
ABSTRACT

MIAO, SHUN. 3D Face Recognition From Range Image. (Under the direction of
Professor Hamid Krim).

In this thesis, we explore the statistical and geometrical behavior of the uncon-

trolled parameters of a human face, including both the rigid transform caused by

a head pose and the non-rigid transform caused by a facial expression. We focus

on developing a 3D facial recognition scheme which is robust for these uncontrolled

parameters.

This thesis presents a novel 3D face recognition method by means of the evolu-

tion of iso-geodesic distance curves. Specifically, the proposed method compares two

neighboring iso-geodesic distance curves, and formalizes the evolution between them

as a one-dimensional function, named evolution angle function, which is Euclidean

invariant. The novelty of this paper consists in formalizing a 3D face by an evolution

angle functions, and in computing the distance between two faces by that of two func-

tions. Experiments on Face Recognition Grand Challenge (FRGC) ver2.0 shows that

our approach works very well on the neutral faces. By introducing a weight function,

we also show a promising result on a non-neutral face database.

A novel 3D surface segmentation scheme is developed to detect the partial simi-

larity between two 3D facial images. The proposed algorithm is based on the iterative

closest point (ICP) algorithm, which uses the mean square distance as the cost func-

tion and is not able to detect partial similarities. The presented thesis make an

improvement of the ICP algorithm by iteratively removing points contributing the

largest error, and the remaining area of surface can be shown to be the partial simi-

larity between two surfaces.
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Chapter 1

Introduction

Face recognition is a challenging task that has been extensively researched during

the last decade[1]. While most of previous face recognition works were based on 2D

images, as the development of 3D scanning techniques, 3D face recognition has gained

more and more attention. In a controlled environment, current 2D face recognition

techniques can achieve an acceptable accuracy, but inadequate for more challenging

applications, especially in the presence of variation of lighting conditions and poses [1].

3D face recognition, by including the complete geometrical information, provides a

potential to alleviate the impact of lightening and pose, and to therefore improve

recognition performance.

Although more promising, the use of 3D images for face recognition also presents

some challenges. First, as a surface in cartesian coordinates, a face is always subjected

to Euclidean transformations, and a face alignment stage is usually required before

comparison, entailing additional computational cost. Second, in most scenarios, the

3D images we have are represented by random samples on the face, or triangulation

without consistent parameterizations. As a result, 3D face comparison becomes a

challenging task.

In this thesis, we explore the statistical and geometrical features of human faces

under different facial expressions. Our objective is to come up with a face recognition

scheme based on range images to achieve a good recognition rate under the variety



2

of facial expressions. We proceeded to extract low dimensional features from facial

range image, and built up a classifier, which can handle the deviations caused by

uncontrolled parameters, such as a pose of head and a facial expression.

1.1 Motivation and Overview

In the first work of the presented thesis, we focus on modeling the evolution of

facial level set curves named iso-geodesic curves, whose level set function is defined as

the geodesic distance to a reference point. Our interest in the evolution of iso-geodesic

curves is motivated on two counts. First, it has been shown that, change of a geodesic

distance on a human face caused by facial expressions is much less than change of a

Euclidean distance, and can hence be treated as an isometric transform. Therefore,

the registration based on the geodesic distance is robust. Secondly, while the 3D

curves are represented by cartesian coordinates that depend both on a reference and

on a base, the evolution of these curves only contains intrinsic information and is

Euclidean invariant. In the end, discriminant analysis is applied to evaluate the

robustness of these extracted features under different facial expressions and the robust

ones are selected for recognition.

The second part of the work in this thesis is focusing on 3D surface segmentation.

We attempt to extract identical areas from two 3D human faces, and exploit them to

perform recognition. We believe, with experimented validation, that two facial im-

ages of the same subject, share a considerably large portion of the facial area, even if

these two images have different facial expressions. And for two images with different

subjects, it is very unlikely to obtain two large identical areas from them. Partial

similarity detection is however a very challenging task because 3D images are sub-

jected to Euclidean transformations, and correct rotation and translation parameters

are required to overlap the identical areas with little prior knowledge. In the face

segmentation scenario, we have the prior knowledge that a large facial area will re-

main invariant to most facial expressions of interest. The iterative closest point may

be applied to obtain the rotation and translation, which minimize the global mean
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square distance. We shrink the surface iteratively by removing nodes contributing

large errors, until the remaining patches of the surfaces are identical. The area of

matched surfaces is used as a similarity measure of these two facial images. The more

area can be fitted, the more likely these images are from the same subject.

1.2 Contribution

We summarize our main contributions below.

• We have investigated the representation, classification and recognition of 3D

faces under variance of facial expressions. We propose to analyze the evolution

of iso-geodesic distance curves to obtain features that contain only the intrinsic

geometrical information of human faces. Features of 3D faces used in the pre-

sented thesis also have a nice property that they are local Euclidean invariants

of a 3D surface. With the surface registration based on iso-curves, we are finally

able to apply discriminant analysis techniques to select features that are robust

for facial expressions.

• We introduce a 3D surface segmentation technique for searching partial similar-

ities between two facial images. With the empirical knowledge that human faces

keep significant partial similarities under facial expressions, the segmentation

scheme is applied to locate the invariant area between the same person’s two

facial images with different facial expressions. The key idea in this problem is

to iteratively expand or shrink the surface under the constrain of a mean square

distance.

1.3 Outline

The present thesis is organized as follows.

• Chapter 2 gives a literature review of the state of art in face recognition. The

main 3D facial recognition techniques, with their experimental results are pre-
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sented. One may distinguish these main approaches as curve cased, non-rigid

surface based and template matching based approaches.

• Chapter 3 introduces a 3D face recognition algorithm based on evolution of iso-

geodesic distance curves. Both theoretical and numerical results are described

in this chapter.

• Chapter 4 demonstrates a 3D surface segmentation based on the Iterative Clos-

est Point (ICP) algorithm. An improvement is made on the ICP algorithm to

enable it to register partial similar surfaces.

• Chapter 5 proposes a novel framework of 3D surface segmentation as a future

work. The proposed framework combines ICP algorithm and level set method,

for the purpose of detecting facial regions which is invariant to the presented

facial expression.
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Chapter 2

Background

Research interest in 3D face recognition has witnessed an explosive growth over

the last few years. At first, people attempted to use 3D data to rule out variations

of illumination and pose, and therefore enhance face recognition approaches based on

2D images [2][3][4][5]. There are also several works on directly applying existing 2D

recognition techniques on depth images. In this chapter, we focus on the most recent

and important face recognition techniques. They are categorized into three themes,

a curve based, a non-rigid surface based and a template matching based approaches.

Because a 3D surface is subjected to a Euclidean transformation, most 3D face

recognition approaches require surface matching. A well known surface matching

method is the Iterative Cloud Point (ICP) algorithm [6][7]. Feature points on faces

are also widely used in surface alignment [8][9][10][11][12]. The difficulty of surface

matching is clear. As human faces are not rigid surfaces, deformation will severely

undermine the performance of most algorithms.

Some new ideas have recently been provided for non-rigid matching. Bronstein

et al. proposed to match non-rigid surface in an isometric manner. Lu et al. [13]

performed a Thin-Plate Spline warping to establish a deformable face model.

To avoid a consuming and difficult surface matching procedure, researchers have

explored approaches based on analysis of facial curves. Samir et at. [14] used level set

curves of a height function to study the difference between surfaces. Shuo et al. [15]



6

compared level set curves of geodesic distance function by developing a Euclidean

invariant. Srivastava et al. [16] measured the distance between two facial curves on a

shape manifold.

Another way to avoid surface matching is to fit a template on face data. A 3D

face morphable model [17] was proposed by Blanz et al., an active appearance model

was proposed by Cootes et al. [18] and an annotated deformable model was proposed

by Passalis et al. [19] are examples.

2.1 Curve Based Approaches

Samir et al. [14] presented a 3D face recognition method, which measures the

similarity of faces on the manifold of closed planar curves. Level set curves of a depth

function are extracted from 3D faces, and parameterized by arc length. A manifold

of closed, arc length parameterized planar curves is generated, on which an approach

of computing a geodesic on the manifold is proposed. The geodesic length between

two curves on the shape manifold is used as a criterion in the nearest neighborhood

recognition as the measurement of similarity. In the validation experiment, using a

data set of 300 facial surfaces, 6 facial expressions each for 50 subjects, a recognition

rate of 92% is reported. The method is based on depth level set curves, but depth is

subjected to Euclidean transform, thus a costly alignment procedure is required.

Shuo et al. [15] proposed a Euclidean invariant for curves inR3 to compare geodesic

circles from 3D faces. Level set curves of a geodesic distance between any point on

a face surface to nose tip are extracted, and are referred to as geodesic circles. A

Euclidean integral invariant signature for curves in R3, which is independent for

positions and parameterizations of curves, is presented. Based on the assumption

that geodesic circles undergo piecewise Euclidean transformations on account of facial

expressions, the approach is claimed to be robust to facial expressions. The L2 norm

of integral signature is computed, and used as the distance in a Nearest Neighbor

classification. In the experimental evaluation of this work, training data are selected

from FGRC Spring 2003, and testing data from FGRC spring 2004. A recognition
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rate of 95% is reported.

Mpiperis et al. [3] proposed to use geodesic polar coordinates to register faces

and map the texture to the same polar system. The geodesic polar coordinates (r, θ)

are defined as: radius r is the geodesic distance to nose tip, angle θ represents the

tangent direction of a geodesic path at nose tip. A mapping from 3D faces to a

planar surface is defined based on the geodesic polar coordinates (r, θ). The mapping

f : S1(r, θ) → S2(r, θ) is claimed to be an isometry, but which, unfortunately, is not

generally true. One experiment embeds the texture on a 3D face to a geodesic plane,

and uses the flattened image for classification. Another experiment embed the depth

to geodesic plane and perform classification. Experimental results are from 80.3% to

90.4% rank-one recognition rate using texture, and from 84.4% to 95% using depth,

depending on the choice of database.

Srivastava et al. [16] used the geodesic distance between geodesic circles on a shape

manifold for curves in arbitrary Rn to measure the similarity between 3D faces. The

pre-shape space, as a quotient space with respect to re-parametrization and rota-

tion, is constructed using square-root velocity function [20][21], which can represent

a curve in Rn by n functionals. An algorithm to compute a geodesic between two

parameterized curves is introduced, and the geodesic distance serves as the similarity

measurement for face recognition. Tested on 12 faces of 7 subjects, a recognition rate

of 100% is achieved.

2.2 Non-rigid Surface Based Approaches

Bronstein et al. [22][23] proposed an isometric model of facial expressions to allow

for deformation caused by facial expressions. Based on the assumption that ”the

change of the geodesic distance due to facial expressions is insignificant”, an isometric

embedding is proposed to embed 3D face in R3, keeping the Euclidean distance in the

embedded space equal to the geodesic distance on the original surface. Face data is

converted by this embedding to a canonical form, and the L2 norm of the canonical

norm is used for classification. Tested on a data set with 220 images of 30 subjects,
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a recognition rate of 100% is reported.

Li et al. proposed to use multiple features for 3D face recognition. In their

first attempt [24], multiple intrinsic geometric features, including angles, geodesic

distance and curvatures are extracted, and a training procedure is proposed to obtain

weights for extracted features, according to their sensitivity to facial expressions.

And a nearest neighbor classifier is applied using the training results as a basis.

Experimental evaluation is carried out using a dataset containing 300 frontal faces, 5

faces per subject, of all the 60 subjects. The training group contains 150 faces of 30

individuals, and the test group contains the remaining 150 faces. The result showed a

recognition rate of 94.17%, while rigid surface approach reaches a recognition rate of

87% on the same dataset. In their second attempt [25], a uniform remeshing scheme

is proposed to extract multiple features, and a ranking procedure is applied to select

expression-insensitive features. The test on the same dataset reaches a recognition

rate of 94.68%.

Lu et al. [13] improve previous work using a Thin-Plate Spline (TPS) approach for

deformation analysis [26] to a deformable model which is able to synthesize different

facial expressions from a given neutral face. 94 fiducial landmarks on 3D faces are

extracted from both neutral faces and non-neutral faces in the training set, three of

which are used for alignment. Given a probe face, the displacements of landmarks

are added to the face, and TPS warping is applied to interpolate the deformation

of landmarks to the whole surface. Tested on 877 face scans and 100 gallery tem-

plates, trained by 7 independent facial expressions, a performance of 92% rank one

recognition rate is achieved.

2.3 Template Matching Approaches

Cootes et al. introduced a active appearance model. Shapes of 3D faces are

normalized by a Thin-Plate Spline warping acted on extracted facial anchor points.

Principal Component Analysis is applied both on shape and texture to extract co-

efficients, and an iterative model refinement algorithm is developed to fit the model
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to face scans. The quality of the model is evaluated by the number of iterations and

surface displacement. Edwards et al. [27] use this face model for face recognition. In

a test with 400 faces, 200 for training and 200 for testing, a recognition rate of 88%

is reported.

Similar to the idea of an active appearance model, Blanz et al. [17][28][29][30]

proposed to use a 3D morphable model [31] for face recognition in both 2D and 3D.

The correspondence between 3D faces and a reference face is established by the optical

flow, prior to applying PCA on the reference shape and texture vectors to generate

the morphable model. The illumination model of Phong is adopted to synthesize

different illuminations and colors. This morphable model can reconstruct a 3D model

from single 2D image. The experimental evaluation in this work uses a database with

front, side and profile images in both gallery set and probe set, for a recognition rate

of 99.8% for frontal-frontal case, and the lowest recognition rate of 79.5% occurs in

the profile-frontal case. Huang et al. [32] added a component based approach to the

morphable model, but the recognition rate remains the same.

Xu et al. [33] developed an automatic subdivision technique for consistency of a

mesh. They fit a square mesh on 3D face and repeat subdivision to refine the base

mesh. Gaussian-Hermite moment of shape vector is computed as feature for Nearest

Neighbor classifier. Tested in a manually fitted database with 30 subjects, 6 images

for each, their approach achieves a recognition rate of 96.1%. However, tested with

a automatically fitted database with 60 subjects, 6 images for each, the recognition

rate decreases to 72.4%.

Passalis et al. [19][34] presented an approach to 3D face recognition that use Haar

wavelet coefficients on annotated deformable models (AFM). AFM is constructed

using the average 3D facial meshes from a training set, and UV parametrization of

AFM is used to generate a three-channel deformation image, where each channel

value records one of three position coordinates. A four level Walsh transform using a

Haar wavelet is performed on each channel, to extract coefficients that will be used

for comparison. The experimental evaluation in this work uses 466 images in the

gallery set and 3541 images in the probe set, while 60% of subjects have a neutral
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facial expression and 40% of subjects have a variety of non-neutral facial expressions.

With a false alarm rate of 10−3, a verification rate of 95.43% is reported on neutral

subsets, and 80.61% on non-neutral subset.
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Chapter 3

Face Recognition Using Facial

Curves

In this chapter, we develop a novel face recognition technique based on range

images. We model the evolution of level set curves on a 3D surface to derive 3D

Euclidean invariant features. Discriminant analysis is applied to these features to

extract facial expression-insensitive features, which are used in a nearest neighbor

classifier for recognition.

The remainder of this chapter is organized as follows. In Section 3.1, we introduce

the background of iso-geodesic distance curves, as well as an efficient algorithm to

extract it. In Section 3.2, we propose a 3D Euclidean invariant evolution angle func-

tion, which is shown to be Euclidean invariant and to contain the full information of

a 3D surface. In Section 3.3, details about the implementation of the algorithm are

provided. In Section 3.4, expression-insensitive features are extracted by perform-

ing a discriminant analysis. Experimental results and conclusions are presented in

Section 3.5.
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(a) (b) (c)

Figure 3.1: (a) Smoothed 3D face (b) Geodesic Distance Function (c) Iso-curves,
starting point is marked on each curve. To be clear

3.1 Geodesic Distance Function and Iso-curves

The geodesic distance between two points on a manifold is defined as the arc

length of the shortest path between these two points on the manifold. Given a 3D

face M and the nose tip pnose ∈M , the Geodesic Distance Function (GDF) GM(p) is

a mapping from M to R defined as GM(p) = DM(p, pnose) where DM(·, ·) denotes the

geodesic distance between two points on the manifold M . If we connect points with

the same GDF value, we will obtain a set of curves, denoted as iso-geodesic distance

curves (iso-curve), which are also level set curves of GDF. The iso-curve with GDF

value t can be written as (see Fig. 3.1 (a) and (b) for example)

C(t) = {p |gM(p) = t, p ∈M } . (3.1)

To extract iso-curves, we need to compute GDF first. There are several numerical

method for computing distances on a triangular mesh. Since our data is stored as

3D point clouds, which can easily be converted to a graph, the Dijkstra algorithm

can be applied to compute on-graph distance between nodes. However, the distance

obtained by Dijsktra algorithm is usually not precise. The red path in Fig. 3.2 (a)

is the geodesic path obtained from Dijsktra algorithm, which is obviously subjected
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(a) (b)

Figure 3.2: (a) Geodesic path obtained from Dijstra algorithm (b) Geodesic path
obtained from Fast Marching

to error because the path is strictly constrained on the graph. One solution is to

use the Fast Marching Algorithm [35] to compute the on-surface geodesic path and

distance as shown in Fig. 3.2 (b). The geodesic distance computed by fast marching

algorithm is the real shortest path on a triangulated surface, and is consistent to the

real geodesic distance.

The GDF computed by fast marching algorithm is shown in Fig. 3.1 (b). Because

the GDF we have is discrete, and only assumes values on vertices of a triangular

mesh, we obtain an iso-curve with level C, by an approximation and interpolation.

The strategy is to first obtain an edge across the t-level iso-curve, and then interpolate

the edge to obtain a point. If an edge across the t-level iso-curve, it is obvious that

the GDF value at one node of the edge is smaller than t, and the GDF value for the

other node is greater than t. Therefore, for an edge starting from p1 and ending at

p2, the product

S(p1, p2) = (GM(p1)− t)(GM(p2)− t) (3.2)

indicates whether this edge is across the t-level iso-curve. If S(p1, p2) is negative,

which means two nodes of the edge locate at two side of the t-level iso-curve, then the

edge intersects with the iso-curve, otherwise, it does not. For all edges intersecting
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Figure 3.3: Linear interpolation for detecting iso-curves

iso-curves, the intersection is linearly interpolated as [36] (see Fig 3.3 for illustration).

vt =
t−GM(p1)

GM(p2)−GM(p1)
(p2 − p1) + p1. (3.3)

3.2 Euclidean Invariant Evolution Angle Function

Essentially, iso-curves are level set curves defined on a manifold, with GDF as a

level set function. In this section, we will discuss the evolution of these iso-curves from

the perspective of differential geometry as the level value t increases. In Section 3.2.1,

the direction of the curve evolution is analyzed and evolution vector function (EVF)

is proposed to represent the curve evolution. In Section 3.2.2, by utilizing a nice

property that iso-curves evolve at a constant speed, evolution angle function (EAF)

is proposed to represent the 3D face in a Euclidean invariant way.

3.2.1 Evolution Vector Function

Iso-curves, as space curves, can be written as

C(s, t) =
(
x(s, t), y(s, t), z(s, t)

)
(3.4)

where t denotes the level value of the geodesic distance to nose tip, and s the pa-

rameter of the curve. Let’s consider the tangent plane at the point C(s, t), which
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Figure 3.4: Illustration of evolution of iso-curves.

is spanned by two orthogonal vectors. The first vector is the tangent vector of the

iso-curve at the point C(s, t), denoted by T (s, t)

T (s, t) =
( d
ds
x(s, t),

d

ds
y(s, t),

d

ds
z(s, t)

)
(3.5)

The other vector is orthogonal to T (s, t), denoted by B(s, t). T (s, t), B(s, t) and

N(s, t) formalize a basis of three-space, where N(s, t) denotes the normal to the

surface.

The evolution speed vector E(s, t) can be decomposed into these three directions

as E(s, t) = αT (s, t) + βB(s, t) + γN(s, t). Because iso-curves are constrained to

the surface, the normal component γ is obviously equal to zero. The tangential

component can also be set to zeros since tangential movement does not cause any

change of t and it only affects the parameterization of the curve. Therefore, the

evolution speed vector can simply be set to the binormal component βB(s, t), and

according to the definition of an iso-curve the speed is β = 1. For simplicity, from

now on, the evolution speed vector is denoted by v(s, t), and |v(s, t)| = 1.

If we extract iso-curves ci(s) = C(s, t = i∆) with a small enough ∆, the movement

along direction vi(s) causes the same amount change in GDF (see Fig.3.4 for example):

f(p+ ∆ · v(p)) = f(p) + ∆ (3.6)

The speed vector vi(s) is a function of arc length s. By multiplying the time

interval ∆, we can obtain an evolution vector function (EAF) vi(s)∆, which is an



16

approximation of evolution between the i-th iso-curve and the (i + 1)-th one. This

is an approximation because the speed vector varies in the interval ∆, and vi(s)∆ is

the approximated evolution vector based on the assumption that vi(s) is a constant

in the interval ∆. However, when ∆ is small enough, the approximation is quite

precise and the evolution can be written as Eq.3.7. The (i + 1)-th iso-curve has a

different parameter ŝ because evolution cannot guarantee a preservation arc length

parameterization.

ci(ŝ) = ci(s) + vi(s) ·∆ (3.7)

3.2.2 Evolution Angle Function

Since evolution vectors are subjected to Euclidean transformations, they can

hardly be used for recognition. Using the fact that the magnitude of an evolution

vectors is always equal to one, we are able to represent the evolution in a Euclidean in-

variant way. Because in the (T,B,N) frame, the tangential component is always zero,

which means the evolution vector is in a plane that is perpendicular to the tangent

vector. Because vi(s) ≡ 1, the vi(s)∆ lives on a circle with radius ∆ and perpendic-

ular to the tangent vector. If we are given a reference vector on this unit circle, vi(s)

can be determined by an angle, which is Euclidean invariant. To generate a set of

reference vectors along an iso-curve, we establish a moving frame {Ri(s), Si(s), Ti(s)}
along it, where Ti(s) is the tangent vector which can be computed by the curve itself.

Vectors from the nose tip to the iso-curve are denoted as qi(s), and the other two

vectors are defined as:

Ri(s) =
qi(s)− qi(s) Ti(s)

||Ti(s)||

||qi(s)− qi(s) Ti(s)
||Ti(s)|| ||

,

Si(s) =
Ri(l)× Ti(l)
||Ri(l)× Ti(l)||

Then, the unit evolution function can be written as a function of angle θi(l), which



17

−50 0 50

−1

0

1

−50 0 50

−1

0

1

−50 0 50

−1

0

1

−50 0 50

−1

0

1

−50 0 50

−1

0

1

−100 0 100

−1

0

1

−100 0 100

−1

0

1

−100 0 100

−1

0

1

−100 0 100

−1

0

1

−100 0 100

−1

0

1

Figure 3.5: Examples of Evolution Angle Function at different level

is called an evolution angle function (EAF):

vi(s) = Ri(s) cos(θi(s)) + Si(s) sin(θi(s)) (3.8)

By substituting Eq. 3.8 to Eq. 3.7, the evolution between two neighboring iso-

curves is explicitly determined by EAF, which means EAFs include the necessary

information needed to reconstruct the iso-curves. Given a initial Now, the problem of

comparing two faces has been reduced to comparing one-dimensional functions, which

is much easier because we don’t need to consider surface alignment and registration

any more. A set of evolution angle functions is shown in Fig. 3.5.

3.3 Implementation

3.3.1 Face Detection and Preprocessing

3D images used in this thesis are collected from FRGC ver2.0 database [37], with

640× 480 face range images and 2D images. Raw images are first down sampled by

4 in both X and Y direction to reduce the resolution. An image is represented by 6

160× 120 matrix (X,Y, Z,R,G,B) , where X,Y, Z denote the x, y, z coordinates



18

of each vertex and R,G,B denote the coordinate in color space. After locating

the nose tip, all vertices with distance to nose tip less than 100mm are selected to

formalize a point cloud as our region of interest. Delaunay triangulation is applied

to (X,Y ) to generate a triangular mesh.

3.3.2 Curve Parameterization

It is obvious that Equation 3.3 only provides one point on the c-level iso-curve at

a time, and we need to sort and parameterize these points to obtain a real curve. All

iso-curves are arc length parameterized as α(s), s ∈ [a, b]. The initial point of the arc

length parameterization locates on the symmetric plane of a face as shown in fig.3.1

(c), where the start points are marked as ’*’. Arc length (s) is set to be negative

on the left half and position on the right half. Therefore, the absolute value |a| and

|b| is the arc length of left and right half of the iso-curve, and b − a is the total arc

length. Because of the diversity of arc length of iso-curves, ranges [a, b] might vary

on different images and we only focus on the common range shared by all images. In

simulations, iso-curves are discretized as

P [k] = P (k∆l), k = [a, b], ∆l = 2. (3.9)

3.4 Discriminant Analysis

Because of facial expressions, faces are subject to non-rigid transformation, and

some part of the iso-curves are also subject to this non-rigid transformation, especially

near the mouth and cheeks. Thus, only being invariant to Euclidean transform is

insufficient and we need to extract features that are also robust to facial expressions.

For this purpose, discriminant analysis is applied to evaluate the robustness of EAF

features.

Samples of EAF is denoted as θi[k] = θi(k∆s), where i is the index of an iso-

curve and ∆s the sampling interval. The within class scatter of EAF is defined as

Ai[k] = E{θi[k]|ω} and the between class scatter is Bi[k] = E{θi[k]}. If the training
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set contains N subjects and M images for each subject, EAF of the m-th image of

the n-th subject is denoted as {θm,ni [k]}. These two scatters can be computed as

Ai[k] =
1

M

M∑
m=1

(θ̄im[k]− θ̄i[k])2 (3.10)

Bi[k] =
1

MN

M∑
m=1

(θim,n[k]− θ̄im[k])2 (3.11)

where

θ̄im[k] =
1

N

N∑
n=1

θim,n[k], θ̄i[k] =
1

MN

N∑
n=1

M∑
m=1

θim,n[k]

We subsequently use the same separability confidence as in [25]

Ci[k] =
Ai[k]

Bi[k]
(3.12)

It is obviously that the larger Ci[k] is, the better separability θi[k] has. After

obtaining the confidence, a weighting function is defined as Eq. 3.13, which thresholds

the criteria Ci[k], and only selects those features with Ci[k] ≥ γ

Wi[k] =

{
0, for Ci[k] < γ

1, for Ci[k] ≥ γ
(3.13)

3.4.1 Recognition

Face recognition has two scenarios, classification and verification. In face classifi-

cation, we have a face gallery with n different subjects, and given a new input image,

our target is to classify this input to one of n classes in the gallery. In other words,

it is a n-class classification problem. Face verification is a hypothesis test problem

that given two facial images, the goal is to make decision whether they belong to the

same subject. Thus, face verification is a 2-class classification problem.

With weighting function, the matching distance between two EAFs, θi[k] and
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θ̃i[k], is defined as Equation. 3.14:

D(θ, θ̃) =
40∑
i=1

bi∑
k=ai

[
(θi[k]− θ̃i[k]) · wi[k]

]2
(3.14)

where, [ai, bi] is the range of the i-th iso-curve. In the next section, the Receiver

Operation Characteristic (ROC) curve based on this distance measure will be shown.

3.5 Experimental Results

We collected 30 subjects as a training set from Face Recognition Grand Challenge

II (FRGC2) Spring 2004 database [37]. In the training set, each subject provides

4 different expressions. Our experiment is performed on 200 images of 50 subjects.

For each subject, we collected two neutral images and two non-neutral images (in-

cluding smile ,surprise, inflated and frown). First, 50 neutral faces are selected as

gallery templates, and 150 independent 3D scans for testing. The rank1 and rank2

recognition rate based on the matching distance is provided in Table.3.1. The match-

ing distance between every pair of images (19900 in total) is computed to generate

Receiver Operation Characteristic (ROC) Curve, which is shown in Fig. 3.6.

Table 3.1: Rank1 and Rank2 recognition rate

Neutral faces Non-neutral faces
Rank1 100% 93.64%
Rank2 100% 95.46%
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Chapter 4

3D Surface Segmentation

Intuitively, facial expressions only affect part of a human face, and the part re-

maining invariant under expressions can be used for face recognition. In chapter 3,

we extracted a set of facial curves and performed Discriminant Analysis to select

expression-invariant part of these curves. In this chapter, we introduce a 3D surface

segmentation scheme, which can adaptively extract identical parts between two facial

images. Let’s consider two cases: the first case is that these two images are from

the same subject, either of same facial expressions or different, and the second case

is that the two images are from different subjects. In the first case, the extracted

information is the expression-invariant part between these two facial expressions. In

the second case, because it is unlikely that faces of two different subjects can share

a large identical area, we have the intuition that the partial similarity between them

is small. Based on this argument, the identical facial area can be used as a distance

measure between two facial images.

The remainder of the chapter is organized as follows, in Section 4.1, an rigid surface

registration technique, the Iterative Closest Point (ICP) algorithm, is described as a

background. In Section 4.2, an improvement on ICP algorithm is proposed to enable

it to register two surfaces with non-rigid transformation. Experimental results and

analysis are discussed in Section 4.3.
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4.1 Iterative Closest Point

A major problem of utilizing 3D data is its subjection to Euclidean transform

including rotation and translation. The ICP algorithm [6][7] is a technique to register

two 3D surfaces by estimating the best rigid transform between them, which minimize

the mean square error (MSE). With an initial estimation of a rigid transform, the

ICP algorithm iteratively chooses the corresponding point and refines the rotation R

and translation T to minimize the mean square distance.

4.1.1 Point Set Registration

A major part of ICP algorithm is the closest point registration. Given two

point sets A and B, according to the closest point registration, any point in A is

correspondent to the point in B with the smallest Euclidean distance to it. The

mean square distance between these two point sets is defined as the average of

the square Euclidean distance of all correspondent points. The Euclidean distance

d(~r1, ~r2) between two points ~r1 = [x1, y1, z1]
T and ~r2 = [x2, y2, z2]

T is d(~r1, ~r2) =√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. For two point sets A = {~ai} and B = {~bj},

i = 1, ..., Na and j = 1, ..., Nb, the index of the correspondent point of a ∈ A is

φ(i) = arg min
i∈{1,...,Nb},~bi∈B

d(~a, ~bi) (4.1)

Based on the closest point registration, the mean square distance between two point

sets is defined as

d(A,B) =
1

Na

Na∑
i=1

d(~ai, ~bφ(i))
2 (4.2)

where φ(i) is the index of the correspondent point of ~ai. Without losing generality,

in the following sections, we denote ~bi as the closest point to the point ~ai.
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4.1.2 Optimal Rigid Transformation

After registering two point sets, the ICP algorithm solves the optimal rigid trans-

formation by iteratively minimizing the mean square distance as shown in Equa-

tion 4.2. A well known representation of rotation in R3 is a 3 × 3 rotation matrix,

which can be decomposed into three independent rotations in three directions,

R(θ) =


1 0 0

0 cosα − sinα

0 sinα cosα




cos β 0 sin β

0 1 0

− sin β 0 cos β




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (4.3)

The translation is represented by a vector T = [x, y, z]T . Based on the rotation matrix

and the translation vector, the Euclidean transformation of a point x is: x′ = Rx+T .

The sum of squares of distance becomes

f(R, T ) =
N∑
i=1

||ai −Rbi − T ||2 (4.4)

or

f(R, T ) =
N∑
i=1

||ai −Rbi||2 − 2T ·
N∑
i=1

[ai −Rbi] +N ||T ||2 (4.5)

The total error is obviously minimized by

T =
1

N

N∑
i=1

[ai −Rbi] = µa −Rµb, (4.6)

where

µa =
1

N

N∑
i=1

ai, µb =
1

N

N∑
i=1

bi. (4.7)

The translation is just the difference of the centroid of the point set B and the

centroid of the point set A. Accordingly, by moving the centroid of each point set

to the original of the coordinates, we can also minimize Equation 4.4. Substituting
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a′i = ai − µa and b′i = bi − µb into Equation 4.4, it becomes

f(R, T ) =
N∑
i=1

||a′i −Rb′i||2. (4.8)

Expand the total error, we obtain

f(R, T ) =
N∑
i=1

||a′i||2 + 2
N∑
i=1

a′i ·Rb′i +
N∑
i=1

||Rb′i||2 (4.9)

Because

||Rb′i||2 = ||b′i||2, (4.10)

minimizing the total error is equivalent to maximizing

N∑
i=1

a′i ·Rb′i. (4.11)

However, because the rotation matrix has sinusoid functions of 3 parameters,

maximizing Equation 4.11 is usually very difficult. Horn et al. [38] proposed to

represent the rotation by a unit quaternion ˙qR = q0 + iq1 + jq2 + kq3, and provided a

closed form solution of Equation 4.11. His method is described as follows.

A quaternion can be thought as a complex number with three imaginary pasts,

which have the following properties,

i2 = −1, j2 = −1, k2 = −1,

ij = −k, jk = −i, ik = −j
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Then, the inner product of two quaternions is

ṙq̇ = (r0qo − r1q1 − r2q2 − r3q3)

+i(r0q1 + r1q0 + r2q3 − r3q2)

+j(r0q2 − r1q3 + r2q0 + r3q1)

+k(r0q3 + r1q2 − r2q1 + r3q0)

which can also be represented in a matrix form,

ṙq̇ =


r0 −r1 −r2 −r3
r1 r0 −r3 r2

r2 r3 r0 −r1
r3 −r2 r1 r0

 q̇ = <q̇.

and

q̇ṙ =


r0 −r1 −r2 −r3
r1 r0 r3 −r2
r2 −r3 r0 r1

r3 r2 −r1 r0

 q̇ = <̄q̇.

A point (x, y, z) in R3 is represented by a quaternion ṙ = ix+ jy+ kz, whose real

part is zero. The rotation of a point ṙ can be represented by

ṙ′ = q̇ṙq̇∗ = (Q̄TQ)ṙ, (4.12)

where q̇ is a quaternion with q0 > 0 and q20 + q21 + q22 + q23 = 1. Then, the rotation
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matrix is

R( ~qR) = Q̄TQ =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 + q22 − q21 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

 .
(4.13)

This representation of the rotation matrix has a polynomial form, which makes the

optimization problem much easier. Now, substituting Equation 4.12 to Equation 4.11,

the target function needed to be maximized becomes

N∑
i=1

ȧ′i · (q̇ḃ′iq̇∗). (4.14)

This formula cam be rewritten as

N∑
i=1

(q̇ȧ′i) · (ḃ′iq̇), (4.15)

which is

q̇T

(
N∑
i=1

ĀTi Bi

)
q̇, (4.16)

where Ai and Bi is the corresponding matrix of point ai and bi. Now, it is obvious

that Equation 4.11 is maximized by choosing q̇ as the eigenvector corresponding to

the most positive eigenvalue of the matrix

(
N∑
i=1

ĀTi Bi

)
.

A 3 × 3 anti-symmetric matrix is defined as M = (
∑

ab−
∑T

ab), where
∑

ab =
N∑
i=1

a′ib
′
i, and the cyclic components of matrix M are used to form a column vector

∆ = [M23 M31 M12]
T . This vector is used to compute the matrix

(
N∑
i=1

ĀTi Bi

)
.

(
N∑
i=1

ĀTi Bi

)
= Q(

∑
ab) =

[
tr(
∑

ab) ∆T

∆
∑

ab +
∑T

ab−tr(
∑

ab)I3

]
(4.17)

In the end, the optimal rotation vector is obtained by computing the unit eigenvec-
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tor ~qR = [q0 q1 q2 q3]
T corresponding to the maximum eigenvalue of the matrix

Q(
∑

ab) and the optimal translation vector is given by ~qT = ~µb − R( ~qR) ~µa. (For

explicit proof, please see the reference [38])

4.1.3 Iterative Registration Algorithm

Given the point set A with Na points from a data shape, and the point set B with

Nb points from a model shape, the ICP algorithm can be stated as follows. First of all,

the initial registration vector ~p0, named coarse alignment, is obtained by Principle

Component Analysis (PCA). For both the data shape and the model shape, three

eigenvectors corresponding to three largest eigenvalues are extracted, and for each

shape, there is a reference plane spanned by the first two eigenvectors. The coarse

alignment is a rigid transform, which can make these two reference planes overlap, and

leave the third eigenvector on the same side of the plane. After the coarse alignment,

ICP algorithm is performed as follows.

1. Perform coarse alignment.

2. Obtain correspondent pairs (ai, bi) by closest point registration.

3. Estimate the registration vector by choosing ~qR as the eigenvector corresponding

to the largest eigenvalue of the matrix defined in Equation 4.17, and ~qT =

~µb −R( ~qR) ~µa.

4. Compute the mean square distance Dk.

5. Terminate the iteration if ||Dk −Dk−1|| < λ, otherwise go back to step 2

It can be proved that the ICP algorithm can always converge to a local minimum of

the mean square distance target function. To prove this, let ek denote the mean square

distance in the k-th iteration before performing Euclidean transformation, and fk

denote the mean square distance after performing Euclidean transformation. Because

the optimal Euclidean transformation is to minimize the means square distance, we

know that ek > fk. Because ek+1 is obtained by performing closest point registration,
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obviously we have fk > ek+1. Therefore, the mean square distance is monotonically

decreasing as the algorithm iterates

e0 > f0 > ... > ek > fk > ek+1 > fk+1 > ... (4.18)

Thus, the ICP algorithm always converges to a local minimum.

4.2 Improvement of the ICP Algorithm

Let’s consider a very common example, which shows the limitation of the ICP

algorithm. In Fig 4.1, we have two surfaces that are partially identical except for

a pyramid on the red surface. Because ICP uses the mean square distance as its

target function, it will definitely lead to a misalignment when there is a non-rigid

deformation, as shown in Fig 4.2. However, in our face recognition applications, due

to the variation of facial expressions, human faces are usually subjected to non-rigid

deformation, which will severely undermine the performance of the ICP registration.

In this section, an improvement of ICP is introduced to partially register non-rigid

deformed surfaces.

Figure 4.1: Two surfaces with partial similarity

If we watch human faces under different facial expressions carefully, we will notice

that under most facial expressions, the invariant area of human faces is usually larger

than the deformed area. Therefore, in this section, we make the assumption that a

major part of the facial area remains invariant to facial expressions. Admittedly, there

are certain extreme facial expressions conflicting with the assumption, on which the
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surface registration algorithm proposed in this section will fail. However, making ICP

be able to register 3D faces under most facial expressions is also a very meaningful

improvement.

Given two 3D face images of the same subject, it is the deformed areas of these

two faces that undermine the ICP registration by introducing a misalignment, which

cannot be canceled by a rigid transformation. Thus, the ICP algorithm will be able

to provide a good surface registration if the non-rigid deformed area is removed from

the surface. Intuitively, if the majority of these two triangular surface are similar,

the nodes contributing the largest error belong to the deformed area. Based on this

argument, we make an improvement on the the ICP algorithm by removing the most

significant error contributor iteratively until the mean square distance is reduced to

a pre-defined threshold λ. The improved ICP algorithm is illustrated as follows,

1. Estimate a registration vector ~p = [ ~pR ~pT ]T by the ICP algorithm.

2. Compute the square error contributed by each node bi inB, C(bi) = d(A,R( ~qR)bi+

~qT ).

3. Remove bi with the largest value C(bi) from the point set B.

4. Estimate the registration vector by choosing ~qR as the eigenvector corresponding

to the largest eigenvalue of the matrix defined in Equation 4.17, and ~qT =

~µb −R( ~qR) ~µa.

5. Update C(bi) for each node. Compute the mean square distance as Dk =∑Nb
i=1C(bi).

6. Stop iteration if ||Dk −Dk−1|| < µ, if not go back to step 3.

In Fig 4.2, an experiment on the previous example shows that the improved ICP

algorithm successfully removes the deformed part and significantly enhances the pre-

cision of the surface registration. Experiments performed on 3D face data also show

that the face area remaining invariant under the presented facial expression are suc-

cessfully extracted by the improved ICP algorithm.
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(a) (b)

Figure 4.2: (a) ICP registration (b) Improved ICP registration

4.3 Recognition and Experimental Results

The improved ICP algorithm segments identical areas between two facial images,

and the area will be used for recognition. As illustrated before, it is unlikely that

there are large identical areas between two different subjects, while images from the

same subject usually exhibits considerably large identical areas even when they are

captured under different facial expressions. Based on this observation, we simply

use the size of matched area as the distance measure between facial images, and the

nearest neighbor classifier is applied for classification.

In the experiment, we use the same data set as in Section 3.5, which consists

of 50 subjects and 4 images for each, including 2 neutral faces and 2 non-neutral

faces. Because the improved ICP algorithm dose not require training procedure, we

directly compute the distance measure to obtain accept rates and false alarm rates

with different decision boundary. A ROC curve of the presented 3D face recognition

technique is shown in Fig 4.4. Comparing with the experimental results shown in

Section 3.5, we can clearly see an significant improvement of the recognition rate

under the variability of facial expressions.
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(a) (b)

(c) (d)

Figure 4.3: (a) Face 1 (b) Face 2 (c) Rigid surface matching between the two image
(d) Segmented partial similar area
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Figure 4.4: ROC for face recognition based on improved ICP algorithm
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Chapter 5

Future Work in 3D Segmentation

by the Level Set Method

As stated before, the improved ICP algorithm is based on an assumption that the

majority of a face area will remain invariant under most facial expressions. When

certain extreme facial expressions violate this assumption, the improved ICP algo-

rithm might fail. In this chapter, we propose to use level set method for detecting

partial similarity between facial images. Given two 3D facial images, the general

idea is to grow a level set curve on one given facial image, with the constrain that

the facial areas inside the level set curve is identical to a subset of the other image.

The initialization of the level set curve is a rectangular around the nose tip, which

is expression-insensitive even under extreme facial expressions. Then the level curve

evolves on the face to absorb more area, which is identical to the other image. The

evolution is guided by an Eikonal partial differential equation, and solved by a fast

marching method.

The remainder of the chapter is organized as follows. In Section 5.1, the basic

concepts of level set method and fast marching method are introduced. In Section

5.2, I formalize the 3D segmentation problem to be a problem of evolving a level set

curve, and provide the framework of a novel 3D segmentation scheme based on the

level set method. Future works about 3D segmentation by the level set method is
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discussed in Section 5.3.

5.1 Background

5.1.1 Level Set Method

Level set method was first proposed by Osher and Sethian [39][35]. In this sub-

section, some of the basic concepts and implementation details of level set method

are introduced. A level set curve defined by a level set function φ(x, y, t) is a path

(x(t), y(t)) on which the level set value must be zero. Hence,

φ(x(t), y(t), t) = 0. (5.1)

By the chain rule,

φt +∇φ(x, y) · ~v(x, y) = 0, (5.2)

where ~v(x, y) = [x′(t), y′(t)]. If F supplies the speed in the outward normal direction,

then F = ~v · ~n, where ~n = ∇φ/|∇φ|. The evolution equation for φ is

φt + F |∇φ| = 0. (5.3)

Given an interface identified as a level set curve of the level set function φ, Equa-

tion 5.3 describes the time evolution of the interface. Consider a special and simple

case where the level set function φ(x, y) is defined as the time at which the interface

crosses the point (x, y), denoted as T (x, y). In this special case, the derivative of

the level set function with respect to time t is always equal to 1, thus Equation 5.3

becomes a partial differential equation,

|∇T |F = 1. (5.4)

This is a form of the well-known Eikonal equation, which can generally be solved by

a fast marching method [35]. The boundary condition in this case is T (x, y) = 0 on
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the initialization curve.

Because usually we need to solve the eikonal equation on a image plane, where the

domain is divided into grid points sampled in both x and y direction, it’s necessary to

construct an accurate approximation of the gradients ∇T . An upwind scheme given

in [40] is shown to be a very efficient and precise approximation of the gradients. The

level set function T (x, y) can be expanded as a Taylor series in both x and y direction,

thus we have

T (x+ ∆, y) = T (x, y) +
∂T (x, y)

∂x
∆ +O(∆2)

T (x, y + ∆) = T (x, y) +
∂T (x, y)

∂y
∆ +O(∆2)

After rearranging this expression, the derivative at point (x, y) can be written as

Tx(x, y) =
T (x+ ∆, y)− T (x, y)

∆
+O(∆)

Then, differential operators are defined as

D+xT =
T (x+ ∆, y)− T (x, y)

∆
,

D−xT =
T (x, y)− T (x−∆, y)

∆
, (5.5)

D0xT =
T (x+ ∆, y)− T (x−∆, y)

2∆
.

According to the upwind scheme, only values upwind of the direction of information

propagation should be used. Therefore, the gradient is approximated by

|∇T | = [max(D−xi j, 0)2 + min(D+x
i j, 0)2,

+ max(D−yi j, 0)2 + min(D+y
i j, 0)2]1/2. (5.6)
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Substitute Equation 5.6 into Equation 5.4, we can obtain,

1

F 2
= max(D−xi j, 0)2 + min(D+x

i j, 0)2,

+ max(D−yi j, 0)2 + min(D+y
i j, 0)2. (5.7)

A similar approximation to the gradient was introduced by Rouy and Tourin [41],

1

F 2
= max

(
max(D−xi j, 0)2,−min(D+x

i j, 0)2
)
,

+ max
(

max(D−yi j, 0)2,−min(D+y
i j, 0)2

)
. (5.8)

5.1.2 Fast Marching Method

A very efficient numerical solution of the Eikonal equation, named fast marching

algorithm was proposed by Sethian [35]. For this discussion, we limit ourselves to

a positive speed function F (x, y), which makes the level set curve monotonically

propagate off the initial line.

The key of fast marching algorithm is that the upwind different structure means

the information propagates “one way”, from smaller values of T (x, y) to larger ones,

which meets the assumption of a positive speed function. Because the idea of fast

marching method is to update the value T (x, y) around the existing front iteratively,

the selection of which grid to update around the front is the key of the whole algo-

rithm. Because of the assumption that the front propagates “one way”, the smallest

value around the front is always correct; other points around the front with larger

T (x, y) cannot affect it. The technique is explained algorithmically as follows,

1. Definition

(a) Alive points: points whose value of T (x, y) is known for sure. Letting

(i, j) denote the index of grid, the set of alive points is represented by

Ω = {(i, j)}.

(b) Narrow band points: points which are not alive points but adjacent to at

least one alive point. (For the grid (i, j), the adjacent grids are (i− 1, j),
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(i+ 1, j), (i, j − 1), (i, j + 1)). The value of T at the Narrow Band points

are estimated by Equation 5.8.

(c) Far away points: points which are neither alive points nor narrow band

points. The value of T at the Far Away points are set to be infinity.

2. Fast Marching Algorithm

(a) Begin Loop: Let (imin, jmin) be the point in Narrow Band with the smallest

value for T .

(b) Add the point (imin, jmin) to the Ω, and remove it from Narrow Band.

(c) Tag as neighbors any points (imin−1, jmin), (imin+1, jmin), (imin, jmin−1),

(imin, jmin + 1) that are either in Narrow Band or Far Away. All these

neighbors are them moved to the Narrow Band set.

(d) Recompute the values of T at all neighbors according to the largest possible

solution to the quadratic equation (Equation 5.8).

(e) Return to the top of the loop

Because the recomputed T is selected to be that largest possible solution to the

quadratic equation, whenever converting a Narrow Band point to Alive, the process

of recomputing the T value of its neighbors cannot produce a value less than any Alive

value. This property guarantee that the level set curve is always marching ahead in

time.

The discrete form of Equation 5.8 is given by

f 2
ij = max

(
max(D−xi j, 0)2,−min(D+x

i j, 0)2
)
,

+ max
(

max(D−yi j, 0)2,−min(D+y
i j, 0)2

)
, (5.9)

where the inverse of speed function Fij is replaced by fij = 1
F 2 . Consider a the

matrix of grid values in Fig. 5.1 from [35]. The goal is to compute the new value of

T in the center grid to update it, based on its neighbors A,B,C,D. Without loosing
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Figure 5.1: Matrix of adjacent grids

generality, the value A is assumed to be the smallest value of T in the Narrow Band

set. The problem can be generally divided into to cases.

case 1 : C is not alive. In this case, the T value of the center grid should be

computed from A.

1. If A+ f ≤ min(B,D), Tcomputed = (A+ f).

2. If A + f > min(B,D), with out loosing generality, we assume that B <= D.

The value of T is obtained by solving the quadratic equation (Tcomputed−A)2 +

(Tcomputed −B)2 = f 2

case 2 : C is alive. In this case, the T value of the center grid should be computed

from C. This case defaults into the first case above.

5.2 Surface Segmentation by Solving Eikonal Equa-

tion

As discussed above, the algorithm introduced in Section 4.2 cannot cope with

extreme facial expressions, as the invariance of the majority of facial area is not valid.

Our future work will be focused on the surface segmentation scheme based on the

level set method, which is much more robust under extreme facial expressions.

The facial range images we have are represented as six matrix (X,Y, Z,R,G,B)

, which provide us a depth image z = f(x, y). However, the fast marching algorithm

cannot be directly applied, as 3D images captured by most 3D scanners are usually
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not uniform sampled. Thus, as a preprocessing procedure, (X,Y, Z) is uniformly

sampled to generate depth image z[i, j] = f(i∆, j∆), where i, j denotes the discrete

x, y coordinates.

By the depth images, the 3D segmentation can be performed by segmenting the

parameter space of (x, y), which can be formalized by a level set method. The seg-

mentation of the a 3D face is represented by a level set function T (x, y). Given a

level value c, the surface is segmented into two parts: Sin(c) = {(x, y)|T (x, y) ≤ c}
and Sout(c) = {(x, y)|T (x, y) > c}, where Sin is the region inside the c-level set curve,

and Sout is the region outside it. In this section, we select appropriate speed vector

in order to make Sin to be the facial region which is invariant to the presented facial

expression, and Sout to be the region which undergoes a non-rigid deformation.

To solve the Eikonal equation, a boundary condition is needed. As shown by

Chang, K.I. et al. [42], the nose region is the most stable part of human face which

remains invariant under extreme facial expressions. In other words, given two 3D

facial images A and B of the same subject, a small area around the nose tip in A

can be perfectly matched to B. Therefore, the initial curve is chosen to be a small

rectangular near the nose tip in A, and the value T (x, y) inside the initial curve

is set to be 0. Based on the above argument, we know that if the ICP algorithm is

performed on Sin(0) and B, the mean square distance between them should be almost

zero. Obviously, a zero mean square distance between two 3D surfaces indicates that

these two surfaces are identical. The basic idea is to grow the region Sin with the

constraint that the mean square distance between Sin and B is close to zero, which

indicates that they are identical. Intuitively, we would like the front of the level set

curve to propagate faster in those regions which are invariant to the presented facial

expression, and slower in those regions which are affected by a non-rigid deformation.

Thus, I propose to make the speed vector to be F (x, y) = 1
D(x,y)λ

, where D(x, y) is

the distance to surface B based on closest point registration. This is a monotonically

decreasing function of D(x, y), and it satisfies the intuition that a higher speed should

be assigned to the regions which are more similar, and lower speed to the regions

which are more dissimilar. The 3D segmentation scheme is explained algorithmically
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as follows,

1. Detect a rectangular region near nose tip, Sin(0),as the boundary condition of

the Eikonal equation. According to fast marching algorithm, Sin is the Alive

set. Based on this, initialize the Narrow Band and the Far Away sets.

2. Beginning of the loop: Estimate registration vector ~p = [ ~pR ~pT ]T between Sin

and B by the ICP algorithm. Perform the rotation R( ~pR) and the translation

~pT on the surface A.

3. Compute the distance from each node {x, y, z = f(x, y)} in A to B, denoted as

D(x, y).

4. Set F (x, y) to be F (x, y) = 1
D(x,y)λ

. And f(x, y) = D(x, y)λ.

5. Let (imin, jmin) be the point in Narrow Band with the smallest value for T . Add

the point (imin, jmin) to the Sin, and remove it from Narrow Band.

6. Tag as neighbors any points (imin − 1, jmin), (imin + 1, jmin), (imin, jmin − 1),

(imin, jmin+1) that are either in Narrow Band or Far Away. All these neighbors

are them moved to the Narrow Band set.

7. Recompute the values of T at all neighbors according to the largest possible

solution to the quadratic equation (Equation 5.8).

8. Return to the top of the loop

5.3 Discussion and Future Work

The form of the speed function F (x, y) has very a significant impact on the evo-

lution result. Thus, one part of the future work is the selection of the speed function

F (x, y). As discussed before, the front of the level set curve should propagate faster in

regions where two surfaces are identical, and propagate slower or even stop in regions

where they are different. In the previous section, the Euclidean distance D(x, y) is
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used as a measurement of the surface similarity, and the speed function F (x, y) is set

to be a monotonically decreasing function of D(x, y). However, some more complex

similarity measurements, like curvature or shape index, might be better. Thus, it

is necessary to analyze the performance of these similarity measurements, as well as

other forms of the speed function F (x, y).

Reducing the computational cost of the algorithm is also a key part of the future

work. Because the fast marching method is an iterative algorithm, which requires

surface registration in each iteration, it is usually quite heavy in computation. Thus,

in the future I will analyze the complexity of the algorithm and make improvements

on the efficiency.
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