1− 3δis + 2µ2
is

1 2
1− 2δι,2n−1 + δι,2n
+ν2

ι,2n−1 − 2ν2
ι,2n

14.ii.
diag(1, . . . , 1,−2,

1, . . . , 1,−1, 2) −2µisµjs

1 2 νι,2n−1νλ,2n−1 − 2νι,2nνλ,2n

15.i.
diag(1, . . . , 1,−1, 2,

1, . . . , 1,−2)
1− 2δi,s−1 + δis
+µ2

i,s−1 − 2µ2
is

2 1 1− 3δι,2n + 2ν2
ι,2n

15.ii.
diag(1, . . . , 1,−1, 2,

1, . . . , 1,−2) µisµjs − 2µisµjs

2 1 2νι,2nνλ,2n

16.i.
diag(1, . . . , 1,−1, 2,

1, . . . , 1,−1, 2)
1− 2δi,s−1 + δis
+µ2

i,s−1 − 2µ2
is

2 2
1− 2δι,2n−1 + δι,2n
+ν2

ι,2n−1 − 2ν2
ι,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

16.ii.
diag(1, . . . , 1,−1, 2,

1, . . . , 1,−1, 2) µisµjs − 2µisµjs

2 2 νι,2n−1νλ,2n−1 − 2νι,2nνλ,2n

17.i.
diag(1, . . . , 1, 3,

1, . . . , 1, 3) 1 + 2δis − 3µ2
is

1 1 1 + 2δι,2n − 3ν2
ι,2n

17.ii.
diag(1, . . . , 1, 3,

1, . . . , 1, 3) −3µisµjs

1 1 −3νι,2nνλ,2n

18.i.
diag(1, . . . , 1, 3, 1,
. . . , 1, 2, 3 · 2−1) 1 + 2δis − 3µ2

is

1 2
1 + δι,2n−1 + (3 · 2−1 − 1)δι,2n
−2ν2

ι,2n−1 − 3 · 2−1ν2
ι,2n

18.ii.
diag(1, . . . , 1, 3, 1,
. . . , 1, 2, 3 · 2−1) −3µisµjs

1 2 −2νι,2n−1νλ,2n−1 − 3 · 2−1νι,2nνλ,2n

19.i.
diag(1, . . . , 1, 2, 3 · 2−1,

1, . . . , 1, 3)
1 + δi,s−1 + (3 · 2−1 − 1)δis
−2µ2

i,s−1 − 3 · 2−1µ2
is

2 1 1 + 2δι,2n − 3µ2
ι,2n

19.ii.
diag(1, . . . , 1, 2, 3 · 2−1,

1, . . . , 1, 3) −2µi,s−1µj,s−1 − 3 · 2−1µisµjs

2 1 −3µι,2nµλ,2n

20.i.
diag(1, . . . , 1, 2, 3 · 2−1,

1, . . . , 1, 2, 3 · 2−1)
1 + δi,s−1 + (3 · 2−1 − 1)δis
−2µ2

i,s−1 − 3 · 2−1µ2
is

2 2
1 + δι,2n−1 + (3 · 2−1 − 1)δι,2n
−2ν2

ι,2n−1 − 3 · 2−1ν2
ι,2n

20.ii.
diag(1, . . . , 1, 2, 3 · 2−1,

1, . . . , 1, 2, 3 · 2−1) −2µi,s−1µj,s−1 − 3 · 2−1µisµjs

2 2 −2νι,2n−1νλ,2n−1 − 3 · 2−1νι,2nνλ,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

21.i. diag(1, . . . ,−3, 1, 1, . . . , 1,−3, 1) 1− 4δi,s−1 + 3µ2
i,s−1 − µ2

is

2 2 1− 4δι,2n−1 + 3ν2
ι,2n−1 − ν2

ι,2n

21.ii. diag(1, . . . ,−3, 1, 1, . . . , 1,−3, 1) 3µi,s−1µj,s−1 − µisµjs
2 2 3νι,2n−1νλ,2n−1 − νι,2nνλ,2n

22.i. diag(1, . . . ,−3, 1, 1, . . . , 1,−3) 1− 4δi,s−1 + 3µ2
i,s−1 − µ2

is

2 1 1− 4δι,2n + 3ν2
ι,2n

22.ii. diag(1, . . . ,−3, 1, 1, . . . , 1,−3) 3µi,s−1µj,s−1 − µisµjs
2 1 3νι,2nνλ,2n

23.i. diag(1, . . . ,−3, 1, . . . , 1,−3, 1) 1− 4δis + 3µ2
is

1 2 1− 4δι,2n−1 + 3ν2
ι,2n−1 − ν2

ι,2n

23.ii. diag(1, . . . ,−3, 1, . . . , 1,−3, 1) 3µisµjs

1 2 3νι,2n−1νλ,2n−1 − νι,2nνλ,2n

24.i. diag(1, . . . ,−3, 1, . . . , 1,−3) 1− 4δis + 3µ2
is

1 1 1− 4δι,2n + 3ν2
ι,2n

24.ii. diag(1, . . . ,−3, 1, . . . , 1,−3) 3µisµjs

1 1 3νι,2nνλ,2n

25.i. diag(1, . . . , 1, 6, 1, . . . , 1, 6) 1 + 5δis − 6µ2
is

1 1 1 + 5δι,2n − 6ν2
ι,2n

25.ii. diag(1, . . . , 1, 6, 1, . . . , 1, 6) −6µisµjs

1 1 −6νι,2nνλ,2n

26.i. diag(1, . . . , 1, 6, 1, . . . , 1, 6, 1) 1 + 5δis − 6µ2
is

1 2 1 + 5δι,2n−1 − 6ν2
ι,2n−1 − ν2

ι,2n

26.ii. diag(1, . . . , 1, 6, 1, . . . , 1, 6, 1) −6µisµjs
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

1 2 −6νι,2n−1νλ,2n−1 − νι,2nνλ,2n

27.i. diag(1, . . . , 1, 6, 1, 1, . . . , 1, 6) 1 + 5δi,s−1 − 6µ2
i,s−1 − µ2

is

2 1 1 + 5δι,2n − 6ν2
ι,2n

27.ii. diag(1, . . . , 1, 6, 1, 1, . . . , 1, 6) −6µi,s−1µj,s−1 − µisµjs
2 1 −6νι,2nνλ,2n

28.i. diag(1, . . . , 1, 6, 1, 1, . . . , 1, 6, 1) 1 + 5δi,s−1 − 6µ2
i,s−1 − µ2

is

2 2 1 + 5δι,2n−1 − 6ν2
ι,2n−1 − ν2

ι,2n

28.ii. diag(1, . . . , 1, 6, 1, 1, . . . , 1, 6, 1) −6µi,s−1µj,s−1 − µisµjs
2 2 −6νι,2n−1νλ,2n−1 − νι,2nνλ,2n

29.i. diag(1, . . . , 1,−1, 6, 1, . . . , 1,−1, 6)
1− 2δi,s−1 + 5δis

+µ2
i,s−1 − 6µ2

is

2 2
1− 2δι,2n−1 + 5δι,2n

+ν2
ι,2n−1 − 6ν2

ι,2n

29.ii. diag(1, . . . , 1,−1, 6, 1, . . . , 1,−1, 6) µi,s−1µj,s−1 − 6µisµjs

2 2 νι,2n−1νλ,2n−1 − 6νι,2nνλ,2n

30.i. diag(1, . . . , 1,−1, 6, 1, . . . , 1,−6)
1− 2δi,s−1 + 5δis

+µ2
i,s−1 − 6µ2

is

2 1 1− 7δι,2n + 6ν2
ι,2n

30.ii. diag(1, . . . , 1,−1, 6, 1, . . . , 1,−6) µi,s−1µj,s−1 − 6µisµjs

2 1 6νι,2nνλ,2n

31.i. diag(1, . . . , 1,−6, 1, . . . , 1,−1, 6) 1− 7δis + 6µ2
is

1 2
1− 2δι,2n−1 + 5δι,2n

+ν2
ι,2n−1 − 6ν2

ι,2n

31.ii. diag(1, . . . , 1,−6, 1, . . . , 1,−1, 6) 6µisµjs

1 2 νι,2n−1νλ,2n−1 − 6νι,2nνλ,2n
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Table 5.3: Continued

Item B0B
T
0 β

α γ δ

32.i. diag(1, . . . , 1,−6, 1, . . . , 1,−6) 1− 7δis + 6µ2
is

1 1 1− 7δι,2n + 6ν2
ι,2n

32.ii. diag(1, . . . , 1,−6, 1, . . . , 1,−6) 6µisµjs

1 1 6νι,2nνλ,2n

Let ”(∗)” denote the equation x2
1 + x2

2 + x2
3 + x2

4 = υ. Then the compactness conditions

on Q2 are as follows:

1. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = 1

2. Never compact (since t > 0)

3. Never compact (since s > 0)

4. Never compact

5. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−1 is the sum of two squares in k = Q2

6. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±3

7. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±3

8. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±3

9. Compact iff s = t = 2 and (∗) has no unbounded solutions for υ = −1,−2

10. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±2

11. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±2

12. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k))

13. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−2 is the sum of two squares in k = Q2

14. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±2

15. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±2

16. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = −1, 2

17. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

3 is the sum of two squares in k = Q2
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18. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = 1, 2, 3, 6

19. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = 1, 2, 3, 6

20. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = 2, 6

21. Never compact

22. Never compact (since s = t as we consider SO(2n, k), not SO(n, k))

23. Never compact

24. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−3 is the sum of two squares in k = Q2

25. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

6 is the sum of two squares in k = Q2

26. Never compact (since s = t as we consider SO(2n, k), not SO(n, k))

27. Never compact (since s = t as we consider SO(2n, k), not SO(n, k))

28. Never compact

29. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = −1, 6

30. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±6

31. Compact iff s = t = 2 and (∗) has no unbounded solution for υ = ±1,±6

32. Compact iff s = t = 1 (which implies the group is in O(2n, k), not SO(2n, k)) and

−6 is the sum of two squares in k = Q2

Proof. The proof of this result is similar to the proof of the two previous results. Q.E.D.
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Chapter 6

Involution Isomorphy Classes with

Respect to Conjugation Classes over

SO(2n, k) where k = Qp Extended

Quadratically to the Greatest Possible

Extent

6.1 The Involution Isomorphy Classes over the Great-

est Quadratic Extension of Qp

6.1.1 A Classification Result

My first proposition below is similar to the ”Classification Lemmas” of a previous chapter,

except that this proposition shows how many conjugacy classes of involutions there are over

Qp extended quadratically instead of on Qp.

Proposition 15. Suppose JA is an involution of SO(2n, k), where A = A−1
0 Is,tA0 and A0 ∈

GL(2n, k) is such that A0A
T
0 = diag(a1, . . . , a2n). Let k be the greatest possible quadratic
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extension of Qp, which is a finite extension of Qp according to Classification Lemma 1.

Then for each GL(2n, k) conjugacy class of JA there are 16 possible SO(2n, k) conjugacy

classes of JA. They correspond with the Hasse symbol of the upper-left s× s block of A0A
T
0 ,

the Hasse symbol of the lower-right t× t block of A0A
T
0 , and det(A0A

T
0 ).

Proof. Let JB be an involution of SO(2n, k), where B = B−1
0 Is,tB0 and B0 ∈ GL(2n, k) is

such thatB0B
T
0 = diag(b1, . . . , b2n). By the fourth part of Theorem 2, JA is conjugate to JB iff

there is a τ ∈ Q∗p such that a1a2 . . . a2n = τ 2b1b2 . . . b2n, cp(a1, a2, . . . , as) = cp(b1, b2, . . . , bs),

and cp(as+1, as+2, . . . , a2n) = cp(bs+1, bs+2, . . . , b2n). Now, if a1a2 . . . a2n and b1b2 . . . b2n are

in the same coset of Q∗p/Q∗p
2 (which is also called a ”square class”), then ∃ τ ∈ Q∗p 3

a1a2 . . . a2n = τ 2b1b2 . . . b2n, but not otherwise. Similarly, by the definition of the Hasse

symbol, cp(a1, a2, . . . , as) = ±1 and cp(b1, b2, . . . , bs) = ±1. Also, cp(as+1, as+2, . . . , a2n) = ±1

and cp(bs+1, bs+2, . . . , b2n) = ±1.

So for any involution JB there are sixteen possibilities for the values of the representatives

of b1b2 . . . b2n in Q∗p/Q∗p
2, for cp(b1, b2, . . . , bs), and for cp(bs+1, bs+2, . . . , b2n) since the first term

can take on the values 1, p,Np, and pNp and the following two terms can each take on two

values, i.e., ±1.

Note that since the terms τ1 and τ2 from Theorem 2 are now in the extension of Qp rather

than Qp itself, one need only consider the determinant of the entire matrix A0A
T
0 rather than

the determinants of the upper-left s× s block of A0A
T
0 and of the lower-right t× t block of

A0A
T
0 . For even if τ1 6= τ2, one can always make τ 2

1 = τ 2
2 . Q.E.D.

6.1.2 The Isomorphy Classes

Proposition 16. Let the field under consideration be k = Qp(
√
p,
√
Np), where −1 ∈ Q∗2p ,

p 6= 2, and Np /∈ Q∗2p . Then the isomorphy classes of involutions JB of SO(2n, k), where

B = B−1
0 Is,tB0, depend on the values of det(B0B

T
0 ), cp(b1, . . . , bs), and cp(bs+1, . . . , b2n) in

the following way:

1. ∀ s, t ≥ 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then B

corresponds to an involution JB with the representative B0B
T
0 = I2n.
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2. ∀ s, t ≥ 1, if det(B0B
T
0 ) = Np, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then B

corresponds to an involution JB with the representative B0B
T
0 = diag(1, 1, . . . , 1, Np).

3. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = pNp (a nonsquare in Qp), cp(b1, . . . , bs) = 1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representative

B0B
T
0 = diag(1, 1, . . . , p, Np).

4. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = pNp (a nonsquare in Qp), cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = 1 then B corresponds to an involution JB with the representative

B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, and all other bi = 1.

5. ∀ s, t > 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = Np, b2n−1 = p−1, b2n = N−1
p , and every other bi = 1.

6. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = p−1N−1
p , b2n−1 = p, b2n = Np, and all other bi = 1.

7. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = Np, b2n = p−1N−1
p , and all other bi = 1.

8. ∀ s > 2, t > 1 (or vice versa), if det(B0B
T
0 ) = Np, cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representa-

tive B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = p, and

b2n = p−1Np (or one can switch the s and t portions to get s > 1, t > 2).

9. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = Np, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = p−1, b2n−1 = p, b2n = Np, and all other bi = 1.
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10. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = Np, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1

then B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = Np, b2n = p−1, and all other bi = 1.

11. ∀ s ≥ 1, t ≥ 1, if det(B0B
T
0 ) = pNp, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1

then B corresponds to an involution JB with the representative B0B
T
0 = diag(1, . . . , 1,

pNp).

12. ∀ s > 2, t > 1 (or vice versa), if det(B0B
T
0 ) = pNp, cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representative

B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = p, and

b2n = Np (or one can switch the s and t portions to get s > 1, t > 2).

13. ∀ s ≥ 1, t ≥ 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = N−1
p , b2n = pNp, and all other bi = 1.

14. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = Np, b2n = N−1
p , and all other bi = 1.

15. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = N−1
p , b2n−1 = p, b2n = Np, and all other bi = 1.

16. ∀ s > 2, t > 1 (or vice versa), if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representa-

tive B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = pNp,

and b2n = N−1
p (or one can switch the s and t portions to get s > 1, t > 2).

Proof. Firstly, if a, b ∈ Qp, a = pm1a0, and b = pm2b0 where a0 and b0 are p-adic units,

then (a, b)p = (−1|p)m1m2(a1|p)m2(b1|p)m1 by Lemma 2. So if a = p and b = Np, then
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(p,Np)p = 1 · (−1)1 · (−1)0 = −1. Therefore, cp(p,Np) = cp(1, 1, . . . , 1, p,Np) = −1. Given

that, we have the following.

1. If B0B
T
0 = I2n, then det(B0B

T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1.

Furthermore, any matrix A ∈ SO(2n, k) with A = A−1
0 Is,tA0 such that det(A0A

T
0 ) = δ ∈ Q∗2p ,

cp(a1, . . . , as) = 1, and cp(as+1, . . . , a2n) = 1 is congruent to B by part iv of Theorem 2. A

similar fact will be true for the below statements as well for the same reason, so I will not

repeat the argument thereof.

2. If B0B
T
0 = diag(1, 1, . . . , 1, Np), then det(B0B

T
0 ) = Np, cp(b1, . . . , bs) = 1, and

cp(bs+1, . . . , b2n) = 1.

3. If B0B
T
0 = diag(1, 1, . . . , p, Np) then det(B0B

T
0 ) = pNp (a nonsquare in Qp), cp(b1, . . . ,

bs) = 1, and cp(bs+1, . . . , b2n) = −1.

4. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, and all other bi = 1 then

det(B0B
T
0 ) = pNp (a nonsquare in Qp), cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1.

5. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n−1 = p−1, and b2n = N−1

p

then det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = −1.

6. If B0B
T
0 = diag(b1, . . . , b2n) where bs = p−1N−1

p , b2n−1 = p, b2n = Np, and all other

bi = 1 then det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1.

7. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n = p−1N−1

p , and all other

bi = 1 then det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1.

8. If B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = p,

b2n = p−1Np, and all other bi = 1 then det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = (p, pNp)p(pNp, 1)p =

(p, pNp)p = (1|p)1(Np|p)1 = 1 · (−1) = −1, and cp(bs+1, . . . , b2n) = (p,Np)p = (1|p)0(Np|p)1 =

−1 by Lemma 2.

9. The proofs of the remaining items are very similar, so they have been omitted. Please

do beware of typos, reader. Q.E.D.

Proposition 17. Let the field under consideration be k = Qp(
√
p,
√
−1), where −1 /∈ Q∗2p

and p 6= 2. Then the isomorphy classes of involutions JB of SO(2n, k), where B = B−1
0 Is,tB0,

depend on the values of det(B0B
T
0 ), cp(b1, . . . , bs), and cp(bs+1, . . . , b2n) in the following way:

1. ∀ s, t ≥ 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then B
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corresponds to an involution JB with the representative B0B
T
0 = I2n.

2. ∀ s, t ≥ 1, if det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then B

corresponds to an involution JB with the representative B0B
T
0 = diag(1, 1, . . . , 1,−1).

3. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1

then B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = −1, b2n−1 = p, b2n = p−1, and all other bi = 1.

4. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1

then B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = p−1, b2n = −1, and all other bi = 1.

5. ∀ s, t > 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = p−1, b2n−1 = p, and b2n = p−1.

6. ∀ s > 1, t ≥ 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs−1 = p, bs = p−1, and all other bi = 1.

7. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(1, 1, . . . , 1, p,

p−1).

8. ∀ s, t ≥ 1, if det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = −1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = p, b2n = −p−1, and all other bi = 1.

9. ∀ s ≥ 1, t ≥ 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = −1, b2n−1 = −1, b2n = p, and all other bi = 1.
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10. ∀ s ≥ 1, t ≥ 1, if det(B0B
T
0 ) = −p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(1, . . . , 1,−1, p).

11. ∀ s ≥ 1, t ≥ 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where, bs = p, and all other bi = 1.

12. ∀ s ≥ 1, t > 1 (or vice versa), if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representa-

tive B0B
T
0 = diag(b1, . . . , b2n) where bs = p, b2n−1 = p, and b2n = p−1 (or one can

switch the s and t portions to get s > 1, t ≥ 2).

13. ∀ s, t ≥ 1, if det(B0B
T
0 ) = p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1 then B

corresponds to an involution JB with the representative B0B
T
0 = diag(1, . . . , 1, p).

14. ∀ s, t ≥ 1, if det(B0B
T
0 ) = −p, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 then

B corresponds to an involution JB with the representative B0B
T
0 = diag(b1, . . . , b2n)

where bs = −p and all other bi = 1.

15. ∀ s ≥ 1, t > 1, if det(B0B
T
0 ) = −p, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = −1

then B corresponds to an involution JB with the representative B0B
T
0 = diag(1, . . . , 1,

−p).

16. ∀ s ≥ 1, t > 1 (or vice versa), if det(B0B
T
0 ) = −p, cp(b1, . . . , bs) = −1, and

cp(bs+1, . . . , b2n) = −1 then B corresponds to an involution JB with the representative

B0B
T
0 = diag(b1, . . . , b2n) where bs = −p, b2n−1 = p, and b2n = p−1 (or one can switch

the s and t portions to get s > 1, t ≥ 1).

Proof. It must be observed that computing the Hasse symbol is more complex in this case

because, given α ∈ Qp it is no longer necessarily true that (−1, α)p = 1.

1. If B0B
T
0 = I2n, then det(B0B

T
0 ) = 1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = 1.

Furthermore, any matrix A ∈ SO(2n, k) with A = A−1
0 Is,tA0 such that det(A0A

T
0 ) = δ ∈ Q∗2p ,

cp(a1, . . . , as) = 1, and cp(as+1, . . . , a2n) = 1 is congruent to B by part iv of Theorem 2. A
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similar fact will be true for the below statements as well for the same reason, so I will not

repeat the argument thereof.

2. If B0B
T
0 = diag(1, 1, . . . , 1,−1), then det(B0B

T
0 ) = −1, cp(b1, . . . , bs) = 1, and

cp(bs+1, . . . , b2n) = 1.

3. If B0B
T
0 = diag(b1, . . . , b2n) where bs = −1, b2n−1 = p, and b2n = p−1 and all other

bi = 1, then det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = 1, and cp(bs+1, . . . , b2n) = (−1,−1)p(p,−1)p =

(p, p)p = −1 by Lemmas 2 and 3.

4. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = p−1, b2n = −1, and all other bi = 1

then det(B0B
T
0 ) = −1, cp(b1, . . . , bs) = −1, and cp(bs+1, . . . , b2n) = 1 for similar reasons as

in item 3.

5. This case holds for similar reasons as the previous cases.

6. The proofs of the remaining items are very similar, so they have been omitted. Q.E.D.

Proposition 18. Let the field under consideration be k = Q2(
√
−1,
√

2,
√

3). Then there is

at least one isomorphy class of involutions JA of SO(2n, k), where A = A−1
0 Is,tA0, for every

possible value of the square class of det(A0A
T
0 ), the value of c2(a1, . . . , as), and the value of

c2(as+1, . . . , a2n). Examples of each class are listed below.

1. ∀ s, t > 1, if det(A0A
T
0 ) = 1, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A cor-

responds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n)

where as = −1, a2n = −1, and every other ai = 1.

2. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 1, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1 then

A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where a2n−1 = −1, a2n = −1, and every other ai = 1.

3. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = 1, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1 then

A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as−1 = −1, as = −1, and every other ai = 1.

4. ∀ s, t ≥ 1, if det(A0A
T
0 ) = 1, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1 then

A corresponds to an involution JA with the representative A0A
T
0 = I2n.
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5. ∀ s ≥ 3, t > 1 or s > 1, t ≥ 3, if det(A0A
T
0 ) = −1, c2(a1, . . . , as) = 1, and

c2(as+1, . . . , a2n) = 1 then A corresponds to an involution JA with the representative

A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as−2 = −1, as−1 = −1, as = −1, a2n−1 = −1,

a2n = −1, and every other ai = 1.

6. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = −1, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as = −1 and every other ai = 1.

7. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −1, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, 1, . . . , 1,

−1).

8. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −1, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, 1, . . . , 1,

3,−3−1). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with

the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as−1 = 3, as = −3−1, and

every other ai = 1.

9. ∀ s, t > 1, if det(A0A
T
0 ) = 3, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A cor-

responds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n)

where as = −1, a2n−1 = −1, a2n = 3 and every other ai = 1.

10. ∀ s, t > 1, if det(A0A
T
0 ) = 3, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = −1, a2n = −3, and every other ai = 1.

11. ∀ s, t > 1, if det(A0A
T
0 ) = 3, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = −3, a2n = −1, and every other ai = 1.

12. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 3, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, 1, . . . , 2,
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3 · 2−1). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with

the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as−1 = 2, as = 3 · 2−1 and

every other ai = 1.

13. ∀ s, t > 1, if det(A0A
T
0 ) = −3, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = 3, a2n = −1, and every other ai = 1.

14. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −3, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as−1 = −1, as = 3 and every other ai = 1.

15. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = −3, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where a2n−1 = −1, a2n = 3 and every other ai = 1.

16. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −3, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, 1, . . . , 1,

−3). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with

the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as = −3 and every other

ai = 1.

17. ∀ s, t > 1, if det(A0A
T
0 ) = 2, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as−1 = −1, as = 2, a2n = −1, and every other ai = 1.

18. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = 2, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as−1 = −1, as = −1, a2n = 2, and every other ai = 1.

19. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 2, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as = 2, a2n−1 = −1, a2n = −1, and every other ai = 1.
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20. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 2, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, 1, . . . , 2).

Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with the repre-

sentative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as = 2 and every other ai = 1.

21. ∀ s, t > 1, if det(A0A
T
0 ) = −2, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = −2, a2n−1 = −1, a2n = −1, and every other ai = 1.

22. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −2, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as = −1, a2n = 2 and every other ai = 1.

23. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = −2, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as = 2, a2n = −1, and every other ai = 1.

24. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −2, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, . . . ,−1,

2). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with the

representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as−1 = −1, as = 2 and every

other ai = 1.

25. ∀ s, t > 1, if det(A0A
T
0 ) = 6, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = 6, a2n−1 = −1, a2n = −1, and every other ai = 1.

26. ∀ s > 1, t ≥ 1, if det(A0A
T
0 ) = 6, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as = −1, a2n = −6 and every other ai = 1.

27. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 6, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,
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a2n−1, a2n) where as = −6, a2n = −1, and every other ai = 1.

28. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = 6, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, . . . , 1, 6,

1). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with the

representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as−1 = −6 and every other

ai = 1.

29. ∀ s, t > 1, if det(A0A
T
0 ) = −6, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = 1 then A

corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1,

a2n) where as = −1, a2n = 6, and every other ai = 1.

30. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −6, c2(a1, . . . , as) = 1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(a1, a2, . . . ,

a2n−1, a2n) where as−1 = −1, as = 6, and every other ai = 1.

31. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −6, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = 1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, . . . , 1,

−1, 6).

32. ∀ s ≥ 1, t > 1, if det(A0A
T
0 ) = −6, c2(a1, . . . , as) = −1, and c2(as+1, . . . , a2n) = −1

then A corresponds to an involution JA with the representative A0A
T
0 = diag(1, . . . , 1,

−6). Or if one wants s > 1, t ≥ 1, then A corresponds to an involution JA with

the representative A0A
T
0 = diag(a1, a2, . . . , a2n−1, a2n) where as = −6 and every other

ai = 1.

Proof. 1. Firstly, det(A0A
T
0 ) = a1 . . . a2n = −1 · (−1) = 1. Secondly, c2(a1, . . . , as) =

(−1, a1 . . . as)2

s−1∏
i=1

(a1 . . . ai,−a1 . . . ai+1)2 = (−1, 1)2 ·
s−1∏
i=1

1 = 1. Similarly, c2(as+1, . . . , a2n) =

1.

2. c2(a1, . . . , as) = (−1,−1)2 = −1,

c2(as+1, . . . , a2n) = (−1,−1)2 ·
∏2n−1

i=s+1(as+1as+2 . . . ai, as+1as+2 . . . ai+1)2

= (−1,−1)2 · (1,−1)2(−1,−(−1)2)2
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= −1 · 1 · (−1,−1)2

= −1 · (−1)

= 1

3. The proof of this result is almost identical to the above proof (just change the indices).

4. In this case, it is clear that det(A0A
T
0 ) = 1. Furthermore, c2(a1, . . . , as) = (−1, a1 . . .

as)2·
s−1∏
i=1

(a1 . . . ai,−a1 . . . ai+1)2 = (−1,−1)2 ·
s−1∏
i=1

1 = −1 because by Lemma 4, (−1,−1)2 = −1.

Similarly, cp(as+1, . . . , a2n) = −1.

5. Since five entries in A0A
T
0 are −1 and the rest are 1, it is clear that det(A0A

T
0 ) = −1.

cp(1, 1, . . . ,−1,−1,−1) = (−1,−(−1)2)2 · (1, 1)2(−1,−1)2(1, 1)2 = −1 · (−1) = 1. Further,

cp(1, . . . ,−1,−1) = (−1,−12)2 · (1, 1)2(−1,−1)2 = 1.

6. det(A0A
T
0 ) = −1, c2(a1, . . . , as) = −1 as before, and c2(as+1, . . . , a2n) = 1 as before.

7. The proof of this result is similar to the previous one.

8. c2(diag(1, . . . , 1, 3,−3−1)) = (−1, 1)2(3,−1)2 = −1 by Lemma 4. Also,

det(diag(1, . . . , 1, 3,−3−1)) = −1 and c2(1, . . . , 1) = −1.

9. c2(diag(a1, . . . , as)) = 1, c2(diag(as+1, . . . , a2n)) = (−1,−3)2(1, 3)2 = 1, and clearly

det(A0A
T
0 ) = 3. Since these proofs are becoming highly repetitive, I have left it to the reader

to verify the rest of them. Q.E.D.

6.2 The Fixed-Point Groups over Qp Extended Quadrat-

ically as Much as Possible

Proposition 19. Let k = Qp(
√
p,
√
Np), −1 ∈ Q∗2p , and Np /∈ Q∗2p . Then the fixed point

groups GJB of the involution conjugacy classes of SO(2n, k) corresponding to an involution

JB, B = B−1
0 Is,tB0, which are given by Proposition 16 are listed below, and none of them

is compact. (Note that the size conditions on s and t and the conditions on det(B0B
T
0 ),

cp(b1, . . . , bs) and cp(bs+1, . . . , b2n) have been omitted from the items for the sake of brevity.

The enumeration of them corresponds with their order in the list in Proposition 16 and all
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of these conditions can be found there.)

1. If B0B
T
0 = I2n then

GJB =
{
B−1

0 diag(Ns, Nt)B0

∣∣Ns ∈ O(s, k), Nt ∈ O(t, k), det(Ns) = det(Nt) = ±1
}

2. If B0B
T
0 = diag(1, 1, . . . , 1, Np) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij)
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−1∑
`=s+1

ν2
i1 = 1 + (Np − 1)δi,2n −Npν

2
i,2n

ii.
2n−1∑
`=s+1

νi`νj` = −νi,2nνj,2nNp.

3. If B0B
T
0 = diag(1, 1, . . . , p, Np) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij)
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−2∑
`=s+1

ν2
i1 = 1 + (p− 1)δi,2n−1 + (Np − 1)δi,2n − pν2

i,2n−1 −Npν
2
i,2n

ii.
2n−2∑
`=s+1

νi`νj` = −νi,2n−1νj,2n−1p− νi,2nνj,2nNp.

4. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, and all other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (νij), Nt ∈ O(t, k)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, det(Ns) = det(Nt) = ±1 and the following are true:
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i.
s−2∑
`=1

ν2
i1 = 1 + (p− 1)δi,s−1 + (Np − 1)δis − pν2

i,s−1 −Npν
2
is

ii.
s−2∑
`=1

νi`νj` = −νi,s−1νj,s−1p− νisνjsNp.

5. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n−1 = p−1, b2n = N−1

p , and

every other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−2∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−1 + (Np − 1)δis − pµ2

i,s−1 −Npµ
2
is,

2n−2∑
`=s+1

ν2
ι1 = 1 + (p−1 −

1)δι,2n−1 + (N−1
p − 1)δι,2n − p−1ν2

ι,2n−1 −N−1
p ν2

ι,2n

ii.
s−2∑
`=1

µi`µj` = −µi,s−1µj,s−1p−µisµjsNp,
2n−2∑
`=s+1

µι`µλ` = −µι,2n−1µλ,2n−1p
−1−µι,2nµλ,2n

N−1
p

6. If B0B
T
0 = diag(b1, . . . , b2n) where bs = p−1N−1

p , b2n−1 = p, b2n = Np, and all other

bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−1∑
`=1

µ2
i1 = 1 + (p−1N−1

p − 1)δis − p−1N−1
p µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1 + (p− 1)δι,2n−1 + (Np −

1)δι,2n − pν2
ι,2n−1 −Npν

2
ι,2n

ii.
s−1∑
`=1

µi`µj` = −µisµjsp−1N−1
p ,

2n−2∑
`=s+1

νι`νλ` = −νι,2n−1νλ,2n−1p− νι,2nνλ,2nNp
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7. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n = p−1N−1

p , and all other

bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−2∑
`=1

µ2
i1 = 1+(p−1)δi,s−1 +(Np−1)δi,s−pµ2

i,s−1−Npµ
2
i,s,

2n−1∑
`=s+1

ν2
ι1 = 1+(p−1N−1

p −

1)δι,2n − p−1N−1
p ν2

ι,2n

ii.
s−2∑
`=1

µi`µj` = −µi,s−1µj,s−1p− µisµjsNp,
2n−1∑
`=s+1

νι`νλ` = −νι,2nνλ,2np−1N−1
p

8. If B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = p, and

b2n = p−1Np then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−3∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−2 + (Np− 1)δi,s−1 + (p−1N−1

p − 1)δis− pµ2
i,s−2−Npµ

2
i,s−1−

p−1N−1
p µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1 + (p− 1)δι,2n−1 + (p−1Np− 1)δι,2n− pνι,2n−1− p−1Npν

2
ι,2n

ii.
s−3∑
`=1

µi`µj` = −µi,s−2µj,s−2p−µi,s−1µj,s−1Np−µisµjsp−1N−1
p ,

2n−2∑
`=s+1

νι`νλ` = −νι,2n−1

νλ,2n−1p− νι,2nνλ,2np−1Np

9. If B0B
T
0 = diag(b1, . . . , b2n) where bs = p−1, b2n−1 = p, b2n = Np, and all other bi = 1

then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:
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i.
s−1∑
`=1

µ2
i1 = 1 + (p−1 − 1)δis − p−1µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1 + (p− 1)δι,2n−1 + (Np − 1)δι,2n −

pν2
ι,2n−1 −Npν

2
ι,2n

ii.
s−1∑
`=1

µi`µj` = −µisµjsp,
2n−2∑
`=s+1

νι`νλ` = −νι,2n−1νλ,2n−1p− νι,2nνλ,2nNp

10. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n = p−1, and all other bi = 1

then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−2∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−1 + (Np − 1)δi,s − pµ2

i,s−1 −Npµ
2
i,s,

2n−1∑
`=s+1

ν2
ι1 = 1 + (p−1 −

1)δι,2n − p−1ν2
ι,2n

ii.
s−2∑
`=1

µi`µj` = −µi,s−1µj,s−1p− µisµjsNp,
2n−1∑
`=s+1

νι`νλ` = −νι,2nνλ,2np−1

11. If B0B
T
0 = diag(1, 1, . . . , 1, pNp) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij)
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−1∑
`=s+1

ν2
i1 = 1 + (pNp − 1)δi,2n − pNpν

2
i,2n

ii.
2n−1∑
`=s+1

νi`νj` = −νi,2nνj,2npNp.

12. If B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = p,

and b2n = Np then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}
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where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−3∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−2 + (Np− 1)δi,s−1 + (p−1N−1

p − 1)δis− pµ2
i,s−2−Npµ

2
i,s−1−

p−1N−1
p µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1 + (p− 1)δι,2n−1 + (Np − 1)δι,2n − pνι,2n−1 −Npν

2
ι,2n

ii.
s−3∑
`=1

µi`µj` = −µi,s−2µj,s−2p−µi,s−1µj,s−1Np−µisµjsp−1N−1
p ,

2n−2∑
`=s+1

νι`νλ` = −νι,2n−1

νλ,2n−1p− νι,2nνλ,2nNp

13. If B0B
T
0 = diag(b1, . . . , b2n) where bs = N−1

p , b2n = pNp, and all other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−1∑
`=1

µ2
i1 = 1 + (N−1

p − 1)δi,s −N−1
p µ2

i,s,
2n−1∑
`=s+1

ν2
ι1 = 1 + (pNp − 1)δι,2n − pNpν

2
ι,2n

ii.
s−1∑
`=1

µi`µj` = −µisµjsN−1
p ,

2n−1∑
`=s+1

νι`νλ` = −νι,2nνλ,2npNp

14. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = Np, b2n = N−1

p , and all other

bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−2∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−1 + (Np− 1)δi,s− pµ2

i,s−1−Npµ
2
i,s,

2n−1∑
`=s+1

ν2
ι1 = 1 + (N−1

p −

1)δι,2n −N−1
p ν2

ι,2n

ii.
s−2∑
`=1

µi`µj` = −µi,s−1µj,s−1p− µisµjsNp,
2n−1∑
`=s+1

νι`νλ` = −νι,2nνλ,2nN−1
p
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15. If B0B
T
0 = diag(b1, . . . , b2n) where bs = N−1

p , b2n−1 = p, b2n = Np, and all other

bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−1∑
`=1

µ2
i1 = 1 + (N−1

p − 1)δis−N−1
p µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1 + (p− 1)δι,2n−1 + (Np− 1)δι,2n−

pν2
ι,2n−1 −Npν

2
ι,2n

ii.
s−1∑
`=1

µi`µj` = −µisµjsN−1
p ,

2n−2∑
`=s+1

νι`νλ` = −νι,2n−1νλ,2n−1p− νι,2nνλ,2nNp

16. If B0B
T
0 = diag(b1, . . . , b2n) where bs−2 = p, bs−1 = Np, bs = p−1N−1

p , b2n−1 = pNp,

and b2n = N−1
p then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

where ∀ i, j ∈ {1, 2, . . . , t}, i 6= j, and ∀ ι, λ ∈ {s+1, s+2, . . . , 2n}, ι 6= λ, the following

are true:

i.
s−3∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−2 + (Np− 1)δi,s−1 + (p−1N−1

p − 1)δis− pµ2
i,s−2−Npµ

2
i,s−1−

p−1N−1
p µ2

is,
2n−2∑
`=s+1

ν2
ι1 = 1+(pNp−1)δι,2n−1 +(N−1

p −1)δι,2n−pNpνι,2n−1−N−1
p ν2

ι,2n

ii.
s−3∑
`=1

µi`µj` = −µi,s−2µj,s−2p− µi,s−1µj,s−1Np − µisµjsp−1N−1
p ,

2n−2∑
`=s+1

νι`νλ` =

−νι,2n−1νλ,2n−1pNp − νι,2nνλ,2nN−1
p

Proof. 1. This immediately follows from Proposition 26, which states that

GJB =
{
X−1 diag(Ns, Nt)X

∣∣NsN
T
s = Is, NtN

T
t = It

}
This is the same as the given set. Note that if det(Ns) = det(Nt) = −1, det(X−1 diag(Ns, Nt)

X) = det(Ns) det(Nt) = 1.
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2. This follows from Proposition 26 and Lemma 20. (Of course, I used the δit notation so

I could write one formula corresponding to the diagonal elements of Nt diag(1, . . . , 1, Np)N
T
t

instead of two.)

The proofs of the remaining items are similar, and they have been omitted for brevity.

As for compactness, every square root of every element in Qp is in this quadratic extension

field by Classification Lemma 1. Therefore, the matrices in Fixed-Point Group Computation

Lemma 2 and Fixed-Point Group Computation Lemma 3 are in SO(2n, k) for every value

of a and i. Recall that these matrices have the form

 ±a ±
√
α− a2

∓
√
β(1− a2/α) ±a

√
β
α

 and
a

√
α− a2 0

−i
√

β(α−a2)
αγ

ia
√

β
αγ

−
√

β(γ−i2)
γ

−
√

(γ−i2)(α−a2)
α

a
√

γ−i2
α

i

. Therefore, one can always make the matrices

corresponding to each fixed-point group unbounded, so none of them is compact. Q.E.D.

Proposition 20. Let k = Qp(
√
p,
√
−1), where −1 /∈ Q∗2p and p 6= 2. Then the fixed point

groups GJB of the involution conjugacy classes of SO(2n, k) corresponding to an involution

JB, B = B−1
0 Is,tB0, which are given by Proposition 17 are listed below, and none of them

is compact. This time they are in tabular form, and the entries α, β, γ, and δ fill out the

following summations, which correspond to NsN
T
s and NtN

T
t : i.

s−α∑
`=1

µ2
i` = β,

2n−γ∑
`=s+1

ν2
i` = δ

and ii.

s−α∑
`=1

µi`µj` = β,

2n−γ∑
`=s+1

νi`νj` = δ. On the charts (but not elsewhere) it is assumed

that i 6= j, ι 6= λ, i, j ∈ {1, 2, . . . , t} and ι, λ ∈ {s + 1, s + 2, . . . , 2n}. Also, GJB ={
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt = (νij)
}

unless otherwise specified. The order of the

items is the same order as can be found in Proposition 17.

1. If B0B
T
0 = I2n then

GJB =
{
B−1

0 diag(Ns, Nt)B0

∣∣Ns ∈ O(s, k), Nt ∈ O(t, k), det(Ns) = det(Nt) = ±1
}

2. If B0B
T
0 = diag(1, 1, . . . , 1,−1) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij)
}
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where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−1∑
`=s+1

ν2
i1 = 1− 2δi,2n + ν2

i,2n

ii.
2n−1∑
`=s+1

νi`νj` = νi,2nνj,2n.

Tables listing the remaining fixed point groups in summarized form follow, together with

full, unabbreviated items whenever Ns ∈ O(s, k) or Nt ∈ O(t, k). The tables include the

conditions on B0B
T
0 in abbreviated form, the full versions of which can be found in Proposi-

tion 17. Note that the δ at the head of the last column is not the Krönecker delta function

δij =

{
1, i = j

0, i 6= j
, but that this delta function is found in the summations.

6. If B0B
T
0 = diag(b1, . . . , b2n) where bs−1 = p, bs = p−1, and all other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt ∈ O(t, k)
}

where ∀ i, j ∈ {1, 2, . . . , s}, i 6= j, det(Ns) = det(Nt) = ±1 and the following are true:

i.
s−2∑
`=1

µ2
i1 = 1 + (p− 1)δi,s−1 + (p−1 − 1)δi,s − pµ2

i,s−1 − p−1µ2
i,s

ii.
s−2∑
`=1

µi`µj` = −pµi,s−1µj,s−1 − p−1µisµjs.

7. If B0B
T
0 = diag(1, 1, . . . , 1, p, p−1) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij),
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−2∑
`=s+1

ν2
i1 = 1 + (p− 1)δi,2n−1 + (p−1 − 1)δi,2n − pν2

i,2n−1 − p−1ν2
i,2n
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Table 6.1: The fixed-point groups of conjugacy classes three through five of involutions over
SO(2n, k) where k = Qp(

√
p,
√
−1), −1 /∈ Q∗2p , and p 6= 2. The order corresponds with

Proposition 17.

Item B0B
T
0 β

α γ δ

3.i. diag(1, . . . ,−1, 1, . . . , p, p−1) 1− 2δis + µ2
is

1 2
1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n

−pν2
ι,2n−1 − p−1ν2

ι,2n

3.ii. diag(1, . . . ,−1, 1, . . . , p, p−1) µisµjs

1 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1

4.i. diag(1, . . . , p, p−1, 1, . . . ,−1)
1 + (p− 1)δi,s−1 + (p−1 − 1)δis

−pµ2
i,s−1 − p−1µ2

is

2 1 1− 2δι,2n + ν2
ι,2n

4.ii. diag(1, . . . , p, p−1, 1, . . . ,−1) µi,s−1µj,s−1p+ µisµjsp
−1

2 1 νι,2nνλ,2n

5.i. diag(1, . . . , p, p−1, 1, . . . , p, p−1)
1 + (p− 1)δi,s−1 + (p−1 − 1)δis

−pµ2
i,s−1 − p−1µ2

is

2 2
1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n

−pν2
ι,2n−1 − p−1ν2

ι,2n

5.ii. diag(1, . . . , p, p−1, 1, . . . , p, p−1) µi,s−1µj,s−1p+ µisµjsp
−1

2 2 νι,2n−1νλ,2n−1p+ νι,2nνλ,2np
−1

ii.
2n−2∑
`=s+1

νi`νj` = −pνi,2n−1νj,2n−1 − p−1νi,2nνj,2n.

10. If B0B
T
0 = diag(1, 1, . . . , 1,−1, p) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij),
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−1∑
`=s+1

ν2
i1 = 1− 2δi,2n−1 + (p− 1)δi,2n + ν2

i,2n−1 − pν2
i,2n
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Table 6.2: The fixed-point groups of conjugacy classes eight and nine of involutions over
SO(2n, k) where k = Qp(

√
p,
√
−1), −1 /∈ Q∗2p , and p 6= 2

Item B0B
T
0 α

β γ δ

8.i. diag(1, . . . , p, 1, . . . , 1,−p−1) 1

1 + (p− 1)δis − pµ2
is 1 1 + (−p−1 − 1)δι,2n + p−1ν2

ι,2n

8.ii. diag(1, . . . , p, 1, . . . , 1,−p−1) 1

−pµιsµλs 1 p−1νι,2nνλ,2n

9.i. diag(1, . . . ,−1, 1, . . . ,−1, p) 1

1− 2δis + µ2
is 2

1− 2δι,2n−1 + (p− 1)δι,2n
+ν2

ι,2n−1 − pν2
ι,2n

9.ii. diag(1, . . . ,−1, 1, . . . ,−1, p) 1

µisµjs 2 νι,2n−1νλ,2n−1 − νι,2nνλ,2np

ii.
2n−1∑
`=s+1

νi`νj` = νi,2n−1νj,2n−1 − pνi,2nνj,2n.

11. If B0B
T
0 = diag(b1, . . . , b2n) where, bs = p, and all other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt ∈ O(t, k)
}

where ∀ i, j ∈ {1, 2, . . . , s}, i 6= j, det(Ns) = det(Nt) = ±1 and the following are true:

i.
s−1∑
`=1

µ2
i1 = 1 + (p− 1)δis − pµ2

is

ii.
s−1∑
`=1

µi`µj` = −pµisµjs.

13. If B0B
T
0 = diag(1, 1, . . . , 1, p) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij)
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:
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Table 6.3: The fixed-point group of conjugacy class twelve of involutions over SO(2n, k)
where k = Qp(

√
p,
√
−1), −1 /∈ Q∗2p , and p 6= 2. The order corresponds with Proposition 17.

Item B0B
T
0 α

β γ δ

12.i. diag(1, . . . , p, 1, . . . , p, p−1) 1

1 + (p− 1)δis + µ2
is 2

1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n
−pν2

ι,2n−1 − p−1ν2
ι,2n

12.ii. diag(1, . . . , p, 1, . . . , p, p−1) 1

−pµisµjs 2 νι,2n−1νλ,2n−1p+ νι,2nνλ,2np
−1

i.
2n−1∑
`=s+1

ν2
i1 = 1 + (p− 1)δi,2n − pν2

i,2n

ii.
2n−1∑
`=s+1

νi`νj` = −pνi,2nνj,2n.

14. If B0B
T
0 = diag(b1, . . . , b2n) where, bs = −p, and all other bi = 1 then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns = (µij), Nt ∈ O(t, k)
}

where ∀ i, j ∈ {1, 2, . . . , s}, i 6= j, det(Ns) = det(Nt) = ±1 and the following are true:

i.
s−1∑
`=1

µ2
i1 = 1 + (−p− 1)δis + pµ2

is

ii.
s−1∑
`=1

µi`µj` = pµisµjs.

15. If B0B
T
0 = diag(1, 1, . . . , 1,−p) then

GJB =
{
B−1

0 diag(Ns, Nt)B0 |Ns ∈ O(s, k), Nt = (νij),
}

where ∀ i, j ∈ {s+ 1, s+ 2, . . . , 2n}, i 6= j, det(Ns) = det(Nt) = ±1 and the following

are true:

i.
2n−1∑
`=s+1

ν2
i1 = 1 + (−p− 1)δi,2n + pν2

i,2n
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ii.
2n−1∑
`=s+1

νi`νj` = pνi,2nνj,2n.

Table 6.4: The fixed-point group of conjugacy class sixteen of involutions over SO(2n, k)
where k = Qp(

√
p,
√
−1), −1 /∈ Q∗2p , and p 6= 2. The order corresponds with Proposition 17.

Item B0B
T
0 α

β γ δ

16.i. diag(1, . . . ,−p, 1, . . . , p, p−1) 1

1 + (−p− 1)δis + µ2
is 2

1 + (p− 1)δι,2n−1 + (p−1 − 1)δι,2n
−pν2

ι,2n−1 − p−1ν2
ι,2n

16.ii. diag(1, . . . ,−p, 1, . . . , p, p−1) 1

pµisµjs 2 −νι,2n−1νλ,2n−1p− νι,2nνλ,2np−1

Proof. The proof of this proposition is very similar to the proof of the previous one, and it

has been omitted for the sake of brevity. Q.E.D.

Proposition 21. Let k = Q2(
√
−1,
√

2,
√

3). Then the fixed point groups GJA of the in-

volution conjugacy classes of SO(2n, k) corresponding to an involution JA, A = A−1
0 Is,tA0,

which are given by Proposition 18 are listed below, and none of them is compact. This time

they are in tabular form, and the entries α, β, γ, and δ fill out the following summations,

which correspond to NsN
T
s and NtN

T
t : i.

s−α∑
`=1

µ2
i` = β,

2n−γ∑
`=s+1

ν2
i` = δ and ii.

s−α∑
`=1

µi`µj` = β,

2n−γ∑
`=s+1

νi`νj` = δ. On the chart it is assumed that i 6= j, ι 6= λ, i, j ∈ {1, 2, . . . , t} and

ι, λ ∈ {s + 1, s + 2, . . . , 2n}. Also, GJA =
{
A−1

0 diag(Ns, Nt)A0 |Ns = (µij), Nt = (νij)
}

un-

less otherwise specified. In this case, unlike the last case, if Ns ∈ O(s, k) or Nt ∈ O(t, k)

then I have written ”n/a” for α or γ and ∈ O(s, k) or ∈ O(t, k) for β or δ, respectively. The

order of the items is the same order as can be found in Proposition 18.
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Table 6.5: The fixed-point groups of isomorphy classes of

involutions over SO(2n, k) where k = Q2(
√
−1,
√

2,
√

3).

This chart corresponds with Proposition 21. The order

corresponds with Proposition 18.

Item A0A
T
0 β

α γ δ

1.i. diag(1, . . . , 1,−1, 1, . . . ,−1) 1− 2δis + µ2
is

1 1 1− 2δι,2n + ν2
ι,2n

1.ii. diag(1, . . . , 1,−1, 1, . . . ,−1) µisµjs

1 1 νι,2nνλ,2n

2.i. diag(1, . . . , 1,−1,−1) ∈ O(s, k)

n/a 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

2.ii. diag(1, . . . , 1,−1,−1) ∈ O(s, k)

n/a 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n

3.i. diag(1, . . . , 1,−1,−1, 1, . . . , 1) 1− 2δi,s−1 − 2δi,s + µ2
i,s−1 + µ2

i,s

2 n/a ∈ O(t, k)

3.ii. diag(1, . . . , 1,−1,−1, 1, . . . , 1) µi,s−1µj,s−1 + µisµjs

2 n/a ∈ O(t, k)

4.i. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

4.ii. I2n ∈ O(s, k)

n/a n/a ∈ O(t, k)

5.i.
diag(1, . . . , 1,−1,−1,
−1, 1 . . . ,−1,−1)

1− 2δi,s−2 − 2δi,s−1 − 2δis
+µ2

i,s−2 + µ2
i,s−1 + µ2

is

3 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

5.ii.
diag(1, . . . , 1,−1,−1,
−1, 1 . . . ,−1,−1)

µi,s−2µj,s−2 + µi,s−1µj,s−1
+µisµjs
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Table 6.5: Continued

Item A0A
T
0 β

α γ δ

3 2
νι,2n−2νλ,2n−2 + νι,2n−1νλ,2n−1

+νι,2nνλ,2n

6.i. diag(1, . . . ,−1, 1, . . . , 1) 1− 2δis + µ2
is

1 n/a ∈ O(t, k)

6.ii. diag(1, . . . ,−1, 1, . . . , 1) µisµjs

1 n/a ∈ O(t, k)

7.i. diag(1, . . . , 1,−1) ∈ O(s, k)

n/a 1 1− 2δι,2n + ν2
ι,2n

7.ii. diag(1, . . . , 1,−1) ∈ O(s, k)

n/a 1 νι,2nνλ,2n

8.i. diag(1, . . . , 1, 3,−3−1, 1, . . . , 1)
1 + 2δi,s−1 + (−3−1 − 1)δis
−3µ2

i,s−1 + 3−1µ2
is

2 n/a ∈ O(t, k)

8.ii. diag(1, . . . , 1, 3,−3−1, 1, . . . , 1) −3µi,s−1µj,s−1 + 3−1µisµjs

2 n/a ∈ O(t, k)

9.i. diag(1, . . . ,−1, 1, . . . ,−1, 3) 1− 2δis + µ2
is

1 2 1− 2δι,2n−1 + 2δι,2n + ν2
ι,2n−1 − 3ν2

ι,2n

9.ii. diag(1, . . . ,−1, 1, . . . ,−1, 3) µisµjs

1 2 νι,2n−1νλ,2n−1 − 3νι,2nνλ,2n

10.i. diag(1, . . . ,−1, 1, . . . ,−3) 1− 2δis + µ2
is

1 1 1− 4δι,2n + 3ν2
ι,2n

10.ii. diag(1, . . . ,−1, 1, . . . ,−3) µisµjs

1 1 3νι,2nνλ,2n

11.i. diag(1, . . . ,−3, 1, . . . ,−1) 1− 4δis + 3µ2
is



98

Table 6.5: Continued

Item A0A
T
0 β

α γ δ

1 1 1− 2δι,2n + ν2
ι,2n

11.ii. diag(1, . . . ,−3, 1, . . . ,−1) 3µisµjs

1 1 νι,2nνλ,2n

12.i. diag(1, . . . , 1, 2, 3 · 2−1) ∈ O(s, k)

n/a 2
1 + δι,2n−1 + (3 · 2−1 − 1)δι,2n
−2ν2

ι,2n−1 − 3 · 2−1ν2
ι,2n

12.ii. diag(1, . . . , 1, 2, 3 · 2−1) ∈ O(s, k)

n/a 2 −2νι,2n−1νλ,2n−1 − 3 · 2−1νι,2nνλ,2n

13.i. diag(1, . . . , 1, 3, 1, . . . ,−1) 1 + 2δis − 3µ2
is

1 1 1− 2δι,2n + ν2
ι,2n

13.ii. diag(1, . . . , 1, 3, 1, . . . ,−1) −3µisµjs

1 1 νι,2nνλ,2n

14.i. diag(1, . . . , 1,−1, 3, 1, . . . , 1) 1− 2δi,s−1 + 2δi,s + µ2
i,s−1 − 3µ2

i,s

2 n/a ∈ O(t, k)

14.ii. diag(1, . . . , 1,−1, 3, 1, . . . , 1) µi,s−1µj,s−1 − 3µisµjs

2 n/a ∈ O(t, k)

15.i. diag(1, . . . , 1,−1, 3) ∈ O(s, k)

n/a 2 1− 2δι,2n−1 + 2δι,2n + ν2
ι,2n−1 − 3ν2

ι,2n

15.ii. diag(1, . . . , 1,−1, 3) ∈ O(s, k)

n/a 2 νι,2n−1νλ,2n−1 − 3νι,2nνλ,2n

16.i. diag(1, . . . , 1,−3) ∈ O(s, k)

n/a 1 1 + 2δι,2n + 3ν2
ι,2n

16.ii. diag(1, . . . , 1,−3) ∈ O(s, k)

n/a 1 3νι,2nνλ,2n
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Table 6.5: Continued

Item A0A
T
0 β

α γ δ

17.i. diag(1, . . . , 1,−1, 2, 1, . . . ,−1) 1− 2δi,s−1 + δis + µ2
i,s−1 − 2µ2

is

2 1 1− 2δι,2n + ν2
ι,2n

17.ii. diag(1, . . . , 1,−1, 2, 1, . . . ,−1) µi,s−1µj,s−1 − 2µisµjs

2 1 νι,2nνλ,2n

18.i. diag(1, . . . , 1,−1,−1, 1, . . . , 2) 1− 2δi,s−1 − 2δis + µ2
i,s−1 + µ2

is

2 1 1 + δι,2n − 2ν2
ι,2n

18.ii. diag(1, . . . , 1,−1,−1, 1, . . . , 2) µi,s−1µj,s−1 + µisµjs

2 1 −2νι,2nνλ,2n

19.i. diag(1, . . . , 2, 1, . . . ,−1,−1) 1 + δis − 2µ2
is

1 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

19.ii. diag(1, . . . , 2, 1, . . . ,−1,−1) −2µisµjs

1 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n

20.i. diag(1, . . . , 1, 2) ∈ O(s, k)

n/a 1 1 + δι,2n − 2ν2
ι,2n

20.ii. diag(1, . . . , 1, 2) ∈ O(s, k)

n/a 1 −2νι,2nνλ,2n

21.i. diag(1, . . . ,−2, 1, . . . ,−1,−1) 1− 3δis + 2µ2
is

1 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

21.ii. diag(1, . . . ,−2, 1, . . . ,−1,−1) 2µisµjs

1 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n

22.i. diag(1, . . . ,−1, 1, . . . , 2) 1− 2δis + µ2
is

1 1 1 + δι,2n − 2ν2
ι,2n

22.ii. diag(1, . . . ,−1, 1, . . . , 2) µisµjs
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Table 6.5: Continued

Item A0A
T
0 β

α γ δ

1 1 −2νι,2nνλ,2n

23.i. diag(1, . . . , 1, 2, 1, . . . ,−1) 1 + δis − 2µ2
is

1 1 1− 2δι,2n + ν2
ι,2n

23.ii. diag(1, . . . , 1, 2, 1, . . . ,−1) −2µisµjs

1 1 νι,2nνλ,2n

24.i. diag(1, . . . , 1,−1, 2) ∈ O(s, k)

n/a 2 1− 2δι,2n−1 + δι,2n + ν2
ι,2n−1 − 2ν2

ι,2n

24.ii. diag(1, . . . , 1,−1, 2) ∈ O(s, k)

n/a 2 νι,2n−1νλ,2n−1 − 2νι,2nνλ,2n

25.i. diag(1, . . . , 1, 6, 1, . . . ,−1,−1) 1 + 5δis − 6µ2
is

1 2 1− 2δι,2n−1 − 2δι,2n + ν2
ι,2n−1 + ν2

ι,2n

25.ii. diag(1, . . . , 1, 6, 1, . . . ,−1,−1) −6µisµjs

1 2 νι,2n−1νλ,2n−1 + νι,2nνλ,2n

26.i. diag(1, . . . ,−1, 1, . . . ,−6) 1− 2δis + µ2
is

1 1 1− 7δι,2n + 6ν2
ι,2n

26.ii. diag(1, . . . ,−1, 1, . . . ,−6) µisµjs

1 1 6νι,2nνλ,2n

27.i. diag(1, . . . , 1,−6, 1, . . . ,−1) 1− 7δis + 6µ2
is

1 1 1− 2δι,2n + ν2
ι,2n

27.ii. diag(1, . . . , 1,−6, 1, . . . ,−1) 6µisµjs

1 1 νι,2nνλ,2n

28.i. diag(1, . . . , 1, 6, 1) ∈ O(s, k)

n/a 2 1 + 5δι,2n−1 − 6ν2
ι,2n−1 − ν2

ι,2n
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Table 6.5: Continued

Item A0A
T
0 β

α γ δ

28.ii. diag(1, . . . , 1, 6, 1) ∈ O(s, k)

n/a 2 −6νι,2n−1νλ,2n−1 − νι,2nνλ,2n

29.i. diag(1, . . . ,−1, 1, . . . , 6) 1− 2δis + µ2
is

1 1 1 + 5δι,2n − 6ν2
ι,2n

29.ii. diag(1, . . . ,−1, 1, . . . , 6) µisµjs

1 1 −6νι,2nνλ,2n

30.i. diag(1, . . . , 1,−1, 6, 1, . . . , 1) 1− 2δi,s−1 + 5δi,s + µ2
i,s−1 − 6µ2

is

2 n/a ∈ O(t, k)

30.ii. diag(1, . . . , 1,−1, 6, 1, . . . , 1) µi,s−1µj,s−1 − 6µisµjs

2 n/a ∈ O(t, k)

31.i. diag(1, . . . , 1,−1, 6) ∈ O(s, k)

n/a 2 1− 2δι,2n−1 + 5δι,2n + ν2
ι,2n−1 − 6ν2

ι,2n

31.ii. diag(1, . . . , 1,−1, 6) ∈ O(s, k)

n/a 2 νι,2n−1νλ,2n−1 − 6νι,2nνλ,2n

32.i. diag(1, . . . , 1,−6) ∈ O(s, k)

n/a 1 1− 7δι,2n + 6ν2
ι,2n

32.ii. diag(1, . . . , 1,−6) ∈ O(s, k)

n/a 1 6νι,2nνλ,2n
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Chapter 7

Diagram Automorphisms of D` and

Two Maximal Tori of SO(2n, k) that

Can Be Used to Compute Quadratic

Elements, and Information About the

Quadratic Elements

7.1 Introductory Results

7.1.1 Preliminaries and Recollections

In this chapter, it is assumed that a torus T of the group G ≡ SO(2n, k) is a maximal

(σ, k)-split torus of G, where σ is an involution of G and K = R. In other words, it is assumed

that, firstly, T is a torus such that there is a g ∈ G where gTg−1 is a group consisting of

diagonal matrices. Secondly, it is assumed that T = T−1 ≡ {t ∈ T |σ(t) = t−1}.
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Notation: define Jn as Jn ≡

(
0 In

−In 0

)
and define Kp,q ≡


−Ip 0 0 0

0 Iq 0 0

0 0 −Ip 0

0 0 0 Iq

 as

in Helgason [4, p. 444]. Note that J−1
n =

(
0 −In
In 0

)
= −Jn and K−1

p,q = Kp,q.

Define an involution θ : G → G, θ : x 7→ (xT )−1. The following lemma is taken from

Helgason [4, pp. 451-455].

Lemma 15. For any X ∈ GL(2n, k), k = R, the involution conjugacy classes of GL(2n, k)

are as follows:

1. σ(X) = (XT )−1

2. σ(X) = Jn(XT )−1J−1
n

3. σ(X) = Ip,qXIp,q

4. σ(X) = JnXJ
−1
n

5. σ(X) = Kp,qXKp,q

7.1.2 The Maximal (σ, k)-Split Tori Stemming from Lemma 15

It is now necessary to investigate the maximal (σ, k)-split tori generated on SO(2n, k)

by these conjugacy classes of involutions, and that is done in the following proposition.

Recall that there is a one-to-one correspondence between the conjugacy classes (i.e., the

isomorphism classes) of SO(2n, k) and GL(2n, k) according to Proposition 2.

Proposition 22. The maximal (σ, k)-split tori T generated on SO(2n, k) by the conjugacy

classes of involutions in the above lemma are as follows:

1. If σ(X) = (XT )−1, T = {X ∈ SO(2n, k)|X2 = I2n}
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2. If σ(X) = Jn(XT )−1J−1
n , T =

{
X ∈ SO(2n, k)

∣∣∣∣∣X =

(
A B

C D

)}
where D =

AT , C = −CT , B = −BT

3. If σ(X) = Ip,qXIp,q, T =

{
X ∈ SO(2n, k)

∣∣∣∣∣X =

(
A B

C D

)}
where A = AT , B =

−CT , D = DT

4. If σ(X) = JnXJ
−1
n , T =

{
X ∈ SO(2n, k)

∣∣∣∣∣X =

(
A B

C D

)}
where D = AT , C =

−CT , B = −BT

5. If σ(X) = Kp,qXKp,q, T =


X ∈ SO(2n, k)

∣∣∣∣∣∣∣∣∣∣∣
X =


A B C D

E F G H

I J K L

M N O P




where

A = AT , B = −ET , C = IT , D = −MT , F = F T , G = −JT , H = NT , K = KT , L =

−OT , P = P T

Proof. These items will be proven in order.

1. Define an involution σ on SO(2n, k) such that σ : X 7→ (XT )−1. Then we need all

X ∈ SO(2n, k) such that σ(X) = X−1. On SO(2n, k), X−1 = XT so σ(X) = (XT )−1 =

(XT )T = X so we need X = XT . Then the maximal torus is T = {X ∈ SO(2n, k)|X =

XT}.

2. Now define σ : X 7→ Jn(XT )−1J−1
n . Set Jn(XT )−1J−1

n = X−1 = XT . Then

JnXJ
−1
n = XT . Let X =

(
A B

C D

)
, where A, B, C, and D are all n × n blocks.

Then JnXJ
−1
n = −JnXJn =

(
D −C
−B A

)
=

(
AT CT

BT DT

)
.

∴ D = AT , C = −CT , and B = −BT .
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3. Set σ : X 7→ Ip,qXIp,q, where p and q are arbitrary. Let X =

(
A B

C D

)
as before,

except that now A is a p× p block, B is a p× q block, C is a q × p block, and D is a

q × q block. Ip,qXIp,q =

(
A −B
−C D

)
and we set this equal to XT =

(
AT CT

BT DT

)
.

That means that A = AT , D = DT , and C = −BT .

4. If we set σ : X 7→ JnXJ
−1
n , we get the same result as in item 2.

5. Lastly, set σ : X 7→ Kp,qXKp,q, where Kp,q = diag(−Ip, Iq,−Ip, Iq). Let X =
A B C D

E F G H

I J K L

M N O P

. Then by computation, Kp,qXKp,q =


A −B C −D
−E F −G H

I −J K −L
−M N −O P

.

If we set this equal to XT =


AT ET IT MT

BT F T JT NT

CT GT KT OT

DT HT LT P T

, then it is clear that A =

AT , B = −ET , C = IT , D = −MT , F = F T , G = −JT , H = NT , K = KT , L = −OT ,

and P = P T .

The maximality of these tori follows from the fact that all possible matrices meeting the

necessary criteria are contained within each one. Q.E.D.

7.2 Diagram Automorphisms

Now consider the following root system D4, where the black dots here and afterwards

signify fixed points in the diagram automorphism.

Lemma 16. In the root system D4 shown above, the longest element of the Weyl group with

respect to the basis, which I will call w0(θ), acts on α1 as follows: w0(θ)(α1) = α1 + α2 +

α3 + α4.
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Figure 7.1: The Root System D4

Proof. Let Sαi be the reflection of αi to −αi ∀ i ∈ {1, 2, 3.4}. Then

w0(θ)(α1) = Sα2Sα4Sα2Sα3Sα2Sα4(α1). As a result,

w0(θ)(α1) = Sα4Sα3Sα2Sα3(α1)

= Sα2Sα4Sα2Sα3Sα2(α1)

= Sα2Sα4Sα2Sα3(α1 + α2)

= Sα2Sα4Sα2(α1 + α2 + α3)

= Sα2Sα4(α1 + α2 − α2 + α3 − α2)

= Sα2Sα4(α1 + α2 + α3)

= Sα2(α1 + α2 + α3 + α4)

= (α1 + α2)− α2 + (α3 + α2) + α4

= α1 + α2 + α3 + α4

Note that Sα4 acts non-trivially on α2 instead of α3.

Q.E.D.

Here is a much more general but related result to the above lemma.

Proposition 23. This proposition will prove the following results.
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1. In the root system D` (or DIb) shown below,

n n n

n

n

�
�
�
�
�

@
@
@
@
@

. . .

1 2 `− 2

`− 1

`

Figure 7.2: The Root System DIb (or D`)

w0(θ) = id since there are no black dots. That means the diagram automorphism

θ = − id.

2. In the root system DIIIa shown below,

w0(θ) = Sα1 ◦ Sα3 ◦ . . . ◦ Sα`−3
◦ Sα`. That means the diagram automorphism θ =

−

d `−4
2 e∏
i=0

Sα2i+1

 ◦ Sα`, where the multiplication is understood as the composition of

functions, which is the group action on the automorphism group, and d e denotes the

”ceiling” function which sends any real number ξ to the next integer greater than or

equal to ξ.

3. In the root system DIIIb shown below,
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Figure 7.3: The Root System DIIIa
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Figure 7.4: The Root System DIIIb

w0(θ) =

d `−3
2 e∏
i=0

Sα2i+1

 so that the diagram automorphism θ = −θ∗ ·

d `−3
2 e∏
i=0

Sα2i+1

.

4. In the root system DIa shown below,

w0(θ) = − id on the black dots and w0(θ) = id on all of the white dots except for s. On

s, w0(θ) =

{
− id, ` even

−ε, ` odd
, where ”ε is the automorphism which permutes α`−1 and

α` and leaves the others fixed” [1, p. 257]. So the diagram automorphism θ = −w0(θ).

Proof. 1. There are no fixed points, denoted by black dots, for w0(θ) to act on and θ∗ = id

here, since it is not present. Therefore, the diagram automorphism θ = − id ◦ θ∗ ◦ w0(θ) =
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Figure 7.5: The Root System DIa

− id.

2. None of the fixed points are adjacent, so w0(θ) = Sα1 ◦Sα3 ◦. . .◦Sα`−3
◦Sα` . Therefore,

the diagram automorphism θ = −

d `−4
2 e∏
i=0

Sα2i+1

 ◦ Sα` .
3. For the same reason as in case 2, w0(θ) = Sα1 ◦ Sα3 ◦ . . . ◦ Sα`−2

so θ = −θ∗ ·d `−3
2 e∏
i=0

Sα2i+1

, since θ∗ is not trivial in this case.

4. On every fixed point (denoted by black dots), w0(θ) = − id and on the white dots

except for s, w0(θ) = id. On αs, w0(θ) =

{
− id, ` even

−ε, ` odd
[1, p. 257]. So the diagram

automorphism θ = − id ◦ θ∗ ◦ w0(θ) = −w0(θ). Q.E.D.

7.3 Maximal Tori in the Case p ≡ 1 (mod 4), in the

Other Cases k-Anisotropic Tori

7.3.1 Preliminary Results and Definitions

Definition 10. A torus T is ”k-split” if the minimum polynomial of its elements factors

completely over k. (That would imply that these minimum polynomials have the same number

of roots in k as their degree.) On the other hand, a torus T is ”k-anisotropic” if the minimum

polynomial of each of its elements has no roots in k at all.

This next lemma will simplify the proof of Proposition 24.
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Lemma 17. T =

{(
a b

−b a

)∣∣∣∣∣ a2 + b2 = 1 ∀ i = 1, 2, . . . , n

}
is a maximal k-split torus of

SO(2, k) iff −1 ∈ k∗2. If −1 /∈ k∗2 then T is a k-anisotropic torus of SO(2, k).

Proof. Let A ≡

(
a b

−b a

)
, C ≡

(
c d

−d c

)
be elements of T . Then

AC =

(
ac− bd ad+ bc

−bc− ad ac− bd

)
= CA

and det(CA) = (ac − bd)2 + (ad + bc)2 = a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2c2 =

c2(a2 + b2) + d2(a2 + b2) = c2 + d2 = 1 so AC = CA ∈ T . That means that T is a torus.

Further, det(A) = 1 so T has the same dimention as SO(2, k), and AT =

(
a −b
b a

)
, so

that AAT =

(
a2 + b2 −ab+ ab

−ab+ ab a2 + b2

)
= I2 so A ∈ SO(2, k).

The minimum polynomial of A is

∣∣∣∣∣ a− λ b

−b a− λ

∣∣∣∣∣ = λ2− 2aλ+ (a2 + b2). Therefore, the

eigenvalues are
2a±

√
4a2 − 4a2 − 4b2

2
= a± b

√
−1

That means that T is a k-split torus of SO(2, k) (where n = 1) iff −1 ∈ k∗2. It is clear that

if −1 /∈ k∗2 then T is a k-anisotropic torus of SO(2, k). Q.E.D.

7.3.2 The First Torus

Proposition 24. The set

T =





a1 b1 . . . 0 0

−b1 a1 . . . 0 0
...

...
. . .

...
...

0 0 . . . an bn

0 0 . . . −bn an



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a2
i + b2

i = 1 ∀ i = 1, 2, . . . , n


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is a maximal k-split torus of SO(2n, k) iff −1 ∈ k∗2. If −1 /∈ k∗2 then T is a k-anisotropic

torus of SO(2n, k).

Proof. This proof will be inductive. The case where n = 1 has been taken care of by

Lemma 17 above so assume the result is true ∀ n ≤ `. Now let n = ` + 1. Let A =

a1 b1 . . . 0 0

−b1 a1 . . . 0 0
...

...
. . .

...
...

0 0 . . . an bn

0 0 . . . −bn an


∈ T and let C =



c1 d1 . . . 0 0

−d1 c1 . . . 0 0
...

...
. . .

...
...

0 0 . . . cn dn

0 0 . . . −dn cn


∈ T . Then

AC = CA =



a1c1 − b1d1 a1d1 + b1c1 . . . 0 0

−b1c1 − a1d1 a1c1 − b1d1 . . . 0 0
...

...
. . .

...
...

0 0 . . . ancn − bndn andn + bncn

0 0 . . . −bncn − andn ancn − bndn


and det(CA) = 1 because the determinant of the (n− 2)× (n− 2) block in the upper left is

1 by the inductive hypothesis and the determinant of the 2× 2 block in the bottom left is 1

because it is identical to the matrices considered in Lemma 17. As in Lemma 17, this shows

that AC = CA ∈ T . That means that T is a torus.

Similarly, det(A) = 1 so T has the same dimention as SO(2n, k), and

AAT =



a2
1 + b2

1 −a1b1 + a1b1 . . . 0 0

−a1b1 + a1b1 a2
1 + b2

1 . . . 0 0
...

...
. . .

...
...

0 0 . . . a2
n + b2

n −anbn + anbn

0 0 . . . −anbn + anbn a2
n + b2

n


= In

so A ∈ SO(2n, k).
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The minimum polynomial of A is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0 0

−b1 a1 − λ . . . 0 0
...

...
. . .

...
...

0 0 . . . an − λ bn

0 0 . . . −bn an − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. By

the properties of determinants,

|A− λIn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0 0

−b1 a1 − λ . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . an − λ bn

0 0 . . . −bn an − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Define ξ(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0 0

−b1 a1 − λ . . . 0 0
...

...
. . .

...
...

0 0 . . . an−1 − λ bn−1

0 0 . . . −bn−1 an−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, which factors over k iff −1 ∈

k∗2 by the inductive hypothesis.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0 0

−b1 a1 − λ . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0

−b1 a1 − λ . . . 0
...

...
. . .

...

0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
=
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ b1 . . . 0 0

−b1 a1 − λ . . . 0 0
...

...
. . .

...
...

0 0 . . . an−1 − λ bn−1

0 0 . . . −bn−1 an−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ξ(λ). Therefore,

|A− λIn| = ξ(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . an − λ bn

0 0 . . . −bn an − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ξ(λ)[λ2

n − 2anλ+ (a2
n + b2

n)]

The roots of this polynomial are equal to the roots of ξ(λ) and an± bn
√
−1 which are in

k iff −1 ∈ k∗2. This proves the result. Q.E.D.

7.3.3 More Useful Results

Lemma 18. All matrices of the form



a1 . . . 0 0 . . . b1

...
. . .

...
...

...
...

0 . . . at bt . . . 0

0 . . . −bt at . . . 0
...

...
...

...
. . .

...

−b1 . . . 0 0 . . . a1


have eigenvalues of

the form ai ± bi
√
−1 for all i ∈ {1, 2, . . . , t}.

Proof. This proof will be inductive. In the t = 1 case, the determinant of

∣∣∣∣∣ a1 − λ b1

−b1 a1 − λ

∣∣∣∣∣ =

λ2 − 2a1λ+ a2
1 + b2

1 which has roots a1 ± b1

√
−1 as claimed.

Now assume the result is true for t = 1, 2, . . . , n − 1. In that case, we are assuming
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that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ . . . 0 0 . . . b1

...
. . .

...
...

...
...

0 . . . an−1 − λ bn−1 . . . 0

0 . . . −bn−1 an−1 − λ . . . 0
...

...
...

...
. . .

...

−b1 . . . 0 0 . . . a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
has the roots ai ± bi

√
−1 for all i =

1, 2, . . . , n− 1. Now consider the case where t = n.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ . . . 0 0 . . . b1

...
. . .

...
...

...
...

0 . . . at − λ bt . . . 0

0 . . . −bt at − λ . . . 0
...

...
...

...
. . .

...

−b1 . . . 0 0 . . . a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a1 − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 − λ . . . 0 0 . . . b2 0
...

. . .
...

...
...

...
...

0 . . . at − λ bt . . . 0 0

0 . . . −bt at − λ . . . 0 0
...

...
...

...
...

. . .
...

−b2 . . . 0 0 . . . a2 − λ 0

0 0 0 0 0 0 a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a2 − λ . . . 0 0 . . . b2

...
. . .

...
...

...
...

...

0 0 . . . at − λ bt . . . 0

0 0 . . . −bt at − λ . . . 0
...

...
...

...
...

. . .
...

0 −b2 . . . 0 0 . . . a1 − λ
−b1 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= [λ2 − 2a1λ+ a2
1 + b2

1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 − λ . . . 0 0 . . . b2

...
. . .

...
...

...
...

0 . . . at − λ bt . . . 0

0 . . . −bt at − λ . . . 0
...

...
...

...
. . .

...

−b2 . . . 0 0 . . . a2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Now, inductively, we assumed the polynomial resulting from the last matrix above has

only roots in the desired form, since it is (n− 1)× (n− 1), and the roots of the polynomial

on the left are again a1 ± b1

√
−1. This proves the result. Q.E.D.

Lemma 19. Any matrix in SO(2n, k) can be row-reduced to I2n by using row operations cor-

responding to matrices in SO(2n, k). Further, one can also row-reduce a matrix in SO(2n, k)

that has a block in SO(2m, k) on the main diagonal, m < n, that is otherwise diagonal and

whose diagonal entries outside of the block have the product of one.

Proof. The proof will be inductive. Let A ∈ SO(2, k). Then by Lemma 14, A =[
±
√

1− a2 a

−a ±
√

1− a2

]
for some a ∈ k. It follows that A−1 =

[
±
√

1− a2 −a
a ±

√
1− a2

]
= AT . Then if one takes the first row of A, multiplies it by ±

√
1− a2 and adds −a times the

second row to the first row, the first row will be the same as the first row of I2. Similarly,

one can multiply the second row by ±
√

1− a2 and add a times the first row to it to render

the second row identical to the second row of I2. This corresponds to multiplying A by A−1,

and these operations are both a combination of elementary row operations.

Now assume the result is true on SO(2n, k) for n ∈ {1, 2, . . . ,m − 1}, using the same

method. Let n = m and let A ∈ SO(2n, k). If B ∈ SO(2n − 2, k), the result is true on B.

That means that a combination of elementary row operations takes one from B to I2n−2.

Specifically, B−1 = BT so, by multiplying the first row of B by b11, e.g., and adding the

second row of B multiplied by b21 to it, adding the third row of B multiplied by b31 to it,

and etc. down to adding the last row of B multiplied by b2n−2,1 to the first row will make the

first row the same as the first row of I2n−2. By the inductive hypothesis, a similar process

will work for the other rows.
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Thus, one can do the same thing to row-reduce A to I2n, considering the fact that

A−1 = AT since A ∈ SO(2n, k).

If one considers the matrix C =



α1 . . . 0 0 0 . . . 0

0
. . . 0 0 0 . . . 0

0 . . . αi 0 0 . . . 0

0 . . . 0 D 0 . . . 0

0 . . . 0 0 αi+1 . . . 0

0
. . . 0 0 0

. . . 0

0 . . . 0 0 0 . . . α2n−2m


, D ∈ SO(2m, k),

all αj ∈ k, and m < n, one can use a similar simultaneous row-reduction to obtain the

identity. This row reduction will correspond to the matrix

α1 . . . 0 0 0 . . . 0

0
. . . 0 0 0 . . . 0

0 . . . αi 0 0 . . . 0

0 . . . 0 D−1 0 . . . 0

0 . . . 0 0 αi+1 . . . 0

0
. . . 0 0 0

. . . 0

0 . . . 0 0 0 . . . α2n−2m


where D ∈ SO(2m, k) and all αj ∈ k. Q.E.D.
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7.3.4 The Second Torus

Proposition 25. For σ = JIs,t where t ∈ {1, 2, . . . , n} and s + t = 2n, assuming −1 ∈ k∗2,

the maximal (σ, k)-split torus of SO(2n, k) can be chosen as

T =





a1 . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...

0 . . . at . . . bt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . −bt . . . at . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
i + b2

i = 1 ∀ i = 1, 2, . . . , t


The dimension of the above torus is t.

Proof. Let A =



a1 . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...

0 . . . at . . . bt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . −bt . . . at . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1


∈ T , let

C =



c1 . . . 0 . . . 0 . . . d1

...
. . .

...
...

...
...

...

0 . . . ct . . . dt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . −dt . . . ct . . . 0
...

...
...

...
...

. . .
...

−d1 . . . 0 . . . 0 . . . c1


∈ T . Then



118

AC =



a1c1 − b1d1 . . . 0 . . . 0 . . . a1d1 + b1c1

...
. . .

...
...

...
...

...

0 . . . atct − btdt . . . atdt + btct . . . 0
...

...
... I2n−2t

...
...

...

0 . . . −atdt − btct . . . atct − btdt . . . 0
...

...
...

...
...

. . .
...

−a1d1 − b1c1 . . . 0 . . . 0 . . . a1c1 − b1d1


= CA so

T is commutative.

Let B = JIs,t(A) =



a1 . . . 0 . . . 0 . . . −b1

...
. . .

...
...

...
...

...

0 . . . at . . . −bt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . bt . . . at . . . 0
...

...
...

...
...

. . .
...

b1 . . . 0 . . . 0 . . . a1


. Then AB = I2n so B is the

inverse of A. That means that T is σ-split.

The minimum polynomial of A is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...

0 . . . at − λ . . . bt . . . 0
...

...
... I2n−2t(1− λ)

...
...

...

0 . . . −bt . . . at − λ . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (1− λ)2n−2t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ . . . 0 0 . . . b1

...
. . .

...
...

...
...

0 . . . at − λ bt . . . 0

0 . . . −bt at − λ . . . 0
...

...
...

...
. . .

...

−b1 . . . 0 0 . . . a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By Lemma 18, the roots of the above are 1 and ai ± bi

√
−1 for all i = 1, 2, . . . , t. That

means that T is indeed k-split.

All that is left to show is maximality of the torus T . Given the above eigenvalues, the

corresponding eigenvectors of A are as follows: the vector xi = (0, 0, . . . , 0, 1, 0, . . . , 0)T ,

where only the ith row is nonzero, corresponds to the eigenvalue 1 ∀ i ∈ {t+1, t+2, . . . , 2n−
2t}. A− (ai + bi

√
−1)I2n =

a1 − ai − bi
√
−1 . . . 0 . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...
...

...

0 . . . −bi
√
−1 0 . . . 0 −bi . . . 0

..

.
..
.

..

.
. . .

...
...

...
...

...

0 . . . 0 at − ai − bi
√
−1 . . . bt 0 . . . 0

...
...

...
... I2n−2t

...
...

...
...

0 . . . 0 −bt . . . at − ai − bi
√
−1 0 . . . 0

.

..
.
..

.

..
.
..

.

..
. . .

...
...

...

0 . . . bi 0 . . . 0 −bi
√
−1 . . . 0

...
...

...
...

...
...

...
. . .

...

−b1 . . . 0 . . . 0 0 0 . . . a1 − ai − bi
√
−1


The eigenvector yi such that (A−(ai+bi

√
−1)I2n)yi = 0 is yi = (0, . . . , 0,

√
−1, 0, . . . , 0, 1,

0, . . . , 0)T where
√
−1 is in the ith spot, 1 is in the (2n− i)th spot, and the other entries are

zero. Note that in the case bi = 0 this is still an eigenvector of A.

For similar reasons, the eigenvector zi corresponding to the eigenvalue ai − bi
√
−1 is

yi = (0, . . . , 0,−
√
−1, 0, . . . , 1, 0, . . . , 0)T where −

√
−1 is in the ith spot, 1 is in the (2n− i)th

spot, and the other entries are zero. Thus, the matrix of eigenvectors B (the one which I
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chose to use) looks like this:

B =



√
−1 −

√
−1 0 0 . . . 0 0 0 0 . . . 0

0 0
√
−1 −

√
−1 . . . 0 0 0 0 . . . 0

0 0 0 0
. . . 0 0 0 0 . . . 0

0 0 0 0 . . .
√
−1 −

√
−1 0 0 . . . 0

0 0 0 0 . . . 0 0 1 0 . . . 0

0 0 0 0 . . . 0 0 0 1 . . . 0

0 0 0 0 . . . 0 0 0 0
. . . 0

0 0 0 0 . . . 0 0 0 0 . . . 1

0 0 0 0 . . . 1 1 0 0 . . . 0

0 0 0 0 . . . 0 0 0 0 . . . 0

0 0 1 1 . . . 0 0 0 0 . . . 0

1 1 0 0 . . . 0 0 0 0 . . . 0


In that case, B−1AB = diag(a1+b1

√
−1, a1−b1

√
−1, . . . , ai+bi

√
−1, ai−bi

√
−1, . . . , at+

bt
√
−1, at − bt

√
−1, 1, . . . , 1). In SO(2n, k), only diagonal matrices commute with B−1AB,

except that the bottom-right corner can be any special orthogonal (2n−2t)×(2n−2t) matrix.

However, since the entries to the left of that block in the matrix will all be 0, by Lemma 19

that block can be row-reduced over SO(2n, k) to I2n−2t. (Observe that the product of all of

the eigenvalues is one.) That means that the diagonal matrix is maximal. That implies that

any matrix conjugate to it is maximal as well.

Let C be such a matrix, i.e., a matrix commutative with B−1AB. Then C has the block

form C =


c1 . . . 0 0

0
. . . 0 0

0 . . . ct 0

0 . . . 0 D

 where D is a special orthogonal matrix of size (2n − 2t) ×
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(2n− 2t). Then BCB−1 =

1
2
c1 + 1

2
c2 . . . 0 0 0 . . .

√
−1
2
c1 −

√
−1
2
c2

0
. . . 0 0 0

... 0

0 . . . 1
2
ct−1 + 1

2
ct 0

√
−1
2
ct−1 −

√
−1
2
ct . . . 0

0 . . . 0 D 0 . . . 0

0 . . .
√
−1
2
ct−1 −

√
−1
2
ct 0 1

2
ct−1 + 1

2
ct . . . 0

0
... 0 0 0

. . . 0
√
−1
2
c1 −

√
−1
2
c2 . . . 0 0 0 . . . 1

2
c1 + 1

2
c2


which is of the desired form. Q.E.D.

7.4 Results Related to Quadratic Elements

7.4.1 A Preliminary Result and a Definition

Proposition 26. The matrices A =

(
−a b

b a

)
and B =

(
−c d

d c

)
, where a2 + b2 =

c2 + d2 = 1 and a 6= 1, c 6= 1, are conjugate over SO(2, k) . Further, a + 1 = e2(c + 1) for

some e ∈ k.

Proof. Assume a2 + b2 = 1 and c2 + d2 = 1. Let A = X−1I1,1X and B = Y −1I1,1Y where

X =

(
b a+ 1

a+ 1 −b

)
, Y =

(
d c+ 1

c+ 1 −d

)
, and A and B are conjugate over SO(2, k).

Note that A and B both have a determinant of minus one, which means that they are not

in SO(2, k). Let D = |X−1|−1/2|Y |−1/2X−1Y . Then D ∈ SO(2, k) ⊂ O(2, k) because its

determinant is one and D−1AD = Y −1XX−1I1,1XX
−1Y = Y −1I1,1Y = B.

So A is conjugate to B over SO(2, k), since there is the matrix D ∈ SO(2, k) such that

D−1AD = B. That means D−1X−1I1,1XD = Y −1I1,1Y ⇒ I1,1XD = XDY −1I1,1Y ⇒
I1,1XDY

−1 = XDY −1I1,1. Thus, XDY −1 is diagonal.

Let XDY −1 = diag(e, f), so that XD = diag(e, f)Y . Since D ∈ O(2, k), DT = D−1 so

XXT = XDDTXT = diag(e, f)Y · (Y diag(e, f))T = diag(e, f)Y · Y T diag(e, f) so diag(b2 +

(a+ 1)2, b2 + (a+ 1)2) = diag(e2[d2 + (c+ 1)2], f 2[(c+ 1)2 + d2]).
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Since b2 + (a + 1)2 = b2 + a2 + 2a + 1 = 2(a + 1), e2[d2 + (c + 1)2] = 2e2(c + 1), and

f 2[(c+1)2+d2]) = 2f 2(c+1), one obtains diag(2(a+1), 2(a+1)) = diag(2e2(c+1), 2f 2(c+1)).

Thus, a+ 1 = e2(c+ 1) = f 2(c+ 1) which proves the result. Q.E.D.

Definition 11. The set of ”quadratic elements” of a maximal (σ, k)-split torus T are the

a ∈ T such that σ Inn(a) is an involution of the group G. Quadratic elements are also called

”k-inner elements.”

7.4.2 The Big Result on Quadratic Elements

Proposition 27. All the quadratic elements (or k-inner elements) for SO(2n, k) are conju-

gate to JA over SO(2n, k) with A =



−a1 b1 . . . 0 0 0

b1 a1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . −at bt 0

0 0 . . . bt at 0

0 0 . . . 0 0 I2n−2t


, and where ∀ i ∈

{1, 2, . . . , t}, a2
i + b2

i = 1 and ai 6= −1.

Proof. By Proposition 24 a maximal (σ, k)-split torus (to which the others are conjugate) is

T =





a1 . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...

0 . . . at . . . bt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . −bt . . . at . . . 0
...

...
...

...
...

. . .
...

−b1 . . . 0 . . . 0 . . . a1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
i + b2

i = 1∀ i = 1, 2, . . . , t


Therefore, if E ∈ T , the quadratic elements are of the form JIs,tJE = JIs,tE. Let B ≡ Is,tE =
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

a1 . . . 0 . . . 0 . . . b1

...
. . .

...
...

...
...

...

0 . . . at . . . bt . . . 0
...

...
... I2n−2t

...
...

...

0 . . . bt . . . −at . . . 0
...

...
...

...
...

. . .
...

b1 . . . 0 . . . 0 . . . −a1


. Assume that ∀ i ∈ {1, 2, . . . , t}, ai 6= −1.

B has eigenvalues of 1 and -1 with multiplicities of 2n − t and t, respectively. The

corresponding matrix of eigenvectors is S below:

S ≡



1 0 . . . 0 0 0 . . . 0 −b1
a1+1

0 . . . 0

0 1 . . . 0 0 0 . . . 0 0 −b2
a2+1

. . . 0
...

...
. . .

... 0 0 . . . 0
...

... . . .
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . −bt
at+1

0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0
. . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0

0 0 . . . bt
at+1

0 0 . . . 0 0 0 . . . 1
...

... . . .
... 0 0 . . . 0

...
... . . .

...

0 b2
a2+1

. . . 0 0 0 . . . 0 0 1 . . . 0

b1
a1+1

0 . . . 0 0 0 . . . 0 1 0 . . . 0


Thus, S−1BS = Is,t.

Let A =



−a1 b1 . . . 0 0 0

b1 a1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . −at bt 0

0 0 . . . bt at 0

0 0 . . . 0 0 I2n−2t


. Then A can be diagonalized as well. It

also has eigenvalues of 1 and -1 with the same multiplicities as B (2n− t and t, respectively).
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The matrix of eigenvectors of A is R below:

R ≡



b1
a1+1

0 . . . 0 0 0 . . . 0 1 0 . . . 0

1 0 . . . 0 0 0 . . . 0 −b1
a1+1

0 . . . 0

0 b2
a2+1

. . . 0 0 0 . . . 0 0 1 . . . 0

0 1 . . . 0 0 0 . . . 0 0 −b2
a2+1

. . . 0
...

...
. . .

... 0 0 . . . 0
...

...
. . .

...

0 0 . . . bt
at+1

0 0 . . . 0 0 0 . . . 1

0 0 . . . 1 0 0 . . . 0 0 0 . . . −bt
at+1

0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0
. . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0


Thus, R−1AR = Is,t.

As a result, S−1BS = R−1AR = Is,t so RS−1BSR−1 = A ⇒ (SR−1)
−1
B (SR−1) = A.

(SR−1)
−1

= (SR−1)
T

and det(SR−1) = 1 iff t is even, that is, iff Is,t ∈ SO(2n, k), so the

result has been proven by Theorem 2. Q.E.D.
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7.4.3 How to Use the Big Result on Quadratic Elements

Proposition 28. The matrices A =



−a1 b1 . . . 0 0 0

b1 a1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . −at bt 0

0 0 . . . bt at 0

0 0 . . . 0 0 I2n−2t


and

B =



−c1 d1 . . . 0 0 0

d1 c1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . −ct dt 0

0 0 . . . dt ct 0

0 0 . . . 0 0 I2n−2t


, where it is assumed that all a2

i + b2
i = c2

i + d2
i = 1

and all ai 6= −1 and all ci 6= −1, are conjugate over SO(2n, k) iff diag(a1+1, a2+1, . . . , at+1)

is congruent to diag(c1 + 1, c2 + 1, . . . , ct + 1).

Proof. A is the same as it was in the previous proposition, so it still has eigenvalues ±1 and

matrix of eigenvectors

R ≡



b1
a1+1

0 . . . 0 0 0 . . . 0 1 0 . . . 0

1 0 . . . 0 0 0 . . . 0 −b1
a1+1

0 . . . 0

0 b2
a2+1

. . . 0 0 0 . . . 0 0 1 . . . 0

0 1 . . . 0 0 0 . . . 0 0 −b2
a2+1

. . . 0
...

...
. . .

... 0 0 . . . 0
...

...
. . .

...

0 0 . . . bt
at+1

0 0 . . . 0 0 0 . . . 1

0 0 . . . 1 0 0 . . . 0 0 0 . . . −bt
at+1

0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0
. . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0


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Similarly, B has the same eigenvalues with the same multiplicities and a matrix of eigenvec-

tors

S ≡



d1
c1+1

0 . . . 0 0 0 . . . 0 1 0 . . . 0

1 0 . . . 0 0 0 . . . 0 −d1
c1+1

0 . . . 0

0 d2
c2+1

. . . 0 0 0 . . . 0 0 1 . . . 0

0 1 . . . 0 0 0 . . . 0 0 −d2
c2+1

. . . 0
...

...
. . .

... 0 0 . . . 0
...

...
. . .

...

0 0 . . . dt
ct+1

0 0 . . . 0 0 0 . . . 1

0 0 . . . 1 0 0 . . . 0 0 0 . . . −dt
ct+1

0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0
. . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0


Thus, R−1AR = S−1BS = Is,t. Consequently, A = RIs,tR

−1 and B = SIs,tS
−1.

AssumeA andB are conjugate over SO(2n, k). My claim is that diag(a1+1, a2+1, . . . , at+

1) is congruent to diag(c1 + 1, c2 + 1, . . . , ct + 1). Given my assumption, ∃ C ∈ SO(2n, k) 3
CAC−1 = B. Then CRIs,tR

−1C−1 = SIs,tS
−1 which implies that S−1CRIs,t = Is,tS

−1CR

so S−1CR =

(
A1 0

0 A2

)
, where A1 is t× t and A2 is (2n− t)× (2n− t).

Thus, CR = S

(
A1 0

0 A2

)
so RRT = RTCTCR =

(
AT1 0

0 AT2

)
STS

(
A1 0

0 A2

)
.

Hence diag(a1 + 1, a2 + 1, . . . , at + 1, 1, 1, . . . , 1, a1 + 1, a2 + 1, . . . , at + 1)−1 =

(
AT1 0

0 AT2

)

diag(c1 + 1, c2 + 1, . . . , ct + 1, 1, 1, . . . , 1, c1 + 1, c2 + 1, . . . , ct + 1)−1

(
A1 0

0 A2

)
which im-

plies the desired result, since it means diag(a1 + 1, a2 + 1, . . . , at + 1, 1, 1, . . . , 1, a1 + 1, a2 +

1, . . . , at+1) =

(
A−1

1 0

0 A−1
2

)
diag(c1+1, c2+1, . . . , ct+1, 1, 1, . . . , 1, c1+1, c2+1, . . . , ct+1)
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(
(A−1

1 )T 0

0 (A−1
2 )T

)
. That means that the t× t upper-left blocks of the diagonal matrices

are also congruent to each other.

Now assume that diag(a1+1, a2+1, . . . , at+1) is congruent to diag(c1+1, c2+1, . . . , ct+1)

over SO(2n, k). Then diag(a1 + 1, a2 + 1, . . . , at + 1, 1, 1, . . . , 1, a1 + 1, a2 + 1, . . . , at + 1) is

congruent to diag(c1+1, c2+1, . . . , ct+1, 1, 1, . . . , 1, c1+1, c2+1, . . . , ct+1) via a block diagonal

matrix L ≡

(
L1 0

0 L2

)
, where L ∈ SO(2n, k), L1 is t×t, and L2 is (2n−t)×(2n−t). In other

words, LTRTRL = STS. Let M ≡ RLS−1. Then M−1AM = SL−1R−1RIs,tR
−1RLS−1 =

SL−1Is,tLS
−1 = SIs,tS

−1 = B. Q.E.D.
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Appendix A

Extraneous Results

This proposition is true, but I didn’t need it for anything.

Proposition 29. A sequence in Qp that is bounded both above and below has a limit superior

and a limit inferior.

Proof. Let Φ = {φ1, φ2, . . .} be a bounded sequence in Qp that is bounded above and below.

Then there are real numbers δ and ε such that, ∀ i ∈ N, δ ≤ |φi|p ≤ ε. Now, the p-norm

gives discrete values for the norms of points in Qp, so there can only be a finite number of

p-norm values that come from the terms φi of the sequence Φ. By the pigeonhole principle,

that means at least one of the values pk of the norm, where k ∈ Z and δ ≤ pk ≤ ε, must be

repeated an infinite number of times.

If there is only one norm value pk such that for an infinite number of φi, |φi|p = pk,

then any α ∈ Qp such that |α|p = pk will be both the limit superior and the limit inferior

of the terms of Φ. (That means that the limit of the norm of the terms of Φ exists, and

lim
t→∞
|φt|p = pk.)

Otherwise, let pk1 and pk2 be two distinct p-norm values of the terms of Φ such that for

an infinite number of i, j ∈ N, |φi|p = pk1 and |φj|p = pk2 . Assume without loss of generality

that pk1 < pk2 , that pk2 is the biggest such infinitely repeated p-norm value, and that pk1 is

the smallest such infinitely repeated p-norm value. Then lim
t→∞

φt = pk2 and lim
t→∞

φt = pk1 .

The reason is that there can only be a finite number of φi with a bigger norm value than



132

pk2 and there can only be a finite number of φi with a smaller norm value than pk1 , by my

assumptions at the top of this paragraph. Q.E.D.

I think the lemma below is redundant with Classification Lemma 2.

Lemma 20. Let A =

[
a b

c d

]
∈ GL(2, k), let k = Qp and let Np be a nonsquare of k. Then

it cannot be true that AAT = diag(1, Np).

Proof. Assume otherwise, i.e., assume AAT =

[
a b

c d

][
a c

b d

]
=

[
a2 + b2 ac+ bd

ac+ bd c2 + d2

]
=

diag(1, Np). Then a2 + b2 = 1 ⇒ b = ±
√

1− a2 and c2 + d2 = Np, which is always possible

if −1 ∈ Q∗2p but might not be otherwise. However, in the other case, Np could be picked so

that it is the sum of two squares. Suppose for the sake of argument that that has been done.

Then d = ±
√
Np − c2, so

ac+ bd = 0

ac±
√

1− a2
√
Np − c2 = 0

ac = ∓
√

1− a2
√
Np − c2

Since Np is not a square, c 6= 0. Assume a 6= ±1. Then a√
1−a2 = ∓

√
Np−c2

c
so a2

1−a2 =
Np−c2
c2

so −1 + 1
1−a2 = Np−c2

c2
⇒ 1

1−a2 = Np
c2
⇒ c2 = Np(1 − a2). But c2 + d2 = Np so

Np −Npa
2 + d2 = Np ⇒ d2 = Npa

2 or (d/a)2 = Np, which is a paradox because Np is not a

square.

Now assume a = ±1. Then b = 0 and ac = ∓
√

1− a2
√
Np − c2 = 0 implies c = 0 so

d2 = Np, but again, that is a paradox. Q.E.D.

These two guys might be useful in computing examples of fixed-point groups over Qp.

Lemma 21. If υ is a square over Z, then υ 6≡ 2 (mod 4).

Proof. If any number is congruent to two modulo four, then it is even but not divisible by

four. Therefore, its prime factorization contains an odd power of two, so it cannot be a

perfect square over Z. Q.E.D.
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Lemma 22. In Q3, −1 and −3 are not the sums of two squares.

Proof. Generally speaking, −1 =
∞∑
i=0

(p − 1)pi and −p =
∞∑
i=1

(p − 1)pi. Assume the desired

result is not true for −1. Therefore, by Corollary 2, if β2 + γ2 = −1, then β =
∞∑
i=0

bi2
i and

γ =
∞∑
i=0

ci2
i.

Then β2 + γ2 = b2
0 + c2

0 + (2b0b1 + 2c0c1)p+ (2b0b2 + b2
1 + 2c0c2 + c2

1)p2 + (2b0b3 + 2b1b2 +

2c0c3 + 2c1c2)p3 + . . . By Corollary 1, p is not the sum of two squares, and if p − 1 were a

square then that would not be the case. So p− 1 is not a square, not only in this case, but

in Qp (p ≡ 3 (mod 4)).

Therefore if b2
0 + c2

0 = p − 1, b0 6= 0 and c0 6= 0. That can sometimes happen, and it

happens if p = 3, e.g., let b0 = c0 = 1. So consider p = 3. In the second term, one can set

b1 = 1 and c1 = 0 so consider the third term. 2b0b2 + b2
1 + 2c0c2 + c2

1 = 2b2 + 2c2 + 1 = 2,

which has no solution over Z. If instead one sets 2b2 +2c2 +1 = 2+2`, ` ∈ N, there is still no

solution because the righthand-side is even and the lefthand-side is odd. That is a paradox.

However, if b0 = 2 and c0 = 1, then b2
0 + c2

0 = 5 = 2 + 3, so the 3 can be added to the next

term. But that also causes a paradox, because then 1 + 2b0b1 + 2c0c1 = 2 + 2` and again

one side of the equation is odd and the other is even. No other combination of b0 = 1, 2 and

c0 = 1, 2 can get the first term to be 2, so that proves the result. The case β2 + γ2 = −3 is

similar. Q.E.D.

The last result below is redundant with (in fact, is superseded by) Fixed-Point Compu-

tation Lemma 7, which comes from Scharlau.

Fixed-Point Group Computation Lemma 9. For sufficiently large m ∈ N, x2
1 + . . . +

x2
m = p, x2

1 + . . . + x2
m = −1, and x2

1 + . . . + x2
m = −p have solutions in Qp, where p ≡

3 (mod 4). One can always select m = p to obtain a solution for each equation.

Proof. There’s not much to the first one. If m = p let xi = ±1 ∀ i ∈ {1, 2, 3, . . . ,m− 1,m}.
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In Qp, −1 =
∞∑
i=0

(p− 1)pi. Let xj =
∞∑
i=0

ξijp
i. Then x2

j =

(
∞∑
i=0

ξijp
i

)2

= ξ2
0j + 2ξ0jξ1jp+

(2ξ0jξ2j +ξ2
1j)p

2 +(2ξ0jξ3j +2ξ1jξ2j)p
3 + . . . A sum of p of these terms can get what is desired.

Specifically, let m = p. Then ∀ j ∈ {1, 2, 3, . . . ,m− 1,m}, set ξ0j = ±1 if j < m and set

ξ0m = 0 to get the first term. Then one is free to set each term ξ0j equal to one or minus one

later. For the second term, set ξ1j = ξ0j for all j ≤ p−1
2

and set ξ1m = 1. For the third term,

there are a number of ξ2
1j terms whose sum is equal to p+1

2
. Then set ξ2j = ξ0j if j ≤ p−3

4

and set ξ2j = 0 if j < m otherwise to get the third term. (Observe that if p = 3, p−3
4

= 0.)

Note that no selection has been made for ξ2m.

One continues in this vein to get −1. In the fourth term, based on the selections already

made, we have

(
m−1∑
i=1

2ξ0iξ3i

)
+
p− 3

4
+ ξ2m. (Recall ξ0m = 0, so the top index of the sum is

m − 1, not m.) So if p 6= 3, one must solve

(
m−1∑
i=1

2ξ0iξ3i

)
+ ξ2m =

p− 5

2
. This leaves one

with many options, such as setting ξ3i = 0 ∀ i ∈ {1, 2, . . . ,m − 1} and setting ξ2m = p−5
2

,

which is necessary if p = 7. Or, one could have ξ31 = ξ01 and the other ξ3i = 0, so ξ2m = p−7
2

.

There are many more such options too, depending on what p is.

To get the fourth term if p = 3, one must solve

(
m−1∑
i=1

2ξ0iξ3i

)
+ ξ2m = 2, and that is just

as easy. The following terms are similar (indeed, note that no selection has been made for

ξ3m), and since there are an infinite number of them they have been left to the reader. This

process works, and inductively it goes on ad infinitum.

Lastly, in Qp, −p =
∞∑
i=1

(p − 1)pi. One can obtain a sum of p squares to equal this

series in the exact same way as was done in the previous equation. Just start with terms

xj =
∞∑
i=1

ξijp
i instead of xj =

∞∑
i=0

ξijp
i and one has it. Q.E.D.


